
Chapter 11

A Temporal Trace Language for
Formal Modelling and Analysis of
Agent Systems

A. Sharpanskykh and J. Treur

Abstract This chapter presents the hybrid Temporal Trace Language (TTL) for for-
mal specification and analysis of dynamic properties of multi-agent systems. This
language supports specification of both qualitative and quantitative aspects, and sub-
sumes languages based on differential equations and temporal logics. TTL has a
high expressivity and normal forms that enable automated analysis. Software en-
vironments for performing verification of TTL specifications have been developed.
TTL proved its value in a number of domains.

A. Sharpanskykh
Vrije Universiteit Amsterdam, Department of Artificial Intelligence, The Netherlands e-mail:
sharp@cs.vu.nl

J. Treur
Vrije Universiteit Amsterdam, Department of Artificial Intelligence, The Netherlands e-mail:
treur@cs.vu.nl

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 317
DOI 10.1007/978-1-4419-6984-2 11, c© Springer Science+Business Media, LLC 2010

sharp@cs.vu.nl
treur@cs.vu.nl

318 A. Sharpanskykh and J. Treur

11.1 Introduction

Traditionally, the multi-agent paradigm has been used to improve efficiency of soft-
ware computation. Languages used to specify such multi-agent systems often had
limited expressive power (e.g., executable, close to (logic) programming languages),
which nevertheless was sufficient to describe complex distributed algorithms. Re-
cently many agent-based methods, techniques and methodologies have been devel-
oped to model and analyse phenomena in the real world (e.g., social, biological, and
psychological structures and processes). By formally grounded multi-agent system
modelling one can gain better understanding of complex real world processes, test
existing theories from natural and human sciences, identify different types of prob-
lems in real systems.

Modelling dynamics of systems from the real world is not a trivial task. Cur-
rently, continuous modelling techniques based on differential and difference equa-
tions are often used in natural science to address this challenge, with limited success.
In particular, for creating realistic continuous models for natural processes a great
number of equations with a multitude of parameters are required. Such models are
difficult to analyze, both mathematically and computationally. Further, continuous
modelling approaches, such as the Dynamical Systems Theory [344], provide little
help for specifying global requirements on a system being modelled and for defining
high level system properties that often have a qualitative character (e.g., reasoning,
coordination). Also, sometimes system components (e.g., switches, thresholds) have
behaviour that is best modelled by discrete transitions. Thus, the continuous mod-
elling techniques have limitations, which can compromise the feasibility of system
modelling in different domains.

Logic-based methods have proved useful for formal qualitative modelling of
processes at a high level of abstraction. For example, variants of modal tempo-
ral logic [27, 198] gained popularity in agent technology, and for modelling social
phenomena. However, logic-based methods typically lack quantitative expressivity
essential for modelling precise timing relations as needed in, e.g., biological and
chemical processes.

Furthermore, many real world systems (e.g., a television set, a human organisa-
tion, a human brain) are hybrid in nature, i.e., are characterized by both qualitative
and quantitative aspects. To represent and reason about structures and dynamics of
such systems, the possibility of expressing both qualitative and quantitative aspects
is required. Moreover, to tackle the issue of complexity and scalability the possibil-
ity of modelling of a system at different aggregation levels is in demand. In this case
modelling languages should be able to express logical relationships between parts
of a system.

To address the discussed modelling demands, the Temporal Trace Language
(TTL) is proposed, which subsumes languages based on differential equations and
temporal logics, and supports the specification of the system behaviour at different
levels of abstraction.

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 319

Generally, the expressivity of modelling languages is limited by the possibility to
perform effective and efficient analysis of models. Analysis techniques for complex
systems include simulation based on system models, and verification of dynamic
properties on model specifications and traces generated by simulation or obtained
empirically.

For simulation it is essential to have limitations to the language. To this end,
an executable language that allows specifying only direct temporal relations can be
defined as a sublanguage of TTL; cf. [81]. This language allows representing the
dynamics of a system by a (possible large) number of simple temporal (or causal)
relations, involving both qualitative and quantitative aspects. Furthermore, using
a dedicated tool, TTL formulae that describe the complex dynamics of a system
specified in a certain format may be automatically translated into the executable
form. Based on the operational semantics and the proof theory of the executable
language, a dedicated tool has been developed that allows performing simulations
of executable specifications.

To verify properties against specifications of models two types of analysis tech-
niques are widely used: logical proof procedures and model checking [100]. By
means of model checking entailment relations are justified by checking properties
on the set of all theoretically possible traces generated by execution of a system
model. To make such verification feasible, expressivity of both the language used
for the model specification and the language used for expressing properties has to
be sacrificed to a large extent. Therefore, model specification languages provided by
most model checkers allow expressing only simple temporal relations in the form of
transition rules with limited expressiveness (e.g., no quantifiers). For specifying a
complex temporal relation a large quantity (including auxiliary) of interrelated tran-
sition rules is needed. In this chapter normal forms and a transformation procedure
are introduced, which enable automatic translation of an expressive TTL specifica-
tion into the executable format required for automated verification (e.g., by model
checking). Furthermore, abstraction of executable specifications, as a way of gener-
ating properties of higher aggregation levels, is considered in this chapter. In partic-
ular, an approach that allows automatic generation of a behavioural specification of
an agent from a cognitive process model is described.

In some situations it is required to check properties only on a limited set of traces
obtained empirically or by simulation (in contrast to model checking which requires
exhaustive inspection of all possible traces). Such type of analysis, which is compu-
tationally much cheaper than model checking, is described in this chapter.

The chapter is organised as follows. Section 11.2 describes the syntax of the
TTL language. The semantics of the TTL language is described in Section 11.3.
Multi-level modelling of multi-agent systems in TTL and a running example used
throughout the chapter are described in Section 11.4. In Section 11.5 relations of
TTL to other well-known formalisms are discussed. In Section 11.6 normal forms
and transformation procedures for automatic translation of a TTL specification into
the executable format are introduced. Furthermore, abstraction of executable speci-
fications is considered in Section 11.6. Verification of specifications of multi-agent

320 A. Sharpanskykh and J. Treur

systems in TTL is considered in Section 11.7. Finally, Section 11.8 concludes the
chapter.

11.2 Syntax of TTL

The language TTL is a variant of an order-sorted predicate logic [299]. Whereas
standard multi-sorted predicate logic is meant to represent static properties, TTL is
an extension of such language with explicit facilities to represent dynamic proper-
ties of systems. To specify state properties for system components, ontologies are
used which are specified by a number of sorts, sorted constants, variables, func-
tions and predicates (i.e., a signature). State properties are specified based on such
ontology using a standard multi-sorted first-order predicate language. For every sys-
tem component A (e.g., agent, group of agents, environment) a number of ontolo-
gies can be distinguished used to specify state properties of different types. That
is, the ontologies IntOnt(A), InOnt(A), OutOnt(A), and ExtOnt(A) are used to ex-
press respectively internal, input, output and external state properties of the com-
ponent A. For example, a state property expressed as a predicate pain may belong
to IntOnt(A), whereas the atom has temperature(environment,7) may belong to
ExtOnt(A). Often in agent-based modelling input ontologies contain elements for
describing perceptions of an agent from the external world (e.g, observed(a) means
that a component has an observation of state property a), whereas output ontolo-
gies describe actions and communications of agents (e.g., per f orming action(b)
represents action b performed by a component in its environment).

To express dynamic properties, TTL includes special sorts: T IME (a set of lin-
early ordered time points), S T AT E (a set of all state names of a system), TRACE
(a set of all trace names; a trace or a trajectory can be thought of as a timeline with
a state for each time point), S T AT PROP (a set of all state property names), and
VALUE (an ordered set of numbers). Furthermore, for every sort S from the state
language the following TTL sorts exist: the sort S VARS , which contains all vari-
able names of sort S , the sort S GT ERMS , which contains names of all ground terms,
constructed using sort S ; sorts S GT ERMS and S VARS are subsorts of sort S T ERMS .

In TTL, formulae of the state language are used as objects. To provide names of
object language formulae ϕ in TTL, the operator (*) is used (written as ϕ∗), which
maps variable sets, term sets and formula sets of the state language to the elements
of sorts S GT ERMS , S T ERMS , S VARS and S T AT PROP in the following way:

1. Each constant symbol c from the state sort S is mapped to the constant name c ′

of sort S GT ERMS .

2. Each variable x : S from the state language is mapped to the constant name x ′ ∈
S VARS .

3. Each function symbol f : S 1 × S 2 × ...× S n → S n+1 from the state language is
mapped to the function name f ′ : S T ERMS

1 ×S T ERMS
2 × ...×S T ERMS

n → S T ERMS
n+1 .

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 321

4. Each predicate symbol P : S 1 × S 2 × ... × S n is mapped to the function name
P ′ : S T ERMS

1 ×S T ERMS
2 × ...×S T ERMS

n → S T AT PROP.
5. The mappings for state formulae are defined as follows:

a. (¬ϕ)∗ = not(ϕ∗)
b. (ϕ&ψ)∗ = ϕ∗∧ψ∗, (ϕ |ψ)∗ = ψ∗∨ψ∗

c. (ϕ⇒ ψ)∗ = ϕ∗→ ψ∗, (ϕ⇔ ψ)∗ = ϕ∗↔ ψ∗

d. (∀x ϕ(x))∗ = ∀x ′ ϕ∗(x ′), where x is variable over sort S and x ′ is any constant
of S VARS ; the same for ∃.

It is assumed that the state language and the TTL define disjoint sets of expres-
sions. Therefore, further in TTL formulae we shall use the same notations for the
elements of the object language and for their names in the TTL without introducing
any ambiguity. Moreover we shall use t with subscripts and superscripts for vari-
ables of the sort T IME; and γ with subscripts and superscripts for variables of the
sort TRACE.

A state is described by a function symbol state : TRACE×T IME→ S T AT E. A
trace is a temporally ordered sequence of states. A time frame is assumed to be fixed,
linearly ordered, for example, the natural or real numbers. Such an interpretation of
a trace contrasts to Mazurkiewicz traces [306] that are frequently used for analysing
behaviour of Petri nets. Mazurkiewicz traces represent restricted partial orders over
algebraic structures with a trace equivalence relation. Furthermore, as opposed to
some interpretations of traces in the area of software engineering, a formal logical
language is used here to specify properties of traces.

