
Chapter 1

Using Theorem Proving to Verify Properties of
Agent Programs

N. Alechina, M. Dastani, F. Khan, B. Logan, and J.-J. Ch. Meyer

Abstract We present a sound and complete logic for automatic verification of Sim-
pleAPL programs. SimpleAPL is a fragment of agent programming languages such
as 3APL and 2APL designed for the implementation of cognitive agents with be-
liefs, goals and plans. Our logic is a variant of PDL, and allows the specification of
safety and liveness properties of agent programs. We prove a correspondence be-
tween the operational semantics of SimpleAPL and the models of the logic for two
example program execution strategies. We show how to translate agent programs
written in SimpleAPL into expressions of the logic, and give an example in which
we show how to verify correctness properties for a simple agent program using
theorem-proving.

N. Alechina, F. Khan, B. Logan
University of Nottingham, School of Computer Science, U.K. e-mail: {nza,afk,bsl}@cs.
nott.ac.uk

M. Dastani, J.-J. Ch. Meyer
Universiteit Utrecht, Department of Information and Computing Sciences, The Netherlands e-mail:
{mehdi,jj}@cs.uu.nl

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 1
DOI 10.1007/978-1-4419-6984-2 1, c© Springer Science+Business Media, LLC 2010

{nza, afk, bsl}@cs.nott.ac.uk
{nza, afk, bsl}@cs.nott.ac.uk
{mehdi, jj}@cs.uu.nl

2 N. Alechina et al

1.1 Introduction

The specification and verification of agent architectures and programs is a key prob-
lem in agent research and development. Formal verification provides a degree of
certainty regarding system behaviour which is difficult or impossible to obtain us-
ing conventional testing methodologies, particularly when applied to autonomous
systems operating in open environments. For example, the use of appropriate speci-
fication and verification techniques can allow agent researchers to check that agent
architectures and programming languages conform to general principles of rational
agency, or agent developers to check that a particular agent program will achieve
the agent’s goals in a given range of environments. Ideally, such techniques should
allow specification of key aspects of the agent’s architecture such as its execution
cycle (e.g., to explore commitment under different program execution strategies),
and should admit a fully automated verification procedure. However, while there
has been considerable work on the formal verification of software systems and on
logics of agency, it has proved difficult to bring this work to bear on verification of
agent programs. On the one hand, it can be difficult to specify and verify relevant
properties of agent programs using conventional formal verification techniques, and
on the other, standard epistemic logics of agency (e.g., [169]) fail to take into ac-
count the computational limitations of agent implementations.

Since an agent program is a special kind of program, logics intended for the
specification of conventional programs can be used for specifying agent program-
ming languages. In this approach we have some set of propositional variables or
predicates to encode the agent’s state, and, for example, dynamic or temporal op-
erators for describing how the state changes as the computation evolves. However,
for agents based on the Belief-Desire-Intention model of agency, such an approach
fails to capture important structure in the agent’s state which can be usefully ex-
ploited in verification. For example, we could encode the fact that the agent has the
belief that p as the proposition u1, and the fact that the agent has the goal that p as
the proposition u2. However such an encoding obscures the key logical relationship
between the two facts, making it difficult to express general properties such as ‘an
agent cannot have as a goal a proposition which it currently believes’. It therefore
seems natural for a logical language intended for reasoning about agent programs
to include primitives for beliefs and goals the agent, e.g., where Bp means that the
agent believes that p, and Gp means that the agent has a goal that p.

The next natural question is, what should the semantics of these operators be?
For example, should the belief operator satisfy the KD45 properties? In our view,
it is critical that the properties of the agent’s beliefs and goals should be grounded
in the computation of the agent (in the sense of [234]). If the agent implements
a full classical reasoner (perhaps in a restricted logic), then we can formalise its
beliefs as closed under classical inference. However if the agent’s implementation
simply matches belief literals against a database of believed propositions without
any additional logical reasoning, we should not model its beliefs as closed under
classical consequence.

1 Using Theorem Proving to Verify Properties of Agent Programs 3

In this paper, we present an approach to specification and verification which is
tailored to the requirements of BDI-based agent programming languages [64]. Our
approach is grounded in the computation of the agent and admits an automated ver-
ification procedure based on theorem proving. The use of theorem proving rather
than model checking is motivated by the current state of the art regarding avail-
able verification frameworks and tools for PDL. In particular, to the best of our
knowledge there is no model checking framework for PDL, while theorem proving
techniques for this logic are readily available [246, 386]. We develop our approach
in the context of SimpleAPL, a simplified version of the logic-based agent pro-
gramming languages 3APL [64,128] and 2APL [122,127]. We present a sound and
complete variant of PDL [173] for SimpleAPL which allows the specification of
safety and liveness properties of SimpleAPL programs. Our approach allows us to
capture the agent’s execution strategy in the logic, and we prove a correspondence
between the operational semantics of SimpleAPL and the models of the logic for
two example execution strategies. Finally, we show how to translate agent programs
written in SimpleAPL into expressions of the logic, and give an example in which
we verify correctness properties of a simple agent program using the PDL theorem
prover MSPASS [246]. While we focus on APL-like languages and consider only
single agent programs, our approach can be generalised to other BDI-based agent
programming languages and the verification of multi-agent systems.

1.2 An Agent Programming Language

In this section we present the syntax and semantics of SimpleAPL, a simplified
version of logic based agent-oriented programming languages 3APL [64, 128] and
2APL [122,127]. SimpleAPL contains the core features of 3APL and 2APL and al-
lows the implementation of agents with beliefs, goals, actions, plans, and planning
rules. The main features of 3APL/2APL not present in SimpleAPL are a first order
language for beliefs and goals1, a richer set of actions (e.g., abstract plans, com-
munication actions) and a richer set of rule types (e.g., rules for revising plans and
goals and for processing events).

1.2.1 SimpleAPL

Beliefs and Goals The beliefs of an agent represent its information about its en-
vironment, while its goals represent situations the agent wants to realize (not nec-
essary all at once). The agent’s beliefs are represented by a set of positive literals

1 In 3APL and 2APL, an agent’s beliefs are implemented as a set of first-order Horn clauses and
an agent’s goals are implemented as a set of conjunctions of ground atoms.

4 N. Alechina et al

and its goals by a set of arbitrary literals. The initial beliefs and goals of an agent
are specified by its program. For example, a simple vacuum cleaner agent might
initially believe that it is in room 1 and its battery is charged:

Beliefs: room1, battery

and may initially want to achieve a situation in which both room 1 and room 2 are
clean:

Goals: clean1, clean2

The beliefs and goals of an agent are related to each other: if an agent believes p,
then it will not pursue p as a goal, and if an agent does not believe that p, it will not
have−p as a goal.

Basic Actions Basic actions specify the capabilities an agent can use to achieve its
goals. There are three types of basic action: those that update the agent’s beliefs and
those which test its beliefs and goals. A belief test action tests whether a boolean
belief expression is entailed by the agent’s beliefs, i.e., it tests whether the agent
has a certain belief. A goal test action tests whether a boolean goal expression is
entailed by the agent’s goals, i.e., it tests whether the agent has a certain goal. Belief
update actions change the beliefs of the agent. A belief update action is specified in
terms of its pre- and postconditions (which are sets of literals), and can be executed
if one of its pre-conditions is entailed by the agent’s current beliefs. Executing the
action updates the agent’s beliefs to make the corresponding postcondition entailed
by the agent’s belief base. While the belief base of the agent contains only positive
literals, belief and goal expressions appearing in belief and goal test actions can
be complex, and the pre- and postconditions of belief update actions may contain
negative literals. We will define the notion of ‘entailed’ formally below. Informally, a
pre-condition of an action is entailed by the agent’s belief base if all positive literals
in the precondition are contained in the agent’s belief base, and for every negative
literal−p in the precondition, p is not in the belief base (i.e., we use entailment under
the closed world assumption). After executing a belief update action, all positive
literals in the corresponding postcondition are added to the belief base, and for every
negative literal −p in the postcondition, p is removed from the agent’s belief base.
For example, the following belief update specifications:

BeliefUpdates:

{room1} moveR {-room1, room2}

{room1, battery} suck {clean1, -battery}

{room2, battery} suck {clean2, -battery}

{room2} moveL {-room2, room1}

{-battery} charge {battery}

can be read as “if the agent is in room 1 and moves right, it ends up in room 2”, and
“if the agent is in room 1 and its battery is charged, it can perform a ‘suck’ action,
after which room 1 is clean and its battery is discharged”. Note that performing
a ‘suck’ action in a different state, e.g., in the state where the agent is in room 2,

1 Using Theorem Proving to Verify Properties of Agent Programs 5

has a different result. Belief update actions are assumed to be deterministic, i.e., the
pre-conditions of an action are assumed to be mutually exclusive.

Updating the agent’s beliefs may result in achievement of one or more of the
agent’s goals. Goals which are achieved by the postcondition of an action are
dropped. For example, if the agent has a goal to clean room 1, executing a ‘suck’
action in room 1 will cause it to drop the goal. For simplicity, we assume that the
agent’s beliefs about its environment are always correct and its actions in the envi-
ronment are always successful, so the agent’s beliefs describe the state of the real
world. This assumption can be relaxed in a straightforward way by including the
state of the environment in the models.

Plans In order to achieve its goals, an agent adopts plans. A plan consists of basic
actions composed by sequence, conditional choice and conditional iteration opera-
tors. The sequence operator ; takes two plans as arguments and indicates that the
first plan should be performed before the second plan. The conditional choice and
conditional iteration operators allow branching and looping and generate plans of
the form if φ then {π1} else {π2} and while φ do {π} respectively. The con-
dition φ is evaluated with respect to the agent’s current beliefs. For example, the
plan:

if room1 then {suck} else {moveL; suck}

causes the agent to clean room 1 if it’s currently in room 1, otherwise it first moves
to room 1 and then cleans it.

