

Specification and Verification
of Multi-agent Systems

Mehdi Dastani · Koen V. Hindriks ·
John-Jules Charles Meyer
Editors

Specification and Verification
of Multi-agent Systems

Foreword by
Wiebe van der Hoek

123

Editors
Mehdi Dastani
Utrecht University
Dept. Information & Computing
Sciences
Padualaan 14
3584 CH Utrecht
The Netherlands
mehdi@cs.uu.nl

Koen V. Hindriks
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands
k.v.hindriks@tudelft.nl

John-Jules Ch. Meyer
Utrecht University
Dept. Information & Computer
Sciences
Padualaan 14
3584 CH Utrecht
The Netherlands
jj@cs.uu.nl

ISBN 978-1-4419-6983-5 e-ISBN 978-1-4419-6984-2
DOI 10.1007/978-1-4419-6984-2
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010930883

c© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

In the last decade, multi-agent systems have both become widely applied and also
increasingly complex. The applications include the use of agents as automous de-
cision makers in often safety-critical, dangerous, or high impact scenarios (traffic
control, autonomous satellites, computational markets). The complexity arises from
the fact that not only do we expect the agent to make decisions in situations that are
not anticipated at forehand, the agent also interacts with other complex agents, with
humans, organisations, and it lives in a dynamic environment (activators of an agent
can fail, communication is prone to error, human response may be ambiguous, rules
of an organisation may leave behaviour open or over-constrained, and environments
may change ‘spontaneously’ or as a result of other agents acting upon it).

Taking these two facts together call for a rigorous Specification and Verification
of Multi-Agent Systems. Since intelligent agents are computational systems, it is no
wonder that this activity builds upon and extends concepts and ideas of specify-
ing and verifying computer-based systems in general. For one, an axiom is that the
tools are mainly logical, or in any case formal. But although traditional techniques
of specification and verification go a long way when reasoning about the correctness
of a single agent, there are additional questions already to be asked at this level: do
we ‘only’ require the agent to behave well under a pre-defined set of inputs, or do
we want to allow for (partially) undefined scenarios? And do we care about the ‘cor-
rectness’ of an agent’s beliefs, desires and intentions during a computation? How do
we want to guarantee that the agent ‘knows what he is doing’, has ‘reasonable de-
sires’ and ‘only drops an intention if it(s goal) is fulfilled, or cannot be reasonably
be fulfilled any longer’? And a predecessor of this ‘how to guarantee’ question is
equally important: what do we exactly mean by those requirements?

In a multi-agent system, specification and verification becomes only harder and,
indeed, more interesting. Once we have an understanding of how to make the agents
behave correctly individually, is this property then also compositional, in the sense
that it applies to the system as a whole? What are the requirements we need to
impose on the interaction among the agents, the ability of the human users, the
organisation the agents represent, or the environment as a whole, in order to make

v

vi Foreword

the multi-agent system behave as required? If we have means to specify this, then
how do we check this?

This book, with contributions from many world-leading authors in the field, gives
many answers to the questions above, thereby indeed often generalising ideas that
have been around in the specification and verification community. For instance, the
book addresses theorem proving (‘all implementations, or models, of the specifica-
tion verify’) as a means to verify properties of cognitive agents, refinement (making
sure the runs of a system are in a desired class) as a compositional means to de-
rive correct implementations from a given specification, and model checking (‘does
this particular implementation verify’) as a technique to verify certain multi-agent
system behaviour. Model checking is applied to agent communication, to practical
agent programming languages, and to languages in which agent goals play a major
role: a complexity study of model checking for temporal and strategic logics com-
plements these applications. There is also a chapter proposing a hybrid approach
which guarantees on the one hand that some desirable properties in the specifica-
tion language are met by any implementation in the agent programming language,
and on top of that, a debugging framework that checks for temporal and cognitive
assertions.

The book also has chapters that focus on specification languages, for instance a
cognitive agent specification language with declarative and procedural components,
and a temporal trace language to express dynamic properties of multi-agent systems.
Another chapter advocates to use one (term rewriting) language and its tools for
prototyping, verifying and testing agent programs.

If one takes the autonomy of agents to the extreme, one should leave it to the
agents to act in a correct way. Indeed, this book has a chapter where norms are
used as a way to specify correct, or desired behaviour, and to make sure that the
agents comply with the norm, a game-theoretic framework is proposed. Although
all chapters mentioned above comply with the maxim of formality, there is also a
chapter that challenges this axiom, and claims that formal verification for assurance
of agent systems is, on its own, not enough.

Mehdi Dastani, Koen Hindriks and John-Jules Meyer are well-chosen editors of
this book. The work of their Intelligent Systems group in Utrecht (now also con-
tinued in the Man Machine Interaction group in Delft by Koen) encompasses all
aspects this book addresses: their long history of involvement in verifaction of pro-
grams, their early work originating in modal logics for specification of agents, their
hands-on experience with implementing agents in 3APL and its successors, and
their involvement, from its early days, in formal approaches to normative systems,
makes them better suited to compose this volume than anybody else.

January 2010, Liverpool, UK Wiebe van der Hoek

Contents

1 Using Theorem Proving to Verify Properties of Agent Programs 1
N. Alechina, M. Dastani, F. Khan, B. Logan, and J.-J. Ch. Meyer
1.1 Introduction . 2
1.2 An Agent Programming Language . 3

1.2.1 SimpleAPL . 3
1.2.2 SimpleAPL syntax . 6

1.3 Operational Semantics . 6
1.3.1 Non-interleaved execution . 8
1.3.2 Interleaved execution . 9

1.4 Logic . 11
1.4.1 Preliminary . 11
1.4.2 Language . 11
1.4.3 Semantics . 12
1.4.4 Axiomatisation . 13

1.5 Verification . 16
1.5.1 Expressing the non-interleaved strategy 17
1.5.2 Expressing the interleaved strategy 19

1.6 Example of using theorem proving to verify properties of an
agent program . 24

1.7 Related Work . 26
1.8 Conclusion . 27
1.9 Appendix: Encodings of properties in MSPASS 28

1.9.1 MSPASS encoding of the example 28
1.9.2 MSPASS encoding of a lemma for the proof of the

blind commitment property of the vacuum cleaner agent 30
1.9.3 - encoding of the blind committment property 32

vii

viii Contents

2 The Refinement of Multi-Agent Systems . 35

L. Aştefănoaei and F.S. de Boer

2.1 Introduction . 36

2.1.1 Related Works . 38

2.2 From Specification to Implementation Agent Languages 39

2.2.1 Preliminaries . 39

2.2.2 Formalising Mental States and Basic Actions 39

2.2.3 BUnity Agents . 41

2.2.4 Why BUnity Agents Need Justice . 43

2.2.5 BUpL Agents . 44

2.2.6 Why BUpL Agents Need Compassion 46

2.2.7 Appraising Goals . 47

2.3 The Refinement of Individual Agents . 48

2.4 Towards Multi-Agent Systems . 52

2.4.1 Action-based Choreographies . 53

2.4.2 A Finer Notion of Refinement . 54

2.5 Timing Extensions of MAS . 58

2.5.1 Adding Time to BUnity . 59

2.5.2 Adding Time to BUpL . 61

2.5.3 A Short Note on Timed Refinement 62

2.6 Conclusion . 64

3 Model Checking Agent Communication . 67

J. Bentahar, J.-J. Ch. Meyer, and W. Wan

3.1 Introduction . 68

3.2 Brief Overview of Model Checking Multi-Agent Systems 70

3.2.1 Extending and Adapting Existing Model Checkers 70

3.2.2 Developing New Algorithms and Tools 72

3.3 Tableau-based Model Checking Dialogue Games 74

3.4 ACTL* Logic . 74

3.4.1 Syntax . 74

3.4.2 Semantics . 76

3.4.3 Tableau Rules . 78

3.5 Dialogue Game Protocols as Transition Systems 80

3.6 Verification of Dialogue Game Protocols . 82

Contents ix

3.6.1 Alternating Büchi Tableau Automata (ABTA) for ACTL* 82

3.6.2 Translating ACTL* into ABTA (Step 1) 83

3.6.3 Run of an ABTA on a Transition System (Step 2) 84

3.6.4 Model Checking Algorithm (Step 3) 90

3.7 Case Studies . 93

3.7.1 Verifying PNAWS . 93

3.7.2 Verifying NetBill . 99

3.8 Discussion and Future Work . 101

4 Directions for Agent Model Checking . 103

R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher

4.1 Introduction . 104

4.1.1 Agents and Rational Agents . 104

4.1.2 Logical Agent Descriptions . 105

4.1.3 Formal Verification and Model Checking 106

4.1.4 Program Verification . 108

4.1.5 Agent Programming Languages . 108

4.2 Our Approach . 109

4.2.1 AIL: Mapping Agent Languages to a Common Basis 111

4.2.2 AJPF: Specialising the AIL and JPF to work together . . . 112

4.2.3 Current Status . 114

4.3 Obstacles . 114

4.3.1 Performance . 114

4.3.2 Target Agent Languages . 115

4.3.3 Using Agent Model Checking . 116

4.3.4 Applicability . 116

4.4 Directions . 116

4.4.1 Applicability: Autonomous and Autonomic Systems 117

4.4.2 Efficiency: Potential for use of MJI 117

4.4.3 Efficiency: Potential for use of Program
Slicing/Abstraction . 118

4.4.4 Generality: Target Languages . 119

4.4.5 Engineering: Agent Development Approach 119

4.4.6 Extension: Verification of Groups and Organisations 120

4.4.7 Applicability: Verifying Human-Agent Teamwork 121

4.4.8 Efficiency/Extension: Alternative Model Checkers 122

4.5 Concluding Remarks . 122

x Contents

5 Model Checking Logics of Strategic Ability: Complexity 125

N. Bulling, J. Dix, and W. Jamroga

5.1 Introduction . 126

5.2 The Logics: Syntax and Semantics . 127

5.2.1 Linear- and Branching-Time Logics 128

5.2.2 Strategic Abilities under Perfect Information 131

5.2.3 Strategic Abilities under Imperfect Information 135

5.2.4 Other Subsets of LATL∗ . 138

5.2.5 Summary, Notation, and Related Work 139

5.3 Standard Model Checking Complexity Results 139

5.3.1 Model Checking Temporal Logics 140

5.3.2 Model Checking ATL and CL: Perfect Information 142

5.3.3 Model Checking ATL and CL: Imperfect Information . . . 144

5.3.4 Model Checking ATL∗ and ATL+ . 146

5.4 Complexity for Implicit Models: States and Agents 149

5.4.1 Model Checking ATL and CL in Terms of States
and Agents . 151

5.4.2 CTL and CTL+ Revisited . 153

5.4.3 ATL∗ and ATL+ . 154

5.5 Higher-Order Representations of Models . 155

5.6 Summary . 158

6 Correctness of Multi-Agent Programs: A Hybrid Approach 161

M. Dastani and J.-J. Ch. Meyer

6.2 An agent-oriented Programming Language APL 164

6.2.1 Syntax of APL . 165

6.2.2 Semantics of APL . 166

6.3 CT Lapl: A Specification Language for Agent Programs 170

6.3.1 CT Lapl Syntax . 171

6.3.2 CT Lapl Semantics . 172

6.4 Properties . 175

6.4.1 Proving the Properties . 175

6.5 Debugging Multi-Agent Programs . 179

6.5.1 Debugging Modes . 180

6.5.2 Specification Language for Debugging: Syntax 181

6.1 Introduction . 162

Contents xi

6.5.3 Specification Language for Debugging: Semantics 183
6.6 Multi-Agent Debugging Tools . 184

6.6.1 Breakpoint . 187
6.6.2 Watch . 188
6.6.3 Logging . 188
6.6.4 Message-list . 189
6.6.5 Causal tree . 190
6.6.6 Sequence diagram . 190
6.6.7 Visualization . 191

6.7 Conclusion and Future Work . 192

7 The Norm Implementation Problem in Normative
Multi-Agent Systems . 195
D. Grossi, D. Gabbay, and L. van der Torre
7.1 Introduction . 196
7.2 Normative multi-agent systems . 199

7.2.1 Normative systems in computer science 199
7.2.2 Specification and verification of normative multi-agent

systems . 203
7.2.3 Assumptions of norm implementation 205

7.3 Formal framework and running example . 206
7.3.1 Norms and logic . 206
7.3.2 Norm implementation and games . 207
7.3.3 Running example: ruling the Blocks World 208
7.3.4 Talking about norms and extensive games in the Blocks

World . 209
7.3.5 Two important caveats . 211

7.4 Making violations impossible . 212
7.4.1 Regimentation . 212
7.4.2 Retarded preconditions . 213

7.5 Perfect enforcement . 216
7.6 Enforcers . 217

7.6.1 Regimenting enforcement norms . 219
7.6.2 Enforcing enforcement norms . 220
7.6.3 Who controls the enforcers? . 221

7.7 Implementation via norm change . 221
7.8 Related work . 222
7.9 Conclusions . 224

xii Contents

8 A Verification Logic for G Agents . 225
K.V. Hindriks
8.1 Introduction . 226
8.2 Related work . 227
8.3 The Agent Programming Language G . 228

8.3.1 G Agent Programs . 228
8.3.2 Knowledge Representation Language 229
8.3.3 Mental States . 232
8.3.4 Actions and Action Selection . 237

8.4 Verifying Goal Agent Programs . 242
8.4.1 Verification Logic . 242
8.4.2 Logical Characterization of Agent Programs 243

8.5 Conclusion . 250
Appendix . 252

9 Using the Maude Term Rewriting Language for Agent Development
with Formal Foundations . 255
M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer
9.1 Introduction . 256
9.2 The BUpL Language . 257

9.2.1 Syntax . 257
9.2.2 Semantics . 259

9.3 Prototyping . 261
9.3.1 Introduction to Maude . 261
9.3.2 Implementing BUpL: Syntax . 263
9.3.3 Example BUpL Program . 266
9.3.4 Implementing BUpL: Semantics . 267
9.3.5 Executing an Agent Program . 270

9.4 Model-Checking . 271
9.4.1 Connecting BUpL Agents and Model-Checker 272
9.4.2 Examples . 274
9.4.3 Fairness . 277

9.5 Testing . 278
9.5.1 Searching . 279
9.5.2 Formalizing Test Cases . 280
9.5.3 Introduction to Maude Strategies . 282
9.5.4 Using Maude Strategies for Implementing Test Cases . . . 284

9.6 Conclusion . 286

Contents xiii

10 The Cognitive Agents Specification Language and Verification
Environment . 289

S. Shapiro, Y. Lespérance, and H.J. Levesque

10.1 Introduction . 290

10.2 PVS . 290

10.3 Action Theory . 291

10.4 Knowledge . 294

10.5 Goals . 299

10.6 Agent Behaviour . 305

10.7 A Meeting Scheduler Example . 309

10.8 Verification . 311

10.9 Example Proof . 313

10.10 Conclusion . 315

11 A Temporal Trace Language for Formal Modelling and Analysis of
Agent Systems . 317

A. Sharpanskykh and J. Treur

11.1 Introduction . 318

11.2 Syntax of TTL . 320

11.3 Semantics of TTL . 323

11.4 Multi-level Modelling of Multi-Agent Systems in TTL 325

11.4.1 Aggregation by agent clustering . 325

11.4.2 Organisation structures . 329

11.5 Relation to Other Languages . 332

11.6 Normal Forms and Transformation Procedures 334

11.6.1 Past Implies Future Normal Form . 335

11.6.2 Executable Normal Form . 338

11.6.3 Abstraction of executable specifications 342

11.7 Verification of Specifications of Multi-Agent Systems in TTL 345

11.7.1 Verification of interlevel relations in TTL specifications
by model checking . 345

11.7.2 Verification of Traces in TTL . 348

11.8 Conclusions . 350

xiv Contents

12 Assurance of Agent Systems: What Role Should Formal
Verification Play? . 353

M. Winikoff

12.1 Introduction . 354

12.2 Existing Work . 355

12.3 Case Study: A Waste Disposal Robot . 357

12.4 Correctness Proof . 360

12.5 Issues . 361

12.5.1 Problems with Specifications . 362

12.5.2 Problems with Proofs . 364

12.6 Assumptions in the Waste Disposal Robot Case Study Revisited . . 366

12.7 A New Approach to Assurance of Agent Systems 369

12.7.1 An Engineering Approach to Risk Management 370

12.7.2 “Send considered harmful?” . 372

12.8 Combining Testing and Proving . 373

12.8.1 Applying the Proposed Approach to the Case Study 376

12.8.2 Addressing Efficiency . 378

12.9 Conclusions . 381

References . 385

List of Contributors

Natasha Alechina
University of Nottingham, School of Computer Science, UK
e-mail: nza@cs.nott.ac.uk

Lăcrămioara Aştefănoaei
CWI (Centrum Wiskunde en Informatica), The Netherlands
e-mail: astefano@cwi.nl

Jamal Bentahar
Concordia University, Concordia Institute for Information Systems Engineering,
Canada
e-mail: bentahar@ciise.concordia.ca

Frank S. de Boer
CWI (Centrum Wiskunde en Informatica), The Netherlands
e-mail: F.S.de.Boer@cwi.nl

Rafael H. Bordini
Institute of Informatics, Federal University of Rio Grande do Sul, Brazil
e-mail: r.bordini@inf.ufrgs.br

Nils Bulling
Dept. of Informatics, Niedersächsische Technische Hochschule, Standort Clausthal,
Germany
e-mail: bulling@in.tu-clausthal.de

Mehdi Dastani
Universiteit Utrecht, Department of Information and Computing Sciences, The
Netherlands
e-mail: mehdi@cs.uu.nl

xv

nza@cs.nott.ac.uk
astefano@cwi.nl
bentahar@ciise.concordia.ca
F.S.de.Boer@cwi.nl
r.bordini@inf.ufrgs.br
bulling@in.tu-clausthal.de
mehdi@cs.uu.nl

xvi List of Contributors

Louise A. Dennis
Department of Computer Science, University of Liverpool, U.K.
e-mail: l.a.dennis@liverpool.ac.uk

Jürgen Dix
Dept. of Informatics, Niedersächsische Technische Hochschule, Standort Clausthal,
Germany
e-mail: dix@in.tu-clausthal.de

Berndt Farwer
School of Engineering and Computing Sciences, Durham University, U.K.
e-mail: berndt.farwer@durham.ac.uk

Michael Fisher
Department of Computer Science, University of Liverpool, U.K.
e-mail: mfisher@liverpool.ac.uk

Dov Gabbay
Computer Science King’s College London, U.K. and ICR University of
Luxembourg, Luxembourg
e-mail: dov.gabbay@kcl.ac.uk

Davide Grossi
ILLC University of Amsterdam, The Netherlands
e-mail: d.grossi@uva.nl

Koen V. Hindriks
Delft University of Technology, Melkweg 4, Delft, The Netherlands
e-mail: k.v.hindriks@tudelft.nl

Wojciech Jamroga
Computer Science and Communications, University of Luxembourg, Luxembourg
and Dept. of Informatics, Niedersächsische Technische Hochschule, Standort
Clausthal, Germany
e-mail: wojtek.jamroga@uni.lu

Fahad Khan,
University of Nottingham, School of Computer Science, U.K.
e-mail: afk@cs.nott.ac.uk

Yves Lespérance
Department of Computer Science and Engineering, York University, Canada
e-mail: lesperan@cse.yorku.ca

Hector J. Levesque
Department of Computer Science, University of Toronto, Toronto, Canada
e-mail: hector@ai.toronto.edu

Brian Logan
University of Nottingham, School of Computer Science, U.K.
e-mail: bsl@cs.nott.ac.uk

l.a.dennis@liverpool.ac.uk
dix@in.tu-clausthal.de
berndt.farwer@durham.ac.uk
mfisher@liverpool.ac.uk
dov.gabbay@kcl.ac.uk
d.grossi@uva.nl
k.v.hindriks@tudelft.nl
wojtek.jamroga@uni.lu
afk@cs.nott.ac.uk
lesperan@cse.yorku.ca
hector@ai.toronto.edu
bsl@cs.nott.ac.uk

List of Contributors xvii

John-Jules Ch. Meyer
Universiteit Utrecht, Department of Information and Computing Sciences, The
Netherlands
e-mail: jj@cs.uu.nl

M. Birna van Riemsdijk
Delft University of Technology, The Netherlands
e-mail: m.b.vanriemsdijk@tudelft.nl

Steven Shapiro
Department of Computer Science, University of Toronto, Toronto, Canada
e-mail: steven@cs.toronto.edu

Alexei Sharpanskykh
Vrije Universiteit Amsterdam, Department of Artificial Intelligence, Amsterdam,
The Netherlands
e-mail: sharp@cs.vu.nl

Leendert van der Torre
ICR University of Luxembourg, Luxembourg
e-mail: leendert@vandertorre.com

Jan Treur
Vrije Universiteit Amsterdam, Department of Artificial Intelligence, Amsterdam,
The Netherlands
e-mail: treur@cs.vu.nl

Wei Wan
Concordia University, Concordia Institute for Information Systems Engineering,
Canada
e-mail: bentahar@ciise.concordia.ca

Michael Winikoff
University of Otago, Dunedin, New Zealand
e-mail: michael.winikoff@otago.ac.nz

jj@cs.uu.nl
m.b.vanriemsdijk@tudelft.nl
steven@cs.toronto.edu
sharp@cs.vu.nl
leendert@vandertorre.com
treur@cs.vu.nl
bentahar@ciise.concordia.ca
michael.winikoff@otago.ac.nz

Chapter 1

Using Theorem Proving to Verify Properties of
Agent Programs

N. Alechina, M. Dastani, F. Khan, B. Logan, and J.-J. Ch. Meyer

Abstract We present a sound and complete logic for automatic verification of Sim-
pleAPL programs. SimpleAPL is a fragment of agent programming languages such
as 3APL and 2APL designed for the implementation of cognitive agents with be-
liefs, goals and plans. Our logic is a variant of PDL, and allows the specification of
safety and liveness properties of agent programs. We prove a correspondence be-
tween the operational semantics of SimpleAPL and the models of the logic for two
example program execution strategies. We show how to translate agent programs
written in SimpleAPL into expressions of the logic, and give an example in which
we show how to verify correctness properties for a simple agent program using
theorem-proving.

N. Alechina, F. Khan, B. Logan
University of Nottingham, School of Computer Science, U.K. e-mail: {nza,afk,bsl}@cs.
nott.ac.uk

M. Dastani, J.-J. Ch. Meyer
Universiteit Utrecht, Department of Information and Computing Sciences, The Netherlands e-mail:
{mehdi,jj}@cs.uu.nl

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 1
DOI 10.1007/978-1-4419-6984-2 1, c© Springer Science+Business Media, LLC 2010

{nza, afk, bsl}@cs.nott.ac.uk
{nza, afk, bsl}@cs.nott.ac.uk
{mehdi, jj}@cs.uu.nl

2 N. Alechina et al

1.1 Introduction

The specification and verification of agent architectures and programs is a key prob-
lem in agent research and development. Formal verification provides a degree of
certainty regarding system behaviour which is difficult or impossible to obtain us-
ing conventional testing methodologies, particularly when applied to autonomous
systems operating in open environments. For example, the use of appropriate speci-
fication and verification techniques can allow agent researchers to check that agent
architectures and programming languages conform to general principles of rational
agency, or agent developers to check that a particular agent program will achieve
the agent’s goals in a given range of environments. Ideally, such techniques should
allow specification of key aspects of the agent’s architecture such as its execution
cycle (e.g., to explore commitment under different program execution strategies),
and should admit a fully automated verification procedure. However, while there
has been considerable work on the formal verification of software systems and on
logics of agency, it has proved difficult to bring this work to bear on verification of
agent programs. On the one hand, it can be difficult to specify and verify relevant
properties of agent programs using conventional formal verification techniques, and
on the other, standard epistemic logics of agency (e.g., [169]) fail to take into ac-
count the computational limitations of agent implementations.

Since an agent program is a special kind of program, logics intended for the
specification of conventional programs can be used for specifying agent program-
ming languages. In this approach we have some set of propositional variables or
predicates to encode the agent’s state, and, for example, dynamic or temporal op-
erators for describing how the state changes as the computation evolves. However,
for agents based on the Belief-Desire-Intention model of agency, such an approach
fails to capture important structure in the agent’s state which can be usefully ex-
ploited in verification. For example, we could encode the fact that the agent has the
belief that p as the proposition u1, and the fact that the agent has the goal that p as
the proposition u2. However such an encoding obscures the key logical relationship
between the two facts, making it difficult to express general properties such as ‘an
agent cannot have as a goal a proposition which it currently believes’. It therefore
seems natural for a logical language intended for reasoning about agent programs
to include primitives for beliefs and goals the agent, e.g., where Bp means that the
agent believes that p, and Gp means that the agent has a goal that p.

The next natural question is, what should the semantics of these operators be?
For example, should the belief operator satisfy the KD45 properties? In our view,
it is critical that the properties of the agent’s beliefs and goals should be grounded
in the computation of the agent (in the sense of [234]). If the agent implements
a full classical reasoner (perhaps in a restricted logic), then we can formalise its
beliefs as closed under classical inference. However if the agent’s implementation
simply matches belief literals against a database of believed propositions without
any additional logical reasoning, we should not model its beliefs as closed under
classical consequence.

1 Using Theorem Proving to Verify Properties of Agent Programs 3

In this paper, we present an approach to specification and verification which is
tailored to the requirements of BDI-based agent programming languages [64]. Our
approach is grounded in the computation of the agent and admits an automated ver-
ification procedure based on theorem proving. The use of theorem proving rather
than model checking is motivated by the current state of the art regarding avail-
able verification frameworks and tools for PDL. In particular, to the best of our
knowledge there is no model checking framework for PDL, while theorem proving
techniques for this logic are readily available [246, 386]. We develop our approach
in the context of SimpleAPL, a simplified version of the logic-based agent pro-
gramming languages 3APL [64,128] and 2APL [122,127]. We present a sound and
complete variant of PDL [173] for SimpleAPL which allows the specification of
safety and liveness properties of SimpleAPL programs. Our approach allows us to
capture the agent’s execution strategy in the logic, and we prove a correspondence
between the operational semantics of SimpleAPL and the models of the logic for
two example execution strategies. Finally, we show how to translate agent programs
written in SimpleAPL into expressions of the logic, and give an example in which
we verify correctness properties of a simple agent program using the PDL theorem
prover MSPASS [246]. While we focus on APL-like languages and consider only
single agent programs, our approach can be generalised to other BDI-based agent
programming languages and the verification of multi-agent systems.

1.2 An Agent Programming Language

In this section we present the syntax and semantics of SimpleAPL, a simplified
version of logic based agent-oriented programming languages 3APL [64, 128] and
2APL [122,127]. SimpleAPL contains the core features of 3APL and 2APL and al-
lows the implementation of agents with beliefs, goals, actions, plans, and planning
rules. The main features of 3APL/2APL not present in SimpleAPL are a first order
language for beliefs and goals1, a richer set of actions (e.g., abstract plans, com-
munication actions) and a richer set of rule types (e.g., rules for revising plans and
goals and for processing events).

1.2.1 SimpleAPL

Beliefs and Goals The beliefs of an agent represent its information about its en-
vironment, while its goals represent situations the agent wants to realize (not nec-
essary all at once). The agent’s beliefs are represented by a set of positive literals

1 In 3APL and 2APL, an agent’s beliefs are implemented as a set of first-order Horn clauses and
an agent’s goals are implemented as a set of conjunctions of ground atoms.

4 N. Alechina et al

and its goals by a set of arbitrary literals. The initial beliefs and goals of an agent
are specified by its program. For example, a simple vacuum cleaner agent might
initially believe that it is in room 1 and its battery is charged:

Beliefs: room1, battery

and may initially want to achieve a situation in which both room 1 and room 2 are
clean:

Goals: clean1, clean2

The beliefs and goals of an agent are related to each other: if an agent believes p,
then it will not pursue p as a goal, and if an agent does not believe that p, it will not
have−p as a goal.

Basic Actions Basic actions specify the capabilities an agent can use to achieve its
goals. There are three types of basic action: those that update the agent’s beliefs and
those which test its beliefs and goals. A belief test action tests whether a boolean
belief expression is entailed by the agent’s beliefs, i.e., it tests whether the agent
has a certain belief. A goal test action tests whether a boolean goal expression is
entailed by the agent’s goals, i.e., it tests whether the agent has a certain goal. Belief
update actions change the beliefs of the agent. A belief update action is specified in
terms of its pre- and postconditions (which are sets of literals), and can be executed
if one of its pre-conditions is entailed by the agent’s current beliefs. Executing the
action updates the agent’s beliefs to make the corresponding postcondition entailed
by the agent’s belief base. While the belief base of the agent contains only positive
literals, belief and goal expressions appearing in belief and goal test actions can
be complex, and the pre- and postconditions of belief update actions may contain
negative literals. We will define the notion of ‘entailed’ formally below. Informally, a
pre-condition of an action is entailed by the agent’s belief base if all positive literals
in the precondition are contained in the agent’s belief base, and for every negative
literal−p in the precondition, p is not in the belief base (i.e., we use entailment under
the closed world assumption). After executing a belief update action, all positive
literals in the corresponding postcondition are added to the belief base, and for every
negative literal −p in the postcondition, p is removed from the agent’s belief base.
For example, the following belief update specifications:

BeliefUpdates:

{room1} moveR {-room1, room2}

{room1, battery} suck {clean1, -battery}

{room2, battery} suck {clean2, -battery}

{room2} moveL {-room2, room1}

{-battery} charge {battery}

can be read as “if the agent is in room 1 and moves right, it ends up in room 2”, and
“if the agent is in room 1 and its battery is charged, it can perform a ‘suck’ action,
after which room 1 is clean and its battery is discharged”. Note that performing
a ‘suck’ action in a different state, e.g., in the state where the agent is in room 2,

1 Using Theorem Proving to Verify Properties of Agent Programs 5

has a different result. Belief update actions are assumed to be deterministic, i.e., the
pre-conditions of an action are assumed to be mutually exclusive.

Updating the agent’s beliefs may result in achievement of one or more of the
agent’s goals. Goals which are achieved by the postcondition of an action are
dropped. For example, if the agent has a goal to clean room 1, executing a ‘suck’
action in room 1 will cause it to drop the goal. For simplicity, we assume that the
agent’s beliefs about its environment are always correct and its actions in the envi-
ronment are always successful, so the agent’s beliefs describe the state of the real
world. This assumption can be relaxed in a straightforward way by including the
state of the environment in the models.

Plans In order to achieve its goals, an agent adopts plans. A plan consists of basic
actions composed by sequence, conditional choice and conditional iteration opera-
tors. The sequence operator ; takes two plans as arguments and indicates that the
first plan should be performed before the second plan. The conditional choice and
conditional iteration operators allow branching and looping and generate plans of
the form if φ then {π1} else {π2} and while φ do {π} respectively. The con-
dition φ is evaluated with respect to the agent’s current beliefs. For example, the
plan:

if room1 then {suck} else {moveL; suck}

causes the agent to clean room 1 if it’s currently in room 1, otherwise it first moves
to room 1 and then cleans it.

Planning Goal Rules Planning goal rules are used by the agent to select a plan
based on its current goals and beliefs. A planning goal rule consists of three parts:
an (optional) goal query, a belief query, and a plan. The goal query specifies which
goal(s) the plan achieves, and the belief query characterises the situation(s) in which
it could be a good idea to execute the plan. Firing a planning goal rule causes the
agent to adopt the specified plan. For example, the planning goal rule:

clean2 <- battery |

if room2 then {suck} else {moveR; suck}

states that “if the agent’s goal is to clean room 2 and its battery is charged, then
the specified plan may be used to clean the room”. Note that an agent can generate
a plan based only on its current beliefs as the goal query is optional. This allows
the implementation of reactive agents (agents without any goals). For example, the
reactive rule:

<- -battery |

if room2 then {charge} else {moveR; charge}

states “if the battery is low, the specified plan may be used to charge it”. For simplic-
ity, we assume that agents do not have initial plans, i.e., plans can only be generated
during the agent’s execution by planning goal rules.

6 N. Alechina et al

1.2.2 SimpleAPL syntax

The syntax of SimpleAPL is given below in EBNF notation. We assume a set of
belief update actions and a set of propositions, and use 〈aliteral〉 to denote the name
of a belief update action and 〈literal〉 (〈pliteral〉) to denote belief and goal literals
(positive literals).

〈APL Prog〉 ::= "BeliefUpdates:" 〈updatespecs〉
| "Beliefs:" 〈pliterals〉
| "Goals": 〈literals〉
| "PG rules:" 〈pgrules〉

〈updatespecs〉 ::= [〈updatespec〉 ("," 〈updatespec〉)*]
〈updatespec〉 ::= "{" 〈literals〉 "}" 〈aliteral〉 "{"〈literals〉"}"
〈pliterals〉 ::= [〈pliteral〉 ("," 〈pliteral〉)*]
〈literals〉 ::= [〈literal〉 ("," 〈literal〉)*]
〈plan〉 ::= 〈baction〉 | 〈seqplan〉 | 〈ifplan〉 | 〈whileplan〉
〈baction〉 ::= 〈aliteral〉 | 〈testbelief 〉 | 〈testgoal〉
〈testbelief 〉 ::= 〈bquery〉 "?"
〈testgoal〉 ::= 〈gquery〉 "!"
〈bquery〉 ::= 〈literal〉 | 〈bquery〉 "and" 〈bquery〉 | 〈bquery〉 "or" 〈bquery〉
〈gquery〉 ::= 〈literal〉 | 〈gquery〉 "or" 〈gquery〉
〈seqplan〉 ::= 〈plan〉 ";" 〈plan〉
〈ifplan〉 ::= "if" 〈bquery〉 "then {" 〈plan〉 "}" ["else {" 〈plan〉 "}"]
〈whileplan〉 ::= "while" 〈bquery〉 "do {" 〈plan〉 "}"
〈pgrules〉 ::= [〈pgrule〉 ("," 〈pgrule〉)*]
〈pgrule〉 ::= [〈gquery〉] "<-" 〈bquery〉 "|" 〈plan〉

1.3 Operational Semantics

We define the operational semantics of SimpleAPL in terms of a transition system. A
transition system is a graph where the nodes are configurations of an agent program
and the edges (transitions) are given by a set of transition rules. The configuration of
a SimpleAPL agent program consists of the beliefs, goals and plan(s) of the agent.
Each transition corresponds to a single computation step. Which transitions are pos-
sible in a configuration depends on the agent’s execution strategy. Many execution
strategies are possible and we do not have space here to describe them all in detail.
Below we give two versions of the operational semantics, one for an agent which
executes a single plan to completion before choosing another plan (non-interleaved
execution), and another for an execution strategy which interleaves the execution of
multiple plans with the adoption of new plans (interleaved execution).

These strategies were chosen as representative of deliberation strategies found in
the literature and in current implementations of BDI-based agent programming lan-
guages. However neither of these strategies (or any other single strategy) is clearly

1 Using Theorem Proving to Verify Properties of Agent Programs 7

best for all agent task environments. For example, the non-interleaved strategy is ap-
propriate in situations where a sequence of actions must be executed ‘atomically’ in
order to ensure the success of a plan. However it means that the agent is unable to re-
spond to new goals until the plan for the current goal has been executed. Conversely,
the interleaved strategy allows an agent to pursue multiple goals at the same time,
e.g., allowing an agent to respond to an urgent, short-duration task while engaged in
a long-term task. However it can increase the risk that actions in different plans will
interfere with each other. It is therefore important that the agent developer has the
freedom to choose the strategy which is most appropriate to a particular problem.

Agent Configuration An agent configuration is a 3-tuple 〈σ,γ,Π〉 where σ is a set
of positive literals representing the agent’s beliefs, γ is a set of literals representing
the agent’s goals, and Π is a set of plan entries representing the agent’s currently
executing plans.2 In the initial configuration the agent’s initial beliefs and goals
are those specified by its program, and Π is empty. Executing the agent’s program
modifies its initial configuration in accordance with the transition rules presented
below. We first present the transition rules for the non-interleaved execution strategy
and then those for interleaved execution.

For the formulation of the operational semantics we need to formalize some ba-
sic assumptions. In particular, we use the notion of belief entailment based on the
closed-world assumption. This notion of entailment, which we denote by |=cwa, is
defined as follows:

σ |=cwa p ⇔ p ∈ σ
σ |=cwa −p ⇔ p < σ
σ |=cwa φ and ψ ⇔ σ |=cwa φ and σ |=cwa ψ
σ |=cwa φ or ψ ⇔ σ |=cwa φ or σ |=cwa ψ
σ |=cwa {φ1, . . . ,φn} ⇔ ∀1 ≤ i ≤ n σ |=cwa φi

The notion of goal entailment, denoted by |=g, corresponds to a formula being
classically entailed by one of the goals in the goal base γ, and is defined as follows:

γ |=g p ⇔ p ∈ γ
γ |=g −p ⇔−p ∈ γ
γ |=g φ or ψ ⇔ γ |=g φ or γ |=g ψ

Note that “γ |=g φ and ψ ⇔ γ |=g φ and γ |=g ψ” does not hold since φ and ψ
may be entailed by two different goals γ1 and γ2 from γ, but there may be no γi ∈ γ
which entails both ψ and φ. In fact, in SimpleAPL there are no non-trivial conjunc-
tive goal queries (that is, not of the form p and p) which may be entailed by the goal
base, since the goal base consists of literals.

We assume that each belief update action α has a set of preconditions prec1(α),
. . . , preck(α). Each preci(α) is a finite set of belief literals, and any two pre-

2 As an agent’s planning goal rules do not change during the execution of the agent’s program, we
do not include them in the agent configuration.

8 N. Alechina et al

conditions for an action α, preci(α) and precj(α) (i , j), are mutually exclu-
sive (i.e., for any belief base σ, if σ |=cwa preci(α) and σ |=cwa precj(α) then
i = j). For each preci(α) there is a unique corresponding postcondition posti(α),
which is also a finite set of literals. A belief update action α can be executed if
the current set of agent’s beliefs σ entails some precondition precj(α) of α with
respect to |=cwa. This holds when all positive literals p in precj(α) are in σ and
σ∩{p :−p ∈ precj(α)} = ∅. The effect of updating a set of beliefs σ with α is given
by T j(α,σ)=σ∪ ({p : p ∈ postj(α)}\{p :−p ∈ postj(α)}), (i.e., executing the belief
update action α adds the positive literals in its postcondition to the agent’s beliefs
and removes any existing beliefs if their negations are in the postcondition).

1.3.1 Non-interleaved execution

By non-interleaved execution we mean the following execution strategy: when in a
configuration with no plan, choose a planning goal rule non-deterministically, apply
it, execute the resulting plan; repeat.

Belief Update Actions A belief update action α can be executed if one of its pre-
conditions is entailed by the agent’s beliefs, i,e., σ |=cwa φ. Executing the action adds
the literals in the corresponding postcondition to the agent’s beliefs and removes any
existing beliefs which are inconsistent with the postcondition, and causes the agent
to drop any goals it believes to be achieved as a result of the update.

(1)
σ |=cwa prec j(α) T j(α,σ) = σ′

〈σ,γ, {α;π}〉 −→ 〈σ′,γ′, {π}〉

where γ′ = γ\ ({p : p ∈σ′}∪{−p : p <σ′}) and T j is the function that determines the
effect of a belief update action on a belief base as defined above. Note that in this
and in rules (2)-(7) below, π may be empty, in which case α ; is identical to α.3

Belief and Goal Test Actions A belief test action β? can be executed if β is entailed
by the agent’s beliefs.

(2)
σ |=cwa β

〈σ,γ, {β?;π}〉 −→ 〈σ,γ, {π}〉

The execution of a belief test action β? in a configuration where β is not entailed
by the agent’s beliefs causes execution of the plan to block. In the case of non-
interleaved execution, this causes the whole agent to block.

A goal test action κ! can be executed if κ is entailed by the agent’s goals.

(3)
γ |=g κ

〈σ,γ, {κ!;π}〉 −→ 〈σ,γ, {π}〉

3 This avoids introducing an additional transition rule for the sequence operator ;

1 Using Theorem Proving to Verify Properties of Agent Programs 9

Similar to the belief test action, the execution of a goal test action κ! in a configura-
tion where κ is not entailed by the agent’s goals, blocks.

Composite Plans The following transition rules specify the effect of executing the
conditional choice and conditional iteration operators, respectively.

(4)
σ |=cwa φ

〈σ,γ, {(if φ then π1 else π2);π}〉 −→ 〈σ,γ, {π1;π}〉

(5)
σ 6|=cwa φ

〈σ,γ, {(if φ then π1 else π2);π}〉 −→ 〈σ,γ, {π2;π}〉

(6)
σ |=cwa φ

〈σ,γ, {(while φ do π1);π}〉 −→ 〈σ,γ, {π1; (while φ do π1);π}〉

(7)
σ 6|=cwa φ

〈σ,γ, {(while φ do π1);π}〉 −→ 〈σ,γ, {π}〉

Planning Goal Rules A planning goal rule κ← β|π can be applied if κ is entailed
by the agent’s goals and β is entailed by the agent’s beliefs. Applying the rule adds
π to the agent’s plans.

(8)
γ |=g κ σ |=cwa β

〈σ,γ, {}〉 −→ 〈σ,γ, {π}〉

1.3.2 Interleaved execution

By interleaved execution we mean the following execution strategy: either apply
a planning goal rule, or execute the first step in any of the current plans; repeat.
Interleaved execution strategies are characteristic of many ‘event-driven’ agent pro-
gramming languages such as AgentSpeak(L) [357] and its derivatives [75], where
the agent may adopt a new intention at each processing cycle and can pursue multi-
ple intentions in parallel. To simplify the presentation of the operational semantics
of the interleaved strategy, we associate a unique name with each planning goal rule
ri = κi ← βi|πi, and add to each plan entry in the plan base the name of the plan-
ning goal rule whose application generated the plan entry, (i.e., an entry ri : π in the
plan base indicates that the plan π was generated by applying the planning goal rule
ri : κi← βi | πi). Note that, in a particular configuration, the actual plan π in the plan
base may be different from the πi generated by applying the planning goal rule ri if
some prefix of πi has already been executed.

The transitions for an interleaved execution strategy are:

Belief updates Similar to transition rule (1), the following rule specifies the execu-
tion of belief update action in a configuration where the plan base can contain more
than one plan entry.

10 N. Alechina et al

(1i)
ri : α;π ∈ Π σ |=cwa prec j(α) T j(α,σ) = σ′

〈σ,γ,Π〉 −→ 〈σ′,γ′, (Π \ {ri : α;π})∪{ri : π}〉

where γ′ = γ \σ′. We stipulate that Π ∪{ri : } = Π . As before, π may be empty.

Belief and goal tests Again, similar to transition rules (2) and (3), the following
rules specify the execution of belief and goal test actions in a configuration where
the plan base can contain more than one plan entry.

(2i)
ri : β?;π ∈ Π σ |=cwa β

〈σ,γ,Π〉 −→ 〈σ,γ, (Π \ {ri : β?;π})∪{ri : π}〉

(3i)
ri : κ!;π ∈ Π γ |=g κ

〈σ,γ,Π〉 −→ 〈σ,γ, (Π \ {ri : κ!;π})∪{ri : π}〉

Composite plans The following transition rules specify the effect of executing the
conditional choice and conditional iteration operators, respectively.

(4i)
ri : (if φ then π1 else π2);π ∈ Π σ |=cwa φ

〈σ,γ,Π〉 −→ 〈σ,γ,Π ′∪{ri : π1;π}〉

(5i)
ri : (if φ then π1 else π2);π ∈ Π σ 6|=cwa φ

〈σ,γ,Π〉 −→ 〈σ,γ,Π ′∪{ri : π2;π}〉

where Π ′ = Π \ {ri : (if φ then π1 else π2);π}.

(6i)
ri : (while φ do π1);π ∈ Π σ |=cwa φ

〈σ,γ,Π〉 −→ 〈σ,γ,Π ′∪{ri : (π1;while φ do π1);π}〉

(7i)
ri : (while φ do π1);π ∈ Π σ 6|=cwa φ

〈σ,γ,Π〉 −→ 〈σ,γ,Π ′∪{ri : π}〉

where Π ′ = Π \ {ri : (while φ do π1);π}.

Planning goal rules A planning goal rule ri = κi← βi|πi can be applied if κi is en-
tailed by the agent’s goals and βi is entailed by the agent’s beliefs, and provided that
the plan base does not already contain a (possibly partially executed) plan generated
by applying ri. Applying the rule ri adds πi to the agent’s plans.

(8i)
γ |=g κi σ |=cwa βi ri : π < Π
〈σ,γ,Π〉 −→ 〈σ,γ,Π ∪{ri : πi}〉

The transition system TS for the agent’s program is generated by the initial con-
figuration c0 if it consists of c0 and all configurations which can be reached by
applying the above mentioned transition rules. Recall that the initial configuration
always has an empty plan base.

1 Using Theorem Proving to Verify Properties of Agent Programs 11

1.4 Logic

In this section, we introduce a logic which allows us to specify properties of Sim-
pleAPL agent programs.

We begin by defining transition systems which capture the capabilities of agents
as specified by their belief update actions. These transition systems are more general
than both versions of the operational semantics presented above, in that they do
not describe a particular agent program or execution strategy, but all possible basic
transitions between the possible belief and goal states of an agent. We then show
how to interpret a variant of Propositional Dynamic Logic (PDL) with belief and
goal operators in this semantics, and give a sound and complete axiom system for
the logic. In section 1.4.4 we show how the beliefs, goals and plans of an agent can
be translated into our logic.

1.4.1 Preliminary

The models of the logic are defined relative to an agent program with a set of plan-
ning goal rules Λ and a set of pre- and postconditions for all belief update actions C.
Let P denote the set of propositional variables occurring in Λ. A state s corresponds
to a pair 〈σ,γ〉, where:

• σ ⊆ P is a set of beliefs, and

• γ is a set of goals {(−)u1, . . . , (−)un : ui ∈ P}; no goal in γ should be entailed (with
respect to |=cwa) by σ.

We model states as points, and beliefs and goals are assigned to a state by two
assignments, Vb and Vg. Let the set of belief update actions be Ac = {α1, . . . ,αm}.
Executing an action αi in different configurations may give different results so
that for each αi ∈ Ac we have an associated set of pre- and postcondition pairs
{(prec1,post1), . . . , (preck,postk)} denoted by C(αi). We assume that C(αi) is fi-
nite, that different preconditions are mutually exclusive, and that each precondition
has exactly one associated postcondition. Ifσ |=cwa prec j(α) and T j(α,σ)=σ′, then
in the models of our logic there will be a transition Rα from a state s = (σ,γ) to a
state s′ = (σ′,γ′) where γ′ = γ \ ({p : p ∈ σ′}∪ {−p : p < σ′}).

1.4.2 Language

Assume that we can make PDL program expressions ρ out of belief update actions
αi ∈ Ac by using sequential composition ;, test on formulas ?, union ∪, and finite

12 N. Alechina et al

iteration ∗. The formulas on which we can test are any formulas of the language L
defined below, although to express SimpleAPL plans we only need tests on beliefs
and goals. Let Υ be the set of program expressions constructed in this way.

The language L for talking about the agent’s beliefs, goals and plans is the lan-
guage of PDL extended with a belief operator B and a goal operator G. A formula of
L is defined as follows: if p ∈ P, then Bp and G(−)p are formulas; if ρ is a program
expression and φ a formula, then 〈ρ〉φ and [ρ]φ are formulas; and L is closed under
the usual boolean connectives. In the following, we will refer to the sublanguage of
L which does not contain program modalities 〈ρ〉 and [ρ] as L0.

1.4.3 Semantics

A model for L is a structure M = (S , {Rρ : ρ ∈ Υ},V), where

• S is a set of states.
• V = (Vb,Vg) is the evaluation function consisting of belief and goal valuation

functions Vb and Vg; each state s can be identified with a pair (σ,γ), where
Vb(s) = σ and Vg(s) = γ.

• We define Rρ for ρ ∈ Υ inductively by the following clauses:

– Rα, for each belief update action α ∈ Ac, is a relation on S such that for any
s, s′ ∈ S we have that Rα(s, s′) iff for some (prec j,post j) ∈C(α), T j(α,Vb(s))=
Vb(s′) and Vg(s′) = Vg(s) \ ({p : p ∈ Vb(s′)} ∪ {−p : p < Vb(s′)}. Note that this
implies two things: first, an α transition can only originate in a state s which
satisfies one of the preconditions for α; second, since pre-conditions are mu-
tually exclusive, every such s satisfies exactly one pre-condition, and all α-
successors of s satisfy the matching post-condition.

– Rρ1;ρ2 = Rρ1 ◦Rρ2 = {(s1, s2) : s1, s2 ∈ S , ∃s3 ∈ S (Rρ1 (s1, s3)∧Rρ2 (s3, s2))}
– Rφ? = {(s, s) : M, s |= φ}, for each formula φ ∈ L
– Rρ1∪ρ2 = Rρ1 ∪ Rρ2

– Rρ∗ = (Rρ)∗, the reflexive transitive closure of Rρ.

The relation |= of a formula being true in a state of a model is defined inductively
as follows:

• M, s |= Bp iff p ∈ Vb(s)
• M, s |=G(−)p iff (−)p ∈ Vg(s)
• M, s |= ¬φ iff M, s 6|= φ
• M, s |= φ∧ψ iff M, s |= φ and M, s |= ψ
• M, s |= 〈ρ〉φ iff there exists a s′ ∈ S such that Rρ(s, s′) and M, s′ |= φ.
• M, s |= [ρ]φ iff for all s′ ∈ S such that Rρ(s, s′) we have that M, s′ |= φ.

Let the class of transition systems defined above be denoted MC (note that M is
parameterised by the set C of pre- and postconditions of belief update actions).

1 Using Theorem Proving to Verify Properties of Agent Programs 13

1.4.4 Axiomatisation

The beliefs, goals and plans of agent programs can be translated into PDL expres-
sions as follows.

• Translation of belief formulas: let p ∈ P and φ,ψ be belief query expressions (i.e.,
〈bquery〉) of SimpleAPL

– fb(p) = Bp

– fb(−p) = ¬Bp

– fb(φ and ψ) = fb(φ)∧ fb(ψ)

– fb(φ or ψ) = fb(φ)∨ fb(ψ)

Observe that negative queries are translated using the closed world assumption:
an agent is assumed to believe that p is false if it does not have p in its belief
base.

• Translation of goal formulas:

– fg(p) =Gp

– fg(−p) =G−p

– fg(φ or ψ) = fg(φ)∨ fg(ψ)

• Translation of plan expressions: let αi be a belief update action, φ and ψ be belief
and goal query expressions, and π,π1,π2 be plan expressions (i.e., 〈plan〉s) of
SimpleAPL

– fp(αi) = αi

– fp(φ?) = fb(φ)?

– fp(ψ!) = fg(ψ)?

– fp(π1;π2) = fp(π1); fp(π2)

– fp(if φ then π1 else π2) = (fb(φ)?; fp(π1))∪ (¬ fb(φ)?; fp(π2))

– fp(while φ do π) = (fb(φ)?; fp(π))∗;¬ fb(φ)?

Proposition 1.1. For all states s = (σ,γ) and for all belief formulae β and goal
formulae κ we have that:

1. M, s |= fb(β)⇔ σ |=cwa β

2. M, s |= fg(κ)⇔ γ |=g κ

Proof. We prove these two propositions by induction on the complexity of formulas
β and κ, respectively.

1. M, s |= fb(β)⇔ σ |=cwa β

14 N. Alechina et al

• Base case: Let β = p or β =−p. Then, we have:

M, s |= fb(p) ⇔ M, s |= Bp ⇔ p ∈ Vb(s) ⇔ σ |=cwa p.

M, s |= fb(−p) ⇔ M, s |= ¬Bp ⇔ p < Vb(s) ⇔ σ |=cwa−p.

• Inductive case: Let β= β1 and β2. Then, M, s |= fb(β1 and β2) ⇔ M, s |= fb(β1)
and M, s |= fb(β2) ⇔ (by the inductive hypothesis) σ |=cwa β1 and σ |=cwa β2
⇔ (by the definition of |=cwa) σ |=cwa β1 and β2. The case for β = β1 or β2
similarly follows from the inductive hypothesis and σ |=cwa β1 or σ |=cwa β2 if
and only if σ |=cwa β1 or β2.

2. M, s |= fg(κ)⇔ γ |=g κ

• Base case: κ = (−)p
M, s |= fg((−)p) ⇔ M, s |=G(−)p ⇔ (−)p ∈ Vg(s) ⇔ σ |=g p.

• Inductive case: κ = κ1 or κ2
M, s |= fg(κ1 or κ2) ⇔ M, s |= fg(κ1) ∨ fg(κ2) ⇔ M, s |= fg(κ1) or M, s |=
fg(κ2) ⇔ (by the inductive hypothesis) γ |=g κ1 or γ |=g κ2 ⇔ (by the defi-
nition of |=g γ |=g κ1 or κ2.

Note that for every pre- and postcondition pair (prec j,post j) we can describe
states satisfying prec j and states satisfying post j by formulas of L. More formally,
we define a formula fb(X) corresponding to a pre- or postcondition X as follows:
fb({φ1, . . . ,φn}) = fb(φ1)∧ . . .∧ fb(φn). This allows us to axiomatise pre- and post-
conditions of belief update actions.

To axiomatise the set of models defined above relative to C we need:

CL classical propositional logic

PDL axioms of PDL (see, e.g., [210])

A1 beliefs are not goals (positive): Bp→¬Gp

A2 beliefs are not goals (negative): G−p→ Bp

A3 for every belief update action αi and every pair of pre- and postconditions
(prec j,post j) in C(αi) and formulaΦ not containing any propositional variables
occurring in post j:

fb(prec j)∧Φ→ [αi](fb(postj)∧Φ).

This is essentially a frame axiom for belief update actions.

A4 for every belief update action αi where all possible preconditions in C(αi) are
prec1, . . . ,preck:

¬ fb(prec1)∧ . . .∧¬ fb(preck)→¬〈αi〉>

where > is a tautology. This axiom ensures that belief update actions cannot be
performed in states that do not satisfy any of its preconditions.

1 Using Theorem Proving to Verify Properties of Agent Programs 15

A5 for every belief update action αi and every precondition prec j in C(αi),
fb(prec j)→ 〈αi〉>. This axiom ensures that belief update actions can be per-
formed successfully when one of their preconditions holds.

Let us call the axiom system above AxC where, as before, C is the set of pre- and
postconditions of basic actions.

Theorem 1.1. AxC is sound and (weakly) complete for the class of regular models
MC.

Proof. Since our logic includes PDL, we cannot prove strong completeness (for ev-
ery set of formulas Γ and formula φ, if Γ |= φ then Γ ` φ) because PDL is not com-
pact. Instead, we can prove weak completeness: every valid formula φ is derivable
(|= φ ⇒ ` φ).

The proof of soundness is by straightforward induction on the length of a deriva-
tion. All axioms are clearly sound, and the inference rules are standard.

The proof of completeness is standard as far as the PDL part is concerned, see for
example [47]. Take a consistent formula φ; we are going to build a finite satisfying
model M ∈MC for φ.

We define the closure, CL(Σ) of a set of formulas of our language based on the
usual definition of the Fischer-Ladner closure under single negations of Σ. However
we assume a special definition of subformula closure under which we do not permit
the inclusion of propositional variables, e.g., if Bp ∈ Σ, then we do not allow p in
the subformula closure of Σ, since we do not have bare propositional variables in
our language. We also have an extra condition that if an action α occurs in φ, then
CL(φ) contains fb(ψ) for all pre- and postconditions ψ for α.

The states of the satisfying model M will be all maximal consistent subsets of
CL(φ). Let A, B be such maximal consistent sets, and α be a basic action. We define
Rα(A,B) to hold if and only if the conjunction of formulas in A, ∧A, is consistent
with 〈α〉∧B (conjunction of formulas in B preceded by 〈α〉).

The relations corresponding to complex programs ρ are defined inductively on
top of the relations corresponding to basic actions using unions, compositions, and
reflexive transitive closures, as is the case with regular models.

We define the assignment V in an obvious way:

• p ∈ Vb(A) iff Bp ∈ A, where Bp ∈CL(φ);

• (−)p ∈ Vg(A) iff G(−)p ∈ A, where G(−)p ∈CL(φ).

The truth lemma follows easily on the basis of the PDL completeness proof given
in [47]; so we have that for every ψ ∈CL(φ),

ψ ∈ A ⇔ M,A |= ψ

Since our formula φ is consistent, it belongs to at least one maximal consistent set
A, so it is satisfied in some state in M.

16 N. Alechina et al

Clearly, beliefs and goals are disjoint because the states are consistent with re-
spect to the axioms A1 and A2.

All that remains to show is that this model M also satisfies the pre- and post-
conditions of the actions which occur in the formula φ: an action α is not applicable
if none of its preconditions are satisfied, and if it is applied in a state s where one
of its preconditions holds (recall that the preconditions are disjoint), then the corre-
sponding postcondition holds in all states s′ accessible from s by α.

First, consider an action α and state A such that A does not satisfy any of the pre-
conditions of α. Then, by axiom A4,∧A implies [α]⊥, so there is no maximal consis-
tent set B such that ∧A∧〈α〉∧B is consistent, so there is no α-transition from A. Now
suppose that A satisfies one of the preconditions prec j of α. Then fb(prec j) ∈ A (re-
call that CL(φ) contains fb(prec j), so we can use the truth lemma) and ∧A implies
[α] fb(post j) by A3. For any B such that ∧A∧〈α〉∧B is consistent, B has to contain
fb(post j) since fb(post j) is in CL(φ) and ∧A∧〈α〉¬ fb(post j) is not consistent, and
such a successor B exists by A5. So every α-successor of A satisfies the postcondi-
tion. Similarly, we can show that for every literal q in A (in CL(φ)), which does not
occur in the postcondition fb(post j), it is not consistent to assume that its value has
changed in a state accessible by α (e.g. Bq∧〈α〉¬Bq is inconsistent), because of A3;
so all literals in the state A which do not occur in the postcondition fb(post j) do
not change their value in the state accessible by α. Note that all other literals which
do not occur in CL(φ) and by construction do not occur in the postconditions of any
action occurring in CL(φ) are always absent in all states, so their value trivially does
not change. �

1.5 Verification

In this section we show how to define exactly the set of paths in the transition system
generated by the operational semantics which correspond to a PDL program expres-
sion. This allows us to verify properties of agent programs, such as ‘all executions
of a given program result in a state satisfying property φ’. More precisely, we would
like to express that, given the initial beliefs and goals of the agent, the application of
its planning goal rules and the execution of the resulting plans reach states in which
the agent has certain beliefs and goals.

We distinguish two types of properties of agent programs: safety properties and
liveness properties. Let φ ∈ L0 denote the initial beliefs and goals of an agent and
ψ ∈ L0 denote states in which certain beliefs and goals hold (i.e., φ,ψ are formulas
of L0 containing only Bp and G(−)q atoms). The general form of safety and live-
ness properties is then: φ→ [ξ(Λ)]ψ and φ→ 〈ξ(Λ)〉ψ, respectively, where ξ(Λ)
describes the execution of the agent’s program with a set of planning goal rules Λ.

1 Using Theorem Proving to Verify Properties of Agent Programs 17

1.5.1 Expressing the non-interleaved strategy

The application of a set of planning goal rules Λ = {ri|ri = κi ← βi|πi} for an agent
with a non-interleaved execution strategy is translated as follows:

ξ(Λ) = (
⋃
ri∈Λ

(fg(κi)∧ fb(βi))?; fp(πi))+

where + is the strict transitive closure operator: ρ+ = ρ;ρ∗. This states that each
planning goal rule is be applied zero or more times (but at least one planning goal
rule will be applied).

Using this definition of ξ(Λ), the general schema of safety and liveness properties
for an agent with an interleaved execution strategy are then:

φ→ [(
⋃

ri∈Λ(fg(κi)∧ fb(βi))?; fp(πi))+]ψ for safety properties; and

φ→ 〈 (
⋃

ri∈Λ(fg(κi)∧ fb(βi))?; fp(πi))+ 〉ψ for liveness properties.

Below we show that the translation above is faithful, namely the PDL program ex-
pression which is the translation of the agent’s program corresponds to the set of
paths in the transition system generated by the operational semantics for that agent
program. But first we need a few extra definitions.

A model generated by a state s0 consists of all possible states which can be
recursively reached from s0 by following the basic relations. A state s and a con-
figuration c = 〈σ,γ,Π〉 are matching if they have the same belief and goal bases,
that is Vb(s) = σ and Vg(s) = γ. We denote this as s ∼ c. Let C be a set of pre- and
postconditions of belief update actions and Λ a set of planning goal rules. Let TS
be a transition system defined by the operational semantics for an agent using the
non-interleaved execution strategy (all possible configurations 〈σ,γ,Π〉 and transi-
tions between them, given Λ and C) and M a model belonging to MC. TS and M are
called matching if they are generated by c0 and s0, respectively, such that s0 ∼ c0.

We now prove a theorem which will allow us to verify properties of reachability
in TS by evaluating formulas 〈ξ(Λ)〉φ at s0.

Theorem 1.2. Assume that TS is a transition system defined by the operational se-
mantics for an agent with a set of planning goal rules Λ with pre- and postconditions
for basic actions C using a non-interleaved execution strategy, and M is a model in
MC. Then if TS and M match, then a configuration c with an empty plan base is
reachable from the initial configuration c0 in TS iff a state s matching c is reach-
able from the initial state s0 (matching c0) along a path described by ξ(Λ), i.e.,
(s0, s) ∈ Rξ(Λ).

Before proving the theorem, we need the following lemma:

Lemma 1.1. For all s = 〈σ,γ〉, s′ = 〈σ′,γ′〉, and plans π and π′, we have:
〈σ,γ, {π;π′}〉 −→ 〈σ′,γ′, {π′}〉 in TS iff R fp(π)(s, s′) in M.

18 N. Alechina et al

Proof of Lemma 1.1. By induction on the length of π.

Basis of induction: We prove that the lemma holds for belief update actions, and
belief and goal test actions. Clearly, with respect to the belief update actions α,
〈σ,γ, {α;π′}〉 −→ 〈σ′,γ′, {π′}〉 in TS iff Rα(s, s′) in M, by the operational semantics
rule (1) and the definition of Rα in terms of pre- and postconditions. For belief tests
φ? and goal tests ψ!, the relations R fb(φ)? and R fg(ψ)? hold for exactly the same pairs
(s, s) for which belief and goal test transitions hold by rules (2) and (3). This follows
from Proposition 1.

Inductive step: Assume the lemma holds for the sub-plans of π.

Let π = if φ then π1 else π2. Let us assume that σ |=cwa φ and there is a
transition from 〈σ,γ, {π;π′}〉 to 〈σ,γ, {π1;π′}〉 by rule (4) in TS (the else case
is similar). Then by Proposition 1, M, s |= fb(φ), so R fb(φ)?(s, s). By the induc-
tive hypothesis, there is a path from 〈σ,γ, {π1;π′}〉 to 〈σ′,γ′, {π′}〉 iff R fp(π1)(s, s′).
Hence, R fb(φ)?; fp(π1)(s, s′) and R fp(π)(s, s′). The other direction is similar. Assume
that R fp(π)(s, s′) and R fb(φ)?(s, s) (the case of R¬ fb(φ)?(s, s) is identical). Then by
Proposition 1, σ |=cwa φ so by rule (4), there is a transition from 〈σ,γ, {π;π′}〉 to
〈σ,γ, {π1;π′}〉 and from there by executing π1 to 〈σ′,γ′, {π′}〉 (by the inductive hy-
pothesis).

Let π = while φ do π1. Assume that there is a path in TS between 〈σ,γ, {π;π′}〉
and 〈σ′,γ′, {π′}〉. Note that from the rules (6) and (7) we can conclude thatσ′ 6|=cwa φ.
By Proposition 1, M, s′ |= ¬ fb(φ), so R¬ fb(φ)(s, s). Consider the path in TS ; it is
a sequence of configurations 〈σ1,γ1, {π;π′}〉, 〈σ2,γ2, {π1;π;π′}〉, . . . , 〈σn,γn, {π

′}〉,
where (σ1,γ1) = (σ,γ), (σn,γn) = (σ′,γ′) and one of the two cases holds. Either
n = 2, so the path is of the form 〈σ,γ, {π;π′}〉, 〈σ,γ, {π′}〉. In this case (σ,γ) and
(σ′,γ′) are the same (that is, s = s′), σ 6|=cwa φ (rule 7) and R¬ fb(φ)?(s, s′).

Or, n > 2, so there is a chain of configurations connected by paths corresponding
to the executions of π1. In this case, for each i < n it holds that 〈σi,γi, {π1;π′}〉 has
a path to 〈σi+1,γi+1, {π

′}〉. But then by the inductive hypothesis, R fp(π1)(si, si+1) and
R fp(π1)∗ (s, s′), hence R fp(π)(s, s′). The other direction is similar.

This completes the proof that all paths corresponding to an execution of a plan π
in TS are described by fp(π) in M. � (of Lemma)

Proof of Theorem 1.2. Observe that in the operational semantics for the non-
interleaved execution strategy, any path between two configurations with an empty
plan base consists of one or more cycles of executing one of the goal planning rules
followed by the execution of the corresponding plan. We will prove the theorem by
induction on the number of such cycles on the path between two configurations with
empty plan bases, 〈σ,γ, {}〉 and 〈σ′,γ′, {}〉. We use the lemma above for the special
case when π′ is empty.

Basis of induction: the path involves one cycle. Suppose there is such a path
in TS . This means that some planning goal rule φ ← ψ|π matched (so φ and ψ
are true in 〈σ,γ, {}〉) and π was adopted, resulting in a configuration 〈σ,γ, {π}〉, and
from that configuration there is a path to 〈σ′,γ′, {}〉. By the lemma, this means that

1 Using Theorem Proving to Verify Properties of Agent Programs 19

there is a corresponding path in M from (σ,γ) to (σ′,γ′) described by fp(π). Since
φ and ψ are true in (σ,γ), there is a path from (σ,γ) to itself by (fg(ψ)∧ fb(φ))?,
from which follows that there is a path in M from (σ,γ) to (σ′,γ′) described by
(fg(ψ)∧ fb(φ))?; fp(π).

The other direction: assume that in M, there is a path from (σ,γ) to (σ′,γ′) de-
scribed by (fg(ψ)∧ fb(φ))?; fp(π). We need to show that in TS , there is a path from
〈σ,γ, {}〉 to 〈σ′,γ′, {}〉. Since in M, there exists a transition from (σ,γ) to itself along
(fg(ψ)∧ fb(φ))?, this means that φ and ψ are entailed by the agent’s belief and goal
base by Proposition 1. This means that the corresponding planning goal rule will
be applied in 〈σ,γ, {}〉 resulting in adoption of π (transition to the configuration
〈σ,γ, {π}〉). By the lemma, there is a path from 〈σ,γ, {π}〉 to 〈σ′,γ′, {}〉.

Inductive step: assume that any path of length k− 1 between two configurations
with empty plan bases has a corresponding path in M described by a path in ξ(Λ),
which means that it is described by an k−1-long concatenation of expressions of the
form (fg(ψ)∧ fb(φ))?; fp(π), for example (fg(ψ1)∧ fb(φ1))?; fp(π1); . . . ; (fg(ψk−1)∧
fb(φn−1))?; fp(πk−1). By the argument in the basis step, the last (kth) segment cor-
responds to a path described by (fg(ψk)∧ fb(φk))?; fp(πk). Hence, the whole path is
described by

(fg(ψ1)∧ fb(φ1))?; fp(π1); . . . ; (fg(ψk)∧ fb(φk))?; fp(πk),

which is in ξ(Λ). � (of Theorem)

1.5.2 Expressing the interleaved strategy

For an agent with an interleaved execution strategy, we need a version of PDL with
an additional interleaving operator, ‖ [1]. Strictly speaking, the interleaving operator
does not increase the expressive power of PDL, but it makes the language more con-
cise (every formula containing the interleaving operator has an equivalent formula
without, however the size of that formula may be doubly exponential in the size of
the original formula, see [1]).

Note that we are able to view regular models M = (S , {Rρ : ρ ∈ Υ},V) as models
of the form M′ = (S , τ,V) where τ(αi) ⊆ (S ×S) gives us the set of state transitions
for αi such that (s, s′) ∈ τ(αi) iff Rαi (s, s′). We can extend this inductively to give us
a set of paths τ(ρ) ⊆ (S × S)∗ in M corresponding to any PDL program expression
ρ, including expressions with the interleaving operator ρ1 ‖ ρ2. By a path we mean
a sequence (s1, s2), (s3, s4), . . . , (sn−1, sn) (n ≥ 2) of pairs of states, where each pair is
connected by an atomic action transition or a test transition. By a legal path we mean
a path where for every even i< n (the target of the transition), si = si+1 (the source of
the next transition). Otherwise a path is called illegal. For example, (s1, s2), (s2, s3)
is a legal path and (s1, s2), (s3, s4) where s2 , s3 is an illegal path.

Paths corresponding to PDL program expressions are defined as follows:

20 N. Alechina et al

• τ(φ?) = {(s, s) : M, s |= φ}

• τ(ρ1∪ρ2) = {z : z ∈ τ(ρ1)∪τ(ρ2)}

• τ(ρ1;ρ2) = {z1 ◦ z2 : z1 ∈ τ(ρ1), z2 ∈ τ(ρ2)}, where ◦ is concatenation of paths;
here we allow illegal paths p1 ◦ p2 where p1 = (s0, s1)...(sn, sn+1) and p2 =

(t0, t1)...(tm, tm+1), with sn+1 , t0.

• τ(ρ∗) is the set of all paths consisting of zero or finitely many concatenations of
paths in τ(ρ).

• τ(ρ1 ‖ ρ2) is the set of all paths obtained by interleaving paths from τ(ρ1) and
τ(ρ2).

The reason why we need illegal paths for PDL with the interleaving operator can be
illustrated by the following example. Let (s1, s2) ∈ τ(α1) and (s3, s4) ∈ τ(α2), with
s2 , s3). Then the illegal path (s1, s2), (s3, s4) ∈ τ(α1;α2). Let (s2, s3) ∈ τ(α3). Then
(s1, s2), (s2, s3), (s3, s4) is obtained by interleaving a path from τ(α1;α2) and τ(α3),
and it is a legal path in τ(α1;α2 ‖ α3). Note that if the paths above are the only paths
in τ(α1), τ(α2) and τ(α3), then using an illegal path in τ(α1;α2) is the only way to
define a legal interleaving in τ(α1;α2 ‖ α3).

We define the relation |= of a formula being true in a state of a model as:

• M, s |= Bp iff p ∈ Vb(s)

• M, s |=G(−)p iff (−)p ∈ Vg(s)

• M, s |= ¬φ iff M, s 6|= φ

• M, s |= φ∧ψ iff M, s |= φ and M, s |= ψ

• M, s |= 〈ρ〉φ iff there is a legal path in τ(ρ) starting in s which ends in a state s′

such that M, s′ |= φ.

• M, s |= [ρ]φ iff for all legal paths τ(ρ) starting in s, the end state s′ of the path
satisfies φ: M, s′ |= φ.

In this extended language, we can define paths in the execution of an agent with
an interleaved execution strategy and planning goal rules as

ξi(Λ) =
⋃

Λ′⊆Λ,Λ′,∅

‖ri∈Λ′ ((fg(κi)∧ fb(βi))?; fp(πi))+

Theorem 1.3. Assume that TS is a transition system defined by the operational se-
mantics for an agent with a set of planning goal rules Λ with pre- and postconditions
for basic actions C using an interleaved execution strategy, and M is a model in MC.
Then if TS and M match, then a configuration c with an empty plan base is reach-
able from the initial configuration c0 in TS iff a state s matching c is reachable from
the initial state s0 (matching c0) along a path in τ(ξi(Λ)).

1 Using Theorem Proving to Verify Properties of Agent Programs 21

Proof. In order to prove the theorem, we need to show a correspondence between
finite paths in TS and M. By a path in TS from c0 to c, we will mean a legal
path (c0,c1), (c1,c2), . . . , (cn−1,cn) where cn = c, such that for every pair (ci,ci + 1)
on the path, there is a transition from ci to ci+1 described by one of the operational
semantics rules (1i) - (8i). By a path in M from s0 to s we will mean a legal path
(s0, s1), (s1, s2) . . . , (sn−1, sn) where sn = s such that for each step pi = (si, si+1) on the
path, si and si+1 are in some Rα or Rφ? relation (in the latter case si = si+1). We will
refer to α or φ? as the label of that step and denote it by label(pi). By a path in M
from s0 to s which is in τ(ξi(Λ)) we will mean a path from s0 to s where the labels
on the path spell a word in (ξi(Λ)).

We will denote the steps on the path by p0, p1, . . . , pn−1, and refer to the first
component of the pair pi as p0

i and to the second component as p1
i . If pi = (si, si+1),

then p0
i = si and p1

i = si+1. Note that the same state can occur in different steps, and
we want to be able to distinguish those occurrences. Since the path is legal, for all i,
p1

i = p0
i+1.

As an auxiliary device in the proof, we will associate with each component p j
i

(j ∈ {0,1}) of each step pi on the path in M a history ρ(p j
i) and a set of ‘execution

points’ E(p j
i).

A history is a PDL program expression which is a concatenation of labels of
the previous steps on the path. For example, consider a path p0 = (s0, s0), p1 =

(s0, s2) where Rφ?(s0, s0) and Rα(s0, s2). Then the history ρ(p0
0) is an empty string,

ρ(p1
0) = ρ(p0

1) = φ? and the history ρ(p1
1) = φ?;α. For an arbitrary point p j

i on a
path in τ(ξi(Λ)), the history describes a prefix of a path in τ(ξi(Λ)). Note that ξi(Λ)
is a union of ‖ri∈Λ′ ((fg(κi)∧ fb(βi))?; fp(πi))+, so the history will consist of an in-
terleaving of tests and actions which come from tracing expressions of the form
(fg(κi)∧ fb(βi))?; fp(πi) for ri ∈ Λ

′ ⊆ Λ, some of them repeated several times. At the
step where all the plan expressions fp(πi) have been traced to their ends, the history
describes a path in τ(ξi(Λ)). Conversely, if the history in the last step of the path
describes a path in τ(ξi(Λ)), then the path is in τ(ξi(Λ)).

A set of execution points E(p j
i) will contain execution points, which are PDL

plan expressions of the form fp(π), where π is either a translation of some complete
plan πi for some ri ∈ Λ, or of a suffix of such a plan. Intuitively, they correspond
to a set of (partially executed) plans in the plan base corresponding to p j

i , and are
called execution points because they tell us where we are in executing those plans.
We annotate p j

i with sets of execution points using the following simple rule. When
we are in p0

i and E(p0
i) = { fp(π1), . . . , fp(πk)}, then exactly one of the following three

options apply. Either label(pi) = α, and one of the fp(π j) is of the form fp(α;π′),
in which case in E(p1

i), fp(α;π′) is replaced by fp(π′). Or, label(pi) = φ?, and then
one of the two possibilities apply. Either φ? = fb(β?) and one of the fp(π j) is of
the form fp(β?;π′), in which case in E(p1

i), fp(β?;π′) is replaced by fp(π′). Or,
φ? = (fg(κm!)∧ fb(βm?))? (the test corresponding to a planning goal rule rm) and
E((p1

i) = E(p0
i)∪ { fp(πm)}. Essentially we take the first step α or φ? in tracing one

of the expressions in E(p0
i), remove it, and append it to the history in the next state.

22 N. Alechina et al

It is clear that if the sets of execution points along the path correspond to plan bases
in the operational semantics, then the histories correspond to prefixes of paths in
τ(ξi(Λ)). Also, if on such a path E(p j

i) = ∅ for i > 0, then ρ(p j
i) describes a path in

τ(ξi(Λ)).

We say that a set of execution points E(p j
i) and a plan base Π match if the exe-

cution points in E(p j
i) are the translations of plans in Π , that is Π = {π1, . . . ,πk} and

E(p j
i) = { fp(π1), . . . , fp(πk)}.

The idea of the proof is as follows. We show that

(TS ⇒ M) For every path in TS from c0 to a configuration c with an empty plan
base, we can trace, maintaining a set of execution points and a history, a path in
M from s0 to a state s such that s ∼ c and the last step on the path has an empty
set of execution points and a history in τ(ξi(Λ)). This will show one direction of
the theorem, that every path in TC has a corresponding path in M.

(M⇒ TS) States on every path in M from s0 to s which is in τ(ξi(Λ)) can be
furnished with sets of execution points which correspond to plan bases of con-
figurations on a corresponding path from c0 to c such that s ∼ c. This shows
another direction of the theorem, that if we have a path in τ(ξi(Λ)), we can find a
corresponding path in TS .

To prove (TS ⇒M), we first note that s0 and c0 have a matching set of execution
points and plan base (empty). Then we consider a pair s ∼ c where the plan base in
c and the set of execution points in p1

n−1 = s match, and show that if we can make
a transition from c, then we can make a step pn = (s, s′) from s, and end up with
a matching state-configuration pair s′ ∼ c′ where E(p1

n) matches Π ′. Note that if
we match the plan base and the set of execution points at each step, and update the
execution step according to the rule, then the history in guaranteed to be a prefix of
a path in τ(ξi(Λ)) (or a path in τ(ξi(Λ)) if the set of execution points is empty).

Let us consider possible transitions from c. Either, a planning goal rule is applied,
or one of the plans in Π is chosen and a suitable transition rule applied to execute
its first step.

If a planning goal rule rm is applied, then clearly the belief and goal conditions
of rm hold in c so by assumption they hold in s, hence in s, there is a transition by
R(fg(κm)∧ fb(βm))? to the same s with the same belief and goal base. The transition in
TS goes to c′ with the same belief and goal base as c and Π ′ extended with πm. In
M, we make a step along the path to s′ = s and add fp(πm) to the set of execution
points E(p1

n). Clearly, Π ′ and E(p1
n) match.

If the transition rule corresponds to executing one of the plans πi in Π , then we
have the following cases.

• πi = α;π: we execute a belief update action α and transit to c′. This is possible
only if in M there is an Rα transition to s′ such that s′ ∼ c′. In c′ in the plan
base Π ′ we have π instead of α;π. In the set of execution points for the next step
p1

n = s′ we have fp(π) instead of α; fp(π). Clearly, Π ′ and E(p1
n) match.

1 Using Theorem Proving to Verify Properties of Agent Programs 23

• πi = β?;π or πi = κ!;π. A transition from c to a configuration c′ where the plan
base contains π instead of πi is possible if and only if the test succeeds in σ,
so by Proposition 1 if and only if in M there is a corresponding R fb(β)? or R fg(κ)?

transition from s to itself, so pn = (s, s), s∼ c′, the execution point E(p1
n) contains

fp(π) instead of fp(πi), so Π ′ and E(p1
n) match.

• πi = (if φ then π1 else π2);π and in E(p0
n) we have (fb(φ)?; fp(π1)) ∪ (¬ fb(φ)?;

fp(π2)); fp(π). Since s ∼ c either φ is true in both s and c or ¬φ. Assume that φ
is true (the case for φ false is analogous). In TS we transit to c′ with π1;π in the
plan base and in M we transit to s′ by executing the test on the left branch of ∪
and replace fp(πi) in the set of execution points with fp(π1); fp(π) = fp(π1;π).

• πi = while φ do π1;π and in E(p0
n) we have (fb(φ)?; fp(π1))∗;¬ fb(φ)?; fp(π).

Since s ∼ c we have φ either true or false in both. If it is false then we transit
in TS to c′ with π in the plan base, and in M there is a ¬ fb(φ)? transition to s
itself, but now we replace (fb(φ)?; fp(π1))∗;¬ fb(φ)?; fp(π) in the set of execution
points with fp(π). If φ is true, then by the rule (6i) we go to c′ with Π ′ containing
π1;while φ do π1;π and by fb(φ)? in M we go to s′ with the set of execu-
tion points containing fp(π1); (fb(φ)?; fp(π1))∗;¬ fb(φ)?; fp(π). Note that the new
set of execution points and Π ′ match because fp(π1); (fb(φ)?; fp(π1))∗;¬ fb(φ)?;
fp(π) is the same as fp(π1;while φ do π1; π).

This achieves the desired correspondence in the direction from the existence of a
path in the operational semantics to the existence of a corresponding path in the
model; it is easy to check that the path to s′ is described by its history, and that
when we reach a state s corresponding to a configuration with an empty plan base,
its set of execution points is also empty and the history describes a path in τ(ξi(Λ)).

Let us consider the opposite direction (M⇒ TS). Suppose we have a path in M
from s0 to s which is in τ(ξi(Λ)). We need to show that there is a corresponding path
in the operational semantics. For this direction, we only need to decorate each com-
ponents of a step on the path in M with a set of execution points corresponding to
the plan base in the matching configuration c′. (We do not need the history because
we already know that the path in M is in τ(ξi(Λ)).)

Clearly, in the initial state s0, the set of execution points is empty, and s0 ∼ c0.
Now we assume that we have reached s and c such that s ∼ c and E(p1

n−1) and Π
match, where pn−1 is the last step on the path and p1

n−1 = s. Now we have to show
how for the next step along the path in M to a state s′ we can find a transition in TS
to a configuration c′ so that s′ ∼ c′ and the set of execution points in s′ matches Π ′.

Our task is made slightly harder by the fact that if we encounter, for example,
a test transition on a path in M, we do not necessarily know whether it is a test
corresponding to firing a new planning goal rule, or is an if or a while test in one
of the plans (there could be several plan expressions in E(p0

n) starting with the same
test fb(φ?), for example). Similarly, if we have an α transition on the path, several
plan expressions in E(p0

n) may start with an α (for example E(p0
n) = {α;α1, α;α2}),

so the question is how do we find a corresponding configuration in the operational
semantics. In the example above, the plan base could be either Π ′1 = {α1, α;α2} or

24 N. Alechina et al

Π ′2 = {α;α1, α2}. However, note that the path we are trying to match is in τ(ξi(Λ)), so
it contains transitions corresponding to a complete interleaved execution of all plans
currently in the set of execution points until the end. So we can look ahead at the rest
of the path and annotate ambiguous transitions with the corresponding plan indices.
In the example above, if the next transition is α1, we know that the ambiguous α
belongs to the first plan; if the next transition is α2, we annotate the ambiguous
α with the index of the second plan; if the next transition is α, then there are two
possible matching paths in TS , and we can pick one of them non-deterministically,
as both α’s have the same effect on the belief and goal base, for example annotate
the first α with the index of the first plan and the second α with the index of the
second plan.

Once we have indexed the ambiguous transitions, finding the corresponding path
in TS can be done in exactly the same way as in the proof for (TS ⇒ M). �

1.6 Example of using theorem proving to verify properties of an
agent program

In this section we briefly illustrate how to prove properties of agents in our logic,
using the vacuum cleaner agent as an example. We will use the following abbrevi-
ations: ci for cleani, ri for roomi, b for battery, s for suck, c for charge, r for
moveR, l for moveL. The agent has the following planning goal rules:

cb1 <- b | if rb1 then {s} else {l; s}
cb2 <- b | if rb2 then {s} else {r; s}
<- −b | if rb2 then {c} else {r; c}

Under the non-interleaved execution strategy, these planning goal rules can be trans-
lated as the following PDL program expression:

vac =d f ((Gc1∧Bb)?; (Br1?; s)∪ (¬Br1?; l; s))∪
((Gc2∧Bb)?; (Br2?; s)∪ (¬Br2?;r; s))∪
(¬Bb?; (Br2?;c)∪ (¬Br2?;r;c))

Given appropriate pre- and postconditions for the belief update actions in the ex-
ample program (such as the pre- and postconditions of moveR, moveL, charge and
suck given earlier in the paper), some of the instances of A3–A5 are:

A3r Bc1∧Br1∧¬Bb∧Gc2→ [r](Br2∧Bc1∧¬Bb∧Gc2)

A3s1 Gc1∧Gc2∧Br1∧Bb→ [s](Bc1∧∧Gc2∧Br1∧¬Bb)

A3s2 Gc1∧Gc2∧Br2∧Bb→ [s](Gc1∧∧Bc2∧Br2∧¬Bb)

A3c Br2∧Bc1∧¬Bb∧Gc2→ [c](Br2∧Bc1∧Bb∧Gc2)

1 Using Theorem Proving to Verify Properties of Agent Programs 25

A4r ¬Br1→¬〈r〉>

A5s Br1∧Bb→ 〈s〉>.

Using a PDL theorem prover such as MSPASS [246] (for properties without ∗)
or - [386], and instances of axioms A1-A5 such as those above, we can
prove a liveness property that if the agent has goals to clean rooms 1 and 2, and
starts in the state where its battery is charged and it is in room 1, it can reach a state
where both rooms are clean, and a safety property that it is guaranteed to achieve its
goal:

Gc1∧Gc2∧Bb∧Br1→ 〈vac
3〉(Bc1∧Bc2)

Gc1∧Gc2∧Bb∧Br1→ [vac3](Bc1∧Bc2)

where vac3 stands for vac repeated three times. The MSPASS encoding of the
first property is given in Appendix 1.9.1. Its verification using the web interface to
MSPASS is virtually instantaneous.

We can also prove, using -, a version of a blind commitment property
which states that an agent either keeps its goal or believes it has been achieved:

Gc1→ [vac+](Bc1∨Gc1)

In the appendix we split the proof of this property into two parts to simplify the
- encoding: first we prove using MSPASS Bc1∨Gc1→ [vac](Bc1∨Gc1)
(see Appendix 1.9.2) and then prove blind commitment using this as a lemma (see
Appendix 1.9.3).

The theorem prover encodings given in the appendix are produced by hand, but
this process can be automated at the cost of making the encoding larger (at worst,
exponential in the size of the agent’s program). In the remainder of this section we
sketch a naive approach to automating the encoding. Axioms A1, A2, A4 and A5 are
straightforward. For every literal l occurring in the agent program, we can generate
an instance of axioms A1 and A2. For every belief update action α occurring in the
agent’s program, we generate an instance of A4, and for each precondition of α,
we generate an instance of A5. The difficult case is the axiom schema A3, which
is a kind of frame axiom. It includes a formula Φ which intuitively encodes the
information about the state which does not change after executing an action α. To
generate a sufficient number of instances of A3 automatically, we have to use all
possible complete state descriptions for Φ (more precisely, all combinations of the
agent’s beliefs and goals which are not affected by α). Then the instances of A3 will
say, for every complete description of the agent’s beliefs and goals, what the state
of the agent after the performance of α will be. Clearly, this makes the encoding
exponential in the number of possible beliefs and goals of the agent. In the vacuum
cleaner example, the properties of the agent’s state are: its belief about its location,
its beliefs about the cleanliness of the two rooms, its belief about its battery, and
two possible goals. Even with the domain axioms ¬(Br1 ∧ Br2) and Br1 ∨ Br2 (the
agent is never in both rooms at the time and it is always in one of the rooms) which
reduce the number of possible beliefs about the agent’s location to 2, the number of

26 N. Alechina et al

possible belief states is 24 = 16 and the number of possible combined belief and goal
states is 26 = 64, requiring 64 instances of A3 for every action α. Note that this naive
approach to automatisation of encoding more or less reduces the theorem proving
task to a model-checking task (we use A3, A4 and A5 to specify the transition
relation, and the number of instances of A3 is equal to the number of entries in the
transition table). However, various ways of reducing the number of axiom instances
can be used. For example, we may use an approach similar to slicing [73], or adopt
a more efficient way of expressing frame conditions, following the work in situation
calculus [383] or, for a language without quantification over actions, [149].

The example above illustrates verification of a program under the non-itnterleaved
execution strategy. For verifying program under the interleaved strategy, a PDL the-
orem prover would need to be adapted to accept program expressions which contain
the interleaving operator. Alternatively, the program expression containing the in-
terleaving operator would need to be translated into PDL without interleaving.

1.7 Related Work

There has been a considerable amount of work on verifying properties of agent
programs implemented in other agent programming languages such as ConGolog,
MetateM, 3APL, 2APL, and AgentSpeak. Shapiro et al. in [393, 395] describe
CASLve, a framework for verifying properties of agents implemented in ConGolog.
CASLve is based on the higher-order theorem prover PVS and has been used to
prove, e.g., termination of bounded-loop ConGolog programs. However, its flexibil-
ity means that verification requires user interaction in the form of proof strategies.
Properties of agents implemented in programming languages based on executable
temporal logics such as MetateM [174], can also easily be automatically verified.
However these languages are quite different from languages like SimpleAPL, in
that the agent program is specified in terms of temporal relations between states
rather than branching and looping constructs. Other related attempts to bridge the
gap between agent programs such as 3APL and 2APL on the one hand and verifi-
cation logics on the other, e.g., [126, 130, 218], have yet to result in an automated
verification procedure.

There has also been considerable work on the automated verification of multi-
agent systems using model-checking [34, 290]. For example, in [66, 73], Bordini et
al. describe work on verifying programs written in Jason, an extension of AgentS-
peak(L). In this approach, agent programs together with the semantics of Jason se-
mantics translated into either Promela or Java, and verified using Spin or JPF model
checkers respectively. There has also been work on using model checking tech-
niques to verify agent programming languages similar to SimpleAPL [21,370,421].
In this approach agent programs and execution strategies are encoded directly into
the Maude term rewriting language, allowing the use of the Maude LTL model

1 Using Theorem Proving to Verify Properties of Agent Programs 27

checking tool to verify temporal properties describing the behaviour of agent pro-
grams.

The work reported here is an extended and revised version of [6]. It is also closely
related to our previous work on using theorem proving techniques to verify agent
deliberation strategies [7]. However in that work a fixed general execution strat-
egy is constrained by the execution model to obtain different execution strategies,
rather than different execution strategies being specified by different PDL program
expressions as in this paper.

1.8 Conclusion

In this paper, we proposed a sound and complete logic which allows the specifica-
tion of safety and liveness properties of SimpleAPL agent programs as well as their
verification using theorem proving techniques. Our logic is a variant of PDL, and
allows the specification of safety and liveness properties of agent programs. Our ap-
proach allows us to capture the agent’s execution strategy in the logic, and we proved
a correspondence between the operational semantics of SimpleAPL and the models
of the logic for two example execution strategies. We showed how to translate agent
programs written in SimpleAPL into expressions of the logic, and gave an example
in which we show how to verify correctness properties for a simple agent program
using theorem-proving. While we focus on APL-like languages and consider only
single agent programs, our approach can be generalised to other BDI-based agent
programming languages and the verification of multi-agent systems.

In future work, we would like to develop this verification framework further to
deal with agent programming languages extended with plan revision mechanisms.

Acknowledgements

We would like to thank to Renate Schmidt for help with MSPASS and -.
Natasha Alechina and Brian Logan were supported by the Engineering and Physical
Sciences Research Council [grant number EP/E031226].

28 N. Alechina et al

1.9 Appendix: Encodings of properties in MSPASS

1.9.1 MSPASS encoding of the example

begin_problem(PDL_vacuum_cleaner_example 1).

list_of_descriptions.

name(* PDL vacuum cleaner example 1 *).

author(*N. Alechina, M. Dastani, B. Logan, and J.-J. Ch. Meyer *).

description(* A formula which says that if the vacuum cleaner agent

starts in room 1 with charged battery and its goal is to clean

room 1 and room 2, then it will achieve its goals.

*).

end_of_list.

list_of_symbols.

% Rr - moveRight, Rl - moveLeft, Rs - suck, Rc - charge,

% br1 - believes that in room1, br2 - in room2, bb - battery charged,

% bc1 - believes room1 clean, bc2 - room2 clean,

% gc1 - goal to clean room1, gc2 - clean room2.

predicates[(Rr,2), (r,0), (Rl,2), (l,0), (Rs,2), (s,0), (Rc,2), (c,0),

(br1,0), (br2,0), (bb,0), (bc1,0), (bc2,0), (gc1,0),

(gc2,0)].

% The following interprets dia(r,...) as accessible by Rr,

% dia(l,...) as accessible by Rl, etc.

translpairs[(r,Rr), (l,Rl), (s, Rs), (c,Rc)].

end_of_list.

list_of_special_formulae(axioms, eml).

% instances of A3

prop_formula(

implies(and(gc1, gc2, br1, bb), box(s, and(bc1, gc2, br1, not(bb))))

).

prop_formula(

implies(and(bc1, br1, not(bb), gc2),

box(r, and(br2, bc1, not(bb), gc2)))

).

prop_formula(

implies(and(br2, bc1, not(bb), gc2), box(c, and(br2, bc1, bb, gc2)))

).

prop_formula(

implies(and(br2, bc1, bb, gc2), box(s, and(br2, bc1,not(bb), bc2)))

).

% instances of A5

prop_formula(

implies(bb, dia(s, true))

).

prop_formula(

implies(br1, dia(r, true))

).

prop_formula(

implies(br2, dia(l, true))

1 Using Theorem Proving to Verify Properties of Agent Programs 29

).

prop_formula(

implies(and(br2, not(bb)), dia(c, true))

).

end_of_list.

% The formula we want to prove below is

% gc1 & gc2 & br1 & bb -> <vac><vac><vac> (bc1 & bc2)

% where vac is the vacuum cleaner’s program:

% (gc1?; bb?; (br1?;s) U ((not br1)?;l;s)) U

% (gc2?; bb?; (br2?;s) U ((not br2)?;r;s)) U

% ((not bb)?; (br2?;c) U ((not br2)?;r;c)))

list_of_special_formulae(conjectures, EML).

prop_formula(

implies(

and (gc1, gc2, br1, bb),

dia(

or(

% rule1

comp(test(gc1),

comp(test(bb),

or(comp(test(br1), s),

comp(test(not (br1)), comp(l,s))))),

% rule2

comp(test(gc2),

comp(test(bb),

or(comp(test(br2), s),

comp(test(not (br2)), comp(r,s))))),

% rule 3

comp(test(not(bb)),

or(comp(test(br2), c),

comp(test(not(br2)), comp(r, c))))

), % end first vac or

dia(

or(

% rule1

comp(test(gc1),

comp(test(bb),

or(comp(test(br1), s),

comp(test(not (br1)), comp(l,s))))),

% rule2

comp(test(gc2),

comp(test(bb),

or(comp(test(br2), s),

comp(test(not (br2)), comp(r,s))))),

% rule 3

comp(test(not(bb)),

or(comp(test(br2), c),

comp(test(not(br2)), comp(r, c))))

), % end second vac or

dia(

or(

% rule1

30 N. Alechina et al

comp(test(gc1),

comp(test(bb),

or(comp(test(br1), s),

comp(test(not (br1)), comp(l,s))))),

% rule2

comp(test(gc2),

comp(test(bb),

or(comp(test(br2), s),

comp(test(not (br2)), comp(r,s))))),

% rule 3

comp(test(not(bb)),

or(comp(test(br2), c),

comp(test(not(br2)), comp(r, c))))

), % end third vac or

and(bc1, bc2))))

) % end implies

).

end_of_list.

end_problem.

1.9.2 MSPASS encoding of a lemma for the proof of the blind
commitment property of the vacuum cleaner agent

begin_problem(PDL_vacuum_cleaner_example3).

list_of_descriptions.

name(* PDL example 3 *).

author(*N. Alechina, M. Dastani, B. Logan and J.-J. Ch. Meyer*).

description(* A formula which says that if we start with bc1 or gc1,

then after each iteration of the program, bc1 or gc1.

*).

end_of_list.

list_of_symbols.

% Rr - moveRight, Rl - moveLeft, Rs - suck, Rc - charge,

% br1 - believes that in room1, br2 - in room2, bb - battery charged,

% bc1 - believes room1 clean, bc2 - room2 clean,

% gc1 - goal to clean room1, gc2 - clean room2.

predicates[(Rr,2), (r,0), (Rl,2), (l,0), (Rs,2), (s,0), (Rc,2), (c,0),

(br1,0), (br2,0), (bb,0), (bc1,0), (bc2,0), (gc1,0), (gc2,0)].

% The following interprets dia(r,...) as accessible by Rr,

% dia(l,...) as accessible by Rl, etc.

translpairs[(r,Rr), (l,Rl), (s, Rs), (c,Rc)].

end_of_list.

list_of_special_formulae(axioms, eml).

% world axioms

prop_formula(

not(and(br1,br2))

).

1 Using Theorem Proving to Verify Properties of Agent Programs 31

prop_formula(

or(br1,br2)

).

% instances of A2

prop_formula(

not(and(gc1,bc1))

).

prop_formula(

not(and(gc2,bc2))

).

% instances of A3

prop_formula(

implies(and(gc1, bb), box(s, or(bc1, gc1)))

).

prop_formula(

implies(and(bc1, bb), box(s, or(bc1, gc1)))

).

prop_formula(

implies(and(bc1, br1), box(r, and(bc1, br2)))

).

prop_formula(

implies(and(gc1, br1), box(r, and(gc1, br2)))

).

prop_formula(

implies(and(bc1, br2,not(bb)), box(c, and(bc1, br2, bb)))

).

prop_formula(

implies(and(gc1, br2,not(bb)), box(c, and(gc1, br2, bb)))

).

prop_formula(

implies(and(gc1, br2), box(l, and(gc1, br1)))

).

prop_formula(

implies(and(bc1, br2), box(l, and(bc1, br1)))

).

% instances of A4

prop_formula(

implies(not(bb), not(dia(s, true)))

).

prop_formula(

implies(not(br1), not(dia(r, true)))

).

prop_formula(

implies(not(br2), not(dia(l, true)))

).

prop_formula(

implies(not(and(br2, not(bb))), not(dia(c, true)))

).

% instances of A5

prop_formula(

implies(bb, dia(s, true))

).

prop_formula(

32 N. Alechina et al

implies(br1, dia(r, true))

).

prop_formula(

implies(br2, dia(l, true))

).

prop_formula(

implies(and(br2, not(bb)), dia(c, true))

).

end_of_list.

% The formula we want to prove below is

% bc1 v gc1 -> [vac] (bc1 v gc1)

% where vac is the vacuum cleaner’s program:

% (gc1?; bb?; (br1?;s) U ((not br1)?;l;s)) U

% (gc2?; bb?; (br2?;s) U ((not br2)?;r;s)) U

% ((not bb)?; (br2?;c) U ((not br2)?;r;c)))

list_of_special_formulae(conjectures, EML).

prop_formula(

implies(

or(bc1,gc1),

box(

or(

% rule1

comp(test(gc1),

comp(test(bb),

or(comp(test(br1), s),

comp(test(not (br1)), comp(l,s))))),

% rule2

comp(test(gc2),

comp(test(bb),

or(comp(test(br2), s),

comp(test(not (br2)), comp(r,s))))),

% rule 3

comp(test(not(bb)),

or(comp(test(br2), c),

comp(test(not(br2)), comp(r, c))))

), % end first vac or

or(bc1,gc1))

) % end implies

).

end_of_list.

end_problem.

1.9.3 - encoding of the blind committment property

prove(

%axioms

[

implies(and(gc1, br1, bb), box(s, and(bc1, br1, not(bb)))),

1 Using Theorem Proving to Verify Properties of Agent Programs 33

implies(and(gc1, br2, bb), box(s, and(gc1, bc2, br2, not(bb)))),

implies(and(bc1, br1, bb), box(s, and(bc1, br1, not(bb)))),

implies(and(bc1, br2, bb), box(s, and(gc1, bc2, br2, not(bb)))),

implies(and(bc1, br1), box(r, and(bc1, br2))),

implies(and(gc1, br1), box(r, and(gc1, br2))),

implies(and(bc1, br2,not(bb)), box(c, and(bc1, br2, bb))),

implies(and(gc1, br2,not(bb)), box(c, and(gc1, br2, bb))),

implies(and(gc1, br2), box(l, and(gc1, br1))),

implies(and(bc1, br2), box(l, and(bc1, br1))),

implies(not(bb), not(dia(s, true))),

implies(not(br1), not(dia(r, true))),

implies(not(br2), not(dia(l, true))),

implies(not(and(br2, not(bb))), not(dia(c, true)))

],

% The formula we want to prove below is

% gc1 -> [vac*] (bc1 v gc1)

% where vac is the vacuum cleaner’s program:

% (gc1?; bb?; (br1?;s) U ((not br1)?;l;s)) U

% (gc2?; bb?; (br2?;s) U ((not br2)?;r;s)) U

% ((not bb)?; (br2?;c) U ((not br2)?;r;c)))

implies(

gc1,

box(star(

or(

% rule1

comp(test(gc1),

comp(test(bb),

or(comp(test(br1), s),

comp(test(not (br1)), comp(l,s))))),

% rule2

comp(test(gc2),

comp(test(bb),

or(comp(test(br2), s),

comp(test(not (br2)), comp(r,s))))),

% rule 3

comp(test(not(bb)),

or(comp(test(br2), c),

comp(test(not(br2)), comp(r, c))))

)),

or(bc1,gc1)))

). % end prove

Chapter 2

The Refinement of Multi-Agent Systems

L. Aştefănoaei and F.S. de Boer

Abstract This chapter introduces an encompassing theory of refinement which
supports a top-down methodology for designing multi-agent systems. We present a
general modelling framework where we identify different abstraction levels of BDI
agents. On the one hand, at a higher level of abstraction we introduce the language
BUnity as a way to specify “what” an agent can execute. On the other hand, at a
more concrete layer we introduce the language BUpL as implementing not only
what an agent can do but also “how” the agent executes. At this stage of individual
agent design, refinement is understood as trace inclusion. Having the traces of an
implementation included in the traces of a given specification means that the imple-
mentation is correct with respect to the specification.

We generalise the theory of agent refinement to multi-agent systems in the pres-
ence of new coordination mechanisms extended with real time. The generalisation
is such that refinement is compositional. This means that refinement at the individ-
ual level implies refinement at the multi-agent system level. Compositionality is an
important property since it reduces heavily the verification process. Thus having a
theory of refinement is a crucial step towards the verification of multi-agent systems’
correctness.

L. Aştefănoaei
CWI (Centrum Wiskunde en Informatica), The Netherlands e-mail: astefano@cwi.nl

F.S. de Boer
CWI (Centrum Wiskunde en Informatica), The Netherlands e-mail: F.S.de.Boer@cwi.nl

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 35
DOI 10.1007/978-1-4419-6984-2 2, c© Springer Science+Business Media, LLC 2010

astefano@cwi.nl
F.S.de.Boer@cwi.nl

36 L. Aştefănoaei and F.S. de Boer

2.1 Introduction

In this chapter we describe a top-down methodology for designing multi-agent sys-
tems by refinement. We first focus on the design of individual agents. At this stage,
refinement means to reduce the non determinism of high-level agent specification
languages. Reducing the non determinism boils down to scheduling policies, i.e.,
to setting an order (possibly and time) of action executions. The agent specification
language we consider is abstract with respect to scheduling policies. It is inspired
by UNITY [94], a classical design methodology which emphasises the principles:

• “specify little in early stages of design” and

• “program design at early stages should not be based on considerations of control
flow”.

We place ourselves in the framework of BDI models [86]. As already a standard
notion, an agent is defined in terms of beliefs, desires, intentions. Beliefs and desires
(goals) usually represent the mental state of an agent, and intentions denote the
deliberation phase of an agent (often concretising the choice of executing a plan).

We introduce BUnity as an extension of the UNITY language to the BDI
paradigm. It is meant to represent an agent in the first stage of design. One only
needs to specify initial beliefs and actions (what an agent can do). We make the ob-
servation that “specify little” implies non deterministic executions of BUnity agents
(actions may be executed in any arbitrary order, for example). On the other hand,
BUpL (Belief Update programming Language) enriches BUnity constructions with
the notions of plans and repair rules. These are meant to refine the early stage non
determinism by specifying how and when actions are executed. In fact, plans imple-
ment scheduling policies. We have chosen BUpL as the representation of agents in
the last stage of design. Having fixed the levels of abstraction as being BUnity and
BUpL, we focus on the correctness of a given BUpL agent with respect to a BUnity
specification. By correctness we mean refinement, which is usually understood as
trace inclusion. A BUpL agent is correct with respect to a BUnity specification if
any possible BUpL behaviour (trace) is also a BUnity one. Since we are interested in
applying in practise our methodology, and since verifying trace inclusion is compu-
tationally hard, we further focus on simulation as a proof technique for refinement.
Additionally, since agents might have infinite behaviours, some of which are un-
likely to occur in practice, we provide a declarative approach to modelling fairness
and show how simulation works in such a context.

A clear extension of the above framework consists of applying the same method-
ology to a multi-agent setting. A first step is to lift the notion of abstraction levels
from individual agents to multi-agent systems. Considering that the behaviour of
the multi-agent system is simply the sum of the behaviours of individual agents is
a too unrealistic idea. Instead, we propose action-based coordination mechanisms,
to which we refer as choreographies. They represent global synchronisation and
ordering conditions restricting the execution of individual agents.

2 The Refinement of Multi-Agent Systems 37

Introducing coordination while respecting the autonomy of the agents is still a
challenge in the design of multi-agent systems. However, the advantage of the in-
frastructures we propose lies in their exogenous feature: the update of the agent’s
mental states is separated from the coordination pattern. Nobody changes the agent’s
beliefs but itself. Besides that choreographies are oblivious to mental aspects, they
control without having to know the internal structure of the agent. For example,
whenever a choice between plans needs to be taken, a BUpL agent is free to make
its own decision. The degree of freedom can be seen also in the mechanism for han-
dling action failures. The agent chooses one among possibly many available repair
rules without being constraint by the choreography. In these regards, the autonomy
of agents executed with respect to choreographies is preserved.

Extending the refinement relation from individual agents to multi-agent systems
requires solving a new problem since choreographies may introduce deadlocks. It
can be that though there is refinement at the individual agent level, adding a cho-
reography deadlocks the concrete multi-agent system but not the abstract one. We
take, as example, a choreography which specifies a BUpL agent to execute an ac-
tion not defined in the agent program itself (but only in the BUnity specification).
In this situation, refinement as trace inclusion trivially holds since the set of traces
from a deadlocked state is empty. Our methodology in approaching this problem
consists of, basically, formalising the following aspects. On the one hand, we de-
fine the semantics of multi-agent systems with choreographies as the set of maximal
traces, where we make the distinction between a success and a deadlock. These
traces consist of the parallel agents’ executions guided by the choreography. We de-
fine multi-agent system refinement as maximal trace inclusion. On the other hand,
agent refinement becomes ready trace inclusion, where a ready trace records not
only the actions being executed, but also those ones which might be executed. We
show that multi-agent system refinement is compositional. More precisely, the main
result is that agent refinement implies multi-agent system refinement in the pres-
ence of any choreography. Furthermore, the refined multi-agent system does not
introduce deadlocks with respect to the multi-agent system specification.

The last extension we propose regards time. A more expressive framework can be
obtained when action synchronisations depend also on time, not only on the disposal
of the agents to perform the actions. Thus, we address the problem of incorporating
time into choreographies such that the compositionality result we have remains valid
in the timed version. A first step is to extend choreographies by means of timed
automata [10] such that they constrain the timings of the actions. Having timed
choreographies requires, however, introducing time in agents themselves. Thus, in
our case, BUnity and BUpL need to be extended such that they reflect the passing
of time. In this respect, we have in mind that basic actions are a common ontology
shared by all agents. Since the nature of basic actions does not specify when to
be executed, our extension is such that the ontology remains timeless and “when”
becomes part of the specific agent applications.

Our contribution consists of introducing a general framework for modelling and
not programming agent languages. BUnity and BUpL are simple but expressive

38 L. Aştefănoaei and F.S. de Boer

agent languages, inspired by the already standard GOAL [60] and 3APL [222] lan-
guages. The operational semantics of the languages makes it easy to prototype them
as rewrite systems in Maude [105]. Maude has the advantage that it offers both ex-
ecution (by rewriting) and verification (by model-checking) of the prototyped sys-
tems. We stress the importance of prototyping before implementing complex agent
platforms. It is a quick method for proving that the semantics fulfils the initial re-
quirements. We emphasise that all the effort of introducing the formalism of multi-
agent system refinement is motivated by the need to perform verification. Multi-
agent systems are clearly more complex structures, and their verification tends to
become harder. However, in our framework, given the compositionality result, it is
enough to verify individual agents in order to conclude properties about the whole
multi-agent system.

2.1.1 Related Works

The design methodology we propose integrates in a unifying approach different
concepts and results from process theory [196]. Some aspects we deal with have
been taken into account in different works, however, from a distinct angle. Consid-
ering verification techniques for multi-agent systems, there are already some notable
achievements: [73] discusses model-checking AgentSpeak systems, [82] proposes
Temporal Trace Language for analysing dynamics between agents, [355] refers to
verifying deontic interpreted systems. However, we focus on the compositionality
of the refinement relation which reduces the problem of verifying the whole multi-
agent system to verifying the agents composing it. Concerning interaction in multi-
agent systems, this is usually achieved by means of communication. Communica-
tion, in turn, is implemented by message passing, or channel-based mechanisms.
This latter can be seen as the basis of implementing coordination artifacts. Such ar-
tifacts are usually built in terms of resource access relation in [368], or in terms of
action synchronisation [18]. We also mention the language Linda [190] which has
not yet been applied in a multi-agent setting but to service oriented services, where
the notion of data plays a more important role than synchrony. Control can be also
achieved by using social and organisational concepts (e.g., norms, roles, groups, re-
sponsibility) and mechanisms (monitoring agents’ actions and sanctioning) [145].
Organisation-based coordination artifacts are recently discussed in [49, 124, 415].
The concepts of choreography and orchestration have already been introduced to
web services (to the paradigm Service-oriented Computing), see [25, 311, 317] for
different approaches. Though we use the same terminology, our notion of choreogra-
phy is in essence different since we deliberately ignore communication issues. The
choreography model we define is explicit whereas in the other works choreography
is implicit in the communication protocol. Thus, we need to take into account dead-
lock situations that may appear because of “mall-formed” choreographies. Being
external, the choreography represents, in fact, contexts while in the other approaches
there is a distinction between the modularity and the contextuality of the communi-

2 The Refinement of Multi-Agent Systems 39

cation operator. With respect to timed automata, we mention that its application in
a multi-agent system is new. However, timed automata have already been applied to
testing real-time systems specifications [214] or to scheduling problems [85].

2.2 From Specification to Implementation Agent Languages

In this section we introduce two agent languages, BUnity and BUpL, each corre-
sponding to different levels of abstractions, with the latter being the more concrete
one. We further focus on the correctness of a concrete BUpL agent with respect to a
more abstract BUnity agent, where by correctness we understand refinement. In or-
der to automatise such a correctness result we take advantage of simulation as being
a sound and complete (under determinacy conditions) proof technique for refine-
ment. Before presenting our methodology, we first recall a few elementary notions
from process theory.

2.2.1 Preliminaries

We consider labelled transition systems (LTS) as tuples (Σ, s0, Act, →), where Σ
is a finite set of states, s0 is an initial state, Act is a set of actions (labels), and
→ describes all possible transitions. We denote by τ a special action called silent
action. Act − {τ} is the set of visible actions. We write s

a
→ s′ when (s,a, s′)∈→,

meaning “s may become s′ by performing an action labelled a”. It also means that
transition a is enabled on s. We say that a transition system is deterministic when for
any state s, and for any action a, s

a
→ s′ and s

a
→ s′′ implies s′′ = s′. We call s

τ
→ s′

an idling transition and we abbreviate it by s→ s′. The “weak” arrow ⇒ denotes
the reflexive and transitive closure of→, and

a
⇒ stands for⇒

a
→⇒. A computation

in a transition system is defined to be a sequence of the form s0
l0
→ s1

l1
→ s2..., where

li ∈ Act, i ∈ N. It can be either finite (when there is no possible transition from the
last state), or infinite. For a computation σ, the corresponding trace, tr(σ), is the
sequence of visible actions (a word defined on (Act− {τ})ω). The set of all traces
of a system S (the traces corresponding to all computations starting with the initial
state of the system) is denoted by Tr(S).

2.2.2 Formalising Mental States and Basic Actions

In the current approach, the underlying logical framework of mental states is a frag-
ment of Herbrand logic. We consider F and Pred infinite sets of function, resp.

40 L. Aştefănoaei and F.S. de Boer

predicate symbols, with a typical element f , resp. P. Variables are denoted by the
symbol x. Each function symbol f has associated a non-negative integer n, its arity.
Function symbols with 0-arity are also called constants. Terms, usually denoted by
the symbol t, are built from function symbols and variables. Formulae, usually de-
noted by the symbol ϕ, are built from predicates and the usual logical connectors.
To sum up, the BNF grammar for terms and formulae is as follows:

t ::= x | f (t, . . . , t)
ϕ ::= P(t, . . . , t) | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ

An atom is any formula P(t, . . . , t). A literal is either an atom or the negation of
an atom. A term with no variables is called ground. A formula is either ground, or
open. In our case, we consider that open formulae have no quantifiers, all variables
are understood as being existential. The set of all ground atoms built upon F and
Pred is a Herbrand model.

Mental states are characterised in terms of beliefs. In the current framework, we
consider beliefs as ground atoms, organised in the so-called belief bases (subsets of
the Herbrand model), which we denote by B.

Given B a belief base, the satisfaction relation for ground formulae is defined
using structural induction, as usually. For defining the satisfaction relation of open
formulae, we consider the usual notion of substitutions as functions that replace
variables with terms, denoted by [x/t] . . . [x/t]. Given a syntactical expression e and
a substitution θ, we denote the application of θ to e by eθ, rather than by θ(e). The
composition θθ′ of two substitutions θ and θ′ is defined as θθ′(x) := θ(θ′(x)), and it
is associative. The satisfaction relation for open formulae is as follows:

B |= ϕ iff exists θ s.t. B |= ϕθ

The substitution θ is ground (the substituting terms have no variables). This is be-
cause the belief base B is ground. We make the remark that θ is obtained by solving
a matching (and not unification) problem. From a complexity point of view, this is
important since it is easier to implement a linear algorithm for matching than for
unification. We say a term s matches a ground term t if there exists a substitution
(called matcher) such that sθ is syntactically equal to t. The matching problem ex-
tends easily to formulae and belief bases. We consider S ols(B |= ψ) as the set of
all matchers. We say the substitution is the identity function when ψ is a ground
formula satisfied in B.

Basic actions are functions defined as pairs (ψ,ξ), where ψ are formulae which
we call preconditions, and ξ are sets of literals which we call effects. The following
inclusions are required:

Var(ξ) ⊆ Var(ψ) = {x1, . . . , xn},

where Var(e) denotes the set of variables in a syntactic expression e. We use the
symbolA for the set of basic actions’ definitions. We refer to Act as the set of basic
action names with typical element a. We further use the notation aθ to represent

2 The Refinement of Multi-Agent Systems 41

action terms which result from the application of substitutions. By abuse of notation
we sometimes refer to a(x) (resp. ψ(x), ξ(x)) as a (resp. ψ, ξ) when x, the set of
variables, is not relevant.

Given a basic action definition a = (ψ,ξ), if matching ψ to B has a solution θ,
then the effect of aθ is to update the belief base by adding or removing ground
atoms from the set ξθ: {

B] lθ = B∪ lθ, l ∈ ξ
B]¬lθ = B\ lθ, ¬l ∈ ξ

We write B] ξθ to represent the result of an update operation, which is automati-
cally guaranteed to be consistent since we add only positive literals.

2.2.3 BUnity Agents

BUnity language represents abstract agent specifications. Its purpose is to model
agents at a coarse level, using a minimal set of constructions. A BUnity agent ab-
stracts from specific orderings (for example, action planning). Hence her executions
are highly non deterministic.

The mental state of a BUnity agent is simply a belief base. On top of basic
actions, Bunity language allows a finer type of construction, conditional actions,
which are organised in a set denoted by C. A conditional action is built upon a basic
action. It is syntactically defined by φBdo(a), where φ is a query on the belief base,
and a is the name of an action. Intuitively, conditional actions are like await state-
ments in imperative languages: await φ do a, action a can be executed only when φ
matches the current belief base.

Both basic and conditional actions have enabling conditions, and this might raise
confusion when distinguishing them. The intuition lying behind the need to con-
sider them both is that they demand information at different levels.The precondition
of a basic action should be understood a built-in restriction which internally enables
belief updates. It is independent of the particular choice of application. A condi-
tional action is executed in function of certain external requirements (reflected in
the mental state). Thus it is application dependent. The external requirements are
meant to be independent of the built-in enabling mechanism. Whether is agent “A”
or agent “B” executing an action a, the built-in condition should be the same for
both of them. Nevertheless, each agent may have its own external trigger for action
a.

A BUnity agent is defined as a tuple, (B0, A, C), where B0 is a set of initial
beliefs. For such a configuration, we define an operational semantics in terms of
labelled transition systems.

Definition 2.1 (BUnity Semantics). Let (B0,A, C) be a BUnity configuration. The
associated LTS is (Σ, B0, L,→), where:

42 L. Aştefănoaei and F.S. de Boer

• Σ is a set of states (belief bases)
• B0 is the initial state (the initial belief base)
• L is a set of ground action terms
• → is the transition relation, given by the rule:

φ.do(a) ∈ C a = (ψ,ξ) ∈ A θ ∈ S ols(B |= (φ∧ψ))

B
aθ
→B] ξθ

(act)

We consider the meaning of a BUnity agent defined in terms of possible se-
quences of mental states, and its externally observable behaviour as sequences of
executed actions. Equally, the meaning of a BUnity agent is the set of all possible
computations of its associated LTS, and the behaviour, the trace set (as words on
action terms). Our focus on visible actions (and not states) is motivated by the fact
that, in studying simulation, we are interested in what we see and not how the agent
thinks. We take the case of a robot: one simulates his physical actions, lifting or
dropping a block, for example, and not the mental states of the robot.

The transition rule (act) captures the effects of performing the action a. It basi-
cally says that if there is a conditional action φ.do(a) and the query φ has a solution
in the current mental state then if the precondition of a matches the current belief
base new beliefs are added/deleted with respect to the effects of a.

We take, as an illustration, a known problem, which we first found in [222], of
an agent building a tower of blocks. An initial arrangement of three blocks A,B,C
is given there: A and B are on the floor, and C is on top of A. The goal1 of the agent
is to rearrange them such that A is on the floor, B on top of A and C on top of B.
The only action an agent can execute is to move one block on the floor, or on top of
another block, if the latter is free.

B0 = { on(C,A), on(A, f loor), on(B, f loor),
f ree(B), f ree(C), f ree(f loor) }

A = { move(x,y,z) = (on(x,y)∧ f ree(x)∧ f ree(z),
{ on(x,z), ¬on(x,y), ¬ f ree(z) }) }

C = { ¬(on(B,A)∧on(C,B)) . do(move(x,y,z)) }

Fig. 2.1 A BUnity Toy Agent

The example from Figure 2.1 is taken in order to underline the difference between
enabling conditions (for basic actions) and triggers (for conditional actions): on the
one hand, it is possible to move a block x on top of another block z, if x and z are
free; on the other hand, given the goal of the agent, moves are allowed only when
the configuration is different than the final one.

1 We do not explicitly model goals. Please check Section 2.2.7 for a discussion motivating our
choice.

2 The Refinement of Multi-Agent Systems 43

2.2.4 Why BUnity Agents Need Justice

In non deterministic systems that abstract from scheduling policies, some traces are
improbable to occur in real computations. In this sense, the operational semantics
(given by transition rules) is too general in practise: if the actions an agent can
execute are always enabled, it should not be the case that the agent always chooses
the same action. Such executions are usually referred to as being unfair.

For example, we imagine a scenario illustrative for cases where modelling fair-
ness constraints is a “must”. For this, we slightly complicate the “tower” problem
from the previous section, by giving the agent described in Figure 2.1 an extra as-
signment to clean the floor, if it is dirty. Thus the agent have two alternatives: either
to clean or to build. We add a basic action, clean = (¬ cleaned, {cleaned}). We en-
able the agent to execute this action at any time, by setting > as the query of the
conditional action calling clean, i.e., > .do(clean).

We note that it is possible that the agent always prefers cleaning the floor instead
of rearranging blocks, in the case that the floor is constantly getting dirty. We want
to cast aside such traces and moreover, we want a declarative, and not imperative
solution. Our option is to follow the approach from [296]: we constrain the traces
by adding fairness conditions, modelled as linear temporal logic (LTL) properties.
Fairness is there expressed either as a weak, or as a strong constraint. They both
express that actions which are “many times” enabled on infinite execution paths
should be infinitely often taken. The difference between them is in the definition of
“many times” which is continuously (resp. infinitely often). Due to the semantics of
conditional actions, it follows that the choice of executing one action cannot disable
the ones not chosen and thus BUnity agents only need weak fairness.

Definition 2.2 (Justice [296]). A trace is just (weakly fair) with respect to a transi-
tion a if it is not the case that a is continually enabled beyond some position, but
taken only a finite number of times.