The set of function symbols of TTL includes ∨, ∧,→,↔: S T AT PROP×
S T AT PROP → S T AT PROP ; not : S T AT PROP → S T AT PROP, and ∀,∃ :
S VARS × S T AT PROP→ S T AT PROP, of which the counterparts in the state lan-
guage are boolean propositional connectives and quantifiers. Further we shall use
∨,∧,→,↔ in infix notation and ∀,∃ in prefix notation for better readability. For ex-
ample, using such function symbols the state property about external world express-
ing that there is no rain and no clouds can be specified as: not(rain)∧not(clouds).

To formalise relations between sorts VALUE and T IME, functional symbols
−, +, /, • : T IME ×VALUE → T IME are introduced. Furthermore, for arithmeti-
cal operations on the sort VALUE the corresponding arithmetical functions are in-
cluded.

States are related to state properties via the satisfaction relation denoted by
the prefix predicate holds (or by the infix predicate |=): holds(state(γ, t), p) (or
state(γ, t) |= p), which denotes that state property p holds in trace γ at time point
t.

Both state(γ, t) and p are terms of the TTL language. In general, TTL terms are
constructed by induction in a standard way from variables, constants and function
symbols typed with all before-mentioned TTL sorts. Transition relations between
states are described by dynamic properties, which are expressed by TTL-formulae.
The set of atomic TTL-formulae is defined as:

322 A. Sharpanskykh and J. Treur

1. If v1 is a term of sort S T AT E, and u1 is a term of the sort S T AT PROP, then
holds(v1,u1) is an atomic TTL formula.

2. If τ1, τ2 are terms of any TTL sort, then τ1 = τ2 is a TTL-atom.

3. If t1, t2 are terms of sort T IME, then t1 < t2 is a TTL-atom.

4. If v1, v2 are terms of sort VALUE, then v1 < v2 is a TTL-atom.

The set of well-formed TTL-formulae is defined inductively in a standard way
using Boolean connectives and quantifiers over variables of TTL sorts. An example
of the TTL formula, which describes observational belief creation of an agent, is
given below:

In any trace, if at any point in time t1 the agent A observes that it is raining,
then there exists a point in time t2 after t1 such that at t2 in the trace the agent
A believes that it is raining.

∀γ ∀t1 [holds(state(γ, t1),observation result(itsraining))⇒

∃t2 > t1 holds(state(γ, t2),belie f (itsraining))]

The possibility to specify arithmetical operations in TTL allows modelling of
continuous systems, which behaviour is usually described by differential equa-
tions. Such systems can be expressed in TTL either using discrete or dense time
frames. For the discrete case, methods of numerical analysis that approximate a
continuous model by a discrete one are often used, e.g., Euler’s and Runge-Kutta
methods [334]. For example, by applying Euler’s method for solving a differential
equation dy/dt = f (y) with the initial condition y(t0) = y0, a difference equation
yi+1 = yi+h∗ f (yi) (with i the step number and h > 0 the step size) is obtained. This
equation can be modelled in TTL in the following way:

∀γ ∀t ∀v : VALUE holds(state(γ, t), has value(y,v))⇒

holds(state(γ, t+1), has value(y,v+h• f (v)))

The traces γ satisfying the above dynamic property are the solutions of the dif-
ference equation.

Furthermore, a dense time frame can be used to express differential equations
with derivatives specified using the epsilon-delta definition of a limit, which is
expressible in TTL. To this end, the following relation is introduced, expressing
that x = dy/dt:

is diff of(γ,x,y) :

∀t,w ∀ε > 0 ∃δ > 0 ∀t′,v,v′

0 < dist(t′, t) < δ & holds(state(γ, t),has value(x,w))

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 323

&holds(state(γ, t),has value(y,v))

&holds(state(γ, t′),has value(y,v′))

⇒ dist((v′− v)/(t′− t),w) < ε

where dist(u,v) is defined as the absolute value of the difference.

Furthermore, a study has been performed in which a number of properties of
continuous systems and theorems of calculus were formalized in TTL and used in
reasoning [83].

11.3 Semantics of TTL

An interpretation of a TTL formula is based on the standard interpretation of an
order sorted predicate logic formula and is defined by a mapping I that associates
each:

1. sort symbol S to a certain set (subdomain) DS , such that if S ⊆ S ′ then DS ⊆ D′S
2. constant c of sort S to some element of DS

3. function symbol f of type < X1, ...,Xi >→ Xi+1 to a mapping: I(X1)× ...× I(Xi)→
I(Xi+1)

4. predicate symbol P of type < X1, ...,Xi > to a relation on I(X1)× ...× I(Xi)

A model M for the TTL is a pair M =< I,V >, where I is an interpretation func-
tion, and V is a variable assignment, mapping each variable x of any sort S to an
element of DS . We write V[x/v] for the assignment that maps variables y other than
x to V(y) and maps x to v. Analogously, we write M[x/v] =< I,V[x/v] >.

If M =< I,V > is a model of the TTL, then the interpretation of a TTL term τ,
denoted by τM , is inductively defined by:

1. (x)M = V(x), where x is a variable over one of the TTL sorts.

2. (c)M = I(c), where c is a constant of one of the TTL sorts.

3. f (τ1, ..., τk)M = I(f)(τM
1 , ..., τ

M
k), where f is a TTL function of type S 1× ...×S n→

S and τ1, ..., τn are terms of TTL sorts S 1, ...,S n.

The truth definition of TTL for the model M =< I,V > is inductively defined by:

1. |=M Pi(τ1, ..., τk) iff I(Pi)(τM
1 , ..., τ

M
k) = true

2. |=M ¬ϕ iff 6|=M ϕ

3. |=M ϕ∧ψ iff |=M ϕ and iff |=M ψ

4. |=M ∀x(ϕ(x)) iff |=M[x/v] ϕ(x) for all v ∈ DS , where x is a variable of sort S .

324 A. Sharpanskykh and J. Treur

The semantics of connectives and quantifiers is defined in the standard way. A
number of important properties of TTL are formulated in form of axioms:

1. Equality of traces:
∀γ1,γ2 [∀t[state(γ1, t) = state(γ2, t)]⇒ γ1 = γ2]

2. Equality of states:
∀s1, s2[∀a : S T AT PROP[truth value(s1,a) = truth value(s2,a)]⇒ s1 = s2]

3. Truth value in a state:
holds(s, p)⇔ truth value(s, p) = true

4. State consistency axiom:
∀γ, t, p (holds(state(γ, t), p)⇒¬holds(state(γ, t),not(p)))

5. State property semantics:

a. holds(s, (p1∧ p2))⇔ holds(s, p1) & holds(s, p2)

b. holds(s, (p1∨ p2))⇔ holds(s, p1) | holds(s, p2)

c. holds(s,not(p1))⇔¬holds(s, p1)

6. For any constant variable name x from the sort S VARS :
holds(s, (∃(x,F)))⇔ ∃x′ : S GT ERMS holds(s,G), and holds(s, (∀(x,F)))⇔ ∀x′ :
S GT ERMS holds(s,G) with G, F terms of sort S T AT PROP, where G is obtained
from F by substituting all occurrences of x by x′.

7. Partial order axioms for the sort T IME:

a. ∀t t ≤ t (Reflexivity)

b. ∀t1, t2 [t1 ≤ t2∧ t2 ≤ t1]⇒ t1 = t2 (Anti-Symmetry)

c. ∀t1, t2, t3 [t1 ≤ t2∧ t2 ≤ t3]⇒ t1 ≤ t3 (Transitivity)

8. Axioms for the sort VALUE: the same as for the sort T IME and standard arith-
metic axioms.

9. Axioms, which relate the sorts T IME and VALUE:

a. (t+ v1)+ v2 = t+ (v1+ v2)

b. (t • v1)• v2 = t • (v1 • v2)

10. (Optional) Finite variability property (for any trace γ).
This property ensures that a trace is divided into intervals such that the overall
system state is stable within each interval, i.e., each state property changes its
truth value at most a finite number of times:
∀t0, t1 t0 < t1 ⇒ ∃δ > 0[∀t[t0 ≤ t & t ≤ t1]⇒ ∃t2[t2 ≤ t & t < t2 + δ & ∀t3[t2 ≤
t3 & t3 ≤ t2+δ]]⇒ state(γ, t3) = state(γ, t)]

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 325

11.4 Multi-level Modelling of Multi-Agent Systems in TTL

With increase of the number of elements within a multi-agent system, the complex-
ity of the dynamics of the system grows considerably. To analyze the behaviour of a
complex multi-agent system (e.g., for critical domains such as air traffic control and
health care), appropriate approaches for handling the dynamics of the multi-agent
system are important. Two of such approaches for TTL specifications of multi-agent
systems are considered in this section: aggregation by agent clustering is considered
in Section 11.4.1 and organisation structures are discussed in Section 11.4.2.

11.4.1 Aggregation by agent clustering

One of the approaches to manage complex dynamics is by distinguishing different
aggregation levels, based on clustering of a multi-agent system into parts or com-
ponents with further specification of their dynamics and relations between them;
e.g., [264]. At the lowest aggregation level a component is an agent or an environ-
mental object (e.g., a database), with which agents interact. Further, at higher aggre-
gation levels a component has the form of either a group of agents or a multi-agent
system as a whole. In the simplest case two levels can be distinguished: the lower
level at which agents interact and the higher level, where the whole multi-agent sys-
tem is considered as one component. In the general case the number of aggregation
levels is not restricted. Components interact with each other and the environment via
input and output interfaces described in terms of interaction (i.e., input and output)
ontologies. A component receives information at its input interface in the form of
observation results and communication from other components. A component gen-
erates at its output communication, observation requests and actions performed in
the environment. Some elements from the agent’s interaction ontology are provided
in Table 11.1.