Planning Goal Rules Planning goal rules are used by the agent to select a plan
based on its current goals and beliefs. A planning goal rule consists of three parts:
an (optional) goal query, a belief query, and a plan. The goal query specifies which
goal(s) the plan achieves, and the belief query characterises the situation(s) in which
it could be a good idea to execute the plan. Firing a planning goal rule causes the
agent to adopt the specified plan. For example, the planning goal rule:

clean2 <- battery |

if room2 then {suck} else {moveR; suck}

states that “if the agent’s goal is to clean room 2 and its battery is charged, then
the specified plan may be used to clean the room”. Note that an agent can generate
a plan based only on its current beliefs as the goal query is optional. This allows
the implementation of reactive agents (agents without any goals). For example, the
reactive rule:

<- -battery |

if room2 then {charge} else {moveR; charge}

states “if the battery is low, the specified plan may be used to charge it”. For simplic-
ity, we assume that agents do not have initial plans, i.e., plans can only be generated
during the agent’s execution by planning goal rules.

6 N. Alechina et al

1.2.2 SimpleAPL syntax

The syntax of SimpleAPL is given below in EBNF notation. We assume a set of
belief update actions and a set of propositions, and use 〈aliteral〉 to denote the name
of a belief update action and 〈literal〉 (〈pliteral〉) to denote belief and goal literals
(positive literals).

〈APL Prog〉 ::= "BeliefUpdates:" 〈updatespecs〉
| "Beliefs:" 〈pliterals〉
| "Goals": 〈literals〉
| "PG rules:" 〈pgrules〉

〈updatespecs〉 ::= [〈updatespec〉 ("," 〈updatespec〉)*]
〈updatespec〉 ::= "{" 〈literals〉 "}" 〈aliteral〉 "{"〈literals〉"}"
〈pliterals〉 ::= [〈pliteral〉 ("," 〈pliteral〉)*]
〈literals〉 ::= [〈literal〉 ("," 〈literal〉)*]
〈plan〉 ::= 〈baction〉 | 〈seqplan〉 | 〈ifplan〉 | 〈whileplan〉
〈baction〉 ::= 〈aliteral〉 | 〈testbelief 〉 | 〈testgoal〉
〈testbelief 〉 ::= 〈bquery〉 "?"
〈testgoal〉 ::= 〈gquery〉 "!"
〈bquery〉 ::= 〈literal〉 | 〈bquery〉 "and" 〈bquery〉 | 〈bquery〉 "or" 〈bquery〉
〈gquery〉 ::= 〈literal〉 | 〈gquery〉 "or" 〈gquery〉
〈seqplan〉 ::= 〈plan〉 ";" 〈plan〉
〈ifplan〉 ::= "if" 〈bquery〉 "then {" 〈plan〉 "}" ["else {" 〈plan〉 "}"]
〈whileplan〉 ::= "while" 〈bquery〉 "do {" 〈plan〉 "}"
〈pgrules〉 ::= [〈pgrule〉 ("," 〈pgrule〉)*]
〈pgrule〉 ::= [〈gquery〉] "<-" 〈bquery〉 "|" 〈plan〉

1.3 Operational Semantics

We define the operational semantics of SimpleAPL in terms of a transition system. A
transition system is a graph where the nodes are configurations of an agent program
and the edges (transitions) are given by a set of transition rules. The configuration of
a SimpleAPL agent program consists of the beliefs, goals and plan(s) of the agent.
Each transition corresponds to a single computation step. Which transitions are pos-
sible in a configuration depends on the agent’s execution strategy. Many execution
strategies are possible and we do not have space here to describe them all in detail.
Below we give two versions of the operational semantics, one for an agent which
executes a single plan to completion before choosing another plan (non-interleaved
execution), and another for an execution strategy which interleaves the execution of
multiple plans with the adoption of new plans (interleaved execution).

These strategies were chosen as representative of deliberation strategies found in
the literature and in current implementations of BDI-based agent programming lan-
guages. However neither of these strategies (or any other single strategy) is clearly

1 Using Theorem Proving to Verify Properties of Agent Programs 7

best for all agent task environments. For example, the non-interleaved strategy is ap-
propriate in situations where a sequence of actions must be executed ‘atomically’ in
order to ensure the success of a plan. However it means that the agent is unable to re-
spond to new goals until the plan for the current goal has been executed. Conversely,
the interleaved strategy allows an agent to pursue multiple goals at the same time,
e.g., allowing an agent to respond to an urgent, short-duration task while engaged in
a long-term task. However it can increase the risk that actions in different plans will
interfere with each other. It is therefore important that the agent developer has the
freedom to choose the strategy which is most appropriate to a particular problem.

Agent Configuration An agent configuration is a 3-tuple 〈σ,γ,Π〉 where σ is a set
of positive literals representing the agent’s beliefs, γ is a set of literals representing
the agent’s goals, and Π is a set of plan entries representing the agent’s currently
executing plans.2 In the initial configuration the agent’s initial beliefs and goals
are those specified by its program, and Π is empty. Executing the agent’s program
modifies its initial configuration in accordance with the transition rules presented
below. We first present the transition rules for the non-interleaved execution strategy
and then those for interleaved execution.

For the formulation of the operational semantics we need to formalize some ba-
sic assumptions. In particular, we use the notion of belief entailment based on the
closed-world assumption. This notion of entailment, which we denote by |=cwa, is
defined as follows:

σ |=cwa p ⇔ p ∈ σ
σ |=cwa −p ⇔ p < σ
σ |=cwa φ and ψ ⇔ σ |=cwa φ and σ |=cwa ψ
σ |=cwa φ or ψ ⇔ σ |=cwa φ or σ |=cwa ψ
σ |=cwa {φ1, . . . ,φn} ⇔ ∀1 ≤ i ≤ n σ |=cwa φi

The notion of goal entailment, denoted by |=g, corresponds to a formula being
classically entailed by one of the goals in the goal base γ, and is defined as follows:

γ |=g p ⇔ p ∈ γ
γ |=g −p ⇔−p ∈ γ
γ |=g φ or ψ ⇔ γ |=g φ or γ |=g ψ

Note that “γ |=g φ and ψ ⇔ γ |=g φ and γ |=g ψ” does not hold since φ and ψ
may be entailed by two different goals γ1 and γ2 from γ, but there may be no γi ∈ γ
which entails both ψ and φ. In fact, in SimpleAPL there are no non-trivial conjunc-
tive goal queries (that is, not of the form p and p) which may be entailed by the goal
base, since the goal base consists of literals.

We assume that each belief update action α has a set of preconditions prec1(α),
. . . , preck(α). Each preci(α) is a finite set of belief literals, and any two pre-

2 As an agent’s planning goal rules do not change during the execution of the agent’s program, we
do not include them in the agent configuration.

8 N. Alechina et al

conditions for an action α, preci(α) and precj(α) (i , j), are mutually exclu-
sive (i.e., for any belief base σ, if σ |=cwa preci(α) and σ |=cwa precj(α) then
i = j). For each preci(α) there is a unique corresponding postcondition posti(α),
which is also a finite set of literals. A belief update action α can be executed if
the current set of agent’s beliefs σ entails some precondition precj(α) of α with
respect to |=cwa. This holds when all positive literals p in precj(α) are in σ and
σ∩{p :−p ∈ precj(α)} = ∅. The effect of updating a set of beliefs σ with α is given
by T j(α,σ)=σ∪ ({p : p ∈ postj(α)}\{p :−p ∈ postj(α)}), (i.e., executing the belief
update action α adds the positive literals in its postcondition to the agent’s beliefs
and removes any existing beliefs if their negations are in the postcondition).

1.3.1 Non-interleaved execution

By non-interleaved execution we mean the following execution strategy: when in a
configuration with no plan, choose a planning goal rule non-deterministically, apply
it, execute the resulting plan; repeat.

Belief Update Actions A belief update action α can be executed if one of its pre-
conditions is entailed by the agent’s beliefs, i,e., σ |=cwa φ. Executing the action adds
the literals in the corresponding postcondition to the agent’s beliefs and removes any
existing beliefs which are inconsistent with the postcondition, and causes the agent
to drop any goals it believes to be achieved as a result of the update.

(1)
σ |=cwa prec j(α) T j(α,σ) = σ′

〈σ,γ, {α;π}〉 −→ 〈σ′,γ′, {π}〉

where γ′ = γ\ ({p : p ∈σ′}∪{−p : p <σ′}) and T j is the function that determines the
effect of a belief update action on a belief base as defined above. Note that in this
and in rules (2)-(7) below, π may be empty, in which case α ; is identical to α.3

Belief and Goal Test Actions A belief test action β? can be executed if β is entailed
by the agent’s beliefs.

(2)
σ |=cwa β

〈σ,γ, {β?;π}〉 −→ 〈σ,γ, {π}〉

The execution of a belief test action β? in a configuration where β is not entailed
by the agent’s beliefs causes execution of the plan to block. In the case of non-
interleaved execution, this causes the whole agent to block.

A goal test action κ! can be executed if κ is entailed by the agent’s goals.

(3)
γ |=g κ

〈σ,γ, {κ!;π}〉 −→ 〈σ,γ, {π}〉

3 This avoids introducing an additional transition rule for the sequence operator ;

1 Using Theorem Proving to Verify Properties of Agent Programs 9

Similar to the belief test action, the execution of a goal test action κ! in a configura-
tion where κ is not entailed by the agent’s goals, blocks.

Composite Plans The following transition rules specify the effect of executing the
conditional choice and conditional iteration operators, respectively.

(4)
σ |=cwa φ

〈σ,γ, {(if φ then π1 else π2);π}〉 −→ 〈σ,γ, {π1;π}〉

(5)
σ 6|=cwa φ

〈σ,γ, {(if φ then π1 else π2);π}〉 −→ 〈σ,γ, {π2;π}〉

(6)
σ |=cwa φ

〈σ,γ, {(while φ do π1);π}〉 −→ 〈σ,γ, {π1; (while φ do π1);π}〉

(7)
σ 6|=cwa φ

〈σ,γ, {(while φ do π1);π}〉 −→ 〈σ,γ, {π}〉

Planning Goal Rules A planning goal rule κ← β|π can be applied if κ is entailed
by the agent’s goals and β is entailed by the agent’s beliefs. Applying the rule adds
π to the agent’s plans.

