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PREFACE 

IDI and biosurveillance research directly benefits public health and 
animal health agencies in their multiple activities in fighting and managing 
infectious diseases. IDI and biosurveillance research provides quantitative 
methods and computational tools that are instrumental in the decision-
making process carried out by government agencies with responsibilities in 
infectious diseases within national and international contexts. IDI also has 
important applications in law enforcement and national security concerning, 
among other issues, the prevention of and timely response to the deliberate 
release of biological agents. As a result of the increasing threats to our 
national security, a large amount of animal and public health infectious disease 
data are being collected by various laboratories, health care providers, and 
government agencies at local, state, national, and international levels. In fact, 
many agencies charged with collecting these data have developed information 
access, analysis, and reporting systems of varying degrees of sophistication.  
Researchers from a wide range of backgrounds including but not limited to 
epidemiology, statistics, applied mathematics, computer science and machine 
learning/data mining, have contributed to the development of technologies 
that facilitate real-time data collection and access. They have also developed 
algorithms needed to analyze or mine the collected data.  

This book on IDI and biosurveillance compiles a high-quality collection 
of academic work in various sub-areas of IDI and biosurveillance to provide 
an integrated and timely view of the current state-of-the-art. It also identifies 
technical and policy challenges and opportunities with the goal of promoting 
cross-disciplinary research that takes advantage of novel methodology  
and lessons learned from innovative applications. This book fills a systemic 
gap in the literature by emphasizing informatics-driven perspectives (e.g.,  

Information systems are central to the development of effective 
comprehensive approaches aimed at the prevention, detection, mitigation, and 
management of human and animal infectious disease outbreaks. Infectious 
disease informatics (IDI) is a subfield of biomedical informatics concerned 
with the development of methodologies and technologies needed for 
collecting, sharing, reporting, analyzing, and visualizing infectious disease 
data and for providing data-driven decision-making support for infectious 
disease prevention, detection, mitigation, and management. The growth and 
vitality of IDI are central to our national security. Biosurveillance is an 

identification of elevated or new diseases’ risks. 

important partner of IDI applications and focuses primarily on the early
detection of new outbreaks of infectious diseases and on the early 
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SCOPE AND ORGANIZATION 

Unit I provides an overview of recent biosurveillance research while 
highlighting the relevant legal and policy structures in the context of ongoing 
IDI and biosurveillance activities. It also identifies IDI data sources and 
addresses information collection, sharing, and dissemination issues, as well 
as ethical considerations.  

Unit II consists of chapters that survey various types of surveillance 
methods used to analyze IDI data in the context of public health and bio-
terrorism. Specific computational techniques covered include: text mining, 
time series analysis, multiple data streams methods, ensembles of surveillance 
methods, spatial analysis and visualization, social network analysis, and agent-
based simulation.  

Unit III examines IT and decision support for public health event- 
response and bio-defense. Included are discussions of practical lessons 
learned in developing public health and biosurveillance systems, technology 
adoption, and syndromic surveillance for large events.  

These three units include the following chapters: 
 

Unit I: Informatics Infrastructure and Surveillance Data Sources 

• Real-time Public Health Biosurveillance: The chapter surveys recent 
public health biosurveillance efforts, highlights related legal and 
policy considerations, and shares insights on various constraints bio-
surveillance system designers need to consider. 

• Designing Ethical Practice in Biosurveillance: The chapter draws upon 
experience and lessons learned through Project Argus and presents 
ethical and legal dimensions of biosurveillance systems design and 
operations. 

 

This volume collects the state-of-the-art research and modern perspectives 
of distinguished individuals and research groups on cutting-edge IDI technical 
and policy research and its application in biosurveillance. The contributed 
chapters are grouped into three units.  

information system design, data standards, computational aspects of bio-
surveillance algorithms, and system evaluation) rather than just statistical 
modeling and analytical work. Finally, this book attempts to reach policy 
makers and practitioners through the clear and effective communication of 
recent research findings in the context of case studies in IDI and bio-
surveillance, providing “hands-on” in-depth opportunities to practitioners to 
increase their understanding of value, applicability, and limitations of technical 
solutions. 
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• Using Emergency Department Data for Biosurveillance: The chapter 
presents benefits and challenges of using Emergency Department 
data for IDI and biosurveillance. Detailed examples from a well-
known biosurveillance system, NC DETECT, are presented. 

• Clinical Laboratory Data for Biosurveillance: The chapter provides 
an overview of the types of data used for IDI and biosurveillance, 
and discusses in detail clinical laboratory data as a data source for 
biosurveillance and related data sharing and analysis issues. 

• Biosurveillance based on Test Orders from Veterinary Diagnostic 
Labs: The chapter discusses the use of tests orders made to veterinary 
diagnostic laboratories as a biosurveillance data source. It also shares 
insights concerning outbreak detection and biosurveillance involving 
zoonotic pathogens. 

 
Unit II: Surveillance Analytics 

• Markov Switching Models for Outbreak Detection: The chapter presents 
an outbreak detection model using syndrome count-based time 
series. This model is rooted in Markov Switching models and 
possesses many desirable computational properties. 

• Detection of Events in Multiple Streams of Surveillance Data: The 
chapter reviews analytic approaches that can be used to simultaneously 
monitor multiple data streams. Both multivariate methods and more 
recent methods that do not assume joint models of multiple data 
streams are presented. 

• Algorithm Combination for Improved Performance in Biosurveillance: 
The chapter introduces a new outbreak detection scheme that is based 
on ensembles of existing algorithms. The IDI application of this scheme 
is demonstrated through monitoring daily counts of pre-diagnostic data. 

• Modeling in Space and Time: The chapter presents an open-source 
IDI and biosurveillance software system, the Spatial-temporal 
Epidemiological Modeler (STEM), as a collaborative platform to 
define and visualize simulations of infectious disease spreading. 

• Surveillance of Infectious Diseases Using Spatial and Temporal 
Clustering Methods: This chapter surveys common temporal, spatial, 
and spatio-temporal clustering methods and discusses how such 
methods can be used for outbreak detection, disease mapping, pre-
dictive modeling. 

• Age-adjustment in National Biosurveillance Systems: The chapter 
presents population surveillance as a subarea of biosurveillance, with 
a particular emphasis on age and age-adjustment. Both data sources 
available for population surveillance and related analytical tools are 
discussed. 
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• Modeling in Immunization and Biosurveillance Research: The chapter 
presents mathematical modeling techniques suitable for applications 
concerning vaccine-preventable diseases. Issues concerning vaccination 
modeling and the interface between biosurveillance and public health 
response to vaccine-preventable diseases are also discussed. 

• Natural Language Processing for Biosurveillance: The chapter presents 
various types of national language processing techniques that have 
been applied to outbreak detection and characterization. Four common 
classes of textual data associated with healthcare visits are presented 
along with the applicable data processing techniques. 

• Knowledge Mapping for Bioterrorism-related Literature: The chapter 
introduces major knowledge mapping techniques, focusing on text 
mining and citation network analysis methods. A case study on 
bioterrorism-related literature is presented. 

• Social Network Analysis for Contact Tracing: The chapter illustrates 
how social network analysis techniques can contribute to epidemio-
logical investigations and public health policy evaluation. A case 
study using the 2003 Taiwan SARS outbreak is presented. 

 
Unit III: Decision Support and Case Studies 

• Multi-Agent Modeling of Biological and Chemical Threats: The chapter 
presents a city-level dynamic-network model based on multi-agent 
systems technology, BioWar, as a computational tool to assess public 
health and biosecurity policies. A case study on using BioWar to 
assess the impact of school closures and quarantine when facing 
pandemic influenza is presented. 

• Integrated Health Alerting and Notification: The chapter discusses a 
detailed case study concerning design and operation of a state-wide 
integrated health alerting and notification system. 

• Design and Performance of a Public Health Preparedness Informatics 
Framework: The chapter discusses a model informatics framework 
aimed at supporting public health emergency preparedness and pre-
sents an evaluative study assessing this framework during a full-scale 
exercise simulating an influenza outbreak. 

• System Evaluation and User Technology Adoption: The chapter high-
lights the importance of conducting system evaluation and user studies 
with the objective of promoting advanced IDI systems in field adoption. 
Two empirical studies are presented along with detailed discussions on 
evaluation and adoption research design, and measurement instruments. 

• Syndromic Surveillance for the G8 Hokkaido Toyako Summit Meeting: 
The chapter reports a detailed international case study on conducting 
syndromic surveillance for a major event. 
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This book provides an up-to-date review of current IDI and biosurveillance 
research and practice, critical evaluation of current approaches, and discussion 
of real-world case studies and lessons learned. The information and perspective 
presented should prove their utility to epidemiologists in public health and 
veterinary health departments and private-sector practitioners in healthcare 
and health IT.   

Researchers, including both IDI researchers and public health/IT/public 
policy researchers who have an interest in IDI, will find in this book a 
comprehensive source of reviews of the recent advances in the field. This 
book is intended to help further define the field as a reference book and 
promote community development across disciplines and between academia 
and the practitioners, given the dynamic nature of current IDI and bio-
surveillance research. 
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Chapter 1 

REAL-TIME PUBLIC HEALTH 
BIOSURVEILLANCE 
Systems and Policy Considerations 

HENRY ROLKA* and JEAN O’CONNOR 

CHAPTER OVERVIEW 

Biosurveillance includes all efforts by public health officials to capture and 
interpret information about hazards and threats of public health significance, 
including naturally occurring outbreaks of diseases, reportable conditions and 
syndromes, occurrences of zoonotic diseases, environmental exposures, natural 
disasters, and conditions caused by acts of terrorism. Partnerships, such as 
those between governments and the private sector, non-governmental organiz-
ations, healthcare providers, public utilities, and the veterinary medicine 
community, are a critical component of a comprehensive approach to bio-
surveillance. Partnerships allow for the collection of data from diverse 
sources and allow for the inclusion of a range of stakeholders. However, 
establishing biosurveillance systems with the capacity to quickly collect, 
analyze and exchange diverse types of data across stakeholder groups is not 
without practical, technological, political, legal, and ethical challenges. This 
chapter first explores recent biosurveillance efforts, then examines the legal 
and policy structure and considerations associated with biosurveillance 
efforts, and finally provides a framework for considering the needs of 
stakeholders in the development of new biosurveillance systems. 
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4 Chapter 1
 
1. INTRODUCTION 

Although there is no single definition of biosurveillance, it can best be 
described as the routine collection and integration of timely health-related 
information to achieve early detection, characterization, and awareness of 
exposures and acute human health events of public health significance [1]. 
Biosurveillance includes all efforts by public health officials to capture and 
interpret information about hazards and threats of public health significance, 
including naturally occurring outbreaks of diseases, reportable conditions 
and syndromes, occurrences of zoonotic diseases, environmental exposures, 
natural disasters, and conditions caused by acts of terrorism. There are 
significant efforts underway to automate some aspects of biosurveillance; 
however, much of it is conducted manually. Domestically, biosurveillance is 
conducted at the federal, state, local, and tribal levels. The vast majority of 
data is collected at the state and local levels, which are reserved the primary 
responsibility to regulate the public’s health under the tenth amendment of 
the U.S. Constitution [2]. In the international setting, biosurveillance is 
conducted at the country level in collaboration with partners such as the 
World Health Organization [3]. 

Partnerships, such as those between governments and the private sector, 
non-governmental organizations, healthcare providers, public utilities, and 
the veterinary medicine community, are a critical component of a compre-
hensive approach to biosurveillance. Partnerships allow for the collection of 

holders. Traditional public health surveillance, which is both a subset of, and 

diseases and health conditions, such as HIV/AIDS and tuberculosis, and 
from vital records, such as birth and death certificates [4]. This type of 
surveillance is often dependent on active reporting by healthcare providers 
and the processing of records, which can result in significant time delays 

public health interventions, such as social distancing measures, cannot be 
effectively implemented to slow the spread of disease. However, if designed 
and used appropriately, comprehensive and real-time, or near real-time, 
biosurveillance systems may help to detect the conditions that precede the 
public health event and can help to detect the event as it is occurring, 
allowing public health officials to take steps to protect the public. Bio-
surveillance systems may also provide important data that can be analyzed to 
better understand the cause, route of transmission, dose-response relation-
ship, and other characteristics of diseases or other health conditions. And, 
the development and improvement of biosurveillance systems can improve 

different from, biosurveillance, relies on the collection of cases of reportable 

an infectious disease outbreak, has occurred [5]. These delays may mean that 
between an event occurring and awareness that a public health event, such as

data from diverse sources and allow for the inclusion of a range of stake-
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collaboration and promote learning and communication across the diverse
stakeholder groups through discussions on what data elements are needed, 
when and by whom. 

Establishing biosurveillance systems with the capacity to quickly collect, 
analyze and exchange diverse types of data across stakeholder groups is not 
without practical, technological, political, legal, and ethical challenges. This 
chapter first explores recent biosurveillance efforts, then examines the legal 
and policy structure and considerations associated with biosurveillance 

2. BACKGROUND AND RECENT HISTORY 

2.1 Public Health Surveillance 

Prior to 2001, domestic surveillance for disease and health conditions 
was primarily focused on gathering the information necessary to identify, 
qualify, quantify, and analyze disease statistics, and to enable state and local 
health departments to report case information to the Centers for Disease 
Control and Prevention (CDC). Between 1995 and 2001, the Internet had 
just started to transform public health surveillance, increasing the require-
ment for common standards and interoperability through increasing societal 
expectations for real-time information of all kinds. Federal programs and 
funding for surveillance activities emphasized the harnessing of this 
potential. The National Electronic Disease Surveillance System (NEDSS) 
was initiated to promote the transfer of public health, laboratory, and clinical 
data to state and local health departments efficiently and securely using 
common data standards, which still serve as the backbone of surveillance 
systems. There was also some interest in integrating data across sources 
using the Internet. CDC’s Surveillance System Integration Project, initiated 
in 1998, was developed to tie together many of the current separate systems 
used for public health surveillance into a comprehensive solution that 
facilitates the efficient collection, analysis, and use of data and the sharing of 
software across disease-specific program areas (Table 1-1). 

2.2 Impact of the Fall of 2001 on Biosurveillance 

The attacks on September 11, 2001 and the anthrax release in the fall of 
2001, which heightened awareness of population vulnerability and of the 

 

efforts, and finally provides a framework for considering the needs of stake-
holders in the practical operational use of biosurveillance systems. 

unmet need for early and timely detection of human health threats, accelerated 
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Table 1-1. Table of acronyms. 

BioAlirt Bio-event Advanced Leading Indicator Recognition Technology 
CDC Centers for Disease Control and Prevention 
DARPA Defense Advanced Research Projects Agency 
DHHS Department of Health and Human Services 
DHS Department of Homeland Security 
DoD Department of Defense 
EPA Environmental Protection Agency 
ESSENCE Early Notification of Community-Based Epidemics 
GEIS Global Emerging Infections System 
GIS Geographic Information System 
HIPAA Health Insurance Portability and Accountability Act of 1996 
HL-7 Health Level Seven (electronic messaging format) 
HSPD Homeland Security Presidential Directive 
ICD-9 The International Classification of Diseases, 9th Revision 
IHR International Health Regulations 
JHU/APL Johns Hopkins University Applied Physics Laboratory 
NBIS National Biosurveillance Integration System 
NEDSS National Electronic Disease Surveillance System 
OTC Over-the-Counter 
PAHPA Pandemic and All-Hazards Preparedness Act  
PHI Protected Health Information 
RODS Real-Time Outbreak and Disease Surveillance System Laboratory 
VA Department of Veterans’ Affairs 

 

to improve detection rapidly became the topic of research, development and 
implementation. And, around this time, there was a shift in public health 
surveillance towards pre-diagnostic identification of population illness, or 

In late 2001, the Department of Defense (DoD) Defense Advanced 
Research Projects Agency (DARPA) initiated the Bio-event Advanced 
Leading Indicator Recognition Technology (BioAlirt) Program [7]. The 

by the deliberate public release of a weaponized pathogen. The use of novel 
data sources such as over-the-counter (OTC) sales, pre-diagnostic clinical 
data, animal health data and absenteeism indicators were explored by 
BioAlirt (see Figure 1-2). BioAlirt was among the first major programs to 
address technical challenges of using such data, including evaluation of early 
detection algorithms, as well as issues such as selecting data sources, 

see Figure 1-1.) 
“syndromic surveillance”. (for an overview of the taxonomy of surveillance, 

efforts to improve the exchange of surveillance data and identify new 
methods of detecting public health events. Federal funding for new 

to generally advance the science for more quickly recognizing disease caused 

using novel data sources previously unexploited in public health surveillance 

purpose of BioAlirt was to develop information sources and technologies and

approaches to disease surveillance increased markedly [6]. The concept of 
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complementary sources for optimal detection value in various biowarfare 
and bioterror scenarios and privacy and confidentiality considerations. 

 

Figure 1-1. An overview of the taxonomy of surveillance. 
 

Figure 1-2. Novel data sources explored by BioAlirt. 
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Although funding for BioAlirt was discontinued after 3 years, the program 
involved several groups that have been instrumental in the development of 
biosurveillance systems. Researchers at the Johns Hopkins University Applied 
Physics Laboratory (JHU/APL) who were key in the development of the 
Electronic Surveillance System for the Early Notification of Community-
Based Epidemics (ESSENCE) and the adaptation of ESSENCE for use by 
local public health departments [8] participated in BioAlirt. ESSENCE, used 
in the DoD Global Emerging Infections System (GEIS), was originally 
designed and implemented in 1999 and is integral in the relationships 
between other federal biosurveillance programs [9]. Its initial implementation 
was intended as a component to help protect the Washington, D.C., capital 
district region and the national defense infrastructure from a biological 
population health threat. Another remarkably influential consortium of novel 
biosurveillance professionals that participated in the BioAlirt Program were 
from the University of Pittsburgh and Carnegie Mellon University. This 
group affiliated through the Real-Time Outbreak and Disease Surveillance 
System (RODS) Laboratory. Similar to ESSENCE, the RODS Laboratory 
concepts have been adapted for the development of electronic detection 

2.3 BioSense, BioWatch and the National 
Biosurveillance Integration System 

The Public Health Security and Bioterrorism Preparedness and Response 

initiatives to be composed of three key programs: BioWatch, BioSense, and 
the National Biosurveillance Integration System (NBIS) [12]. A fourth pro-
gram, Project BioShield, was also developed but was designed for encouraging 
the development of needed countermeasures, not as an information system 
[13]. BioWatch, an early warning environmental monitoring system, uses 
collectors to obtain air samples from multiple locations throughout the U.S. 
It is a cooperative program among the Environmental Protection Agency, the 
Department of Homeland Security and the Department of Health and Human 
Services. 

BioSense is a CDC Program to support enhanced biosurveillance through 
the acquisition of near real-time health indicator data. The program has 
evolved considerably since its inception in 2003. Data in BioSense include 
ICD-9 codes, chief complaints, and laboratory tests ordered to serve as 

systems in multiple civilian public health communities. The RODS Laboratory 
staff also established the National Retail Data Monitor (NRDM) which utilizes 
over-the-counter (OTC) pharmaceutical sales records in near real-time to 
enable detection of changes in sales volumes that could indicate attempts to 
self-medicate in the early phases of an outbreak of disease [10]. 

Act of 2002 [11] required enhanced biosurveillance capabilities, resulting 
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indications of likely disease based on clinical impressions prior to laboratory 
confirmation [14]. BioSense is intended to provide a consolidated standards-
based means for collaboratively monitoring the health status of the nation 
across all levels of public health and to coordinate access to traditional and 
nontraditional health seeking information by local, state and national 
public health officials. This monitoring of signs and symptoms, rather than 
laboratory-confirmed cases, has been generally referred to as “syndromic 
surveillance” and is similar in concept to the way the ESSENCE and RODS 
implementations were designed to function at the various sites where they 
were implemented. ESSENCE was designed to serve the DoD and RODS 
was advanced as a platform on which to build early outbreak detection 
methodologies. BioSense was specifically initiated to serve all levels of 

with nationwide coverage and available to all state and local public health 
departments. Other applications implemented at local or regional levels may 
use other data sources and user interfaces; however, without a means for 
centralized coordination they may not easily be used to compare different 
localities across the United States. 

When BioSense was initiated, the first sources of data included already 
nationalized sources such as DoD and Department of Veterans’ Affairs (VA) 
ambulatory clinical diagnoses and procedures and Laboratory Corporation of 
America (Labcorp) laboratory-test orders [15]. The VA, DoD and Labcorp 
data are batch processed once per day. In 2005, CDC began connecting 
directly to hospitals for more rapidly cycled (15–20 min) data transport 
processed as Health Level Seven (HL-7) messages. Because the data elements 
and analytic approaches are consistent across the country, BioSense data 
analysts can compare multiple locations by using the same types of data. An 
application interface summarizes and presents analytical results and data 
visualizations by source, day, syndrome and location through maps, graphs, 
and tables. BioSense organizes incoming data into 11 syndromes that are 
indicative of the clinical presentations of critical biologic terrorism-asso-
ciated conditions [16]. These syndromic categories and their related codes 
are classified on the basis of definitions identified by multi-organizational 
working groups. The real-time civilian hospital data are categorized into 78 
syndrome groupings primarily to be more analytically specific. 

The BioSense user interface presents information designed to increase 
users’ abilities to detect data anomalies. A data anomaly is a change in 
distribution or frequency in data compared with geographic or temporal 
context. Change is quantified by using probabilistic scores of statistical 
algorithms. An adaptation of a cumulative sum and a generalized linear 
modeling approach are two methods used to identify anomalies. Changes are 
also identified by noticeable departures from visually presented patterns of  

public health and is a multi-jurisdictional data-sharing surveillance application 
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temporal scan statistic; specifically SatScan [17]. This is an algorithm that 

of the time and geographical region for which the realized number of events 

The National Biosurveillance Information System, which is currently in 
development, is a very different type of system from BioSense. The concept 
for NBIS came out of Homeland Security Presidential Directive 10 (HSPD-
10), which describes a national bioawareness system (see Policy Considerations 
in Biosurveillance for additional discussion of HSPD-10). The purpose  
of NBIS is to create situation awareness using a wide range of real-time 
information that makes up a common operating picture to facilitate decision-
making at the Homeland Security Operations Center and across partner 
agencies. The Department of Homeland Security is leading this national 
interagency effort. For NBIS to be successful, the following objectives must 
be met: (1) the development of a robust information management system 
capable of handling large quantities of structured and unstructured data;  
(2) the establishment of a corps of skilled subject matter experts responsible 
for analyzing the data and providing situational awareness; and (3) the 
maintenance of a culture of cooperation among interagency partners. 
Achieving these objectives will not be simple. Although the establishment of 
a culture of cooperation has been acknowledged by NBIS leadership [18], 
there is concern the program will fall short of its target [19]. 

3. POLICY CONSIDERATIONS  
IN BIOSURVEILLANCE 

Policies related to biosurveillance can be loosely categorized into three 
types: (1) laws that structure which governments or agencies conduct 

combines spatial and temporal activity characteristics and provides indication 

the data. A third anomaly-detection method used in BioSense is the spatial-

by the system, gather and provide feedback to improve system features by 

determine inferential conclusions. Human analysis informed by specific 

is most unusually large. Although algorithms are applied to help interpret 

troubleshooting developmental problems, and generate ideas for application 

knowledge and experience with the data and application is required to enable 

enhancement. Analysts also conduct inquiries and document data anomalies. 
This process has the potential to enable more rapid resolution of health threat

reasonable interpretation. Data analysts using the BioSense data and analytic 

indicators through an awareness of operational nuances and cross referencing

data patterns, the BioSense application is not fully automated and does not 

with other data sources. (See the Analytic Requirements section of this chapter

components support implementation and use of the information provided

for further discussion of analytics needs.) 



1. Real-Time Public Health Biosurveillance 11
 

and use biosurveillance data. 

3.1 Federalism 

To understand these laws and policies, especially those that structure which 
levels of government and which government agencies conduct biosurveillance 
activities, it is helpful to understand the Constitutional framework that 
governs public health practice in the United States. Under the Constitution, 
all powers not specifically delegated to the federal government are reserved 
to the states [2]. One such power reserved to the states is the police power, 
which includes the power to promote and protect the public’s health [20]. 
The federal government also may regulate the public’s health under the 
specific powers reserved to it, such as the power to regulate interstate 
commerce and the power to direct how federal funds, including those given 
to states under grants and cooperative agreements, may be spent [21]. This 
sharing of power between the states and the federal government is known as 
federalism. 

Federalism has important practical applications for biosurveillance. States 
and local governments, where states have further delegated responsibility, 
carry out most public health practice activities in the United States, including 
establishing laws related to disease reporting, conducting epidemiologic 
investigations, regulating the provision of healthcare, and monitoring of the 
health of the population. And, in general, states have discretion about 
whether to share public health information with the federal government [22]. 
However, the federal government, under its power to lay and collect taxes, 
also appropriates funds with certain conditions for use by states in conduct-
ing surveillance activities [21]. Conditions on funds may effectively mean 
that, if the funding so requires, a state must share data with, or must report 
the data to, the federal government in compliance with certain data standards 
or using particular processes [23]. The federal government’s vast resources 
also mean that technical expertise on best practices for surveillance resides 
primarily within federal agencies. The result is a partnership with the states, 
where the states provide data and information and the federal government 
provides resources and specialized technical expertise. 