To model such a definition as LTL formulae we need only two future operators,
♦ (eventually) and � (always). Their satisfaction relation is defined as follows:

σ |= ♦φ iff (∃i > k)(si |= φ)
σ |= �φ iff (∀i > k)(si |= φ),

where s0, . . . , sk, . . . are the states of a computation σ. By means of these operators
we define weak fairness for BUnity as:

just1 =
∧

a∈Act

(♦� enabled(φ .do(a))→ �♦ taken(a)) .

where enabled and taken, predicates on the states of BUnity agents, are defined as:

B |= enabled(φ .do(a)) iff a = (ψ,ξ)∧B |= φ∧ψ

B |= taken(a) iff B
aθ
→B′

44 L. Aştefănoaei and F.S. de Boer

Such a fairness condition ensures that all fair BUnity traces are of the form
(clean∗ (moveθ)∗)ω, or equally {(cleann (moveθ)m)k | ∀n,m ∈ N,k ∈ N∪ {∞}}. We
note that the advantage of a declarative approach to modelling fairness is the fact
that we do not need to commit to a specific scheduling policy as it is the case when
implementing fairness by means of a scheduling algorithm, eg., Round-Robin. A
scheduling policy would basically correspond to fixing the exponents n and m.

2.2.5 BUpL Agents

The BUnity agent described in Figure 2.1 is highly non deterministic. It is possible
that the agent moves C on the floor, B on A, and C on B. This sequence represents,
in fact, the shortest one to achieving the goal. However, it is also possible that the
agent pointlessly move C from A to B and then back from B to A.

BUpL language allows the construction of plans as a way to order actions. We
refer to P as a set of plans, with a typical element p, and to Π as a set of plan
names, with a typical element π. Syntactically, a plan is defined by the following
BNF grammar:

p ::= a(t, . . . , t) | π(t, . . . , t) | a(t, . . . , t); p | p+ p

with ’;’ being the sequential composition operator and ’+’ the choice operator, with
a lower priority than ’;’.

The construction π(x1, . . . , xn) is called abstract plan. It is a function of arity n,
defined as π(x1, . . . , xn) = p. Abstract plans should be understood as procedures in
imperative languages: an abstract plan calls another abstract plan, as a procedure
calls another procedure inside its body.

BUpL language provides a mechanism for handling the failures of actions in
plans through constructions called repair rules. A plan fails when the current action
cannot be executed. Repair rules replace such a plan with another. Syntactically,
they have the form φ← p, and it means: if φ matches B, then substitute the plan that
failed for p.

A BUpL agent is a tuple (B0, A, P, R, p0), where B0, A are the same as for a
BUnity agent, p0 is the initial plan, P is a set of plans and R is a set of repair rules.

Plans, like belief bases, have a dynamic structure, and this is why the mental state
of a BUpL agent incorporates both the current belief base and the plan in execution.
The operational semantics for a BUpL agent is as follows:

Definition 2.3 (BUpL Semantics). Let (B0,A, P, R, p0) be a BUpL configuration.
Then the associated LTS is (Σ, (B0, p0), L,→), where:

• Σ is a set of states, tuples (B, p)

• (B0, p0) is the initial state

2 The Refinement of Multi-Agent Systems 45

p = (a; p′) a = (ψ,ξ) ∈ A θ ∈ S ols(B |= ψ)

(B, p)
aθ
→ (B] ξθ, p′θ)

(act)

(B, pi)
µ
→ (B′, p′)

(B, (p1 + p2))
µ
→ (B′, p′)

(sumi)

(B,a; p) 6 a→ φ← p′ ∈ R θ ∈ S ols(B |= φ)

(B, p)
τ
→ (B, p′θ)

(f ail)

π(x1, . . . , xn) := p

(B,π(t1, . . . , tn))
τ
→ (B, p(t1, . . . , tn))

(π)

Fig. 2.2 BUpL Rules

• L is a set of labels, either ground action terms or τ

• → represents the transition rules given in Figure 2.2.

As it was the case for BUnity agents, we consider the meaning of a BUpL agent
defined in terms of possible sequences of mental states, and its externally observable
behaviour as sequences of executed actions.

The transition rule (act) captures the effects of performing the action a which is
the head of the current plan. It basically says that if θ is a solution to the matching
problem B |= ψ where ψ is the precondition of action a then the current mental state
changes to a new one, where the current belief base is updated with the effects of a
and the current plan becomes the “tail” of the previous one. The transition rule (f ail)
handles exceptions. If the head of the current plan is an action that cannot be exe-
cuted (the set of solutions for the matching problem is empty) and if there is a repair
rule φ← p′ such that the new matching problem B |= φ has a solution θ then the plan
is replaced by p′θ. The transition rule (π) implements “plan calls”. If the abstract
plan π(x1, . . . , xn) defined as p(x1, . . . , xn) is instantiated with the terms t1, . . . , tn then
the current plan becomes p(t1, . . . , tn) which stands for p[x1/t1] . . . [xn/tn]. The tran-
sition rule (sumi) replaces a choice between two plans by either one of them. The
label µ can be either a ground action name or a τ step, in which case B′ = B, and p′

is a valid repair plan (if any).

We take as an example a BUpL agent that solves the tower of blocks problem. It
has the same initial belief base and the same basic action as the BUnity agent.

The BUpL agent from Figure 2.3 is modelled such that it illustrates the use of re-
pair rules: we explicitly mimic a failure by intentionally telling the agent to move B
on A. Similar scenarios can easily arise in multi-agent systems: imagine that initially
C is on the floor, and the agent decides to move B on A; imagine also that another

46 L. Aştefănoaei and F.S. de Boer

B0 = { on(C,A), on(A, f loor), on(B, f loor),
f ree(B), f ree(C), f ree(f loor) }

A = { move(x,y,z) = (on(x,y)∧ f ree(x)∧ f ree(z),
{ on(x,z), ¬on(x,y), ¬ f ree(z) }) }

P = { p0 = move(B, f loor,A);move(C, f loor,B) }

R = { on(x,y)← move(x,y, f loor); p0 }

Fig. 2.3 A BUpL Toy Agent

agent comes and moves C on top of A, thus moving B on A will fail. The failure
is handled by on(x,y)← move(x,y, f loor); p0. Choosing [x/A][y/C] as a matcher,
enables the agent to move C on the floor and after the initial plan can be restarted.

2.2.6 Why BUpL Agents Need Compassion

Though BUpL agents are meant to reduce the non determinism from BUnity agent
specifications, unfair executions are not ruled out because of the non determin-
ism in the choices between plans and/or repair rules. To illustrate this, we assign
a mission plan to the BUpL agent described in Figure 2.3, mission = cleanR +
rearrange(B,A,C), where cleanR is a tail-recursive plan, cleanR = clean; cleanR,
with clean being the action defined in Section 2.2.4. The plan rearrange generalises
the previously defined p0: rearrange(x,y,z) = move(x, f loor,y); move(z, f loor, x). It
consists of reorganising free blocks placed on the floor, such that they form a tower.
This plan fails if not all the blocks are on the floor, and the failure is handled by the
already defined repair rule, which we call r1. We add a repair rule, r2, >← mission,
which simply makes the agent restart the execution of the plan mission.

As it was the case with the BUnity agent from the Section 2.2.4, it is possible, in
the above scenario, that the BUpL agent always prefers cleaning the floor instead of
rearranging blocks, though this is useless when the floor has already been cleaned.
Nevertheless, such cases are disregarded if one requires that executions are fair. The
only difference from the fairness condition imposed on the executions of BUnity
agents is that plans need not be continuously but infinitely often enabled.

We consider two scenarios for defining fairness with respect to choices in repair
rules and plans. The execution of rearrange has failed. Both repair rules r1 and r2
are enabled, and always choosing r2 makes it impossible to make the rearrangement.
This would not be the case if r1 were triggered. It follows that the choice of repair
rules should be weakly fair:

just2 =
∧
p∈P

(♦� enabled(φ← p)→ �♦ taken(p)) .

2 The Refinement of Multi-Agent Systems 47

The repair rule r1 has been applied, and all three blocks are on the floor. Return-
ing to the initial mission and being in favour of cleaning leads again to a failure
(the floor is already clean). The only applicable repair rule is r2 which simply tells
the agent to return to the mission. Thus, it can be the case that, though rearranging
the blocks is enabled, it will never happen, since the choice goes for the plan clean
(which always fails). Therefore, because plans are not continuously enabled, their
choice has to be strongly fair:

Definition 2.4 (Compassion [296]). A trace is compassionate (strongly fair) with
respect to a transition a if it is not the case that a is infinitely often enabled beyond
some position, but taken only a finite number of times.

As it was the case with justice, modelling the above definition as a linear temporal
logic formula is straight-forward, however we refer to plans instead of actions:

compassionate =
∧
p∈P

(�♦ enabled(p)→ �♦ taken(p))

In the above scenarios enabled and taken are defined similarly as in the case of
actions for the language BUnity: (1) a repair rule is enabled when its precondition
is satisfied in the belief base; (2) a plan is enabled when the precondition of its first
action is satisfied; (3) a plan is taken when its first action is taken.

(B,a; p) |= enabled(a; p) iff a = (ψ,ξ)∧B |= ψ
(B,a; p) |= enabled(φ← p′) iff B |= φ
(B,a; p) |= taken(a; p) iff (B,a; p)

a
→ (B′, p)

The fairness conditions ensure that all fair BUpL traces are of the form (clean∗

(moveθ)∗)ω which is exactly the same as in the case of the BUnity agent. This is a
positive result, since we are interested in the fair refinement between the BUpL and
the BUnity agent.

2.2.7 Appraising Goals

We have deliberately cast aside goals in BUnity and BUpL. This is mainly for sim-
plicity reasons. The usual way ([60, 222]) to explicitly incorporate goals is to fix a
particular representation, for example, as a conjunction of ground atoms (which we
might understand as a special case of a belief base). The corresponding change in the
semantics is to extend the queries of BUnity conditional actions and of BUpL repair
rules such that they do not interrogate only belief bases but also goals. Additionally,
plan calls should be extended such that goals can trigger plan executions.

Given that our focus is on verification, being able to represent goals implicitly
is acceptable enough in our framework. Furthermore, the expressive power of the

48 L. Aştefănoaei and F.S. de Boer

languages is not necessarily decreased. We can, without changing the syntax and the
semantics of the languages, have a declarative modelling of goals as LTL formulae.
In such a situation, we would be interested in any agent execution which satisfies
a given goal. This problem can be equally stated as a reachability problem and
the answer can be provided by verification. More precisely, model-checking the
negation of the goal returns, in fact, a counter-example denoting a successful trace
(leading to the achievement of the goal) in the case that there exists one.

For example, we can define, with respect to the scenario introduced in the previ-
ous sections, the LTL predicates

goal1 = ♦ f act(cleaned)
goal2 = ♦(f act(on(A, f loor))∧ f act(on(B,A))∧ f act(on(C,B)))

where fact is a predicate defined on the mental states of either BUnity or BUpL
agents in the following way:

(B, p) |= f act(P) iff B |= P.

Model-checking that the property ¬ (goal1∧ goal2) holds in a state reachable
from the initial one returns a counterexample representing the minimal trace clean
move(C, f loor) move(B,A) move(C,B). This execution leads to a state where both
goal1and goal2 are satisfied.

2.3 The Refinement of Individual Agents

We have already mentioned in the introduction that we understand BUnity as a typi-
cal abstract specification language, and BUpL as an implementation language. Since
control aspects are ignored in BUnity models, BUnity is a “highly” non determin-
istic language. Such non determinism is reduced in BUpL agents. We are interested
in the correctness of a BUpL agent with respect to a BUnity agent, or equally stated,
in the refinement between a BUpL and a BUnity agent. Refinement is usually de-
fined as trace inclusion, all the traces of the implementation are contained among
the traces of the specification.

Definition 2.5 (Refinement). Let (B0,A, C) be a BUnity agent with its initial men-
tal state B0 and let (B0, A, P, R, p0) be a BUpL agent with its initial mental state
(B0, p0). We say that the fair executions of the BUpL agent refine the fair executions
of the BUnity agent ((B0, p0) ⊆ B0) iff every trace of the BUpL agent is also a trace
of the BUnity agent, that is Tr((B0, p0)) ⊆ Tr(B0).

Being that we are interested only in fair agent executions, we consider also re-
finement in terms of fair trace inclusion where we take into account the definitions
of just1, just2 and compassionate as introduced in the previous sections.

2 The Refinement of Multi-Agent Systems 49

Definition 2.6 (Fair Refinement). Let (B0,A, C) be a BUnity agent with its initial
mental stateB0 and let (B0,A,P,R, p0) be a BUpL agent with its initial mental state
(B0, p0). We say that the fair executions of the BUpL agent refine the fair executions
of the BUnity agent ((B0, p0) ⊆ f B0) iff every fair trace of the BUpL agent is also
a fair trace of the BUnity agent, that is (∀tr ∈ Tr((B0, p0))) (σtr |= compassionate
∧ just2) ⇒ (tr ∈ Tr(B0)∧σ′tr |= just1), where σtr (resp. σ′tr) is any corresponding
computation path in the transition system associated to the BUpL (resp. BUnity)
agent.

We note that in the above definitions we have used the same symbols for both
initial belief bases (B0) and sets of action definitions (A). This is not a restriction,
it only simplifies the notation.

Proving refinement by definition is not practically feasible because the set of
traces may be considerably large. We would need to check that for any solution
to matching problems the corresponding trace belongs to both implementation and
specification. Instead, refinement is usually proved by means of simulation, which
has the advantage of locality of search: one looks for checks at the immediate (suc-
cessor) transitions that can take place. We recall that the possible transitions for
BUpL and BUnity agents are either τ steps (corresponding to choices between plans
and repair rules) or steps labelled with action terms. Since we are interested in sim-
ulating only visible actions, we refer to weak simulation, which is oblivious with
respect to τ steps.

Definition 2.7 (Weak Simulation). Let (B0,A, C) be a BUnity agent with its initial
mental stateB0 and let (B0,A,P,R, p0) be a BUpL agent with its initial mental state
(B0, p0). Let Σ, Σ′ be the sets of mental states for each agent (B0 ∈ Σ, (B0, p0) ∈ Σ′)
and let R be a relation, R ⊆ Σ ×Σ′. R is called a weak simulation if, whenever B0 R
(B0, p0), if (B0, p0)

a
⇒ (B, p), then it is also the case that B0

a
→B and B R (B, p).

Definition 2.8. Let (B0, A, C) be a BUnity agent with its initial mental state B0
and let (B0,A, P, R, p0) be a BUpL agent with its initial mental state (B0, p0). We
say that the BUnity agent weakly simulates the BUpL agent ((B0, p0) . B0) if there
exists a weak simulation R such that B0 R (B0, p0).

We recall that in general simulation is a sound but not necessarily complete
proof technique for refinement. We take the classical situation from Figure 2.4 as
a counter-example. However, simulation is complete when the simulating system is
deterministic (see, for example, [196]). We make the remark that in the case of finite
transition systems it is always possible to determinise a non deterministic system by
means of a power set construction ([9] for the case of finite traces, and [319, 382]
for the case of infinite traces). However, “determinization” is computationally hard
(2O(nlogn) in the number of states [382]) and thus usually unfeasible when the focus
is on verification.

In our case, the simulating agent is a BUnity one. BUnity agents, though highly
non deterministic with respect to control issues, have the property that they are mod-
elled by deterministic (see the definition from Section 2.2.1) transition systems. This

50 L. Aştefănoaei and F.S. de Boer

s2 s
′

1
s

′

3

s0 s1 s
′

0

s3 s
′

2
s

′

4

a
b

c

a

a

b

c

Fig. 2.4 Refinement but not simulation

is because though a BUnity agent makes arbitrary decisions regarding which action
to execute, the mental state reflecting the effect of the chosen action is uniquely
determined, thus actions themselves are deterministic. It follows that, in our frame-
work, simulation is not only a sound but also a complete proof technique for refine-
ment.

We want to reduce the problem of deciding simulation between a BUpL and
a BUnity agent to a verification problem. For this, we give a modal characterisa-
tion to simulation by constructing the synchronised product of a BUpL and BUnity
agent and by defining an LTL property on the states of the product. The property is
basically satisfied when the product reaches a deadlock state. We show that it is suf-
ficient and necessary to detect the existence of a deadlocked state in order to prove
simulation, and thus refinement.

Definition 2.9 (BUpL-BUnity Synchronised Product). Let (B0,A,C) be a BUnity
agent with its initial mental state B0 and let (B0,A, P, R, p0) be a BUpL agent with
its initial mental state (B0, p0). If I = (Σ, (B0, p0), Act∪ {τ},→1) and S = (Σ′, B0,
Act,→2) are the corresponding transition systems to the BUpL, resp. BUnity agent,
then their left synchronised product is I ⊗S = (Σ ×Σ′, 〈(B0, p0),B0〉, Act,→). The
semantics is given by the following transition rule:

(B, p)
a
⇒1 (B′, p′) B

a
→2 B

′

〈(B, p),B〉
a
→ 〈(B′, p′),B′〉

Mathematically, the choice between either first the BUpL agent performs the step
and then the BUnity performs the same step or the other way around is insignificant.
However, from an implementation point of view, it is better to make the transition
rule conditional. Only if the BUpL agent can fire an action the product changes state
depending on whether the BUnity agent can mimic the BUpL agent. We say that
the BUpL agent drives the simulation. We further say that if the BUnity agent can
execute the same action, the product reaches a “good” state. Otherwise, the product
is in a deadlocked state.

Definition 2.10 (Deadlock). Let ⊥ be the property ((B, p)
a
⇒1 (B′, p′) ∧ B′′ 6 a→2).

The state 〈(B, p),B′〉 has a deadlock when ⊥ holds. That is:

〈(B, p),B′〉 |= ⊥ iff (B, p)
a
⇒1 (B′, p′) ∧ B′′ 6 a→2.

2 The Refinement of Multi-Agent Systems 51

We say that the product is deadlock-free if it has no deadlocks.

We note that we make the difference between a deadlocked and a terminal prod-
uct state, where the only possible transition for the BUpL agent is the idling tran-
sition. We further make the remark that, since it basically depends on the BUnity
agent being able to perform a certain action, the definition of deadlock introduces
asymmetry in the executions of the BUpL and BUnity product.

Proposition 2.1. Let (B0, A, C) be a BUnity agent with its initial mental state B0
and let (B0, A, P, R, p0) be a BUpL agent with its initial mental state (B0, p0).
We then have that the BUpL agent refines the BUnity agent ((B0, p0) ⊆ B0) iff
〈(B0, p0),B0〉 |= �¬⊥, where 〈(B0, p0),B0〉 is the initial state of the BUpL-BUnity
left synchronised product.

Proof. Since the proof is basically a simplification of the one we present for Theo-
rem 2.1, we leave it to the reader.

In what follows we focus on the “fair” version of Proposition 2.1.

Theorem 2.1. Let (B0,A, C) be a BUnity agent with its initial mental state B0 and
let (B0, A, P, R, p0) be a BUpL agent with its initial mental state (B0, p0). We
then have that the BUpL agent fairly refines the BUnity agent ((B0, p0) ⊆ f B0) iff
〈(B0, p0),B0〉 |= compassionate ∧ just2 → just1 ∧�¬⊥, where 〈(B0, p0),B0〉 is the
initial state of the BUpL-BUnity left synchronised product.

Proof. We recall that an LTL property holds in a state s if and only if it holds for
any computation path σ beginning with s.
“⇒”:
Assume that 〈(B0, p0),B0〉 6|= compassionate ∧ just2 → just1 ∧�¬⊥. This means
that there exists a computation path (σ,σ′) in the BUpL-BUnity product such that
σ |= compassionate ∧ just2 (*) and either (1) ♦⊥ or (2) ¬ just1 holds. From (*)
we have that tr(σ) is a fair BUpL trace. From the hypothesis (B0, p0) ⊆ f B0 we
have that there exists a BUnity computation path (which must be σ′ since BUnity
is deterministic) such that tr(σ) = tr(σ′) and σ′ |= just1 thus (2) cannot be true.
Let us now consider (1). In order to have that ♦⊥ holds for (σ,σ′) there must be a
deadlocked state 〈(B, p),B〉 on this path. But this implies that there is a fair BUpL
trace tr(σ)a which does not belong to the set of fair BUnity traces, thus contradicting
the hypothesis.
“⇐”:
Assume that 〈(B0, p0),B0〉 |= compassionate ∧ just2, meaning that any product path
is fair with respect to the BUpL path. We make the remark that we do not need to
worry about the “vacuity” problem (compassionate ∧ just2 being always false) since
there always exists a fair computation path (any scheduling algorithm will provide
one). We now need to prove that 〈(B0, p0),B0〉 |= just1 (*) and 〈(B0, p0),B0〉 |= �¬⊥
(**) implies fair refinement. We do this by proving that (**) implies simulation (thus

52 L. Aştefănoaei and F.S. de Boer

also refinement). Since we have (*), the product paths are also fair with respect to
BUnity.

We now construct a relation R containing all pairs of BUpL and BUnity reachable
states and we prove R is a simulation relation. Let R = {((B, p),B) | 〈(B0, p0),B0〉

→∗ 〈(B, p),B〉}. Let ((B, p),B) ∈ R s.t. (B, p)
a
⇒ (B′, p′). It is then the case that

also B
a
→ B′ otherwise 〈(B, p),B〉 |= ⊥. We further need to prove that 〈(B′, p),B′〉

is in R. This is, indeed, true since (B0, p0),B0〉 →
∗ 〈(B, p),B〉

a
→ 〈(B′, p),B′〉 thus

〈(B′, p),B′〉 is a reachable state of the product. ut

Remark 2.1. Refinement does not necessarily imply fair refinement. We consider a
BUpL agent which can continuously perform only action a while the BUnity spec-
ification can additionally perform b. Refinement trivially holds ({aω} ⊂ {(a∗b∗)ω})
however aω is unfair with respect to BUnity.

We take, for example, the BUpL and BUnity agents building the ABC tower.
Any visible action that BUpL executes can be mimicked by the BUnity agent, thus
in this case BUnity simulates BUpL and refinement is guaranteed. If we now pose
the question whether fair executions of the BUpL agent refine fair executions of the
BUnity agent, we have that, conforming to Theorem 2.1, the answer is positive if
the formula (compassionate ∧ just2)→ (just1 ∧�¬⊥) is satisfied in the left product.
This is because the traces of the product are of the form (clean∗ (moveθ)∗)ω and thus
satisfying the fairness constraints for both BUpL and BUnity.

2.4 Towards Multi-Agent Systems

If previously it was enough to refer to an agent by its current mental state, this is
no longer the case when considering multi-agent systems. This is why we associate
with each agent an identifier and we consider a multi-agent system as a finite set of
such identifiers. We further denote a state of a multi-agent system byM = {(i,msi) |
i ∈ I}, where I is the set of agent identifiers and msi is a mental state for the agent
i. For the moment, we abstract from what is the mental state of an agent. The choice
of representation is not relevant, we only need to consider that the way to change
(update) the mental state of an agent is by performing actions. However, we will
instantiate such generic msi by either a BUnity or a BUpL mental state whenever
the distinction is necessary.

In order to control the behaviour of a multi-agent system we introduce action-
based choreographies. We understand them as protocols which dictate the way
agents behave by imposing ordering and synchrony constraints on their action ex-
ecutions. They represent exogenous coordination patterns and they can be seen as
an alternative to message passing communication, with the potential advantage of
not needing to establish a “common communication language”. Choreographies are
useful in scenarios where action synchrony is more important than data.

2 The Refinement of Multi-Agent Systems 53

2.4.1 Action-based Choreographies

For the ease of presentation, we represent choreographies as regular expressions
where the basic elements are pairs (i,a). Such pairs denote that the agent i performs
the action a. They can be combined by sequence, parallel, choice or Kleene opera-
tors, with the usual meaning: (i1,a1); (i2,a2) models orderings, agent i1 executes a1
which is followed by agent i2 executing o2; (i1,a1) ‖ (i2,a2) models synchronisations
between actions, agent i1 executes a1 while i2 executes a2; (i1,a1)+ (i2,a2) models
non-deterministic choices, either i1 executes a1 or i2 executes a2; (i,a)∗ models iter-
ated execution of a by i. The operators respect the usual precedence relation2. The
BNF grammar defining a choreography is as follows:

c ::= (id,a) | c+ c | c ‖ c | c;c | c∗

In order to describe the transitions of a multi-agent system in the presence of a
choreography c, we first associate a transition system Sc to the choreography. We
do this in the usual way, inductively on the size of the choreography such that the
labels are of the form ‖i∈I (i,ai). Such a transition system always exists (see [239]
or [90] for a direct deterministic construction using the derivatives of a given regular
expression).

We take, for instance, the transition system from Figure 2.5 which is associated
with the choreography c defined as the following regular expression:

c = (i1, clean) ‖ (i2, move(C,A, f loor));
(i1, move(B, f loor,A)); ((i1, move(B, f loor,A)) ‖ (i2, clean)) +
(i2, move(B, f loor,A)); ((i2, move(B, f loor,A)) ‖ (i1, clean)).

The choreography specifies that two agents i1, i2 work together in order to build
the tower ABC and that furthermore, while one is building the tower the other one
is cleaning the floor. More precisely, the definition of the choreography says that
first i2 deconstructs the initial tower (by moving the block C on f loor) while i1 is
synchronously cleaning; next, either i1 constructs the final tower while i2 cleans or
the other way around; afterwards, the system is in a final state. Further variations
(like for example, in the case of a higher tower, one agent builds an intermediate
shorter tower leaving the other to finish the construction) are left to the imagination
of the reader.

We denote by Sc ⊗I the synchronised product of a choreography c and a multi-
agent system I. The states of Sc ⊗I are pairs (cs,M) where cs is a state of Sc and
M is a state of the multi-agent system I. The transition rule for Sc ⊗I is given as
follows:

cs
l
→ cs′

∧
j∈J ms j

a j
⇒ ms′j

(cs,M)
l
→ (cs′,M′)

(mas)

2 If we denote ≤p the precedence relation, then we have ’+’ ≤p ’‖’ ≤p ’;’ ≤p ’*’

54 L. Aştefănoaei and F.S. de Boer

cs2 cs3

cs0 cs1

cs4 cs5

(i1, clean) ‖

(i2,move(C, A, floor))

(i1,m
ove(B

, floor
, A))

(i2,move(B, floor, A))

(i1,move(C, floor, B))

‖ (i2, clean)

(i2,move(C, floor, B))

‖ (i1, clean)

Fig. 2.5 The LTS associated to a choreography

where cs,cs′ are states of Sc, l is a choreography label of the form ‖ j∈J (j,a j) with
J being a subset of I, ms j,ms′j are mental states of agent j andM,M′ are states of
the multi-agent system withM′ beingM\{(j,ms j) | j ∈ J}∪ {(j,ms′j) | j ∈ J}. The

notation ms j
a j
⇒ ms′j is used to denote that agent j performs action a j (eventually

with τ steps) in ms j resulting in ms′j. “Eventually τ steps” is needed for agents
performing internal actions, like making choices among plans or handling failures
in the case of BUpL agents. In the case of agents “in the style of BUnity”,

a
⇒ is

simply
a
→ since Bunity agents do not have τ steps.

The transition rule (mas) says that the multi-agent system advances one step
when the agents identified by J perform the actions specified by the label l. The
new state of the multi-agent system reflects the updates of the mental states of the
individual agents.

2.4.2 A Finer Notion of Refinement

We would like to have the result that if the agents (for example BUpL) in a multi-
agent system I1 are refining the (BUnity) agents in I2 then Sc⊗I1 is a refinement
of Sc ⊗I2. When refinement is defined as trace inclusion, this is, indeed, the case,
as we can shortly prove in Proposition 2.2.

Proposition 2.2. Given two multi-agent systems I1, I2 such that (∀i1 ∈ I1)(∃i2 ∈
I2) (msi1 ⊆ msi2) and a choreography as Sc we have that Sc⊗I1 ⊆ S

c⊗I2.

Proof. LetM1 andM2 be the initial states of the multi-agent systems I1 and I2.
Let also cs0 be the initial state of the transition system Sc associated to the chore-
ography c. It is enough to notice that Tr((cs0,M1)) = Tr(cs0)∩ Tr(M1) and that
msi1 ⊆ msi2 for all i1 ∈ I1 implies Tr(M1) ⊆ Tr(M2).

However, adding choreographies to a multi-agent system may introduce dead-
locks. On the one hand, we would like to be able to infer from the semantics when

2 The Refinement of Multi-Agent Systems 55

a multi-agent system is in a deadlock state. On the other hand, we would like to
have that the refinement of multi-agent systems does not introduce deadlocks. Trace
semantics is a too coarse notion with respect to deadlocks. There are two conse-
quences: neither is it enough to define the semantics of a multi-agent system as the
set of all possible traces, nor is it satisfactory to define agent refinement as trace
inclusion. We further illustrate these affirmations by means of simple examples.

We take, for instance, the choreography c = (i,move(B, f loor,C)), where i sym-
bolically points to the BUpL agent from Section 2.2.5. Looking at the plans and
repair rules of the BUpL agent we see that such an action cannot take place. Thus,
conforming to the transition rule (mas), there is no possible transition for the product
Sc ⊗I. Just by analysing the behaviour (the empty trace) we cannot infer anything
about deadlocked states: is it that the agent has no plan, or is it that the choreography
asks for an impossible execution? This is the reason why, in order to distinguish be-
tween successful and deadlocked executions, we explicitly define a transition label
√

different from any other action relations. We then define for the product Sc⊗I an
operational semantics O

√

(Sc⊗I) as the set of maximal (in the sense that no further
transition is possible) traces, ending with

√
when the last state is successful:

{tr
√
| (cs0,M0)

tr
→ (cs,M)9,cs ∈ F(Sc)} ∪

{tr | (cs0,M0)
tr
→ (cs,M)9,cs < F(Sc)} ∪ {ε | (cs0,M0)9},

where tr is a trace with respect to the transition rule (mas), M0 (resp. cs0) is the
initial state of I (resp. Sc) and ε denotes that there are no possible transitions from
the initial state.

We can now define the refinement of multi-agent systems with respect to the
above definition of the operational semantics O.

Definition 2.11 (MAS Refinement). Given a choreography c, we say that two
multi-agent systems I1 and I2 are in a refinement relation if and only if the set
of maximal traces of Sc ⊗I1 are included in the set of maximal traces of Sc ⊗I2.
That is, O

√

(Sc⊗I1) ⊆ O
√

(Sc⊗I2).

We now approach the problem that appears when considering agent refinement
defined as trace inclusion. It can be the case that the agents in the concrete system
refine (with respect to trace inclusion) the agents in the abstract system, nevertheless
the concrete system deadlocks for a particular choreography. We take, for instance,
the BUnity and BUpL agents from Sections 2.2.3 and 2.2.5. For the ease of refer-
ence, we identify the BUnity agent by ia (since it is more abstract) and the BUpL
agent by ic (since it is more concrete). We can easily design a choreography which
works fine with ia (does not deadlock) and on the contrary, it deadlocks with ic. Such
a choreography is for example the one mentioned in the beginning of the section,
c = (i,move(B, f loor,C)), where, i points now to either ia or ic up to a renaming. We
recall that ic is a refinement of ia. However, we have already mentioned, ic cannot
execute the move (since the move is irrelevant for building the ABC tower and at

56 L. Aştefănoaei and F.S. de Boer

implementation time it matters to be as precise as possible), while ia can (since in a
specification “necessary” is more important than “sufficiency”).

What the above illustration implies is that refinement as trace inclusion, though
being a satisfactory definition at individual agent level, is not a strong enough con-
dition to ensure refinement at a multi-agent level, in the presence of an arbitrary
choreography. It follows that we need to redefine individual agent refinement such
that multi-agent system refinement (as maximal trace inclusion) is compositional
with respect to any choreography. In this sense, a choreography is more like a con-
text for multi-agent systems, meaning that whatever the context is, it should not
affect the visible results of the agents’ executions but restrict them by activating
only certain traces (the other traces still exist, however, they are inactive).

In order to have a proper definition of agent refinement we look for a finer notion
of traces. The key ingredient lies in enabling conditions for actions. Given a mental
state ms, we look at all the actions enabled to be executed from ms. We denote
them by E(ms) = {a ∈ A | ∃ms′(ms

a
→ ms′)} and we call E(ms) a ready set. We

can now present ready traces as possibly infinite sequences X1,a1,X2,a2, . . . where
ms0

a1
→ms1

a2
→ms2 . . . and Xi+1 = E(msi). We denote the set of all ready traces from a

state ms0 as RT (ms0). Compared to the definition of traces, ready traces are a much
more finer notion in the sense that they record not only actions which have been
executed but also sets of actions which are enabled to be executed at each step.

Definition 2.12 (Ready Agent Refinement). We say that two agents with initial
mental states ms and ms′ are in a ready refinement relation (i.e., ms ⊆rt ms′) if
and only if the ready traces of ms are included in the ready traces of ms′ (i.e.,
RT (ms) ⊆ RT (ms′)).

We can now present our main result which states that refinement is composi-
tional, in the sense that if there is a ready refinement between the agents composing
two multi-agent sytems it is then the case that one multi-agent system refines the
other in the presence of any choreography.

Theorem 2.2. Let I1, I2 be two multi-agent systems such that (∀i1 ∈ I1) (∃i2 ∈ I2)
(msi1 ⊆rt msi2) and a choreography c with the associated LTS Sc. We have that I1

refines I2, that is, O
√

(Sc⊗I1) ⊆ O
√

(Sc⊗I2).

Proof. What we need to further prove with respect to Proposition 2.2 is that the
set of enabled actions is a key factor in identifying failures in both implementation
and specification. Assume a maximal trace tr in O

√

(Sc ⊗I1) leading to a non final
choreography state cs. Given cs0 andM1 as the initial states of Sc, I1, we have that

(cs0,M1)
tr
→ (cs,M) (cs,M) 6 l→ for all l =‖ j∈J (j,a j) such that cs

l
→ cs′. By rule

(mas) this implies that there exists an agent identified by j which cannot perform
the action indicated. Thus the corresponding trace of j ends with a ready set X with
the property that a j is not included in it. We know that each implementation agent
has a corresponding specification, be it j′, such that j ready refines j′. If we, on the

2 The Refinement of Multi-Agent Systems 57

other hand, assume that j′ can, on the contrary, execute a j we would have that in
a given state j′ has besides the ready set X another ready set Y which includes a j.
This contradicts the maximality of the ready set. ut

As a direct consequence of the above theorem, we are able to infer the absence of
deadlock in the concrete system from the absence of deadlock in the abstract one:

Corollary 2.1. Let I1, I2 be two multi-agent systems with initial states M1 and
M2. Let c be a choreography with the associated LTS Sc and initial state cs0. We
have that if I1 refines I2 (O

√

(Sc⊗I1) ⊆ O
√

(Sc′ ⊗I2)) and c does not deadlock the
specification ((cs0,M2) |= �¬⊥) it is then also the case that c does not deadlock the
implementation ((cs0,M1) |= �¬⊥).

As we have already explained in Section 2.3, proving refinement by deciding
trace inclusion is an inefficient procedure. This is also the case with ready refine-
ment, thus a more adequate approach is needed. If previously we have adopted sim-
ulation as a proof technique for refinement, now we consider weak ready simulation.

Definition 2.13 (Weak Ready Simulation). We say that two agents with initial
mental states ms and ms′ are in a (weak) ready simulation relation (ms .rs ms′) if
and only if ms . ms′ and the corresponding ready sets are equal (E(ms) = E(ms′)).

As it is the case for simulation being a sound and complete proof technique for
refinement, analogously we can have a similar result for ready simulation. We recall
that determinacy plays an important role in the proof for completeness.

Proposition 2.3. Given two agents with initial mental states ms and ms′, where the
one with ms is deterministic, we have that ms .rs ms′ iff ms′ ⊆rt ms.

Remark 2.2. For the sake of generality, in the definitions from this section we have
used the symbolic notations ms, ms′. BUnity and BUpL agents can be seen as (are,
in fact) instantiations. Proposition 2.3 relates to Proposition 2.1. The only difference
is that, for simplification, Proposition 2.3 refers directly to ready simulation and not
to its modal characterisation, as it was the case for simulation in Proposition 2.1.
It is not difficult to adapt Definition 2.9 to the ready simulation. One needs only to
change the condition on the transition (mas) from (B, p)

a
⇒1 (B′, p′) to the conjunc-

tion (B, p)
a
⇒1 (B′, p′) ∧ E((B, p)) = E((B)) which checks also the equality on the

ready sets.

Recalling the BUpL and BUnity agents ic and ia, we note that though ia simulates
ic it is not also the case that it ready simulates. This is because the ready set of the
BUnity agent is always larger than the one of the BUpL agent. One basic argument
is that ia can always “undo a block move”, while ia cannot. However, let us see
what would have happened if we were to consider changing ia by replacing the
conditional action set from Figure 2.1 with the set from Figure 2.6:

58 L. Aştefănoaei and F.S. de Boer

C = { ¬on(B,A) . do(move(B, f loor,A)),
¬on(C,B)∧on(B,A) . do(move(C, f loor,B)),
¬(on(B,A)∧on(C,B)) . do(move(X,Y, f loor)) }

Fig. 2.6 Adapting ia to ready simulate ic

We now have a BUnity agent which is less abstract. Basically, the instantia-
tion from the first two conditional actions disallows any spurious “to and fro” se-
quence of moves like move(X,Y,Z) followed by move(X,Z,Y) which practically un-
does the previous step leading to exactly the previous configuration. The instantia-
tion is obvious when one looks at the final “desired” configuration. The last con-
ditional action allows “destructing” steps by moving blocks on the floor. It can
still be considered as a specification. It provides no information about the order
of executing the moves since this is not important at the abstraction level. With
the above change, the new BUnity agent ready simulates ic. To see this, it suffices
to notice that the only BUpL ready trace is {move(C,A, f loor)}, move(C,A, f loor),
{move(B, f loor,A)}, move(B, f loor,A), {move(C, f loor,B)}, move(C, f loor,B) which
is also the only BUnity ready trace. The same equality of ready traces holds when
we consider the additional clean action.

We recall the choreography from Figure 2.5 and we consider a BUnity multi-
agent system which consists of two copies of ia (enabled to execute also clean). For
either branch, the executions (with respect to the transition (mas)) of the multi-agent
system are successful (the choreography reaches a final state). Since ic ready refines
ia, by Corollary 2.1 we can deduce that also the executions of a multi-agent system
which consists of two ic copies are successful.

2.5 Timing Extensions of MAS

Modelling time in multi-agent systems make them more expressive. For example,
timing constraints can be used to enforce delays between actions and to time restrict
action execution, that is, to force action execution to happen before certain time in-
variants are violated. Our approach in adding time to multi-agent systems consists
of adapting the theory of timed-automata [10]. A timed automaton is a finite transi-
tion system extended with real-valued clock variables. Time advances only in states
since transitions are instantaneous. Clocks can be reset at zero simultaneously with
any transition. At any instant, the reading of a clock equals the time elapsed since
the last time it was reset. States and transitions have clock constraints, defined as:

φc ::= x ≤ t | t ≤ x | x < t | t < x | φc∧φc,

where t ∈Q is a constant and x is a clock. When a clock constraint is associated with
a state, it is called invariant, and it expresses that time can elapse in the state as long
as the invariant stays true. When a clock constraint is associated with a transition,

2 The Refinement of Multi-Agent Systems 59

it is called guard, and it expresses that the action may be taken only if the current
values of the clocks satisfy the guard.

In our multi-agent setting, timed choreographies are meant to impose time con-
straints on the actions executed by the agents. We model them as timed automata.
We take, as an example, the choreography from Figure 2.7. There is a single clock
x. The initial state cs0 has no invariant constraint and this means that an arbitrary
amount of time can elapse in cs0. The clock x is always reset with the transition
from cs0 to cs1. The invariant x < 5 associated with the state cs1 ensures that the
synchronous actions clean and move(C,A, f loor) must be executed within 5 units of
time. The guard x > 6 associated with the transition from cs2 to cs3 ensures that the
agents cannot spend an indefinite time in cs2 because they must finish their tasks
after 6 units of time.

cs0

cs1

x < 5
cs2 cs3

(i2,move(C,A,floor))‖

(i1,clean),x:=0

(i1,move(B,floor,A)) (i1,move(C,floor,B))‖

(i2,clean),x>6

Fig. 2.7 A timed choreography

We now approach the issue of modelling time in BUnity and BUpL agents. In this
regard, we consider that agents have a set of local clocks and that clock valuations
can be performed by an observer. We further pose the problem of how agents make
use of clocks. We recall the design principle: “the specification of basic actions does
not come with time”, thus actions are instantaneous. This implies that, in order to
make the time pass, we need to extend the syntax of the agent languages with new
application specific constructions such that the ontology of basic actions remains
timeless (basic actions being specified only in terms of pre/post conditions). This
is why we introduce delay actions, φ→ I, where φ is a query on the belief base
and I is an invariant like x ≤ 1. Basically, their purpose is to make time elapse in
a mental state where certain beliefs hold. As long as the invariant is true, the agent
can stay in the same state while time passes. We refer to D as the set of delays of
either a BUnity or a BUpL agent. This is because, as it is the case for basic actions,
delays are syntactical constructions belonging to both BUpL and BUnity languages.
In what follows, we discuss the time extension for each language separately.

2.5.1 Adding Time to BUnity

We now focus on time extending BUnity conditional actions. First, the queries of
conditional actions are defined both on belief bases and clock valuations. Second,
conditional actions specify the set of clocks to be reset after the execution of ba-
sic actions. Their syntax becomes {φ∧φc} . do(a),λ. Timed conditional actions are

60 L. Aştefănoaei and F.S. de Boer

meant to say that if certain beliefs φ hold in the current mental state of a BUnity
agent (as before) and additionally, certain clock constraints φc are satisfied, then the
basic action a is executed and the clocks from the set λ are reset to 0. Taking into ac-
count the previous discussion of the mechanism of delay actions, the corresponding
changes in the semantics are reflected in Figure 2.8: where λ is the set of clocks reset

φ→ I B |= φ
(∀δ ∈ R+)(ν+δ ∈ I)

B, ν
δ
→B, ν+δ

(delay)

{φ∧φc} .do(a),λ a = (ϕ,ξ)
θ ∈ S ols(B |= (φ∧ϕ)) ν ∈ φc

B, ν
aθ
→B] ξθ,ν[λ := 0]

(act)

Fig. 2.8 Transition Rules for Timed BUnity

by performing action a and ν represents the current clock valuations. We use the no-
tation ν ∈ I (resp. ν ∈ φc) to say that the clock valuations from ν satisfy the invariant
I (resp. the constraint φc). When φc is absent we consider that trivially ν ∈ φc holds.
We make a short note that our design decision is to separate the implementation
of delays from the one of conditional actions. This is because a construction like
{φ} . I,do(a),λ is ambiguous. If φ holds, it can either be the case that time elapses
with respect to the invariant I and a is suspended, or that a is immediately executed.
However, it sometimes is important to ensure that “time passes in a state”, instead
of leaving this only as a non deterministic choice.

To illustrate the above constructions we recall the BUnity agent ia from Fig-
ure 2.6. We basically extend the BUnity agent such that the agent has one clock, be
it y, which is reset by conditional actions, and such that the agent can delay in given
states, thus letting the time pass.

C = { > . (do(clean),y := 0), ¬on(B,A) . do(move(B, f loor,A)),
¬on(C,B)∧on(B,A) . do(move(C, f loor,B)),
¬(on(B,A)∧on(C,B)) . (do(move(X,Y, f loor)),y := 0) }

D = { on(C, f loor)∨ cleaned← (y < 9), on(B,A)∨ cleaned← (y < 10) }

Fig. 2.9 Extending ia with clock constraints

Figure 2.9 shows a possible timed extension. The clock y is reset after either
performing clean or moving a block on the floor. The agent can delay until the
clock valuates to 9 (resp. 10) units of time after moving C on the f loor (resp. B on
A).

2 The Refinement of Multi-Agent Systems 61

2.5.2 Adding Time to BUpL

The timed extension of BUpL concerns changing plans such that previous calls
a; p are replaced by (φc,a,λ); p and (φ→ I); p, where φc is time constraining the
execution of action a and λ is the set of clocks to be reset. To simplify notation, if
clock constraints and clock resets are absent we use a instead of (a).

We make the remark that if previously actions failed when certain beliefs did not
hold in a given mental state, it is now the case that actions fail also when certain
clock constraints are not satisfied. Consider, for example, the plan ((x < 1),a, [x :=
0]); ((x > 2),b,∅). There is no delay action between a and b, thus the time does not
pass and x remains 0, meaning that b cannot be executed. Such situations are handled
by means of the general semantics of the repair rules. There are two possibilities:
either to execute an action with a time constraint that holds, or to make time elapse.
The latter is achieved by triggering a repair rule like true← δ, where for example δ
is a delay action true→ true which allows an indefinite amount of time to pass. The
corresponding changes in the semantics are reflected in Figure 2.10:

p = (φ→ I); p′ B |= ϕ
(∀δ ∈ R+)(ν+δ ∈ I)

B, p, ν
δ
→B, p′, ν+δ

(delay)

p = (φc,a,λ); p′ a = (ϕ,ξ)
θ ∈ S ols(B |= ϕ) ν ∈ φc

B, p, ν
aθ
→B] ξθ, p′, ν[λ := 0]

(act)

Fig. 2.10 Transition Rules for Timed BUpL

To see a concrete example, we recall the BUpL agent from Section 2.2.6. We
consider two delay actions true→ (y < 9) and true→ (y < 10). We further make
the delays and the clock resets transparent in the plans. The plan cleanR changes to
(true, clean, y := 0);cleanR such that the clock y is reset after a clean action. The plan
rearrange(x1, x2, x3) changes to true→ (y < 9);move(x1, f loor, x2); true→ (y < 10);
move(x3, f loor, x1) such that time passes between moves.

The observable behaviour of either timed BUnity or BUpL agents is defined in
terms of timed traces. A timed trace is a (possibly infinite) sequence (t1,a1) (t2,a2)
. . . (ti,ai) . . . where ti ∈ R+ with ti ≤ ti+1 for all i ≥ 1. We call ti a time-stamp of
action ai since it denotes the absolute time that passed before ai was executed.
We then have that a timed BUnity or BUpL agent computation over a timed trace
(t1,a1)(t2,a2) . . . (ti,ai) . . . is a sequence of transitions:

ms0, ν0
δ1
→

a1
→ ms1, ν1

δ2
→

a2
→ ms2, ν2 . . .

where msi is a BUnity (BUpL) mental state and ti are satisfying the condition ti =
ti−1+δi for all i ≥ 1.

62 L. Aştefănoaei and F.S. de Boer

For example, a possible timed trace for either the timed BUpL or BUnity agent is
(0, clean), (7, move(C,A, f loor)), (8, move(B, f loor,A)), (9, move(C, f loor,B)). It is,
in fact, the case that any BUpL timed trace is also a BUnity timed trace, thus the two
agents are again in a refinement relation. We elaborate more on timed refinement in
the next section.

2.5.3 A Short Note on Timed Refinement

We recall that a key element in having simulation as a proof technique for individ-
ual agent refinement was the determinacy of BUnity agents. We note that in order to
have a similar “timed” result we only need to impose the restriction that clock con-
straints associated with the same action must be disjoint. This ensures determinacy
of timed automata. A weaker restriction (which nevertheless requires a “determini-
sation” construction) is to require that each basic action is associated with at most
one clock and that conditional actions can only reset the clock corresponding to the
basic action being executed; however, the guards in conditional actions may consult
different clocks. Under the disjointness condition, we have that timed BUnity agents
are deterministic, thus the same proof technique as in Section 2.3 can be applied. We
make the remark that timed simulation differs from simulation in only one aspect:
we further need to consider simulating δ steps and not only a steps.

As for multi-agent system refinement, we recall that in Section 2.4.1 we consid-
ered that agents are associated with identifiers. We now need to consider that agents
have also a set of clocks to manipulate. We thus update the definition of a multi-
agent stateM as being {(i,msi, νi) | i ∈ I}, where I is the set of agent identifiers, msi
is a mental state for the agent i and νi represents the clock valuations of i.

We further recall that we gave semantics to multi-agent systems by means of a
transition rule for the synchronised product of the system and a given choreogra-
phy. Adding time constructions to both agent languages and to the choreography
needs to be reflected by changing the transition rule (mas) correspondingly. More
precisely, we first need a transition for passing time which corresponds to delays
in both choreography and agent states. We then need to change the rule (mas) such
that a transition of the system is enabled not only if certain agents can perform
the actions specified by the choreography, but also if the clock valuations of the
acting agents satisfy the clock constraints of the choreography. The changes are il-
lustrated in Figure 2.11, where l is ‖ j∈J (j,a j), g is the clock constraint associated
with the label l, I(cs) denotes the invariant associated with the state cs and M′ is
M\{(j,ms j, ν j) | j ∈ J}∪ {(j,ms′j, ν

′
j) | j ∈ J}.

We note that the transition (delay) can take place only if all agents are able to
delay. No deadlocks are introduced since delays are not compulsory.

Similarly as in Section 2.4.1 the semantics of a timed agent system together with
a timed choreography is defined as the set of maximal timed computations where

2 The Refinement of Multi-Agent Systems 63

∧
i∈Imsi, νi

δ
→ msi, νi +δ

∧
i νi +δ ∈ I(cs)

((cs, ν),M)
δ
→ ((cs, ν+δ), {(i,msi, νi +δ)})

if cs, ν
δ
→ cs, ν+δ (delay)

∧
j∈J ms j, ν j

a j
⇒ ms′j, ν

′
j νν j ∈ g ν′ν′j ∈ I(cs′)

((cs, ν),M)
l
→ ((cs′, ν′),M′)

if cs, ν
l,g
→ cs′, ν′ (t-mas)

Fig. 2.11 Transition Rules for a Timed Agent System

we make the distinction between a success and a deadlock. This was needed (and
it still is) in order to reason about deadlock. We recall that we further needed to
change refinement (resp. simulation) to ready refinement (resp. ready simulation).
The reason was that in order to have compositionality of multi-agent systems refine-
ment one needs to make sure that any choreography which does not deadlock the
abstract system cannot deadlock the concrete one. The same reasoning applies in the
case of timed agent systems. We need to investigate if further deadlock situations
can arise which are not taken into account in the framework of ready refinement.
As we have already mentioned, the transition (delay) does not introduce deadlock
situations. Thus, we only need to consider the transition (t-mas). What is new with
respect to the previous transition (mas) is the additional condition which asks that
the clock valuations satisfy the guard of the current transition in the choreography.
We note that the fact that a clock constraint in the implementation does not satisfy
the guard of the choreography at a given time is visible at the level of the timed
ready sets. Thus, the timed version of ready refinement suffices in order to have
compositionality of timed agent systems refinement. Baring this in mind, we only
need to focus on timed ready simulation as being a proof technique for timed agent
systems refinement, which previously was a valid statement as a consequence of the
determinacy of the choreography. Thus, along the same line as before, we only need
to require that clock constraints associated with the same action are disjoint such
that timed choreographies are deterministic.

As an observation, a timed BUpL multi-agent system consisting of two instances
of the agent described in Section 2.5.2 running under the timed choreography from
Figure 2.7 is a timed refinement of a timed BUnity multi-agent system consisting
of two instances of the agent described in Section 2.5.1 running under the same
choreography. Furthermore, both systems are deadlock free. To illustrate this latter
affirmation, we present a small experiment in UPPAAL [31], a tool for verifying
timed automata. At a more abstract and syntactic level, we have modelled the timed
choreography and the timed BUpL agent as timed automata in UPPAAL. We have
then verified that the value of the clocks are always greater than 6. This implies that
the choreography always reaches the final state. Figure 2.12 illustrates the timed
BUpL system consisting of two instances of the BUpL agent and the choreography.
The BUpL agent is parametrised by id b, a bounded integer variable which is in
our case 0 or 1. We note that we had to “approximate” and implement the parallel

64 L. Aştefănoaei and F.S. de Boer

operator using an interleaving mechanism (first one agent cleans and after the other
one moves C on the floor). The synchronisation between the choreography and the
BUpL agents is in the CCS style (e.g., clean[1-e]! and clean[1-e]?).

Fig. 2.12 A Timed BUpL System Modelled in UPPAAL

Using the UPPAAL Simulate command one can experiment with different
timed executions of the system. Figure 2.13 represents one of them. The trace shows
that the BUpL instance Bp(0) is the first to execute clean followed by Bp(1) exe-
cuting the destructing step (C on the floor). Fom this point Bp(0) finishes the ABC
tower. Finally, Bp(1) executes, at its turn, the action clean.

2.6 Conclusion

We have addressed the problem of multi-agent system refinement. We have first fo-
cused on individual agent refinement where we relied on fair simulation as a proof
technique for fair trace inclusion. We have then extended the notion of refinement
of individual agents to multi-agent systems, where the behaviour of the agents com-
posing the systems is coordinated by choreographies. Our approach to introducing
choreographies to multi-agent systems consisted of defining them as action-based
coordination mechanisms. In such a framework, we have the results that agent re-
finement is a sufficient condition for multi-agent system refinement and that this
latter notion preserves deadlock freeness. We have further illustrated a timed exten-
sion of multi-agent systems by means of timed automata where the same refinement
methodology can be adapted.

2 The Refinement of Multi-Agent Systems 65

Fig. 2.13 A Resulting Timed Trace

We have stressed the importance of verification from the introduction. Our goal
was to describe a general methodology for a top-down design of multi-agent systems
which makes it simple to execute and verify agent programs. Concerning this prac-
tical side we mention that we have already implemented our formalism in Maude.
Maude is an encompassing framework where we prototyped the agent languages
we described such that it is possible to (1) execute agents by rewriting; (2) ver-
ify agents by means of simulation, model-checking, searching, or testing. Since
we were mainly interested in refinement, the properties we focused on were cor-
rectness properties, i.e., model-checking for the absence of deadlock in the prod-
uct of a BUpL and BUnity agent. However, we have experimented with different
other safety and liveness properties. In this regard, please see Chapter [421] for
further details and references. The current version of the implementation (also in-
cluding the timed languages prototyped in Real-Time Maude [326]) can be found
at http://homepages.cwi.nl/˜astefano/agents. Further extensions with re-
spect to model-checking timed agents and automatically generating test cases for
verifying infinite state agents need to be investigated.

http://homepages.cwi.nl/~astefano/agents

Chapter 3

Model Checking Agent Communication

J. Bentahar, J.-J. Ch. Meyer, and W. Wan

Abstract Model checking is a formal and automatic technique used to verify com-
putational systems (e.g. communication protocols) against given properties. The
purpose of this chapter is to describe a model checking algorithm to verify com-
munication protocols used by autonomous agents interacting using dialogue games,
which are governed by a set of logical rules. We use a variant of Extended Compu-
tation Tree Logic CTL* for specifying these dialogue games and the properties to
be checked. This logic, called ACTL*, extends CTL* by allowing formulae to con-
strain actions as well as states. The verification method uses an on-the-fly efficient
algorithm. It is based on translating formulae into a variant of alternating tree au-
tomata called Alternating Büchi Tableau Automata (ABTA). We present a tableau-
based version of this algorithm and provide the soundness, completeness, termina-
tion and complexity results. Two case studies are discussed along with their respec-
tive implementations to illustrate the proposed approach. The first one is about an
agent-based negotiation protocol and the second one considers a modified version
of the NetBill protocol.

J. Bentahar, W. Wan
Concordia University, Concordia Institute for Information Systems Engineering, Canada e-mail:
bentahar@ciise.concordia.ca

J.-J. Ch. Meyer
Utrecht University, Department of Computer Science, The Netherlands e-mail: jj@cs.uu.nl

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 67
DOI 10.1007/978-1-4419-6984-2 3, c© Springer Science+Business Media, LLC 2010

bentahar@ciise.concordia.ca
jj@cs.uu.nl

68 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

3.1 Introduction

Model checking is a formal verification method widely used to check complex sys-
tems involving concurrency and communication protocols by verifying some desir-
able properties. Deadlock-freedom (it is false that two or more processes are each
waiting for another to release a resource), safety (some bad situation may never
occur), and reachability (some particular situation can be reached) are examples
of such properties. Model checking techniques offer the possibility of obtaining an
early integration of verification in the design process and reducing the verification
time. However, they are only applicable for finite state systems and they generally
operate on system models and not on the actual system. In fact, the system is rep-
resented by a finite model M and the specification is represented by a formula φ
using an appropriate logic. The verification method consists of computing whether
the model M satisfies φ (i.e. M |= φ) or not (i.e. M 6|= φ).

Recently, model checking Multi-Agent Systems (MASs) has seen an increasing
interest [33, 61, 62, 232, 266, 267, 337, 354, 356, 440]. However, although research
in agent communication has received much attention during the past years, only
few research works tried to address the verification of agent protocols [4, 24, 163,
195, 244, 430]. Several dialogue game protocols have been proposed for specifying
agent communication interactions [37, 304, 307, 381]. These games aim at offering
more flexibility by combining different small games to construct complete and more
complex protocols. Dialogue games can be thought of as interaction games in which
each agent plays a move in turn by performing utterances according to a pre-defined
set of rules.

The verification problem of agent communication protocols is fundamental for
the MASs community. Endriss et al. [163] have proposed abductive logic-based
agents and some means of determining whether or not these agents behave in con-
formance with agent communication protocols. Baldoni et al. [24] have addressed
the problem of verifying that a given protocol implementation using a logical lan-
guage conforms to its AUML specification. Alberti et al. [4] have considered the
problem of verifying on the fly the compliance of the agents’ behavior to protocols
specified using a logic-based framework. These approaches are different from the
technique presented in this chapter in the sense that they are not based on model
checking techniques and they do not address the problem of verifying if a proto-
col satisfies given properties. Giordano et al. [195] have addressed the problem of
specifying and verifying agent interaction protocols using a Dynamic Linear Time
Temporal Logic (DLTL). The authors have addressed three kinds of verification
problems: 1) the compliance of a protocol execution to its specification; 2) the sat-
isfaction of a property in the protocol; 3) the compliance of agents to the protocol.
They have shown that these problems can be solved by model checking DLTL. This
model checking technique uses a tableau-based algorithm for obtaining a Büchi au-
tomaton from a formula in DLTL and the construction of this automaton uses proof
rules. However, the protocols are only specified in an abstract way in terms of the
effects of communicative actions and some precondition laws.

3 Model Checking Agent Communication 69

In this chapter, we describe model checking-based verification of dialogue game
protocols for agent communication using an action and temporal logic (ACTL*)
based on the Extended Computation Tree Logic CTL*. Using a model checking
technique for this verification is motivated by the fact that model-checking is a suc-
cessful technique for automatically and computationally verifying protocol specifi-
cations using a suitable logic. This technique can be used to verify the protocol cor-
rectness in the sense that the protocol satisfies the expected properties. It allows us
to verify agent communication properties specified using ACTL* logic. Therefore,
we can specify the protocol in a logical way and verify its correctness in terms of
the satisfaction of the expected properties. The definition of a new logic is motivated
by the fact that dialogue game protocols should be specified using not only tempo-
ral properties, but also action properties. In addition, in these protocols, actions that
agents perform by communicating are expressed in terms of “Social Commitments”
(SCs) and arguments. These protocols are specified as transition systems (TSs) us-
ing ACTL* logic and Commitment and Argument Network (CAN) [38]. These TSs
are labeled with actions that agents perform on SCs and SC contents [115,182,404].

The model checking technique we describe in this chapter is based on the trans-
lation of the formula expressing the property to be verified into a variant of al-
ternating tree automata called Alternating Büchi Tableau Automata (ABTA). This
technique is an extension of the ABTA-based algorithm for CTL* proposed in [44].
The choice of this technique is motivated by the fact that unlike other model check-
ing techniques, this technique allows us to check temporal and action formulas. In
addition, this technique is one of the most efficient techniques proposed in the lit-
erature. The translation procedure uses a set of inference rules called tableau rules.
Like automata-based model checking of Linear Temporal Logic LTL, our technique
is based on the product graph of the model and the automaton representing the for-
mula to be verified (Fig. 3.1). This technique allows us to verify not only that the
dialogue game protocol satisfies a given property, but also that this protocol respects
the decomposition rules of the communicative acts. Consequently, if agents respect
these protocols, then they also respect the decomposition semantics of the commu-
nicative acts. Thus, we have only one procedure to verify both:

1. the correctness of the protocols relative to the properties that the protocols should
satisfy;

2. the conformance of agents to the decomposition semantics of the communicative
acts.

The rest of this chapter is organized as follows. Section 3.2 presents an overview
of model checking MASs. Section 3.3 introduces tableau-based algorithms for
model checking, which we use in the verification procedure. Section 3.4 presents
the ACTL* logic: syntax, semantics and associated tableau rules. In Section 3.5, we
use this logic to define the TS that we use to specify dialogue game protocols. The
problem of verifying these protocols is addressed in Section 3.6. The ABTA’s defi-
nition that we use in our verification technique along with some running examples
of the model checking steps are presented in this section. Section 3.7 presents two

70 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

Dialogue Game Protocol to be
checked (the model M) �

Property expressed in ACLT*

Logic (the Propertyφ)

ABTA

The Translation
Procedure
(Step 1)

⊗

The Product Graph B⊗
(Step 2)

Model Checking
Algorithm
(Step 3)

Fig. 3.1 The model checking approach

case studies and Section 3.8 concludes the chapter by discussing open challenges in
the area of verifying MASs and identifying some directions for future work.

3.2 Brief Overview of Model Checking Multi-Agent Systems

3.2.1 Extending and Adapting Existing Model Checkers

Bordini and his colleagues [61, 62, 73] have addressed the problem of verify-
ing MASs specified using the AgentSpeak(F) language (a simplified version of
AgentSpeak) against BDI specifications. They have shown how programs written
in AgentSpeak(F) can be automatically transformed into Promela and into Java and
how the BDI specifications are transformed into LTL formulae. The Spin model
checker1 based on Promela [236] and Java PathFinder 2 (JPF2) model checker2

based on translating Java to Promela [211] are then used to verify the MAS speci-
fications. The idea behind using AgentSpeak(F) instead of the original AgentSpeak
is to make the system to be checked finite in terms of state space, which is a fun-
damental condition of using model checking techniques. To this end, the maximum
sizes of types, data structures and communication channels are specified. Exam-
ples of these maximum sizes are: MTerm: maximum number of terms in a predicate
or an action; MCon j: maximum number of conjuncts (literals) in a plan’s context;

1 The Spin model checker can be downloaded from:
http://spinroot.com/spin/Man/README.html
2 The JPF2 model checker is open source and can be downloaded from:
http://javapathfinder.sourceforge.net/

3 Model Checking Agent Communication 71

MVar: maximum number of different variables in a plan; MBel: maximum number
of beliefs an agent can have at any moment in time in its belief base; and MMsg:
maximum number of messages (generated by inter-agent communication) that an
agent can handle at a time.

The main constructs in a Promela program are Promela channels and in order to
translate AgentSpeak(F) into Promela, the following channels are used to capture
the data structures used in an AgentSpeak(F) program: (1) channel b for the agent’s
belief base with MBel messages as maximum size and each message has MTerms+1
as maximum size; (2) channel p for the environment’s percepts where the maximum
size is the same as for channel b; (3) channel m for sending agent communication
messages where the bound is MMsg messages; (4) channel e for events, which are
related to intentions; (5) channel i for scheduling intentions; and channel a for stor-
ing actions. Promela inline procedures are used to code the bodies of agents’ plans.
The environment is implemented as a Promela process type defined by the user.

Channel m is used to handle messages when the agent interpretation cycle starts,
and channels p and b are used by the agent to run its belief revision. Events are
handled according to FIFO policy: when new events are generated, they are inserted
in the end of channel e, and the first message in that channel is selected as the event
to be handled in the current cycle. Translating a formula that appears in a plan body
is done as follows: basic actions are appended to channel a; addition and deletion
of beliefs is translated as adding or removing messages to/from channel b; and test
goals are simply an attempt to match the associated predicate with any message
from channel b.

To check BDI properties, BDI modalities are interpreted in terms of Promela data
structures associated to an agentSpeak(F) agent. For instance, an AgentSpeak(F)
agent believes a formula φ iff it is included in the agent’s belief base, and this agent
intends φ iff it has φ as an achievement goal that currently appears in its set of
intentions, or φ is an achievement goal that appears in the (suspended) intentions
associated with the set of events.

In the same line of research, Rao and Georgeff [356] have proposed an adapta-
tion of CTL and CTL* model checking to verify BDI (beliefs, desires and inten-
tions) logics. Furthermore, van der Hoek and Wooldridge [232] have reduced the
problem of model checking knowledge for multi-agent systems to linear temporal
logic model checking using the logic of local propositions [165]. The Spin model
checker is then used to check temporal epistemic properties. In [440], Wooldridge et
al. have presented the translation of the MABLE language for the specification and
verification of MASs into Promela. MABLE is an imperative and agent-oriented
programming language where agents have mental states consisting of beliefs, de-
sires and intentions and communicate using request and inform performatives. The
inputs of the MABLE compiler are the MABLE system and associated claims ex-
pressed in MORA, a BDI logic. As output, MABLE generates a description of
the MABLE system in Promela and a translation of the claims into LTL. In another
work, Huget and Wooldridge [244] have used a variation of the MABLE language to
define a semantics of agent communication and have shown that the compliance to

72 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

this semantics can be reduced to a model checking problem. In [430], Walton has ap-
plied model checking techniques in order to verify the correctness of agent protocol
communication using the SPIN model checker. Benerecetti and Cimatti [33] have
proposed a general approach for model-checking MASs together with modalities
for BDI attitudes by extending symbolic model checking and using NuSMV3 [98],
a model checker for computation tree logic CTL. In [355], Lomuscio et al. have in-
troduced a methodology for model checking multi-dimensional temporal-epistemic
logic CTLK by extending NuSMV. The methodology is based on reducing the
model checking of CTLK to the problem of model checking ARCTL, an extension
of CTL with action labels and operators to reason about actions [335].

3.2.2 Developing New Algorithms and Tools

To model MASs, the authors in [354, 355] use the formalism of interpreted systems
[205]. This formalism is defined as follows. Assume a set of agents Ag = {1, ...,n},
where each agent i is characterized by a finite set of local states Li and possible
actions Acti together with a protocol Pi : Li → 2Acti . The set S = L1 × · · · × Ln × LE
represents global states for the system where LE is the set of local states associated
to the environment. Agents’ local states evolve in time according to the evolution
function ti : Li × LE ×Act→ Li, where Act = Act1 × · · · ×Actn. Given a set of initial
global states I ⊆ S , the set of reachable states Rs ⊆ S is generated by the possible
runs of the system using the evolution function and the protocol. An interpretation
system is then a tuple: IS = 〈(Li,Acti,Pi, ti)i∈Ag, I,V〉, where V : S → 2AP is the eval-
uation function over the set of atomic propositions AP. The MAS is analyzed using
a logic combining epistemic logic S 5n with CTL logic. The syntax is as follows:
ϕ ::= p | ¬ϕ | ϕ∨ϕ | EXϕ | EGϕ | E[ϕUϕ] | Kiϕ.
Kiϕ means i knows ϕ. The meanings of the other operators are as in CTL, where E
is the existential path quantifier, X is the next operator, G is the globally operator
and U is the until operator.

To evaluate the formulae, a Kripke model MIS = (Rs, I,Rt,∼1, . . . ,∼n,V) is as-
sociated with a given interpreted system IS . The temporal relation Rt ⊆ Rs×Rs is
obtained using the protocols Pi and the evolutions functions ti, and the epistemic
relations ∼1, . . . ,∼n are defined by checking the equality of the i-th local component
of two global states (i.e., (l1, . . . , ln) ∼i (l′1, . . . , l

′
n) iff li = l′i). The semantics is defined

in MIS in the standard way.

To check the desired properties, the authors use symbolic model checking based
on ordered binary decision diagrams (OBDDS). The model and formula to be
checked are not represented as automata, but symbolically using boolean func-
tions. This makes the technique efficient to deal with large systems. NuSMV [98] is

3 The NuSMV2 model checker is open source and can be downloaded from:
http://nusmv.fbk.eu/NuSMV/download/getting-v2.html

3 Model Checking Agent Communication 73

the most popular symbolic model checker based on OBDDS. The MCMAS model
checker4 proposed in [355] is an extension of NuSMV for the epistemic properties.
The idea is to represent the elements of the interpreted system MIS by means of
boolean formulas and then develop a propositional satisfiability solver (SAT) based
on this representation for the verification of the properties associated with the inter-
preted system.

Agents’ local states and actions are encoded as boolean vectors, which are iden-
tified by boolean formulae. Protocols and evolutions functions associated with local
states and actions are also represented via boolean formulae. The SAT algorithm is
an extension of CTL SAT solver for the knowledge operator Kiϕ whose semantics
is defined using the accessibility relation ∼i. Let Ri be the boolean function repre-
senting ∼i, the SAT component of this operator is defined as follows:

S ATK(ϕ, i){
X = S AT (¬ϕ)
Y = {s|Ri(s)∩X = ∅}
return Y ∩Rs
}

The idea of the algorithm is to compute the set of global states X in which the
negation of ϕ holds. Then, the set Y of states of which the ∼i accessible states are
not in X is computed. This means that these states satisfy the semantics of Kiϕ.
Among these states, the algorithm returns those are reachable (i.e. those in Rs).

MCMAS model checker takes as input an interpreted system, which is parsed
using Lex and Yacc parser. OBDDs are then built for the input parameters. The
formula to be checked is then parsed and the SAT algorithm is executed to compute
the set of states in which the formula holds, which is then compared with the set of
reachable states. The tool is developed in C++.

In the same research direction, Penczek and Lomuscio [337] have developed
a bounded model checking algorithm for branching time logic for knowledge
(CTLK). In a similar way, Kacprzak et al. [266] have investigated the problem
of verifying epistemic properties using CTLK by means of an unbounded model
checking algorithm. Kacprzak and Penczek [267] have addressed the problem of
verifying game-like structures by means of unbounded model checking. Recently,
Cohen et al. [108] have introduced a new abstraction-based model checking tech-
nique for MASs aiming at saving representation space and verification time. The
MAS is defined in the interpreted systems framework and the abstraction is per-
formed by simplifying and collapsing the local states, local protocol and local evo-
lution function of each agent in the system. Thus, the set Li of local states of agent
i is partitioned into equivalence classes called abstract local states of agent i. Sim-
ilarly, the set ACTi of possible actions of agent i is partitioned into equivalence
classes called abstract actions of agent i. Local protocols and local evolution func-
tions are abstracted by uniformly replacing any local state with its equivalence class

4 The MCMAS model checker can be downloaded from:
http://www-lai.doc.ic.ac.uk/mcmas/download.html

74 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

and replacing any action with its equivalence class. The authors have shown that
the resulting abstract system simulates the concrete system so that if a temporal-
epistemic specification holds on the abstract system, the specification also holds on
the concrete one.

3.3 Tableau-based Model Checking Dialogue Games

Unlike traditional proof systems which are bottom-up approaches, tableau-based
algorithms used for model checking work in a top-down or goal-oriented fash-
ion [106]. In the tableau-based approach, tableau rules are used in order to prove a
certain formula by inferring when a state in a Kripke structure satisfies such a for-
mula. According to this approach, we start from a goal (a formula), and we apply a
tableau rule and determine the sub-goals (sub-formulae) to be proven. The tableau
rules are designed so that the goal is true if all the sub-goals are true. The advan-
tage of this method is that the state space to be checked is explored in a need-driven
fashion [44]. The model checking algorithm searches only the part of the state space
that needs to be explored to prove or disprove a certain formula. The state space is
constructed while the algorithm runs. This kind of model checking algorithms is
referred to as on-the-fly or local algorithms [44, 45, 106, 408].

The tableau decision algorithm that we use in our verification technique provides
a systematic search for a model which satisfies a particular formula expressed using
ACTL* logic. It is a graph construction algorithm. Nodes of the graph are sets of
ACTL* formulae and tableau rule names. The interpretation of vertex labeling is
that for the vertex to be satisfied, it must be possible to satisfy all the formulae in
the set together. Each edge in the graph represents a satisfaction step of the formula
contained in the starting vertex. These steps correspond to the application of a set of
tableau rules. These rules express how the satisfaction of a particular formula (the
goal) can be obtained by the satisfaction of its constituent formulae (sub-goals).

3.4 ACTL* Logic

3.4.1 Syntax

In this section, we present ACTL* logic that we use to specify dialogue game pro-
tocols and express the properties to be verified (See Fig. 3.1). This specification will
be addressed in Section 3.5. ACTL* is a simplification of our logic for agent com-
munication [38]. ACTL* extends CTL* by allowing formulae to constrain actions
as well as propositions. The difference between ACTL* and CTL* is that the former
contains action formulae and two new operators: S C for social commitments and ∴

3 Model Checking Agent Communication 75

for arguments. The set of atomic propositions is denoted Γp. The set of action labels
is denoted Γa. In what follows we use p, p1, p2, . . . to range over the set of atomic
propositions and θ,θ1, θ2, . . . to range over action labels. The syntax of this logic is
as follows:

S ::= p | ¬S | S∧S | S∨S | AP | EP | S C(Ag1,Ag2,P)

P ::= θ | ¬P | S | P∧P | P∨P | XP | PUP | P ∴ P
| ACT1(Ag1,S C(Ag1,Ag2,P)) | ACT2(Ag2,S C(Ag1,Ag2,P))
| ACT+1 (Ag1,S C(Ag1,Ag2,P),P) | ACT+2 (Ag2,S C(Ag1,Ag2,P),P)

ACT1 ::=Cr | Wit | S at | Vio

ACT2 ::= Ac | Re f | Ch

ACT+1 ::= De f | Jus

ACT+2 ::= At

The formulae generated by S are called state formulae, while those generated
by P are called path formulae. We use ψ,ψ1,ψ2, . . . to range over state formulae
and φ,φ1,φ2, . . . to range over path formulae. The formula Aφ (respectively Eφ)
means in all paths (resp. some paths) starting from the current state φ is satis-
fied. The formula S C(Ag1,Ag2,φ) means that agent Ag1 commits towards agent
Ag2 that the path formula φ is true. Committing to path formulae is more expres-
sive than committing to state formulae since state formulae are path formulae. In
fact, by committing to path formulae, agents can commit to state formulae and ex-
press commitments toward the future, for example committing that Xφ (φ holds
from the next state), φ1Uφ2 (φ1 holds until φ2 becomes true) and EFφ (there is
a path such that in its future φ holds)5. Ag1 and Ag2 are respectively called the
debtor and creditor of the commitment. The formula φ1 ∴ φ2 means that φ1 is an
argument for φ2. We can read this formula: φ1, so φ2. This operator introduces argu-
mentation as a logical relation between path formulae. Action(Ag,S C(Ag1,Ag2,φ))
and Action+(Ag,S C(Ag1,Ag2,φ),φ1), where Action corresponds to ACT1 and ACT2
and Action+ corresponds to ACT+1 and ACT+2 , indicate the action an agent Ag
(Ag ∈ {Ag1,Ag2}) performs on S C(Ag1,Ag2,φ). The actions we consider are: Cr
(create), Wit (withdraw), S at (satisfy), Vio (violate), Ac (accept), Re f (refuse), Ch
(challenge), At (attack), De f (defend) and Jus (justify).

5 Operator F (in the future) is an abbreviation defined from operator U: Fφ ≡ trueUφ

76 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

3.4.2 Semantics

Semantically, this logic is interpreted with respect to the model M defined as fol-

lows: M = 〈S m,Lab,Actm,
Actm
−→,Agt,Rsc, sm0〉where: S m is a set of states; Lab : S m→

2Γp is the labeling state function; Actm is a set of actions;
Actm
−→⊆ S m×Actm×S m is the

transition relation; Agt is a set of communicating agents; Rsc : S m×Agt×Agt→ 2σ

with σ is the set of all paths in M is an accessibility modal relation that associates to
a state sm the set of paths along which an agent can commit towards another agent;
sm0 is the start state. The paths that path formulae are interpreted over have the form

x = sm0

α1
−→ sm1

α2
−→ sm2 . . . where x ∈ σ, sm0 , sm1 , . . . are states and α1,α2, . . . are ac-

tions. xi = smi

αi+1
−→ smi+1 . . . is the suffix of the path x starting from the ith state. The

set of paths starting from a state sm is denoted σm. x[i] is the ith state in the path x.
In the rest,⇒ stands for implies.
sm |=M p iff p ∈ Lab(sm)
sm |=M ¬ψ iff not(sm |=M ψ)
sm |=M ψ1∧ψ2 iff sm |=M ψ1 and sm |=M ψ2
sm |=M ψ1∨ψ2 iff sm |=M ψ1 or sm |=M ψ2

A state sm satisfies Aφ (Eφ) if every path (some path) emanating from this state
satisfies φ. Formally:
sm |=M Aφ iff ∀x ∈ σm x |=M φ
sm |=M Eφ iff ∃x ∈ σm x |=M φ

A state sm satisfies S C(Ag1,Ag2,φ) if every accessible path to Ag1 towards Ag2
from this state using Rsc satisfies φ. Formally:
sm |=M S C(Ag1,Ag2,φ) iff ∀x ∈ Rsc(sm,Ag1,Ag2) x |=M φ.

A path satisfies a state formula if the initial state in the path does. Formally:
x |=M ψ iff sm0 |=M ψ

To define the satisfiability of action labels over paths, we introduce the notation
θDαi where i ≥ 1 to indicate that the action label θ becomes true when perform-
ing the action αi, that is αi brings about θ (for example, by performing the action
of opening the door the action label “door is open” becomes true. If not, we write
θ 4 αi. A path x satisfies an action label θ if θ is in the label of the first transition
on this path and this path is not a deadlocked path. A path is deadlocked if it has no
transitions. A path satisfies ¬θ if either θ is not in the label of the first transition on
this path or this path is a deadlocked path. Formally:
x |=M θ iff θDα1 and x is not a deadlocked path
x |=M ¬θ iff θ 4 α1 or x is a deadlocked path
where the action α1 is the label of the first transition on the path x.
x |=M ¬φ iff not(x |=M φ)

3 Model Checking Agent Communication 77

x |=M φ1∧φ2 iff x |=M φ1 and x |=M φ2
x |=M φ1∨φ2 iff x |=M φ1 or x |=M φ2

X represents the next time operator and has the usual semantics when the path
is not deadlocked. On a deadlocked path, Xφ holds if the current state satisfies φ.
Formally:
x |=M Xφ iff (x is not a deadlocked path⇒ x1 |=M φ) and

(x is a deadlocked path⇒ x[0] |=M φ)

In the rest, the path x is supposed non-deadlocked. Along this path, φ1Uφ2 holds
if φ1 remains true along this path until φ2 becomes true (strong until). Formally:
x |=M φ1Uφ2 iff ∃i ≥ 0 : xi |=M φ2 and ∀ j < i, x j |=M φ1

Along a path x, φ1 ∴ φ2 holds if φ1 is true and at next time if φ1 is true then φ2 is
true. Formally:
x |=M φ1 ∴ φ2 iff x |=M φ1 and x1 |=M φ1⇒ φ2
Because the semantics of ∴ operator is defined using existing operators, it is intro-
duced here as a useful abbreviation, which will be used to define the semantics of
some actions performed on SCs.

To specify dialogue game protocols in this logic according to the CAN frame-
work, we use a set of actions performed by the communicating agents on SCs and
SC contents. The idea behind the CAN framework is that agents communicate by
performing actions on SCs (for example creating, accepting and challenging SCs)
and by supporting these actions by argumentation relations (attack, defense, and
justification). Such an approach, called the social approach [318] is considered as
an alternative to the private approach based on the agents’ mental states like beliefs,
desires, and intentions [109]. The semantics of the action formulae is defined as fol-
lows:
x |=M Cr(Ag1,S C(Ag1,Ag2,φ)) iff α1 =Cr and sm1 |=M S C(Ag1,Ag2,φ)
x |=M Wit(Ag1,S C(Ag1,Ag2,φ)) iff α1 =Wit and sm1 |=M ¬S C(Ag1,Ag2,φ)
x |=M S at(Ag1,S C(Ag1,Ag2,φ)) iff α1 = S at and sm1 |=M φ
x |=M Vio(Ag1,S C(Ag1,Ag2,φ)) iff α1 = Vio and sm1 |=M ¬φ
x |=M Ac(Ag2,S C(Ag1,Ag2,φ)) iff α1 = Ac and sm1 |=M S C(Ag2,Ag1,φ)
x |=M Re f (Ag2,S C(Ag1,Ag2,φ)) iff α1 = Re f and sm1 |=M S C(Ag2,Ag1,¬φ)
x |=M Ch(Ag2,S C(Ag1,Ag2,φ)) iff α1 =Ch and sm1 |=M S C(Ag2,Ag1,?φ)
x |=M At(Ag2,S C(Ag1,Ag2,φ1),φ2) iff α1=At and sm1|=MS C(Ag2,Ag1,φ2∴¬φ1)
x |=MDef(Ag1,S C(Ag1,Ag2,φ1),φ2) iff α1=Def and sm1|=MS C(Ag1,Ag2,φ2∴ φ1)
x |=M Jus(Ag1,S C(Ag1,Ag2,φ1),φ2) iff α1=Jus and sm1|=MS C(Ag1,Ag2,φ2∴ φ1)

Cr(Ag1,S C(Ag1,Ag2,φ)) is satisfied along the path x iff the first transition is la-
beled by Cr and the underlying commitment holds in the next state on that path.
The semantics of the other formulae is defined in the same way. The commitment
is withdrawn iff after performing the action, the commitment does not hold in the
next state. It is satisfied (resp. violated) iff after the action, the content becomes true

78 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

(resp. false) in the next state. When Ag2 accepts (resp. refuses) the commitment
content, it becomes committed to the same content (resp. the negation of the same
content) in the next state. For simplification reasons, the semantics of challenge is
defined by introducing a syntactical construct “?” to indicate that the debtor Ag2 of
the resulting commitment S C(Ag2,Ag1,?φ) does not have an argument supporting φ
or ¬φ. For the purpose of model checking dialogue games, this syntactical construct
is useful for the tableau-based verification technique we will present in Section 3.6.
The content φ1 of Ag1’s commitment is attacked by Ag2 using φ2 iff after perform-
ing the attack action, Ag2’s commitment about φ2 ∴ ¬φ1 holds in the next state. Ag1
defends its commitment (against an attack) and justifies it (against a challenge) iff
after performing the action, the Ag1’s commitment about φ2 ∴ φ1 holds in the next
state.

ACTL* logic is the fusion of CTL* logic and a logic for commitments. The logic
for commitments has the following properties, where→ is the classical implication:

1. Rsc is serial (axiom D);

2. Rsc is reflexive (axiom M) because accessible paths start from the current state
where the commitment has been made and a formula is satisfied along a path if
it is satisfied in the initial state of this path, which means on an accessible path
we have S C(Ag1,Ag2,φ)→ φ

3. Rsc is transitive (axiom 4): S C(Ag1,Ag2,φ)→S C(Ag1,Ag2,S C(Ag1,Ag2,φ)).

This makes the logic an S 4 system.

3.4.3 Tableau Rules

In this section, we present the tableau rules that we use to translate the ACTL*
property to be verified to an ABTA (see Fig. 3.1). The definition of ABTA and
the translation procedure will be presented in Sections 3.6.1 and 3.6.2. The tableau
rules allow us to build the ABTA representing the formula to be verified. These
rules [106] are specified in terms of the decomposition of formulae to sub-formulae.
They enable us to define top-down proof systems. The idea is: given a formula (the
top part of the rule), we apply a tableau rule and determine the sub-formulae (the
down part of the rule) to be proven (see Section 3.3). Tableau rules are inference
rules used in order to prove a formula by proving all the sub-formulae. The labels of
these rules are the labels of states in the ABTA constructed from the given formula
(Section 3.6.1). These rules are presented in Table 3.1. In these rules, Φ is any set of
path formulae. The symbol “,” indicates a conjunction. For example, E(Φ,ψ) means
that, there is a path along which the set of path formulae Φ and the state formula ψ
are true. Adding the set Φ to these rules allows us to deal with any form of formulae
written under the form of any set of path formulae and a formula of our logic. We

3 Model Checking Agent Communication 79

Table 3.1 Tableau rules

R1 ∧ : ψ1∧ψ2
ψ1ψ2

R2 ∨ : ψ1∨ψ2
ψ1

,
ψ1∨ψ2
ψ2

R3 ∨ : E(ψ)
ψ R4 ¬ : ¬ψψ R5 ¬ : A(Φ)

E(¬Φ)

R6 <Cr> : E(Φ,Cr(Ag1 ,S C(Ag1 ,Ag2 ,φ)))
E(Φ,S C(Ag1 ,Ag2 ,φ)) R11 < Ac > : E(Φ,Ac(Ag2 ,S C(Ag1 ,Ag2 ,φ)))

E(Φ,S C(Ag2 ,Ag1 ,φ))

R7 <Wit> : E(Φ,Wit(Ag1 ,S C(Ag1 ,Ag2 ,φ)))
E(Φ,¬S C(Ag1 ,Ag2 ,φ)) R12 < Re f > : E(Φ,Re f (Ag2 ,S C(Ag1 ,Ag2 ,φ)))

E(Φ,S C(Ag2 ,Ag1 ,¬φ))

R8 <S at> : E(Φ,S at(Ag1 ,S C(Ag1 ,Ag2 ,φ)))
E(Φ,φ) R13 < Jus> : E(Φ,Jus(Ag1 ,S C(Ag1 ,Ag2 ,φ1),φ2))

E(Φ,S C(Ag1 ,Ag2 ,φ2∴φ1))

R9 <Vio> : E(Φ,Vio(Ag1 ,S C(Ag1 ,Ag2 ,φ)))
E(Φ,¬φ) R14 <At> : E(Φ,At(Ag2 ,S C(Ag1 ,Ag2 ,φ1),φ2))

E(Φ,S C(Ag2 ,Ag1 ,φ2∴¬φ1))

R10 <Ch> : E(Φ,Ch(Ag2 ,S C(Ag1 ,Ag2 ,φ)))
E(Φ,S C(Ag2 ,Ag1 ,?φ)) R15 <De f > : E(Φ,De f (Ag1 ,S C(Ag1 ,Ag2 ,φ1),φ2))

E(Φ,S C(Ag1 ,Ag2 ,φ2∴φ1))

R16 [S CAg1] : E(Φ,S C(Ag1 ,Ag2 ,φ))
E(Φ,φ) R17 <≡> : E(Φ,Ψ)

E(Φ)E(Ψ) R18 ∧ : E(Φ,φ1∧φ2)
E(Φ,φ1 ,φ2)

R19 ∨ : E(Φ,φ1∨φ2)
E(Φ,φ1)E(Φ,φ2) R20 X : E(Φ,Xφ1 ,...,Xφn)

E(Φ,φ1 ,...,φn) R21 ∧ : E(Φ,φ1∴φ2)
E(Φ,φ1 ,X(¬φ1∨φ2))

R22 ∨ : E(Φ,φ1Uφ2)
E(Φ,φ2)E(Φ,φ1 ,X(φ1Uφ2))

also recall that we use ψ,ψ1,ψ2, . . . to range over state formulae and φ,φ1,φ2, . . . to
range over path formulae.

Rule R1 labeled by “∧” indicates that ψ1 and ψ2 are the two sub-formulae of
ψ1 ∧ψ2. This means that, in order to prove that a state labeled by “∧” satisfies the
formula ψ1 ∧ψ2, we have to prove that the two children of this state satisfy ψ1 and
ψ2 respectively. According to rule R2, in order to prove that a state labeled by “∨”
satisfies the formula ψ1 ∨ψ2, we have to prove that one of the two children of this
state satisfies ψ1 or ψ2. R3 labeled by “∨” indicates that ψ is the sub-formula to be
proved in order to prove that a state satisfies E(ψ). E is the existential path-quantifier.
According to R4, the formula ¬ψ is satisfied in a state labeled by “¬” if this state
has a successor representing the sub-formula ψ, which is not satisfied. R5 is defined
in the usual way.

The label “<Cr>” (R6) is the label associated with the creation action of a social
commitment. According to this rule, in order to prove that a state labeled by “<Cr>”
satisfies Cr(Ag1,S C(Ag1,Ag2,φ)), we have to prove that the child state satisfies the
sub-formula S C(Ag1,Ag2,φ). The idea is that by creating a social commitment, this
commitment becomes true in the child state. In the model representing the dialogue
game protocol, the idea behind the creation action is that by creating a social com-
mitment, this commitment becomes true in the accessible state via the transition
labeled by the creation action. The label “<Wit>” (R7) is the label associated with
the withdrawal action of a social commitment. According to this rule, in order to
prove that a state labeled by “<Wit>” satisfies Wit(Ag1,S C(Ag1,Ag2,φ)), we have
to prove that the child state satisfies the sub-formula ¬S C(Ag1,Ag2,φ). Rules R8 to
R15 are defined in the same way. For example, the idea of rule R11 is that by accept-

80 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

ing a social commitment whose content is φ by an agent Ag2, this agent commits
about this content in the child state. In this state, the commitment of Ag2 becomes
true. In rule R10, we use the syntactical construct “?” introduced in Section 3.4.2
meaning that the debtor Ag2 does not have an argument supporting φ or ¬φ. The
idea of this rule is that by challenging a social commitment, Ag2 commits in the
child state that it does not have an argument for or against the content φ. Because
“?” is only a syntactical construct, ?φ does not have a sub-formula, so there is no
rule for “?”.

Rule R16 indicates that E(φ) is the sub-formula of E(S C(Ag1,Ag2,φ)). Thus, in
order to prove that a state labeled by “[S CAg1]” satisfies formula E(S C(Ag1,Ag2,φ)),
we have to prove that the child state satisfies the sub-formula E(φ). According to the
semantics of social commitments (Section 3.4), the idea of this rule is that if an agent
commits about a content along a path, this content is true along this path (we recall
that the commitment content is a path formula).

Rules R17, R18, and R19 are straightforward. According to rule R20 and in ac-
cordance with the semantics of “X”, in order to prove that a state labeled with “X”
satisfies E(Xφ), we have to prove that the child state satisfies the sub-formula E(φ).
According to R21 and in accordance with the semantics of “∴” (Section 3.4), in
order to prove that a state labeled with “∧ ” satisfies E(φ1 ∴ φ2), we have to prove
that the child state satisfies the sub-formula E(φ1∧X(¬φ1∨φ2)). This mean that the
support is true and next if the support is true then the conclusion is true. Finally, rule
R22 is defined in accordance with the usual semantics of until operator “U”.

3.5 Dialogue Game Protocols as Transition Systems

In Section 3.4, we presented ACTL* logic and CAN-based actions. In this section,
we specify the dialogue game protocols to be checked as models for this logic (see
Fig. 3.1). This specification uses CAN-based actions and the labels of the tableau
rules that we will present in Section 3.4.3. Dialogue game protocols are specified
as a set of rules describing the entry condition, the dynamics and the exit condition
[37]. These rules can be specified as CAN-based actions.

Dialogue game protocols are defined as TSs. The purpose of these TSs is to
describe not only the sequence of the allowed actions (classical TSs), but also the
tableau rules-based decomposition of these actions (Section 3.4.3). The states of
these systems are sub-TSs (that we call decomposition TSs) describing the tableau
rules-based decomposition of the actions labeling the entry transitions. Defining
TSs in such a way allows us to verify: (1) The correctness of the protocol (if the
model of the protocol satisfies the properties that the protocol should specify); (2)
The compliance to the decomposition semantics of the communicative actions (if
the specification of the protocol respects the decomposition semantics). In Section
3.6, we present a model checking procedure in order to verify both (1) and (2) at

3 Model Checking Agent Communication 81

the same time. The definition of the TSs of dialogue game protocols is given by the
following definitions:

Definition 3.1 (Decomposition TSs). A decomposition transition system (DT) de-
scribing the tableau-rules-based decomposition semantics of a CAN based-action

formula is a 7-tuple 〈S ′,Lab′,F,L′,R,
R
−→, s′0〉 where: S ′ is a set of states; Lab′ :

S ′→ 2Γp is the labeling state function; F is a set of ACTL* formulae; L′ : S ′→ 2F

is a function associating a set of formulae to a state; R ∈ {∧,∨,¬,<≡>,X,S CAg} is a
tableau rule label (without the rules for CAN-based action formulae) (see Section

3.4.3);
R
−→⊆ S ′×R×S ′ is the transition relation; s′0 is the start state.

Intuitively, states S ′ contain the sub-formulae of the CAN-based action formu-
lae, and the transitions are labeled by operators associated with the formula of the
starting state. Decomposition TSs enable us to describe the decomposition seman-
tics of formulae by sub-formulae connected by logical operators. Thus, there is a
transition between states S ′i and S ′j iff L′(S ′j) is a sub-formula of L′(S ′i).

Definition 3.2 (TSs for Dialogue Game Protocols). A transition system T for a

dialogue game protocol is a 7-tuple 〈S ,Lab,℘,L,Act,
Act
−→, s0〉 where: S is a set of

states; Lab : S → 2Γp is the labeling state function; ℘ is a set of decomposition TSs
with ε ∈ ℘ is the empty decomposition TS; L : S → ℘ is the function associating to a
state s ∈ S a decomposition transition system DT ∈ ℘ describing the tableau-based
decomposition of the CAN-based action labeling the entry transition; Act is the set

of CAN-based actions;
Act
−→⊆ S ×Act×S is the transition relation; s0 is the start state

with L(s0) = ε.

We write s
•
−→ s′ instead of < s,•, s′>∈

Act
−→ where • ∈ Act. Fig. 3.2 illustrates a

part of a TS for a dialogue game protocol. According to this protocol, if Ag1 plays
a creation game (a1), Ag2 can, for instance, play a challenge game (a2). Thereafter,
Ag1 must plays a justification game (a3), etc.

States S 1, S 2, and S 3 are decomposition TS associated respectively with cre-
ation, challenge, and justification actions. For example, for the creation action (S 1),
the first state (s1.0) is associated with the S C formula according to the rule R6 (Ta-
ble 3.1, Section 3.4.3). The next state is associated with the SC content according
to the rule R16 (Table 3.1). The transition is labeled with the label of this rule. An
example of the properties to be verified in this protocol is:

AG(Ch(Ag2,S C(Ag1,Ag2,φ1))⇒ F(Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (3.1)

This property says that in all paths (A) globally (G)6, if an agent Ag2 challenges
(Ch) the content of a SC made by an agent Ag1, then in the future (F), Ag1 justifies
(Jus) the content of its SC. In the rest of this chapter, we refer to this formula as
Formula 1.
6 Operator G (globally in the future) is an abbreviation defined from operator F: Gφ ≡ ¬F¬φ

82 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

Fig. 3.2 A part of a transition system for a dialogue game protocol

3.6 Verification of Dialogue Game Protocols

In previous sections, we presented the elements needed for the verification of di-
alogue game protocols: the logic along with the associated tableau rules and the
specification of dialogue game protocols. In this section, we present the verification
technique, which is based upon (1) the ABTA for ACTL* logic (Section 3.6.1); and
(2) the translation of the property to be verified to an ABTA (Section 3.6.2) (see Fig.
3.1). This translation is the step 1 of Fig. 3.1. The step 2, which is the construct of
the product graph of the model and the ABTA is addressed in Section 3.6.3. Finally,
the model checking algorithm acting on the product graph (step 3) is presented in
Section 3.6.4. Examples illustrating each step are also presented.

3.6.1 Alternating Büchi Tableau Automata (ABTA) for ACTL*

As a kind of Büchi automata, ABTAs [44] are used in order to prove properties of
infinite behavior. These automata can be used as an intermediate representation for
system properties. Let Γp be the set of atomic propositions and let < be a set of
tableau rule labels defined as follows: 7

< = {∧,∨,¬}∪<Act ∪<¬Act ∪<S C ∪<S et where:<Act = {<Cr>,<Wit>,<S at>
,< Vio>,<Ch>,< Ac>,< Re f >,< Jus>,< At >,<De f >}, <S C = {[S CAg]}, and
<S et = {<≡>,X}.
We define ABTAs for ACTL* logic as follows:

7 The partition of the set of tableau rule labels is only used for readability and organizational
reasons.

3 Model Checking Agent Communication 83

Definition 3.3 (ABTA). An ABTA for ACTL* is a 5-tuple 〈Q, l,→,q0,F〉, where:
Q is a finite set of states; l : Q→ Γp∪< is the state labeling; →⊆ Q×Q is the
transition relation; q0 is the start state; F ⊆ 2Q is the acceptance condition8.

ABTAs allow us to encode “top-down proofs” for temporal formulae. Indeed, an
ABTA encodes a proof schema in order to prove, in a goal-directed manner, that a
TS satisfies a temporal formula. Let us consider the following example. We would
like to prove that a state s in a TS satisfies a temporal formula of the form F1∧F2,
where F1 and F2 are two formulae. Regardless of the structure of the system, there
would be two sub-goals. The first would be to prove that s satisfies F1, and the
second would be to prove that s satisfies F2. Intuitively, an ABTA for F1∧F2 would
encode this “proof structure” using states for the formulae F1 ∧F2, F1, and F2. A
transition from F1 ∧ F2 to each of F1 and F2 should be added to the ABTA and
the labeling of the state for F1 ∧F2 being “∧” which is the label of a certain rule.
Indeed, in an ABTA, we can consider that: 1) states correspond to “formulae”, 2)
the labeling of a state is the “logical operator” used to construct the formula, and 3)
the transition relation represents a “sub-goal” relationship.

3.6.2 Translating ACTL* into ABTA (Step 1)

The procedure for translating an ACTL* formula p = E(φ) to an ABTA B uses goal-
directed rules in order to build a tableau from this formula. Indeed, these proof rules
are conducted in a top-down fashion in order to determine if states satisfy properties.
The tableau is constructed by exhaustively applying the tableau rules presented in
Table 3.1 to p. Then, B can be extracted from this tableau as follows. First, we
generate the states and the transitions. Intuitively, states will correspond to state
formulae, with the start state being p. To generate new states from an existing state
for a formula p′, we determine which rule is applicable to p′, starting with R1, by
comparing the form of p′ to the formula appearing in the “goal position” of each
rule. Let rule(q) denote the rule applied at node q. The labeling function l of states
is defined as follows. If q does not have any successor, then l(q) ∈ Γp. Otherwise,
the successors of q are given by rule(q). The label of the rule becomes the label
of the state q, and the sub-goals of the rule are then added as states related to q by
transitions.

A tableau for a ACTL* formula p is a maximal proof tree having p as its root
and constructed using our tableau rules (see Section 3.4.3). If p′ results from the
application of a rule to p, then we say that p′ is a child of p in the tableau. The
height of a tableau is defined as the length of the longest sequence < p0, p1, . . . >,
where pi+1 is the child of pi [106].

8 The notion of acceptance condition is related to the notion of accepting run that we define in
Section 3.6.3.

84 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

Example 3.1. In order to illustrate the translation procedure and the construction of
an ABTA from an ACTL* formula, let us consider our formula Formula 1 given
in Section 3.5. Table 3.2 is the tableau to build for translating Formula 1 into an
ABTA. The form of Formula 1 is: AG(p⇒ q)(≡ AG(¬p∨ q)) (the root of Table
3.2). The first rule we can apply is R5 labeled by ¬ in order to transform all paths
to exists a path. We also use the equivalence (F(p) ≡ ¬G(¬p)). We then obtain the
child number (2). The next rule we can apply is R22 labeled by ∨ because F is an
abbreviation of U (F(p) ≡ True U p). Consequently, we obtain two children (3) and
(4). From the child (3) we obtain the child (5) by applying the rule R10, and from the
child (4) we obtain the child (2) by applying the rule R20 etc. The ABTA obtained
from this tableau is illustrated by Fig. 3.3. States are labeled by the child’s number
in the tableau and the label of the applied rule according to Table 3.2.

Table 3.2 The tableau of Formula 1
¬ : AG(¬Ch(Ag2,S C(Ag1,Ag2,φ1))∨F(Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (1)
∨ : EF(Ch(Ag2,S C(Ag1,Ag2,φ1))∧G(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (2)
<Ch>: E(Ch(Ag2,S C(Ag1,Ag2,φ1))∧ <X>: EX(F(Ch(Ag2,S C(Ag1,Ag2,φ1))∧
G(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (3) G(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2)))) (4)
[S CAg2] : E(S C(Ag2,Ag1,?φ1)∧ EF(Ch(Ag2,S C(Ag1,Ag2,φ1))∧
G(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (5) G(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (2)
<≡>: E(?φ1 ∧G(¬Jus(Ag1,S C(Ag1,Ag2,

φ1),φ2))) (6)
?φ1 (7) ∨ : E(G(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (8)

<¬Jus>: E(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2),
XG(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (9)

[S CAg1] : E(S C(Ag1,Ag2,φ1 ∴ φ2),
XG(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (10)

∧ : E(φ2 ∴ φ1,XG(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (11)
<≡>: E(φ2,X(¬φ2 ∨φ1),XG(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (12)
φ2 (13) X : E(X(¬φ2 ∨φ1),XG(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (14)

<≡>: E((¬φ2 ∨φ1),XG(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (15)
¬φ2 ∨φ1 (16) X : E(XG(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (17)

∨ : E(G(¬Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (8)

The termination proof of the translation procedure is based on the finiteness of
the tableau. This proof is based on the length of formulae and an ordering relation
between these formulae. The proof is detailed in [35].

3.6.3 Run of an ABTA on a Transition System (Step 2)

Like the automata-based model checking of LTL, in order to decide about the satis-
faction of formulae, we use the notion of the accepting runs. In our technique, we
need to define accepting runs of an ABTA on a TS. Firstly, we have to define the

3 Model Checking Agent Communication 85

Fig. 3.3 The ABTA of Formula 1

notion of ABTA’s run. For this reason, we need to introduce two types of nodes: pos-
itive and negative. Intuitively, nodes classified positive are nodes that correspond to
a formula without negation, and negative nodes are nodes that correspond to a for-
mula with negation. Definition 3.4 gives the definition of this notion of run. In this
definition, elements of the set S of states are denoted si or ti.

Definition 3.4 (Run of an ABTA). A run of an ABTA B = 〈Q, l,→,q0,F〉 on a

transition system T = 〈S ,Lab,℘,L,Act,
Act
−→, s0〉 is a graph in which the nodes are

classified as positive or negative and are labeled by elements of Q×S as follows:

1. The root of the graph is a positive node and is labeled by <q0, s0> .

86 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

2. For a positive node ϕ with label <q, si>:

a. If l(q) = ¬ and q→ q′, then ϕ has one negative successor labeled <q′, si> and
vice versa.

b. If l(q) ∈ Γp, then ϕ is a leaf.

c. If l(q) ∈ {∧,<≡>} and {q′|q→ q′} = {q1, . . . ,qm}, then ϕ has positive successors
ϕ1, . . . ,ϕm with ϕ j labeled by <q j, si> (1 ≤ j ≤ m).

d. If l(q) = ∨, then ϕ has one positive successor ϕ′ labeled by <q′, si> for some
q′ ∈ {q′|q→ q′}.

e. If l(q) = X and q→ q′ and {s′|si
•
−→ s′} = {t1, . . . , tm} where • ∈ Act, then ϕ has

positive successors ϕ1, . . . ,ϕm with ϕ j labeled by <q′, t j> (1 ≤ j ≤ m).

f. If l(q)=<•>where • ∈ Act and q→ q′, and si
•
−→ si+1, then ϕ has one positive

successor ϕ′ labeled by < q′, si+1,0 > where si+1,0 is the initial state of the
decomposition TS of si+1.

g. If l(q) =< •> where • ∈ ¬Act and q→ q′, and si
•′

−→ si+1 where • , •′ and
•′ ∈ Act, then ϕ has one positive successor ϕ′ labeled by <q′, si+1>.

3. For a negative node ϕ labeled by <q, si>:

a. If l(q) ∈ Γp, then ϕ is a leaf.

b. If l(q) ∈ {∨,<≡>} and {q′|q→ q′} = {q1, . . . ,qm}, then ϕ has negative successors
ϕ1, . . . ,ϕm with ϕ j labeled by <q j, si> (1 ≤ j ≤ m).

c. If l(q) = ∧, then ϕ has one negative successor ϕ′ labeled by <q′, si> for some
q′ ∈ {q′|q→ q′}.

d. If l(q) = X and q→ q′ and {s′|si
•
−→ s′} = {t1, . . . , tm} where • ∈ Act, then ϕ has

negative successors ϕ1, . . . ,ϕm with ϕ j labeled by <q′, t j> (1 ≤ j ≤ m).

e. If l(q)=<•>where • ∈ Act and q→ q′, and si
•
−→ si+1, then ϕ has one negative

successor ϕ′ labeled by < q′, si+1,0 > where si+1,0 is the initial state of the
decomposition TS of si+1.

f. If l(q) =< •> where • ∈ ¬Act and q→ q′, and si
•′

−→ si+1 where • , •′ and
•′ ∈ Act, then ϕ has one negative successor ϕ′ labeled by <q′, si+1>.

4. Otherwise, for a positive (negative) node ϕ labeled by <q, si, j>:

a. If l(q) =<≡> and {q′|q→ q′} = {q1,q2} such that q1 is a leaf, and si, j has a
successor si, j+1, then ϕ has one positive leaf successor ϕ′ labeled by <q1, si, j>
and one positive (negative) successor ϕ′′ labeled by <q2, si, j+1>.

b. If l(q) =<≡> and {q′|q→ q′} = {q1,q2} such that q1 is a leaf, and si, j has no
successor, then ϕ has one positive leaf successor ϕ′ labeled by <q1, si, j> and
one positive (negative) successor ϕ′′ labeled by <q2, si>.

3 Model Checking Agent Communication 87

c. If l(q) ∈ {∧,∨,X, [S CAg]} and {q′|q→ q′}= {q1}, and si, j
r
−→ si, j+1 such that r =

l(q), then ϕ has one positive (negative) successor ϕ′ labeled by <q1, si, j+1>.

The notion of run of an ABTA on a TS is a non-synchronized product graph of
the ABTA and TS (see Fig. 3.1). This run uses the label of nodes in the ABTA (l(q)),
transitions in the ABTA (q→ q′), and transitions in the TS (si

•
−→ s j). The product

is not synchronized in the sense that it is possible to use transitions in the ABTA
while staying in the same state in the TS (this is the case for example of clauses
2.a,2.c, and 2.d).

The clause 2.a in the definition says that if we have a positive node ϕ in the
product graph such that the corresponding state in the ABTA is labeled with ¬ and
we have a transition q→ q′ in this ABTA, then ϕ has one negative successor labeled
with <q′, si >. In this case we use a transition from the ABTA and we stay in the
same state of the TS. In the case of a positive node and if the current state of the
ABTA is labeled with ∧, all the transitions of this current state of the ABTA are used
(clause 2.c). However, if the current state of the ABTA is labeled with ∨, only one
arbitrary transition from the ABTA is used (clause 2.d). The intuitive idea is that in
the case of ∧, all the sub-formulae must be true in order to decide about the formula
of the current node of the ABTA. However, in the case of ∨ only one sub-formula
must be true.

The cases in which a transition of the TS is used are:

1. The current node of the ABTA is labeled with X (which means a next state in the
TS). This is the case of clauses 2.e and 3.d. In this case we use all the transitions
from the current state si to next states of the TS.

2. The current state of the ABTA and a transition from the current state of the TS
are labeled with the same action. This is the case of clauses 2. f and 3.e. In this
case, the current transition of the ABTA and the transition from the current state
si of the TS to a state si+1,0 of the associated decomposition TS are used. The
idea is to start the parsing of the formula coded in the decomposition TS.

3. The current state of the ABTA and a transition from the current state of the TS
are labeled with different actions where the state of the ABTA is labeled with a
negative formula. This is the case of clauses 2.g and 3. f . In this case, the formula
is satisfied. Consequently, the current transition of the ABTA and the transition
from the current state si of the TS to a next state si+1 are used. Finally, clauses
4.a, 4.b, and 4.c deal with the case of verifying the structure of the commitment
formulae in the sub-TS. In these clauses, transitions si, j

r
−→ si, j+1 are used. We

note here that when si, j has no successor, the formula contained in this state is an
atomic formula or a boolean formula whose all the sub-formulae are atomic (for
example p∧q where p and q are atomic).

Example 3.2. Fig. 3.4 illustrates an example of the run of an ABTA. This figure
illustrates a part of the automaton B⊗ resulting from the product of the TS of Fig.
3.2 and the ABTA of Fig. 3.3. According to the clause 1 (Definition 3.4), the root is

88 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

a positive node and it is labeled by <¬, s0> because the label of the ABTA’s root is
¬ (Fig. 3.3). Consequently, according to the clause 2.a, the successor is a negative
node and it is labeled by <∨, s0>. According to the clause 3.b, the second node has
two negative successors labeled by <<Ch>, s0> and < X, s0 > etc.

Fig. 3.4 An example of an ABTA’s run

In an ABTA, every infinite path has a suffix that contains either positive or nega-
tive nodes, but not both. Such a path is referred to as positive in the former case and
negative in the latter. Now we can define the notion of accepting runs (or successful
runs). Let p ∈ Γp and let si be a state in a TS T . Then si |=T p iff p ∈ Lab(si) and
si |=T ¬p iff p < Lab(si). Let si, j be a state in a decomposition TS of a TS T . Then
si, j |=T p iff p ∈ Lab′(si, j) and si, j |=T ¬p iff p < Lab′(si, j).

Definition 3.5 (Successful Run). Let r be a run of an ABTA B = 〈Q, l,→,q0,F〉 on

a TS T = 〈S ,Lab,℘,L,Act,
Act
−→, s0〉. The run r is successful iff every leaf and every

infinite path in r is successful. A successful leaf is defined as follows:

1. A positive leaf labeled by <q, si> is successful iff si |=T l(q) or l(q) =<•> where
• ∈ Act and there is no s j such that si

•
−→ s j.

3 Model Checking Agent Communication 89

2. A positive leaf labeled by <q, si, j> is successful iff si, j |=T l(q)

3. A negative leaf labeled by < q, si > is successful iff si |=T ¬l(q) or l(q) =< •>
where • ∈ Act and there is no s j such that si

•
−→ s j.

4. A negative leaf labeled by <q, si, j> is successful iff si, j |=T ¬l(q)

A successful infinite path is defined as follows:

1. A positive path is successful iff ∀ f ∈ F,∃q ∈ f such that q occurs infinitely often
in the path. This condition is called the Büchi condition.

2. A negative path is successful iff ∃ f ∈ F,∀q ∈ f ,q does not occur infinitely often
in the path. This condition is called the co-Büchi condition.

We note here that a positive or negative leaf labeled by <q, s> such that l(q)=<•>
where • ∈ Act and there is no s′ such that s

•
−→ s′ is considered a successful leaf.

The reason is that it is possible to find a transition labeled by • and starting from
another state s′′ in the TS. In fact, if we consider such a leaf unsuccessful, then even
if we find a successful infinite path, the run will be considered unsuccessful, which
is false.

An ABTA B accepts a TS T iff there exists a successful run of B on T . In order
to compute the successful run of the generating ABTA, we should compute the
acceptance states F. For this purpose we use the following definition.

Definition 3.6 (Acceptance States). Let q be a state in an ABTA B and Q the set
of all states. Suppose φ = φ1Uφ2 ∈ q 9. We define the set Fφ as follows: Fφ = {q′ ∈
Q|(φ < q′ and Xφ < q′) or φ2 ∈ q′}. The acceptance set F is defined as follows:
F = {Fφ|φ = φ1Uφ2 and ∃q ∈ B,φ ∈ q}.

According to this definition, a state that contains the formula φ or the formula
Xφ is not an acceptance state. The reason is that according to Definition 3.4, there
is a transition from a state containing φ to a state containing Xφ and vice versa.
Therefore, according to Definition 3.5, there is a successful run in the ABTA B.
However, we can not decide about the satisfaction of a formula using this run. The
reason is that in an infinite cycle including a state containing φ and a state containing
Xφ, we can not be sure that a state containing φ2 is reachable. However, according to
the semantics of U, the satisfaction of φ needs that a state containing φ2 is reachable
while passing by states containing φ1.

Example 3.3. In order to compute the acceptance states of the ABTA of Fig. 3.3, we
use the formula associated with the child number (2) in Table 3.2:

F(Ch(Ag2,S C(Ag1,Ag2,φ1))∧G(¬Jus(Ag1,S C(Ag1,Ag2,φ1)φ2)))

9 Here we consider until formula because it is the formula that allows paths to be infinite.

90 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

We consider this formula, denoted φ, instead of the root’s formula because its form
is E(φ) (see Section 3.6.2). Consequently, state (1) and states from (3) to (17) are
the acceptance states according to Definition 3.6. For example, state (1) is an accep-
tance state because φ and Xφ are not in this state, and state (3) is an acceptance state
because φ2 is in this state. States (2) and (4) are not acceptance states. Because only
the first state is labeled by ¬, all finite and infinite paths are negative paths. Conse-
quently, the only infinite path that is a valid proof of Formula 1 is (1, (2, 4)*). In
this path there is no acceptance state that occurs infinitely often. Therefore, this path
satisfies the Büchi condition. The path visiting the state (3) and infinitely often the
state (9) does not satisfy Formula 1 because there is a challenge action (state (3)),
and globally no justification action of the content of the challenged commitment
(state (9)).

3.6.4 Model Checking Algorithm (Step 3)

Our model checking algorithm (see Fig. 3.5) for verifying that a dialogue game pro-
tocol satisfies a given property and that it respects the decomposition semantics of
the underlying communicative acts is inspired by the procedure proposed by [44].
Like the algorithm proposed by [117], our algorithm explores the product graph of
an ABTA representing an ACLT* formula and a TS for a dialogue game protocol.
This algorithm is on-the-fly (or local) algorithm that consists of checking if a TS is
accepted by an ABTA. This ABTA-based model checking is reduced to the empti-
ness of the Büchi automata [422]. The emptiness problem of automata is to decide,
given an automaton A, whether its language L(A) is empty. The language L(A) is the
set of words accepted by A.

Let T = 〈S ,Lab,℘,L,Act,
Act
−→, s0〉 be a TS for a dialogue game and let B= 〈Q, l,→

,q0,F〉 be an ABTA for ACTL*. The procedure consists of building the ABTA prod-
uct B⊗ of T and B while checking if there is a successful run in B⊗. The existence of
such a run means that the language of B⊗ is non-empty. The automaton B⊗ is defined
as follows: B⊗ = 〈Q× S ,→B⊗ ,q0B⊗ ,FB⊗〉. There is a transition between two nodes
<q, s> and <q′, s′ > iff there is a transition between these two nodes in some run
of B on T . Intuitively, B⊗ simulates all the runs of the ABTA. The set of accepting
states FB⊗ is defined as follows: q0B⊗ ∈ FB⊗ iff q ∈ F.

Unlike the algorithms proposed in [44, 117], our algorithm uses only one depth-
first search (DFS) instead of two. This is due to the fact that our algorithm explores
directly the product graph using the sign of the nodes (positive or negative). In
addition, our algorithm does not distinguish between recursive and non-recursive
nodes. Therefore, we do not take into account the strongly-connected components
in the ABTA, but we use a marking algorithm that directly works on the product
graph.

The idea of this algorithm is to construct the product graph while exploring it.
The construction procedure is directly obtained from Definition 3.4. The algorithm

3 Model Checking Agent Communication 91

uses the label of nodes in the ABTA, and the transitions in the product graph ob-
tained from the TS and the ABTA as explained in Definition 3.4. In order to decide
if the ABTA contains an infinite successful run, all the explored nodes are marked
“visited”. Thus, when the algorithm explores a visited node, it returns false if the
infinite path is not successful. If the node is not already visited, the algorithm tests
if it is a leaf. In this case, it returns false if the node is a non-successful leaf. If the
explored node is not a leaf, the algorithm explores recursively the successors of this
node. If this node is labeled by “∧ ”, and signed positively, then it returns false if
one of the successors is false. However, if the node is signed negatively, it returns
false if all the successors are false. A dual treatment is applied when the node is
labeled by “∨ ”.

Example 3.4. In order to check if the language of the automaton illustrated by Fig.
3.4 is empty, we check if there is a successful run. The idea is to verify if B⊗ contains
an infinite path visiting the state (3) and infinitely often the state (9) of the ABTA
of Fig. 3.3. If such a path exists, then we conclude that Formula 1 is not satisfied by
the TS of Fig. 3.2. Indeed, the only infinite path of B⊗ is successful because it does
not touch any accepted state and all leaves are also successful. For instance, the leaf

labeled by (<Ch>, s0) is successful since there is no state si such that s0
Ch
−→ si.

Therefore, the TS of Fig. 3.2 is accepted by the ABTA of Formula 1. Consequently,
this TS satisfies Formula 1 and respects its decomposition semantics.

Soundness and completeness of our model checking method are stated by the
following theorem.

Theorem 3.1 (Soundness and Completeness). Let ψ be a ACTL* formula and
Bψ the ABTA obtained by the translation procedure described above, and let

T = 〈S ,Lab,℘,L,Act,
Act
−→, s0〉 be a TS that represents a dialogue game protocol.

Then, s0 |=T ψ iff T is accepted by Bψ.

Proof. (Direction ⇒). To prove that T is accepted by Bψ, we have to prove that
there exists a run r of Bψ on T such that all leaves and all infinite paths in the run
are successful. Let us assume that s0 |=T ψ. First, let us suppose that there exists a
leaf < q, s> in r such that s |=T ¬l(q). Since the application of tableau rules does
not change the satisfaction of formulae, it follows from Definition 3.4 that s0 |=T ¬ψ
which contradicts our assumption.
Now, we will prove that all infinite paths are successful. The proof proceeds by con-
tradiction. ψ is a state formula that we can write under the form EΦ, where Φ is a
set of path formulae. Let us assume that there exists an unsuccessful infinite path
xr in r and prove that xT |=T ¬Φ where xT is the path in T that corresponds to xr
(xr is the product of Bψ and T). The fact that xr is infinite implies that R22 occurs
at infinitely many positions in xr. Because xr is unsuccessful, ∃φ1,φ2,qi such that
φ1Uφ2 ∈ qi and ∀ j ≥ i we have φ2 < q j. When this formula appears in the ABTA at
the position qi, we have l(qi) = ∨. Thus, according to Definition 3.4 and the form
of R22, the current node ϕ1 of r labeled by < qi, s> has one successor ϕ1 labeled

92 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

DFS(v = (q, s)): boolean {

if v marked visited {

if (sign(v) = "+" and not accepting(v)) or (sign(v) = "-" and accepting(v))

return false

} // end of if v marked visited

else {

mark v visited

switch(l(q)) {

case (p p):

switch(sign(v)) {

case("+"): if s is a sub-state and l(q) L’(s) return false

case("-"): if s is a sub-state and l(q)) L’(s) return false

case("neutral"): return false

} // end of switch(sign(v))

case():

if s is a leaf return false

else

switch(sign(v)) {

case(neutral): for all v’’ {v’ / v B v’}

 if not DFS(v’’) return false

case("+"): for all v’’ {v’ / v B v’}

 if not DFS(v’’) return false

case("-"): for all v’’ {v’ / v B v’}

 if DFS(v’’) return true else return false

} // end of switch(sign (v))

case():

if s is a leaf return false

else

switch(sign(v)) {

case(neutral): for all v’’ {v’ / v B v’}

 if DFS(v’’) return true else return false

case("+"): for all v’’ {v’ / v B v’}

 if DFS(v’’) return true else return false

case("-"): for all v’’ {v’ / v B v’}

 if not DFS(v’’) return false

} // end of switch(sign (v))

case(< >):

if s is a leaf return true

else for the v’’ {v’ / v B v’} if not DFS(v’’) return false

case(X, SCAg, < >, ?):

if s is a leaf return false

else for the v’’ {v’ / v B v’} if not DFS(v’’) return false

} // end of switch(l(q))

} // end of else

return true }

Fig. 3.5 The model checking algorithm

3 Model Checking Agent Communication 93

by < qi+1, s> with φ1Uφ2 ∈ qi and {φ1,X(φ1Uφ2)} ⊆ qi+1. Therefore, l(qi+1) = ∧,
and ϕ2 has a successor ϕ3 labeled by <qi+2, s> with X(φ1Uφ2) ∈ qi+2. Using R20
and the fact that l(qi+2) = X, the successor ϕ4 of ϕ3 is labeled by < qi+3, s′ > with
φ1Uφ2 ∈ qi+3 and s′ is a successor of s. This process will be repeated infinitely since
the path is unsuccessful. It follows that there is no s in T such that s |=T φ2. Thus,
according to the semantics of U, there is no s in T such that s |=T φ1Uφ2. Therefore,
xT |=T ¬Φ.
(Direction⇐). The proof proceeds by an inductive construction of xr and an anal-
ysis of the different tableau rules. A detailed proof of this theorem is presented
in [35].

3.7 Case Studies

In this section, we will exemplify the model checking technique presented in this
chapter by means of two case studies: 1) the persuasion/negotiation protocol for
agent-based web services (PNAWS) [36]; and 2) the NetBill protocol, a sys-
tem of micropayments for goods on the Internet [405]. We will also discuss their
implementations using an extension of the Concurrency Workbench of New Cen-
tury (CWB-NC) model checker10 [107, 446], which has been used to check many
large-scale protocols in communication networking and process control systems. As
benchmark, we will show the simulation results of these two case studies using the
MCMAS model checker [355].