(8)
γ |=g κ σ |=cwa β

〈σ,γ, {}〉 −→ 〈σ,γ, {π}〉

1.3.2 Interleaved execution

By interleaved execution we mean the following execution strategy: either apply
a planning goal rule, or execute the first step in any of the current plans; repeat.
Interleaved execution strategies are characteristic of many ‘event-driven’ agent pro-
gramming languages such as AgentSpeak(L) [357] and its derivatives [75], where
the agent may adopt a new intention at each processing cycle and can pursue multi-
ple intentions in parallel. To simplify the presentation of the operational semantics
of the interleaved strategy, we associate a unique name with each planning goal rule
ri = κi ← βi|πi, and add to each plan entry in the plan base the name of the plan-
ning goal rule whose application generated the plan entry, (i.e., an entry ri : π in the
plan base indicates that the plan π was generated by applying the planning goal rule
ri : κi← βi | πi). Note that, in a particular configuration, the actual plan π in the plan
base may be different from the πi generated by applying the planning goal rule ri if
some prefix of πi has already been executed.

The transitions for an interleaved execution strategy are:

Belief updates Similar to transition rule (1), the following rule specifies the execu-
tion of belief update action in a configuration where the plan base can contain more
than one plan entry.

10 N. Alechina et al

(1i)
ri : α;π ∈ Π σ |=cwa prec j(α) T j(α,σ) = σ′

〈σ,γ,Π〉 −→ 〈σ′,γ′, (Π \ {ri : α;π})∪{ri : π}〉

where γ′ = γ \σ′. We stipulate that Π ∪{ri : } = Π . As before, π may be empty.

Belief and goal tests Again, similar to transition rules (2) and (3), the following
rules specify the execution of belief and goal test actions in a configuration where
the plan base can contain more than one plan entry.

(2i)
ri : β?;π ∈ Π σ |=cwa β

〈σ,γ,Π〉 −→ 〈σ,γ, (Π \ {ri : β?;π})∪{ri : π}〉

(3i)
ri : κ!;π ∈ Π γ |=g κ

〈σ,γ,Π〉 −→ 〈σ,γ, (Π \ {ri : κ!;π})∪{ri : π}〉

Composite plans The following transition rules specify the effect of executing the
conditional choice and conditional iteration operators, respectively.

(4i)
ri : (if φ then π1 else π2);π ∈ Π σ |=cwa φ

〈σ,γ,Π〉 −→ 〈σ,γ,Π ′∪{ri : π1;π}〉

(5i)
ri : (if φ then π1 else π2);π ∈ Π σ 6|=cwa φ

〈σ,γ,Π〉 −→ 〈σ,γ,Π ′∪{ri : π2;π}〉

where Π ′ = Π \ {ri : (if φ then π1 else π2);π}.

(6i)
ri : (while φ do π1);π ∈ Π σ |=cwa φ

〈σ,γ,Π〉 −→ 〈σ,γ,Π ′∪{ri : (π1;while φ do π1);π}〉

(7i)
ri : (while φ do π1);π ∈ Π σ 6|=cwa φ

〈σ,γ,Π〉 −→ 〈σ,γ,Π ′∪{ri : π}〉

where Π ′ = Π \ {ri : (while φ do π1);π}.

Planning goal rules A planning goal rule ri = κi← βi|πi can be applied if κi is en-
tailed by the agent’s goals and βi is entailed by the agent’s beliefs, and provided that
the plan base does not already contain a (possibly partially executed) plan generated
by applying ri. Applying the rule ri adds πi to the agent’s plans.

(8i)
γ |=g κi σ |=cwa βi ri : π < Π
〈σ,γ,Π〉 −→ 〈σ,γ,Π ∪{ri : πi}〉

The transition system TS for the agent’s program is generated by the initial con-
figuration c0 if it consists of c0 and all configurations which can be reached by
applying the above mentioned transition rules. Recall that the initial configuration
always has an empty plan base.

1 Using Theorem Proving to Verify Properties of Agent Programs 11

1.4 Logic

In this section, we introduce a logic which allows us to specify properties of Sim-
pleAPL agent programs.

We begin by defining transition systems which capture the capabilities of agents
as specified by their belief update actions. These transition systems are more general
than both versions of the operational semantics presented above, in that they do
not describe a particular agent program or execution strategy, but all possible basic
transitions between the possible belief and goal states of an agent. We then show
how to interpret a variant of Propositional Dynamic Logic (PDL) with belief and
goal operators in this semantics, and give a sound and complete axiom system for
the logic. In section 1.4.4 we show how the beliefs, goals and plans of an agent can
be translated into our logic.

1.4.1 Preliminary

The models of the logic are defined relative to an agent program with a set of plan-
ning goal rules Λ and a set of pre- and postconditions for all belief update actions C.
Let P denote the set of propositional variables occurring in Λ. A state s corresponds
to a pair 〈σ,γ〉, where:

• σ ⊆ P is a set of beliefs, and

• γ is a set of goals {(−)u1, . . . , (−)un : ui ∈ P}; no goal in γ should be entailed (with
respect to |=cwa) by σ.

We model states as points, and beliefs and goals are assigned to a state by two
assignments, Vb and Vg. Let the set of belief update actions be Ac = {α1, . . . ,αm}.
Executing an action αi in different configurations may give different results so
that for each αi ∈ Ac we have an associated set of pre- and postcondition pairs
{(prec1,post1), . . . , (preck,postk)} denoted by C(αi). We assume that C(αi) is fi-
nite, that different preconditions are mutually exclusive, and that each precondition
has exactly one associated postcondition. Ifσ |=cwa prec j(α) and T j(α,σ)=σ′, then
in the models of our logic there will be a transition Rα from a state s = (σ,γ) to a
state s′ = (σ′,γ′) where γ′ = γ \ ({p : p ∈ σ′}∪ {−p : p < σ′}).

1.4.2 Language

Assume that we can make PDL program expressions ρ out of belief update actions
αi ∈ Ac by using sequential composition ;, test on formulas ?, union ∪, and finite

12 N. Alechina et al

iteration ∗. The formulas on which we can test are any formulas of the language L
defined below, although to express SimpleAPL plans we only need tests on beliefs
and goals. Let Υ be the set of program expressions constructed in this way.

The language L for talking about the agent’s beliefs, goals and plans is the lan-
guage of PDL extended with a belief operator B and a goal operator G. A formula of
L is defined as follows: if p ∈ P, then Bp and G(−)p are formulas; if ρ is a program
expression and φ a formula, then 〈ρ〉φ and [ρ]φ are formulas; and L is closed under
the usual boolean connectives. In the following, we will refer to the sublanguage of
L which does not contain program modalities 〈ρ〉 and [ρ] as L0.

1.4.3 Semantics

A model for L is a structure M = (S , {Rρ : ρ ∈ Υ},V), where

• S is a set of states.
• V = (Vb,Vg) is the evaluation function consisting of belief and goal valuation

functions Vb and Vg; each state s can be identified with a pair (σ,γ), where
Vb(s) = σ and Vg(s) = γ.

• We define Rρ for ρ ∈ Υ inductively by the following clauses:

– Rα, for each belief update action α ∈ Ac, is a relation on S such that for any
s, s′ ∈ S we have that Rα(s, s′) iff for some (prec j,post j) ∈C(α), T j(α,Vb(s))=
Vb(s′) and Vg(s′) = Vg(s) \ ({p : p ∈ Vb(s′)} ∪ {−p : p < Vb(s′)}. Note that this
implies two things: first, an α transition can only originate in a state s which
satisfies one of the preconditions for α; second, since pre-conditions are mu-
tually exclusive, every such s satisfies exactly one pre-condition, and all α-
successors of s satisfy the matching post-condition.

– Rρ1;ρ2 = Rρ1 ◦Rρ2 = {(s1, s2) : s1, s2 ∈ S , ∃s3 ∈ S (Rρ1 (s1, s3)∧Rρ2 (s3, s2))}
– Rφ? = {(s, s) : M, s |= φ}, for each formula φ ∈ L
– Rρ1∪ρ2 = Rρ1 ∪ Rρ2

– Rρ∗ = (Rρ)∗, the reflexive transitive closure of Rρ.

The relation |= of a formula being true in a state of a model is defined inductively
as follows:

• M, s |= Bp iff p ∈ Vb(s)
• M, s |=G(−)p iff (−)p ∈ Vg(s)
• M, s |= ¬φ iff M, s 6|= φ
• M, s |= φ∧ψ iff M, s |= φ and M, s |= ψ
• M, s |= 〈ρ〉φ iff there exists a s′ ∈ S such that Rρ(s, s′) and M, s′ |= φ.
• M, s |= [ρ]φ iff for all s′ ∈ S such that Rρ(s, s′) we have that M, s′ |= φ.

Let the class of transition systems defined above be denoted MC (note that M is
parameterised by the set C of pre- and postconditions of belief update actions).

1 Using Theorem Proving to Verify Properties of Agent Programs 13

1.4.4 Axiomatisation

The beliefs, goals and plans of agent programs can be translated into PDL expres-
sions as follows.

• Translation of belief formulas: let p ∈ P and φ,ψ be belief query expressions (i.e.,
〈bquery〉) of SimpleAPL

– fb(p) = Bp

– fb(−p) = ¬Bp

– fb(φ and ψ) = fb(φ)∧ fb(ψ)

– fb(φ or ψ) = fb(φ)∨ fb(ψ)

Observe that negative queries are translated using the closed world assumption:
an agent is assumed to believe that p is false if it does not have p in its belief
base.

• Translation of goal formulas:

– fg(p) =Gp

– fg(−p) =G−p

– fg(φ or ψ) = fg(φ)∨ fg(ψ)

• Translation of plan expressions: let αi be a belief update action, φ and ψ be belief
and goal query expressions, and π,π1,π2 be plan expressions (i.e., 〈plan〉s) of
SimpleAPL

– fp(αi) = αi

– fp(φ?) = fb(φ)?

– fp(ψ!) = fg(ψ)?

– fp(π1;π2) = fp(π1); fp(π2)

– fp(if φ then π1 else π2) = (fb(φ)?; fp(π1))∪ (¬ fb(φ)?; fp(π2))

– fp(while φ do π) = (fb(φ)?; fp(π))∗;¬ fb(φ)?

Proposition 1.1. For all states s = (σ,γ) and for all belief formulae β and goal
formulae κ we have that:

1. M, s |= fb(β)⇔ σ |=cwa β

2. M, s |= fg(κ)⇔ γ |=g κ

Proof. We prove these two propositions by induction on the complexity of formulas
β and κ, respectively.

1. M, s |= fb(β)⇔ σ |=cwa β

14 N. Alechina et al

• Base case: Let β = p or β =−p. Then, we have:

M, s |= fb(p) ⇔ M, s |= Bp ⇔ p ∈ Vb(s) ⇔ σ |=cwa p.