Table 11.1 Interaction ontology

Ontology element Description

observation request f rom f or(C :
COMPONENT, I : INFO ELEMENT)

I is to be observed in the world for C (ac-
tive observation)

observation result to f or(C :
COMPONENT, I : INFO ELEMENT)

Observation result I is provided to C (for
active observation)

observed(I : INFO ELEMENT) I is observed at the component’s input
(passive observation)

communicated f rom to(C1 : COMPONENT,
C2 : COMPONENT, s act : S PEECH ACT,
I : INFO ELEMENT)

Specifies speech act s act (e.g., inform,
request, ask) from C1 to C2 with the con-
tent I

to be per f ormed(A : ACT ION) Action A is to be performed

326 A. Sharpanskykh and J. Treur

For the explicit indication of an aspect of a state for a component, to which a
state property is related, sorts AS PECT COMPONENT (a set of the component
aspects of a system; i.e., input, output, internal); COMPONENT (a set of all
component names of a system); COMPONENT S T AT E AS PECT (a set of all
names of aspects of all component states) and a function symbol

comp aspect : AS PECT COMPONENT ×COMPONENT →
COMPONENT S T AT E AS PECT

are used. In multi-agent system specifications, in which the indication of the com-
ponent’s aspects is needed, the definition of the function symbol state introduced
earlier is extended as state : TRACE×T IME×COMPONENT S T AT E AS PECT
→ S T AT E. For example,

holds(state(trace1, t1, input(A)),observation result(sunny weather))

Here input(A) belongs to sort COMPONENT S T AT E AS PECT .
At every aggregation level the behaviour of a component is described by a set of
dynamic properties. The dynamic properties of components of a higher aggregation
level may have the form of a few temporal expressions of high complexity. At a
lower aggregation level a system is described in terms of more basic steps. This
usually takes the form of a specification consisting of a large number of temporal
expressions in a simpler format. Furthermore, the dynamic properties of a compo-
nent of a higher aggregation level can be logically related by an interlevel relation
to dynamic properties of components of an adjacent lower aggregation level. This
interlevel relation takes the form that a number of properties of the lower level log-
ically entail the properties of the higher level component.

In the following a running example used throughout the chapter is introduced to
illustrate aggregation by agent clustering in a multi-agent system for co-operative
information gathering. For simplicity, this system is considered at two aggregation
levels (see Figure 11.1). At the higher level the multi-agent system as a whole is
considered. At the lower level four components and their interactions are specified:
two information gathering agents A and B, agent C, and environment component
E representing the external world. Each of the agents is able to acquire partial in-
formation from an external source (component E) by initiated observations. Each
agent can be reactive or proactive with respect to the information acquisition pro-
cess. An agent is proactive if it is able to start information acquisition independently
of requests of any other agents, and an agent is reactive if it requires a request from
some other agent to perform information acquisition.

Observations of any agent taken separately are insufficient to draw conclusions
of a desired type; however, the combined information of both agents is sufficient.
Therefore, the agents need to co-operate to be able to draw conclusions. Each agent
can be proactive with respect to the conclusion generation, i.e., after receiving both
observation results an agent is capable to generate and communicate a conclusion

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 327

B
 E

C

A

Fig. 11.1 The co-operative information gathering multi-agent system. A and B represent informa-
tion gathering agents; C is an agent that obtains the conclusion information; E is an environmental
component.

to agent C. Moreover, an agent can be request pro-active to ask information from
another agent, and an agent can be pro-active or reactive in provision of (already
acquired) information to the other agent.

For the lower-level components of the multi-agent system, a number of dynamic
properties were identified and formalized as it is shown below. In the formalization
the variables A1 and A2 are defined over the sort AGENT T ERMS , the constant E
belongs to the sort ENVIRONMENT AL COMPONENTGT ERMS , the variable IC
is defined over the sort INFORMAT ION CHUNKT ERMS , the constants IC1, IC2
and IC3 belong to the sort INFORMAT ION CHUNKGT ERMS and the constant C
belongs to the sort AGENT T ERMS .

DP1(A1, A2) (Effectiveness of information request transfer between agents)
If agent A1 communicates a request for an information chunk to agent A2 at any
time point t1, then this request will be received by agent A2 at time point t1+ c.
∀IC∀t1
[holds(state(γ, t1,output(A1)),communicated f rom to(A1,A2,request, IC)))
⇒ holds(state(γ, t1+ c, input(A2)),
communicated f rom to(A1,A2,request, IC))]

DP2(A1, A2) (Effectiveness of information transfer between agents)
If agent A1 communicates information chunk to agent A2 at any time point t1, then
this information will be received by agent A2 at the time point t1+ c.
∀IC∀t1
[holds(state(γ, t1,output(A1)),communicated f rom to(A1,A2, in f orm, IC)))
⇒ holds(state(γ, t1+ c, input(A2)),
communicated f rom to(A1,A2, in f orm, IC)))]

DP3(A1, E) (Effectiveness of information transfer between an agent and envi-
ronment)

328 A. Sharpanskykh and J. Treur

If agent A1 communicates an observation request to the environment at any time
point t1, then this request will be received by the environment at the time point
t1+ c.

∀IC∀t1 [holds(state(γ, t1,output(A1)),observation request f rom f or(A1, IC))

⇒ holds(state(γ, t1+ c, input(E)),observation request f rom f or(A1, IC))]

DP4(A1, E) (Information provision effectiveness)
If the environment receives an observation request from agent A1 at any time point
t1, then the environment will generate a result for this request at the time point t1+c.

∀IC∀t1[holds(state(γ, t1, input(E)),observation request f rom f or(A1, IC))

⇒ holds(state(γ, t1+ c,output(E)),observation result to f or(A1, IC))]

DP5(E, A1) (Effectiveness of information transfer between environment and an
agent)
If the environment generates a result for an agent’s information request at any time
point t1, then this result will be received by the agent at the time point t1+ c.

∀IC∀t1[holds(state(γ, t1,output(E)),observation result to f or(A1, IC))

⇒ holds(state(γ, t1+ c, input(A1)),observation result to f or(A1, IC))]

DP6(A1, A2) (Information acquisition reactiveness)
If agent A2 receives a request for an information chunk from agent A1 at any time
point t1, then agent A2 will generate a request for this information to the environ-
ment at the time point t1+ c.

∀IC∀t1[holds(state(γ, t1, input(A2)),communicated f rom to(A1,A2,request, IC))

⇒ holds(state(γ, t1+ c,output(A2)),observation result to f or(A2, IC))]

DP7(A1, A2) (Information provision reactiveness)
If exists a time point t1 when agent A2 received a request for a chunk of information
from agent A1, then for all time points t2 when the requested information is provided
to agent A2, this information will be further provided by agent A2 to agent A1 at the
time point t2+ c.

∀IC [∃t1 [t1 < t & holds(state(γ, t1, input(A2)),

communicated f rom to(A1,A2,request, IC))]]

⇒ ∀t2[
t < t2 & holds(state(γ, t2, input(A2)),observation result to f or(A2, IC))⇒

holds(state(γ, t2+ c,output(A2)),
communicated f rom to(A2,A1, in f orm, IC))]]

DP8(A1, A2) (Conclusion proactiveness)

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 329

For any time points t1 and t2, if agent A1 receives a result for its observation request
from the environment (information chunk IC1) at t1 and it receives information re-
quired for the conclusion generation from agent A2 (information chunk IC2) at t2,
then agent A1 will generate a conclusion based on the received information (infor-
mation chunk IC3) to agent C at a time point t4 later than t1 and t2.

∀t1, t2 t1 < t & t2 < t&

holds(state(γ, t1, input(A1)),observation result to f or(A1, IC1))&

holds(state(γ, t2, input(A1)),communicated f rom to(A2,A1, in f orm, IC2))

⇒∃ t4 > t&

[holds(state(γ, t4,output(A1)),communicated f rom to(A1,C, in f orm, IC3))]

DP9(A1, E) (Information acquisition proactiveness)
At some time point an observation request for information chunk IC1 is generated
by agent A1 to the environment.

holds(state(γ,c,output(A1)),observation request f rom f or(A1, IC1))

DP10(A1, A2) (Information request proactiveness)
At some time point a request for information chunk IC2 is communicated by agent
A1 to agent A2.

holds(state(γ,c,output(A1)),communicated f rom to(A1,A2,request, IC2))

11.4.2 Organisation structures

Organisations have proven to be a useful paradigm for analyzing and designing
multi-agent systems [146, 172]. Representation of a multi-agent system as an or-
ganisation consisting of roles and groups can tackle major drawbacks concerned
with traditional multi-agent models; e.g., high complexity and poor predictability
of dynamics in a system [172]. We adopt a generic representation of organisations,
abstracted from instances of real agents. As has been shown in [240], organisational
structure can be used to limit the scope of interactions between agents, reduce or
explicitly increase redundancy of a system, or formalize high-level system goals,
of which a single agent may be not aware. Moreover, organisational research has
recognized the advantages of agent-based models; e.g., for analysis of structure and
dynamics of real organisations.

An organisation structure is described by relationships between roles at the same
and at adjoining aggregation levels and between parts of the conceptualized envi-
ronment and roles. The specification of an organisation structure uses the following
elements:

330 A. Sharpanskykh and J. Treur

Conclusion generation

Information
Requestor 1

Information
Requestor 2

Environment

Conclusion
generation

Cooperative information
gathering

Conclusion
receiver

Fig. 11.2 An organisation structure for the co-operative information gathering multi-agent system
represented at the aggregation level 2 (left) and at the aggregation level 3 (right).

1. A role represents a subset of functionalities, performed by an organisation, ab-
stracted from specific agents who fulfil them.
Each role can be composed by several other roles, until the necessary detailed
level of aggregation is achieved, where a role that is composed of (interacting)
subroles, is called a composite role. Each role has an input and an output inter-
face, which facilitate in the interaction (communication) with other roles. The
interfaces are described in terms of interaction (input and output) ontologies.
At the highest aggregation level, the whole organisation can be represented as
one role. Such representation is useful both for specifying general organisational
properties and further utilizing an organisation as a component for more complex
organisations. Graphically, a role is represented as an ellipse with white dots (the
input interfaces) and black dots (the output interfaces). Roles and relations be-
tween them are specified using sorts and predicates from the structure ontology
(see Table 11.2). For the example of co-operative information gathering system
considered in Section 11.4.1, an organisation structure may be defined as shown
in Figure 11.2. The structure is represented at three aggregation levels: at the
first level the organization as a whole is considered, at the second level the Co-
operative information gathering role with its subroles is considered; at the third
aggregation level the Conclusion generation role with its subroles is represented.