The federal government also plays an important role in identifying 
opportunities for the improvement and coordination of surveillance activities 
among all levels of government and across federal agencies. This role has 
become increasingly important since the terror and bioterror attacks in the 
fall of 2001 made clear the need for near real-time public health event 
detection to mitigate the consequences of an event. These events and this 

biosurveillance activities, (2) budgets governing the financing of bio-
surveillance systems, and (3) laws and policies related to who may access 
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need triggered significant biosurveillance policy developments, including the 
release of Homeland Security Presidential Directives (HSPD) 10 and 21, the 
publication of the report of the National Commission on Terrorist Attacks 

Issued in 2002, HSPD-10 outlined the Executive branch’s Biodefense 
Strategy for the twenty-first century, reflecting policy on the spectrum of 
biodefense, from event detection to response [24]. HSPD-10 called for the 
Department of Homeland Security to develop a national bioawareness 
system built on existing federal, state, local, and international surveillance 
systems that would permit early warning of a biological event. Recognizing 
the complexity of such an undertaking, the Pandemic and All-Hazards 
Preparedness Act (PAHPA) [25] was passed in 2006. Under PAHPA, the 
responsibility for development of the system was transferred to the Secretary 
of Health and Human Services, in collaboration with state, local, and tribal 
public health officials. And, the nature of the system to be developed was 
expanded and redefined as an “interoperable network of systems to share 
data and information to enhance early detection of rapid response to, and 
management of, potentially catastrophic infectious disease outbreaks and 
other public health emergencies that originate domestically or abroad.” 

Like HSPD-10 and mirroring the language in PAHPA, HSPD-21 calls on 
HHS to build the network of systems using existing federal, state, and local 
surveillance systems and to provide incentives to establish local surveillance 
systems where systems do not currently exist [26]. HSPD-21, which was 
issued in 2007, provides for collaboration across HHS and other federal 
agencies to establish a plan to develop the network, work which was under-
way as this chapter was being written. HSPD-21 also sets forth other guiding 
principles for the development of the network, including the need for the 
network to be flexible, timely, and comprehensive; the need for the network 
to protect individually identifiable data; and the need for the systems in the 
network to incorporate data into a nationally shared understanding of current 
biothreats and events, a concept known as the “biological common operating 
picture.” 

The development of HSPD-10 and PAHPA, followed by HSPD-21, 
reflects the development in thinking about the importance of a shared aware-
ness of situations and events by leaders and decision-makers across government. 
This shared understanding through the exchange of data is viewed as critical 
to protecting the public’s health from all hazards. In the final report of the 
National Commission on Terrorist Attacks Upon the United States, also some-
times referred to in the popular press as the 9/11 Report, the Commission 
reflected on the need to draw on all relevant sources of information to 
protect the public [27]. 

 

All-Hazards Preparedness Act. 
Upon the United States, and the passage of the federal Pandemic and
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This need for a shared understanding of ongoing events in order to facilitate 
decision-making and rapid intervention is also reflected in international 
policies. The International Health Regulations (IHR) is an international agree-
ment that requires countries that are parties to the IHR develop the surveillance 
capacity to detect, assess and report to the World Health Organization certain 
public health events and conditions [28]. Federalism, however, raises interest-
ing questions related to U.S. compliance with the IHR in that disease 
reporting is, as described previously in this chapter, primarily within the 
domain of the states, and the federal government relies largely on voluntary 
sharing of information by the states [29]. The legal and policy environment 
for achieving shared awareness of public health situations across the states, 
the federal government, and with international entities is complex. 

3.2 Privacy and Data Use 

Equally important and equally complex to the laws related to biosurveillance 
infrastructure are the laws and policies related to who can access and use 
biosurveillance data. Domestically, these laws and policies are voluminous. 
Federalism means that the states and the federal government have parallel, 
overlapping, and sometimes conflicting laws and policies related to the use, 
and sharing of biosurveillance data and information. These laws and policies 
often intersect with other important interests that are not specific to public 
health, such as the interest in preserving individual privacy and autonomy. 
The U.S. Constitution protects, to some degree, at least two types of privacy – 
an individual’s interest in being free from government interference in 
certain life decisions and an individual’s interest in controlling their personal 
information. This latter type of privacy, commonly known as informational 
privacy, is most relevant to biosurveillance. However, like most legal rights, 
the right to informational privacy is not absolute. Disclosures of personal 
information, where such disclosures serve a purpose in the public’s interest, 
may be permissible. 

One important law related to the privacy of human health-related 
information is the Privacy Rule of the federal Health Insurance Portability 
and Accountability Act of 1996 (HIPAA) [30]. HIPAA established a com-
prehensive, national minimum standard restricting the use and disclosure of 
individually-identifiable health-related data or information, protected health 
information (PHI). Entities required to comply with the rule, known as 
“covered entities,” include all healthcare providers, insurers, some government 
programs, and their business associates that conduct electronic transactions. 
The Rule establishes a presumption of non-disclosure and requires covered 
entities to engage in a number of practices to protect PHI, including establish-
ing systematic safeguards to protect PHI and accounting for each disclosure 
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of PHI. Notably, public health authorities are not required to comply with 
the Rule and disclosure by a covered entity for public health purposes is 
allowable under the Rule. However, much of the data collected by public 
health authorities for biosurveillance purposes is obtained from covered 
entities. This has important practical implications for biosurveillance, in that 
it places a burden on the disclosing entity to ensure that the purpose of 
sharing the information, even with public health authorities, is within the 
allowable exceptions under the law. Also, because HIPAA establishes a 
minimum standard for the protection of PHI but does not preempt more 
stringent state privacy and confidentiality laws, including those that provide 
special protections for specific diseases (i.e., HIV/AIDS-related information), 
state laws can be an important consideration in the design of biosurveillance 
activities. 

3.3 Other Policy Considerations 

There are a range of other legal and policy considerations in bio-
surveillance. The Constitution protects individuals from having their property 
taken by the government without just compensation [31], including pro-
tection from the diminution of value through regulation. This can be important 
where biosurveillance data may be used to make decisions about the need to 
close a facility, stop the sale of a product, or impact the perceptions of the 
financial health of a company. The Constitution also protects individuals 
from being subject to unreasonable search and seizure of property [32], a 
consideration which may apply where biosurveillance data involves or 
potentially involves the collection of information that could be considered a 
trade secret, such as a product ingredient. Laws related to intellectual pro-
perty and data ownership may also apply. Also, where data or information is 
obtained through particular mechanisms, laws related to intelligence 
classifications could prevent sharing or disclosure. 

4. ACHIEVING INTEGRATED, REAL-TIME 
BIOSURVEILLANCE 

Real-time biosurveillance requires continuous monitoring of data streams, 
the systems that maintain the data flow, and cross referencing useful inform-
ation products from multiple sources. Much progress has been made toward 
these objectives but much work also remains in meeting the stakeholder, 
analytic, and policy requirements for these systems. 
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4.1 Stakeholder Perspectives and Information 

Requirements 

One critical aspect of achieving integrated, real-time biosurveillance 
systems is the identification of stakeholder perspectives and information 
requirements. Stakeholder needs for any given biosurveillance system will 
vary considerably but are likely to vary at least by setting level, temporal 
aspects of the data, and need for detail or granularity level of the data (see 
Figure 1-3). 

 

Figure 1-3. System stakeholder information requirements. 
 
The location setting of a biosurveillance stakeholder generally deter-

mines interest and particular information of relevance to that setting. These 
settings, generally, include: (1) patient care in clinical settings, (2) hospital-
wide level, (3) multi-hospital groups, (4) city/county levels, (5) states,  
(6) nationwide, (7) multi-departmental federal level, and (8) global or 
international setting. The temporal aspect of the biosurveillance interest also 
is related to stakeholder needs. For example, the nature of an applied bio-
surveillance approach will be different depending on whether someone is 
considering routine biosurveillance when there is no event of public health 
significance taking place (pre-event), an outbreak is beginning or in progress, 
or after an outbreak to monitor effectiveness of a public health response 
(post-event). This continuum will drive different information requirements and 
a different set of priorities. And, the biosurveillance activity will differ 
depending on the sensitivity of the information needed by the stakeholder. 
For example, biosurveillance at the clinical level may involve reporting of a 
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diagnostic test for an identified person’s individual laboratory specimen 
(granular data at the clinical setting across the event timeline for the 
information provided). However, for a syndromic assessment of a population 
in a multi-jurisdictional geographic area using an automated algorithm, 
detecting spatio-temporal change in a stream of aggregated data would be 
more meaningful (outward from the city or county stakeholder level closer 
toward the origin with de-identified data perhaps aggregated to the zip code 
level). 

4.2 Analytic Requirements 

objectives of integrated real-time biosurveillance system investments, as 
defined by current policy directives, will also require attention to the analytic 
requirements of such systems. Data acquisition and data transactional 
preprocessing (extraction, transformation and loading) requires information 
technology (IT) and informatics skills. The analytic data preparation, data 
analytics, and interpretation activities however, require programming, 
modeling, statistical reasoning, and subject matter expertise as well as a high 
level of communication skills [33]. The skill sets needed to integrate and 
analyze data from multiple sources differ from traditional disease surveillance 
program skills; the skills needed may be independent of the substantive 
expertise needed to develop and implement specific surveillance systems, 
which require extensive knowledge of the issue being studied. Instead, the 
required skills involve extracting data and information using combinations 
of deductive and inductive reasoning from various and diverse data/ 
information sources and to communicate conclusions with supported degrees 
of uncertainty [34]. 

It is important to consider carefully the role for professional expertise in 
data analysis and analytic data integration in the public health environment. 
For example, CDC currently and traditionally has utilized a “dispersed model” 
for addressing the data analysis and statistical requirements of the public 
health mission. Analytic data managers and statisticians are usually assigned 
to program areas and primarily function in the role of “team member” in a 
specific content area. This enables necessary close working relationships 
between domain experts and analytic process experts. However, attention 
by these “hands-on” analysts over time on discrete individual subject areas 
exclusively can be counterproductive when trying to determine how specific 
analytic methodologies can fit into larger integrated systems. In an organiz-

 

Integrated biosurveillance activities acquire, analyze and interpret data 
and information from many sources across domains. Achieving the goals and 

ational model where centralized human analytic assets serve as consultants  
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to programs and projects, the social pressures for group think are minimized 
by maintaining a centralized professional association support structure. 

Another analytics concern in biosurveillance is the distinction between 
data and information. In traditional public health surveillance, the term data 
is often used to refer to record-level detail. Public health still relies strongly 
on data collected in surveys or record-by-record in surveillance settings. 
These data are analyzed using time-tried statistical methodologies for 
exploration and inference in public health. There is also, however, now  
a wealth of real-time public health information available for potential 
surveillance value in the form of unstructured or text data. Data or inform-
ation in such form includes chief complaints at the record level and news or 
intelligence-like reports that come from the news media and systems like 
EpiX, ProMed and HealthMap. Analyzing and understanding data may be 
very different from analyzing and understanding unstructured information. 
The need to combine or fuse data and information adds a layer of complexity 
to the analytics. 

A final and related analytics concern is the distinction between anomalies 
and events. Anomalies refer to unexpected changes in the pattern of data in a 
geographic or temporal context. Events are public health threats of actual or 
potential importance noted in an information source. Event information may 
come from news releases, web discussions, and sentinel information exchange 
forums, such as CDC’s EpiX, CDCInfo or the Emergency Operations Watch 
Desk. In order to be informed for interpreting anomalies, it is necessary for 
analysts to maintain a current knowledge of ongoing events. In CDC bio-
surveillance operations, addressing observed data anomalies in BioSense, for 
example, involves first ruling out data transmission issues and gauging the 
relative urgency for the identified anomaly. Then, the following questions 
from the available data are answered: (1) How widespread is the anomalous 
pattern? (2) Are similar patterns found in adjacent regions? (3) For how 
many days has the anomaly lasted? (4) Has the geographic spread changed 
with time? (5) Does the pattern have a day-of-week or cyclical nature?  
(6) Did a similar pattern exist during the same period last year? And,  
(7) Does the anomaly affect primarily one sex or age group? Finally, 
corroborating data and/or information relating to an anomaly or an event of 
public health relevance is sought [16]. Conducting these steps within each of 
many biosurveillance domain information systems and reporting out dis-
covery and non-discovery assessments on a regular real-time cycle to a 
fusion center is a logical next step in this process for the development of a 
comprehensive biological common operating picture and the maintenance of 
current public health situational awareness. 
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4.3 Policy Requirements 

grated, real-time biosurveillance calls for consideration of what laws and 
policies impact the system and whether such laws and policies are adequate. 
As discussed earlier in this chapter, in determining what laws and policies 
apply, there are least three types to consider: (1) laws that structure which 
government entity is collecting the data, (2) budgets governing the financing 
of the system, and (3) laws and policies related to who may access and use 
the data. The adequacy of laws and policies for integrated, real-time bio-
surveillance should be examined from the perspective of all of the stake-
holders involved in the particular system or systems. Generally, adequacy 
can include consideration of the extent to which the laws and policies 
identified facilitate or inhibit the following: conducting the biosurveillance 
activity, use of appropriate technology, availability of analytic and personnel 

5. CONCLUSION AND DISCUSSION 

one affecting the other. A confluence of factors including the events of the 
fall of 2001, developments in technology, and an emphasis at the federal 
level on preparedness policy has generated new interest in pre-event monitoring 
and event detection in public health, creating substantial opportunities to 
advance efforts to achieve integrated, real-time biosurveillance. Real-time 
biosurveillance will allow public health leaders at all levels of government to 
achieve situation awareness through a common operating picture. However, 
achieving this vision will involve a monumental effort not dissimilar in 
scope to efforts like the Manhattan Project or the moon landing. 

In achieving this vision, biosurveillance experts must keep in perspective 
that biosurveillance, like traditional public health surveillance, is about people, 
not technology. Technology is only a tool to meet stakeholder, analytic and 
policy objectives. There are many stakeholders and stakeholder settings in 
real-time biosurveillance. It will improve understanding and communication 
among partners to consider the “stakeholder space” and policy considerations 

In addition to attention to stakeholder and analytic needs, achieving inte-

Biosurveillance systems and policy considerations are closely linked, with 

resources, access to needed financial resources, sharing data and inform-
ation, protection of individual privacy and civil liberty interests, community 
participation, public trust in government, and promotion of the public’s 
health. Where laws, policies, or stakeholder interests are in conflict or inhibit 
biosurveillance activities, although policy change may be necessary, special 
consideration should first be given to the purpose, ethics, and legality of the 
biosurveillance system. 
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described in this chapter. Biosurveillance objectives also can only be met 
when the analytic operational requirements are more fully recognized and 
addressed. A persistent and destructively limiting factor for past biosurveillance 
development has been neglect for recruiting, training, development and 
maintenance of a large analytic data knowledge, analytic programming and 
statistical analysis human resource pool that includes leadership from the 
statistical and related information science (GIS, mathematical modeling and 
simulation) community. The public health and biosurveillance communities 
must recognize this need in order to achieve sound information products. 

This goal and other goals – policy and programmatic – for biosurveillance 
will best be achieved through studying lessons learned from current and past 
biosurveillance program efforts and through partnerships across govern-

The findings and conclusions in this chapter are those of the authors and 
do not necessarily represent the views or position of the Centers for Disease 
Control and Prevention. 

QUESTIONS FOR DISCUSSION 

and how should their needs be taken into consideration in the develop-
ment of new systems? 

consideration and why? 
4. Using examples of existing surveillance systems, describe how surveillance 

systems can be improved to achieve integrated, real-time biosurveillance. 
5. How do policies and laws impact the development of surveillance systems 

and the way in which the needs of stakeholders are met? 
6. Explain the tension between privacy and data use and sharing in bio-

surveillance and why it matters. 
7. What are the analytics needs for integrated, real-time biosurveillance? 
8. How does biosurveillance support public health situation awareness and 

the development of a common operating picture? 
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DESIGNING ETHICAL PRACTICE  
IN BIOSURVEILLANCE 
The Project Argus Doctrine 

JEFF COLLMANN1,* and ADAM ROBINSON2 

CHAPTER OVERVIEW 

Biosurveillance entails the collection and analysis of information needed to 
provide early warning of outbreaks of infectious disease, both naturally occur-
ring and intentionally introduced. Data derived from repositories containing 
various types of sensitive information may be required for this purpose, 
including individually identifiable, copyrighted, and proprietary information. 
The Project Argus Biosurveillance Doctrine was developed to ensure that 
ethical and legal principles guide the collection and handling of such 
information. Project Argus does not, however, use individually identifiable 
information or any material derived from individually identifiable inform-
ation for any phase of the project. Further, Project Argus is not used for 
purposes of law enforcement, counterterrorism, or public health surveillance. 
This chapter details why and how the doctrine was developed and summarizes 
its guiding principles and key elements. 

Keywords: Biosurveillance; Sensitive information; Information protection; Privacy 

                                                 
 O’Neill Institute for National and Global Health Law, Disease Prevention and Health 

Outcomes, School of Nursing and Health Studies, Georgetown University Medical Center, 
Box 571107, 3700 Reservoir Rd, NW, Washington, DC 20057–1107, USA, collmanj 
@georgetown.edu 

2 The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA 

1*

© Springer Science+Business Media, LLC 2011 

D. Zeng et al. (eds.), Infectious Disease Informatics and Biosurveillance,
Integrated Series in Information Systems 27, DOI 10.1007/978-1-4419-6892-0_2,  

mailto:@georgetown.edu


24 Chapter 2
 

• Development and analysis of scenarios for managing sensitive project 
information 

• Examination of relevant laws, regulations, good practice, and case 
studies in the acquisition, analysis, and archiving of this information 

• Development of administrative, physical, and technical policies and 
procedures for safely managing project information 

• Development of technical design requirements for the Project Argus 
biosurveillance system and 

• Development of a doctrine management process 
Through these efforts, the system incorporated requirements for the 

ethical handling of sensitive information from the start, rather than retro-
fitting it later. Because the initial phase of the project focused only on the 
acquisition, archiving, analysis, and presentation of biosurveillance information, 
we limited our initial efforts to ensure ethical practice of/for these activities 
as reported in this chapter. Project Argus did not, when implemented, use 
individually identifiable information or any material derived from individually 
identifiable information for any phase of the project. Further, Project Argus 
is not used for purposes of law enforcement, counterterrorism, or public 
health surveillance. This chapter details why and how the doctrine was 
developed and summarizes its key components. 

BACKGROUND 

Project Argus developed the technical and doctrinal requirements for an 
integrated, multisource information system designed to perform global bio-

Biosurveillance entails the collection and analysis of information needed 
to provide early warning of outbreaks of infectious disease, both naturally 
occurring and intentionally introduced. Data derived from repositories con-
taining various types of sensitive information may be required for this purpose, 
including individually identifiable, copyrighted, and proprietary information. 
Project Argus searches open media in all countries of the globe except the 
United States to find direct and indirect indications that local communities 
have identified and begun to respond to an emerging infectious disease such 
as SARS or pandemic influenza [1]. The ultimate goal is to provide early 
warning of such events so that countermeasures can be taken to limit the 
spread and mitigate the consequences of the disease. When originally planning 
Project Argus, we developed a “Biosurveillance Doctrine” to ensure that ethical 
principles would guide the collection and handling of such information. 
Specifically, our efforts included five steps: 

INTRODUCTION 1.

2.
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surveillance for epidemics; biological accidents; and bioattacks on humans, 
animals, and plants [1]. 

The ethical issues surrounding the development and maintenance of such 
a system have been a key consideration from the outset of Project Argus. No 
single public law or set of regulations governs the handling and protection of 
the broad range of sources, types, security classifications, and potential uses 
of the information to be collected and analyzed. Therefore, the Project Argus 
doctrine team was formed to develop the necessary guidance. The resulting 
biosurveillance doctrine sets forth explicit principles, management structures, 
policies, procedures, and technical design requirements intended to ensure 
the ethical handling and use of sensitive information by project participants. 
In this respect, a strong moral, organizational, and technical divide exists 
between Project Argus and initiatives that have drawn the censure of 
Congress, the media, and the American public for their failure to ensure such 
protections. After describing the methods used to develop the doctrine, we 
provide a high-level view of its guiding principles and key elements. 

It should be noted that the version of the doctrine presented here applies 
only to the acquisition, archiving, analysis, and presentation of biosurveillance 
information in Project Argus. The doctrine team analyzed a broad set of 
sensitive information, including individually identifiable, copyrighted and 
public information. We include our analysis of and approach for handling 
this broad set of sensitive information for the sake of completeness and as a 
guide to others. Project Argus does not use any individually identifiable 
information in any phase of the project. 

Project Argus collects, archives, and interprets various types of information, 
including confidential or sensitive information that requires special handling. 
The leaders and sponsors of Project Argus required development of the Bio-
surveillance Doctrine to familiarize all project members, contractors, and 
partners with relevant laws, regulations, ethical principles, and good industrial 
practices governing use of sensitive information and ensure their compliance 
with their precepts. In addition to examining relevant cases such as the 
controversy about the Terrorism Information Awareness (TIA) program (see 
below), the Biosurveillance Doctrine team investigated issues associated 
with using specific types of sensitive information, including individually 
identifiable, proprietary, and copyrighted information. Certain guidance, 
such as the Principles of Fair Use of copyrighted materials, bears directly on 
the type of information that Project Argus acquires. Other guidance, such as 
the Security and Privacy Standards of the Health Insurance Portability and 

OVERVIEW: INFORMATION PROTECTION 3.
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Accountability Act (HIPAA) of 1996 and the European Privacy Directive, 
directly or indirectly affects how Project Argus shares information with 
potential partners. For example, no Project Argus investigators qualify as 

care providers who should share patient information only with HIPAA-
compliant partners. HIPAA and the European Privacy Directive also embody 
versions of good privacy and security practice. By aligning its practice 
with principles expressed in these regulatory regimes, Project Argus 
demonstrates good faith in protecting sensitive information obtained from 
its partners or through its own initiatives. 

Good information security practice requires establishing administrative, 
physical, and technical controls to protect the confidentiality, integrity and 
availability of all project data. We imagined that research data from Project 
Argus might reside in various locations, including the ISIS Center at 
Georgetown University and MITRE (partners in the development of the 
Argus information system). Relevant information security policies from all 
such hosts and other project participants appear as appendices to the Project 
Argus Biosurveillance Doctrine as required. The ISIS Center houses several 
R&D projects that manage confidential information, including individually 
identified health information. The ISIS Center has established a risk-based 
information security program with controls to protect information of several 
types including public, commercially sensitive, research, and individually 
identifiable information. MITRE has rigorous controls reflecting its identity 
as a major Federally Funded Research and Development Center serving 
sensitive sectors of the U.S. government. Project Argus benefits from the 
general organizational controls and tailors specific controls to meet its own 
needs when appropriate. Memoranda of Understanding among participating 
organizations document their mutual obligations in protecting shared project 
information of any kind whenever necessary. 

3.1 Fair Information Practice Principles 

Fair Information Practices represent an international consensus on 
appropriate handling of personal information. Various versions of these 
principles appear in the European Privacy Directive, the U.S. Privacy Act, 
and guidelines issued by the Organization for Economic Cooperation and 

refer to HIPAA because it may potentially collaborate with health-
“covered entities” under HIPAA. Project Argus doctrine must, nonetheless,

The Biosurveillance Doctrine Team’s analysis of these general issues 

follow to help the reader better understand the specific policies and 
procedures proposed for Project Argus. 

yielded some implications for Project Argus. Summaries of these implications 
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Development and the Canadian Standards Association. Key provisions 
include the following. 

• Notice: At or before the time of collection, individuals shall be 
informed of the personal information to be collected, the purpose of 
the collection, and to whom the information may be disclosed. 

• Consent: To the maximum extent possible, individuals shall consent 
to the collection of their personal information at or before the time of 
collection. 

• Accuracy: Personal information shall be sufficiently accurate, complete, 
and current to serve the intended purpose. 

• Security: Personal information shall be protected by safeguards 
appropriate to the sensitivity of the information. 

• Access: Individuals shall have the opportunity to review the personal 
information held about them and records of its disclosure. 

• Redress: Individuals shall have the opportunity to request correction 
of their personal information and to challenge compliance with stated 
practices. 

• Limitation: Collection, use, disclosure, and retention of personal 
information shall be limited to that which is necessary for the 
intended purpose. 

3.2 Proprietary Information 

Copyrighted Information. Project Argus seeks, acquires, archives, and 
analyzes copyrighted materials, primarily through its web search technology 
(known as Apollo). The ISIS Center, the home base for Project Argus, qualifies 
as a non-profit, educational, research-oriented institution. Furthermore, Project 
Argus is a pilot study of limited scope. If its methods do not prove useful, the 
project will be discontinued. For materials not easily acquired retroactively due 
to their ephemeral nature, such as dynamic web pages, Project Argus down-
loads a copy of the web page and creates an archive of Hypertext Markup 
Language (html) files for future reference. To stay within the bounds of fair 
use, as defined in copyright law (17 U.S.C. §107), Project Argus acknowledges 
its use of copyrighted materials first by purchasing materials of interest when 
necessary, either directly from the publisher or through an aggregator. Project 
Argus excludes all website sections not relevant to its research requirements 
and labels all archived articles as “For Research Purposes Only.” The archives 
will only exist for the life of the project. Project Argus does not distribute, 
republish, or disseminate the archived articles for any commercial or non-
commercial purpose under any conditions. For these reasons, the limited use of 
copyrighted materials in Project Argus constitutes fair use. 
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Confidential Business Information. Project Argus may handle con-
fidential business information in many forms. For example, Project Argus 
could potentially contract with commercial companies to provide aggregated 
data of various types. In such cases, Project Argus drafts contracts that 
reflect its own information protection and use policies as well as comply with 
federal law and policy. In all instances, Project Argus only uses the data for 
the defined purposes of the project and does not share the data with parties 
external to Project Argus. 