3.7.1 Verifying PNAWS

PNAWS is a dialogue game-based protocol allowing web services to interact in
a negotiation setting via argumentative agents. Agents can negotiate their partici-
pation in composite web services and persuade each other to perform some actions
such as joining some existing business communities. In this case, two agents are
used: the Master agent that manages the community and the Slave agent that is in-
vited to join the community.PNAWS is specified using two special moves: refusal
and acceptance as well as five dialogue games: entry game (to open the interaction),
defense game, challenge game, justification game, and attack game. The PNAWS
protocol can be defined as follows using a BNF-like grammar where “|” is the choice
symbol and “;” the sequence symbol:

PNAWS = entry game; defense game; WSDG

10 The CWB-NC model checker can be downloaded from:
http://www.cs.sunysb.edu/ cwb/

94 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

WSDG = acceptance move | CH | ATT
CH = challenge game; justification game; (WSDG | refusal move)
ATT = attack game; (WSDG | refusal move)

Each game is specified by a set of moves using a set of logical rules. Fig. 3.6 illus-
trates the different actions of this protocol using a finite state machine. Many prop-
erties can be checked in this protocol, such as deadlock freedom (a safety property),
and liveness (something good will eventually happen). Deadlock freedom means
that there is always a possibility for an action and can be expressed as follows,
where Ag ∈ {Ag1,Ag2}:

AG(Cr(Ag1,S C(Ag1,Ag2,φ))⇒ AF(Action(Ag,S C(Ag1,Ag2,φ))

∨Action+(Ag,S C(Ag1,Ag2,φ),φ1))) (3.2)

An example of liveness can be expressed by the following formula stating that if
there is a challenge, a justification will eventually follow:

AG(Ch(Ag2,S C(Ag1,Ag2,φ1))⇒ F(Jus(Ag1,S C(Ag1,Ag2,φ1),φ2))) (3.3)

1Create Refuse

Defend

2

3

4 5

6

Challenge

Attack

Attack

Justify

Challenge

Accept/RefuseAccept

Accept/Refuse

Accept

S

E

Fig. 3.6 Actions of the PNAWS protocol

We have extended the CWB-NC model checker by adding SC and argument op-
erators and implemented this case study. CWB-NC supports GCTL*, which is close
to our logic (without SC and argument operators) and allows modeling concurrent
systems using Calculus of Communicating Systems (CCS) developed in [316]. CCS
is a process algebra language, which is a prototype specification language for reac-
tive systems. CCS can be used not only to describe implementations of processes,
but also specifications of their expected behaviors. To implement this case study,

3 Model Checking Agent Communication 95

CCS is used to describe the model M to be checked by specifying the states and
labeled transitions. ACTL* is used to specify the properties and the extended CWB-
NC tool takes as input the CCS code and the ACTL* property and automatically
builds the dialogue game protocol and checks the property by building the ABTA
and executing the model checking algorithm presented in Fig. 3.5 (see the method-
ology in Fig. 3.1). To use CCS as the design language to describe the PNAWS
protocol, we need first to introduce its syntax. Let A be the set of actions performed
on SC we consider in ACTL* logic. For all a ∈ A, we associate a complementary
action ′a. An action a represents the receipt of an input action, while ′a represents
the deposit of an output action. The syntax is given by the following BNF grammar:

P ::= nil|α(φ).P|(P+P)|(P|P)|proc C = P

“.” represents the prefixing operator, “+” is the choice operator, “|” is the parallel
operator and “proc =” is used for defining processes. The semantics can be defined
using operational semantics in the usual way. α(φ).P is the processes of performing
the action α on the SC content φ and then evolves into process P. For representation
reasons, we consider only the commitment content and we omit the other argu-
ments. In addition, we abstract away from the internal states and we focus only on
the global states. P+Q is the process which non-deterministically makes the choice
of evolving into either P or Q. P|Q is the process which evolves in parallel into
P and Q. To implement PNAWS, we need to model the protocol and the agents
using this protocol (the Master and Slave agents). For this reason, four particular
processes should be defined: the states process describing the protocol dynamics;
the two agents processes describing the agents legal decisions; and the communi-
cation synchronization process. The formulae to be checked are then encoded in
CWB-NC input language. A simplified version of the states process is as follows:

proc Spec = create(φ).S1
proc Accept = accept(φ).Spec
proc Accept’ = ’accept(φ).Spec
proc Refuse = refuse(φ).Spec
proc Refuse’ = ’refuse(φ).Spec
proc S1 = ’refuse(φ).S2 + Accept’
proc S2 = defend(φ′).S3
proc S3 = ’challenge(φ′).S4 + ’attack(φ′).S6 + ’accept(φ′).Spec
proc S4 = justify(φ).S5
proc S5 = ’challenge(φ).S4 + ’Accept +’Refuse
proc S6 = attack(φ’).S7 + Accept +Refuse
proc S7 = ’attack(φ).S6 + ’accept(φ′).Spec + ’refuse(φ′).Spec
set Internals = {create, challenge, justify, accept,

refuse, attack, defend}

The Master agent process has the form:

96 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

proc Master = create(φ).’accept(φ).master
+ create(φ).’refuse(φ).defend(φ).’accept(φ).master
+ create(φ).’refuse(φ).defend(φ).’refuse(φ).master
...

The Slave agent process has a similar form except the fact that it does not initi-
ate the communication. The process describing the communication synchronization
activity of an agent is as follows:

proc Ag = ’create(φ).Ag +
create(φ).(’refuse(φ).Ag + ’accept(φ).Ag) +
refuse(φ).(Ag + ’defend(φ’).Ag) +
defend(φ’).(’challenge(φ′).Ag + ’attack(φ).Ag + ’accept(φ’).Ag)

+

challenge(φ).’justify(φ′).Ag +
justify(φ’).(’challenge(φ′).Ag + ’accept(φ′).Ag +’refuse(φ′).Ag)

+

attack(φ’).(’attack(φ).Ag + ’accept(φ′).Ag+’refuse(φ′).Ag) +
accept(φ).Ag

The model size is |M| = |S |+ |R|, where |S | is the state space and |R| is the re-
lation space. |S | = |S Ag1 | × |S Ag2 | × |S PNAWS |, where |S Agi | is the number of states
for Agi and |S PNAWS | is the number of states of the protocol. An agent state is
described in terms of the possible actions and each action is described by a set
of states. For example, create action needs 2 states, challenge needs 3 states, and
justify needs 5 states (see Fig. 3.2). Thus, for each agent we have 35 states. The
protocol is described by the legal actions (Fig. 3.6), so it needs 29 states. In to-
tal, the number of states needed for this case study is |S | = 35525 ≈ 3.5 · 104. To
calculate |R|, we have to consider the operators of ACTL* and the actions, where
the total number is 6+ 11 = 17. We can then approximate |R| by 17 · |S |2. So we
have |M| ≈ 17 · |S |2 ≈ 2 · 1010. This is a theoretically estimated size if all possible
transitions are considered. However, in the implementation, not all these transitions
are used. On the other hand, the system considers additional states for the inter-
nal coding of variable states and actions. Some simulation results on a laptop Intel
Core 2 Duo CPU T6400 2.20 GHz with 3.00 GB of RAM running Windows Vista
Home Premium are given in Table 3.3. Fig. 3.7 shows the results screenshot. In
fact, CWB-NC does not search the whole model, but it proceeds by simplifying the
ABTA, minimizing the sets of accepting states, and computing bisimulation before
starting the model checking.

As benchmark, we use MCMAS [355] that supports agent specifications. As dis-
cussed in Section 3.2.2, MCMAS is a symbolic model checker based on OBDDS,
where the model and formula to be checked are not represented as automata, but us-
ing boolean functions. in MCMAS, models are described into a modular language
called Interpreted Systems Programming Language (ISPL). An ISPL program in-
cludes: 1) a list of agents’ descriptions; 2) an evaluation function indicating the

3 Model Checking Agent Communication 97

Table 3.3 Statistics of verifying PNAWS using CWB-NC

Model size (states/transitions) 35709/77244
Time for building the model (sec) 1.763

Verification time (sec) 5.912
Total execution time (sec) 7.675

Fig. 3.7 PNAWS simulation results with CWB-NC

states where atomic propositions are true; 3) a set of initial states; and 4) a list of
formulae. Each agent is composed by: a set of local states, a set of actions, a rule
(protocol) describing which action can be performed by the agent, and evolution
functions that describe how the local states of the agent evolve based on the current
local states and agent’s actions.

To implement the PNAWS protocol with ISPL, commitments are encoded as
variables. The Master and Slave agents are specified in two Agent sections along
with the Protocol and its Evolution. The atomic propositions are evaluated in Eval-
uation section. Formulae are then encoded in the same file in the Formulae section.
As example, we show here the form of the Master agent:

Agent Master

Vars:

state : {M0, M1, M2, ...};

. . .
end Vars

Actions = {create, defend, ...};

98 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

Protocol:

-- initiate the contract by creating

state = M0 : {create};

. . .
end Protocol

Evolution:

state = M1 if state = M0 and Slave.Action = reject

. . .
end Evolution

end Agent

Some simulation results using the same machine as for CWB-NC are given in Ta-
ble 3.4. Fig. 3.8 shows the results screenshot. This simulation reveals that MCMAS
uses greater number of reachable states, which are needed to encode commitments
and agent local states. The execution time is very close to the previous experiment.

Table 3.4 Statistics of verifying PNAWS using MCMAS

Number of reachable states 39475
Number of BDD and ADD nodes 152093

Total execution time (sec) 8

Fig. 3.8 PNAWS simulation results with MCMAS

3 Model Checking Agent Communication 99

3.7.2 Verifying NetBill

We consider a modified version of the NetBill protocol where two agents, Customer
(Cus) and Merchant (Mer), are interacting about some goods. The protocol starts
when the Customer requests a quote, which means creating a commitment about a
content φ1. The merchant can then either reject the request, which means refuse the
commitment and the protocol will end, or accept the request (i.e. accept the commit-
ment) and then make an offer (i.e. create another commitment about a content φ2).
The protocol is self-described in Fig.3.9. An example of liveness in this protocol
can be expressed by the following formula stating that if a commitment is created,
then there is a possibility of satisfying it.

AG(Cr(Ag1,S C(Ag1,Ag2,φ1))⇒ EF(S at(Ag1,S C(Ag1,Ag2,φ1))) (3.4)

1

Cus: request

Create (φ1)
Mer: Accept

Accept (φ1) Mer: Offer

Create (φ2)

2

3

4

Cus: withdraw after the deadline

Violate (φ1)

Mer: refund

Withdraw (φ2)

Mer: reject

Refuse (φ1)

Mer: not deliver
Violate (φ2)

Cus: withdraw within the deadline

Withdraw (φ1)

S

E

Cus: pay
Satisfy (φ1)

Mer: deliver

Satisfy (φ2)

Fig. 3.9 Actions of the NetBill protocol

NetBill size is |M| = (|S Ag1 | × |S Ag2 | × |S NetBill|)+ |R|, where Ag1 is the Customer
and Ag2 is the Merchant. According to the actions the Customer and Merchant are
allowed to perform, we have |S Ag1 | = 9 and |S Ag2 | = 13. The NetBill protocol is
described by the legal actions, and by considering the size of each action, we obtain
|S NetBill|= 22. In total, the number of states needed for this case study is |S |= 2574≈
2.5 · 103. As we did in the previous case study, the theoretical estimation of |R| if
all possible transitions are considered is |R| ≈ 17 · |S |2. So we have |M| ≈ 1010. As
illustrated in Table 3.5, which shows the NetBill simulation results with CWB-NC
using the same machine as in the previous case study, the number of transitions that
are effectively considered is much more smaller. Table 3.6 shows the simulation

100 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

results with MCMAS. Fig. 3.10 shows the results screenshot with the two model
checkers. Because NetBill is 14 times smaller than PNAWS , its execution time is
shorter.

Fig. 3.10 Simulation results of NetBill

3 Model Checking Agent Communication 101

Table 3.5 Statistics of verifying NetBill using CWB-NC

Model size (states/transitions) 2593/5911
Time for building the model (sec) 0.125

Verification time (sec) 0.359
Total execution time (sec) 0.484

Table 3.6 Statistics of verifying NetBill using MCMAS

Number of reachable states 2851
Number of BDD and ADD nodes 9332

Total execution time (sec) ≈ 0.5

3.8 Discussion and Future Work

Model checking is an effective technique to verify finite state systems. Compared
to classical software systems, model checking multi-agent systems raise new chal-
lenges related to the need of considering: 1) epistemic properties where the seman-
tics is expressed in terms of accessibility relations; and 2) agent communication
protocols that integrate agent properties and message meaning, which make them
more complex than simple message exchanging mechanisms. These two fundamen-
tal issues need new and efficient verification techniques considering computational
interpretations of accessibility relations and message meaning.

In this chapter we described a verification technique for dialogue game protocols.
The proposed model checking algorithm allows us to verify both protocols’ cor-
rectness and agents’ compliance to the decomposition semantics of communicative
acts. This technique uses a combination of automata and tableau-based algorithms
to verify temporal and action specifications. The formal properties to be verified are
expressed in ACTL* logic and translated to ABTA using tableau rules. Our model
checking algorithm that works on a product graph is an efficient on-the-fly proce-
dure.

The field of automatic verification of multi-agent systems has manifested sig-
nificant advances in the past few years, as efficient algorithms and techniques have
been proposed. However, many issues still need investigations. The most challeng-
ing among them are: 1) verifying the compliance of agents’ joint actions to the
norms and rules of the multi-agent system in which they operate; 2) integrating the
verification of mental and social attitudes in the same framework; 3) allowing the
use of expressive logical languages to specify agents and their communication and
coordination, multi-agent environments, and requirements (i.e. desired properties);
and 4) developing tools integrating the whole aforementioned issues.

We plan to extend this work to address some of these issues. In fact, we intend
to use the proposed tableau-based technique to verify MAS specifications and the
conformance of agents to these specifications. We also plan to extend the technique
and logic in order to consider epistemic properties, so that we will have a same
framework for private and social attitudes. We plan to use this technique to specify

102 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

and verify the compliance of agents’ actions to the norms and policies of multi-
agent systems. Although the technique discussed in this chapter is computationally
efficient, it has the problem of state explosion. For this reason, we plan to consider
symbolic and bounded model checking to verify agent commitments and their dia-
logue games. We are investigating the extension of the MCMAS model checker to
integrate LTL logic with commitment modalities and action formulae, so it will be
possible to symbolically model check dialogue games with ACTL* logic.

Acknowledgement

We would like to thank the reviewers for their valuable comments and suggestions.
Jamal Bentahar would like to thank Natural Sciences and Engineering Research
Council of Canada (NSERC: Project 341422-07), Fonds québécois de la recherche
sur la nature et les technologies (FQRNT: Project 2008-NC-119348) and Fonds
québécois de la recherche sur la société et la culture (FQRSC: Project 2007- 111881)
for their financial support.

Chapter 4

Directions for Agent Model Checking∗

R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher

Abstract In this chapter we provide a perspective on current and future work in the
area of agent model-checking. In particular, we describe our approach, which was
the first to provide comprehensive verification of practical agent programming lan-
guages. It provides a library of general agent concepts that has been formally defined
and implemented in Java, upon which interpreters for various agent programming
languages can be succinctly programmed. The Java library has been prepared so that
it can be efficiently used with an existing Java model checker, thus facilitating the
verification of (heterogeneous) multi-agent programs. Besides giving an overview
of our approach, in this chapter we identify its current shortfalls and discuss where
we aim to target future development.

R.H. Bordini
Institute of Informatics, Federal University of Rio Grande do Sul, Brazil e-mail: r.bordini@inf.
ufrgs.br

L.A. Dennis
Department of Computer Science, University of Liverpool, U.K. e-mail: l.a.dennis@
liverpool.ac.uk

B. Farwer
School of Engineering and Computing Sciences, Durham University, U.K. e-mail: berndt.
farwer@durham.ac.uk

M. Fisher
Department of Computer Science, University of Liverpool, U.K. e-mail: mfisher@liverpool.
ac.uk

∗ This work was partially supported by EPSRC, through projects EP/D054788 and EP/D052548.

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 103
DOI 10.1007/978-1-4419-6984-2 4, c© Springer Science+Business Media, LLC 2010

r.bordini@inf.ufrgs.br
r.bordini@inf.ufrgs.br
l.a.dennis@liverpool.ac.uk
l.a.dennis@liverpool.ac.uk
berndt.farwer@durham.ac.uk
berndt.farwer@durham.ac.uk
mfisher@liverpool.ac.uk
mfisher@liverpool.ac.uk

104 R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher

4.1 Introduction

4.1.1 Agents and Rational Agents

While the key aspect of an object is encapsulation of state and (some) behaviour,
agents are truly autonomous. Thus, an agent not only has control over its own state,
but also can dynamically change its patterns of behaviour and communication as
execution progresses (for example by “learning” or “adapting”), and so can choose
what form of interactions it presents to its environment (including other agents).
In particular, rational agents continuously choose the goals they will target and the
courses of action they will take in order to achieve these. In this sense, the agent
abstraction captures the core elements of autonomy and has been successfully used
to model/develop autonomous systems at a high level.

We are specifically concerned with rational agents [86, 110, 361, 438]. Since an
agent is autonomous, it must have some motivation for acting in the way it does. The
key aspect of a rational agent is that the decisions the rational agent makes, based
on these dynamic motivations, should be both “reasonable” and “justifiable”. Just as
the use of agents is now seen as an essential tool in representing, understanding, and
implementing complex software systems, so the characterisation of complex com-
ponents as rational agents allows the system designer to work at a much higher level
of abstraction. Since we are particularly concerned with the deliberative aspects, we
can also term the rational agents we examine as deliberative agents.

Agents of the above form, autonomously (and asynchronously) executing, reside
in an environment consisting of other agents. Typically, the only direct interaction
between such agents occurs through message-passing and, through this simple com-
munication mechanism, agents can be organised into a variety of structures. As it
is often the case that agents must work together, these structures typically support
cooperative activity or teamwork.

One of the best known and most studied agent architectures is known as the BDI
architecture [358, 359, 361], where BDI stands for “belief-desire-intention”. In the
BDI tradition, an agent’s architecture is composed of three main parts: beliefs repre-
sent the information available to an agent about its environment and the other agents
sharing such environment; desires (or goals) represent preferred states of affairs,
and intentions represent either a subset of the desires that the agent is committed
to bringing about or, more often, the particular choices of courses of action that the
agent has made expecting that they will bring about (a subset of) the desired states
of affairs. Such agent architectures will typically also contain (at least in practice) a
plan library which represents the agent’s know-how; it contains “recipes for action”
associated with the particular goals they are meant to bring about and the particular
circumstances in which that is expected to happen, and agents use such recipes to
form intentions. There has also been considerable work on BDI logics [362], in par-
ticular multi-modal logics built on top of a temporal logic where different modalities

4 Directions for Agent Model Checking 105

are used to represent an individual agent’s mental attitudes: beliefs are informational
attitudes, desires are motivational attitudes, and intentions are deliberative attitudes.

Practical BDI agents are implemented as “reactive planning systems”2 [191]:
they run continuously, reacting to events (such as perceived changes in the envi-
ronment and new goals to achieve) by executing plans given by the programmer.
As mentioned above, plans are courses of action that agents commit to executing
in order to achieve their goals; agents have a repertoire of such ‘actions’ that they
are able to perform in order to change the environment, such as a robot changing its
location. The pro-active behaviour of agents is possible through the notion of goals
(i.e., desired or preferred states of the world) that are also part of the language in
which plans are written.

4.1.2 Logical Agent Descriptions

In representing an individual agent’s behaviour as well as the properties we want to
verify about these behaviours, we choose to utilise languages based on formal logic.
The advantages of following such an approach is that:

• the notation has a well-defined, and usually well understood, semantics;

• it provides a high-level, yet concise, form of description consisting of a small
range of powerful constructs;

• it allows us to model not only static aspects of an agent state but also the dynamic
behaviour of agents;

• there is a uniformity of style between the description of the agent behaviour and
the properties we want to verify;

• it imposes few operational constraints upon the system designer; and

• allows us to narrow the gap between the agent descriptions and agent theory in
that the semantics of an agent is close to that of its logical description.

The use of formal logic thus allows for the possibility of uniformly employing both
specification and verification techniques that are theoretically well founded to the
development of agent-based systems.

As we are interested in rational agents, we impose additional requirements for
describing, and reasoning about, rational behaviour at a high level. We note that the
predominant rational agent theories all share similar elements, in particular:

• an informational component, such as being able to represent an agent’s beliefs or
knowledge;

2 Many researchers do not like this term because in reactive planning systems no “planning” as
such (i.e., reasoning from first principles) takes place.

106 R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher

• a motivational component, representing the agent’s desires or goals;

• a dynamic component, allowing the representation of agent activity (e.g., in the
form of plans); and

• a deliberative component, representing choices the agent has made (e.g., in the
form of intentions).

Although a variety of different approaches exist, such aspects are typically repre-
sented logically by temporal or dynamic logics (dynamism), and modal logics of
intentions, desires/goals, or wishes (motivation). Thus, the predominant approaches
to rational agent theory use relevant combinations of such formalisms, for example
the BDI model [362] uses branching-time temporal logic (CTL∗) combined with
modal logics of belief (KD45), desire (KD) and intention (KD), while the KARO
framework [315] uses dynamic logic (PDL) combined with a modal logic of wishes
(KD).

4.1.3 Formal Verification and Model Checking

By formal verification we mean carrying out a mathematical analysis in order to
assess all the possible behaviours of a system. The first rigorous attempt at proving
correctness of sequential programs dates back to Floyd [181]. A number of formal
verification techniques were subsequently developed within Computer Science in
order to assess the behaviour of complex, interacting, distributed, uncertain compu-
tational processes. These techniques are beginning to be used outside such areas. In
formal verification, the properties or behavioural requirements we have of complex
systems can be specified using formulæ from an appropriate formal logic. Impor-
tantly, the formal logic used can incorporate a wide range of concepts matching the
view of the system being described, for example time for dynamic/evolving systems,
probability for systems incorporating uncertainty, goals for autonomous systems,
and so forth. This gives great flexibility in the property specification languages that
can be used.

Given such a specification3, we can check this against models/views of the sys-
tem under consideration in a number of ways. The most popular of these is model
checking [102, 247], where the specification is checked against all possible execu-
tions of the system; if a representation for all such executions can be achieved with
a finite number of system states, then this check can often be completely carried out
automatically. Indeed, the verification, via model checking, of both hardware sys-
tems (such as chip designs) and software systems (such as device drivers) has been
very successful in industry as well as academia [26, 43], and has led to the recent
application of verification techniques to autonomous agents [71, 73, 355, 429].

3 Note that in the model checking literature, “specification” refers to the formulæ representing the
properties we want the system to satisfy.

4 Directions for Agent Model Checking 107

Formal Verification in a Nutshell.

Imagine that we have a logical formula, ϕ, that is used to specify some property that
we wish to check of an agent. Now, we have to check this against a description of
the behaviour of such an agent (and its environment, including other agents). One
(deductive) approach is to have another logical formula, say Γ, that exactly specifies
the agent system (e.g., derived via a formal semantics). Thus, Γ must characterise
all the (possibly infinite number of) models (or executions) of the agent. To check
that the property holds, we must prove

` (Γ ⇒ ϕ)

This means establishing that

the set of models/executions that satisfy Γ is a subset of the set of models/executions that
satisfy ϕ.

If, on the other hand, we can represent all possible executions of the agent system
using a relatively small (or, at least, finite) number of states that the system can be at
in a given moment in time, then it makes sense to check all these individually. Thus,
in this case, we only need to check whether Σ |= ϕ, where the structure Σ describes
all possible system executions. Thus, the problem is to determine whether:

∀σ ∈ Σ. 〈σ, 0〉 |= ϕ

where 〈σ, 0〉 is the initial state of the execution sequence σ. This (algorithmic) ap-
proach to verification is called model checking [101], whereas the deductive ap-
proach is called theorem proving [332].

So, in order to carry out formal verification by model checking, formal descriptions
of both the system being considered and the properties to be verified are required.
We have been developing techniques for verifying multi-agent systems over a num-
ber of years [67, 71, 73]. As we mentioned earlier, in our work, we are interested
in rational agents, particularly where ‘intelligent’ choices are required. In particu-
lar, we have previously looked at the verification of systems programmed in the BDI
agent language AgentSpeak/Jason [76,357] where the properties to be verified were
given in a simple BDI-like logic. We later worked on a new approach that aims at
allowing the model checking of various (BDI) agent languages [141] using the JPF
Java model checker [265], which is what this chapter focuses on. An advantage of
using a Java model checker is that many agent platforms are already built on top
of Java, and most realistic multi-agent systems will make significant use of legacy
code (often in Java) so, with the successful use of abstraction techniques, it might
be possible to (slowly) verify the complete system including all legacy code.

108 R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher

4.1.4 Program Verification

In our approach, one important aspect is that the system model is obtained directly
from the program that is used when we run the system. This approach is called pro-
gram model checking [426] and is a very active area of research within software
verification. This is different from some other approaches in which a model of the
system is (manually) created using a specific language, such as the Promela lan-
guage used by the SPIN model checking tool [237]. The advantage of creating a
model of the system (not necessarily a software system) from scratch, using a lan-
guage such as Promela, is that the language itself facilitates the creation of a more
abstract model of the system, which will often be required for full verification by
model checking. The disadvantage is that if the model checker guarantees that the
model of the system satisfies a given property, the question of whether the model of
the system correctly describes all relevant behaviours of the system may still remain.

Whilst this is not a problem in program model checking (because we are, after
all, model checking the same source that is used to run the system), the problem
here is that the state space of any reasonably complex software will turn out too big
for practical model checking. Fortunately, there is a vast literature on state-space
reduction techniques that apply directly at the level of programming languages. We
comment further on this in Section 4.4.

Another important advantage of model checking used in this way, is that model
checkers are often used in the software industry as a more general development tool,
even if full verification by model checking turns out not to be practical. For example,
model checkers can be very useful for debugging and test case generation.

4.1.5 Agent Programming Languages

There are many ways in which logic can be used to specify (and so provide seman-
tics for) agent-based systems. However, we are also interested in building agent-
based systems using techniques based upon logic. There is a wide variety of such
languages [64, 65], though we essentially concentrate on mechanisms for imple-
menting rational agents in a logically clear and justifiable way.

An important aspect of agent programming languages is the explicit representa-
tion of goals. Agents deliberate on which goals to pursue, and use plans in order
to achieve them. What an explicit representation of goals provides is the ability for
agents to behave rationally in the sense that, if a plan fails to achieve the goal it was
meant to achieve, for example because the environment changed in an unpredictable
way, the agent will not simply carry on executing as if the plan had been successful.
The agent will possibly try to use a different means to achieve the same goal, or may
drop the goal if it believes that is the rational thing to do. That is an important part
of agents’ autonomy.

4 Directions for Agent Model Checking 109

Another important aspect of most BDI languages is a data structure called the
set of intentions. Intentions represent particular courses of action (i.e., instances of
plans from the agent’s plan library) that the agent has already committed itself to
performing. Different intentions in this set typically represent different foci of atten-
tion for the agent. A partly executed plan will also typically contain further goals
the agent should adopt in due course. The autonomous choice of which course of
action to use in order to achieve those goals is left as late as possible, so that the
agent can use its most up-to-date information about the state of the environment in
order to choose the best course of action. Of course, in very dynamic environments,
plans can still fail to achieve the goal they were meant to achieve, hence such envi-
ronments require the type of rational deliberation discussed above.

In the area of autonomous agents and multi-agent systems, AgentSpeak is one
of the best known agent-oriented programming languages based on the BDI ar-
chitecture. It is a logic-based agent-oriented programming language introduced by
Rao [357], and subsequently extended and formalised in a series of papers by
Bordini and colleagues4. Various ad hoc implementations of BDI-based (or “goal-
directed”) systems exist, but one important characteristic of AgentSpeak is its theo-
retical foundation and formal semantics.

Our approach, outlined in the next section, evolved from our previous work on
the development of model checking techniques for AgentSpeak programs [71, 73].
However, there is a variety of agent programming languages [64, 65, 175] and, in
order not to preclude these, we have chosen to design a new approach so that it can
be used for a large number of languages.

4.2 Our Approach

Our approach is described in more detail in [67]; a summary is given in Figure 4.1.

A multi-agent program, originally programmed in some agent programming lan-
guage and interpreted in the Agent Infrastructure Layer (AIL) platform, is repre-
sented in Figure 4.1. It uses data structures to store its internal state comprising,
for instance, a belief base, a plan library, a current intention, and a set of intentions
(as well as other temporary state information). It also uses a specific interpreter for
the agent programming language that is built using AIL classes and methods. The
interpreter defines the reasoning cycle for the agent programming language which
interacts with the model checker, essentially notifying it when a new state is reached
that is relevant for verification.

The model checker used is a customised/extended version of the open-source
Java model checker JPF (JavaPathFinder) [426] called AJPF (Agent JPF). The AIL
interpreted program is paired with a property to form a product automaton in AJPF.

4 Jason [76] is a Java-based platform for the development of multi-agent systems using a variant
of AgentSpeak — http://jason.sf.net.

http://jason.sf.net

110 R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher

M
C
A

P
L

JP
F
 v

er
ifi

ca
ti
on

 t
ar

ge
t

(J
av

a
by

te
co

de
pr

og
ra

m
)

lib
ra

ry
ab

st
ra

ct
io

n

ch
oi

ce
ge

ne
ra

to
r

V
irt

ua
l M

ac
hi

ne

Se
ar

ch
 S

tr
at

eg
y

da
ta

/s
ch

ed
ul

in
g

he
ur

is
tic

s

st
at

e
m

an
ag

em
en

t

M
C
A

P
L

lis
te

ne
r

M
JI

m
ix

ed
 e

xe
cu

tio
n

LT
L-

ba
se

d
P
SL

pr
op

er
ty

 c
he

ck
er

V
M

dr
iv

er

se
ar

ch
lis

te
ne

r
pr

op
er

ty
ch

ec
ke

r

A
IL

se
ar

ch
ob

se
rv

at
io

n
sy

st
em

/
ap

ps

C
or

e
JP

F

Le
ge
nd
:

op
tio
na
l

A
IL

M
C
A
P
L

op
tim
is
at
io
n M

C
AA

PP
LL

M
C
AA

PP
LL

JP
F
 v

er
ifi

ve
ri
fic

at
io

n
ta

ca
ti
on

ta
rg

et
r

(J
av

a
by

te
co

de
pr

og
ra

m
)

libb
raa

libb
raa

rryrry
ab

sst
raa

ctt
ioo

nn
ab

sst
raa

ctt
ioo

nn

V
irt

ua
l M

ac
hi

ne

Se
ar

ch
 S

tr
at

eg
y

st
at

e
m

an
ag

em
en

t

MM
CC
AA

PP
LL

MM
CC
AA

PP
LL

lis
ttee

nee
r

lis
ttee

nee
r

M
JI

M
JI

m
ix

ed
 e

xe
cu

tio
n

LLT
L

T
L-

bba
s

ded
 P

SL
P
SL

LLL pr
op

er
ty

 c
he

ck
er

V
M

dr
iv

er

h
pr

op
er

ty

A
IL

AA
ILIL

C
or

e
JP

F

M
ul

ti-
A

ge
nt

 P
ro

gr
am

A
JP

F
 v

er
ifi

ca
ti
on

 t
ar

ge
t

(A
ge

nt
Sp

ea
k

,
3A

P
L,

Ja

de
x,

 M
et

at
eM

,
G

O
A

L,

G
w
en

do
le

n,
 S

A
A

P
L,

 .
..)

A
JP

F

la
ng

ua
ge

tr

an
sl
at

io
n

A
IL

to
ol

ki
t

M
C
A

P
L

in
te

rf
ac

e

Fig. 4.1 Outline of Our Approach [67].

4 Directions for Agent Model Checking 111

This product automaton is then executed by the virtual machine — a Java virtual
machine specially designed to maintain backtrack points and explore, for exam-
ple, all possible thread scheduling options (that can affect the result of the verifica-
tion) [426]. An important feature of JPF for our work is that it can be extended with
listeners that can be used to check for customised properties and prune the search
space. AJPF provides a listener that checks for reachability of the product automa-
ton and prunes branches which are guaranteed to succeed (and so cannot contribute
to any error).

4.2.1 AIL: Mapping Agent Languages to a Common Basis

The Agent Infrastructure Layer (AIL) toolkit was introduced as a uniform frame-
work for constructing interpreters for various agent programming languages [141],
easing the integration of new languages into an existing execution and verification
engine. It provides an effective, high-level basis for implementing the operational
semantics of BDI-like programming languages. It is important to note that the AIL
is not intended as a new language in its own right, but as an intermediate layer incor-
porating the main features of practical agent languages. The key operations of many
(BDI-)languages, together with a set of standard rules, form the AIL toolkit that can
be used to create interpreters for particular agent languages. It is also possible to add
custom rules for specific languages built from the basic operations made available.
These operations and rules have formal semantics and are implemented in Java.

The Agent Infrastructure Layer (AIL) [141] encompasses the main concepts from
a wide range of agent programming languages. Technically speaking, it is a collec-
tion of Java classes that: (i) enables implementation of interpreters for various agent
languages, (ii) contains adaptable, clear semantics, and (iii) can be verified through
AJPF. AJPF is a customisation/extension of JPF for model checking agent programs
with properties expressed in terms of temporal modalities, beliefs, goals, and inten-
tions.

Common to all language interpreters implemented using AIL methods are the
AIL-agent data structures for beliefs, intentions, goals, etc., which are accessed by
the model checker and on which the modalities of the property specification lan-
guage are defined. The implicit data structures of a target (BDI) language need to
be translated into the AIL’s data structures. In particular the initial state of an agent
has to be translated into an AIL agent state.

We assume that agents programmed in an agent programming language all pos-
sess a reasoning cycle consisting of at least one, but typically several, stages (a
reasoning cycle can often be broken down into various identifiable stages that help
formalisation and understanding). Each stage is a disjunction of rules that define
how an agent’s state may change during the execution of that stage. The combined
rules of the stages of the reasoning cycle define the operational semantics of that

112 R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher

language. The construction of an interpreter for a language involves the implemen-
tation of these rules (which in some cases might simply make reference to the pre-
implemented rules) and a reasoning cycle. This means that the AIL can be viewed
as a collection of Java classes/methods that provide the building blocks for custom
programming of agent language interpreters, with the particular advantage of mak-
ing the use of model checking techniques for verification directly available (and
more efficient). In this way, we can implement an interpreter for an agent language
following its operational semantics but using the high-level AIL operations on the
agent data structures rather than using Java from scratch.

4.2.2 AJPF: Specialising the AIL and JPF to work together

Our previous approaches to model checking agent programs showed that encoding
agent concepts, such as goals and beliefs, into the state machine of a model checker
was a complex and time-consuming task. It was also necessary to adapt the property
language of a model checker to express agent properties in these terms (the natural
terminology for reasoning about an agent-based program). Our approach now is to
encode the relevant concepts of the AIL into the model checker just once and then
allow multiple languages to benefit from the encoding by utilising the AIL classes
in their implementation. Each language will have its own interpreter, essentially a
mapping of the language’s operational semantics to the operational rules from the
AIL toolkit. The AIL therefore consists of data structures for representing agents,
beliefs, plans, etc., which can be adapted to the operational semantics of individ-
ual languages. Our first work in this direction was precisely to define (BDI) agent-
related data structures that are general enough to suit a number of the best known
agent programming languages [141]. A language interpreter implemented using the
AIL then extends the AIL’s agent class and specifies a reasoning cycle for the lan-
guage. The reasoning cycle consists of a transition system which defines a number
of stages and specifies the changes to the agent structure that occur as it passes from
one stage to the next.

Our approach uses AIL as the basis and specialises a target model checker for use
on AIL data structures. The AIL can be viewed as a platform on which agents pro-
grammed in different programming languages co-exist, and together with AJPF this
provides uniform model checking techniques for various agent-oriented program-
ming languages [67], also allowing the verification of heterogeneous systems — i.e.,
multi-agent systems comprising agents programmed in different languages [142].

The AIL has been implemented to exploit various techniques for improving the
efficiency of model checking with JPF. For instance, it avoids the use of data struc-
tures, such as Java Stacks, that cause the JPF search space to branch when operated
upon. It also makes use of more brute force methods (such as clustering statements
together into uninterruptable blocks) to avoid search space branching in some par-
ticular contexts and eliminates certain fields from consideration as part of the state

4 Directions for Agent Model Checking 113

in order to maximise the identification of states which are identical from the point
of view of the multi-agent system, even if they have housekeeping differences at the
Java level.

4.2.2.1 The Property Specification Language

AJPF provides a Linear Temporal Logic (LTL) based property specification lan-
guage for defining properties to be verified against a program. This language is
extended with simple modalities for belief, etc.

The same property specification language is used whenever AJPF is used but its
semantics depends upon the language interpreter. All AIL based interpreters imple-
ment the same semantics for the property specification language.

4.2.2.2 AJPF Interfaces for Verification

AJPF provides a set of interface classes. These allow agents to be model checked us-
ing AJPF — even if no AIL-based interpreter for that language has been developed
— by interfacing with the original interpreter for that language. AJPF can model
check multi-agent systems comprising any agents and an environment that comply
with these interfaces.

The interface primarily requires that an agent provides “hooks” indicating what
in that particular agent language is considered to be a “turn” of the reasoning cycle.
AJPF checks that the system meets its specification after each agent has completed
such a turn. Each agent is executed in a separate thread and, in this way, AJPF
examines all possible scheduling options among the turns of the agents’ reasoning
cycles. The environment can also run in a separate thread, if desired.

Implementations of the AJPF interfaces must define the required operators of
the property specification language. For instance, agents implementing the AJPF
agent interface must provide a method which succeeds when they believe the given
parameter (represented as a “formula”) is true. In this way, the implementation of
such a method effectively implements the semantics for the belief modality in our
supported property specification language. This needs to be done by the users of our
verification framework wishing to model check programs in languages for which
there is no AIL-based interpreter, and it is their responsibility to ensure that the
interface implementations correspond, for their language, to the same semantics of
those modalities for AIL. The AIL itself implements these interfaces and so defines
an AIL-specific semantics for the property specification language; implementations
of AIL interpreters must ensure that their use of the AIL makes the semantics of the
properties consistent with their own semantics of those modalities.

The AJPF interface allows programming languages that do not have their own
AIL-based interpreters to be used in a system to be model checked against specifi-
cations written in the same property specification language that is used for the AIL.

114 R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher

However, those systems will not benefit from the JPF specific efficiency improve-
ments incorporated within the AIL.

4.2.3 Current Status

The overall approach has been designed and implemented. It has been tested on
some small multi-agent programs: variations of the contract net protocol [407] and
auction systems, but with five or fewer agents [431].

The efficacy and generality of the AIL toolkit has also been established by the im-
plementation of a variety of different agent programming languages and the verifica-
tion of multi-agent systems implemented in those languages. Interpreters have been
implemented for Gwendolen [139], GOAL [60], ORWELL [131] and SAAPL [435].
Interpreters for AgentSpeak [76] and 3APL [132] are also being developed.

Multi-agent programs (albeit small ones) written in each of the above program-
ming languages have been verified, although all those programs have had to be man-
ually translated into Java code compatible with AIL/AJPF (see below), as automatic
translators are currently being developed. Interestingly, a heterogeneous multi-agent
systems has been verified as reported in [142]. There, a simple contract net compris-
ing agents programmed in Gwendolen, GOAL, and SAAPL was formally verified
using our approach.

The AIL and AJPF, together with interpreters for Gwendolen, GOAL, SAAPL,
and ORWELL and a number of case studies and examples are available open source
from Sourceforge (http://mcapl.sourceforge.net).

4.3 Obstacles

While the basic approach has been implemented and tested on some simple scenar-
ios, a number of issues still remain. In this section, we discuss some of these.

4.3.1 Performance

A typical problem in model checking, particularly of concurrent systems (e.g.,
where various autonomous entities have independent, yet interacting, behaviour),
is that of the state-space explosion. The model checker needs to build an in-memory
model of the states of the system, and the number of such states grows exponentially,
for example, on the number of different autonomous entities being modelled.

4 Directions for Agent Model Checking 115

Even with refined representation techniques, such as OBDDs used in symbolic
model checking, the formulæ/structures required to represent the state spaces of re-
alistic systems are huge. JPF is an explicit-state, on-the-fly model checker, and a
further problem is that the underlying JPF virtual machine is rather slow. On the
other hand, JPF has various sophisticated mechanisms to allow for efficient program
model checking, and it works directly on Java bytecodes as input, so the whole of
the Java language can in principle be used. In the context of so many Java-based
agent development frameworks, this is a very important aspect in favour of JPF.

Overall, our current verification system is relatively slow. For example, in [431],
basic properties of simple auction examples comprising just 5 agents can take over
2 hours to verify. Although speed is the main problem, space required can also be
problematic [67] (though note that the slow example above actually explores less
than 10000 states in total). On the other hand, if we compare these to the results we
obtained with JPF in our previous work [73], it is worth noting that JPF seems to be
orders of magnitude more efficient than it used to be. We should also note that the
success of program model checking relies a great deal on state-space reduction tech-
niques that we have not yet developed (to work at the AIL level; see Sections 4.4.2
and 4.4.3).

4.3.2 Target Agent Languages

The AIL has been designed to make the development of interpreters for agent pro-
gramming languages as simple as possible. However, it does not (and could not)
make the task trivial. For example, the AIL assumes a reasoning cycle that passes
through explicit stages, which is indicated by a flag in an agent’s state. The opera-
tional semantics of agent languages are not necessarily expressed in this style, and
so the semantics might need to be adjusted, raising questions about the fidelity of
the translation and implementation.

Similarly, since JPF does not assume a fair thread scheduler, it is vital for the
execution of multi-agent programs that agent threads are explicitly sent to sleep
when they have nothing to do. This forces the inclusion of rules in the operational
semantics which describe this behaviour. Such rules are commonly omitted from ab-
stract language descriptions, so again this raises questions of fidelity to the language
formalisation and opens the possibility that a program operating in the interpreter
may behave differently from one in the original language implementation because
its “sleeping behaviour” may vary. However, this is very unlikely given that, even
though rules for such sleeping behaviour are omitted from formalisations, any prac-
tical agent platform would need to ensure those rules are implemented for obvious
efficiency reasons (i.e., to avoid “busy waiting”). While the AJPF interface allows
an original interpreter to be model checked directly, this is likely to increase the run-
ning time for model checking even further, unless the interpreter implementation is
customised to JPF in a similar way that the AIL has been, which is considerable
technical work (hence the usefulness of AIL).

116 R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher

4.3.3 Using Agent Model Checking

Given the current limitations of the model checking process we anticipate that it
will not be used in its present form to check the final code of large multi-agent
systems. However, we believe it will be possible to check scaled down versions of
such systems, for instance, to check the behaviour of small systems containing just
one or two representatives of each type of agent, or to test out particular parts of
the code such as communication protocols. We should emphasise again that when
combined with future work on state-space reduction techniques the chances of using
the approach for model checking larger systems will be significantly increased.

Our approach is used for model checking the agent actions within a simulated
environment, also written in Java which, again, will typically be an abstraction of the
actual environment in which agents will be running. On the other hand, many multi-
agent systems use a Java-based purpose-built simulated environment, in which case
the same environment can potentially be used.

We have also found model checking useful in debugging the interpreter imple-
mentations and operational semantics of agent languages (besides the applications
developed in those languages as originally intended). Particularly, our model check-
ing tool has been useful in terms of locating potential deadlocks caused by the op-
erational semantics of agent languages or their implementations.

Very much as it happens with model checking traditional software, we also ex-
pect our work to be useful for multi-agent systems developers to other purposes
besides full verification. Model checkers are very useful tools for use during debug-
ging, and automatic input generation [427] for software testing.

4.3.4 Applicability

The systems we have used so far as case studies for AJPF have been modest in scale
and using traditional multi-agent scenarios (e.g., simplified contract-net and auction
systems). We have not explored formalised environmental “artifacts” [367], nor how
non-computational agents (such as humans) might be modelled in the system. The
AIL has support for the formation of groups of agents in the style of MM [143],
but this support is yet to be used by an interpreter and so is untested.

4.4 Directions

Given the current limitations outlined in the previous section, we can now highlight
a number of areas for future development.

4 Directions for Agent Model Checking 117

4.4.1 Applicability: Autonomous and Autonomic Systems

As well as expanding our applications to more sophisticated multi-agent systems, it
is important that we tackle a large variety of scenarios. Autonomous software sys-
tems (including autonomic systems, self-∗ systems, agent-based systems, etc.) are
increasingly being programmed for use in critical areas. Typical examples include:

• self-managing e-Health — where autonomous software must be produced en-
suring that distributed (health monitoring) sensors work together to provide (and
retain, if unexpected events occur) coverage;

• autonomous space exploration — where reliable, fault-tolerant software must be
produced for autonomous rover vehicles;

• ubiquitous computing — where software on multiple devices must communicate
and cooperate to ensure goals are achieved;

• self-organising logistics/resource management — where distributed control of
logistic/routing systems must be developed to ensure reliability and efficiency;

• dynamically reconfigurable systems — where components (hardware or soft-
ware) can self-configure to achieve/retain goals of the system (e.g., http:
//www.dyscas.org);

• autonomic systems [285]; and

• protocol standards such as FIPA, and agent protocol certification.

Yet, while real systems are being deployed, the key problem is not whether such
systems can be implemented, but whether they can be implemented in a clear, reli-
able and verifiable way. Thus, our techniques can be of great value in these areas.
(In addition, see Section 4.4.7.)

4.4.2 Efficiency: Potential for use of MJI

The Model Java Interface (MJI) is a feature of JPF that effectively allows code
blocks to be treated as atomic/native methods (for which new states are not built
by JPF). In fact, such code runs on the Java virtual machine where JPF — which is
programmed in Java — itself runs (the “native” Java virtual machine), rather than
the custom virtual machine that JPF creates for running the Java code that is being
model checked. From our perspective, the key point here is that we might well be
able to use this to improve efficiency. If we can identify code within the AIL (or
AJPF) that does not need to be checked, then we can use MJI to cut out parts of the
state space. However, we need to be careful that no property that can be checked
depends on the code “hidden” in this way.

We have made some preliminary investigations in migrating the unification code
present in the AIL to MJI. This would cause the generation and search for unifiers

http://www.dyscas.org
http://www.dyscas.org

118 R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher

to occur in the native Java virtual machine rather than in the (slow) JPF virtual
machine. Since unification is a potentially computationally expensive process, and
much used in agent languages (but at a level that does not affect the properties of
agent systems), it seems to be a good candidate for the use of MJI. Even though
the native virtual machine is quicker, there is a computational overhead in trans-
porting information between the two virtual machines which might cancel out any
efficiency gained. We intend to investigate this further before reporting the results;
we hope to experiment with case studies that represent high, medium, and low use
of unification, and report this on future work.

4.4.3 Efficiency: Potential for use of Program Slicing/Abstraction

Since model checking techniques notoriously suffer from the state-space explosion
problem, it is vital to be able to reduce the state space required in the process of
model checking wherever possible. A key technique used in simplifying the analy-
sis of conventional programs is that of program slicing [416, 442]. The basic idea
behind program slicing is to eliminate details of the program that are not relevant
to the analysis in hand. Thus, in our case, since we wish to verify some property,
the idea is to eliminate parts of the program that do not affect that property; this
is called property-based slicing, and effectively represents a precise form of under-
approximation. In property-based slicing, instead of finding a slice for a particular
variable (e.g., in a particular literal in a logic program), we slice the multi-agent pro-
gram based on the specified property (the one to be later model checked). Slicing
should be such that the result of subsequent model checking of the sliced system
for that property will give identical results to the checking of that property on the
original system. The aim is, or course, to make model checking faster for the sliced
system by reducing its state space.

Although slicing techniques have been successfully used in conventional pro-
grams to reduce the state-space required, these standard techniques are only par-
tially successful when applied to multi-agent programs. This is typically because
they are not sensitive to the semantics of the modalities of the agent-specific prop-
erty specification language and how they relate to specific constructs of agent-
oriented programming languages. What we require are slicing techniques tailored
to the agent-specific aspects of (multi-)agent programs. In [72, 74] we developed
a novel, property-based slicing algorithm for the model checking of AgentSpeak
programs. The algorithm was designed, proved correct, and applied to a case study,
which showed good improvements in terms of both space and time. Having carried
out this work on the simpler AgentSpeak verification system, we need to carry out
research on extending and adapting this to the AIL/AJPF framework.

4 Directions for Agent Model Checking 119

4.4.4 Generality: Target Languages

Although the AIL toolkit has been shown to be useful for several agent programming
languages, we clearly need to broaden our applicability and attempt to use the toolkit
for even more languages. In particular we would like to provide implementations of
both a version of AgentSpeak and a language from the 3APL/2APL family [132]
since these are — together with Jadex [343] which does not have formal semantics
— the most widely used BDI languages available. We would also like to explore
languages which provide native support for groups and organisations.

In order to support the further use of the toolkit, we also need to look into mech-
anisms of support for parsers or translators from the the syntax of agent languages
to the appropriate Java code for creating an initial agent state of an AIL interpreter.
It is possible to provide such systems using a Java-based parser and, indeed, we
have already developed ones for converting the G, GOAL and ORWELL
syntax into the underlying AIL representation. We intend to investigate ways to gen-
eralise this system in order to make the provision of such parsers and translators as
straightforward as possible.

4.4.5 Engineering: Agent Development Approach

A key observation is that while there are several software design methods for au-
tonomous systems, their evolution has not occurred in a coherent way. Novel work
has been done in, for example, autonomic design [189], programming languages for
autonomous behaviour [76], and formal modelling and verification of multi-agent
systems [73], but no full methodology has been devised that:

1. tackles the full life cycle, from design through to implementation, verification,
and testing;

2. tackles true autonomy — i.e., the ability of a software entity to effectively decide
upon its own goals, and decide how to work towards them;

3. tackles both the individual and collective autonomous activity, including complex
organisational aspects such as cooperation, teamwork, self-management, and ar-
tifacts;

4. tackles implementation in high-level programming languages, such as agent-
oriented languages; and

5. provides the ability to carry out formal verification, synthesis, and automated test
case generation.

It would be also important to do all this within a framework that is:

120 R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher

a) semantically transparent, so that a formal description of every autonomous entity
is available at every point in its life-cycle, and

b) graphical, providing user-friendly tools for visualising and developing autonomous
software.

This is something that we are working towards and, clearly, the agent model-
checking techniques described in this chapter play a central role in that endeav-
our. This work brings together: agent design methodologies (e.g., Gaia), executable
agent specifications (e.g., MM), organisational and artifact models, graphi-
cal design tools, agent programming languages (e.g., Jason), and agent verification
tools such as ours, in order to develop an integrated design environment.

4.4.6 Extension: Verification of Groups and Organisations

Rather than just seeing a multi-agent system as a simple (flat) set of agents commu-
nicating with each other, we can also view the agents as belonging to organisational
constructs such as groups, teams, and organisations. Many approaches to the or-
ganisation of rational agents have been proposed, and have been shown to not only
simplify the design and implementation of complex multi-agent systems, but also to
improve the efficiency of those systems in practice.

Cohen and Levesque produced a significant paper on “Teamwork” [113], extend-
ing their previous work [110,112,282], which is often cited as the starting point for
multi-agent organisations. They argued that a team of agents should not be mod-
elled as an aggregate agent but propose new (logical) concepts of joint intentions,
joint commitments, and joint persistent goals to ensure that teamwork does not break
down due to any divergence of individual team members’ beliefs or intentions. The
authors’ proposals oblige agents working in a team to retain team goals until it is
mutually agreed amongst team members that a goal has now been achieved, is no
longer relevant, or is impossible to achieve. This level of commitment is stronger
than an agent’s commitment to its individual goals which are dropped the moment
it (individually) believes they are satisfied. Joint intentions can be reduced to indi-
vidual intentions if supplemented with mutual beliefs.

Yet, there are many other approaches building on those fundamental ideas, as
follows.

• Tidhar [414] introduced the concept of team-oriented programming with social
structure;

• Ferber et al. [171, 172] present a case for an organisational-centred approach to
the design and engineering of complex multi-agent systems;

• Pynadath et al. [351] describe their interpretation of “team-oriented program-
ming” that aims to organise groups of heterogeneous agents to achieve team
goals;

4 Directions for Agent Model Checking 121

• Fisher et al. produced a series of papers [174, 177, 179, 230] that developed the
MM language into a generalised approach for expressing dynamic, organ-
ised, distributed computations;

• Hübner et al., in [241], proposed a three-component approach to the specification
of agent organisations that combines independent structural and functional spec-
ifications with a deontic specification, the latter defining, among other things,
which agent roles (structural) have permission to carry out group tasks (func-
tional).

And there is still further work on groups [177, 179, 302], teams [178, 271, 274, 350,
411] and organisations [171, 183, 423, 445].

As all this suggests, it is important to be able to fit such organisational structures
within our verification framework. Initial steps in this direction have been reported
in [143, 144, 213].

4.4.7 Applicability: Verifying Human-Agent Teamwork

Whereas agent languages help with the complexity of developing autonomous sys-
tems — for example by allowing the modelling of agents at the right level of ab-
straction — very little work exists in using them for modelling realistic scenarios of
human activity (or human-robot teamwork). While agent verification has the poten-
tial to be used in analysing agents in critical applications, there is an increasing need
to consider the verification of situations involving more human-agent teamwork.
For example, NASA’s new focus on doing human-robotic exploration of the Moon
and Mars brings human “agents” into the picture — this might simplify some of
the autonomy requirements, but clearly increases safety and certification concerns.
Autonomous space software is hard enough to verify already: the environments in
which it executes are uncertain and the systems involved tend to be very complex.
Adding a human element to space exploration scenarios will surely make this even
more complex. The emphasis here is not on individual behaviour, but on team as-
pects, such as coordinating activities or cooperating to achieve a common goal.

On the one hand we have complex, human-agent teamwork, intended to be used
in realistic environments. On the other, we have the need to formally verify team-
work, cooperation, and coordination aspects of these human-agent teams. Clearly
these two aims are very far apart. Our current approach is to utilise the Brahms mod-
elling language [402, 403], which has been used for many years to model human-
robot activities. Thus, Brahms modellers have significant experience in describing
and modelling this type of system. Brahms describes teamwork at quite a high level
of abstraction and characterises (simple forms of) human behaviour as agent be-
haviour. However, Brahms has no formal semantics, which makes it more difficult
to use model checking for verification, in particular in defining how the modalities

122 R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher

of the logic language used to write the system specification (i.e., the expected be-
haviour of the system) is to be interpreted in regards to states of a Brahms model.
This is essentially the main problem we are tackling at present. Initial steps in this
direction are described in [70, 176].

4.4.8 Efficiency/Extension: Alternative Model Checkers

The current approach is tightly linked to Java and JPF. However, in principle there
is no requirement to use JPF. If the AIL is abstract enough then we should be able to
provide alternative “back-ends” (i.e., target model checker) not only to potentially
improve efficiency (e.g., by using NuSMV [98]), but also to check different types of
properties (e.g., probabilistic model checking with Prism).

There are various different possible directions to achieve this. At the moment,
model checking programs running in AIL interpreters integrates naturally with JPF
since the AIL is implemented in Java — the input language for JPF. Providing a new
back-end would involve either converting the existing AIL implementation into the
input language of those model checkers or re-implementing the AIL in those input
languages. It may be that some halfway option is available, much like the use of
MJI in JPF. For instance, we might continue to use the existing AIL Java code for
manipulating and deriving the unifiers for first order terms (tasks which are complex
to implement but assumed to occur atomically in BDI languages) but re-implement
much of the higher level AIL data structures in the new language.

4.5 Concluding Remarks

In this chapter, we first reviewed a number of essential concepts on autonomous
agents (and rational agents in particular), (modal) logics for rational agents, logic-
based (multi-)agent programming languages, and formal verification — (program)
model checking in particular. We then gave an overview of our own approach for
model checking multi-agent systems programmed in various agent programming
languages, which uses a Java model checker as verification tool. The general ap-
proach to verification is that of program model checking: the input to the model
checker, besides the property to be verified, is the same program that is used to run
the system. The properties to be checked are given in a language based on modal
logics for rational agents. An advantage of using one of the various existing model
checkers is that such model checking tools have been developed for many years,
which not only makes them reliable, they also encompass an enormous variety of
techniques that take long to develop robustly and that make a huge difference in the
performance of the model checker. In fact, we have been taking advantage of sophis-
ticated existing model-checking tools since our previous work on model checking
for AgentSpeak [71, 73].

4 Directions for Agent Model Checking 123

We have also discussed a number of current shortcomings of our framework, then
discussed various possible future directions of research that would extend and apply
our framework towards various promising but challenging directions. Many visions
for the future of Computer Science, such as pervasive and autonomic computing,
depend on the ability to program dependable large-scale distributed systems where
each component displays both autonomous and rational behaviour. Our work aims
at contributing one particular approach to the engineering of such systems.

Chapter 5

Model Checking Logics of Strategic Ability:
Complexity∗

N. Bulling, J. Dix, and W. Jamroga

Abstract This chapter is about model checking and its complexity in some of the
main temporal and strategic logics, e.g. LTL, CTL, and ATL. We discuss several
variants of ATL (perfect vs. imperfect recall, perfect vs. imperfect information) as
well as two different measures for model checking with concurrent game structures
(explicit vs. implicit representation of transitions). Finally, we summarize some re-
sults about higher order representations of the underlying models.

N. Bulling, J. Dix
Dept. of Informatics, Niedersächsische Technische Hochschule, Germany e-mail: {bulling,
dix}@in.tu-clausthal.de

W. Jamroga
Computer Science and Communications, University of Luxembourg, Luxembourg and Dept. of In-
formatics, Niedersächsische Technische Hochschule, Germany e-mail: wojtek.jamroga@uni.lu

∗ This work was partly funded by the NTH School for IT Ecosystems. NTH (Niedersächsische
Technische Hochschule) is a joint university consisting of Technische Universität Braunschweig,
Technische Universität Clausthal, and Leibniz Universität Hannover.

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 125
DOI 10.1007/978-1-4419-6984-2 5, c© Springer Science+Business Media, LLC 2010

{bulling,dix}@in.tu-clausthal.de
{bulling,dix}@in.tu-clausthal.de
wojtek.jamroga@uni.lu

126 N. Bulling, J. Dix, and W. Jamroga

5.1 Introduction

Model checking is a powerful method used in verification. Given a model and a
formula in a certain logic, model checking determines whether the formula is true
in the model. Usually, it is used to check specifications of desirable properties for
a system whose model is given. If the formula is true, then we know the property
expressed by the formula is satisfied in the model. If not, it might lead us to change
the system or give hints how to debug it.

Model checking was invented and pioneered by the work of Edward Melson
Clarke, Ernest Allen Emerson, and by Joseph Sifakis and Jean Pierre Queille in the
80ies as a means for formal verification of finite-state concurrent systems. Specifica-
tions about the system were expressed as temporal logic formulae. It was especially
suited for checking hardware designs, but also applied to checking software specifi-
cations. While it started as a new approach replacing the then common Floyd-Hoare
style logic, it could only handle relatively small (though non-trivial) examples. Scal-
ability was an important motivation right from the beginning. The last years have
seen many industrial applications, and a number of powerful model checkers are
available today. As founders of a new and flourishing area in computer science,
Clarke, Emerson and Sifakis have been honored with the Turing award in 2007.

Logic-based verification of multi-agent systems has become an important sub-
field on its own. Some important model-checkers are:

• Mocha [11], available for download at http://www.cis.upenn.edu/˜mocha/,
• VeriCS [137], available at http://pegaz.ipipan.waw.pl/verics/,
• MCMAS [352, 353], available at http://www-lai.doc.ic.ac.uk/mcmas/.

In this chapter, we do not deal with practical aspects of MAS verification. Instead,
we offer a comprehensive survey of theoretical results concerning the computational
complexity of model checking for relevant properties of agents and their teams. To
this end, we focus on the class of properties that can be specified in Alternating-time
Temporal Logic ATL (a logic that extends the classical branching time logic CTL
with strategic modalities) and some of its extensions.

The aim of this chapter is twofold: (1) to give a comprehensive overview of the
complexity of model checking in various strategic logics based on ATL, and (2) to
discuss how the complexity can change when the models are not given explicitly but
implicitly. Often, a model cannot be represented explicitly: It is given in a certain
symbolic manner. Thus, the representation can be much smaller than the model
itself, but it has to be (at least partially) unfolded when checking its properties.

While there are several chapters in this book that investigate model checking in
multi-agent systems (cf. Chapter 3, Model Checking Agent Communication, Chapter
4, Directions for Agent Model Checking, Chapter 8, Model Checking Goal-Oriented
Agent Programming), in this chapter we investigate mainly logics of strategic ability
(variants of ATL). We determine the precise complexity of several variants of the
logics and show when the problems become (probably) undecidable.

http://www.cis.upenn.edu/~mocha/
http://pegaz.ipipan.waw.pl/verics/
http://www-lai.doc.ic.ac.uk/mcmas/

5 Model Checking Logics of Strategic Ability: Complexity 127

The plan of this chapter is as follows. In Section 5.2 we introduce the logics we
are interested in: the temporal logics LTL, CTL, and CTL∗ and the strategic logics
ATL and ATL∗ as well as their variants based on the assumption that agents have
(im)perfect recall and (im)perfect information. We define syntax and semantics and
introduce several running examples. Section 5.3 is devoted to standard complexity
results for the logics. By standard, we mean that the input size is given by the number
of transitions in the model and the length of the formula. In particular, we assume
that the model and the formula are given explicitly. In Section 5.4 we consider the
case when the transitions in the model are given in a more compact way, rather
than by enumerating outcomes of all the possible combinations of agents’ actions.
Then, it makes more sense to measure complexity with respect to the number of
states and the number of agents in the model. Finally, in Section 5.5, we investigate
model checking for symbolic, very compact representations of multiagent systems:
concurrent programs and modular interpreted systems. This results in surprising
complexity results, that can only be understood when looking closely at the size of
the underlying structures (representations, models). We conclude in Section 5.6 with
a discussion of our results, put them in perspective and point out future challenges.

5.2 The Logics: Syntax and Semantics

We begin by introducing temporal and strategic logics. We start with the linear-time
logic LTL (Linear-time Temporal Logic) and the branching-time logics CTL∗ and
CTL (Computation Tree Logic). Then, we present one of the most popular logics of
strategic ability in multi-agent systems: ATL and ATL∗ (Alternating-time Temporal
Logic). The relations between perfect vs. imperfect information on one hand, and
perfect vs. imperfect recall on the other are discussed, and we show how they give
rise to different semantics for ATL and ATL∗, yielding an interesting class of logics.

In the rest of this chapter we assume that Π is a non-empty set of propositional
symbols and S t a non-empty and finite set of states.

Remark 5.1 (Language, Semantics and Logic). In the following we proceed as fol-
lows. We introduce a logical language, say L, which is defined as a set of formulae.
Elements of L are called L-formulae. Then, we consider (possibly several) seman-
tics for the language. We look at each tuple consisting of a language and a suitable
semantics (over a class of models) as a logic. The logic CTL, for instance, is given
by the language LCTL using the standard Kripke semantics.

128 N. Bulling, J. Dix, and W. Jamroga

5.2.1 Linear- and Branching-Time Logics

We begin by recalling two well-known classes of temporal logics: the linear-time
logic LTL (Linear-Time Temporal Logic) and the branching-time logics CTL and
CTL∗ (Computation Tree Logic).

5.2.1.1 The Languages LLTL, LCTL, and LCTL∗

LLTL [341] extends the language of propositional logic with operators that allow
to express temporal patterns over an infinite sequences of states, called paths. The
basic temporal operators are U (until) and (in the next state).

Definition 5.1 (Language LLTL [341]). The language LLTL is given by all formu-
lae generated by the following grammar, where p ∈Π is a proposition: ϕ ::= p | ¬ϕ |
ϕ∧ϕ | ϕUϕ | ϕ.

TheLLTL-formula (ϕ∧ψ), for instance, expresses that ϕ and ψ hold in the next
moment; ϕUψ states that the property ϕ is true at least until ψ becomes true which
will eventually be the case. The additional operators ^ (sometime from now on) and
� (always from now on) can be defined as macros by ^ϕ ≡ >Uϕ and �ϕ ≡ ¬^¬ϕ,
respectively. The standard Boolean connectives >,⊥,∨,→, and ↔ are defined in
their usual way.

The logic is called linear-time since formulae are interpreted over infinite linear
orders of states. The logic CTL∗ [158] explicitly refers to patterns of properties
that can occur along a particular temporal path, as well as to the set of possible
time series, and thus extends LTL. The latter dimension is handled by so called
path quantifiers: E (there is a path) and A (for all paths) where the A quantifier is
defined as macro: Aϕ ≡ ¬E¬ϕ. Hence, the language of CTL∗, LCTL∗ , extends LLTL
by adding the existential path quantifier E.

Definition 5.2 (Language LCTL∗ [158]). The language LCTL∗ is given by all for-
mulae generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ∧ϕ | Eγ where γ ::= ϕ |
¬γ | γ∧γ | γU γ | γ and p ∈ Π . Formulae ϕ (resp. γ) are called state (resp. path)
formulae.

Additionally, the same abbreviations as for LLTL are defined. The LCTL∗ -formula
E^ϕ, for instance, ensures that there is at least one path on which ϕ holds at some
(future) time moment. Thus, LCTL∗ -formulae do not only talk about temporal pat-
terns on a given path but also quantify (existentially or universally) over such paths.

Finally, we define a fragment of CTL∗ called CTL [99] which is strictly less ex-
pressive but has better computational properties. The languageLCTL restrictsLCTL∗

in such a way that each temporal operator must be directly preceded by a path quan-
tifier. For example, A�E p is a LCTL-formula whereas A�^p is not. Although

5 Model Checking Logics of Strategic Ability: Complexity 129

this completely characterizes the language we also provide the original definition
in which modalities are given by path quantifiers coupled with temporal operators.
Note that, chronologically, CTL was proposed and studied before CTL∗.

Definition 5.3 (LanguageLCTL [99]). The languageLCTL is given by all formulae
generated by the following grammar, where p ∈ Π is a proposition: ϕ ::= p | ¬ϕ |
ϕ∧ϕ | E(ϕUϕ) | E ϕ | E�ϕ.

Again, the Boolean connectives are given by their usual abbreviations. In addition
to that, we define the following: ^ϕ ≡ >Uϕ, A ϕ ≡ ¬E ¬ϕ, A�ϕ ≡ ¬E^¬ϕ,
and AϕUψ ≡ ¬E((¬ψ)U (¬ϕ∧¬ψ))∧¬E�¬ψ. We note that in the definition of the
language the existential quantifier cannot be replaced by the universal one without
losing expressiveness (cf. [277]).

5.2.1.2 Semantics for LLTL, LCTL∗ , and LCTL

As mentioned above, the semantics of LTL is given over paths that are infinite
sequences of states from S t and a labeling function π : Π →P(S t) that determines
which propositions are true at which states. Note that each path can be considered as
a mappingN→ S t. We use λ[i] to denote the ith position on path λ (starting from i=
0) and λ[i,∞] to denote the subpath of λ starting from i (i.e. λ[i,∞]= λ[i]λ[i+1] . . .).

Definition 5.4 (Semantics |=LTL). Let λ be a path and π be a valuation over S t. The
semantics of LLTL-formulae is defined by the satisfaction relation |=LTL defined as
follows:

λ,π |=LTL p iff λ[0] ∈ π(p) and p ∈ Π ;

λ,π |=LTL ¬ϕ iff not λ,π |=LTL ϕ (we will also write λ,π 6|= LTLϕ);

λ,π |=LTL ϕ∧ψ iff λ,π |=LTL ϕ and λ,π |=LTL ψ;

λ,π |=LTL ϕ iff λ[1,∞],π |=LTL ϕ; and

λ,π |=LTL ϕUψ iff there is an i ∈N0 such that λ[i,∞],π |= ψ and λ[j,∞],π |=LTL ϕ
for all 0 ≤ j < i;

Thus, according to Remark 5.1, the logic LTL is given by (LLTL, |=
LTL). Paths are

considered as (canonical) models for LLTL-formulae.

For model checking we require a finite representation of the input λ. To this end,
we use a (pointed) Kripke model M,q and consider the problem whether an LLTL-
formula holds on all paths ofM starting in q.

A Kripke model (or unlabeled transition system) is given by M = 〈S t,R,Π,π〉
where S t is a nonempty set of states (or possible worlds), R ⊆ S t× S t is a serial
transition relation on states, Π is a set of atomic propositions, and π : Π →P(S t) is
a valuation of propositions. A path λ (or computation) inM is an infinite sequence

130 N. Bulling, J. Dix, and W. Jamroga

of states that can result from subsequent transitions, and refers to a possible course
of action. We use the same notation for these paths as introduced above. For q ∈ S t
we use ΛM(q) to denote the set of all paths of M starting in q and we define ΛM as⋃

q∈S tΛM(q). The subscript “M” is often omitted when clear from context.

LCTL∗- and LCTL-formulae are interpreted over Kripke models but in addition to
LLTL-(path) formulae (which can only occur as subformulae) it must be specified
how state formulae are evaluated.

Definition 5.5 (Semantics |=CTL∗). LetM be a Kripke model, q ∈ S t and λ ∈ Λ. The
semantics ofLCTL∗ - andLCTL-formulae are given by the satisfaction relation |=CTL∗

for state formulae by

M,q |=CTL∗ p iff λ[0] ∈ π(p) and p ∈ Π ;

M,q |=CTL∗ ¬ϕ iffM,q 6|= CTL∗ϕ;

M,q |=CTL∗ ϕ∧ψ iffM,q |=CTL∗ ϕ andM,q |=CTL∗ ψ;

M,q |=CTL∗ Eϕ iff there is a path λ ∈ Λ(q) such thatM,λ |=CTL∗ ϕ;

and for path formulae by:

M,λ |=CTL∗ ϕ iffM,λ[0] |=CTL∗ ϕ;

M,λ |=CTL∗ ¬γ iffM,λ 6|= CTL∗γ;

M,λ |=CTL∗ γ∧δ iffM,λ |=CTL∗ γ andM,λ |=CTL∗ δ;

M,λ |=CTL∗ γ iff λ[1,∞],π |=CTL∗ γ; and

M,λ |=CTL∗ γU δ iff there is an i ∈ N0 such thatM,λ[i,∞] |=CTL∗ δ and
M,λ[j,∞] |=CTL∗ γ for all 0 ≤ j < i.

Alternatively, an equivalent state-based semantics for CTL can be given:

M,q |=CTL p iff q ∈ π(p);

M,q |=CTL ¬ϕ iffM,q 6|= CTLϕ;

M,q |=CTL ϕ∧ψ iffM,q |=CTL ϕ andM,q |=CTL ψ;

M,q |=CTL E ϕ iff there is a path λ ∈ Λ(q) such thatM,λ[1] |=CTL ϕ;

M,q |=CTL E�ϕ iff there is a path λ ∈ Λ(q) such that M,λ[i] |=CTL ϕ for every
i ≥ 0;

M,q |=CTL EϕUψ iff there is a path λ ∈Λ(q) such thatM,λ[i] |=CTL ψ for some
i ≥ 0, andM,λ[j,∞] |=CTL ϕ for all 0 ≤ j < i.

This equivalent semantics underlies the model checking algorithm for CTL which
can be implemented in P rather than PSPACE which is the case for CTL∗ (cf.
Section 5.3.1). Hence, the logics CTL and CTL∗ are given by (LCTL, |=

CTL) and
(LCTL∗ , |=

CTL∗), respectively.

5 Model Checking Logics of Strategic Ability: Complexity 131

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

Fig. 5.1 Two robots and a carriage: a schematic view (left) and a transition systemM0 that models
the scenario (right).

Remark 5.2. Note that model checking problem for an LLTL-formula ϕ with respect
to a given Kripke modelM and a state q is equivalent to the CTL∗ model checking
problemM,q |=CTL∗ Aϕ.

We end this section with an example.

Example 5.1 (Robots and Carriage). Consider the scenario depicted in Figure 5.1.
Two robots push a carriage from opposite sides. As a result, the carriage can move
clockwise or anticlockwise, or it can remain in the same place – depending on who
pushes with more force (and, perhaps, who refrains from pushing). To make our
model of the domain discrete, we identify 3 different positions of the carriage, and
associate them with states q0, q1, and q2. The arrows in transition system M0 in-
dicate how the state of the system can change in a single step. We label the states
with propositions pos0,pos1,pos2, respectively, to allow for referring to the current
position of the carriage in the object language.

For example, we haveM0,q0 |=
CTL E^pos1: In state q0, there is a path such that

the carriage will reach position 1 sometime in the future. Of course, the same is not
true for all paths, so we also have thatM0,q0 |=

CTL ¬A^pos1.

5.2.2 Strategic Abilities under Perfect Information

In this section we introduce logics that can be used to model and to reason about
strategic abilities of agents with perfect information. Here “perfect information”
is understood in such a way that agents know the current state of the system: The
agents are able to distinguish all states of the system. This is fundamentally different
from the imperfect information setting presented in Section 5.2.3 where different

132 N. Bulling, J. Dix, and W. Jamroga

states possibly provide the same information to an agent and thus make them appear
indistinguishable to it. This must be reflected in the agents’ available strategies.

¿From now on, we assume that Agt = {1, . . . ,k} is a non-empty and finite set of
agents. Sometimes, in order to make the examples easier to read, we may also use
symbolic names (a,b,c, . . .) when referring to agents.

5.2.2.1 The Languages LATL∗ and LATL

The logics ATL∗ and ATL [13, 14] (Alternating-time Temporal Logic) are gener-
alizations of CTL∗ and CTL, respectively. In LATL∗ /LATL the path quantifiers E,A
are replaced by cooperation modalities 〈〈A〉〉 where A ⊆ Agt is a team of agents.
Formula 〈〈A〉〉γ expresses that team A has a collective strategy to enforce γ. The
recursive definition of the language is given below.

Definition 5.6 (Language LATL∗ [13]). The language LATL∗ is given by all formu-
lae generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ∧ϕ | 〈〈A〉〉γ where γ ::= ϕ |
¬γ | γ∧ γ | γU γ | γ, A ⊆ Agt, and p ∈ Π . Formulae ϕ (resp. γ) are called state
(resp. path) formulae.

We use similar abbreviations to the ones introduced in Section 5.2.1.1. In the case of
a single agent a we will also write 〈〈a〉〉 instead 〈〈{a}〉〉. An example LATL∗ -formula
is 〈〈A〉〉�^p which says that coalition A can guarantee that p is satisfied infinitely
many times (ever and ever again in the future).

The languageLATL restrictsLATL∗ in the same way asLCTL restrictsLCTL∗ : Each
temporal operator must be directly preceded by a cooperation modality.

Definition 5.7 (Language LATL [13]). The language LATL is given by all formu-
lae generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ∧ϕ | 〈〈A〉〉 ϕ | 〈〈A〉〉�ϕ |
〈〈A〉〉ϕUϕ where A ⊆ Agt and p ∈ Π .

The LATL∗-formula 〈〈A〉〉�^p is obviously not a formula of LATL as it includes
two consecutive temporal operators. In more general terms, LATL does not allow to
express abilities related to, e.g., fairness properties. Still, many interesting proper-
ties are expressible. For instance, we can state that agent a has a strategy that per-
manently take away the ability to enforce p from coalition B: 〈〈a〉〉�¬〈〈B〉〉 p.
As for the two computation tree logics, the choice between LATL∗ and LATL reflects
the tradeoff between expressiveness and practicality.

5.2.2.2 Perfect Information Semantics for LATL∗ and LATL

The semantics for LATL∗ and LATL are defined over a variant of transition systems
where transitions are labeled with combinations of actions, one per agent. Formally,

5 Model Checking Logics of Strategic Ability: Complexity 133

a concurrent game structure (CGS) is a tuple M = 〈Agt,S t,Π,π,Act,d,o〉 which
includes a nonempty finite set of all agents Agt = {1, . . . ,k}, a nonempty set of states
S t, a set of atomic propositionsΠ and their valuation π :Π→P(S t), and a nonempty
finite set of (atomic) actions Act. Function d : Agt×S t→P(Act) defines nonempty
sets of actions available to agents at each state, and o is a (deterministic) transition
function that assigns the outcome state q′ = o(q,α1, . . . ,αk) to state q and a tuple of
actions 〈α1, . . . ,αk〉 for αi ∈ d(i,q) and 1≤ i≤ k, that can be executed byAgt in q. We
also write da(q) instead of d(a,q). So, it is assumed that all the agents execute their
actions synchronously: The combination of the actions, together with the current
state, determines the next transition of the system.

A strategy of agent a is a conditional plan that specifies what a is going to do in
each situation. It makes sense, from a conceptual and computational point of view,
to distinguish between two types of “situations” (and hence strategies): An agent
might base his decision only on the current state or on the whole history of events
that have happened. A history is considered as a finite sequence of states of the
system.

A perfect information perfect recall strategy for agent a (IR-strategy for short)2 is
a function sa : S t+→ Act such that sa(q0q1 . . .qn) ∈ da(qn). The set of such strategies
is denoted by ΣIR

a . On the other hand, a perfect information memoryless strategy for
agent a (Ir-strategy for short) is given by a function sa : S t → Act where sa(q) ∈
da(q). The set of such strategies is denoted by ΣIr

a . We will use the term strategy to
refer to any of these two types.

A collective strategy for a group of agents A = {a1, . . . ,ar} ⊆Agt is simply a tuple
sA = 〈sa1 , . . . , sar 〉 of strategies, one per agent from A. By sA|a, we denote agent a’s
part sa of the collective strategy sA where a ∈ A. The set of A’s collective perfect
information strategies is given by ΣIR

A =
∏

a∈AΣ
IR
a (in the perfect recall case) and

ΣIr
A =
∏

a∈AΣ
Ir
a (in the memoryless case). The set of all strategy profiles is given by

ΣIR = ΣIR
Agt (resp. ΣIr = ΣIr

Agt).

Function out(q, sA) returns the set of all paths that may occur when agents A ex-
ecute strategy sA from state q onward. For an IR-strategy the set is given as follows:

out(q, sA) = {λ = q0q1q2 . . . | q0 = q and for each i = 1,2, . . . there exists a tuple of
agents’ decisions 〈αi−1

a1
, . . . ,αi−1

ak
〉 such that αi−1

a ∈ da(qi−1) for every a ∈ Agt, and
αi−1

a = sA|a(q0q1 . . .qi−1) for every a ∈ A, and o(qi−1,α
i−1
a1
, . . . ,αi−1

ak
) = qi}.

For an Ir-strategy sA the outcome is defined analogously: “sA|a(q0q1 . . .qi−1)” is
simply replaced by “sA|a(qi−1)”

The semantics for LATL and LATL∗ , one for each type of strategy, are shown
below. Informally speaking, M,q |= 〈〈A〉〉γ if, and only if, there exists a collective
strategy sA such that γ holds for all computations from out(q, sA).

2 The notation was introduced in [388] where i (resp. I) stands for imperfect (resp. perfect) infor-
mation and r (resp. R) for imperfect (resp. perfect) recall. Also compare with Section 5.2.3.

134 N. Bulling, J. Dix, and W. Jamroga

Definition 5.8 (Perfect Information Semantics |=IR and |=Ir). Let M be a CGS.
The perfect information perfect recall semantics for LATL∗ and LATL, IR-semantics
for short, is defined as |=CTL∗ from Definition 5.5, denoted by |=IR, but the rule for
Eϕ is replaced by the following clause:

M,q |=IR 〈〈A〉〉γ iff there is an IR-strategy sA ∈ Σ
IR
A for A such that for every path

λ ∈ out(sA,q), we haveM,λ |=IR γ.

The perfect information memoryless semantics forLATL∗ andLATL, Ir-semantics for
short, is given as above but “IR” is replaced by “Ir” everywhere.

Remark 5.3. Note that cooperation modalities are neither “diamonds” nor “boxes”
in terms of classical modal logic. Rather, they are combinations of both as their
structure can be described by “∃∀”: we ask for the existence of a strategy of the
proponents which is successful against all responses of the opponents.

In [89] it is shown how the cooperation modalities can be decomposed into two
parts in the context of STIT logic. A similar decomposition is considered in [253]
for the analysis of stochastic multi-agent systems.

The LCTL∗ path quantifiers A and E can be embedded in LATL∗ using the IR-
semantics in the following way: Aγ ≡ 〈〈∅〉〉γ and Eγ ≡ 〈〈Agt〉〉γ.

Analogously to CTL, it is possible to provide a state-based semantics for LATL.
We only present the clause for 〈〈A〉〉�ϕ (the cases for the other temporal operators
are given in a similar way):

M,q, |=ATL
Ix 〈〈A〉〉�ϕ iff there is an Ix-strategy sA ∈ Σ

Ix
A such that for all λ ∈

out(q, sA) and i ∈ N0 it holds thatM,q, |=ATL
Ix ϕ

where x is either R or r.

This already suggests that dealing with LATL is computationally less expensive
than with LATL∗ . On the other hand, LATL lacks expressiveness: There is no formula
which is true for the memoryless semantics and false for the perfect recall semantics,
and vice versa.

Theorem 5.1. 3 For LATL, the perfect perfect recall semantics is equivalent to the
memoryless semantics under perfect information, i.e.,M,q |=IR ϕ iffM,q |=Ir ϕ. Both
semantics are different for LATL∗ .

Thus, when referring to LATL using the perfect information semantics, we can omit
the subscript in the satisfaction relation |=.

Definition 5.9 (ATLIx, ATL∗Ix, ATL, ATL∗). We define ATLIx and ATL∗Ix as the
logics (LATL, |=Ix) and (LATL∗ , |=Ix) where x ∈ {r,R}, respectively. Moreover, we use
ATL (resp. ATL∗) as an abbreviation for ATLIR (resp. ATL∗IR).

5 Model Checking Logics of Strategic Ability: Complexity 135

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

Fig. 5.2 The robots and the carriage: a concurrent game structureM1.

Note again, that ATLIR and ATLIr are equivalent logics. We end our presentation
of the language and semantics with an example.

Example 5.2 (Robots and Carriage, ctd.). Transition system M0 from Figure 5.1
enabled us to study the evolution of the system as a whole. However, it did not allow
us to represent who can achieve what, and how the possible actions of the agents
interact. Concurrent game structure M1, presented in Figure 5.2, fills the gap. We
assume that each robot can either push (action push) or refrain from pushing (action
wait). Moreover, they both use the same force when pushing. Thus, if the robots
push simultaneously or wait simultaneously, the carriage does not move. When only
one of the robots is pushing, the carriage moves accordingly.

As the outcome of each robot’s action depends on the current action of the other
robot, no agent can make sure that the carriage moves to any particular position. So,
we have for example thatM1,q0 |= ¬〈〈1〉〉^pos1. On the other hand, the agent can at
least make sure that the carriage will avoid particular positions. For instance, it holds
thatM1,q0 |= 〈〈1〉〉�¬pos1, the right strategy being s1(q0) = wait, s1(q2) = push (the
action that we specify for q1 is irrelevant).

5.2.3 Strategic Abilities under Imperfect Information

ATL∗ and ATL include no way of addressing uncertainty that an agent or a process
may have about the current situation. Several extensions capable of dealing with
imperfect information have been proposed, e.g., in [14, 255, 388].

Here, we take Schobbens’ version from [388] as the “core”, minimalLATL∗ -based
language for strategic ability under imperfect information. We take the already de-
fined languages LATL∗ and LATL but here the cooperation modalities have an addi-

3 The property has been first observed in [388] but it follows from [14] in a straightforward way.

136 N. Bulling, J. Dix, and W. Jamroga

tional epistemic flavor by means of a modified semantics as we will show below.4

The models, imperfect information concurrent game structures (ICGS), can be seen
as concurrent game structures augmented with a family of indistinguishability rela-
tions ∼a⊆ S t×S t, one per agent a ∈Agt. The relations describe agents’ uncertainty:
q ∼a q′ means that agent a cannot distinguish between states q and q′ of the system.
Each ∼a is assumed to be an equivalence relation. It is also required that agents have
the same choices in indistinguishable states: if q ∼a q′ then d(a,q) = d(a,q′). Two
histories h= q0q1 . . .qn and h′ = q′0q′1 . . .q

′
n′ are said to be indistinguishable for agent

a, h ∼a h′, if and only if, n = n′ and qi ∼a q′i for i = 1, . . . ,n. This means that we deal
with the synchronous notion of recall according to the classification in [169].

An imperfect information strategy5 – memoryless or perfect recall – of agent a is
a plan that takes into account a’s epistemic limitations. An executable strategy must
prescribe the same choices for indistinguishable situations. Therefore, we restrict
the strategies that can be used by agents in the following way.

An imperfect information perfect recall strategy (iR-strategy for short) of agent
a is an IR-strategy satisfying the following additional constraint: For all histories
h,h′ ∈ S t+, if h ∼a h′ then sa(h) = sa(h′). That is, an iR-strategy is required to assign
the same action to indistinguishable histories. Note that, as before, a perfect recall
strategy (memoryless or not) assigns an action to each element from S t+.

An imperfect information memoryless strategy (ir-strategy for short) is an Ir-
strategy satisfying the following constraint: if q ∼a q′ then sa(q) = sa(q′). The set of
a’s ir (resp. iR) strategies is denoted by Σir

a (resp. ΣiR
a).

A collective iR/ir-strategy is a combination of individual iR/ir-strategies. The set
of A’s collective imperfect information strategies is given by ΣiR

A =
∏

a∈AΣ
iR
a (in

the perfect recall case) and Σir
A =
∏

a∈AΣ
ir
a (in the memoryless case). The set of all

strategy profiles is given by ΣiR = ΣiR
Agt (resp. Σir = Σir

Agt). The outcome function
out(q, sA) for the imperfect information cases is defined as before.

Definition 5.10 (Imperfect Information Semantics |=iR and |=ir). Let M be an
ICGS, and let img(q,ρ) = {q′ | ρ(q,q′)} be the image of state q wrt a binary relation
ρ. The imperfect information perfect recall semantics (iR-semantics) for LATL∗ and
LATL, denoted by |=iR, is given as in Definition 5.8 with the rule for 〈〈A〉〉γ replaced
by the following clause:

M,q |=iR 〈〈A〉〉γ iff there is an iR-strategy sA ∈ Σ
iR
A such that, for each q′ ∈

img(q,∼A) and every λ ∈ out(sA,q′), we haveM,λ |=iR γ (where ∼A:=
⋃

a∈A ∼a).

The imperfect information memoryless semantics for LATL∗ and LATL, ir-semantics
for short, is given as above but “iR” is replaced by “ir” everywhere.

4 In [388] the cooperation modalities are presented with a subscript: 〈〈A〉〉ir to indicate that they ad-
dress agents with imperfect information and imperfect recall. Here, we take on a rigorous semantic
point of view and keep the syntax unchanged.
5 Also called uniform strategy.

5 Model Checking Logics of Strategic Ability: Complexity 137

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

1

2

Fig. 5.3 Two robots and a carriage: a schematic view (left) and an imperfect information concur-
rent game structureM2 that models the scenario (right).

Note thatM,q |=ix 〈〈A〉〉γ requires A to have a single strategy that is successful in
all states indistinguishable from q.

Remark 5.4 (Implicit knowledge operators). Note that some knowledge operators
are implicitly given by the cooperation modalities if the imperfect information se-
mantics is used. In this setting a formula 〈〈A〉〉γ is read as follows: every agent in A
knows that they (the agents in A) have a collective strategy to enforce γ. In particular,
one can express Kaϕ (“a knows that ϕ”) by 〈〈a〉〉ϕUϕ, and EAϕ (“everybody in A
knows that ϕ”) by 〈〈A〉〉ϕUϕ. More sophisticated epistemic versions of ATL which
contain explicit knowledge operators (including ones for common and distributed
knowledge) are, for instance, considered in [201, 233, 255, 328].

Definition 5.11 (ATLix, ATL∗ix).
We define ATLix and ATL∗ix as the logics (LATL, |=ix) and (LATL∗ , |=ix) where x ∈
{r,R}, respectively.

Example 5.3 (Robots and Carriage, ctd.). We refine the scenario from Examples 5.1
and 5.2 by restricting perception of the robots. Namely, we assume that robot 1 is
only able to observe the color of the surface on which it is standing, and robot 2
perceives only the texture (cf. Figure 5.3). As a consequence, the first robot can
distinguish between position 0 and position 1, but positions 0 and 2 look the same
to it. Likewise, the second robot can distinguish between positions 0 and 2, but not
0 and 1. We also assume that the agents are memoryless, i.e., they cannot memorize
their previous observations.

With their observational capabilities restricted in such way, no agent can make
the carriage reach or avoid any selected states singlehandedly. E.g., we have that
M2,q0 |=ir ¬〈〈1〉〉�¬pos1. Note in particular that strategy s1 from Example 5.2 can-
not be used here because it is not uniform (indeed, the strategy tells robot 1 to wait

138 N. Bulling, J. Dix, and W. Jamroga

in q0 and push in q2 but both states look the same to the robot). The robots cannot
even be sure to achieve the task together: M2,q0 |=ir ¬〈〈1,2〉〉�pos1 (when in q0,
robot 2 considers it possible that the current state of the system is q1, in which case
all the hope is gone). So, do the robots know how to play to achieve anything? Yes,
for example they know how to make the carriage reach a particular state eventually:
M2,q0 |=ir 〈〈1,2〉〉^pos1 etc. – it suffices that one of the robots pushes all the time
and the other waits all the time. Still, M2,q0 |=ir ¬〈〈1,2〉〉^�posx (for x = 0,1,2):
there is no memoryless strategy for the robots to bring the carriage to a particular
position and keep it there forever.

Most of the above properties hold for the iR semantics as well. Note, however,
that for robots with perfect recall we do have that M2,q0 |=iR 〈〈1,2〉〉^�posx. The
right strategy is that one robot pushes and the other waits for the first 3 steps. Af-
ter that, they know their current position exactly, and can go straight the specified
position.

5.2.4 Other Subsets of LATL∗

5.2.4.1 Coalition Logic

Coalition Logic (CL), introduced in [333], is another logic for modeling and rea-
soning about strategic abilities of agents. The main construct of CL, [A]ϕ, expresses
that coalition A can bring about ϕ in a single-step game.

Definition 5.12 (LanguageLCL [333]). The languageLCL is given by all formulae
generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ∧ϕ | [A]ϕ, where p ∈ Π and
A ⊆ Agt.

In [333], coalitional models were chosen as semantics for LCL. These models
are given by (S t,E,π) consisting of a set of states S t, a playable effectivity function
E, and a valuation function π. The effectivity function determines the outcomes that
a coalition is effective for, i.e., given a set X ⊆ S t of states a coalition C is said
to be effective for X iff it can enforce the next state to be in X. However, in [201]
it was shown that CGS provide an equivalent semantics, and that CL can be seen
as the next-time fragment of ATL. Hence, for this presentation we will interpret
LCL-formulae over CGS’s, and consider [A]ϕ as an abbreviation for 〈〈A〉〉 ϕ. The
various logics CLxy that we can obtain using the semantics |=xy for x ∈ {i, I} and
y ∈ {r,R} are defined analogously to ATLxy.

5.2.4.2 ATL+

The language LATL+ is the subset of LATL∗ that requires each temporal operator
to be followed by a state formula, but allows for Boolean combinations of path

5 Model Checking Logics of Strategic Ability: Complexity 139

subformulae. The formula 〈〈A〉〉(�p∧^q), for instance, is an LATL+ -formula but not
an LATL-formula. Formally, the language is given as follows:

Definition 5.13 (Language LATL+). The language LATL+ is given by all formulae
generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ∧ ϕ | 〈〈A〉〉γ where γ ::= ¬γ |
γ∧γ | ϕUϕ | ϕ, A ⊆ Agt and p ∈ Π .

We define the various logics emerging from LATL+ and the different semantics
analogously to the case of LATL. The logic ATL+ is strictly more expressive than
ATL (contrary to common belief, each ATL+ formula can only be translated to
an equivalent ATL formula if the “release” or “weak until” operator is added to
the language of LATL [92, 208, 279]) but it enables a more succinct encoding of
properties (this follows from the results in [432]). In Section 5.3 we will see that
the more succinct language has its price: The model checking problem becomes
computationally more expensive.

5.2.5 Summary, Notation, and Related Work

We have recalled the linear-time temporal logic and two versions of the computa-
tion tree logics for reasoning about purely temporal systems. Then, we presented
several variants of the alternating-time temporal logics: the richest underlying lan-
guage LATL∗ , somewhat restricted variants LATL+ and LATL, and LCL which can be
seen as a very limited fragment ofLATL. All these languages were coupled with four
alternative semantics that result from combining perfect/imperfect information with
perfect recall/memoryless strategies (the IR, Ir, iR, and ir-semantics).

The resulting logics were defined with respect to the notation introduced by
Schobbens [388] to refer to a strategic logic using a specific semantics. For ID ∈
{CL,ATL,ATL+,ATL∗}, x ∈ {I, i}, and y ∈ {R,r}, we used IDxy to refer to the logic
over the language LID using the xy-semantics |=xy.

In this chapter we are concerned with model checking strategic logics and thus
take on a semantic view. Naturally, there is more than that to be studied. In [200]
a complete axiomatization for ATLIR is presented. Also the satisfiability prob-
lem of ATLIR and ATL∗IR has been considered by researchers: The problem was
proven EXPTIME-complete for ATLIR [150, 428] and even 2EXPTIME-complete
for ATL∗IR [384]. Axiomatization and satisfiability of other variants of alternating-
time temporal logic still remains open.

5.3 Standard Model Checking Complexity Results

In this section we consider model checking for the logics introduced in Section 5.2.
The process of model checking seeks to answer the question whether a given for-

140 N. Bulling, J. Dix, and W. Jamroga

mula ϕ is satisfied in a state q of model M. Formally, local model checking is the
decision problem that determines membership in the set

MC(L,Struc, |=) := {(M,q,ϕ) ∈ Struc×L | M,q |= ϕ},

where L is a logical language, Struc is a class of (pointed) models for L (i.e. a
tuple consisting of a model and a state), and |= is a semantic satisfaction relation
compatible with L and Struc. We omit parameters if they are clear from context,
e.g., we use MC(CTL) to refer to model checking of CTL over the class of (pointed)
Kripke models and the introduced semantics.

It is often useful to compute the set of states inM that satisfy formula ϕ instead
of checking if ϕ holds in a particular state. This variant of the problem is known as
global model checking. It is easy to see that, for the settings we consider here, the
complexities of local and global model checking coincide, and the algorithms for
one variant of model checking can be adapted to the other variant in a simple way.
As a consequence, we will use both notions of model checking interchangeably.

In the following, we are interested in the decidability and the computational com-
plexity of determining whether an input instance (M,q,ϕ) belongs to MC(. . .). The
complexity is always relative to the size of the instance; in the case of model check-
ing, it is the size of the representation of the model and the representation of the
formula that we use. Thus, in order to establish the complexity, it is necessary to fix
how we represent the input and how we measure its size. In this section, we con-
sider explicit representation of models and formulae, together with the “standard”
input measure, where the size of the model (|M|) is given by the number of transi-
tions in M, and the size of the formula (|ϕ|) is given by its length (i.e., the number
of elements it is composed of, apart from parentheses). For example, the model in
Figure 5.2 includes 12 (labeled) transitions, and the formula 〈〈1〉〉 (pos0 ∨ pos1)
has length 5.

5.3.1 Model Checking Temporal Logics

An excellent survey on the model checking complexity of temporal logics has been
presented in [387]. Here, we only recall the results relevant for the subsequent ana-
lysis of strategic logics.

Let M be a Kripke model and q be a state in the model. Model checking a
LCTL/LCTL∗ -formula ϕ in M,q means to determine whether M,q |= ϕ, i.e., whether
ϕ holds inM,q. For LTL, checkingM,q |= ϕ means that we check the validity of ϕ
in the pointed modelM,q, i.e., whether ϕ holds on all the paths inM that start from
q (equivalent to CTL∗ model checking of formula Aϕ inM,q, cf. Remark 5.2).

It has been known for a long time that formulae of CTL can be model-checked in
time linear with respect to the size of the model and the length of the formula [101],
whereas formulae of LTL and CTL∗ are significantly harder to verify.

5 Model Checking Logics of Strategic Ability: Complexity 141

function mcheck(M,ϕ).
Model checking formulae of CTL. Returns the exact subset of S t for which formula ϕ holds.
case ϕ ≡ p : return {q ∈ S t | p ∈ π(q)}
case ϕ ≡ ¬ψ : return S t \mcheck(M,ψ)
case ϕ ≡ ψ1 ∧ψ2 : return mcheck(M,ψ1)∩mcheck(M,ψ2)
case ϕ ≡ E ψ : return pre(mcheck(M,ψ))
case ϕ ≡ E�ψ :

Q1 := Q; Q2 := Q3 := mcheck(M,ψ);
while Q1 * Q2 do Q1 := Q1 ∩Q2; Q2 := pre(Q1)∩Q3 od;
return Q1

case ϕ ≡ Eψ1Uψ2 :
Q1 := ∅; Q2 := mcheck(M,ψ2); Q3 := mcheck(M,ψ1);
while Q2 * Q1 do Q1 := Q1 ∪Q2; Q2 := pre(Q1)∩Q3 od;
return Q1

end case

Fig. 5.4 The CTL model checking algorithm from [99].

Theorem 5.2 (CTL [101, 387]). Model checking CTL is P-complete, and can be
done in time O(|M| · |ϕ|), where |M| is given by the number of transitions.

Proof (Sketch). The algorithm determining the states in a model at which a given
formula holds is presented in Figure 5.4. The lower bound (P-hardness) can be for
instance proven by a reduction of the tiling problem [387]. ut

Theorem 5.3 (LTL [286, 406, 422]). Model checking LTL is PSPACE-complete,
and can be done in time 2O(|ϕ|)O(|M|), where |M| is given by the number of transi-
tions.

Proof (Sketch). We sketch the approach given in [422]. Firstly, given an LLTL-
formula ϕ, a Büchi automaton A¬ϕ of size 2O(|ϕ|) accepting exactly the paths satis-
fying ¬ϕ is constructed. The pointed Kripke modelM,q can directly be interpreted
as a Büchi automatonAM,q of size O(|M|) accepting all possible paths in the Kripke
model starting in q. Then, the model checking problem reduces to the non-emptiness
check of L(AM,q)∩L(A¬ϕ) which can be done in time O(|M|) ·2O(|ϕ|) by construct-
ing the product automaton. (Emptiness can be checked in linear time wrt to the size
of the automaton.) A PSPACE-hardness proof can for instance be found in [406].
ut

The hardness of CTL∗ model checking is immediate from Theorem 5.3 as LLTL
can be seen as a fragment of LCTL∗ . For the proof of the upper bound one combines
the CTL and LTL model checking techniques. Consider a LCTL∗ -formula ϕ which
contains a state subformula Eψ where ψ is a pure LLTL-formula. Firstly, we can use
LTL model checking to determine all state which satisfy Eψ (these are all states q
in which the LLTL-formula ¬ψ is not true) and label them by a fresh propositional
symbol , say p, and replace Eψ in ϕ by p as well. Applying this procedure recursively

142 N. Bulling, J. Dix, and W. Jamroga

yields a pure LCTL-formula which can be verified in polynomial time. Hence, the
procedure can be implemented by an oracle machine of type PPSPACE = PSPACE
(the LTL model checking algorithm might be employed polynomially many times).
Thus, the complexity for CTL∗ is the same as for LTL.

Theorem 5.4 (CTL∗ [101, 161]). Model checking CTL∗ is PSPACE-complete, and
can be done in time 2O(|ϕ|)O(|M|), where |M| is given by the number of transitions.

In Section 5.2.4 we introduced ATL+, a variant of ATL. As the model checking
algorithm for ATL+ will rely on the complexity of CTL+ model checking,6 we
mention the latter result here.

Theorem 5.5 (CTL+ [280]). Model checking CTL+ is ∆P
2 -complete in the number

of transitions in the model and the length of the formula.

5.3.2 Model Checking ATL and CL: Perfect Information

One of the main results concerning ATL states that its formulae can also be model-
checked in deterministic linear time, analogously to CTL. It is important to empha-
size, however, that the result is relative to the number of transitions in the model
and the length of the formula. In Section 5.4 we will discuss an alternative input
measure in terms of agents, states, and the length of the formula, and show that this
causes a substantial increase in complexity.

The ATL model checking algorithm from [14] is presented in Figure 5.5. The
algorithm employs the well-known fixpoint characterizations of strategic-temporal
modalities:

〈〈A〉〉�ϕ ↔ ϕ∧〈〈A〉〉 〈〈A〉〉�ϕ

〈〈A〉〉ϕ1Uϕ2 ↔ ϕ2∨ϕ1∧〈〈A〉〉 〈〈A〉〉ϕ1Uϕ2,

and computes a winning strategy step by step (if it exists). That is, it starts with the
appropriate candidate set of states (∅ for U and the whole set S t for �), and iterates
backwards over A’s one-step abilities until the set gets stable. It is easy to see that the
algorithm needs to traverse each transition at most once per subformula of ϕ. Note
that it does not matter whether perfect recall or memoryless strategies are used: The
algorithm is correct for the IR-semantics, but it always finds an Ir-strategy. Thus,
for an LATL-formula 〈〈A〉〉γ, if A have an IR-strategy to enforce γ, they also have an
Ir-strategy to obtain it.

6 CTL+ is defined analogously to ATL+: Boolean combinations of path formulae are allowed in
the scope of path quantifiers.

5 Model Checking Logics of Strategic Ability: Complexity 143

function mcheck(M,ϕ).
ATL model checking. Returns the set of states in model M = 〈Agt,S t,Π,π,o〉 for which formula ϕ
holds.
case ϕ ∈ Π : return π(p)
case ϕ = ¬ψ : return S t \mcheck(M,ψ)
case ϕ = ψ1 ∨ψ2 : return mcheck(M,ψ1)∪mcheck(M,ψ2)
case ϕ = 〈〈A〉〉 ψ : return pre(M,A,mcheck(M,ψ))
case ϕ = 〈〈A〉〉�ψ :

Q1 := S t; Q2 := mcheck(M,ψ); Q3 := Q2;
while Q1 * Q2
do Q1 := Q2; Q2 := pre(M,A,Q1)∩Q3 od;
return Q1

case ϕ = 〈〈A〉〉ψ1Uψ2 :
Q1 := ∅; Q2 := mcheck(M,ψ1);
Q3 := mcheck(M,ψ2);
while Q3 * Q1
do Q1 := Q1 ∪Q3; Q3 := pre(M,A,Q1)∩Q2 od;
return Q1

end case

function pre(M,A,Q).
Auxiliary function; returns the exact set of states Q′ such that, when the system is in a state q ∈ Q′,
agents A can cooperate and enforce the next state to be in Q.
return {q | ∃αA∀αAgt\A o(q,αA,αAgt\A) ∈ Q}

Fig. 5.5 The ATL model checking algorithm from [14]

Theorem 5.6 (ATLIr and ATLIR [14]). Model checking ATLIr and ATLIR is P-
complete, and can be done in time O(|M| · |ϕ|), where |M| is given by the number of
transitions inM.

Proof (Sketch). Each case of the algorithm is called at most O(|ϕ|) times and ter-
minates after O(|M|) steps [14]. The latter is shown by translating the model to
a two-player game [14], and then solving the “invariance game” on it in polyno-
mial time [30]. Hardness is shown by a reduction of reachability in And-Or-Graphs,
which was shown to be P-complete in [248], to model checking the (constant)LATL-
formula 〈〈1〉〉^p in a two player game. In each Or-state it is the turn of player 1 and
in each And-state it is player 2’s turn [14]. ut

In the next theorem, we show that the model checking of coalition logic is as
hard as for ATL. To our knowledge, this is a new result; the proof is done by a slight
variation of the hardness proof for ATL in [14] (cf. the proof of Theorem 5.6).

Theorem 5.7 (CLIr and CLIR). Model checking CLIr and CLIR is P-complete, and
can be done in time O(|M| · |ϕ|), where |M| is given by the number of transitions in
M.

144 N. Bulling, J. Dix, and W. Jamroga

Proof. The upper bound follows from the fact that LCL is a sublanguage of LATL.
We show P-hardness by the following adaption of the reduction of And-Or-Graph
reachability from [14]. Firstly, we observe that if a state y is reachable from x in
graph G then it is also reachable via a path whose length is bounded by the number
n of states in the graph. Like in the proof of Theorem 5.6, we take G to be a turned-
based CGS in which player 1 “owns” all the Or-states and player 2 “owns” all the
And-states. We also label node y with a special proposition y, and replace all the
transitions outgoing from y with a deterministic loop. Now, we have that y is reach-
able from x in G iff G, x |= 〈〈1〉〉 . . . 〈〈1〉〉︸ ︷︷ ︸

n-times

y. The reduction uses only logarithmic

space. ut

It is worth pointing out, however, that checking strategic properties in one-step
games is somewhat easier. We recall that AC0 is the class corresponding to constant-
depth, unbounded-fanin, polynomial-size Boolean circuits with AND, OR, and NOT
gates [185]. We call a formula flat if it contains no nested cooperation modalities.
Moreover, a formula is simple if it is flat and does not include Boolean connec-
tives. For example, the language of “simple CL” consists only of formulae p and
〈〈A〉〉 p, for p ∈ Π and A ⊆ Agt.

Theorem 5.8 (Simple CLIr and CLIR [279]). Model checking “Simple CLIr” and
“Simple CLIR” with respect to the number of transitions in the model and the length
of the formula is in AC0.

Proof (Sketch). For M,q |= 〈〈A〉〉 p, we construct a 3-level circuit [279]. On the
first level, we assign one AND gate for every possible coalition B and B’s collective
choice αB; the output of the gate is “true” iff αB leads to a state satisfying p for every
response of Agt\B. On the second level, there is one OR gate per possible coalition
B that connects all the B’s gates from the first level and outputs “true” iff there is any
successful strategy for B. On the third level, there is a single AND gate that selects
the right output (i.e., the one for coalition A). ut

5.3.3 Model Checking ATL and CL: Imperfect Information

In contrast to the perfect information setting, analogous fixpoint characterizations
do not hold for the incomplete information semantics over LATL because the choice
of a particular action at a state q has non-local consequences: It automatically fixes
choices at all states q′ indistinguishable from q for the coalition A. Moreover, the
agents’ ability to identify a strategy as winning also varies throughout the game in
an arbitrary way (agents can learn as well as forget). This suggests that winning
strategies cannot be synthesized incrementally. Note that, in order to check M,q |=
〈〈A〉〉γ (where γ includes no nested cooperation modalities), the following procedure
suffices. Firstly, we guess a uniform strategy sA of team A (by calling an NP oracle),

5 Model Checking Logics of Strategic Ability: Complexity 145

and then verify the strategy by pruningM accordingly (removing all the transitions
that are not going to be executed according to sA) and model-checking the LCTL-
formula Aγ in the resulting model. For nested cooperation modalities, we proceed
recursively (bottom up). Since model checking CTL can be done in polynomial
deterministic time, the procedure runs in polynomial deterministic time with calls
to an NP oracle, which demonstrates the inclusion in ∆P

2 = PNP [388]. As it turns
out, a more efficient procedure does not exist, which is confirmed by the following
result.

Theorem 5.9 (ATLir [259,388]). Model checking ATLir is ∆P
2 -complete in the num-

ber of transitions in the model and the length of the formula.

Proof (Sketch). The discussion above proves the membership in ∆P
2 . ∆P

2 -hardness
was shown in [259] through a reduction of sequential satisfiability (SNSAT2), a
standard ∆P

2 -complete problem [280]. The idea is that there are two agents where
one agent tries to verify a (nested) propositional formula and a second agent tries
to refute it. A winning strategy of the “verifier agent” corresponds to a satisfying
valuation of the formula. Uniformity of the verifier’s strategy is needed to ensure
that identical proposition symbols, occurring at different places in the formula, are
assigned the same truth values. ut

Now we consider the incomplete information setting for Coalition Logic. It is
easy to see that the iR- and ir-sematics are equivalent for LCL since is the only
temporal operator, and thus only the first action in a strategy matters. As a conse-
quence, whenever there is a successful iR-strategy for agents A to enforce ϕ, then
there is also an ir-strategy for A to obtain the same. Perfect recall of the history does
not matter in one-step games.

Theorem 5.10 (CLir and CLiR). Model checking CLir and CLiR is P-complete wrt
the number of transitions in the model and the length of the formula, and can be
done in time O(|M| · |ϕ|).

Proof. The P-hardness follows from Theorem 5.7 (perfect information CGS’s can
be seen as a special kind of ICGSwhere the indistinguishability relations contain
only the reflexive loops). For the upper bound, we use the following algorithm. For
M,q |= 〈〈A〉〉 p, we check if there is a collective action αA such that for all responses
αAgt\A we have that

⋃
{q′ |q∼Aq′}{o(q′,αA,αAgt\A)} ⊆ π(p). For 〈〈A〉〉 ϕ with nested

cooperation modalities, we proceed recursively (bottom up). ut

Theorem 5.11 (Simple CLir and CLiR). Model checking “simple” formulae of
CLir and CLiR with respect to the number of transitions in the model and the length
of the formula is in AC0.

Proof. For M,q |= 〈〈A〉〉 p, we extend the procedure from [279] by creating one
copy of the circuit per q′ ∈ img(q,∼A). Then, we add a single AND gate on the
fourth level of the circuit, that takes the output of those copies and returns “true” iff
A have a strategy that is successful from all states indistinguishable from q. ut

146 N. Bulling, J. Dix, and W. Jamroga

That leaves us with the issue of LATL with the semantics assuming imperfect in-
formation and perfect recall. To our knowledge, there is no formal proof in the litera-
ture regarding the complexity of model checking LATL with iR-strategies. However,
the problem is commonly believed to be undecidable.

Conjecture 5.1 (ATLiR [14]). Model checking ATLiR is undecidable.

5.3.4 Model Checking ATL∗ and ATL+

We now turn to model checking logics over broader subsets of LATL∗ . In the first
case we consider perfect recall strategies in the perfect information setting. The
complexity results established here are based on an automata-theoretic approach
which is explained below.

LetM be a CGS and 〈〈A〉〉ψ be an LATL∗ -formula (where we assume that ψ is an
LLTL-formula). Given a strategy sA of A and a state q inM the model can be unfolded
into a q-rooted tree representing all possible behaviors with agents A following their
strategy sA. This structure can be seen as the tree induced by out(q, sA) and we will
refer to it as a (q,A)-execution tree. Note that every strategy profile for A may result
in a different execution tree. Now, a Büchi tree automatonAM,q,A can be constructed
that accepts exactly the (q,A)-execution trees [14].

Secondly, it was shown that one can construct a Rabin tree automaton which
accepts all trees that satisfy theLCTL∗ -formula Aψ [162]. Hence, theLATL∗ -formula
〈〈A〉〉ψ is satisfied in M,q if there is a tree accepted by AM,q,A (i.e., it is a (q,A)-
execution tree) and byAψ (i.e., it is a model of Aψ).

Theorem 5.12 (ATL∗IR [14]). Model checking ATL∗IR is 2EXPTIME-complete in the
number of transitions in the model and the length of the formula.

Proof (Sketch). We briefly analyze the complexity for the procedure described
above. Firstly, the Büchi tree automaton AM,q,A is built by considering the states
A is effective for [14]. That is, in a state of the automaton corresponding to a state
q ∈ S t of M the automaton nondeterministically chooses a sequence (q′1,q

′
2, . . . ,q

′
n)

of successors of q such that A has a common action to guarantee that the system will
end up in one of the states {q′1,q

′
2, . . . ,q

′
n} in the next step. It is assumed that the se-

quence is minimal. Incrementally, this models any sA strategy of A and thus accepts
all (q,A)-execution trees. The transition function of the automaton is constructed in
the described way. As the number of transitions in each state of the automaton is
bounded by the move combinations of agents A the size of the automaton, |AM,q,A|,
is bounded by O(|M|). All states are defined as acceptance states, such that AM,q,A
accepts all possible execution trees of A.

Following the construction of [162], the automatonAψ is a Rabin tree automaton
with 22O(|ψ|)

states and 2O(|ψ|) Rabin pairs.

5 Model Checking Logics of Strategic Ability: Complexity 147

The product automaton Aψ ×AM,q,A, accepting the trees accepted by both au-
tomata, is a Rabin tree automaton with n := O(|Aψ| · |AM,q,A|) many states and
r := 2O(|ψ|) many Rabin pairs (note that AM,q,A can be seen as a Rabin tree automa-
ton with one Rabin pair composed of the states of the automaton and the empty set).
Finally, to determine whether the language accepted by the product automaton is
empty can be done in time O(n · r)3r [160, 342]; hence, the algorithm runs in time
|M|2

O(|ψ|)
(it might be employed at each state of the model and for each subformula).

The lower bound is shown by a reduction of the 2EXPTIME-complete problem
of the realizability of LTL-formulae [14, 342, 373]. ut

The next result shows that model checking LATL∗ with memoryless strategies is
no worse than for LTL and CTL∗ for both perfect and imperfect information.

Theorem 5.13 (ATL∗ir and ATL∗Ir [388]). Model checking ATL∗ir and ATL∗Ir is
PSPACE-complete in the number of transitions in the model and the length of the
formula.

Proof (Sketch). LLTL is contained in LATL∗ which renders LATL∗ with the perfect
information memoryless semantics to be at least PSPACE-hard.

On the other hand, there is a PSPACE algorithm for model checking LATL∗

with the imperfect information memoryless semantics. Consider the formula 〈〈A〉〉ψ
where ψ is an LLTL-formula. Then, an ir-strategy sA for A is guessed and the model
is “trimmed” according to sA, i.e. all transitions which cannot occur by following sA
are removed. Note that a memoryless strategy can be guessed in polynomially many
steps, and hence also using only polynomially many memory cells. In the new model
the LCTL∗ -formula Aψ is checked. This procedure can be performed in NPPSPACE,
which renders the complexity of the whole language to be in PNPPSPACE

= PSPACE.
ut

We consider the more limited language LATL+ . Boolean combinations of path
formulae prevent us from using the fixed-point characterizations for model check-
ing. Instead, given a formula 〈〈A〉〉ψ with no nested cooperation modalities, we can
guess a (memoryless) strategy of A, “trim” the model accordingly, and model-
check the LCTL+ -formula Aψ in the resulting model. Since the model checking
problem for CTL+ is ∆P

2 -complete, we get that the overall procedure runs in time

∆P
2
∆P

2 = ∆P
3 [388].

Theorem 5.14 (ATL+ir andATL+Ir [388]). Model checking ATL+ir and ATL+Ir is ∆P
3 -

complete in the number of transitions in the model and the length of the formula.

Proof (Sketch). The above procedure shows the membership. Note that in the in-
complete information case one has to guess a uniform strategy. Again, it is essential
that a strategy can be guessed in polynomially many steps, which is indeed the case
for Ir- and ir-strategies. The hardness proof can be obtained by a reduction of the
standard ∆P

3 -complete problem SNSAT3, cf. [388] for the construction. ut

148 N. Bulling, J. Dix, and W. Jamroga

What about ATL+IR? It has been believed that verification with LATL+ is ∆P
3 -

complete for perfect recall strategies, too. However, it turns out that the complexity
of ATL+IR model checking is much harder, namely PSPACE [92]. Since the ∆P

3 -
completeness for memoryless semantics is correct, we get that memory makes ver-
ification harder already for LATL+ , and not just for LATL∗ as it was believed before.

Theorem 5.15 (ATL+IR [92]). Model checking ATL+IR is PSPACE-complete with re-
spect to the number of transitions in the model and the length of the formula. It is
PSPACE-complete even for turn-based models with two agents and “flat” ATL+
formulae.

Proof (Sketch). Consider the LATL+ -formula 〈〈A〉〉γ where γ does not contain any
further cooperation modalities. The upper bound can be proven by constructing an
alternating Turing Machine that first produces (by alternatingly guessing the “best”
choices of the proponents and the “most damaging” responses of the opponents)
the relevant part of a path (whose length is asymptotically bounded by the product
of the length of the formula and the number of states in the model) that suffices to
determine the truth of an LATL+ -formula. Then, we implement the game-theoretical
semantics of propositional logic [229] as a game between the verifier (who controls
disjunction) and the refuter (controlling conjunction). The machine runs in time
O(nkl) where n (resp. k and l) denotes the number of states (resp. number of agents
and length of the formula), cf. [92] for details.

Hardness is proved by a reduction of QSAT. A perfect recall strategy of the
proponents is used to assign consistent valuations (step-by-step) to propositional
variables that they control; analogously for the opponents. Thereby, the proponents
control the existentially quantified variables and the opponents the universally quan-
tified ones. An LATL+ -formula is used to describe such valid assignments; i.e. truth
values must be ascribed to variables in a uniform way. For the complete construction
we refer to [92] again. ut

Note that the input size only depends on the number of states and agents in the
model and length of the formula which is important for the complexity result given
in Theorem 5.25 about non-standard input measures.

The following conjectures are immediate consequences of Conjecture 5.1 as
LATL is a fragment of LATL∗ as well as LATL+ .

Conjecture 5.2 (ATL∗iR). Model checking ATL∗iR is undecidable.

Conjecture 5.3 (ATL+iR). Model checking ATL+iR is undecidable.

Figure 5.3.4 presents an overview of the model checking complexity results for
explicit models.

5 Model Checking Logics of Strategic Ability: Complexity 149

Ir IR ir iR

Simple LCL AC0 AC0 AC0 AC0

LCL P P P P
LATL P P ∆P

2 Undecidable†

LATL+ ∆P
3 PSPACE ∆P

3 Undecidable†

LATL∗ PSPACE 2EXPTIME PSPACE Undecidable†

Fig. 5.6 Overview of the model checking complexity results for explicit models. All results except
for “Simple CL” are completeness results. Each cell represents the logic over the language given
in the row using the semantics given in the column. † These problems are believed to be
undecidable, though no formal proof has been proposed yet (cf. Conjectures 5.1, 5.2, and 5.3).

5.4 Complexity for Implicit Models: States and Agents

We have seen several complexity results for the model checking problem in logics
like LTL, CTL, and ATL. Some of these results are quite attractive: one usually
cannot hope to achieve verification with complexity better than linear.

However, it is important to remember that these results measure the complexity
with respect to the size of the underlying model. Often, these models are so big,
that an explicit representation is not possible and we have to represent the model
in a “compressed” way. To give a simple illustration, consider the famed primality
problem: checking whether a given natural number n is prime. The well-known
algorithm uses

√
n-many divisions and thus runs in polynomial time when the input

is represented in unary. But a symbolic representation of n needs only log(n) bits and
thus the above algorithm runs in exponential time with respect to its size. This does
not necessarily imply that the problem itself is of exponential complexity. In fact,
the famous and deep result of Agrawal, Kayal and Saxena shows that the primality
problem can be solved in polynomial time.

We will consider model checking of temporal and strategic logics for such highly
compressed representations (in terms of state space compression and modulariza-
tion) in Section 5.5. Such a rigorous compressed representation is not the only way
in which the model checking complexity can be influenced. Another important fac-
tor is how we encode the transition function. So far, we assumed that the size of a
model is measured with respect to the number of transitions in the model.

In this section we consider the complexity of the model checking problem with
respect to the number of states, agents, and an implicitly encoded transition function
rather than the (explicit) number of transitions. It is easy to see that, for CGS’s,
the number of transitions can be exponential in the number of states and agents.
Therefore, all the algorithms presented in Section 5.3 give us only exponential time
bounds provided that the transition function is encoded sufficiently small.

Observation 1 ([14, 257]) Let n be the number of states in a concurrent game
structureM, let k denote the number of agents, and d the maximal number of avail-
able decisions (moves) per agent per state. Then, m =O(ndk). Therefore the ATLIR

150 N. Bulling, J. Dix, and W. Jamroga

model checking algorithm from [14] runs in time O(ndkl), and hence its complexity
is exponential if the number of agents is a parameter of the problem.

In comparison, for an unlabeled transition system with n states and m transitions,
we have that m = O(n2). This means that CTL model checking is in P also with
respect to the number of states in the model and the length of the formula. The
following theorem is an immediate corollary of the fact (and Theorem 5.2).

Theorem 5.16. CTL model checking over unlabeled transition systems is P-complete
in the number of states and the length of the formula, and can be done in time O(n2l).

For ATL and concurrent game structures, however, the situation is different. In
the following we make precise what we mean by a compressed transition function.