2. An interaction link represents an information channel between two roles at the
same aggregation level. Graphically, it is depicted as a solid arrow, which denotes
the direction of possible information transfer.

3. The conceptualized environment represents a special component of an organisa-
tion model. Similarly to roles, the environment has input and output interfaces,
which facilitate in the interaction with roles of an organisation. The interfaces are
conceptualized by the environment interaction (input and output) ontologies.

4. An interlevel link connects a composite role with one of its subroles. It represents
information transfer between two adjacent aggregation levels. It may describe
an ontology mapping for representing mechanisms of information abstraction.
Graphically, it is depicted as a dashed arrow, which shows the direction of the
interlevel transition.

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 331

Table 11.2 Ontology for formalizing organizational structure

Predicate Description

is role : ROLE Specifies a role in an organization
has subrole : ROLE×ROLE For a subrole of a composite role
source o f interaction : ROLE×
INT ERACT ION LINK

Specifies a source role of an interaction

destination o f interaction : ROLE×
INT ERACT ION LINK

Specifies a destination role of interaction

interlevel connection f rom : ROLE×
INT ERLEVEL LINK

Identifies a source role of an interlevel link

interlevel connection to : ROLE×
INT ERLEVEL LINK

Identifies a destination role of an inter-
level link

part o f env in interaction : ENVIRONMENT ×
ENVIRONMENT INT ERACT ION LINK

Identifies the conceptualized part of the
environment involved in interaction with
a role

has input ontology : ROLE×ONTOLOGY Specifies an input ontology for a role
has output ontology : ROLE×ONTOLOGY Specifies an output ontology for a role
has input ontology : ENVIRONMENT ×
ONTOLOGY

Specifies an input ontology for the envi-
ronment

has output ontology : ENVIRONMENT ×
ONTOLOGY

Specifies an output ontology for the envi-
ronment

has interaction ontology : ROLE×ONTOLOGY Specifies an interaction ontology for a role

At each aggregation level, it can be specified how the organization’s behaviour is
assumed to be. The dynamics of each structural element are defined by the specifi-
cation of a set of dynamic properties. We define five types of dynamic properties:

1. A role property (RP) describes the relationship between input and output states
of a role, over time. For example, a role property of Information requester 2 is:

Information acquisition reactiveness
∀IC∀t1[holds(state(γ, t1, input(In f ormationRequester2)),
communicated f rom to(In f ormationRequester1, In f ormationRequester2,
request, IC))
⇒ holds(state(γ, t1+ c,output(In f ormationRequester2)),
observation result to f or(In f ormationRequester2, IC))]

2. A transfer property (TP) describes the relationship of the output state of the
source role of an interaction link to the input state of the destination role.
For example, a transfer property for the roles Information requester 1 and
Information requester 2 is:

Effectiveness of information transfer between roles
∀IC∀t1 [holds(state(γ, t1,output(In f ormationRequester1)),
communicated f rom to(In f ormationRequester1, In f ormationRequester2,
in f orm, IC)))

332 A. Sharpanskykh and J. Treur

⇒ holds(state(γ, t1+ c, input(In f ormationRequester2)),
communicated f rom to(In f ormationRequester1, In f ormationRequester2,
in f orm, IC)))]

3. An interlevel link property (ILP) describes the relationship between the input or
output state of a composite role and the input or output state of its subrole. Note
that an interlevel link is considered to be instantaneous: it does not represent
a temporal process, but gives a different view (using a different ontology) on
the same information state. An interlevel transition is specified by an ontology
mapping, which can include information abstraction.

4. An environment property (EP) describes a temporal relationship between states
or properties of objects of interest in the environment.

5. An environment interaction property (EIP) describes a relation either between
the output state of the environment and the input state of a role (or an agent)
or between the output state of a role (or an agent) and the input state of the
environment. For example,

Effectiveness of information transfer between a role and environment
∀IC∀t1 [holds(state(γ, t1,output(In f ormationRequester1)),
observation request f rom f or(In f ormationRequester1, IC))
⇒ holds(state(γ, t1+ c, input(E)),
observation request f rom f or(In f ormationRequester1, IC))]

The specifications of organisation structural relations and dynamics are imposed
onto the agents, who will eventually enact the organisational roles. For more details
on organisation-oriented modelling of multi-agent systems we refer to [263].

11.5 Relation to Other Languages

In this section TTL is compared to a number of existing languages for modelling
dynamics of a system.

Executable languages can be defined as sublanguages of TTL. An example of
such a language, which was designed for simulation of dynamics in terms of both
qualitative and quantitative concepts, is the LEADSTO language, cf. [81]. The
LEADSTO language models direct temporal or causal dependencies between two
state properties in states at different points in time as follows. Let α and β be state
properties of the form ’conjunction of atoms or negations of atoms’, and e, f , g, h
non-negative real numbers (constants of sort VALUE). In LEADSTO the notation
α −→e, f ,g,h β, means:

If state property α holds for a certain time interval with duration g, then after
some delay (between e and f) state property β will hold for a certain time
interval of length h.

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 333

A specification in LEADSTO format has as advantages that it is executable and
that it can often easily be depicted graphically, in a causal graph or system dynam-
ics style. In terms of TTL, the fact that the above statement holds for a trace γ is
expressed as follows:

∀t1[∀t[t1−g ≤ t & t < t1⇒ holds(state(γ, t),α)]⇒

∃d : VALUE[e ≤ d & d ≤ f & ∀t′[t1+d ≤ t′ & t′ < t1+d+h⇒

holds(state(γ, t′),β)]

Furthermore, TTL has some similarities with the situation calculus [365] and
the event calculus [272]. However, a number of important syntactic and semantic
distinctions exist between TTL and both calculi. In particular, the central notion of
the situation calculus - a situation - has different semantics than the notion of a state
in TTL. That is, by a situation is understood a history or a finite sequence of actions,
whereas a state in TTL is associated with the assignment of truth values to all state
properties (a ’snapshot’ of the world). Moreover, in contrast to situation calculus,
where transitions between situations are described by execution of actions, in TTL
action executions are used as properties of states.

Moreover, although a time line has been introduced to the situation calculus
[339], still only a single path (a temporal line) in the tree of situations can be explic-
itly encoded in the formulae. In contrast, TTL provides more expressivity by allow-
ing explicit references to different temporally ordered sequences of states (traces) in
dynamic properties. For example, this can be useful for expressing the property of
trust monotonicity:

For any two traces γ1 and γ2, if at each time point t agent A’s experience with
public transportation in γ2 at t is at least as good as A’s experience with public
transportation in γ1 at t, then in trace γ2 at each point in time t, A’s trust is at
least as high as A’s trust at t in trace γ1.

∀γ1,γ2[∀t,∀v1 : VALUE[holds(state(γ1, t),has value(experience,v1))&

[∀v2 : VALUE holds(state(γ2, t),has value(experience,v2)→ v1 ≤ v2)]]⇒

[∀t,∀w1 : VALUE[holds(state(γ1, t),has value(trust,w1))&

[∀w2 : VALUE holds(state(γ2, t),has value(trust,w2)→ w1 ≤ w2)]]]]

In contrast to the event calculus, TTL does not employ the mechanism of events
that initiate and terminate fluents. Event occurrences in TTL are considered to be
state occurrences the external world. Furthermore, similarly to the situation calculus,
also in the event calculus only one time line is considered.

Formulae of the loosely guarded fragment of the first-order predicate logic [16],
which is decidable and has good computational properties (deterministic exponen-
tial time complexity), are also expressible in TTL:

∃y((α1∧ ...∧αm) ∧ ψ(x,y)) or ∀y((α1∧ ...∧αm)→ ψ(x,y)),

334 A. Sharpanskykh and J. Treur

where x and y are tuples of variables, α1...αm are atoms that relativize a quantifier
(the guard of the quantifier), and ψ(x,y) is an inductively defined formula in the
guarded fragment, such that each free variable of the formula is in the set of free
variables of the guard.

Similarly the fluted fragment [348] and ∃∗∀∗ [3] can be considered as sublan-
guages of TTL.

TTL can also be related to temporal languages that are often used for verification
(e.g., LTL and CTL [39, 198]). For example, dynamic properties expressed as
formulae in LTL can be translated to TTL by replacing the temporal operators of
LTL by quantifiers over time. E.g., consider the LTL formula

G(observation result(itsraining)→ F(belie f (itsraining)))

where the temporal operator G means ’for all later time points’, and F ’for some
later time point’. The first operator can be translated into a universal quantifier,
whereas the second one can be translated into an existential quantifier.

Using TTL, this formula then can be expressed, for example, as follows:

∀t1[holds(state(γ, t1),observation result(itsraining))⇒

∃t2 > t1 holds(state(γ, t2),belie f (itsraining))]

Note that the translation is not bi-directional, i.e., it is not always possible to
translate TTL expressions into LTL expressions due to the limited expressive power
of LTL. For example, the property of trust monotonicity specified in TTL above can-
not be expressed in LTL because of the explicit references to different traces. Similar
observations apply for other well-known modal temporal logics such as CTL.

In contrast to the logic of McDermott [309], TTL does not assume structuring of
traces in a tree. This enables reasoning about independent sequences of states (histo-
ries) in TTL (e.g., by comparing them), which is also not addressed by McDermott.

11.6 Normal Forms and Transformation Procedures

In this Section, normal forms for TTL formulae and the related transformation pro-
cedures are described. Normal forms create the basis for the automated analysis of
TTL specifications, which is addressed later in this chapter. In Section 11.6.1 the
past implies future normal form and a procedure for transformation of any TTL for-
mula into this form are introduced. In Section 11.6.2 the executable normal form
and a procedure for transformation of TTL formulae in the past implies future nor-
mal form into the executable normal form are described. A procedure for abstraction
of executable specifications is described in Section 11.6.3.