M, s |= fb(−p) ⇔ M, s |= ¬Bp ⇔ p < Vb(s) ⇔ σ |=cwa−p.

• Inductive case: Let β= β1 and β2. Then, M, s |= fb(β1 and β2) ⇔ M, s |= fb(β1)
and M, s |= fb(β2) ⇔ (by the inductive hypothesis) σ |=cwa β1 and σ |=cwa β2
⇔ (by the definition of |=cwa) σ |=cwa β1 and β2. The case for β = β1 or β2
similarly follows from the inductive hypothesis and σ |=cwa β1 or σ |=cwa β2 if
and only if σ |=cwa β1 or β2.

2. M, s |= fg(κ)⇔ γ |=g κ

• Base case: κ = (−)p
M, s |= fg((−)p) ⇔ M, s |=G(−)p ⇔ (−)p ∈ Vg(s) ⇔ σ |=g p.

• Inductive case: κ = κ1 or κ2
M, s |= fg(κ1 or κ2) ⇔ M, s |= fg(κ1) ∨ fg(κ2) ⇔ M, s |= fg(κ1) or M, s |=
fg(κ2) ⇔ (by the inductive hypothesis) γ |=g κ1 or γ |=g κ2 ⇔ (by the defi-
nition of |=g γ |=g κ1 or κ2.

Note that for every pre- and postcondition pair (prec j,post j) we can describe
states satisfying prec j and states satisfying post j by formulas of L. More formally,
we define a formula fb(X) corresponding to a pre- or postcondition X as follows:
fb({φ1, . . . ,φn}) = fb(φ1)∧ . . .∧ fb(φn). This allows us to axiomatise pre- and post-
conditions of belief update actions.

To axiomatise the set of models defined above relative to C we need:

CL classical propositional logic

PDL axioms of PDL (see, e.g., [210])

A1 beliefs are not goals (positive): Bp→¬Gp

A2 beliefs are not goals (negative): G−p→ Bp

A3 for every belief update action αi and every pair of pre- and postconditions
(prec j,post j) in C(αi) and formulaΦ not containing any propositional variables
occurring in post j:

fb(prec j)∧Φ→ [αi](fb(postj)∧Φ).

This is essentially a frame axiom for belief update actions.

A4 for every belief update action αi where all possible preconditions in C(αi) are
prec1, . . . ,preck:

¬ fb(prec1)∧ . . .∧¬ fb(preck)→¬〈αi〉>

where > is a tautology. This axiom ensures that belief update actions cannot be
performed in states that do not satisfy any of its preconditions.

1 Using Theorem Proving to Verify Properties of Agent Programs 15

A5 for every belief update action αi and every precondition prec j in C(αi),
fb(prec j)→ 〈αi〉>. This axiom ensures that belief update actions can be per-
formed successfully when one of their preconditions holds.

Let us call the axiom system above AxC where, as before, C is the set of pre- and
postconditions of basic actions.

Theorem 1.1. AxC is sound and (weakly) complete for the class of regular models
MC.

Proof. Since our logic includes PDL, we cannot prove strong completeness (for ev-
ery set of formulas Γ and formula φ, if Γ |= φ then Γ ` φ) because PDL is not com-
pact. Instead, we can prove weak completeness: every valid formula φ is derivable
(|= φ ⇒ ` φ).

The proof of soundness is by straightforward induction on the length of a deriva-
tion. All axioms are clearly sound, and the inference rules are standard.

The proof of completeness is standard as far as the PDL part is concerned, see for
example [47]. Take a consistent formula φ; we are going to build a finite satisfying
model M ∈MC for φ.

We define the closure, CL(Σ) of a set of formulas of our language based on the
usual definition of the Fischer-Ladner closure under single negations of Σ. However
we assume a special definition of subformula closure under which we do not permit
the inclusion of propositional variables, e.g., if Bp ∈ Σ, then we do not allow p in
the subformula closure of Σ, since we do not have bare propositional variables in
our language. We also have an extra condition that if an action α occurs in φ, then
CL(φ) contains fb(ψ) for all pre- and postconditions ψ for α.

The states of the satisfying model M will be all maximal consistent subsets of
CL(φ). Let A, B be such maximal consistent sets, and α be a basic action. We define
Rα(A,B) to hold if and only if the conjunction of formulas in A, ∧A, is consistent
with 〈α〉∧B (conjunction of formulas in B preceded by 〈α〉).

The relations corresponding to complex programs ρ are defined inductively on
top of the relations corresponding to basic actions using unions, compositions, and
reflexive transitive closures, as is the case with regular models.

We define the assignment V in an obvious way:

• p ∈ Vb(A) iff Bp ∈ A, where Bp ∈CL(φ);

• (−)p ∈ Vg(A) iff G(−)p ∈ A, where G(−)p ∈CL(φ).

The truth lemma follows easily on the basis of the PDL completeness proof given
in [47]; so we have that for every ψ ∈CL(φ),

ψ ∈ A ⇔ M,A |= ψ

Since our formula φ is consistent, it belongs to at least one maximal consistent set
A, so it is satisfied in some state in M.

16 N. Alechina et al

Clearly, beliefs and goals are disjoint because the states are consistent with re-
spect to the axioms A1 and A2.

All that remains to show is that this model M also satisfies the pre- and post-
conditions of the actions which occur in the formula φ: an action α is not applicable
if none of its preconditions are satisfied, and if it is applied in a state s where one
of its preconditions holds (recall that the preconditions are disjoint), then the corre-
sponding postcondition holds in all states s′ accessible from s by α.

First, consider an action α and state A such that A does not satisfy any of the pre-
conditions of α. Then, by axiom A4,∧A implies [α]⊥, so there is no maximal consis-
tent set B such that ∧A∧〈α〉∧B is consistent, so there is no α-transition from A. Now
suppose that A satisfies one of the preconditions prec j of α. Then fb(prec j) ∈ A (re-
call that CL(φ) contains fb(prec j), so we can use the truth lemma) and ∧A implies
[α] fb(post j) by A3. For any B such that ∧A∧〈α〉∧B is consistent, B has to contain
fb(post j) since fb(post j) is in CL(φ) and ∧A∧〈α〉¬ fb(post j) is not consistent, and
such a successor B exists by A5. So every α-successor of A satisfies the postcondi-
tion. Similarly, we can show that for every literal q in A (in CL(φ)), which does not
occur in the postcondition fb(post j), it is not consistent to assume that its value has
changed in a state accessible by α (e.g. Bq∧〈α〉¬Bq is inconsistent), because of A3;
so all literals in the state A which do not occur in the postcondition fb(post j) do
not change their value in the state accessible by α. Note that all other literals which
do not occur in CL(φ) and by construction do not occur in the postconditions of any
action occurring in CL(φ) are always absent in all states, so their value trivially does
not change. �

1.5 Verification

In this section we show how to define exactly the set of paths in the transition system
generated by the operational semantics which correspond to a PDL program expres-
sion. This allows us to verify properties of agent programs, such as ‘all executions
of a given program result in a state satisfying property φ’. More precisely, we would
like to express that, given the initial beliefs and goals of the agent, the application of
its planning goal rules and the execution of the resulting plans reach states in which
the agent has certain beliefs and goals.

We distinguish two types of properties of agent programs: safety properties and
liveness properties. Let φ ∈ L0 denote the initial beliefs and goals of an agent and
ψ ∈ L0 denote states in which certain beliefs and goals hold (i.e., φ,ψ are formulas
of L0 containing only Bp and G(−)q atoms). The general form of safety and live-
ness properties is then: φ→ [ξ(Λ)]ψ and φ→ 〈ξ(Λ)〉ψ, respectively, where ξ(Λ)
describes the execution of the agent’s program with a set of planning goal rules Λ.

1 Using Theorem Proving to Verify Properties of Agent Programs 17

1.5.1 Expressing the non-interleaved strategy

The application of a set of planning goal rules Λ = {ri|ri = κi ← βi|πi} for an agent
with a non-interleaved execution strategy is translated as follows:

ξ(Λ) = (
⋃
ri∈Λ

(fg(κi)∧ fb(βi))?; fp(πi))+

where + is the strict transitive closure operator: ρ+ = ρ;ρ∗. This states that each
planning goal rule is be applied zero or more times (but at least one planning goal
rule will be applied).

Using this definition of ξ(Λ), the general schema of safety and liveness properties
for an agent with an interleaved execution strategy are then:

φ→ [(
⋃

ri∈Λ(fg(κi)∧ fb(βi))?; fp(πi))+]ψ for safety properties; and

φ→ 〈 (
⋃

ri∈Λ(fg(κi)∧ fb(βi))?; fp(πi))+ 〉ψ for liveness properties.

Below we show that the translation above is faithful, namely the PDL program ex-
pression which is the translation of the agent’s program corresponds to the set of
paths in the transition system generated by the operational semantics for that agent
program. But first we need a few extra definitions.

A model generated by a state s0 consists of all possible states which can be
recursively reached from s0 by following the basic relations. A state s and a con-
figuration c = 〈σ,γ,Π〉 are matching if they have the same belief and goal bases,
that is Vb(s) = σ and Vg(s) = γ. We denote this as s ∼ c. Let C be a set of pre- and
postconditions of belief update actions and Λ a set of planning goal rules. Let TS
be a transition system defined by the operational semantics for an agent using the
non-interleaved execution strategy (all possible configurations 〈σ,γ,Π〉 and transi-
tions between them, given Λ and C) and M a model belonging to MC. TS and M are
called matching if they are generated by c0 and s0, respectively, such that s0 ∼ c0.

We now prove a theorem which will allow us to verify properties of reachability
in TS by evaluating formulas 〈ξ(Λ)〉φ at s0.

Theorem 1.2. Assume that TS is a transition system defined by the operational se-
mantics for an agent with a set of planning goal rules Λ with pre- and postconditions
for basic actions C using a non-interleaved execution strategy, and M is a model in
MC. Then if TS and M match, then a configuration c with an empty plan base is
reachable from the initial configuration c0 in TS iff a state s matching c is reach-
able from the initial state s0 (matching c0) along a path described by ξ(Λ), i.e.,
(s0, s) ∈ Rξ(Λ).