Implicit concurrent game structures (called this way first in [278], but already
present in the ISPL modeling language behind MCMAS [352, 353]) are defined
similarly to a CGS but the transition function is encoded in a particular way often
allowing for a more compact representation than the explicit transition table. For-
mally, an implicit CGS is given byM= 〈Agt,S t,Π,π,Act,d, ô〉where ô, the encoded
transition function, is given by a sequence

((ϕr
0,q

r
0), . . . , (ϕr

tr ,q
r
tr))r=1,...,|Q|

where tr ∈ N0, qr
i ∈ S t and each ϕr

i is a Boolean combination of propositions execj
α

where j ∈ Agt, α ∈ Act, i = 1, . . . , t and r = 1, . . . , |Q|. It is required that ϕr
tr = >. The

term execj
α stands for “agent j executes action α”. We use ϕ[α1, . . . ,αk] to refer to

the Boolean formula over {>,⊥} obtained by replacing exec
aj
α with > (resp. ⊥) if

α j = α (resp. α j , α). The encoded transition function induces a standard transition
function oô as follows:

oô(qi,α1, . . . ,αk) = qi
j where j =min{κ | ϕi

κ[α1, . . . ,αk] ≡ >}

That is, oô(qi,α1, . . . ,αk) returns the state belonging to the formula ϕi
κ (associated

with state qi) with the minimal index κ that evaluates to “true” given the actions
α1, . . . ,αk. We use ô(qi,α1, . . . ,αk) to refer to oô(qi,α1, . . . ,αk). Note that the function
is well defined as the last formula in each sequence is given by >: no deadlock can
occur. The size of ô is defined as |ô| =

∑
r=1,...,|Q|

∑
j=1,...,tr |ϕ

r
j|, that is, the sum of the

sizes of all formulae. Hence, the size of an implicit CGS is given by |S t|+ |Agt|+ |ô|.
Recall, that the size of an explicit CGS is |S t|+ |Agt|+m where m is the number
of transitions. Finally, we require that the encoding of the transition function is
reasonably compact, that is, |ô| ≤O(|oô|).

Now, why should the model checking complexity change for implicit CGS’s?
Firstly, one can observe that we can take the trivial encoding of an explicit transition
function yielding an implicit CGS that has the same size as the explicit CGS. This
implies that all the lower bounds proven before are still valid.

5 Model Checking Logics of Strategic Ability: Complexity 151

Proposition 5.1. Model checking with respect to implicit CGS’s is at least as hard
as model checking over explicit CGS’s for any logic discussed here.

Therefore, we focus on the question whether model checking can become more
difficult for implicit CGS’s. Unfortunately, the answer is yes: Model checking can
indeed become more difficult.

We illustrate this by considering the presented algorithm for solving the ATLIR
model checking problem. It traverses all transitions and since transitions are consid-
ered explicitly in the input, the algorithm runs in polynomial time. But if we choose
an encoding ô that is significantly smaller than the explicit number of transitions,
the algorithm still has to check all transitions, yet now the number of transitions can
be exponential with respect to the input of size |S t|+ |Agt|+ |ô|.

Henceforth, we are interested in the cases in which the size of the encoded transi-
tion function is much smaller, in particular, when the size of the encoding is polyno-
mial with respect to the number of states and agents. This is the reason why we will
often write that we measure the input in terms of states (n) and agents (k), neglecting
the size of ô when it is supposed to be polynomial in n,k.

Remark 5.5. An alternative view is to assume that the transition function is provided
by an external procedure (a “black box”) that runs in polynomial time, similar to an
oracle [257]. This view comes along with some technical disadvantages, and we will
not discuss it here.

5.4.1 Model Checking ATL and CL in Terms of States and Agents

As argued above the complexity of O(ml) may (but does not have to) include po-
tential intractability if the transition function is represented more succinctly. The
following result supports this observation.

Theorem 5.17 ([257, 259, 279]). Model checking ATLIR and ATLIr over implicit
CGS’s is ∆P

3 -complete with respect to the size of the model and the length of the
formula (l).

Proof (Sketch). The idea of the proof for the lower bound is clear if we reformulate
the model checking of M,q |= 〈〈a1, . . . ,ar〉〉 ϕ as

∃(α1, . . . ,αr)∀(αr+1, . . . ,αk) M,o(q,α1, . . . ,αk) |= ϕ,

which closely resembles QSAT2, a typical ΣP
2 -complete problem. A reduction of

this problem to our model checking problem is straightforward: For each instance
of QSAT2, we create a model where the values of propositional variables p1, . . . , pr
are “declared” by agents A and the values of pr+1, . . . , pk by Agt \ A. The subse-
quent transition leads to a state labeled by proposition yes iff the given Boolean

152 N. Bulling, J. Dix, and W. Jamroga

formula holds for the underlying valuation of p1, . . . , pk. Then, QSAT2 reduces to
model checking formula 〈〈a1, . . . ,ar〉〉 yes [257]. In order to obtain ∆P

3 -hardness,
the above schema is combined with nested cooperation modalities, which yields a
rather technical reduction of the SNSAT3 problem that can be found in [279].

For the upper bound, we consider the following algorithm for checking M,q |=
〈〈A〉〉γ with no nested cooperation modalities. Firstly, guess a strategy sA of the
proponents and fix A’s actions to the ones described by sA. Then check if Aγ is
true in state q of the resulting model by asking an oracle about the existence of a
counterstrategy sĀ for Agt \A that falsifies γ and reverting the oracle’s answer. The
evaluation takes place by calculating ô (which takes polynomially many steps) re-
garding the actions prescribed by (sA, sĀ) at most |S t| times. For nested cooperation
modalities, we proceed recursively (bottom-up). ut

Surprisingly, the imperfect information variant of ATL is no harder than the per-
fect information one under this measure:

Theorem 5.18 ([259]). Model checking ATLir over implicit CGS’s is ∆P
3 -complete

with respect to the size of the model and the length of the formula. This is the same
complexity as for model checking ATLIr and ATLIR.

Proof (Sketch). For the upper bound, we use the same algorithm as in checking
ATLIr. For the lower bound, we observe that ATLIr can be embedded in ATLir
by explicitly assuming perfect information of agents (through the minimal reflexive
indistinguishability relations). ut

The ∆P
3 -hardness proof in Theorem 5.17 uses the “nexttime” and “until” tempo-

ral operators in the construction of an ATL formula that simulates SNSAT3 [279].
However, the proof can be modified so that only the “nexttime” sublanguage ofLATL
is used. We obtain thus an analogous result for coalition logic. Details of the new
construction can be found in the technical report [91].

Theorem 5.19. Model checking CLIR, CLIr, CLir, and CLiR over implicit CGS’s
is ∆P

3 -complete with respect to the size of the model and the length of the formula.
Moreover, it is ΣP

2 -complete for the “simple” variants of CL.

It is worth mentioning that model checking “Positive ATL” (i.e., the fragment of
LATL where negation is allowed only on the level of literals) is ΣP

2 -complete with
respect to the size of implicit CGS’s, and the length of formulae for the IR, Ir, and
ir-semantics [259]. The same applies to “Positive CL”, the analogous variant of
coalition logic.

5 Model Checking Logics of Strategic Ability: Complexity 153

5.4.2 CTL and CTL+ Revisited

At the beginning of Section 5.4, we mentioned that the complexity of model check-
ing computation tree logic is still polynomial even if we measure the size of models
with the number of states rather than transitions. That is certainly true for unlabeled
transition systems (i.e., the original models of CTL). For concurrent game struc-
tures, however, this is no longer the case.

Theorem 5.20. Model checking CTL over implicit CGS’s is ∆P
2 -complete with re-

spect to the size of the model and the length of the formula.

Proof (Sketch). For the upper bound, we observe that M,q |=CTL Eγ iff M,q |=IR
〈〈Agt〉〉γ which is in turn equivalent to M,q |=Ir 〈〈Agt〉〉γ. In other words, Eγ holds
iff the grand coalition has a memoryless strategy to achieve γ. Thus, we can verify
M,q |= Eγ (with no nested path quantifiers) as follows: we guess a strategy sAgt
for Agt (in polynomially many steps), then we construct the resulting modelM′ by
asking ô which transitions are enabled by following the strategy sA and check if
M′,q |= Eγ and return the answer. Note that M′ is an unlabeled transition system,
so constructing M′ and checking M′,q |= Eγ can be done in polynomial time. For
nested modalities, we proceed recursively.

For the lower bound, we sketch the reduction of SAT to model checking LCTL-
formulae with only one path quantifier. For propositional variables p1, . . . , pk and
boolean formula ϕ, we construct an implicit CGS where the values of p1, . . . , pk
are “declared” by agents Agt = {a1, . . . ,ak} (in parallel). The subsequent transition
leads to a state labeled by proposition yes iff ϕ holds for the underlying valuation of
p1, . . . , pk. Then, SAT reduces to model checking formula 〈〈Agt〉〉 yes. The reduc-
tion of SNSAT2 (to model checking LCTL-formulae with nested path quantifiers) is
an extension of the SAT reduction, analogous to the one in [258, 259]. ut

As it turns out, the complexity of CTL+ does not increase when we change the
models to implicit concurrent game structures: It is still ∆P

2 .

Theorem 5.21. Model checking CTL+ over implicit CGS’s is ∆P
2 -complete with re-

spect to the size of the model and the length of the formula.

Proof (Sketch). The lower bound follows from Theorem 5.5 and Proposition 5.1.
For the upper bound, we observe that the CTL+ model checking algorithm

in [280] verifies M,q |= Eγ by guessing a finite history h with length |S tM | · |γ|,
and then checking γ on h. We recall that Eγ ≡ 〈〈Agt〉〉γ. Thus, for a concurrent
game structure, each transition in h can be determined by guessing an action pro-
file in O(|Agt|) steps, calculating ô wrt the guessed profile, and the final verification
whether γ holds on the finite sequence h which can be done in deterministic polyno-
mial time (cf. [92]). Consequently, we can implement this procedure by a nondeter-
ministic Turing machine that runs in polynomial time. For nested path quantifiers,
we proceed recursively which shows that the model checking problem can be solved
by a polynomial time Turing machine with calls to an NP-oracle. ut

We will use the last result in the analysis of ATL+ in Section 5.4.3.

154 N. Bulling, J. Dix, and W. Jamroga

5.4.3 ATL∗ and ATL+

Theorem 5.22. Model checking ATL∗Ir and ATL∗ir over implicit CGS’s is PSPACE-
complete with respect to the size of the model and the length of the formula.

Proof. The lower bound follows from Theorem 5.13 and Proposition 5.1.

For the upper bound, we model-check M,q |= 〈〈A〉〉γ by guessing a memoryless
strategy sA for coalition A, then we guess a counterstrategy sĀ of the opponents.
Having a complete strategy profile, we proceed as in the proof of Theorem 5.20 and
check the LTL path formula γ on the resulting (polynomial model) M′ which can
be done in polynomial space (Theorem 5.13). For nested cooperation modalities, we
proceed recursively. ut

Theorem 5.23 ([279]). Model checking ATL∗IR over implicit CGS’s is 2EXPTIME-
complete with respect to the size of the model and the length of the formula.

Proof. The lower bound follows from Theorem 5.12 and Proposition 5.1. For the
upper bound, we have to modify the algorithm given in the proof of Theorem 5.12
such that it is capable of dealing with implicit models. More precisely, we need to
modify the construction of the Büchi automaton AM,q,A that is used to accept the
(q,A)-execution trees. Before, we simply checked all the moves of A in polynomial
time and calculated the set of states A is effective for (as the moves are bounded by
the number of transitions). Here, we have to incrementally generate all these moves
from A using ô. This may take exponential time (as there can be exponentially many
moves in terms of the number of states and agents). However, as this can be done
independently of the non-emptiness check, the overall runtime of the algorithm is
still double exponential. ut

Theorem 5.24 ([279]). Model checking ATL+Ir, and ATL+ir over implicit CGS’s is
∆P

3 -complete with respect to the size of the model and the length of the formula.

Proof. The lower bounds follow from Theorem 5.14 and Proposition 5.1. For the
upper bound we model-check M,q |= 〈〈A〉〉γ by guessing a memoryless strategy
sA for coalition A, and constructing an unlabeled transition system M′ as fol-
lows. For each state qi we evaluate formulae contained in ((ϕi

0,q
i
0), . . . , (ϕi

ti ,q
i
ti))

according to the guessed strategy. Then, we introduce a transition from qi to qi
j

if (
∧

k=0,..., j−1¬ϕ
i
k)∧ϕi

j is satisfiable (i.e., there is a countermove of the opponents

such that ϕ j
i is true and j is the minimal index) . This is the case iff the opponents

have a strategy to enforce the next state to be qi
j. These polynomially many tests

can be done by independent calls of an NP-oracle. The resulting model M′ is an
explicit CGS of polynomial size regarding the number of states and agents. Finally,
we apply CTL+ model checking to Aγ which can be done in time ∆P

2 . ut

5 Model Checking Logics of Strategic Ability: Complexity 155

Ir IR ir iR

Simple LCL ΣP
2 ΣP

2 ΣP
2 ΣP

2
LCL ∆P

3 ∆P
3 ∆P

3 ∆P
3

LATL ∆P
3 ∆P

3 ∆P
3 Undecidable†

LATL+ ∆P
3 PSPACE ∆P

3 Undecidable†

LATL∗ PSPACE 2EXPTIME PSPACE Undecidable†

Fig. 5.7 Overview of the model checking complexity results for implicit CGS. All results are
completeness results. Each cell represents the logic over the language given in the row using the
semantics given in the column. † These problems are believed to be undecidable, though no
formal proof has been proposed yet.

Finally, we consider the case for perfect recall strategies. The lower and upper
bound directly follow from the proof of Theorem 5.15.

Theorem 5.25 ([92]). Model checking ATL+IR over implicit CGS’s is PSPACE-
complete with respect to the size of the model and the length of the formula.

A summary of complexity results for the alternative representation/measure of
the input is presented in Figure 5.7. It turns out that, when considering the finer-
grained representation that comes along with a measure based on the number of
states, agents, and an encoded transition function rather than just the number of
transitions, the complexity of model checking LATL seems distinctly harder than
before for games with perfect information, and only somewhat harder for imperfect
information. In particular, the problem falls into the same complexity classes for
imperfect and perfect information analysis, which is rather surprising, considering
the results from Section 5.3. Finally, the change of perspective does not influence
the complexity of model checking of LATL∗ as well as LATL+ at all.

5.5 Higher-Order Representations of Models

In this section, we summarize very briefly the results for higher-level representations
of multi-agent systems (e.g., concurrent programs, reactive modules, modular inter-
preted systems etc.). Sections 5.3 and 5.4 presented complexity results for model
checking with respect to models where global states of the system were represented
explicitly. Most multi-agent systems, however, are characterized by an immensely
huge state space. In such cases, one would like to define the model in terms of a
compact high-level representation, plus an unfolding procedure that defines the re-
lationship between representations and actual models of the logic (and hence also
the semantics of the logic with respect to the compact representation). Of course,
unfolding a higher-level description to an explicit model involves usually an expo-
nential blowup in its size.

156 N. Bulling, J. Dix, and W. Jamroga

Consider, for example, a system whose state space is defined by r boolean vari-
ables (binary attributes). Obviously, the number of global states in the system is
n = 2r. A more general approach is presented in [275], where the “high-level de-
scription” is defined in terms of concurrent programs, that can be used for simulat-
ing Boolean variables, but also for processes or agents acting in parallel.

A concurrent program P is composed of k concurrent processes, each described
by a labeled transition system Pi = 〈S ti,Acti,Ri,Πi,πi〉, where S ti is the set of local
states of process i, Acti is the set of local actions, Ri ⊆ S ti×Acti×S ti is a transition
relation, and Πi,πi are the set of local propositions and their valuation. The behavior
of program P is given by the product automaton of P1, . . . ,Pk under the assumption
that processes work asynchronously, actions are interleaved, and synchronization is
obtained through common action names.

Theorem 5.26 ([275]). Model checking CTL in concurrent programs is PSPACE-
complete with respect to the number of local states and agents (processes), and the
length of the formula.

Concurrent programs seem to be sufficient to reason about purely temporal prop-
erties of systems, but not quite so for reasoning about agents’ strategies and abilities.
For the latter kind of analysis, we need to allow for more sophisticated interference
between agents’ actions (and enable modeling agents that play synchronously). ATL
model checking for higher-order representations was first analyzed in [231] over a
class of simple reactive modules, based on synchronous product of local models.
However, even simple reactive modules do not allow to model interference between
agents’ actions. Because of that, we use modular interpreted systems [254,256], that
draw inspiration from interpreted systems [169], reactive modules [12], and are in
many respects similar to  specifications [352].

A modular interpreted system () is defined as a tuple M = 〈Agt,env,Act,In〉,
where Agt = {a1, . . . ,ak} is a set of agents, env is the environment, Act is a set of
actions, and In is a set of symbols called interaction alphabet. Each agent has the
following internal structure: ai = 〈S ti,di,outi, ini,oi,Πi,πi〉, where:

• S ti is a set of local states,

• di : S ti →P(Act) defines local availability of actions; for convenience we addi-
tionally define the set of situated actions as Di = {〈qi,α〉 | qi ∈ S ti,α ∈ di(qi)},

• outi, ini are interaction functions; outi : Di → In refers to the influence that a
given situated action (of agent ai) may possibly have on the external world, and
ini : S ti ×Ink → In translates external manifestations of the other agents (and
the environment) into the “impression” that they make on ai’s transition function
depending on the local state of ai,

• oi : Di×In→ S ti is a (deterministic) local transition function,

• Πi is a set of local propositions of agent ai where we require that Πi and Π j are
disjunct when i , j, and

5 Model Checking Logics of Strategic Ability: Complexity 157

• πi : Πi→P(S ti) is a valuation of these propositions.

The environment env has the same structure as an agent except that it does not
perform actions.

The unfolding of a  M to a concurrent game structure follows by the syn-
chronous product of the agents (and the environment) in M, with interaction sym-
bols being passed between local transition functions at every step. The unfold-
ing can also determine indistinguishability relations as follows 〈q1, . . . ,qk,qenv〉 ∼i
〈q′1, . . . ,q

′
k,q
′
env〉 iff qi = q′i , thus yielding a full i. This way the semantics of both

ATLIR/ATLIr and ATLir is extended to .

Theorem 5.27 ([231]). Model checking ATLIr and ATLIR in simple reactive mod-
ules is EXPTIME-complete with respect to the number of local states and agents,
and the length of the formula.

Since simple reactive modules can be embedded in modular interpreted systems,
and the model checking algorithm from [231] can be extended to , we get the
following.

Theorem 5.28 ([254]). Model checking ATLIr and ATLIR in modular interpreted
systems is EXPTIME-complete with respect to the number of local states and agents,
and the length of the formula.

Note that this means that systems with no interference between agents are not
easier to handle than the general case.

The real surprise, however, comes to light when we study the model checking
complexity for imperfect information agents.

Theorem 5.29 ([254, 256]). Model checking ATLir in modular interpreted systems
is PSPACE-complete with respect to the number of local states and agents, and the
length of the formula.

Thus, model checking in modular interpreted systems seems to be easier for im-
perfect rather than perfect information strategies (while it appears to be distinctly
harder for explicit models, cf. Section 5.3). There are two reasons for that. The
more immediate is that agents with limited information have fewer available strate-
gies than if they had perfect information about the current (global) state of the game.
Generally, the difference is exponential in the number of agents. More precisely, the
number of perfect information strategies is double exponential with respect to the
number of agents and their local states, while there are “only” exponentially many
uniform strategies – and that settles the results in favor of imperfect information.

The other reason is more methodological. While model checking imperfect in-
formation is easier when we are given a particular , modular interpreted systems
may provide more compact representation to systems where all the agents have per-
fect information by definition. In particular, the most compact  representation of a

158 N. Bulling, J. Dix, and W. Jamroga

given ICGSM can be exponentially larger than the most compact  representation
ofM with the epistemic relations removed. In the former case, the  must encode
the epistemic relations explicitly. In the latter case, the epistemic aspect is ignored,
which gives some extra room for encoding the transition relation more efficiently.

On the other hand, it should be noted that for systems of agents with “reasonably
imperfect information”, i.e., ones where the number of each agent’s local states is
logarithmic in the number of global states of the system, the optimal  encodings
for perfect and imperfect information are the same. Still, model checking ATLIR is
EXPTIME-complete and model checking ATLir is PSPACE-complete, which sug-
gests that imperfect information can be beneficial in practical verification.

Finally, we report two results that are straightforward extensions of Theorem 5.19
and Theorem 5.29, respectively.

Theorem 5.30. Model checking CLIR, CLIr, CLir, and CLiR is ∆P
3 -complete with

respect to the number of local states and agents in the  and the length of the
formula. Moreover, it is ΣP

2 -complete for the “simple” variants of CL.

Theorem 5.31. Model checking ATL+ir and ATL∗ir in modular interpreted systems
is PSPACE-complete with respect to the number of local states and agents, and the
length of the formula.

5.6 Summary

Figure 5.8 gives a summary of the results. The results for ATLIr and ATLir form
an intriguing pattern. When we compare model checking agents with perfect vs.
imperfect information, the first problem appears to be much easier against explicit
models measured with the number of transitions. Then, we get the same complexity
class against explicit models measured with the number of states and agents. Finally,
model checking imperfect information turns out to be easier than model checking
perfect information for modular interpreted systems. Why is that so?

The number of available strategies (relative to the size of input parameters) is
the crucial factor here. It is exponential in the number of global states. For uni-
form strategies, there are usually much less of them but still exponentially many
in general. Thus, the fact that perfect information strategies can be synthesized in-
crementally has a substantial impact on the complexity of the problem. However,
measured in terms of local states and agents, the number of all strategies is double
exponential, while there are “only” exponentially many uniform strategies– which
settles the results in favor of imperfect information. It should be also noted that the
representation of a concurrent game structure by a  can be in general more com-
pact than that of an i. In the latter case, the  is assumed to encode the epistemic
relations explicitly. In the case of , the epistemic aspect is ignored, which gives
some extra room for encoding the transition relation more efficiently.

5 Model Checking Logics of Strategic Ability: Complexity 159

Logic \ Input m, l n,k, l nlocal,k, l

Simple CLiR,ir,IR,Ir AC0 [279] ΣP
2 -complete ΣP

2 -complete
CLiR,ir,IR,Ir P-complete ∆P

3 -complete ∆P
3 -complete

ATLIr,IR P-complete [14] ∆P
3 -compl. [259, 279] EXPTIME-compl. [231]

ATLir ∆P
2 -compl. [259, 388] ∆P

3 -compl. [259] PSPACE-compl. [254]
ATLiR Undecidable† Undecidable† Undecidable†

ATL+Ir ∆P
3 -complete [388] ∆P

3 -complete EXPTIME-hard
ATL+ir ∆P

3 -complete [388] ∆P
3 -complete PSPACE-complete

ATL+IR PSPACE-complete [92] PSPACE-complete [92] EXPTIME-hard
ATL+iR Undecidable† Undecidable† Undecidable†

ATL∗Ir PSPACE-complete [388] PSPACE-complete EXPTIME-hard
ATL∗ir PSPACE-compl. [388] PSPACE-complete PSPACE-complete
ATL∗IR 2EXPTIME-compl. [14] 2EXPTIME-compl. EXPTIME-hard
ATL∗iR Undecidable† Undecidable† Undecidable†

Fig. 5.8 Overview of the complexity results. All results except for “Simple CL” are completeness
results. The results with no given reference have been established in this chapter for the first time
(usually by a simple extension of existing proofs). The fields that report only hardness results
correspond to problems which are still open. Symbols n and m stand for the number of states and
transitions, respectively, and k is the number of agents in the model, l is the length of the formula,
and nlocal is the number of local states in a concurrent program, simple reactive module, or modular
interpreted system. † These problems are believed to be undecidable, though no formal proof
has been proposed yet (cf. Conjectures 5.1, 5.2, and 5.3).

What have we learned and what are the challenges ahead? An important out-
come of theoretical research on verification is to determine the precise boundary
between model checking problems that are decidable and those that are not. As
we have shown, decidability depends very much on the underlying language, the
chosen logic and whether we consider perfect or imperfect recall. But even if the
problem is decidable, the precise complexity of the problem depends on the chosen
representation and ranges from P- to 2EXPTIME-completeness.

It must be noted that Figure 5.8 is filled mostly with complexity classes that are
generally considered intractable. Of these, the undecidability hypotheses for ATLiR
are obviously the most pessimistic. But what does an undecidability result tell us? It
shows that there is no general algorithm solving the problem at hand. Yet one is often
not interested in model checking all possible specifications that can be expressed in
the underlying logic. For most practical purposes, the set of interesting formulas
to be model checked is quite small. This raises the question: Which subsets of the
logics are decidable? A similar question can be stated for the complexity results
reported here: 2EXPTIME completeness concerns all formulas ofLATL∗ , but suitable
fragments can have much lower complexity. These are interesting questions to be
investigated in the future.

Chapter 6

Correctness of Multi-Agent Programs: A Hybrid
Approach

M. Dastani and J.-J. Ch. Meyer

Abstract This chapter proposes a twofold approach for ensuring the correctness of
BDI-based agent programs. On the one hand, we advocate the alignment of the se-
mantics of agent programming languages with agent specification languages such
that for an agent programming language it can be shown that it obeys specific desir-
able properties expressed in the corresponding agent specification language. In this
way, one can guarantee that specific properties expressed in the specification lan-
guage are satisfied by any program implemented in the programming language. On
the other hand, we introduce a debugging framework to find and resolve possible
defects in such agent programs. The debugging approach consists of a specifica-
tion language and a set of debugging tools. The specification language allows a
developer to express cognitive and temporal properties of multi-agent program ex-
ecutions. The debugging tools allow a developer to verify if a specific multi-agent
program execution satisfies a desirable property.

M. Dastani, J.-J. Ch. Meyer
Utrecht University, The Netherlands e-mail: {mehdi,jj}@cs.uu.nl

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 161
DOI 10.1007/978-1-4419-6984-2 6, c© Springer Science+Business Media, LLC 2010

{mehdi,jj}@cs.uu.nl

162 M. Dastani and J.-J. Ch. Meyer

6.1 Introduction

A promising approach to develop computer programs for complex and concur-
rent applications are multi-agent systems. In order to implement multi-agent sys-
tems, various agent-oriented programming languages and development tools have
been proposed [64, 65]. These agent-oriented programming languages facilitate
the implementation of individual agents and their interactions. A special class of
these programming languages aims at programming BDI-based multi-agent sys-
tems, i.e., multi-agent systems in which individual agents are programmed in terms
of cognitive concepts such as beliefs, events, goals, plans, and reasoning rules
[63, 122, 224, 343, 433].

There is a whole range of approaches to the correctness of multi-agent pro-
grams. While some of them are abstract verification frameworks for agent pro-
grams [60, 372], a majority of these approaches fall under the heading of either
model checking [21, 61, 371] or theorem proving [6–8] methods. This chapter con-
cerns the correctness of BDI-based multi-agent programs by proposing two tech-
niques that are complementary to those of model-checking and theorem proving.
These two approaches are somewhat dual to each other, and are the following: (1)
we show how to prove properties that are general in the sense that they hold for any
execution of any program written in the agent programming language at hand, and
(2) we show how to verify the correctness of specific execution of specific program
written in the agent programming language at hand by proposing a debugging ap-
proach with which it is possible to check whether run-time executions of programs
are still in line with the specification, so still according to certain desirable prop-
erties (what we may call a ‘so far so good?’ approach of verification). Moreover,
as we will see, both approaches are particularly targeted at programs written in a
BDI-style programming language.

So let us first turn to the issue of proving certain properties that do not depend on
the particular program but rather on the agent programming language and its inter-
pretation. To this end we define the semantics of the programming language as well
as an agent specification language such that we can express these general properties
and prove them with respect to the semantics of the programming language. We
will establish this such that the semantics of the specification language is aligned
with that of the programming language in a systematic and natural way! We show
that an agent programming language obeys some desirable properties expressed in
an agent specification language, i.e., that any individual agent implemented by the
programming language satisfies the desirable property expressed in the specifica-
tion language. Note that this is an important issue raised in the literature of agent
program correctness. As many other approaches to the correctness of agents are
based on rather abstract agent (BDI-like) logics [110, 360, 385], it is not always
clear how the abstract BDI notions appearing in these logics, often treated by means
of modal operators, relate to notions rooted in actual computation. This is referred
to by Wooldridge as the problem of ungrounded semantics for agent specification
languages [439].

6 Correctness of Multi-Agent Programs: A Hybrid Approach 163

There is a number of proposals in the literature to ground agent logics in the
actual computation of agents (e.g., [130, 219]). In these approaches, it is attempted
to ground agent logics by rendering the notions that occur in these logics such as
beliefs and goals less abstract and more computational, so that reasoning about these
notions becomes relevant for reasoning about agent programs. In the current paper,
we follow the line of [130] by connecting the semantics of agent logics directly
to the operational semantics of agent programming languages. More precisely, the
modal accessibility relations in Kripke models of an agent logic are associated with
the (operational) semantics of the programming language at hand. Furthermore, it is
important to realize that this problem is different from the model checking problem.
In model checking, the problem is to verify if a certain property, expressed in a
specification language such as the language of a BDI logic, holds for all executions
of one specific agent program (and not for every agent program written in the same
programming language). Thus, in contrast to model checking, where one verifies
that all executions of a particular agent program satisfy a property expressed in a
specification language, we are here interested only in certain general properties of
individual agents such as such as commitment strategies, e.g., an agent will not drop
its goals until it believes it has achieved them.

Secondly in this chapter we propose a debugging approach to check the correct-
ness of a specific execution of a specific agent program. Debugging is the art of find-
ing and resolving errors or possible defects in a computer program. Here, we will fo-
cus on the semantic bugs in BDI-based multi-agent programs and propose a generic
approach for debugging such programs [63, 84, 114, 121, 122, 343, 345, 346, 425].
In particular, we propose a specification language to express execution properties
of multi-agent programs and a set of debugging actions/tools to verify if a specific
program execution satisfies a specific property. The expressions of the specification
language are related to the proposed debugging actions/tools by means of special
programming constructs. Using these constructs in a multi-agent program ensures
that the debugging actions/tools are performed/activated as soon as their associated
properties hold for the multi-agent program execution at hand. In order to illustrate
how a developer can debug both cognitive and temporal aspects of the (finite) exe-
cutions of multi-agent programs we discuss a number of examples. They show how
the debugging constructs allow a developer to log specific parts of the cognitive state
of individual agent programs (e.g., log the beliefs, events, goals, or plans) from the
moment that specific condition holds, stop the execution of multi-agent programs
whenever a specific cognitive condition holds, or check whether an execution trace
of a multi-agent program (a finite sequence of cognitive states) satisfies a specific
(cognitive/temporal) property.

Interestingly, if we compare the two approaches in this chapter we will see that
although we use temporal logic for both, there are notable differences. The two
most important ones being: (1) In the ’general’ program-independent approach we
use branching-time temporal logic, since we have to reason about behaviour in gen-
eral, i.e. all possible executions of all programs, including explicit representations of
agents’ choices, while in the debugging approach we use linear-time temporal logic,
since we are only interested in a particular execution, viz. the execution at hand, of

164 M. Dastani and J.-J. Ch. Meyer

one particular program. (2) In the ’general’ approach we use temporal models with
infinite branches/paths, as usual in the temporal reasoning about programs, while in
the debugging approach we use temporal models with only finite paths, reflecting
the fact that we are looking at run-time (mostly unfinished) executions.

The structure of this chapter is as follows. First we present a simple but extend-
able BDI-based agent-oriented programming language that provides constructs to
implement concepts such as beliefs, goals, plans, and reasoning rules. The syntax
and semantics of this programming language is presented in section 6.2. In the rest
of the chapter we focus on the correctness of programs of this programming lan-
guage. We start by treating the ’general’ approach of verifying program-independent
(but semantics-dependent) properties, i.e., properties of the semantics of the pro-
gramming language, and not of any specific program. To this end, we present in
section 6.3 an agent specification language which is closely related to well-known
BDI specification languages. This specification language consists of (modal) oper-
ators for beliefs, goals, and time such that properties such as commitment strategies
can be expressed. In section 6.4 we show that all agents that are implemented in
the proposed agent programming language satisfy the desirable properties that are
specified in the specification language. Then we turn to the ’specific’ approach of
verifying execution-dependent properties by presenting a debugging approach for
the same simple programming language. We first define a temporal specification
language to express execution properties that we aim to verify. Special attention is
given to the (non-standard) semantics of the specification language since its formula
are evaluated on (finite) execution paths of multi-agent programs. Next we present
our proposal of a tool set for debugging multi-agent programs. Finally, we discuss
some related works on debugging multi-agent programs and conclude the chapter.

6.2 An agent-oriented Programming Language APL

In this section, we propose the syntax and operational semantics of a simple but
prototypical logic-based agent-oriented programming language that provides pro-
gramming constructs to implement agents in terms of cognitive concepts such as
beliefs, goals, and plans. In order to focus on the relation between such a program-
ming language and its related specification language and without loss of generality,
we ignore some aspects that may be relevant or even necessary for the practicality
and effectiveness of the programming language. The presented programming lan-
guage is thus not meant to be practically motivated, but rather to illustrate how such
a logic- and BDI-based programming language can be connected to logical spec-
ification languages and how to examine the correctness of the related programs.
This aim is accomplished by defining the syntax and semantics of the programming
language similar to those of the existing practical agent-oriented programming lan-
guages (e.g., 2APL, 3APL, GOAL, and Jason [64, 122, 129, 224]). This makes our
approach applicable to the existing logic- and BDI-based agent programming lan-

6 Correctness of Multi-Agent Programs: A Hybrid Approach 165

guages. A concrete extension of this agent-oriented programming language is stud-
ied in [130].

6.2.1 Syntax of APL

A multi-agent program comprises a set of individual agent programs, each of which
is implemented in terms of concepts such as beliefs, goals, and plans. In this section,
we focus on a programming language for implementing individual agents and as-
sume that a multi-agent program is a set of programs, each of which implements an
individual agent. The presented agent-oriented programming language provides pro-
gramming constructs for beliefs, goals, plans, and planning rules. We use a propo-
sitional language to represent an agent’s beliefs and goals while plans are assumed
to consists of actions that can update the agent’s beliefs base. It is important to note
that these simplifications do not limit the applicability of the proposed model.

The idea of an agent’s belief is to represent the agent’s information about the
current state of affairs. The idea of an (achievement) goal is to reach a state that
satisfies it. An agent is then expected to generate and execute plans to achieve its
goal. The emphasis here is that the goal will not be dropped until a state is reached
that satisfies it. An example of an achievement goal is to have fuel in car (fuel)
for which the agent can generate either a plan to fuel at gas station 1 (gs1) or a
plan to fuel at gas station 2 (gs2). The achievement goal will be dropped as soon as
the agent believes that it has fuel in its car, i.e., as soon as it believes fuel. In our
running example, a car driving agent believes he is in position 1 (pos1) and has the
goal to fuel (fuel).

Definition 6.1. (belief and goal languages) Let Lp be a propositional language. The
belief language is denoted by Lσ ⊆ Lp and the goal language is denoted by Lγ ⊆ Lp.

For the purpose of this chapter, we assume a set of plans Plan each of which is
executed atomically, i.e., a plan can be executed in one computation step. Moreover,
agents are assumed to generate their plans based on their beliefs and goals. The
planning rules indicate which plans are appropriate to be selected when the agent
has a certain goal and certain beliefs. A planning rule is of the form β,κ⇒ π and
represents the possibility to select plan π for the goal κ, if the agent believes β.
In order to be able to check whether an agent has a certain belief or goal, we use
propositional formulas from Lp to represent belief and goal query expressions.

Definition 6.2. (planning rule) Let Plan be the set of plans that an agent can use.
The set of planning rules RPL is defined as:

RPL = {β,κ⇒ π | β ∈ Lσ, κ ∈ Lγ,π ∈ Plan}

166 M. Dastani and J.-J. Ch. Meyer

In the rest of the paper, Goal(r) and Bel(r) are used to indicate, respectively, the
goal condition κ and the belief condition β of the planning rule r = (β,κ ⇒ π).
In the running example, the agent has two planning rules pos1,fuel⇒gs1 and
pos2,fuel⇒gs2. The first (second) planning rule indicates that the agent should
fuel at gas station 1 (2) if he wants to fuel and believes that he is in position pos1
(pos2). Given these languages, an agent can be implemented by programming two
sets of propositional formulas (representing the agent’s beliefs and goals), and one
set of planning rules. For the purpose of this chapter, we assume that agents cannot
have initial plans, but generate them during their execution.

Definition 6.3. (agent program) Let Id be the set of agent names. An individual
agent program is a tuple (ι,σ,γ,PL), where ι ∈ Id, σ ⊆ Lσ,γ ⊆ Lγ and PL ⊆ RPL. A
multi-agent program is a set of such tuples, i.e., {(ι,σ,γ,PL) | ι ∈ Id,σ ⊆ Lσ,γ ⊆
Lγ,PL ⊆ RPL}.

The individual agent program for our running example is the tuple (c,σ,γ,PL),
where c is the name of the car agent, σ = {pos1}, γ = {fuel}, and PL = {pos1,
fuel⇒gs1, pos2,fuel⇒gs2}. Note that the agent believes it is in position 1 and
has the goal to fuel.

6.2.2 Semantics of APL

The operational semantics of the multi-agent programming language is presented
in terms of a transition system. A transition system is a set of derivation rules for
deriving transitions. A transition is a transformation of one state into another and it
corresponds to a single computation step. For the semantics of the multi-agent pro-
gramming language a transition is a transformation of one multi-agent configuration
(state) into another. The operational semantics of the multi-agent programming lan-
guage is directly defined in terms of the operational semantics of individual agent
programming language.

6.2.2.1 Agent Configuration

An agent’s configuration denotes the state of the agent at one moment in time. It
is determined by its mental attitudes, i.e., by its beliefs, goals, plans, and reasoning
rules. A multi-agent configuration denotes the state of all agents at one moment in
time.

Definition 6.4. (configuration) Let |=p be the classical propositional entailment re-
lation (used also in the rest of the chapter). Let Σ = {σ | σ ⊆ Lσ,σ 6|=p ⊥} be the set
of possible consistent belief bases and Γ = {φ | φ ∈ Lγ,φ 6|=p ⊥} be the set of goals.

6 Correctness of Multi-Agent Programs: A Hybrid Approach 167

A configuration of an agent is a tuple 〈ι,σ,γ,Π,PL〉, where ι is the agent’s identi-
fier, σ ∈ Σ is its belief base, γ ⊆ Γ is its goal base, Π ⊆ (Lγ × Lγ ×Plan) is its plan
base, and PL ⊆ RPL includes its planning rules. The set of all agent configurations
is denoted by A. A multi-agent configuration is a subset of A, i.e., a multi-agent
configuration is a set of individual agent configurations.

In the sequel, we use 〈σι,γι,Πι,PLι〉 instead of 〈ι,σ,γ,Π,PL〉 to keep the represen-
tation of agent configurations simple. In the above definition, it is assumed that the
belief base of an agent is consistent since otherwise the agent can believe every-
thing which is not a desirable property. Also, each goal is assumed to be consis-
tent since otherwise an agent should achieve an impossible state. Finally, the ele-
ments of the plan base are defined as 3-tuples (Lp × Lp ×Plan) consisting of a plan
and two goals (propositional formulas) that indicate the reasons for generating the
plan. More specifically, (φ,κ,π) is added to an agent’s plan base if the planning rule
β,κ⇒ π is applied because κ is a subgoal of the agent’s goal φ. Note that the plan-
ning rule can be applied only if κ is a subgoal of an agent’s goal φ. This means that
we have ∀(φ,κ,π) ∈ Π : φ |=p κ. This information will be used to avoid applying a
planning rule if it is already applied and the generated plan is not fully executed.
In our running example, the agent can apply both planning rules (depending on the
agent’s beliefs) since the goals of these rules (i.e., fuel) is a subgoal of the agent’s
goal fuel, i.e., since fuel|=fuel. Note that these rules could also be applied if the
agent had more complex goals such as fuel∧cw; cw stands for car wash.

The initial configuration of an individual agent is based on the individual agent
program (definition 6.3) that specifies the initial beliefs, goals, and planning rules.
As noted, for the purpose of this chapter, we assume that an agent does not have
initial plans, i.e., the initial plan base is empty. The initial multi-agent configuration
is the set of initial configurations of individual agents.

Definition 6.5. (initial configuration) Let {(1,σ1,γ1,PL1), . . . , (n,σn,γn,PLn)} be a
multi-agent program. Then, the initial configuration of the multi-agent program is
{〈σ1,γ1,Π1,PL1〉, . . . , 〈σn,γn,Πn,PLn〉}, where Πi = ∅ for i = 1, . . . ,n.

In the following, we assume that all agents use one and the same set of planning
rules PL (i.e., all agents use the same planning rule library) and that the set of plan-
ning rules does not change during the agent executions. For this reason, we do not
include the set PL in the individual agent configurations and use 〈σ,γ,Π〉 instead of
〈σ,γ,Π,PL〉. This means that an APL program specifies only the initial beliefs and
goals of an agent.

6.2.2.2 Transition System T

This subsection presents the transition system T which consists of transition rules
(also called derivation rules) for deriving transitions between configurations. Each

168 M. Dastani and J.-J. Ch. Meyer

transition rule has the following form indicating that the configuration C can be
transformed to configuration C′ if the condition of the rule holds.

condition
C→C′

We first present three transition rules that transform the configurations of individual
agent programs, followed by a transition rule that transform multi-agent configura-
tions. The first three transition rules capture the successful execution of plans, the
failed execution of plans, and the application of planning rules, respectively.

In order to define the transition rule for the application of planning rules, we
define the notions of relevant and applicable planning rules w.r.t. an agent’s goal
and its configuration. Intuitively, a planning rule is relevant for an agent’s goal if
it can contribute to the agent’s goal, i.e., if the goal that occurs in the head of the
planning rule is a subgoal of the agent’s goal. A planning rule is applicable to an
agent’s goal if it is relevant for that goal and its belief condition is entailed by the
agent’s configuration.

Definition 6.6. (relevant, applicable) Let C = 〈σ,γ,Π,PL〉 be an agent configura-
tion. Given configuration C containing goal φ ∈ γ, the set of relevant and applicable
planning rules are defined as follows:
• rel(φ,C) = {r ∈ PL | φ |=p Goal(r)}
• app(φ,C) = {r ∈ rel(φ,C) | σ |=p Bel(r)}

In the following transition rules we write app(φ)
C→C′ instead of app(φ,C)

C→C′ .

When executing an agent, planning rules will be selected and applied based on
its beliefs, goals and plans. The application of planning rules generates plans which
can subsequently be selected and executed. Before introducing the transition rules
to specify possible agent execution steps, we need to define what it means to execute
a plan. The execution of a plan affects the belief and goal bases. The effect of plan
execution on the belief base is captured by an update operator update, which takes
the belief base and a plan and generates the updated belief base. This update operator
can be as simple as adding/deleting atoms to/from the belief base. We assume a
partial function update : (Plan×Σ)→ Σ that takes a plan and a belief base, and
yields the belief base resulting from the execution of the plan on the input belief
base (if the update is not successful, the update operation is undefined).

The first transition rule (R1) captures the case where the plan π is successfully
executed. The resulting configuration contains a belief base that is updated based on
the executed plan, a goal base from which achieved goals are removed, and a plan
base from which plans with associated achieved goal are removed.

Rule R1 (Plan execution 1)

(φ,κ,π) ∈ Π & update(σ,π) = σ′

〈σ,γ,Π〉 → 〈σ′,γ′,Π ′〉

6 Correctness of Multi-Agent Programs: A Hybrid Approach 169

where
γ′ = γ \ {ψ | σ′ |=p ψ} and Π ′ = Π \ ({(φ,κ,π)}∪ {(φ′, κ′,π′) ∈ Π | σ′ |=p φ

′}).

The second transition rule (R2) captures the case that the performance of the plan
has failed, i.e., the update operation is undefined. In this case, the failed plan (φ,ψ,π)
will be removed from the plan base.

Rule R2 (Plan execution 2)

(φ,κ,π) ∈ Π & update(σ,π) = unde f ined
〈σ,γ,Π〉 → 〈σ,γ,Π \ {(φ,κ,π)}〉

Plans should be generated to reach the state denoted by goals. If the generated
and performed plans do not achieve the desired state, then the corresponding goal
remains in the goal base. The first transition rule below (called R3) is designed to
apply planning rules in order to generate plans the execution of which may achieve
the subgoals of the goals. A planning rule can be applied if the goal in the head of
the rule is not achieved yet, if there is no plan for the same subgoal in the plan base
(in order to avoid applying rules if it is already applied), and if the subgoal is not
achieved yet. The application of a planning rule will add the plan of the planning
rule to the plan base.

Rule R3 (apply planning rules)

φ ∈ γ & (β,κ⇒ π) ∈ app(φ) & @π′ ∈ Plan : (φ,κ,π′) ∈ Π & σ 6|=p κ

〈σ,γ,Π〉 → 〈σ,γ,Π ∪{(φ,κ,π)}〉

We consider an execution of a multi-agent program as an interleaved execution
of the involved individual agent programs. The following transition rule captures
the parallel execution

Rule R4 (multi-agent execution)

Ai→ A′i
{A1, . . . ,Ai, . . . ,An} → {A1, . . . ,A′i , . . . ,An}

In this and next sections, we focus on the semantics of individual agent programs
as the semantics of multi-agent programs is a composition of the semantics of indi-
vidual agent programs.

6.2.2.3 Agent Execution

In order to define all possible behaviours of an agent program and compare them
with each other, we need to define what it means to execute an agent program. Given

170 M. Dastani and J.-J. Ch. Meyer

a transition system consisting of a set of transition rules, the execution of an agent
program is a set of transitions generated by applying the transition rules to the initial
configuration of the program (i.e., initial beliefs and goals). Thus, the execution of
an agent program starts with its initial configuration and generates subsequent con-
figurations that can be reached from the initial configuration by applying transition
rules. The execution of an agent program forms a graph in which the nodes are the
configurations and the edges indicate the application of a transition rule (i.e., execu-
tion of a plan, or the application of a planning rule). In the following, we define the
execution of an agent program A by first defining the set of all possible transitions
RT for all possible agents given a transition system T , and then take the subset of
those transitions that can be reached from the initial configuration of agent A.

Definition 6.7. (agent execution) Recall thatA be the set of all agent configurations.
Then, the set of transitions that are derivable from a transition system T , denoted as
RT , is defined as follows:

RT = {(ci,c j) | ci→ c j is a transition derivable from T & ci,c j ∈ A}

Given an agent program A with corresponding initial configuration c0, the execution
of A is the smallest set ET (A) of transitions derivable from T starting from c0, i.e.,
it is the smallest subset ET (A) ⊆ RT such that:

• if (c0,c1) ∈ RT , then (c0,c1) ∈ ET (A), for c1 ∈ A

• if (ci,c j) ∈ ET (A) and (c j,ck) ∈ RT , then (c j,ck) ∈ ET (A), for ci,c j,ck ∈ A

6.3 CT Lapl: A Specification Language for Agent Programs

In the area of agent theory and agent-oriented software systems, various logics have
been proposed to characterize the behavior of rational agents. The most cited logics
to specify agents’ behavior are the BDI logics [110, 315, 360, 385]. These logics
are multi-modal logics consisting of temporal and epistemic modal operators. In the
BDI logics, the behaviour of an agent is specified in terms of the temporal evolution
of its mental attitudes (i.e., beliefs, desires, and intentions) and their interactions.
These logics are characterized by means of axioms and inference rules to capture
the desired static and dynamic properties of agents’ behaviour. In particular, the
axioms establish the desired properties of the epistemic and temporal operators as
well as the rational balance between them. For example, the axioms to capture the
desired static properties of beliefs are KD45 (the standard weak S 5 system), for
desires and intentions are KD, and for the rational balance between beliefs and
desires are various versions of realism. Moreover, some desired dynamic properties
of agents’ behaviour are captured through axioms that implement various versions
of the commitment strategies. These axioms are defined using temporal operators
expressing when and under which conditions the goals and intentions of agents can

6 Correctness of Multi-Agent Programs: A Hybrid Approach 171

be dropped. For example, an agent can be specified to either hold its goals until it
has achieved it (blindly-committed agent type), or drop the goal if it believes that it
can never achieve it (single-minded agent type) [110, 360].

A main concern in designing and developing agent-oriented programming lan-
guages is to provide programming constructs in such a way that their executions
generate the agent behaviours having the same desirable properties as in their spec-
ifications. This implies that the semantics of the programming languages should
be defined in such a way to satisfy the desirable properties captured by means of
the axioms in the BDI logics. The main issue addressed in this part of the chapter
is how agent specification logics, which are used to specify the agents’ behaviour,
can be related to agent-oriented programming languages, which are used to imple-
ment agents. We study this relation by proposing an instantiation of the BDICT L
logic [360, 385] with a declarative semantics that is aligned with the operational
semantics of the programming language APL as proposed in section 6.2. We then
show that this alignment enables us to prove that certain properties expressed in the
specification language are satisfied by the programming language. The specification
language is a multi-modal logic consisting of temporal modal operators to spec-
ify the evolution of agents’ configurations (the agents’ execution) through time and
epistemic modal operators to specify agents’ mental state (beliefs and goals) in each
configuration. In order to relate the specification and programming languages, we
do not allow the nesting of epistemic operators. This is because the beliefs and goals
in the agent programming language APL, presented in section 6.2, are propositional
rather than modal formulas. This is, however, not a principle limitation as the repre-
sentation of beliefs and goals in agent programming languages can be extended to
modal formulas [437].

In the rest of this section and in section 6.4, we only consider the specification
and properties of single agent programs. The proposed specification language can
be extended for multi-agent programs in an obvious way because individual agent
programs do not interact. The individual agent programs do not communicate or
share an environment as their actions are limited to local belief and goal changes.

6.3.1 CT Lapl Syntax

The behaviour of an agent, generated by the execution of the agent, is a temporal
structure over its mental states. In order to specify the mental state of agents, we
will define the language L consisting of non-nested belief and goal formulas.

Definition 6.8 (specification language L). The language L for the specification of
agents’ mental attitudes consists of non-nested belief and goal formulas, defined as
follows: if φ ∈ Lp, then B(φ), G(φ) ∈ L.

We then use the standard CT L∗ logic [158] in which the primitive propositions are
formulas from the language L. The resulting language will be called CT Lapl defined
as follows.

172 M. Dastani and J.-J. Ch. Meyer

Definition 6.9 (specification language CT Lapl). The state and path formulas are
defined by the following S and P clauses, respectively.

• (S1) Each formula from L is a state formula.

• (S2) If φ and ψ are state formulas, then φ∧ψ and ¬φ are also state formulas.

• (S3) If φ is a path formula, then Eφ and Aφ are state formulas.

• (P1) Any state formula is a path formula.

• (P2) If φ and ψ are path formulas, then ¬φ, φ∧ψ, Xφ, �φ, and φ U ψ are path
formulas.

Using the CT Lapl language, one can for example express that if an agent has
a goal, then it will not drop the goal until it believes the goal is achieved, i.e.,
G(φ)→ A(G(φ) U B(φ)).

6.3.2 CT Lapl Semantics

The semantics of the specification language CT Lapl is defined on a Kripke struc-
ture MT = 〈C,R,V〉, where the set of states C is the set of configurations of agents
implemented in the agent programming language APL (definition 6.4), and the tem-
poral relation R is specified by the transition system T of the agent programming
language APL (definition 6.7). In particular, there exists a temporal relation between
two configurations in the Kripke structure if and only if a transition between these
two agent configurations is derivable from the transition system T . Finally, the valu-
ation function V = (Vb,Vg) of the Kripke structure is defined on agent configurations
and consists of different valuation functions each with respect to a specific mental
attitude of agents’ configurations. More specifically, we define a valuation function
Vb that valuates the belief formulas in terms of agents’ beliefs and a valuation func-
tion Vg that valuates the goal formulas in terms of the agents’ goals. The belief
valuation function Vb maps an agent configuration c to a set of propositions Vb(c)
that are derivable from the agent’s belief base. An agent believes a proposition if
and only if the proposition is included in Vb(c). The valuation function Vg for goals
is defined in such a way that all subgoals of an agent’s goal are also considered as
a goal. The valuation function Vg maps an agent’s configuration to a set of sets of
propositions. Each set contains all subgoals of a goal. An agent wants to achieve a
proposition if and only if the proposition is included in a set. The semantics of the
CT Lapl expressions are defined as follows.

Definition 6.10. Let MT = 〈C,R,V〉 be a Kripke structure specified by the execution
of the transition system T , where:

• C is a set of configurations (states) of the form 〈σ,γ,Π〉.

6 Correctness of Multi-Agent Programs: A Hybrid Approach 173

• R ⊆ C ×C is a serial binary relation such that for each (c,c′) ∈ R we have
(c,c′) ∈ RT or c = c′.

• V = (Vb,Vg) are the belief and goal evaluation functions, i.e.,

– Vb : C→ 2Lp s.t. Vb(〈σ,γ,Π〉) = {φ | σ |=p φ},

– Vg : C→ 22Lp s.t. Vg(〈σ,γ,Π〉) = {{φ′ | φ |=p φ
′} | φ ∈ γ}.

A fullpath is an infinite sequence x = c0,c1,c2, . . . of configurations such that
∀i : (ci,ci+1) ∈ R. We use xi to indicate the i-th state of the path x.

• (S1) MT ,c |= B(φ) ⇔ φ ∈ Vb(c)

• (S1) MT ,c |=G(φ) ⇔ ∃s ∈ Vg(c) : φ ∈ s

• (S2) MT ,c |= φ∧ψ ⇔ MT ,c |= φ and MT ,c |= ψ

• (S2) MT ,c |= ¬φ ⇔ MT ,c 6|= φ

• (S3) MT ,c |= Eφ ⇔ ∃ fullpath x = c,c1,c2, . . . ∈ MT : MT , x |= φ

• (S3) MT ,c |= Aφ ⇔ ∀ fullpath x = c,c1,c2, . . . ∈ MT : MT , x |= φ

• (P1) MT , x |= φ ⇔ MT , x0 |= φ for φ is a state formula

• (P2) MT , x |= Xφ ⇔ MT , x1 |= φ

• (P2) MT , x |= �φ ⇔ MT , xn |= φ for some n ≥ 0

• (P2) MT , x |= φ U ψ ⇔
a) ∃k ≥ 0 such that MT , xk |= ψ and for all 0 ≤ j < k : MT , x j |= φ, or,
b) ∀ j ≥ 0 : MT , x j |= φ

Note that the two options in the last clause capture two interpretations of the until
operator. The first (strong) interpretation is captured by the option a and requires
that the condition ψ of the until expression should hold at once. The second (weak)
interpretation is captured by the option b and requires the formula φ can hold forever.

In the above definition, the CT Lapl state formulas are evaluated in the Kripke
model MT with respect to an arbitrary configuration c consisting of beliefs, goals,
and plans. In the following, we model the execution of a particular agent program
A (i.e., the execution of an agent with the initial configuration A1) based on the
transition system T as the Kripke model MA

T
= 〈CA

T
,RA
T
,V〉 on which the CT Lapl

expressions (i.e., properties to be checked) can be evaluated. The accessibility re-
lation RA

T
is defined as the set of executions (based on transition system T) of the

agent program A (i.e., traces that can be generated by applying planning rules and
executing plans starting at the configuration specified by A) extended with a reflex-
ive accessibility for all end configurations. This is to guarantee the seriality property
of the accessibility relation RA

T
. Moreover, the set CA

T
of configurations will be de-

fined in terms of configurations that occur in the execution of the agent A.

1 An agent’s initial configuration is determined by the corresponding agent program which speci-
fies the initial beliefs and goals. It is assumed that there are no initial plans.

174 M. Dastani and J.-J. Ch. Meyer

Definition 6.11. (agent model) Let A be an agent program and let ET (A) be the
execution of A. Then the model corresponding with agent program A, which we call
an agent model, is defined as MA

T
= 〈CA

T
,RA
T
,V〉, where the accessibility relation RA

T

and the set of configurations CA
T

are defined as follows:

RA
T
= ET (A) ∪{(cn,cn) | ∃(cn−1,cn) ∈ ET (A)&¬∃(cn,cn+1) ∈ ET (A)}

CA
T
= {c | (c,c′) ∈ RA

T
}

Note that agent models are Kripke structures in the sense of Definition 6.10.

As we are interested in expressing that a certain property holds for all executions
of a particular agent program A, we will define the notion of satisfaction in an agent
model.

Definition 6.12. (satisfaction in model) A formula φ is satisfied in the model
MA
T
= 〈CA

T
,RA
T
,V〉 if and only if φ holds in MA

T
with respect to all configurations

c ∈CA
T

, i.e.,
MA
T
|= φ ⇔de f ∀c ∈CA

T
: MA

T
,c |= φ

In section 6.4, we prove that certain properties hold for any agent program that is
implemented in the APL programming language. As the above definition of model
MA
T

is based on one specific agent program A, we need to quantify over all agent
programs. Since the binary relation RA

T
(derived from the transition systemT , which

is the semantics of the agent programs) has to be the same in all Kripke models, a
quantification over agent programs means a quantification over models MA

T
. This

implies that we need to define the notion of validity of a property as being true for
all agent programs and thus for all models MA

T
.

Definition 6.13. (validity) A property φ ∈ CT Lapl holds for the execution of an ar-
bitrary agent A based on the transition system T , expressed as |=T , if and only if φ
holds in all agent models MA

T
, i.e.,

|=T φ ⇔de f ∀A : MA
T
|= φ

Note that this notion of validity is the same as the notion of validity in modal
logic since it is defined at the level of frames, i.e., at the level of states and relation
and not valuations, which is in our case defined in terms of specific agents.

Finally, we would like to explain our motivation for choosing a variant of CT L
instead of other formalisms such as for example the linear time temporal logic LT L.
Such a choice may not be trivial as one might argue that linear time temporal logic
would be enough to specify and verify an agent’s behavior. The idea would be to
consider the execution behavior of the corresponding agent program as a set of lin-
ear traces. However, our consideration to use a variant of CT L is based on the fact
that agents have choices (e.g., to select and execute plans from their plan library) and
that these choices are essential characteristic of their autonomy. The computational

6 Correctness of Multi-Agent Programs: A Hybrid Approach 175

tree logic CT L with its branching time structure enables the specification and veri-
fication of such choices. In order to illustrate the characterising difference between
CT L and LT L that is essential for capturing an agent’s choices, consider the two ex-
ecution models illustrated in Figure 6.1. While these two execution models include
the same set of linear traces, the execution models A and B differ in the choices
available to the agent. This is reflected by the fact that the CT L formula AXE�p
is true in state s0 of model B, while this is not the case for state s0 of model A. In
other words, we have A, s0 6|= AXE�p and B, s0 |= AXE�p. In the next section, we
will present an agent property which is related to the agent’s choices. This property
justifies the choice for using a variant of CT L for our specification and verification
of agent programs.

Fig. 6.1 Two execution models with two different choice moments.

6.4 Properties

Given the semantics of the programming language APL and the specification lan-
guage CT Lapl, we can prove that certain properties expressed in CT Lapl hold for
agents programmed in APL. Other properties for an extension of the APL language
are provided in [130].

6.4.1 Proving the Properties

In this section, we present a number of desired properties and prove that they hold
for arbitrary agent programs implemented in the APL language.

First, since the accessibility relation RTA of MA
T

is based on the transition system
T , we present some properties of the accessibility relation with respects to spe-
cific subsets of the transition system. In particular, the following proposition shows

176 M. Dastani and J.-J. Ch. Meyer

persistence of unachieved goals through transitions that are derived based on tran-
sition rule R1. Note that this transition rule modifies an agent’s beliefs and remove
achieved goals.

Proposition 6.1. If ci−1→ ci is a transition derived based on transition rule R1 ∈ T ,
MA
T
,ci−1 |=G(φ), and MA

T
,ci 6|= B(φ), then MA

T
,ci |=G(φ).

Proof. Following Definition 6.10 and using notation sub(ψ) = {ψ′ | ψ |=p ψ
′}, we

have Vg(ci) = {sub(ψ) | ψ ∈ γi} where γi is the goal based of configuration ci.
Following the definition of transition rule R1 ∈ T for determining γi, we have
{sub(ψ) | ψ ∈ γi} = {sub(ψ) | ψ ∈ γi−1 \ {ψ

′ | σi |=p ψ
′}}, where σi is the belief base of

configuration ci. Using Definition 6.10 again, we have {sub(ψ) | ψ ∈ γi−1 \{ψ
′ |σi |=p

ψ′}} = {sub(ψ) | ψ ∈ γi−1 \Vb(ci)} = {sub(ψ) | ψ ∈ γi−1} \ {sub(ψ) | ψ ∈ Vb(ci)} =
Vg(ci−1) \ {sub(ψ) | ψ ∈ Vb(ci)}. Suppose now that sub(φ) ∈ Vg(ci−1) and φ < Vb(ci).
Then, from the above equations we have sub(φ) ∈ Vg(ci), which proves the proposi-
tion.

We can now generalize this proposition by showing the persistence of unachieved
goals through all transitions.

Proposition 6.2. If ci−1 → ci is a transition, MA
T
,ci−1 |= G(φ), and MA

T
,ci 6|= B(φ),

then MA
T
,ci |=G(φ).

Proof. This is the direct consequence of the following facts: 1) an agent’s goals
persist through transitions that are derived based on transition rules R2 and R3 as
these transition rules do not modify the agent’s goals, 2) an agent’s goals persists
through reflexive transitions, and 3) unachieved goals of an agent persist through
transitions derived based on transition R1 (Proposition 6.1).

The next property satisfied by the programs implemented in APL language is a
variant of what has been termed “blind commitment” in [360], and what are called
“persistent goals” in [110]. This property expresses that the execution of an APL
agent program should not drop a goal before it is believed to be achieved.

Proposition 6.3. (blind commitment) |=T G(φ)→ A(G(φ) U B(φ))

Proof. Using Definitions 6.13 and 6.12, we have to to prove that for any agent mod-
els MA

T
and all its configurations c:

if MA
T
,c |=G(φ) then MA

T
,c |= A(G(φ) U B(φ)).

Using Definition 6.10, we have to prove:
if MA

T
,c |=G(φ) then ∀ fullpath x = c,c′,c′′, . . . ∈ MA

T
: MA
T
, x |=G(φ) U B(φ).

We prove that for arbitrary MA
T

and configuration c0, it holds:
if MA

T
,c0 |=G(φ) then ∀ fullpath x = c0,c′,c′′, . . . ∈ MA

T
: MA
T
, x |=G(φ) U B(φ).

Assume MA
T
,c0 |=G(φ) and take an arbitrary path c0,c1,c2, . . . starting with c0. We

have to prove that MA
T
,c0,c1,c2, . . . |= G(φ) U B(φ). Following definition 6.10, we

6 Correctness of Multi-Agent Programs: A Hybrid Approach 177

have to prove the following:
a) ∃k ≥ 0 such that M,ck |= B(φ) and for all 0 ≤ j < k : M,c j |=G(φ), or
b) ∀ j ≥ 0 : M,c j |=G(φ)
For the path c0,c1,c2, . . ., we distinguish two cases. Either for all consecutive states
ci−1 and ci in the path it holds that the transition ci−1→ ci is such that MA

T
,ci 6|= B(φ),

or there exists consecutive states ck−1 and ck such that transition ck−1→ ck is the first
with MA

T
,ck |= B(φ). The first case (formulation of clause b above) is proven by in-

duction as follows:
(Basic case) Given MA

T
,c0 |= G(φ) (assumption), MA

T
,c1 6|= B(φ), Proposition 6.2

guarantees that MA
T
,c1 |=G(φ).

(Inductive case) Let MA
T
,ci−1 |= G(φ). Using Proposition 6.2 together with the fact

MA
T
,ci 6|= B(φ), we have MA

T
,ci |=G(φ).

The second case (formulation of clause a above) is proven as follows. As ck−1→ ck−1
is the first transition such that MA

T
,ck |= B(φ), we have ∀0 < i < k : MA

T
,ci 6|=

B(φ). Since MA
T
,c0 |= G(φ), we can apply Proposition 6.2 to all transitions c0 →

c1 , . . . , ck−2 → ck−1 to show that MA
T
,ck−1 |= G(φ). This is exactly the formulation

of clause a above.

It should be noted that blind commitment in [360] is defined for intentions, rather
than goals. Goals are also present in their framework, but are contrasted with in-
tentions in that the agent is not necessarily committed to achieving its goals (but is
committed in some way to achieving its intentions).

We now proceed to give a definition of intention, and show how intentions de-
fined in this way are related to an agent’s goals. We define that an agent intends
κ, if κ follows from the second component of one of the plans in an agent’s plan
base. The second component of a plan specifies the subgoal for which the plan was
selected, and it is these subgoals for which the agent is executing the plans, that we
define to form the agent’s intentions. This is analogous to the way the semantics of
intention is defined in [77].

Definition 6.14. (intention) Let Vi : C→ 22Lp be defined as Vi(〈σ,γ,Π〉)= {{κ′ | κ |=p
κ′} | (φ,κ,π) ∈ Π}. Then M,c |= I(κ) is defined as ∃s ∈ Vi(c) : κ ∈ s.

Given this definition, we prove that an agent’s intentions are a “subset” of the
agent’s goals, i.e., we prove the following proposition.

Proposition 6.4. (intentions)

|=T I(κ)→G(κ)

Proof. The proof is based on induction by showing that for arbitrary agent model
MA
T

and initial state c0 the proposition holds for the initial state (basic case), and if
it holds for a state of the model, then it holds for the next state of the model as well.

178 M. Dastani and J.-J. Ch. Meyer

(Basic case) MA
T
,c0 |= I(κ)→ G(κ) for the initial state c0. Since agents are as-

sumed to have no plans initially, we have @s ∈ Vi(c0) : k ∈ s. Using the definition of
I(κ) we conclude that MA

T
,c0 6|= I(κ) and thus MA

T
,c0 |= I(κ)→G(κ).

(Inductive case) Suppose MA
T
,c |= I(κ)→ G(κ) and there is a transition c→ c′.

We show that MA
T
,c′ |= I(κ)→ G(κ). We distinguish two cases for the assumption

MA
T
,c |= I(κ)→G(κ): 1) MA

T
,c |= I(κ), and 2) MA

T
,c 6|= I(κ).

(Case 1) Suppose MA
T
,c |= I(κ)→ G(κ), MA

T
,c |= I(κ), and thus MA

T
,c |= G(κ). We

show MA
T
,c′ |= ¬G(κ)→¬I(κ) (contraposition), i.e., we show if MA

T
,c′ 6|=G(κ) then

MA
T
,c′ 6|= I(κ). By Definition 6.10, MA

T
,c |=G(κ)⇔∃s ∈ Vg(c) : k ∈ s. Given MA

T
,c |=

G(κ) and MA
T
,c′ 6|=G(κ)⇔ @s ∈ Vg(c′) : κ ∈ s, we conclude that the transition c→ c′

is derived based on transition rule R1 (as this is the only transition rule that modifies
the agent’s goals) and therefore ∀ψ,π : (ψ,κ,π) <Πc′ . Note that if ∃s ∈ Vg(c′) : ψ ∈ s
would be the case, then we should also have k ∈ s (because ψ |= κ), which contradict
the assumption @s ∈ Vg(c′) : κ ∈ s. Since ∀ψ,π : (ψ,κ,π) < Πc′ we conclude @s ∈
Vi(c′) : κ ∈ s and thus MA

T
,c′ 6|= I(κ).

(case 2) Suppose MA
T
,c |= I(κ)→ G(κ), MA

T
,c 6|= I(κ), and thus MA

T
,c 6|= G(κ). We

show then MA
T
,c′ |= I(κ)→G(κ), i.e., if MA

T
,c′ |= I(κ), then MA

T
,c′ |=G(κ). Assume

MA
T
,c′ |= I(κ). Given MA

T
,c 6|= I(κ) we can conclude that the transition c → c′ is

derived based on transition rule R3 by applying a planning rule. MA
T
,c′ |= I(κ)⇔

∃s ∈ Vi(c′) : κ ∈ s⇔∃(φ,κ′,π) ∈Πc′ : κ′ |= κ and φ |= κ′. The fact that a planning rule
is applied means that MA

T
, s |=G(φ) and therefore MA

T
, s |=G(κ).

Intuitively, this property holds since “intentions” or plans are generated on the basis
of goals such that a plan cannot be created without a corresponding goal. Moreover,
if a goal is removed, its corresponding plans are also removed. Note that while the
commitment strategies were defined for intentions in [360] and hold for goals in our
framework, the property of the BDI logic that relates goals and intentions does map
directly to goals and (what we have defined as) intentions in our framework. Note
also that the opposite of Proposition 6.4 does not hold, as it can be the case that an
agent has a goal for which it has not yet selected a plan.

Finally, we present a property related to the choices of an agent, implemented
by an APL program. This property shows our motivation for choosing a variant of
CT L as the specification language. The property states that an agent can choose to
commit to one of its goals and generate an intention, if the agent has appropriate
means.

Proposition 6.5. (intention = choice + commitment) Assume an agent program A
with a planning rule β,κ⇒ π. Let T be the transition system generated by the tran-
sition rules R1, . . . ,R3 based on this agent program.

|=T (B(β)∧G(κ)∧¬I(κ))→ EX I(κ)

6 Correctness of Multi-Agent Programs: A Hybrid Approach 179

Proof. We prove that for arbitrary MA
T

and configuration c0, it holds:
if MA

T
,c0 |= B(β)∧G(κ)∧¬I(κ), then MA

T
,c0 |= EX I(κ). Following definition 6.10,

we have to prove that if MA
T
,c0 |= B(β)∧G(κ)∧¬I(κ), then ∃ fullpath x= c0,c1,c2, . . . ∈

MA
T

: MA
T
, x |= X I(κ). Assume MA

T
,c0 |= B(β)∧G(κ)∧¬I(κ). Then, following defi-

nitions 6.10 and 6.14, we have β ∈ Vb(c0), ∃s ∈ Vg(c0) : k ∈ s, and ∀s ∈ Vi(c0) : κ < s.
Note that definition 6.14 ensures that ∀φ @π′ ∈ Plan : (φ,κ,π′) ∈ Πc0 (where Πc0 is
the plan base that corresponds to configuration c0). This means that the transition
rule R3 is applicable in c0, which in turn means that a transition c0 → c1 is deriv-
able in the transition system T such that (φ,κ,π) ∈ Πc1 for some φ ∈ Vg(c1). By
definition 6.14, we conclude that M,c1 |= I(κ). This ensures the existing of a path
x = c0,c1, . . . : M, x |= X I(κ).

6.5 Debugging Multi-Agent Programs

In previous sections, we showed how a BDI-based agent-oriented programming lan-
guage can be related to a BDI specification language. The relation allows us to prove
that certain generic properties expressed in the specification language hold for the
agent programming language, and thus for all executions of all agent programs that
are implemented using this agent programming language.

However, one may want to verify properties for a specific execution of a spe-
cific multi-agent program. Of course, model-checking and theorem proving are two
verification approaches that can be used to check properties of specific programs.
The problem with these verification approaches is that they are often less effective
for complex and real application programs. In order to check properties of such
complex programs, one may consider a debugging approach and check a specific
execution of a specific program. Thus, in contrast to model checking and theorem
proving that analyze all possible full execution traces of a program at once, the de-
bugging approach analyzes one specific execution trace of a specific program. It is
important to emphasize that model-checking and theorem proving can therefore be
used to prove the correctness of programs, while debugging can only be used to find
possible defects of programs (as displayed in particular runs).

In the following sections, we propose a debugging approach that can be used
to check temporal and cognitive properties of specific BDI-based multi-agent pro-
grams, e.g., if two or more implemented agents2 can have the same beliefs, whether
the number of agents is suited for the environment (e.g. it is useless to have a dozen
explorers on a small area, or many explorers when there is only one cleaner that can-
not keep up with them.), whether the protocol is suited for the given task (e.g. there
might be a lot of overhead because facts are not shared, and therefore, needlessly
rediscovered), whether important beliefs are shared and adopted, or rejected, once

2 In the following, we write ’agents’ and ’implemented agents’ interchangeably since we focus on
programs that implement agents.

180 M. Dastani and J.-J. Ch. Meyer

they are received. We may also want to check if unreliable sources of information
are ignored, or whether the actions of one agent are rational to take based on the
knowledge of other agents.

6.5.1 Debugging Modes

Ideally one would specify a cognitive and temporal property and use it in two dif-
ferent debugging modes. In one debugging mode, called continuous mode, one may
want to execute a multi-agent program and get notified when the specified prop-
erty evaluates to true during its execution. In the second debugging mode, called
post mortem, one may want to execute a multi-agent program, stop it after some
execution steps, and check if the specified property evaluates to true for the per-
formed execution. For both debugging modes, the specified properties are evaluated
in the initial state of the multi-agent program execution trace generated thusfar. For
the post mortem debugging mode, the generated execution trace thusfar is the trace
generated from the start of the program execution until the execution is stopped.
However, for the continuous debugging mode, the specified properties are evaluated
after each execution step and with respect to the execution trace generated thusfar,
i.e., the execution trace generated from the start of the program execution until the
last execution step. This is because during a program execution a trace is modified
and extended after each execution step. It should be noted that subsequent execution
steps generate new program states and therefore new traces.

In the continuous debugging mode, the evaluation of a specified property during
the execution of a multi-agent program means a continuous evaluation of the prop-
erty on its evolving execution trace as it develops by consecutive execution steps.
This continuous evaluation of the property can be used to halt the program execution
as soon as a trace is generated which satisfies the property. It is important to know
that properties are evaluated in the initial state of the execution trace so that the
trace properties should be specified as temporal properties. A developer of multi-
agent programs is assumed to know these aspects of our debugging framework in
order to debug such programs effectively. Similar ideas are proposed in Jadex [343].

In the following, we introduce a specification language, called MDL (multi-agent
description language), to specify the cognitive and temporal behavior (i.e., execu-
tion traces) of the BDI-based multi-agent programs. The MDL description language
is taken to be a variant of LTL (Linear Temporal Logic) because execution traces
of multi-agent programs, which are used to debug3 such programs, are assumed
to be linear traces. Note that this assumption is realistic as the interpreter of most
(multi-agent) programs performs one execution step at a time and thereby generates
a linear trace. An MDL expression is evaluated on the (finite) execution trace of a

3 In contrast to debugging that analyzes one linear execution trace of a program, other verification
techniques such as model checking and theorem proving analyze all possible execution traces of a
program at once.

6 Correctness of Multi-Agent Programs: A Hybrid Approach 181

multi-agent program and can activate a debugging tool when it is evaluated to true.
The debugging tools are inspired by traditional debugging tools, extended with the
functionality to verify a multi-agent program execution trace. One example of such
a debugging tool is a multi-agent version of the breakpoint. The breakpoint can halt
the execution of a single agent program, a group of agent programs or the complete
multi-agent program. This multi-agent version of the breakpoint can also have an
MDL expression as a condition, making it a conditional breakpoint.

6.5.2 Specification Language for Debugging: Syntax

In this section, we present the syntax of the MDL written in EBNF notation. An
expression of this language describes a property of an execution of a multi-agent
program in APL and can be used to perform/activate debugging actions/tools. In
the following, 〈group id〉 is a group identifier (uncapitalized string), 〈agent id〉 an
agent identifier (uncapitalized string), 〈query name〉 a property description name
(a reference to a specified property used in the definition of macros; see later on
for a discussion on macros), 〈Var〉 a variable (Variables are capitalized strings),
[all] indicates the group of all agents, and 〈agent var〉 an agent identifier, a group
identifier, or a variable. Finally, we use Bquery, Gquery, and Pquery to denote an
agent’s Beliefs, Goals, and Plans, respectively.

〈group de f 〉 : := “
[
” 〈group id〉“

]
”“ = ” 〈agent list〉

〈agent list〉 : := “
[
” 〈agent id〉 (“,” 〈agent id〉)∗ “

]
”

〈mdl pd〉 : := 〈query name〉“{” 〈mdl query〉“}”
〈mdl query〉 : := “{” 〈mdl query〉“}”

| 〈agent var〉“@Beliefs (”〈Bquery〉“)”
| 〈agent var〉“@Goals (”〈Gquery〉“)”
| 〈agent var〉“@Plans (”〈Pquery〉“)”
| 〈UnOp〉 〈mdl query〉

| 〈mdl query〉 〈BinOp〉 〈mdl query〉

|“?” 〈query name〉

〈BinOp〉 : := “and” | “or” | “implies” | “until”
〈UnOp〉 : := “not” | “next” | “eventually” | “always”
〈agent var〉 : := 〈Var〉 | 〈agent id〉 | 〈group id〉 | “[all]”

Note that 〈mdl pd〉 is a specified property that describes the (temporal and cog-
nitive) behavior of a multi-agent program execution.

182 M. Dastani and J.-J. Ch. Meyer

In order to specify that either all agents believe that there is a bomb at position
2,3 (i.e., bomb(2,3)) or all agents believe that there is no bomb at that position
(i.e. not bomb(2,3)), we can use the following MDL expression.

[all]@Beliefs(bomb(2,3)) or

[all]@Beliefs(not bomb(2,3))

Since specified properties in our framework are always evaluated in the initial
state of the program execution trace (and thus specified by the multi-agent program),
the above property will evaluate to true if it holds in the initial state. Therefore, if
this property is evaluated to true in a program execution trace, then it will evaluate
to true for the rest of the program execution. Note that if this property should hold
in all states of the program execution, then it should be put in the scope of the ’al-
ways’ operator. Moreover, if the property should hold in the last state of the program
execution, then it should be put in the scope of the ’eventually’ operator.

We can generalize the above property by assigning a name to it and parameter-
izing the specific beliefs (in this case bomb(X,Y)). This generalization allows us to
specify a property as a macro that can be used to define more complex properties.
For example, consider the following generalization (macro) that holds in a state of a
multi-agent program if and only if either all agents believe the given belief φ or all
agents do not believe φ.

isSharedBelief(φ){
[all]@Beliefs(φ) or
[all]@Beliefs(not φ)

}

Note that isSharedBelief(φ) can now be used (e.g., in other property speci-
fications) to check whether or not φ is a shared belief. In general, one can use the
following abstract scheme to name an MDL expression. Parameters Var1, Var2,
and Var3 are assumed to be used in the MDL expression.

name(Var1, Var2, Var3, ...) { MDL expression }

The following example demonstrates the use of macros. To use an MDL expres-
sion inside another one, the macro’s names should be preceded by a “?” mark. We
now define a cell as detected when agents agree on the content of that cell. We define
detectedArea(R) as follows.

detectedArea(X, Y) { ?isSharedBelief(bomb(X,Y)) }

The next example shows an MDL expression that can be used to verify whether
the gridworld will eventually be clean if an agent has the goal to clean it. In par-
ticular, the expression states that if an agent A has the goal to clean the gridworld
then eventually that agent A will believe that the gridworld is clean.

6 Correctness of Multi-Agent Programs: A Hybrid Approach 183

cleanEnvironment(A) {

A@Goals(clean(gridworld))

implies

eventually A@Beliefs(clean(gridworld))

}

It is important to note that if this property evaluates to false for an execution
thusfar, it may not continue to be false for the rest of the execution (cf. Definition
6.15). This is due to the evaluation of the eventually operator in the context of
finite traces. In particular, if the above property evaluates to false for a finite program
execution trace, then it may not evaluate to false for a suffix of that trace. One
particular use of the eventually operator is therefore to check and stop the execution
of a multi-agent program when it reaches a state with a specific property.

The following MDL expression states that an agent A will not unintentionally
drop the bomb that it carries. More specifically, the expression states that if an agent
believes to carry a bomb, then the agent will believe to carry the bomb until it has
a plan to drop the bomb. It is implicitly assumed that all plans will be successfully
executed.

doesNotLoseBomb(A) {

always (A@Beliefs(carry(bomb))

implies

(A@Beliefs(carry(bomb))

until

A@Plans(dropped_bomb)

)

)

}

6.5.3 Specification Language for Debugging: Semantics

The semantics of the MDL language describes how a property is evaluated against
a trace of a BDI-based multi-agent program. In the context of debugging, we con-
sider finite traces generated by partial execution of multi-agent programs (a partial
execution of a program starts in the initial state of the program and stops after a
finite number of deliberation steps). A finite trace is a finite sequence of multi-agent
program states in which the state of each agent is a tuple consisting of beliefs, goals,
and plans.

An MDL expression is evaluated with respect to a finite multi-agent program
trace that results from a partial execution of a multi-agent program. In the following,
we use t to denote a finite trace, |t| to indicate the length of the trace t (a natural
number; a trace consists of 1 or more states), st to indicate a trace starting with state

184 M. Dastani and J.-J. Ch. Meyer

s followed by the trace t, |st|= 1+ |t|, and functions head and tail, defined as follows:
head(st) = s, head(t) = t if |t| = 1, head(t, i) = Ai if head(t) = {A1, . . . ,Ai, . . . ,An},
tail(st) = t and tail(t) is undefined if |t| ≤ 1 (tail is a partial function). Moreover,
given a finite trace t = s1s2 . . . sn, we write ti to indicate the suffix trace si . . . sn.

Definition 6.15. Let si = {A1, . . . ,An} be a multi-agent program configuration and
let t = s1s2 . . . sn be a finite trace of a multi-agent program such that |t| ≥ 1. Let
also the evaluation functions Vb,Vg, and Vi be as defined in Definitions 6.10 and
6.14, respectively. The satisfaction of MDL expressions by the trace t is defined as
follows:

t |= i@Beliefs(φ)⇔ φ ∈ Vb(head(t, i))

t |= i@Goals(φ)⇔∃s ∈ Vg(head(t, i)) : φ ∈ s

t |= i@Plans(φ)⇔∃s ∈ Vi(head(t, i)) : φ ∈ s

t |= φ and ψ⇔ t |= φ and t |= ψ

t |= φ or ψ⇔ t |= φ or t |= ψ

t |= φ implies ψ⇔ t |= φ implies t |= ψ

t |= not φ⇔ t 6|= φ

t |= next φ⇔ tail(t) |= φ and |t| > 1

t |= eventually φ⇔∃i ≤ |t| (ti |= φ)

t |= always φ⇔∀i ≤ |t| (ti |= φ)

t |= φ until ψ⇔∃i ≤ |t| (ti |= ψ and ∀ j < i (t j |= φ))

Based on this definition of MDL expressions, we have implemented some debug-
ging tools that are activated and updated when their corresponding MDL expression
holds in a partial execution of a multi-agent program. These debugging tools are
described in the next section. This definition of the satisfaction relation can behave
different than the standards definition of satisfaction relation of LTL which is defined
on infinite traces. For example, some LTL properties such as ¬nextφ = next¬φ are
valid only for infinite traces. However, the validity of such properties is not relevant
for our debugging framework as debugging is only concerned with the execution
thusfar and therefore with finite traces. We would like to emphasize that different
LTL semantics for finite traces of program executions have been proposed. See [28]
for a comparison between different proposals.

6.6 Multi-Agent Debugging Tools

A well-known technique often used for debugging single sequential and concurrent
programs is a breakpoint. A breakpoint is a marker that can be placed in the pro-
gram’s code. Breakpoints can be used to control the program’s execution. When

6 Correctness of Multi-Agent Programs: A Hybrid Approach 185

the marker is reached program execution is halted. Breakpoints can be either condi-
tional or unconditional. Unconditional breakpoints halt the program execution when
the breakpoint marker is reached. Conditional breakpoints only halt the program ex-
ecution when the marker is reached and some extra condition is fulfilled. Another
(similar) functionality, that can be used to re-synchronize program executions, is
called a process barrier breakpoint. Process barrier breakpoints are much like nor-
mal breakpoints. The difference is they halt the processes that reached the barrier
point until the last process reaches the barrier point. A different debugging tech-
nique used for traditional programming practices is called the watch. The watch is a
window used to monitor variables’ values. Most watch windows also allow the de-
veloper to type in a variable name and if the variable exists the watch will show the
variable’s value. In the IDEs of most high-level programming languages the watch is
only available when the program’s execution is halted. Other traditional debugging
techniques are logging and visualization. Logging allows a developer to write some
particular variable’s value or some statement to a logging window or a file. Visual-
ization is particularly helpful in the analysis and fine tuning of concurrent systems.
Most relevant in light of our research is the ability to visualize the message queue.

Despite numerous proposals for BDI-based multi-agent programming languages,
there has been little attention on building effective debugging tools for BDI-based
agent-oriented programs. The existing debugging tools for BDI-based programs en-
able the observation of program execution traces (the sequence of program states
generated by the program’s execution) [63,114,121,122,343] and browsing through
these execution traces, allowing to run multi-agent programs in different execution
modes by for example using breakpoints and assertions [63, 114, 122, 343], observ-
ing the message exchange between agents and checking the conformance of agents’
interactions with a specific communication protocol [84,114,343,345,346,425]. Al-
though most proposals are claimed to be applicable to other BDI-based multi-agent
programming languages, they are presented for a specific multi-agent platform and
the corresponding multi-agent programming language. In these proposals, debug-
ging multi-agent aspects of such programs are mainly concerned with the interac-
tion between individual agents and the exchanged messages. Finally, the temporal
aspects of multi-agent program execution traces are only considered in a limited
way and not fully exploited for debugging purposes.

This section presents a set of Multi-Agent Debugging Tools (MADTs) to illus-
trate how the MDL language can be used to debug multi-agent programs. In order to
use the debugging tools, markers are placed in the multi-agent programs to denote
under which conditions which debugging tool should be activated. A marker con-
sists of an (optional) MDL expression and a debugging tool. The MDL expression
of a marker specifies the condition under which the debugging tool of the marker
should be activated. In particular, if the MDL expression of a marker evaluates to
true for a given finite trace/partial execution of a multi-agent program, then the de-
bugging tool of the marker will be activated. When the MDL expression of a marker
is not given (i.e., not specified), then the associated debugging tool will be acti-
vated as soon as the multi-agent program is executed. Besides an MDL expression,
a marker can also have a group parameter. This group parameter specifies which

186 M. Dastani and J.-J. Ch. Meyer

agents the debugging tool operates on. The general syntax of a marker is defined as
follows:

〈marker〉 : := “MADT(” 〈madt〉 [“,” 〈mdl query〉][“,@” 〈group〉]“)”
〈group〉 : := “[” 〈group id〉“]”| 〈agent list〉

The markers that are included in a multi-agent program are assumed to be pro-
cessed by the interpreter of the corresponding multi-agent programming language.
In particular, the execution of a multi-agent program by the interpreter will gener-
ate consecutive states of a multi-agent program and, thereby, generating a trace. At
each step of the trace generation (i.e., at each step where a new state is generated)
the interpreter evaluates the MDL expression of the specified markers in the initial
state of the finite trace (according to the definition of the satisfaction relation; see
definition 6.15) and activates the corresponding debugging tools if the MDL ex-
pressions are evaluated to true. This means that the trace of a multi-agent program
is verified after every change in the trace. This mode of processing markers corre-
sponds to the continuous debugging mode and does not stop the execution of the
multi-agent program; markers are processed during the execution of the program.
In the post mortem debugging mode, where a multi-agent program is executed and
stopped after some deliberation steps, the markers are processed based on the finite
trace generated by the partial execution of the program. It is important to note again
that MDL expressions are always evaluated in the initial state of traces as we aim at
debugging the (temporal) behavior of multi-agent programs and thus their execution
traces from the initial state. The following example illustrates the use of a marker in
a multi-agent program:

MADT(breakpoint_madt ,

eventually cleaner@Beliefs(bomb(X,Y))

)

This marker, which can be placed in the multi-agent program, activates a break-
point as soon as the cleaner agent believes that there is a bomb in a cell of the
gridworld. It is important to note that if no MDL expression is given in a specified
marker, then the associated debugging tool will be activated after each update of the
trace. Removing the specified MDL expression from the abovementioned marker
means that the execution of the multi-agent program will be stopped after each trace
update. This results in a kind of stepping execution mode. Furthermore, if no group
parameter is given in the marker, the “[all]” group is used by default.

In the rest of this section, we illustrate the use of a set of debugging tools that
have shown to be effective in debugging software systems. Examples of debugging
tools are breakpoint, logging, state overview, or message list. The behavior of these
debugging tools in the context of markers are explained in the rest of this section.
The proposed set of debugging tools is by no means exhaustive and can be extended
with other debugging tools. We thus do neither propose new debugging tools nor

6 Correctness of Multi-Agent Programs: A Hybrid Approach 187

evaluate their effectiveness. The focus of this chapter is a framework for using (ex-
isting) debugging tools to check cognitive and temporal behavior of multi-agent
program. Our approach is generic in the sense that a debugging tool can be associ-
ated with an MDL expression by means of a marker and that markers can be used
in two debugging modes.

6.6.1 Breakpoint

The breakpoints for multi-agent programs are similar to breakpoints used in concur-
rent programs. They can be used to pause the execution of a single agent program, a
specific group of agent programs, or the execution of the entire multi-agent program.
Once the execution of a program is paused, a developer can inspect and browse
through the program execution trace generated so far (including the program state
in which the program execution is paused). The developer can then continue the
program execution in a stepping mode to generate consecutive program states. An
attempt to further execute the program continuously (not in stepping mode) pauses
immediately since the MDL expression associated to the breakpoint will be eval-
uated in the initial state of an extension of the same trace. In general, if an MDL
expression evaluates to true in a state of a trace, then it will evaluate to true in the
same state of any extension of that trace.

The example below demonstrates the use of a conditional breakpoint on the
agents explorer1 and explorer2. The developer wants to pause both agents as
soon as agent cleaner has the plan to go to cell (5, 5).

MADT(breakpoint_madt,

eventually cleaner@Plans(goto(5, 5)) ,

@[explorer1, explorer2]

)

Note that it is possible to use the cognitive state of more than one agent as the
break condition. The next example demonstrates how a developer can get an indi-
cation about whether the number of explorer and cleaner agents are suitable for a
certain scenario. In fact, if there are not enough cleaners to remove bombs, or when
all explorers are located at the same area, then all explorers will find the same bomb.

MADT(breakpoint_madt,

eventually [explorers]@Beliefs(bomb(X,Y))

)

The breakpoint tool is set to pause the execution of all agents, once all agents that
are part of the “explorers” group have the belief that a bomb is located at the same
cell (X,Y). Note that it need not be explicitly defined to pause the execution of all

188 M. Dastani and J.-J. Ch. Meyer

agents. The breakpoint is useful in conjunction with the watch tool to investigate the
mental state of the agent. Other agent debugging approaches, e.g., [114], propose
a similar concept for breakpoints, but for a single BDI-based agent program. Also,
Jason [63] allows annotations in plan labels to associate extra information to a plan.
One standard plan annotation is called a breakpoint. If the debug mode is used and
the agent executes a plan that has a breakpoint annotation, execution pauses and the
control is given to the developer, who can then use the step and run buttons to carry
on the execution. Note that in contrast with other approaches, the condition in our
approach may contain logic and temporal aspects.

6.6.2 Watch

The watch can display the current mental state of one or more agents. Furthermore,
the watch allows the developer to query any of the agents’ bases. The developer
can, for example, use the watch to check if a belief follows from the belief base. It
is also possible to use an MDL expression in the watch; if the expression evaluates
to true, the watch will show the substitution found. The watch tool can also be
used to visualize which agents have shared or conflicting beliefs. The watch tool is
regularly used in conjunction with a conditional breakpoint. Once the breakpoint is
hit, the watch tool can be used to observe the mental state of one or more agents.
In general, the watch tool should be updated unconditionally and for all agents in
the system. Adding MADT(watch madt) to a multi-agent program will activate the
watch on every update of its execution trace. In Jason and Goal [63, 224], a similar
tool is introduced which is called the mind inspector. This mind inspector, however,
can only be used to observe the mental state of individual agents. Jadex [343] offers
a similar tool called the BDI-inspector which allows visualization and modification
of internal BDI-concepts of individual agents.

6.6.3 Logging

Logging is done by the usage of probes which, unlike breakpoints, do not halt the
multi-agent program execution. When a probe is activated it writes the current state
of a multi-agent program, or a part of it, to a log screen or a file (depending on
the type of probe). Using a probe without an MDL expression and without a group
specification is very common and can be done by adding MADT(probe madt) in
multi-agent programs. The probe will be activated on every update of the program
trace such that it keeps a log of all multi-agent program states. The next example
saves the state of the multi-agent program when the cleaner agent drops a bomb in
a depot, but there is still some agent who believes the bomb is still at its original
place.

6 Correctness of Multi-Agent Programs: A Hybrid Approach 189

MADT(probe_madt,

eventually(cleaner@Plans(dropBomb(X,Y))

and

A@Beliefs(bomb(X,Y))

)

)

This means that the probe madtwill be activated directly after an execution step
that generates a trace on which the MDL expression evaluates to true. A developer
can thus use such expressions (of the form eventuallyφ) in order to be notified at
once and as soon as the program execution satisfies it. Once this expression evaluates
to true, the developer should know that any continuation of the program execution
will evaluates it to true. Thus, from a developer’s perspective, properties specified
by expressions of the form eventuallyφ can be used to get notified (or stop the
execution) only once and as soon as it is satisfied. Similar work is done in Jadex
[410] where a logging agent is introduced to allow collection and viewing of logged
messages from Jadex agents. It should be noted that the probes in our approach offer
the added functionality of filtering on a cognitive condition of one ore more agents.

6.6.4 Message-list

Another visualization tool is the message-list, which is one of the simplest forms of
visualization. The message-list keeps track of the messages sent between agents, by
placing them in a list. This list can be sorted on each of the elements of the mes-
sages. For example, sorting the messages on the “sender” element can help finding
a specific message send by a known agent. Besides ordering, the list can also be
filtered. For example, we could filter on “Senders” and only show the message from
the sender with the name “cleaner”. To update the message-list on every update of
the trace, we can place the marker MADT(message list madt) in the multi-agent
program. Another use of the message-list could be to show only the messages from
within a certain group, e.g., MADT(message list madt, @[explorers]) can be
used to view the messages exchanged between the members of the explorers group.
Finally, in our proposal one can also filter exchanged messages based on condi-
tions on the mental states of individual agents. For example, in the context of our
gridworld example, one can filter useless messages, i.e., messages whose content
are known facts. Exchanging too many useless messages is a sign of non-effective
communication. The example below triggers the message list when an agent A, who
believes there is a bomb at coordinates X,Y, receives a message about this fact from
another agent S.

MADT(message_list_madt,

eventually(A@Beliefs(bomb(X,Y))

and

190 M. Dastani and J.-J. Ch. Meyer

A@Beliefs(message(S,P,bombAt(X,Y)))

)

)

In this example, it is assumed that a received message is automatically added to
the belief base of the receiving agent, and that the added message has the form
message(S ender,Per f ormative,Content). All existing agent programming plat-
forms offer a similar tool to visualize exchanged messages. The main difference
with our approach is the ability to log when certain cognitive conditions hold.

6.6.5 Causal tree

The causal tree tool shows each message and how it relates to other messages in
a tree form. The hierarchy of the tree is based on the relation between messages
(replies become branches of the message they reply to). Messages on the same hi-
erarchical level, of the same branch, are ordered chronologically. The advantage of
the causal tree (over the message-list) is that it is easier to spot communication er-
rors. When, for example, a reply is placed out of context (not in relation with its
cause) this implies there are communication errors. The causal tree also provides
an easy overview to see if replies are sent when required. The causal tree tool can
be used by adding the marker MADT(causal tree madt) to multi-agent programs.
Another example could be to set the group parameter and only display message
from a certain group, e.g., MADT(causal tree madt, @[explorers]). It should
be noted that for the causal tree to work, the messages need to use performatives
such as inform and reply.

6.6.6 Sequence diagram

The sequence diagram is a commonly used diagram in the Unified Modeling Lan-
guage (UML) or its corresponding agent version (AUML). An instantiation of a
sequence diagram can be used to give a clear overview of (a specific part of) the
communication in a multi-agent program. They can help to find irregularities in the
communication between agents. The sequence diagram tool can be used by adding
the marker MADT(sequence diagram madt) to multi-agent programs. This exam-
ple updates the sequence diagram on every update of the trace. Another example
could be to use the group parameter and only update the sequence diagram for
the agents in a certain group, e.g., MADT(sequence diagram madt, @[cleaner,
explorer2]). Adding this marker to our multi-agent program will show the com-
munication between the agents “cleaner” and “explorer2”. The sequence diagram
tool is useful in conjunction with a conditional breakpoint and the stepwise execu-
tion mode where the diagram can be constructed step by step. The sequence diagram

6 Correctness of Multi-Agent Programs: A Hybrid Approach 191

is also useful in conjunction with the probe. The probe can be used to display de-
tailed information about the messages. Similar tools are proposed in some other
approaches, e.g., the sniffer agent in [32]. However, we believe that the sequence
diagram tool in our approach is more effective since it can be used for specific parts
of agent communication.

6.6.7 Visualization

Sometimes the fact that a message is sent is more important than the actual contents
of the message. This is, for example, the case when a strict hierarchy forbids cer-
tain agents to communicate. In other cases it can be important to know how much
communication takes place between agents. For such situations the dynamic agent
communication tool is a valuable add-on. This tool shows all the agents and rep-
resents the communication between the agents by lines. When agents have more
communication overhead the line width increase in size and the agents are clustered
closer together. This visualization tool, which can be triggered by adding the marker
MADT(dynamic agent madt) to multi-agent program, is shown in figure 6.2.

Fig. 6.2 The dynamic agent communication tool.

Another visualization tool is the static group tool. This debugging tool, which
shows specific agent groups, is illustrated in figure 6.3. The line between the groups
indicates the (amount) of communication overhead between the groups. In addition
the developer can “jump into” a group and graphically view the agents and the
communication between them.

Fig. 6.3 The static group tool.

192 M. Dastani and J.-J. Ch. Meyer

The static group tool can be helpful to quickly check if the correct agents are
in the correct group. It can also be used to check communication between different
groups. If two groups show an unusual amount of communication overhead the
developer can jump into the group and locate the source of the problem. The marker
to activate the static group tool can be specified as follow:

MADT(static_group_madt, @[explorers])

MADT(static_group_madt, @[cleaners])

The above markers update the tool on every change of the multi-agent program
trace. According to these markers, the groups “explorers” and “cleaners” will be vi-
sualized. Generally it is most valuable to have a visualization of all communication
between agents. However, to pinpoint the exact problem in a communication pro-
tocol it can be an invaluable addition to use a condition, which filters the messages
that are shown. These same principles apply to the filtered view. As discussed in the
related works section, other approaches (e.g., [84]) offers similar tools.

6.7 Conclusion and Future Work

In this chapter we have shown two methods for showing the correctness of BDI-
based multi-agent programs that are complementary to the well-known methods
of model checking and theorem proving that are used in the realm of multi-agent
verification. Various chapters in this volume present different model-checking and
theorem proving approaches for multi-agent programs.

The first one is a general one allowing us to prove that certain properties ex-
pressed in a specification language hold for the agent programming language, and
thus for all individual agents that are implemented in this agent programming lan-
guage. To this end we showed how a BDI-based agent-oriented programming lan-
guage can be related to a BDI specification language in a systematic and natural
manner. We used here a very simple agent programming language which can be
extended in many different ways. In [77], a comparable effort is undertaken for the
agent programming language AgentSpeak. The specification language in that work
is, however, not a temporal logic, and the properties proven are different (not related
to dynamics of goals).

The multi-agent programming language and its corresponding logic, presented in
this chapter, are designed to focus on the cognitive aspects and related properties of
individual agent programs. The multi-agent programming language can be extended
with communication actions and shared environments to allow the implementation
of multi-agent systems in which individual agents interact by either sending and
receiving messages or performing actions in their shared environment. Most exist-
ing agent programming languages have already proposed specialized constructs to
implement communication and shared environments. Future research is needed to

6 Correctness of Multi-Agent Programs: A Hybrid Approach 193

propose logical frameworks to specify and verify the interaction properties of multi-
agent programs.

The properties that we have studied in this chapter are general in the sense that
we consider the set of all possible execution traces of multi-agent programs. In prac-
tice, the execution of a multi-agent program is often based on an interpreter that uses
a specific execution strategy. For example, an interpreter may apply one/all plan-
ning rules before executing one/all plans, or executing one/all plans before applying
one/all planning rules. In principle, there are many different strategies that can be
used to execute a multi-agent program. In future work we will study properties that
are related to a specific execution strategy. This enables the verification of properties
of a multi-agent program for a given interpreter.

The second approach to the correctness of BDI-based agent programs we showed
is based on debugging. Our proposal extends previous approaches by debugging the
interaction between implemented agents, not only in terms of the exchanged mes-
sages, but also in terms of the relations between their internal states. A develop-
er/debugger of a multi-agent program is assumed to have access to the multi-agent
program code, which is a realistic assumption, and therefore to the internal state of
those programs. The proposed approach is based on a specification language to ex-
press cognitive and temporal properties of the executions of multi-agent programs.
The expressions of the specification language can be used to trigger debugging tools
such as breakpoints, watches, probes, and different visualization tools to examine
and debug communication between individual agents.

Since the specification language is abstract, our debugging approach is generic
and can be modified and applied to other BDI-based agent programming languages.
The only modification is to align the evaluation function of the specification lan-
guage with the programming language at hand. We have already applied this debug-
ging approach to 2APL [122] platform by modifying its corresponding interpreter
to process debugging markers in both debugging modes. The 2APL interpreter eval-
uates the expressions of the specification language based on the partial execution
trace of the multi-agent programs. We have also implemented the proposed debug-
ging tools that are discussed in this paper for the 2APL platform.

We plan to extend the MDL language by including constructs related to the exter-
nal environments of a multi-agent program. In this way, one can specify properties
that relates agent states to the state of the external environments. Moreover, we plan
to extend our debugging framework with the society aspects that may be involved
in multi-agent programming languages [325]. Recent developments in multi-agent
programming languages [131, 166, 188, 243] have proposed specific programming
constructs enabling the implementation of social concepts such as norms, roles,
obligations, and sanctions. Debugging such multi-agent programs requires there-
fore specific debugging constructs to specify properties related to the social aspects
and facilitate finding and resolving defects involved in such programs.

The presented debugging framework assumes all agents are developed on one
single platform such that their executions for debugging purposes are not distributed
on different platforms. One important challenge and a future work on debugging

194 M. Dastani and J.-J. Ch. Meyer

multi-agent systems remains the debugging of multi-agent programs that run si-
multaneously on different platforms. The existing debugging techniques are helpful
when errors manifest themselves directly to the system developers. However, errors
in a program do not always manifest themselves directly. For mission and indus-
trial critical systems it is therefore necessary to extensively test the program before
deploying it. This testing should remove as many bugs (and possible defects) as pos-
sible. However, it is infeasible to test every single situation the program could be in.
We believe that a systematic integration of debugging and testing approaches can be
effective in verifying the correctness of multi-agent programs and therefore essen-
tial for their developments. A testing approach proposed for multi-agent programs
is proposed by Poutakidis and his colleagues [345, 346].

Acknowledgements

We would like to thank Birna van Riemsdijk for her contribution to work on which
this chapter is partly based.

Chapter 7

The Norm Implementation Problem
in Normative Multi-Agent Systems

D. Grossi, D. Gabbay, and L. van der Torre

Abstract The norm implementation problem consists in how to see to it that the
agents in a system comply with the norms specified for that system by the system
designer. It is part of the more general problem of how to synthesize or create norms
for multi-agent systems, by, for example, highlighting the choice between regimen-
tation and enforcement, or the punishment associated with a norm violation. In this
paper we discuss how various ways to implement norms in a multi-agent system can
be distinguished in a formal game-theoretic framework. In particular, we show how
different types of norm implementation can all be uniformly specified and verified
as types of transformations of extensive games. We introduce the notion of retarded
preconditions to implement norms, and we illustrate the framework and the various
ways to implement norms in the blocks world environment.

D. Grossi
ILLC University of Amsterdam, The Netherlands e-mail: d.grossi@uva.nl

D. Gabbay
Computer Science King’s College London, U.K. and ICR University of Luxembourg, Luxembourg
e-mail: dov.gabbay@kcl.ac.uk

L. van der Torre
ICR University of Luxembourg, Luxembourg e-mail: leendert@vandertorre.com

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 195
DOI 10.1007/978-1-4419-6984-2 7, c© Springer Science+Business Media, LLC 2010

d.grossi@uva.nl
dov.gabbay@kcl.ac.uk
leendert@vandertorre.com

196 D. Grossi, D. Gabbay, and L. van der Torre

7.1 Introduction

Normative multi-agent systems (NMAS) [57] study the specification, design, and
programming of systems of agents by means of systems of norms. Norms allow for
the explicit specification of the standards of behavior the agents in the systems are
supposed to comply with. Once such a set of norms is settled, the question arises
of how to organize the agents’ interactions in the system, in such a way that those
norms do not remain—so to say—dead letter, but they are actually followed by the
agents. Designing a NMAS does not only mean to state a number of standards of
behavior in the form of a set of norms, but also to organize the system in such a way
that those standards of behavior are met by the agents participating in the system. In
other words, norm creation [53] distinguishes between the creation of the obligation
and norm implementation, because these two problems have different concerns. On
the one hand the creation of the obligation says how the ideal can be reached, and
the creation of the sanction says how agents can be motivated to comply with the
norms such that the ideal will (probably) be reached. The paper moves the first
steps towards a formal understanding of the norm implementation problem, defined
as follows.

The norm implementation problem. How to make agents comply with a set of norms in a
system?

In this paper we introduce a formal framework that can represent various solu-
tions to the norm implementation problem, which can be used to analyze them, or
to make a choice among them. For example, in some cases a norm cannot be reg-
imented, such as the norm to return books to the library within two weeks, but in
other cases there is the choice between regimentation and enforcement. It is often
assumed that regimenting norms makes the system more predictable, since agents
cannot violate the norms, but as a consequence it also makes the system less flex-
ible and less efficient. Conceptually, regimentation is easier than enforcement, and
since agents are bounded reasoners who can make mistakes, regimentation is often
favored by policy makers. However, policy makers are bounded reasoners too, who
have to make norms in uncertain circumstances, and therefore most people prefer
enforcement over regimentation—at least, when the legal system is reliable. As an-
other example, it is often assumed that very high punishments make the system less
efficient than lower ones, due to the lack of incentives for agents once they have
violated a norm. Such assumptions are rarely studied formally.

Although ideas about norm implementation can be found scattered over, in par-
ticular, the multi-agent systems literature (for instance, in OperA [145], Moise+

[242], AMELI [167], J-Moise+ [243], and in programming languages for multi-
agent system programs [125]), they have not yet been presented in a systematic and
uniform way. One of the aims of the paper is to do so, providing a formal overar-
ching framework within which it becomes possible to place and compare existing
contributions. So the first requirement on a framework for norm implementation is
that it can represent existing widely discussed norm implementation methods such

7 The Norm Implementation Problem in Normative Multi-Agent Systems 197

as regimentation and enforcement via sanctioning. Moreover, a second requirement
is that such a framework can also represent and reason about new ways of norm
implementation, such as changing the existing norms or the method, which we will
study in detail, of retarded preconditions. A formal framework may even suggest
new ways to implement norms, not discussed before. Our research problem there-
fore breaks down into the following sub-questions:

1. How is the specification and verification of norm implementation methods related
to general specification and verification of multiagent systems?

2. Which formal model can we use to specify and verify norm implementation, and
more generally study the norm implementation problem?

3. How to model regimentation in the general formal model of norm implementa-
tion?

4. How to model enforcing in the general formal model of norm implementation?
5. How to model norm change in the general formal model of norm implementa-

tion?

The specification of normative multi-agent systems often considers a set of
agents and a set of norms or organization, which can be specified and verified in-
dependently. However, when the set of norms is not designed off-line, but created
dynamically at run-time, then this approach does not work. Instead, one can only
specify the way in which norms are implemented in a system.

The perspective assumed for the formal framework is based on formal logic and
the primary aim of the paper is to present a simple class of logical models, and
of transformations on them, as salient representations of the implementation prob-
lem. Moreover, we use a game-theoretic approach. We use the simplest approach
possible, so we can focus on one same framework for many kinds of norm imple-
mentation, and are not lost in technical details about individual approaches. As in
classical game theory, our actions are abstract and we do not consider issues like
causality. We consider only perfect information games, and we thus do not consider
the problem of how norms are distributed and communicated to a society. Moreover,
we do not consider concurrent actions of the agents in the composition of actions
in plans, although this feature could easily be added. However, we do represent the
order of actions, that is, we use extensive form games, because we need to do so
to distinguish some of the norm implementation methods, and thus we do not use
the more abstract strategic form used in most related work (such as Tennenholtz
and Shoham’s artificial social systems [400]). We do not go into details of solution
concepts of game theory, and we thus basically use a kind of state automata or pro-
cess models. Within a game-theoretic approach, we need to represent four things:
the game without the implemented norm, the game together with the implemented
norm, the procedure to go from the former to the latter, and the compliance criterion
stating the conditions when norms are fulfilled.

We test our model also by introducing the notion of implementation via retarded
preconditions. For example, assume that in the tax regime of a country, for peo-
ple who leave the country there is a period of three years after which it is checked

198 D. Grossi, D. Gabbay, and L. van der Torre

whether someone has really left the country. In this example, the precondition is
checked only after three years, and if the person has returned to the country, the
consequences of leaving the country are retracted. Likewise, with actions with non-
deterministic effects, we can say that the precondition depends on the effect. For
example, if there are no concurrent updates in the database, then the update will be
accepted, otherwise it will be rolled back. In the blocks world, which will be used
as running example throughout the paper, assume that a block may not be put on
another block if it stays there for three minutes. If it stayed there for three minutes,
then we can undo the action of putting the block on top of the other one (alterna-
tively, one can sanction it, of course). Retarded preconditions offer more flexibility
than simple regimentation. For example, consider the norm that it is forbidden to
throw 6 on a dice. With retarded preconditions, we can throw the dice and do a roll-
back when 6 appears. Without retarded preconditions, the only way to regiment it,
is to forbid throwing the dice. We distinguish norm regimentation from automatic
enforcement and enforcement agents, assuming actions can be taken only if precon-
ditions hold. Some of such actions are forbidden, so all actions in order to be taken
must satisfy the precondition. For regimentation we consider violation conditions
as retarded preconditions of actions. In this action model, assumed actions can be
taken in some cases even though the preconditions do not hold. When a violation
occurs, i.e., when the retarded precondition does not hold, the various strategies to
implement norms follow as a consequence.

We illustrate the framework and the various ways to implement norms in the
blocks world environment, because the well-known planning environment explains
the use of normative reasoning and the challenges of norm implementation for a
large AI audience. There are many variants of the blocks world around, we use a
relatively simple one with deterministic actions and without concurrent actions. An
alternative well-known example we could have chosen is the Wumpus world from
Russel and Norvig’s textbook [380].

We assume that all norms and their implementations are known once they are
created, and we thus do not study the norm distribution problem. Moreover, we
assume that everyone accepts the existence of a new norm, even when he does not
comply with it. Thus, we do not consider the norm acceptance problem. We do
not consider cognitive aspects of agents, and we thus do not consider the bridge
between our framework for MAS and existing BDI frameworks for cognitive agents
(see, e.g., [53]).

The paper follows the research questions and proceeds as follows. In Section 7.2
we give a short introduction in the use of normative systems in computer science in
general, and specification and verification of normative multi-agent systems in par-
ticular. In Section 7.3 we start with the game-theoretic framework for norm imple-
mentation and a logic for representing extensive games, and we introduce a running
example. Sections 7.4, 7.5, 7.6, and 7.7 provide formal semantics to the four im-
plementation strategies of regimentation, enforcement, enforcers, and, respectively,
normative change. In presenting such semantics due care will be taken to relate our
framework to existing literature showing how the framework is general enough to

7 The Norm Implementation Problem in Normative Multi-Agent Systems 199

categorize, at a higher abstraction level, the various contributions available in the lit-
erature. The findings of each section is illustrated by means of the running example.
In Section 7.8 related work at the intersection of norms and multi-agent systems is
discussed. Conclusions follow in Section 7.9.

7.2 Normative multi-agent systems

In this section we first give a short summary of the main issues in using norma-
tive systems in computer science, and thereafter we discuss the specification and
verification of normative multi-agent systems.

7.2.1 Normative systems in computer science

The survey of the role of normative systems in computer science in this section is
taken from [50]. For a discussion on philosophical foundations for normative multi-
agent systems, see [51, 207].

There is an increasing interest in normative systems in the computer science com-
munity, due to the observation five years ago in the so-called AgentLink Roadmap
[293, Fig. 7.1], a consensus document on the future of multi-agent systems research,
that norms must be introduced in agent technology in the medium term (i.e., now!)
for infrastructure for open communities, reasoning in open environments and trust
and reputation. The first definition of a normative multi-agent system emerged after
two days of discussion at the first workshop on normative multi-agent systems Nor-
MAS held in 2005 as a symposium of the Artificial Intelligence and Simulation of
Behaviour convention (AISB) in Hatfield, United Kingdom:

The normchange definition. “A normative multi-agent system is a multi-agent
system together with normative systems in which agents on the one hand can
decide whether to follow the explicitly represented norms, and on the other the
normative systems specify how and in which extent the agents can modify the
norms” [57].

A distinction has been made between systems in which norms must be explic-
itly represented in the system (the ‘strong’ interpretation) or that norms must be
explicitly represented in the system specification (the ‘weak’ interpretation). The
motivation for the strong interpretation of the explicit representation is to prevent
a too general notion of norms. Any requirement can be seen as a norm the system
has to comply with; but why should we do so? Calling every requirement a norm
makes the concept empty and useless. The weak interpretation is used to study the
following two important problems in normative multi-agent systems.

200 D. Grossi, D. Gabbay, and L. van der Torre

Norm compliance. How to decide whether systems or organizations comply with
relevant laws and regulations? For example, is a hospital organized according to
medical regulations? Does a bank comply with Basel 2 regulations?

Norm implementation. How can we design a system such that it complies with
a given set of norms? For example, how to design an auction such that agents
cannot cooperate?

Norms are often seen as a kind of (soft) constraints that deserve special analysis.
Examples of issues which have been analyzed for norms but to a less degree for other
kinds of constraints are ways to deal with violations, representation of permissive
norms, the evolution of norms over time (in deontic logic), the relation between the
cognitive abilities of agents and the global properties of norms, how agents can ac-
quire norms, how agents can violate norms, how an agent can be autonomous [116]
(in normative agent architectures and decision making), how norms are created by a
legislator, emerge spontaneously or are negotiated among the agents, how norms are
enforced, how constitutive norms are used to describe institutions, how norms are
related to other social and legal concepts, how norms structure organizations, how
norms coordinate groups and societies, how contracts are related to contract frames
and contract law, how legal courts are related, and how normative systems interact?

Norms can be changed by the agents or the system, which distinguishes this def-
inition of normative multi-agent system from the common framework used in the
Deontic Logic in Computer Science (or ∆EON) community, and led to the identi-
fication of this definition as the “normchange” definition of normative multi-agent
systems. For example, a norm can be made by an agent, as legislators do in a legal
system, or there can be an algorithm that observes agent behavior, and suggests a
norm when it observes a pattern. The agents can vote on the acceptance of the norm.
Likewise, if the system observes that a norm is often violated, then apparently the
norm does not work as desired, and it undermines the trust of the agents in the nor-
mative system, so the system can suggest that the agents can vote whether to retract
or change the norm.

After four days of discussion, the participants of the second workshop on norma-
tive multi-agent systems NorMAS held as Dagstuhl Seminar 07122 in 2007 agreed
to the following consensus definition:

The mechanism design definition. “A normative multi-agent system is a multi-
agent system organized by means of mechanisms to represent, communicate,
distribute, detect, create, modify, and enforce norms, and mechanisms to deliber-
ate about norms and detect norm violation and fulfilment.” [59]

According to Boella et al., “the emphasis has shifted from representation issues
to the mechanisms used by agents to coordinate themselves, and in general to or-
ganize the multi-agent system. Norms are communicated, for example, since agents
in open systems can join a multi-agent system whose norms are not known. Norms
are distributed among agents, for example, since when new norms emerge the agent

7 The Norm Implementation Problem in Normative Multi-Agent Systems 201

could find a new coalition to achieve its goals. Norm violations and norm com-
pliance are detected, for example, since spontaneous emergence norms of among
agents implies that norm enforcement cannot be delegated to the multi-agent infras-
tructure.” [59] They refer to game theory in a very liberal sense, not only to classical
game theory studied in economics, which has been criticized for its ideality assump-
tions. Of particular interest are alternatives taking the limited or bounded rationality
of decision makers into account.

Games can explain that norms should satisfy various properties to be effective
as a mechanism to obtain desirable behavior. For example, the system should not
sanction without reason, as the norms would loose their force to motivate agents.
Moreover, sanctions should not be too low, but they also should not be too high.
Otherwise, once a norm is violated, there is no way to prevent further norm viola-
tions.

Games can explain also the role of various kinds of norms in a system. For exam-
ple, assume that norms are added to the system one after the other and this operation
is performed by different authorities at different levels of the hierarchy. Lewis “mas-
ter and slave” game [284] shows that the notion of permission alone is not enough to
build a normative system, because only obligations divide the possible actions into
two categories or spheres: the sphere of prohibited actions and the sphere of permit-
ted (i.e., not forbidden) actions or “the sphere of permissibility”. More importantly,
Bulygin [93] explains why permissive norms are needed in normative systems using
his “Rex, Minister and Subject” game. “Suppose that Rex, tired of governing alone,
decides one day to appoint a Minister and to endow him with legislative power. [...]
an action commanded by Minister becomes as obligatory as if it would have been
commanded by Rex. But Minister has no competence to alter the commands and
permissions given by Rex.” If Rex permits hunting on Saturday and then Minister
prohibits it for the whole week, its prohibition on Saturday remains with no effect.

As another example, Boella and van der Torre’s game theoretic approach to nor-
mative systems [55] studies the following kind of normative games.

Violation games: interacting with normative systems, obligation mechanism, with
applications in trust, fraud and deception.

Institutionalized games: counts-as mechanism, with applications in distributed
systems, grid, p2p, virtual communities.

Negotiation games: MAS interaction in a normative system, norm creation action
mechanism, with applications in electronic commerce and contracting.

Norm creation games: multi-agent system structure of a normative system, per-
mission mechanism, with applications in legal theory.

Control games: interaction among normative systems, nested norms mechanism,
with applications in security and secure knowledge management systems.

Norms are not only seen as the mechanism to regulate behavior of the system,
but they are often also part of a larger institution. This raises the question what

202 D. Grossi, D. Gabbay, and L. van der Torre

precisely the role of norms is in such an organization. Norms are rules used to guide,
control, or regulate desired system behavior. However, this is not unproblematic,
since norms can be violated, and behavior of agents may change in unexpected
ways when norms are introduced due to self organization. Norms can also be seen
as one of the possible incentives to motivate agents, which brings us again back
to economics. The fact that norms can be used as a mechanism to obtain desirable
system behavior, i.e., that norms can be used as incentives for agents, implies that in
some circumstances economic incentives are not sufficient to obtain such behavior.
For example, in a widely discussed example of the so-called centipede game, there
is a pile of thousand pennies, and two agents can in turn either take one or two
pennies. If an agent takes one then the other agent takes turn, if it takes two then the
game ends. A backward induction argument implies that it is rational only to take
two at the first turn. Norms and trust have been discussed to analyze this behavior,
see [235] for a discussion.

A rather different role of norms is to organize systems. To manage properly com-
plex systems like multi-agent systems, it is necessary that they have a modular de-
sign. While in traditional software systems, modularity is addressed via the notions
of class and object, in multi-agent systems the notion of organization is borrowed
from the ontology of social systems. Organizing a multi-agent system allows to de-
compose it and defining different levels of abstraction when designing it. Norms are
another answer to the question of how to model organizations as first class citizens
in multi-agent systems. Norms are not usually addressed to individual agents, but
rather they are addressed to roles played by agents [56]. In this way, norms from
a mechanism to obtain the behavior of agents, also become a mechanism to create
the organizational structure of multi-agent systems. The aim of an organizational
structure is to coordinate the behavior of agents so to perform complex tasks which
cannot be done by individual agents. In organizing a system all types of norms
are necessary, in particular, constitutive norms, which are used to assign powers to
agents playing roles inside the organization. Such powers allow to give commands
to other agents, make formal communications and to restructure the organization
itself, for example, by managing the assignment of agents to roles. Moreover, nor-
mative systems allow to model also the structure of an organization and not only the
interdependencies among the agents of an organization. Roles are played by other
agents, real agents (human or software) who have to act as expected by their role.
Each of these elements can be seen as an institution in a normative system, where
legal institutions are defined by Ruiter [375] as “systems of [regulative and consti-
tutive] rules that provide frameworks for social action within larger rule-governed
settings”. They are “relatively independent institutional legal orders within the com-
prehensive legal orders”.

The second NorMAS workshop identified a trend towards a more dynamic in-
teractionist view: “This shift of interest marks the passage of focus from the more
static legalistic view of norms (where power structures are fixed) to the more dy-
namic interactionist view of norms (where agent interaction is the base for norm re-
lated regulation).” This ties in to what Strauss [409] called “negotiated order”, Goff-

7 The Norm Implementation Problem in Normative Multi-Agent Systems 203

man’s [197] view on institutions, and Giddens’ [194] structuration theory. See [59]
for a further discussion.