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 335

 p (,t) cond (, t, t 1) bh (, t 1)

output(a 2) output(a 1) p 1 p 3 p 2

t 1 +c 2 t 1 +c 1 t 1 t t' t" t"'

Fig. 11.3 Graphical illustration of the structure of the past implies future normal form

11.6.1 Past Implies Future Normal Form

First, the past implies future normal form is introduced.

Definition 11.1. (Past Implies Future Normal Form) The past implies future nor-
mal form for TTL formulae is specified by a logical implication from a temporal
input pattern to a temporal output pattern:

[ϕp(γ, t)⇒ ϕ f (γ, t)],

where ϕp(γ, t) is a past statement (i.e., for all time variables s in ϕp(γ, t) : s ≤ t or
s < t) and ϕ f (γ, t) is a future statement (i.e., for all time variables s in ϕ f (γ, t) : s ≥ t
or s > t). The future statement is represented in the form of a conditional behaviour:

ϕ f (γ, t)⇔∀t1 > t[ϕcond(γ, t, t1)⇒ ϕbh(γ, t1)],

where ϕcond(γ, t, t1) is an interval statement over the interaction ontology, which
describes a condition for some specified action(s) and/or communication(s), and
ϕbh(γ, t1) is a (conjunction of) future statement(s) for t1 over the output ontology of
the form holds(state(γ, t1 + c),output(a)), for some integer constant c and action or
communication a.

A graphical illustration of the structure of the past implies future normal form is
given in Figure 11.3. When a past formula ϕp(γ, t) is true for γ at time t, a potential
to perform one or more action(s) and/or communication(s) exists. This potential is
realized at time t1 when the condition formula ϕcond(γ, t, t1) becomes true, which
leads to the action(s) and/or communication(s) being performed at the time point(s)
t1+ c indicated in ϕbh(γ, t1).

For example, the dynamic property DP7(A1,A2) (Information provision reac-
tiveness) from the specification of co-operative information gathering multi-agent
system from Section 11.4.1 can be specified in the past implies future normal form
ϕp(γ, t)⇒ ϕ f (γ, t), with ϕp(γ, t) is a formula

∃t2 ≤ t & holds(state(γ, t2, input(A2)),communicated f rom to(A1,A2,
request, IC))

336 A. Sharpanskykh and J. Treur

and ϕ f (γ, t) is a formula

∀t1 > t [holds(state(γ, t1, input(A2)),observation result to f or(A2, IC))⇒

holds(state(γ, t1+ c,output(A2)),communicated f romto(A2,A1, in f orm, IC))]

with ϕcond(γ, t, t1) is a formula

holds(state(γ, t1, input(A2)),observation result to f or(A2, IC))

and ϕbh(γ, t1) is holds(state(γ, t1+ c,output(A2)),communicated f rom to(A2,A1,
in f orm, IC))],

where t is the present time point with respect to which the formulae are evaluated
and c is some natural number.

In general, any TTL formula can be automatically translated into the past im-
plies future normal form. The transformation procedure is based on a number of
steps. First, the variables in the formula are related to the given t (current time
point) by differentiation. The resulting formula is rewritten in prenex conjunctive
normal form. Each clause in this formula is reorganised in past implies future for-
mat. Finally, the quantifiers are distributed over and within these implications. Now
consider the detailed description of these steps (for a more profound description of
the procedure see [418]).

Differentiating Time Variables A formula is rewritten into an equivalent one
such that time variables that occur in this formula always either are limited (rela-
tivized) to past or to future time points with respect to t. As an example, suppose
ψ(t1, t2) is a formula in which time variables t1, t2 occur. Then, different cases of or-
dering relation for each of the time variables with respect to t are considered: t1 < t,
t1 ≥ t and t2 < t, t2 ≥ t, i.e., in combination four cases: t1 < t and t2 < t, t1 < t and
t2 ≥ t, t1 ≥ t and t2 < t, t1 ≥ t and t2 ≥ t. To eliminate ambiguity, for ti < t the variable
ti is replaced by (past time variable) ui, for ti ≥ t by (future time variable) vi.

The following transformation step introduces for any occurring time variable ti
a differentiation into a pair of new time variables: ui used over the past and vi used
over the future with respect to t.

For any occurrence of a universal quantifier over ti:

∀ti A 7−→ [∀ui < t A[ui/ti]∧∀vi ≥ t A[vi/ti]]

For any occurrence of an existential quantifier over ti:

∃ti A 7−→ [∃ui < t A[ui/ti]∨∃vi ≥ t A[vi/ti]]

Assuming differentiation of time variables into past and future time variables,
state-related atoms (in which only one time variable occurs) can be classified in
a straightforward manner as a past atom or future atom. For example, atoms of
the form holds(state(γ,ui), p) are past atoms and holds(state(γ,v j), p) are future
atoms. For non-unary relations, in the special case of the time ordering relation ¡ the
ordering axioms are given, e.g., transitivity. Atoms that are mixed (containing both
a past and a future variable) are eliminated by the following transformation rules:

ui = v j→ f alse v j < ui→ f alse ui < v j→ true

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 337

Obtaining prenex conjunctive normal form This step is performed using a
well-known transformation procedure [180].

From a Clause to a Past to Future Implication By partitioning the set of oc-
curring atoms into past atoms and future atoms, it is not difficult to rewrite a clause
into a past to future implication format: transform a clause C into an implication of
the form A→ B where A is the conjunction of the negations of all past literals in
C and B is the disjunction of all future literals in C. Thus, a quantifier free formula
in Conjunctive Normal Form can be transformed into a conjunction of implications
from past to future by the transformation rule

∨ PLi ∨ ∨FL j 7−→ ∧ ∼ PLi →∨ FL j

where the past and future literals are indicated by PLi and FL j, respectively, and
if a is an atom, ∼ a = ¬a, and ∼ ¬a = a.

Distribution of Quantifiers Over Implications The quantifiers can be rewritten
to quantifiers with a single implication as their scope, and even one step further, to
quantifiers with a single antecedent or a single consequent of an implication as their
scope. Notice that quantifiers addressed here are both time quantifiers and non-time
quantifiers.

Let ϕ be a formula in the form of a conjunction of past to future implications
∧i∈I[Ai → Bi] and let x be a (either past or future) variable occurring in ϕ. The
following transformation rules handle existential quantifiers for variables in one or
more of the Bi, respectively in one or more of the Ai. Here P denotes taking the
power set.

1. if x occurs in the Bi but does not occur in the Ai :
∃x ∧i∈I [Ai→ Bi] 7−→ ∧ j∈P(I) ∃x[∧i∈ jAi→∧i∈ jBi]
∃x[∧i∈ jAi→∧i∈ jBi] 7−→ [∧i∈ jAi→∃x∧i∈ j Bi]

2. if x occurs in the Ai but does not occur in the Bi :
∃x∧i∈I [Ai→ Bi] 7−→ ∧ j∈P(I)∃x[∨i∈ jAi→∨i∈ jBi]
∃x[∨i∈ jAi→∨i∈ jBi] 7−→ [∀x[∨i∈ jAi]→∨i∈ jBi]

The following transformation rules handle universal quantifiers for variables in
one or more of the Bi, respectively in one or more of the Ai:

1. if x occurs in the Ai or in the Bi :
∀x ∧i∈I [Ai→ Bi] 7−→ ∧i∈I∀x[Ai→ Bi]

2. if x occurs in the Bi but does not occur in the Ai :
∀x[Ai→ Bi] 7−→ Ai→∀xBi

3. if x occurs in the Ai but does not occur in the Bi :
∀x[Ai→ Bi] 7−→ [∃xAi]→ Bi

338 A. Sharpanskykh and J. Treur

11.6.2 Executable Normal Form

Although the past implies future normal form imposes a standard structure on the
representation of TTL formulae, it does not guarantee the executability of formu-
lae, required for automated analysis methods (i.e., some formulae may still contain
complex temporal relations that cannot be directly represented in analysis tools).
Therefore, to enable automated analysis, normalized TTL formulae should be trans-
lated into an executable normal form.

Definition 11.2. Executable Normal Form A TTL formula is in executable normal
form if it has one of the following forms, for certain state properties , X and Y with
X , Y , and integer constant c.

1. ∀t holds(state(γ, t),X) ⇒ holds(state(γ, t+ c),Y) (states relation property)

2. ∀t holds(state(γ, t),X) ⇒ holds(state(γ, t+1),X) (persistency property)

3. ∀t holds(state(γ, t),X) ⇒ holds(state(γ, t),Y) (state relation property)

For the translation postulated internal states of a component(s) specified
in the formula, are used. These auxiliary states include memory states that
are based on (input) observations (sensory representations) or communica-
tions (memory : LT IMET ERMS × S T AT PROP → S T ATROP). For example,
memory(t,observed(a)) expresses that the component has memory that it observed a
state property a at time point t. Furthermore, before performing an action or commu-
nication it is postulated that a component creates an internal preparation state. For
example, preparation f or(b) represents a preparation of a component to perform
an action or a communication.

In the following a transformation procedure from the normal form [ϕp(γ, t)⇒
ϕ f (γ, t)] for the property ϕp(γ, t) to the executable normal form is described and
illustrated for the property DP7(A1,A2) (Information provision reactiveness) con-
sidered above. For a more profound description of the transformation procedure we
refer to [398].

First, an intuitive explanation for the procedure is provided. The procedure trans-
forms a non-executable dynamic property in a number of executable properties.
These properties can be seen as an execution chain, which describes the dynam-
ics of the non-executable property. In this chain each unit generates intermediate
states, used to link the following unit. In particular, first a number of properties
are created to generate and maintain memory states (step 1 below). These memory
states are used to store information about the past dynamics of components, which
is available afterwards at any point in time. Then, executable properties are created
to generate preparation for output and output states of components (steps 2 and 3
below). In these properties temporal patterns based on memory states are identified
required for generation of particular outputs of components. In the end all created
properties are combined in one executable specification.