3.3 Individually Identifiable Information 

• Protected Health Information (PHI). The ISIS Center, the home base 
for Project Argus, does not qualify as a covered entity under HIPAA 
because it does not provide or pay for medical treatment of individuals. 
Under certain circumstances, Project Argus may receive PHI from 
covered entities such as Georgetown University Hospital or the Washington 
Hospital Center as part of conducting research in biosurveillance. The 
HIPAA Privacy Rule would require submission of a Human Subjects 
Review application of some type to the Georgetown University Medical 
Center’s Institutional Review Board (IRB). Government sponsors might 
also require review of Project Argus’ use and disclosure of PHI by a 
relevant IRB. Depending on the actual circumstances, the application 
may seek an expedited or full review. This has not yet occurred in the 
project but may occur in later phases. 

• Telephone call detail. Although never used in Project Argus, we 
investigated methods for preparing aggregate telephone call data between 
regions of interest based on individually identifiable telephone call 
information. Each call on a telephone network generates a call detail 
record (CDR) that stores the telephone number of the phone that made 
the call (the originating number), the dialed number, the telephone 
number that received the call (the terminating number), the time at which 

routinely use these statistical analyses to monitor network reliability and 
detect international fraud. Companies may also perform analysis of 
aggregated CDR on a contractual basis to third parties. 

One may compile aggregated data of call volumes from one specified 
region to another. It is not highly granular information that an analyst could 
use to deduce the identities of individual callers in a designated area. 

 

When telecommunications carriers are required to provide call-identifying  

the call was placed, and the duration of the call [2]. Telephone companies 
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information, it is by court order and is limited to specific individuals and 

communication. Because the purpose of Project Argus is to detect 
 of societal disruption, only aggregated regional call data is of use. 

Project Argus has never used telephone data of any kind in its work; but, 
evaluated these measures for the sake of completeness and scholarly 
relevance. 

• Individual financial information. None of the data streams initially 
proposed for Project Argus analysis was financial in nature. There could 
come a time, however, when aggregated financial data, such as the 
number of automated teller machine transactions in a given period for a 
given region, could prove useful for detecting societal disruption. Privacy 
regulations such as the ones in the Gramm–Leach–Bliley Act could serve 
as a model in the future but are not needed at this time. 

• Intelligence on U.S. Persons. The mission of Project Argus includes 
detecting social disruption, not tracking individuals. Thus, Project Argus 
has and will not develop, pilot, or evaluate means for identifying individuals 
for law enforcement, crime prevention, or public health surveillance 
purposes on U.S. or foreign persons. Project Argus implemented policies 
and procedures designed to minimize the incidental, or unintentional, 
collection and to dispose of information about U.S. persons. 

• European Privacy Directive. As the foregoing discussions of specific 
types of individually identifiable information imply, the United States 
implements a sectoral approach to privacy. By contrast, the European 
Privacy Directive handles all individually identifiable information with a 
single, comprehensive approach and restricts the flow of information to 
countries that do not provide substantially equivalent protections. The 
United States and the European Union (EU) have adopted “Safe Harbor” 
provisions with which U.S. entities must comply in order to transact 
business involving personal information between the United States and 
EU member states. The Biosurveillance Doctrine Team examined the 
European Privacy Directive and the Safe Harbor provisions because they 
represent a major instance of the Fair Information Practice Principles, 
described below, with which Project Argus aspires to comply. 

• Aggregation of Information from Disparate Databases. Project Argus 
recognizes the theoretical possibility that it might generate individually 
identifiable data in the course of combining otherwise de-identified data 
from disparate databases. In general, Project Argus does not seek to create 
individually identifiable data from any sources. Project Argus investigators, 
furthermore, discard any such data that appears incidentally as a function 
of intended or unintended project procedures. 

forms of
indications
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METHODS 

The Project Argus doctrine team drew general inspiration from the work of 
William Odom, who recommends organizing the intelligence community to 
reflect the phases of the intelligence cycle: topic selection and data collection,  
analysis, use, and evaluation [3]. The doctrine described in this chapter 
focused only on the acquisition, archiving, analysis, and presentation of 
biosurveillance information. Eventually, the doctrine will provide end-to-end 

 

The doctrine team conducted five types of activities to carry out its 
charge. The first was an analysis of some typical scenarios that Project 
Argus team members may confront when managing the sensitive but un-
classified information originally imagined for analysis in the project. One 
scenario was developed for each of five information types: telecommunications 
information, information from open-source media, remote-sensing inform-
ation, changes in website content, and air transportation information. The 
results of the scenario analyses informed our second activity, an examination 
of laws, regulations, good practice, and case studies in the acquisition, 
analysis, and archiving of this information, such as the Privacy and Security 
Rules of the Health Insurance Portability and Accountability Act (HIPAA) 
of 1996 [4–5]. We developed the doctrine in three steps based on these 
efforts: we authored administrative, physical, and technical policies and 
procedures for acquiring, analyzing, archiving, and protecting project inform-
ation; we created technical design requirements for the system; and we 
developed a doctrine management process. Through these measures, the 
system incorporated requirements for the ethical handling of sensitive 
information from the start, rather than retrofitting them later. 

4.1 Information Scenarios 

The five scenarios address information that falls under one or more of five 
broad types of information. Each scenario traces handling of the information 

Figure 2-1. End-to-end protection of biosurveillance information. 

4.

protection of information through all phases of biosurveillance (see Figure 2-1). 
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through collection, archiving, analysis, and presentation (report generation). 
Three of the five scenarios are presented below; collectively they illustrate all 
the issues encountered in the scenario analyses. 

Step 1. Acquire information 

Project Argus eventually decided not to use telephone call data for any pur-
pose. The doctrine team developed an approach to deidentifying telephone data 
before this decision was made. Each call on a telephone network generates a 
CDR that stores the number of the telephone used to make the call (the 
originating number), the dialed number, the telephone number that received the 
call (the terminating number), the time at which the call was placed, and 
the duration of the call. CDRs constitute International Telecommunications 
Company (ITC) proprietary business information because the information is 
generated in the course of ITC’s business and is collected and stored by ITC 
pursuant to its arrangements with its customers. ITC regularly and legally 
monitors CDRs for a variety of routine business purposes, such as ensuring 
network reliability and detecting international fraud, and compiles CDR 
reports. ITC cannot provide the CDRs or CDR reports to third parties such as 
Project Argus without the permission of the customers involved. To make it 
possible to establish the baseline as well as the ongoing rate of telephone traffic 
between regions of the world of interest to Project Argus, it was established 
that ITC aggregate the CDRs in a manner that removes all individually 
identifiable data (see below) and retain the CDRs themselves. It was also 
established that no one from Project Argus ever participate in acquiring the 
data, see the CDRs or handle any individually identifiable information. 

Step 2. Aggregate data 

ITC could aggregate the CDR data by preparing graphs that illustrate the 
volume of calls between regions of the world specified by Project Argus 
analysts. This step deidentifies the data and, thereby, makes the aggregate 
results available for such purposes as biosurveillance. The preparation of these 
graphs does not constitute a routine business practice for ITC; however, ITC 
agreed to provide the graphs as part of its participation in Project Argus. 

• Scenario 1: Telecommunications Information 
– Scenario type: Managing individually identifiable information 
– Source of information: Individually identifiable call detail records 

– Biosurveillance information: Ongoing deidentified summaries of 
calls between selected regions of the world 

– Analytic objective: Identify significant deviations from baseline 
rates of calls between these regions of the world 

(CDRs) 
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Because regions with small call volume would not yield meaningful 
results, Project Argus agreed to specify a minimum call volume required per 
geographic area for ITC to produce a data point. Although ITC retained the 
ability to identify the individuals represented in the graphs through the 
CDRs, through this mechanism Project Argus could establish a technical 
design requirement to prevent project analysts from recovering individually 
identifiable call data from the graphs. ITC and Project Argus agreed to 
produce a Memorandum of Understanding (MOU) to specify the terms and 
conditions for the production, transfer, and use of the graphs had the project 
been implemented. 

Step 3. Produce graphical reports and deliver to Project Argus 

The protocol specified that ITC produce monthly graphical reports of call 
volumes for regions specified by Project Argus and transmit the reports to 
analysts in the ISIS Center. Had call volumes between regions of interest 
equaled or exceeded an Argus-defined threshold, ITC would have shifted to 
daily reporting. 

Step 4. Archive information 

Step 5. Analyze aggregated ITC information 

The ISIS Center proposed to analyze the aggregated call volume inform-
ation received from ITC and compare them with other datasets so as to identify 
anomalies that may represent indications and warnings of an emerging bioevent 
in a region of interest. Project Argus produces and posts several types of reports 
on a restricted website “For Official Use Only.” 

According to the protocol, Project Argus analysts at the Imaging Science 
and Information Systems (ISIS) Center would receive, index, and digitally 
store the above reports, producing a comprehensive archive of all information 
received from ITC. From an information security perspective, the ITC reports 
contain sensitive but unclassified information. The ISIS Center has established 
policies and procedures for protecting the confidentiality, integrity, and avail-
ability of sensitive information (see http://www.isis.georgetown.edu). During 
periods when call volumes fall below the alert threshold, requirements for 
data integrity and timeliness remain consistent with the everyday research and 
development (R&D) environment of the ISIS Center. When call volumes 
exceed the alert threshold and ITC reports arrive daily, Project Argus should 
consider escalating these requirements. The project reevaluates its information 
security requirements, considers the need for new requirements, and re-
commends special controls if needed. Archives will exist only for the life of the 
project. 

http://www.isis.georgetown.edu
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Step 1. Acquire electronic data 

Using geographic selection criteria based on Project Argus research 
requirements, analysts identify online newspapers and other websites of interest 
to the project. They also identify the information on these websites that is not 
relevant to the project. For example, on a community website, only sections 
that might publish articles about school closings would be of interest to the 
project; sections reporting on local sports scores and entertainment would not 
be as relevant. Argus engineers write a script specifying the interval of retrieval 
and the content to be excluded for isisMiTAP, an integrated suite of human-
language technologies that processes semistructured textual data. On the 
established retrieval schedule, isisMiTAP retrieves and stores in its archive all 
content (“articles”) from the identified websites that has not been specifically 
excluded. Project Argus treats all these reports as if they were copyrighted. To 
comply with the principles of fair use, the project excludes all website sections 
irrelevant to its research requirements and labels all archived articles as “for 
research purposes only.” Thus archived articles are not distributed, republished, 
or disseminated for any commercial or noncommercial purpose under any 
conditions. Moreover, as with aggregated CDR data, Project Argus archives the 
articles only for the duration of the project. 

Step 2. Translate and catalogue articles of interest 

isisMiTAP processes the articles retrieved and presents the information 
they contain to users through various interfaces. isisMiTAP processing includes 
machine translation of foreign-language content, information extraction  
in the form of identifying named entities and keywords (e.g., diseases, locations, 
people), categorization (binning and posting to a news server), archiving 
(storing raw and derivative files on disk), and indexing (to support full-text 
searches). Human linguists translate selected articles to allow for more complete 
understanding. Analysts prepare summaries of selected articles upon demand. 

 
 

• Scenario 2: Open-Source Media Information 
– Scenario type: Managing foreign copyrighted information 
– Source of information: Foreign news media websites 
– Biosurveillance information: Whole news stories and abstracted 

information about disease and social disruption in regions of 
interest outside the United States 

– Analytic objective: Identify direct indicators of disease and 
indirect indicators of social disruption secondary to an emerging 
bioevent 
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Step 3. Archive information 

Step 1. Acquire information 

The U.S. National Oceanic and Atmospheric Administration (NOAA) 
collects weather data using remote satellite sensing and distributes the data to 
NASA, which analyzes it and posts it at http://www.nasa.gov. The U.S. govern-
ment makes these reports available to the public for unlimited use, at no cost. 
When the doctrine team conducted this analysis, Argus analysts intended to 
download the aggregated weather reports on a monthly basis from the NASA 
website to the Argus electronic archive. In practice, these specific reports did 
not prove useful. Analysts do periodically consult the NASA MODIS Rapid 

Project Argus created and maintains a temporary electronic archive of 
selected articles at the ISIS Center, including all original-language texts and 
English translations, article summaries, and web links. All retrieved and 
archived articles are treated as “confidential – copyrighted” information subject 
to appropriate administrative, physical, and technical information security 
controls. The requirements for data integrity and timeliness will remain con-
sistent with the everyday R&D environment of the ISIS Center until a bioevent 
is suspected, at which point the need to escalate the requirements will be 
considered. Project Argus reevaluates its information security requirements, 
considers the need for new requirements, and recommends special controls 
when needed. For example, a research and development prototype must not 
typically operate at all times and can tolerate some downtime. Were Project 
Argus to evolve into a mission-critical operational unit, it would require a 
business continuity plan that includes tactics to recover from interruptions in its 
IT system that currently does not exist. 

Step 4. Analyze archived articles 

Project Argus analysts identify, categorize, and evaluate the significance of 
salient events in the archived articles. Project Argus produces and posts several 
types of reports on a restricted website “For Official Use Only.” 

• Scenario 3: Remote-Sensing Information 
– Scenario type: Managing U.S. federal government information 
– Source of information: Website of the U.S. National Aeronautics 

and Space Administration (NASA) 
– Biosurveillance information: Aggregated remote-sensing inform-

– Analytic objective: Identify the existence of weather conditions 
favorable to the development and spread of selected infectious 
diseases, such as Rift Valley Fever 

ation on weather conditions in selected countries of interest 

http://www.nasa.gov
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Response System website to retrieve remote-sensing images of recent fires, 
volcano eruption, and storms around the globe, data that shares the same 
properties of aggregated weather data for the purposes of fair use. 

Step 2. Archive information 

Project Argus downloads various public data from the NASA website to 
Argus’s electronic archive. The ISIS Center’s policies and procedures for 
protecting the confidentiality, integrity, and availability of the content of its 
archives that include sensitive information apply to such data. As with articles 
from foreign media, the requirements for data integrity and timeliness of 
remote-sensing information remain consistent with the everyday R&D environ-
ment of the ISIS Center until a bioevent is suspected, at which point Project 
Argus reevaluates its information security requirements for this information. 

Step 3. Analyze remote-sensing information 

Argus analysts examine the NASA information to establish the presence or 
absence of conditions favorable to the development and spread of infectious 
diseases such as Rift Valley Fever. Project Argus produces and posts several 
types of reports on a restricted website “For Official Use Only.” 

4.2 Laws, Regulations, and Good Practice in Managing 
Sensitive Information 

Guided by the results of the scenario analyses, the doctrine team examined 
laws, regulations, and best practice pertaining to the management of sensitive 
information federal laws and regulations, including executive orders, inter-
national directives, agency policies and procedures, Congressional testimony, 
government and nongovernment reports, best practices and ethical principles. 
Certain guidance, such as the principles of fair use of copyrighted materials, 
bears directly on the types of information Project Argus acquires. Other guid-
ance, such as the Security and Privacy Rules of HIPAA and the European 
Privacy Directive, may affect directly or indirectly how the project shares 
information with potential partners. For example, no Project Argus investigators 
qualify as “covered entities” under HIPAA. The Project Argus doctrine must 
nonetheless refer to HIPAA because at some point the project may collaborate 
with healthcare providers who should share patient information only with 
HIPAA-compliant partners. HIPAA and the European Privacy Directive also 
embody good privacy and security practice. By aligning its practice with 
principles expressed in these regulatory regimes, Project Argus demonstrates 
good faith in protecting sensitive information obtained from its partners or 
through its own initiatives. 
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4.3 Case Study: The Terrorism Information Awareness 
Program 

Just prior to the launch of Project Argus, the U.S. Congress discontinued 
funding for the TIA program, a large counterterrorism effort organized by the 
Defense Advanced Research Projects Agency (DARPA). At first glance, the 
TIA program, with its focus on counterterrorism and law enforcement, has little 
in common with Project Argus. Yet both initiatives had to address common 
issues related to privacy and security, as well as functionality. Whether begin-
ning with individually identifiable information, such as CDR data, or dis-
covering identities in the course of analysis, as with public health or medical 
surveillance information, organizations conducting both terrorist investigations 
and biosurveillance must obey relevant privacy laws; establish pertinent 
policies and procedures; train their workforces; and implement risk-based 
administrative, physical, and technical privacy and security safeguards. In 
preparing the Project Argus Doctrine, the team examined TIA and other 
programs for lessons regarding these core controls [6–23]. 

In addition to implementing one of the key lessons learned from these 
case studies – the need to address such issues in policies and procedures 
from the outset of a project – the Project Argus doctrine team conducted a 
detailed analysis of such programs to identify other potential pitfalls and 
lessons learned. We recognize that the American public basically accepts as 
legitimate the aims of both scientific research and counterterrorism. However, 
individual programs must carefully assess and clearly explain the tradeoffs 
that exist between individual and societal welfare in specific instances, 
particularly in times of threat and conflict. 

Thus biosurveillance investigators must not take for granted the good 
will of their subjects, their institutions, or their funding agencies. Rather, 
they must take personal responsibility for ensuring the implementation of 
appropriate privacy controls. We identified specific means to that end in our 
research, including: 

• Incorporate privacy and security controls into technical design 
requirements for computerized biosurveillance information systems. 

• Take full advantage of the privacy functions of the Institutional 
Review Board (IRB). As suggested by the report on TIA of the 
Department of Defense Inspector General, the IRB is fully equipped 
to advise and monitor researchers on privacy policies, procedures, 
and practices. In most academic medical research institutions, HIPAA 
has strengthened the IRB’s awareness of and competence to deal with 
privacy issues. 
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• Devote great care to preparing the privacy and security portions of 
the IRB review forms, particularly the informed consent form. The 
IRB forms can function for an individual research project much like 
the privacy impact assessment prepared by federal agencies, helping 
to identify and propose mitigation plans for privacy risks associated 
with a project. The informed consent form provides an ideal vehicle 
for explaining to subjects a project’s privacy protections. 

• When affiliated with a medical center, cultivate an effective relation-
ship with the center’s HIPAA privacy and security officers. Like the 

communication on these matters among researchers, subjects, the 
institutions involved in the work and external agencies, such as the 
Office of Civil Rights and the Department of Health and Human 
Services. 

• Consider using an external project advisory board when conducting 
research or using “data mining” methods that could raise privacy 
concerns. If properly composed and chartered, such a group can 

researcher’s own institution and enhance the credibility of a project’s 

• Formally develop and document in writing privacy and security 
policies and procedures for the research project or its parent unit. As 
HIPAA and the report of the Department of Defense Inspector General 

tections identified in the IRB forms, including administrative, physical, 
and technical controls for privacy and security. 

• Work with relevant information security officers in the home 

confidentiality, integrity, and availability of research data, including 
individually identifiable information. 

• Train project team members in the ethical principles and institutional 
policies and procedures governing information privacy and security 
in the project. 

RESULTS AND ANALYSIS 

Based on the analyses described above, we developed three key elements of 
the Project Argus Biosurveillance Doctrine: policies and procedures, technical 
requirements, and doctrine management. 

 

5.

privacy ombudsmen in federal agencies, these individuals facilitate 

provide useful expertise in policy, privacy, and legal matters beyond a 

good-faith efforts in the event of controversy. 

emphasize, these written policies and procedures should explain pro-

institutions of project members to establish sound controls protecting the 
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5.1 Policies and Procedures 

The Argus policies and procedures express the information protection and 
use guiding principles in succinct form. 

General Policy Statements. Project Argus will not acquire, archive, 
analyze, or distribute information in a form that is prohibited by applicable 
laws, regulations, or good ethical practice. The project will establish a risk-
based IA program to protect the confidentiality, integrity, and availability 
of all project-related information, including public and unclassified but 
sensitive information; the project will not handle classified information of 
any type. Participating institutions will apply their own IA policies in acquiring, 
archiving, analyzing, and distributing any Project Argus information at their 
locations. Memoranda of Agreement (MOA) will establish the conditions for 
sharing information among collaborating organizations. Sharing is defined as 
providing collaborators access to an original owner’s information by any 
means, including remote electronic access to an owner’s archive or transfer 
of an owner’s information to a collaborator’s archive. 

Specific Policies and Procedures. The scenarios discussed earlier esta-
blished conditions governing the acquisition, analysis, archiving, and dis-
tribution of individually copyrighted, identifiable, proprietary, confidential, 
publicly available, and business information. For the doctrine, these con-
ditions were translated into specific policies and procedures for each of 
the five types of information, such as the following ones for individually 
identifiable information. 

• Original owners of individually identifiable information bear res-
ponsibility for complying with applicable laws, regulations, and good 
ethical practice in making such information in their possession avail-
able to Project Argus investigators. 

• Original owners of individually identifiable information bear res-
ponsibility for obtaining permission from subjects as necessary or 
required for the use of such information in Project Argus. 

• Only original owners of individually identifiable information may 
view, change, analyze, or otherwise use such information in Project 
Argus unless otherwise agreed upon and justified in writing. 

• Original owners of individually identifiable information will limit 
access to the purposes of Project Argus, its data, data parameters, and 
data destinations to those members of their own organizations with a 
need to know such things. 

• Project Argus will strive to acquire, archive, analyze, and distribute 
only aggregated or deidentified information from original owners of 
individually identifiable information. 



2. Designing Ethical Practice in Biosurveillance 39
 

• Written MOAs between original owners of individually identifiable 
information and Georgetown University on behalf of Project Argus 
will incorporate any relevant rules for the acquisition, archiving, 
analysis, and distribution of such information to be shared in the 
course of the project. 

• All Project Argus participants, including original owners of individually 
identifiable information, will abide by the terms and conditions of 

distribution of such information obtained from an original owner. 
• If Project Argus investigators should inadvertently acquire individually 

identifiable information, they will discard it and seek no further 
information about the individual. 

• Project Argus participants will receive training in the appropriate 
handling of any such inadvertently acquired information before 
incorporating information into the project archive. 

• No Project Argus participant will share individually identifiable 
information with any person, within or external to the project, who is 
unauthorized to view, receive, or otherwise use it. Nor will they share 
it with any such organizations or entities. 

5.2 Technical Requirements 

To enable and enforce compliance with the policies and procedures 
detailed above, the doctrine team developed technical requirements to 
guide engineers in designing the Project Argus biosurveillance information 
system to incorporate technical controls that enable and enforce compliance 
with the policies and procedures detailed above. Consistent with the IA 
philosophy of defense in depth – which requires multiple, overlapping privacy 
and security protections – the system’s specific application controls will 
function within an administrative, physical, and technical infrastructure that 
complements and sustains them. Some of the technical requirements apply to 
all types of information; while others apply only to specific types, as follows. 

• All types of information: 
– Requirements for data integrity and timeliness will remain 

consistent with the everyday R&D environment of the ISIS Center, 
unless special circumstances arise, such as a suspected bioevent. 

• Project Argus will classify individually identifiable information as 
“confidential – individually identifiable” and treat it and any associated 
information according to the protections for confidential information 
on the ISIS Center network. 

relevant MOAs regarding the acquisition, archiving, analysis, and 
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– Technical requirements will reflect good industry practice for 

– Project Argus will regularly reevaluate its IA requirements, 
consider the need for new requirements, and recommend special 
controls if needed. 

• “Confidential – individually identifiable” information: 
– In collaboration with Project Argus investigators, original owners 

of such information will develop, implement, and monitor the per-
formance of methods for aggregating or deidentifying individually 
identifiable information when such aggregated information is 
required for research. 

– Project Argus participants will not be able to reidentify the 
subjects of the aggregated individually identifiable information to 
which they have access. Methods used for deidentifying information 

– Project Argus participants who are not authorized original owners 
of such information will not have access to the individually 
identifiable information from which aggregated information is 
prepared. 

• “Confidential – proprietary” information: Project Argus will develop, 

• “Confidential – copyright” information: Project Argus will develop, 

to enforce the time limit on storage of copyrighted information in the 
project archives. 

• Publicly available information: Project Argus will develop, implement, 
and monitor the performance of technical measures designed to enforce 
any special requirements for protecting publicly available information 
that becomes research data, as deemed necessary by a relevant risk 
assessment. 

5.3 Doctrine Management Process 

The Project Argus doctrine team realized that promulgating policies, 
procedures and technical requirements alone would not necessarily assure 
compliance. We sought to institutionalize the information protection through a 
series of organizational measures including routine doctrine team meetings, 
special oversight procedures, specifications for groups working with but not 
members of Project Argus and, critically, training for Project Argus staff. 

implement, and monitor the performance of technical measures 

protecting unclassified sensitive information, such as individually 
identifiable, proprietary, copyrighted, and research information. 

will minimize the chances of such reidentification. 

designed to enforce any special requirements listed in an MOA between 
Georgetown University and an original owner of such information. 

implement, and monitor the performance of technical measures designed 
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• Doctrine Team Meetings. The doctrine team stayed active through-
out the initial development of Project Argus and developed a concept 
of operations for sharing Argus results with its customers. The team 
has reported to the oversight boards described below. 