7.2.2 Specification and verification of normative multi-agent
systems

The motivation of our work is to provide an answer to the more general issue of
finding a logical formalism that could play for programming NMAS the role that
BDI logics (e.g. [360]) have played for the programming of single agents. Such an
issue was recognized as central for the NMAS community during the NorMAS’07
Datstuhl Seminar [55], and it was raised in the following incisive form:

BDI : Agent Programming = ? : NMAS Programming.

This equation represents two issues. First, it raises the question about which con-
cepts should be used for programming NMAS, given that cognitive concepts like
beliefs, desires and intentions are used to program individual agents. There is some
consensus that instead of cognitive concepts, for normative multi-agent systems so-
cial and organizational concepts are needed, such as trust, norms and roles. Second,
from a logical perspective, it raises the question which logical languages used for
specification and verification can be used for NMAS, like BDI-CTL is used for
single agents. Thus far, only partial answers have been given to this question. For
example, deontic logic can be used to represent norms, but it cannot be used to say
how agents make decisions in normative systems, and about the multi-agent struc-
ture of normative systems.

In the traditional framework of artificial social systems, norms are designed off-
line [400]. Thus, a norm is part of the specification of the multi-agent system, and the
normative multi-agent system can be specified and verified using traditional tech-
niques. For example, since BDI-CTL [110] is used as a formal specification and
verification language for agent programming, and it has been extended with deontic
concepts such as obligations and permissions, called BOID-CTL [87, 88]. Such a
logic is simply a modal combination of an agent logic and a modal deontic logic.
One drawback of this approach is that the norms are not represented explicitly, see
Section 7.8. However, a more fundamental problem with this approach for the spec-
ification and verification of normative multi-agent systems is that it is difficult to
generalize this approach to the case where norms are created or synthesized at run-
time.

The main challenge of specification and verification of normative multiagent sys-
tems is the specification and verification of norm change, and in particular the spec-
ification and verification of norm creation. Norm creation distinguishes between the
creation of the obligation or prohibition, and the creation of the associated sanction.
For example, the obligation may be to return books to the library within three weeks,

204 D. Grossi, D. Gabbay, and L. van der Torre

and the sanction associated with its violation is that a penalty has to be paid, and no
other books can be borrowed. The creation of the obligation is often called the norm
design or synthesis problem [400], and the creation of the sanction is an example
of what we call the norm implementation problem. Thus, in the library example,
the norm implementation problem is that given that we want people to return their
books within three weeks, how can we build a system such that they will actually
do so? However, introducing sanctions is not the only way to implement norms. In
other cases, the norm can be regimented, or instead of penalties, rewards can be
introduced.

An alternative motivation to break down the specification of a normative multi-
agent system is common in computer science: divide and conquer. We distinguish
the specification and verification of normative multi-agent systems in three steps:
the specification and verification of the agents, the specification and verification
of the normative system, and the specification and verification of combining these
two systems: the norm implementation problem. This reflects a common ontology
of normative multi-agent systems. For example, Figure 7.1 shows the ontology of
Boella et al [58] containing a number of concepts related to each other. They divide
their ontology in three submodels: the agent model, the institutional model, and the
role assignment model, as shown in Figure 7.1. Roughly, an institution is a struc-
ture of social order and cooperation governing the behavior of a set of individuals.
Institutions are identified with a social purpose and permanence, with the enforc-
ing of rules governing cooperative human behavior. The figure visualizes the three
submodels which group the concepts of their ontology.

Fig. 7.1 The conceptual metamodel [58].

As Boella et al. observe, such a decomposition is common in organizational the-
ory, because an organization can be designed without having to take into account
the agents that will play a role in it. For example if a node with the role of sim-

7 The Norm Implementation Problem in Normative Multi-Agent Systems 205

ple user becomes a VO administrator, then this remains transparent for the orga-
nizational model. Likewise, agents can be developed without knowing in advance
in which institution they will play a role. As shown in Figure 7.1, the agent view
is composed by concepts like agent, goal and skill or ability and they are repre-
sented by means of a social dependence networks in which nodes are the agents
and the edges are the representation of goal-based dependencies. The institutional
view, instead, is composed by the notion of role and its institutional goals, skills and
facts. As for the agent view, also the institutional one is represented by means of
a social institutional dependence network representing the norm-based dependency
relations among roles. The role assignment view associates to each agent the roles
it plays, depending on the organization in which the agent is playing. All these no-
tions are unified in the combined view where the dependence network represents at
the same time both goal-based dependencies and norm-based ones connecting the
agents playing roles.

The norm implementation problem combines the specification and verification
of agents and norms, analogous to the role assignment problem combines these two
specifications. However, it does not consider organizational issue of role assign-
ment, but the question how to ensure that agents do comply with the norms. The
decomposition in the role assignment problem is based on the rationale that organi-
zations must be designed independently of the agents that will play a role in it. The
decomposition for the norm implementation problem is based on the rationale that
in specifying a normative system, it makes sense to first specify the sub-ideal states
the system should avoid, and thereafter how to ensure that the system avoids these
sub-ideal states. If one norm implementation method does not work, then it can be
replaced by another one, without changing the underlying norms.

7.2.3 Assumptions of norm implementation

Summarizing, the norm implementation problem is the part of the more general
problem of norm creation which lends itself to specification and verification, since
it focusses on the well-defined choice between regimentation and enforcement, or
the punishment associated with a norm violation. For example, whether it is hard
to give general guidelines for the violation states, since they can be defined by the
agents at run-time, it is more straightforward to specify how these violation states
must be avoided.

The assumption underlying our research problem is that the norm implementa-
tion problem can be studied in isolation. We thus disagree with the common idea that
norm implementation can be studied only together with the norm design problem,
in the context of norm creation. For example, when a system designer has to choose
among various kinds of norms, at the same time he has to take into account how the
norm can be implemented. If a norm is chosen which cannot be implemented, such
that it will not be complied with, then the norm may even be counterproductive,

206 D. Grossi, D. Gabbay, and L. van der Torre

undermining the belief or faith into the normative system (in particular, this holds
for legal systems). Though we agree that a choice among norms also has to take
the available implementations into account, we believe that this is not an argument
against studying norm implementation in isolation.

7.3 Formal framework and running example

The present section sets the stage of our formal investigations.

7.3.1 Norms and logic

The formal representation of norms by means of logic has a long-standing history. In
the present paper we assume a very simple perspective based on [15, 268, 313] rep-
resenting the content of norms as labeling of a transition systems in legal and illegal
states, which we will call violation states. In this view, the content of a normative
system can be represented by a set of statements of the form:

pre→ [a]viol (7.1)

that is, under the conditions expressed in pre, the execution of action a necessarily
leads to a violation state. Such statements can be viewed as constraints on the label-
ing of transition systems. Restating Formula (7.1), all states which are labelled pre
are states such that by executing an a-transition, states which are labelled viol are
always reached.1

It follows that a set of formulae as Formula (7.1) defines a set of labelled tran-
sition systems (i.e., the set of transition systems satisfying the labeling constraints
stated in the formulae), and such a set of transition systems can be viewed as repre-
senting the content of the normative system specified by those formulae.

Now, within a set of transition systems modeling a set of labeling constraints,
transition systems may make violation states possibly reachable by transitions in
the systems, and others possibly not. So, from a formal semantics perspective, we
can think of the implementation problem as the problem of selecting those transition
systems which:

1. Model a given normative system specification in terms of labeling constraints
like Formula (7.1);

2. Make some violation states unreachable within the transition system, hence reg-
imenting [260] the corresponding norms;

1 The reader is referred to [42] for more details on the logical study of labelled transition systems.

7 The Norm Implementation Problem in Normative Multi-Agent Systems 207

3. Make other violation states reachable but, at the same time, disincentivizing the
agents to execute the transitions leading to those states, for instance by triggering
appropriate systems reactions such as sanctioning, thus enforcing the correspond-
ing norms [203].

To sum up, normative systems can be studied as sets of labeling constraints on
the systems’ transitions generated by agents’ interaction, and the implementation
problem amounts to designing the NMAS according to those transition systems
which, on the one hand, model the labeling constraints and, on the other hand, make
the agents’ access to violation states either impossible (regimentation), or irrational
(enforcement). What we mean by the term “irrational” is precisely what is studied
by game theory [327], because due to punishments for norm violations the agent is
motivated to fulfill the norm. Of course, this does not exclude the possibility that
in some circumstances an agent may ignore this incentive and violate the norm. On
the contrary, this is one of the reasons why sometimes enforcement is preferred to
regimentation, because the creator of the norm cannot foresee all possible circum-
stances, and it is left to the rational agent to accommodate the local circumstances.
The next section moves to the fundamental role that —we think— game theory can
play for the analysis of the norm implementation problem.

7.3.2 Norm implementation and games

In a social setting, like the one presupposed by NMAS, action essentially means
interaction. Agents’ actions have repercussions on other agents which react accord-
ingly. Norm enforcement takes care that agents’ actions leading to violation states
happen to be successfully deterred, either by a direct system reaction or, as we
will see, by means of other agents’ actions. The readily available formal frame-
work to investigate this type of social interaction is, needless to say, game theory.
The present paper uses the term implementation in the technical sense of imple-
mentation theory, i.e., that branch of game theory which, together with mechanism
design [245, 251, 252, 303], is concerned with the design of the interaction rules—
the “rules of the game” [324] or mechanisms—to be put into place in a society of
autonomous self-interested agents in order to guarantee that the interactions in the
society always result in outcomes which, from the point of view of the society as a
whole (or from the point of view of a social designer), are considered most desirable
(e.g., outcomes in which social welfare is realized).2

In this paper we are going to work with games in extensive forms [327]. Games
in extensive form have recently obtained wide attention as suitable tools for the
representation of social processes [40]. However, the key advantage for us of choos-
ing games in extensive form is that such games are nothing but tree-like transition

2 Therefore, when we talk about norm implementation we are not referring to the term implemen-
tation in its programming acception like, for instance, in [188].

208 D. Grossi, D. Gabbay, and L. van der Torre

a c

b

d

Fig. 7.2 Initial state.

systems. This allows us to directly apply the logic-based representation of norms
exposed in Section 7.3.1, thus obtaining a uniform formal background for talking
about both norms and games and, hence, for formulating the norm implementation
problem in an exact fashion. To ease such exact formulation, we will make use of a
simple running example.

7.3.3 Running example: ruling the Blocks World

We assume a multi-agent variant of the blocks world, where agents cannot do con-
current actions (so we do not consider the issue of lifting a block simultaneously).
Therefore we assume that the agents have to take actions in turn.

In the standard blocks world scenario [380], the pre- and postcondition specifica-
tion of the action move(a,b,c) (“move block a from the top of b to the top of block
c”) runs as follows:

(on(b,a)∧clear(c)∧clear(b)∧turn(i)) ↔ 〈move(b,a,c)(i)〉> (7.2)
(on(b,a)∧clear(c)∧clear(b)∧turn(i)) → [move(b,a,c)(i)]((on(b,c)

∧clear(b)∧clear(a)) (7.3)

that is to say: the robotic arm i can execute action move(b,a,c) iff it is the case
that both blocks b and c are clear, and it is its ‘turn’ to move;and the effect of such
action is that block b ends up to the top of block c while block a becomes clear.
By permutation of the block identifiers, it follows that action move(a,d,c) cannot be
executed in the state depicted in Figure 7.2, in which block d represents the floor. We
assume background knowledge such that, for example, on(b,c) implies ¬clear(c).

Suppose now the robotic arm to be in state of executing action move(a,d,c) also
if block a is not clear, thus possibly moving a whole stack of blocks at one time.
Suppose also that the system designer considers such actions as undesirable. In this
case the robotic arm can be considered as an autonomous agent, and the designer as
a legislator or policymaker. In order to keep the example perspicuous, the scenario

7 The Norm Implementation Problem in Normative Multi-Agent Systems 209

is limited to one agent, but we can express multiple agents analogously. The action
move(a,d,c) would get the following specification. Formula (7.4) does no longer
demand clear(a), but Formula (5) does not specify the effect when this is the case,
i.e., when two or more blocks are moved simultaneously.

(on(a,d)∧clear(c)∧turn(i)) ↔ 〈move(a,d,c)(i)〉> (7.4)
(on(a,d)∧clear(c)∧clear(a)∧turn(i)) → [move(a,d,c)(i)](on(a,c)

∧clear(a)
∧¬clear(c)) (7.5)

(on(a,d)∧clear(c)∧¬clear(a)∧turn(i)) → [move(a,d,c)(i)](on(a,c)
∧¬clear(a)
∧¬clear(c)
∧viol(i)) (7.6)

where viol(i) intuitively denotes a state brought about by agent i which is undesir-
able from the point of view of the system designer.

Suppose also that the system designer wants to implement the norm expressed
by Formula (7.6).3 The paper tackles this question displaying a number of strategies
for norm implementation (Sections 7.4, 7.5, 7.6 and 7.7).

7.3.4 Talking about norms and extensive games in the Blocks
World

In this section we bring together the logic-based perspective on norms sketched in
Section 7.3.1 with the game-theoretic setting argued for in Section 7.3.2. This will
be done in the context of the Blocks World scenario of the previous section. As a
result we obtain a very simple modal logic language4 which suffices to express the
properties of extensive games relevant for the purpose of the norm implementation
analysis of the Blocks World.

7.3.4.1 Language

The language is the standard propositional modal logic language with n modal oper-
ators, where n = |Act|, that is, one modal operator for each available transition label.
In addition, the non-logical alphabet of the language, consisting of the set of atomic
propositions Pr and of atomic actions Act, contains at least:

3 Notice that Formula (7.6) is an instance of Formula (7.1).
4 For a comprehensive exposition of modal logic the reader is referred to [47].

210 D. Grossi, D. Gabbay, and L. van der Torre

• Atoms in Pr denoting game structure: for all agents i ∈ I, turn(i),payoff(i, x),
labeling those states where it is player’s i turn, and where the payoff for player
i is x, where x is taken from a finite set of integers. The set of atoms denoting
payoffs is referred to as Prpay.

• Atoms in Pr denoting Blocks World states-of-affairs: for all blocks a,b ∈ B,on(a,
b), clear(a), labeling those states where block a is on block b, and where block
a has no block on it.

• Atoms in Pr denoting normative states-of-affairs: for all agents i ∈ I, viol(i),
labeling those states where player i has committed a violation.

• Atoms in Act denoting deterministic transitions: for all agents i ∈ I and blocks
a,b,c ∈ B: move(a,b,c)(i), labeling those state transitions where player i moves
block a from the top of block b to the top of block c.

The inductive definition of the set of formulae obtained from compounding via
the set of Boolean connectives {⊥,¬,∧} and the modal connectives {〈a〉}a∈Act is the
standard one.

7.3.4.2 Semantics

Models are labelled transition systems m = 〈W,Wend, {Ra}a∈Act,I〉 such that:

• W is a non-empty set of system states;

• {Ra}a∈Act is a family of labelled transitions forming a rooted finite tree, i.e. there
is a node such that there is a unique path from this node to all other nodes;

• Wend are the leaves of the finite tree;

• I : Pr −→ 2W is the state labeling function.

The standard satisfaction relation |= between pointed models (m,w) and modal for-
mulae is assumed [47]. In addition, the models are assumed to satisfy the determin-
ism condition, for all a ∈ Act:

〈a〉φ→ [a]φ.

Please note that such a condition is typical of the representation of actions within
games in extensive form.5

Now everything is put into place to formulate with exactness the question that
will be addressed in the next sections. Consider a model m as represented in Figure
7.3. State w1 is assumed to satisfy the relevant Blocks World description of Fig-
ure 7.2: (m,w1) |= on(a,d)∧clear(c)∧clear(b)∧¬clear(a).6 Notice that in the

5 The reader is referred, for more details, to [41].
6 To avoid clutter in figures and notation, in what follows forbidden actions (e.g. move(a,d,c)(i) at
w1) are denoted by “−”, and allowed actions (e.g. move(b,a,c)(i) at w1) are denoted by “+”. We
are confident that this notational simplification will not give rise to misunderstandings.

7 The Norm Implementation Problem in Normative Multi-Agent Systems 211

w1

w3

w2

payoff(i,1)

payoff(j,0)

payoff(i,0)

viol(i)

turn(i)
+

-

Fig. 7.3 Initial model.

model it is also assumed that agent i leans towards executing the action “−” leading
to the viol(i)-state which has got a higher payoff. The actions and the violation
conditions are given in the norm implementation problem. For example, there may
have been an obligation to do +, a prohibition to do −, an obligation to reach state
w2, or a prohibition to reach w3. Which norm is created is part of the norm synthesis
or creation problem, but not part of the norm implementation problem. For the latter
problem discussed in this paper, the structure of Figure 7.3.

Consider now a normative specification as represented by formulae like Formula
(7.6), together with an initial model (such as the one in Figure 7.3). What are the
transformations of the model m, guaranteeing that the agents in the system will
comply with the normative specification? This is, in a nutshell, what we are going
to investigate in the remainder of the paper.

7.3.5 Two important caveats

Before starting off with our analysis, we find it worth stating explicitly also what
this work is not about.

The issue of norm implementation as intended here has already received atten-
tion in the literature on MAS in the form of the quest for formal languages able to
specify sanctioning and rewarding mechanisms to be coupled with normative sys-
tems specifications. An example in this sense—but not the unique one—is [291],
where authors are concerned with the development of a whole framework for the
formal specification of NMAS. Such a framework is able to capture also norm-
implementation mechanisms such as sanctioning and rewarding systems. As our
research question discussed in Section 7.1 shows, our aim in this paper differs from
all such studies which can be found in the literature. The purpose of the paper is

212 D. Grossi, D. Gabbay, and L. van der Torre

not to develop a formalism for the specification of one or another mechanism which
could be effectively used for implementing norms in MAS. Rather, the paper aims
at moving a first step towards the development of a comprehensive formal theory
of norm implementation. Such a theory should be able to capture all forms of norm
implementation mechanisms highlighting their common features and understanding
them all as system transformations.

Finally, we want to stress that the present contribution abstracts completely from
the issue concerning the motivating aspect of norms, that is to say, their capacity to
influence and direct agents’ mental states and actions. We are not assuming here that
agents have the necessary cognitive capabilities to autonomously accept or reject
norms [116]. To put it yet otherwise, the perspective assumed here is the one of a
social designer aiming at regulating a society of agents by just assuming such agents
to be game-theoretic agents. We are of course aware of this simplification, which is
on the other hand necessary as we are facing the very first stage of the development
of a formal theory.

7.4 Making violations impossible

The present sections studies two simple ways of making illegal states unreachable
within the system.

7.4.1 Regimentation

Regimentation [260] is the simplest among the forms of implementation. Consider
our running example, and suppose the social designer wants to avoid the execution
of move(a,d,c) by (i) in the case block a is not clear, as expressed in Formula (7.6).

The implementation via regimentation for a transition a can be represented by a
transformation (or update) m 7−→ m′ of the model m into the model m′ such that:

Rm′
a := Rm

a −{(w,w
′) | (m,w) |= prea & (m,w′) |= viol(i)}

where prea are the preconditions of the execution of a leading to a violation. In
other words, it becomes in m′ impossible to execute a transition with label a in
prea-states leading to a violation state.

In the running example, where a= move(a,d,c)(i), such update results in pruning
away the edges labeled by “−” (i.e., move(a,d,c)(i) form the frame of m (Figure
7.4). The regimentation of the prohibition expressed in Formula (7.6) corresponds
therefore to the validity of the following property:

(on(a,d)∧clear(c)∧¬clear(a)∧turn(i))→ [move(a,d,c)(i)]⊥

7 The Norm Implementation Problem in Normative Multi-Agent Systems 213

w1

w2

payoff(j,0)

turn(i)
+

Fig. 7.4 Regimentation.

and hence, by modal logic and some additional background knowledge on the
Blocks World:

(on(a,d)∧clear(c)∧¬clear(a)∧turn(i))↔ 〈move(a,d,c)(i)〉>

which, notice, is a strengthening of Formula (7.4). In other words, regimentation
is an update restricting the possibility of actions of the agents by limiting them
exactly to the ones generating legal states. It is instructive to notice that the standard
Blocks World scenario can be viewed precisely as a result of the regimentation of
the normative variant of the scenario which we are considering here.

Within multi-agent systems, regimentation has been the first technique used for
norm implementation. A typical example of this is AMELI [167], where all exe-
cutable actions of agents are actions which are allowed according to the rule of the
institutions. A formal semantics for a multi-agent program capturing regimentation
is also studied in [125].

7.4.2 Retarded preconditions

Ordinary action logic describes the actions using preconditions and postconditions.
If a is an action with precondition prea and postcondition posta then

prea ↔ 〈a〉> (7.7)
prea → [a]posta (7.8)

express that action a can be executed if and only if prea hold (Formula (7.7)) and
with the effect expressed by posta (Formula (7.8)). So in the standard account of

214 D. Grossi, D. Gabbay, and L. van der Torre

a c

b

d

e

Fig. 7.5 Retarded preconditions. Initial state.

the blocks world, if the world is in the situation as depicted in Figure 7.2, b can be
moved on top of c but a cannot be moved.

According to the normative perspective we have assumed in the running example,
instead of imposing logically strong preconditions, we state logically weak precon-
ditions for action, which means allow their execution in a wider range of states and
assuming indeterminacy. In addition, we label states reached by performing actions
as violation states when they are executed under undesirable conditions (see Section
7.3.3). In short, actions are allowed to be executed under circumstances which can
possibly lead to violations, but only if the effects are still acceptable. If they are not,
then nothing has happened.

These intuitions lead us to introduce, within the framework exposed in Section
7.3.4, two new modal operators: 〈φ | a〉 ψ and [φ | a] ψ. The semantics of these new
operators is defined as follows:

m,w |= [φ | a] ψ iff ∀w′ ∈W if wRa|~φ�w′ then m,w′ |= ψ

m,w |= 〈φ | a〉 ψ iff ∃w′ ∈W such that wRa|~φ�w′ and m,w′ |= ψ

where ~φ� denotes, as usual, the truth-set of φ and Ra|~φ� is the subset of Ra con-
taining those state pairs (w,w′) such that the second element w′ of the pair satisfies
φ.7 Notice, therefore, that the new modal operators take an action (e.g., a) and a
formula (e.g., φ) yielding a new complex action type (e.g., φ | a). Such action type
corresponds, semantically, to those state transitions which are of the given action
type (a) and which end up in the given states (φ). So, retarded preconditions are rep-
resented, rather than as a formula, as part of an action type. This is in fact natural,
as retarded preconditions are a way to further specify an action type.

Note that if we consider only a single update, then it would suffice to introduce
Ra|~φ� as the subset of Ra containing pairs (w,w′) such that w′ |= φ. However, for
sequential actions we have multiple updates and this would not suffice. This illus-
trates that we have a reduction from our logic to the fragment without the dynamic
operators, as usually done in update logic (see, e.g., [420]).

7 It might be instructive to notice that such operators are definable within standard dynamic logic
[209] by means of the sequencing operator ; and the test operator ?: [φ | a] ψ := [a; ?φ]ψ. However,
the full expressivity of dynamic logic is not required given our purposes.

7 The Norm Implementation Problem in Normative Multi-Agent Systems 215

a

cb
d

e

Fig. 7.6 Situation A

a

c

b

d
e

Fig. 7.7 Situation B

a

cb
d

e

Fig. 7.8 Situation C

By means of this newly introduced operators, we can express that the execution
of a given action a is possible only under the condition that it has certain precise
effects φ (Formula (7.9)), and that each time it is executed having such effects φ, it
also guarantees that ψ holds (Formula (7.10)):

prea → 〈ret prea | a〉> (7.9)
prea → [ret prea | a] posta (7.10)

where prea represents the precondition of a where the execution of a possibly leads
to a violation; ret prea the postcondition of prea which are tolerated, i.e., its
retarded preconditions; and posta the postconditions of ret prea | a.

Let us now give an example. Suppose we have the situation depicted in Figure
7.5. We move a, and we might end up with one of the three options in Figures 7.6-
7.8. Suppose also that only the situation depicted in Figure 7.6 is tolerable to us. That
is, a can be moved on c only if it is slid out carefully from the tower composed by
a,b,e. Such tolerance can be expressed by means of retarded precondition, that is, a
precondition which is evaluated as a result of the action performed. In the example
at hand, the execution of action move(a,d,c) is tolerated in the case a is moved from
within a tower only if the result of the action yields the situation depicted in Figure
7.6:8

on(a,d)∧on(e,b)∧clear(c)→ 〈on(e,b) | move(a,d,c)〉> (7.11)
on(a,d)∧on(e,b)∧clear(c)→ [¬on(e,b) | move(a,d,c)]⊥ (7.12)
on(a,d)∧on(e,b)∧clear(c)→ [on(e,b) | move(a,d,c)]on(a,c). (7.13)

Block a can be moved also in the case it is not clear, provided that this does not
change the respective disposition of other blocks b and e (Formula 7.11). If that is
not the case, than it will not be possible to move it (Formula 7.12). The effect of the
execution of a under the retarded precondition that the stack of b and e is left intact
results in a being placed on c (Formula 7.13).

The specification of retarded preconditions for actions can be viewed as a
smoothening of regimentation requirements. As shown in the example above, in-

8 We drop the turn(i) atoms in the following formalization.

216 D. Grossi, D. Gabbay, and L. van der Torre

stead of regimenting the non-execution of action move(a,d,c) in case block a as
positioned within a tower, we can express that the execution can be tolerated, pro-
vided it gives rise to specific results (Figure 7.6).

In a nutshell, the use of retarded preconditions is typical of situations where the
execution of a given action a under certain circumstances φ can possibly lead to a
violation state:

φ∧〈a〉viol.

In such cases, we might not want to impose a regimentation, requiring that:

φ→ [a]⊥

but we would rather still allow the agent to perform the action, provided that it does
not end up in violation states, that is, we allow the execution of the action under the
potentially problematic conditions φ but only by assuming the retarded precondition
¬viol:

φ→ 〈¬viol | a〉>
φ→ [viol | a]⊥

We conclude spending a few more words on the notion of retarded precondition.
Such notion of retarded precondition is implicit in our culture. The saying “you
can’t argue with success” illustrates that way of thinking. An agent can take action
without following the rules and if he is successful then we have to accept it. A major
example is Admiral Nelson defying command and defeating the Spanish fleet. He is
a hero. Had he failed, he would have been court marshalled.

7.5 Perfect enforcement

Perfect enforcement takes place when the execution of an action leading to a viola-
tion state is directly deterred by modifying the payoffs that the agent would obtain
from such an execution. The following condition says that the best action does not
imply a violation of the norm. It covers both penalties and rewards, or combinations
of them.

Let Prpay denote the set of payoff atoms and let Max(i) denote the maximum
payoff an agent i gets at a violation end state, if such a state exists. The implemen-
tation for i via perfect enforcement with respect to a transition a, is a model update
changing m = (W, {Ra}a∈Act,I) to m′ = (W′, {R′a}a∈Act,I

′) as follows:

• W =W′;

• Wend =W′end;

• {Ra}a∈Act = {R′a}a∈Act;

7 The Norm Implementation Problem in Normative Multi-Agent Systems 217

• ImdPr−Prpay = Im′dPr−Prpay, where d denotes the domain restriction opera-
tion on functions;

• Im′dPrpay is such that if Wend ∩−I(viol(i)) , ∅, then for some payoff atom
payoff(i, x) with x > Max(i) and state w ∈W′end, w ∈ I′(payoff(i, x)).

Notice that the update does not modify the interpretation of atoms which are not
payoff atoms nor the frame of the model. What it does is to change I to a valuation
I′ which guarantees that at least one state in the end states of the game which are
not violation states (if such states exist), the payoff for i is higher than the payoff
in any of the violation states. Intuitively, such an update guarantees that each agent
faced with a decision between executing a transition leading to a violation state,
and one leading to a legal one, will—if they act rationally from a decision-theoretic
perspective—choose for the latter.

A number of different implementation practices can be viewed as falling under
this class such as, for instance, fines or side payments. However, the common feature
consists in viewing the change in payoffs as infallibly determined by the enforce-
ment, thereby giving rise to perfect deterrence. The next section will show what
happens if such an assumption is dropped.

Getting back to our running example, the perfect enforcement of the prohibi-
tion expressed in Formula (7.6) results, therefore, in the validity of the following
property:

on(a,d)∧clear(c)∧on(b,a)∧turn(i)→ ([+]payoff(i,1)∧ [−]payoff(i,0))

where + = move(b,a,c)(i) and − = move(a,d,c)(i).

We deem worth stressing again the subtle difference between perfect enforcement
and regimentation. While regimentation makes it impossible for the agents to reach a
violation state, automatic enforcement makes it just irrational in a decision-theoretic
sense. In other words, it is still possible to violate the norm, but doing that would be
the result of an irrational choice. As such, perfect enforcement is the most simple
form of implementation which leaves the game form (i.e., the frame of the modal
logic models) intact. Although the extensive game considered is a trivial one-player
game, it should be clear that taking more player into consideration would not be a
problem. In such case, the application of solution concepts such as sub-game perfect
Nash [327] would become relevant.

In the multi-agent systems literature, perfect enforcement is used to provide a
formal semantics to multi-agent programs in [125].

7.6 Enforcers

Commonly, perfect deterrence is hard to realize as each form of sanctioning requires
the action of some third-party agent whose role consists precisely in making the

218 D. Grossi, D. Gabbay, and L. van der Torre

sanctions happen. Enforcement via agents (the enforcers) corresponds to the update
of model m to a model m′ defining a new game form between a player i and enforcer
j. The actions of enforcer j are punish(i) and reward(i). As a result of such an
update, the original model m results in a sub-model of m′. The update is defined as
follows:

• W′end = {(w,n) | w ∈Wend & n ∈ {1,2}};

• W′ = W ∪W′end, that is, each dead end of W is copied twice and added to the
domain;

• {R′a}a∈Act = {Ra}a∈Act, that is, the labeling via Act remains the same;

• R′
reward(i) = {(w,w

′) | w ∈ Wend & w′ = (w,1)} and R′
punish(i) = {(w,w

′) | w ∈
Wend & w′ = (w,2)}, that is, the added transitions are labeled as rewarding and
punishing;

• I′ = I for all states in W;

• I′ for the states in W′end is such that ∀w,w′ s.t. w ∈Wend and (m′,w) |= payoff(i, x))
and wRm′

reward(i)w
′ : (m′,w′) |= payoff(i,y) with x ≤ y; and ∀w,w′ s.t. w ∈ Wend

and (m′,w) |= payoff(i, x)) and wRm′
punish(i)w

′ : (m′,w′) |= payoff(i,y) with x > y;

What the definition above states is that the update consists in adding to every dead
end in m a trivial game consisting of a binary choice by enforcer j between punish-
ing or rewarding agent i. The result of a reward leaves the payoff of i intact (or it
increases it), while the result of a punishment changes i’s payoff to a payoff which
is lower than the payoff i would have obtained by avoiding to end up in a violation
state. In the running example, the action of the enforcer swaps the payoffs of agent
i from 0 to 1 or from 1 to 1 in case of a reward; from 1 to 0 or from 0 to 0 in case of
a punishment, just like in the case of automatic enforcement.

However, the use of agents as enforcers implies the introduction of a further
normative level, since the enforcer can choose whether to comply or not with its
role, that is, punish if i defects, and reward if i complies:

(turn(j)∧viol(i)) → [reward(i)]viol(j) (7.14)
(turn(j)∧¬viol(i)) → [punish(i)]viol(j) (7.15)

Whether the enforcement works or not, depends on the payoffs of the enforcer j. We
are, somehow, back to the original problem of guaranteeing the behavior of an agent
(the enforcer in this case) to comply with the wishes of the social designer. The im-
plementation of norms calls for more norms (Figure 7.9). Enforcement via enforcing
agents lifts the implementation problem from the primary norms addressed to the
agents in the system, to norms addressed to special agents with ‘institutionalized’
roles.

To the best of our knowledge, the only systematic multi-agent system frame-
works addressing norm implementation at the level of enforcement isMoise+ and
its variants (e.g., [243]), although not providing a formal semantics for it.

7 The Norm Implementation Problem in Normative Multi-Agent Systems 219

payoff(i,0)

payoff(i,1)

payoff(i,0)

payoff(i,1)

w1

w4

w3

w2

w7

w6

w5

payoff(i,1)

payoff(j,0)

payoff(i,0)

viol(i)

turn(j)

turn(j)

turn(i)

viol(j)

+

-

+

+

-

-

viol(j)

Fig. 7.9 Enforcement norms.

payoff(i,0)

payoff(i,1)

w1

w3

w2

w6

w5

payoff(i,1)

payoff(j,0)

payoff(i,0)

viol(i)

turn(j)

turn(j)

turn(i)
+

-

+

+

Fig. 7.10 Regimentation of enforcement norms.

7.6.1 Regimenting enforcement norms

At this point, the norms expressed in Formulae (7.14) and (7.15) need implemen-
tation. Again, regimentation can be chosen. The result of regimentation of enforce-
ment norms in the running example is depicted in Figure 7.10. Formally, this corre-
sponds to an update m 7−→ m′ of m where:

Rm′
punish(i) = Rm

punish(i)−{(w,w
′) | m,w |= turn(j)∧viol(i) & m,w′ |= viol(j)}

Rm′
reward(i) = Rm

reward(i)−{(w,w
′) | m,w |= turn(j)∧¬viol(i) & m,w′ |= viol(j)}

As a result, the enforcer j always complies with what expected from its role. In
a way, regimented enforcement can be viewed as an equivalent variant of perfect

220 D. Grossi, D. Gabbay, and L. van der Torre

enforcement since its result is an adjustment of the payoffs of agent i w.r.t. to the
system’s norms.

7.6.2 Enforcing enforcement norms

If the payoffs of the enforcer are appropriately set in order for the game to deliver
the desired outcome, then the system is perfectly enforced by enforcer j who au-
tonomously complies with the enforcement norms expressed in Formulae (7.14)
and (7.15), punishing player i when i commits a violation and rewarding i when i
complies (Figure 7.11). In the running example, perfect enforcement of enforcement
norms can be defined by a simple update m 7−→m′ of the interpretation functions of
the two models such that:

Im′ (payoff(j,0)) = Im(viol(j))
Im′ (payoff(j,1)) = W −Im(viol(j))

which results in a perfect match between higher payoffs and legal behavior. Fig-
ure 7.12 represents, in strategic form, the extensive game depicted in Figure 7.11
between player i and enforcer j. It is easy to see that the desired outcome in which
both i and j comply is the only Nash equilibrium [327]. It goes without saying that
much more complex game forms could be devised, and different equilibrium no-
tions could be chosen for norm implementation purposes. It is at this level that a
number of concepts and techniques could be imported from Mechanism Design and
Implementation Theory [245, 251, 252, 303] to the formal theory of NMAS.

payoff(i,0)

payoff(i,1)

payoff(i,0)

payoff(i,1)

w1

w4

w3

w2

w7

w6

w5

payoff(i,1)

payoff(j,0)

payoff(i,0)

viol(i)

turn(j)

turn(j)

turn(i)
+

-

+

+

-

-

payoff(j,1)

payoff(j,0)

payoff(j,0)

payoff(j,1)

Fig. 7.11 Perfect enforcement.

7 The Norm Implementation Problem in Normative Multi-Agent Systems 221

7.6.3 Who controls the enforcers?

Our analysis clearly shows the paradox hiding behind norm implementation. In or-
der to implement norms, it is likely to need more norms.

The implementation of a set of norms can be obtained either via regimentation
or via automatic enforcement or by the specification of an enforcement activity to
be carried out by an enforcer. Enforcement specification happens at a normative
level, i.e., via adding more norms to the prior set which, in turn, also require imple-
mentation. Schematically, suppose X to be the non-empty set of to-be-implemented
norms, Regiment(X) to denote the set of norms from X which are regimented or
automatically enforced, and Enforce(X) to denote the set of norms containing X
together with all the norms specifying the enforcement of X (X ⊆ Enforce(X)). The
implementation of S is the enforcement of the norms in S which are not regimented:
Implement(X) = Enforce(X \ Regiment(X)).

In other words, to implement a set of norms amounts to implement the set of
unregimented norms together with their enforcement. These observations clearly
suggest that the implementation of a set of norms yields a set of norms. Somehow,
it is very difficult to get rid of norms when trying to implement them. The only
possibility is via full regimentation or automatic enforcement. If Regiment(X) = X
then there is no norm left to be implemented. Instead if Regiment(X) ⊂ X then ∅ ⊂
Implement(S), which means that the implementation operation should be iterated
on Implement(X). In principle, such iteration is endless, unless there exists a final
implementation level whose norms are all regimented or automatically enforced.

7.7 Implementation via norm change

This section concerns the ways of obtaining desired social outcomes by just modi-
fying the set of norms of the system. The formal analysis of such phenomena, which
is pervasive in human normative systems, is strictly related with the formal study of
counts-as [202] and intermediate concepts [287].

As an example, consider the model m′ obtained via the update of the initial model
m corresponding to perfect enforcement (Figure 7.11). Suppose now the social de-
signers wants to punish player i no matter what it does. One way for doing this

i
j

- +

- (1,0) (0,1)
+ (0,0) (1,1)

Fig. 7.12 Enforcement of the Blocks World scenario in strategic form

222 D. Grossi, D. Gabbay, and L. van der Torre

payoff(i,0)

payoff(i,1)

w1

w3

w2

w7

w6

payoff(i,1)

payoff(i,0)

viol(i)

turn(j)

turn(j)

turn(i)
+

- +

-

payoff(j,1)

payoff(j,0)

viol(i)

payoff(i,0)

payoff(i,1)

w7

w6
+

-

payoff(j,1)

payoff(j,0)

viol(j)

viol(j)

Fig. 7.13 Implementation via norm change.

would be to go back to the initial model m, to replace the enforcer norms expressed
in Formulae (7.14) and (7.15) by the following norm:

turn(j)→ [reward(i)]viol(j) (7.16)

and then update m to implement the norm expressed in Formula (7.16), for instance
via perfect enforcement.

A much quicker procedure would consist in updating model m′ trying to inherit
its implementation mechanism. This can be done by simply modifying the extension
of atom viol(i) in order for it to include state w2, thereby automatically triggering
the enforcement norms expressed in Formulae (7.14) and (7.15). As a result, the
enforcement mechanism in place in model m′ are imported “for free” by simply
changing the meaning of viol(i) (Figure 7.13). As you can see, the payoffs for
enforcer j are different from Figure 7.11.

The update of the extension of viol(i) can be obtained, for instance, by adding
the following norm to the system:

on(b,a)∧clear(b)∧clear(c)∧turn(i) → [move(b,a,c)(i)]viol(i) (7.17)

To put it otherwise, such procedure exploits the nature of viol(i) as an intermediate
concept occurring as precondition of other norms. In this case the norms involved
are the enforcement norms expressed in Formulae (7.14) and (7.15).

7.8 Related work

In this section we consider whether existing work in normative multi-agent systems
is able to answer the equation discussed in the introduction.

7 The Norm Implementation Problem in Normative Multi-Agent Systems 223

BDI : Agent Programming = ? : NMAS Programming.

Since BDI-CTL [110] is used as a formal specification and verification language
for agent programming, an obvious candiate for our question mark is an extension
of this language with deontic concepts such as obligations and permissions, called
BOID-CTL [87, 88]. Such a logic is simply a modal combination of an agent logic
and a modal deontic logic. The drawback of this approach is that the norms are nor
represented explicitly.

The first candidate for the question mark is Tennenholtz and Shoham’s game-
theoretic approach to artificial social systems. However, the central research ques-
tion of their work [400, 401, 412] consists in studying the emergence of desirable
social properties under the assumption that a given social law is followed by the
agents in the society at hands. The problem of how a social law can be implemented
in the society is not discussed.

Another obvious candidate for the question mark is a theory of normative sys-
tems [5]. The key feature of normative systems is that they make norms explicit in
such a way that we can say, at a given state of the system, whether a norm is active,
in force, violated, and so on [417]. See [206] for an up to date review on the distinc-
tion between a theory of normative systems and deontic logic, and the challenge to
bridge the two. A theory of normative systems is useful for norm representation and
reasoning, but not for the representation of aspects such as the multi-agent structure
of a normative system.

A third candidate is Boella and van der Torre’s game-theoretic approach to nor-
mative multi-agent systems, which studies the more general problem of norm cre-
ation [48, 53]. For example, the introduction of a new norm with sanctions is mod-
eled as enforceable norms in artificial social systems as the choice among various
strategic games [52]. They focus in particular on the enforcement of norms using
enforcers, and discuss the role of procedural norms to motivate the enforcers [54].
They consider the creation of a new norm into a system of norms, whereas in this
paper we do not consider the effect of norm implementation on existing norms. They
argue that the infinite regression of enforcers can be broken if we assume that en-
forcers control each other and do not cooperate [52]. Since they use strategic rather
than extensive games they cannot distinguish some subtle features of implementa-
tion such as retarded preconditions. Moreover, they do not give a procedure to go
from a norm to its implemented system. Finally, they do not consider other meth-
ods than sanctioning and rewarding to implement their norms. They do consider
also cognitive extensions of their model, which we do not consider in this paper.
See [53] for a detailed discussion on their approach.

There are many organizational and institutional theories, such as the ones pro-
posed in [202], and there is a lot of work on coordination and the environment
[123,366]. Institutions are built using constitutive norms defining intermediate con-
cepts. However, this work is orthogonal to the work presented in this paper in as
much as, although sporadically addressing one or another form of implementation,
it never aims at laying the ground of an overarching formal framework.

224 D. Grossi, D. Gabbay, and L. van der Torre

7.9 Conclusions

Aim of the paper is to illustrate how the issue of norm implementation can be under-
stood in terms of transformations (updates) performed on games in extensive forms.
The paper has sketched some of such updates by means of a toy example, the blocks
world, and mapped them to norm implementation strategies, such as regimentation,
automatic enforcement, enforcement via enforcers, and implementation via norm
change. The full logical analysis (e.g., in a dynamic logic setting) of the update op-
erations sketched here is future work. Such an analysis will make some intricacies
of implementation explicit, such as, for instance the fact that by implementing new
norms, the implementation of other norms might end up being disrupted.

Moreover, we introduce two views on representing forbidden actions, the classi-
cal one in which the precondition has to be satisfied before the action can be exe-
cuted, and one based on so-called retarded preconditions. The two views coincide if
the language allows for action names, and we can include as part of the state a list
of which actions are allowed in this state. This can be formalised by the predicate
allowed(X), where X are names for actions. The allowed(X) predicate can be part of
the preconditions of X. We can use the feedback arrows of retarded preconditions in
Kripke models to change accessibility. This will implement the severed connections
in the diagrams, and the semantics would then be reactive Kripke models. Consider
for example the restriction ”you should not take any action three times in a row.”
With retarded preconditions, we can do a “roll-back” when the action occurs three
times in a row, whereas with regimentation we have to predict whether the action is
going to be executed three times rather than two or four times. A further comparison
of the two views is topic for further research.

Finally, topics for further research are also the development of a more detailed
classification of norm implementation methods, the application of retarded precon-
ditions to the analysis of ambiguous norms.

Acknowledgments

The authors would like to thank the reviewers of the volume for their helpful com-
ments. Davide Grossi wishes to acknowledge support by Ministère de la Culture,
de L’Enseignement Supérieur et de la Recherche, Grand-Duché de Luxembourg
(grant BFR07/123) and by Nederlandse Organisatie voor Wetenschappelijk Onder-
zoek (VENI grant 639.021.816).

Chapter 8

A Verification Logic for G Agents

K.V. Hindriks

Abstract Although there has been a growing body of literature on verification of
agents programs, it has been difficult to design a verification logic for agent pro-
grams that fully characterizes such programs and to connect agent programs to
agent theory. The challenge is to define an agent programming language that defines
a computational framework but also allows for a logical characterization useful for
verification. The agent programming language G has been originally designed to
connect agent programming to agent theory and we present additional results here
that G agents can be fully represented by a logical theory. G agents can thus
be said to execute the corresponding logical theory.

K.V. Hindriks
Delft University of Technology, The Netherlands e-mail: k.v.hindriks@tudelft.nl

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 225
DOI 10.1007/978-1-4419-6984-2 8, c© Springer Science+Business Media, LLC 2010

k.v.hindriks@tudelft.nl

226 K.V. Hindriks

8.1 Introduction

As technology for developing agent systems is becoming more mature, the avail-
ability of techniques for verifying such systems also becomes more important. Such
techniques do not only complement tools for debugging agent systems but may also
be used to supplement the techniques available for debugging agents. For example,
model checking techniques may be used to find counter examples that show that an
agent system does not satisfy a particular property. A counter example produces a
run of a system that violates a property and as such indicates what is wrong with
an agent. Program model checking discussed in [66] is an approach that supports
this type of verification. It involves the construction of a semantic model M that
correctly represents an agent’s execution and that can be used to check satisfaction
of a property ϕ, i.e. M |= ϕ. The key problem that needs to be solved to be able to
use model checking for verification concerns the efficient construction of (part of) a
model M from a given agent system that is sufficient for verifying this system.

Model checking is one approach to verifying agents. An alternative approach
to verifying agents involves the use of deduction. This approach assumes that a
logical theory of an agent is available. The task of verifying that an agent satisfies a
particular property ϕ amounts to deducing ϕ from the given theory T , i.e. T ` ϕ. The
key problem that needs to be solved to be able to use deduction as a verification tool
concerns the construction of a corresponding logical theory T from a given agent
system. It is the goal of this chapter to introduce such a theory for the G agent
programming language [221].

Verification techniques based on deduction have been widespread in Computer
Science and have been provided for a broad range of programming languages. The
programming constructs and the structure of programs in a programming language
often naturally give rise to an associated programming logic. This has been partic-
ularly true for imperative programming languages but also for concurrent program-
ming languages [23, 296, 298].

The verification approach presented here for G consists of two parts. First,
an operational semantics that provides a model for executing agent programs is
defined. This provides a computational framework that specifies how G agents
are to be executed. Second, a logic for verification is introduced and it is shown that
the logical semantics corresponds with the operational semantics. It is our aim in
this chapter to stay as close as possible to the actual implementation of the G
language, although we do abstract away a number of features that are present in
the interpreter for the language and focus on single agents. In particular, we have
provided a semantics for logic programs as part of the operational semantics to
model the Prolog engine that is used in the implementation. Similarly, we have
aimed for a verification logic which semantics corresponds in a precise sense with
the operational semantics and can be used to fully characterize agent programs. As
we will show, basic G agent programs discussed here may be mapped into a
corresponding logical theory by means of a straightforward translation scheme that

8 A Verification Logic for G Agents 227

fully characterizes the runs of these programs. This result shows that G agent
programs may be perceived as executing the corresponding logical theory.

8.2 Related work

There is a growing body of literature on deductive verification of rational agents and
agent programs that are based on the Belief-Desire-Intention metaphor. The work
related most to our approach concerns logics for the languages 3APL [223] and its
successor 2APL [122], and work on ConGolog [193] - a closely related language
to 3APL (cf. [225]). The CASL framework [395], also discussed in this volume,
that can be viewed as an extension of the situation calculus, also aims at defining a
logical framework for specifying rational agents.

Early work on designing a verification logic for 3APL is reported in [216] and
introduces a dynamic logic to reason about 3APL programs without self-modifying
reasoning rules. The logic assumes that such programs terminate, which derives
from the use of a dynamic logic [210], but also accounts for the use of free variables
in the execution of 3APL programs. In [6], a logic for reasoning about agent pro-
grams in a simplified version of 3APL is introduced, called SimpleAPL. [6] presents
a propositional logic to reason about the core features of 3APL, including beliefs
and goals, which is proven sound and complete. Finally, [7] discusses a logic for
reasoning about the deliberation cycle of an agent in 3APL. This paper addresses
reasoning at another level, the execution strategy of the interpreter, rather than the
execution of actions and action selection by the agent itself.

[288] presents a Hoare-style proof system for verifying Golog programs, a sub-
set of the ConGolog language, which is proven sound and complete. The work is in
many ways similar to that discussed in the previous paragraph. The logic and aims
are similar in various respects, but agents in Golog do not have explicit beliefs and
goals. The latter restriction has motivated the extension of the basic Golog frame-
work with explicit knowledge and goal operators in CASL [395]. CASL extends the
situation calculus with a semantics for such operators using situations in a way sim-
ilar to how modal worlds are used in classical modal logic. The approach, however,
is very expressive allowing for quantification over formulas (as terms) and it is less
clear what the computational properties of the framework are.

In previous work on G [60], a verification framework for G agents has
been introduced that consists of two parts: A Hoare-style logic for reasoning about
actions and a temporal logic for reasoning about runs of such agents. This frame-
work allows for the verification of G agents and has been related to Intention
Logic [217]. The work presented here differs in various ways from [60]. First, here
we use a temporal logic for reasoning about actions and do not introduce Hoare-style
axioms. Second, we show that the resulting logic can be used to fully characterize
G agents. Third, the logic allows for quantification and is a first-order verification
logic.

228 K.V. Hindriks

8.3 The Agent Programming Language G

The agent programming language G is presented here by defining its operational
semantics. The section is organized as follows. In 8.3.1 we very briefly informally
introduce the key concepts that make up a G agent program. G agents derive
their choice of action from their beliefs and goals and need a knowledge representa-
tion language to represent these which is introduced in 8.3.2. As G agents derive
what to do next from their mental state, we then continue by introducing the seman-
tics of mental states in 8.3.3. Using the mental state semantics, the meaning of a
G agent program is specified using structural operational semantics [340]. The
operational semantics determines which transitions from one mental state to another
can be made. It makes precise how the mental state of a G agent changes when
it performs an action.

8.3.1 G Agent Programs

A G agent program consists of the agent’s knowledge, beliefs, its goals, a set of
action rules and a set of action specifications. Other features present in the language
for e.g. percept handling, modules and communication are not discussed here. For a
more thorough and comprehensive introduction to the language see [221].1

The knowledge, the beliefs and the goals of an agent are specified declaratively
by means of a knowledge representation language, which facilitates the design of
agent programs at the knowledge level [321]. The knowledge of a G agent is as-
sumed to be static and does not change over time. The knowledge, beliefs and goals
of an agent define the agent’s mental state. G does not commit to any particular
knowledge representation technology but for purposes of illustration we will use a
variant of PDDL here [192].2 This has the additional benefit that PDDL action spec-
ficiations with conditional actions are supported, and this variant of G is able to
support the full expressivity of ADL action specifications [336]. A G agent de-
rives its choice of action from its beliefs and goals. It does so by means of action
rules of the form ifψ then a(t) where ψ is a condition on the mental state of the agent
and a(t) is an action the agent can perform. Whenever the mental state condition ψ
holds the corresponding action a(t) is said to be an option. At any time, there may
be multiple options from which the agent will select one nondeterministically.

1 The reader is referred to [215] for a semantics of modules and [220] for a semantics of commu-
nication.
2 The first-order logic variant of PDDL that we will discuss includes so-called axioms for derived
predicates. This variant has been implemented as one of the options for choosing a knowledge rep-
resentation language in G. A programmer can also choose to use Prolog, for example. Although
the first-order language presented is richer than that of Prolog, the fragment discussed here can be
compiled into Prolog (cf. [289]).

8 A Verification Logic for G Agents 229

8.3.2 Knowledge Representation Language

We will use a first-order language L0 for representing the knowledge, beliefs and
goals of an agent.3 L0 is built using a vocabulary that consists of a finite sets of
predicates P with typical elements p, function symbols F with typical elements f ,
constant symbols C with typical elements a,b,c, and an infinite supply of variables
V with typical elements x,y,z. We also assume that L0 includes equality =. The
set of predicates P consists of two disjoint sets of so-called basic predicates B and
derived predicates D, such that P = B∪D and B∩D = ∅. The distinction is used
to differentiate predicates that may be updated by actions from those that cannot
be updated so. The idea is that basic predicates may be updated whereas derived
predicates may only be used to define additional concepts that are defined in terms
of the more basic predicates.

Definition 8.1. (Syntax of L0)

t ∈ T ::= x | c | f (t)
φ ∈ L0 ::= t = t | p(t) | φ∧φ | φ∨φ | ¬φ | ∀x(φ)

A term t is either a variable x ∈ V, a constant c ∈ C, or a function symbol f
applied to a vector t of terms of the appropriate arity. Vectors of variables and terms
are denoted by bold face x respectively t. Formulas p(t) with p ∈ P are called atoms.
Atoms p(t) or their negations ¬p(t) are also called literals. Literals l and ¬l are said
to be complementary. As usual, φ→ φ′ is an abbreviation for ¬φ∨ φ′, and ∃x(φ)
abbreviates ¬∀x(¬φ). We write φ[x] to indicate that all free variables of φ occur
in the vector x. A formula that does not contain free variables is said to be closed.
Closed formulas without quantifiers, i.e. formulas without any variables, are also
said to be ground. The set of all ground atoms of the form p(t) is denoted by F.
The subset Fb ⊆ F consists of all atoms of the form p(t) with p ∈ B, and, similarly
Fd ⊆ F consists of all atoms p(t) with p ∈ D. Elements from Fb (Fd) are also called
basic (derived) facts, and basic (derived) facts and their negations are called basic
(derived) literals. Finally, we use ∀(φ) to denote the universal closure of φ.

The distinction between basic and derived predicates that is made here is used to
distinguish basic facts about an environment from conceptual or domain knowledge
that can be defined in terms of these basic facts. The use of such defined predicates
facilitates programming and reduces the size of the program. We adopt the definition
of derived predicate axioms and related definitions below from [413].

Definition 8.2. (Derived Predicate Axiom)
A derived predicate axiom is a formula of the form ∀x(φ[x]→ d(x)) with d ∈ D.4

3 This language is referred to as a knowledge representation language traditionally, even though it
is also used to represent the goals of an agent.
4 We do not allow terms in the head of a derived predicate axiom here, mainly because it simplifies
the presentation and definition of completion below.

230 K.V. Hindriks

In our setting, the antecedent φ of such an axiom may not contain occurrences
of other derived predicates that “depend on” the definition of d.5 Technically, the
requirement is that a set of derived predicate axioms needs to be stratified. Before
we define stratification it is useful to introduce the notion of a negated normal form.
A formula φ is in negated normal form if all occurrences of negations occur directly
in front of atoms. For example, ∀x(¬p(x)∨ (q(x)∧ r(x))) is in negated normal form
but ¬∃x(¬(p(x)∧ q(x))) is not because negation occurs in front of the existential
quantifier and in front of a conjunction. We remark here that this definition assumes
that all implications → have been expanded into their unabbreviated form. That
is, occurrences of, for example, (p(x)∧ q(x))→ r(x) are not allowed and must be
replaced with the negated normal form of, in this case, ¬(p(x)∧ q(x))∨ r(x), i.e.
¬p(x)∨¬q(x)∨ r(x). It is clear that each formula φ ∈ L0 can be transformed into
an equivalent formula in negated normal form and we write NNF(φ) to denote this
formula.

Definition 8.3. (Stratified Derived Predicate Axiom Set)
A set of derived predicate axioms is called stratified iff there exists a partition of
the set of derived predicatesD into (non-empty) subsets {Di,1 ≤ i ≤ n} such that for
every di ∈ Di and every axiom ∀x(φ[x]→ di(x)) we have that:

• if d j ∈ D j occurs positively in NNF(φ), then j ≤ i.

• if d j ∈ D j occurs negated in NNF(φ), then j < i.

The semantics of L0 is defined relative to a state S of basic facts and a set of
derived facts D. We first present this semantics and then show how the set D of
derived facts can be obtained from a set of basic facts and a stratified axiom set. The
closed world assumption applies, so any ground positive literal not in S is assumed
to be false.

Definition 8.4. (Truth conditions) Let S ⊆ Fb be a set of basic facts and D ⊆ Fd be
a set of derived facts. The truth conditions of closed formulas from L0 are defined
by:

〈S ,D〉 |= p(t) iff p(t) ∈ S ∪D
〈S ,D〉 |= ¬φ iff 〈S ,D〉 6|= φ
〈S ,D〉 |= (φ1∧φ2) iff 〈S ,D〉 |= φ1 and 〈S ,D〉 |= φ2
〈S ,D〉 |= (φ1∨φ2) iff 〈S ,D〉 |= φ1 or 〈S ,D〉 |= φ2
〈S ,D〉 |= ∀x(φ) iff 〈S ,D〉 |= φ[t/x] for all ground t ∈ T
〈S ,D〉 |= ∃x(φ) iff 〈S ,D〉 |= φ[t/x] for some ground t ∈ T

We have assumed that all terms refer to different objects, which is also known as
the unique names assumption. In addition, it is assumed that all objects are named by
some term. These are common assumptions in logic programming, and in PDDL.
By making these assumptions a substitutional interpretation of quantifiers can be
used as we have done in Definition 8.4.
5 More precisely, recursion through negation is not allowed.

8 A Verification Logic for G Agents 231

Formulas with free variables may be used to compute answers, i.e. substitutions.
Substitutions are used to instantiate variables to values in the domain, i.e. bind vari-
ables to closed terms.

Definition 8.5. (Substitution)
A substitution is a mapping from variablesV to closed terms in T .

For details of what it means to apply a substitution θ to an expression e with
result eθ see [289]. eθ is also called an instance of e. We use θ[t/x] to denote the
substition σ such that σ(x) = t and σ(y) = θ(y) for all y , x in the range of θ.

The semantics of open formulas φ ∈ L0 is defined by 〈S ,D〉 |= φ iff there is a
substitution θ such that φθ is closed and 〈S ,D〉 |= φθ.

In the definition of the semantics of L0 we have assumed that the set of derived
facts D was given. Intuitively, we can derive d(t) using axiom a = ∀x(φ→ d(x)) if
we have 〈S ,D〉 |= φ[t], and add d(t) to D if not already present; we write [[a]](S ,D)=
{d(t) | 〈S ,D〉 |= φ[t], t is ground} to denote these consequences. [[a]](S ,D) yields all
immediate consequences of a stratified axiom set given that a pair 〈S ,D〉 has been
fixed.

Then the set of consequences of an axiom set A can be computed as follows,
assuming that we have a stratification {Ai,1 ≤ i ≤ n} of A:

[[A]]0(S) = ∅, and, for all 1 ≤ i ≤ n:

[[A]]i(S) =
⋂{

D |
⋃

a∈Ai

[[a]](S ,D)∪ [[A]]i−1(S) ⊆ D
}

The set of all derived facts, written [[A]](S), that can be obtained from A then is
defined as [[A]]n(S). Using this set we can define the consequences of a (belief) state
S relative to a set of derived predicate axioms A as follows.

Definition 8.6.
S |=A φ iff 〈S , [[A]](S)〉 |= φ

The semantics of axioms has been defined as a fixed point above. It is well-
known, however, that this semantics corresponds with a logical semantics of the
completion of an axiom set. See, for example, the discussion of logic programming
for ”unrestricted” programs in [289]. As this equivalence is useful for showing that
the verification logic introduced below can be used to characterize G agents, we
briefly discuss the key results that we need. Details can be found in the Appendix.

We first introduce the completion comp(A) of a finite stratified axiom set A. Intu-
itively, the completion comp(A) replaces implications with equivalences [17, 289].
We assume that with each derived predicate d ∈ D at least one axiom is associated.
Then, in our setting, completion can be defined as follows.

Definition 8.7. (Completion)
Let A be a finite stratified axiom set. Then the completion comp(A) of that set is
obtained by applying the following operations to this set:

232 K.V. Hindriks

1. For each derived predicate d ∈ D, collect all associated axioms of the form
∀x(φ1→ d(x)), . . . ,∀x(φn→ d(x)). Replace these axioms by:

∀x((φ1∨ . . .∨φn)→ d(x))

Note that variables may need to be renamed to ensure that all axioms for d have
d(x) as their head with unique variables x.

2. For each of the formulas obtained in the previous step, replace → with ↔, i.e.
replace each formula ∀x(φ→ d(x)) by ∀x(φ↔ d(x)).

It is well-known that the completion of a stratified axiom set is consistent [289].

Definition 8.8. (Answer, Correct Answer)
Let S be a set of ground atoms and A be a stratified axiom set. A substitution θ
is an answer for φ with respect to S and A if θ is a substitution for free variables
in φ and S |=A ∀(φθ). A substitution θ is a correct answer with respect to S and
A if comp(A)∪ S |=c ∀(φθ) and θ is an answer for φ. Here, |=c refers to the usual
consequence relation for classical first-order logic.

The completion of a stratified axiom set defines the meaning of such a set in terms
of classical first-order semantics. It shows that a declarative reading can be imposed
on a stratified axiom set. It may moreover be used to verify that the semantics of
Definition 8.4 is well-defined.

Theorem 8.1. (Correctness)
Let S be a set of basic facts, A be a stratified axiom set, and θ be an answer for φ
with respect to S and A. Then θ is a correct answer. That is, we have:

S |=A ∀(φθ) iff comp(A)∪S |=c ∀(φθ)

Proof. See the Appendix.

8.3.3 Mental States

The knowledge representation languageL0 is used by G agents to represent their
knowledge, beliefs and goals. We first discuss knowledge and beliefs. The difference
between knowledge and beliefs is based on the distinction between derived and
basic predicates discussed above. Knowledge is assumed to be static and concerns
conceptual and domain knowledge which is defined using derived predicate axioms.
Beliefs may change and represent the basic facts the agent believes to be true about
the environment. Accordingly, the knowledge base maintained by a G agent is a
set of stratified derived predicate axioms as defined above, and the belief base is a
set of ground atoms that only use basic predicates.

8 A Verification Logic for G Agents 233

Although it is common in planning to allow complex goal descriptions, in con-
trast with typical planning problems [192] the goals maintained by a G agent
may change over time. Moreover, a G agent needs to be able to inspect its goals
and therefore it is important that the goal base can be efficiently queried. For these
reasons, the goal base consists of conjunctions of ground atoms here. For exam-
ple, p(a)∧ q(b) and r(a)∧ r(b)∧ r(c) may be part of a goal base but ¬p(c) and
∃x(q(x)→ r(x)) may not. It is clear that a conjunction of ground atoms can be iden-
tified with the set of corresponding atoms and we will abuse notation here and will
also denote the corresponding set of ground atoms by means of a conjunction. This
will allow us to write p(a)∧ q(b) ⊆ F to denote that p(a) and q(b) are in the set F
of facts. We will make use of this below in the definition of the semantics of mental
state conditions.

Definition 8.9. (Mental State)
A mental state is a triple 〈K,Σ,Γ〉 where K is a finite, stratified derived predicate
axiom set, called a knowledge base, Σ ⊆ Fb is a belief base that consists of a finite
set of basic facts, and Γ ⊆ 2Fb is a goal base that consists of a finite set of finite
subsets (or, conjunctions) of basic facts. Finally, the following rationality constraint
is imposed on mental states:

∀γ ∈ Γ : Σ 6|=K γ

This constraint excludes mental states where a goal in the goal base is believed to
be achieved. This constraint imposed on mental states is motivated by the principle
that agents should not invest resources into achieving goals that have already been
achieved. Goals thus are viewed as achievement goals, i.e. states that the agent wants
to realize at some future moment.

It is usual to impose various rationality constraints on mental states [60]. These
constraints typically include that (i) the knowledge base combined with the belief
base is consistent, that (ii) individual goals are consistent with the knowledge base,
and that (iii) no goal in the goal base is believed to be (completely) achieved. Con-
straint (iii) is part of the definition of a mental state but we do not need to impose the
first two constraints explicitly as these follow by definition; both the belief base and
goal base consist of basic facts only, and the knowledge base only consists of rules
for derived predicates. Note that although goals cannot be logically inconsistent it is
still possible to have conflicting goals, e.g. on(a,b) and on(b,a) in a Blocks World
where one block cannot be simultaneously on top of and below another block.

In order to select actions an agent needs to be able to inspect its mental state. In
G, an agent can do so by means of mental state conditions. Mental state condi-
tions are conditions on the mental state of an agent, expressing that an agent believes
something is the case, has a particular goal, or a combination of the two. Special op-
erators to inspect the belief base of an agent, we use bel(ϕ) here, and to inspect the
goal base of an agent, we use goal(ϕ) here, are introduced to do so. In addition,
a special operator o-goal(φ) will be useful later and represents that φ is the “only
goal” of an agent. This operator will allow us to introduce ’successor state axioms’

234 K.V. Hindriks

for goals below. We allow boolean combinations of these basic conditions but do
not allow the nesting of operators. Basic conditions may be combined into a con-
junction by means of ∧ and negated by means of ¬. For example, goal(ϕ)∧¬bel(ϕ)
with ϕ ∈ L0 is a mental state condition, but bel(goal(ϕ)) which has nested operators
is not.

Definition 8.10. (Syntax of Mental State Conditions)
The language LΨ of mental state conditions, with typical elements ψ, is defined by:

φ ::= any element from L0
ψ ∈ LΨ ::= bel(φ) | goal(φ) | o-goal(φ) | ψ∧ψ | ¬ψ

Note that we allow variables in mental state conditions, i.e. a mental state condi-
tion ψ does not need to be closed. A mental state condition with free variables can
be used in an agent program to retrieve particular bindings for these free variables.
That is, mental state conditions can be used to compute a substitution.

The next step is to define the semantics of mental state conditions. The meaning
of a mental state condition is derived from the mental state of the agent. A belief
condition bel(φ) is true whenever φ follows from the belief base combined with
the knowledge stored in the agent’s knowledge base. The meaning of a goal condi-
tion goal(φ) is slightly different from that of a belief condition. Instead of simply
defining goal(φ) to be true whenever φ follows from all of the agent’s goals (com-
bined with the knowledge in the knowledge base), we will define goal(φ) to be true
whenever φ follows from one of the agent’s goals (and the agent’s knowledge). The
intuition here is that each goal in the goal base has an implicit temporal dimension
and two different goals need not be achieved at the same time. Goals are thus used
to represent achievement goals. Finally, o-goal(φ) is true iff all goals of the agent
are logically equivalent with φ; that is, the only goal present is the goal φ.

Definition 8.11. (Semantics of Mental State Conditions)
Let m = 〈K,Σ,Γ〉 be a mental state. The semantics of closed mental state conditions
ψ is defined by the following semantic clauses:

m |=Ψ bel(φ) iff Σ |=K φ,
m |=Ψ goal(φ) iff ∃γ ∈ Γ : γ |=K φ,
m |=Ψ o-goal(φ) iff m |=Ψ goal(φ) and ∀φ′(m |=Ψ goal(φ′)⇒|=c φ↔ φ′),
m |=Ψ ψ1∧ψ2 iff m |=Ψ ψ1 and m |=Ψ ψ2,
m |=Ψ ¬ψ iff m 6|=Ψ ψ.

As before, for open formulas ψ ∈ LΨ we define m |=Ψ ψ iff there is a substitution
such that ψθ is closed and m |=Ψ ψθ.

Note that in the definition of the semantics of mental state conditions we have
been careful to distinguish between the consequence relation that is defined, denoted
by |=Ψ , and the consequence relation |= defined in Definition 8.4. The definition
thus shows how the meaning of a mental state condition can be derived from the
semantics of the underlying knowledge representation language.

8 A Verification Logic for G Agents 235

Proposition 8.1. Let m = 〈K,Σ,Γ〉 be a mental state. Then we have:

m |=Ψ ¬bel(φ) iff Σ |=K ¬φ

Proof. We have: m |=Ψ ¬bel(φ) iff m 6|=Ψ bel(φ) iff Σ 6|=K φ iff 〈Σ, [[K]](Σ)〉 6|= φ iff
〈Σ, [[K]](Σ)〉 |= ¬φ iff Σ |=K ¬φ. ut

Proposition 8.1 is a direct consequence of the closed world assumption. That is,
when φ is not believed to be the case, by the closed world assumption it then follows
that ¬φ. In other words, we have that ¬bel(φ) is equivalent with bel(¬φ).

P1 if ψ is an instantiation of a classical tautology, then |=Ψ ψ.
P2 if |=c φ, then |=Ψ bel(φ).
P3 |=Ψ bel(φ→ φ′)→ (bel(φ)→ bel(φ′)).
P4 |=Ψ ¬bel(⊥).
P5 |=Ψ ¬bel(φ)↔ bel(¬φ).
P6 |=Ψ ∀x(bel(φ))↔ bel(∀x(φ)).
P7 6|=Ψ goal(>).
P8 |=Ψ ¬goal(⊥).
P9 if |= φ→ φ′, then |=Ψ goal(φ)→ goal(φ′).
P10 |=Ψ goal(∀x(φ))→∀x(goal(φ)).

Table 8.1 Properties of Beliefs and Goals

We briefly discuss some of the properties listed in Table 8.1. The first property
(P1) states that mental state conditions that instantiate classical tautologies such
as bel(φ)∨¬bel(φ) and goal(φ)→ (bel(φ′)→ goal(φ)) are valid with respect to |=Ψ .
Property (P2) corresponds with the usual necessitation rule of modal logic and states
that an agent believes all validities of the base logic. (P3) expresses that the belief
modality distributes over implication. This implies that the beliefs of an agent are
closed under logical consequence. Property (P4) states that the beliefs of an agent
are consistent. In essence, the belief operator thus satisfies the properties of the sys-
tem KD (see e.g. [314]). Although in its current presentation, it is not allowed to nest
belief or goal operators in mental state conditions in G, from [314], section 1.7,
we conclude that we may assume as if our agent has positive bel(φ)→ bel(bel(φ))
and negative ¬bel(φ)→ bel(¬bel(φ)) introspective properties: every formula in the
system KD45 (which is KD together with the two mentioned properties) is equiva-
lent to a formula without nestings of operators. Property (P7) shows that ¬goal(>)
can be used to express that an agent has no goals. Property (P8) states that an agent
also does not have inconsistent goals, that is, we have |=c ¬goal(⊥). Property (P9)
states that the goal operator is closed under implication in the base language. That
is, whenever φ→ φ′ is valid in the base language then we also have that goal(φ)
implies goal(φ′). This is a difference with the presentation in [60] which is due to
the more basic goal modality we have introduced here. It is important to note here
that we do not that bel(φ)∧goal(φ) is inconsistent. Finally, property (P10) is valid,
but the implication cannot be reversed: ∀x(goal(φ))→ goal(∀x(φ)) is not valid.

236 K.V. Hindriks

It is clear from the properties discussed that the goal operator does not corre-
spond with the more common sense notion of a goal but instead is an operator
mainly introduced for technical reasons. The reason for using the label goal is to
clearly differentiate it from the bel operator and make clear that this operator is
related to the motivational attitudes of an agent. The goal operator is a primitve
operator that does not match completely with the common sense notion of a goal
that needs to be achieved in the future. The goal operator, however, may be used to
define so-called achievement goals that usually require effort from an agent in order
to realize the goal. The main characteristic which sets an achievement goal apart
from “primitives” goals thus is that they are not believed to be achieved already. As
noticed, it is possible to define the concept of an achievement goal and to introduce
an achievement goal a-goal operator using the primitive goal operator and the belief
bel operator. It is also useful to be able to express that a goal has been (partially)
achieved. We therefore also introduce a “goal achieved” goal-a operator to be able
to state that (part of) a goal is believed to be achieved. This operator can also be
defined using the goal and bel operator.

Definition 8.12. (Achievement Goal and Goal Achieved Operators)
The achievement goal a-goal(φ) operator and the goal achieved goal-a(φ) operator
are defined by:

a-goal(φ)
d f
= goal(φ)∧¬bel(φ),

goal-a(φ)
d f
= goal(φ)∧bel(φ).

Both of these operators are useful when writing agent programs. The first is use-
ful to derive whether a part of a goal has not yet been (believed to be) achieved
whereas the second is useful to derive whether a part of a goal has already been
(believed to be) achieved. It should be noted that an agent can only believe that part
of one of its goals has been achieved but cannot believe that one of its goals has
been completely achieved as such goals are removed automatically from the goal
base. That is, whenever we have γ ∈ Γ we must have a-goal(γ), or, equivalently,
goal(γ)∧¬bel(γ) since it is not allowed by the third rationality constraint in Def-
inition 8.9 that an agent believes γ in that case (see also (P21) and (P22) in Table
8.2).

Table 8.2 lists some properties of the a-goal, goal-a, and o-goal operators.6 The
main difference between the a-goal and goal-a operators concern Properties (P12)
and (P17) and Properties (P15) and (P20), respectively. Property (P12) expresses
that an achievement goal φ∧ (φ→ φ′) does not imply an achievement goal φ′. This
property avoids the side effect problem. The goal-a operator, however, is closed
under such effects as any side effect of a goal that has been achieved also is realized
by implication. Properties (P15) and (P20) highlight the key difference between
achievement goals and goals achieved: achievement goals are not believed to be
achieved, whereas goals achieved are believed to be achieved.

6 The properties of the a-goal operator are the same as those for the G operator listed in Lemma
2.4 in [60].

8 A Verification Logic for G Agents 237

P11 6|=Ψ a-goal(φ→ φ′)→ (a-goal(φ)→ a-goal(φ′)).
P12 6|=Ψ a-goal(φ∧ (φ→ φ′))→ a-goal(φ′).
P13 6|=Ψ (a-goal(φ)∧a-goal(φ′))→ a-goal(φ∧φ′).
P14 if |= (φ↔ φ′), then |=Ψ a-goal(φ)↔ a-goal(φ′).
P15 |=Ψ a-goal(φ)→¬bel(φ).
P16 6|=c goal-a(φ→ φ′)→ (goal-a(φ)→ goal-a(φ′)).
P17 |=Ψ goal-a(φ∧ (φ→ φ′))→ goal-a(φ′).
P18 6|=Ψ (goal-a(φ)∧goal-a(φ′))→ goal-a(φ∧φ′).
P19 if |= (φ↔ φ′), then |=Ψ goal-a(φ)↔ goal-a(φ′).
P20 |=Ψ goal-a(φ)→ bel(φ).
P21 |=Ψ o-goal(φ)→ goal(φ).
P22 |=Ψ o-goal(φ)→¬bel(φ).
P23 6|=Ψ o-goal(φ→ φ′)→ (o-goal(φ)→ o-goal(φ′)).

Table 8.2 Properties of Achievement Goals, Goals Achieved, and Only Goals

8.3.4 Actions and Action Selection

A G agent derives its choice of action from its goals and beliefs (in combination
with its knowledge). Action selection is implemented by means of so-called action
rules that inspect the mental state of the agent. Actions are performed to change
the environment. An agent keeps track of such changes by updating its beliefs. The
updates asscociated with the execution of an action are provided by so-called action
specifications. Actions may have conditional effects [336].7 For example, the result
of performing the action of switching the light button depends on the current state
and may result in the light being either on or off. The effect of the light switching
action thus depends on the state in which the action is executed.

We present a formal, operational semantics for G with actions with condi-
tional effects and use Plotkin-style transition semantics [340] to do so. This seman-
tics is a computational semantics that provides a specification for executing a G
agent on a machine.

We distinguish between two types of actions: user-specified actions and built-in
actions. Built-in actions are part of the G language and include an action for
adding and deleting beliefs and for adopting and dropping goals. The insert(φ)
action, where φ should be a conjunction of basic literals, adds facts that occur pos-
itively in φ to the belief base and removes facts that occur negatively in φ from the
belief base. This action can always be performed and has a precondition >. The
adopt(φ) action, where φ should be a conjunction of basic facts, adds a goal to the
goal base. The adopt(φ) action can only be performed if φ is not believed to be
the case; that is, the precondition of adopt(φ) is ¬bel(φ).8 Finally, the drop(φ) ac-

7 This is an extension of G as presented in [60] introduced in [228].
8 The condition that φ or a logically equivalent formula is not already present in the goal base may
be added but is less important in this context but is relevant for efficiency reasons to avoid having
to evaluate multiple times whether one and the same goal has been achieved.

238 K.V. Hindriks

tion, where φ should again be a conjunction of basic facts, removes any goal in the
goal base that implies φ. The precondition of drop(φ) is > and thus can always be
performed.

The semantics of these actions is formally defined by means of a mental state
transformer function M. This function maps an action a(t) and a mental state m
to a new mental state m′ that is the result of performing the action. It is useful to
introduce some notation here. We use pos(φ) and neg(φ) to denote the set facts that
occur positively respectively negatively in a conjunction of literals φ.

Definition 8.13. (Semantics of Built-in Actions)
Let m = 〈K,Σ,Γ〉 be a mental state. The mental state transformer function M is
defined as follows for the built-in actions insert(φ), adopt(φ), and drop(φ), where
φ needs to be of the appropriate form: 9

M(insert(φ),m) = 〈K, (Σ \neg(φ))∪ pos(φ),Γ〉.

M(adopt(φ),m) =
{
〈K,Σ,Γ∪{φ}〉 if m |=Ψ ¬bel(φ),
undefined otherwise.

M(drop(φ),m) = 〈K,Σ,Γ \ {φ′ ∈ Γ | φ′ |=c φ}〉.

To enable a programmer to add user-specified actions to an agent program we
need a language for specifying when an action can be performed and what the ef-
fects of performing an action are. Actions are written as a(t) where a is the name
of the action and t are the parameters of the action. Preconditions specify when
an action can be performed. These conditions can be specified using the knowl-
edge representation language L0. The effects of an action may be conditional on
the state in which the action is performed. To express such conditional effects we
use statements of the form φ⇒ φ′ where φ is called the condition and φ′ the ef-
fect. Intuitively, an action with conditional effect φ⇒ φ′ means that if the action is
performed in a state where φ is true, then the effect of the action is φ′. When the
condition φ is > we also simply write φ′ to denote the effect. Free variables in a
conditional effect may be bound universally and we write ∀x(φ⇒ φ′). Finally, mul-
tiple conditional effects may be associated with an action and in that case we write
∀x1(φ1⇒ φ′1)∧ . . .∧∀xn(φn⇒ φ′n). Finally, for specifying the preconditions and ef-
fects of an action a(t) we use a Hoare-triple-style notation. That is, we use triples
consisting of a precondition, an action and a conjunction of conditional effects to
specify the precondition and effects of a particular action. Note, however, that al-
though conditional effects are part of the postcondition of an action, the conditions
of such effects need to be evaluated in the state where the action is executed and
in this respect is similar to a precondition. The following definition summarizes the
previous discussion.

Definition 8.14. (Conditional Effect, Action Specification)

9 Note that since goals are conjunctions of basic facts, the formal semantics given here for the drop
action that uses |=c is easily replaced by an efficient computational mechanism.

8 A Verification Logic for G Agents 239

• A conditional effect statement is an expression of the form ∀x(φ⇒ φ′), where
φ ∈ L0 and φ′ is a conjunction of basic literals. The quantor ∀x may be absent
and whenever φ is > we also write ∀x(φ′).

• An action specification is a triple written as:

{ φ } a(t) { ∀x1(φ1⇒ φ′1)∧ . . .∧∀xn(φn⇒ φ′n) }

where φ is a formula fromL0 called the precondition, a(t) is an action with name
a and parameters t, and ∀x1(φ1 ⇒ φ′1)∧ . . .∧∀xn(φn ⇒ φ′n) is a conjunction of
conditional effect statements, which is also called postcondition. All free vari-
ables in the postcondition must occur free in either the precondition or the action
parameters. Finally, the postcondition is required to be consistent (see Definition
8.15 below).

Note the condition on free variables in the definition of an action specification.
The free variables that occur in the postcondition need to occur free in the precondi-
tion or action parameters in order to ensure they are instantiated. An action can only
be performed when all free variables in the action parameters and the postcondition
have been instantiated.

In G, a precondition is evaluated on the belief base of the agent. This means
that an agent believes it can perform an action if the agent believes the associated
precondition of that action. An action may affect both the beliefs and goals of an
agent. An agent’s knowledge base is static and does not change since it is used to
represent conceptual and domain knowledge that does not change. The postcondi-
tion of an action specifies how the belief base of an agent should be updated. Intu-
itively, for each conditional effect φ⇒ φ′ if φ is believed then the facts that occur
positively in φ′ are added to the belief base and the facts that occur negatively in φ′

are removed from the belief base.

Definition 8.15. (Positive and Negative Effects of an Action, Consistency)
Let { φ } a(t) { φ′ } be an instantiation of an action specification such that φ and
a(t) are ground, which implies that φ′ = ∀x1(φ1 ⇒ φ′1)∧ . . .∧∀xn(φn ⇒ φ′n) is also
ground. Then the positive effects respectively the negative effects in a mental state
m are defined by:

Eff+(φ′,m) =
⋃
i
{ at ∈ pos(φ′i) | m |=Ψ bel(φi)}

Eff−(φ′,m) =
⋃
i
{ at ∈ neg(φ′i) | m |=Ψ bel(φi)}

A postcondition φ′ is said to be consistent if for all mental states m and all instan-
tiations of an action specification the set Eff+(φ′,m)∪¬Eff−(φ′,m) is consistent, i.e.
if this set does not contain complementary literals.10

10 Where ¬T denotes the set {¬φ | φ ∈ T }, with T ⊆ L0.

240 K.V. Hindriks

After updating the beliefs, an agent also needs to check whether any of its
goals have been realized and can be removed from its goal base. A G agent
only removes goals that have been completely achieved. A goal such as on(a,b)∧
on(b, table) is not removed or replaced by on(b, table) since the goal has been
achieved only when at the same time block a is on block b and b is on the table.
The semantics of user-specified actions is again defined by means of the mental
state transformer functionM.

Definition 8.16. (Semantics of User-Specified Actions)
Let m= 〈K,Σ,Γ〉 be a mental state, and { φ } a(t) { φ′ } be an instantiation of an action
specification such that φ and a(t) are ground. Then the mental state transformer
functionM is defined as follows for action a(t):

M(a(t),m) =
{
〈K,Σ′,Γ′〉 if m |=Ψ bel(φ)
undefined otherwise

where:

• Σ′ = (Σ \Eff−(φ′))∪Eff+(φ′).

• Γ′ = Γ \ {φ ∈ Γ | Σ |=K φ}.

Note that the formula φ′ in Definition 8.16 is closed since any free variables in
a postcondition φ′ need to be free in either the precondition φ or action parameters
a(t).

G agents derive their choice of action from their beliefs and goals. They do so
by means of action rules of the form if ψ thenα. Here ψ is a mental state condition
and α an action, either built-in or user-specified. An action rule specifies that action
α may be selected for execution if the mental state condition ψ and the precondition
of action α hold. In that case, we say that action α is an option. At runtime, a G
agent non-deterministically selects an action from the set of options to perform. This
is expressed in the following transition rule, describing how an agent’s mental state
changes from one to another.11

Definition 8.17. (Action Semantics)
Let m be a mental state, and if ψ then α be an action rule, and θ a substitution. The

transition relation
αθ
−→ is the smallest relation induced by the following transition

rule.
m |=Ψ ψθ M(αθ,m) is defined

m
αθ
−→M(αθ,m)

A G agent (program) consists of the knowledge, initial beliefs and goals, ac-
tion rules and action specifications.

11 A transition rule is an inference rule for deriving transitions or computation steps. The statements
above the line are called the premises of the rule and the transition below the line is called the
conclusion. See also [340].

8 A Verification Logic for G Agents 241

Definition 8.18. (G Agent Program)
A G agent program is a tuple 〈K,Σ,Γ,Π,A〉 with:

• 〈K,Σ,Γ〉 a mental state,

• Π a set of action rules, and

• A a set of action specifications.

Below we will assume that there is exactly one action specification associated
with each action name a. Although it is possible to use multiple action specifications
in a G agent, this assumption is introduced to somewhat simplify the presentation
below.

The execution of a G agent results in a run or computation. We define a com-
putation as a sequence of mental states and actions, such that each mental state can
be obtained from the previous by applying the transition rule of Definition 8.17. As
G agents are non-deterministic, the semantics of a G agent is defined as the
set of possible computations of the G agent, where all computations start in the
initial mental state of the agent.

Definition 8.19. (Run)
A run or computation of an agent Agt = 〈K,Σ,Γ,Π,A〉, typically denoted by r, is an
infinite sequence of mental states and actions m0,α0,m1,α1,m2,α2, . . . such that:

• m0 = 〈K,Σ,Γ〉, and

• for each i we have either that:

– mi
αi
−→ mi+1 can be derived using the transition rule of Definition 8.17, or

– for all j > i, m j = mi and mi 6 α−→m′ for any α and m′, and αi = skip.12

We also write rm
i to denote the ith mental state and ra

i to denote the ith action. The
meaning RAgt of a G agent Agt is the set of all possible runs of that agent.

Observe that a computation is infinite by definition, even if the agent is not able
to perform any actions anymore from some point in time on. In the latter case, the
agent is assumed to perform no action at all, which is represented by skip. Also note
that the concept of a computation is a general notion in program semantics that is
not particular to G. The notion of a computation can be defined for any (agent)
programming language that is provided with a well-defined operational semantics.

12 Implicitly, this also defines the semantics of skip. The label skip denotes the action that does
not change the mental state of an agent.

242 K.V. Hindriks

8.4 Verifying Goal Agent Programs

The verification logic for G that we present here is an extension of linear tem-
poral logic (LTL) with an action, belief and goal operator. It is similar to the verifi-
cation framework presented in [60]. However, the verification framework presented
here does not consist of two different components, a Hoare logic component and a
linear temporal logic component, as in [60]. Instead, the Hoare logic for reasoning
about actions in [60] is replaced by an action theory represented in the temporal
verification logic.

A second difference with [60] is that the verification framework presented here is
less abstract. In particular, the verification logic presented here incorporates Reiter’s
solution to the frame problem [364].

The differences with the very generic approach presented in [60] have important
implications. The approach presented here introduces a deductive approach to the
verification of agents that is obtained by a direct translation of an agent program
into the logic. We will discuss in more detail what this means in section 8.4.2.

8.4.1 Verification Logic

To obtain a verification logic for G agents temporal operators are added on top
of mental state conditions to be able to express temporal properties over runs and an
action operator done(α) is introduced.

Definition 8.20. (Temporal Language: Syntax)
The temporal language LG, with typical elements χ,χ′, is defined by:

χ ∈ LG ::= ψ ∈ LΨ | done(α) | ¬χ | χ∧χ | ∀x(χ) | ©χ | χ until χ

Using the until operator, other temporal operators such as the ”sometime in the
future operator” ^ and the ”always in the future operator” � can be introduced as
abbreviations for ^ψ ::= > until ψ and �ψ ::= ¬^¬ψ.

Although the language LG is intended for verification of runs of G agents,
the semantics of LG is defined more generally relative to a trace t. Each time point
(t, i) denotes a state of the agent and is labeled with the action performed at that state
by the agent. Instead of databases to model the mental state of an agent, moreover,
we use sets of Herbrand interpretations as models of the agents’ beliefs and goals.
A Herbrand interpretation is a set of ground atoms [22].

Definition 8.21. (Trace)
A trace is a mapping from the natural numbers N (including 0) to triples 〈B,G,α〉,
where B consists of a set of Herbrand interpretations, G is a set of sets of Herbrand

8 A Verification Logic for G Agents 243

models, and α is an action (including possibly skip). A pair (t, i) is called a time
point. We use tb

i to denote B, tg
i to denote G, and ta

i to denote α in t(i) = 〈B,G,α〉.
We use

⋃
tg
i to denote the union of all sets in tg

i (which yields a set of Herbrand
interpretations).

The trace semantics introduced above is an approximation of a more general
modal semantics, and only includes those elements strictly needed in our setting.
The B and G components of a time point correspond respectively to the belief and
goal base of an agent, modeled as (sets of) sets of Herbrand models. This setup
allows us to use a classical first-order semantics (where models have admittedly
been restricted to Herbrand models). Also note that the set of traces does not need
to correspond with the set of runs of a particular agent, but - as we will show - we
do have that any set of runs generated by an agent may be viewed as a subset of the
set of all traces.

Definition 8.22. (Temporal Language: Semantics)
The truth conditions of sentences from LG are provided relative to a time point (t, i)
and are inductively defined by:

t, i |=G bel(φ) iff ∀M ∈ tb
i : M |=c φ,

t, i |=G goal(φ) iff ∃g ∈ tg
i : ∀M ∈ g : M |=c φ,

t, i |=G o-goal(φ) iff ∀M : M ∈
⋃

tg
i ⇔ M |=c φ,

t, i |=G done(α) iff ta
i = α,

t, i |=G ¬χ iff t, i 6|=G χ,
t, i |=G χ∧χ′ iff t, i |=G χ and t, i |=G χ′,
t, i |=G ∀x(χ) iff t, i |=G χ[t/x] for all t ∈ T ,
t, i |=G ©χ iff t, i+1 |=G χ,
t, i |=G χ until χ′ iff ∃ j ≥ i : t, j |=G χ′ and ∀i ≤ k < j : t,k |=G χ

We write t |= χ for t,0 |= χ.

8.4.2 Logical Characterization of Agent Programs

An issue in the verification of agents is whether the behavior of an agent program
can be fully characterized in a verification logic. A verification logic should not only
enable proving properties of some of the possible runs of an agent but should also
enable to conclude that certain properties hold on all possible runs of the agent. This
is important because a verification logic that does not allow to fully characterize the
behavior of an agent cannot be used to guarantee that certain properties are never
violated, for example. We explore this issue in more detail in this section.

In order to show that a G agent program can be fully characterized logically
we transform a program into a set of corresponding axioms. To prove formally that
this set of axioms fully characterizes the G agent we need to show that the traces

244 K.V. Hindriks

that are models of these axioms correspond with the runs of the G agent. A basic
G agent program 〈K,Σ,Γ,Π,A〉 as discussed above consists of the knowledge
contained in K, the initial beliefs Σ and goals Γ, a set of action rules Π , and action
specifications A. Each of these components will be transformed in a set of corre-
sponding axioms of the language LG. It turns out that providing axioms that fully
characterize the agent is possible by using the o-goal operator introduced in section
8.3.3 and imposing a restriction on the goal base of an agent.

Providing the appropriate axioms that fully characterize the knowledge and be-
liefs in our setting is relatively straightforward. The knowledge base represents what
the agent knows about derived predicates and captures the agent’s conceptual and
domain knowledge. Since knowledge does not change, intuitively, we must have that
�bel(K) is true on all runs of the agent program. This does not yet fully characterize
the agent’s knowledge with respect to derived predicates, however, as it does not ex-
clude that the agent believes more than bel(K). A full characterization of the agent’s
knowledge can be provided using the completion comp(K) as defined in Definition
8.7. The knowledge of the agent about derived predicates is characterized by the
following axiom.

�bel(comp(K)) (8.1)

Similarly, we have that bel(Σ) is true in the initial (mental) state as the belief base Σ
contains the initial beliefs of the agent. Again this is not sufficient to fully character-
ize the agent’s beliefs about basic predicates and to exclude that the agent believes
basic facts that are not included in the initial state. We have assumed that the base
language L0 contains a finite number of basic predicates and the belief base is finite
as well. In addition, a closed world assumption was made. It is therefore possible to
finitely characterize an agent’s beliefs about basic facts by axioms of the following
form, where we need one axiom for each basic predicate b ∈ B.

∀x(bel(b(x))↔ (x = t1∨ . . .∨x = tn)) (8.2)

The particular form that the expression (x = t1 ∨ . . .∨ x = tn) can be determined by
inspecting all occurrences of the b predicate in the initial belief base of the agent
program. The number of disjuncts needed corresponds with the number of ground
basic facts of the form b(t) in the initial belief base. If the predicate b does not occur
in the belief base, then instead of the axiom above the axiom ∀x(¬bel(b(x)) should
be used.

A set of axioms to fully characterize the initial goal base of the agent cannot be
constructed similarly to those for the initial beliefs. Although it is clearly true that
goal(φ1)∧ . . .∧goal(φn) holds for any agent with an initial goal base that consists of
the goals φ1, . . . ,φn, it is not so easy to provide an axiom that excludes the possibility
that the agent may have any other goals. Although the axiom above may be sufficient
for proving that the behavior of the agent will satisfy some specific properties, it
is not sufficient to exclude behavior that leads to the violation of certain desired
properties. In particular, it is not sufficient to prove that an agent does not have

8 A Verification Logic for G Agents 245

certain goals. Conditions of the form ¬goal(φ), which are often used in practice in
G programs, cannot be derived from a specification goal(φ1)∧ . . .∧ goal(φn) of
goals that are pursued by the agent. We will postpone the discussion of this issue
and propose a solution below.

Action rules of the form if ψ then a(t) provide an agent with the capability to
select actions. An action a(t) can only be performed when its precondition pre(a(t))
holds and when the mental state condition ψ of one of the action rules for a(x) holds.
We introduce the notion of enabledness to express that an action can be performed.

Definition 8.23. (Enabled)
Suppose that if ψ1 then a(t1), ..., if ψn then a(tn) are all action rules for a user-
specified action a(x) in program 〈K,Σ,Γ,Π,A〉 and the variables in x do not occur
in any of the conditions ψi. The definition of action a(x) being enabled, written
enabled(a(x)), is the following:

enabled(a(x))
d f
= pre(a(x))∧ ((x = t1∧ψ1)∨ . . .∨ (x = tn∧ψn))

For the built-in actions insert, adopt and drop, the following axioms are provided,
where we suppose again that if ψ1 then α, ..., if ψn then α are all action rules for the
built-in action α:

enabled(insert(φ))
d f
= ψ1∨ . . .∨ψn

enabled(adopt(φ))
d f
= ¬bel(φ)∧ (ψ1∨ . . .∨ψn)

enabled(drop(φ))
d f
= ψ1∨ . . .∨ψn

These axioms express that the action insert and drop can always be performed
when the mental state conditions of the action rules in which they occur hold. For
the action adopt, additionally, the formula φ to be adopted as a goal may not be
believed to be the case.

We can use the notion of enabledness to introduce an axiom that characterizes
action selection in G. The following axiom represents that a(x) can only be per-
formed if one of the mental state conditions ψi holds (where variables have been
appropriately substituted to obtain a ground action):

∀x�(©done(a(x))→ enabled(a(x)) (8.3)

This axiom is sufficient to express that an action is only performed when the
right conditions are true. The semantics of actions in Definition 8.17 guarantees that
a single action may be executed at any time (it is an interleaving model of action
execution). This property is also built into the trace semantics for linear temporal
logic above and we do not need an axiom to ensure this. In other words, the follow-
ing axiom, which excludes that any two actions happen simultaneously, is valid on
traces (by Definition 8.21).

246 K.V. Hindriks

∀x�((done(a(t))∧done(a′(t′)))→ a(t) = a′(t′))

We need to specify that skip is performed in case no other action can be performed.
Using the enabled predicate introduced above, we obtain the following axiom:

∀x1, . . . ,xn�(©done(skip)↔ (¬enabled(a1(x1))∧ . . .∧¬enabled(an(xn)))) (8.4)

Finally, we need to state that an agent always performs some action, or otherwise
performs the skip action.

∀x1, . . . ,xn�© (done(a1(x1))∨ . . .∨done(an(xn))∨done(skip)) (8.5)

The last component of a G agent program that we need to translate consists
of action specifications of the form {φ} a(t) {φ1⇒ φ′1∧ . . .∧φn⇒ φ′n}. Note that the
action preconditions have already been captured in the axioms above that translate
the action rules of a program. What remains is to represent the action effects. The
effects on the beliefs of an agent are represented here by a temporal logic encoding
of Reiter’s successor state axioms [305, 364]. The basic idea of Reiter’s solution
to the frame problem is that a propositional atom p(t) may change its truth value
only if an action is performed that affects this truth value. Two cases are distin-
guished: (i) actions that have p(t) as effect and (ii) actions that have ¬p(t) as effect.
For each atom p(x) the first set of actions a1(t1), . . . ,am(tm) is collected and a dis-
junction is formed of the form (©done(a1(t1)1)∧φ1)∨ . . .∨ (©done(am(tm))∧φm)
denoted by A+p , where the φi are the corresponding conditions of the conditional
effects that need to hold to establish p(t), and, similarly, the second set of ac-
tions am+1(tm+1), . . . ,an(tn) is collected and a disjunction is formed of the form
(©done(am+1(tm+1))∧φm+1)∨ . . .∨ (©done(an(tn))∧φn) denoted by A−p , where φi

denote the conditions associated with the effects.13

Then, for each proposition p(x) a successor state axiom of the form

∀x�(©bel(p(x))↔ (A+p ∨ (bel(p(x))∧¬A−p))) (8.6)

is introduced. Intuitively, such formulas express that at any time, in the next state
bel(p(x)) holds iff an action is performed that has p(x) as effect (i.e. A+p holds) or
p(x) is true in the current state and no action that has ¬p(x) as effect is performed
(i.e. ¬A−p holds). Note that this axiom is consistent if the postconditions are consis-
tent in the sense of Definition 8.15.

The more difficult part is again to represent the effects of an action on an agent’s
goals. Informally, whenever an agent comes to believe that one of its goals has been
completely achieved, it will drop this goal. The difficult part here is to represent the
fact that a goal has been completely achieved and not just part of it. For this reason
an axiom such as (goal(φ)∧©bel(φ)) → ©¬goal(φ) is not valid; it may be that

13 Note that we assume that© binds stronger than ∧ and©(φ)∧ψ is equivalent to (©(φ))∧ψ.

8 A Verification Logic for G Agents 247

φ = φ1 is part of a larger goal φ1∧φ2 and φ2 has not been achieved yet. In that case
it would be irrational to drop the goal. Note that even when φ in the axiom would
be restricted to conjunctions of basic facts the axiom would still not be valid. The
axiom (goal(φ)∧©¬bel(φ))→©goal(φ) is valid, but does not capture the removal
of a goal when it has been achieved.14

We have encountered two problems with the characterization of goals. The first
concerns the characterization of the initial goals of the agent. The second concerns
the dynamics of goals. One solution to resolve these issues is to use the o-goal
operator to characterize goals. The o-goal operator can be used to fully characterize
the goal base of an agent. This comes at a cost: the class of agents needs to be
restricted to those agents that only have a single goal. As less restrictive solutions
are not apparent in this setting, however, we use the o-goal operator.15 From now
on, it is therefore assumed that agents have a single goal to start with and that the
adopt action has an additional precondition that ensures that an agent never adopts
a second goal if it already has one.

Using the o-goal operator and the assumption that the initial goal base consists of
a single goal φ, the initial goal base of an agent can be characterized by the following
axiom.

o-goal(φ) (8.7)

Using the o-goal operator it is possible to represent the dynamics of goals and to
provide an axiom that captures the removal of goals correctly. Here we use the
fact that ¬goal(>) can only be true if the goal base is empty. Several axioms to
characterize goal dynamics are introduced which each deal with one out of a number
of cases.

∀x�(o-goal(φ)∧©bel(φ))→©¬goal(>) (8.8)

This axiom covers the cases where either a user-specified action or the built-in action
insert is performed. Notice that φ cannot have been believed by the agent in the
state in which the action was performed as we must have o-goal(φ) for this axiom
to apply. Since the beliefs of an agent are not changed by an adopt or drop action,
we therefore can be certain neither of these actions has been performed.

Goals persist when an agent does not believe the goal to be achieved, and the
goal has not been explicitly dropped by a drop action. We thus have:

∀x�(o-goal(φ)∧©(¬bel(φ)∧done(α))→©o-goal(φ) (8.9)

14 It is easy to show that (i) (goal(φ)∧©bel(φ))→©¬goal(φ) is inconsistent with (ii) (goal(φ)∧
©¬bel(φ)) → ©goal(φ). Suppose goal(p∧ q), ©bel(p) and ©¬bel(q) are true at a time point
(t, i). It follows that we have ©¬bel(p∧ q), and, as a consequence of (ii), we then must have
that ©goal(p∧q) is true. Note that this implies that both ©goal(p) and ©goal(q) are true. Using
(i) and©bel(p) we then should also have©¬goal(p), which yields a contradiction.
15 One way to go is to allow temporal formulas in the goal base and define the semantics of goals in
terms of time points (see e.g. [227]). It is outside the scope of this chapter to discuss this solution,
and additional research is needed to address this issue. A similar approach is used in [396].

248 K.V. Hindriks

where α is either a user-specified action or an insert or adopt action.16

For the case where a drop action is performed, two additional cases need to
be distinguished: (i) the case where the goal of the agent is dropped, and (ii) the
case where the goal is not dropped. A goal φ is dropped by performing drop(φ′)
only if φ |=c φ

′. As we cannot express in our verification logic that φ′ is a logical
consequence of φ, we introduce two inference rules to represent cases (i) and (ii).

φ |=c φ
′

�(o-goal(φ)∧©done(drop(φ′)))→©¬goal(>) (8.10)
φ 6|=c φ

′

�(o-goal(φ)∧©done(drop(φ′)))→©o-goal(φ) (8.11)

Finally, we need to treat the case where the agent did not have any goals. That
is, we need axioms that characterize the persistence of the absence of goals. Only
performing an adopt action can add a goal, and the following axioms characterize
respectively goal adoption and the persistence of the absence of any goals.

∀x�(¬goal(>)∧©done(adopt(φ)))→©o-goal(φ) (8.12)
∀x�(¬goal(>)∧©done(α))→©¬goal(>) (8.13)

where α is either a user-specified action or one of the built-in actions insert or drop.

Definition 8.24. (Logical Representation of an Agent)
The logical representation of a G agent Agt= 〈K,Σ,Γ,Π,A〉, denoted by Rep(Agt),
is the set of axioms listed in Table 8.3.

In order to make precise what we mean by a run that corresponds to a trace, we
introduce the following definitions.

Definition 8.25. (Run Corresponds with Trace)
Let Agt = 〈K,Σ,Γ,Π,A〉 be a G agent. A run r corresponds with a trace t, written
r ≈ t, if for each i ∈ N, with rm

i = 〈K,Σ,Γ〉 and tb
i = B and tg

i =G:

• [[K]](Σ) =
⋂

B,

• ∀γ ∈ Γ : ∃g ∈ tg
i : γ =

⋂
g, and ∀g ∈ tg

i : ∃γ ∈ Γ : γ =
⋂

g, and

• ra
i = ta

i .

We also write R ≈ T for a set of runs R and traces T if for all runs there is a trace
that corresponds with it, and vice versa.

16 In line with our assumption that an agent only has a single goal, an adopt action cannot be
performed when the agent already has a goal.

8 A Verification Logic for G Agents 249

For any G agent 〈K,Σ,Γ,Π,A〉 with a goal base Γ with exactly one goal, the following
set of axioms is a logical representation of this agent, in combination with inference rules
(10) and (11). (See also Theorem 8.2.)

knowledge base �bel(comp(K))
belief base ∀x(bel(b(x))↔ (x = t1 ∨ . . .∨x = tn))
goal base o-goal(φ)
action rules ∀x�(©done(a(x))→ enabled(a(x))

∀x1, . . . ,xn�(©done(skip)↔ (¬enabled(a1(x1))∧ . . .∧¬enabled(an(xn))))
∀x1, . . . ,xn�© (done(a1(x1))∨ . . .∨done(an(xn))∨done(skip))

action specs ∀x�(©bel(p(x))↔ (A+p ∨ (bel(p(x))∧¬A−p)))
goal dynamics ∀x�(o-goal(φ)∧©bel(φ))→©¬goal(>)

∀x�(o-goal(φ)∧©(¬bel(φ)∧done(α))→©o-goal(φ)
where α is either a user-specified action or an insert or adopt action

∀x�(¬goal(>)∧©done(adopt(φ)))→©o-goal(φ)
∀x�(¬goal(>)∧©done(α))→©¬goal(>)

where α is either a user-specified action or an insert or drop action.

Table 8.3 Logical Representation of a G Agent

The following theorem states that the set of axioms obtained by means of the
”translation” procedure discussed above characterizes a G agent completely, in
the sense that runs of the agent correspond to traces that are models of the logical
representation.

Theorem 8.2. (Logical Representation Characterizes Agent)
Let Agt = 〈K,Σ,Γ,Π,A〉 be a G agent and R denote the meaning of this agent. Let
Rep(Agt) be the corresponding logical representation of the agent. Then we have:

R ≈ {t | t |=G Rep(Agt)}

Proof. The proof proceeds in three steps and is based on induction. First, we show
that a state representation r(i) in a run corresponds with a time point (t, i) in a trace.
Second, we show that if there is a run in which action α is executed at i then there
is also a corresponding trace that executes α at i. Third, we show that the resulting
state representation at the next point r(i+1) corresponds with the time point (t, i+1).

For the base case, we need to show that the initial mental state rm
0 = 〈K,Σ0,Γ0〉

corresponds with time points (t,0) = 〈B0,G0,α0〉 for arbitrary traces t that are mod-
els of Rep(Agt). We need to show that:

• [[K]](Σ0) =
⋂

B0. Use axiom (2) above to show that basic facts match, and use
axiom (1) and the proof of Theorem 8.1 to demonstrate that derived facts also
match.

250 K.V. Hindriks

• Γ =
⋂

G0.17 For this case, use axiom (7).

Below, we assume rm
i ≈ (t, i) for all 0 ≤ i ≤ n as induction hypothesis (IH).

Next we show that whenever α is executed in r at point i, then it is also executed
at time point (t, i) for some trace t that corresponds for all time points with i ≤ n,
and vice versa. So, suppose that α is executed in the run at point i. This means that
there is an action rule if ψ then α such that rm

i |=Ψ ψ∧bel(pre(α)). It follows that we
also have (t, i) |=G ψ∧bel(pre(α)) by the IH. We have that axiom (3) is also satisfied
if ta

i = α and t is a model of Rep(Agt). The other direction is similar, using axiom
(3) once more in combination with axiom (5). In case α = skip, we need axiom (4)
instead.

Finally, we need to show that the effects of executing an action produce corre-
sponding states in the run and trace. As knowledge does not change, it is sufficient
to show that basic facts are updated correspondingly. It follows using axiom (6) that
the beliefs of an agent in a run correspond with that in the trace. For the single goal
of the agent, use axioms and inference rules (7-13) to show that updates correspond.
ut

Concluding, we have established that G agents can be said to execute particu-
lar logical specifications, i.e. their logical representations. These logical representa-
tions fully characterize a G agent. As a result, any properties that logically follow
from its logical representation are properties of that G agent. A logical represen-
tation can be used and provided as input to a model checker to verify a property χ
or to a theorem prover to deduce χ.

8.5 Conclusion

We have discussed a logic for reasoning about agents with declarative goals. Our
aim has been to provide a logic that facilitates the verification of computational
agents that derive their choice of action from their beliefs and goals. To this end we
have presented a verification logic for G agents based on linear temporal logic.
The agent programming language G enables programming computational agents
that have a declarative beliefs and goals.

It has turned out to be a difficult task to fully characterize a G agent by means
of logic. The main reason is that the logic of goals is hard to capture formally.
Although on the one hand goals seem to have some obvious logical properties, on
the other hand a goal seems to be not much more than a resource that is being used
by an agent. The main issue here is to express that an agent does not have certain
goals, and how to provide a frame axiom for goals. It may be possible to do so by
characterizing goals by temporal formula (see e.g. [227]). The presentation of our

17 Recall we have assumed there is a single goal only, which allows us to simplify somewhat here.

8 A Verification Logic for G Agents 251

results is intended to further stimulate research in this area which is so important for
agents with motivational attitudes.

Even though we were able to fully characterize G agents logically, provided
that such agents only have a single goal, we did not prove completeness of the
verification logicLG. Providing a complete axiomatization remains for future work.
A complete axiomatization is important since without it we are still not sure that we
can prove all properties of an agent by means of deduction.

One of the aims of this chapter has been to show that additional research is
needed in order to provide the tools to reason about goals in agent programming.
This is still true for agents that only have achievement goals, the type of goals that
we discussed here. But this is even more true when other types of goals are con-
cerned, such as maintenance goals [129, 152, 227].

Finally, although there is work that deals with verifying multi-agent systems, as
far as we know there is no work that combines multi-agent with cognitive agents.
A considerable challenge thus remains to provide a logic to verify computational
multi-agent systems, and extend work on single-agent logics to multi-agent logics.

Acknowledgements The work presented would not have been possible without many useful dis-
cussions and comments from, in particular, Frank de Boer, Wiebe van der Hoek, and John-Jules
Ch. Meyer. I’d like to thank them here for the interesting exchanges on the topic of verification.

252 K.V. Hindriks

Appendix

This Appendix contains proofs for some additional Propositions and Theorem 8.1
in the main text. We first provide an alternative semantics for stratified axiom sets.
This semantics is more convenient as it allows for the use of induction in the proofs
below.

Alternative Fix Point Semantics

It will be convenient to write F |= φ for a set of facts F = S ∪D instead of 〈S ,D〉 |= φ,
where S is a set of basic facts and D a set of derived facts; F |= φ can be viewed
simply as a notational convenience, as shorthand for 〈S ,D〉 |= φ.

Definition 8.26. Let A be a stratified axiom set, and {Ai,1 ≤ i ≤ n} be a partition
that stratifies A. Let S be a set of basic facts and D a set of derived facts. Then for
0 ≤ i ≤ n define:

Ti(S ,D) = {di(t) | ∀x(φ→ d(x)) ∈ Ai, 〈S ,D〉 |= φ[x← t], t are ground }∪D
T∞0 (S) = ∅
T 0

i (S) = T∞i−1(S) for i > 0
T j

i (S) = Ti(S ,T
j−1

i (S)) for i, j > 0

where T∞i (S) =
⋃
j∈N

T j
i (S) for i > 0.

Proposition 8.2. Let S be a set of basic facts. For 1 ≤ i ≤ n, we have:

T∞i (S) = [[A]]i(S)

Proof. By induction on i. For the base case i = 1, we need to show that T∞1 (S) =
[[A]]1(S). We first show that:⋃

a∈A1

[[a]](S ,T∞1 (S)) ⊆ T∞1 (S)

Or, equivalenty, that {d(t) | 〈S ,T∞1 (S)〉 |= φ[t], t is ground} ⊆ T∞1 (S) for all axioms
∀x(φ→ d(t)) ∈ A1. If 〈S ,T∞1 (S)〉 |= φ[t], we must have that 〈S ,T j

1(S)〉 |= φ[t] for
some j ∈ N. But then d(t) ∈ T1(S ,T j

1(S)) = T j+1
1 (S) ⊆ T∞1 (S), and we are done.

What remains is to show that for any D such that
⋃

a∈A1

[[a]](S ,D) ⊆ D, we have

T∞1 (S) ⊆ D. Clearly, we have T 0
1 (S) = ∅ ⊆ D. So, to arrive at a contraduction, sup-

pose that T∞1 (S) * D. Then there must be a largest j ∈ N such that T j
1(S) ⊆ D but

T j+1
1 (S) * D. But this means that Ti(S ,T

j
1(S)) is non-empty, which implies that for

8 A Verification Logic for G Agents 253

some axiom a we have that [[a]](S ,D) is non-empty and [[a]](S ,D) ⊆ Ti(S ,T
j

1(S)). A
contradiction.

The case for i > 1 is similar. ut

Proofs

Lemma 8.1. Let A be a stratified axiom set and M be a model for una∪ dca∪ S ∪
comp(A). Then:

1. M is a Herbrand model (up to isomorphism).

2. M satisfies S ∪ [[A]](S).

Proof.

1. As M = 〈D, I〉 satisfies una∧dca, we must have that D is isomorph with T .

2. By induction on the number of partitions k of A that stratify A. The base case
k = 0 is trivial as in that case [[A]](S) = ∅. For the inductive case, suppose we
have M |= S ∪[[A]]k(S). We need to show that M |= [[A]]k+1(S), or, equivalently (by
Proposition 8.26) M |= T∞k+1(S). We show M |= T j

k+1(S) for all j ∈N by induction
on j. The base case, j = 0, is trivial as in that case T 0

k+1(S) = T∞k (S). For j > 0,
we assume that M |= T j−1

k+1 (S) as induction hypothesis. By Definition 8.26 of Tk+1

it follows immediately that M |= T j
k+1(S) = Tk+1(S ,T j−1

k+1 (S)), and we are done.

ut

Lemma 8.2. S ∪ [[A]](S) is a Herbrand model for una∪dca∪S ∪ comp(A).

Proof. Clearly, S ∪ [[A]](S) is a Herbrand model for una∪dca∪S . ut

Theorem 8.3. Let S ⊆ F be a set of basic facts and A be a stratified axiom set. Let φ
be a closed formula. Then we have that if una∪dca∪S ∪comp(A)∪φ is satisfiable,
then S ∪ [[A]](S) is a Herbrand model for una∪dca∪S ∪ comp(A)∪φ.

Proof. The proof proceeds by induction on the maximum level k of the stratification
of A.

For the base case k = 0 we have that A must be a definite

ut

Lemma 8.3. Let S be a set of ground atoms and A be a stratified axiom set. Then
we have that S ∪ [[A]](S) is a (minimal) Herbrand model of comp(A).

254 K.V. Hindriks

Proof. Note that S ∪ [[A]](S) can be interpreted as a Herbrand model H. Simply
define the domain as the set of closed terms, and define an interpretation that on the
set of terms is the identity function and maps ground atoms to true if and only if they
are an element of S ∪ [[A]](S). See [289], p. 111. ut

Finally, we can provide the proof for Theorem 8.1. Let S be a set of ground
atoms, A be a stratified axiom set, and θ be an answer for φ with respect to S and A.
Then θ is a correct answer.

Proof. We have to show that:

S |=A ∀(φθ) iff S ∪una∪dca∪ comp(A) |= ∀(φθ)

Let B denote the Herbrand base for L0. We use ¬F to denote the set of all negated
formulas from a set of formulas F, i.e. {¬φ | φ ∈ F}. Let T = S ∪ [[A]](S). For the
left to right direction, it is sufficient to show that S ∪ una∪ dca∪ comp(A) entails
T ∪¬(B\T).

For the right to left direction, as above, we use S ∪ [[A]](S) to construct a corre-
sponding Herbrand model H and show that H is a model of una∪dca∪comp(A)∪S .
By definition, we have H |= una and H |= dca, as the domain of H is the set of terms
T . It is also obvious that H |= S . Finally, using Lemma 8.3 it follows that H is also
a model of comp(A).

ut

Chapter 9

Using the Maude Term Rewriting Language for
Agent Development with Formal Foundations

M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

Abstract We advocate the use of the Maude term rewriting language and its sup-
porting tools for prototyping, model-checking, and testing agent programming lan-
guages and agent programs. One of the main advantages of Maude is that it provides
a single framework in which the use of a wide range of formal methods is facilitated.
We use the agent programming language BUpL (Belief Update programming Lan-
guage) for illustration.

M.B. van Riemsdijk
Delft University of Technology, The Netherlands e-mail: m.b.vanriemsdijk@tudelft.nl

L. Astefanoaei
CWI (Centrum voor Wiskunde en Informatica), The Netherlands e-mail: L.Astefanoaei@cwi.
nl

F. de Boer
CWI (Centrum voor Wiskunde en Informatica), The Netherlands e-mail: F.S.de.Boer@cwi.nl

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 255
DOI 10.1007/978-1-4419-6984-2 9, c© Springer Science+Business Media, LLC 2010

m.b.vanriemsdijk@tudelft.nl
L.Astefanoaei@cwi.nl
L.Astefanoaei@cwi.nl
F.S.de.Boer@cwi.nl

256 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

9.1 Introduction

An important line of research in the agent systems field is research on agent pro-
gramming languages [64]. The guiding idea behind these languages is that program-
ming languages based on agent-specific concepts such as beliefs, goals, and plans
facilitate the programming of agents.

Several agent programming languages have been developed with an emphasis on
the use of formal methods. In particular, structural operational semantics [340] is
often used for formally defining the semantics of the languages. The semantics is
used as a basis for prototyping and implementing the languages, and for verification.
Several tools and techniques can be used for implementation and verification, such
as Java for writing an interpreter and IDE, and the Java PathFinder1 or SPIN [236]
model-checkers for verification [61].

In this chapter, we advocate the use of the Maude language [104] and its sup-
porting tools for prototyping, verifying, and testing agent programming languages
and agent programs. One of the main advantages of Maude is that it provides a sin-
gle framework in which the use of a wide range of formal methods is facilitated.
Maude is a high-performance reflective language and system supporting equational
and rewriting logic specification and programming. The language has been shown
to be suitable both as a logical framework in which many other logics can be repre-
sented, and as a semantic framework through which programming languages with
an operational semantics can be implemented in a rigorous way [301]. Maude comes
with an LTL model-checker [155], which allows for verification. Moreover, Maude
facilitates the specification of strategies for controlling the application of rewrite
rules [154].

We will demonstrate how these features of Maude can specifically be applied for
developing agent programming languages and programs based on solid formal foun-
dations. We use the agent programming language BUpL (Belief Update program-
ming Language) [19] for illustration. BUpL is a simple language that resembles the
first version of 3APL [223].

The outline of this chapter is as follows. We present BUpL in Section 9.2, and
then use BUpL to illustrate how Maude can be used for prototyping (Section 9.3),
model-checking (Section 9.4), and testing (Section 9.5). We conclude in Section 9.6.
The complete Maude source code of the implementations discussed in this chap-
ter can be downloaded from http://homepages.cwi.nl/˜astefano/agents/
bupl-strategies.php.

1 http://javapathfinder.sourceforge.net/

http://homepages.cwi.nl/~astefano/agents/bupl-strategies.php
http://homepages.cwi.nl/~astefano/agents/bupl-strategies.php
http://javapathfinder.sourceforge.net/

9 Using Maude for Agent Development with Formal Foundations 257

9.2 The BUpL Language

In this section, we briefly present the syntax and semantics of BUpL for ease of
reference. We refer to Chapter [2] for more details and explanation. A BUpL agent
has an initial belief base and an initial plan. A belief base is a collection of ground
(first-order) atomic formulas which we refer to as beliefs. The agent is supposed to
execute its initial plan, which is a sequential composition and/or a non-deterministic
choice of actions or composed plans. The semantics of actions is defined using pre-
conditions and effects (postconditions). An action can be executed if the precondi-
tion of the action matches the belief base. The belief base is then updated by adding
or removing the elements specified in the effect. If the precondition does not match
the belief base, we say the execution of the action (or the plan of which it is a part)
fails. In this case repair rules can be applied, and this results in replacing the plan
that failed by another.

9.2.1 Syntax

BUpL is based on a simple logical language L with typical element ϕ, which is
defined as follows. F and Pred are infinite sets of function, respectively predi-
cate symbols, with typical element f , respectively P. Variables are denoted by the
symbol x. As usual, a term t is either a variable or a function symbol with terms
as parameters. Predicate symbols with terms as parameters form the atoms of L,
and atoms or negated atoms are called literals, denoted as l. Atoms are also called
positive literals and negated atoms are called negative literals. The negation of a
negative literal yields its positive variant. Nullary functions form the constants of
the language. L does not contain quantifiers to bind variables. A formula or term
without variables is called ground. Formulas from L are in disjunctive normal form
(DNF), i.e., they consist of disjunctions of conjunctions (denoted as c) of literals. A
belief base B is a set of ground atoms from L.

t ::= x | f (t, . . . , t)
l ::= P(t, . . . , t) | ¬P(t, . . . , t)
c ::= l | c∧ c
ϕ ::= c | c∨ c

Basic actions are defined as functions a(x1, . . . , xn) =def (ϕ,ξ), where ϕ ∈ L is a
formula which we call precondition, and ξ is a set of literals from L which we call
effect. The following inclusions are required:

Var(ξ) ⊆ Var(ϕ) = {x1, . . . , xn}.2

2 These inclusions thus specify that the variables occurring in the precondition and the effect also
have to be in the parameter of the action. This has to do with the way actions are implemented

258 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

We use the symbol A for the set of basic actions. We use Act to refer to the set of
basic action names, with typical element a. We say that a function call a(t1, . . . , tn)
is a basic action term, and will sometimes denote it as α.

Plans, typically denoted as p, are defined as follows, where Π is a set of plan
names with typical element π and a(t, . . . , t) is a basic action term:

p ::= a(t, . . . , t) | π(t, . . . , t) | a(t, . . . , t); p | p+ p.

Here, ‘;’ is the sequential composition operator and ‘+’ is the choice operator, with
a lower priority than ‘;’. The construct π(t, . . . , t) is called abstract plan. Abstract
plans should be understood as procedure calls in imperative languages, with corre-
sponding procedures of the form π(x1, . . . , xn) = p. The set of procedures is denoted
as P.

Repair rules have the form ϕ← p, and can be applied if a plan has failed and ϕ
matches the belief base. Then the failed plan is substituted by p. The set of repair
rules is denoted as R.

A BUpL agent is a tuple (B0, p0, A, P, R), where B0 is the initial belief base,
p0 is the initial plan, A are the actions, P are the procedures, and R are the repair
rules. The initial belief base and plan form the initial mental state of the agent.

To illustrate the above syntax, we take as an example a BUpL agent that solves
the tower of blocks problem, i.e., the agent has to build towers of blocks. We repre-
sent blocks by natural numbers. Assume the following initial arrangement of three
blocks 1,2, and 3: blocks 1 and 2 are on the table (denoted as block 0), and 3 is
on top of 1. The agent has to rearrange them such that they form the tower 321 (1
is on 0, 2 on top of 1 and 3 on top of 2). The only action an agent can execute is
move(x,y,z) to move a block x from another block y onto z, if both x and z are clear
(i.e., have no blocks on top of them). Blocks can always be moved onto the table,
i.e., the table is always clear.