More specifically, the transformation procedure consists of the following steps:

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 339

Fig. 11.4 A graphical representation of relations between interaction states described by a non-
executable dynamic property and internal states described by executable rules.

1. Identify executable temporal properties, which describe transitions from the
component states specified in ϕp(γ, t) to memory states (for a graphical repre-
sentation of relations between the states considered in this procedure see Figure
11.4).
The general rules that form the basis for the executable properties are the
following:
∀t′ holds(state(γ, t′), p)⇒ holds(state(γ, t′),memory(t′, p))
∀t′′ holds(state(γ, t′′),memory(t′, p))⇒ holds(state(γ, t′′+1),memory(t′, p))

Furthermore, at this step the memory formula ϕmem(γ, t) is defined that is
obtained by replacing all occurrences in ϕp(γ, t) of subformulae of the form
holds(state(γ, t′), p) by holds(state(γ, t),memory(t′, p)). According to Lemma
1 (given in [398]) ϕmem(γ, t) is equivalent to some formula δ∗(γ, t) of the form
holds(state(γ, t),qmem(t)), where qmem(t) is called the normalized memory state
formula for ϕmem(γ, t), which uniquely describes the present state at the time
point t by a certain history of events. Moreover, qmem is the state formula
∀u′ [present time(u′)→ qmem(u′)].

For the property DP7(A1,A2):

∀t′ holds(state(γ, t′, input(A2)),communicated f rom to(A1,A2,request, IC)))

⇒ holds(state(γ, t′, internal(B)),

memory(t′,communicated f rom to(A1,A2,request, IC))))

∀t′′ holds(state(γ, t′′, internal(B)),

memory(t′,communicated f rom to(A1,A2,request, IC)))) ⇒

holds(state(γ, t′′+1, internal(B)),

memory(t′,communicated f rom to(A1,A2,request, IC))))

340 A. Sharpanskykh and J. Treur

2. Identify executable temporal properties, which describe transitions from mem-
ory states to preparation states for output. At this step the following formulae are
defined: The condition memory formula ϕcmem(γ, t, t1) is obtained by replacing
all occurrences in ϕcond(γ, t, t1) of holds(state(γ, t′), p) by holds(state(γ, t1),
memory(t′, p)). ϕcmem(γ, t, t1) contains a history of events, between the time point
t, when ϕp(γ, t) is true and the time point t1, when the formula ϕcond(γ, t, t1)
becomes true. Again by Lemma 1 ϕcmem(γ, t, t1) is equivalent to the formula
holds(state(γ, t1),qcond(t, t1)), where qcond(t, t1) is called the normalized condi-
tion state formula for ϕcmem(γ, t, t1), and qcond(t) is the state formula ∀u′

[present time(u′) → qcond(t,u′)]. The state formula constructed by Lemma
1 for the preparation formula ϕprep(γ, t1) is called the (normalized) prepara-
tion state formula and denoted by qprep(t1). Moreover, qprep is the state for-
mula ∀u′ [present time(u′) → qprep(u′)]. The formula ϕcprep(γ, t1) of the
form holds(state(γ, t1),∀u1 > t[qcond(t,u1) → qprep(u1)]) is called the condi-
tional preparation formula for ϕ f (γ, t). The state formula ∀u1 > t[qcond(t,u1)→
qprep(u1)] is called the normalized conditional preparation state formula for
ϕcprep(γ, t) and denoted by qcprep(t). Moreover, qcprep is the formula ∀u′

[present time(u′)→ qcprep(u′)].

The general executable rules that form basis for executable properties are defined
as follows:

∀t′ holds(state(γ, t′), p) ⇒ holds(state(γ, t′),memory(t′, p)∧
stimulus reaction(p))

∀t′′, t′ holds(state(γ, t′′),memory(t′, p))
⇒ holds(state(γ, t′′+1),memory(t′, p))

∀t′ holds(state(γ, t′),qmem)⇒ holds(state(γ, t′),qcprep)

∀t′, t holds(state(γ, t′),qcprep∧qcond(t)∧ ∧pstimulus reaction(p))⇒
holds(state(γ, t′),qprep)

∀t′ holds(state(γ, t′), stimulus reaction(p)
∧¬preparation f or(output(t′+ c,a)))
⇒ holds(state(γ, t′+1), stimulus reaction(p))

∀t′ holds(state(γ, t′), preparation f or(output(t′+ c,a))∧ ¬output(a))⇒
holds(state(γ, t′+1), preparation f or(output(t′+ c,a)))

∀t′ holds(state(γ, t′), present time(t′)∧∀u′[present time(u′)→
preparation f or(output(u′+ c),a)])→
holds(state(γ, t′), preparation f or(output(t′+ c),a))

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 341

The auxiliary functions stimulus reaction(a) are used for reactivation of compo-
nent preparation states for generating recurring actions or communications.

For the property DP7(A1,A2):

∀t′[holds(state(γ, t′, input(A2)),observation result to f or(A2, IC))

⇒ holds(state(γ, t′, internal(A2)),
memory(t′,observation result to f or(A2, IC))∧

stimulus reaction(observation result to f or(A2, IC))]])

∀t′′ holds(state(γ, t′′, internal(A2)),
memory(t′,observation result to f or(A2, IC)))⇒

holds(state(γ, t′′+1, internal(A2)),
memory(t′,observation result to f or(A2, IC)))

∀t′ holds(state(γ, t′),∀u′′[present time(u′′)→

∃u2[memory(u2,communicated f rom to(A1,A2,request, IC))]])⇒

holds(state(γ, t′),∀u′′′[present time(u′′′)→ [∀u1 > u′′′

[memory(u1,observation result to f or(A2, IC))→

preparation f or(output(u1+ c,
communicated f rom to(A2,A1, in f orm, IC)))]]])

∀t′, tholds(state(γ, t′), [∀u′′′[present time(u′′′)→ [∀u1 > u′′′

[memory(u1,observation result to f or(A2, IC)))→

preparation f or(output(u1+ c,
communicated f rom to(A2,A1, in f orm, IC)))]]]

∧∀u′′[present time(u′′)→

memory(u′′,observation result to f or(A2, IC)))]∧

stimulus reaction(observation result to f or(A2, IC)))])⇒

holds(state(γ, t′, internal(A2)),∀u1[present time(u1)→

preparation f or(output(u1+ c,
communicated f rom to(A2,A1, in f orm, IC))))])

∀t′ holds(state(γ, t′), stimulus reaction(observation result to f or(A2, IC))∧

not(preparation f or(output(t′+ c,
communicated f rom to(A2,A1, in f orm, IC)))])⇒

holds(state(γ, t′+1), stimulus reaction(observation result to f or(A2, IC)))

∀t′ holds(state(γ, t′, internal(A2)),

342 A. Sharpanskykh and J. Treur

[preparation f or(output(t′+ c,observation result to f or(A2, IC)))

∧ not(output(observation result to f or(A2, IC)))])⇒

holds(state(γ, t′+1, internal(A2)),

preparation f or(output(t′+ c,observation result to f or(A2, IC))))

3. Specify executable properties, which describe the transition from preparation
states to the corresponding output states.

The preparation state preparation f or(output(t1+ c,a)) is followed by the out-
put state, created at the time point t1+c. The general executable rule is the follow-
ing:

∀t′ holds(state(γ, t′), preparation f or(output(t′ + c,a))) ⇒ holds(state(γ, t′ +
c),output(a))

For the property DP7(A1,A2):

∀t′ holds(state(γ, t′, internal(A2)),

preparation f or(output(t′+ c,
communicated f rom to(A2,A1, in f orm, IC))))⇒

holds(state(γ, t′+ c,output(A2)),

output(communicated f rom to(A2,A1, in f orm, IC)))

To automate the proposed procedure the software tool was developed in JavaT M .
The transformation algorithm searches in the input file for the standard predicate
names and the predefined structures, then performs string transformations that cor-
respond precisely to the described steps of the translation procedure, and adds exe-
cutable rules to the output specification file.

11.6.3 Abstraction of executable specifications

Sometimes (executable) specifications of multi-agent systems may be very detailed,
with opaque global dynamics. To establish higher level dynamic properties of such
systems, abstraction of specifications can be performed. In particular, internal dy-
namics of agents described by executable cognitive specifications may be abstracted
to behavioural (or interaction) specifications of agents as shown in [399]. To ex-
press properties of behavioural and cognitive specifications past and past-present
statements are used.

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 343

Definition 11.3. (Past-Present Statement) A past-present statement (abbreviated
as a pp-statement) is a statement ϕ of the form B⇔ H, where the formula B, called
the body and denoted by body(ϕ), is a past statement for t, and H, called the head
and denoted by head(ϕ), is a statement of the form holds(state(γ, t), p) for some
state property p.

It is assumed that each output state of an agent A specified by an atom
holds(state(γ, t),ψ) is generated based on some input and internal agent’s dynamics
that can be specified by a set of formulae over ϕ(γ, t)⇒ holds(state(γ, t),ψ) with ϕ a
past statement over InOnt(A)∪ IntOnt(A). Furthermore, a completion can be made
(similar to Clark’s completion in logic programming) that combines all statements
[ϕ1(γ, t)⇒ holds(state(γ, t),ψ),ϕ2(γ, t)⇒ holds(state(γ, t),ψ), ...,ϕn(γ, t)⇒
holds(state(γ, t),ψ)] with the same consequent in the specification, into one past-
present-statement ϕ1(γ, t)∨ϕ2(γ, t)∨ ...∨ϕn(γ, t)⇔ holds(state(γ, t),ψ). Sometimes
this statement is called the definition of holds(state(γ, t),ψ).

Furthermore, the procedure is applicable only to cognitive specifications that can
be stratified.

Definition 11.4. (Stratification of a Specification) An agent specification Π is
stratified if there is a partition Π = Π1 ∪ ...∪Πn into disjoint subsets such that the
following condition holds: for i > 1: if a subformula holds(state(γ, t),ϕ) occurs in a
body of a statement in Πi, then it has a definition within ∪ j≤iΠ j.

The notation ϕ[holds1, ...,holdsn] is used to denote a formula ϕ with holds1, ...,
holdsn as its atomic subformulae.