Before proving the theorem, we need the following lemma:

Lemma 1.1. For all s = 〈σ,γ〉, s′ = 〈σ′,γ′〉, and plans π and π′, we have:
〈σ,γ, {π;π′}〉 −→ 〈σ′,γ′, {π′}〉 in TS iff R fp(π)(s, s′) in M.

18 N. Alechina et al

Proof of Lemma 1.1. By induction on the length of π.

Basis of induction: We prove that the lemma holds for belief update actions, and
belief and goal test actions. Clearly, with respect to the belief update actions α,
〈σ,γ, {α;π′}〉 −→ 〈σ′,γ′, {π′}〉 in TS iff Rα(s, s′) in M, by the operational semantics
rule (1) and the definition of Rα in terms of pre- and postconditions. For belief tests
φ? and goal tests ψ!, the relations R fb(φ)? and R fg(ψ)? hold for exactly the same pairs
(s, s) for which belief and goal test transitions hold by rules (2) and (3). This follows
from Proposition 1.

Inductive step: Assume the lemma holds for the sub-plans of π.

Let π = if φ then π1 else π2. Let us assume that σ |=cwa φ and there is a
transition from 〈σ,γ, {π;π′}〉 to 〈σ,γ, {π1;π′}〉 by rule (4) in TS (the else case
is similar). Then by Proposition 1, M, s |= fb(φ), so R fb(φ)?(s, s). By the induc-
tive hypothesis, there is a path from 〈σ,γ, {π1;π′}〉 to 〈σ′,γ′, {π′}〉 iff R fp(π1)(s, s′).
Hence, R fb(φ)?; fp(π1)(s, s′) and R fp(π)(s, s′). The other direction is similar. Assume
that R fp(π)(s, s′) and R fb(φ)?(s, s) (the case of R¬ fb(φ)?(s, s) is identical). Then by
Proposition 1, σ |=cwa φ so by rule (4), there is a transition from 〈σ,γ, {π;π′}〉 to
〈σ,γ, {π1;π′}〉 and from there by executing π1 to 〈σ′,γ′, {π′}〉 (by the inductive hy-
pothesis).

Let π = while φ do π1. Assume that there is a path in TS between 〈σ,γ, {π;π′}〉
and 〈σ′,γ′, {π′}〉. Note that from the rules (6) and (7) we can conclude thatσ′ 6|=cwa φ.
By Proposition 1, M, s′ |= ¬ fb(φ), so R¬ fb(φ)(s, s). Consider the path in TS ; it is
a sequence of configurations 〈σ1,γ1, {π;π′}〉, 〈σ2,γ2, {π1;π;π′}〉, . . . , 〈σn,γn, {π

′}〉,
where (σ1,γ1) = (σ,γ), (σn,γn) = (σ′,γ′) and one of the two cases holds. Either
n = 2, so the path is of the form 〈σ,γ, {π;π′}〉, 〈σ,γ, {π′}〉. In this case (σ,γ) and
(σ′,γ′) are the same (that is, s = s′), σ 6|=cwa φ (rule 7) and R¬ fb(φ)?(s, s′).

Or, n > 2, so there is a chain of configurations connected by paths corresponding
to the executions of π1. In this case, for each i < n it holds that 〈σi,γi, {π1;π′}〉 has
a path to 〈σi+1,γi+1, {π

′}〉. But then by the inductive hypothesis, R fp(π1)(si, si+1) and
R fp(π1)∗ (s, s′), hence R fp(π)(s, s′). The other direction is similar.

This completes the proof that all paths corresponding to an execution of a plan π
in TS are described by fp(π) in M. � (of Lemma)

Proof of Theorem 1.2. Observe that in the operational semantics for the non-
interleaved execution strategy, any path between two configurations with an empty
plan base consists of one or more cycles of executing one of the goal planning rules
followed by the execution of the corresponding plan. We will prove the theorem by
induction on the number of such cycles on the path between two configurations with
empty plan bases, 〈σ,γ, {}〉 and 〈σ′,γ′, {}〉. We use the lemma above for the special
case when π′ is empty.

Basis of induction: the path involves one cycle. Suppose there is such a path
in TS . This means that some planning goal rule φ ← ψ|π matched (so φ and ψ
are true in 〈σ,γ, {}〉) and π was adopted, resulting in a configuration 〈σ,γ, {π}〉, and
from that configuration there is a path to 〈σ′,γ′, {}〉. By the lemma, this means that

1 Using Theorem Proving to Verify Properties of Agent Programs 19

there is a corresponding path in M from (σ,γ) to (σ′,γ′) described by fp(π). Since
φ and ψ are true in (σ,γ), there is a path from (σ,γ) to itself by (fg(ψ)∧ fb(φ))?,
from which follows that there is a path in M from (σ,γ) to (σ′,γ′) described by
(fg(ψ)∧ fb(φ))?; fp(π).

The other direction: assume that in M, there is a path from (σ,γ) to (σ′,γ′) de-
scribed by (fg(ψ)∧ fb(φ))?; fp(π). We need to show that in TS , there is a path from
〈σ,γ, {}〉 to 〈σ′,γ′, {}〉. Since in M, there exists a transition from (σ,γ) to itself along
(fg(ψ)∧ fb(φ))?, this means that φ and ψ are entailed by the agent’s belief and goal
base by Proposition 1. This means that the corresponding planning goal rule will
be applied in 〈σ,γ, {}〉 resulting in adoption of π (transition to the configuration
〈σ,γ, {π}〉). By the lemma, there is a path from 〈σ,γ, {π}〉 to 〈σ′,γ′, {}〉.

Inductive step: assume that any path of length k− 1 between two configurations
with empty plan bases has a corresponding path in M described by a path in ξ(Λ),
which means that it is described by an k−1-long concatenation of expressions of the
form (fg(ψ)∧ fb(φ))?; fp(π), for example (fg(ψ1)∧ fb(φ1))?; fp(π1); . . . ; (fg(ψk−1)∧
fb(φn−1))?; fp(πk−1). By the argument in the basis step, the last (kth) segment cor-
responds to a path described by (fg(ψk)∧ fb(φk))?; fp(πk). Hence, the whole path is
described by

(fg(ψ1)∧ fb(φ1))?; fp(π1); . . . ; (fg(ψk)∧ fb(φk))?; fp(πk),

which is in ξ(Λ). � (of Theorem)

1.5.2 Expressing the interleaved strategy

For an agent with an interleaved execution strategy, we need a version of PDL with
an additional interleaving operator, ‖ [1]. Strictly speaking, the interleaving operator
does not increase the expressive power of PDL, but it makes the language more con-
cise (every formula containing the interleaving operator has an equivalent formula
without, however the size of that formula may be doubly exponential in the size of
the original formula, see [1]).

Note that we are able to view regular models M = (S , {Rρ : ρ ∈ Υ},V) as models
of the form M′ = (S , τ,V) where τ(αi) ⊆ (S ×S) gives us the set of state transitions
for αi such that (s, s′) ∈ τ(αi) iff Rαi (s, s′). We can extend this inductively to give us
a set of paths τ(ρ) ⊆ (S × S)∗ in M corresponding to any PDL program expression
ρ, including expressions with the interleaving operator ρ1 ‖ ρ2. By a path we mean
a sequence (s1, s2), (s3, s4), . . . , (sn−1, sn) (n ≥ 2) of pairs of states, where each pair is
connected by an atomic action transition or a test transition. By a legal path we mean
a path where for every even i< n (the target of the transition), si = si+1 (the source of
the next transition). Otherwise a path is called illegal. For example, (s1, s2), (s2, s3)
is a legal path and (s1, s2), (s3, s4) where s2 , s3 is an illegal path.

Paths corresponding to PDL program expressions are defined as follows:

20 N. Alechina et al

• τ(φ?) = {(s, s) : M, s |= φ}

• τ(ρ1∪ρ2) = {z : z ∈ τ(ρ1)∪τ(ρ2)}

• τ(ρ1;ρ2) = {z1 ◦ z2 : z1 ∈ τ(ρ1), z2 ∈ τ(ρ2)}, where ◦ is concatenation of paths;
here we allow illegal paths p1 ◦ p2 where p1 = (s0, s1)...(sn, sn+1) and p2 =

(t0, t1)...(tm, tm+1), with sn+1 , t0.

• τ(ρ∗) is the set of all paths consisting of zero or finitely many concatenations of
paths in τ(ρ).

• τ(ρ1 ‖ ρ2) is the set of all paths obtained by interleaving paths from τ(ρ1) and
τ(ρ2).

The reason why we need illegal paths for PDL with the interleaving operator can be
illustrated by the following example. Let (s1, s2) ∈ τ(α1) and (s3, s4) ∈ τ(α2), with
s2 , s3). Then the illegal path (s1, s2), (s3, s4) ∈ τ(α1;α2). Let (s2, s3) ∈ τ(α3). Then
(s1, s2), (s2, s3), (s3, s4) is obtained by interleaving a path from τ(α1;α2) and τ(α3),
and it is a legal path in τ(α1;α2 ‖ α3). Note that if the paths above are the only paths
in τ(α1), τ(α2) and τ(α3), then using an illegal path in τ(α1;α2) is the only way to
define a legal interleaving in τ(α1;α2 ‖ α3).

We define the relation |= of a formula being true in a state of a model as:

• M, s |= Bp iff p ∈ Vb(s)

• M, s |=G(−)p iff (−)p ∈ Vg(s)

• M, s |= ¬φ iff M, s 6|= φ

• M, s |= φ∧ψ iff M, s |= φ and M, s |= ψ

• M, s |= 〈ρ〉φ iff there is a legal path in τ(ρ) starting in s which ends in a state s′

such that M, s′ |= φ.

• M, s |= [ρ]φ iff for all legal paths τ(ρ) starting in s, the end state s′ of the path
satisfies φ: M, s′ |= φ.

In this extended language, we can define paths in the execution of an agent with
an interleaved execution strategy and planning goal rules as

ξi(Λ) =
⋃

Λ′⊆Λ,Λ′,∅

‖ri∈Λ′ ((fg(κi)∧ fb(βi))?; fp(πi))+

Theorem 1.3. Assume that TS is a transition system defined by the operational se-
mantics for an agent with a set of planning goal rules Λ with pre- and postconditions
for basic actions C using an interleaved execution strategy, and M is a model in MC.
Then if TS and M match, then a configuration c with an empty plan base is reach-
able from the initial configuration c0 in TS iff a state s matching c is reachable from
the initial state s0 (matching c0) along a path in τ(ξi(Λ)).