• Oversight Boards. Project Argus established internal and external 
oversight boards to review its reports and provide overall project 

Argus task team leaders. The external board consists of representatives 
of key government and academic stakeholders. 

• Doctrine Specifications for User Communities. Sponsors, consumers, 
and unwitting participants all will have varying needs throughout the 
life of Project Argus. The doctrine team was instrumental in esta-
blishing the organizational conditions for safe sharing of biosurveillance 
data among a range of government agencies that has proven invaluable 
in numerous actual biothreat scenarios. 

• Doctrine Training and Awareness Program. The doctrine team 
developed a code of ethics that embodies the key elements of the 
doctrine and served as the foundation for a comprehensive training and 
awareness program for all Project Argus participants that remains active. 

CONCLUSION 

The American public basically accepts as legitimate the aims of scientific 
research and counterterrorism, including biosurveillance for pandemics. 
Individu programs must carefully assess and clearly explain the tradeoffs that 
exist between individual and societal welfare involved in specific instances, 
particularly in times of heightened concern about possible attacks by an elusive 
and possibly indigenous foe. To this end, Project Argus has developed the 
Biosurveillance Doctrine described in this chapter, designed to ensure the 
appropriate acquisition, analysis, protection, and use of sensitive information, 
particularly individually identifiable, copyrighted, and proprietary information. 
The doctrine will be reviewed and revised as necessary throughout the life of 
the project. Through these efforts, Project Argus aims to keep faith with its 
sponsoring agencies, Congress, and the American people. 
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QUESTIONS FOR DISCUSSION 

1. What are the advantages and disadvantages of planning information 
protection and use policies and procedures before designing an information 
technology project? 

2. What are the similarities and differences in protecting the various types 
of sensitive information including proprietary, copyrighted and individually 
identifiable information? 

3. Do you think that government or commercial organizations are capable 
of protecting or appropriately using sensitive or personal information? 

4. Are codes of good information practice sufficient to protect sensitive 
information in a company or government organization? If not, what else 
do you think is necessary? 

5. What difficulties can you imagine might arise in monitoring compliance 
with an organization’s information protection and use policies and 
procedures after an information management system is deployed? 

6. If you were in charge of developing an IT system to handle sensitive 
information, how would you incorporate information protection issues 
into your design process? 
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USING EMERGENCY DEPARTMENT DATA 
FOR BIOSURVEILLANCE: THE NORTH 
CAROLINA EXPERIENCE 

ANNA E. WALLER*, MATTHEW SCHOLER, AMY I. ISING,  
and DEBBIE A. TRAVERS 

CHAPTER OVERVIEW 

Biosurveillance is an emerging field that provides early detection of 
disease outbreaks by collecting and interpreting data on a variety of public 
health threats. The public health system and medical care community in the 
United States have wrestled with developing new and more accurate 
methods for earlier detection of threats to the health of the public. The 

are described in this chapter through examples from one biosurveillance system, 
the North Carolina Disease Event Tracking and Epidemiologic Collection 
Tool (NC DETECT). ED data are a proven tool for biosurveillance, and the 

information systems, these data are available in near real-time, making them 

developing public health outbreaks or disasters. Challenges to using ED data 
for biosurveillance include the reliance on free text data (often in chief 
complaints). Problems with textual data are addressed in a variety of ways, 
including preprocessing data to clean the text entries and address negation. 
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The use of ED data for public health surveillance can significantly increase 
the speed of detecting, monitoring and investigating public health events. 
Biosurveillance systems that are incorporated into hospital and public health 
practitioner daily work flows are more effective and easily used during a 
public health emergency. The flexibility of a system such as NC DETECT 
helps it meet this level of functionality. 

INTRODUCTION 

Biosurveillance is an emerging field that provides early detection of 
disease outbreaks by collecting and interpreting data on a variety of public 
health threats, including emerging infectious diseases (e.g., avian influenza), 
vaccine preventable diseases (e.g., pertussis) and bioterrorism (e.g., anthrax). 
With the Centers for Disease Control and Prevention’s (CDC) initial focus 
on bioterrorism preparedness at the state and local level in 1999 and the 
subsequent anthrax outbreak of 2001, the public health system and medical 
care community in the United States have wrestled with developing new and 
more accurate methods for earlier detection of threats to the health of the 
public. Earlier detection, both intuitively and as illustrated through predictive 
mathematical models, is believed to save lives, prevent morbidity and pre-
serve resources (Kaufman et al., 1997). Biosurveillance systems use health-
related data that generally precede diagnoses and that signal a sufficient 
probability of a case or an outbreak to warrant further public health response 
(Buehler et al., 2004). 

Rapid detection of disease outbreaks rests on a foundation of accurate 
classification of patient symptoms early in the course of their illness. 
Electronic emergency department (ED) records are a major source of data 
for biosurveillance systems because these data are timely, population-based 
and widely available in electronic form (Lober et al., 2002; Teich et al., 
2002). There are more than 115 million ED visits annually in the United 
States, and EDs represent the only universally accessible source of outpatient 
healthcare that is available 24 h a day, 7 days a week (Nawar et al., 2007). 
EDs see patients from all age groups and socioeconomic classes. Patients 
may present with early, nonspecific symptoms or with advanced disease. 
The accessibility of EDs provides a likely healthcare setting for many of the 
patients involved in a disease outbreak of public health significance. In recent 
years, EDs have steadily adopted electronic medical records technology 
(Hirshon, 2000), which has facilitated the replacement of drop-in manual 
surveillance using ED data with ongoing, real-time surveillance. ED data 
have been shown to detect outbreaks 1–2 weeks earlier than traditional 

1.
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public health reporting channels (Heffernan et al., 2004; Lober et al., 2002; 
Tsui et al., 2001; Wagner et al., 2004). 

The ED data elements that are used for biosurveillance include the chief 
complaint (a brief description of the patient’s primary symptom(s)), the 
triage nurse’s note (an expansion of the chief complaint that includes the 
history of present illness), other clinical notes (e.g., physician and nurses’ 
progress and summary notes), initial measured temperature, and diagnosis 
codes. The most widely used ED data element is the chief complaint because 
it is recorded electronically by most EDs and may precede entry of a diagnosis 
or transcription of physician notes by days or weeks (Travers et al., 2003, 
2006). The triage note increases the amount of data available, which makes 
it more likely that biosurveillance algorithms will detect disease outbreaks. 
Triage notes are becoming more available in electronic form, and one study 
found that adding triage notes increased the sensitivity of outbreak detection 
(Ising et al., 2006). 

Several challenges to using ED data for biosurveillance have been 
identified (Hirshon, 2000; Varney & Hirshon, 2006), including costs to EDs 
and public health, the lack of standardization of ED data, and security and 
confidentiality. Many EDs still document patient symptoms manually; even 
when the data are electronic, they are often entered in free text form instead 
of using standardized terms. Timeliness is also a concern; while some ED 
data elements are entered into electronic systems at the start of the ED visit, 
other elements are added hours, days or even weeks later. Even though there 
is no formal standard or best practices dictating how soon data should  
be available after an ED visit or other health system encounter for early 
detection, most surveillance systems aim for near real-time data, available 
within hours. 

The benefits and challenges of using ED data for surveillance will be 
described in more detail through examples from one biosurveillance system, 
the North Carolina Disease Event Tracking and Epidemiologic Collection 
Tool (NC DETECT). NC DETECT evolved from a pilot project in 1999 to 
demonstrate the collection of timely, standardized ED data for public health 
surveillance and research. NC DETECT has since grown to incorporate ED 
visit data from 98% of 24/7 acute care hospital EDs in the state of North 
Carolina and has developed and implemented many innovative surveillance 
tools, including the Emergency Medicine Text Processor (EMT-P) for ED 
chief complaint data and research-based syndrome definitions. NC DETECT 
now provides twice-daily ED data feeds to CDC’s BioSense and has over 
200 registered users at the state, regional and local levels across North 
Carolina. This chapter will review the use of ED data for biosurveillance, 
including appropriate case studies from NC DETECT. 
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LITERATURE REVIEW/OVERVIEW OF THE 
FIELD 

2.1 History of ED Data Use for Biosurveillance 

ED data have been collected for decades for a variety of public health 
surveillance needs and have been incorporated into electronic systems 
designed to analyze data related to trauma, injury and substance abuse, 
among others. Public health officials have used event-based or drop-in 
biosurveillance systems that include ED data during major events, including 
the Olympic Games, political conventions, heat waves, after major hurricanes, 
and after the identification of known widespread outbreaks (Weiss et al., 
1988; Davis et al., 1993; Lee et al., 1993; Rydman et al., 1999). Many of 
these systems have required users to do manual abstractions from medical 
charts or to enter data into stand-alone systems for specific symptoms of 
interest. For example, the EMERGEncy ID NET program, established in the 

syndromes related to emerging infections of interest to the CDC, using paper 
forms and standardized computer screens (Talan et al., 1998). 

Secondary data, data that are generated as part of normal patient treatment 

real-time (hourly, every 12 h, daily). Surveillance systems that use secondary 

systems requiring manual abstraction (Rodewald et al., 1992). This 
methodology of ED data collection has become standard practice for bio-
surveillance systems using ED data, including NC DETECT, RODS, ESSENCE 
and EARS, among others (Hutwagner et al., 2003; Ising et al., 2006; 

2.2 Current Status of ED Data Use for Biosurveillance 

According to the International Society for Disease Surveillance (ISDS) 
State Syndromic Surveillance Use Survey, 76% of responding states (n = 33) 
performing syndromic surveillance use ED data (http://isds.wikispaces.com/ 

While most states and regions rely on ED chief complaint data, there  
is interest in increasing the number of ED data elements collected, as 
evidenced by the American Health Information Community’s Biosurveillance 
Minimum Data Set (http://www.hhs.gov/healthit/ahic/materials/meeting10/ 

2. 

Registry_Project, accessed June 4, 2008). (Figure 3-1). 

Lombardo, 2003; Wagner et al., 2004, Waller et al., 2007). While there are

automated programs either in real-time (at the time of record generation) or near 

late 1990s, created a network of select EDs to manually collect data to study 

on delimited text batch files or HL7 messages. 

and billing, are generally extracted from hospital information system(s) through 

several different approaches to automated extraction programs, most rely either

data are intended to be less burdensome to ED staff and less costly than 

http://isds.wikispaces.com/Registry_Project
http://isds.wikispaces.com/Registry_Project
http://isds.wikispaces.com/Registry_Project
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bio/BDSG_Minimum_DataSet.doc, accessed June 4, 2008). The recommend-
ations from the American Health Information Community include additional 
emergency department data elements, such as triage notes, vital signs and 
ICD-9-CM-based diagnoses. The Biosurveillance Minimum Data Set is 
currently under formal evaluation for its utility at CDC-funded sites in 

 
 

 
Figure 3-1. ISDS state syndromic surveillance use survey: 41 respondents; 33 use syndromic 
surveillance 

2.3 Infectious Disease Syndrome-Based Surveillance  
Using ED Data 

While infectious disease surveillance has traditionally relied on laboratory 
results and the reporting of mandated reportable conditions by medical 
practitioners, ED visit data and timely symptom-based analysis provide 
additional means for early identification of infectious disease outbreaks. 
Areas of particular interest include the CDC’s list of potential bioterrorism 
agents, as well as post-disaster (e.g., hurricane, earthquake, chemical spill) 
surveillance (CDC, 2003). The ability to create effective syndromes to use 
with ED visit data is of paramount importance to their timely use for public 
health surveillance. 

Indiana, New York and Washington/Idaho. 



50 Chapter 3
 

The structure of syndrome definitions used in biosurveillance is 
dependent on the design of the system and the nature of the data under 
surveillance. Individual systems use different methods to identify specific 
disease symptoms in the chief complaint and triage note data. This includes 
deterministic methods, such as keyword searching, and probabilistic methods, 
such as naïve Bayesian and probabilistic machine learning (Espino et al., 
2007). Syndrome definitions then classify records into syndromic categories 
based on which symptoms are identified. To date, no best practices exist to 
guide syndrome definition development and evaluation (Sosin & DeThomasis, 
2004). Which syndromes are monitored and which symptoms are associated 
with each syndrome varies according to the system under consideration. 
Furthermore, syndrome structure may vary depending upon which data 
elements, in addition to chief complaint, are available and their timeliness. 
Syndrome structure refers to how many symptoms are required, within 
which data fields they must be found, and which Boolean operators are 
employed to determine whether a certain record matches a particular 
syndrome. 

2.4 ISDS Consultative Syndrome Group 

In September 2007, the ISDS sponsored a consultative meeting on chief 
complaint classifiers and standardized syndromic definitions (Chapman & 
Dowling, 2007). At this meeting, representatives from eleven syndromic 

signs and symptoms of dyspnea as recorded in an ED chief complaint or 

respiratory rate), clinical findings (e.g., abnormal breath sounds on pulmonary 
exam), abnormal lab findings (e.g., abnormal ABG or positive culture results), 
imaging studies (e.g., infiltrate on chest x-ray), or certain ICD-9-CM diagnosis 
codes (e.g., 486, pneumonia). The meeting participants reached consensus 
on best practices for which clinical conditions to associate with each of six 

terms/keywords which best represent these clinical conditions. 

such as an abnormal vital sign (e.g., low oxygen saturations or increased 
triage note field (e.g., “Shortness of Breath” (SOB)), a clinical observation 

medical concepts which may be represented by multiple possible data inputs 

surveillance systems throughout the country, including NC DETECT, met to 

to the system. For example, the concept of “dyspnea” may be represented by 

different syndromes (sensitive and specific versions of respiratory syndrome

illness syndrome). Through online collaboration and periodic conference calls,

discuss which syndromes they monitor and which chief complaint-based 

the group continues the process of defining specific chief complaint search 

clinical conditions they include in each syndrome. Clinical conditions are 

and gastrointestinal syndrome, constitutional syndrome and influenza-like
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TECHNICAL APPROACHES FOR GROUPING 
ED DATA INTO SYNDROMES FOR 
BIOSURVEILLANCE 

While the process of identifying specific chief complaint search terms/ 
keywords to group into syndromes presents several technical challenges, the 
timeliness of chief complaints outweighs the benefits of any standardized 
data that are not available within hours of the ED visit. Textual data such 
as chief complaint and triage note present several problems, including 
misspellings and use of ED-specific and locally-developed acronyms, 
abbreviations and truncations (Travers & Haas, 2003). There are two main 
approaches to dealing with the variability in textual surveillance data:  
(1) incorporating keywords in the actual search query statements; or  
(2) preprocessing the data. In systems that build various keyword searches 
(e.g., lexical variants, synonyms, misspellings, acronyms, and abbreviations) 
into the actual surveillance tools, elaborate search statements are constructed, 
employing statistical software such as SAS (Cary, NC), or standard query 
language (SQL, Microsoft, Redmond, WA) (Forbach et al., 2007; Heffernan 
et al., 2004). In systems with preprocessors, the data are cleaned prior to 
application of a syndromic classification algorithm (Mikosz et al., 2004; 
Shapiro, 2004). The preprocessors clean text entries, replacing synonyms 
and local terms (e.g., throat pain, throat discomfort, ear/nose/throat problem), 
as well as misspellings, abbreviations, and truncated words (e.g., sorethroat, 
sore throaf, soar throat, ST, S/T, sore thrt, sofe throat, ENT prob), with 
standard terms (e.g., sore throat) or standard identifiers (e.g., UMLS® con-
cept unique identifier C0242429) (NLM, 2007). Preprocessors often include 
normalization tools to eliminate minor differences in case, inflection and 
word order and to remove stop words (NLM, 2006). 

While there is no consensus about which approach is best, many bio-
surveillance programs are implementing preprocessors to improve operations 
(Dara et al., 2007; Hripscak et al., 2007; Komatsu et al., 2007). Use of 
preprocessors can streamline maintenance of existing and development of 
new surveillance queries. Query processing time is also faster, resulting in 
better overall biosurveillance system performance. One such preprocessor is 
the Emergency Medical Text Processor (EMT-P), which was developed to 
process free text chief complaint data (e.g., chst pn, ches pai, chert pain, CP, 
chest/abd pain) in order to extract standard terms (e.g., chest pain) from 
emergency departments (Travers & Haas, 2003). EMT-P has been evaluated 
by biosurveillance researchers in Pennsylvania and found to improve 
syndromic classification (Dara et al., 2007). The developers continue to 
improve EMT-P and have made it publicly available (Travers, 2006). 

3. 
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3.1 Dealing with Negation 

While clinical text such as triage notes can improve the accuracy of 
keyword-based syndrome queries, the data require processing to address 
negated terms (Ising et al., 2006; Hripcsak et al., 2007). One study evaluated 
NegEx, a negation tool developed at the University of Pittsburgh (Chapman 
et al., 2001). NegEx is a simple regular expression algorithm that filters out 
negated phrases from clinical text. The NegEx system was modified (to 
include the negation term (-)) and then combined with selected modules 
from EMT-P that replaced synonyms (e.g., dec loc with consciousness 
decreased) and misspellings (nasaue with nausea) for use in NC DETECT. 
The pilot results show that this combination of EMT-P and NegEx leads to 
more accurate negation processing (Ising et al., 2007). 

3.2 Issues with Diagnosis Code Data 

Another ED data element available for biosurveillance is the final 
diagnosis, which is widely available in electronic form and is standardized 
using the International Classifications of Diseases, Ninth Revision, Clinical 
Modification (ICD-9-CM) (USDHHS, 2006). All EDs generate electronic 
ICD-9-CM diagnoses as they are required for billing purposes (NCIPC, 
1997; Travers et al., 2003). There is, however, some evidence that diagnosis 
data are not always available in a timely manner. In contrast to chief 
complaint data, which are generally entered into ED information systems by 
clinicians in real-time, ICD-9-CM diagnoses are often entered into the 
system by coders well after the ED visit. Sources of ICD-9-CM data may 
vary, which may influence the quality of the data. Traditionally, diagnoses 
have been assigned to ED visits by trained coders who are employed by the 
hospital and/or physician professional group. The primary purpose of the 
coding is billing, as opposed to secondary uses such as surveillance. Recently, 
emergency department information systems (EDIS) have come on the 
market that allow for diagnosis entry by clinicians. These systems typically 
include drop-down boxes with text that corresponds to ICD-9-CM codes; 
clinicians can then select a “clinical impression” at the end of the ED visit and 
the corresponding ICD-9-CM code becomes part of the EDIS data available 
for surveillance. 

In a 2003 study of regional surveillance systems in North Carolina and 
Washington, biosurveillance developers found that over half of the EDs did 
not have electronic diagnosis data until 1 week or more after the ED visit 
(Travers et al., 2003). In a follow up study, researchers prospectively measured 
the time of availability of electronic ICD-9-CM codes in NC DETECT for 
all ED visits on 12/1/05 (Travers et al., 2006). The study confirmed that 
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fewer than half of the EDs sent diagnoses within 1 week of the visit, and that 
it took 3 weeks to get at least one diagnosis for two-thirds of the visits. 
Seven (12%) of the hospitals had diagnoses for less than two-thirds of their 
ED visits at the 12 week mark. Diagnosis data are universally available 
from NC EDs, and studies have shown that ICD-9-CM data alone or in 
combination with chief complaint data are more valid than chief complaint 
data alone for syndromic surveillance (Beitel et al., 2004; Fleischauer et al., 
2004; Reis & Mandl, 2004). This study corroborated the earlier study, 
however, that indicated the majority of North Carolina hospitals cannot send 
diagnosis data soon enough for timely, population-based biosurveillance. 

BIOSURVEILLANCE IN NORTH CAROLINA 

The North Carolina Emergency Department Database (NCEDD) project, 

in 1999, laid the groundwork for electronic ED data collection in North 

biosurveillance began in 2002 through a collaboration between UNC DEM 
and the North Carolina Division of Public Health (NC DPH). In 2004, a 

NC DPH was instrumental in establishing ED data transmissions from the 

law mandating reporting as of January 1, 2005 (North Carolina General Statute 

In addition to ED data, NC DETECT receives data hourly from the 
statewide Carolinas Poison Center, and daily data feeds from the statewide 
Emergency Medical System (EMS) data collection center, a regional wildlife 
center, selected urgent care centers, and three laboratories of the NC State 
College of Veterinary Medicine (microbiology, immunology and vector-
borne diseases laboratories) (Waller et al., 2008). 

NC DETECT assists local, regional and state public health professionals 
and hospital users in identifying, monitoring, and responding to potential 
terrorism events, man-made and natural disasters, human and animal disease 
outbreaks and other events of public health significance. This system makes 
it possible for public health officials to conduct daily surveillance for clinical 
syndromes that may be caused by infectious, chemical or environmental 

4. 

Carolina by developing best practices for collecting and standardizing quality 

Chapter_130A.html, accessed January 17, 2008). As of October 1, 2010, there 

ED data. The focus on using ED data in North Carolina specifically for 

130A, http://www.ncleg.net/EnactedLegislation/Statutes/HTML/ ByChapter/ 

hospitals not yet participating in NC DETECT, including support for a new 

are 112/114 (98%) acute care, 24/7 hospital EDs submitting over 11,000 new 

spearheaded by the UNC Department of Emergency Medicine (UNC DEM) 

visits to NC DETECT daily. These data are also transmitted twice daily to

partnership between the North Carolina Hospital Association (NCHA) and 

CDC’s BioSense program. 

http://www.ncleg.net/EnactedLegislation/Statutes/HTML
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agents. Suspicious syndromic patterns are detected using the CDC’s EARS 
CUSUM algorithms, which are embedded in the NC DETECT Java-based 
Web application. The system also provides broader surveillance reports for 
ED visits related to hurricanes, injuries, asthma, vaccine-preventable diseases 
and environmental health (Waller et al., 2008). Role-based access provides 
hospital and public health access to NC DETECT data at local, regional and 
state levels; multi-tiered access provides tight controls on the data and allows 
all types of users to access the system, from those who need only an 
aggregated view of the data, to those who are able to decrypt sensitive 
protected health information when needed for investigation. 

NC DETECT provides an excellent example of an early event detection 
and situational awareness system using ED visit data for disease surveillance. It 
is well established, statewide, and utilized daily by a variety of public health 
practitioners. A recently completed study found that NC ED information in 
NC DETECT compared favorably with national estimates of ED data made 
by the National Hospital Ambulatory Care Survey, despite differences in 
data collection methods (Hakenewerth et al., 2008). This finding is an 
indication of a well designed and robust system (Aylin et al., 2007). 

4.1 History of Syndrome Definitions in NC 

The syndromes monitored in NC DETECT are derived from the CDC’s 
text-based clinical case definitions for bioterrorism syndromes (CDC, 2003). 
These syndromes were selected because they encompass both potential 
bioterrorism-related and community acquired disease processes. They include 
botulism-like illness (botulism), fever-rash (anthrax, bubonic plague, smallpox, 
tularemia, varicella), gastrointestinal (gastrointestinal anthrax, food/water-borne 
gastrointestinal illness, viral gastroenteritis), influenza-like-illness (epidemic 
influenza, pandemic influenza), meningoencephalitis (meningitis, encephalitis) 
and respiratory (respiratory anthrax, pneumonic plague, tularemia, influenza, 
SARS). Clinical case definitions are converted to syndrome definitions by 
expressing them in SQL, in most cases requiring both a syndrome specific 
and a constitutional keyword in either the chief complaint or triage note 
field. For example, a record containing the syndrome specific term “cough” 
and the constitutional term “fever” would match the respiratory syndrome. 
Documentation of a fever by vital sign measurement in the ED is also 
accepted in lieu of a constitutional keyword. The SQL code is written to 
identify common synonyms, acronyms, abbreviation, truncations, misspellings 
and negation in the free text data. The NC DETECT syndrome definitions 
have been modified over several years in an iterative fashion according to 
the knowledge and experience of the NC DETECT Syndrome Definition 
Workgroup. This workgroup meets monthly and includes public health 
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epidemiologists who are regular users of NC DETECT for biosurveillance at 
the state and local levels, as well as clinicians and technical staff at NC 
DETECT. The continued improvement of the syndrome definitions for the 
purposes of syndromic surveillance requires more than this local effort, 
however. It requires collaboration with other system developers to determine 
the best practices nationally, as well as evidence-based research to support 
existing practices and/or develop new methodologies. 

4.2 The Importance of Data Quality 

The effectiveness of systems such as NC DETECT depends on the 
quality of the data provided by the data sources and on the system’s capacity 
to collect, aggregate and report information. Perfect data, however, rarely 
exist and there are no perfect data systems. Thus, assessing and improving 
data quality must be ongoing tasks. 

In NC DETECT, both automated and manual data quality checks are 
conducted daily and weekly. A Data Quality Workgroup meets monthly to 
review ongoing data quality concerns and strategize ways to address them. 
Major data quality issues range from failure to submit data at all to incorrect 
mapping of county of residence to extended delays in submitting diagnosis 
and procedure code data. Issues of particular concern include incomplete 
daily visit data, missing chief complaint data, failure to submit data in a 
timely fashion, and submission of invalid codes. Successfully addressing ED 
data quality issues requires constant monitoring of the data and ongoing 
communication with the hospitals submitting the data to NC DETECT. 