The rough idea behind the procedure is as follows. Suppose for a certain cog-
nitive state property the pp-specification B⇔ holds(state(γ, t), p) is available; here
the formula B is a past statement for t. Moreover, suppose that in B only two atoms
of the form holds(state(γ, t1), p1) and holds(state(γ, t2), p2) occur, whereas as part
of the cognitive specification also specifications B1 ⇔ holds(state(γ, t1), p1) and
B2⇔ holds(state(γ, t2), p2) are available. Then, within B the atoms can be replaced
(by substitution) by the formula B1 and B2. This results in a

B[B1/holds(state(γ, t1), p1),B2/holds(state(γ, t2), p2)]⇔ holds(state(γ, t), p)

which again is a pp-specification. Here for any formula C the expression C[x/y]
denotes the formula C transformed by substituting x for y. Such a substitution cor-
responds to an abstraction step. For the general case the procedure includes a se-
quence of abstraction steps; the last step produces a behavioural specification that
corresponds to a cognitive specification.

Let us describe and illustrate the procedure for a simple executable pp-specification
that corresponds to the property DP7(A1,A2) considered in Section 11.6.2:

CP1(A1, A2) (memory state generation and persistence)

344 A. Sharpanskykh and J. Treur

holds(state(γ, t1, internal(A2)),
memory(t2,communicated f rom to(A1,A2,request, IC)))⇔

∃t2 t2 < t1 & holds(state(γ, t2, input(A2)),
communicated f rom to(A1,A2,request, IC))

CP2(A1, A2) (conclusion generation)
holds(state(γ, t3,output(A2)),communicated f rom to(A2,A1, in f orm, IC))⇔

∃t4, t5 t4 < t3 & t5 < t4 & holds(state(γ, t4, internal(A2)),
memory(t5,communicated f rom to(A1,A2,request, IC)))&

holds(state(γ, t4, input(A2)),observation result to f or(A2, IC))

To obtain an abstracted specification for a specification X the following sequence
of steps is followed:

1. Enforce temporal completion on X.

2. Stratify X:

a. Define the set of formulae of the first stratum (h = 1) as:
{ϕi : holds(state(γ, t),ai)↔ ψip(holds1, ...,holdsm) ∈ X|∀k m ≥ k ≥ 1 holdsk is
expressed using InOnt};

proceed with h = 2.

In the considered example CP1(A1,A2) belongs to the first stratum.

b. The set of formulae for stratum h is identified as
{ϕi : holds(state(γ, t),ai)↔ ψip(holds1, ...,holdsm) ∈ X|∀k m ≥ k ≥ 1 ∃l

l < h ∃ψ ∈ S TRATUM(X, l) AND head(ψ) = holdsk AND ∃ j m ≥ j ≥ 1 ∃ξ ∈
S TRATUM(X,h−1) AND head(ξ) = holds j};

proceed with h = h+1.

In the considered example CP2(A1,A2) belongs to the stratum 2.

c. Until a formula of X exists not allocated to a stratum, perform 2b.

3. Replace each formula of the highest stratum n ϕi : holds(state(γ, t),ai)
↔ψip(holds1, ...,holdsm) by ϕIδwith renaming of temporal variables if required,
where δ = {holdsk\body(ϕk) such that ϕk ∈ X and head(ϕk) = holdsk}. Further,
remove all formulae {ϕ ∈ S TRATUM(X,n−1)|∃ψ ∈ S TRATUM(X,n)
AND head(ϕ) is a subformula of the body(ϕ)}).

In the considered example the atom
holds(state(γ, t4, internal(A2)),memory(t5,communicated f rom to(
A1,A2,request, IC))) in CP2 is replaced by its definition given by CP1:

BP1 : holds(state(γ, t3,output(A2)),
communicated f rom to(A2,A1, in f orm, IC))

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 345

⇔∃t4, t5 t4 < t3 & t5 < t4& holds(state(γ, t5, input(A2)),

communicated f rom to(A1,A2,request, IC))& holds(state(γ, t4, input(A2)),

observation result to f or(A2, IC))

Furthermore, both CP1 and CP2 are removed from the specification. Thus,
the obtained property is a behavioural specification expressed using InOnt and
OutOnt only that corresponds to the considered cognitive specification.

4. Append the formulae of the stratum n to the stratum n− 1, which now becomes
the highest stratum (i.e, n = n−1).

For the example, BP1 becomes the only property that belongs to the stratum 1.

5. Until n > 1, perform steps 3 and 4.

The algorithm has been implemented in JavaT M . The worst case time complexity
is O(|X|2). The representation of a higher level specification Φ is more compact
than of the corresponding lower level specification Π . First, only IntOnt is used to
specify the formulae of Φ, whereas InOnt∪OutOnt∪ IntOnt is used to specify the
formulae of Π . Furthermore, only a subset of the temporal variables from Π is used
in Φ, more specifically, the set of temporal variables from

{body(ϕi)|ϕi ∈ Π}∪ {head(ϕi)|ϕi ∈ Π AND head(ϕi) is expressed over
InteractOnt}.

11.7 Verification of Specifications of Multi-Agent Systems in
TTL

In this Section two verification techniques of specifications of multi-agent systems
are considered. In Section 11.7.1 a verification approach of TTL specifications by
model checking is discussed. Checking of TTL properties on a limited set of traces
obtained empirically or by simulation is considered in Section 11.7.2.

11.7.1 Verification of interlevel relations in TTL specifications by
model checking

The dynamic properties of a component of a higher aggregation level can be log-
ically related by an interlevel relation to dynamic properties of components of an
adjacent lower aggregation level. This interlevel relation takes the form that a num-
ber of properties of the lower level logically entail the properties of the higher level
component.

346 A. Sharpanskykh and J. Treur

Identifying interlevel relations is usually achieved by applying informal or semi-
formal early requirements engineering techniques; e.g., i∗ [120] and SADT [300].
To formally prove that the identified interlevel relations are indeed correct, model
checking techniques [100,310] may be of use. The idea is that the lower level prop-
erties in an interlevel relation are used as a system specification, whereas the higher
level properties are checked for this system specification. However, model check-
ing techniques are only suitable for systems specified as finite-state concurrent sys-
tems. To apply model checking techniques it is needed to transform an original be-
havioural specification of the lower aggregation level into a model based on a finite
state transition system. To obtain this, as a first step a behavioural description for the
lower aggregation level is replaced by one in executable temporal format using the
procedure described in Section 11.6.2. After that, using an automated procedure an
executable temporal specification is translated into a general finite state transition
system format that consists of standard transition rules. Such a representation can
be easily translated into an input format of one of the existing model checkers. To
translate an executable specification into the finite state transition system format, for
each rule from the executable specification the corresponding transition rule should
be created. For translation the atom present time is used, which is evaluated to true
only in a state for the current time point. For example, consider the translation of
the memory state creation and persistence rules given in Table 11.3. The translation
of other rules is provided in [398].

Table 11.3 Translation of the memory state creation and persistence rules into the corresponding
finite state transition rules

Rule from the executable specification Corresponding transition rules

Memory state creation rule
∀t′ holds(state(γ, t′), p)⇒
holds(state(γ, t′),memory(t′, p)) present time(t)∧ p −→ memory(t, p)
Memory persistence rule
∀t′′holds(state(γ, t′′),memory(t′, p))⇒
holds(state(γ, t′′ +1),memory(t′, p)) memory(t, p) −→ memory(t, p)

The executable properties obtained in Section 11.6.2 for the property
DP7(A1,A2) from the running example were translated into the transition rules as
follows:

present time(t)∧ communicated f rom to(A,B,request, IC) −→

memory(t,communicated f rom to(A,B,request, IC))

present time(t)∧observation result to f or(B, IC) −→

memory(t,observation result to f or(B, IC))∧

stimulus reaction(observation result to f or(B, IC))

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 347

memory(t,communicated f rom to(A,B,request, IC)) −→

memory(t,communicated f rom to(A,B,request, IC))

memory(t,observed(observation result to f or(B, IC)) −→

memory(t,observed(observation result to f or(B, IC))

present time(t)∧

∃u2 ≤ t memory(u2,communicated(request f rom to f or(A,B, IC))) −→

conditional preparation f or(
output(communicated f rom to(B,A, in f orm, IC)))

present time(t)∧

conditional preparation f or(
output(communicated f rom to(B,A, in f orm, IC)))∧

memory(t,observed(observation result to f or(B, IC)))∧
stimulus reaction(observed(observation result to f or(B, IC))) −→

preparation f or(output(t+ c,communicated f rom to(B,A, in f orm, IC)))

present time(t)∧

stimulus reaction(observed(observation result to f or(B, IC)))∧
not(preparation f or(
output(t+ c,communicated f rom to(B,A, in f orm, IC))))

−→ stimulus reaction(observed(observation result to f or(B, IC)))

preparation f or(output(t+ c,communicated f rom to(B,A, in f orm, IC)))∧
not(output(communicated f rom to(B,A, in f orm, IC))) −→

preparation f or(output(t+ c,communicated f rom to(B,A, in f orm, IC)))

preparation f or(output(t+ c,communicated f rom to(B,A, in f orm, IC)))∧

present time(t+ c−1) −→

output(communicated f rom to(B,A, in f orm, IC))

The obtained general representation for a finite state transition system was used
further as a model for the model checker SMV [310]. SMV was used to perform
the automatic verification of relationships between dynamic properties of compo-
nents of different aggregation levels. For this purpose a procedure was developed
for translating the general description of a transition system into the input format of
the SMV model checking tool. For the description of the translation procedure and
the complete SMV specification for the considered example we refer to [398].

348 A. Sharpanskykh and J. Treur

One of the possible dynamic properties of the higher aggregation level that can
be verified against the generated SMV specification is formulated and formalized in
CTL as follows:

GP (Concluding effectiveness): If at some point in time environmental compo-
nent E generates all the correct relevant information, then later agent C will receive
a correct conclusion.

AG (E output observed provide result f rom to E A in f o &
E output observed provide result f rom to E B in f o

→ AF input C communicated send f rom to A C in f o),

where A is a path quantifier defined in CTL, meaning ”for all computational
paths”, G and F are temporal quantifiers that correspond to ”globally” and ”eventu-
ally” respectively.