B0 = { on(3,1), on(1,0), on(2,0), clear(2), clear(3), clear(0) }

p0 = build

A = { move(x,y,z) = (on(x,y)∧ clear(x)∧ clear(z), {on(x,z), ¬on(x,y), ¬clear(z), clear(0)}) }

P = {build = move(2,0,1);move(3,0,2)}

R = { on(x,y)← move(x,y,0);build }

Fig. 9.1 A BUpL Blocks World Agent

The BUpL agent from Figure 9.1 is modeled such that it illustrates the use of
repair rules: we explicitly mimic a failure by intentionally telling the agent to move

in Maude. It may be relaxed, but for simplicity, we do not do it here. In other languages such as
2APL [122], variables may occur in the precondition that are not in the parameters of the action.
These variables are instantiated when matching the precondition against the belief base.

9 Using Maude for Agent Development with Formal Foundations 259

block 2 onto 1. This is not possible, since block 3 is already on top of 1. Similar
scenarios can easily arise in multi-agent systems: imagine that initially 3 is on the
table, and the agent decides to move 2 onto 1; imagine also that another agent comes
and moves 3 on top of 1, thus moving 2 onto 1 will fail. The failure is handled by
the repair rule on(x,y)←move(x,y,0); p. Choosing [x/3][y/1] as a substitution, this
enables the agent to move block 3 onto the table and then the initial plan can be
restarted.

9.2.2 Semantics

First, we define the satisfaction relation of formulas ϕ with respect to a belief base
B. For this, we consider the usual notion of substitution as a set that defines how to
replace variables with terms. A substitution is denoted by [x0/t0] . . . [xn/tn], which
expresses that xi is replaced by ti for 0 ≤ i ≤ n. A substitution θ can be applied
to a formula ϕ, written as ϕθ, which yields the formula ϕ in which variables are
simultaneously replaced by terms as specified by θ. If θ and θ′ are substitutions and
ϕ is a formula, we use ϕθθ′ to denote (ϕθ)θ′. A ground substitution is a substitution
in which all ti are ground terms. In the sequel, we will assume all substitutions to
be ground, unless indicated otherwise. For technical convenience, we assume any
conjunction c has the form l0 ∧ . . .∧ lm ∧ lm+1 ∧ . . .∧ ln where l0, . . . , lm are positive
literals and lm+1, . . . , ln are negative literals. We use Var(ϕ) to denote the variables
occurring in ϕ and dom(θ) to denote the set of variables forming the domain of
θ. The satisfaction relation of a formula ϕ with respect to a belief base is defined
relative to a substitution θ, denoted as |=θ, and is defined as follows, where |= is the
usual entailment relation for ground formulas:

B |=∅ P(t0, . . . , tn) iff P(t0, . . . , tn) is ground and B |= P(t0, . . . , tn)
B |=∅ c iff c is ground and B |= c
B |=θ P(t0, . . . , tn) iff B |=∅ P(t0, . . . , tn)θ and Var(P(t0, . . . , tn)) = dom(θ)
B |=θ c iff B |=∅ (l0∧ . . .∧ lm)θ and Var(l0∧ . . .∧ lm) = dom(θ) and

¬∃θ′ : (B |=θ′ ¬lm+1θ and Var(lm+1θ) = dom(θ′))
. . .
¬∃θ′ : (B |=θ′ ¬lnθ and Var(lnθ) = dom(θ′))

B |=θ c∨ c′ iff B |=θ c or B |=θ c′

We use S ols(B,ϕ) = {θ | B |=θ ϕ} to denote the set of all substitutions for which ϕ
follows from the belief base. Note that if S ols(B,ϕ) = ∅, ϕ does not follow from B.
If ϕ follows from B under the empty substitution, we have S ols(B,ϕ) = {∅}.

We now continue to define what it means to execute an action. Let
a(x1, . . . , xn) =def (ϕ,ξ) ∈ A be a basic action definition. A function call a(t1, . . . , tn)
yields the pair (ϕ,ξ)θ where θ = [x1/t1] . . . [xn/tn], which does not have to be ground.
Let a(t1, . . . , tn) = (ϕ′, ξ′) be the result of applying the function to the terms t1, . . . , tn,
and let θ′ ∈ S ols(B,ϕ′). Then the effect on B of executing a(t1, . . . , tn) is that B is

260 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

updated by adding or removing (ground) atoms occurring in the set ξ′θ′:

B] lθ′ = B∪ lθ′ if l ∈ ξ and l a positive literal
B] lθ′ = B\¬lθ′ if l ∈ ξ and l a negative literal

We write B] ξ′θ′ to represent the result of updating B with the instantiated effect
of an action ξ′θ′, which performs the update operation as specified above on B for
each literal in ξ′. This update is guaranteed to yield a consistent belief base since we
add only positive literals.

The operational semantics of a language is usually defined in terms of labeled
transition systems [340]. A labeled transition system (LTS) is a tuple (Σ, s0, L,
→), where Σ is a set of states, s0 is an initial state, L is a set of labels, and →⊆
Σ × L×Σ describes all possible transitions between states, and associates a label to
the transition. The notation s

α
→ s′ expresses that (s,α, s′) ∈ →, and it intuitively

means that “s becomes s′ by performing action α”. Invisible transitions are denoted
by the label τ.

The operational semantics for a BUpL agent is defined as follows. Let (B0, p0,
A, P, R) be a BUpL agent. Then the associated LTS is (Σ, (B0, p0), L,→), where:

• Σ is the set of states, which are BUpL mental states

• (B0, p0) is the initial state

• L is a set of labels, which are either ground basic action terms or τ

• → is the transition relation induced by the transition rules given in Table 9.1.

a(x1, . . . , xn) =def (ϕ,ξ) ∈ A a(t1, . . . , tn) = (ϕ′, ξ′) θ ∈ S ols(B,ϕ′)

(B,a(t1, . . . , tn); p′)
a(t1 ,...,tn)θ
−−−−−−→ (B] ξ′θ, p′θ)

(act)

(B, pi)
µ
→ (B′, p′)

(B, (p1 + p2))
µ
→ (B′, p′)

(sumi)

(B,α; p) 6 αθ′→ ϕ← p′ ∈ R θ ∈ S ols(B,ϕ)

(B, p)
τ
→ (B, p′θ)

(f ail)

π(x1, . . . , xn) = p ∈ P

(B,π(t1, . . . , tn))
τ
→ (B, p(t1, . . . , tn))

(π)

Table 9.1 BUpL transition rules

In rule (sumi), pi is either p1 or p2, and µ can be either a ground basic action term or
a silent transition τ, in which case B′ = B, and p′ is a valid repair plan. In rule (π),
p(t1, . . . , tn) stands for p[x1/t1] . . . [xn/tn].

9 Using Maude for Agent Development with Formal Foundations 261

9.3 Prototyping

In this section, we describe how the operational semantics of agent programming
languages can be implemented in Maude. The main advantage of using Maude for
this is that the translation of operational semantics into Maude is direct [390], ensur-
ing a faithful implementation. Because of this, it is relatively easy to experiment with
different kinds of semantics, making Maude suitable for rapid prototyping of agent
programming languages. This is also facilitated by the fact that Maude supports
user-definable syntax, offering prototype parsers for free. Another advantage of us-
ing Maude for prototyping specifically logic-based agent programming languages
is that Maude has been shown to be suitable not only as a semantic framework, but
also as a logical framework in which many other logics can be represented.

We use BUpL to illustrate the implementation of agent programming languages
in Maude. BUpL has beliefs and plan revision features, but no goals. We refer
to [370] for a description of the Maude implementation of a similar agent program-
ming language that does have goals. While the language of [370] is based on propo-
sitional logic, BUpL allows the use of variables, facilitating experimentation with
more realistic programming examples. An implementation of the agent program-
ming language AgentSpeak in Maude is briefly described in [170].

9.3.1 Introduction to Maude

A rewriting logic specification or rewrite theory is a tuple 〈Σ,E,R〉, where Σ is a
signature consisting of types and function symbols, E is a set of equations and R is a
set of rewrite rules. The signature describes the terms that form the state of the sys-
tem. These terms can be rewritten using equations and rewrite rules. Rewrite rules
are used to model the dynamics of the system, i.e., they describe transitions between
states. Equations form the functional part of a rewrite theory, and are used to reduce
terms to their “normal form” before they are rewritten using rewrite rules. The ap-
plication of rewrite rules is intrinsically non-deterministic, which makes rewriting
logic a good candidate for modeling concurrency.

In what follows, we briefly present the basic syntax of Maude, as needed for
understanding the remainder of this section. Please refer to [104] for complete in-
formation. Maude programs are built from modules. A module consists of a syntax
declaration and statements. The syntax declaration forms the signature and consists
of declarations for sorts, which give names for the types of data, subsorts, which
impose orderings on data types, and operators, which provide names for the opera-
tions acting upon the data. Statements are either equations or rewrite rules. Modules
containing no rewrite rules but only equations are called functional modules, and
they define equational theories 〈Σ,E〉. Modules that contain also rules are called
system modules and they define rewrite theories 〈Σ,E,R〉. Functional modules (sys-
tem modules) are declared as follows:

262 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

fmod (mod) <ModuleName> is

<DeclarationsAndStatements>

endfm (endm)

Modules can import other modules, which helps in building up modular applications
from short modules, making it easy to debug, maintain or extend.

One or multiple sorts are declared using the keywords sort and sorts, respec-
tively, and subsorts are similarly declared using subsort and subsorts. The fol-
lowing defines the sorts Action and Plan and their subsort relation, which is used
for specifying the BUpL syntax.

sorts Action Plan . subsort Action < Plan .

We can further declare operators (functions) defined on sorts (types) as follows:

op <OpName> : <Sort-1> ... <Sort-k> -> <Sort>

[<OperatorAttributes>] .

where k is the arity of the operator. For example, the operator declaration below is
used to define the BUpL construct plan repair rule. The operator ((_<-_)) takes a
query of sort Query that should be tested on the belief base, and a plan, and yields a
term of sort PRrule. The operator is in mixfix form, where the underscores indicate
the positions of its parameters. This also illustrates how Maude can be used to define
the syntax of a BUpL language construct.

op ((_<-_)) : Query Plan -> PRrule .

Equations and rewrite rules specify how to transform terms. Terms are vari-
ables, constants, or the result of the application of an operator to a list of argu-
ment terms. Variables are declared using the keywords var and vars. For example,
var R : PRrule declares a variable R of sort PRrule. Equations can be uncondi-
tional or conditional and are declared as follows, respectively:

eq [<Label>] : <Term-1> = <Term-2> .

ceq [<Label>] : <Term-1> = <Term-2>

if <Cond-1> /\ ... /\ <Cond-k> .

where Cond-i is a condition which can be an ordinary equation t = t’, a matching
equation t := t’ (which is true only if the two terms match), a Boolean equation
(which contains, e.g., the built-in (in)equality =/=, ==, and/or logical combinators
such as not, and, or), or a membership equation t : S (which means that t is a
member of sort S).

For example, the following conditional equation is part of a module for speci-
fying when a formula logically follows from the belief base. The belief base is de-
fined as a commutative sequence of ground belief atoms of sort Belief, separated
by #. The conditional equation specifies that matching term T against a belief base
containing belief B yields substitution S, if match(T, B) yields a substitution S that
is different from noMatch, the built-in Maude constant to indicate that no substitu-
tion has been found.

9 Using Maude for Agent Development with Formal Foundations 263

var B : Belief .

var BB : BeliefBase .

var T : Term .

var S : Substitution .

ceq match(T, B # BB) = S if S := match(T, B) /\ S =/= noMatch .

Operationally, equations can be applied to a term from left to right. Equations
in Maude are assumed to be terminating and confluent,3 i.e., there is no infinite
derivation from a term t using the equations, and if t can be reduced to different
terms t1 and t2, there is always a term u to which both t1 and t2 can be reduced.
This means that any term has a unique normal form, to which it can be reduced
using equations in a finite number of steps.

Finally, we introduce rewrite rules. Like equations, rewrite rules can also be un-
conditional or conditional, and are declared as follows:

rl [<Label>] : <Term-1> => <Term-2> .

crl [<Label>] : <Term-1> => <Term-2>

if <Cond-1> /\ ... /\ <Cond-k> .

where Cond-i can involve equations, memberships (which specify terms as having
a given sort) and other rewrites. We will present several examples in the next section.

9.3.2 Implementing BUpL: Syntax

In this section, we use BUpL to illustrate how the syntax of agent programming
languages can be implemented in Maude. We make a distinction between the logical
parts of the language and the non-logical parts.

9.3.2.1 Logical Part

First, we have to define the logical language on which BUpL is based. Logical for-
mulas occur in the belief base (ground atoms), in actions specifications (a formula
as precondition, and a set of literals as effects), and in repair rules (a formula as
the application condition). For the representation of atoms, the Maude built-in sorts
GroundTerm and Term are used. That is, any Maude (ground) term can be used as
an atom of our logical base language. In addition, we define the following sorts to
represent also negated (ground) terms and (ground) sets of literals.

sorts NegGroundTerm NegTerm GroundLitSet LitSet .

3 If this is not the case, the operational semantics of Maude does not correspond with its mathe-
matical semantics.

264 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

The following subsort relations are defined on these sorts. Note that GroundTerm
< GroundLitSet specifies that any Maude ground term can be a (set of) ground

literals, and similarly for Term < LitSet.

subsorts GroundTerm GroundTermList < GroundLitSet .

subsorts Term NegTerm GroundLitSet < LitSet .

subsort NegGroundTerm < NegTerm .

GroundLitSet is defined as a supersort of the Maude built-in sort
GroundTermList, since we use its constant empty to represent an empty set of
ground literals. The sorts Belief and BeliefBase are introduced with the subsort
relations

subsorts Belief < GroundTerm GroundTermList < BeliefBase

< GroundLitSet .

to represent beliefs. The following operators are introduced to syntactically repre-
sented (ground) literal sets, belief bases, and negated (ground) terms. The attributes
assoc comm id: empty declare that the operator is associative and commutative
with identity the empty set. The attribute ctor declares that the operator is a con-
structor, which means that it is used to construct terms rather than to apply it as a
function and calculate the result. We overload the operator #, using it for represent-
ing both (ground) literal sets and belief bases. The attribute ditto specifies that an
overloaded operator has the same attributes as the first declaration of the operator
(excluding ctor).

op _#_ : LitSet LitSet -> LitSet [ctor assoc comm id: empty] .

op _#_ : GroundLitSet GroundLitSet -> GroundLitSet [ctor ditto] .

op _#_ : BeliefBase BeliefBase -> BeliefBase [ctor ditto] .

op neg_ : Term -> NegTerm [ctor] .

op neg_ : GroundTerm -> NegGroundTerm [ctor] .

We call formulas that are evaluated on the belief base queries. The query language
is defined over terms as follows. The definition is more general than the DNF of
Section 9.2.1. However, when defining the semantics, formulas are first transformed
into DNF.

sort Query .

subsort Term < Query .

ops top bot : -> GroundTerm .

op ˜_ : Query -> Query [ctor] .

op _/_ : Query Query -> Query [assoc] .

op _\/_ : Query Query -> Query [assoc] .

This completes the specification of the syntax of the logical part of BUpL.
It is important to note that Maude is suitable as a framework in which many

logics can be represented, using equations to axiomatize the logic and using rewrite
rules as inference rules. This facilitates experimentation with different logics for
representing agent beliefs, making the framework flexible.

9 Using Maude for Agent Development with Formal Foundations 265

9.3.2.2 Non-Logical Part

The non-logical part consists of the specification of actions, plans, procedures, and
repair rules. We distinguish between internal and observable actions. This is useful
for testing. Actions are specified as functions using equations. The action name is
the function name specified as an operator, and applying the equation yields the
precondition and effect of the action. Preconditions and effects are defined using
the operators o[_,_] and i[_,_] for observable and internal actions, respectively.
nilA is the “empty” action, used to define an empty plan. The code below shows
an example specification of the move action from the tower of blocks example of
Figure 9.1.4 The sort Nat represents natural numbers.

sorts Action I-Action O-Action .

subsorts I-Action O-Action < Action .

ops nilA : -> Action .

op o[_,_] : Query LitSet -> O-Action .

op i[_,_] : Query LitSet -> I-Action .

op on : Nat Nat -> Belief .

op clear : Nat -> Belief .

op move : Nat Nat Nat -> O-Action .

ceq [act] : move(X, Y, Z) = o[on(X, Y) /\ clear(X) /\ clear(Z),

neg on(X, Y) # on(X, Z) # clear(Y)

neg clear(Z) # clear(0)]

if X =/= Z .

Plans are built from actions, procedure calls (at the end of a plan), sequential com-
position (pre), and non-deterministic choice (sum). The operators pre and sum are
declared to be constructors, reflecting the fact that they are used to construct plans.
Procedure names are introduced as operators, and a procedure is defined as an equa-
tion that yields the plan forming the body of the procedure. For example, the proce-
dure build as declared below is used for building a tower of three blocks (321).

sort Plan .

subsort Action < Plan .

op pre : Action Plan -> Plan [ctor id: nilA strat (1 0)] .

op sum : Plan Plan -> Plan [ctor comm] .

op build : -> Plan .

eq build = pre(move(2, 0, 1), move(3, 0, 2)) .

Note that the operator pre has the attribute strat (1 0). This specifies that only
its first argument (an action) can be normalized using equations (expressed by the

4 Note that in the specification of the move action in Maude, we have added the condition X =/= Z,
which is easily done using conditional equations.

266 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

1), before any equations are applied on the operator pre itself (expressed by placing
1 before 0).5 The second argument (a plan) is not normalized using equations. Using
this attribute thus changes what a normal form is for the operator pre: the normal
form is obtained by normalizing the operator’s first argument and then normalizing
the operator itself at top level, while leaving the second argument intact. This pre-
vents the continuous application of equations, which would lead to a stack overflow
in case a non-terminating procedure is specified. For example, if we would specify
a recursive procedure build using the equation

eq build = pre(move(2, 0, 1), pre(move(2, 1, 0), build)) .

without using strat in the declaration of pre, the continuous application of the
equation to normalize build as occurring in the right-hand side of the equation
would lead to a stack overflow.

Repair rules are defined similarly to procedures, using equations. An operator is
introduced to define the name and parameters of the repair rule, and the equation
yields the repair rule itself. On the basis of the equations, repair rules can be col-
lected into a repair rule base (of sort PRbase). The example repair rule pr shown
below can be used to deal with a failing move(X,Y,Z) action. The action fails if
Y or Z are not clear. In this case the repair rule can be applied to move a block to
the table (clearing the block on which it was placed), after which it is tried again to
build the tower.

sorts PRrule PRbase .

subsort PRrule < PRbase .

op ((_<-_)) : Query Plan -> PRrule .

op empty-prb : -> PRbase .

op __ : PRbase PRbase -> PRbase [assoc comm id: empty-prb] .

ops pr : Nat Nat -> PRrule .

eq [pr] : pr(X, Y) = ((on(X, Y) /\ Y > 0 <-

pre(move(X, Y, 0), build))) .

Finally, we define an operator for representing BUpL mental states. The operator
takes a label, belief base and plan, and yields a term of sort LBpMentalState. The
label represents the label of the transitions in the transition system, i.e., it represents
which actions have been executed.

op <<_,_,_>> : Label BeliefBase Plan -> LBpMentalState .

9.3.3 Example BUpL Program

Using the implementation of the BUpL syntax in Maude, one can easily specify
BUpL programs in Maude. An example is the following tower building agent, which

5 In our implementation, no equations are specified for normalizing pre itself.

9 Using Maude for Agent Development with Formal Foundations 267

represents the example agent from Figure 9.1 in Maude. The move action and the
procedure and plan repair rule have already been introduced above. In addition,
the program specifies the initial belief base bb, which expresses where blocks are
positioned initially and which blocks are clear. Moreover, the initial mental state of
the builder agent is specified using the operator builder. The initial plan is build.
Since no actions have been executed yet in the initial mental state, its label is empty.
The equation module-name is specified to obtain a reference to the module in which
the BUpL program is written. This will be used when implementing the semantics.

mod AGENT-DATA

protecting BUPL-SYNTAX .

protecting NAT .

eq module-name = ’AGENT-DATA .

op on : Nat Nat -> Belief .

op clear : Nat -> Belief .

op bb : -> BeliefBase .

eq bb = on(3, 1) # on(1, 0) # on(2, 0) # clear(0) #

clear(3) # clear(2) .

op move : Nat Nat Nat -> O-Action .

vars X Y Z : Nat .

ceq [act] : move(X, Y, Z) =

o[on(X, Y) /\ clear(X) /\ clear(Z),

neg on(X, Y) # on(X, Z) # clear(Y)

neg clear(Z) # clear(0)]

if X =/= Z .

op build : -> Plan .

eq build = pre(move(2, 0, 1), move(3, 0, 2)) .

ops pr : Nat Nat -> PRrule .

eq [pr] : pr(X, Y) = ((on(X, Y) /\ Y > 0 <-

pre(move(X, Y, 0), build))) .

op builder : -> LBpMentalState .

eq builder = << bLabel(empty), bb, build >> .

endm

9.3.4 Implementing BUpL: Semantics

The implementation of the semantics of BUpL in Maude can again be divided into
the implementation of the logical part and of the non-logical part.

268 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

9.3.4.1 Logical Part

Implementing the semantics of the logical part means implementing matching a
query against a belief base. Matching takes place both to determine whether an
action can be executed, as well as to determine whether a repair rule can be applied.
It is defined using the operator match : Query BeliefBase -> Substitution,
which takes a query and a belief base, and yields a substitution in case the query
matches the belief base, and the special substitution noMatch otherwise.

This operator is defined by making use of Maude’s reflective capabilities [103].
Maude is a reflective logic since important aspects of its meta-theory can be rep-
resented at the object level, so that the object level correctly simulates the meta-
theoretic aspects. The meta-theoretic aspect that we use here, is matching two terms.
Maude continually matches terms when using equations and rewrite rules. This
meta-level functionality can be conveniently used to match a term against a belief.

The meta-level operator that can be used for implementing this, is metaMatch.
This operator takes the meta-representation of a module and two terms, and tries
to match these terms in the module. If the matching attempt is successful, the
result is the corresponding substitution. Otherwise, noMatch is returned. Obtain-
ing the meta-representation of modules and terms can be done using the operators
upModule and upTerm, respectively. The module that we use for this is the module
containing the BUpL program, since the belief base is defined there. The name of
the module is obtained by defining an equation for the operator module-name, as
shown in the example program of Section 9.3.3. The sort Qid is a predefined Maude
sort for identifiers. The base case for the operator match, where a term is matched
against a belief, is defined using metaMatch as follows.

var T : Term .

var B : Belief .

op module-name : -> Qid .

eq match(T, B) =

metaMatch(upModule(module-name), upTerm(T), upTerm(B)) .

Matching a term against a belief base is then defined by making use of the former
equation.

var S : Substitution .

var BB : BeliefBase .

ceq match(T, B # BB) = S if S := match(T, B) /\ S =/= noMatch .

eq match(T, B # BB) = noMatch [owise] .

For reasons of space, we omit the additional equations for matching composite for-
mulas against a belief base.

9 Using Maude for Agent Development with Formal Foundations 269

9.3.4.2 Non-Logical Part

As proposed in [424], the general idea of implementing transition rules of an opera-
tional semantics in Maude, is to implement them as (conditional) rewrite rules. The
premises of a transition rule then form the conditions of the corresponding rewrite
rule, and the conclusion forms the rewrite itself.

We illustrate the implementation of transition rules using those for action execu-
tion and repair rule application. The transition rule for action execution

a(x1, . . . , xn) =def (ϕ,ξ) ∈ A a(t1, . . . , tn) = (ϕ′, ξ′) θ ∈ S ols(B,ϕ′)

(B,a(t1, . . . , tn); p′)
a(t1,...,tn)θ
−−−−−→ (B] ξ′θ, p′θ)

(act)

is implemented in Maude as two rewrite rules: one for internal actions and one for
observable actions. Here, we present only the rule for observable actions.

ops eqSC : -> EquationSet .

eq eqSC = upEqs(module-name, false) .

var OA : O-Action .

crl [exec-OA] : << L:Label, BB, pre(OA, P) >> =>

<< oLabel(getName(OA, eqSC)),

update(BB, downTerm(substitute(upTerm(effect(OA)), S), ’err)),

downTerm(substitute(upTerm(P), S), ’err) >>

if S := match(prec(OA), BB) /\ S =/= noMatch .

Recall that equations are used to map actions to their specification in terms of pre-
conditions and effects (expressed using the operator o[_,_] in case of observable
actions). Before Maude applies rewrite rules to a term, it first reduces the term to
its normal form using equations. This means that all actions in a plan of a men-
tal state that is rewritten, are first replaced by their preconditions and effects. Any
substitutions that are calculated while executing the plan, are therefore applied to
these preconditions and effects. This implements the first two conditions of the cor-
responding transition rule.

In order to implement the third condition, an auxiliary operator prec is used,
which yields the precondition of an action. The precondition is then matched against
the belief base to yield a substitution. The rule can only be applied if a substitution
is indeed found, i.e., if the precondition matches the belief base.

Updating the belief base according to the effect of the action is done using the
operator update : BeliefBase GroundLitSet -> BeliefBase. The ground
set of literals, which forms a parameter of this operator, is obtained from ap-
plying the calculated substitution S to the effect of the action using the operator
substitute : Term Substitution -> Term. This operator is general in that it
applies a substitution to any term of sort Term. In this case, we want to apply the
substitution to the effect of an action. This can be done using the operator upTerm
to obtain the meta-representation of the effect of the action, which is of sort Term,

270 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

and after applying the substitution transforming the term again into its object-level
variant using downTerm. In a similar way, the calculated substitution is applied to
the rest of the plan, according to the transition rule. The operator getName, which
is used for obtaining the label of the new mental state, retrieves the name of the
action (including instantiated parameters) from its precondition/effect specification
and the action equations of the BUpL program (obtained using the meta-level built-
in Maude function upEqs).

The transition rule for applying a plan repair rule

(B,α; p) 6 αθ′→ ϕ← p′ ∈ R θ ∈ S ols(B,ϕ)

(B, p)
τ
→ (B, p′θ)

(f ail)

is implemented in Maude as the following rewrite rule:

crl [exec-fail] : << L:Label, BB, pre(A, P) >> =>

<< tLabel, BB, downTerm(substitute(upTerm(P), S), ’err) >>

if match(prec(A), BB) == noMatch /\

(((Q <- P)) PRB) := getPR(eqSC) /\

S := match(Q,BB) /\ S =/= noMatch .

The first condition of the rewrite rule checks that the action that is to be executed,
cannot be executed (which is the case if no substitution can be found when the
precondition of the action is matched against the belief base). This implements the
first condition of the transition rule.

The second condition of the rewrite rule implements the second condition of
the transition rule as follows. Since repair rules are implemented as equations that
yield a repair rule (see Section 9.3.2.2), we need an operator to collect the rules
into a repair rule base. This is done by getPR : EquationSet -> PRbase, which
takes the equations corresponding to the repair rules and yields a repair rule base
consisting of the rules as defined by the equations.

The third and fourth conditions of the rewrite rule implement matching the con-
dition of the repair rule to the belief base, corresponding to the third condition of
the transition rule. The resulting substitution is applied to the plan of the repair rule,
which becomes the plan of the next mental state.

9.3.5 Executing an Agent Program

The BUpL example agent from Section 9.3.3 can be executed in Maude using
the command rew builder. Maude then uses the implemented BUpL semantics
to rewrite the term builder, which is first reduced to the initial mental state of
the builder agent using the equation eq builder = << bLabel(empty), bb,
build >>, after which other equations and rewrite rules are applied that specify
the semantics of BUpl. The Maude output looks as follows.

9 Using Maude for Agent Development with Formal Foundations 271

Maude> rew builder .

rewrite in AGENT-DATA : builder .

rewrites: 4722 in 202ms cpu (252ms real) (23264 rewrites/second)

result LBpMentalState:

<< oLabel(’move[’s_ˆ3[’0.Zero],’0.Zero,’s_ˆ2[’0.Zero]]),

clear(0) # clear(3) # on(1, 0) # on(2, 1) # on(3, 2), nilA >>

This says that the builder finished its execution after moving block 3 onto 2 (the cur-
rent plan is empty), and that the belief base reflects the current configuration of the
blocks, namely the tower 321. The output ’move[...] is the meta-representation
of move(3, 0, 2). For example, ’s_ˆ3[’0.Zero] represents the third successor
of zero, i.e., 3.

One can also rewrite the builder step by step. For example, the following shows
the resulting mental state after one step of rewriting, namely, a τ transition corre-
sponding to handling the failure of action move(2, 0, 1) which cannot be ex-
ecuted since block 3 is on top of 1. We can see that the belief base remains un-
changed, and the only change is in the current plan. The application of the repair
rule pr replaces the failing plan by a plan which consists of first executing the ac-
tion of moving a block (in our case block 3) onto the floor and then trying build
again. Note that the action is represented by its precondition and effect in the form
o[precondition,effect].

Maude> rew [1] builder .

rewrite [1] in AGENT-DATA : builder .

rewrites: 4141 in 181ms cpu (228ms real) (22756 rewrites/second)

result LBpMentalState:

<< tLabel,

clear(0) # clear(2) # clear(3) # on(1, 0) # on(2, 0) # on(3, 1),

pre(o[clear(0) /\ (clear(3) /\ on(3, 1)),

neg clear(0) # neg on(3, 1) # clear(0) # clear(1) # on(3, 0)],

build) >>

9.4 Model-Checking

In Section 9.3, we have shown how the syntax and semantics of BUpL can be imple-
mented in Maude, and how an example BUpL program can be defined and executed.
One of the main advantages of using Maude for agent development is that it sup-
ports software development using formal methods. In this section, we show how
the Maude LTL model-checker [156] can be used for verifying agent programs.
Verification is important in order to ensure that the final agent program is correct
with respect to a given specification or that it satisfies certain properties. Properties
are specified in linear temporal logic (LTL) [296] and are verified using a model-
checking algorithm. Model-checking only works for finite state systems.

We briefly recall some of the LTL concepts which we will refer to in the fol-
lowing sections. The basic LTL formulas are the booleans true (>) and false (⊥)

272 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

and atomic propositions. Inductively, LTL formulas are built on top of the usual
boolean connectives like negation and conjunction. Typical LTL operators are next
(©) and until (U). The operatorU can be used to define the connective eventually,
♦φ = >Uφ. The connective ♦ can be used to further define the connective always,
�φ = ¬♦¬φ.

The semantics of LTL formulas is defined in the usual way. The satisfaction of
an LTL formula φ in a finite transition system S with an initial state s is defined as
follows:

S , s |= φ iff (∀π ∈ Paths(s))(S ,π |= φ)

which means that the LTL formula φ holds in the state s if and only if φ holds for any
path in Paths(s), the set of paths in S starting at s. Given a path π, the satisfaction
relation for a formula φ is defined inductively on the structure of φ. We present, as
an example, the semantics of the operator “next” and of the connective “until”:

S ,π |=LT L ©φ iff S ,π(1) |=LT L φ
S ,π |=LT L φUψ iff (∃n)(S ,π(n) |=LT L ψ)∧ (∀m < n)(S ,π(m) |=LT L φ)

where n, m are natural numbers and π(n) denotes the subpath of π starting in the
“n”-th state on π. Basically, ©φ is satisfied in a state if and only if φ is satisfied in
the successor state. The formula φUψ holds on a path π if and only if there is a state
which makes ψ true and in all the previous states φ was true.

Intuitively, a given path π satisfies the temporal formula ♦φ if there exists a state
on π which satisfies φ. Similarly, π satisfies the temporal formula �φ if there does
not exist a state on π which does not satisfy φ. By means of these operators, LTL
allows specification of properties such as safety properties (something “bad” never
happens) or liveness properties (something “good” eventually happens). These prop-
erties relate to the infinite behavior of a system. We will provide concrete examples
in the next sections.

9.4.1 Connecting BUpL Agents and Model-Checker

Maude system modules can be seen as specifications at different levels. On the one
hand they can specify systems (in our case, BUpL agents), on the other hand they
can specify properties that we want to prove about a given system. The syntax of
LTL is defined in the functional module LTL (in the file model-checker.maude).
The following code, which is a part of the module LTL, shows the declaration of the
temporal operators “until” (U), “release” (R), “eventually” (<>) and “always” ([]).
It further shows the definitions of <> f (resp. [] f).

9 Using Maude for Agent Development with Formal Foundations 273

fmod LTL is

protecting Bool .

sort Formula .

*** primitive LTL operators

ops True False : -> Formula [ctor ...] .

op _U_ : Formula Formula -> Formula [ctor ...] .

op _R_ : Formula Formula -> Formula [ctor ...] .

...

*** defined LTL operators

op <>_ : Formula -> Formula [...] .

op []_ : Formula -> Formula [...] .

...

var f : Formula .

eq <> f = True U f .

eq [] f = False R f .

...

endfm

In order to use the Maude model checker, one needs to do two main things: (i)
define which sort represents the states of the system that is to be model-checked, and
(ii) define the atomic predicates that can be checked on these states. LTL formulas
defined over these atomic predicates are then used to specify the property that is to
be model-checked.

In our case, the states are the BUpL mental states of sort LBpMentalState. In
order to express that these are the states of our system, we need the Maude model-
checker module SATISFACTION, which is defined as follows.

fmod SATISFACTION is

protecting BOOL .

sorts State Prop .

op _|=_ : State Prop -> Bool [frozen] .

endfm

We import this module into our own module BUPL-PREDS for defining the BUpL
atomic predicates, and declare subsort LBpMentalState < State to express
that BUpL mental states are to be considered the states of the system that is to
be model-checked. Moreover, we use the operator _|=_ for defining the semantics
of the atomic state predicates, which are declared as predicates of sort Prop. We
define the state predicate fact(B) to express that ground atom B is believed by the
BUpL agent.

mod BUPL-PREDS is

including BUPL-SEMANTICS .

including SATISFACTION .

including MODEL-CHECKER .

including LTL-SIMPLIFIER .

subsort LBpMentalState < State .

op fact : Belief -> Prop .

274 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

var B : Belief .

eq << L:Label, B # BB:BeliefBase, P:Plan >> |= fact(B) = true .

endm

In the sequel, we will introduce additional state predicates to specify properties of
BUpL agents.

9.4.2 Examples

To run the model-checking procedure we need, after loading in the system the file
model-checker.maude, to call the operator modelCheck with an initial state and
a formula, specifying the property that is to be checked, as arguments. The result of
the algorithm is either the boolean true (if the property holds) or a counterexample.
The operator modelCheck is declared in the system module MODEL-CHECKERwhich
is defined in the file model-checker.maude.

fmod MODEL-CHECKER is

including SATISFACTION .

including LTL .

subsort Prop < Formula .

...

subsort Bool < ModelCheckResult .

op modelCheck : State Formula ˜> ModelCheckResult [...] .

endfm

Recall that State and Formula are sorts we have already seen declared in the mod-
ules Statisfaction and LTL, respectively (Section 9.4.1).

We can use the predicate fact (defined in Section 9.4.1) in order to define safety
properties. As an example, we model-check that it is never the case that the agent
believes the table is on block 3. The following Maude output shows that the result
is the boolean true.

Maude> red modelCheck(builder, []˜ fact(on(0, 3))) .

reduce in AGENT-DATA : modelCheck(builder, []˜ fact(on(0, 3))) .

rewrites: 4811 in 196ms cpu (241ms real) (24425 rewrites/second)

result Bool: true

The predicate fact enables us to express properties of the beliefs of a BUpL agent.
In order to express properties of actions, we define another state predicate taken
using the label of a BUpL state. Recall that the label specifies which action has been
executed.

mod BUPL-PREDS is

...

op taken : Action -> Prop .

ceq << oLabel(T), BB:BeliefBase, P:Plan >> |= taken(A) = true

if T := getName(A, eqSC) .

9 Using Maude for Agent Development with Formal Foundations 275

The predicate taken(A) is true in a state if the label Tmatches A. Note that we can-
not match A and T directly, since T is an action name with instantiated parameters,
while A is an action specified by means of a precondition and effect (of the form
o[precondition,effect]). The operator getName is used to obtain the name
and instantiated parameters of A (see Section 9.3.4.2).

We can use the predicate taken to verify that a certain sequence of actions has
been executed. For instance, the following Maude output shows that eventually, if
block 2 is moved onto block 1 then moving block 3 onto block 2 takes place after
this. This is an example of a liveness property.

Maude> red modelCheck(builder,

<> (taken(move(2, 0, 1)) -> O taken(move(3, 0, 2)))) .

reduce in AGENT-DATA : modelCheck(builder,

<> (taken(move(2, 0, 1)) -> O taken(move(3, 0, 2)))) .

rewrites: 30 in 1ms cpu (0ms real) (30000 rewrites/second)

result Bool: true

We can define more meaningful liveness properties such as goals that should
be reached from an initial configuration. The equation g1 defines the predicate
goal321 as being true if the agent believes that block 3 is on block 2 and block
2 is on block 1, expressing that the agent built the tower 321.

mod AGENT-DATA-PREDS is

including BUPL-PREDS .

including AGENT-DATA .

op goal321 : -> Prop .

eq [g1] : goal321 = fact(on(3,2)) /\ fact(on(2,1)) .

endm

While the generic BUpL predicates fact and taken were specified in the module
BUPL-PREDS, the predicate goal321 is specific to the tower building agent and is
consequently specified in the module AGENT-DATA-PREDS.

The following Maude output shows that the result of model-checking
[]<>goal321 is true, meaning that the BUpL agent will always eventually build
the tower 321 from the initial configuration.

Maude> red modelCheck(builder, []<> goal321) .

reduce in AGENT-DATA-PREDS : modelCheck(builder, []<> goal321) .

rewrites: 4816 in 245ms cpu (292ms real) (19580 rewrites/second)

result Bool: true

We might be interested in knowing not only that goal321 is reachable from the
initial state, but also in the corresponding trace. For this, it suffices to model-check
the negation of goal321. This returns a counterexample representing the trace that
we want.

276 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

Maude> red modelCheck(builder, []˜ goal321) .

reduce in AGENT-DATA-PREDS : modelCheck(builder, []˜ goal321) .

rewrites: 4568 in 188ms cpu (249ms real) (24173 rewrites/second)

result ModelCheckResult: counterexample(

{<< empty-l,..., ... >>,’exec-fail}

{<< tLabel,..., ... >>,’exec-OA}

{<< oLabel(’move[’s_ˆ3[’0.Zero],’s_[’0.Zero],’0.Zero]),

..., ... >>,’exec-OA}

{<< oLabel(’move[’s_ˆ2[’0.Zero],’0.Zero,’s_[’0.Zero]]),

..., ... >>,’exec-OA},

{<< oLabel(’move[’s_ˆ3[’0.Zero],’0.Zero,’s_ˆ2[’0.Zero]]),

clear(0) # clear(3) # on(1, 0) # on(2, 1) # on(3, 2),

nilA >>, deadlock}

)

This counterexample should be read as follows. The declaration of the operator
counterexample is in the predefined module MODEL-CHECKER. It is formed by a
pair of transition lists:

op counterexample : TransitionList TransitionList ->

ModelCheckResult [ctor] .

A transition list is composed of transitions, and a transition records a state and the
name of the rule which has been applied from that state.

subsort Transition < TransitionList .

op {_,_} : State RuleName -> Transition [ctor] .

op __ : TransitionList TransitionList ->

TransitionList [ctor assoc id: nil] .

The first list of counterexample represents the shortest sequence of transitions
(which record the states being visited) that leads to the first state of a loop. This
loop is represented by the second list from counterexample. In our example, the
first list consists of four transitions. It shows that first the rewrite rule exec-fail
has been applied from the initial state (for readability, the belief base and plan are
omitted), and consequently the label of the next state denotes a τ step. Then, the
rule exec-OA is applied, which changes the label of the next state into the meta-
representation of the action move(3,1,0). A similar reasoning applies for the next
transition.

The second list of the counterexample (after the white line) consists of only one
transition. The initial plan has terminated (the action nilA is reached) and the be-
lief base reflects that tower 321 is built. The rule name from this last transition is
deadlock, a predefined constant which is declared in MODEL-CHECKER. It means
that from the state that the agent reached, no further rewrite rule is applicable. Thus,
the system “cycles” in a deadlock state and this is the loop represented by the sec-
ond transition list. We note that a Maude deadlock state is, in our case, a termination
BUpL state.

9 Using Maude for Agent Development with Formal Foundations 277

9.4.3 Fairness

The BUpL agent we have described always terminates, i.e., all execution paths are
finite. Infinite behavior can occur due to recursive abstract plans, and because of
the non-determinism of the operator sum. The reason in the latter case is that it is
possible that the choice between a failing and a terminating action goes always in
favor of the failing one. We call such behavior unfair.

In practice, unfair traces are generally prevented from occurring through schedul-
ing algorithms such as round-robin. However, at the level of prototyping BUpL in
Maude we would like to abstract from controlling the non-deterministic choices.
Rather, non-determinism is reduced at a later phase of design, at a more concrete
implementation level. We stress that it is important to abstract from control issues
at the prototype level, since the main concern is to experiment with language defi-
nitions rather than scheduling algorithms.

Nevertheless, when model-checking BUpL agents one may want to ignore unfair
traces and show that the agent satisfies certain properties assuming fairness. Since
we work in a declarative framework, our solution is to model-check only the traces
that satisfy certain fairness constraints and to define fairness using LTL. To illustrate
this, we first introduce the predicate enabled. The proposition enabled(A) holds
in a state if the action A can be executed in that state, i.e., if the action’s precondition
holds.

op enabled : Action -> Prop .

ceq << L:Label, BB, P >> |= enabled(A) = true

if match(prec(A), BB) =/= noMatch .

Following [296], we then define fairness with respect to an action as follows.

op fair : Action -> Prop .

eq fair(A) = <>[] enabled(A) -> []<> taken(A) .

This says that if an action is continuously enabled it should be infinitely often taken.
This requirement casts aside traces where the failing action is always chosen in spite
of a terminating action a since such traces are unfair with respect to a.

For a concrete example where fairness is useful, we modify the BUpL example
from Section 9.3.3 such that the initial plan of the agent is p1, which is defined
as a non-deterministic choice (sum) between an always failing action and the plan
build. We further add an always enabled repair rule pr1 to handle the case where
the failing action has been chosen in p1.

eq p1 = sum(i[bot, empty], build) .

ops pr1 : -> PRrule .

eq [pr1] : pr1 = ((top <- p1)) .

...

eq builder = << bLabel(empty), bb, p1 >> .

278 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

It is now the case that achieving goal321 is no longer always possible, demon-
strated by the following counterexample, which is generated when model-checking
the property []<> goal321.

Maude> red modelCheck(builder, []<> goal321) .

reduce in AGENT-DATA-PREDS : modelCheck(builder, []<> goal321) .

rewrites: 4875 in 209ms cpu (254ms real) (23217 rewrites/second)

result ModelCheckResult: counterexample(

{<< empty-l, ..., ... >>,’sum}

{<< tLabel, ..., ... >>,’exec-fail},

{<< tLabel, ..., ... >>,’sum}

{<< tLabel, ..., ... >>,’exec-fail})

The counterexample shows that first the failing action was chosen to be executed,
which is then handled by the repair rule pr1. In this counterexample, this leads to
a loop in which over and over the failing action is chosen and then the repair rule
is applied. This loop is represented in the second parameter of counterexample
(below the white line).

However, if we consider the paths which are fair with respect to move(3,1,0)
then we have that goal321 is always achieved.

Maude > reduce in AGENT-DATA-PREDS :

modelCheck(builder, fair(move(3, 1, 0)) -> []<> goal321) .

rewrites: 9097 in 196ms cpu (231ms real) (46184 rewrites/second)

result Bool: true

9.5 Testing

In the previous section, we have illustrated how Maude can be used for model-
checking BUpL agents, using the tower builder of Section 9.3.3 as an example.
Since the tower builder has a finite number of mental states, verification by model-
checking is in principle feasible. However, the state space of agents can also be infi-
nite, making direct model-checking impossible. This issue may be addressed within
the context of model-checking, e.g., by investigating abstractions techniques for re-
ducing the state space. In this section, however, we are concerned with a different
technique than model-checking, namely testing. Testing can be used for identifying
failures in infinite state systems or in finite state systems where the state space be-
comes too large for model-checking. The basic idea behind testing is that it aims
at finding failures by showing that the intended and the actual behavior of a system
differ through generating and checking individual executions.

In this section, we present two kinds of testing that fit Maude very well. The first
is testing for satisfaction of invariants by means of search (Section 9.5.1), and the
second is testing through the specification of test cases that express properties of an
execution trace of an agent (Sections 9.5.2 to 9.5.4). The latter is implemented by

9 Using Maude for Agent Development with Formal Foundations 279

means of Maude strategies, which are used to control the application of rewrite rules
on a meta-level. We refer to Chapter [126] for a related approach to testing agent
programs. It is similar in that it also uses a formal specification of test cases. The
main differences concern the language used for specifying test cases, and we show
how our approach fits into the rewriting framework of this chapter.

The running example that we use in this section is a variant of the tower builder
introduced previously. Here we consider a tower builder that should respect the spec-
ification “the agent should continually construct towers, the order of the blocks is
not relevant, however each tower should use more blocks than the previous, and ad-
ditionally, the length of the towers must be an even number”. Since the agent keeps
on building higher towers, its state space is infinite. We assume that the programmer
decides to refine the specification and tries to implement a BUpL agent that builds
towers where the constituting blocks are assigned consecutive numbers, thus 21 and
4321 are examples of “well-formed” towers.

Initially, there is one block and it is on the table. In order to indicate that the
agent has finished building a tower of length X, it inserts a predicate done(X) in the
belief base by means of the action finish(X,Y) (where Y is added for technical
reasons that we do not further explain). For indicating that the next tower that is to
be built has length X, the agent uses a predicate max(X). The predicate length(X)
is used to represent the current length X of the tower. The builder agent is executed
by rewriting a term of the form builder(X,Y), where X is the length of the tower
that is to be built as the first one, and Y is added for technical reasons that we do
not further explain. For illustration purposes, we consider two variants of this tower
builder: a correct one and a faulty one that builds odd length towers. Since it is not
needed for explaining the techniques presented in this section, we do not provide
the code for these tower builders.6

9.5.1 Searching

Maude provides a search command that can be used, among other things, to test for
the satisfaction of invariants. Invariants are defined as properties of states. Search is
breadth-first, which means that if there is a state where the invariant does not hold,
then the search terminates.

Searching in Maude for invariants can be done using the Maude search command
with parameters of the following form.

search init =>* x:k such that I(x:k) =/= true .

Here, init is the initial state from which the search starts. It searches for states x
of sort k that are reachable from this initial state through zero or more rewrite steps

6 It can be downloaded from http://homepages.cwi.nl/˜astefano/agents/

bupl-strategies.php.

http://homepages.cwi.nl/~astefano/agents/bupl-strategies.php
http://homepages.cwi.nl/~astefano/agents/bupl-strategies.php

280 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

(represented by =>*) and for which the invariant I does not hold. This is helpful
when verifying safety properties. For example, an invariant for the BUpL builder
is the length of the towers, which should always be even. This invariant can be
specified by means of a predicate doneEven as follows.

mod BUPL-BUILDER-INVARIANTS is

including AGENT-DATA .

op doneEven : LBpMentalState -> Bool .

ceq doneEven(<< L:Label, done(X) # BB, P:Plan >>) = true

if (2 divides X) .

eq doneEven(<< L:Label, done(X) # BB, P:Plan >>) = false

[owise] .

var MS : LBpMentalState .

endm

When we take the faulty implementation and search for
doneEven(MS) =/= true with MS being a variable of sort LBpMentalState, we
obtain a solution, i.e., a state where the invariant does not hold (done(3) appears in
the belief base):

search in BUPL-BUILDER-INVARIANTS :

builder(3, 0) =>* MS such that doneEven(MS) =/= true .

Solution 1 (state 11)

states: 12 rewrites: 21030 in 1220ms cpu (1301ms real)

(17226 rewrites/second)

MS --> << ..., clear(0) # clear(3) # length(3) # max(3) #

done(3) # on(1, 0) # on(2, 1) # on(3, 2),

... >>

However, this procedure terminates only when the implementation is faulty, since
in the correct implementation no state would be found where the invariant does not
hold. A possible solution is to bound the search. This can be done by explicitly giv-
ing a depth bound, for example 100, as in the following example where the correct
implementation is searched.

search [1, 100] in BUPL-BUILDER-INVARIANTS :

builder(3, 0) =>* MS such that doneEven(MS) =/= true .

No solution.

states: 10 rewrites: 15266 in 779ms cpu (821ms real)

(19574 rewrites/second)

9.5.2 Formalizing Test Cases

Searching as treated in the previous section can be viewed as an ad hoc way of test-
ing. While it may work for certain cases, it has several drawbacks. As for model-
checking, state space explosion may be a problem since the whole state space is

9 Using Maude for Agent Development with Formal Foundations 281

considered (if no bound is used on the search). Moreover, it works with invariants
expressed over the states of the system, while one may also want to test other proper-
ties such as the execution of certain sequences of actions. In this section, we present
a formal language for the specification of test cases that does allow to specify this.
We use so-called rewriting strategies [154] for implementing these tests in Maude.
In Section 9.5.3, we introduce rewriting strategies and in Section 9.5.4 we show how
these are used to implement a mechanism in Maude for checking whether a BUpL
agent passes the tests.

Our test case format is based on one of the main BUpL concepts, namely actions.
Our test case format is a kind of black box testing, aimed at testing the observable
behavior of agents. For this reason, we have made a distinction between internal and
observable actions. The idea is that the execution of observable actions is visible
from outside the agent. Observable actions can be actions the agent executes in
the environment in which it operates. In the sequel, we will sometimes omit the
adjective “observable” if it is clear from the context. Black box testing as we do
in this section can be contrasted with searching (Section 9.5.1), which focuses on
testing properties of the belief base of agents and consequently can be viewed as a
kind of white box testing.

We introduce a general test case format that allows to test whether certain se-
quences of observable actions can be executed. Sequences of actions are defined as
regular expressions. The idea is that the action expression of a test is used to gen-
erate execution traces satisfying the action expression.7 The action expression thus
controls the execution of the agent in the sense that only those actions are executed
that are in conformance with the action expression. This is crucial for reducing the
state space, and makes this approach essentially different from searching.

In order to distinguish between internal and observable actions, we adapt the
BUpL syntax slightly and distinguish internal and observable actions names Actint
and Actobs, respectively, where Act = Actint ∪ Actobs and Actint ∩ Actobs = ∅. The
following BNF grammar defines the language T of test cases, where a ∈ Actobs
denotes a ground observable action. T defines regular expressions over actions.

T ::= a | T ;T | T +T | T ∗

We now define formally what it means to apply a test to a BUpL agent. For
this, we adapt the operational semantics of Section 9.2.2 slightly to account for the
distinction we make between internal and observable actions. In particular, instead
of one transition rule for actions (act) we need two: one for internal actions and one
for observable actions. The transition rule for internal actions is as the rule (act) of
Section 9.2.2, except that it becomes a τ transition. This accounts for the fact that

7 The formalism can be extended to include tests on the belief base of the agent that can be ex-
pressed using temporal logic (see [20]). These can be checked on the traces generated by testing
for the execution of sequences of observable actions. However, for reasons of simplicity, we do not
elaborate on this here. We refer to Chapter [126] for an approach that also uses temporal logic for
expressing tests on agent behavior.

282 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

these actions are not observable. The transition rule for observable actions is as the
rule (act) of Section 9.2.2, except that the action is an observable action.

We denote the application of a test T to an initial BUpL mental state ms0 as
T@ms0. The semantics is defined such that it yields the set of final states reachable
through executing the agent restricted by the test, i.e., only those actions are exe-
cuted that comply with the test. This means that an agent with initial mental state
ms0 satisfies a test T if T@ms , ∅, in which case we say that a test T is successful.
Since one usually tests for the absence of “bad” execution paths, we say that a BUpL
agent with initial mental state ms0 is safe with respect to a test T if the application
of the test fails, i.e., T@ms0 = ∅. The operator @ (which applies a test to a single
mental state) is lifted to its application to a set of mental states in the usual way,
by taking the union of its application to each mental state in the set. Note that this
means that T@∅ = ∅. We define the semantics of tests as follows.

T@ms0 =


{ms | ms0

a
⇒ ms}, T = a

T 1@ms0∪T
2@ms0, T = T 1+T 2

T 2@(T 1@ms0), T = T 1;T 2

{ms0}∪
⋃

i≥1(T ′)i@ms0, T = (T ′)∗

The arrow
a
⇒ stands for⇒

a
→, where⇒ denotes the reflexive and transitive closure

of
τ
→.

We explain the semantics of a@ms0 in some more detail. The idea is that the
test should be successful for ms0 if action a can be executed in ms0. The result
is then the set of mental states resulting from the execution of a, as defined by
{ms | ms0

a
⇒ ms}. We need to keep those mental states to allow a compositional

definition of the semantics. In particular, when defining the semantics of T 1;T 2

we need the mental states resulting from applying the test T 1, since those are the
mental states in which we then apply the test T 2, as defined by T 2@(T 1@ms0).

9.5.3 Introduction to Maude Strategies

We choose to implement tests in Maude using rewriting strategies [154]. In this sec-
tion we motivate this choice and introduce Maude rewriting strategies. Rewriting
strategies are understood as a way to reduce the non-determinism of rewrite theo-
ries. Non-determinism is reduced since a strategy controls the application of rewrite
rules. Strategies are related to tests as defined in the previous section, by viewing
tests as a kind of strategies. Executing a BUpL agent under a test should restrict its
execution such that only those actions are executed that are in conformance with
the test. Take, for example, the test a. As we have previously defined it, the appli-
cation of this test to a mental state ms is the set of all mental states which can be
reached from ms by executing the observable action a (after possibly executing τ
steps corresponding to internal actions, applying repair rules or making choices).

9 Using Maude for Agent Development with Formal Foundations 283

We are only interested in those rewritings that finally make it possible to execute
a. Using strategies has the advantage of a clear separation between execution (by
rewriting) at the object level and control (of rewriting) at the meta-level. In our case,
we can add strategies to control the execution of the agent without making changes
to the operational semantics of BUpL.

A strategy can be specified in a strategy language. Maude comes with such a
strategy language, which we briefly describe now. For further details, please see
[154] which introduces strategies as a language in Maude. A strategy language S
can be viewed as a transformation of a rewrite theory R into S(R) such that the latter
represents the execution of R in a controlled way. Given a term t in a rewrite theory
R and a strategy s in the theory S(R), the application of s to t is denoted by s@t.
The semantics of s@t is the set of successors which result by rewriting t in S(R).

The simplest strategies are the constants idle and fail: idle @ t = {t}, fail
@ t = ∅. Basic strategies consist of applying to a term t a rule (identified by a label)
possibly with instantiating some variables appearing in the rule. The semantics of
l@t, where l is a rule label, is the set of all terms to which t rewrites in one step
using the rule labeled l anywhere it matches and satisfies the rule’s condition.

Strategies can be combined under typical regular expression constructions: con-
catenation (;), union (|), and iteration of zero or more, or one or more steps (* or +).
If E,E′ are strategies, then (E; E′)@t = E′@(E@t), (E | E′)@t = (E@t)∪ (E′@t),
E+@t =

⋃
i≥1

(Ei@t) with E1 = E and En = En−1 ; E, and E * = idle | E+.

It is also possible to define if-then-else strategies of the form E ? E′ : E′′, which
means that if the strategy E is successful when evaluated in a given state term, then
the strategy E′ is evaluated in the resulting states, otherwise E′′ is evaluated in the
initial state:

(E ? E′ : E′′) @ t = if (E@t) , ∅ then E′@(E@t) else E′′@t fi.

The if-then-else combinator is used to define strategies like not(E), which is defined
as E ? fail : idle , meaning that it reverses the result of applying E. A useful
strategy is E!, which means “repeat until the end” and is defined as E* ; not(E).

In our case, state terms t are BUpL mental states. In order to rewrite builder(3,
0) using a strategy E, we only need to input the command srew builder(3,0)
using E after loading the Maude file where the strategy language is defined (usu-
ally this is maude-strat.maude). If E is a rule name, for example, exec-IA, then
the result is the mental state after performing an internal action, in this case setting
max(3) which corresponds to the first parameter of builder(3, 0).

Maude> (srew builder(3, 0) using exec-IA .)

rewrites: 1384 in 30ms cpu (55ms real) (44652 rewrites/second)

rewrite with strategy :

result LBpMentalState :

<< iLabel(’set-max[’s_ˆ3[’0.Zero],’0.Zero]),

clear(0) # done(0) # length(1) # max(3) # on(1,0),

... >>

284 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

Strategies are declared and defined only in strategy modules. Strategy modules have
the following syntax:

smod <STRAT-MODULE-NAME> is

protecting <M> .

including <STRAT-MODULE-NAME1>

including <STRAT-MODULE-NAMEk> .

<DeclarationsAndDefinitionOfStrategies>

endsm

where M is the module containing the terms we want to rewrite using strategies and
STRAT-MODULE-NAME1, . . . , STRAT-MODULE-NAMEk are imported strategy mod-
ules.

Similarly to the declaration of operators, strategies are declared using the follow-
ing format:

strat <STRAT-NAME> : <Sort-1> ... <Sort-m> @ <Sort> .

where Sort is the sort of the term which will be rewritten using the strategy
STRAT-NAME. Like equations, strategies can be unconditional or conditional and
are defined using the following syntax:

sd <STRAT-NAME>(<P1>, ..., <Pm>) := <Exp> .

csd <STRAT-NAME>(<P1>, ..., <Pm>) := <Exp> if <Cond> .

with Pi being the parameters of the strategy STRAT-NAME and Exp being a strategy
expression.

9.5.4 Using Maude Strategies for Implementing Test Cases

We now illustrate how the test definitions of Section 9.5.2 can be implemented by
means of Maude strategies. First, we show how the syntax of tests can be specified as
a Maude functional module. We then describe a generic strategy test2Stratwhich
associates to each test a corresponding strategy that implements the test. Finally, we
focus on the implementation of the basic test a.

The following module defines the syntax of tests, in correspondence with the
BNF grammar for tests of Section 9.5.2.

fmod TEST-SYNTAX is

protecting SYNTACTICAL-DEFS .

sort TestA .

subsort O-Action < TestA .

op _;a_ : TestA TestA -> TestA .

op _+a_ : TestA TestA -> TestA .

op _*a : TestA -> TestA .

endfm

9 Using Maude for Agent Development with Formal Foundations 285

The code shows that we first declare a sort TestA for denoting tests. In order to
express that any observable action is a test we use the subsort relation subsort
O-Action < TestA. Further, we declare regular expression operators to construct
new tests. We use the index a in their declaration in order to distinguish them from
the regular expression operators defined for Maude strategies.

Now that we have defined the syntax of tests as above, we can define the strategy
test2Strat inductively on the structure of tests:

strat test2Strat : Test @ LBpMentalState .

var Oa : O-Action . vars Ta1 Ta2 : TestA .

sd test2Strat(Oa) := do(Oa) .

sd test2Strat(Ta1 ;a Ta2) := test2Strat(Ta1) ; test2Strat(Ta2) .

sd test2Strat(Ta1 +a Ta2) := test2Strat(Ta1) | test2Strat(Ta2) .

sd test2Strat(Ta1 *a) := test2Strat(Ta1) * .

The strategy do is meant to implement the basic test a. Note the natural mapping
from tests to the corresponding strategy.

We now focus on describing how to implement the basic test a, i.e., the strategy
do. We recall that, when applied to a mental state ms, this test succeeds only if after
performing some internal steps (corresponding to internal actions, repair rules, and
choices among plans) the agent reaches a state where a is enabled. This means that
we need to implement a strategy, tauClosure, for computing the transitive closure
of τ steps. A simple8 way to do this is as follows:

strat tauClosure : @ LBpMentalState .

sd tauClosure := (sum | exec-fail | exec-IA)! .

that is, by non-deterministically applying one of the rules which correspond to τ
steps until no longer possible. Given that we have the strategy tauClosure, the
implementation of the test a is straightforward:

strat do : O-Action @ LBpMentalState .

sd do(Oa) := tauClosure ; exec-OA[OA <- Oa] .

where exec-OA[OA <- Oa] applies exec-OA with the variable OA from the defini-
tion of the rewrite rule being instantiated by the argument Oa of the strategy. Note
that the strategy tauClosure returns precisely those states from which no τ steps
are possible, that is, the states where the head of the current plan is an observable
action. If this observable action is the one given as argument to the strategy do then
it succeeds and computes again the transitive closure. Otherwise, it fails. To see how
this strategy works in practice, we strategically execute builder(3, X:Nat) using
do(move(2, 0, 1)). This means that we test whether the agent executes move(2,
0, 1) as the first observable action.

8 The strategy described here does not always terminate. One immediate solution is to bind the
number of iterations. For a more detailed discussion, we refer to [20].

286 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

Maude> (srew builder(3,X:Nat) using do(move(2,0,1)) .)

rewrites: 18463 in 1415ms cpu (1417ms real) (13040 rewrites/second)

rewrite with strategy :

result LBpMentalState :

<< oLabel(’move[’s_ˆ2[’0.Zero],’0.Zero,’s_[’0.Zero]]),

clear(0)# clear(2)# clear(3)# done(0)# length(1)# max(3)#

on(1,0)# on(2,1)# on(3,0), ...>>

Maude> (next .)

rewrites: 1210 in 10ms cpu (11ms real) (110020 rewrites/second)

next solution rewriting with strategy :

No more solutions .

What we obtain is a state reflecting that the agent moved block 2 onto block 1. This
can be seen either from the label of the resulting mental state, or from the fact that
on(2,1) is in the current belief base. Furthermore, we can also notice that this is
the only possible resulting mental state since the command (next .) for obtaining
other solutions returns No more solutions.

We recall that our purpose is to test whether “bad” states are reachable from the
initial configuration of builder and that “bad” means odd length towers in our
case. Thus, a suitable test is move(2,0,1);move(3,0,2); f inish(3,0), meaning that
we test whether the agent (in its faulty variant) executes the action finish(3,0)
after moving block 2 onto 1 and block 3 onto 2:

Maude> (srew builder(3,X:Nat) using

test2Strat(move(2,0,1) ;a move(3,0,2) ;a finish(3, 0)) .)

rewrites: 50421 in 2069ms cpu (2082ms real) (24361 rewrites/second)

rewrite with strategy :

result LBpMentalState :

<< oLabel(’finish[’s_ˆ3[’0.Zero],’0.Zero]),

clear(0)# clear(3)# done(3)# length(3)# max(3)#

on(1,0)# on(2,1)# on(3,2), ...>>

The output shows that this is indeed the case, meaning that the agent is not safe to
this test. Performing the same test on the correct builder yields no possible rewriting,
and from this we can conclude that the correct builder agent is safe with respect to
the test.

9.6 Conclusion

In this chapter, we have shown how the Maude term rewriting language can be used
for agent development with formal foundations. We have shown how agent pro-
gramming languages can be prototyped, and how agent programs can be executed,
model-checked and tested using Maude and its accompanying tools. We maintain
that one of the main advantages of Maude is that it provides a single framework in
which the use of a wide range of formal methods is facilitated. This means that the
implementation of the semantics of an agent programming language in Maude can

9 Using Maude for Agent Development with Formal Foundations 287

be used for executing agent programs, as well as for model-checking and testing
them.

We see several main areas for future research. First, model-checking as described
in this chapter applies the model-checker that comes with Maude. This means that
it does not include state space abstraction techniques that are specific to agent pro-
gramming languages. We see the investigation of such techniques and how they can
be used in Maude as an important area for future research. Moreover, with respect
to testing, the definition of the language to express test cases needs to be further
investigated and experimented with to identify exactly which features are useful in
practice. Another aspect related to the use of our testing framework in practice is
the issue of how to come up with suitable test cases. It will need to be investigated,
for example, whether it would be possible to do automatic test case generation.

Acknowledgements

We would like to thank Mehdi Dastani and John-Jules Ch. Meyer for their contribu-
tions to work on which this chapter is partly based.

Chapter 10

The Cognitive Agents Specification Language
and Verification Environment

S. Shapiro, Y. Lespérance, and H.J. Levesque

Abstract The Cognitive Agents Specification Language (CASL) is a framework for
specifying multiagent systems. It has a mix of declarative and procedural compo-
nents to facilitate the specification and verification of complex multiagent systems.
In this chapter, we describe CASL and a verification environment (CASLve) for it
based on the PVS verification system. We give an example of a multiagent meeting
scheduler application specified with CASL. To illustrate the verification system, we
discuss a proof we carried out in it, namely, that all bounded-loop CASL specifica-
tions terminate.

S. Shapiro
Department of Computer Science, University of Toronto, Canada e-mail: steven@cs.toronto.
edu

Y. Lespérance
Department of Computer Science and Engineering, York University, Canada e-mail: lesperan@
cse.yorku.ca

H.J. Levesque
Department of Computer Science, University of Toronto, Canada e-mail: hector@ai.toronto.
edu

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 289
DOI 10.1007/978-1-4419-6984-2 10, c© Springer Science+Business Media, LLC 2010

steven@cs.toronto.edu
steven@cs.toronto.edu
lesperan@cse.yorku.ca
lesperan@cse.yorku.ca
hector@ai.toronto.edu
hector@ai.toronto.edu

290 S. Shapiro, Y. Lespérance, and H.J. Levesque

10.1 Introduction

The Cognitive Agents Specification Language (CASL) is a framework for specify-
ing multiagent systems, which allows the specifier to view agents as entities with
mental states, such as knowledge, beliefs, and goals, and to define the behaviour of
the agents in terms of their mental states. It combines a declarative action theory
defined in the situation calculus [365,383,391] — which allows the specifier to me-
thodically and concisely describe the effects of actions on the world and the mental
states of agents — with a rich programming/process language with constructs for
concurrency and non-determinism to facilitate the specification and verification of
complex multiagent systems.

We are also developing a verification environment (CASLve) for CASL based
on the Prototype Verification System (PVS) [331] to make it easier to verify proper-
ties of CASL specifications. CASLve uses a representation of the CASL formalism
within PVS. The verification environment should provide the user with a compre-
hensive library of proof methods, or lemmas, to facilitate the proof of various types
of results (safety, liveness, termination, etc.). We are in the process of building such
a library. For establishing termination, one important such lemma is that bounded-
loop programs or subprograms terminate. We have proven such a lemma and discuss
it in detail in Sec. 10.8, as an example of what is involved in the process of verifica-
tion and building a library for this purpose. We show part of the proof in Sec. 10.9
to illustrate how CASLve is used. The environment should also provide specialized
proof strategies for reasoning about CASL multiagent system specifications (e.g.,
regression) and customized tools for displaying CASL specifications and proofs,
and these are planned for future work.

In Sec. 10.2, we summarize the PVS verification system, which forms the ba-
sis of CASLve. Then, we give a presentation of CASL spanning several sections.
In Sec. 10.3, we discuss situation calculus action theories [365] and how we rep-
resent them in PVS. In Sections 10.4 and 10.5, we introduce our formalizations of
knowledge and goals (resp.) and their representations in PVS. Next, in Sec. 10.6,
we discuss the specification of the behaviour of the agents using ConGolog and its
encoding in PVS. We present an example of a CASL specification in Sec. 10.7:
a meeting scheduler example. In Sec. 10.8, we introduce CASLve and a useful
lemma for verifying CASL specifications: that all bounded loop programs termi-
nate. In Sec. 10.9, we illustrate some of the steps of a CASLve proof to give an idea
of the proof process in CASLve. Finally, we conclude and discuss related work in
Sec. 10.10.

10.2 PVS

PVS [331] is a typed, higher-order logic together with a proof system to facilitate
theorem proving. The language has useful features, such as abstract datatypes and

10 The Cognitive Agents Specification Language and Verification Environment 291

recursive definitions of functions and relations. PVS also has an extensive library
of theories of mathematics, and datatypes such as lists, infinite sequences, arrays,
records, etc. The proof system has built-in proof strategies, including ones for induc-
tive proofs, and facilities for adding new strategies. PVS also features a convenient
Emacs-based user-interface, a facility for displaying proof trees graphically, and
proof-management functionality.

A PVS specification is a collection of theories that are similar to logical theories
except that they contain extra syntax for such purposes as declaring new types and
declaring types of variables and constants. Theories can be parameterized, yielding a
limited form of polymorphism. We will, as much as possible, omit the extra-logical
syntax of the PVS language to make the theories look more like classical higher-
order logic.

The PVS proof system is a standard sequent calculus for higher-order logic with
high-level proof strategies and decision procedures to facilitate equational and math-
ematical reasoning. As mentioned above, PVS comes with an extensive library of
theories, some of which are built in to the standard proof strategies and decision
procedures. We will use Γ `pvs α to denote that the sentence α can be derived from
the theory Γ and the built-in library of theories using the PVS proof system. Γ |= α
will be used as usual to denote that Γ semantically entails α.

10.3 Action Theory

The situation calculus is a sorted predicate-calculus language for representing dy-
namically changing domains. The language has sorts for actions and situations. A
situation represents a snapshot of the domain. There is a set of initial situations cor-
responding to the ways an agent thinks the domain might be initially. The actual
initial state of the domain is represented by the distinguished initial situation con-
stant, S 0. The term do(a, s) denotes the unique situation that results from an agent
performing action a in situation s. Thus, the situations can be structured into a set
of trees, where the root of each tree is an initial situation and the arcs are actions.
Poss(a, s) denotes that it is physically possible to execute action a in situation s.

Predicates and functions that have a situation argument (which by convention is
placed last) are called fluents. Fluents are used to talk about the dynamic aspects of
the domain. For example, I(agt,r, s) could be used to specify that agt is in room
r in situation s. The effects of actions on fluents are defined using successor state
axioms [365], which provide a succinct representation for both effect axioms and
frame axioms [308].

For example, assume that there are only two rooms, R1 and R2, and that the action
 takes the agent from the current room to the other room. Then, the successor
state axiom for IR1 is:1

1 We adopt the convention that unbound variables are universally quantified in the widest scope.

292 S. Shapiro, Y. Lespérance, and H.J. Levesque

IR1(do(a, s)) ≡
((¬IR1(s)∧a = )∨ (IR1(s)∧a , )).

This axiom asserts that the agent will be in R1 after doing some action iff either the
agent is in R2 (¬IR1(s)) and leaves it or the agent is currently in R1 and the
action is anything other than leaving it.

To completely specify the dynamics of an application domain, we use a theory
with the following kinds of axioms: (1) successor state axioms for the fluents, which
describe how they are affected by actions (2) action precondition axioms, which
specify the circumstances under which an action can be performed, (3) initial state
axioms, which describe the initial state of the domain and the initial mental state
of the agent, (4) unique names axioms for the actions, and (5) domain-independent
foundational axioms (discussed below).

The axioms which define the structure of the situations (including an induction
axiom) are called the foundational axioms. Reiter [365] formulated foundational ax-
ioms for the case where there is only a single initial situation, S 0. Since we will need
multiple initial situations to model knowledge and goals, we use the axiomatization
provided by Lakemeyer and Levesque (L&L) [276].

L&L first define the initial situations to be those that have no predecessors:
InitLL(s′) def

= ¬∃a, s.s′ = do(a, s). Then, they define a relation on situations s �LL s′

that holds if s′ can be reached from s by a (possibly empty) sequence of actions.
�LL is defined to be the smallest relation that is reflexive and transitive and contains
(s,do(a, s)) for any s and a:

s �LL s′ def
= ∀P[(∀s1.P(s1, s1))∧ (∀a, s1.P(s1,do(a, s1)))∧

(∀s1, s2, s3.P(s1, s2)∧P(s2, s3) ⊃ P(s1, s3)) ⊃
P(s, s′)]

The foundational axioms are as follows:

F1. InitLL(S 0).
F2. ∀a1,a2, s1, s2.do(a1, s1) = do(a2, s2) ⊃ (a1 = a2∧ s1 = s2).
F3. ∀P(∀s, s′.InitLL(s)∧ s �LL s′ ⊃ P(s′)) ⊃ ∀s.P(s).

F1 declares that S 0 is an initial situation. F2 states that performing different actions
yields different situations, i.e., the do function is 1-1. F3 is an induction axiom which
says that if a property holds for any situation that can be reached from an initial
situation, then that property holds for all situations.

We represent situations in PVS as an abstract datatype:

Sit : 


addinit(getroot : Rootset) : Init
do(lastact : Action,undo : Sit) : Noninit
Sit

10 The Cognitive Agents Specification Language and Verification Environment 293

This datatype is called Sit. It uses two types, Rootset and Action, so we assume that
these have been previously declared as types. The Rootset type is a set of objects
that will become the initial situations in the situation datatype. The Action type is
the set of actions. More information about the objects in these types will be given
by applications that use this datatype, but we do not need any more details about the
types for the declaration.

Datatypes have three main elements: constructors, accessors, and recognizers.
Constructors form the elements of datatypes, i.e., they are functions whose values
are objects in the datatype. Accessors map elements of the datatype back into the
objects that were used to construct them. Recognizers are predicates that identify
which constructor was used to construct an element of the datatype. The Sit datatype
has two constructors. The first one, addinit, maps objects of the type Rootset into
initial situations. The second one, do, maps an action and a situation into a non-
initial situation. There are also two recognizers. Init(s) (Noninit(s), resp.) will be
true iff s is an initial (non-initial, resp.) situation. getroot is an accessor that maps
an initial situation into the element of Rootset that was used to construct it. lastact
(undo, resp.) is an accessor that maps a non-initial situation do(a, s) into a (s, resp.).
Note that datatype declarations can be recursive, i.e., one can use the datatype as a
type in its own declaration.

The datatype declaration generates a theory that formalizes the datatype. We can
infer the last two foundational axioms from the theory generated by the datatype
declaration for Sit. The first foundational axiom has to be explicitly added to our
theory. The axioms generated for the Init recognizer imply that for any s, Init(s)
holds iff InitLL(s) holds. Also, among the definitions generated by the datatype dec-
laration is a relation, Subterm(s, s′), which holds if s is a subterm of s′ (i.e., s′ can
be reached from s with a finite number of applications of do). We will substitute the
infix operator � for Subterm to make it better fit its intuitive meaning for situations.
� is equivalent to �LL.

Let Sit denote the theory that is generated by the Sit datatype augmented with the
axiom: Init(S 0). We can show that it correctly represents the theory obtained from
L&L’s foundational axioms:

Theorem 10.1. 1. Sit `pvs ∀s.Init(s) ≡ InitLL(s)
2. Sit `pvs ∀s, s′.s � s′ ≡ s �LL s′

3. Sit `pvs ∀a1,a2, s1, s2.do(a1, s1) = do(a2, s2) ⊃ a1 = a2∧ s1 = s2
4. Sit `pvs ∀P(∀s, s′.Init(s)∧ s � s′ ⊃ P(s′)) ⊃ ∀sP(s)

We will need to quantify over formulae, and so we will encode formulae as terms
in the language. This is needed both for the semantics of ConGolog (for tests) and
for communicative actions ( and ) which take formulae as argu-
ments. Since PVS is a higher-order logic, Shapiro [391] represented formulae as
predicates on situations (or predicates on pairs of situations for goal formulae, see
Sec. 10.5). This would facilitate verification since substitution would be done auto-
matically in PVS (via function application) and would not have to be axiomatized.

294 S. Shapiro, Y. Lespérance, and H.J. Levesque

Unfortunately, the unique names axioms for communicative actions that take a pred-
icate on situations as an argument are inconsistent with the foundational axioms, in
particular, with axiom F2 [391]. F2 says that there is an injection from actions into
situations, i.e., the cardinality of the situations is at least as large as the cardinality
of the actions. Now, suppose we have an (φ) action, where φ is a predicate
on situations. The unique names axiom for  would be:

(φ) = (φ′) ⊃ φ = φ′.

Since φ is a predicate on situations, this axiom says that there is an injection from
predicates on situations into actions, i.e., the cardinality of the actions is strictly
greater than the cardinality of the situations, yielding a contradiction. Note that we
would not want to drop the unique names axiom for  because then it would
not be clear that the agents know what they are talking about.

To avoid this problem we assume that an axiomatization of formulae as terms is
given, and that we have a Holds predicate, which is used to interpret formulae. This
axiomatization can be a general one, along the lines of the one given by De Giacomo
et al. in [135], where, e.g., variables are represented as terms and substitution is
axiomatized. However, this can be difficult to work with when doing formal proofs.
If, for a particular domain, the set of formulae that will be used is known in advance,
then the axiomatizer of the domain can write the Holds axioms directly for those
sentences only, and using them in proofs should be easier. Either way, we call the
given axiomatization the encoding axioms, assume they are consistent, and cover all
the formulae that will arise in the domain of interest.

We will have two types of formulae. A fluent formula, denoted by φ (possibly
with decorations) can contain a distinguished situation constant, Now. We assume
that the axiomatization of formulae as terms ensures that Holds(φ, s) is true iff φ
is true when Now is replaced by s. A goal formula, denoted by ψ (possibly with
decorations), can contain the distinguished situation constants Now and Then. We
assume that the axiomatization of formulae as terms ensures that Holds(ψ, s, s′) is
true iff ψ is true when Now is replaced by s and Then is replaced by s′. We often
suppress Now and Then when the intent is clear from the context. To simplify the
formulae in the following, we abbreviate Holds(φ, s) (Holds(ψ, s, s′), resp.) by φ[s]
(φ[s, s′], resp.).

10.4 Knowledge

In CASL, we want to be able to model agents in terms of their mental states.
Specifically, we include operators to specify agents’ information (what they know
or believe) and their motivation (what their goals are). Scherl and Levesque [383]
showed how to model (single-agent) knowledge and sensing actions in the situa-
tion calculus, using a possible-worlds semantics with an accessibility relation K,

10 The Cognitive Agents Specification Language and Verification Environment 295

where the possible worlds are situations. We adapt their approach to handle multi-
ple agents and communicative actions between agents. K(agt, s′, s) will be used to
denote that in situation s, agt thinks that situation s′ might be the actual situation.
An agent knows a formula φ in s if φ holds in all situations K-accessible from s,
i.e., Know(agt,φ, s) def

= ∀s′.K(agt, s′, s) ⊃ φ[s′].
Scherl and Levesque [383] show how to obtain a successor state axiom for K

that completely specifies how knowledge is affected by actions. In their framework,
the knowledge-producing actions were performed by the agent itself, i.e., sensing
actions. In CASL, we are interested in communication actions, which are actions
that affect the mental state of the agent to whom they are addressed rather than that
of the agent who performs the action. However, Scherl and Levesque’s successor
state axiom for K is easily adapted to handle communicative actions and multiple
agents.2

The speech act relevant to knowledge is the (informer,agt,φ) action, i.e.,
informer informs agt that φ holds. Cohen and Levesque [111] argue that for an
agent to inform that φ holds, it must be the case that the agent knows that φ holds.
We adopt this requirement using the following precondition axiom:

Axiom 1 [Precondition Axiom for ]

Poss((informer,agt,φ), s) ≡Know(informer,φ, s).

We next introduce some notation to use in the successor state axiom for K below.
K−(a,agt, s′, s) states the conditions under which action a causes (the successor of)
s′ to be dropped from the K-relation for agent agt. In our case, it holds if a is an
action to inform agt that φ holds, for some φ, and φ is false in s′.

Definition 10.1.

K−(a,agt, s′, s) def
= ∃informer,φ.a = (informer,agt,φ)∧¬φ[s′].

Here is the successor state axiom for K with  as the only knowledge-
producing action:3

Axiom 2 [Successor State Axiom for K]

K(agt, s′′,do(a, s)) ≡
∃s′.K(agt, s′, s)∧ s′′ = do(a, s′)∧Poss(a, s′)∧¬K−(a,agt, s′, s)

This axiom states that a situation s′′ is accessible from situation do(a, s) iff s′′ is
the result of doing action a in situation s′, doing a in s′ is physically possible, s′ is
accessible from s, and K−(a,agt, s′, s) does not hold.

We also adapt Scherl and Levesque’s definition for an agent to know whether φ
holds in s:
2 Another approach to generalizing to the multiagent case can be found in Lespérance et al. [281].
3 This axiom can easily be extended to handle sensing actions as well as inform actions.

296 S. Shapiro, Y. Lespérance, and H.J. Levesque

Definition 10.2.

KWhether(agt,φ, s) def
= Know(agt,φ, s)∨Know(agt,¬φ, s).

That is, an agent knows whether φ holds in s if it either knows that φ holds in s or
that ¬φ holds in s.

We can place constraints on the accessibility relation, but only in the initial situ-
ations, since accessibility in successor situations is governed by the successor state
axiom for K. Following Scherl and Levesque, we assert that initial situations can
only be accessible from other initial situations.

Axiom 3
K(agt, s′, s)∧ Init(s) ⊃ Init(s′)

This is a simplifying assumption, which when combined with the successor state
axiom for K, entails that the agents know the history of actions that have been exe-
cuted. This means that each agent is aware of every  action, i.e., there is no
privacy. This issue is addressed in Shapiro and Lespérance [392], where encrypted
speech acts are modelled.

We can also place constraints on K to get the familiar properties of knowledge.
Scherl and Levesque asserted these constraints for initial situations and then showed
that they continue hold over executable sequences of actions. We do the same here.
In particular, we assume that K is initially reflexive, transitive and symmetric. Re-
call that the order of the situations is reversed from the usual convention in modal
epistemic logic.

Axiom 4

Init(s) ⊃ K(agt, s, s)
Init(s) ⊃ (K(agt, s′, s) ⊃ K(agt, s, s′)
Init(s) ⊃ (K(agt, s′, s)∧K(agt, s′′, s′) ⊃ K(agt, s′′, s)).

We can show that these constraints are preserved over executable sequences of
actions. We say that a situation is executable, if every action in its history was phys-
ically possible to execute:

Definition 10.3.

Executable(s) def
= ∀a, s′.do(a, s′) � s ⊃ Poss(a, s′)

Let Σ consist of the foundational axioms (F1–F3), the formula encoding axioms,
and axioms 1–4. The following theorem states that the constraints on K are pre-
served over executable sequences of actions.

10 The Cognitive Agents Specification Language and Verification Environment 297

Theorem 10.2.

Σ |= ∀agt, s.Executable(s) ⊃ K(agt, s, s),
Σ |= ∀agt, s, s′.Executable(s) ⊃ (K(agt, s′, s) ⊃ K(agt, s, s′)), and
Σ |= ∀agt, s, s,′ , s′′.Executable(s) ⊃

(K(agt, s′, s)∧K(agt, s′′, s′) ⊃ K(agt, s′′, s)).

The successor state axiom for K does not support belief revision since only situ-
ations whose predecessors were accessible before an action will be accessible after
the action. In this sense, no ‘new’ situations are added to the K relation, so the
agents’ knowledge is monotonic. However, since our framework is based on a logic
of action, it is straightforward to support knowledge update. When an action is per-
formed, the agents know it (due to the successor state axiom for K), and they know
the consequences of performing the action (because these hold for all situations), so
their knowledge is updated automatically. We now state these properties formally.
First, we need some notation that allows us to talk about the past. We use Prev(φ, s)
to denote that φ held in the situation immediately before s:

Definition 10.4.
Prev(φ, s) def

= ∃a, s′.s = do(a, s′)∧φ[s′].

Now, we have that if an agent knows that φ holds in s, then after any action a, the
agent will remember that φ held before a.

Theorem 10.3.

Σ |= ∀a,agt,φ, s.Know(agt,φ, s) ⊃Know(agt,Prev(φ),do(a, s)).

If an agent knows that φ held in the last situation and that the last action a causes
φ′ to hold if φ holds beforehand, then the agent also knows that φ′ holds after exe-
cuting a. If φ is equivalent to φ′, then we have knowledge persistence. Otherwise, it
is knowledge update.

Theorem 10.4.

Σ |= ∀a,agt,φ,φ′, s.Know(agt,Prev(φ),do(a, s))∧
Know(agt, [Poss(a,Now)∧φ[Now] ⊃ φ′[do(a,Now)]], s) ⊃

Know(agt,φ′,do(a, s))

As a corollary, we show the conditions under which an agent’s knowledge per-
sists (or is updated).

Corollary 10.1.

Σ |= ∀a,agt,φ,φ′, s.Know(agt,φ, s)∧
Know(agt, [Poss(a,Now)∧φ[Now] ⊃ φ′[do(a,Now)]], s) ⊃

Know(agt,φ′,do(a, s))

298 S. Shapiro, Y. Lespérance, and H.J. Levesque

We now turn to the conditions under which ignorance persists. Since¬Know(agt,φ, s)
holds if there is an accessible situation where φ is false, for ignorance to persist, such
a witness must continue to be accessible after the action is executed.

Theorem 10.5.

Σ |= ∀a,agt,φ, s.(∃s′.K(agt, s′, s)∧Poss(a, s′)∧¬K−(a,agt, s′, s)∧¬φ[s′]) ⊃
¬Know(agt,Prev(φ),do(a, s)).

From the last theorem, it follows that we have that if a is not an  action and
the agent knows that a is executable and the agent does not know φ, then after a
occurs, the agent knows it was ignorant about φ beforehand.

Theorem 10.6.

Σ |= ∀a,agt,φ, s.(¬∃informer,φ1.a = (informer,agt,φ1))∧
Know(agt,Poss(a), s)∧¬Know(agt,φ, s) ⊃

¬Know(agt,Prev(φ),do(a, s)).

If, after executing a, the agent does not know that φ held in the previous situation,
and the agent also knows that a causes φ′ to be false if φ is false originally, then
the agent also does not know φ′ after a is executed. Note that this theorem is not
inconsistent with Theorem 10.4.

Theorem 10.7.

Σ |= ∀a,agt,φ,φ′, s.¬Know(agt,Prev(φ),do(a, s))∧
Know(agt, [Poss(a,Now)∧¬φ[Now] ⊃ ¬φ′[do(a,Now)]], s) ⊃
¬Know(agt,φ′,do(a, s)).

As a corollary to the last two theorems, we have the persistence or update of
ignorance.

Theorem 10.8.

Σ |= ∀a,agt,φ,φ′, s.(¬∃informer,φ.a = (informer,agt,φ))∧
Know(agt,Poss(a), s)∧¬Know(agt,φ, s)∧
Know(agt, [Poss(a,Now)∧¬φ[Now] ⊃ ¬φ′[do(a,Now)]], s) ⊃
¬Know(agt,φ′,do(a, s)).

The formalization we have given handles knowledge expansion, which is a special
case of belief change where an agent adds to its existing knowledge but never dis-
covers that it was mistaken about something it believed. In [397], we show how to
generalize Scherl & Levesque’s framework to handle belief change more generally
(for the single agent case with sensing actions), where the agent can discover that it
was mistaken about its beliefs and be forced to revise them.

10 The Cognitive Agents Specification Language and Verification Environment 299

10.5 Goals

Following Cohen and Levesque [110], we formalize the goals of an agent using
an accessibility relation, W(agt, s′, s), which holds if in situation s, agt considers
that in s′ everything that it wants to be true is actually true [392]. For example, if
agt wants to become a millionaire in s, then in all situations W-related to s, agt
is a millionaire, but these situations can be arbitrarily far in the future. Goals will
be evaluated relative to two situations now and then,4 where now � then. We can
think of then as defining a path of situations, namely, the sequence of situations in
the history of then. Intuitively, now is the situation along that path that occurs at
the current time, i.e., the situations that come before now are considered to be in
the past, and the situations that come after now are considered to be in the future.
Thus, goal formulae are evaluated relative to a path of situations and the current
‘time’. For example, we could represent the goal of increasing one’s wealth as:
A(then) > A(now).

We use the K accessibility relation to pick out the current situation along a path,
since the K-accessible situations are the ones that the agent thinks might be the
current situation. Following Cohen and Levesque, we want the goals of the agent to
be compatible with what it knows. The situations that the agent wants to actualize
should be on a path from a situation that the agent considers possible. Therefore,
the situations that will be used to determine the goals of an agent will be the W-
accessible situations that are also compatible with what the agent knows, in the
sense that there is K-accessible situation in their history.

We will say that s′ Kagt,s-intersects s′′ if K(agt, s′′, s) and s′′ � s′. We will sup-
press agt or s if they are understood from the context. We define the goals of agt in
s to be those formulae that are true in all the situations s′ that are W-accessible from
s and that K-intersect some situation, s′′:

Goal(agt,ψ, s) def
=

∀now, then.W(agt, then, s)∧K(agt,now, s)∧
now � then ⊃ ψ[now, then].

In [391], a successor-state axiom for W was formulated that handles goal expansion
as a result of  actions and goal contraction as a result of R
actions. This axiom, which we adopt here, has the same structure as a successor
state axiom for a domain-dependent fluent. W+(agt,a, s′, s) (W−(agt,a, s′, s), resp.),
which is defined below, denotes the conditions under which s′ is added to (dropped
from, resp.) W due to action a:

Axiom 5

W(agt, s′,do(a, s)) ≡ (W+(agt,a, s′, s)∨ (W(agt, s′, s)∧¬W−(agt,a, s′, s))).

4 Note that now and then are situation variables, but Now and Then are situation constants.

300 S. Shapiro, Y. Lespérance, and H.J. Levesque

An agent’s goals are expanded when it is requested to do something by
another agent. After the (requester,agt,ψ) action occurs, agt should
adopt the goal that ψ, unless it currently has a conflicting goal. Therefore, the
(requester,agt,ψ) action should cause agt to drop any paths in W where ψ
does not hold. This action is taken into account in the definition of W−:

Definition 10.5.

W−(agt,a, s′, s) def
=

∃requester,ψ, s′′.a = (requester,agt,ψ)∧¬Goal(agt,¬ψ, s)∧
K(agt, s′′, s)∧ s′′ � s′∧¬ψ[do(a, s′′), s′].

According to this definition, s′ will be dropped from W, if for some requester and
ψ, a is the (requester,agt,ψ) action and agt does not have the goal that ¬ψ
in s, and s′ K-intersects some s′′ such that ψ does not hold in the path (do(a, s′′), s′).
The reason that we check whether ¬ψ holds at (do(a, s′′), s′) rather than at (s′′, s′) is
to handle goals that are relative to the current time. If, for example, ψ states that the
very next action should be to get some coffee, then we need to check whether the
next action after the request is getting the coffee. If we checked ¬ψ at (s′′, s′), then
the next action would instead be the  action.

If the agent gets a request for ψ and it already has the goal that ¬ψ then it does
not adopt the goal that ψ, otherwise its goal state would become inconsistent and
it would want everything. This is a simple way of handling goal conflicts. A more
interesting method would be to give more credence to requests from certain indi-
viduals, or requests of certain types. For example, if an agent gets a request from its
owner that conflicts with a previous request from someone else, it should drop the
previous request and adopt its owner’s request instead. We reserve a more sophisti-
cated handling of conflicting requests for future work.

We also handle a limited form of goal contraction. Suppose that the owner of
an agent asks it to do ψ and later decides it no longer wants the agent to do ψ.
The owner should be able to tell the agent to stop working on ψ. We use the action
R(requester,agt,ψ) for this purpose. This action causes agt to drop
the goal that ψ. A R action can only be executed if a corresponding
 action has occurred in the past:

Axiom 6
Poss(R(requester,agt,ψ), s) ≡
∃s′.do((requester,agt,ψ), s′) � s.

We handle R actions by determining what the W relation would
have been if the corresponding  action had never happened. Suppose a
R(Requester,Agt,ψ) action occurs in situation S . We restore the W
relation to the way it was before the corresponding  occurred. Then, start-
ing just after the , we look at all the situations do(A∗,S ∗) in the history
of S and remove from W any situation S ′ that satisfies W−(Agt,A,S ′,S ∗). We first

10 The Cognitive Agents Specification Language and Verification Environment 301

W

W

S

S′

S1

request(Requester,Agt, ψ)

S∗

A∗

cancelRequest(Requester,Agt, ψ)

Fig. 10.1 Goal contraction.

define the predicate C(a,a′), which says that action a cancels the action a′.
In our case, the only cancelling action is R, and it only cancels the
corresponding :

Definition 10.6.

C(a,a′) def
= ∃requester,ψ.a = R(requester,agt,ψ)∧

a′ = (requester,agt,ψ)

We now define W+(agt,a, s′, s) which states the conditions under which s′ is
added to W+ after a is executed in s:

Definition 10.7.

W+(agt,a, s′, s) def
=

(∃si.W(agt, s′, si)∧
(∃a1.do(a1, si) � s∧C(agt,a,a1)∧

∀a∗, s∗.do(a1, si) ≺ do(a∗, s∗) � s ⊃ ¬W−(agt,a∗, s′, s∗)))

To help explain this definition, we will refer to Fig. 10.1, where a segment of a
situation forest is shown. The situation S ′ is not W-related to S . However, S ′ was

302 S. Shapiro, Y. Lespérance, and H.J. Levesque

W-related to S 1, which is in the history of S . The next action after S 1 in the history
of S was (Requester,Agt,ψ). We suppose S ′ was dropped from W after
the . If none of the actions between do((Requester,Agt,ψ),S 1)
and S also cause S ′ to be dropped from W, then S ′ is returned to W after
the R(Requester,Agt,ψ) action is executed in S . In other words,
W+(Agt,R(Requester,Agt,ψ),S ′,S) holds because the following
hold:

1. W(Agt,S ′,S 1),

2. do((Requester,Agt,ψ),S 1) � S ,

3. C(R(Requester,Agt,ψ),(Requester,Agt,ψ)),
and

4. for every situation do(A∗,S ∗) between do((Requester,Agt,ψ),S 1) and
S , ¬W−(Agt,A∗,S ′,S ∗) holds.

Note that for our definition of W+ to work properly, we must assume that there is
only one  action in the history that is cancelled by each R,
so we make that assumption here. We will relax this assumption in future work.

For the theorems in this section, we will also need unique names axioms for
the , , and R actions. We add the axioms in this
section to Σ, i.e., Σ is redefined to contain: the foundational axioms (axioms F1–
F3), the encoding axioms, the unique names axioms, and Axioms 1–6.

We first consider goal expansion. If an agent does not have ¬ψ as a goal, then it
will adopt ψ as a goal, if it receives a request for ψ.

Theorem 10.9.

Σ |= ∀agt,ψ,requester, s.¬Goal(agt,¬ψ, s) ⊃
Goal(agt,ψ,do((requester,agt,ψ), s))

Next, we examine the persistence of goals. We first define Prev(ψ,now, then) to
mean that ψ held in the last situation, i.e., the one before now:5

Definition 10.8.

Prev(ψ,now, then) def
= ∃a, s′′.now = do(a, s′′)∧ψ[s′′, then].

If an agent has the goal that ψ in S , then the only way the agent will not have
Prev(ψ) as a goal in do(A,S) is if A causes the agent to add to W a situation S ′ that
KS -intersects a situation S ′′ such that ¬ψ[S ′′,S ′]. Therefore, the following holds:

5 Note that this is an overloading of the definition of Prev on p. 297.

10 The Cognitive Agents Specification Language and Verification Environment 303

Theorem 10.10.

Σ |= ∀a,agt,ψ, s.Goal(agt,ψ, s)∧
(∀s′, s′′.K(agt, s′′, s)∧ s′′ � s′∧W+(agt,a, s′, s) ⊃ ψ[s′′, s′]) ⊃

Goal(agt,Prev(ψ),do(a, s)).

The following corollary says that if an agent has ψ as a goal, and a is not a
R action, then after a occurs, the agent has the goal that Prev(ψ).

Corollary 10.2.

Σ |= ∀a,agt,ψ, s.Goal(agt,ψ, s)∧
(∀requester,ψ′.a , R(requester,agt,ψ′)) ⊃

Goal(agt,Prev(ψ),do(a, s)).

Now, if an agent has the goal that Prev(ψ) in do(a, s), and the agent knows that
the action a does not affect ψ, if it held beforehand, then the agent also has the goal
that ψ in do(a, s).

Theorem 10.11.

Σ |= ∀a,agt,ψ, s.
Goal(agt,Prev(ψ),do(a, s))∧
Know(agt,∀s′.Poss(a,Now)∧ψ[Now, s′] ⊃ ψ[do(a,Now), s′]), s) ⊃

Goal(agt,ψ,do(a, s)).

We can use the last theorem to drop the Prev operator in Corollary 10.2. The
resulting corollary says that a goal ψ persists over an action a, if a is not a -
R action, and the agent knows that a does not change the value of ψ.

Corollary 10.3.

Σ |= ∀a,agt,ψ, s.
Goal(agt,ψ, s)∧
(∀requester,ψ′.a , R(requester,agt,ψ′))∧
Know(agt, (∀s′.Poss(a,Now)∧ψ[Now, s′] ⊃ ψ[do(a,Now), s′]), s) ⊃

Goal(agt,ψ,do(a, s)).

We want our agents to be able to introspect their goals, i.e., if an agent has a goal
(does not have a goal, resp.) that ψ, it should know that it has (does not have, resp.)
ψ as a goal. We identify constraints that yield these properties. They are constraints
on K and W.

For positive introspection of goals, we need a constraint similar to transitivity.
We call this constraint KwTrans. We define it with respect to a particular starting
situation s.

304 S. Shapiro, Y. Lespérance, and H.J. Levesque

Definition 10.9.

KwTrans(agt, s) def
=

∀s1, s2, s3.K(agt, s1, s)∧K(agt, s2, s1)∧W(agt, s3, s1)∧ s2 � s3 ⊃

W(agt, s3, s).

We define what it means for K to be transitive starting in a situation s:

Definition 10.10.

Ktrans(agt, s) def
= ∀s1, s2.K(agt, s1, s)∧K(agt, s2, s1) ⊃ K(agt, s2, s).

If K is transitive and KwTrans holds starting at s then the agents have positive
introspection of goals at s.

Theorem 10.12.

Σ |= ∀agt, s.Ktrans(agt, s)∧KwTrans(agt, s) ⊃
(Goal(agt,ψ, s) ⊃Know(agt,Goal(agt,ψ), s)).

For negative introspection of goals, we need a constraint similar to Euclidean-
ness, which we call KwEuc:

Definition 10.11.

KwEuc(agt, s) def
=

∀s1, s2, s3.K(agt, s1, s)∧K(agt, s2, s)∧W(agt, s3, s)∧ s2 � s3 ⊃W(agt, s3, s1).

We define what it means for K to be Euclidean starting in a situation s:

Definition 10.12.

Keuc(agt, s) def
= ∀s1, s2.K(agt, s1, s)∧K(agt, s2, s) ⊃ K(agt, s2, s1).

If K is Euclidean and KwEuc holds starting at s, then the agents have negative
introspection of goals at s.

Theorem 10.13.

Σ |= ∀agt, s.Keuc(agt, s)∧KwEuc(agt, s) ⊃
(¬Goal(agt,ψ, s) ⊃Know(agt,¬Goal(agt,ψ), s)).

We can show that KwTrans and KwEuc persist, if they hold in the initial situa-
tions, and K is initially transitive and Euclidean.

10 The Cognitive Agents Specification Language and Verification Environment 305

Theorem 10.14.

Σ |= ∀agt, s.Executable(s)∧
[∀s′.Init(s′) ⊃ (Ktrans(agt, s′)∧Keuc(agt, s′)∧

KwTrans(agt, s′)∧KwEuc(agt, s′))] ⊃
KwTrans(agt, s)∧KwEuc(agt, s).

It follows that positive and negative goal introspection persist, if the associated con-
straints hold initially.

10.6 Agent Behaviour

We have just presented a framework in which one can systematically and concisely
describe the effects of actions on the world and on the mental states of multiple,
communicating agents. In order to describe a multi-agent system, we must also
specify what actions the agents perform.

We specify the behaviour of agents with the notation of the programming lan-
guage ConGolog [134], the concurrent version of Golog [283]. While versions of
both Golog and ConGolog have been implemented, we are mainly interested here in
the potential for using ConGolog as a specification language. The language contains
the following constructs:6

a, primitive action
φ?, wait for a condition
δ1;δ2, sequence
δ1 | δ2, nondeterministic choice of programs
πx.δ, nondeterministic choice of arguments
δ∗, nondeterministic iteration
if φ then δ1 else δ2, conditional
for x ∈ L do δ, for loop
while φ do δ, while loop
δ1 ‖ δ2, concurrency with equal priority
δ1 〉〉 δ2, concurrency with δ1 at a higher priority
〈 x : φ→ δ 〉, interrupt

In the above, a denotes a situation calculus action; φ denotes a fluent formula; δ,
δ1, and δ2 stand for complex actions; L is a finite list;7 and x is a sequence of
variables. These constructs are mostly self-explanatory. Intuitively, the interrupts
work as follows. Whenever ∃x.φ becomes true, δ is executed with the bindings of x
that satisfied φ; once δ has finished executing, the interrupt can trigger again.

6 De Giacomo et al. [134] allow recursive procedures in the language. To simplify matters, we
omit them here. We only allow non-recursive procedures and treat them as definitions.
7 We assume that an axiomatization of lists is included in Σ.

306 S. Shapiro, Y. Lespérance, and H.J. Levesque

The semantics of ConGolog programs are defined by De Giacomo et al. [134]
using a kind of semantics called structural operational semantics [212], which is
based on “single steps” of computation, or transitions. A step here is either a prim-
itive action or testing whether a condition holds in the current situation. They in-
troduce two special predicates, FinalDG and TransDG, where FinalDG(δ, s) denotes
that program δ may legally terminate in situation s, and where TransDG(δ, s, δ′, s′)
means that program δ in situation s may legally execute one step, ending in situation
s′ with program δ′ remaining. They then define DoDG(δ, s, s′) to mean that s′ is a
terminating situation of program δ starting in situation s:

DoDG(δ, s, s′) def
=∃δ′.Trans∗DG(δ, s, δ′, s′)∧FinalDG(δ′, s′),

where Trans∗DG is the reflexive, transitive closure of TransDG.

In other words, DoDG(δ, s, s′) holds if it is possible to repeatedly single-step the
program δ, obtaining a program δ′ and a situation s′ such that δ′ can legally termi-
nate in s′. The semantics does not handle the for-loop construct, since De Giacomo
et al. did not have this construct. However, it is straightforward to extend their se-
mantics to handle for-loops.

Program: 


nil: Null % null program used in semantics
prim(action: Action): Primitive % primitive action
test(testPred: Fluent): Test % wait for a condition
seqn(seqFirst:Program, seqSecond:Program): Sequence % sequence
nondet(ndFirst:Program, ndSecond:Program): NonDet % nondet. choice of actions
pick(piPred : NP,piProg : [(piPred)→ Program]): Pick % nondet. choice of argument
star(starProg:Program): Star % nondet. iteration
if (ifPred:Fluent, thenProg:Program, elseProg:Program): If % conditional
while(whilePred:Fluent, whileProg:Program): While % while loop
for(forType: NP, objlist: list[(forPred)], forProg:[forPred→ Program]): For % for loop
conc(concFirst:Program, concSecond:Program): Conc % concurrency with equal priority
pri(priFirst:Program, priSecond:Program): PriConc % prioritized concurrency

end Program

Fig. 10.2 Dataype declaration for ConGolog programs.

As seen above, De Giacomo et al. quantify over programs when defining DoDG.
To encode this semantics in PVS, we define a type for programs. We do this using
the datatype declaration shown in Fig. 10.2. The declaration depends on some pre-
defined types. As before, Action is the type of primitive actions. Fluent is the type
of fluent formulae discussed earlier. [D→ R] is the type of functions from D to R.
list[T] is the type of lists with elements of type T . The π, for-loop, and interrupt op-
erators are similar to quantifiers in that they bind variables. We assume that there is
a type QuantDom that is the quantification domain for these operators. However, we
want to allow quantification over any non-empty subtype of QuantDom, therefore in
the datatype we use the type NP, which we define to be the type of non-empty pred-

10 The Cognitive Agents Specification Language and Verification Environment 307

icates on QuantDom. In PVS, types cannot be passed to functions, but predicates
can be. A predicate can be converted to a type (i.e., the type of objects that satisfy
the predicate) by enclosing it in parenthesis. For example, the arguments to the pick
constructor are a non-empty predicate on QuantDom, piPred, and a function from
(piPred) to programs. This is called dependent subtyping, since the type of an ar-
gument of a function depends on an earlier argument. It is a very useful feature of
PVS.

For each program construct in the language, we define a constructor, accessors,
and a recognizer. These are mostly self-explanatory. nil is the null program that is
used in defining Trans and Final. It is a constant constructor, so it has no accessors,
but it has a recognizer Null. There is no constructor for interrupts because in the
ConGolog semantics [134], they are defined in terms of other constructs.

As seen above, the π and for-loop operators bind variables. For example, in πx.δ,
x is introduced as a variable and δ is a program in which x can occur as a free
variable. In the axioms for TransDG and FinalDG, δ always appears in the scope of
an existential quantifier that binds x. We saw that the pick operator (and the for-
loop operator) in the program datatype takes a predicate and a function from objects
that satisfy the predicate to programs. In other words, we are representing programs
with a free variable as functions from the domain of the free variable to programs
(we will refer to these functions as program functions). We can achieve the effect of
existentially quantifying over the free variable using: ∃y.(λx.δ)(y), where (λx.δ)(y)
denotes the application of λx.δ to y and yields a program.

The axioms for TransDG and FinalDG can easily be defined in PVS using the
CASES statement which handles pattern matching over datatypes. Their encodings
in PVS will be denoted Trans and Final, respectively. For example, we can represent
the definition of the Final predicate in PVS as follows:

final : AXIOM
Final(δ∗, s) ≡
CASES δ∗ OF

nil : TRUE,
prim(a) : FALSE,
test(φ) : FALSE,
seq(δ′, δ′′) : Final(δ′, s)∧Final(δ′′, s),
nondet(δ′, δ′′) : Final(δ′, s)∨Final(δ′′, s),
pick(ST , δ) : ∃(x : ST) : Final(δ(x), s),
star(δ) : TRUE,
progif(φ,δ′, δ′′) : (φ(s)∧Final(δ′, s))∨ (¬φ(s)∧Final(δ′′, s)),
while(φ,δ) : (φ(s)∧Final(δ, s))∨¬φ(s),
for(forPred, forList, δ) : Null(forList),
conc(δ1, δ2) : Final(δ1, s)∧Final(δ2, s),
pri(δ1, δ2) : Final(δ1, s)∧Final(δ2, s)

ENDCASES

308 S. Shapiro, Y. Lespérance, and H.J. Levesque

The CASES statement matches its argument (represented by δ here) against each
of its cases (the part to the left of the colon in each of the cases above), and returns
the formula to the right of the colon for the matching case. For example, if δ∗ is of
the form seq(δ′, δ′′), then the CASES statement returns Final(δ′, s)∧Final(δ′′, s). In
other words, a sequence seq(δ′, δ′′) is final in situation s, if both δ′ and δ′′ are final
in s. The overbar (e.g., δ) is used to indicate that δ is a program function variable.
The Trans predicate is similarly defined with a CASES operator.

trans : AXIOM
Trans(δ∗, s, δ, s′) ≡
CASES δ∗ OF

nil : FALSE,
prim(a) : Poss(a, s)∧δ = nil∧ s′ = do(a, s),
test(φ) : φ(s)∧δ = nil∧ s′ = s,
seqn(δ1, δ2) : (Final(δ1, s)∧Trans(δ2, s, δ, s′))∨

(∃δ′ : δ = seqn(δ′, δ2)∧Trans(δ1, s, δ′, s′)),
nondet(δ1, δ2) : Trans(δ1, s, δ, s′)∨Trans(δ2, s, δ, s′),
pick(ST , δ) : ∃(x : ST) : Trans(δ(x), s, δ, s′),
star(δ1) : ∃δ′ : δ = seqn(δ′,star(δ1))∧Trans(δ1, s, δ′, s′),
if(φ,δ1, δ2) : (φ(s)∧Trans(δ1, s, δ, s′))∨ (¬φ(s)∧Trans(δ2, s, δ, s′)),
while(φ,δ1) : φ(s)∧∃δ′ : δ = seqn(δ′,while(φ,δ1))∧Trans(δ1, s, δ′, s′),
for(forList, δ) : ¬null?(forList)∧∃δ′ : δ = seqn(δ′, for(cdr(forList), δ)∧

Trans(δ(car(forList)), s, δ′, s′),
conc(δ1, δ2) : ∃δ′ : (δ = conc(δ′, δ2)∧Trans(δ1, s, δ′, s′))∨

(δ = conc(δ1, δ
′)∧Trans(δ2, s, δ′, s′)),

pri(δ1, δ2) : ∃δ′ : (δ = pri(δ′, δ2)∧Trans(δ1, s, δ′, s′))∨
(δ = pri(δ1, δ

′)∧Trans(δ2, s, δ′, s′)∧
¬∃δ′′, s′′ : Trans(δ1, s, δ′′, s′′))

ENDCASES

As we noted earlier, Trans(δ∗, s, δ, s′) holds if the program δ1 can be executed one
step in situation s to yield program δ in situation s′. For example, if δ∗ is of the form
seqn(δ1, δ2), then Trans(δ∗, s, δ, s′) holds iff either δ1 is in a final state in s and there
is a transition of δ2 in s to δ in s′ or there is a transition of δ1 in s to some δ′ in s′

and δ is the sequence of δ′ and δ2.

Trans∗DG is the reflexive, transitive closure of TransDG. Since PVS is a higher-
order logic, the definition for Trans∗DG, which is second-order, could be directly
encoded in PVS. However, for proofs in PVS, we find it more convenient to use
a different definition of Trans∗ and show it is equivalent to Trans∗DG. In PVS, an
infinite sequence of elements of type T can be represented by a function from Nat
to T . We will represent a program execution by an infinite sequence of program
states. A program state is a pair consisting of a program and a situation. We define
Trans∗ as follows:

10 The Cognitive Agents Specification Language and Verification Environment 309

Trans∗(δ, s, δ′, s′) def
=

∃seq,n.seq(0) = (δ, s)∧ seq(n) = (δ′, s′)∧
∀i.i < n ⊃ Trans(seq(i),seq(i+1)).

In other words, Trans∗(δ, s, δ′, s′) holds if there exists an infinite sequence, seq, and
a natural number, n, such that (δ, s) is the 0-th element of seq, (δ′, s′) is the n-th
element of seq, and for all i < n, Trans takes the i-th element of seq to the i+ 1-
th element. Note that we are using Trans as a binary predicate here over pairs of
program states.

This definition is equivalent to Trans∗DG. Let ConGolog denote the theory gener-
ated by the Program datatype, and the axioms for Trans and Final.

Theorem 10.15.

Sit∪ConGolog `pvs ∀δ, s, δ′, s′.Trans∗DG(δ, s, δ′, s′) ≡ Trans∗(δ, s, δ′, s′)

10.7 A Meeting Scheduler Example

We illustrate the use of CASL by briefly describing a specification of a meeting
scheduler multi-agent system that is more fully described in [394]. In this exam-
ple, there are meeting organizer agents, which are trying to schedule meetings with
personal agents, which manage the schedules of their (human) owners. To schedule
a meeting, an organizer agent requests of each of the personal agents of the par-
ticipants in the meeting to adopt the goal that its owner attend the meeting during
a given time period. If a personal agent does not have any goals that conflict with
its owner attending the meeting (i.e., it has not previously scheduled a conflicting
meeting), it adopts the goal that its owner attend this meeting and informs the meet-
ing organizer that it has adopted this goal, i.e., that it accepts the meeting request.
Otherwise, the personal agent informs the meeting organizer that it has not adopted
the goal that its owner attend the meeting, i.e., that it declines the meeting request.

As an example of a CASL specification, the specification of the personal agents
is shown in Fig. 10.3. Its arguments are the personal agent and its owner. In the
specification, we use the fluent AM(user,chair, s), which means that user
is at a meeting chaired by chair in situation s. During(period,φ) means that φ holds
throughout the time period specified by period. W(agt1,agt2,φ) is
a complex action in which agt1 informs agt2 whether φ holds.

There are two interrupts, the first running at higher priority than the second. The
first interrupt fires when the agent has the goal that the user be at a meeting that
starts in less than fifteen minutes, and the agent knows that the user does not yet
know that it has this goal. The agent asks the user to go the meeting (actually, the
agent informs the user that it wants him to go to the meeting). The second interrupt
handles meeting requests; it fires when the agent knows that an organizer agent has

310 S. Shapiro, Y. Lespérance, and H.J. Levesque

S(pa,user) def
=

〈period,chair :
Goal(pa,During(period,AM(user,chair)))∧
Know[pa,¬Know(user,Goal(pa,During(period,AM(user,chair))))∧

(period)− :15 ≤ time ≤ (period)]→
(pa,user,Goal(pa,During(period,AM(user,chair)))) 〉

〉〉

〈oa,period,chair :
Know(pa,Goal(oa,During(period,AM(user,chair)))∧

¬KWhether(oa,Goal(pa,During(period,AM(user,chair)))))→
W(pa,oa,Goal(pa,During(period,AM(user,chair)))) 〉

Fig. 10.3 Specification of the personal agents.

requested a meeting, and it knows that it has not yet replied to the request. The
action taken is to inform the organizer whether it accepts or declines the meeting
request.

A complete meeting scheduler system is defined by composing instances of the
personal agents and the meeting organizer agents in parallel, thereby modelling the
behaviour of several agents acting independently. We also need to compose the non-
deterministic iteration of a tick action concurrently (at a lower priority) to allow time
to pass when the agents are not acting. Here is an example of such a system:

[S(1,1) ‖
S(2,2) ‖
S(3,3) ‖
M(1,1, {1,3},

12:00–2:00) ‖
M(2,2, {2,3},

1:30–2:45)] 〉〉 ∗

In this example, 1 is trying to schedule a meeting between 1 and 3
from 12 to 2. 2 is trying to schedule a meeting between 2 and 3 from
1:30 to 2:45. Since both meeting organizers will try to obtain 3’s agreement for
meetings that overlap, there will be two types of execution sequences, depending on
who obtains this agreement.

The meeting scheduler system is easy to represent in CASLve. The only compli-
cation is in defining the domain of quantification (QuantDom). In the example, we
need to quantify over periods of time and agents. We represent periods of time as
pairs of natural numbers, while agents are declared as a primitive type. In PVS, one
cannot directly define a type to be the union of other types, so we had to define a
datatype with constructors for both types. This means that when defining the sys-
tem, we have to use constructors and accessors to map into the QuantDom and back

10 The Cognitive Agents Specification Language and Verification Environment 311

to the original types. See [391] for the details of the PVS encoding, and for a formal
proof that a terminating execution of the meeting scheduler system exists.

10.8 Verification

We now present the PVS-based verification environment for CASL that we have de-
veloped, which we call CASLve. PVS has high-level proof-strategies and decision
procedures that take care of many of the low-level details associated with computer-
aided theorem proving. Some simple proofs (including some inductive proofs) can
be handled using a single application of a proof strategy. Many proofs can be ac-
complished using only the following steps: lemma introduction (here lemma is a
general term for any proposition: axioms, lemmas, theorems, etc., and includes in-
duction axioms), definition expansion, quantifier instantiation, and simplification. In
addition, PVS has useful proof-management facilities, including a graphical display
of the proof tree, and proof stepping and editing.

We have used CASLve to prove many lemmas that are useful in verifying proper-
ties of programs. In the remainder of this section, we will discuss one such lemma,
namely that all bounded-loop programs terminate. We define a bounded-loop pro-
gram to be one without while-loops and nondeterministic iteration (but for-loops are
allowed): Bounded(δ) def

= ∀δ′.Subterm(δ′, δ) ⊃ ¬Star(δ′)∧¬While(δ′). If we want to
prove that this property holds for some program, we run into a problem involving
the use of program functions as a way of handling program operators that bind vari-
ables. We intend to use functions such as: λx.seqn(test(OT(x)),(x)),
which when applied to an object such as 1 simulates the substitution of
1 for x. However, there is nothing to stop us from defining a function
f : N→ P such that f (i) = ai, where ai denotes the sequential composi-
tion of a with itself i times. Then, pick(Nat, f) is essentially an unbounded program
because we cannot bound in advance the number of primitive actions that it will
execute.

Our solution to this problem is to restrict the program functions to functions that
always return programs that have the same structure. We first define a congruence
relation Congruent(δ,δ′) that holds if two programs have the same structure. This re-
lation is defined recursively and it checks that the outermost operator is the same for
each program and then recursively checks that the rest of the programs are congru-
ent. In addition, if δ and δ′ are of the form pick(NP1,pf 1), and pick(NP2,pf 2), respec-
tively, then we require that NP1 =NP2 and ∀x : (NP1).Congruent(pf 1(x),pf 2(x)). We
have a similar requirement for for-loops, but we also require that the two lists be of
the same length. We omit the formal definition of this relation here. We say that
a program δ is suitable, formally SProg(δ), if for any subprogram of δ that is of
the form pick(NP,pf) or for(NP, l,pf) all the instantiations of pf are congruent, i.e.,
∀x,y : (NP).Congruent(pf (x),pf (y)). Again, we omit the formal definition. We will

312 S. Shapiro, Y. Lespérance, and H.J. Levesque

limit our attention to suitable programs. We can do this because they are closed
under transitions:

Theorem 10.16.

Sit∪ConGolog `pvs ∀δ,δ
′, s, s′.SProg(δ)∧Trans(δ, s, δ′, s′) ⊃ SProg(δ′).

All future quantifications over programs will be assumed to be restricted to suitable
programs.

Following Francez [184], we say that a program δ terminates starting in situation
s if it has no infinite executions starting in s. We can use the notion of a sequence
of program states introduced for our definition of Trans∗ in Sec. 10.6 to talk about
infinite executions. We say that δ has an infinite execution starting in s, if there is
a infinite sequence of program states that starts with (δ, s), such that Trans holds
of each adjacent pair of states: InfExec(δ, s) def

= ∃seq.seq(0) = (δ, s)∧∀i.Trans(seq, i),
where seq ranges over functions from the natural numbers to program states, and
Trans(seq, i) holds if there is a transition from the i-th to the i+ 1-th element of
seq. Note that this is an overloading of the previously defined binary Trans pred-
icate. Now, we can define termination as the absence of an infinite execution:
Terminates(δ, s) def

= ¬InfExec(δ, s).

We adapt a technique from Francez [184], to assist in proving termination of
a program δ starting in situation s. The idea is to find a predicate Pseq ⊆ N×
N that is intuitively a measure on an execution seq of δ (where the sequence is
understood from the context, we drop the subscript). Intuitively, P(i, j) holds if the
i-th step of seq has measure j. We can infer that Terminates(δ, s) holds, if for any
sequence seq such that seq(0) = (δ, s), there is a P such that:

1. P(0, j) holds for some j,

2. the value of the measure strictly decreases with each transition step of the se-
quence, and

3. when the measure reaches 0, i.e., P(i,0) for some i, then there is no legal transi-
tion from seq(i) to seq(i+1),

We state this formally in the following theorem:

Theorem 10.17.

Sit∪ConGolog `pvs
∀δ, s[∀seq.seq(0) = (δ, s) ⊃

(∃P.(∃ j.P(0, j))∧
(∀i, j. j > 0∧P(i, j)∧Trans(seq, i) ⊃

∃k.k < j∧P(i+1,k))∧
(∀i.P(i,0) ⊃ ¬Trans(seq, i)))] ⊃ Terminates(δ, s)

10 The Cognitive Agents Specification Language and Verification Environment 313

Note that we use a relation for the measure because we do not want to require
that the measure be defined over all natural numbers. In particular, once the measure
reaches 0, we want to allow it to be undefined from then on. If we can find such a
measure for any bounded program δ and situation s, we can show that all bounded
programs terminate. The measure that we use is based on the length of δ, where the
length of a program is the maximum number of primitive actions and tests that will
be generated in any execution of the program. We informally describe the proglen
function which maps a bounded program to its length, but omit its formal definition.
It is defined recursively. nil has length 0. Primitive actions and tests have length 1.
The length of sequential, concurrent, and prioritized concurrent compositions are
the sum of the lengths of their arguments. The length of nondeterministic choice of
programs and if-then-else statements are the maximum of the lengths their program
arguments. Since we are only considering bounded, suitable programs, the length
of the program that results from applying the program function argument of a pick
statement to an object will be the same for all objects. Therefore, the length of a
pick statement is the length of the program that results from applying the program
function to an arbitrary object. Similarly, the length of a for-loop is the list length of
its list argument multiplied by the program length of its program function argument
applied to an arbitrary object.

We will now define a relational measure, Pseq, that uses the program length. We
want the measure to be defined initially and as long as the sequence continues to
be a valid execution of the program. Where it is defined, Pseq(i, j) will hold if j
is the program length of the program component of seq(i): Pseq

def
= λi, j.(∀k.k < i ⊃

Trans(seq,k))∧ j = proglen(pj1(seq(i))), where pj1 projects out the first element of a
pair. We use this measure to show that all bounded programs terminate:

Theorem 10.18.

Sit∪ConGolog `pvs ∀δ, s.Bounded(δ) ⊃ Terminates(δ, s)

10.9 Example Proof

To illustrate CASLve, we will run through part of a proof. Since we are presenting
parts of a PVS proof, we will use PVS notation, i.e., a sequent calculus with a typed,
higher-order language. The proof we illustrate is a lemma that is used in the proof
of Theorem 10.18, i.e., that all bounded programs terminate. The lemma says that
all legal transitions of bounded programs result in programs of smaller length; it is
stated formally in the first sequent below.