4.3 NC DETECT Case Studies 

NC DETECT has been used for a variety of public health surveillance 
needs including, but not limited to, early event detection, public health 
situational awareness, case finding, contact tracing, injury surveillance and 
environmental exposures (Waller et al., 2008). Those disease outbreaks that 
are first identified by traditional means are still aided by ED-based surveillance 
systems for identifying additional suspected cases and documenting the 
epidemiology of the affected individuals. 

4.3.1  Public Health Surveillance During and After Hurricanes 

Several major hurricanes have made landfall or passed through North 
Carolina in the past 10 years, including Floyd in 1999, Isabel in 2003, and 
Ophelia in 2005. In addition, hundreds of Katrina evacuees entered North 
Carolina in August and September 2005. While ED data were used in all 
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instances to monitor the hurricanes’ effects, the methodologies used show 
the evolution of ED data collection for public health surveillance in North 
Carolina. 

In the fall of 1999, Hurricane Floyd, preceded by Hurricane Dennis and 
followed by Hurricane Irene, caused massive rainfalls that flooded eastern 
regions of North Carolina along the Neuse, Tar, Roanoke, Lumbar and Cape 
Fear Rivers. As NCEDD was still in early development in 1999, a disaster 
response team and ED staff in 20 hospitals worked together to define and 
apply standardized illness and injury classifications in order to conduct 
surveillance for the period of September 16 to October 27, 1999 and to 
compare results to similar periods in 1998. These classifications were 
applied manually based on diagnosis or chief symptoms for each patient visit 
abstracted from daily ED logs. Based on these analyses, Hurricane Floyd 
resulted in increases in insect stings, dermatitis, diarrhea and mental health 
issues as well as hypothermia, dog bites and asthma. The leading cause of 
death related to the storm was drowning (CDC, 2000). Surveillance for this 
time period required the dedicated efforts of EIS officers, medical students 
and other field staff, as well as ED staff and public health epidemiologists 
over an extended time period. 

NC DPH conducted similar surveillance after Hurricane Isabel in 2003, 
manually surveying 35 hospitals to document hurricane-related morbidity 
and mortality (Davis et al., 2007). Officials updated the survey instrument to 
collect more information on injuries and asked hospitals to complete and fax 
the information to NC DPH. While less labor intensive overall than the 
surveillance that took place after Hurricane Floyd, the reliance on ED staff to 
provide information resulted in a relatively slow and extended collection of 
data from EDs. 

Federal officials evacuated two large groups to North Carolina from 
Katrina-hit areas of the Gulf Coast in August and September 2005. For this 
event, NC DPH relied on NC DETECT and hospital-based public health 
epidemiologists in Wake and Mecklenburg counties for ED data collection. 
While the epidemiologists at two hospitals were able to identify more 
Katrina-related visits (n = 105) than the automated NC DETECT reports 
(n = 90), the NC DETECT reports required no manual tabulations and took 
only 2 h to develop and implement. In addition, the epidemiologist count 
included patients not included in the NC DETECT database, such as patients 
who were directly admitted to the hospital, without receiving treatment in the 

visits were being monitored, Ophelia approached the NC coast, where it 
stalled and resulted in the evacuation of coastal communities for several days. 
NC DETECT was used to monitor Ophelia-related ED visits simultaneously 
with the Katrina evacuee monitoring effort. 

ED (Barnett et al., 2007). Furthermore, during the time the Katrina evacuee 
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While manual tabulations may result in greater specificity, near real-time 
automated ED data collection for post-disaster surveillance provides a very 
low cost approach for monitoring the public’s health if a system is already in 
place and operational. Queries can be continually refined to capture specific 
keywords in the chief complaint and triage note fields without added burden 
to hospital and/or public health staff. ED data collection provides an excellent 
complement to rapid needs assessments and other on-the-ground survey 
tools. Automated ED data collection assumes that EDs remain operational 
and that computerized health information systems continue to be used in 
times of mass disaster, an assumption that has not yet been put to the test in 
North Carolina. 

4.3.2  Influenza 

The NC DETECT influenza-like illness (ILI) definition, based on ED 
data, is used to monitor the influenza season in NC each year. The ED ILI 
definition follows the same trend as North Carolina’s traditional, manually 
tabulated Sentinel Provider Network but is available in near real-time, as 
shown in Figure 3-2. 
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While North Carolina continues to maintain its Sentinel Provider Net-
work, monitoring influenza with ED data provides several superior surveillance 
capabilities. In addition to timeliness, collecting ED data for influenza sur-
veillance allows jurisdictions to assess impact on populations rather than 
samples, test case definition revisions on historical data, stratify ED visits by 
disposition type (admitted vs. discharged) and incorporate age stratification 
into analyses. The use of age groups in influenza surveillance has been 
shown to provide timely and representative information about the age-
specific epidemiology of circulating influenza viruses (Olsen et al., 2007). 
Several states and large metropolitan areas, along with North Carolina, trans-
mit aggregate ED-based ILI counts by age group to an ISDS-sponsored 
proof-of-concept project called the Distributed Surveillance Taskforce for 
Real-time Influenza Burden Tracking (DiSTRIBuTE). Although the ILI 
case definitions are locally defined, the visualizations that DiSTRIBuTE 
provides show striking similarities in ILI trends across the country (http:/ 
/www.syndromic.org/projects/DiSTRIBuTE.htm). 

4.3.3  Early Event Detection 

While syndromic surveillance systems have clearly shown benefit for 
public health situational awareness and influenza surveillance, early event 
detection has been more of a challenge. Symptom-based detection systems 
are often overly sensitive, resulting in many false positives that can drain 
limited resources (Baer et al., 2007; Heffernan et al., 2004). Hospital and 
public health users who incorporate syndromic surveillance into their daily 
work flows, however, are able to accommodate these false positives more 
efficiently and still derive benefit from monitoring ED data for potential 
events. Investigating aberrations based on ED data that do not result in 
detecting an outbreak can still be important to confirm that nothing out of the 
ordinary is occurring. A recent investigation of gastrointestinal signals in Pitt 
County, North Carolina, for example, resulted in more active surveillance by 
the health department (checking non-ED data sources for similar trends) and 
the hospital (increased stool testing), as well as a health department press 
release promoting advice for preventing foodborne illnesses. Although a true 
outbreak or signal causative agent was not detected, this work results in 
improved coordination and communication among the hospital, healthcare 
providers and health department, which will make collaboration more 
efficient in any future large scale response efforts. 

4.3.4  Bioterrorism Agent Report 

To complement the more sensitive symptom-based syndromes, system 
developers may also include reports looking for specific mention of Category 

http://www.syndromic.org/projects/DiSTRIBuTE.htm
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A bioterrorism agents, such as anthrax, botulism, etc. In NC DETECT, for 
example, the Bioterrorism (BT) Agent Case Report searches for keywords 
and ICD-9-CM diagnoses related to 21 different bioterrorism agent groups. 
A statewide search on all 21 agents on average returns only ten cases 
(averaging one case a day over 10 days). In comparison to the specificity of 
this report, a statewide search on botulism-like illness for 10 days in NC 
DETECT produces approximately 200 cases while a search on a broad 
definition of gastrointestinal illness produces approximately 16,000 cases 
statewide over a 10-day period. 

While the BT agent case report does include false positive cases, it 
provides an effective, unobtrusive monitoring mechanism that complements 
the astute clinician. It is also an important backup when notifiable diseases 
go unreported to the public health department, which actually occurred in 
March 2008 with a single case of tularemia. 

4.3.5  Case Finding & Infectious Disease Outbreak Monitoring 

Similar to the periods during and after natural disasters, monitoring ED 
data during a known infectious disease outbreak can assist with case finding 
and contact tracing. During known outbreaks, NC DETECT is used to 
identify potential cases that may require follow up. To assist in this effort, 
the NC DETECT Custom Event Report allows users to request new reports 
in just 2 h, with specific keyword and/or ICD-9-CM diagnostic criteria (Ising 
et al., 2007). This report has assisted North Carolina’s public health monitoring 
in several events, including, but not limited to, nationwide recalls of peanut 
butter (February 2007), select canned foods (July 2007), nutritional supple-
ments (January 2008), as well as localized Hepatitis A (January 2008) and 
Listeriosis (December 2007) outbreaks. Allowing users to access reports 
with very specific keywords (e.g., “peanut,” “canned chili,” “selenium”) pro-
vides them with an efficient, targeted mechanism for timely surveillance of 
emerging events, all with the intention of reducing morbidity and mortality. 

4.3.6  Infectious Disease Retrospective Analyses 

When syndromic surveillance systems collect ICD-9-CM diagnosis codes 
in addition to chief complaints, users can conduct retrospective analysis 
effectively. For example, users can search on the ICD-9-CM code V04.5 
(need for prophylactic vaccination and inoculation against certain viral 
diseases: rabies) to review how many ED patients received rabies pro-
phylaxis in a given time period. Using the ED chief complaint, users can go 
a step further and view how many ED patients with chief complaints related 
to animal bites/animal exposures were NOT documented as having received 
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a V04.5 code. Investigation of the results may reveal hospital coding errors 
or hospital practices that are not in line with public health requirements that 
can then be corrected. 

4.3.7  Injury Surveillance 

The Injury and Violence Prevention Branch of NC DPH has added ED data 
from NC DETECT to its data sources for injury surveillance efforts. In 
addition to ED visit data, they also use hospital discharge, death certificate, 
and medical examiner data. Injury surveillance efforts involving ED data 
have included falls, traumatic brain injury, fire-related injury, self-inflicted 
injury, heat-related visits, and unintentional drug overdoses. Furthermore, 
they have used ED data when working with trauma Regional Advisory 
Committees to evaluate injury patterns and are exploring the possibility of 
incorporating ED data into NC’s violent death reporting system. While ED 
data have long been used for injury surveillance, the availability of near real-
time data provides opportunities for more timely documentation of inter-
vention outcomes. 

4.4 Conclusions and Discussion 

ED data are a proven tool for biosurveillance, and the ED data in NC 
DETECT have proved to be effective for a variety of public health uses, 
including surveillance, monitoring and investigation. Biosurveillance systems 
that are incorporated into hospital and public health practitioner daily work 
flows are more effective and easily used during a public health emergency. 
The flexibility of a system such as NC DETECT helps it meet this level of 
functionality. 

4.5 Evaluation of NC DETECT 

Any surveillance system should undergo rigorous evaluation to make 
sure it is meeting user needs effectively and efficiently. The ED data stream 
of NC DETECT has undergone two such evaluations. In 2007, it was 
evaluated by the North Carolina Center for Public Health Preparedness at the 
charge of the NC DPH. The evaluation was designed to determine the 
usefulness of the ED data and the ease with which it is used for both real-
time and non-real-time public health surveillance activities. Interviews were 
conducted with stakeholders to learn about the specifics of the ED data, data 
flow, and the aberration detection algorithms. In addition, local, regional and 
state public health authorities, as well as hospital-based public health 



3. Using Emergency Department Data for Biosurveillance 61
 
epidemiologists (PHEs), were asked to complete a Web-based survey about 
their experience using the ED data via NC DETECT. Key findings included: 

• ED data permit public health authorities to identify human health 
events as a result of bioterrorism, natural or accidental disaster, or 
infectious disease outbreak, but the rapidity of detection is contingent 
on the extent of the event and affected individuals, the ability of chief 
complaint data to be successfully transmitted to NC DETECT in a 
timely manner, and the frequency and timing of aberration detection 
and investigation by public health authorities; 

• The NC statute mandating provision of ED visit data for public health 
surveillance and the availability of UNC DEM staff to provide 
technical and analytical expertise have been instrumental in assuring 
that timely, quality data are available for public health surveillance; 

• ED data are useful to public health authorities; 
• The system showed a low positive predictive value (PPV), indicating 

that users must examine a large number of false positives in order to 
identify a potentially true threat to public health. 

Based on these findings, this evaluation recommended additional efforts 
to encourage public health authorities to routinely use the ED data, increased 
communication among hospitals, business organizations and public health 
authorities, examination and evaluation of different aberration detection 
algorithms, and a cost-benefit study of using ED data for public health 
surveillance. 

A second evaluation of the emergency department data stream of NC 
DETECT was conducted in 2007 by the Research Triangle Institute to assess 
the impact of this biosurveillance system on public health preparedness, 
early detection, situational awareness, and response to public health threats. 
This study used key informant interviews and found the following: 

• Biosurveillance has been used in North Carolina for situational 
awareness and early detection of disease outbreaks; 

• Public health epidemiologists in hospitals and regional state-based 
response teams have integrated use of NC DETECT with traditional 
surveillance activities; 

• Biosurveillance has added timeliness and flexibility to traditional sur-
veillance, increased reportable disease reporting and case finding, and 
increased public health communication. 

This evaluation recommended the addition of urgent care center data to 
complement the ED visit data for biosurveillance and exploring the use of 
diagnosis data, when available in a timely manner, to minimize false positive 
alerts. 
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 CONCLUSION 

electronic health information systems, these data are available in near real-
time, making them particularly useful for surveillance and situational aware-
ness in rapidly developing public health outbreaks or disasters. The use of 
ED data for public health surveillance can significantly increase the speed of 
detecting, monitoring and investigating public health events. Combined with 
other timely data sources such as data from poison centers, EMS, ambulatory 
care data, and animal health data, ED data analyses are an important source 
of information for mitigating the effects of infectious disease. 

A distinctive feature of ED data for surveillance is their timeliness. With 

QUESTIONS FOR DISCUSSION 

1. Are timely ED data systems for public health surveillance cost effective? 
How would you measure this? 

2. How can biosurveillance systems and electronic lab reporting for report-
able conditions best complement each other? 

3. What other data sources could and should be used with ED data for an 
exemplar biosurveillance system? 

4. Can an automated biosurveillance system ever really replace the astute 
clinician at detecting and responding to an infectious disease outbreak of 
public health significance? 

5. What statistical approaches are available for aberration detection and 
what are the pros and cons of each? How does a biosurveillance system 
determine which aberration detection method(s) to use? 

6. What are the major data quality issues related to conducting public health 
surveillance with ED data? How can these be identified and addressed? 
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Chapter 4 

CLINICAL LABORATORY DATA  
FOR BIOSURVEILLANCE 

EILEEN KOSKI 

CHAPTER OVERVIEW 

surveillance, with particular emphasis on the use of clinical laboratory data. 
Overviews of types of surveillance, the history of clinical laboratory testing 
and different types of laboratories are provided as background. A more 
detailed discussion of the roles and characteristics of clinical laboratory data 
with respect to biosurveillance includes comments on data standards and 
analytic requirements, with particular emphasis on understanding possible 

Keywords: Biosurveillance; Electronic laboratory reporting; Laboratory data; Public 
health surveillance; Syndromic surveillance 

1. INTRODUCTION 

Biosurveillance may be viewed as an extension of public health surveillance. 
The term biosurveillance is typically defined as the process of monitoring 
selected aspects of the health of a population in such a way as to facilitate 
early detection and monitoring of an event of public health concern, as well 
as supporting situational awareness and response to the event. In terms of 
data, biosurveillance utilizes a broader range of data types and sources than 
traditional public health surveillance. 

This chapter provides general background on the types of data used
for biosurveillance, syndromic surveillance and traditional public health 

© Springer Science+Business Media, LLC 2011 

D. Zeng et al. (eds.), Infectious Disease Informatics and Biosurveillance,
Integrated Series in Information Systems 27, DOI 10.1007/978-1-4419-6892-0_4,  

sources of variability or artifacts during data analysis and interpretation. 
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From a historical perspective, there have been dramatic changes in the 
volume and types of data available for public health surveillance since the 

 

represented an early effort to systematically collect data on causes of death. 

applications of computing to healthcare began in the 1950s, escalating with 
the development of MUMPS (Massachusetts General Hospital Utility Multi-
Programming System) in 1966 and continuing to expand with the emergence 
of specialized medical computing professional societies [2]. 

particular, have continued to accelerate. This has, in turn, enabled both 
access to new data streams as well as supporting new, and increasingly 
complex, analytic technologies. As a result, a variety of new approaches to 
surveillance have been developed, each of which may take advantage of – 
and be best served by – different types of data and detection algorithms. 

Clinical laboratory data represents a critical information component of 
data used for biosurveillance in multiple contexts. Specific elements of 
laboratory data have proven particularly well suited to different surveillance 
strategies, but virtually all forms of public health surveillance rely on 
laboratory data in one form or another. 

2. TYPES OF SURVEILLANCE 

aspects of population health including infectious disease, chronic disease, 
birth defects, mental health and even social issues. For purposes of this 
discussion, the principle distinction of interest relates to the following three 
broad categories: 

 Traditional public health surveillance for infectious disease 
 Syndromic surveillance 
 Biosurveillance. 

In most current forms of what may be referred to as “traditional” public 
health surveillance, the goal is to detect evidence of a known, direct threat to 
population health. Two of the primary sources of data currently used are case 
reports from routine clinical practice, including case reports and surveillance-

There are many forms of public health surveillance focused on various 

The pace of these developments has escalated dramatically as computing 

collected have continued to expand. The availability of data and the ability 
Since that time, the scope, types, quantities and level of detail of the data 

to process it efficiently have progressed, of necessity, along parallel paths,

sixteenth century when the introduction of the London Bills of Mortality [1]

particularly since the introduction of computers into healthcare. The earliest 

power in general, and advances in health information technology (HIT) in 
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oriented laboratory testing from sentinel providers or networks, and direct 
reporting by clinical laboratories of positive laboratory results for known 
conditions of interest [3]. The requirements for what is reported from 
providers and clinical laboratories are generally specified in regulations and 
laws governing reporting to public health agencies. Some conditions are 
nationally notifiable [4], while others may only be reportable in specific 
jurisdictions where the condition is of particular concern. Some sentinel 
providers and networks, such as NREVSS, the National Respiratory and 
Enteric Viral Surveillance System, are based on data collected from 
collaborating university and community hospital laboratories, selected state 
and county public health laboratories, and commercial laboratories through a 
specific cooperative agreements, as opposed to regulatory requirements. 

This form of surveillance is described as passive surveillance because 
there is no direct attempt to seek out possible cases, relying instead on 
identification of cases that present to the healthcare system in the normal 
course of medical care [5]. In the case of sentinel providers, there may  
be an agreement to test patients presenting with symptoms of a particular 
condition, such as influenza, that would not normally prompt testing in 
routine clinical practice. This can be considered passive surveillance for pur-
poses of this discussion, however, since it still relies on the patient presenting to 
the healthcare system. In active surveillance, by comparison, potentially 
exposed individuals are specifically sought out for testing by the health 
department. 

In recent years, some of the shortcomings of this approach with respect 
to emerging and re-emerging infectious disease, as well as bioterrorist attacks, 
have led researchers to introduce a number of new surveillance approaches 
and techniques. These approaches have included both direct detection 
methods, such as water, air or other environmental sensing, as well as more 
mathematically probabilistic techniques, such as syndromic surveillance 
[6, 7]. These new approaches rely on many more types and sources of data 
than traditional public health surveillance, for example: 

Chief complaint for hospital and/or emergency department admission 
Hospital discharge data 
Prescription drug sales 
Over-the-counter drug sales 
Calls to poison control centers or other medically oriented call-in centers 
Visits to health-related Internet sites 
School and work absenteeism 
News articles with health-related content 
Laboratory order data. 

Each of these types of data has specific advantages and disadvantages, 
although most require some form of specialized processing of the data to 
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make it usable for large scale analytic purposes. This may include techniques 
such as text parsing of chief complaint data or operationalization of variables 
such as drug names and laboratory tests into meaningful syndromic groupings. 

Some of these data sources represent indirect and less-specific evidence 
of disease, such as school absenteeism rates [8], but may prove effective in 
detecting the presence of a condition that may be widespread and debilitating, 
although not sufficiently severe to warrant a hospital or physician visit. Others 
are more directly health-related but may be used in a new way. Sales of 
over-the-counter medications [9] can be used to detect less severe conditions 
for which patients are likely to self-medicate rather than visit a physician, 
such as diarrheal or flu-like illnesses. Patterns of laboratory orders, as opposed 
to just positive results [10, 11], can be used to detect the presence of more 
severe conditions that warrant interaction with the healthcare system, but 
that are sufficiently novel that no positive results for known conditions are 
reported. 

In addition to identification of confirmed or suspected cases of a specific 
disease, some forms of surveillance may also look for significant change in 
the behavior or other characteristics of a known disease vector. Examples of 
this are the use of sentinel chickens and mosquito pools [12], in which 
laboratory testing is done on potentially exposed animals or on the vectors 
themselves. 

The concept of biosurveillance broadens the scope of study even further 
to conditions that may not pose an imminent or direct threat to human health, 
but may pose a direct threat to our food supply or economy in the form of 
veterinary or plant contagions, as well as direct or indirect threats to health 
via other environmental contagions or toxins. Again, laboratory data is crucial 
to detection and identification of any suspected or actual contagion. 

One data source that is common to all three different types of surveillance 
is the clinical laboratory. 

2.1 Laboratory Data for Biosurveillance 

Serology and culture results are generally considered the “gold standard” 
for confirmation of many infectious diseases, and clinical laboratory tests 
have been well established to have excellent sensitivity and positive pre-
dictive value. As a result, laboratory confirmation of a suspected case of an 
infectious disease has long been, and continues to be, a key component of 
public health case definitions [13, 14], as well as being an essential element in 
surveillance systems in general. 

The role of laboratory data in detection and identification of known, 
current threats is generally well understood and accepted. Under certain 
circumstances, however, laboratory data may take on a new role. In some 
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cases of diseases that have declined in prevalence, such as malaria, the 
institution of laboratory confirmation has been instrumental in assuring that 
suspected or presumed cases were no longer reported as confirmed cases 
[15, 16]. In the case of a new, emerging, or re-emerging condition, the 
availability of confirmatory laboratory testing may lag behind recognition of 
the condition. For a novel infectious agent, in particular, availability of 
confirmatory testing is clearly dependent upon identification of the etiologic 
agent. Even in such cases however, laboratory testing is typically crucial in 
ruling out alternate causative agents, as well as confirming the presence of 
physiologic outcomes that may be part of the public health case definition 
for a specific condition. 

Although all laboratory-confirmed cases of notifiable conditions should, 
in theory, be reported by the clinicians caring for the affected patients, 
compliance varies considerably. From an organizational perspective, there 
are far fewer laboratories than individual clinicians, each typically serving 
a much larger patient base. As a result, laboratory-based surveillance has 
proven to be an effective avenue to improving the completeness of reporting 
of notifiable conditions to public health departments [17]. 

The field of syndromic surveillance emerged in recent years in an attempt 
to expedite recognition of an outbreak caused by a new or emerging 
organism or agent by looking for evidence of spikes in presentation of 
specific symptoms, in the absence of a known causation. In the case of 
laboratory data, this has required operationalization of laboratory test orders 
based on the typical symptoms for which those tests might be ordered, 
regardless of the actual test results [10, 11]. For example, a spike in orders 
for stool or CSF (cerebrospinal fluid) cultures might indicate the presence of 
a novel gastrointestinal or neurologic pathogen in a community. 

2.2 The Clinical Laboratory 

2.2.1 Development of the Clinical Laboratory 

The identification of the causative agents for such devastating infections 
as diphtheria and cholera in the 1880s and 1890s, as well as the subsequent 
development of tests for these diseases, paved the way for the establishment 
of the earliest dedicated clinical laboratories at the end of the nineteenth 
century [18]. Prior to that time, laboratory testing was very limited and 
typically performed by individual physicians and scientists. 

By 1926, recognition of the role of the clinical laboratory had become so 
firmly established that the American College of Surgeons’ accreditation 
standards required all hospitals to have a clinical laboratory under the 
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direction of a physician. This ensured that clinical laboratories would develop 
mainly in hospitals for some time [19]. 

Shortages of trained personnel during World War I led to the develop-
ment of a variety of training programs as well as certification requirements 
for “medical technologists.” As the number of medical technologists grew, 
they eventually sought greater autonomy and independence from the historical 
structure established by the American Society of Clinical Pathologists 
(ASCP). Independent clinical testing laboratories began to appear and by 
the late 1970s, clinical laboratory science was becoming an independent 
profession [20]. 

The earliest laboratory testing for infectious diseases was focused on 
bacterial organisms that could be observed using technologies such as the 
light microscope. As knowledge of both infectious organisms and related 
issues of public health importance, such as antibiotic resistance, continued to 
grow, the breadth and complexity of laboratory testing expanded as well. 
The identification of viruses as major causes of infectious disease also 
necessitated the introduction of new technologies. The current repertoire of 
infectious disease testing includes molecular diagnostic techniques, including 
viral genomic testing, that can enhance the speed, specificity and sensitivity 
of diagnosis and identification of etiologic agents [21]. Although the majority 
of clinical laboratory testing is still performed in hospital laboratories, the 
introduction of increasingly complex laboratory testing techniques contributed 
to the emergence of specialized reference laboratories. 

2.2.2 Laboratory Types 

There are a number of different ways to classify laboratories, such as those 
based on: 

1. Types of testing – e.g., clinical, environmental, routine, esoteric 
2. Bio-safety level 
3. Market segment served – e.g., hospital-based versus out-patient. 