The automatic verification by the SMV model checker confirmed that this prop-
erty holds with respect to the considered model of the multi-agent system as speci-
fied at the lower level.

11.7.2 Verification of Traces in TTL

This section introduces a technique for verification of TTL specifications. Using this
technique TTL properties are checked upon a limited set of traces. On the one hand,
this set can be obtained by performing simulation of particular scenarios based on
the TTL specification. In this case only a relevant subset of all possible traces is
considered for the analysis. On the other hand, a set of traces can be obtained by
formalising empirical data. Then, both verification of TTL properties on these traces
and validation of TTL specifications by empirical data can be performed. For this
type of verification a dedicated algorithm and the software tool TTL Checker have
been developed [80] (see Figure 11.5) 1 .

As an input for this analysis technique either a simulation or a formalized em-
pirical trace(s) is/are provided. A trace is represented by a finite number of state
atoms, changing their values over time a finite number of times, i.e., complies with
the finite variability property defined in Section 11.3. The verification algorithm
is a backtracking algorithm that systematically considers all possible instantiations
of variables in the TTL formula under verification. However, not for all quantified
variables in the formula the same backtracking procedure is used. Backtracking over
variables occurring in holds predicates is replaced by backtracking over values oc-
curring in the corresponding holds atoms in traces under consideration. Since there
are a finite number of such state atoms in the traces, iterating over them often will
be more efficient than iterating over the whole range of the variables occurring in
the holds atoms.

1 The TTL Checker tool can be downloaded at http://www.few.vu.nl/ wai/TTL/

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 349

As time plays an important role in TTL-formulae, special attention is given to
continuous and discrete time range variables. Because of the finite variability prop-
erty, it is possible to partition the time range into a minimum set of intervals within
which all atoms occurring in the property are constant in all traces. Quantification
over continuous or discrete time variables is replaced by quantification over this
finite set of time intervals.

In order to increase the efficiency of verification, the TTL formula that needs to
be checked is compiled into a Prolog clause. Compilation is obtained by mapping
conjunctions, disjunctions and negations of TTL formulae to their Prolog equiv-
alents, and by transforming universal quantification into existential quantification.
Thereafter, if this Prolog clause succeeds, the corresponding TTL formula holds
with respect to all traces under consideration.

The complexity of the algorithm has an upper bound in the order of the product
of the sizes of the ranges of all quantified variables. However, if a variable occurs
in a holds predicate, the contribution of that variable is no longer its range size, but
the number of times that the holds atom pattern occurs (with different instantiations)
in trace(s) under consideration. The contribution of an isolated time variable is the
number of time intervals into which the traces under consideration are divided.

The specific optimisations discussed above make it possible to check realistic
dynamic properties with reasonable performance. To illustrate this technique the
specification of the co-operative information gathering multi-agent system from
Section 11.4 was instantiated for the case, when agents A and B collect and combine
information about orthogonal projections of a three-dimensional shape: A collects
information about the side view and B collects information about the bottom view.
For example, if A observes a triangle and B observes a circle, then the shape is
a cone. Using the simulation software environment LeadsTo [81] a number of
simulation traces were generated and loaded into the TTL Checker. Then, a number
of TTL properties were checked automatically on the traces, among which:

P1 (Successfulness of the cone determination)
∀γ ∃t ∃V : COMPONENT holds(state(γ, t, input(C)),
communicated f rom to(V,C, in f orm,conclusion(cone)))

P2 (Successfulness of the projection acquisition for a cone)
∀γ ∀t1, t2 holds(state(γ, t1, input(A)),
observation result to f or(A, side view(triangle)))&
holds(state(γ, t2, input(B)),observation result to f or(B,bottom view(circle)))

Checking the property P2 took 0.46 sec. on a regular PC. With the increase of the
number of traces with similar complexity as the first one, the verification time grows
linearly: for 3 traces - 1.3 sec., for 5 traces - 2.25 sec. However, the verification time
is polynomial in the number of isolated time range variables occurring in the formula
under verification.

350 A. Sharpanskykh and J. Treur

Fig. 11.5 Screenshot from the TTL Checker Tool

11.8 Conclusions

This chapter presents the predicate logical Temporal Trace Language (TTL) for for-
mal specification and analysis of dynamic properties. TTL allows the possibility of
explicit reference to time points and time durations, which enables modelling of the
dynamics of continuous real-time phenomena. Although the language has a logical
foundation, it supports the specification of both qualitative and quantitative aspects
of a system, and subsumes specification languages based on differential equations.

Sometimes dynamical systems that combine both quantitative and qualitative as-
pects are called hybrid systems [133]. In contrast to many studies on hybrid sys-
tems in computer science, in which a state of a system is described by assignment
of values to variables, in the proposed approach a state of a system is defined by
(composite) objects using a rich ontological basis (i.e., typed constants, variables,
functions and predicates). This provides better possibilities for conceptualizing and
formalizing different kinds of systems (including those from natural domains). Fur-
thermore, by applying numerical approximation methods for continuous behaviour
of a system, variables in a generated model become discrete and are treated in the
same manner as finite-state transition system variables. Therefore, so-called control
points [297], at which values of continuous variables are checked and changes in a
system’s functioning mode are made, are not needed.

Furthermore, more specialised languages can be defined as a sublanguage of
TTL. For simulation, the executable language LEADSTO has been developed [81].
For verification, decidable fragments of predicate logics and specialized languages
with limited expressivity can be defined as sublanguages of TTL. TTL has similar-
ities (as well as important conceptual distinctions) with (from) situation and event
calculi. A proper subclass of TTL formulae can be directly translated into formulae
of temporal logics (e.g., LTL and CTL).

In this chapter an automatically supported technique for verifying TTL proper-
ties on a limited set of simulation or empirical traces was described. Furthermore,
it was shown how model checking techniques can be used for verification of TTL

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 351

specifications. To enable model checking, a model should be provided in the form of
a finite state transition system. In this chapter it was shown how a TTL specification
that comprises formulae in the executable normal form can be automatically trans-
lated into a finite state transition system. Using such an approach relations between
dynamic properties of adjacent aggregation levels of a multi-agent system can be
checked automatically, as also demonstrated in this chapter. The proposed approach
has similarities with compositional reasoning and verification techniques [238] in
the way how it handles complex dynamics of a system. Compositional reasoning
approaches developed in the area of software engineering are based on one common
idea that the analysis of global properties of a software system can be reduced to the
analysis of local properties of system components. More specifically, the problem
of satisfaction of global properties of a complex software system can be reduced to
two (easier) problems: (i) identifying and justifying relations between global proper-
ties of the system and local properties of its components (parts); (ii) verifying local
properties of system components with respect to components specifications.

In [338] formal methods for the analysis of hardware specifications expressed in
the language PSL (an extension of the standard temporal logics LTL and CTL), are
described. By means of the suggested property assurance technique supported by a
tool, different global system properties (e.g., consistency) can be verified on speci-
fications and in such a way the correctness of specifications can be established. The
verification is based on bounded model checking techniques. Besides the specifica-
tion language, an essential difference between this analysis method and the approach
described in this chapter is that the latter provides means for the multi-level (or
compositional) representation and verification of properties in specifications. This
allows system modelling at a necessary level of abstraction and the reduction of the
complexity of verification of system dynamics.

Similar differences can be identified in comparison with the approach proposed
in [186]. This approach allows semi-automatic formalization of informal graphical
specifications of multi-agent systems with the subsequent verification of dynamic
properties using model checking techniques. Formalized specifications comprise de-
scriptions of classes that describe components of a multi-agent system and relations
between them, constraints over these components, assertions and possibilities. Al-
though the first-order temporal logic that is used for formalizing these specifications
is expressive enough to define complex temporal relations, it is does not provide the
complete expressivity allowed by TTL (e.g., arithmetical operations, references to
multiple traces in the same formula). Furthermore, although such specifications can
be built and analyzed in parts, the idea of compositional verification, central in our
approach, is not elaborated in this approach.

Compositional verification may be used for analysis of dynamics of large socio-
technical systems (e.g., in the area of incident management). Such systems are char-
acterized by a large complexity of internal dynamics of and interaction among di-
verse types of agents, including human and artificial intelligent agents (e.g., ambi-
ent devices). It is expected that in the future the complexity of such systems will
increase considerably with a further development and implementation of ambient

352 A. Sharpanskykh and J. Treur

intelligence technologies. Formal analysis of such systems presents a big concep-
tual and computational challenge for existing verification tools in the area of multi-
agent systems. To enable effective and efficient analysis of systems of such type,
new methods based on appropriate (dynamic) abstraction mechanisms need to be
developed. For this the idea of compositional verification may serve as the starting
point. Further, findings from the area of nonlinear system analysis, control theory
and complex systems in general could be used.

Finally, TTL and the related analysis techniques proved their value in a number
of research projects in such disciplines as artificial intelligence, cognitive science,
biology, and social science. In particular, the analysis of continuous models (i.e.,
based on differential equations) is illustrated by the case study on trace conditioning
considered in [83]. In [79] TTL is used for modelling and analysis of adaptive agent
behaviour specified by complex temporal relations. The use of arithmetical opera-
tions in TTL to perform statistical analysis is illustrated by a case study from the
criminology [78]. More examples of applications of TTL are described in [80].

	11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems
	A. Sharpanskykh and J. Treur
	11.1 Introduction
	11.2 Syntax of TTL
	11.3 Semantics of TTL
	11.4 Multi-level Modelling of Multi-Agent Systems in TTL
	11.4.1 Aggregation by agent clustering
	11.4.2 Organisation structures

	11.5 Relation to Other Languages
	11.6 Normal Forms and Transformation Procedures
	11.6.1 Past Implies Future Normal Form
	11.6.2 Executable Normal Form
	11.6.3 Abstraction of executable specifications

	11.7 Verification of Specifications of Multi-Agent Systems in TTL
	11.7.1 Verification of interlevel relations in TTL specifications by model checking
	11.7.2 Verification of Traces in TTL

	11.8 Conclusions