1 Using Theorem Proving to Verify Properties of Agent Programs 21

Proof. In order to prove the theorem, we need to show a correspondence between
finite paths in TS and M. By a path in TS from c0 to c, we will mean a legal
path (c0,c1), (c1,c2), . . . , (cn−1,cn) where cn = c, such that for every pair (ci,ci + 1)
on the path, there is a transition from ci to ci+1 described by one of the operational
semantics rules (1i) - (8i). By a path in M from s0 to s we will mean a legal path
(s0, s1), (s1, s2) . . . , (sn−1, sn) where sn = s such that for each step pi = (si, si+1) on the
path, si and si+1 are in some Rα or Rφ? relation (in the latter case si = si+1). We will
refer to α or φ? as the label of that step and denote it by label(pi). By a path in M
from s0 to s which is in τ(ξi(Λ)) we will mean a path from s0 to s where the labels
on the path spell a word in (ξi(Λ)).

We will denote the steps on the path by p0, p1, . . . , pn−1, and refer to the first
component of the pair pi as p0

i and to the second component as p1
i . If pi = (si, si+1),

then p0
i = si and p1

i = si+1. Note that the same state can occur in different steps, and
we want to be able to distinguish those occurrences. Since the path is legal, for all i,
p1

i = p0
i+1.

As an auxiliary device in the proof, we will associate with each component p j
i

(j ∈ {0,1}) of each step pi on the path in M a history ρ(p j
i) and a set of ‘execution

points’ E(p j
i).

A history is a PDL program expression which is a concatenation of labels of
the previous steps on the path. For example, consider a path p0 = (s0, s0), p1 =

(s0, s2) where Rφ?(s0, s0) and Rα(s0, s2). Then the history ρ(p0
0) is an empty string,

ρ(p1
0) = ρ(p0

1) = φ? and the history ρ(p1
1) = φ?;α. For an arbitrary point p j

i on a
path in τ(ξi(Λ)), the history describes a prefix of a path in τ(ξi(Λ)). Note that ξi(Λ)
is a union of ‖ri∈Λ′ ((fg(κi)∧ fb(βi))?; fp(πi))+, so the history will consist of an in-
terleaving of tests and actions which come from tracing expressions of the form
(fg(κi)∧ fb(βi))?; fp(πi) for ri ∈ Λ

′ ⊆ Λ, some of them repeated several times. At the
step where all the plan expressions fp(πi) have been traced to their ends, the history
describes a path in τ(ξi(Λ)). Conversely, if the history in the last step of the path
describes a path in τ(ξi(Λ)), then the path is in τ(ξi(Λ)).

A set of execution points E(p j
i) will contain execution points, which are PDL

plan expressions of the form fp(π), where π is either a translation of some complete
plan πi for some ri ∈ Λ, or of a suffix of such a plan. Intuitively, they correspond
to a set of (partially executed) plans in the plan base corresponding to p j

i , and are
called execution points because they tell us where we are in executing those plans.
We annotate p j

i with sets of execution points using the following simple rule. When
we are in p0

i and E(p0
i) = { fp(π1), . . . , fp(πk)}, then exactly one of the following three

options apply. Either label(pi) = α, and one of the fp(π j) is of the form fp(α;π′),
in which case in E(p1

i), fp(α;π′) is replaced by fp(π′). Or, label(pi) = φ?, and then
one of the two possibilities apply. Either φ? = fb(β?) and one of the fp(π j) is of
the form fp(β?;π′), in which case in E(p1

i), fp(β?;π′) is replaced by fp(π′). Or,
φ? = (fg(κm!)∧ fb(βm?))? (the test corresponding to a planning goal rule rm) and
E((p1

i) = E(p0
i)∪ { fp(πm)}. Essentially we take the first step α or φ? in tracing one

of the expressions in E(p0
i), remove it, and append it to the history in the next state.

22 N. Alechina et al

It is clear that if the sets of execution points along the path correspond to plan bases
in the operational semantics, then the histories correspond to prefixes of paths in
τ(ξi(Λ)). Also, if on such a path E(p j

i) = ∅ for i > 0, then ρ(p j
i) describes a path in

τ(ξi(Λ)).

We say that a set of execution points E(p j
i) and a plan base Π match if the exe-

cution points in E(p j
i) are the translations of plans in Π , that is Π = {π1, . . . ,πk} and

E(p j
i) = { fp(π1), . . . , fp(πk)}.

The idea of the proof is as follows. We show that

(TS ⇒ M) For every path in TS from c0 to a configuration c with an empty plan
base, we can trace, maintaining a set of execution points and a history, a path in
M from s0 to a state s such that s ∼ c and the last step on the path has an empty
set of execution points and a history in τ(ξi(Λ)). This will show one direction of
the theorem, that every path in TC has a corresponding path in M.

(M⇒ TS) States on every path in M from s0 to s which is in τ(ξi(Λ)) can be
furnished with sets of execution points which correspond to plan bases of con-
figurations on a corresponding path from c0 to c such that s ∼ c. This shows
another direction of the theorem, that if we have a path in τ(ξi(Λ)), we can find a
corresponding path in TS .

To prove (TS ⇒M), we first note that s0 and c0 have a matching set of execution
points and plan base (empty). Then we consider a pair s ∼ c where the plan base in
c and the set of execution points in p1

n−1 = s match, and show that if we can make
a transition from c, then we can make a step pn = (s, s′) from s, and end up with
a matching state-configuration pair s′ ∼ c′ where E(p1

n) matches Π ′. Note that if
we match the plan base and the set of execution points at each step, and update the
execution step according to the rule, then the history in guaranteed to be a prefix of
a path in τ(ξi(Λ)) (or a path in τ(ξi(Λ)) if the set of execution points is empty).

Let us consider possible transitions from c. Either, a planning goal rule is applied,
or one of the plans in Π is chosen and a suitable transition rule applied to execute
its first step.

If a planning goal rule rm is applied, then clearly the belief and goal conditions
of rm hold in c so by assumption they hold in s, hence in s, there is a transition by
R(fg(κm)∧ fb(βm))? to the same s with the same belief and goal base. The transition in
TS goes to c′ with the same belief and goal base as c and Π ′ extended with πm. In
M, we make a step along the path to s′ = s and add fp(πm) to the set of execution
points E(p1

n). Clearly, Π ′ and E(p1
n) match.

If the transition rule corresponds to executing one of the plans πi in Π , then we
have the following cases.

• πi = α;π: we execute a belief update action α and transit to c′. This is possible
only if in M there is an Rα transition to s′ such that s′ ∼ c′. In c′ in the plan
base Π ′ we have π instead of α;π. In the set of execution points for the next step
p1

n = s′ we have fp(π) instead of α; fp(π). Clearly, Π ′ and E(p1
n) match.

1 Using Theorem Proving to Verify Properties of Agent Programs 23

• πi = β?;π or πi = κ!;π. A transition from c to a configuration c′ where the plan
base contains π instead of πi is possible if and only if the test succeeds in σ,
so by Proposition 1 if and only if in M there is a corresponding R fb(β)? or R fg(κ)?

transition from s to itself, so pn = (s, s), s∼ c′, the execution point E(p1
n) contains

fp(π) instead of fp(πi), so Π ′ and E(p1
n) match.

• πi = (if φ then π1 else π2);π and in E(p0
n) we have (fb(φ)?; fp(π1)) ∪ (¬ fb(φ)?;

fp(π2)); fp(π). Since s ∼ c either φ is true in both s and c or ¬φ. Assume that φ
is true (the case for φ false is analogous). In TS we transit to c′ with π1;π in the
plan base and in M we transit to s′ by executing the test on the left branch of ∪
and replace fp(πi) in the set of execution points with fp(π1); fp(π) = fp(π1;π).

• πi = while φ do π1;π and in E(p0
n) we have (fb(φ)?; fp(π1))∗;¬ fb(φ)?; fp(π).

Since s ∼ c we have φ either true or false in both. If it is false then we transit
in TS to c′ with π in the plan base, and in M there is a ¬ fb(φ)? transition to s
itself, but now we replace (fb(φ)?; fp(π1))∗;¬ fb(φ)?; fp(π) in the set of execution
points with fp(π). If φ is true, then by the rule (6i) we go to c′ with Π ′ containing
π1;while φ do π1;π and by fb(φ)? in M we go to s′ with the set of execu-
tion points containing fp(π1); (fb(φ)?; fp(π1))∗;¬ fb(φ)?; fp(π). Note that the new
set of execution points and Π ′ match because fp(π1); (fb(φ)?; fp(π1))∗;¬ fb(φ)?;
fp(π) is the same as fp(π1;while φ do π1; π).

This achieves the desired correspondence in the direction from the existence of a
path in the operational semantics to the existence of a corresponding path in the
model; it is easy to check that the path to s′ is described by its history, and that
when we reach a state s corresponding to a configuration with an empty plan base,
its set of execution points is also empty and the history describes a path in τ(ξi(Λ)).

Let us consider the opposite direction (M⇒ TS). Suppose we have a path in M
from s0 to s which is in τ(ξi(Λ)). We need to show that there is a corresponding path
in the operational semantics. For this direction, we only need to decorate each com-
ponents of a step on the path in M with a set of execution points corresponding to
the plan base in the matching configuration c′. (We do not need the history because
we already know that the path in M is in τ(ξi(Λ)).)

Clearly, in the initial state s0, the set of execution points is empty, and s0 ∼ c0.
Now we assume that we have reached s and c such that s ∼ c and E(p1

n−1) and Π
match, where pn−1 is the last step on the path and p1

n−1 = s. Now we have to show
how for the next step along the path in M to a state s′ we can find a transition in TS
to a configuration c′ so that s′ ∼ c′ and the set of execution points in s′ matches Π ′.