In the context of laboratory data for biosurveillance, there are four broad 
laboratory segments that account for most testing performed today: public 
health, hospital, commercial, and reference, which includes esoteric and 
specialized laboratories. Some laboratory testing is also performed in physician 
office laboratories. From the perspective of biosurveillance, most laboratory 
data comes from hospital, commercial or reference laboratories. Public 
health laboratories perform crucial functions with respect to confirmation 
and characterization of rare or new pathogens, as well as providing testing 
services during active case investigation. The type of passive surveillance 
that forms the core of biosurveillance, however, relies on detecting cases 
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identified during routine medical practice, in which case the testing is more 

laboratory. 
There is a great deal of variety as well as overlap in the menu of 

laboratory testing offered by hospital, commercial and reference laboratories. 
The breadth and depth of the test menu offered by any of these types of 
laboratories will also generally depend on the size of the institution. For 

While there are few absolute distinctions between what may be offered in 
each segment of the laboratory industry, there are some characteristics that 
typically differentiate the segments. 

 

life-threatening metabolic and genetic disorders, monitoring communities 
for pathogens in food or water, and testing for newly emerging infectious 
diseases including rapid identification of suspect agents. 

 Hospital laboratories generally place a greater emphasis on testing that 
requires almost immediate attention, such as arterial blood gas analysis; 
testing requiring rapid turnaround at any hour of the day or night, such as 
the types of testing typically performed in emergency departments and 
intensive care units; and other testing with special clinical characteristics, 
such as surgical pathology. 

 Commercial laboratories typically focus more on the type of testing 
performed in an out-patient setting, as well as testing from residential 
facilities such as nursing homes. 

 Reference laboratories usually focus on specialized testing, such as endo-
crinology, infectious disease, molecular diagnostics, or genetic testing. In 
addition, it is not unusual for new laboratory testing technologies to be 
deployed initially in a reference laboratory, particularly if the testing is 
still considered experimental, prior to more widespread availability of a 
test. 

These are broad distinctions intended only to highlight the typical 
distinctions between laboratory test menus that may be available from 
different segments. In reality, the situation can be very dynamic. Reference 
laboratories may exist within academic medical centers or as part of large 
commercial laboratories, and small hospitals may contract out parts of their 
routine testing to commercial laboratories, so very few absolute distinctions 
exist in practice. Since the severity of disease seen in hospitalized and 
emergency department (ED) patients are often very different from patients 
seen on an out-patient basis, it can be very useful to understand the source of 

health of the population, including newborn screening for potentially 
Public health laboratories normally focus on issues affecting  the

example, A major academic medical center will typically offer a broader 

likely to have been performed in a hospital, commercial or reference 

laboratory test menu than a small community hospital. 
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laboratory data used for surveillance purposes in order to put any findings 
into the appropriate context. 

2.2.3 Sources of Laboratory Data for Biosurveillance 

Laboratory data is currently made available for biosurveillance, either 
directly from a clinical laboratory or indirectly through another provider, via 
at least four distinct mechanisms: 

1. As the basis for a specific case report to a public health agency by an 
individual clinician or a hospital 

2. As reported directly to public health agencies in compliance with 
regulations pertaining to notifiable conditions 

3. As data provided to specific programs within one or more public health 
agencies in conjunction with specific surveillance programs conducted 
by those agencies, including sentinel networks, such as NREVSS 

4. From data previously provided to a Health Information Exchange 
(HIE) or Regional Health Information Organization (RHIO). 

In the future, it is anticipated that data may also be made available 
directly from electronic health records (EHR) in providers’ offices. Only a 
small percentage of providers currently use EHRs, so this is not a major 
source of laboratory data for biosurveillance today, nor is it likely to be in 
the next few years [22]. As adoption increases, however, it is likely to be a 
more robust option in the future, and there is already some preliminary data 
indicating that there may be potential value in using such data for sur-
veillance [23]. 

Historically, laboratory result data has been delivered to public health 
departments primarily via paper, as well as by fax and telephone. Although 
most medical records are still paper-based, laboratory data has largely been 
managed in electronic form in laboratory information systems for many 
years. As a result, routine public heath data from laboratories has increasingly 
been reported electronically, increasing the speed and reliability with which 
data is available for biosurveillance purposes. In addition, numerous public 
health agencies have reported that the switch to electronic laboratory reporting 
(ELR) has generally resulted in more complete reporting as well [24, 25]. 

As with most new technological approaches, the introduction of 
electronic laboratory reporting was not without difficulty, particularly for 
early implementations. Although more data has typically been received, and 
in some cases the data has been available very rapidly, unanticipated 
problems were encountered. One type of problem experienced in multiple 
sites was the reporting of false positives due to the use of automated text 
parsers for detection of organism names. In most cases, the text parsers had 
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incorrectly reported negative reports as positive if both reports included a 
text representation of a specific organism name [25–27]. In a similar vein, 
incorrect automapping of disease names to electronic codes has been reported 
to have resulted in an erroneous report of a rare condition [28]. Another 
problem encountered was the difficulty in addressing repeated reporting of 
the same result, such as preliminary and final culture results [26, 27]. Although 
preliminary results were considered of value in expediting detection, the 
need to combine or “de-duplicate” the multiple reports necessitated additional 
processing of the data. Although electronic reporting is expected to expedite 
reporting, automated systems have also been observed to be much slower 
than traditional reporting or to have had unpredictable performance lapses 
[26]. The increased burden on health department resources that has some-
times been necessitated by dramatic increases in reporting has also been 
reported to pose a problem in some cases [29]. 

Such problems should be ameliorated over time as various sources of 
error are identified and systems become more sophisticated. In the interim, 
these are issues that need to be addressed during data analysis by carefully 
attempting to identify duplicates or unusual patterns of positives that could 
indicate the presence of large numbers of false positives. 

2.2.4 Components of Laboratory Data for Biosurveillance 

In traditional public health surveillance, the data records transmitted to 
public health departments from laboratories are those that meet the criteria 
established by each jurisdiction for notifiable conditions. The precise data 
elements required for each condition are normally described in the applic-
able regulations and may vary from jurisdiction to jurisdiction and program 
to program, but typically include the following: 

 Reporting laboratory identifiers 
 Patient identifiers and demographics 
 Ordering clinician identifiers 
 Identification of ordered test 
 Test results, including reference ranges and interpretation 
 Additional information as required. 

In some cases, all test results for a specific condition may be provided to 
public health agencies, but in most cases only positive results are considered 
reportable. 

Clinical laboratories must track the requirements of each jurisdiction 
in which they perform testing to be certain that they have complied with all 
the applicable reporting requirements. In the case of reference laboratories, 
the reporting requirements may remain with the originating laboratory, i.e., the 
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laboratory that originally received the specimen from the ordering clinician. 
In cases where testing is referred from one laboratory to another, which is 
often the case for reference laboratory work, the requisite patient and 
provider identifiers and demographics may not be available to the reference 
laboratory. The reference laboratory may only know the state of origin of the 
ordering laboratory, not of the patient or even the provider, leaving the 
primary reporting obligation with the originating laboratory. 

In the case of newer surveillance methodologies and programs, such as 
syndromic surveillance and biosurveillance programs, the data transmitted 
may be significantly different from that provided for regulatory purposes. 
This is true primarily because such programs, by definition, are attempting to 
address issues not fully supported by the current reporting system. In addition, 
while local pubic health reporting is covered by regulation and generally 
requires full patient identification, some agencies conducting syndromic sur-
veillance and biosurveillance programs may not automatically have the right 
to access patient demographic data. 

It should be noted that while provision of data in compliance with 
regulations governing notifiable diseases is covered under the HIPAA 
(Health Insurance Portability and Accountability Act) privacy provisions, as 
are uses of data to support the response to a bio-event, the precise status of 
other secondary uses of clinical data for biosurveillance purposes is more 
ambiguous [30]. Clinical laboratories are also required to comply with CLIA 
(Clinical Laboratory Improvement Amendments) regulations that include 
provisions governing provision of laboratory data. 

As a result, one primary difference between notifiable case reporting and 
data provided for programs not covered by regulation is that data may be 
provided in de-identified, aggregated form or else patient identifiers are 
anonymized or pseudonymized. Pseudonymization consists of providing a 
special linker identifier that can be linked back to the original record by the 
originating facility, but that provides no patient identifiable data directly to 
the recipient. Anonymization theoretically precludes any such subsequent 
linkage to the original record. Pseudonymization is used to protect patient 
confidentiality while retaining the ability to identify specific patients in the 
event of compelling public heath need and appropriate authorization [31]. 

The second primary difference is that data sets provided for syndromic 
surveillance and biosurveillance programs typically encompass a much broader 
array of test orders and results than are required by most jurisdictions for 
routine public health reporting. At the same time, some public health 
jurisdictions may require reporting on selected chronic diseases, such as 
diabetes. From a biosurveillance perspective, the focus is more commonly 
on infectious agents or toxins, so data on common chronic diseases might 
not always be included in biosurveillance systems. 
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2.2.5 Data Standards for Biosurveillance 

speed with which it is necessary to analyze data for biosurveillance requires 
data to be interoperable. Interoperability in this context essentially means 
that data from all sources must be structured, coded or represented in the 
same way so that data can be quickly aggregated and analyzed across all 
originating data sources. 

While the use of standard coding systems such as ICD-9 and CPT have 
been routine in medical billing for many years, the introduction of data 
standards into transmission of laboratory data for biosurveillance is still a 
work in progress. Two of the most widely used vocabularies to achieve 
interoperability of laboratory data are LOINC [32, 33] to identify test result 
components and SNOMED [34] to identify subsets of laboratory results that 
are typically reported in text, such as the names of organisms identified on a 
culture result. HL7 (Health Level 7) is a message transport standard that is 
also widely used in healthcare, particularly for electronic laboratory reporting 
[35], including in the delivery of data for biosurveillance more broadly. 

With the creation of the Office of the National Coordinator for Health 
Information Technology (ONC) under the Department of Health and Human 
Services (HHS) a number of projects have been initiated to develop use-
cases and interoperability standards applicable to a broad range of healthcare 
transactions, including biosurveillance. Biosurveillance was, in fact, one of 
the first three use-cases addressed for which interoperability specifications 
(IS) were developed by the ANSI Healthcare Information Technology 
Standards Panel (HITSP). In addition, the ELINCS specification developed 
by the California Health Care Foundation and now maintained by HL7, 
seeks to address similar needs. While LOINC, SNOMED and HL7 are 
prominently featured in these IS, many other standards are also designated to 
address other elements of the data set and processes involved in reporting 
data for biosurveillance. 

2.2.6 Data Analysis 

statistical and analytic tools required will vary based on the specific 
applications and will not be described in this chapter. 

If confirmatory laboratory data is analyzed in the context of complete 
public health case reports, there are two principle issues to be considered: 

As healthcare data becomes increasingly available by electronic means, 
the sheer quantity of data available for use has increased dramatically. The 

The purpose of this section is to describe the types of issues that need to  
be addressed when analyzing laboratory data for biosurveillance. The precise 
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1. Whether the testing methodologies used by different laboratories 
were sufficiently reliable that all cases can be considered to have 
been comparably confirmed [36] 

2. Whether the data provided is sufficiently granular to determine if 
cases reported at different points in time meet current or analysis-
specific case criteria. 

There are additional issues to consider when analyzing large data sets 
comprised primarily of laboratory-based reporting. 

If data from more than one laboratory are to be aggregated together, the 
comparability of the nomenclature, testing methodologies, reporting units and 
reference ranges used become critically important. At the most basic level, it 
is often necessary to map local coding systems to a national standard, such 
as LOINC, before any analysis can begin. Further data cleaning and trans-
formation may be required to assure that all data can be referenced to the 
same units. For example, if a single result analyte is typically reported in 
“cells/mL,” but sometimes appears in “cells/mL × 1,000,” a mathematical 
transformation will be required to render the data comparable. 

While not yet fully realized, a great deal of progress has been made on 
both electronic availability of laboratory data for surveillance and on pro-
gress towards standardization. Nonetheless, careful consideration of source 
data characteristics that could introduce an artifact into any analysis performed 
is required to obtain the most value from the available data, particularly 
when gathered and aggregated from many different sources. 

Preliminary descriptive data analysis is generally recommended to assess 
the quality and consistency of the data available. Validation steps can 
include looking for unexpected gaps or suspicious increases, as well as 
comparing observed trends to expected trends based on historical or other 
information about anticipated changes, such as major known changes in 
therapy or recent news reports about a condition of interest. 

2.2.7 Underlying Data Characteristics 

In general, analysis of laboratory data for biosurveillance is considered a 
secondary use of data since the laboratory tests were originally ordered and 
results generated for purposes of clinical care, not for surveillance. In the 
case of laboratory data from sentinel providers, some or all of the data may 
represent a primary use if the tests were ordered exclusively for public health 
purposes. As a secondary data use, it is critical to understand the nature of 
the data and the circumstances under which it originated. As mentioned earlier, 
it is particularly important to understand the nature of the data reported, 
specifically whether it has been reported as “raw” data, or if any elements of 
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the data have been derived, such as by the use of text parsers, or transformed 
in any way, such as by mapping codes. 

Data collected for a clinical trial is generally gathered under a protocol 
that specifies exactly what data, how and at what time intervals it will be 
collected as well as explicit inclusion and exclusion criteria for which 
patients to collect it on. Most data currently available for biosurveillance is 
based on routine clinical practice. In many cases there may be consensus 
group or other guidelines that outline the appropriate testing to perform in 
specific clinical settings. Unlike researchers following a protocol, however, 
independent practitioners may choose to order whatever tests they consider 
clinically appropriate. Patients, in turn, may choose not to have all the tests 
ordered performed, whether due to financial or other considerations. That 
means that it is important to identify and address as many variables 
influencing the data collected as possible. 

Patient and provider characteristics, as well as external drivers, can all 
influence the nature and composition of the data available. Given the wide 
variability in patient behavior, clinical orientation of providers, and potential 
external drivers, accounting for this can be a daunting task. With thought and 
care however, it is often possible to either structure the analysis to address 
this issue, or to limit conclusions to the level supported by what is known 
about the data. 

Patient Characteristics 

Patient behavior is influenced by many variables. When analyzing 
laboratory data for biosurveillance, it is necessary to try to derive or address 
as many of these variables as possible. 

First and foremost, of course, behavior is influenced by symptomatology. 
Patients typically visit a clinician when they perceive the presence of a 
physical ailment or abnormality that does not appear likely to resolve on its 
own. A patient visit may relate to the onset of a new condition, or to on-
going monitoring of an existing or chronic condition. Not all patients will 
present at the same time in the course of their illness, and not all patients will 
comply with providers’ recommendations for laboratory testing. Patient 
behavior is contingent on a host of variables, including: 

 Severity of symptoms 
 Presence or absence of other relevant co-morbidity 
 Level of medical awareness – for example, whether or not a patient is 

likely to recognize the importance of seeking care for a specific set of 
symptoms 

 Access to care, including logistical issues and financial issues – for 
example, availability of health insurance or flexible clinic hours 
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 Patient demographics, including cultural issues that may influence 

whether patients in certain communities are more likely to consult a 
traditional or alternative practitioner before presenting at a mainstream 
medical facility 

 Personal attitudes and characteristics. 

Little or none of this information is available in data gathered directly 
from laboratories, which typically receive limited demographic or clinical 
information from ordering providers. In the case of reference laboratories, 
such information is particularly minimal, often limited to those data elements 
required in order to correctly interpret the test results. This means that any 
conclusions drawn must be carefully interpreted in light of the characteristics 
of the data. 

In some cases, however, it may be possible to derive desired data 
elements from those that are available. For example, if testing typical of 
patients with diabetes – e. g., hemoglobin A1c results – appears on the same 
requisition as a culture that was positive for a particular micro-organism of 
interest, it may be reasonable to conclude that the result was on a patient 
with diabetes. If there is a perceived need to perform subset analysis based 
on co-morbidity, this may be a reasonable way to create a usable data set. 
Severity can similarly sometimes be inferred from the precise nature of the 
tests ordered, such as specific tests for uncommon respiratory disorders 
versus basic respiratory cultures. 

Such classifications can not be considered totally reliable. From a data 
mining perspective, however, they may be helpful in examining patient sub-
groups under circumstances where complete clinical information is not 
available. Such derived data classifications may prove particularly valuable 
as part of hypothesis-generating activities [37], or in attempting to assess the 
face validity of a finding, as opposed to drawing definitive conclusions. 

Provider Characteristics 

Provider behavior is also influenced by a number of variables. For 
example, it is not unusual to observe different patterns of both orders and 
results from clinicians in different specialties or different parts of the country. 
Culture results for an infectious disease specialist, for example, may reveal a 
higher concentration of unusual pathogens than those from a general 
internist as a result of selection bias in the type of patient seen. 

If a particular data set includes a balanced representation of specialists 
and generalists, the net effect may be that the analysis can be interpreted to 
represent the population as a whole. If possible, it can be very useful for 
some analyses to attempt to differentiate between tests ordered by different 
types of providers. Whether or not this is possible will often depend on the 
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granularity of the provider data available. If the representation of provider 
type is skewed or simply unknown, however, the results could be confusing 
and even open to misinterpretation. 

External Drivers 

Providers and patients alike are influenced by trends in health education 
and awareness, mass media reporting of specific health events, changes in 
healthcare coverage and changing geographic population distributions. If 
laboratory results are trended over time, it is therefore critical to normalize 
the changes in results of concern as a function of the overall testing per-
formed. In cases where only positive results are available, for example, it can 
be very difficult to understand if an observed increase in case reporting 
represents a true increase in the incidence or prevalence rate, as opposed to a 
better case detection rate as a result of increased testing. If the testing rate 
increases dramatically enough, such as might occur during a transition from 
symptom-oriented testing to screening, an absolute increase in the number of 
positive cases reported could even be associated with a decline in the true 
incidence or prevalence rate. 

Transient rises in specific testing rates have occurred in the context of a 
perceived outbreak [11], and more sustained rises have occurred in response 
to major media stories. Although not reported in the scientific literature, 
rates of testing for hepatitis C at a large national laboratory were observed by 
the author to have increased dramatically after extensive broadcast and print 
news coverage of former surgeon general C. Everett Koop’s announcements 
about the dangers and consequences of hepatitis C infection. 

The approval of a new treatment for a disease can also lead to increased 
testing activity as both patients and providers may see a new impetus to 
confirm, rule-out, or monitor patients with a specific diagnosis. Again, 
though not reported in the literature, dramatic increases in HIV viral load 
testing volume at a large national laboratory were observed by the author 
following the introduction of protease inhibitors for treatment of HIV 
infection. 

In some cases, testing volume and positivity for a particular test can 
appear to increase – or decrease – as an artifact of an overall change in 
testing rates in a particular area. This can be the result of a procedural 
change – such as a transition from paper-based to electronic laboratory 
reporting [24, 25], or the result of a local or global economic change that 
affects the ability of patients to seek healthcare at the same rate as was 
previously true. In some cases, depending on the data source, a particular 
data set may include a greater or lesser percentage of the total testing data in 
a particular area. 
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Periodicity and other re-occurring temporal variations, e.g., day of week 
effects, seasonal variations and major holidays, can also have an impact on 
apparent fluctuations in data. It is necessary to understand the normal 
seasonal variations over the course of the year in order to assess the importance 
of a detected change in any given year, particularly with respect to under-
standing the difference between a possible outbreak and the start of a 
predictable seasonal increase. Some temporal variations can be adjusted for 
statistically, by aggregating data at different units of time and by comparing 
data from earlier years. Weekly data counts, for example, can be used to 
address day-of-the-week variability, permitting comparisons over time with 
less distracting noise. In the case of seasonal variability, it is advisable to 
look at multiple years of data to understand how consistent the variability 
has been over time and whether to assess the relevance of any observed 
increase. 

Performing data validation and required data transformations requires 
both a good grounding in current trends related to a specific disease to under-
stand the context of any observed changes, as well as a strong statistical 
foundation in pattern recognition and anomaly detection to better identify 
suspicious anomalies that may be the source of an unrecognized artifact or 
bias in the data. 

2.3 Relevant Experience and Case Studies 

There is a growing body of experience available on both the benefits and 
challenges of using laboratory data for biosurveillance, as well as projections 
for the anticipated impact of electronic laboratory reporting on surveillance 
for notifiable conditions. 

2.3.1 The Emergence of West Nile Virus in New York City 

Jernigan et al. retrospectively evaluated data from a large national 
laboratory and identified a 30-fold spike in orders for St. Louis Encephalitis 
(SLE) over a 2-week period in New York City during the emergence of West 
Nile Virus (WNV) there in 1999 [11]. Although the spike occurred after the 
New York City Department of Health and Mental Hygiene (NYC DOHMH) 
had announced what appeared to be cases of SLE, the dramatic increase in 
testing in such a short time period produced a spike that would have easily 
been detectable using anomaly detection algorithms. The fact that all of the 
tests produced negative results meant that none of these tests would have 
been reported to the NYC DOHMH or any other public health agency, even 
if some of the patients had WNV. This investigation supported the premise 
that laboratory orders, as well as results, could be useful in detecting outbreaks, 
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particularly in the case of emerging infectious disease where no confirmed 
laboratory test results would be available. 

2.3.2 Lyme Disease in New Jersey 

Lyme disease is most prevalent in the northeast and New Jersey has one 
of the highest rates in the United States. In 2002, the state had begun to 
include electronic laboratory reporting (ELR) for notifiable diseases. An 
evaluation of the state’s Lyme disease surveillance system in 2006 [29] 
revealed a nearly fivefold increase in reported cases from 2001 to 2004, 
although confirmed reports only increased 18%. ELR represented 51% of 
the cases reported from 2001 to 2006, but only 29% were confirmed upon 
investigation. Differences were noted in the data obtained from ELR and 
non-ELR reports, with proportionally more non-ELR cases confirmed in 
high prevalence areas and during peak LD transmission season. The 
increased burden of investigations created greater demand on limited public 
health department resources. Ultimately a decision was made to classify 
ELR-reported cases as “suspected cases” unless there is also a concurrent 
report from a healthcare provider. 

2.3.3 Hepatitis in New York City 

The experiences of the NYC DOHMH helped to identify areas in which 
ELR could be particularly valuable, such as high-volume or time-sensitive 
diseases [28]. In the case of hepatitis A, for which prompt administration of 
postexposure prophylaxis (PEP) to contacts is important, ELR improved 
reporting time considerably with a median decrease of 17 days for laboratories 
certified to report electronically, as well as a 35% increase in reports received 
leading to a fourfold increase in PEP administration [38]. It was noted that 
ELR did not improve surveillance for all diseases equally and that many of 
the previously mentioned challenges warranted a higher level of technical 
skill and experienced surveillance staff to obtain the best results [28]. 

2.3.4 Projections in Florida 

Based on the timeliness of reporting for four notifiable diseases, and based 
on the expectation that ELR could reduce reporting time from completion of 
laboratory testing to 1 day, a study in Florida estimated that the total time 
from onset of symptoms to reporting to the county health department could 
be cut from 12 days to 7 days for salmonellosis and from 10 days to 6 days 
for shigellosis, but would produce no change for meningococcal disease [39]. 
In the case of meningococcal disease, clinicians were noted to already place 



84 Chapter 4 
 
great emphasis on timely reporting, while historical records showed lower 
rates of timely reporting for the other conditions examined. The findings of 
the analysis echo the experience of the NYC DOHMH that the benefits of 
ELR are likely to vary by disease. 

3. CONCLUSIONS AND DISCUSSION 

Clinical laboratory data is a key component of traditional public health 
case reporting as well as syndromic surveillance and biosurveillance. 
Laboratory result data can be precise and highly specific when used in case 
confirmation. Laboratory order data may be less specific, but it can be more 
sensitive in detecting emerging infectious diseases and bioterrorism. 

The implementation of electronic laboratory reporting systems has improved 
timeliness and completeness of laboratory-based reporting, although the 
benefits vary by disease. Continued improvements in the technology used for 
such systems should continue to reduce problems historically experienced 
with these systems, such as false positives and duplicate records. 

There are variations in the type of data available from different lab-
oratory segments that may influence the specific utility of the data in various 
situations. Furthermore, data gathered directly from laboratories with limited 
clinical context must be interpreted with care when attempting to extrapolate 
to conclusions on a population basis. 

Clinical laboratory data alone will never provide all of the information 
required by public health agencies to detect and characterize events of public 
health concern, but it is – and will continue to be – a core component of such 
efforts. 

QUESTIONS FOR DISCUSSION 

1. Identify some of the potential advantages and disadvantages of each 
different type of data mentioned as having been used for biosurveillance. 
Can you think of other types of data that could be useful today? Are there 
other types of data that might become more valuable in the future? 

2. What are some of the challenges associated with analyses based on 
secondary use of clinical data, as opposed to the type of data that is 
normally collected for research based on a protocol? 

3. Describe at least one public health situation where data from each different 
laboratory market segment would be particularly valuable. Explain the 
reasoning behind each choice and consider what contribution the other 
segments could make in the same situation. 
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4. Discuss the differences in data requirements when attempting to detect 

an outbreak or a trend. 
5. Explain the role of standards in using laboratory data for biosurveillance. 
6. Suggest possible reasons that laboratory or other components of public 

health case definitions might change over time. 
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The threat of disease epidemics resulting from zoonotic pathogens is a 
valid concern for public health authorities and others involved with 
healthcare of people and animals. A significant number of epidemics over 
the past two decades have resulted from infection by a zoonotic pathogen. 
Detection of these outbreaks has typically relied upon the identification of 
human cases in spite of the fact that humans are a primary reservoir for  
a small percentage of zoonotic pathogens. Detection of an outbreak of 
zoonotic disease in animals before it has reached outbreak status in humans 
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INTRODUCTION 

It should not be surprising that a 2003 report published by the Institute of 
Medicine cites animal contact as one of the major contributing factors to 
emerging infectious disease. Over 75% of the outbreaks attributed to 
emerging infectious disease that occurred in the last two decades of the 
twentieth century were the result of zoonotic pathogens (Taylor et al., 2001). 
Indeed, pathogens with more than one host species are two to four times 
more likely to result in an emerging disease than their single host counter-
parts (Cleaveland et al., 2001; Woolhouse, 2002). Contacts with animals in 
petting zoos, farms, and other animal exhibits have often been associated 
with outbreaks of zoonotic disease in humans (Bender and Shulman, 2004). 
However, the entire extent that animals might provide us a means for early 
detection of outbreaks of zoonotic disease remains to be determined. 