When the PVS prover is invoked, one enters the proof mode with a single sequent
that contains only the proposition to be proved in the consequent. The antecedent
formulae are numbered with negative integers, while the consequent are numbered
with positive integers.

314 S. Shapiro, Y. Lespérance, and H.J. Levesque

{1} ∀(δ : Bounded), (δ′ : Program), (s, s′ : Sit) :
Trans(δ, s, δ′, s′) ⊃ proglen(δ′) < proglen(δ)

The proof proceeds by induction over δ. The PVS command for this is: (INDUCT
δ 1), which is a strategy that sets up a proof of formula {1} by induction over δ. Since
δ is of type Program, PVS sets up the induction by creating a new sequent to prove
for each program construct, and possibly some sequents to prove type correctness
conditions. Since we do not have much space, we will only show the proof of one of
the cases. We will show the proof for tests. Recall from Fig. 10.2 on page 306 that
the program construct for tests is test(φ), where φ is a fluent formula. The sequent
that PVS generates for this case is as follows.

{1} ∀(φ : Fluent) : Bounded(test(φ)) ⊃
∀(δ′ : Program), (s, s′ : Sit) :

Trans(test(φ), s, δ′, s′) ⊃
proglen(δ′) < proglen(test(φ))

Next, we simplify the sequent with the PVS command (REDUCE NIL). RE-
DUCE is a strategy that performs various simplifications, including skolemiza-
tion, propositional simplification, applying decision procedures, and equality re-
placement. The NIL parameter is used to prevent heuristic quantifier instantiation.
Skolem constants are formed by adding subscripted numerals to variable names.
The following sequent is the result of the simplification.

{-1} Bounded(test(φ1))
{-2} Trans(test(φ1), s1, δ

′
1, s
′
1)

{1} proglen(δ′1) < proglen(test(φ1))

In our encoding of ConGolog, we made Trans a PVS definition. The definition
states that Trans(test(φ1), s1, δ

′
1, s
′
1) holds iff φ1[s1] holds and s1 = s′1 and δ′1 = nil.

The next step of the proof is to expand the definition of Trans, which yields the
following sequent.

[-1] Bounded(test(φ1))
{-2} φ1[s1]∧δ′1 = nil∧ s′1 = s1
[1] proglen(δ′1) < proglen(test(φ1))

If a formula’s number is enclosed in square brackets, it means that the formula
has not changed from the previous sequent. In the definition of proglen, the nil
program is given length 0 and a program consisting of only a test is given length 1.
Therefore, after simplifying and expanding the definition of proglen, we obtain the
following sequent.

[-1] Bounded(test(φ1))
[-2] φ1[s1]
[-3] δ′1 = nil
[-4] s′1 = s1
{1} 0 < 1

10 The Cognitive Agents Specification Language and Verification Environment 315

It is easy to see that this sequent is true, and we can use the (GROUND) com-
mand, which simplifies using decision procedures, to complete the proof. We have
illustrated some of the main steps used in CASLve. The other ones that are used
most often are quantifier instantiation, lemma introduction, and GRIND, which is
a strategy that repeatedly performs heuristic instantiation of quantifiers and simpli-
fication and can complete many simple proofs. PVS also has a facility for creating
user-defined strategies, which we would like to use to develop strategies specifically
for CASL to further facilitate the verification of CASL specifications.

10.10 Conclusion

We have presented the different aspects of the CASL specification language and how
we encoded them in PVS to form the basis of a verification environment. We briefly
described the specification of a meeting scheduler multi-agent system in CASL, and
we showed that all bounded-loop programs terminate, which is a useful lemma for
proving termination of CASL programs.

CASL is a very expressive language, which we believe facilitates the speci-
fication of complex multiagent systems. Of course, the expressivity of the lan-
guage makes the task of verification more difficult. Other agent verification frame-
works have chosen to limit the expressivity of the language in order to facilitate
the verification side. Some approaches use model checking for automated verifica-
tion [34, 73]. However the languages used are propositional. Other approaches use
theorem proving. For example, Engelfriet et al. [164] consider compositional verifi-
cation of multi-agent systems. Hindriks and Meyer [226] define an agent program-
ming language and a verification logic for it. However, both these approaches use
propositional logic, and neither provide a verification environment. Our approach is
quite different. We believe that the complexity of multiagent systems justifies us-
ing more expressive languages, and that the full spectrum of the trade-off between
language expressivity versus ease of verification should be examined.

CASLve is a work in progress. We would like to develop it further by, e.g., writ-
ing proof strategies in PVS specifically tailored to the verification of CASL specifi-
cations. Ultimately, we hope to develop a hybrid system that uses theorem proving
to structure verification at a high level and generate lower level verification tasks
that could be handled with automated theorem proving techniques or model check-
ing. This could be one way to combine an expressive agent specification language
with effective verification techniques.

In other future work, we plan to use CASL to verify properties of the meeting
scheduler system and other multiagent specifications. In addition, we would like to
extend our account of goal change by handling conflicting requests and allowing
more than one  in the history of a R, as mentioned above.
Finally, we will extend CASL to handle recursive procedures, using the framework
of De Giacomo et al. [134].

Chapter 11

A Temporal Trace Language for
Formal Modelling and Analysis of
Agent Systems

A. Sharpanskykh and J. Treur

Abstract This chapter presents the hybrid Temporal Trace Language (TTL) for for-
mal specification and analysis of dynamic properties of multi-agent systems. This
language supports specification of both qualitative and quantitative aspects, and sub-
sumes languages based on differential equations and temporal logics. TTL has a
high expressivity and normal forms that enable automated analysis. Software en-
vironments for performing verification of TTL specifications have been developed.
TTL proved its value in a number of domains.

A. Sharpanskykh
Vrije Universiteit Amsterdam, Department of Artificial Intelligence, The Netherlands e-mail:
sharp@cs.vu.nl

J. Treur
Vrije Universiteit Amsterdam, Department of Artificial Intelligence, The Netherlands e-mail:
treur@cs.vu.nl

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 317
DOI 10.1007/978-1-4419-6984-2 11, c© Springer Science+Business Media, LLC 2010

sharp@cs.vu.nl
treur@cs.vu.nl

318 A. Sharpanskykh and J. Treur

11.1 Introduction

Traditionally, the multi-agent paradigm has been used to improve efficiency of soft-
ware computation. Languages used to specify such multi-agent systems often had
limited expressive power (e.g., executable, close to (logic) programming languages),
which nevertheless was sufficient to describe complex distributed algorithms. Re-
cently many agent-based methods, techniques and methodologies have been devel-
oped to model and analyse phenomena in the real world (e.g., social, biological, and
psychological structures and processes). By formally grounded multi-agent system
modelling one can gain better understanding of complex real world processes, test
existing theories from natural and human sciences, identify different types of prob-
lems in real systems.

Modelling dynamics of systems from the real world is not a trivial task. Cur-
rently, continuous modelling techniques based on differential and difference equa-
tions are often used in natural science to address this challenge, with limited success.
In particular, for creating realistic continuous models for natural processes a great
number of equations with a multitude of parameters are required. Such models are
difficult to analyze, both mathematically and computationally. Further, continuous
modelling approaches, such as the Dynamical Systems Theory [344], provide little
help for specifying global requirements on a system being modelled and for defining
high level system properties that often have a qualitative character (e.g., reasoning,
coordination). Also, sometimes system components (e.g., switches, thresholds) have
behaviour that is best modelled by discrete transitions. Thus, the continuous mod-
elling techniques have limitations, which can compromise the feasibility of system
modelling in different domains.

Logic-based methods have proved useful for formal qualitative modelling of
processes at a high level of abstraction. For example, variants of modal tempo-
ral logic [27, 198] gained popularity in agent technology, and for modelling social
phenomena. However, logic-based methods typically lack quantitative expressivity
essential for modelling precise timing relations as needed in, e.g., biological and
chemical processes.

Furthermore, many real world systems (e.g., a television set, a human organisa-
tion, a human brain) are hybrid in nature, i.e., are characterized by both qualitative
and quantitative aspects. To represent and reason about structures and dynamics of
such systems, the possibility of expressing both qualitative and quantitative aspects
is required. Moreover, to tackle the issue of complexity and scalability the possibil-
ity of modelling of a system at different aggregation levels is in demand. In this case
modelling languages should be able to express logical relationships between parts
of a system.

To address the discussed modelling demands, the Temporal Trace Language
(TTL) is proposed, which subsumes languages based on differential equations and
temporal logics, and supports the specification of the system behaviour at different
levels of abstraction.

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 319

Generally, the expressivity of modelling languages is limited by the possibility to
perform effective and efficient analysis of models. Analysis techniques for complex
systems include simulation based on system models, and verification of dynamic
properties on model specifications and traces generated by simulation or obtained
empirically.

For simulation it is essential to have limitations to the language. To this end,
an executable language that allows specifying only direct temporal relations can be
defined as a sublanguage of TTL; cf. [81]. This language allows representing the
dynamics of a system by a (possible large) number of simple temporal (or causal)
relations, involving both qualitative and quantitative aspects. Furthermore, using
a dedicated tool, TTL formulae that describe the complex dynamics of a system
specified in a certain format may be automatically translated into the executable
form. Based on the operational semantics and the proof theory of the executable
language, a dedicated tool has been developed that allows performing simulations
of executable specifications.

To verify properties against specifications of models two types of analysis tech-
niques are widely used: logical proof procedures and model checking [100]. By
means of model checking entailment relations are justified by checking properties
on the set of all theoretically possible traces generated by execution of a system
model. To make such verification feasible, expressivity of both the language used
for the model specification and the language used for expressing properties has to
be sacrificed to a large extent. Therefore, model specification languages provided by
most model checkers allow expressing only simple temporal relations in the form of
transition rules with limited expressiveness (e.g., no quantifiers). For specifying a
complex temporal relation a large quantity (including auxiliary) of interrelated tran-
sition rules is needed. In this chapter normal forms and a transformation procedure
are introduced, which enable automatic translation of an expressive TTL specifica-
tion into the executable format required for automated verification (e.g., by model
checking). Furthermore, abstraction of executable specifications, as a way of gener-
ating properties of higher aggregation levels, is considered in this chapter. In partic-
ular, an approach that allows automatic generation of a behavioural specification of
an agent from a cognitive process model is described.

In some situations it is required to check properties only on a limited set of traces
obtained empirically or by simulation (in contrast to model checking which requires
exhaustive inspection of all possible traces). Such type of analysis, which is compu-
tationally much cheaper than model checking, is described in this chapter.

The chapter is organised as follows. Section 11.2 describes the syntax of the
TTL language. The semantics of the TTL language is described in Section 11.3.
Multi-level modelling of multi-agent systems in TTL and a running example used
throughout the chapter are described in Section 11.4. In Section 11.5 relations of
TTL to other well-known formalisms are discussed. In Section 11.6 normal forms
and transformation procedures for automatic translation of a TTL specification into
the executable format are introduced. Furthermore, abstraction of executable speci-
fications is considered in Section 11.6. Verification of specifications of multi-agent

320 A. Sharpanskykh and J. Treur

systems in TTL is considered in Section 11.7. Finally, Section 11.8 concludes the
chapter.

11.2 Syntax of TTL

The language TTL is a variant of an order-sorted predicate logic [299]. Whereas
standard multi-sorted predicate logic is meant to represent static properties, TTL is
an extension of such language with explicit facilities to represent dynamic proper-
ties of systems. To specify state properties for system components, ontologies are
used which are specified by a number of sorts, sorted constants, variables, func-
tions and predicates (i.e., a signature). State properties are specified based on such
ontology using a standard multi-sorted first-order predicate language. For every sys-
tem component A (e.g., agent, group of agents, environment) a number of ontolo-
gies can be distinguished used to specify state properties of different types. That
is, the ontologies IntOnt(A), InOnt(A), OutOnt(A), and ExtOnt(A) are used to ex-
press respectively internal, input, output and external state properties of the com-
ponent A. For example, a state property expressed as a predicate pain may belong
to IntOnt(A), whereas the atom has temperature(environment,7) may belong to
ExtOnt(A). Often in agent-based modelling input ontologies contain elements for
describing perceptions of an agent from the external world (e.g, observed(a) means
that a component has an observation of state property a), whereas output ontolo-
gies describe actions and communications of agents (e.g., per f orming action(b)
represents action b performed by a component in its environment).

To express dynamic properties, TTL includes special sorts: T IME (a set of lin-
early ordered time points), S T AT E (a set of all state names of a system), TRACE
(a set of all trace names; a trace or a trajectory can be thought of as a timeline with
a state for each time point), S T AT PROP (a set of all state property names), and
VALUE (an ordered set of numbers). Furthermore, for every sort S from the state
language the following TTL sorts exist: the sort S VARS , which contains all vari-
able names of sort S , the sort S GT ERMS , which contains names of all ground terms,
constructed using sort S ; sorts S GT ERMS and S VARS are subsorts of sort S T ERMS .

In TTL, formulae of the state language are used as objects. To provide names of
object language formulae ϕ in TTL, the operator (*) is used (written as ϕ∗), which
maps variable sets, term sets and formula sets of the state language to the elements
of sorts S GT ERMS , S T ERMS , S VARS and S T AT PROP in the following way:

1. Each constant symbol c from the state sort S is mapped to the constant name c ′

of sort S GT ERMS .

2. Each variable x : S from the state language is mapped to the constant name x ′ ∈
S VARS .

3. Each function symbol f : S 1 × S 2 × ...× S n → S n+1 from the state language is
mapped to the function name f ′ : S T ERMS

1 ×S T ERMS
2 × ...×S T ERMS

n → S T ERMS
n+1 .

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 321

4. Each predicate symbol P : S 1 × S 2 × ... × S n is mapped to the function name
P ′ : S T ERMS

1 ×S T ERMS
2 × ...×S T ERMS

n → S T AT PROP.
5. The mappings for state formulae are defined as follows:

a. (¬ϕ)∗ = not(ϕ∗)
b. (ϕ&ψ)∗ = ϕ∗∧ψ∗, (ϕ |ψ)∗ = ψ∗∨ψ∗

c. (ϕ⇒ ψ)∗ = ϕ∗→ ψ∗, (ϕ⇔ ψ)∗ = ϕ∗↔ ψ∗

d. (∀x ϕ(x))∗ = ∀x ′ ϕ∗(x ′), where x is variable over sort S and x ′ is any constant
of S VARS ; the same for ∃.

It is assumed that the state language and the TTL define disjoint sets of expres-
sions. Therefore, further in TTL formulae we shall use the same notations for the
elements of the object language and for their names in the TTL without introducing
any ambiguity. Moreover we shall use t with subscripts and superscripts for vari-
ables of the sort T IME; and γ with subscripts and superscripts for variables of the
sort TRACE.

A state is described by a function symbol state : TRACE×T IME→ S T AT E. A
trace is a temporally ordered sequence of states. A time frame is assumed to be fixed,
linearly ordered, for example, the natural or real numbers. Such an interpretation of
a trace contrasts to Mazurkiewicz traces [306] that are frequently used for analysing
behaviour of Petri nets. Mazurkiewicz traces represent restricted partial orders over
algebraic structures with a trace equivalence relation. Furthermore, as opposed to
some interpretations of traces in the area of software engineering, a formal logical
language is used here to specify properties of traces.

The set of function symbols of TTL includes ∨, ∧,→,↔: S T AT PROP×
S T AT PROP → S T AT PROP ; not : S T AT PROP → S T AT PROP, and ∀,∃ :
S VARS × S T AT PROP→ S T AT PROP, of which the counterparts in the state lan-
guage are boolean propositional connectives and quantifiers. Further we shall use
∨,∧,→,↔ in infix notation and ∀,∃ in prefix notation for better readability. For ex-
ample, using such function symbols the state property about external world express-
ing that there is no rain and no clouds can be specified as: not(rain)∧not(clouds).

To formalise relations between sorts VALUE and T IME, functional symbols
−, +, /, • : T IME ×VALUE → T IME are introduced. Furthermore, for arithmeti-
cal operations on the sort VALUE the corresponding arithmetical functions are in-
cluded.

States are related to state properties via the satisfaction relation denoted by
the prefix predicate holds (or by the infix predicate |=): holds(state(γ, t), p) (or
state(γ, t) |= p), which denotes that state property p holds in trace γ at time point
t.

Both state(γ, t) and p are terms of the TTL language. In general, TTL terms are
constructed by induction in a standard way from variables, constants and function
symbols typed with all before-mentioned TTL sorts. Transition relations between
states are described by dynamic properties, which are expressed by TTL-formulae.
The set of atomic TTL-formulae is defined as:

322 A. Sharpanskykh and J. Treur

1. If v1 is a term of sort S T AT E, and u1 is a term of the sort S T AT PROP, then
holds(v1,u1) is an atomic TTL formula.

2. If τ1, τ2 are terms of any TTL sort, then τ1 = τ2 is a TTL-atom.

3. If t1, t2 are terms of sort T IME, then t1 < t2 is a TTL-atom.

4. If v1, v2 are terms of sort VALUE, then v1 < v2 is a TTL-atom.

The set of well-formed TTL-formulae is defined inductively in a standard way
using Boolean connectives and quantifiers over variables of TTL sorts. An example
of the TTL formula, which describes observational belief creation of an agent, is
given below:

In any trace, if at any point in time t1 the agent A observes that it is raining,
then there exists a point in time t2 after t1 such that at t2 in the trace the agent
A believes that it is raining.

∀γ ∀t1 [holds(state(γ, t1),observation result(itsraining))⇒

∃t2 > t1 holds(state(γ, t2),belie f (itsraining))]

The possibility to specify arithmetical operations in TTL allows modelling of
continuous systems, which behaviour is usually described by differential equa-
tions. Such systems can be expressed in TTL either using discrete or dense time
frames. For the discrete case, methods of numerical analysis that approximate a
continuous model by a discrete one are often used, e.g., Euler’s and Runge-Kutta
methods [334]. For example, by applying Euler’s method for solving a differential
equation dy/dt = f (y) with the initial condition y(t0) = y0, a difference equation
yi+1 = yi+h∗ f (yi) (with i the step number and h > 0 the step size) is obtained. This
equation can be modelled in TTL in the following way:

∀γ ∀t ∀v : VALUE holds(state(γ, t), has value(y,v))⇒

holds(state(γ, t+1), has value(y,v+h• f (v)))

The traces γ satisfying the above dynamic property are the solutions of the dif-
ference equation.

Furthermore, a dense time frame can be used to express differential equations
with derivatives specified using the epsilon-delta definition of a limit, which is
expressible in TTL. To this end, the following relation is introduced, expressing
that x = dy/dt:

is diff of(γ,x,y) :

∀t,w ∀ε > 0 ∃δ > 0 ∀t′,v,v′

0 < dist(t′, t) < δ & holds(state(γ, t),has value(x,w))

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 323

&holds(state(γ, t),has value(y,v))

&holds(state(γ, t′),has value(y,v′))

⇒ dist((v′− v)/(t′− t),w) < ε

where dist(u,v) is defined as the absolute value of the difference.

Furthermore, a study has been performed in which a number of properties of
continuous systems and theorems of calculus were formalized in TTL and used in
reasoning [83].

11.3 Semantics of TTL

An interpretation of a TTL formula is based on the standard interpretation of an
order sorted predicate logic formula and is defined by a mapping I that associates
each:

1. sort symbol S to a certain set (subdomain) DS , such that if S ⊆ S ′ then DS ⊆ D′S
2. constant c of sort S to some element of DS

3. function symbol f of type < X1, ...,Xi >→ Xi+1 to a mapping: I(X1)× ...× I(Xi)→
I(Xi+1)

4. predicate symbol P of type < X1, ...,Xi > to a relation on I(X1)× ...× I(Xi)

A model M for the TTL is a pair M =< I,V >, where I is an interpretation func-
tion, and V is a variable assignment, mapping each variable x of any sort S to an
element of DS . We write V[x/v] for the assignment that maps variables y other than
x to V(y) and maps x to v. Analogously, we write M[x/v] =< I,V[x/v] >.

If M =< I,V > is a model of the TTL, then the interpretation of a TTL term τ,
denoted by τM , is inductively defined by:

1. (x)M = V(x), where x is a variable over one of the TTL sorts.

2. (c)M = I(c), where c is a constant of one of the TTL sorts.

3. f (τ1, ..., τk)M = I(f)(τM
1 , ..., τ

M
k), where f is a TTL function of type S 1× ...×S n→

S and τ1, ..., τn are terms of TTL sorts S 1, ...,S n.

The truth definition of TTL for the model M =< I,V > is inductively defined by:

1. |=M Pi(τ1, ..., τk) iff I(Pi)(τM
1 , ..., τ

M
k) = true

2. |=M ¬ϕ iff 6|=M ϕ

3. |=M ϕ∧ψ iff |=M ϕ and iff |=M ψ

4. |=M ∀x(ϕ(x)) iff |=M[x/v] ϕ(x) for all v ∈ DS , where x is a variable of sort S .

324 A. Sharpanskykh and J. Treur

The semantics of connectives and quantifiers is defined in the standard way. A
number of important properties of TTL are formulated in form of axioms:

1. Equality of traces:
∀γ1,γ2 [∀t[state(γ1, t) = state(γ2, t)]⇒ γ1 = γ2]

2. Equality of states:
∀s1, s2[∀a : S T AT PROP[truth value(s1,a) = truth value(s2,a)]⇒ s1 = s2]

3. Truth value in a state:
holds(s, p)⇔ truth value(s, p) = true

4. State consistency axiom:
∀γ, t, p (holds(state(γ, t), p)⇒¬holds(state(γ, t),not(p)))

5. State property semantics:

a. holds(s, (p1∧ p2))⇔ holds(s, p1) & holds(s, p2)

b. holds(s, (p1∨ p2))⇔ holds(s, p1) | holds(s, p2)

c. holds(s,not(p1))⇔¬holds(s, p1)

6. For any constant variable name x from the sort S VARS :
holds(s, (∃(x,F)))⇔ ∃x′ : S GT ERMS holds(s,G), and holds(s, (∀(x,F)))⇔ ∀x′ :
S GT ERMS holds(s,G) with G, F terms of sort S T AT PROP, where G is obtained
from F by substituting all occurrences of x by x′.

7. Partial order axioms for the sort T IME:

a. ∀t t ≤ t (Reflexivity)

b. ∀t1, t2 [t1 ≤ t2∧ t2 ≤ t1]⇒ t1 = t2 (Anti-Symmetry)

c. ∀t1, t2, t3 [t1 ≤ t2∧ t2 ≤ t3]⇒ t1 ≤ t3 (Transitivity)

8. Axioms for the sort VALUE: the same as for the sort T IME and standard arith-
metic axioms.

9. Axioms, which relate the sorts T IME and VALUE:

a. (t+ v1)+ v2 = t+ (v1+ v2)

b. (t • v1)• v2 = t • (v1 • v2)

10. (Optional) Finite variability property (for any trace γ).
This property ensures that a trace is divided into intervals such that the overall
system state is stable within each interval, i.e., each state property changes its
truth value at most a finite number of times:
∀t0, t1 t0 < t1 ⇒ ∃δ > 0[∀t[t0 ≤ t & t ≤ t1]⇒ ∃t2[t2 ≤ t & t < t2 + δ & ∀t3[t2 ≤
t3 & t3 ≤ t2+δ]]⇒ state(γ, t3) = state(γ, t)]

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 325

11.4 Multi-level Modelling of Multi-Agent Systems in TTL

With increase of the number of elements within a multi-agent system, the complex-
ity of the dynamics of the system grows considerably. To analyze the behaviour of a
complex multi-agent system (e.g., for critical domains such as air traffic control and
health care), appropriate approaches for handling the dynamics of the multi-agent
system are important. Two of such approaches for TTL specifications of multi-agent
systems are considered in this section: aggregation by agent clustering is considered
in Section 11.4.1 and organisation structures are discussed in Section 11.4.2.

11.4.1 Aggregation by agent clustering

One of the approaches to manage complex dynamics is by distinguishing different
aggregation levels, based on clustering of a multi-agent system into parts or com-
ponents with further specification of their dynamics and relations between them;
e.g., [264]. At the lowest aggregation level a component is an agent or an environ-
mental object (e.g., a database), with which agents interact. Further, at higher aggre-
gation levels a component has the form of either a group of agents or a multi-agent
system as a whole. In the simplest case two levels can be distinguished: the lower
level at which agents interact and the higher level, where the whole multi-agent sys-
tem is considered as one component. In the general case the number of aggregation
levels is not restricted. Components interact with each other and the environment via
input and output interfaces described in terms of interaction (i.e., input and output)
ontologies. A component receives information at its input interface in the form of
observation results and communication from other components. A component gen-
erates at its output communication, observation requests and actions performed in
the environment. Some elements from the agent’s interaction ontology are provided
in Table 11.1.

Table 11.1 Interaction ontology

Ontology element Description

observation request f rom f or(C :
COMPONENT, I : INFO ELEMENT)

I is to be observed in the world for C (ac-
tive observation)

observation result to f or(C :
COMPONENT, I : INFO ELEMENT)

Observation result I is provided to C (for
active observation)

observed(I : INFO ELEMENT) I is observed at the component’s input
(passive observation)

communicated f rom to(C1 : COMPONENT,
C2 : COMPONENT, s act : S PEECH ACT,
I : INFO ELEMENT)

Specifies speech act s act (e.g., inform,
request, ask) from C1 to C2 with the con-
tent I

to be per f ormed(A : ACT ION) Action A is to be performed

326 A. Sharpanskykh and J. Treur

For the explicit indication of an aspect of a state for a component, to which a
state property is related, sorts AS PECT COMPONENT (a set of the component
aspects of a system; i.e., input, output, internal); COMPONENT (a set of all
component names of a system); COMPONENT S T AT E AS PECT (a set of all
names of aspects of all component states) and a function symbol

comp aspect : AS PECT COMPONENT ×COMPONENT →
COMPONENT S T AT E AS PECT

are used. In multi-agent system specifications, in which the indication of the com-
ponent’s aspects is needed, the definition of the function symbol state introduced
earlier is extended as state : TRACE×T IME×COMPONENT S T AT E AS PECT
→ S T AT E. For example,

holds(state(trace1, t1, input(A)),observation result(sunny weather))

Here input(A) belongs to sort COMPONENT S T AT E AS PECT .
At every aggregation level the behaviour of a component is described by a set of
dynamic properties. The dynamic properties of components of a higher aggregation
level may have the form of a few temporal expressions of high complexity. At a
lower aggregation level a system is described in terms of more basic steps. This
usually takes the form of a specification consisting of a large number of temporal
expressions in a simpler format. Furthermore, the dynamic properties of a compo-
nent of a higher aggregation level can be logically related by an interlevel relation
to dynamic properties of components of an adjacent lower aggregation level. This
interlevel relation takes the form that a number of properties of the lower level log-
ically entail the properties of the higher level component.

In the following a running example used throughout the chapter is introduced to
illustrate aggregation by agent clustering in a multi-agent system for co-operative
information gathering. For simplicity, this system is considered at two aggregation
levels (see Figure 11.1). At the higher level the multi-agent system as a whole is
considered. At the lower level four components and their interactions are specified:
two information gathering agents A and B, agent C, and environment component
E representing the external world. Each of the agents is able to acquire partial in-
formation from an external source (component E) by initiated observations. Each
agent can be reactive or proactive with respect to the information acquisition pro-
cess. An agent is proactive if it is able to start information acquisition independently
of requests of any other agents, and an agent is reactive if it requires a request from
some other agent to perform information acquisition.

Observations of any agent taken separately are insufficient to draw conclusions
of a desired type; however, the combined information of both agents is sufficient.
Therefore, the agents need to co-operate to be able to draw conclusions. Each agent
can be proactive with respect to the conclusion generation, i.e., after receiving both
observation results an agent is capable to generate and communicate a conclusion

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 327

B

 E

C

A

Fig. 11.1 The co-operative information gathering multi-agent system. A and B represent informa-
tion gathering agents; C is an agent that obtains the conclusion information; E is an environmental
component.

to agent C. Moreover, an agent can be request pro-active to ask information from
another agent, and an agent can be pro-active or reactive in provision of (already
acquired) information to the other agent.

For the lower-level components of the multi-agent system, a number of dynamic
properties were identified and formalized as it is shown below. In the formalization
the variables A1 and A2 are defined over the sort AGENT T ERMS , the constant E
belongs to the sort ENVIRONMENT AL COMPONENTGT ERMS , the variable IC
is defined over the sort INFORMAT ION CHUNKT ERMS , the constants IC1, IC2
and IC3 belong to the sort INFORMAT ION CHUNKGT ERMS and the constant C
belongs to the sort AGENT T ERMS .

DP1(A1, A2) (Effectiveness of information request transfer between agents)
If agent A1 communicates a request for an information chunk to agent A2 at any
time point t1, then this request will be received by agent A2 at time point t1+ c.
∀IC∀t1
[holds(state(γ, t1,output(A1)),communicated f rom to(A1,A2,request, IC)))
⇒ holds(state(γ, t1+ c, input(A2)),
communicated f rom to(A1,A2,request, IC))]

DP2(A1, A2) (Effectiveness of information transfer between agents)
If agent A1 communicates information chunk to agent A2 at any time point t1, then
this information will be received by agent A2 at the time point t1+ c.
∀IC∀t1
[holds(state(γ, t1,output(A1)),communicated f rom to(A1,A2, in f orm, IC)))
⇒ holds(state(γ, t1+ c, input(A2)),
communicated f rom to(A1,A2, in f orm, IC)))]

DP3(A1, E) (Effectiveness of information transfer between an agent and envi-
ronment)

328 A. Sharpanskykh and J. Treur

If agent A1 communicates an observation request to the environment at any time
point t1, then this request will be received by the environment at the time point
t1+ c.

∀IC∀t1 [holds(state(γ, t1,output(A1)),observation request f rom f or(A1, IC))

⇒ holds(state(γ, t1+ c, input(E)),observation request f rom f or(A1, IC))]

DP4(A1, E) (Information provision effectiveness)
If the environment receives an observation request from agent A1 at any time point
t1, then the environment will generate a result for this request at the time point t1+c.

∀IC∀t1[holds(state(γ, t1, input(E)),observation request f rom f or(A1, IC))

⇒ holds(state(γ, t1+ c,output(E)),observation result to f or(A1, IC))]

DP5(E, A1) (Effectiveness of information transfer between environment and an
agent)
If the environment generates a result for an agent’s information request at any time
point t1, then this result will be received by the agent at the time point t1+ c.

∀IC∀t1[holds(state(γ, t1,output(E)),observation result to f or(A1, IC))

⇒ holds(state(γ, t1+ c, input(A1)),observation result to f or(A1, IC))]

DP6(A1, A2) (Information acquisition reactiveness)
If agent A2 receives a request for an information chunk from agent A1 at any time
point t1, then agent A2 will generate a request for this information to the environ-
ment at the time point t1+ c.

∀IC∀t1[holds(state(γ, t1, input(A2)),communicated f rom to(A1,A2,request, IC))

⇒ holds(state(γ, t1+ c,output(A2)),observation result to f or(A2, IC))]

DP7(A1, A2) (Information provision reactiveness)
If exists a time point t1 when agent A2 received a request for a chunk of information
from agent A1, then for all time points t2 when the requested information is provided
to agent A2, this information will be further provided by agent A2 to agent A1 at the
time point t2+ c.

∀IC [∃t1 [t1 < t & holds(state(γ, t1, input(A2)),

communicated f rom to(A1,A2,request, IC))]]

⇒ ∀t2[
t < t2 & holds(state(γ, t2, input(A2)),observation result to f or(A2, IC))⇒

holds(state(γ, t2+ c,output(A2)),
communicated f rom to(A2,A1, in f orm, IC))]]

DP8(A1, A2) (Conclusion proactiveness)

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 329

For any time points t1 and t2, if agent A1 receives a result for its observation request
from the environment (information chunk IC1) at t1 and it receives information re-
quired for the conclusion generation from agent A2 (information chunk IC2) at t2,
then agent A1 will generate a conclusion based on the received information (infor-
mation chunk IC3) to agent C at a time point t4 later than t1 and t2.

∀t1, t2 t1 < t & t2 < t&

holds(state(γ, t1, input(A1)),observation result to f or(A1, IC1))&

holds(state(γ, t2, input(A1)),communicated f rom to(A2,A1, in f orm, IC2))

⇒∃ t4 > t&

[holds(state(γ, t4,output(A1)),communicated f rom to(A1,C, in f orm, IC3))]

DP9(A1, E) (Information acquisition proactiveness)
At some time point an observation request for information chunk IC1 is generated
by agent A1 to the environment.

holds(state(γ,c,output(A1)),observation request f rom f or(A1, IC1))

DP10(A1, A2) (Information request proactiveness)
At some time point a request for information chunk IC2 is communicated by agent
A1 to agent A2.

holds(state(γ,c,output(A1)),communicated f rom to(A1,A2,request, IC2))

11.4.2 Organisation structures

Organisations have proven to be a useful paradigm for analyzing and designing
multi-agent systems [146, 172]. Representation of a multi-agent system as an or-
ganisation consisting of roles and groups can tackle major drawbacks concerned
with traditional multi-agent models; e.g., high complexity and poor predictability
of dynamics in a system [172]. We adopt a generic representation of organisations,
abstracted from instances of real agents. As has been shown in [240], organisational
structure can be used to limit the scope of interactions between agents, reduce or
explicitly increase redundancy of a system, or formalize high-level system goals,
of which a single agent may be not aware. Moreover, organisational research has
recognized the advantages of agent-based models; e.g., for analysis of structure and
dynamics of real organisations.

An organisation structure is described by relationships between roles at the same
and at adjoining aggregation levels and between parts of the conceptualized envi-
ronment and roles. The specification of an organisation structure uses the following
elements:

330 A. Sharpanskykh and J. Treur

Conclusion generation

Information
Requestor 1

Information
Requestor 2

Environment

Conclusion
generation

Cooperative information
gathering

Conclusion
receiver

Fig. 11.2 An organisation structure for the co-operative information gathering multi-agent system
represented at the aggregation level 2 (left) and at the aggregation level 3 (right).

1. A role represents a subset of functionalities, performed by an organisation, ab-
stracted from specific agents who fulfil them.
Each role can be composed by several other roles, until the necessary detailed
level of aggregation is achieved, where a role that is composed of (interacting)
subroles, is called a composite role. Each role has an input and an output inter-
face, which facilitate in the interaction (communication) with other roles. The
interfaces are described in terms of interaction (input and output) ontologies.
At the highest aggregation level, the whole organisation can be represented as
one role. Such representation is useful both for specifying general organisational
properties and further utilizing an organisation as a component for more complex
organisations. Graphically, a role is represented as an ellipse with white dots (the
input interfaces) and black dots (the output interfaces). Roles and relations be-
tween them are specified using sorts and predicates from the structure ontology
(see Table 11.2). For the example of co-operative information gathering system
considered in Section 11.4.1, an organisation structure may be defined as shown
in Figure 11.2. The structure is represented at three aggregation levels: at the
first level the organization as a whole is considered, at the second level the Co-
operative information gathering role with its subroles is considered; at the third
aggregation level the Conclusion generation role with its subroles is represented.

2. An interaction link represents an information channel between two roles at the
same aggregation level. Graphically, it is depicted as a solid arrow, which denotes
the direction of possible information transfer.

3. The conceptualized environment represents a special component of an organisa-
tion model. Similarly to roles, the environment has input and output interfaces,
which facilitate in the interaction with roles of an organisation. The interfaces are
conceptualized by the environment interaction (input and output) ontologies.

4. An interlevel link connects a composite role with one of its subroles. It represents
information transfer between two adjacent aggregation levels. It may describe
an ontology mapping for representing mechanisms of information abstraction.
Graphically, it is depicted as a dashed arrow, which shows the direction of the
interlevel transition.

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 331

Table 11.2 Ontology for formalizing organizational structure

Predicate Description

is role : ROLE Specifies a role in an organization
has subrole : ROLE×ROLE For a subrole of a composite role
source o f interaction : ROLE×
INT ERACT ION LINK

Specifies a source role of an interaction

destination o f interaction : ROLE×
INT ERACT ION LINK

Specifies a destination role of interaction

interlevel connection f rom : ROLE×
INT ERLEVEL LINK

Identifies a source role of an interlevel link

interlevel connection to : ROLE×
INT ERLEVEL LINK

Identifies a destination role of an inter-
level link

part o f env in interaction : ENVIRONMENT ×
ENVIRONMENT INT ERACT ION LINK

Identifies the conceptualized part of the
environment involved in interaction with
a role

has input ontology : ROLE×ONTOLOGY Specifies an input ontology for a role
has output ontology : ROLE×ONTOLOGY Specifies an output ontology for a role
has input ontology : ENVIRONMENT ×
ONTOLOGY

Specifies an input ontology for the envi-
ronment

has output ontology : ENVIRONMENT ×
ONTOLOGY

Specifies an output ontology for the envi-
ronment

has interaction ontology : ROLE×ONTOLOGY Specifies an interaction ontology for a role

At each aggregation level, it can be specified how the organization’s behaviour is
assumed to be. The dynamics of each structural element are defined by the specifi-
cation of a set of dynamic properties. We define five types of dynamic properties:

1. A role property (RP) describes the relationship between input and output states
of a role, over time. For example, a role property of Information requester 2 is:

Information acquisition reactiveness
∀IC∀t1[holds(state(γ, t1, input(In f ormationRequester2)),
communicated f rom to(In f ormationRequester1, In f ormationRequester2,
request, IC))
⇒ holds(state(γ, t1+ c,output(In f ormationRequester2)),
observation result to f or(In f ormationRequester2, IC))]

2. A transfer property (TP) describes the relationship of the output state of the
source role of an interaction link to the input state of the destination role.
For example, a transfer property for the roles Information requester 1 and
Information requester 2 is:

Effectiveness of information transfer between roles
∀IC∀t1 [holds(state(γ, t1,output(In f ormationRequester1)),
communicated f rom to(In f ormationRequester1, In f ormationRequester2,
in f orm, IC)))

332 A. Sharpanskykh and J. Treur

⇒ holds(state(γ, t1+ c, input(In f ormationRequester2)),
communicated f rom to(In f ormationRequester1, In f ormationRequester2,
in f orm, IC)))]

3. An interlevel link property (ILP) describes the relationship between the input or
output state of a composite role and the input or output state of its subrole. Note
that an interlevel link is considered to be instantaneous: it does not represent
a temporal process, but gives a different view (using a different ontology) on
the same information state. An interlevel transition is specified by an ontology
mapping, which can include information abstraction.

4. An environment property (EP) describes a temporal relationship between states
or properties of objects of interest in the environment.

5. An environment interaction property (EIP) describes a relation either between
the output state of the environment and the input state of a role (or an agent)
or between the output state of a role (or an agent) and the input state of the
environment. For example,

Effectiveness of information transfer between a role and environment
∀IC∀t1 [holds(state(γ, t1,output(In f ormationRequester1)),
observation request f rom f or(In f ormationRequester1, IC))
⇒ holds(state(γ, t1+ c, input(E)),
observation request f rom f or(In f ormationRequester1, IC))]

The specifications of organisation structural relations and dynamics are imposed
onto the agents, who will eventually enact the organisational roles. For more details
on organisation-oriented modelling of multi-agent systems we refer to [263].

11.5 Relation to Other Languages

In this section TTL is compared to a number of existing languages for modelling
dynamics of a system.

Executable languages can be defined as sublanguages of TTL. An example of
such a language, which was designed for simulation of dynamics in terms of both
qualitative and quantitative concepts, is the LEADSTO language, cf. [81]. The
LEADSTO language models direct temporal or causal dependencies between two
state properties in states at different points in time as follows. Let α and β be state
properties of the form ’conjunction of atoms or negations of atoms’, and e, f , g, h
non-negative real numbers (constants of sort VALUE). In LEADSTO the notation
α −→e, f ,g,h β, means:

If state property α holds for a certain time interval with duration g, then after
some delay (between e and f) state property β will hold for a certain time
interval of length h.

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 333

A specification in LEADSTO format has as advantages that it is executable and
that it can often easily be depicted graphically, in a causal graph or system dynam-
ics style. In terms of TTL, the fact that the above statement holds for a trace γ is
expressed as follows:

∀t1[∀t[t1−g ≤ t & t < t1⇒ holds(state(γ, t),α)]⇒

∃d : VALUE[e ≤ d & d ≤ f & ∀t′[t1+d ≤ t′ & t′ < t1+d+h⇒

holds(state(γ, t′),β)]

Furthermore, TTL has some similarities with the situation calculus [365] and
the event calculus [272]. However, a number of important syntactic and semantic
distinctions exist between TTL and both calculi. In particular, the central notion of
the situation calculus - a situation - has different semantics than the notion of a state
in TTL. That is, by a situation is understood a history or a finite sequence of actions,
whereas a state in TTL is associated with the assignment of truth values to all state
properties (a ’snapshot’ of the world). Moreover, in contrast to situation calculus,
where transitions between situations are described by execution of actions, in TTL
action executions are used as properties of states.

Moreover, although a time line has been introduced to the situation calculus
[339], still only a single path (a temporal line) in the tree of situations can be explic-
itly encoded in the formulae. In contrast, TTL provides more expressivity by allow-
ing explicit references to different temporally ordered sequences of states (traces) in
dynamic properties. For example, this can be useful for expressing the property of
trust monotonicity:

For any two traces γ1 and γ2, if at each time point t agent A’s experience with
public transportation in γ2 at t is at least as good as A’s experience with public
transportation in γ1 at t, then in trace γ2 at each point in time t, A’s trust is at
least as high as A’s trust at t in trace γ1.

∀γ1,γ2[∀t,∀v1 : VALUE[holds(state(γ1, t),has value(experience,v1))&

[∀v2 : VALUE holds(state(γ2, t),has value(experience,v2)→ v1 ≤ v2)]]⇒

[∀t,∀w1 : VALUE[holds(state(γ1, t),has value(trust,w1))&

[∀w2 : VALUE holds(state(γ2, t),has value(trust,w2)→ w1 ≤ w2)]]]]

In contrast to the event calculus, TTL does not employ the mechanism of events
that initiate and terminate fluents. Event occurrences in TTL are considered to be
state occurrences the external world. Furthermore, similarly to the situation calculus,
also in the event calculus only one time line is considered.

Formulae of the loosely guarded fragment of the first-order predicate logic [16],
which is decidable and has good computational properties (deterministic exponen-
tial time complexity), are also expressible in TTL:

∃y((α1∧ ...∧αm) ∧ ψ(x,y)) or ∀y((α1∧ ...∧αm)→ ψ(x,y)),

334 A. Sharpanskykh and J. Treur

where x and y are tuples of variables, α1...αm are atoms that relativize a quantifier
(the guard of the quantifier), and ψ(x,y) is an inductively defined formula in the
guarded fragment, such that each free variable of the formula is in the set of free
variables of the guard.

Similarly the fluted fragment [348] and ∃∗∀∗ [3] can be considered as sublan-
guages of TTL.

TTL can also be related to temporal languages that are often used for verification
(e.g., LTL and CTL [39, 198]). For example, dynamic properties expressed as
formulae in LTL can be translated to TTL by replacing the temporal operators of
LTL by quantifiers over time. E.g., consider the LTL formula

G(observation result(itsraining)→ F(belie f (itsraining)))

where the temporal operator G means ’for all later time points’, and F ’for some
later time point’. The first operator can be translated into a universal quantifier,
whereas the second one can be translated into an existential quantifier.

Using TTL, this formula then can be expressed, for example, as follows:

∀t1[holds(state(γ, t1),observation result(itsraining))⇒

∃t2 > t1 holds(state(γ, t2),belie f (itsraining))]

Note that the translation is not bi-directional, i.e., it is not always possible to
translate TTL expressions into LTL expressions due to the limited expressive power
of LTL. For example, the property of trust monotonicity specified in TTL above can-
not be expressed in LTL because of the explicit references to different traces. Similar
observations apply for other well-known modal temporal logics such as CTL.

In contrast to the logic of McDermott [309], TTL does not assume structuring of
traces in a tree. This enables reasoning about independent sequences of states (histo-
ries) in TTL (e.g., by comparing them), which is also not addressed by McDermott.

11.6 Normal Forms and Transformation Procedures

In this Section, normal forms for TTL formulae and the related transformation pro-
cedures are described. Normal forms create the basis for the automated analysis of
TTL specifications, which is addressed later in this chapter. In Section 11.6.1 the
past implies future normal form and a procedure for transformation of any TTL for-
mula into this form are introduced. In Section 11.6.2 the executable normal form
and a procedure for transformation of TTL formulae in the past implies future nor-
mal form into the executable normal form are described. A procedure for abstraction
of executable specifications is described in Section 11.6.3.

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 335

 p (,t) cond (, t, t 1) bh (, t 1)

output(a 2) output(a 1) p 1 p 3 p 2

t 1 +c 2 t 1 +c 1 t 1 t t' t" t"'

Fig. 11.3 Graphical illustration of the structure of the past implies future normal form

11.6.1 Past Implies Future Normal Form

First, the past implies future normal form is introduced.

Definition 11.1. (Past Implies Future Normal Form) The past implies future nor-
mal form for TTL formulae is specified by a logical implication from a temporal
input pattern to a temporal output pattern:

[ϕp(γ, t)⇒ ϕ f (γ, t)],

where ϕp(γ, t) is a past statement (i.e., for all time variables s in ϕp(γ, t) : s ≤ t or
s < t) and ϕ f (γ, t) is a future statement (i.e., for all time variables s in ϕ f (γ, t) : s ≥ t
or s > t). The future statement is represented in the form of a conditional behaviour:

ϕ f (γ, t)⇔∀t1 > t[ϕcond(γ, t, t1)⇒ ϕbh(γ, t1)],

where ϕcond(γ, t, t1) is an interval statement over the interaction ontology, which
describes a condition for some specified action(s) and/or communication(s), and
ϕbh(γ, t1) is a (conjunction of) future statement(s) for t1 over the output ontology of
the form holds(state(γ, t1 + c),output(a)), for some integer constant c and action or
communication a.

A graphical illustration of the structure of the past implies future normal form is
given in Figure 11.3. When a past formula ϕp(γ, t) is true for γ at time t, a potential
to perform one or more action(s) and/or communication(s) exists. This potential is
realized at time t1 when the condition formula ϕcond(γ, t, t1) becomes true, which
leads to the action(s) and/or communication(s) being performed at the time point(s)
t1+ c indicated in ϕbh(γ, t1).

For example, the dynamic property DP7(A1,A2) (Information provision reac-
tiveness) from the specification of co-operative information gathering multi-agent
system from Section 11.4.1 can be specified in the past implies future normal form
ϕp(γ, t)⇒ ϕ f (γ, t), with ϕp(γ, t) is a formula

∃t2 ≤ t & holds(state(γ, t2, input(A2)),communicated f rom to(A1,A2,
request, IC))

336 A. Sharpanskykh and J. Treur

and ϕ f (γ, t) is a formula

∀t1 > t [holds(state(γ, t1, input(A2)),observation result to f or(A2, IC))⇒

holds(state(γ, t1+ c,output(A2)),communicated f romto(A2,A1, in f orm, IC))]

with ϕcond(γ, t, t1) is a formula

holds(state(γ, t1, input(A2)),observation result to f or(A2, IC))

and ϕbh(γ, t1) is holds(state(γ, t1+ c,output(A2)),communicated f rom to(A2,A1,
in f orm, IC))],

where t is the present time point with respect to which the formulae are evaluated
and c is some natural number.

In general, any TTL formula can be automatically translated into the past im-
plies future normal form. The transformation procedure is based on a number of
steps. First, the variables in the formula are related to the given t (current time
point) by differentiation. The resulting formula is rewritten in prenex conjunctive
normal form. Each clause in this formula is reorganised in past implies future for-
mat. Finally, the quantifiers are distributed over and within these implications. Now
consider the detailed description of these steps (for a more profound description of
the procedure see [418]).

Differentiating Time Variables A formula is rewritten into an equivalent one
such that time variables that occur in this formula always either are limited (rela-
tivized) to past or to future time points with respect to t. As an example, suppose
ψ(t1, t2) is a formula in which time variables t1, t2 occur. Then, different cases of or-
dering relation for each of the time variables with respect to t are considered: t1 < t,
t1 ≥ t and t2 < t, t2 ≥ t, i.e., in combination four cases: t1 < t and t2 < t, t1 < t and
t2 ≥ t, t1 ≥ t and t2 < t, t1 ≥ t and t2 ≥ t. To eliminate ambiguity, for ti < t the variable
ti is replaced by (past time variable) ui, for ti ≥ t by (future time variable) vi.

The following transformation step introduces for any occurring time variable ti
a differentiation into a pair of new time variables: ui used over the past and vi used
over the future with respect to t.

For any occurrence of a universal quantifier over ti:

∀ti A 7−→ [∀ui < t A[ui/ti]∧∀vi ≥ t A[vi/ti]]

For any occurrence of an existential quantifier over ti:

∃ti A 7−→ [∃ui < t A[ui/ti]∨∃vi ≥ t A[vi/ti]]

Assuming differentiation of time variables into past and future time variables,
state-related atoms (in which only one time variable occurs) can be classified in
a straightforward manner as a past atom or future atom. For example, atoms of
the form holds(state(γ,ui), p) are past atoms and holds(state(γ,v j), p) are future
atoms. For non-unary relations, in the special case of the time ordering relation ¡ the
ordering axioms are given, e.g., transitivity. Atoms that are mixed (containing both
a past and a future variable) are eliminated by the following transformation rules:

ui = v j→ f alse v j < ui→ f alse ui < v j→ true

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 337

Obtaining prenex conjunctive normal form This step is performed using a
well-known transformation procedure [180].

From a Clause to a Past to Future Implication By partitioning the set of oc-
curring atoms into past atoms and future atoms, it is not difficult to rewrite a clause
into a past to future implication format: transform a clause C into an implication of
the form A→ B where A is the conjunction of the negations of all past literals in
C and B is the disjunction of all future literals in C. Thus, a quantifier free formula
in Conjunctive Normal Form can be transformed into a conjunction of implications
from past to future by the transformation rule

∨ PLi ∨ ∨FL j 7−→ ∧ ∼ PLi →∨ FL j

where the past and future literals are indicated by PLi and FL j, respectively, and
if a is an atom, ∼ a = ¬a, and ∼ ¬a = a.

Distribution of Quantifiers Over Implications The quantifiers can be rewritten
to quantifiers with a single implication as their scope, and even one step further, to
quantifiers with a single antecedent or a single consequent of an implication as their
scope. Notice that quantifiers addressed here are both time quantifiers and non-time
quantifiers.

Let ϕ be a formula in the form of a conjunction of past to future implications
∧i∈I[Ai → Bi] and let x be a (either past or future) variable occurring in ϕ. The
following transformation rules handle existential quantifiers for variables in one or
more of the Bi, respectively in one or more of the Ai. Here P denotes taking the
power set.

1. if x occurs in the Bi but does not occur in the Ai :
∃x ∧i∈I [Ai→ Bi] 7−→ ∧ j∈P(I) ∃x[∧i∈ jAi→∧i∈ jBi]
∃x[∧i∈ jAi→∧i∈ jBi] 7−→ [∧i∈ jAi→∃x∧i∈ j Bi]

2. if x occurs in the Ai but does not occur in the Bi :
∃x∧i∈I [Ai→ Bi] 7−→ ∧ j∈P(I)∃x[∨i∈ jAi→∨i∈ jBi]
∃x[∨i∈ jAi→∨i∈ jBi] 7−→ [∀x[∨i∈ jAi]→∨i∈ jBi]

The following transformation rules handle universal quantifiers for variables in
one or more of the Bi, respectively in one or more of the Ai:

1. if x occurs in the Ai or in the Bi :
∀x ∧i∈I [Ai→ Bi] 7−→ ∧i∈I∀x[Ai→ Bi]

2. if x occurs in the Bi but does not occur in the Ai :
∀x[Ai→ Bi] 7−→ Ai→∀xBi

3. if x occurs in the Ai but does not occur in the Bi :
∀x[Ai→ Bi] 7−→ [∃xAi]→ Bi

338 A. Sharpanskykh and J. Treur

11.6.2 Executable Normal Form

Although the past implies future normal form imposes a standard structure on the
representation of TTL formulae, it does not guarantee the executability of formu-
lae, required for automated analysis methods (i.e., some formulae may still contain
complex temporal relations that cannot be directly represented in analysis tools).
Therefore, to enable automated analysis, normalized TTL formulae should be trans-
lated into an executable normal form.

Definition 11.2. Executable Normal Form A TTL formula is in executable normal
form if it has one of the following forms, for certain state properties , X and Y with
X , Y , and integer constant c.

1. ∀t holds(state(γ, t),X) ⇒ holds(state(γ, t+ c),Y) (states relation property)

2. ∀t holds(state(γ, t),X) ⇒ holds(state(γ, t+1),X) (persistency property)

3. ∀t holds(state(γ, t),X) ⇒ holds(state(γ, t),Y) (state relation property)

For the translation postulated internal states of a component(s) specified
in the formula, are used. These auxiliary states include memory states that
are based on (input) observations (sensory representations) or communica-
tions (memory : LT IMET ERMS × S T AT PROP → S T ATROP). For example,
memory(t,observed(a)) expresses that the component has memory that it observed a
state property a at time point t. Furthermore, before performing an action or commu-
nication it is postulated that a component creates an internal preparation state. For
example, preparation f or(b) represents a preparation of a component to perform
an action or a communication.

In the following a transformation procedure from the normal form [ϕp(γ, t)⇒
ϕ f (γ, t)] for the property ϕp(γ, t) to the executable normal form is described and
illustrated for the property DP7(A1,A2) (Information provision reactiveness) con-
sidered above. For a more profound description of the transformation procedure we
refer to [398].

First, an intuitive explanation for the procedure is provided. The procedure trans-
forms a non-executable dynamic property in a number of executable properties.
These properties can be seen as an execution chain, which describes the dynam-
ics of the non-executable property. In this chain each unit generates intermediate
states, used to link the following unit. In particular, first a number of properties
are created to generate and maintain memory states (step 1 below). These memory
states are used to store information about the past dynamics of components, which
is available afterwards at any point in time. Then, executable properties are created
to generate preparation for output and output states of components (steps 2 and 3
below). In these properties temporal patterns based on memory states are identified
required for generation of particular outputs of components. In the end all created
properties are combined in one executable specification.

More specifically, the transformation procedure consists of the following steps:

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 339

Fig. 11.4 A graphical representation of relations between interaction states described by a non-
executable dynamic property and internal states described by executable rules.

1. Identify executable temporal properties, which describe transitions from the
component states specified in ϕp(γ, t) to memory states (for a graphical repre-
sentation of relations between the states considered in this procedure see Figure
11.4).
The general rules that form the basis for the executable properties are the
following:
∀t′ holds(state(γ, t′), p)⇒ holds(state(γ, t′),memory(t′, p))
∀t′′ holds(state(γ, t′′),memory(t′, p))⇒ holds(state(γ, t′′+1),memory(t′, p))

Furthermore, at this step the memory formula ϕmem(γ, t) is defined that is
obtained by replacing all occurrences in ϕp(γ, t) of subformulae of the form
holds(state(γ, t′), p) by holds(state(γ, t),memory(t′, p)). According to Lemma
1 (given in [398]) ϕmem(γ, t) is equivalent to some formula δ∗(γ, t) of the form
holds(state(γ, t),qmem(t)), where qmem(t) is called the normalized memory state
formula for ϕmem(γ, t), which uniquely describes the present state at the time
point t by a certain history of events. Moreover, qmem is the state formula
∀u′ [present time(u′)→ qmem(u′)].

For the property DP7(A1,A2):

∀t′ holds(state(γ, t′, input(A2)),communicated f rom to(A1,A2,request, IC)))

⇒ holds(state(γ, t′, internal(B)),

memory(t′,communicated f rom to(A1,A2,request, IC))))

∀t′′ holds(state(γ, t′′, internal(B)),

memory(t′,communicated f rom to(A1,A2,request, IC)))) ⇒

holds(state(γ, t′′+1, internal(B)),

memory(t′,communicated f rom to(A1,A2,request, IC))))

340 A. Sharpanskykh and J. Treur

2. Identify executable temporal properties, which describe transitions from mem-
ory states to preparation states for output. At this step the following formulae are
defined: The condition memory formula ϕcmem(γ, t, t1) is obtained by replacing
all occurrences in ϕcond(γ, t, t1) of holds(state(γ, t′), p) by holds(state(γ, t1),
memory(t′, p)). ϕcmem(γ, t, t1) contains a history of events, between the time point
t, when ϕp(γ, t) is true and the time point t1, when the formula ϕcond(γ, t, t1)
becomes true. Again by Lemma 1 ϕcmem(γ, t, t1) is equivalent to the formula
holds(state(γ, t1),qcond(t, t1)), where qcond(t, t1) is called the normalized condi-
tion state formula for ϕcmem(γ, t, t1), and qcond(t) is the state formula ∀u′

[present time(u′) → qcond(t,u′)]. The state formula constructed by Lemma
1 for the preparation formula ϕprep(γ, t1) is called the (normalized) prepara-
tion state formula and denoted by qprep(t1). Moreover, qprep is the state for-
mula ∀u′ [present time(u′) → qprep(u′)]. The formula ϕcprep(γ, t1) of the
form holds(state(γ, t1),∀u1 > t[qcond(t,u1) → qprep(u1)]) is called the condi-
tional preparation formula for ϕ f (γ, t). The state formula ∀u1 > t[qcond(t,u1)→
qprep(u1)] is called the normalized conditional preparation state formula for
ϕcprep(γ, t) and denoted by qcprep(t). Moreover, qcprep is the formula ∀u′

[present time(u′)→ qcprep(u′)].

The general executable rules that form basis for executable properties are defined
as follows:

∀t′ holds(state(γ, t′), p) ⇒ holds(state(γ, t′),memory(t′, p)∧
stimulus reaction(p))

∀t′′, t′ holds(state(γ, t′′),memory(t′, p))
⇒ holds(state(γ, t′′+1),memory(t′, p))

∀t′ holds(state(γ, t′),qmem)⇒ holds(state(γ, t′),qcprep)

∀t′, t holds(state(γ, t′),qcprep∧qcond(t)∧ ∧pstimulus reaction(p))⇒
holds(state(γ, t′),qprep)

∀t′ holds(state(γ, t′), stimulus reaction(p)
∧¬preparation f or(output(t′+ c,a)))
⇒ holds(state(γ, t′+1), stimulus reaction(p))

∀t′ holds(state(γ, t′), preparation f or(output(t′+ c,a))∧ ¬output(a))⇒
holds(state(γ, t′+1), preparation f or(output(t′+ c,a)))

∀t′ holds(state(γ, t′), present time(t′)∧∀u′[present time(u′)→
preparation f or(output(u′+ c),a)])→
holds(state(γ, t′), preparation f or(output(t′+ c),a))

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 341

The auxiliary functions stimulus reaction(a) are used for reactivation of compo-
nent preparation states for generating recurring actions or communications.

For the property DP7(A1,A2):

∀t′[holds(state(γ, t′, input(A2)),observation result to f or(A2, IC))

⇒ holds(state(γ, t′, internal(A2)),
memory(t′,observation result to f or(A2, IC))∧

stimulus reaction(observation result to f or(A2, IC))]])

∀t′′ holds(state(γ, t′′, internal(A2)),
memory(t′,observation result to f or(A2, IC)))⇒

holds(state(γ, t′′+1, internal(A2)),
memory(t′,observation result to f or(A2, IC)))

∀t′ holds(state(γ, t′),∀u′′[present time(u′′)→

∃u2[memory(u2,communicated f rom to(A1,A2,request, IC))]])⇒

holds(state(γ, t′),∀u′′′[present time(u′′′)→ [∀u1 > u′′′

[memory(u1,observation result to f or(A2, IC))→

preparation f or(output(u1+ c,
communicated f rom to(A2,A1, in f orm, IC)))]]])

∀t′, tholds(state(γ, t′), [∀u′′′[present time(u′′′)→ [∀u1 > u′′′

[memory(u1,observation result to f or(A2, IC)))→

preparation f or(output(u1+ c,
communicated f rom to(A2,A1, in f orm, IC)))]]]

∧∀u′′[present time(u′′)→

memory(u′′,observation result to f or(A2, IC)))]∧

stimulus reaction(observation result to f or(A2, IC)))])⇒

holds(state(γ, t′, internal(A2)),∀u1[present time(u1)→

preparation f or(output(u1+ c,
communicated f rom to(A2,A1, in f orm, IC))))])

∀t′ holds(state(γ, t′), stimulus reaction(observation result to f or(A2, IC))∧

not(preparation f or(output(t′+ c,
communicated f rom to(A2,A1, in f orm, IC)))])⇒

holds(state(γ, t′+1), stimulus reaction(observation result to f or(A2, IC)))

∀t′ holds(state(γ, t′, internal(A2)),

342 A. Sharpanskykh and J. Treur

[preparation f or(output(t′+ c,observation result to f or(A2, IC)))

∧ not(output(observation result to f or(A2, IC)))])⇒

holds(state(γ, t′+1, internal(A2)),

preparation f or(output(t′+ c,observation result to f or(A2, IC))))

3. Specify executable properties, which describe the transition from preparation
states to the corresponding output states.

The preparation state preparation f or(output(t1+ c,a)) is followed by the out-
put state, created at the time point t1+c. The general executable rule is the follow-
ing:

∀t′ holds(state(γ, t′), preparation f or(output(t′ + c,a))) ⇒ holds(state(γ, t′ +
c),output(a))

For the property DP7(A1,A2):

∀t′ holds(state(γ, t′, internal(A2)),

preparation f or(output(t′+ c,
communicated f rom to(A2,A1, in f orm, IC))))⇒

holds(state(γ, t′+ c,output(A2)),

output(communicated f rom to(A2,A1, in f orm, IC)))

To automate the proposed procedure the software tool was developed in JavaT M .
The transformation algorithm searches in the input file for the standard predicate
names and the predefined structures, then performs string transformations that cor-
respond precisely to the described steps of the translation procedure, and adds exe-
cutable rules to the output specification file.

11.6.3 Abstraction of executable specifications

Sometimes (executable) specifications of multi-agent systems may be very detailed,
with opaque global dynamics. To establish higher level dynamic properties of such
systems, abstraction of specifications can be performed. In particular, internal dy-
namics of agents described by executable cognitive specifications may be abstracted
to behavioural (or interaction) specifications of agents as shown in [399]. To ex-
press properties of behavioural and cognitive specifications past and past-present
statements are used.

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 343

Definition 11.3. (Past-Present Statement) A past-present statement (abbreviated
as a pp-statement) is a statement ϕ of the form B⇔ H, where the formula B, called
the body and denoted by body(ϕ), is a past statement for t, and H, called the head
and denoted by head(ϕ), is a statement of the form holds(state(γ, t), p) for some
state property p.

It is assumed that each output state of an agent A specified by an atom
holds(state(γ, t),ψ) is generated based on some input and internal agent’s dynamics
that can be specified by a set of formulae over ϕ(γ, t)⇒ holds(state(γ, t),ψ) with ϕ a
past statement over InOnt(A)∪ IntOnt(A). Furthermore, a completion can be made
(similar to Clark’s completion in logic programming) that combines all statements
[ϕ1(γ, t)⇒ holds(state(γ, t),ψ),ϕ2(γ, t)⇒ holds(state(γ, t),ψ), ...,ϕn(γ, t)⇒
holds(state(γ, t),ψ)] with the same consequent in the specification, into one past-
present-statement ϕ1(γ, t)∨ϕ2(γ, t)∨ ...∨ϕn(γ, t)⇔ holds(state(γ, t),ψ). Sometimes
this statement is called the definition of holds(state(γ, t),ψ).

Furthermore, the procedure is applicable only to cognitive specifications that can
be stratified.

Definition 11.4. (Stratification of a Specification) An agent specification Π is
stratified if there is a partition Π = Π1 ∪ ...∪Πn into disjoint subsets such that the
following condition holds: for i > 1: if a subformula holds(state(γ, t),ϕ) occurs in a
body of a statement in Πi, then it has a definition within ∪ j≤iΠ j.

The notation ϕ[holds1, ...,holdsn] is used to denote a formula ϕ with holds1, ...,
holdsn as its atomic subformulae.

The rough idea behind the procedure is as follows. Suppose for a certain cog-
nitive state property the pp-specification B⇔ holds(state(γ, t), p) is available; here
the formula B is a past statement for t. Moreover, suppose that in B only two atoms
of the form holds(state(γ, t1), p1) and holds(state(γ, t2), p2) occur, whereas as part
of the cognitive specification also specifications B1 ⇔ holds(state(γ, t1), p1) and
B2⇔ holds(state(γ, t2), p2) are available. Then, within B the atoms can be replaced
(by substitution) by the formula B1 and B2. This results in a

B[B1/holds(state(γ, t1), p1),B2/holds(state(γ, t2), p2)]⇔ holds(state(γ, t), p)

which again is a pp-specification. Here for any formula C the expression C[x/y]
denotes the formula C transformed by substituting x for y. Such a substitution cor-
responds to an abstraction step. For the general case the procedure includes a se-
quence of abstraction steps; the last step produces a behavioural specification that
corresponds to a cognitive specification.

Let us describe and illustrate the procedure for a simple executable pp-specification
that corresponds to the property DP7(A1,A2) considered in Section 11.6.2:

CP1(A1, A2) (memory state generation and persistence)

344 A. Sharpanskykh and J. Treur

holds(state(γ, t1, internal(A2)),
memory(t2,communicated f rom to(A1,A2,request, IC)))⇔

∃t2 t2 < t1 & holds(state(γ, t2, input(A2)),
communicated f rom to(A1,A2,request, IC))

CP2(A1, A2) (conclusion generation)
holds(state(γ, t3,output(A2)),communicated f rom to(A2,A1, in f orm, IC))⇔

∃t4, t5 t4 < t3 & t5 < t4 & holds(state(γ, t4, internal(A2)),
memory(t5,communicated f rom to(A1,A2,request, IC)))&

holds(state(γ, t4, input(A2)),observation result to f or(A2, IC))

To obtain an abstracted specification for a specification X the following sequence
of steps is followed:

1. Enforce temporal completion on X.

2. Stratify X:

a. Define the set of formulae of the first stratum (h = 1) as:
{ϕi : holds(state(γ, t),ai)↔ ψip(holds1, ...,holdsm) ∈ X|∀k m ≥ k ≥ 1 holdsk is
expressed using InOnt};

proceed with h = 2.

In the considered example CP1(A1,A2) belongs to the first stratum.

b. The set of formulae for stratum h is identified as
{ϕi : holds(state(γ, t),ai)↔ ψip(holds1, ...,holdsm) ∈ X|∀k m ≥ k ≥ 1 ∃l

l < h ∃ψ ∈ S TRATUM(X, l) AND head(ψ) = holdsk AND ∃ j m ≥ j ≥ 1 ∃ξ ∈
S TRATUM(X,h−1) AND head(ξ) = holds j};

proceed with h = h+1.

In the considered example CP2(A1,A2) belongs to the stratum 2.

c. Until a formula of X exists not allocated to a stratum, perform 2b.

3. Replace each formula of the highest stratum n ϕi : holds(state(γ, t),ai)
↔ψip(holds1, ...,holdsm) by ϕIδwith renaming of temporal variables if required,
where δ = {holdsk\body(ϕk) such that ϕk ∈ X and head(ϕk) = holdsk}. Further,
remove all formulae {ϕ ∈ S TRATUM(X,n−1)|∃ψ ∈ S TRATUM(X,n)
AND head(ϕ) is a subformula of the body(ϕ)}).

In the considered example the atom
holds(state(γ, t4, internal(A2)),memory(t5,communicated f rom to(
A1,A2,request, IC))) in CP2 is replaced by its definition given by CP1:

BP1 : holds(state(γ, t3,output(A2)),
communicated f rom to(A2,A1, in f orm, IC))

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 345

⇔∃t4, t5 t4 < t3 & t5 < t4& holds(state(γ, t5, input(A2)),

communicated f rom to(A1,A2,request, IC))& holds(state(γ, t4, input(A2)),

observation result to f or(A2, IC))

Furthermore, both CP1 and CP2 are removed from the specification. Thus,
the obtained property is a behavioural specification expressed using InOnt and
OutOnt only that corresponds to the considered cognitive specification.

4. Append the formulae of the stratum n to the stratum n− 1, which now becomes
the highest stratum (i.e, n = n−1).

For the example, BP1 becomes the only property that belongs to the stratum 1.

5. Until n > 1, perform steps 3 and 4.

The algorithm has been implemented in JavaT M . The worst case time complexity
is O(|X|2). The representation of a higher level specification Φ is more compact
than of the corresponding lower level specification Π . First, only IntOnt is used to
specify the formulae of Φ, whereas InOnt∪OutOnt∪ IntOnt is used to specify the
formulae of Π . Furthermore, only a subset of the temporal variables from Π is used
in Φ, more specifically, the set of temporal variables from

{body(ϕi)|ϕi ∈ Π}∪ {head(ϕi)|ϕi ∈ Π AND head(ϕi) is expressed over
InteractOnt}.

11.7 Verification of Specifications of Multi-Agent Systems in
TTL

In this Section two verification techniques of specifications of multi-agent systems
are considered. In Section 11.7.1 a verification approach of TTL specifications by
model checking is discussed. Checking of TTL properties on a limited set of traces
obtained empirically or by simulation is considered in Section 11.7.2.

11.7.1 Verification of interlevel relations in TTL specifications by
model checking

The dynamic properties of a component of a higher aggregation level can be log-
ically related by an interlevel relation to dynamic properties of components of an
adjacent lower aggregation level. This interlevel relation takes the form that a num-
ber of properties of the lower level logically entail the properties of the higher level
component.

346 A. Sharpanskykh and J. Treur

Identifying interlevel relations is usually achieved by applying informal or semi-
formal early requirements engineering techniques; e.g., i∗ [120] and SADT [300].
To formally prove that the identified interlevel relations are indeed correct, model
checking techniques [100,310] may be of use. The idea is that the lower level prop-
erties in an interlevel relation are used as a system specification, whereas the higher
level properties are checked for this system specification. However, model check-
ing techniques are only suitable for systems specified as finite-state concurrent sys-
tems. To apply model checking techniques it is needed to transform an original be-
havioural specification of the lower aggregation level into a model based on a finite
state transition system. To obtain this, as a first step a behavioural description for the
lower aggregation level is replaced by one in executable temporal format using the
procedure described in Section 11.6.2. After that, using an automated procedure an
executable temporal specification is translated into a general finite state transition
system format that consists of standard transition rules. Such a representation can
be easily translated into an input format of one of the existing model checkers. To
translate an executable specification into the finite state transition system format, for
each rule from the executable specification the corresponding transition rule should
be created. For translation the atom present time is used, which is evaluated to true
only in a state for the current time point. For example, consider the translation of
the memory state creation and persistence rules given in Table 11.3. The translation
of other rules is provided in [398].

Table 11.3 Translation of the memory state creation and persistence rules into the corresponding
finite state transition rules

Rule from the executable specification Corresponding transition rules

Memory state creation rule
∀t′ holds(state(γ, t′), p)⇒
holds(state(γ, t′),memory(t′, p)) present time(t)∧ p −→ memory(t, p)
Memory persistence rule
∀t′′holds(state(γ, t′′),memory(t′, p))⇒
holds(state(γ, t′′ +1),memory(t′, p)) memory(t, p) −→ memory(t, p)

The executable properties obtained in Section 11.6.2 for the property
DP7(A1,A2) from the running example were translated into the transition rules as
follows:

present time(t)∧ communicated f rom to(A,B,request, IC) −→

memory(t,communicated f rom to(A,B,request, IC))

present time(t)∧observation result to f or(B, IC) −→

memory(t,observation result to f or(B, IC))∧

stimulus reaction(observation result to f or(B, IC))

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 347

memory(t,communicated f rom to(A,B,request, IC)) −→

memory(t,communicated f rom to(A,B,request, IC))

memory(t,observed(observation result to f or(B, IC)) −→

memory(t,observed(observation result to f or(B, IC))

present time(t)∧

∃u2 ≤ t memory(u2,communicated(request f rom to f or(A,B, IC))) −→

conditional preparation f or(
output(communicated f rom to(B,A, in f orm, IC)))

present time(t)∧

conditional preparation f or(
output(communicated f rom to(B,A, in f orm, IC)))∧

memory(t,observed(observation result to f or(B, IC)))∧
stimulus reaction(observed(observation result to f or(B, IC))) −→

preparation f or(output(t+ c,communicated f rom to(B,A, in f orm, IC)))

present time(t)∧

stimulus reaction(observed(observation result to f or(B, IC)))∧
not(preparation f or(
output(t+ c,communicated f rom to(B,A, in f orm, IC))))

−→ stimulus reaction(observed(observation result to f or(B, IC)))

preparation f or(output(t+ c,communicated f rom to(B,A, in f orm, IC)))∧
not(output(communicated f rom to(B,A, in f orm, IC))) −→

preparation f or(output(t+ c,communicated f rom to(B,A, in f orm, IC)))

preparation f or(output(t+ c,communicated f rom to(B,A, in f orm, IC)))∧

present time(t+ c−1) −→

output(communicated f rom to(B,A, in f orm, IC))

The obtained general representation for a finite state transition system was used
further as a model for the model checker SMV [310]. SMV was used to perform
the automatic verification of relationships between dynamic properties of compo-
nents of different aggregation levels. For this purpose a procedure was developed
for translating the general description of a transition system into the input format of
the SMV model checking tool. For the description of the translation procedure and
the complete SMV specification for the considered example we refer to [398].

348 A. Sharpanskykh and J. Treur

One of the possible dynamic properties of the higher aggregation level that can
be verified against the generated SMV specification is formulated and formalized in
CTL as follows:

GP (Concluding effectiveness): If at some point in time environmental compo-
nent E generates all the correct relevant information, then later agent C will receive
a correct conclusion.

AG (E output observed provide result f rom to E A in f o &
E output observed provide result f rom to E B in f o

→ AF input C communicated send f rom to A C in f o),

where A is a path quantifier defined in CTL, meaning ”for all computational
paths”, G and F are temporal quantifiers that correspond to ”globally” and ”eventu-
ally” respectively.

The automatic verification by the SMV model checker confirmed that this prop-
erty holds with respect to the considered model of the multi-agent system as speci-
fied at the lower level.

11.7.2 Verification of Traces in TTL

This section introduces a technique for verification of TTL specifications. Using this
technique TTL properties are checked upon a limited set of traces. On the one hand,
this set can be obtained by performing simulation of particular scenarios based on
the TTL specification. In this case only a relevant subset of all possible traces is
considered for the analysis. On the other hand, a set of traces can be obtained by
formalising empirical data. Then, both verification of TTL properties on these traces
and validation of TTL specifications by empirical data can be performed. For this
type of verification a dedicated algorithm and the software tool TTL Checker have
been developed [80] (see Figure 11.5) 1 .

As an input for this analysis technique either a simulation or a formalized em-
pirical trace(s) is/are provided. A trace is represented by a finite number of state
atoms, changing their values over time a finite number of times, i.e., complies with
the finite variability property defined in Section 11.3. The verification algorithm
is a backtracking algorithm that systematically considers all possible instantiations
of variables in the TTL formula under verification. However, not for all quantified
variables in the formula the same backtracking procedure is used. Backtracking over
variables occurring in holds predicates is replaced by backtracking over values oc-
curring in the corresponding holds atoms in traces under consideration. Since there
are a finite number of such state atoms in the traces, iterating over them often will
be more efficient than iterating over the whole range of the variables occurring in
the holds atoms.

1 The TTL Checker tool can be downloaded at http://www.few.vu.nl/ wai/TTL/

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 349

As time plays an important role in TTL-formulae, special attention is given to
continuous and discrete time range variables. Because of the finite variability prop-
erty, it is possible to partition the time range into a minimum set of intervals within
which all atoms occurring in the property are constant in all traces. Quantification
over continuous or discrete time variables is replaced by quantification over this
finite set of time intervals.

In order to increase the efficiency of verification, the TTL formula that needs to
be checked is compiled into a Prolog clause. Compilation is obtained by mapping
conjunctions, disjunctions and negations of TTL formulae to their Prolog equiv-
alents, and by transforming universal quantification into existential quantification.
Thereafter, if this Prolog clause succeeds, the corresponding TTL formula holds
with respect to all traces under consideration.

The complexity of the algorithm has an upper bound in the order of the product
of the sizes of the ranges of all quantified variables. However, if a variable occurs
in a holds predicate, the contribution of that variable is no longer its range size, but
the number of times that the holds atom pattern occurs (with different instantiations)
in trace(s) under consideration. The contribution of an isolated time variable is the
number of time intervals into which the traces under consideration are divided.

The specific optimisations discussed above make it possible to check realistic
dynamic properties with reasonable performance. To illustrate this technique the
specification of the co-operative information gathering multi-agent system from
Section 11.4 was instantiated for the case, when agents A and B collect and combine
information about orthogonal projections of a three-dimensional shape: A collects
information about the side view and B collects information about the bottom view.
For example, if A observes a triangle and B observes a circle, then the shape is
a cone. Using the simulation software environment LeadsTo [81] a number of
simulation traces were generated and loaded into the TTL Checker. Then, a number
of TTL properties were checked automatically on the traces, among which:

P1 (Successfulness of the cone determination)
∀γ ∃t ∃V : COMPONENT holds(state(γ, t, input(C)),
communicated f rom to(V,C, in f orm,conclusion(cone)))

P2 (Successfulness of the projection acquisition for a cone)
∀γ ∀t1, t2 holds(state(γ, t1, input(A)),
observation result to f or(A, side view(triangle)))&
holds(state(γ, t2, input(B)),observation result to f or(B,bottom view(circle)))

Checking the property P2 took 0.46 sec. on a regular PC. With the increase of the
number of traces with similar complexity as the first one, the verification time grows
linearly: for 3 traces - 1.3 sec., for 5 traces - 2.25 sec. However, the verification time
is polynomial in the number of isolated time range variables occurring in the formula
under verification.

350 A. Sharpanskykh and J. Treur

Fig. 11.5 Screenshot from the TTL Checker Tool

11.8 Conclusions

This chapter presents the predicate logical Temporal Trace Language (TTL) for for-
mal specification and analysis of dynamic properties. TTL allows the possibility of
explicit reference to time points and time durations, which enables modelling of the
dynamics of continuous real-time phenomena. Although the language has a logical
foundation, it supports the specification of both qualitative and quantitative aspects
of a system, and subsumes specification languages based on differential equations.

Sometimes dynamical systems that combine both quantitative and qualitative as-
pects are called hybrid systems [133]. In contrast to many studies on hybrid sys-
tems in computer science, in which a state of a system is described by assignment
of values to variables, in the proposed approach a state of a system is defined by
(composite) objects using a rich ontological basis (i.e., typed constants, variables,
functions and predicates). This provides better possibilities for conceptualizing and
formalizing different kinds of systems (including those from natural domains). Fur-
thermore, by applying numerical approximation methods for continuous behaviour
of a system, variables in a generated model become discrete and are treated in the
same manner as finite-state transition system variables. Therefore, so-called control
points [297], at which values of continuous variables are checked and changes in a
system’s functioning mode are made, are not needed.

Furthermore, more specialised languages can be defined as a sublanguage of
TTL. For simulation, the executable language LEADSTO has been developed [81].
For verification, decidable fragments of predicate logics and specialized languages
with limited expressivity can be defined as sublanguages of TTL. TTL has similar-
ities (as well as important conceptual distinctions) with (from) situation and event
calculi. A proper subclass of TTL formulae can be directly translated into formulae
of temporal logics (e.g., LTL and CTL).

In this chapter an automatically supported technique for verifying TTL proper-
ties on a limited set of simulation or empirical traces was described. Furthermore,
it was shown how model checking techniques can be used for verification of TTL

11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems 351

specifications. To enable model checking, a model should be provided in the form of
a finite state transition system. In this chapter it was shown how a TTL specification
that comprises formulae in the executable normal form can be automatically trans-
lated into a finite state transition system. Using such an approach relations between
dynamic properties of adjacent aggregation levels of a multi-agent system can be
checked automatically, as also demonstrated in this chapter. The proposed approach
has similarities with compositional reasoning and verification techniques [238] in
the way how it handles complex dynamics of a system. Compositional reasoning
approaches developed in the area of software engineering are based on one common
idea that the analysis of global properties of a software system can be reduced to the
analysis of local properties of system components. More specifically, the problem
of satisfaction of global properties of a complex software system can be reduced to
two (easier) problems: (i) identifying and justifying relations between global proper-
ties of the system and local properties of its components (parts); (ii) verifying local
properties of system components with respect to components specifications.

In [338] formal methods for the analysis of hardware specifications expressed in
the language PSL (an extension of the standard temporal logics LTL and CTL), are
described. By means of the suggested property assurance technique supported by a
tool, different global system properties (e.g., consistency) can be verified on speci-
fications and in such a way the correctness of specifications can be established. The
verification is based on bounded model checking techniques. Besides the specifica-
tion language, an essential difference between this analysis method and the approach
described in this chapter is that the latter provides means for the multi-level (or
compositional) representation and verification of properties in specifications. This
allows system modelling at a necessary level of abstraction and the reduction of the
complexity of verification of system dynamics.

Similar differences can be identified in comparison with the approach proposed
in [186]. This approach allows semi-automatic formalization of informal graphical
specifications of multi-agent systems with the subsequent verification of dynamic
properties using model checking techniques. Formalized specifications comprise de-
scriptions of classes that describe components of a multi-agent system and relations
between them, constraints over these components, assertions and possibilities. Al-
though the first-order temporal logic that is used for formalizing these specifications
is expressive enough to define complex temporal relations, it is does not provide the
complete expressivity allowed by TTL (e.g., arithmetical operations, references to
multiple traces in the same formula). Furthermore, although such specifications can
be built and analyzed in parts, the idea of compositional verification, central in our
approach, is not elaborated in this approach.

Compositional verification may be used for analysis of dynamics of large socio-
technical systems (e.g., in the area of incident management). Such systems are char-
acterized by a large complexity of internal dynamics of and interaction among di-
verse types of agents, including human and artificial intelligent agents (e.g., ambi-
ent devices). It is expected that in the future the complexity of such systems will
increase considerably with a further development and implementation of ambient

352 A. Sharpanskykh and J. Treur

intelligence technologies. Formal analysis of such systems presents a big concep-
tual and computational challenge for existing verification tools in the area of multi-
agent systems. To enable effective and efficient analysis of systems of such type,
new methods based on appropriate (dynamic) abstraction mechanisms need to be
developed. For this the idea of compositional verification may serve as the starting
point. Further, findings from the area of nonlinear system analysis, control theory
and complex systems in general could be used.

Finally, TTL and the related analysis techniques proved their value in a number
of research projects in such disciplines as artificial intelligence, cognitive science,
biology, and social science. In particular, the analysis of continuous models (i.e.,
based on differential equations) is illustrated by the case study on trace conditioning
considered in [83]. In [79] TTL is used for modelling and analysis of adaptive agent
behaviour specified by complex temporal relations. The use of arithmetical opera-
tions in TTL to perform statistical analysis is illustrated by a case study from the
criminology [78]. More examples of applications of TTL are described in [80].

Chapter 12

Assurance of Agent Systems:
What Role Should Formal Verification Play?

M. Winikoff

Abstract In this chapter we consider the broader issue of gaining assurance that an
agent system will behave appropriately when it is deployed. We ask to what extent
this problem is addressed by existing research into formal verification. We identify a
range of issues with existing work which leads us to conclude that, broadly speaking,
verification approaches on their own are too narrowly focussed. We argue that a shift
in direction is needed, and outline some possibilities for such a shift in direction.

M. Winikoff
University of Otago, New Zealand e-mail: michael.winikoff@otago.ac.nz

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 353
DOI 10.1007/978-1-4419-6984-2 12, c© Springer Science+Business Media, LLC 2010

michael.winikoff@otago.ac.nz

354 M. Winikoff

12.1 Introduction

A key issue in the deployment of multi-agent systems is being able to obtain assur-
ance that the system will behave correctly. Before deploying a system, we need to
convince those who will rely on the system (or those who will be liable/responsible
if it fails) that the system will, in fact, work. Traditionally, this assurance is done
through testing. However, it is generally accepted that adaptive systems exhibit a
wider and more complex range of behaviours, making testing harder. For example,
Munroe et al. [320, Section 3.7.2] say that:

. . . validation through extensive tests was mandatory . . . However, the task proved challeng-
ing for several reasons. First, agent-based systems explore realms of behaviour outside peo-
ple’s expectations and often yield surprises . . .

The lack of good ways of obtaining assurance that an agent system will behave
correctly is seen to be a significant obstacle to industrial adoption. For instance, one
of the four obstacles to widespread adoption of agent technology in manufacturing
noted by Hall et al. [204] is

Can the aggregate behavior of the agent-based system be guaranteed to meet all the system
requirements?

Similarly, Pěchouček and Mařı́k [349, Page 413] note that1:

Although the agent system performed very well in all the tests, to release the system for
production would require testing all the steel recipes with all possible configurations of
cooling boxes.

Before going further we need to briefly introduce some terminology. The term
“assurance” refers to a process that aims to obtain confidence that (in this case) an
agent system will behave appropriately. The term is used in a broad (and somewhat
imprecise) sense. Where there is a clear specification (which is not always the case!)
then we can use the two standard terms “verification” and “validation”. Verification
in this context refers to checking whether software meets its specification, and val-
idation refers to checking whether the specification meets the user’s requirements.
There are a range of techniques for performing verification, including formal ver-
ification where mathematical reasoning techniques are used to formally establish
a relationship between software and a formal mathematical specification. In some
cases the formal specification is the whole software specification, in other cases it
may be certain key properties, e.g. freedom from deadlock.

Unfortunately, the state of the art in assuring the correct behaviour of agent sys-
tems is still somewhat limited, and, perhaps surprisingly, there is not a large amount

1 On the other hand, for another application they note that [349, Page 407]: “Even though this nego-
tiation process has not been theoretically proved for cycles’ avoidance [sic], practical experiments
have validated its operation”

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 355

of existing and ongoing work. It is only relatively recently that testing began to re-
ceive significant attention from the agents community (e.g. [157,199,322,323,447]),
and existing work on verification (typically using model checking; see section 12.2)
is still rather limited in the size of systems that can be verified.

This chapter’s key contribution is to look at the broad issue of obtaining as-
surance, and to ask to what extent this need is likely to be met by (the eventual
outcomes of) current research on agent system verification. Put more concisely, if
assuring correct behaviour is the problem, what role does formal verification have
in the solution? We identify a number of issues which lead us to conclude that ex-
isting approaches are only part of the solution. We then suggest some alternative
directions for investigation that aim to find out how to use existing work on testing
and on verification as part of an assurance solution for agent systems.

This chapter doesn’t question whether formal methods should be used, since it is
clear that they have a role to play [436]. Rather, this chapter questions the traditional
(narrow) view of verification typically assumed in agent verification research, and
argues that, to be used as part of a broadly applicable approach for obtaining assur-
ance, the scope of verification needs to be broadened, and certain assumptions need
to be reconsidered. One possible broadly applicable approach for obtaining assur-
ance is presented, and one key aspect (combining testing and proving) is discussed
in more detail.

This chapter is structured as follows. We briefly review existing work on agent
system verification (section 12.2), then introduce a simple case study (section 12.3)
and prove that it is correct (section 12.4) before proceeding to discuss various issues
(section 12.5) and considering how some of these issues manifest themselves in the
case study (section 12.6). Section 12.7 proposes a new approach for assurance of
agent systems, and section 12.8 elaborates on a key part of the approach: combining
testing and proving techniques. We conclude in section 12.9.

12.2 Existing Work

In this section we briefly set the context by reviewing some existing work on verifi-
cation of agent systems. Note that we focus in this section on verification, and do not
describe in detail any of the work on testing agent systems which, roughly speak-
ing, covers either support for running tests on agent systems (e.g. [157,199]), and/or
ways of generating test cases (based on design models [447], ontologies [322], or
using evolutionary techniques where soft-goals are rendered as quality functions
that are used to guide the evolution of good test cases [323]). Note that this section
is not intended to be a comprehensive survey, but merely to give a flavour of the
recent work that has been done in the area. For a more comprehensive overview of
the area we refer the reader to other chapters in this book.

All of the work discussed below considers, in some form, the problem of estab-
lishing beyond doubt (i.e. through proof or exhaustive analysis) that an agent pro-

356 M. Winikoff

gram2 P meets a specification S (typically given in temporal logic, or an extension
thereof). Much (but not all) of the existing work focues on model checking.

An early piece of work on verification was by Wooldridge et al. [441]. It in-
troduced a simple imperative language (MABLE) and a specification language
(MORA, a simplified form of Wooldridge’s LORA). TheMORA notation com-
bines temporal logic and dynamic logic, and adds modalities for beliefs, desires and
intentions. Each agent’s program is translated into a Promela process, and claims
about the system (in MORA) are translated and checked using the SPIN model
checker.

Bordini and colleagues [68, 73] extended this work by adopting as their agent
programming language an agent-oriented programming language: AgentSpeak(F),
a subset of Rao’s AgentSpeak(L) limited to be finite. A subsequent paper [72] intro-
duced a slicing algorithm which eliminates parts of the agent program that are not
relevant to the property being checked, thus reducing the state space and the effort
required to check the property (time required reduced by around 25% for the two
examples they considered).

More recently, their work has shifted to support a wider range of agent-oriented
programming languages, by translating to a common underlying abstract language,
AIL, which is then translated to Java, and checked using a variant of the Java
PathFinder tool3 called AJPF [140]. Compared with using JPF, AJPF shows signif-
icant efficiency improvements [67]. However, the programs being verified are still
“toy” programs, e.g. a six-line contract net example with three agents.

Another strand of work is that of Lomuscio and colleagues (e.g. [355]) which fo-
cuses on verifying so-called interpreted systems where, roughly speaking, an agent
is modelled as a finite state machine. The specification logic is temporal logic aug-
mented with a knowledge operator. Some recent work [168] is interesting in that it
explicitly considers injecting faults, and looks at a range of specifications (in CTL)
and what they mean in terms of the requirement on the system to be able to recover
from faults. For example. a (CTL) specification of the form AG(injected→ EFφ)
(where φ is the desired property) requires the system to have the possibility of even-
tually recovering from a fault, but doesn’t require that it always do so, whereas
AG(injected→ AFφ) requires that the system always (eventually) recover from an
injected fault. While a promising direction in model checking research, this particu-
lar work is still somewhat preliminary: they model checked a single bit transmission
protocol.

All of the work discussed so far in this section has used model checking. How-
ever, there is also some work that uses theorem proving. The work of Shapiro et
al. [395] defined the Cognitive Agent Specification Language (CASL), and proved
properties of ConGolog programs by translating to PVS, a typed higher-order logic
with available tool support. They were able to verify properties of a simple meeting
scheduler.
2 In some work this is a single agent program, in other work this is a collection of agent programs,
as well as a model of the system’s environment
3 http://javapathfinder.sourceforge.net/

http://javapathfinder.sourceforge.net/

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 357

More recent work includes that of Alechina et al. [6–8] which also uses tool-
supported theorem proving. They use a simple language (SimpleAPL), and translate
SimpleAPL programs (along with the starting state of the agent) into Propositional
Dynamic Logic (PDL). Safety and liveness properties can then be verified using an
existing PDL theorem prover. A key contribution of Alechina et al. is the ability
to model the agent’s execution strategy, and prove properties that may rely on a
given execution strategy (e.g. interleaved vs. non-interleaved execution of plans).
The approach appears to have only been applied to toy programs (single agent, a
couple of plans, and propositional beliefs).

Finally, another example of theorem proving is the work of Mermet et al. [312]
which proves correctness using proof schemas. The agents are specified using Goal
Decomposition Trees which specify how each goal is achieved by its sub-goals, for
example, by a sequence of sub-goals. Unlike model checking, showing that a robot
on a grid works correctly does not depend on the size of the grid. However, the
proofs appear to be done by hand (tool support is mentioned as future work).

12.3 Case Study: A Waste Disposal Robot

Our discussion of issues will be made concrete and illustrated using a case study.
Our case study scenario is a simple model of a waste disposal robot, and is inspired
by examples used in a range of previous papers (e.g. [68, 312, 323, 357, 379]). Note
that certain aspects of the case study are done in a way that could be improved (for
instance not having a separate sense action); this was done in order to better allow
a range of issues to be illustrated using a single case study.

The world consists of a grid of locations L = {0 . . .MAX}×{0 . . .MAX} (for some
value of MAX ∈ N), with typical element ` ∈ L. Each location contains an amount
of rubbish which is specified by the model m : L→ N, that is, for a given location `
the amount of rubbish at that location is m(`) ∈ N. A certain subset of the locations
b ⊆ L has bins for the disposal of rubbish (and it is assumed that these locations are
known to the robot).

A robot’s state consists of its position p ∈ L, the amount of rubbish it is holding
h ∈ N, and its view of the environment v : L→ N∪{⊥}, where v(`) = ⊥ denotes that
the robot does not know anything about the location ` (we assume in what follows
that any numerical condition on v(`) such as v(`) > 0 has an implicit additional
condition that v(`) , ⊥). The robot also has a fixed capacity for carrying rubbish,
c > 0.

The overall goal of the robot is to eliminate all rubbish: ∀` : v(`) = 0. In fact,
we also want the robot to not be holding rubbish, and so the robot’s goal G is h =
0∧∀`.v(`) = 0.

The actions available to the robot are specified in Figure 12.1 and comprise mov-
ing, picking up and dropping rubbish, and sensing how much rubbish is located

358 M. Winikoff

at its current location. Actions are specified using simultaneous assignment state-
ments, rather than the more traditional post-conditions for two reasons: it is closer
to an implementation, and it avoids needing to specify explicitly what things are left
unchanged by an action.

Summary of model

L = {0 . . .MAX}× {0 . . .MAX} locations p ∈ L robot’s position
` ∈ L location h ∈ N rubbish held by robot
m : L→ N environment model v : L→ N∪{⊥} robot’s (partial) view
b ⊆ L locations of bins c ∈ N robot’s carrying capacity

Actions

Action Pre-condition Effect (simultaneous assignment)
move(`dest) true p := `dest
pick() h < c h := h+ t

m(p) := m(p)− t
v(p) := v(p)− t
where t =min(c−h,m(p))

drop() p ∈ b h := 0
sense() true v(p) := m(p)

Robot Program
(Notation: event : condition← planbody)

1a +!clean : v(p) = ⊥ ← sense() ; !clean
1b +!clean : h = 0∧∀`.v(`) = 0 ← stop (do nothing)
1c +!clean : h = 0∧ v(p) = 0 ∧ ` ∈ L∧ v(`) > 0 ← move(`) ; !clean
1c’ +!clean : h = 0∧ v(p) = 0 ∧∀`′.v(`′) ∈ {0,⊥}∧ ` ∈ L∧ v(`) = ⊥ ← move(`) ; !clean
2 +!clean : h = 0∧ v(p) > 0 ← pick() ; !clean
3 +!clean : h > 0∧ p < b∧ ` ∈ b ← move(`) ; !clean
4 +!clean : h > 0∧ p ∈ b ← drop() ; !clean

Fig. 12.1 Summary of model, actions, and robot program

The robot’s program could be specified in a wide range of notations, ranging from
simple to quite complex. We use the AgentSpeak(L) notation [357] to specify the
robot’s program, although a simpler notation such as condition-action rules would
have sufficed. The agent program captures the following cases (see Figure 12.1 for
details).

1. If the robot is not carrying anything and there is no rubbish at its location, then
explore4

4 In fact, there are a few sub-cases here: if the robot does not know how much rubbish is at its
current location it should perform a sense action, if the robot knows about the location of rubbish,

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 359

2. If the robot is not carrying any rubbish and there is rubbish at the current location,
then pick it up

3. If the robot is carrying rubbish and it is not at a bin, then move to a bin

4. If the robot is carrying rubbish and is at a bin, then drop the rubbish

This basic robot can be extended and improved in various ways, such as improv-
ing its efficiency. One issue is that the robot picks up rubbish, and then proceeds
to a bin immediately, even though it may be able to carry more rubbish. Our first
optimisation (“opt1”) is to have the robot continue to collect rubbish until it is full.
This is done by modifying the condition h = 0 in plans 1c and 2 to h < c. A second
efficiency-related optimisation is to modify the selection of locations in plans 1c and
3 to select a5 closest location, rather than an arbitrary (random) location. We term
this improvement “opt2”.

This simple robot was implemented 6, including the two optimisations (opt1 and
opt2) just discussed. In addition to implementing the actions and the robot’s pro-
gram, the implementation included:

• Error checking of a range of conditions (such as the robot going into an infinite
loop, the pre-conditions of actions not being met, etc.) that should not occur.

• Tracking the (Manhattan7) distance that a robot travelled (in order to allow for
the effects of the two optimisations to be measured).

• Random initialisation of the starting configuration.

Note that although the program in Figure 12.1 is given in an agent-oriented program-
ming language, the implementation used for experimental purposes was actually
done in a general purpose scripting language (namely Lua, http://www.lua.org).

Another elaboration that is possible is to add to the robot an amount f of fuel, and
have the amount of fuel be decreased when the robot moves. The robot’s behaviour
would also need to include a way of refuelling when needed.

In our model the robot begins with knowledge of the locations of all the bins. This
is not very realistic, and could be changed as follows. First, introduce a variable
br : P(`) which is used to track the locations of bins known to the robot; initially
br = ∅. Then plan 3 is split into two cases: if br is non-empty, then select ` ∈ br;
otherwise, if br = ∅, then instead select ` such that v(`) = ⊥. The sense action also
needs to be modified to update br (e.g. br := br ∪ ({p}∩b)).

Finally, the system only has a single agent and clearly it could be extended to
have a collection of robots exploring the landscape. Perhaps the simplest way of

then it should go straight there, and if it knows that there is no rubbish anywhere then it should
stop. Figure 12.1 includes these sub-cases.
5 There may be more than one equally close location that satisfies the desired condition, e.g. being
a bin, or having rubbish.
6 Source code available on request.
7 Where the distance between (x1,y1) and (x2,y2) is |x1 − x2|+ |y1 − y2|.

http://www.lua.org

360 M. Winikoff

doing this is just to have multiple robots roaming the landscapes, oblivious to each
others’ presence. However, effectiveness would be improved by having the robots
share their knowledge of the environment by communicating in some way, either
directly by messages, or indirectly through the environment.

12.4 Correctness Proof

We now briefly argue that the robot program given in Figure 12.1 meets the specifi-
cation. Note that the following proof is informal. We do not give a formal proof for
a number of reasons. Firstly, it can be argued that an informal proof of this sort is
more representative of common practice than formal proofs. Secondly, for an agent
program written in a “real” language, there typically do not exist tools that can assist
with creating or checking formal proofs. Finally, we feel that expanding this section
to be formal would not add much to this chapter, but would distract from the key
points in the following sections.

The proof proceeds by defining a numerical measure of progress, and then argu-
ing that the robot’s program works to decrease it, ultimately reaching 0. Our metric,
M, is defined as follows. Suppose that a given starting configuration has at most N
units of rubbish in a given location, that is, ∀` : v(`) ≤ N. For each location ` we let
w(`) = v(`) if v(`) ∈N, else, if v(`) =⊥, we let w(`) = N+1. ThenM is just the sum
over all locations of w(`), with an additional term accounting for the rubbish that
the robot is holding:

M =
h
2
+
∑
`∈L

w(`)

Observe that M = 0 exactly when the robot’s goal, G ≡ h = 0∧∀`.v(`) = 0, is
satisfied.

We now prove that the robot’s program works. Firstly, we argue that the condition
on each action implies the action’s pre-conditions. This is trivial: move and sense
both have a true pre-condition. For pick we require that h < c, which follows from
h = 0 (the condition of plan 2) and c > 0, and for drop we require that p ∈ b which
follows trivially from the condition of plan 4.

Secondly, we argue that the effects of the robot’s actions are to monotonically
decrease the metricM. Certain actions have the effect of directly reducingM. For
pick we observe that v(p) is reduced and h increased by the same amount, sinceM
counts h/2 this yields a reduction. For drop we observe that the only change is a
reduction in h. For sense we note that the action is only performed where v(p) =⊥,
and this thus reduces the value of w(p) from N +1 to N or less.

The remaining action, move, does not affectM, but whenever the robot moves,
it creates a situation where the following action is not a move. Specifically, we have
the following three cases:

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 361

1. If the robot moves as a result of plan 1c then it moves to a location such that
v(`) > 0 and the resulting state has h = 0 (unchanged from the condition of plan
1c) and v(p) > 0 and hence the next plan to apply is plan 2 and a pick action will
be done.

2. If the robot moves as a result of plan 1c′ then it moves to a location such that
v(`) = ⊥ and the resulting state has v(p) = ⊥, and so a sense action will be done
(plan 1a).

3. Finally, if the robot moves as a result of plan 3, then the resulting state has h > 0
(unchanged from the condition of plan 3) and p ∈ b, and thus the next action to
be performed is a drop (plan 4), or, if the robot doesn’t know how much rubbish
is at the bin’s location, a sense followed by a drop.

Since a move does not increaseM, the robot cannot perform a sequence of move-
ments, and all other actions do reduceM, we have that the robot’s actions progres-
sively reduce M. This allows us to conclude that the robot will eventually reach
M = 0 at which point its goal is achieved.

12.5 Issues

Suppose that we use model checking or a formal proof to show that the robot pro-
gram (“P”) presented in the previous section meets the system’s specification (“S”).
In this section we consider a range of issues associated with doing so.

Firstly, we consider issues to do with capturing the right specification S. It turns
out that in practice the notion of correctness isn’t always that easy to capture for-
mally, even for such a simple case study. We discuss this issue below in section
12.5.1.

However, even if we do manage to capture the right specification, an issue in ver-
ifying that programPmeets specification S is that it only considers the program and
a specification: it doesn’t consider the broader context and such factors as human
errors and hardware errors. Additionally, proofs tend to be abstract, and it turns out
to be easy to have hidden implicit assumptions in models or proofs, which can be
dangerous. We discuss this issue in section 12.5.2.

It is worth noting that whilst some of the second group of issues are generic, i.e.
they apply to any software system, not just agent systems, the nature of the “broader
context” is different for agent systems. Furthermore, the first group of issues is agent
specific. For instance, since agent systems are often situated in failure-prone envi-
ronments where success cannot be guaranteed, the form of the specification needs
to change from requiring success, to only requiring success if success is actually
possible.

362 M. Winikoff

12.5.1 Problems with Specifications

Typically specifications are expressed in temporal logic (or an extension thereof),
and there are a range of standard properties that are specified and checked against
(e.g. liveness, lack of deadlock). Indeed, there are libraries of commonly used spec-
ification patterns [153].

However, capturing the right notion of “correctness” is not always straightfor-
ward with agent systems, even for the very simple case study that we consider. For
instance, one common pattern, which corresponds to a goal of achieving a desired
property φ, is to require that φ eventually holds (^φ). However, for agent systems
which may be deployed in a failure-prone environment, there may be situations
where failure cannot be avoided, and so ^φ is too strong, and will not be provable.
For example, part of the environment may be unreachable, due to blocked paths, or
due to the robot not being able to hold enough fuel. A more appropriate specifica-
tion is that the robot succeeds “where possible”. However, specifying the “where
possible” condition is not easy. Furthermore, it depends on the agent program: an
agent that is able to plan ahead and realise that it needs to refuel before heading
out to retrieve some rubbish will have different failure conditions to a robot that just
heads out and refuels when it is close to running out [152].

In order to capture a suitable correctness condition we turn to dynamic logic
[347], in which action expressions may be primitive actions a, sequences of actions
a1;a2, zero or more iterations of an action expression a∗, or a choice of action ex-
pressions a1 + a2. Then 〈A〉φ is read as “after performing action expression A the
property φ may hold”; and [A]φ is read as “after performing action expression A the
property φmust hold”. Now suppose that the desired goal isG, that the actions avail-
able to the agent are A = a1, . . . ,an, and that the set of all action sequences is A∗. We
denote the robot’s program (or, more precisely, its translation into dynamic logic)
by P, and any assumptions that are being made about the initial state are denoted by
I.

In order to capture the requirement that the robot must succeed we can write
I ⇒ [P]G, but, as discussed earlier, this is too strong. What we want to capture is
that the robot is only required to succeed if, given the initial assumptions, success is
actually possible. The notion that “success is possible” is formalised as the existence
of a sequence of actions that realises the goal, thus the overall requirement is written
as:

(I∧∃A ∈ A∗.[A]G)⇒ [P]G

This formalisation only requires the agent to succeed if success is possible, which
is what we want. However, the definition of “success is possible” (∃A ∈ A∗.[A]G)
is not quite right. In certain situations success may be theoretically possible but not
practically possible. These situations occur when there exists a sequence of actions
that succeeds (which meets the definition of “success is possible”), but where the
information available does not allow one to select which actions to perform. For
example, suppose there are two doors, exactly one of which hides a large prize, and

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 363

we have one chance to open a door and claim whatever lies behind it. Then there
exists an action that claims the large prize, and hence the definition of “success is
possible” is met. However, given the information available, we are not able to reli-
ably select the correct action. We believe that this issue can be fixed by specifying
a correct formalisation of “success is possible”, but this involves introducing a rep-
resentation for the information available, and is a diversion from the main point of
this chapter.

Another issue with a specification of the form ^φ is that “eventually” can be
soon, or in a very long time, and in a real deployed system, knowing that the sys-
tem will “eventually” achieve some desired state isn’t enough: we need to know
that “eventually” will arrive “reasonably soon”. This issue is (somewhat) specific to
agent systems. Consider a classical concurrent system, such as a printer spooler. In
such systems efficiency is not typically an issue: if there are no deadlocks, then the
system will complete spooling print jobs in a timely manner. However, an agent sys-
tem such as a manufacturing scheduling system, or indeed, a robotic cleaner, may
take too long to run, even if there are no deadlocks.

Unfortunately, “reasonably soon” can be relative to the problem instance: how
long a cleaning robot could reasonable be expected to take depends on the amount
and distribution of rubbish in the environment. Thus, defining the desired property
of “reasonably soon φ” requires specifying how long an ideal robot would take to
clean a given environment8.

Although efficiency and performance issues are often dealt with through means
other than formal verification, in some systems performance is critical. In these
systems we often do need to provide strong guarantees about performance, and its
variability, in a way that cannot be met by testing with sample cases. We return to
this issue, in the context of the case study, in section 12.8.2.

In summary, getting the specification right for an agent system, so that it captures
both what is actually needed (e.g. “reasonably soon” rather than “eventually”) and
also isn’t too demanding (“succeeds where possible” rather than “always succeeds”)
is not easy, and specifications that are short and simple (e.g. ^∀`.m(`) = 0) become
more complex when these issues are taken into account. However, if these issues

8 To specify “reasonably soon” we first define the following notion of cost: given a sequence of
actions A, its cost is denoted by cost(A) (where the function cost maps an action sequence to a
natural number). This notion can be generalised to an action expression AE (or program P) by
defining the cost of an action expression AE executed in starting state S 0 as being the cost of the
sequence of actions that is performed, that is, cost(P) when the program is executed in starting
state S 0 is defined as cost(A) where A is the sequence of actions that the program performs when
executed in S 0. We then define the most efficient action sequence S 0 ∈ A∗ as being a solution for
the goal G, with the additional condition that any other solution, A, has a higher (or equal) cost.
We formalise this by firstly defining a solution S ∈ A∗ of a goal G: solution(S ,G) ⇐⇒ (I∧∃A ∈
A∗.[A]G)⇒ [S]G and then specifying the best solution S 0 as: best(S 0,G) ⇐⇒ solution(S 0,G)∧
(∀S ∈ A∗.solution(S ,G)⇒ cost(S) ≥ cost(S 0)) We can now define a “reasonably good” solution as
being one that is within some desired factor N of the best possible solution (clearly this is just one
possible notion of “reasonably good”): good(P,G,N) ⇐⇒ ∀S 0 ∈ A∗.best(S 0,G)⇒ cost(S 0)∗N ≥
cost(P)

364 M. Winikoff

are not taken into account, then a proof may not be possible (because the robot in
fact cannot deal with all configurations of the environment) or may establish a result
that looks nice (“it always eventually . . . ”) but in fact is too weak to be practically
useful.

Note that this discussion has focussed on the form or structure of the specifi-
cation, e.g. using ^φ as opposed to (I∧ ∃A ∈ A∗.[A]G) ⇒ [P]G. A related, and
well-known, issue is getting the contents of the specification right (i.e. the choice of
which φ) [261].

It is also worth noting that the point of this subsection is not to argue that the
correctness specification should be exactly as described, but to highlight that at-
tempting to address the two key issues of using simple and natural specifications
such as ^φ results in a significantly more complex specification. Furthermore, and
perhaps more importantly, the resulting more complex specification appears to be
rather more challenging to verify (but we have not verified this yet).

12.5.2 Problems with Proofs

Beware of bugs in the above code; I have only proved it correct, not tried it — D. Knuth9

As noted earlier, the enterprise of verification is concerned with showing that a
program P meets its specification S. The previous subsection discussed a number
of issues with getting the specification S right. However, even if we can get the
specification right, there are still two significant issues with proving that a program
meets its specification:

1. Showing that a program meets its specification does not consider the wider con-
text: despite a correct proof being given, issues may still arise due to human in-
teraction, or physical interference. This motivates the argument (in section 12.7)
that we need to broaden the scope of verification.

2. A proof may be abstract and may contain implicit (typically “obvious”) assump-
tions that turn out to fail, making the proof wrong. Knuth’s comment highlights
that, in some cases, these “obvious” assumptions can be detected very easily by
testing, which motivates the argument (in section 12.8) that we should look at
ways to combine testing and proving techniques.

The first issue is that traditional approaches to verification consider only the pro-
gram, ignoring other issues, such as user interfaces, human errors, and hardware
faults. The assumption that seems to justify the narrow focus on programs and (for-
mal) specifications seems to be that software errors — that is, differences between
the (formal) specification and the implementation — are the key issue.

9 http://www-cs-faculty.stanford.edu/˜knuth/faq.html

http://www-cs-faculty.stanford.edu/~knuth/faq.html

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 365

However, although software errors clearly are significant, analysis of computer-
related failures suggests that software errors are only a part, and possibly a rather
small part, of the problem. For instance, an analysis10 of computer-related deaths11

[294, Chapter 9] found that, of roughly 1,100 deaths12 that were caused by computer
failures up to 199213 [295, Chapter 9, p300]:

. . . Over 90 percent of these deaths were caused by faulty human-computer interaction (often
the result of poorly designed interfaces or of organizational failings as much as of mistakes
by individuals). Physical faults such as electromagnetic interference were implicated in a
further 4 percent of deaths, while the focus of Hoare’s and Licklidder’s warnings, software
“bugs”, caused no more than 3 percent, or thirty deaths: two from a radiation-therapy ma-
chine whose software control system contained design faults, and twenty-eight from faulty
software in the Patriot antimissile system that caused a failed interception in the 1991 Gulf
War.

Writing about these results, Jackson [250, Pages 86-87] notes that (emphasis added):

. . . coding errors were cited as causes only 3% of the time. Problems with requirements
and usability dwarf the problems of bugs in code, suggesting that the emphasis on
coding practices and tools, both in academia and industry, may be mistaken.

That is, the vast majority of the time (97%), computer-related deaths were not due
to problems in coding, and would not have been caught by formal verification of
implementation against specification. The key point here is that in order to cover
more than 3% of MacKenzie’s cases, the scope of the specification needs to be
broadened to include social, organisational, and human aspects of the system.

We have already seen (in the previous section) that getting the specification to
reflect the real need is particularly challenging for agent systems. When verifying
agent systems, which are situated in an environment, it is important to capture this
environment. Furthermore, for agent systems that support human activity, such as
disaster response coordination [389], or space exploration [69], it is important to
capture the human and organisational context of the system as part of a specifica-
tion. In the next section we will discuss some examples of verification that considers
human aspects. However, the bulk of the work on agent verification does not con-
sider humans to be within the scope of the specification.

The second issue with proof is assumptions: all too often assumptions made are
hidden, rather than made explicit. An excellent example, in a very simple setting, is
binary search [250, Page 87] (footnotes and emphasis added):

10 The original paper was published in Science and Public Policy in 1994, and was re-printed as
Chapter 9 of [294]. A less detailed discussion of the results of the analysis appeared in Chapter 9
of [295].
11 More precisely, it focussed on “computer-related accidental death”, where “computer-related”
indicates a careful analysis of whether the presence of computers was a causal factor in the death(s),
and where “accidental” excludes deaths caused by military computer systems that are designed to
kill (the analysis also, reluctantly, excludes any associated “collateral” civilian deaths).
12 MacKenzie’s analysis focussed on deaths, because deaths are clearly defined (unlike injury,
which would include RSI), and because deaths are more likely to be reported.
13 The analysis only considered data up to 1992; however, there does not appear to be any more
recent analysis.

366 M. Winikoff

Proof is not foolproof, however. When a bug was reported in his own code (part of the Sun
Java library), Joshua Bloch found14 that the binary search algorithm—proved correct many
years before (by, amongst others Jon Bentley in his Communications column) and upon
which a generation of programmers had relied—harbored a subtle flaw. The problem arose
when the sum of the low and high bounds exceeded the largest representable integer15. Of
course, the proof wasn’t wrong in a technical sense; there was an assumption that no integer
overflow would occur (which was reasonable when Bentley wrote his column, given that
computer memories back then were not large enough to hold such a large array). In practice,
however, such assumptions will always pose a risk, as they are often hidden in the very
tools we use to reason about systems and we may not be aware of them until they are
exposed.

In the next section we consider this issue in the context of our waste disposal
robot case study and explore where implicit assumptions have been made.

12.6 Assumptions in the Waste Disposal Robot Case Study
Revisited

Considering the earlier proof that the robot program meets its specification (section
12.4), it turns out, in fact, that the proof isn’t quite right. It makes a number of as-
sumptions without stating them. These assumptions may seem reasonable, but they
may be false. Worse, because the proof is abstract it is easy to miss these assump-
tions (did you spot all of them?).

The first (implicit) assumption is that there are bins (i.e. that b , ∅). If this as-
sumption is violated, then, unless there is no rubbish in the environment, the agent
will fail: once it has located and picked up rubbish, it will attempt to use plan 3, and
there is no way to select an ` such that ` ∈ b if b = ∅.

A related issue is the other places where the robot selects a location ` that sat-
isfies some condition (in plans 1c and 1c’). Do we have a similar issue there? The
precondition for plan 1c includes the condition ¬∀`.v(`) = 0 which can be rewritten
as ∃`.v(`) , 0. Thus, the precondition guarantees that there will exist at least one
location ` such that ` > 0 or ` = ⊥, so the “select ` such that . . . ” cannot fail. But
actually this reasoning also relies on an assumption: that the value of v(`) will be ei-
ther ⊥ or a natural number. If this assumption doesn’t hold, then it is in fact possible
for there to not be any possible selection for ` that satisfies the conditions of plan 1c
(and this in fact did occur in testing — see below).

The second key assumption is that the robot’s view, v, “mirrors” the real envi-
ronment, m. More precisely, that ∀`.v(`) =m(`)∨v(`) =⊥, that is, for each location,
the robot’s view is either unknown (⊥), or matches the environment. In our exper-
imentation we considered a range of initial situations where this assumption was

14 http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it

-nearly.html
15 That is, code of the form middle = (high + low) / 2.

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it
-nearly.html

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 367

violated. However, an inconsistency between v and m can also arise during execu-
tion because of errors in sensing or acting (thinking you’ve picked up rubbish when
in fact you haven’t), and also because of exogenous activity (such as other robots
cleaning rubbish, or pesky humans littering their environment).

We now explore a range of issues that can arise when, for some location `, m(`),
v(`) (and v(`) is not ⊥). It is worth emphasising that all of these issues have been
observed in the implementation.

Case 1: One case is where m(`) > 0 but v(`) = 0. In this case the robot incorrectly
believes that location ` is clean, and the robot will, in fact, never visit the location
(since there is no need), and, if there are no other issues, will complete execution
believing that it has successfully cleaned the world, whereas there is still rubbish
at `.

Case 2: Another case is where m(`) = 0 but v(`) > 0, i.e. the robot believes there
is rubbish at `, but in fact there isn’t. In this case the robot will eventually (if no
other errors intervene) arrive at ` and proceed to pick up the rubbish. The pick
action changes m(`) and v(`) by t, which in this case is zero, i.e. the pick action
has no effect. This means that the situation is not changed, and the next plan
that is applicable remains plan 3, and the robot will again attempt to pick up the
non-existent rubbish, leading to an infinite loop.

Note that, in fact, any situation where v(`) > m(`) will end up with a loop, since
(if no other errors intervene), the robot will pick rubbish, eventually reducing
m(`) to zero.

Case 3: We now turn to the situation where both m(`) and v(`) are greater than
zero, but where m(`) > v(`). A range of behaviours can result from this situation.
We begin by observing that if m(`) and v(`) are both greater than 0, then pick
action(s) will reduce both of them until eventually v(`) is not greater than zero,
resulting in one of the following sub-cases:

• If v(`) = 0 then we are left with the first scenario discussed above: the robot
will incorrectly believe the location to be cleaned, and (if no other errors in-
tervene), will eventually believe its goal to be completed, even though rubbish
remains in the environment.

• If v(`) < 0 then we have an invalid value, i.e. the assumption that v(`) is either
a natural number or ⊥ does not hold. The implementation actually uses −1 to
represent ⊥, which results in the following two sub-cases:

– If v(`) = −1 then in fact the robot recovers: it interprets the −1 as being
⊥ and performs a sense action which makes v(`) = m(`), resolving the
difference.

– If v(`) < −1 (e.g. v(`) = −2) then plans 1a, 1b, 1c and 2 are not applicable.
This leaves plans 3 and 4. If the location happens to be a bin and the robot
is holding rubbish16 then it will drop the rubbish, at which point none of

16 Which will be the case, because a pick action is what reduced v(`) to −2.

368 M. Winikoff

the plans are applicable and the robot halts with an error. If the location is
not a bin (and the robot is holding rubbish) then it will move to a bin and
drop the rubbish there. Once the rest of the grid is cleaned, the robot is left
in a situation where the only applicable plan is 1c (since it is not done),
but where the “select an ` such that . . . ” cannot be satisfied: there are no
remaining locations for which v(`) > 0 or v(`) =⊥: the location that causes
∀`.v(`) = 0 to be false has a value of −2, which is neither of these cases.

To briefly summarise these cases we have the following possible behaviours:

1. Finishing, believing the task to be completed, even though there is rubbish in the
world (case 1, where v(`) = 0 and m(`) > 0)

2. An infinite loop (case 2, where v(`) > 0 and m(`) = 0)

3. Recovering because −1 is used in the implementation to represent ⊥ (case 3 for
v(`) = −1)

4. Aborting because either no plan is applicable, or plan 1c is applicable but no
suitable ` can be selected (case 3 for v(`) < −1)

5. Being unable to execute plan 3 if no bins exist.

In our case study there are a number of further assumptions that are implicitly
made. These include: that paths between locations are never blocked, that robots
never break down, that rubbish is measured in discrete units that can be picked up
by a single robot, that the environment doesn’t change, and that the robot’s navi-
gation systems are perfect. Additionally, we assume that the environment is a grid,
which clearly isn’t true for a real world. If the robot operates in a real environment,
then this last assumption amounts to assuming that a symbolic representation of the
environment is used, and that this representation is able to be accurately determined
from sensors.

The point here is not to argue whether any one of these further assumptions is
reasonable or not, or whether a given assumption would have been made. The key
point is that assumptions are being made, and that they are often made implicitly
and not documented questioned or justified.

To summarise, we have argued that correctly capturing the specification is not
trivial, and that it is easy to either require too much (by requiring the agent to al-
ways succeed), or too little (for instance requiring something to happen “eventually”
without considering reasonable time bounds). Furthermore, even if the specification
is correct, there are a range of factors that are not typically considered in verification
(such as human interaction), and it is possible for proofs to contain implicit assump-
tions that render them incorrect. In the next two sections we consider how to address
these issues.

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 369

12.7 A New Approach to Assurance of Agent Systems

So, what should we be doing to obtain assurance of agent systems? Before we dis-
cuss our approach for obtaining assurance we need to emphasize that verification
has a key role to play, since, in general testing on its own is not sufficient. Al-
though in some applications testing may be enough — for instance, recall that for
one application “Even though this negotiation process has not been theoretically
proved for cycles’ avoidance [sic], practical experiments have validated its opera-
tion” [349, Page 413] — we do not believe that in general it is sufficient.