Our task is made slightly harder by the fact that if we encounter, for example,
a test transition on a path in M, we do not necessarily know whether it is a test
corresponding to firing a new planning goal rule, or is an if or a while test in one
of the plans (there could be several plan expressions in E(p0

n) starting with the same
test fb(φ?), for example). Similarly, if we have an α transition on the path, several
plan expressions in E(p0

n) may start with an α (for example E(p0
n) = {α;α1, α;α2}),

so the question is how do we find a corresponding configuration in the operational
semantics. In the example above, the plan base could be either Π ′1 = {α1, α;α2} or

24 N. Alechina et al

Π ′2 = {α;α1, α2}. However, note that the path we are trying to match is in τ(ξi(Λ)), so
it contains transitions corresponding to a complete interleaved execution of all plans
currently in the set of execution points until the end. So we can look ahead at the rest
of the path and annotate ambiguous transitions with the corresponding plan indices.
In the example above, if the next transition is α1, we know that the ambiguous α
belongs to the first plan; if the next transition is α2, we annotate the ambiguous
α with the index of the second plan; if the next transition is α, then there are two
possible matching paths in TS , and we can pick one of them non-deterministically,
as both α’s have the same effect on the belief and goal base, for example annotate
the first α with the index of the first plan and the second α with the index of the
second plan.

Once we have indexed the ambiguous transitions, finding the corresponding path
in TS can be done in exactly the same way as in the proof for (TS ⇒ M). �

1.6 Example of using theorem proving to verify properties of an
agent program

In this section we briefly illustrate how to prove properties of agents in our logic,
using the vacuum cleaner agent as an example. We will use the following abbrevi-
ations: ci for cleani, ri for roomi, b for battery, s for suck, c for charge, r for
moveR, l for moveL. The agent has the following planning goal rules:

cb1 <- b | if rb1 then {s} else {l; s}
cb2 <- b | if rb2 then {s} else {r; s}
<- −b | if rb2 then {c} else {r; c}

Under the non-interleaved execution strategy, these planning goal rules can be trans-
lated as the following PDL program expression:

vac =d f ((Gc1∧Bb)?; (Br1?; s)∪ (¬Br1?; l; s))∪
((Gc2∧Bb)?; (Br2?; s)∪ (¬Br2?;r; s))∪
(¬Bb?; (Br2?;c)∪ (¬Br2?;r;c))

Given appropriate pre- and postconditions for the belief update actions in the ex-
ample program (such as the pre- and postconditions of moveR, moveL, charge and
suck given earlier in the paper), some of the instances of A3–A5 are:

A3r Bc1∧Br1∧¬Bb∧Gc2→ [r](Br2∧Bc1∧¬Bb∧Gc2)

A3s1 Gc1∧Gc2∧Br1∧Bb→ [s](Bc1∧∧Gc2∧Br1∧¬Bb)

A3s2 Gc1∧Gc2∧Br2∧Bb→ [s](Gc1∧∧Bc2∧Br2∧¬Bb)

A3c Br2∧Bc1∧¬Bb∧Gc2→ [c](Br2∧Bc1∧Bb∧Gc2)

1 Using Theorem Proving to Verify Properties of Agent Programs 25

A4r ¬Br1→¬〈r〉>

A5s Br1∧Bb→ 〈s〉>.

Using a PDL theorem prover such as MSPASS [246] (for properties without ∗)
or - [386], and instances of axioms A1-A5 such as those above, we can
prove a liveness property that if the agent has goals to clean rooms 1 and 2, and
starts in the state where its battery is charged and it is in room 1, it can reach a state
where both rooms are clean, and a safety property that it is guaranteed to achieve its
goal:

Gc1∧Gc2∧Bb∧Br1→ 〈vac
3〉(Bc1∧Bc2)

Gc1∧Gc2∧Bb∧Br1→ [vac3](Bc1∧Bc2)

where vac3 stands for vac repeated three times. The MSPASS encoding of the
first property is given in Appendix 1.9.1. Its verification using the web interface to
MSPASS is virtually instantaneous.

We can also prove, using -, a version of a blind commitment property
which states that an agent either keeps its goal or believes it has been achieved:

Gc1→ [vac+](Bc1∨Gc1)

In the appendix we split the proof of this property into two parts to simplify the
- encoding: first we prove using MSPASS Bc1∨Gc1→ [vac](Bc1∨Gc1)
(see Appendix 1.9.2) and then prove blind commitment using this as a lemma (see
Appendix 1.9.3).

The theorem prover encodings given in the appendix are produced by hand, but
this process can be automated at the cost of making the encoding larger (at worst,
exponential in the size of the agent’s program). In the remainder of this section we
sketch a naive approach to automating the encoding. Axioms A1, A2, A4 and A5 are
straightforward. For every literal l occurring in the agent program, we can generate
an instance of axioms A1 and A2. For every belief update action α occurring in the
agent’s program, we generate an instance of A4, and for each precondition of α,
we generate an instance of A5. The difficult case is the axiom schema A3, which
is a kind of frame axiom. It includes a formula Φ which intuitively encodes the
information about the state which does not change after executing an action α. To
generate a sufficient number of instances of A3 automatically, we have to use all
possible complete state descriptions for Φ (more precisely, all combinations of the
agent’s beliefs and goals which are not affected by α). Then the instances of A3 will
say, for every complete description of the agent’s beliefs and goals, what the state
of the agent after the performance of α will be. Clearly, this makes the encoding
exponential in the number of possible beliefs and goals of the agent. In the vacuum
cleaner example, the properties of the agent’s state are: its belief about its location,
its beliefs about the cleanliness of the two rooms, its belief about its battery, and
two possible goals. Even with the domain axioms ¬(Br1 ∧ Br2) and Br1 ∨ Br2 (the
agent is never in both rooms at the time and it is always in one of the rooms) which
reduce the number of possible beliefs about the agent’s location to 2, the number of

26 N. Alechina et al

possible belief states is 24 = 16 and the number of possible combined belief and goal
states is 26 = 64, requiring 64 instances of A3 for every action α. Note that this naive
approach to automatisation of encoding more or less reduces the theorem proving
task to a model-checking task (we use A3, A4 and A5 to specify the transition
relation, and the number of instances of A3 is equal to the number of entries in the
transition table). However, various ways of reducing the number of axiom instances
can be used. For example, we may use an approach similar to slicing [73], or adopt
a more efficient way of expressing frame conditions, following the work in situation
calculus [383] or, for a language without quantification over actions, [149].

The example above illustrates verification of a program under the non-itnterleaved
execution strategy. For verifying program under the interleaved strategy, a PDL the-
orem prover would need to be adapted to accept program expressions which contain
the interleaving operator. Alternatively, the program expression containing the in-
terleaving operator would need to be translated into PDL without interleaving.

1.7 Related Work

There has been a considerable amount of work on verifying properties of agent
programs implemented in other agent programming languages such as ConGolog,
MetateM, 3APL, 2APL, and AgentSpeak. Shapiro et al. in [393, 395] describe
CASLve, a framework for verifying properties of agents implemented in ConGolog.
CASLve is based on the higher-order theorem prover PVS and has been used to
prove, e.g., termination of bounded-loop ConGolog programs. However, its flexibil-
ity means that verification requires user interaction in the form of proof strategies.
Properties of agents implemented in programming languages based on executable
temporal logics such as MetateM [174], can also easily be automatically verified.
However these languages are quite different from languages like SimpleAPL, in
that the agent program is specified in terms of temporal relations between states
rather than branching and looping constructs. Other related attempts to bridge the
gap between agent programs such as 3APL and 2APL on the one hand and verifi-
cation logics on the other, e.g., [126, 130, 218], have yet to result in an automated
verification procedure.

There has also been considerable work on the automated verification of multi-
agent systems using model-checking [34, 290]. For example, in [66, 73], Bordini et
al. describe work on verifying programs written in Jason, an extension of AgentS-
peak(L). In this approach, agent programs together with the semantics of Jason se-
mantics translated into either Promela or Java, and verified using Spin or JPF model
checkers respectively. There has also been work on using model checking tech-
niques to verify agent programming languages similar to SimpleAPL [21,370,421].
In this approach agent programs and execution strategies are encoded directly into
the Maude term rewriting language, allowing the use of the Maude LTL model

1 Using Theorem Proving to Verify Properties of Agent Programs 27

checking tool to verify temporal properties describing the behaviour of agent pro-
grams.

The work reported here is an extended and revised version of [6]. It is also closely
related to our previous work on using theorem proving techniques to verify agent
deliberation strategies [7]. However in that work a fixed general execution strat-
egy is constrained by the execution model to obtain different execution strategies,
rather than different execution strategies being specified by different PDL program
expressions as in this paper.

1.8 Conclusion

In this paper, we proposed a sound and complete logic which allows the specifica-
tion of safety and liveness properties of SimpleAPL agent programs as well as their
verification using theorem proving techniques. Our logic is a variant of PDL, and
allows the specification of safety and liveness properties of agent programs. Our ap-
proach allows us to capture the agent’s execution strategy in the logic, and we proved
a correspondence between the operational semantics of SimpleAPL and the models
of the logic for two example execution strategies. We showed how to translate agent
programs written in SimpleAPL into expressions of the logic, and gave an example
in which we show how to verify correctness properties for a simple agent program
using theorem-proving. While we focus on APL-like languages and consider only
single agent programs, our approach can be generalised to other BDI-based agent
programming languages and the verification of multi-agent systems.

In future work, we would like to develop this verification framework further to
deal with agent programming languages extended with plan revision mechanisms.

Acknowledgements

We would like to thank to Renate Schmidt for help with MSPASS and -.
Natasha Alechina and Brian Logan were supported by the Engineering and Physical
Sciences Research Council [grant number EP/E031226].

28 N. Alechina et al

1.9 Appendix: Encodings of properties in MSPASS

1.9.1 MSPASS encoding of the example

begin_problem(PDL_vacuum_cleaner_example 1).

list_of_descriptions.

name(* PDL vacuum cleaner example 1 *).

author(*N. Alechina, M. Dastani, B. Logan, and J.-J. Ch. Meyer *).

description(* A formula which says that if the vacuum cleaner agent

starts in room 1 with charged battery and its goal is to clean

room 1 and room 2, then it will achieve its goals.

*).

end_of_list.

list_of_symbols.

% Rr - moveRight, Rl - moveLeft, Rs - suck, Rc - charge,

% br1 - believes that in room1, br2 - in room2, bb - battery charged,

% bc1 - believes room1 clean, bc2 - room2 clean,

% gc1 - goal to clean room1, gc2 - clean room2.

predicates[(Rr,2), (r,0), (Rl,2), (l,0), (Rs,2), (s,0), (Rc,2), (c,0),

(br1,0), (br2,0), (bb,0), (bc1,0), (bc2,0), (gc1,0),

(gc2,0)].