1.1 Wildlife as Sentinels of Disease 

Certain animals have already demonstrated some of their potential value 
as sentinels of infectious disease in humans. Crows are a good example. In 
New York State, a web-based dead bird surveillance project identified an 
increase in the density of dead crow sightings and West Nile Virus (WNV) 
positive dead birds 2 weeks prior to the first reported human case of WNV 
(Eidson et al., 2001a). Additional investigations support that avian morbidity 
and mortality surveillance provides information that is helpful in predicting 
WNV onset in humans (Guptill et al., 2003), sometimes as much as 3 months 
in advance (Eidson et al., 2001b). Other examples of animals serving as 
sentinels for infectious disease in humans include pheasants for Eastern 
equine and St. Louis encephalitis (Morris et al., 1994), and white-tailed deer 
for Lyme disease (Gill et al., 1994). 

1.2 Pets as Sentinel Indicators of Disease 

Domestic species, including pets, should not be overlooked as both potential 
sources of and sentinels for emerging infectious diseases. A study conducted 
in the U.S. from 1993 to 1995 found 13.1% of owned cats were infected with 
C. parvum, Giardia, Toxocara cati, Salmonella enterica, or Campylobacter 
jejuni (Hill et al., 2000). Tauni and Österlund (2000) also associated cats as 
the intermediary host of Salmonella thyphimurium from wild birds to humans. 
Recently, researchers have speculated that cats might serve a similar role as 
an intermediary host in the transmission of avian influenza viruses from 
wildlife to humans (Tansey, 2006). Domestic poultry (Kaye and Pringle, 
2005) along with dogs (Crawford et al., 2005) are candidates for such roles 

1.
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as well. Although the path of transmission remains debatable, all of these 
species are potential hosts of at least certain influenza viruses, making the 
development of a multi-species surveillance system both a benefit and a 
challenge when preparing for a potential pandemic of influenza. 

associated with exposure to pesticides and asbestos (Backer et al., 2001). 
They often share much of the same environment they live in with their 
owners. When infected at the same time, pets will develop signs of some 
disease before humans (Babin et al., 2003). Hence, pets might fill a role as 
sentinels for the earlier detection of outbreaks of infectious disease, includ-
ing those resulting from a purposeful release of a disease-causing agent. 
Pathogens could also first infect pets, making them a source of infection for 
their owners and others they contact. Identifying the presence of disease 
early in pets for either scenario could provide an alert that summons the 
attention of health officials and provides for earlier response to an outbreak, 
whether occurring naturally or intentionally. 

1.3 “One Medicine” 

Inspired by his observations of Sudanese Dinka pastoralist healers treating 

Schwabe (1984) coined the term “One Medicine” to describe his vision of 
veterinary and human medicine working together to address disease and 
improve upon public health. Effective surveillance of zoonotic pathogens 
and control of emerging diseases that they may cause is felt by some to be 

and animal populations (Woolhouse, 2002; National Research Council, 2005). 
However, such a holistic approach is lacking in contemporary veterinary 

and medical communities. A 2000 report from the Chemical and Biological 
Arms Control Institute refers to this absence of strong links between public 
health and the veterinary community as “an important disconnect.” Another 
report, published by the National Research Council (2005), recognizes the 
need for better integration of animal and public health surveillance in order 
to improve upon the ability to rapidly detect outbreaks caused by zoonotic 
pathogens. The United Nations Food and Agriculture Organization, the World 
Organization for Animal Health (OIE), and the World Health Organization 
consider the weaknesses in disease detection to be a contributor to the spread 
of diseases of animal origin (Center for Infectious Disease Research and 
Policy, 2006). 

both animals and humans for what were often common ailments, Calvin 

outside the scope of traditional medicine, requiring integration across human 

Pets have already served as sentinel indicators for certain diseases 
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SURVEILLANCE FOR OUTBREAKS  
OF ZOONOTIC DISEASE 

The earlier that an outbreak involving zoonotic disease is detected can 
mean earlier action to reduce the threat or impact in terms of morbidity, 
mortality, and economic loss, to people and animals. Enhanced disease sur-
veillance in animals, coordinated in a “One Medicine” approach as envisioned 
by Calvin Schwabe, may lead to quicker response by both veterinary and 
public health authorities that greatly minimizes the impact of an outbreak 
of zoonotic disease. Integrated efforts could also serve to identify cases in 
human and animal populations that might otherwise go unnoticed. Such 
efforts would aid in the concurrent treatment of cases in all affected species 
and lead to a more thorough eradication of the pathogen implicated in the 
outbreak and reduce the chances of reinfection resulting from an unchecked 
reservoir. 

Outbreaks of zoonotic disease typically rely on the identification of 
human cases (Childs et al., 1998) although humans are the primary reservoir 
for a mere 3% of zoonotic pathogens (Taylor et al., 2001). The potential 
economic implications of an outbreak rather than the zoonotic potential of 
the pathogen have been the driving forces behind surveillance for disease in 
agricultural animals (Conner, 2005). Most outbreaks from zoonotic pathogens 
that occur in animals do not have the same economic implications or direct 
impact on humans as other diseases and therefore are sometimes not con-
sidered to have the same degree of importance (Wurtz and Popovich, 2002). 
Hence, most disease surveillance in animals targets agricultural species and 
tends to be very disease specific. The disease specificity of such surveillance 
greatly reduces the ability to detect outbreaks of other than target diseases. 
The following list of surveillance systems that utilize animal-based data 
often provide for examples of this trend. 

2.1 National Animal Health Reporting System 

The National Surveillance Unit (NSU) of the United States Department 
of Agriculture (USDA) has identified surveillance for emerging diseases as a 
priority for the National Animal Health Reporting System (NAHRS) 
(http://www.aphis.usda.gov/vs/ceah/ncahs/nahrs). The NAHRS receives data 
from state veterinarians in participating states on the presence of confirmed 
clinical disease. Diseases are limited to those that are reportable to the OIE 
in specific commercial species in the United States including cattle, sheep, 
goats, equine, swine, poultry, and food fish. Only six of the diseases on the 
OIE list also appear on the list of United States nationally notifiable 
infectious diseases for humans, of which 38 out of 58 (65.5%) are zoonotic. 

2. 
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Wurtz and Popovich (2002) criticize the NAHRS as a passive, voluntary 
system without quality control, verification, or feedback. Passive collection 
of data, such as that utilized by the NAHRS, is limited by the inconsistency 
in collection for different diseases and among different states. Additionally, 
the NAHRS provides little benefit as far as timeliness since it compiles a 
national summary report from data on a monthly basis. 

2.2 National Animal Health Laboratory Network 

The National Animal Health Laboratory Network (NAHLN) (http:// 
www.nahln.vs/) is another USDA project intended to provide for earlier 
detection and tracing of outbreaks. The USDA National Veterinary Services 
Laboratories promised the NAHLN, as part of a strategy to coordinate the 
Federal, State, and university laboratory resources, to be “a cornerstone of 
animal health surveillance that will electronically connect surveillance data 
systems to laboratory diagnostics.” Initiated in 2002, the NAHLN included 
only 12 laboratories as of February 2006 (Mark, 2006). Focus is again 
disease specific and limited to African swine fever, avian influenza, classical 
swine fever, contagious bovine pleuropneumonia, exotic Newcastle disease, 
foot and mouth disease, lumpy skin disease, and rinderpest in agricultural 
animals. Some have considered the NAHLN to lack the capacity to deal with 
massive or multiple outbreaks in the United States (Kearney, 2005). 

2.3 Veterinary Services Electronic Surveillance Project 

The Center for Emerging Issues (CEI) within the United States Depart-
ment of Agriculture (USDA) maintains the Veterinary Services Electronic 

tool that is used to search the electronic open records of the internet. The 

finder uses to complete its search. Since searched sources include all those of 
the WorldWide Web, poor translation of foreign sources tends to be a 
limitation (Johnson, 2004). Another limitation is the sometimes inaccurate 
reporting that occurs in the media where terminology may appear out of 
proper context. 

CEI uses data from this system to contribute to another syndromic 
surveillance system located within the USDA, the Offshore Pest Information 
System (OPIS). CEI designed the OPIS system to enhance information sharing 

combines the CEI data from Pathfinder with field reports from International 
Services of the USDA to generate weekly reports for USDA users. 

CEI users determine words and word combinations of interest that Path-

between the USDA’s Veterinary Services and International Services. OPIS 

Surveillance project. At the heart of this system is Pathfinder, a data mining 

http://www.nahln.vs
http://www.nahln.vs
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2.4 Rapid Syndrome Validation Project for Animals 

The Rapid Syndrome Validation Project for Animals (RSVP-A) was an 

connection or Palm® device. Syndrome categories were non-neonatal diarrhea, 
neurologic dysfunction or inability to rise, abortion or birth defect, un-
expected death, erosive or ulcerative lesions of the skin, mucosa, or coronet, 
and feed refusal or weight loss without clear explanation. The system included 
only cattle. Reporting limitations occurred because of the provider-dependent 

devices (DeGroot, 2005). 

2.5 Other Manual Entry Systems 

The Petsavers Companion Animal Disease Surveillance system was an 
initiative of the British Small Animal Veterinary Association. Investigators 
collected data from 15 small animal veterinary practices in the form of 
regular surveys requiring written responses to questions about patients treated 
within a reporting period of up to 4 days. Some questions in the survey had 
non-response rates of 30%. The conclusion of the investigators was that a 
more robust technique for collection and preparation of data that is less time 
consuming and more accurate is required (Robotham and Green, 2004). 

Michigan State University conducted a similar project that involved dairy 
farmers providing daily records of animal events and veterinarians recording 
diagnoses and treatments. While burdensome because of the manual 
reporting, weekly and monthly reports from the data provided back to the 
participants were determined to be useful in managing the health of herds. 
The usefulness of the reports served as a sufficient incentive for continued 
participation in the surveillance system (Bartlett et al., 1986). 

IMPROVING OUTBREAK DETECTION 

The disease surveillance programs that are in place for agricultural 
animals do not exist for pets. No regulatory agency is exclusively charged 
with the collection of disease reports in pets, so it can become confusing for 
veterinarians treating these animals when deciding what needs to be reported 
and to whom. In the absence of disease reports for pets, it can become 
challenging for public health officials to find any data about co-morbidity in 
these animals. Such data could provide information that would aid them in 
identifying and controlling outbreaks of zoonoses (Table 5-1). 

3. 

initiative of the Kansas State University system to have attending veterinarians
determine specific syndromes from patient signs and upload them via internet 

design and the frequent unavailability of service to support the wireless 
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System Agency Species  System Design Pros & Cons 
VS 
Electronic 
Surveillance 
(Pathfinder) 
 

Center for 
Emerging 
Issues, 
USDA 

Multiple searches internet 
open records for 
specified word 
and word 
combinations 

Pro - extensive number 
of sources included  
Con - subject to 
translation error and 
inaccurate reporting 

Offshore 
Pest 
Information 
System 

Veterinary 
and 
International 
Services, 
USDA 

Multiple field reports and 
results from 
Pathfinder to 
create weekly 
reports 

Pro - enables increased 
communications between 
areas Con - lack of 
timeliness and Pathfinder 
limitations 

Rapid 
Syndrome 
Validation 
Project for 
Animals 
 

Kansas State 
University 

Cattle veterinarians 
determine 
syndrome and 
report via internet 
or wireless 
service at or near 
time of service 

Pro - presumed increase 
in specificity from 
provider-based reports 
Con - creates additional 
burden on providers, 
unavailability of utility 
service, limited to 
include a single species 

Petsavers 
Companion 
Animal 
Disease 
Surveillance 
 

British Small 
Animal 
Veterinary 
Association 

Pets veterinarians 
submit written 
survey of cases 
treated in practice 
during multi-day 
period 

Pro - presumed increase 
in specificity from 
provider-based reports 
Con - creates additional 
burden on providers and 
poor reporter compliance 

Computerize
d Dairy 
Herd Health 
Database 

Michigan 
State 
University 

Dairy 
cattle 

farmers report 
daily animal 
events and 
veterinarians 
report diagnoses 
and treatments 

Pro - presumed increase 
in specificity from 
provider participants, 
provides feedback to 
reporters Con - creates 
additional burden on 
providers and farmers, 
limited to single species 

 
3.1 Syndromic Surveillance 

Syndromic surveillance is the systematic and ongoing collection, analysis, 
and interpretation of data that precede diagnosis and can signal a sufficient 
probability of an outbreak to warrant public health investigation (Sosin, 
2003). Syndromic surveillance systems developed for detection of outbreaks 
in humans have used emergency department chief complaints (Begier et al., 
2003; Tsui et al., 2003), electronic medical records (Lazarus, 2001), sales of 
over-the-counter medications (Das et al., 2005; Wagner et al., 2003), contents 

 

 

Table 5-1. Select animal-based biosurveillance programs 
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of grocery baskets (Feinberg and Shmueli, 2005), medical laboratory orders 
(Ma, 2005), and diagnostic codes (Bradley et al., 2005). By utilizing pre-
dominantly pre-diagnostic data, these systems have the potential for greatly 
improving the timeliness of outbreak detection. The application of syndromic 
surveillance methods have been recommended to detect novel and emerging 
zoonoses including those associated with potential bioterrorist action (Kruse 
et al., 2004). However, sources of veterinary-based data for such methods 
are not as immediately obvious compared to those used for human-based 
surveillance. 

3.1.1 Preferred Data 

The selection of data sources for syndromic surveillance are initially 
influenced by evidence or the belief of the system developers that the source 

traditional data sources, especially those not related to healthcare, as out-
breaks of the diseases of interest are potentially rare (Johnson et al., 2005). 
In these cases, system developers must rely on retrospective studies of other 
diseases with similar presentation or surveys to measure behaviors that could 
influence the data. 

The most valuable data sources for syndromic surveillance are those that 
are stored electronically, permit robust syndromic grouping, and are avail-
able in a timely fashion (Mandl et al., 2004). Systems that require additional 
data entry and increase workloads are undesirable, especially for large-scale 

not depend on changes in workflow. 

3.1.2 Data Criteria 

Certain criteria for evaluating data to be used for surveillance systems are 
recommended. 

1. The Centers for Disease Control and Prevention have identified the 
ability to provide baseline information on incidence trends and geo-
graphic distribution as a prerequisite to detecting new or re-emerging 
infectious disease threats. The baseline becomes especially important 
to determining when counts are abnormally elevated. Making accurate 
interpretations from the results of detection analyses is difficult 
without first establishing what is normal. Baselines help to determine 
the noise in the data and provide for establishing expected values 
required in the analyses. Such indices are important to validate the 

sustained surveillance. Using existing data collected for other purposes, stored 

can provide an early signal for the disease/s or condition/s of interest (Zeng 

electronically, and available for automatic transfer are preferable, as they do 

and Wagner, 2002). It may be difficult to measure the true value of non-
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predictive models used by detection systems to determine abnormal 
patterns of distribution or counts. 

2. Representativeness describes how well records in the system describe 
the population and indicates the potential of accurately determining 
the distribution of cases by time and place. The presence of a species 
may be a more important measure of representativeness for early out-
break surveillance. If the goal of the system is to detect emerging 
diseases in pets then it follows that the data need to include information 
for companion animals. Changes in the relative representation of these 
species reflected in the records might provide indication of an out-
break that is limited to only certain species. 

3. The availability of data reflects the potential gain in terms of timeli-
ness of detection, the time from the disease event to the time the 
event is discovered (Sonesson and Bock, 2003). Timeliness has become 
a major objective of surveillance systems used to detect outbreaks of 
infectious disease. This potential gain establishes the value of data for 
earlier detection of disease outbreaks compared to traditional disease 
reporting and detection systems. 

3.2 Veterinary Diagnostic Laboratories 

Veterinary diagnostic laboratories (VDLs) are a potential source of data 
for outbreak detection and considered important tools for surveillance in 
animals (Conner, 2005). For many outbreaks, detection may require central 
aggregation and analysis of data from many sources (Dato et al., 2004). 
Commercial laboratories offer the advantage of providing data for patients 
seen by many different providers over a sizeable geographic area from a 
single source. This is no less true for commercial veterinary laboratories where 
the majority of approximately 22,500 private veterinary practices in the 
United States submit patient samples for analysis (Glickman et al., 2006). 

3.2.1 Case Evidence to Support Using Data 

submitted to a commercial veterinary diagnostic laboratory for specimens 

electronic record that included data useful for outbreak surveillance (e.g., 
ZIP code of clinic, species of animal, date of specimen collection). Serfling 
regression methods used historic data to develop models of expected counts 
(i.e., baselines) of genera-specific pathogens for each week (see Figure 5-1). 
Comparison of these pathogen trends in animals with the incidence of 

The author completed a retrospective study of microbiology test orders 

et al., 2008). As the VDL received samples, accession personnel created an 
originating from veterinary clinics in Central Ohio during 2003 (Shaffer
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disease reports in humans from the same area sometimes revealed significant 
increases in the same pathogen infecting humans and animal species at the 
same time such as Escherichia coli (see Figure 5-2). In this instance, only 
ten of the total E. coli (O157:H7) cases in humans with onset of illness 
reported between weeks 40 and 42 were attributed to contaminated food. 
Eight of the total cases in humans not associated with food resulted from 
pathogen subgroups that were indistinguishable by pulsed-field gel electro-
phoresis (PFGE). 

 
 

Figure 5-1. Counts of hemolytic E. coli isolates by date of submission to VDL from 
specimens originating from veterinary clinics in Central Ohio during 2003 with Serfling 
model prediction. 

Figure 5-2. Reported cases of E. coli (O157:H7) in humans living in Central Ohio by onset of 
illness with average counts over previous 9 years. Triangle marker indicates the number of 
cases associated with contaminated food during weeks 40–42. 
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3.2.2 Determining Animal Representation 

How well companion animals might serve as a proxy for humans is a 
consideration for surveillance system developers. The extent that human and 
animals share disease-causing organisms is only one aspect of this consider-
ation. Knowing how well animals represent humans in the same area is 
another aspect that provides us with information helpful in estimating 
prevalence, exposure, and system sensitivity. The author explored this by 
estimating the number of households included in surveillance by a system 
that would use data from a veterinary diagnostics laboratory. 

The author examined a dataset provided from a commercial veterinary 
diagnostics laboratory that contained test orders for specimens originating 
from patients treated at clinics located in Ohio received between April 1, 
2005 and March 31, 2006 (Shaffer, 2007). Information in the dataset 
included an accession number that identified specimen submissions from a 
single animal. From this dataset, the author determined the number of speci-
mens originating from dogs, cats, horses, and pet birds that veterinarians 
submitted to the laboratory for testing during the 1-year study period by 
counting the unique accession numbers grouped by genus (see Figure 5-3). 

 

Other, 0.5
Pet Birds, 0.2

Horses, 2.6

Unknown, 1.4

Cats, 23.2

Dogs, 72.1

 
 

3.2.3 Estimating Human Representation 

During the first week of January 2002, the American Veterinary Medical 
Association mailed the Household Pet Survey to 80,000 randomly selected 

 

Figure 5-3. Percentage of laboratory specimen accessions by genera received by VDL from 

households in the United States. This survey asked a number of questions  

clinics located in Ohio, April 1, 2005–March 31, 2006. 
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regarding animals owned anytime during 2001 including veterinary care, 
number of animals owned, and household demographics. The AVMA used 
the responses to estimate the proportion of veterinary visits that resulted in 
laboratory submissions, the average number of animals by species per house-
hold, and the rate of annual veterinary visits per animal by genera. Using 
these figures from the AVMA survey, the author was able to calculate the 
number of households represented in the VDL records (see Table 5-2). 

The number of animal-owning households was compared to the estimated 
total number of Ohio households from the 2002 United States Census 
(http://www.factfinder.census.gov) to estimate the percentage of households 
represented by these data. These calculations were repeated for each group 
by adding and subtracting 10% to each estimate generated by the AVMA 
survey (number of animals per household, number of annual veterinary 
visits, and percentage of visits that involved a laboratory submission) to 
consider how much that degree of simultaneous over or under estimation 
might change the final estimate (see Figure 5-4). Visual examination of maps 
depicting the number of accessions sent to the laboratory during this time 
reveals how they approximate the relative population of people living in 
each area (see Figure 5-5). 

Table 5-2. Estimating the number of Ohio households represented in IDEXX dataset (April 1, 

A B C D E F G   

No. of Lab 
Accessions 

% of 
Visits 
Resulting 
in Lab 
Testinga 

Est. No. 
of Vet 
Visits 
(A/B) 

No. of 
Annual 
Vet 
Visits/ 
Animala 

Est. No. 
of 
Animals/
House-
hold 

No. of 
Animals
/House-
holda 

Est. No. 
of 
House-
holds 
(E/F) 

Dogs 
+10% Error 
−10% Error 150,309 

20.5 
18.6 
16.7 

733,215 
808,113 
900,054 

2.1 
1.9 
1.7 

349,150 
425,323 
529,444 

1.7 
1.5 
1.4 

205,383 
283,549 
378,174 

Cats 
+10% Error 
−10% Error 48,276 

14.9 
13.5 
12.2 

324,000 
357,600 
395,705 

1.1 
1.0 
0.9 

294,546 
357,600 
439,673 

2.4 
2.2 
2.0 

122,728 
162,546 
219,836 

Horses 
+10% Error 
−10% Error 5,402 

10.2 
9.3 
8.4 

52,961 
58,086 
64,310 

1.0 
0.9 
0.8 

52,961 
64,540 
80,387 

2.3 
2.1b 
1.9 

23,027 
30,734 
42,309 

Pet 
Birds 

+10% Error 
−10% Error 350 

24.0 
21.8 
19.6 

1,459 
1,606 
1,786 

0.2 
0.2 
0.2 

7,292 
8,030 
8,929 

3.4 
3.1b 
2.8 

2,145 
2,591 
3,189 

a U.S. Pet Ownership and Demographics, American Veterinary Medical Association, 2002 
b Rate based on northeast central region of U.S that includes Ohio 

2005–March 31, 2006) from the number of laboratory specimen accessions. 

http://www.factfinder.census.gov
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Figure 5-4. Estimates of Ohio household representation by animals with consideration of 
possible over- and underestimation of AVMA Household Survey values. Total Ohio 
households estimated at 4,293,649 from the 2002 U.S. census. 

 

Figure 5-5. Distribution by ZIP code of specimens submitted for veterinary laboratory 
analysis from clinics in Ohio between April 1, 2005 and March 31, 2006 (a) and human 
population (b). 

3.2.4 Availability and Timeliness 

Timely detection of disease outbreaks is a critical concern of biosurveillance 
system users and thus should be a primary goal for biosurveillance system 
developers. Timeliness of detection can be measured in terms of latency (the 
difference in time between the event of interest and when it is discovered) 
and is reflected by the availability of data. 
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In a prospective study, the author assessed availability by determining 
the lag that existed between the time VDL personnel created a record and 
when that complete record was received for analysis (Shaffer, 2007). The 
VDL sent data in batches via file transfer protocol (ftp) once each day at 
11 AM. Each message contained all the available records from the previous 
24-h period, including those created the same morning. The VDL received 
samples mostly via private delivery service (e.g., FedEx) each morning. The 
delivery time to the laboratory was not representative of the time of sample 
collection. In other words, samples would not arrive at the VDL in the same 
order or with the same delay from when they were collected. While the VDL 
could provide records in real-time as they were created, the normal work-
flow that included the transport of specimens from the veterinary provider to 
the VDL did not support this added expense. 

This assessment determined that each batch record message contained, 
on average, approximately one-third of the total number of records created 
that same day. With the receipt of the subsequent day’s message, 95%  
of records were captured (see Figure 5-6). Other results from this same 
prospective study indicated that discovery of disease using these veterinary 
laboratory test order records could precede reports of an associated outbreak 
in humans by as much as 21 days. 

 

Figure 5-6. Availability of VDL order records for surveillance activities. 

4. 