The reason for not believing that testing is sufficient is twofold. Firstly, it is
known, and widely accepted, that concurrent systems, which are able to exhibit
time-dependent errors, are challenging to test. Multi-agent systems are concurrent
systems. Worse, they are concurrent systems where the individual components (the
agents) are able to behave flexibly and adaptively. This makes agent systems harder
to test than other concurrent systems. Indeed, an analysis of the state space size for
BDI systems [436] found that the space of possible behaviours was extremely large
(e.g. in excess of 10100 for a uniform depth 3 tree, and over 1011 for a sample tree
from an industrial workflow application). Tsai et al. report on similar analyses for
knowledge-based systems, and conclude that [419, p205–206]:

. . . for systems that use either a selection method (such as MYCIN and INTERNIST) or the
construction method (such as XCON, XSEL, and XFL), the potential sizes of the input and
the output spaces for black-box testing are enormous.

Secondly, testing is not compositional, whereas proof can be. If we have a goal
G which is decomposed into two sub-goals G1 (achieved first) and G2 (achieved
second), then if we have tested G1 and G2 separately, it is not clear what we can
conclude about G: the situations that result from achieving G1 may not relate to the
situations in which G2 was tested. On the other hand, if we prove that G1 always
succeeds, and the assumptions that are needed to prove that G2 succeeds are a con-
sequence of the success of G1, then separate proofs of the correctness of G1 and G2
can be combined to provide a proof of the correctness of G.

The remainder of this section briefly describes a proposed solution to obtaining
assurance regarding the behaviour of a multi-agent system. As might be expected,
the proposed solution is sketched briefly, and is somewhat tentative: more work is
required.

The solution has two aspects: adopting a more pragmatic approach that assesses
risks, and uses appropriate levels of mitigation and evidence of correctness (sec-
tion 12.7.1); and combining testing and proving 17 (section 12.8). We also briefly
discuss the issue of programming languages and approaches (section 12.7.2).

17 In the remainder of this section we use the term “proving” broadly, to encompass any approach
that (unlike testing) considers all possibilities; specifically, we use “proving” to encompass both
mathematical proofs and model checking.

370 M. Winikoff

12.7.1 An Engineering Approach to Risk Management

Based on the issues highlighted, we feel that we should look at a more broad engi-
neering solution: we need to adopt an engineering approach that quantifies the risk
and then uses appropriate levels of evidence18, as is argued by Jackson [250, Page
81]:

. . . as in all engineering enterprises, dependability is a trade-off between benefits and risks,
with the level of assurance (and the quality and cost of the evidence) being chosen to match
the risk at hand.

Jackson argues for the use of direct evidence that a system meets its require-
ments: an end-to-end argument that provides evidence that the system exhibits de-
sired properties. Jackson also argues that properties should be expressed in real
world terms rather than in software terms. For example, specifying a safety property
in terms of the radiation dose received by a patient, rather than in terms of the soft-
ware computing a correct dose. This tends to encourage consideration of the wider
context, for instance, how a radiation dose computed by the software is translated
into a radiation dose that is delivered to a patient.

Rushby [378] also argues for a safety case that formally establishes that a claim
follows from the system and (explicit) assumptions. He gives an example of an adap-
tive system, and proposes that verification before deployment be augmented with
run-time monitoring of assumptions, which may be formally derived. It is worth
noting that although he discusses “adaptive systems”, these are not agent systems,
and it is not clear whether agent systems are as complex, simpler, or more complex
than the systems he discusses.

It is noteworthy that increasingly, the use of safety cases is becoming accepted,
as reflected in government standards. For example, Bishop et al. [46, section 4.2]
discuss a range of UK standards that have adopted safety cases, including the use
of goal-based safety cases. The goal-based approach proposed by Bishop et al. [46]
derives desired safety goals using a range of techniques, such as hazard analysis,
and then provides evidence that supports the desired claims via arguments. A range
of forms of evidence are used, including “deterministic or analytical application of
predetermined rules” which covers formal proofs, as well as probabilistic analyses,
and process-based arguments. Goal-based assurance is supported by a range of tools
and notations, including the Goal Structuring Notation (GSN) [270]. Note that this
work is not specific to software, let alone to agent software. It is clear (from earlier
discussion in this paper) that assuring agent software presents particular challenges
that affect the choice of claims, evidence and arguments; however, safety cases and
goal-based assurance can still form a useful general framework for the assurance of
agent systems.

18 As a aside, it is interesting to observe that much of verification research is “European”, whereas
a more pragmatic approach based on risk management is more “American”. One might speculate
on whether this difference is cultural, or a result of the funding landscape, or of other factors, such
as the relationships between academia and industry [147].

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 371

More broadly, there are a range of techniques for assessing possible failure modes
and their risks (e.g. fault trees, event trees), but these have barely been used with
MAS (an exception is [136]). These methodologies can allow assumptions to be
identified, and can allow us to develop an error model which captures the errors that
need to be dealt with.

In the context of our simple case study, applying one of these processes, perhaps
a goal-based assurance case approach [46], would lead us to think about the wider
context, and to realise that the desired top-level goal is not that the robot sees the
world as being clean (v(`) = 0) but rather, that the world itself is empty of trash, i.e.
∀`.m(`) = 0.

One process for developing (formal) requirements that considers the larger con-
text is that of Jones et al. [262]. They propose a design methodology for deriving
the specification of the software-to-be from a specification of its environment. They
present a design methodology that starts by capturing formally the “problem world”,
that is, an abstraction of the world in which the software is situated. The interface
between the software-to-be and the problem world is specified abstractly in terms
of interfaces, and “rely conditions”: what conditions the software can rely upon; for
example, that sensors and affectors work correctly. Doing this captures assumptions
explicitly. A feature of the approach is that fault-free operation and faulty operation
are dealt with separately.

In the context of the case study, an attempt to document the interface between
the robot and its environment and explore the “rely conditions” would lead us to
ask what grounds we have for believing that the robot’s view matches reality, thus
uncovering an (implicit) assumption.

We have argued that there is a need to broaden the scope of verification to con-
sider humans. We now consider some examples of how verification techniques can
be applied to verify systems including both software and humans.

The work of Bordini et al. [69] considers systems that involve collaboration be-
tween humans and software agents, specifically space missions. Agent teamwork
is specified in Brahms, a language that has been developed over a number of years
for modelling human activity. The key issues in verifying human-agent teamwork
specified in Brahms are that the Brahms notation is quite complex, and that it lacks
formal semantics. Three possible approaches are briefly discussed. One is to sim-
ply use Java Pathfinder (JPF) and run the Brahms implementation on top of this,
but there are efficiency issues with doing this. Another approach is to reimplement
Brahms within the AIL framework [140].

A third approach, which has some resemblance to the approach that is proposed
in this chapter, is to use a stepping stone approach: translate Brahms models into
Jason (using abstraction, so the Jason model isn’t a precise re-implementation of
the Brahms model). Then the Jason implementation can be formally verified, and
runs of the Brahms model can be compared with runs of the Jason implementation.

The work of Rushby et al. [118, 376, 377] uses formal methods techniques to
look for mode errors in cockpit interfaces, i.e. situations where a human pilot (who

372 M. Winikoff

may be operating under stress) is likely to mistakenly believe the system to be in a
particular state when it is actually in a different state. This was done by modeling
the system (e.g. as a finite state machine), modeling the human’s mental model of
the system (e.g. elicited from human pilots), and then using model checking to find
divergences.

More broadly, there is work (e.g. [119,151]) that uses formal methods techniques
to model human behaviour, and then reason about it. As Duce et al. [151, Section
3.3] note:

. . . safety critical systems typically involve human agents as well as computer agents, and
once again we see that to be able to reason about the overall properties of the system we
need to be able to reason at some level about the human agents in them.

This approach has begun to be explored in non-agent safety critical systems, but
does not seem to have been considered in the context of agent systems.

12.7.2 “Send considered harmful?”

Finally, perhaps a more minor, but nonetheless important point, concerns the level
of programming. We should aim to work at a level that avoid certain error classes.
In the same way that avoiding manual memory allocation in favour of garbage col-
lection avoids a whole class of errors, we should seek to work at a level that allow
us to avoid error classes. For agents one particularly place to consider this issue
concerns concurrency: agent systems are concurrent, but some concurrency-related
errors could be avoided by working at a higher level than message sending and re-
ceiving. Building multi-agent interactions in terms of sending and receiving individ-
ual messages is error-prone, and could be argued to be analogous to programming
based on “goto” statements. A similar argument has been independently put forward
by Chopra and Singh [96].

A number of alternative ways of specifying and implementing interactions have
been proposed in the agent literature (e.g. [95, 97, 273, 434, 435, 443]). What these
approaches all have in common is that although they ultimately do realise com-
munication by sending messages, the interaction is specified and implemented in
terms of higher level constructs, and certain errors simply cannot occur as a re-
sult of this. For example, interactions that are designed (and implemented) in terms
of social commitments are able to ensure “alignment” in the face of concurrency.
Although different agents may perceive a different ordering of messages, under cer-
tain conditions, they will reach the same conclusions about the commitments that
hold [97, 434, 435].

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 373

12.8 Combining Testing and Proving

As we have argued earlier, neither testing nor proving are sufficient on their own.
However, each have strengths, and they can be used to complement each other. This
is evidenced by the results from our case study: testing uncovered assumptions that
the formal proof missed, but the formal proof covers all cases, which testing cannot.
A similar argument about the complementability of testing (in the form of random
search [329]) and model checking was presented by Gao et al. [187] who experi-
mented with a specification that had been randomly injected with faults, and found
that their Lurch tool found some bugs that the SPIN model checker didn’t find (they
also found that most of the randomly injected faults were easy to find using random
testing).

So, we should look at combining testing and proving in a way that allows them
to work effectively together. But how can we use testing and proving together in a
meaningful way?

In this section we outline an approach for combining testing and proving. The
proposed approach is generic, in that it applies to a range of software, not just agent
systems. We believe that generality is an advantage, and that what is important is
not whether the approach is specific to agent systems, but whether it is applicable
to agent systems. It is possible for a generic approach to fail to be applicable, or to
fail to be useful, in a more specific context.

The proposed approach is based on the recognition that testing and proving are
merely two possible ways of trying to provide evidence of correctness, and that there
are other, intermediate, approaches. We then use these intermediate approaches to
build a “bridge” between testing and proving.

Testing and proving are just two particular techniques amongst many, which we
classify along two dimensions (see Figure 12.2, ignore the arrows for now). The first
dimension is abstraction: does the technique deal with the actual code that is running
(“concrete”), or with an abstract model (“abstract”)19? Specifically, an “abstract”
model is one where the actual running code is not derived in an automated way
from the model. We distinguish between “concrete” and “abstract” because an anal-
ysis of a concrete model tells us something about the actual running code, whereas
analysis of an abstract model is one step removed from the actual executing code.
The second dimension is the coverage of the state space: does the checking cover
only certain points (testing)? does it cover all points within a sub-space (incomplete
systematic exploration)? or does it cover all of the state space (complete systematic
exploration)? We do note that some of these lines are somewhat imprecise: for in-
stance, Java PathFinder does systematic exploration of Java code (“concrete”), but
some approximations need to be made, so it’s not completely concrete.

Testing and proving are familiar, but some of the other approaches in Figure 12.2
need to be briefly explained:

19 We also have a “very abstract” classification for dynamical systems techniques.

374 M. Winikoff

Shallow Scope: The idea is that all possibilities are explored systematically (i.e.
like model checking, rather than like testing) but only within a limited scope
for variable values. For instance, we might consider L = {0 . . .2} × {0 . . .2} and
a maximum value for m(`) or v(`) of 1. The promise of this approach is the
“shallow scope hypothesis” which states that many errors in models can be found
with a fairly small scope. Experimentation with a range of models has provided
evidence for the shallow scope hypothesis (e.g. [138, 249])

Systematic Enumeration: Systematically generating all possibilities, within a
given scope. The difference between this and “Shallow Scope” is that it is done
with an implementation, which may make it harder to work symbolically, or to
map to other representations such as Ordered Binary Decision Diagrams. For ex-
ample, in our case study, we could generate all possible starting configurations
for a limited-size grid; and then execute them with the implementation.

Animation: Roughly speaking, executing specifications [269, 363]. Unlike exe-
cuting programs, this may be possible only for some specifications (because not
all specifications are executable), and may involve analysis to try and execute
(“animate”) specifications that are not in a convenient form to be executed di-
rectly.

Dynamical Systems: This approach is very abstract and considers the overall be-
haviour of the space of possible executions, viewed as a dynamical system. A
typical question is whether there are attractors, and what is their basin of at-
traction. However, although this approach has promise, and is worthy of further
work, there seems to have been little work on using such approaches for veri-
fication in the computing community (an exception is the work of Beer [29]).
One challenge is that software systems are typically discrete, whereas dynamical
systems are normally continuous.

So, how do we use these techniques to build a bridge between testing and prov-
ing? The key idea is to use small steps that only change one aspect of the taxonomy
of Figure 12.2. For example (the numbers correspond to the numbered arrows in
Figure 12.2):

Ê Comparing the outcome of testing the implementation (with selected test cases)
with the outcome of systematic enumeration (still with the implementation) al-
lows us to assess to what extent the selected test cases are sufficient.

If both approaches find the same errors, then this gives us confidence that the test
cases are in fact sufficient. If we find errors with systematic generation that we
don’t find with the test cases, then the test cases are inadequate. If we find errors
in the selected testing that are not found by systematic generation, then this tells
us that the scope of generation is too limited (this is also assessed by comparing
proving and systematic generation with the abstract model, discussed below).

Ë Comparing the outcome of systematic generation with the implementation and
with an abstract model allows us to assess the difference that is made by chang-
ing to an abstract model.

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 375

Coverage: Individual Systematic Systematic
Test Exploration Exploration

Abstraction: Cases (incomplete) (complete)
Very abstract - - Dynamical

Systems

Abstract Model Animation Shallow Scope
Ì
−→Model Checking,

Ë ↑ Proof

Concrete Testing
Ê
−→ Systematic -

Enumeration

Fig. 12.2 Approaches to Assurance: A two-dimensional taxonomy

If both approaches find the same errors, this gives us confidence that the abstract
model corresponds to the implementation. If errors are found in the implemen-
tation but not in the abstract model (or vice versa), then this tells us that the
abstract model is too abstract (or that it, or the implementation, is wrong).

Ì Comparing systematic generation within a limited scope (“Shallow Scope”)
with proving correctness (for the same model) gives us information on whether
the scope is too limited, and hence is missing issues. If both approaches find
the same errors, this gives us confidence that the scope limitation is not missing
anything.

Taken together, these steps build a bridge that links proving and testing. At each
step along the way we change only one thing which allows for conclusions to be
drawn from differences, or lack thereof. Section 12.8.1 illustrates how these steps
are applied to the waste disposal robot case study.

One particular issue is ensuring that multiple models capture the same thing. For
instance, we might have an abstract formal model in one notation, and an implemen-
tation in another notation. The key idea that allows comparison is that we perform
the same assurance approach on both models (typically systematic, but incomplete,
exploration). This ensures that any differences found are due to differences between
the models, not due to a difference in the assurance procedure. For example, we
might be doing shallow scope exploration with an Alloy model and model checking
with a Promela model. In this case, we would need to take multiple steps to move
from one to the other. For instance an intermediate step might be model checking
an Alloy model. Of course, our ability to do this may be limited by the available
tools. Whilst systematic incomplete exploration can not provide perfect assurance

376 M. Winikoff

that two models correspond, it can provide stronger confidence than non-systematic
exploration.

Another case where more steps may be useful is to consider a small scope when
following arrow Ë, and then also doing shallow scope exploration (with the same
abstract model) but with a larger scope. This can help gain further confidence that
the smaller scope is not too small.

12.8.1 Applying the Proposed Approach to the Case Study

We now, for illustrative purposes, discuss the application of these steps to the case
study. We begin with comparing systemic generation (within a limited scope) and
selected test cases, both with the implementation (arrow Ê). The implementation
was extended to systematically generate all initial states and to run the robot in each
of these. We considered a grid of 2×2 (and also a smaller 2×1 grid). Initial states
were generated with the following ranges of values:

• Each v(`) was either ⊥ (represented as −1), or was in the range (0 . . .3)

• Each m(`) was in the range 0 . . .3

• The robot’s carrying capacity c ranged over 1 . . .4

• The initial rubbish carried h ranged over 0 . . .c

• The number of bins ranged from 1 to the number of locations (i.e. 1 . . .4 for the
larger scope). We also separately experimented with allowing for no bins, which
introduced a new error when plan 3 was unable to find a bin to move to.

• The robot could begin in any of the locations.

These generated 33,600 initial configurations for the 2-location scope, and
35,840,000 initial configurations for the 4-location scope. The robot program was
run in each of the starting configurations (taking just under 44 minutes20 for the
larger scope, and less than 3 seconds for the smaller scope). The results were col-
lected and analysed, and the following errors (described in section 12.5) were found
to have occurred:

1. Completing execution without having cleaned the environment.

2. Going into an infinite loop21 because pick had no effect.

3. Recovering (incorrectly) because −1 was interpreted as ⊥, leading to a sense
action.

4. No action being applicable (because v(`) = −2).

20 On an idle 2.4 GHz Intel Core 2 Duo machine with 1 Gig of 667 MHz DDR2 SDRAM running
Mac OS X Version 10.5.6.
21 In fact the condition that led to this was detected and lead to an abort, rather than a loop.

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 377

5. Failure of plan 3 due to non-existence of bins in the environment.

We compared these errors with those found by random testing, which was done by
randomly generating initial configurations. Each location ` had a 50% chance of
having rubbish and each v(`) was initialised to ⊥ (90% chance), or to a random
number (10% chance), which meant that there was less than 10% chance of an error
for a given v(`) because the randomly generated number might be the same as the
corresponding m(`). Running 100 random tests found the first two errors22. Consid-
ering the fourth error, it only occurs when v(`) = −2, which requires an initial setup
of m(`) = 3 and v(`) = 1 and a capacity of at least 3. This combination of circum-
stances was not very likely to occur randomly. However, running 1,000 randomly
generated test cases (taking less than half a second) did find all four error types. This
comparison, between systematic generation and random testing, told us that our ini-
tial number of tests was too limited, and gave us confidence that the new number of
tests was sufficient.

We then did a comparison between systematic generation with the implementa-
tion and with an abstract model (arrow Ë in Figure 12.2). In our case study, since
the proof is informal, we wanted to do systematic generation with a model that, like
the proof, directly realised the model in Figure 12.1. We thus implemented a model
in Prolog (available upon request) that directly followed that in Figure 12.1, and did
systematic generation23 with both a 2×2 and a 2×4 grid. In both grid sizes the same
error cases were detected24:

1. Completing execution correctly, but with rubbish remaining in the environment
(implementation error case 1)

2. Going into an infinite loop, due to pick not having any effect (implementation
error case 2)

3. Out of domain error: attempting to store a value less than 0 into v(`).

4. Being unable to select a bin if no bins exist (implementation error case 5)

Comparing these cases with the ones uncovered by the implementation, we can see
that we find the same errors, with one exception. Because the abstract model checks
whether values in v(`) and m(`) are in the appropriate range, it catches cases where a
value less than 0 would be stored in v(`) (by pick) and gives an error, which prevents
error cases 3 and 4 (in the implementation) from occurring. This comparison tells
us that the implementation is not quite faithful to the model, but in terms of the
situations that cause errors, and the assumptions that are required to rule out such
situations, the abstract model and the implementation do seem to be in agreement.

22 We did not consider situations with no bins, so error 5 could not occur.
23 For the larger scope this took just under 40 minutes (on a Dell PC with a 2.66 GHz Pen-
tium 4, 1280 MB of RAM, running Ubuntu Linux 2.6.24-19) to generate 3,346,110 cases (with
the assumptions not allowed to be violated, i.e. b , ∅ and initially ∀`.v(`) = ⊥); whereas if these
assumptions could be violated it took just under 1 hour and 46 minutes to generate 13,436,928
cases.
24 If the assumptions that initially ∀`.v(`) = ⊥ and that b , ∅ held then there were no errors.

378 M. Winikoff

Finally, considering the third link (arrow Ì in Figure 12.2), we observe that the
errors found by systematic generation in the abstract model catch the assumptions
that render the proof faulty, and indeed, if we require these assumptions to hold, then
systematic generation does not find any errors, which gives us additional confidence
that the proof is now correct.

To summarise, we have applied the proposed “bridge building” mechanism to the
case study and found that:

• 100 test cases (with the given parameters) were insufficient, but 1,000 test cases
found the same errors as systematic generation within a limit scope. This gives
us some confidence in the coverage of the tests.

• Systematic generation of tests cases with the implementation and the abstract
model found the same error classes (with differences that highlighted the differ-
ence in error checking, and the use of −1 to represent ⊥ in the implementation).
This gives us some confidence that the abstract model and the implementation
are capturing the same thing, and gives us some confidence in applying results
about the abstract model to the implementation.

• Systematic generation of tests cases with the abstract model for both large and
small scopes found the same error cases, which suggests that the small scope is
sufficient.

• Comparing systematic generation with the abstract model and the proof of cor-
rectness given in section 12.4 we find that the systematic generation identifies
the assumptions that the proof makes. Furthermore, the proof provides additional
confidence that the correct behaviour observed in systematic generation with the
assumptions will generalise and hold in all settings, not just within the limited
scope of generation.

Taken together, these results give us confidence in the correctness of the robot pro-
gram, by providing end-to-end evidence of correctness. More importantly, this pro-
cess identifies the assumptions required for the proof.

12.8.2 Addressing Efficiency

As per the discussion in section 12.5.1 we do need to take care with specifications,
in order to avoid having specifications that are too strong (requiring success, even
though it may not always be possible), or too weak (only requiring success “eventu-
ally”, rather than “reasonably soon”). For our case study the former is not relevant,
because in this case study it is always possible to succeed. However, finishing within
a reasonable amount of time is a possible issue and so we now consider efficiency.

There are a number of ways of looking at efficiency, and perhaps the simplest
is to use the implementation, rather than the model. Of course, running the imple-
mentation with selected test cases is not very convincing: it may be that particular

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 379

situations result in much poorer performance, and certain applications do require a
stronger guarantee on performance bounds than can be obtained with testing alone.
For instance, we may need to be confident that our waste disposal robot will be able
to clean a grid of a certain size within a certain amount of time. So, we use system-
atic generation to consider all possible initial configurations within a narrow scope.
We use a 2×2 grid, where each m(`) was in the range 0 . . .3, capacity c ranged over
1 . . .4, initial rubbish held h over 0 . . .c, and the robot could begin in any of the lo-
cations. Since the question is, “if the robot completes, how long does it take?” we
avoid errors (which would lead to non-completion) by enforcing the two assump-
tions discussed earlier. Specifically, we ensure that there are bins (b , ∅) and we
initialise each v(`) to ⊥. We tracked the (Manhattan) distance travelled by the robot.
This generated 57,344 initial configurations with the following efficiency:

• With no optimisations enabled (“noopt”) the average distance travelled by the
robot was 6.18. The minimum25 distance was 3 and the maximum26 was 26.

• With only the first optimisation enabled (“opt1”) the average distance travelled
by the robot was 6.23. The minimum was 3 and the maximum was 26.

• With only the second optimisation enabled (“opt2”) the average distance was
5.35; the minimum and maximum were respectively 3 and 26.

• With both optimisations enabled (“optboth”) the average distance travelled was
5.25; the minimum and maximum were 3 and 26.

Figure 12.3 shows the efficiency in terms of distance travelled in graphical form. The
horizontal axis shows the distance travelled, and the vertical axis counts how many
of the 57,344 cases required that given distance to be travelled. As can be seen,
most of the cases don’t involve a large distance, but there are a few that do. For
instance, with no optimisations, around 93% of the possible initial configurations
require traversing a distance of 10 or less; and around 99% of configurations require
traversing a distance of 17 or less.

We also considered a 3×2 grid, for which the average distance was 14.6 without
optimisations (“noopt”) and 11.75 with the second optimisation (“opt2”), and the
minimum distance was 5, and the maximum was 56 for both. As is shown in Figure
12.4, the distribution is similar to the 2×2 case. With no optimisations around 90%
of configurations involve covering a distance of 21 or less, and 99% of configura-
tions involve a distance of 36 or less (with the second optimisation these numbers
are respectively 19 and 34). As in the 2×2 case, the maximum distance of 56 is very
unlikely (4 cases out of 917,504 or 0.000436%).

Overall, from this exploration of efficiency we can conclude that, for the case
study, there are cases where the effort required (in terms of distance) is significantly

25 Since the robot did not begin with knowledge of the environment, even if there was no rubbish,
it still had to cover the area to find this out.
26 A distance of 26 may seem high for a 2× 2 grid: it arose in situations where there was much
rubbish (i.e. m(`) = 3 for at least locations 2 to 4), the robot had a low carrying capacity (c = 1),
and only location 1 was a bin. This was a relatively rare situation (4 cases out of 57,344, or less
than 0.01%).

380 M. Winikoff

Distances Travelled

0

5000

10000

15000

20000

25000

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Distance

O
c
c
u

r
r
e
n

c
e
s

noopt opt1 opt2 optboth

Fig. 12.3 Efficiency Profiles for 2×2 grid.

Distances travelled

0

20000

40000

60000

80000

100000

120000

140000

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

distance

c
o

u
n

t

noopt opt2

Fig. 12.4 Efficiency Profiles for 3×2 grid.

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 381

worse than the average or commonly encountered cases, and that consequently these
cases are unlikely to be found through random testing. On the other hand, we have
a bound on how much worse these cases are: the maximum distance travelled was
around 3.8 to 4.95 times the average distance.

12.9 Conclusions

In this chapter we considered the issue of obtaining assurance that an agent system
will behave appropriately when it is deployed. We asked what role formal verifica-
tion are able to play in this process. We identified a number of issues relating to the
difference between assurance and verification. Although this difference is not new,
and applies to any type of software, there are some new issues that are specific to
agent systems. For instance, the nature of the specification is different for agents:
because they are situated in a dynamic and (often) failure-prone environment the
specification cannot require that the agent always succeed, since success may not be
possible in all situations.

Based on the range of issues identified, we concluded that formal verification
techniques need to be used as part of a toolkit, in combination with other techniques.
In order for this to happen, however, the focus of verification research needs to
broaden to include human and organisational factors, and researchers need to be
mindful of the context in which verification will be used.

We then outlined a possible solution for assuring the behaviour of agent systems
that hinged on:

1. Adopting an engineering stance that develops an error model (which is also used
for testing and model checking), and that seeks to quantify risks and develop
appropriate levels of mitigation. It is important that in developing the error model
we consider broadly the errors that can occur, including human errors.

2. Using the error model to guide various activities such as testing and model check-
ing, which are linked by building a “bridge” between them, using intermediate
techniques. In doing this is it important to take care with specifications, and to
capture assumptions.

We also briefly discussed the issue of programming level, and how certain errors
could perhaps be avoided by, for example, designing and programming agent inter-
actions at a higher level then message sending/receiving.

We are not the first to propose the combination of proving and testing, although
the combination that we proposed does appear to be novel in its detail and working.
Lowry et al. [292] proposed integrating testing and proving, but focused on a cost-
benefit trade-off evaluation method, rather than on proposing a specific mechanism
for combining testing and proving (other than doing them separately). Richardson &
Clarke [369] use a formal specification to help partition the space into equivalence

382 M. Winikoff

classes that are used in generating tests cases, they claim that “Although this does not
give total assurance in program reliability, we believe, and our evaluation supports
this, that it provides strong evidence about the reliability of a program”. Dill [148]
proposed a one-dimensional taxonomy which is similar in some ways to the one
we use. Young & Taylor [444] also propose a taxonomy, and discuss using this
to guide combining different techniques. They focus on approaches that would be
regarded as testing rather than proving (e.g. testing, symbolic execution, and other
analyses), but do briefly discuss proving (in section 7). Owen [330] is more recent,
and considers the combination of tools from a pragmatic and empirical perspective.
He uses a specification that has been randomly seeded with faults, and finds that
many of the faults are not found by all of the tools, and that whilst running time
varies, the vast majority of the faults are easy for at least one of the tools. He then
proposes a detailed process for using the tools in combination to augment each other.

My hope is that this paper will perhaps encourage researchers working on agent
verification techniques to reconsider their assumptions and scope, and in particular,
to consider where the specification (often just assumed to be given as an input in
some logic) comes from, what form it might have, what it might fail to capture, and
how the specification form and notation might need to change to expand its scope
(for instance to capture a social context).

As discussed in the previous sections, I see the key challenge as being how to
integrate a range of techniques for obtaining assurance in such a way that allows
them to strengthen and complement each other. For instance, finding a way of using
testing and proving together so that we benefit from the ability of proving to con-
sider all possibilities, and from the ability of testing to (sometimes) detect implicit
assumptions. Whilst section 12.8 presented an approach for doing this, the approach
is still not well developed, and more work is required, both on this specific approach,
and on other approaches.

The key area for future work is thus to explore methods for obtaining assurance,
such as the one presented in sections 12.7 and 12.8. Key considerations include how
to capture the environment; how to develop an error model using techniques such
as hazard analysis, event and fault trees; and how to include human and societal
aspects in these models (by building on the work discussed in section 12.7.1).

A secondary area for work concerns approaches for specifying and implement-
ing agent interactions. As discussed in section 12.7.2, approaches that work at the
level of message sending are low-level and error-prone. A number of alternative ap-
proaches have been proposed in the literature, but these need to be assessed from an
assurance perspective. Are these approaches really less error-prone? And are they
easier to verify?

Some specific, more immediate, directions for future work include the following:

• Exploring the ideas of the previous section in the context of a larger, more real-
istic, case study.

• Determining whether (as discussed at the end of section 12.5.1) the corrected
specification is harder to verify, and if so, how much harder?

12 Assurance of Agent Systems: What Role Should Formal Verification Play? 383

• Looking at adapting ideas from the testing literature for agents, for example how
might metamorphic testing [448] be used to test agent systems?

• In the previous section we argued that the various activities allowed us to have
“some confidence” about a range of results. How much confidence? Can this be
assessed? How?

• Looking at adapting ideas from the dynamical systems literature (e.g. [29]).

Acknowledgements I would like to thank Stephen Cranefield for discussions relating to this work,
and for comments on a draft of this chapter. I would also like to thank the anonymous reviewers
for their comments which were helpful in improving this paper.

References

1. Abrahamson, K.R.: Decidability and expressiveness of logics of processes. Ph.D. thesis,
Department of Computer Science, University of Washington (1980)

2. Aştefănoaei, L., de Boer, F.: The refinement of multi-agent systems. In: this volume, Chapter
2

3. Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland Publishing Com-
pany, Amsterdam (1962)

4. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Compliance ver-
ification of agent interaction: a logic-based tool. In: Proc. of the European Meeting on Cy-
bernetics and Systems Research, Vol. II, pp. 570–575 (2004)

5. Alchourrón, C.E., Bulygin, E.: Normative Systems. Springer Verlag (1971)
6. Alechina, N., Dastani, M., Logan, B., Meyer, J.-J. Ch.: A logic of agent programs. In: Pro-

ceedings of the Twenty-Second AAAI Conference on Artificial Intelligence (AAAI 2007),
pp. 795–800. AAAI Press (2007)

7. Alechina, N., Dastani, M., Logan, B., Meyer, J.-J. Ch.: Reasoning about agent deliberation.
In: G. Brewka, J. Lang (eds.) Proceedings of the Eleventh International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR’08), pp. 16–26. AAAI, Sydney,
Australia (2008)

8. Alechina, N., Logan, B., Dastani, M., Meyer, J.-J. Ch.: Reasoning about agent execution
strategies. In: AAMAS (3), pp. 1455–1458 (2008)

9. Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of büchi au-
tomata. Theor. Comput. Sci. 363(2), 224–233 (2006). DOI http://dx.doi.org/10.1016/j.tcs.
2006.07.026

10. Alur, R.: Timed automata. In: N. Halbwachs, D. Peled (eds.) CAV, Lecture Notes in Computer
Science, vol. 1633, pp. 8–22. Springer (1999)

11. Alur, R., Henzinger, T., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.: MOCHA user man-
ual. In: Proceedings of CAV’98, Lecture Notes in Computer Science, vol. 1427, pp. 521–525
(1998)

12. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design 15(1), 7–48
(1999)

13. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In: Proceedings
of the 38th Annual Symposium on Foundations of Computer Science (FOCS), pp. 100–109.
IEEE Computer Society Press (1997)

14. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM 49, 672–713 (2002)

15. Anderson, A.: A reduction of deontic logic to alethic modal logic. Mind 22, 100–103 (1958)
16. Andreka, H., van Benthem, J., Nemeti, I.: Modal languages and bounded fragments of pred-

icate logic. Journal of Philosophical Logic 27, 217–274 (1998)

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 385
DOI 10.1007/978-1-4419-6984-2, c© Springer Science+Business Media, LLC 2010

386 References

17. Apt, K.R., Bol, R.: Logic programming and negation: A survey. Journal of Logic Program-
ming 19, 9–71 (1994)

18. Arbab, F., Astefanoaei, L., de Boer, F.S., Dastani, M., Meyer, J.-J. Ch., Tinnemeier, N.: Reo
connectors as coordination artifacts in 2APL systems. In: PRIMA, pp. 42–53 (2008)

19. Aştefănoaei, L., de Boer, F.S.: Model-checking agent refinement. In: Proceedings of the
seventh international joint conference on autonomous agents and multiagent systems (AA-
MAS’08), pp. 705–712 (2008)

20. Aştefănoaei, L., de Boer, F.S., van Riemsdijk, M.B.: Using rewriting strategies for testing
BUpL agents. In: D.D. Schreye (ed.) Preproceedings of the 19th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2009) (2009)

21. Astefanoaei, L., Dastani, M., de Boer, F., Meyer, J.-J. Ch.: A verification framework for
normative multi-agent systems. In: In the proceedings of The 11th Pacific Rim International
Conference on Multi-Agents (PRIMA 2008), LNAI, vol. 5357. Springer (2008)

22. Bacmair, L., Ganzinger, H.: Resolution theorem proving. In: J.A. Robinson, A. Voronkov
(eds.) Handbook of Automated Reasoning, chap. 2, pp. 19–99. Elsevier and MIT Press
(2001)

23. de Bakker, J.: Mathematical Theory of Program Correctness. Prentice Hall, Inc. (1980)
24. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Verifying protocol con-

formance for logic-based communicating agents. In: Computational Logic in Multi-Agent
Systems, pp. 196–212 (2004)

25. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Service selection by
choreography-driven matching. In: C. Pautasso, T. Gschwind (eds.) WEWST, CEUR Work-
shop Proceedings, vol. 313. CEUR-WS.org (2007)

26. Ball, T., Rajamani, S.K.: The SLAM Toolkit. In: Proc. 13th International Conference on
Computer Aided Verification (CAV), Lecture Notes in Computer Science, vol. 2102, pp. 260–
264. Springer (2001)

27. Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M.: The Imperative Future:
Principles of Executable Temporal Logic. John Wiley & Sons (1996)

28. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification.
Journal of Logic and Computation In print (2009)

29. Beer, R.D.: A dynamical systems perspective on agent-environment interaction. Artificial
Intelligence 72, 173–215 (1995)

30. Beeri, C.: On the menbership problem for functional and multivalued dependencies in rela-
tional databases. ACM Trans. Database Syst. 5(3), 241–259 (1980)

31. Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.:
UPPAAL 4.0. In: QEST, pp. 125–126. IEEE Computer Society (2006)

32. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - a java agent development frame-
work. In: Multi-Agent Programming: Languages, Platforms and Applications. Kluwer
(2005)

33. Benerecetti, M., Cimatti, A.: Symbolic model checking for multi-agent systems. In: Proc. of
the International Workshop on Model Checking and AI, pp. 1–8 (2002)

34. Benerecetti, M., Giunchiglia, F., Serafini, L.: Model checking multiagent systems. Journal
of Logic and Computation 8(3), 401–423 (1998)

35. Bentahar, J.: A pragmatic and semantic unified framework for agent communication. Ph.D.
thesis, Laval University, Canada (2005)

36. Bentahar, J., Maamar, Z., Benslimane, D., Thiran, P.: An argumentation framework for com-
munities of web services. IEEE Intelligent Systems 22(6), 75–83 (2007)

37. Bentahar, J., Moulin, B., Chaib-draa, B.: A persuasion dialogue game based on commitments
and arguments. In: Proc. of the International Workshop on Argumentation in Multi-Agent
Systems, pp. 148–164 (2004)

38. Bentahar, J., Moulin, B., Meyer, J.-J. Ch., Chaib-draa, B.: A logical model for commitment
and argument network for agent communication. In: Proc. of the International Joint Confer-
ence on AAMAS, pp. 792–799 (2004)

39. van Benthem, J.: The Logic of Time: A Model-theoretic Investigation into the Varieties of
Temporal Ontology and Temporal Discourse. Reidel, Dordrecht (1983)

References 387

40. van Benthem, J.: Extensive games as process models. Journal of Logic, Language and Infor-
mation 11, 289–313 (2002)

41. van Benthem, J.: Logic in games. Lecture Notes of the ILLC graduate course on Logic, Lan-
guage and Information, Universiteit van Amsterdam, Amsterdam, The Netherlands (2005)

42. van Benthem, J., van Eijck, J., Stebletsova, V.: Modal logic, transition systems and processes.
Journal of Logic and Computation 4(5), 811–855 (1994)

43. Berezin, S., Clarke, E.M., Biere, A., Zhu, Y.: Verification of Out-Of-Order Processor De-
signs Using Model Checking and a Light-Weight Completion Function. Formal Methods in
System Design 20(2), 159–186 (2002)

44. Bhat, G., Cleaveland, R., Groce, A.: Efficient model checking via büchi tableau automata.
In: Computer-Aided Verification, pp. 38–52 (2001)

45. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for ctl*. In: The
IEEE Symposium on Logics in Computer Science, pp. 388–397 (1995)

46. Bishop, P., Bloomfield, R., Guerra, S.: The future of goal-based assurance cases. In: Pro-
ceedings of Workshop on Assurance Cases. Supplemental Volume of the 2004 International
Conference on Dependable Systems and Networks, pp. 390–395 (2004)

47. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theoretical
Computer Science, vol. 53. Cambridge University Press (2001)

48. Boella, ., van der Torre, L.: ∆: The social delegation cycle. In: Deontic Logic: 7th Interna-
tional Workshop on Deontic Logic in Computer Science (∆EON’04), LNCS, vol. 3065, pp.
29–42. Springer (2004)

49. Boella, G., Broersen, J., van der Torre, L.: Reasoning about constitutive norms, counts-as
conditionals, institutions, deadlines and violations. In: PRIMA, pp. 86–97 (2008)

50. Boella, G., Pigozzi, G., van der Torre, L.: Five guidelines for normative multi-agent systems.
In: Proceedings of JURIX 2009 (2009)

51. Boella, G., Pigozzi, G., van der Torre, L.: Norms in computer science: Ten guidelines for nor-
mative multi-agent systems. In: Normative Multi-Agent Systems (NorMAS’09), no. 09121
in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI) (2009)

52. Boella, G., van der Torre, L.: Enforceable social laws. In: Procs. of 4th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS’05), pp. 682–689.
ACM Press (2005)

53. Boella, G., van der Torre, L.: A game-theoretic approach to normative multi-agent systems.
In: G. Boella, L. van der Torre, H. Verhagen (eds.) Normative Multi-agent Systems, no.
07122 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

54. Boella, G., van der Torre, L.: Substantive and procedural norms in normative multiagent
systems. Journal of Applied Logic (In press)

55. Boella, G., van der Torre, L., Verhagen, H. (eds.): Normative Multi-Agent Systems, no.
07122 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

56. Boella, G., van der Torre, L.: The ontological properties of social roles in multi-agent sys-
tems: Definitional dependence, powers and roles playing roles. Artificial Intelligence and
Law 15(3), 201–221 (2007)

57. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multi-agent systems.
Computational and Mathematical Organization Theory 12(2-3), 71–79 (2006)

58. Boella, G., van der Torre, L., Villata, S.: Conditional dependence networks in requirements
engineering. In: Proceedings of COIN’09, LNCS (2009)

59. Boella, G., Verhagen, H., van der Torre, L.: Introduction to the special issue on normative
multi-agent systems. Journal of Autonomous Agents and Multi Agent Systems 17(1), 1–10
(2008)

60. de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.-J. Ch.: A Verification Framework
for Agent Programming with Declarative Goals. Journal of Applied Logic 5(2), 277–302
(2007)

388 References

61. Bordini, R., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking AgentSpeak. In:
Proceedings of the Second International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS’03), pp. 409–416 (2003)

62. Bordini, R., Visser, W., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking multi-
agent programs with CASP. In: Computer-Aided Verification, pp. 110–113 (2003)

63. Bordini, R., Wooldridge, M., Hübner, J.: Programming Multi-Agent Systems in AgentSpeak
using Jason. John Wiley & Sons (2007)

64. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent Program-
ming: Languages, Platforms and Applications. Springer-Verlag (2005)

65. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent Program-
ming: Languages, Tools and Applications. Springer-Verlag (2009)

66. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Directions for agent model checking. In:
this volume, Chapter 4

67. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated Verification of Multi-Agent
Programs. In: Proc. 23rd IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pp. 69–78 (2008)

68. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking AgentSpeak. In:
Autonomous Agents and Multiagent Systems (AAMAS), pp. 409–416 (2003)

69. Bordini, R.H., Fisher, M., Sierhuis, M.: Analysing human-agent teamwork. In: 10th ESA
Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2008).
Noordwijk, The Netherlands. (2008)

70. Bordini, R.H., Fisher, M., Sierhuis, M.: Formal Verification of Human-robot Teamwork. In:
Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction
(HRI), pp. 267–268. ACM (2009)

71. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Model Checking Rational Agents.
IEEE Intelligent Systems 19(5), 46–52 (2004)

72. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: State-Space Reduction Techniques in
Agent Verification. In: Proceedings of the 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 896–903. IEEE Computer Society (2004)

73. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying Multi-Agent Programs by
Model Checking. Journal of Autonomous Agents and Multi-Agent Systems 12(2), 239–256
(2006)

74. Bordini, R.H., Fisher, M., Wooldridge, M., Visser, W.: Property-Based Slicing for Agent
Verification. Journal of Logic and Computation to appear (2009)

75. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of agent-oriented pro-
gramming. In: R.H. Bordini, M. Dastani, J. Dix, A. El Fallah Seghrouchni (eds.) Multi-Agent
Programming: Languages, Platforms and Applications, chap. 1. Springer-Verlag (2005)

76. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-
peak Using Jason. Wiley Series in Agent Technology. John Wiley & Sons (2007)

77. Bordini, R.H., Moreira, A.F.: Proving the asymmetry thesis principles for a BDI agent-
oriented programming language. Electronic Notes in Theoretical Computer Science 70(5)
(2002)

78. Bosse, T., Gerritsen, C., Treur, J.: Cognitive and social simulation of criminal behaviour:
the intermittent explosive disorder case. In: Proceedings of the Sixth International Joint
Conference on Autonomous Agents and Multi-Agent Systems, AAMAS’07, pp. 367–374.
ACM Press (2007)

79. Bosse, T., Jonker, C., Los, S., van der Torre, L., Treur, J.: Formal analysis of trace condition-
ing. Cognitive Systems Research Journal 8, 36–47 (2007)

80. Bosse, T., Jonker, C., van der Meij, L., Sharpanskykh, A., Treur, J.: Specification and verifica-
tion of dynamics in agent models. International Journal of Cooperative Information Systems
18(1), 167–193 (2009)

81. Bosse, T., Jonker, C., van der Meij, L., Treur, J.: A language and environment for analysis of
dynamics by simulation. International Journal of Artificial Intelligence Tools 16(3), 435–464
(2007)

References 389

82. Bosse, T., Jonker, C.M., van der Meij, L., Sharpanskykh, A., Treur, J.: Specification and
verification of dynamics in cognitive agent models. In: IAT, pp. 247–254 (2006)

83. Bosse, T., Sharpanskykh, A., Treur, J.: Modelling complex systems by integration of agent-
based and dynamical systems models. In: A. Minai, D. Braha, Y. Bar-Yam (eds.) Unifying
Themes in Complex Systems VI, Proceedings of the Sixth International Conference on Com-
plex Systems. Springer (2008)

84. Botı́a, J.A., Hernansaez, J.M., Gómez-Skarmeta, A.F.: On the application of clustering tech-
niques to support debugging large-scale multi-agent systems. In: PROMAS, pp. 217–227
(2006)

85. Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced timed
automata. Formal Methods in System Design 32(1), 3–23 (2008)

86. Bratman, M.E.: Intentions, Plans, and Practical Reasoning. Harvard University Press: Cam-
bridge, MA (1987)

87. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the BOID archi-
tecture. Cognitive Science Quarterly 2(3–4), 428–447 (2002)

88. Broersen, J., Dastani, M., van der Torre, L.: BDIOCTL: Obligations and the Specification of
Agent Behavior. In: Proceedings of IJCAI’03, pp. 1389–1390 (2003)

89. Broersen, J., Herzig, A., Troquard, N.: A STIT-extension of ATL. In: JELIA, pp. 69–81
(2006)

90. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
91. Bulling, N.: Model checking coalition logic on implicit models is δ3-complete. In: IfI Tech-

nical Reports (2010)
92. Bulling, N., Jamroga, W.: Verifying agents with memory is harder than it seemed. In: Pro-

ceedings of AAMAS 2010. ACM Press, Toronto, Canada (2010)
93. Bulygin, E.: Permissive norms and normative systems. In: A. Martino, F.S. Natali (eds.)

Automated Analysis of Legal Texts, pp. 211–218. Publishing Company, Amsterdam (1986)
94. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison Wesley Publish-

ing Company, Inc., Reading, Massachusetts (1988)
95. Cheong, C., Winikoff, M.: Hermes: Designing flexible and robust agent interactions. In:

V. Dignum (ed.) Multi-Agent Systems – Semantics and Dynamics of Organizational Models,
chap. 5, pp. 105–139. IGI (2009)

96. Chopra, A.K., Singh, M.P.: An architecture for multiagent systems: An approach based on
commitments. In: Workshop on Programming Multiagent Systems (ProMAS) (2009)

97. Chopra, A.K., Singh, M.P.: Multiagent commitment alignment. In: Autonomous Agents and
Multi-Agent Systems (AAMAS), pp. 937–944 (2009)

98. Cimatti, A., Clarke, E., Giunchuglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: Proc.
14th International Conference on Computer Aided Verification (CAV), LNCS, vol. 2404, pp.
359–364. Springer-Verlag (2002)

99. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using branching
time temporal logic. In: Proceedings of Logics of Programs Workshop, LNCS, vol. 131, pp.
52–71 (1981)

100. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
101. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite-State Concurrent

Systems Using Temporal Logic Specifications. ACM Transactions on Programming Lan-
guages and Systems 8(2), 244–263 (1986)

102. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
103. Clavel, M.: Reflection in Rewriting Logic: Metalogical Foundations and Metaprogramming

Applications. The University of Chicago Press, Chicago (2000)
104. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.: Maude

manual (version 2.4) (2009)
105. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.L. (eds.):

All About Maude - A High-Performance Logical Framework, How to Specify, Program and
Verify Systems in Rewriting Logic, Lecture Notes in Computer Science, vol. 4350. Springer
(2007)

390 References

106. Cleaveland, R.: Tableau-based model checking in the propositional mu-calculus. Acta Infor-
matica 27(8), 725–747 (1990)

107. Cleaveland, R., Sims, S.: Generic tools for verifying concurrent systems. Science of Com-
puter Programming 41(1), 39–47 (2002)

108. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking multi-agent
systems. In: Proc. of AAMAS, pp. 945–952 (2009)

109. Cohen, P., Levesque, H.: Persistence, intentions and commitment. In: Intentions in Commu-
nication, pp. 33–69. MIT Press (1990)

110. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelligence
42(2-3), 213–261 (1990)

111. Cohen, P.R., Levesque, H.J.: Rational interaction as the basis for communication. In: P.R.
Cohen, J. Morgan, M.E. Pollack (eds.) Intentions in Communication, pp. 221–255. MIT
Press, Cambridge, MA (1990)

112. Cohen, P.R., Levesque, H.J.: Confirmations and Joint Action. In: Proc. International Joint
Conference on Artificial Intelligence (IJCAI), pp. 951–959 (1991)

113. Cohen, P.R., Levesque, H.J.: Teamwork. Tech. Rep. 504, SRI International, Menlo Park, CA
(1991)

114. Collier, R.: Debugging agents in agent factory. ProMAS 2006 pp. 229–248 (2007)
115. Colombetti, M.: A commitment-based approach to agent speech acts and conversations. In:

Proc. of the International Autonomous Agent Workshop on Conversational Policies, pp. 21–
29 (2000)

116. Conte, R., Castelfranchi, C., Dignum, F.: Autonomous norm acceptance. In: J. Müller, M.P.
Singh, A.S. Rao (eds.) Proceedings of the 5th International Workshop on Intelligent Agents V
: Agent Theories, Architectures, and Languages (ATAL-98), vol. 1555, pp. 99–112. Springer-
Verlag: Heidelberg, Germany (1999)

117. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient algorithms for
verification of temporal properties. Formal Methods in System Design 1, 275–288 (1992)

118. Crow, J., Javaux, D., Rushby, J.: Models and mechanized methods that integrate human fac-
tors into automation design. In: International Conference on Human-Computer Interaction
in Aeronautics: HCI-Aero (2000)

119. Curzon, P., Rukšėnas, R., Blandford, A.: An approach to formal verification of human–
computer interaction. Formal Aspects of Computing 19(4), 513–550 (2007). DOI
10.1007/s00165-007-0035-6

120. Cysneiros, L., Yu., E.: Requirements engineering for large-scale multi-agent systems. In:
Proceedings of the 1st International Central and Eastern European Conference on Multi-
Agent Systems (CEEMAS’02), pp. 39–56. Springer Verlag (2002)

121. D. N. Lam, K.S.B.: Debugging agent behavior in an implemented agent system. ProMAS
2004 pp. 104–125 (2005)

122. Dastani, M.: 2APL: A practical agent programming language. Autonomous Agents and
Multi-Agent Systems 16(3), 214–248 (2008)

123. Dastani, M., Arbab, F., de Boer, F.S.: Coordination and composition in multi-agent systems.
In: Procs. of AAMAS’05, pp. 439–446 (2005)

124. Dastani, M., Grossi, D., Meyer, J.-J. Ch., Tinnemeier, N.: Normative multi-agent programs
and their logics. In: KRAMAS’08: Proceedings of the Workshop on Knowledge Represen-
tation for Agents and Multi-Agent Systems (2008)

125. Dastani, M., Grossi, D., Tinnemeier, N., Meyer, J.-J. Ch.: Normative multi-agent programs
and their logics. In: G. Boella, G. Pigozzi, P. Noriega, H. Verhagen (eds.) Normative Multi-
agent Systems, Dagstuhl Seminar Proceedings, vol. 09121 (2008)

126. Dastani, M., Meyer, J.-J. Ch.: Correctness of multi-agent programs: A hybrid approach. In:
this volume, Chapter 6

127. Dastani, M., Meyer, J.-J. Ch.: A practical agent programming language. In: M. Dastani,
A.E. Fallah-Seghrouchni, A. Ricci, M. Winikoff (eds.) Proceedings of the Fifth International
Workshop on Programming Multi-agent Systems (ProMAS’07), LNCS, vol. 4908, pp. 107–
123. Springer (2008)

References 391

128. Dastani, M., van Riemsdijk, M.B., Dignum, F., Meyer, J.-J. Ch.: A programming language
for cognitive agents: Goal directed 3APL. In: Proc. ProMAS 2003, LNCS, vol. 3067, pp.
111–130. Springer (2004)

129. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J. Ch.: Goal types in agent programming. In:
Proceedings of the 17th European Conference on Artifical Intelligence 2006 (ECAI’06),
Frontiers in Artificial Intelligence and Applications, vol. 141, pp. 220–224. IOS Press (2006)

130. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J. Ch.: A grounded specification language for
agent programs. In: Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’07), pp. 578–585. IFAAMAS, Honolulu, Hawaii
(2007)

131. Dastani, M., Tinnemeier, N.A.M., Meyer, J.-J. Ch.: A programming language for normative
multi-agent systems. In: V. Dignum (ed.) Multi-Agent Systems: Semantics and Dynamics of
Organizational Models, chap. 16. IGI Global (2008)

132. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J. Ch.: Programming Multi-Agent Systems in
3APL. chap. 2, pp. 39–67

133. Davoren, J., Nerode, A.: Logics for hybrid systems. Proceedings of the IEEE 88(7), 985–
1010 (2000)

134. De Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a concurrent programming lan-
guage based on the situation calculus. Artificial Intelligence 121(1–2), 109–169 (2000)

135. De Giacomo, G., Levesque, H.J.: Progression using regression and sensors. In: Proceed-
ings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99),
pp. 160–165 (1999)

136. Dehlinger, J., Dugan, J.B.: Dynamic Event/Fault Tree Analysis of Multi-Agent Systems us-
ing Galileo. In: Integration of Software Engineering and Agent Technology (ISEAT), pub-
lished as part of the Eighth International Conference on Quality Software (QSIC), pp. 429–
434. IEEE Computer Society (2008). DOI 10.1109/QSIC.2008.14

137. Dembiński, P., Janowska, A., Janowski, P., Penczek, W., Półrola, A., Szreter, M., Woźna, B.,
Zbrzezny, A.: Verics: A tool for verifying timed automata and estelle specifications. In: Pro-
ceedings of the of the 9th Int. Conf. on Tools and Algorithms for Construction and Analysis
of Systems (TACAS’03), LNCS, vol. 2619, pp. 278–283. Springer (2003)

138. Dennis, G., Yessenov, K., Jackson, D.: Bounded verification of voting software. In: Second
International Conference on Verified Software: Theories, Tools, Experiments, LNCS, vol.
5295, pp. 130–145. Springer (2008)

139. Dennis, L.A., Farwer, B.: Gwendolen: A BDI Language for Verifiable Agents. In: B. Löwe
(ed.) Logic and the Simulation of Interaction and Reasoning. AISB, Aberdeen (2008)

140. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M.: A flexible framework for verifying agent
programs. In: Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1303–1306.
IFAAMAS (2008)

141. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A Common Semantic
Basis for BDI Languages. In: Proc. 7th International Workshop on Programming Multiagent
Systems (ProMAS), Lecture Notes in Artificial Intelligence, vol. 4908, pp. 124–139. Springer
Verlag (2008)

142. Dennis, L.A., Fisher, M.: Programming Verifiable Heterogeneous Agent Systems. In: Proc.
6th International Workshop on Programming in Multi-Agent Systems (ProMAS), Lecture
Notes in Computer Science, vol. 5442, pp. 40–55. Springer Verlag (2008)

143. Dennis, L.A., Hepple, A., Fisher, M.: Language Constructs for Multi-Agent Programming.
In: Proc. 8th International Workshop on Computational Logic in Multi-Agent Systems
(CLIMA), Lecture Notes in Artificial Intelligence, vol. 5056, pp. 137–156. Springer (2008)

144. Dennis, L.A., Tinnemeier, N.A.M., Meyer, J.-J. Ch.: Model checking normative agent organ-
isations. In: Computational Logic in Multi-Agent Systems (CLIMA-X) (2009). To Appear

145. Dignum, V.: A model for organizational interaction. Ph.D. thesis, Utrecht University (2003)
146. Dignum, V. (ed.): Multi-Agent Systems - Semantics and Dynamics of Organizational Mod-

els. IGI Global (2009)

392 References

147. Dijkstra, E.W.: EWD611: On the fact that the Atlantic Ocean has two sides.
http://www.cs.utexas.edu/users/EWD/index06xx.html, originally published as pages 268–
276 of Selected Writings on Computing: A Personal Perspective, Springer-Verlag. ISBN
0–387–90652–5. (1982)

148. Dill, D.L.: What’s between simulation and formal verification? (extended abstract). In: DAC
’98: Proceedings of the 35th annual conference on Design automation, pp. 328–329. ACM,
New York, NY, USA (1998). DOI 10.1145/277044.277138

149. van Ditmarsch, H.P., Herzig, A., De Lima, T.: Optimal regression for reasoning about knowl-
edge and actions. In: Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence (AAAI 2007), pp. 1070–1075. AAAI Press (2007)

150. van Drimmelen, G.: Satisfiability in alternating-time temporal logic. In: Proceedings of
LICS’2003, pp. 208–217. IEEE Computer Society Press (2003)

151. Duce, D., Duke, D.: Syndetic modelling:: Computer science meets cognitive psychol-
ogy. Electronic Notes in Theoretical Computer Science 43, 50 – 74 (2001). DOI
10.1016/S1571-0661(04)80894-6. Formal Methods Elsewhere (a Satellite Workshop of
FORTE-PSTV-2000 devoted to applications of formal methods to areas other than commu-
nication protocols and software engineering)

152. Duff, S., Harland, J., Thangarajah, J.: On Proactivity and Maintenance Goals. In: Proceed-
ings of the fifth international joint conference on autonomous agents and multiagent systems
(AAMAS’06), pp. 1033–1040. Hakodate (2006)

153. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: International Conference on Software Engineering (ICSE), pp. 411–420
(1999)

154. Eker, S., Martı́-Oliet, N., Meseguer, J., Verdejo, A.: Deduction, strategies, and rewriting.
Electronic Notes in Theoretical Computer Science 174(11), 3–25 (2007)

155. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In: F. Ga-
ducci, U. Montanari (eds.) Proceedings of the 4th International Workshop on Rewriting
Logic and Its Applications (WRLA 2002), Electronic Notes in Theoretical Computer Sci-
ence, vol. 71. Elsevier (2002)

156. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker and its im-
plementation. In: Model Checking Software: Proc. 10 th Intl. SPIN Workshop, LNCS, vol.
2648, pp. 230–234. Springer (2003). URL citeseer.ist.psu.edu/eker03maude.html

157. Ekinci, E.E., Tiryaki, A.M., Çetin, Ö.: Goal-oriented agent testing revisited. In: J.J. Gomez-
Sanz, M. Luck (eds.) Ninth International Workshop on Agent-Oriented Software Engineering
(AOSE), pp. 85–96 (2008)

158. Emerson, E., Halpern, J.: ”sometimes” and ”not never” revisited: On branching versus linear
time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

159. Emerson, E.A.: Temporal and modal logic. In: J. van Leeuwen (ed.) Handbook of Theoretical
Computer Science, vol. B, pp. 995–1072. Elsevier Science Publishers (1990)

160. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. In:
SFCS ’88: Proceedings of the 29th Annual Symposium on Foundations of Computer Science,
pp. 328–337. IEEE Computer Society, Washington, DC, USA (1988)

161. Emerson, E.A., Lei, C.L.: Modalities for model checking: Branching time logic strikes back.
Science of Computer Programming 8(3), 275–306 (1987)

162. Emerson, E.A., Sistla, A.P.: Deciding branching time logic. In: STOC ’84: Proceedings of
EL87 sixteenth annual ACM symposium on Theory of computing, pp. 14–24. ACM, New
York, NY, USA (1984)

163. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Protocol conformance for logic-based agents. In:
Proc. of the International Joint Conference on AI, pp. 679–684 (2003)

164. Engelfriet, J., Jonker, C.M., Treur, J.: Compositional verification of multi-agent systems in
temporal multi-epistemic logic. In: J.P. Müller, M.P. Singh, A.S. Rao (eds.) Intelligent Agents
V: Proceedings of the Fifth International Workshop on Agent Theories, Architectures and
languages (ATAL’98), LNAI, vol. 1555, pp. 177–194. Springer-Verlag (1999)

citeseer.ist.psu.edu/eker03maude.html

References 393

165. Engelhardt, K., van der Meyden, R., Moses, Y.: Knowledge and the logic of local proposi-
tions. In: Proc. of the International Conference on Theoretical Aspects of Reasoning about
Knowledge, pp. 29–41 (1998)

166. Esteva, M., Rodrı́guez-Aguilar, J., Rosell, B., Arcos, J.: Ameli: An agent-based middleware
for electronic institutions. In: Proc. of AAMAS’04. New York, US (2004)

167. Esteva, M., Rosell, B., Rodrı́guez-Aguilar, J.A., Arcos, J.L.: AMELI: An Agent-Based Mid-
dleware for Electronic Institutions. In: AAMAS, pp. 236–243. IEEE Computer Society
(2004)

168. Ezekiel, J., Lomuscio, A.: Combining fault injection and model checking to verify fault toler-
ance in multi-agent systems. In: Autonomous Agents and Multi-Agent Systems (AAMAS),
pp. 113–120 (2009)

169. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press:
Cambridge, MA (1995)

170. Farwer, B., Dennis, L.: Translating into an intermediate agent layer: A prototype in Maude.
In: Proceedings of Concurrency, Specification, and Programming (CS&P’07), pp. 168–179
(2007)

171. Ferber, J., Gutknecht, O.: A Meta-model for the Analysis and Design of Organizations in
Multi-agent Systems. In: Proc. Third International Conference on Multi-Agent Systems (IC-
MAS), pp. 128–135 (1998)

172. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An Organizational View
of Multi-agent Systems, vol. 2935, pp. 214–230. Springer (2004)

173. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput.
Syst. Sci. 18(2), 194–211 (1979)

174. Fisher, M.: MM: The Story so Far. In: Proc. 3rd International Workshop on Program-
ming Multiagent Systems (ProMAS), LNAI, vol. 3862, pp. 3–22. Springer Verlag (2006)

175. Fisher, M., Bordini, R., Hirsch, B., Torroni, P.: Computational Logics and Agents: A
Roadmap of Current Technologies and Future Trends. Computational Intelligence 23(1),
61–91 (2007)

176. Fisher, M., Bordini, R.H., Sierhuis, M.: Analysing Human-Agent Teamwork. In: Proc. 10th
ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA).
Katwijk, Netherlands. (2008)

177. Fisher, M., Ghidini, C., Hirsch, B.: Programming Groups of Rational Agents. In: Computa-
tional Logic in Multi-Agent Systems (CLIMA-IV), Lecture Notes in Computer Science, vol.
3259, pp. 849–856. Springer-Verlag (2004)

178. Fisher, M., Ghidini, C., Kakoudakis, T.: Dynamic Team Formation in Executable Agent-
Based Systems. In: Rouff et al. [374]

179. Fisher, M., Kakoudakis, T.: Flexible Agent Grouping in Executable Temporal Logic. In:
Gergatsoulis, Rondogiannis (eds.) Intensional Programming II. World Scientific Publishing
Co. (2000)

180. Fitting, M.: First-order Logic and Automated Theorem Proving. MIT Press, Springer Verlag
(1996)

181. Floyd, R.W.: Assigning Meaning to Programs. In: J.T. Schwartz (ed.) Mathematical As-
pects of Computer Science: Proc. American Mathematics Soc. symposia, vol. 19, pp. 19–31.
American Mathematical Society, Providence RI (1967)

182. Fornara, N., Colombetti, M.: Operational specification of a commitment-based agent com-
munication language. In: Proc. of the International Joint Conference on AAMAS, pp. 535–
542 (2002)

183. Fox, M.S.: An Organizational View of Distributed Systems. In: Distributed Artificial Intelli-
gence, pp. 140–150. Morgan Kaufmann Publishers Inc., San Francisco, USA (1988)

184. Francez, N.: Fairness. Springer-Verlag, New York (1986)
185. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math.

Systems Theory 17, 13–27 (1984)
186. Fuxman, A., Liu, L., Pistore, M., Roveri, M., Mylopoulos, J.: Specifying and analyzing early

requirements in tropos. Requirements Engineering Journal 9(2), 132–150 (2004)

394 References

187. Gao, J., Heimdahl, M., Owen, D., Menzies, T.: On the distribution of property violations in
formal models: An initial study. In: Proceedings of the 30th Annual International Computer
Software and Applications Conference (COMPSAC’06). IEEE Computer Society (2006)

188. Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.A.: Implementing norms in electronic
institutions. In: Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems (AAMAS’05), pp. 667–673. ACM Press (2005)

189. Gardelli, L., Viroli, M., Omicini, A.: Design Patterns for Self-Organizing Multiagent Sys-
tems. In: Proc. 2nd International Workshop on Engineering Emergence in Decentralised
Autonomic Systems (EEDAS), pp. 61–70. CMS Press, London, UK (2007)

190. Gelernter, D., Zuck, L.D.: On what linda is: Formal description of linda as a reactive system.
In: D. Garlan, D.L. Métayer (eds.) COORDINATION, Lecture Notes in Computer Science,
vol. 1282, pp. 187–204. Springer (1997)

191. Georgeff, M.P., Lansky, A.L.: Reactive Reasoning and Planning. In: Proc. American National
Conference on Artificial Intelligence (AAAI), pp. 677–682 (1987)

192. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kauf-
mann (2004)

193. Giacomo, G.d., Lespérance, Y., Levesque, H.: ConGolog, a Concurrent Programming Lan-
guage Based on the Situation Calculus. Artificial Intelligence 121(1-2), 109–169 (2000)

194. Giddens, A.: Social Theory and Modern Sociology. Polity Press (1984)
195. Giordano, L., Martelli, A., Schwind, C.: Verifying communicating agents by model checking

in a temporal action logic. In: Logics in Artificial Intelligence, pp. 57–69 (2004)
196. van Glabbeek, R.J.: The linear time-branching time spectrum (extended abstract). In: J.C.M.

Baeten, J.W. Klop (eds.) CONCUR, Lecture Notes in Computer Science, vol. 458, pp. 278–
297. Springer (1990)

197. Goffman, E.: Strategic interaction. Basil Blackwell, Oxford (1970)
198. Goldblatt, R.: Logics of Time and Computation, CSLI Lecture Notes, vol. 7, 2nd edn.

Springer (1992)
199. Gomez-Sanz, J.J., Botı́a, J., Serrano, E., Pavón, J.: Testing and debugging of MAS interac-

tions with INGENIAS. In: J.J. Gomez-Sanz, M. Luck (eds.) Ninth International Workshop
on Agent-Oriented Software Engineering (AOSE), pp. 133–144 (2008)

200. Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of the
Alternating-time Temporal Logic (2003)

201. Goranko, V., Jamroga, W.: Comparing semantics of logics for multi-agent systems. Synthese
139(2), 241–280 (2004)

202. Grossi, D.: Designing invisible handcuffs. formal investigations in institutions and organiza-
tions for multi-agent systems. Ph.D. thesis, Utrecht University, SIKS (2007)

203. Grossi, D., Aldewereld, H., Dignum, F.: Ubi lex ibi poena. designing norm enforcement
in electronic institutions. In: V. Dignum, N. Fornara, P. Noriega, G. Boella, O. Boissier,
E. Matson, J. Vázquez-Salceda J.zquez-Salceda (eds.) Proceedings of COIN@AAMAS’06,
LNCS, vol. 4386, pp. 101–114. Springer (2006)

204. Hall, K.H., Staron, R.J., Vrba, P.: Experience with holonic and agent-based control systems
and their adoption by industry. In: V. Mařı́k, R. Brennan, M. Pěchouček (eds.) HoloMAS
2005, Lecture Notes in Artificial Intelligence (LNAI), vol. 3593, pp. 1–10 (2005)

205. Halpern, R.F.J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press, Cambridge
(1995)

206. Hansen, J.: Imperatives and Deontic Logic: On the Semantic Foundations of Deontic Logic.
University of Leipzig (2008)

207. Hansen, J., Pigozzi, G., van der Torre, L.: Ten philosophical problems in deontic logic. In:
G. Boella, L. van der Torre, H. Verhagen (eds.) Normative Multi-agent Systems, no. 07122 in
DROPS Proceedings. Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany (2007)

208. Harding, A., Ryan, M., Schobbens, P.Y.: Approximating ATL* in ATL. In: VMCAI ’02:
Revised Papers from the Third International Workshop on Verification, Model Checking,
and Abstract Interpretation, pp. 289–301. Springer-Verlag, London, UK (2002)

References 395

209. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. In: D. Gabbay, F. Guenthner (eds.) Hand-
book of Philosophical Logic: Volume II: Extensions of Classical Logic, pp. 497–604. Reidel,
Dordrecht, The Netherlands (1984)

210. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
211. Havelund, K., Pressburger, T.: Model checking java programs using java pathfinder. Interna-

tional Journal on Software Tools for Technology Transfer (STTT) (1999)
212. Hennessy, M.: The Semantics of Programming Languages. John Wiley & Sons (1990)
213. Hepple, A., Dennis, L.A., Fisher, M.: A Common Basis for Agent Organisations in BDI Lan-

guages. In: Proc. International Workshop on LAnguages, methodologies and Development
tools for multi-agent systemS (LADS), Lecture Notes in Artificial Intelligence, vol. 5118, pp.
171–88. Springer-Verlag (2008)

214. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing real-
time systems using UPPAAL. In: R.M. Hierons, J.P. Bowen, M. Harman (eds.) Formal
Methods and Testing, Lecture Notes in Computer Science, vol. 4949, pp. 77–117. Springer
(2008)

215. Hindriks, K.: Modules as Policy-Based Intentions: Modular Agent Programming in GOAL.
In: Proceedings of the International Workshop on Programming Multi-Agent Systems (Pro-
MAS’07), vol. 4908, pp. 156–171 (2008)

216. Hindriks, K., de Boer, F., van der Hoek, W., Meyer, J.-J. Ch.: A Programming Logic for part
of the Agent Language 3APL. In: J. Rash (ed.) Proceedings of the First Goddard Workshop
on Formal Approaches to Agent-Based Systems, pp. 78–89. Springer-Verlag (2001)

217. Hindriks, K., van der Hoek, W.: G agents instantiate intention logic. In: Proceedings of
the 11th European Conference on Logics in Artificial Intelligence (JELIA’08), pp. 232–244
(2008)

218. Hindriks, K., Meyer, J.-J. Ch.: Agent logics as program logics: Grounding KARO. In: Proc.
29th German Conference on AI (KI 2006), LNAI, vol. 4314. Springer (2007)

219. Hindriks, K., Meyer, J.-J. Ch.: Toward a programming theory for rational agents. Journal of
Autonomous Agents and Multi-Agent Systems (special issue FAMAS 2006) 19, 4–29 (2009)

220. Hindriks, K., van Riemsdijk, B.: A computational semantics for communicating rational
agents based on mental models. In: Proceedings of the International Workshop on Pro-
gramming Multi-Agent Systems (ProMAS’09) (to appear)

221. Hindriks, K.V.: Programming Rational Agents in GOAL. In: Bordini et al. [65], chap. 4, pp.
119–157

222. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J. Ch.: Agent programming in
3APL. Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

223. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J. Ch.: Agent Programming in
3APL. Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

224. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J. Ch.: Agent programming with
declarative goals. In: C. Castelfranchi, Y. Lespérance (eds.) Intelligent Agents VII. Agent
Theories Architectures and Languages, 7th International Workshop, ATAL 2000, Boston,
MA, USA, July 7-9, 2000, Proceedings, Lecture Notes in Computer Science, vol. 1986, pp.
228–243. Springer (2001)

225. Hindriks, K.V., Lespérance, Y., Levesque, H.: An Embedding of ConGolog in 3APL. In:
Proceedings of the 14th European Conference on Artificial Intelligence (ECAI’00), pp. 558–
562 (2000)

226. Hindriks, K.V., Meyer, J.-J. Ch.: Towards a programming theory for rational agents. Au-
tonomous Agents and Multi-Agent Systems 19(1), 4–29 (2009)

227. Hindriks, K.V., van Riemsdijk, M.B., van der Hoek, W.: Agent programming with temporally
extended goals. In: Proceedings of the 8th International Conference on Autonomous Agents
and Multi-Agent Systems, p. to appear (2009)

228. Hindriks, K.V., Roberti, T.: Goal as a planning formalism. In: Proceedings of MATES 2009
(2009)

229. Hintikka, J.: Logic, Language Games and Information. Clarendon Press : Oxford (1973)
230. Hirsch, B.: Programming Rational Agents. Ph.D. thesis, Department of Computer Science,

University of Liverpool (2005)

396 References

231. van der Hoek, W., Lomuscio, A., Wooldridge, M.: On the complexity of practical ATL model
checking. In: P. Stone, G. Weiss (eds.) Proceedings of AAMAS’06, pp. 201–208 (2006)

232. van der Hoek, W., Wooldridge, M.: Model checking knowledge and time. In: SPIN 2002 -
Proceedings of the Ninth International SPIN Workshop on Model Checking of Software, pp.
95–111 (2002)

233. van der Hoek, W., Wooldridge, M.: Cooperation, knowledge and time: Alternating-time Tem-
poral Epistemic Logic and its applications. Studia Logica 75(1), 125–157 (2003)

234. van der Hoek, W., Wooldridge, M.: Towards a logic of rational agency. Logic Journal of the
IGPL 11(2), 133–157 (2003)

235. Hollis, M.: Trust within reason. Cambridge University Press, Cambridge (1998)
236. Holzmann, G.: The model checker SPIN. IEEE Trans. Software Engineering 23(5), 279–295

(1997)
237. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley

(2003)
238. Hooman, J.: Compositional verification of a distributed real-time arbitration protocol. Real-

Time Systems 6, 173–206 (1994)
239. Hopcroft, J.E., Motwani, R., Rotwani, Ullman, J.D.: Introduction to Automata Theory, Lan-

guages and Computability. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (2000)

240. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. The Knowledge
Engineering Review 19(4), 281–316 (2004)

241. Hübner, J.F., Sichman, J.S., Boissier, O.: A Model for the Structural, Functional, and Deontic
Specification of Organizations in Multiagent Systems. In: Proc. 16th Brazilian Symposium
on Artificial Intelligence (SBIA), pp. 118–128. Springer-Verlag, London, UK (2002)

242. Hübner, J.F., Sichman, J.S., Boissier, O.: Moise+: towards a structural, functional, and deon-
tic model for mas organization. In: AAMAS, pp. 501–502. ACM (2002)

243. Hubner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems using the
moise+ model: programming issues at the system and agent levels. Int. J. Agent-Oriented
Softw. Eng. 1(3/4), 370–395 (2007)

244. Huget, M., Wooldridge, M.: Model checking for ACL compliance verification. In: Advances
in Agent Communication, pp. 75–90 (2004)

245. Hurwicz, L.: Optimality and informational efficiency in resource allocation processes. In:
K. Arrow, S. Karlin, P. Suppes (eds.) Mathematical Methods in the Social Sciences. Stanford
University Press (1960)

246. Hustadt, U., Schmidt, R.A.: MSPASS: Modal reasoning by translation and first-order resolu-
tion. In: Proc. TABLEAUX 2000, LNCS, vol. 1847, pp. 67–71. Springer (2000)

247. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press (2004). (2nd Edition)

248. Immerman, N.: Number of quantifiers is better than number of tape cells. Journal of Com-
puter and System Sciences 22(3), 384 – 406 (1981)

249. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press (2006)
250. Jackson, D.: A direct path to dependable software. CACM 52(4), 78–88 (2009). DOI

10.1145/1498765.1498787
251. Jackson, M.O.: A crash course in implementation theory. Social Choice and Welfare 18,

655–708 (2001)
252. Jackson, M.O.: Mechanism theory. In: U. Derigs (ed.) Encyclopedia of Life Support Systems.

EOLSS Publishers (2003)
253. Jamroga, W.: A temporal logic for stochastic multi-agent systems. In: Proceedings of

PRIMA’08, LNCS, vol. 5357, pp. 239–250 (2008)
254. Jamroga, W., Ågotnes, T.: Modular interpreted systems: A preliminary report. Tech. Rep.

IfI-06-15, Clausthal University of Technology (2006)
255. Jamroga, W., Ågotnes, T.: Constructive knowledge: What agents can achieve under incom-

plete information. Journal of Applied Non-Classical Logics 17(4), 423–475 (2007)
256. Jamroga, W., Ågotnes, T.: Modular interpreted systems. In: Proceedings of AAMAS’07, pp.

892–899 (2007)

References 397

257. Jamroga, W., Dix, J.: Do agents make model checking explode (computationally)? In:
M. Pĕchouc̆ek, P. Petta, L. Varga (eds.) Proceedings of CEEMAS 2005, Lecture Notes in
Computer Science, vol. 3690, pp. 398–407. Springer Verlag (2005)

258. Jamroga, W., Dix, J.: Model checking ATLir is indeed ∆P
2 -complete. In: Proceedings of

EUMAS’06 (2006)
259. Jamroga, W., Dix, J.: Model checking abilities of agents: A closer look. Theory of Computing

Systems 42(3), 366–410 (2008)
260. Jones, A.J.I., Sergot, M.: On the characterization of law and computer systems. Deontic

Logic in Computer Science pp. 275–307 (1993)
261. Jones, C.: What can we do (technically) to get ‘the right specification’? (2005). IFIP TC2

Working Conference, VSTTE, ETH Zurich
262. Jones, C.B., Hayes, I.J., Jackson, M.A.: Deriving specifications for systems that are con-

nected to the physical world. In: C.B. Jones, Z. Liu, J. Woodcock (eds.) Formal Methods
and Hybrid Real-Time Systems: Essays in Honour of Dines Bjørner and Zhou Chaochen on
the Occassion of Their 70th Birthdays, Lecture Notes in Computer Science, vol. 4700, pp.
364–390. Springer Verlag (2007). DOI 10.1007/978-3-540-75221-9 16

263. Jonker, C., Sharpanskykh, A., Treur, J., Yolum, P.: A framework for formal modeling and
analysis of organizations. Applied Intelligence 27(1), 49–66 (2007)

264. Jonker, C., Treur, J.: Compositional verification of multi-agent systems: a formal analysis of
pro-activeness and reactiveness. International Journal of Cooperative Information Systems
11, 51–92 (2002)

265. Java PathFinder. http://javapathfinder.sourceforge.net
266. Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of multiagent systems via unbounded

model checking. In: Proc. of the International Joint Conference on AAMAS, pp. 638–645
(2004)

267. Kacprzak, M., Penczek, W.: Unbounded model checking for alternating-time temporal logic.
In: The International Joint Conference on AAMAS, pp. 646–653 (2004)

268. Kanger, S.: New fondations for ethical theory. In: R. Hilpinen (ed.) Deontic Logic: Introduc-
tory and Systematic Readings, pp. 36–58. Reidel Publishing Company (1971)

269. Kazmierczak, E., Dart, P., Sterling, L., Winikoff, M.: Verifying requirements through mathe-
matical modelling and animation. International Journal of Software Engineering and Knowl-
edge Engineering 10(2), 251–273 (2000)

270. Kelly, T., Weaver, R.: The goal structuring notation–a safety argument notation. In: Proc.
DSN Workshop on Assurance Cases: Best Practices, Possible Obstacles, and Future Oppor-
tunities (2004)

271. Kinny, D., Ljungberg, M., Rao, A.S., Sonenberg, E., Tidhar, G., Werner, E.: Planned Team
Activity. In: Artificial Social Systems — Selected Papers from the Fourth European Work-
shop on Modelling Autonomous Agents and Multi-Agent Worlds (MAAMAW), Lecture
Notes in Artificial Intelligence, vol. 830, pp. 226–256. Springer-Verlag (1992)

272. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4,
67–95 (2002)

273. Kremer, R., Flores, R.: Using a performative subsumption lattice to support commitment-
based conversations. In: F. Dignum, V. Dignum, S. Koenig, S. Kraus, M.P. Singh,
M. Wooldridge (eds.) Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 114–
121. ACM Press (2005)

274. Kumar, S., Cohen, P.R.: STAPLE: An Agent Programming Language Based on the Joint
Intention Theory. In: Proc. 3rd International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 1390–1391. IEEE Computer Society (2004)

275. Kupferman, O., Vardi, M., Wolper, P.: An automata-theoretic approach to branching-time
model checking. Journal of the ACM 47(2), 312–360 (2000)

276. Lakemeyer, G., Levesque, H.J.: AOL: a logic of acting, sensing, knowing, and only know-
ing. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Sixth
International Conference (KR-98), pp. 316–327 (1998)

277. Laroussinie, F.: About the expressive power of CTL combinators. Information Processing
Letters 54(6), 343–345 (1995)

398 References

278. Laroussinie, F., Markey, N., Oreiby, G.: Expressiveness and complexity of ATL. Tech. Rep.
LSV-06-03, CNRS & ENS Cachan, France (2006)

279. Laroussinie, F., Markey, N., Oreiby, G.: On the expressiveness and complexity of atl. LNCS
4, 7 (2008)

280. Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking CTL+ and FCTL is hard. In:
Proceedings of FoSSaCS’01, Lecture Notes in Computer Science, vol. 2030, pp. 318–331.
Springer (2001)

281. Lespérance, Y., Levesque, H.J., Reiter, R.: A situation calculus approach to modeling and
programming agents. In: A. Rao, M. Wooldridge (eds.) Foundations and Theories of Rational
Agency, pp. 275–299. Kluwer (1999)

282. Levesque, H.J., Cohen, P.R., Nunes, J.H.T.: On Acting Together. In: Proc. 8th American
National Conference on Artificial Intelligence (AAAI), pp. 94–99 (1990)

283. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic program-
ming language for dynamic domains. Journal of Logic Programming 31, 59–84 (1997)

284. Lewis, D.: A problem about permission. In: E. Saarinen (ed.) Essays in Honour of Jaakko
Hintikka, pp. 163–175. D. Reidel, Dordrecht (1979)

285. Lewis, D., Dobson, S.: Autonomic, Pervasive and Context-Aware Systems. Jouranl of Net-
work System Management 15(1), 1–3 (2007)

286. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their linear
specification. In: POPL ’85: Proceedings of the 12th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pp. 97–107. ACM, New York, NY, USA (1985)

287. Lindahl, L., Odelstad, J.: Open and closed intermediaries in normative systems. In: T. van
Engers (ed.) Proceedings of the Nineteenth JURIX Conference on Legal Knowledge and
Information Systems (JURIX 2006), pp. 91–100 (2006)

288. Liu, Y.: A Hoare-style proof system for robot programs. In: Proceedings of the Eighteenth
National Conference on Artificial intelligence (AAAI/IAAI’02), pp. 74 – 79 (2002)

289. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag (1993)
290. Lomuscio, A., Raimondi, F.: Mcmas: A model checker for multi-agent systems. In: Proc.

TACAS 2006, pp. 450–454 (2006)
291. Lopez, F., Luck, M., d’Inverno, M.: A normative framework for agent-based systems. Com-

putational and Mathematical Organization Theory 12, 227–250 (2006)
292. Lowry, M., Boyd, M., Kulkami, D.: Towards a theory for integration of mathematical verifi-

cation and empirical testing. In: 13th IEEE International Conference on Automated Software
Engineering, pp. 322–331 (1998). DOI 10.1109/ASE.1998.732690

293. Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next Generation Computing
(A Roadmap for Agent Based Computing). AgentLink (2003)

294. MacKenzie, D.: Knowing Machines: Essays on Technical Change. MIT Press (1996). ISBN
0-262-13315-6

295. MacKenzie, D.: Mechanizing Proof: Computing, Risk, and Trust. MIT Press (2001). ISBN
0-262-13393-8

296. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems. Springer-
Verlag New York, Inc., New York, NY, USA (1992)

297. Manna, Z., Pnueli, A.: Verifying Hybrid Systems, vol. 736, pp. 4–35. Springer (1993)
298. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems - Safety. Springer-Verlag

(1995)
299. Manzano, M.: Extensions of First Order Logic. Cambridge University Press (1996)
300. Marca, D.: SADT: Structured Analysis and Design Techniques. McGraw-Hill, Cambridge

MA (1988)
301. Martı́-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework. In:

J. Meseguer (ed.) Electronic Notes in Theoretical Computer Science, vol. 4. Elsevier Science
Publishers (2000)

302. Maruichi, T., Ichikawa, M., Tokoro, M.: Modelling Autonomous Agents and their Groups.
In: Y. Demazeau, J.P. Müller (eds.) Decentralized AI 2 — Proc. 2nd European Workshop
on Modelling Autonomous Agents and Multi-Agent Worlds (MAAMAW). Elsevier/North
Holland (1991)

References 399

303. Maskin, E.: Nash equilibrium and welfare optimality. Review of Economic Studies 66, 23–38
(1999)

304. Maudet, N., Chaib-draa, B.: Commitment-based and dialogue-game based protocols, new
trends in agent communication languages. Knowledge Engineering Review 17(2), 157–179
(2002)

305. Mayer, M.C., Limongelli, C., Orlandini, A., Poggioni, V.: Linear temporal logic as an exe-
cutable semantics for planning languages. Journal of Logic, Lang and Information 16, 63–89
(2007)

306. Mazurkiewicz, A.: Trace Theory, in Advances in Petri nets II: applications and relationships
to other models of concurrency, LNCS, vol. 255. Springer (1987)

307. McBurney, P., Parsons, S.: Games that agents play: A formal framework for dialogues be-
tween autonomous agents. Journal of Logic, Language, and Information 11(3), 315–334
(2002)

308. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial in-
telligence. In: B. Meltzer, D. Michie (eds.) Machine Intelligence 4. Edinburgh University
Press (1969)

309. McDermott, D.: A temporal logic for reasoning about processes and plans. Cognitive Science
6, 101–155 (1982)

310. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
311. Meng, S., Arbab, F.: Web services choreography and orchestration in Reo and constraint

automata. In: Y. Cho, R.L. Wainwright, H. Haddad, S.Y. Shin, Y.W. Koo (eds.) SAC, pp.
346–353. ACM (2007)

312. Mermet, B., Simon, G., Zanuttini, B., Saval, A.: Specifying and Verifying a MAS: The
Robots on Mars Case Study. In: Post Proceedings ProMAS’07, Lecture Notes in Artificial
Intelligence (LNAI), vol. 4908, pp. 172–189 (2008). Detailed model and proofs available
at http://users.info.unicaen.fr/˜zanutti/data/articles/mssz07companion.
pdf

313. Meyer, J.-J. Ch.: A different approach to deontic logic: Deontic logic viewed as a variant of
dynamic logic. Notre Dame Journal of Formal Logic 29(1), 109–136 (1988)

314. Meyer, J.-J. Ch., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cam-
bridge: Cambridge University Press (1995)

315. Meyer, J.-J Ch., van der Hoek, W., van Linder, B.: A Logical Approach to the Dynamics of
Commitments. Artificial Intelligence 113(1-2), 1–40 (1999)

316. Milner, R.: Operational and algebraic semantics of concurrent processes. In: J. van Leeuwen
(ed.) Handbook of Theoretical Computer Science, pp. 1201–1242. Elsevier, Amsterdam
(1990)

317. Misra, J.: A programming model for the orchestration of web services. In: SEFM, pp. 2–11.
IEEE Computer Society (2004)

318. Moulin, B.: The social dimension of interactions in multi-agent systems. In: Proceedings of
the Workshops on Commonsense Reasoning, Intelligent Agents, and Distributed Artificial
Intelligence: Agents and Multi-Agent Systems Formalisms, Methodologies, and Applica-
tions, pp. 109 – 123 (1998)

319. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic au-
tomata: new results and new proofs of the theorems of rabin, mcnaughton and safra.
Theor. Comput. Sci. 141(1-2), 69–107 (1995). DOI http://dx.doi.org/10.1016/0304-3975(94)
00214-4

320. Munroe, S., Miller, T., Belecheanu, R., Pechoucek, M., McBurney, P., Luck, M.: Crossing the
agent technology chasm: Experiences and challenges in commercial applications of agents.
Knowledge Engineering Review 21(4), 345–392 (2006)

321. Newell, A.: The Knowledge Level. Artificial Intelligence 18(1), 87–127 (1982)
322. Nguyen, C.D., Perini, A., Tonella, P.: Experimental evaluation of ontology-based test gen-

eration for multi-agent systems. In: J.J. Gomez-Sanz, M. Luck (eds.) Ninth International
Workshop on Agent-Oriented Software Engineering (AOSE), pp. 165–176 (2008)

http://users.info.unicaen.fr/~zanutti/data/articles/mssz07companion.pdf
http://users.info.unicaen.fr/~zanutti/data/articles/mssz07companion.pdf

400 References

323. Nguyen, C.D., Perini, A., Tonella, P., Miles, S., Harman, M., Luck, M.: Evolutionary testing
of autonomous software agents. In: Autonomous Agents and Multi-Agent Systems (AA-
MAS), pp. 521–528 (2009)

324. North, D.C.: Institutions, Institutional Change and Economic Performance. Cambridge Uni-
versity Press, Cambridge (1990)

325. Nwana, H.S., Ndumu, D.T., Lee, L.C., Collis, J.C.: ZEUS. a toolkit for building distributed
multi-agent systems. Applied Artificial Intelligence Journal 13(1), 129–185 (1999)

326. Ölveczky, P.C., Meseguer, J.: The Real-Time Maude tool. In: C.R. Ramakrishnan, J. Rehof
(eds.) TACAS, Lecture Notes in Computer Science, vol. 4963, pp. 332–336. Springer (2008)

327. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)
328. van Otterloo, S., van der Hoek, W., Wooldridge, M.: Knowledge as strategic ability. Elec-

tronic Lecture Notes in Theoretical Computer Science 85(2) (2003)
329. Owen, D., Menzies, T.: Lurch: a lightweight alternative to model checking. In: Software

Engineering and Knowledge Engineering (SEKE), pp. 158–165 (2003)
330. Owen, D.R.: Combining complementary formal verification strategies to improve perfor-

mance and accuracy. Ph.D. thesis, West Virginia University, Lane Department of Computer
Science and Electrical Engineering (2007)

331. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining specification,
proof checking, and model checking. In: R. Alur, T.A. Henzinger (eds.) Computer-Aided
Verification, CAV ’96, Lecture Notes in Computer Science, vol. 1102, pp. 411–414. Springer-
Verlag, New Brunswick, NJ (1996)

332. Paulson, L.C.: A Generic Theorem Prover, Lecture Notes in Computer Science, vol. 828.
Springer-Verlag (1994)

333. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computation
12(1), 149–166 (2002)

334. Pearson, C.: Numerical Methods in Engineering and Science. CRC Press (1986)
335. Pecheur, C., Raimondi, F.: Symbolic model checking of logics with actions. In: Proc. of

Model Checking and Artificial Intelligence, pp. 113–128 (2007)
336. Pednault, E.P.: ADL and the State-Transition Model of Action. Journal of Logic and Com-

putation 4(5), 467–512 (1994)
337. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems via model

checking. Fundamenta Informaticae 55(2), 167–185 (2003)
338. Pill, I., Semprini, S., Cavada, R., Roveri, M., Bloem, R., Cimatti, A.: Formal analysis of

hardware requirements. In: Proceedings of the 43rd annual conference on Design automation
(DAC ’06) (2006)

339. Pinto, J., Reiter, R.: Reasoning about time in the situation calculus. Ann. Math. Artif. Intell
14, 251–268 (1995)

340. Plotkin, G.D.: A Structural Approach to Operational Semantics. Tech. Rep. DAIMI FN-19,
University of Aarhus (1981)

341. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS, pp. 46–57 (1977)
342. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL ’89: Proceedings

of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pp. 179–190. ACM, New York, NY, USA (1989)

343. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. chap. 6, pp.
149–174

344. Port, R., van Gelder, T. (eds.): Mind as Motion: Explorations in the Dynamics of Cognition.
MIT Press (1995)

345. Poutakidis, D., Padgham, L., Winikoff, M.: Debugging multi-agent systems using design
artifacts: The case of interaction protocols. In: In Proceedings of AAMAS-02, pp. 960–967
(2002)

346. Poutakidis, D., Padgham, L., Winikoff, M.: An exploration of bugs and debugging in multi-
agent systems. In: In Proceedings of the 14th International Symposium on Methodologies
for Intelligent Systems (ISMIS), pp. 628–632. ACM Press (2003)

347. Pratt, V.: Semantical considerations on Floyd-Hoare logic. In: Proc. of the 17th IEEE Symp.
on Foundations of Computer Science, pp. 109–121 (1976)

References 401

348. Purdy, W.: Fluted formulas and the limits of decidability. Journal of Symbolic Logic 61,
608–620 (1996)

349. Pěchouček, M., Mařı́k, V.: Industrial deployment of multi-agent technologies: review and
selected case studies. Journal of Autonomous Agents and Multi-Agent Systems 17, 397–431
(2008). DOI 10.1007/s10458-008-9050-0

350. Pynadath, D.V., Tambe, M.: The Communicative Multiagent Team Decision Problem: An-
alyzing Teamwork Theories and Models. Journal of Artificial Intelligence Research 16,
389–423 (2002)

351. Pynadath, D.V., Tambe, M., Chauvat, N., Cavedon, L.: Towards Team-Oriented Program-
ming. In: Intelligent Agents VI — Proc. 6th International Workshop on Agent Theories,
Architectures, and Languages (ATAL), Lecture Notes in Artificial Intelligence, vol. 1757, pp.
233–247. Springer-Verlag (1999)

352. Raimondi, F.: Model checking multi-agent systems. Ph.D. thesis, University College London
(2006)

353. Raimondi, F., Lomuscio, A.: Automatic verification of deontic interpreted systems by model
checking via OBDD’s. In: R. de Mántaras, L. Saitta (eds.) Proceedings of ECAI, pp. 53–57
(2004)

354. Raimondi, F., Lomuscio, A.: Verification of multiagent systems via ordered binary decision
diagrams: an algorithm and its implementation. In: Proc. of the International Joint Confer-
ence on AAMAS, pp. 630–637 (2004)

355. Raimondi, F., Lomuscio, A.: Automatic Verification of Multi-agent Systems by Model
Checking via Ordered Binary Decision Diagrams. Journal of Applied Logic 5(2), 235–251
(2007)

356. Rao, A., Georgeff, M.: A model-theoretic approach to the verification of situated reasoning
systems. In: Proc. of IJCAI, pp. 318–324 (1993)

357. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: W.V.
de Velde, J. Perrame (eds.) Agents Breaking Away: Proceedings of the Seventh European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’96), pp.
42–55. Springer Verlag, LNAI 1038 (1996)

358. Rao, A.S., Georgeff, M.: BDI Agents: From Theory to Practice. In: Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS), pp. 312–319. San Francisco,
CA (1995)

359. Rao, A.S., Georgeff, M.P.: Modeling Agents within a BDI-Architecture. In: Proc. Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR&R).
Morgan Kaufmann, Cambridge, Massachusetts (1991)

360. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: J. Allen,
R. Fikes, E. Sandewall (eds.) Proceedings of the 2nd International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’91), pp. 473–484. Morgan Kaufmann
publishers Inc.: San Mateo, CA, USA (1991)

361. Rao, A.S., Georgeff, M.P.: An Abstract Architecture for Rational Agents. In: Proc. Inter-
national Conference on Knowledge Representation and Reasoning (KR&R), pp. 439–449
(1992)

362. Rao, A.S., Georgeff, M.P.: Decision Procedures for BDI Logics. Journal of Logic and Com-
putation 8(3), 293–342 (1998)

363. Reeve, G., Reeves, S.: Experiences using Z animation tools. Working Paper 01/3. Department
of Computer Science, University of Waikato (2001). URL http://www.cs.waikato.ac.
nz/pubs/wp/2001/

364. Reiter, R.: The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes)
and a Completeness Result for Goal Regression. In: Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John McCarthy, pp. 359–380. Academic Press
(1991)

365. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-
namical Systems. MIT Press, Cambridge, MA (2001)

366. Ricci, A., Omicini, A., Denti, E.: Activity theory as a framework for mas coordination. In:
Procs. of ESAW’02, pp. 96–110 (2002)

http://www.cs.waikato.ac.nz/pubs/wp/2001/
http://www.cs.waikato.ac.nz/pubs/wp/2001/

402 References

367. Ricci, A., Viroli, M., Cimadamore, M.: Prototyping Concurrent Systems with Agents and
Artifacts: Framework and Core Calculus. Electronic Notes in Theoretical Computer Science
194(4), 111–132 (2008)

368. Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the A&A approach for engi-
neering working environments in mas. In: E.H. Durfee, M. Yokoo, M.N. Huhns, O. Shehory
(eds.) AAMAS, p. 150. IFAAMAS (2007)

369. Richardson, D.J., Clarke, L.A.: Partition analysis: A method combining testing and veri-
fication. IEEE Transactions on Software Engineering 11(12), 1477–1490 (1985). DOI
10.1109/TSE.1985.231892

370. van Riemsdijk, M., de Boer, F., Dastani, M., Meyer, J.-J. Ch.: Prototyping 3apl in the maude
term rewriting language. In: Proceedings of the seventh International Workshop on Compu-
tational Logic in Multi-Agent Systems (CLIMA 2006), LNAI, vol. 4371. Springer (2007)

371. van Riemsdijk, M.B., de Boer, F.S., Dastani, M., Meyer, J.-J. Ch.: Prototyping 3apl in the
maude term rewriting language. In: AAMAS, pp. 1279–1281 (2006)

372. van Riemsdijk, M.B., Meyer, J.-J. Ch., de Boer, F.S.: Semantics of plan revision in intelligent
agents. Theoretical Computer Science 351(2), 240–257 (2006)

373. Rosner, R.: Modular synthesis of reactive systems. Ph.D. thesis, Weizmann Institute of Sci-
ence (1992)

374. Rouff, C., Hinchey, M., Rash, J., Truszkowski, W., Gordon-Spears, D. (eds.): Agent Technol-
ogy from a Formal Perspective. NASA Monographs in Systems and Software Engineering.
Springer-Verlag, New York, USA (2006)

375. Ruiter, D.: A basic classification of legal institutions. Ratio Juris 10(4), 357–371 (1997)
376. Rushby, J.: Analyzing cockpit interfaces using formal methods. In: H. Bowman (ed.) Pro-

ceedings of FM-Elsewhere, Electronic Notes in Theoretical Computer Science, vol. 43, pp.
1–14. Elsevier, Pisa, Italy (2000). 10.1016/S1571-0661(04)80891-0

377. Rushby, J.: Using model checking to help discover mode confusions and other automation
surprises. Reliability Engineering & System Safety 75(2), 167 – 177 (2002). DOI 10.1016/
S0951-8320(01)00092-8

378. Rushby, J.: A safety-case approach for certifying adaptive systems. In: AIAA In-
fotech@Aerospace Conference (2009)

379. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (1995)
380. Russell, S., Norvig, P.: Artificial Intelligence. A Modern Approach. Prentice Hall Interna-

tional (2001)
381. Sadri, F., Toni, F., Torroni, P.: Dialogues for negotiation: agent varieties and dialogue se-

quences. In: Proc. of the International workshop on Agents, Theories, Architectures and
Languages, pp. 405–421 (2001)

382. Safra, S.: Complexity of automata on infinite objects. Ph.D. thesis, Rehovot, Israel (1989).
URL citeseer.ist.psu.edu/safra89complexity.html

383. Scherl, R.B., Levesque, H.J.: Knowledge, action, and the frame problem. Artificial Intelli-
gence 144(1–2), 1–39 (2003)

384. Schewe, S.: ATL* satisfiability is 2ExpTime-complete. In: Proceedings of ICALP 2008,
Lecture Notes in Computer Science, vol. 5126, pp. 373–385. Springer-Verlag (2008)

385. Schild, K.: On the relationship between BDI-logics and standard logics of concurrency. Au-
tonomous agents and multi-agent systems 3, 259–283 (2000)

386. Schmidt, R.A.: - (2003). http://www.cs.man.ac.uk/˜schmidt/

pdl-tableau
387. Schnoebelen, P.: The complexity of temporal model checking. In: Advances in Modal Log-

ics, Proceedings of AiML 2002. World Scientific (2003)
388. Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electronic Notes in Theoreti-

cal Computer Science 85(2) (2004)
389. Schurr, N., Marecki, J., Lewis, J.P., Tambe, M., Scerri, P.: The defacto system: Coordinating

human-agent teams for the future of disaster response. In: R.H. Bordini, M. Dastani, J. Dix,
A.E. Fallah-Seghrouchni (eds.) Multi-Agent Programming: Languages, Platforms and Ap-
plications, Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15,
pp. 197–215. Springer (2005)

citeseer.ist.psu.edu/safra89complexity.html
http://www.cs.man.ac.uk/~schmidt/pdl-tableau
http://www.cs.man.ac.uk/~schmidt/pdl-tableau

References 403

390. Serbanuta, T.F., Rosu, G., Meseguer, J.: A rewriting logic approach to operational semantics
(extended abstract). Electronic Notes in Theoretical Computer Science 192(1), 125–141
(2007)

391. Shapiro, S.: Specification and verification of multiagent systems using the Cognitive Agents
Specification Language (CASL). Ph.D. thesis, Department of Computer Science, University
of Toronto (2005)

392. Shapiro, S., Lespérance, Y.: Modeling multiagent systems with the Cognitive Agents Spec-
ification Language — a feature interaction resolution application. In: C. Castelfranchi,
Y. Lespérance (eds.) Intelligent Agents Volume VII — Proceedings of the 2000 Workshop on
Agent Theories, Architectures, and Languages (ATAL-2000), LNAI, vol. 1986, pp. 244–259.
Springer-Verlag, Berlin (2001)

393. Shapiro, S., Lesperance, Y., Levesque, H.: The cognitive agent specification language and
verification environment. In: this volume, Chapter 9

394. Shapiro, S., Lespérance, Y., Levesque, H.J.: Specifying communicative multi-agent systems.
In: W. Wobcke, M. Pagnucco, C. Zhang (eds.) Agents and Multi-Agent Systems — For-
malisms, Methodologies, and Applications, LNAI, vol. 1441, pp. 1–14. Springer-Verlag,
Berlin (1998)

395. Shapiro, S., Lespérance, Y., Levesque, H.J.: The cognitive agents specification language and
verification environment for multiagent systems. In: Proceedings of the first international
joint conference on autonomous agents and multiagent systems (AAMAS’02), pp. 19–26
(2002)

396. Shapiro, S., Lespérance, Y., Levesque, H.J.: Goal change in the situation calculus. Journal of
Logic and Computation 17(5), 983–1018 (2007)

397. Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.J.: Iterated belief change in the situa-
tion calculus. In: A.G. Cohn, F. Giunchiglia, B. Selman (eds.) Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Seventh International Conference (KR2000),
pp. 527–538. Morgan Kaufmann, San Francisco, CA (2000)

398. Sharpanskykh, A., Treur, J.: Verifying interlevel relations within multi-agent systems. In:
Proceedings of the 17th European Conference on Artificial Intelligence, ECAI’06, pp. 290–
294. IOS Press (2006)

399. Sharpanskykh, A., Treur, J.: Relating cognitive process models to behavioural models of
agents. In: Proceedings of the 8th IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, IAT’08, pp. 330–335. IEEE Computer Society Press (2008)

400. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-line design.
Artificial Intelligence 73(1-2), 231–252 (1995)

401. Shoham, Y., Tennenholtz, M.: On the emergence of social conventions: Modeling, analysis
and simulations. Artificial Intelligence 94(1–2), 139–166 (1997)

402. Sierhuis, M.: Modeling and Simulating Work Practice. BRAHMS: a multiagent modeling
and simulation language for work system analysis and design. Ph.D. thesis, Social Science
and Informatics (SWI), University of Amsterdam, SIKS Dissertation Series No. 2001-10,
Amsterdam, The Netherlands (2001)

403. Sierhuis, M.: Multiagent Modeling and Simulation in Human-Robot Mission Operations
(2006). (http://ic.arc.nasa.gov/ic/publications)

404. Singh, M.: Agent communication languages: rethinking the principles. IEEE Computer
31(2), 40–47 (1998)

405. Sirbu, M.: Credits and debits on the internet. IEEE Spectrum 34(2), 23–29 (1997)
406. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. Journal of

ACM 32(3), 733–749 (1985)
407. Smith, R.G., Davis, R.: Frameworks for Cooperation in Distributed Problem Solving. IEEE

Transactions on Systems, Man, and Cybernetics 11(1) (1980)
408. Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. In: Proceedings

of the International Joint Conference on Theory and Practice of Software Development, pp.
369–383 (1989)

409. Strauss, A.: Negotiations: Varieties, Contexts, Processes and Social Order. San Francisco,
Jossey-Bass (1978)

http://ic.arc.nasa.gov/ic/publications

404 References

410. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W., Renz, W.: Validation of BDI agents.
ProMAS 2006 pp. 185–200 (2007)

411. Tambe, M.: Teamwork in Real-world Dynamic Environments. In: Proc. 1st International
Conference on Multi–Agent Systems (ICMAS). MIT Press (1995)

412. Tennenholtz, M.: On stable social laws and qualitative equilibria. Artificial Intelligence
102(1), 1–20 (1998)

413. Thiébaux, S., Hoffmann, J., Nebel, B.: In defense of PDDL axioms. Artificial Intelligence
168, 38–69 (2005)

414. Tidhar, G.: Team-Oriented Programming: Preliminary Report. Tech. Rep. 1993-41, Aus-
tralian Artificial Intelligence Institute (1993)

415. Tinnemeier, N., Dastani, M., Meyer, J.-J. Ch.: Orwell’s nightmare for agents? programming
multi-agent organisations. In: Proc. of ProMAS’08 (2008)

416. Tip, F.: A Survey of Program Slicing Techniques. Journal of Programming Languages 3(3),
121–189 (1995)

417. van der Torre, L., Tan, Y.: Diagnosis and decision making in normative reasoning. Artificial
Intelligence and Law 7(1), 51–67 (1999)

418. Treur, J.: Past-future separation and normal forms in temporal predicate logic specifi-
cations. Journal of Algorithms in Cognition, Informatics and Logic 64 (2009). Doi
http://dx.doi.org/10.1016/j.jalgor.2009.02.008 (in press)

419. Tsai, W.T., Vishnuvajjala, R., Zhang, D.: Verification and validation of knowledge-based
systems. IEEE Transactions on Knowledge and Data Engineering 11(1), 202–212 (1999).
DOI 10.1109/69.755629

420. van Ditmarsch, H., Kooi, B., van der Hoek, W.: Dynamic Epistemic Logic, Synthese Library
Series, vol. 337. Springer (2007)

421. van Riemsdijk, M.B., Astefanoaei, L., de Boer, F.S.: Using the Maude term rewriting lan-
guage for agent development with formal foundations. In: this volume, Chapter 11

422. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification
(preliminary report). In: Proceedings of the First Annual IEEE Symposium on Logic in
Computer Science (LICS 1986), pp. 332–344. IEEE Computer Society Press (1986)

423. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing Multiagent Systems. Journal of
Autonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)

424. Verdejo, A., Martı́-Oliet, N.: Executable structural operational semantics in Maude. Tech.
rep., Universidad Complutense de Madrid, Madrid (2003)

425. Vigueras, G., Botı́a, J.A.: Tracking causality by visualization of multi-agent interactions us-
ing causality graphs. ProMAS 2007 pp. 190–204 (2008)

426. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model Checking Programs. Auto-
mated Software Engineering 10(2), 203–232 (2003)

427. Visser, W., Pasareanu, C.S., Khurshid, S.: Test Input Generation with Java PathFinder. In:
Proc. ACM/SIGSOFT International Symposium on Software Testing and Analysis (ISSTA),
pp. 97–107 (2004)

428. Walther, D., Lutz, C., Wolter, F., Wooldridge, M.: ATL satisfiability is indeed EXPTIME-
complete. Journal of Logic and Computation 16(6), 765–787 (2006)

429. Walton, C.D.: Verifiable Agent Dialogues. Journal of Applied Logic 5(2), 197–213 (2007)
430. Walton, D.: Model checking agent dialogues. In: Declarative Agent Languages and Tech-

nologies, pp. 132–147 (2005)
431. Webster, M.P., Dennis, L.A., Fisher, M.: Model-Checking Auctions, Coalitions and Trust.

Tech. Rep. ULCS-09-004, University of Liverpool, Department of Computer Science (2009).
http://www.csc.liv.ac.uk/research/

432. Wilke, T.: CTL+ is exponentially more succint than CTL. In: Proceedings of FST&TCS ’99,
LNCS, vol. 1738, pp. 110–121 (1999)

433. Winikoff, M.: JACKT M intelligent agents: An industrial strength platform. In: Multi-Agent
Programming: Languages, Platforms and Applications. Kluwer (2005)

434. Winikoff, M.: Implementing flexible and robust agent interactions using distributed commit-
ment machines. Multiagent and Grid Systems 2(4), 365–381 (2006)

References 405

435. Winikoff, M.: Implementing Commitment-Based Interactions. In: Proc. 6th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1–8. ACM,
New York, NY, USA (2007)

436. Winikoff, M., Cranefield, S.: On the testability of BDI agent systems. Information Science
Discussion Paper Series 2008/03, University of Otago, Dunedin, New Zealand (2008). http:
//www.business.otago.ac.nz/infosci/pubs/papers/dpsall.htm

437. Winkelhagen, L., Dastani, M., Broersen, J.: Beliefs in agent implementation. In: Proceedings
DALT 2005, LNCS 3904. Springer (2006)

438. Wooldridge, M.: Reasoning about Rational Agents. MIT Press (2000)
439. Wooldridge, M.: Introduction to Multiagent Systems. John Wiley & Sons, Inc. (2002)
440. Wooldridge, M., Fisher, M., Huget, M.P., Parsons, S.: Model checking multi-agent systems

with MABLE. In: C. Castelfranchi, W.L. Johnson (eds.) Proceedings of the First Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, pp. 952–959. ACM
Press (2002)

441. Wooldridge, M., Fisher, M., Huget, M.P., Parsons, S.: Model checking multi-agent systems
with MABLE. In: Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 952–959
(2002). DOI 10.1145/544862.544965

442. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A Brief Survey of Program Slicing. SIGSOFT
Software Engineering Notes 30(2), 1–36 (2005)

443. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event calcu-
lus planning using commitments. In: Proceedings of the 1st Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), pp. 527–534 (2002)

444. Young, M., Taylor, R.: Rethinking the taxonomy of fault detection techniques. In: 11th
International Conference on Software Engineering, pp. 52–63 (1989)

445. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organisational Rules as an Abstraction for
the Analysis and Design of Multi-Agent Systems. International Journal of Software Engi-
neering and Knowledge Engineering 11(3), 303–328 (2001)

446. Zhang, D., Cleaveland, R., Stark, E.: The integrated cwb-nc/pioatool for functional verifi-
cation and performance analysis of concurrent systems. In: Tools and Algorithms for the
Construction and Analysis of Systems, pp. 431–436 (2003)

447. Zhang, Z., Thangarajah, J., Padgham, L.: Automated unit testing for agent systems. In:
Second International Working Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE), pp. 10–18 (2007)

448. Zhou, Z.Q., Huang, D., Tse, T., Yang, Z., Huang, H., Chen, T.: Metamorphic testing and
its applications. In: Proceedings of the 8th International Symposium on Future Software
Technology (ISFST 2004) (2004). Published as Hong Kong University (HKU) Computer
Science (CS) Technical Report TR-2004-12

http://www.business.otago.ac.nz/infosci/pubs/papers/dpsall.htm
http://www.business.otago.ac.nz/infosci/pubs/papers/dpsall.htm

	Foreword
	Contents
	List of Contributors
	1 Using Theorem Proving to Verify Properties of Agent Programs
	N. Alechina, M. Dastani, F. Khan, B. Logan, and J.-J. Ch. Meyer
	1.1 Introduction
	1.2 An Agent Programming Language
	1.2.1 SimpleAPL
	1.2.2 SimpleAPL syntax

	1.3 Operational Semantics
	1.3.1 Non-interleaved execution
	1.3.2 Interleaved execution

	1.4 Logic
	1.4.1 Preliminary
	1.4.2 Language
	1.4.3 Semantics
	1.4.4 Axiomatisation

	1.5 Verification
	1.5.1 Expressing the non-interleaved strategy
	1.5.2 Expressing the interleaved strategy

	1.6 Example of using theorem proving to verify properties of an agent program
	1.7 Related Work
	1.8 Conclusion
	1.9 Appendix: Encodings of properties in MSPASS
	1.9.1 MSPASS encoding of the example
	1.9.2 MSPASS encoding of a lemma for the proof of the blind commitment property of the vacuum cleaner agent
	1.9.3 pdl-tableau encoding of the blind committment property

	2 The Refinement of Multi-Agent Systems
	L. Astefanoaei and F.S. de Boer
	2.1 Introduction
	2.1.1 Related Works

	2.2 From Specification to Implementation Agent Languages
	2.2.1 Preliminaries
	2.2.2 Formalising Mental States and Basic Actions
	2.2.3 BUnity Agents
	2.2.4 Why BUnity Agents Need Justice
	2.2.5 BUpL Agents
	2.2.6 Why BUpL Agents Need Compassion
	2.2.7 Appraising Goals

	2.3 The Refinement of Individual Agents
	2.4 Towards Multi-Agent Systems
	2.4.1 Action-based Choreographies
	2.4.2 A Finer Notion of Refinement

	2.5 Timing Extensions of MAS
	2.5.1 Adding Time to BUnity
	2.5.2 Adding Time to BUpL
	2.5.3 A Short Note on Timed Refinement

	2.6 Conclusion

	3 Model Checking Agent Communication
	J. Bentahar, J.-J. Ch. Meyer, and W. Wan
	3.1 Introduction
	3.2 Brief Overview of Model Checking Multi-Agent Systems
	3.2.1 Extending and Adapting Existing Model Checkers
	3.2.2 Developing New Algorithms and Tools

	3.3 Tableau-based Model Checking Dialogue Games
	3.4 ACTL* Logic
	3.4.1 Syntax
	3.4.2 Semantics
	3.4.3 Tableau Rules

	3.5 Dialogue Game Protocols as Transition Systems
	3.6 Verification of Dialogue Game Protocols
	3.6.1 Alternating Büchi Tableau Automata (ABTA) for ACTL*
	3.6.2 Translating ACTL* into ABTA (Step 1)
	3.6.3 Run of an ABTA on a Transition System (Step 2)
	3.6.4 Model Checking Algorithm (Step 3)

	3.7 Case Studies
	3.7.1 Verifying PNAWS
	3.7.2 Verifying NetBill

	3.8 Discussion and Future Work

	4 Directions for Agent Model Checking
	R.H. Bordini, L.A. Dennis, B. Farwer, and M. Fisher
	4.1 Introduction
	4.1.1 Agents and Rational Agents
	4.1.2 Logical Agent Descriptions
	4.1.3 Formal Verification and Model Checking
	4.1.4 Program Verification
	4.1.5 Agent Programming Languages

	4.2 Our Approach
	4.2.1 AIL: Mapping Agent Languages to a Common Basis
	4.2.2 AJPF: Specialising the AIL and JPF to work together
	4.2.3 Current Status

	4.3 Obstacles
	4.3.1 Performance
	4.3.2 Target Agent Languages
	4.3.3 Using Agent Model Checking
	4.3.4 Applicability

	4.4 Directions
	4.4.1 Applicability: Autonomous and Autonomic Systems
	4.4.2 Efficiency: Potential for use of MJI
	4.4.3 Efficiency: Potential for use of Program Slicing/Abstraction
	4.4.4 Generality: Target Languages
	4.4.5 Engineering: Agent Development Approach
	4.4.6 Extension: Verification of Groups and Organisations
	4.4.7 Applicability: Verifying Human-Agent Teamwork
	4.4.8 Efficiency/Extension: Alternative Model Checkers

	4.5 Concluding Remarks

	5 Model Checking Logics of Strategic Ability: Complexity
	N. Bulling, J. Dix, and W. Jamroga
	5.1 Introduction
	5.2 The Logics: Syntax and Semantics
	5.2.1 Linear- and Branching-Time Logics
	5.2.2 Strategic Abilities under Perfect Information
	5.2.3 Strategic Abilities under Imperfect Information
	5.2.4 Other Subsets of LATL*
	5.2.5 Summary, Notation, and Related Work

	5.3 Standard Model Checking Complexity Results
	5.3.1 Model Checking Temporal Logics
	5.3.2 Model Checking ATL and CL: Perfect Information
	5.3.3 Model Checking ATL and CL: Imperfect Information
	5.3.4 Model Checking ATL* and ATL+

	5.4 Complexity for Implicit Models: States and Agents
	5.4.1 Model Checking ATL and CL in Terms of States and Agents
	5.4.2 CTL and CTL+ Revisited
	5.4.3 ATL* and ATL+

	5.5 Higher-Order Representations of Models
	5.6 Summary

	6 Correctness of Multi-Agent Programs: A Hybrid Approach
	M. Dastani and J.-J. Ch. Meyer
	6.1 introduction
	6.2 An agent-oriented Programming Language APL
	6.2.1 Syntax of APL
	6.2.2 Semantics of APL

	6.3 CTLapl: A Specification Language for Agent Programs
	6.3.1 CTLapl Syntax
	6.3.2 CTLapl Semantics

	6.4 Properties
	6.4.1 Proving the Properties

	6.5 Debugging Multi-Agent Programs
	6.5.1 Debugging Modes
	6.5.2 Specification Language for Debugging: Syntax
	6.5.3 Specification Language for Debugging: Semantics

	6.6 Multi-Agent Debugging Tools
	6.6.1 Breakpoint
	6.6.2 Watch
	6.6.3 Logging
	6.6.4 Message-list
	6.6.5 Causal tree
	6.6.6 Sequence diagram
	6.6.7 Visualization

	6.7 Conclusion and Future Work

	7 The Norm Implementation Problem in Normative Multi-Agent Systems
	D. Grossi, D. Gabbay, and L. van der Torre
	7.1 Introduction
	7.2 Normative multi-agent systems
	7.2.1 Normative systems in computer science
	7.2.2 Specification and verification of normative multi-agent systems
	7.2.3 Assumptions of norm implementation

	7.3 Formal framework and running example
	7.3.1 Norms and logic
	7.3.2 Norm implementation and games
	7.3.3 Running example: ruling the Blocks World
	7.3.4 Talking about norms and extensive games in the Blocks World
	7.3.5 Two important caveats

	7.4 Making violations impossible
	7.4.1 Regimentation
	7.4.2 Retarded preconditions

	7.5 Perfect enforcement
	7.6 Enforcers
	7.6.1 Regimenting enforcement norms
	7.6.2 Enforcing enforcement norms
	7.6.3 Who controls the enforcers?

	7.7 Implementation via norm change
	7.8 Related work
	7.9 Conclusions

	8 A Verification Logic for Goal Agents
	K.V. Hindriks
	8.1 Introduction
	8.2 Related work
	8.3 The Agent Programming Language Goal
	8.3.1 Goal Agent Programs
	8.3.2 Knowledge Representation Language
	8.3.3 Mental States
	8.3.4 Actions and Action Selection

	8.4 Verifying Goal Agent Programs
	8.4.1 Verification Logic
	8.4.2 Logical Characterization of Agent Programs

	8.5 Conclusion
	Appendix

	9 Using the Maude Term Rewriting Language for Agent Development with Formal Foundations
	M.B. van Riemsdijk, L. Astefanoaei, and F.S. de Boer
	9.1 Introduction
	9.2 The BUpL Language
	9.2.1 Syntax
	9.2.2 Semantics

	9.3 Prototyping
	9.3.1 Introduction to Maude
	9.3.2 Implementing BUpL: Syntax
	9.3.3 Example BUpL Program
	9.3.4 Implementing BUpL: Semantics
	9.3.5 Executing an Agent Program

	9.4 Model-Checking
	9.4.1 Connecting BUpL Agents and Model-Checker
	9.4.2 Examples
	9.4.3 Fairness

	9.5 Testing
	9.5.1 Searching
	9.5.2 Formalizing Test Cases
	9.5.3 Introduction to Maude Strategies
	9.5.4 Using Maude Strategies for Implementing Test Cases

	9.6 Conclusion

	10 The Cognitive Agents Specification Language and Verification Environment
	S. Shapiro, Y. Lespérance, and H.J. Levesque
	10.1 Introduction
	10.2 PVS
	10.3 Action Theory
	10.4 Knowledge
	10.5 Goals
	10.6 Agent Behaviour
	10.7 A Meeting Scheduler Example
	10.8 Verification
	10.9 Example Proof
	10.10 Conclusion

	11 A Temporal Trace Language for Formal Modelling and Analysis of Agent Systems
	A. Sharpanskykh and J. Treur
	11.1 Introduction
	11.2 Syntax of TTL
	11.3 Semantics of TTL
	11.4 Multi-level Modelling of Multi-Agent Systems in TTL
	11.4.1 Aggregation by agent clustering
	11.4.2 Organisation structures

	11.5 Relation to Other Languages
	11.6 Normal Forms and Transformation Procedures
	11.6.1 Past Implies Future Normal Form
	11.6.2 Executable Normal Form
	11.6.3 Abstraction of executable specifications

	11.7 Verification of Specifications of Multi-Agent Systems in TTL
	11.7.1 Verification of interlevel relations in TTL specifications by model checking
	11.7.2 Verification of Traces in TTL

	11.8 Conclusions

	12 Assurance of Agent Systems: What Role Should Formal Verification Play?
	M. Winikoff
	12.1 Introduction
	12.2 Existing Work
	12.3 Case Study: A Waste Disposal Robot
	12.4 Correctness Proof
	12.5 Issues
	12.5.1 Problems with Specifications
	12.5.2 Problems with Proofs

	12.6 Assumptions in the Waste Disposal Robot Case Study Revisited
	12.7 A New Approach to Assurance of Agent Systems
	12.7.1 An Engineering Approach to Risk Management
	12.7.2 ``Send considered harmful?''

	12.8 Combining Testing and Proving
	12.8.1 Applying the Proposed Approach to the Case Study
	12.8.2 Addressing Efficiency

	12.9 Conclusions

	References