% The following interprets dia(r,...) as accessible by Rr,

% dia(l,...) as accessible by Rl, etc.

translpairs[(r,Rr), (l,Rl), (s, Rs), (c,Rc)].

end_of_list.

list_of_special_formulae(axioms, eml).

% instances of A3

prop_formula(

implies(and(gc1, gc2, br1, bb), box(s, and(bc1, gc2, br1, not(bb))))

).

prop_formula(

implies(and(bc1, br1, not(bb), gc2),

box(r, and(br2, bc1, not(bb), gc2)))

).

prop_formula(

implies(and(br2, bc1, not(bb), gc2), box(c, and(br2, bc1, bb, gc2)))

).

prop_formula(

implies(and(br2, bc1, bb, gc2), box(s, and(br2, bc1,not(bb), bc2)))

).

% instances of A5

prop_formula(

implies(bb, dia(s, true))

).

prop_formula(

implies(br1, dia(r, true))

).

prop_formula(

implies(br2, dia(l, true))

1 Using Theorem Proving to Verify Properties of Agent Programs 29

).

prop_formula(

implies(and(br2, not(bb)), dia(c, true))

).

end_of_list.

% The formula we want to prove below is

% gc1 & gc2 & br1 & bb -> <vac><vac><vac> (bc1 & bc2)

% where vac is the vacuum cleaner’s program:

% (gc1?; bb?; (br1?;s) U ((not br1)?;l;s)) U

% (gc2?; bb?; (br2?;s) U ((not br2)?;r;s)) U

% ((not bb)?; (br2?;c) U ((not br2)?;r;c)))

list_of_special_formulae(conjectures, EML).

prop_formula(

implies(

and (gc1, gc2, br1, bb),

dia(

or(

% rule1

comp(test(gc1),

comp(test(bb),

or(comp(test(br1), s),

comp(test(not (br1)), comp(l,s))))),

% rule2

comp(test(gc2),

comp(test(bb),

or(comp(test(br2), s),

comp(test(not (br2)), comp(r,s))))),

% rule 3

comp(test(not(bb)),

or(comp(test(br2), c),

comp(test(not(br2)), comp(r, c))))

), % end first vac or

dia(

or(

% rule1

comp(test(gc1),

comp(test(bb),

or(comp(test(br1), s),

comp(test(not (br1)), comp(l,s))))),

% rule2

comp(test(gc2),

comp(test(bb),

or(comp(test(br2), s),

comp(test(not (br2)), comp(r,s))))),

% rule 3

comp(test(not(bb)),

or(comp(test(br2), c),

comp(test(not(br2)), comp(r, c))))

), % end second vac or

dia(

or(

% rule1

30 N. Alechina et al

comp(test(gc1),

comp(test(bb),

or(comp(test(br1), s),

comp(test(not (br1)), comp(l,s))))),

% rule2

comp(test(gc2),

comp(test(bb),

or(comp(test(br2), s),

comp(test(not (br2)), comp(r,s))))),

% rule 3

comp(test(not(bb)),

or(comp(test(br2), c),

comp(test(not(br2)), comp(r, c))))

), % end third vac or

and(bc1, bc2))))

) % end implies

).

end_of_list.

end_problem.

1.9.2 MSPASS encoding of a lemma for the proof of the blind
commitment property of the vacuum cleaner agent

begin_problem(PDL_vacuum_cleaner_example3).

list_of_descriptions.

name(* PDL example 3 *).

author(*N. Alechina, M. Dastani, B. Logan and J.-J. Ch. Meyer*).

description(* A formula which says that if we start with bc1 or gc1,

then after each iteration of the program, bc1 or gc1.

*).

end_of_list.

list_of_symbols.

% Rr - moveRight, Rl - moveLeft, Rs - suck, Rc - charge,

% br1 - believes that in room1, br2 - in room2, bb - battery charged,

% bc1 - believes room1 clean, bc2 - room2 clean,

% gc1 - goal to clean room1, gc2 - clean room2.

predicates[(Rr,2), (r,0), (Rl,2), (l,0), (Rs,2), (s,0), (Rc,2), (c,0),

(br1,0), (br2,0), (bb,0), (bc1,0), (bc2,0), (gc1,0), (gc2,0)].

% The following interprets dia(r,...) as accessible by Rr,

% dia(l,...) as accessible by Rl, etc.

translpairs[(r,Rr), (l,Rl), (s, Rs), (c,Rc)].

end_of_list.

list_of_special_formulae(axioms, eml).

% world axioms

prop_formula(

not(and(br1,br2))

).

1 Using Theorem Proving to Verify Properties of Agent Programs 31

prop_formula(

or(br1,br2)

).

% instances of A2

prop_formula(

not(and(gc1,bc1))

).

prop_formula(

not(and(gc2,bc2))

).

% instances of A3

prop_formula(

implies(and(gc1, bb), box(s, or(bc1, gc1)))

).

prop_formula(

implies(and(bc1, bb), box(s, or(bc1, gc1)))

).

prop_formula(

implies(and(bc1, br1), box(r, and(bc1, br2)))

).

prop_formula(

implies(and(gc1, br1), box(r, and(gc1, br2)))

).

prop_formula(

implies(and(bc1, br2,not(bb)), box(c, and(bc1, br2, bb)))

).

prop_formula(

implies(and(gc1, br2,not(bb)), box(c, and(gc1, br2, bb)))

).

prop_formula(

implies(and(gc1, br2), box(l, and(gc1, br1)))

).

prop_formula(

implies(and(bc1, br2), box(l, and(bc1, br1)))

).

% instances of A4

prop_formula(

implies(not(bb), not(dia(s, true)))

).

prop_formula(

implies(not(br1), not(dia(r, true)))

).

prop_formula(

implies(not(br2), not(dia(l, true)))

).

prop_formula(

implies(not(and(br2, not(bb))), not(dia(c, true)))

).

% instances of A5

prop_formula(

implies(bb, dia(s, true))

).

prop_formula(

32 N. Alechina et al

implies(br1, dia(r, true))

).

prop_formula(

implies(br2, dia(l, true))

).

prop_formula(

implies(and(br2, not(bb)), dia(c, true))

).

end_of_list.

% The formula we want to prove below is

% bc1 v gc1 -> [vac] (bc1 v gc1)

% where vac is the vacuum cleaner’s program:

% (gc1?; bb?; (br1?;s) U ((not br1)?;l;s)) U

% (gc2?; bb?; (br2?;s) U ((not br2)?;r;s)) U

% ((not bb)?; (br2?;c) U ((not br2)?;r;c)))

list_of_special_formulae(conjectures, EML).

prop_formula(

implies(

or(bc1,gc1),

box(

or(

% rule1

comp(test(gc1),

comp(test(bb),

or(comp(test(br1), s),

comp(test(not (br1)), comp(l,s))))),

% rule2

comp(test(gc2),

comp(test(bb),

or(comp(test(br2), s),

comp(test(not (br2)), comp(r,s))))),

% rule 3

comp(test(not(bb)),

or(comp(test(br2), c),

comp(test(not(br2)), comp(r, c))))

), % end first vac or

or(bc1,gc1))

) % end implies

).

end_of_list.

end_problem.

1.9.3 - encoding of the blind committment property

prove(

%axioms

[

implies(and(gc1, br1, bb), box(s, and(bc1, br1, not(bb)))),

1 Using Theorem Proving to Verify Properties of Agent Programs 33

implies(and(gc1, br2, bb), box(s, and(gc1, bc2, br2, not(bb)))),

implies(and(bc1, br1, bb), box(s, and(bc1, br1, not(bb)))),

implies(and(bc1, br2, bb), box(s, and(gc1, bc2, br2, not(bb)))),

implies(and(bc1, br1), box(r, and(bc1, br2))),

implies(and(gc1, br1), box(r, and(gc1, br2))),

implies(and(bc1, br2,not(bb)), box(c, and(bc1, br2, bb))),

implies(and(gc1, br2,not(bb)), box(c, and(gc1, br2, bb))),

implies(and(gc1, br2), box(l, and(gc1, br1))),

implies(and(bc1, br2), box(l, and(bc1, br1))),

implies(not(bb), not(dia(s, true))),

implies(not(br1), not(dia(r, true))),

implies(not(br2), not(dia(l, true))),

implies(not(and(br2, not(bb))), not(dia(c, true)))

],

% The formula we want to prove below is

% gc1 -> [vac*] (bc1 v gc1)

% where vac is the vacuum cleaner’s program:

% (gc1?; bb?; (br1?;s) U ((not br1)?;l;s)) U

% (gc2?; bb?; (br2?;s) U ((not br2)?;r;s)) U

% ((not bb)?; (br2?;c) U ((not br2)?;r;c)))

implies(

gc1,

box(star(

or(

% rule1

comp(test(gc1),

comp(test(bb),

or(comp(test(br1), s),

comp(test(not (br1)), comp(l,s))))),

% rule2

comp(test(gc2),

comp(test(bb),

or(comp(test(br2), s),

comp(test(not (br2)), comp(r,s))))),

% rule 3

comp(test(not(bb)),

or(comp(test(br2), c),

comp(test(not(br2)), comp(r, c))))

)),

or(bc1,gc1)))

). % end prove

	1 Using Theorem Proving to Verify Properties of Agent Programs
	N. Alechina, M. Dastani, F. Khan, B. Logan, and J.-J. Ch. Meyer
	1.1 Introduction
	1.2 An Agent Programming Language
	1.2.1 SimpleAPL
	1.2.2 SimpleAPL syntax

	1.3 Operational Semantics
	1.3.1 Non-interleaved execution
	1.3.2 Interleaved execution

	1.4 Logic
	1.4.1 Preliminary
	1.4.2 Language
	1.4.3 Semantics
	1.4.4 Axiomatisation

	1.5 Verification
	1.5.1 Expressing the non-interleaved strategy
	1.5.2 Expressing the interleaved strategy

	1.6 Example of using theorem proving to verify properties of an agent program
	1.7 Related Work
	1.8 Conclusion
	1.9 Appendix: Encodings of properties in MSPASS
	1.9.1 MSPASS encoding of the example
	1.9.2 MSPASS encoding of a lemma for the proof of the blind commitment property of the vacuum cleaner agent
	1.9.3 pdl-tableau encoding of the blind committment property