Following the introduction of Bacillus anthracis into the United States 
postal system in October 2001, there has been a heightened interest in 

CONCLUSION

developing disease surveillance that is capable of detecting outbreaks earlier 
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Surveillance is critical to effective disease management and the early 
detection of zoonotic disease outbreaks. While no single data source is cap-
able of capturing all of the information required for early outbreak detection, 

Healthcare providers, public health authorities, and others have come to 

disease does not confine infection to a single animal species. We have 

disease and must now bridge our species-defined disciplines to improve our 
disease surveillance capabilities – for the health of all concerned. 

than is generally possible through traditional reporting methods. Results 
from the retrospective investigation discussed here indicated that the true 
extent of outbreaks involving multiple species can go unrecognized by sur-
veillance more commonly used by public health. Treating only humans in a 
multiple-species outbreak could leave a disease reservoir unchecked and 
provide for re-infection. Including pet animals in disease surveillance pro-
grams may also provide us with earlier recognition of an outbreak that has 
the potential of affecting humans. The prospective study completed by the 
author indicated that such recognition could come significantly earlier than 
the first reports of human cases. 

and identify those that will be most beneficial for biosurveillance activities. 

recognize that an outbreak of disease does not always confine itself within 

become more adept at working across our political jurisdictions to control 

critical to protect the health of each these groups. Additional investigations 

political boundaries. We must also remain cognizant that, in many instances, 

are necessary to thoroughly evaluate the sources of veterinary-based data 

surveillance that includes data from both human and animal populations is 

QUESTIONS FOR DISCUSSION 

1. Some feel that more clinically ill animals have an increased potential for 
receiving veterinary care that includes laboratory testing. Discuss how 
this might affect the sensitivity and specificity of a biosurveillance system. 
What other potential biases should be considered? 

2. Although there is no legislation that is comparable to what exists for/that 
regarding human medical information (HIPAA), governing the release of 
veterinary data (and) privacy is still a concern. Discuss how privacy may 
be an issue for animal owners, veterinarians, and VDLs and how bio-
surveillance system developers might address this. 

3. While agricultural species represented a small percentage of VDL 
accessions in the case example, how might outbreak surveillance for 
these species occur using these or similar data? In your discussion, you 
may want to consider how healthcare for pet animals is akin to human 
healthcare with individuals as the focus while most agricultural veterinary 
care is focused at the herd level. 
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Chapter 6 

MARKOV SWITCHING MODELS  
FOR OUTBREAK DETECTION 

HSIN-MIN LU*, DANIEL ZENG, and HSINCHUN CHEN 

CHAPTER OVERVIEW 

Infectious disease outbreak detection is one of the main objectives of 
syndromic surveillance systems. Accurate and timely detection can provide 
valuable information for public health officials to react to major public 
health threats. However, disease outbreaks are often not directly observable. 
Moreover, additional noise caused by routine behavioral patterns and special 
events further complicates the task of identifying abnormal patterns caused 

models. The outbreak states are treated as hidden (unobservable) state 

hidden state variables. We cover both the theoretical foundation of the 
estimation methods and the technical details of estimating the Markov 
switching models. A case study is presented in the last section. 

Keywords: Markov switching models; Infectious disease informatics; Markov chain 
Monte Carlo; Gibbs sampler; Bayesian inference 
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Recent efforts in building syndromic surveillance systems try to increase 

over-the-counter (OTC) health product sales. Studies show that these data 
sources do contain valuable information reflecting current public health 

b). However, they usually carry substantial noise that may interfere with the 
detection of infectious disease outbreaks. 

To overcome the problem, researchers have been working on developing 
statistical methods that can extract disease outbreak signals from the real-
time data provided by syndromic surveillance systems. Typically, the data 
are classified and aggregated to generate univariate or multivariate time 

syndrome) from an ED. A multivariate time series may be the daily number 
of patients with a particular syndrome from multiple EDs. If geographic 
information such as the ZIP code is available, the multivariate time series 
may be the daily counts of patients with a particular syndrome from the ZIP 
code areas near an ED. 

A popular time series outbreak detection method in current literature is a 
two-step procedure (Reis and Mandl, 2003; Reis et al., 2003). At the first 
step, a baseline model describing the “normal pattern” is estimated using the 
training data (usually a historical time series without outbreaks). The base-
line model then is used to predict future time series values. At the second step, 
statistical surveillance methods such as the Stewart control chart (Shewhart, 
1939; Montgomery, 2005) or the Cumulated SUM (CUSUM) (Page, 1954) 
method then take the prediction error (observed value minus predicted value) 

associated with higher risk of having an outbreak. When the outbreak scores 
exceed a predefined threshold, the alarm is triggered. 

The two-step procedure operates based on the assumption that there are 
no outbreaks in the training data. This assumption, nevertheless, can only be 
verified when a simulated time series is used. When a real-world dataset is 
used, the assumption is very hard to verify because researchers have no 
control over the health status of the community involved in generating the 
dataset. Moreover, a full investigation of disease outbreaks during the data 
collection period is usually too expensive to conduct. 

The validity of the detection results can be seriously impaired if we 
cannot verify that the training data are outbreak-free. The estimated para-
meters of the baseline model may be biased by outbreak-related observations. 

of patients with a particular syndrome (for example, the gastrointestinal 

INTRODUCTION 1.

the timeliness of the data collection process by incorporating novel data 

as the input and output outbreak scores. Higher outbreak scores are usually 

series at daily frequency. A univariate time series may be the daily counts

status (Espino and Wagner, 2001; Ivanov et al., 2002; Chapman et al., 2005a, 

sources such as emergency department (ED) chief complaints (CCs) and 
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Subsequent prediction and outbreak detection, as a result, may be negatively 
affected. When no outbreaks are detected, we cannot rule out the possibility 
that the assumption is violated. The problem can seriously reduce the 
practical value of the outbreak detection method. 

To deal with the problem of having outbreak-related observations in 
training data, we need to have a model that is flexible and smart so that it can 
adjust itself automatically when outbreak-related observations exist. This is 
usually referred to as modeling endogenous structure changes (Clements and 
Hendry, 2006) in the econometrics literature. A structure change is the 
change of the underlying system parameters such that the system dynamics 
become different. The outbreak of infectious disease causes a structure 
change of the observed time series and thus fits naturally into the framework 
of endogenous structure change modeling. 

A natural way of modeling structure changes in a time series is 
introducing additional hidden state variables which determine the underlying 
time series dynamics. One popular model of this kind is the Markov switching 
models proposed by Hamilton (Hamilton, 1989). This family of models has a 
hidden state variable that may have a different value in each period. The 
hidden state variable takes the value of either 0 or 1 and controls the conditional 
mean, variance, and autocorrelation of the time series. It evolves following a 
Markov process. That is, its current hidden state depends only on the historical 
values in the last few periods. 

The estimation process for the Markov switching model, nevertheless, is 
much more complicated than that of the standard time series models such as 
the ARIMA models. After writing down the likelihood as a function of the 
parameters and the hidden state variable, we face the curse of dimensionality 
since the number of unknown hidden state values is at least as much as the 
number of periods. Typical numerical optimization routines can only deal 

are invested to fine-tune the routine. Fortunately, the expectation-maximization 
(EM) algorithm (Dempster et al., 1977), Gibbs sampler, and Markov Chain 
Monte Carlo (MCMC) (Albert and Chib, 1993; Carter and Kohn, 1994; Chib 
and Greenberg, 1995) can be used to estimate the parameters efficiently. 
Depending on the actual setting used, these methods often require a certain 
level of customization. We will have a more detailed discussion in the next 
section. 

outbreak detection research in at least two directions. First, the Markov 
switching models can be combined with existing two-step procedures to help 
improve the validity. For outbreak detection research, Markov switching can 
be used to identify potential historical outbreak periods if real-world datasets 
are used. The identified outbreaks can help researchers refine their gold 
standards used to compute their algorithm performance. For practitioners using 

Equipped with the Markov switching models, we contribute to the 

with a function of no more than dozens of variables unless significant efforts 
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methods can be used to choose a training period that is outbreak-free. A wisely 
chosen training dataset can potentially improve the validity of detection 
results. 

Second, existing Markov switching models can be modified to be applied 

syndromic surveillance we need to identify potential outbreaks in real-time. 
To achieve this, we need to update the model every time a new observation 
is available. Due to the nature of the estimation methods, the estimated 

estimated. That is, state 0 may represent either the outbreak or the non-

detection process. We are actively researching for novel approaches to solve 

models in a retrospective setting. 
The rest of the chapter is structured as follows. Section 2 briefly introduces 

the Markov switching models and points out the technical difficulties involved 
in model estimation. Section 3 provides an illustrative example of Bayesian 
inference and then discusses the theoretical foundation. A sketch of proof for 
MCMC is given. Section 4 derives the conditional posterior distributions that 
are essential for Bayesian inference and discusses major steps for model 
estimation. Finally, Section 5 presents the BioPortal Outbreak Detection 

detections. The model estimation results using a real-world dataset are 
summarized with a brief discussion. 

MARKOV SWITCHING MODELS 

The Markov switching models use hidden state variables to control the 
dynamics of a time series. They belong to a broader family of models – 
state-space models. One well-known example of the state-space model is the 
linear dynamic model (Kalman, 1960; Harvey, 1989), which has one or more 
continuous state variables for each period. There are two kinds of equations 
in this model: measurement equations and transition equations (Kim and 
Nelson, 1999). The measurement equations define how unobservable states 
affect the observable random variables. The transition equations, on the 
other hand, define how the state variables evolve over time. 

 

2. 

applications of the Markov switching models are in a retrospective setting, 

the problem. This chapter will focus mainly on applying Markov switching 

i.e., identifying potential outbreaks in a historical dataset. However, in 

existing outbreak detection methods on a daily basis, the Markov switching 

parameters may not have consistent semantics each time the model is re-

directly to identify potential outbreaks in a prospective setting. Most 

System (BiODS), which uses the Markov switching model for outbreak 

outbreak state. This problem can seriously hinder the ability to automate the 
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When the state variable is discrete, the state-space model is usually 

switching model (Hamilton, 1989) depending on the setting of the measure-
ment equation. The measurement equation in the hidden Markov model is 

t
depend on other observable random variables and unobservable state variables 
at the same period. 

The observable random variables in the Markov switching model, on the 
other hand, usually depend on other observable random variables before 
period t . This setting makes the Markov switching models more suitable to 
deal with time series-related problems. Most applications of the Markov 
switching models fall in the field of economics and finance. Notable 

(Hamilton, 1989) and the modeling of changing regimes of interest rates 
(Dahlquist and Gray, 2000). 

To keep the discussion simple, we focus on univariate time series only. 
The case of multivariate time series can be readily generalized from the 
univariate case. Consider a time series ),...,,(= 21 TyyyY . There may be 
zero, one or more outbreaks during the observed periods. Let st denote the 
hidden outbreak state variable that takes value of either zero or one depend-
ing on whether there is an outbreak at period t. We assume that the observed 
time series is stationary and the unconditional (long-term) mean and variance 
exist. When an outbreak occurs, the time series dynamics change and the 
observed random variable moves toward the new long-term mean and 
variance associated with the outbreak. A simple Markov switching model 
that can capture the occurrences of outbreaks can be written as follows: 

ttttt eysaasaay ++++ −11,11,00,10,0 )(=  (6-1) 

{0,1}∈ts  (6-2) 

ijtt pisjsP =)=|=( 1−  (6-3) 

)2
t  (6-4) 

Equation 6-1 models the observed time series ty  using an auto-regressive 
model with one lag (AR(1)). The constant term is 00a  or 0100 aa +  
depending on the value of ts ; the coefficient associated with the first lag 
term 1−ty  is 10a  or 1110 aa +  depending on the value of ts . The hidden state 
variable ts  is either 0 or 1. Having 1=ts  ( 0=ts ) indicates that there is an 
outbreak (no outbreaks) at period t . Equation 6-3 specifies that the evolution 
of ts  follows a Markov process with transition probability ijp . That is, the 
state of the next period only depends on the state of the current period. 

called the hidden Markov model (Baum and Petrie, 1966) or the Markov 

examples include the identification of macroeconomics business cycles 

usually formulated so that the observed random variables at period  only 

e ~ N (0,σ
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Consider the case when ts  is known and is constant across time, then 
under the stationary assumption, ][][=][ 1 yEyEyE tt ≡− . As a result, the un-
conditional mean of the time series, ][ yE , can be calculated by taking 
expectation on both side of Equation 6-1: 

)(1
=][

1,11,0

0,10,0

t

t

saa
saa

yE
+−

+
 (6-5) 

Note that ts  determines the value of ][yE in the above equation. 
Equations 6-1 to 6-4 define a basic Markov switching model that can 

capture the changing dynamics caused by disease outbreaks. In real-world 

week effect, seasonal effect, environmental variables, independent jumps or 
spikes, and other factors that may affect the observed time series Y . Though 
including additional effects may complicate the estimation process, the 
major steps remain unchanged. As such, our discuss focuses on the simple 
Markov switching model presented above. 

2.1 

we present a time series generated by the Markov switching models. By 
setting model parameters to reasonable values, we can generate a time series 
that looks like those observed from the syndromic surveillance systems. This 
can not only give us intuitions about the model but also provide indirect 
evidence about the outbreak detection ability of the Markov switching models. 

We use Equations 6-1 to 6-4 to simulate a time series with outbreaks. 
Table 6-1 summarizes the parameters used in the simulation. During  
non-outbreak periods, the time series follows an AR(1) process with an 
unconditional (long-term) mean of 142.8. When an outbreak occurs, the auto-
correlation increases from 0.3 to 0.7 and the unconditional mean increases to 
233.3. The hidden outbreak states follow a Markov process with transition 
probability 0.995=00p and 0.985=11p . The transition probability is consistent 
with the estimated values using real-world datasets. 

Figure 6-1 plots the simulated time series and underlying true outbreak 
states. The association between the true outbreak states and the observed 
time series can be visually verified. Note that visual inspection may indicate 
that there are other outbreaks in this dataset. For example, there are two 
small peaks from days 400 to 550. The peaks, however, are caused by the 
underlying random process only and are not associated with any outbreaks. 

 

Models: An Illustrative Example 
Time Series Generated by Markov Switching 

To further illustrate the characteristics of the Markov switching models, 

applications, one may want to enrich the model by incorporating day-of-
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Table 6-1. Simulation parameters for the Markov switching model. 

00a  100 

01a  −30 

10a  0.30 

11a  0.40 
2σ  302 

00p  0.995 

11p  0.985 

Non-outbreak average 142.8 

Outbreak average 233.3 
 

 

 
Figure 6-1. Simulated time series using a Markov switching model. 

 
 

 Coefficient Value
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2.2 Estimation Methods for Markov Switching Models 

The Markov switching models provide a powerful framework to capture 
the changing dynamics caused by infectious diseases. The hidden state variable 
can tell us, at each period, the probability of having an outbreak. However, 
the hidden state variable is unobservable and thus requires special attention 
during the estimation process. 

t  is observable. The 
conditional distribution of ty  given 1−ty , ts  and parameters ≡  },,,,,,{ 1100

2
1,11,00,10,0 ppaaaa σ  can be written as: 

}
2

)])(([
{exp

2
1=),,|( 2

2
11,11,00,10,0

1 σσπ
−

−

+++−− tttt
ttt

ysaasaay
syyf

 
It is more convenient to deal with the logarithm of the conditional 

distribution: 

=),,|(ln 1 ttt syyf −  

}
)])(([

ln2ln{
2
1

2

2
11,11,00,10,0

σ
σπ −+++−

+
− tttt ysaasaay

 
t  is independent given 1−ty  and ts , the Y  

given initial value 0y , parameter , and the state vector },...,,{= 21 TsssS  
is simply the summation of the individual logarithms of the conditional 
distributions: 

),,|(ln=),,|(ln 1
1=

0 ttt

T

t
syyfSyYf −∑  (6-6) 

Equation 6-6 is usually referred to as the complete log-likelihood 
function of Y . To keep the notation clean and easy to understand, the term 

0y  will be suppressed in the subsequent discussion. 
The trajectory of hidden state S  across period 1 to T , nevertheless, is 

not observable. To make things even more complicated, each state depends 
on the previous state since ts  evolves following a Markov process. To  
be able to estimate the parameter , we need to eliminate S  from the 
complete log-likelihood. One way to achieve this is to make use of the 
following identity: 

)|(),|(=)|( SfSYfYf ∫  
The function )|(Yf is usually referred to as the incomplete log-

likelihood. The intuition behind the identity is that we eliminate S  by 
computing the average of ),|( SYf  weighted by the probability of S . In our 

A

A

A

A

A A

A

AAA

A

A

2

Let us first pretend that the hidden state s

+

Since  y  log-likelihood  of  
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case, the random variable ts  takes only two values and we can replace the 
integral with a summation: 

)|(),|(=)|(
S

SfSYfYf
S
∑
∈

 

The set  is a collection of all possible trajectory ),...,,(= 21 TsssS . The 
size of  grows exponentially as T  increases. As a result, the computation 
quickly grows beyond the capacity of modern computers. In the classical 
state-space literature, a filtering procedure similar to the Kalman Filter 
(Kalman, 1960) can be applied (Hamilton, 1989). However, certain model 
settings can only be estimated using approximation, which may lead to 
unsatisfactory estimation results. 

Two techniques are commonly used to deal with the estimation problem. 
The first technique is the EM algorithm proposed by Dempster (Dempster 
et al., 1977). The second technique is Bayesian inference using Markov 
Chain Monte Carlo (MCMC) and Gibbs sampler (Albert and Chib, 1993). 
The EM algorithm iterates between two steps: the expectation (E) step and 
the maximization (M) step. In the E-step, the expected value of ts  given 
current parameter estimation is computed. In the subsequent M-step, the 
hidden state variables in the incomplete log-likelihood are replaced with 
their expectations computed in the E-step. The value of the incomplete log-
likelihood then is maximized with respect to the parameters. The process 
is repeated until convergence. The incomplete log-likelihood will always 

Bayesian inference takes a different route to solve the problem. Instead 
of trying to find the parameters that maximize the incomplete log-likelihood, 
the Bayesian inference constructs the joint posterior distribution of para-
meters and hidden state variables given observed time seriesY . Let ),(= SΘ . 
Applying the Bayes theorem, we have: 

)()|()|( ΘΘ∝Θ fYfYf  
That is, the joint posterior of parameters and hidden state variables is 

proportional to the complete likelihood times the prior distribution of 
parameters and hidden state variables. 

increase from iteration to iteration. Also, the EM algorithm will always con- 

AAA

S
S

A

verge to a local maximum, often slowly. If the confidence intervals of 
parameters are needed, one needs to compute the covariance matrix separately 
from the first or second derivatives of the incomplete log-likelihood. Moreover, 
in more complicated models, there may be no analytical solution for the 
expectation of the state variables. In these cases, Monte Carlo simulation is 
employed for computing the expectation of state variables and additional 
convergence-related issues need to be taken care of before the EM algorithm 
can be applied. 
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BAYESIAN INFERENCE: AN OVERVIEW 

We introduce Bayesian inference in this section. A simple example is 
presented in Sect. 3.1. The following subsections then discuss the theoretical 
foundations of Bayesian inference. Readers not interested in the theory can 
read Sect. 3.1 and skip the rest of this section. 

3.1 Maximum Likelihood Estimation and Bayesian 
Inference: An Illustrative Example 

The goal of Bayesian inference is to summarize the posterior distribution 
of parameters (and hidden state variables, if any) given observations. As an 
illustrative example, we present the process of estimating regression para-
meters via both likelihood maximization and Bayesian inference. Consider a 
linear regression model: 

)(0,~,= 2INeeXY σβ +  
where ),...,,(= 110 −kbbbβ . The matrix X  is the collection of row vectors 

),...,,(1,= 1,,2,1 −ktttt xxxx . The white noise vector e  is defined as 
),...,,(= 21 ′Teeee , which follows a multivariate normal distribution. The 

matrix I is an identity matrix. The log-likelihood is: 

2
2 1)()(

2
1ln

2
2ln

2
=),|(ln

σ
ββσπ XYXYTTXYf −′−−−

−  (6-7) 

where },{ 2σβ≡ . 

3.1.1 Likelihood Maximization 

The maximum likelihood estimator (MLE) of can be found by computing 
),|(ln XYf  with respect to  and set it to zero: 

The point estimates of parameters are computed directly from the pos-
terior distribution. Unlike the EM algorithm where the parameters are treated 
as fixed values to compute the expected value of hidden states, the parameter 
estimation risk is taken into consideration by Bayesian inference. The joint 
posterior distribution of parameters and hidden state variables are usually 
constructed from a set of conditional posterior distributions. The procedure 
allows a complicated model to be divided into small pieces, solved separately, 
and combined to form the joint posterior of all parameters and hidden state 
variables. We provide an overview of Bayesian inference in the following 
section. 

3. 

E

E

E
E

the first derivative of E
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0=),|(ln
∂

∂ XYf

 
Solving for β  and 2σ , we have: 

YXXX ′′ −1)(=β̂  (6-8) 

Tee /ˆ'ˆ=ˆ 2σ  (6-9) 

where β̂=ˆ XYe − . 
21)(=)( σβ −′XXVAR  (6-10) 

Equations 6-8 and 6-9 are the MLE estimator of the regression model. 
Equation 6-10 is the variance of parameters, which can be used to compute 
the confidence intervals of regression coefficients. It is straightforward to 
check that the likelihood function is globally concave and thus has a unique 
global maximum. 

3.1.2 Bayesian Inference 

The goal of Bayesian inference is to characterize the posterior dis-
tribution ),|,( 2 XYf σβ . Similar to likelihood maximization, we want to know 
the point estimators and confidence intervals of the parameters. One popular 

),|,( 2 XYf σβ . The point estimators and confidence intervals then can be 
computed from the sample directly. 

By the Bayes theorem, we know that: 

)|,(),,|(),|,( 222 XfXYfXYf σβσβσβ ∝  (6-11) 

The likelihood function ),,|( 2 XYf σβ  is the same as that presented in 
the previous subsection and can be found in Equation 6-7. The prior 
distribution )|,( 2 Xf σβ needs to be determined to set up the posterior dis-
tribution. If we assign a constant to the prior distribution, then the posterior 
distribution is proportional to the likelihood function. Bayesian inference, in 

By assigning a constant to the prior distribution, we impose almost no 
additional information on the inference process. This kind of prior dis-
tribution, nevertheless, is not a valid probability distribution and may not 
always be a good choice for prior distributions. 

The other popular option is to use so-called conjugate priors. Combined 

distribution family as the prior distribution. Prior distributions are usually  

E
E

with the likelihood function, the posterior distribution belongs to the same 

this case, is dealing with the same density function as likelihood maximization. 

idea to achieve this is to draw a sample from the posterior distribution 
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assigned without considering the observed data. That is, =)|,( 2 Xf σβ  
),( 2σβf . In the case of regression, the conjugate prior is normal-inverse-

gamma. In other words, we assume that 2σ  follows an inverse gamma 
distribution and given 2σ , β  follows a multivariate normal distribution. The 
above discussion can be summarized as: 

),;(),;(=)()|(=),(=)|,( 22222 baIGVMMVfffXf σβσσβσβσβ  (6-12) 

Where 

)}()(
2
1{exp||)(2=),;( 11/2

0
2 MVMVMMV
K

−−−Σ −−−
ββπβ

 

( )2122 /exp)(1/
)(

=),;( σλσλλσ −
Γ

+v
v

v
vIG

 
The function )(⋅MV is the density of the multivariate normal distribution 

and )(⋅IG is the density of the inverse gamma distribution. Substituting 
Equation 6-12 back to Equation 6-11, we now have the posterior distribution 
of β and 2σ : 

∝),|,( 2 XYfln σβ  

−−++− 2
2ln/2)1(

σ
λσTv

 

)()(
2
1)()(

2
1 1

2 MVMXYXY −′−−−′− − ββββ
σ  

(6-13) 

The next question is how do we draw a sample from a density like 
Equation 6-13. Drawing β and 2σ simultaneously may not be an attractive 
option since significant efforts are required to customize a sampler. An 
alternative is to take advantage of the existing structure of the posterior 
distribution. If we fix 2σ , then XY ,,| 2σβ follows a multivariate normal 
distribution: 

)}()(
2

1)()(
2
1{exp),,|( 2

12 ββ
σ

ββσβ XYXYMVMXYf −′−−−′−−∝ −

)}()(
2
1{exp 1

1
11 ββββ −Σ−−∝ −

 
where 

)()(= 21121
1 YXMVXXV ′+′+ −−−−− σσβ  

121
1 )(= −−− ′+Σ XXV σ  
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That is: 

),(,,| 11
2 Σβσβ NXY :  

Similarly, fixingβ , XY ,,|2 βσ  follows an inverse gamma distribution: 

)}
2

(1{exp)1(),,|( 2
1/2

2
2 eeXYf Tv ′

+
−

∝ ++ λ
σσ

βσ
 

That is: 

)','(,,|2 λβσ vIGXY :  
/2=' Tvv +  

)/2(=' ee′+λλ  
Since both the multivariate normal and the inverse gamma distribution 

are well-known and have samplers readily available, our effort can be 
greatly reduced if we can construct the sampler of },{ 2σβ from individual 
samplers. It turns out that we can construct the joint posterior of 

XY ,|},{ 2σβ from two conditional posteriors: XY ,,| 2σβ and XY ,,|2 βσ . 
This procedure is the so-called Gibbs sampler. 

The procedure works as follows. We first pick initial values (0)β  and 
2(0)σ for β and 2σ . We then update β and 2σ iteratively using the two con-

ditional posteriors. Specifically, for iteration i: 

1. Draw )(iβ  from XYi ,,| 1)2( −σβ . 
2. Draw )2(iσ  from XYi ,,| )(2 βσ . 
3. Record )(iβ  and )2(iσ . 

The procedure is repeated for I  iterations and we only collect random 
variables generated after B  iterations ( IB <<0 ). Random variables 
generated from the first B  iterations are discarded to minimize the impact of 
initial values. The sample I

Bi
ii

1=
)2()( },{ +σβ  then can be used to compute 

point estimators and confidence intervals. 
A common practice is to use the posterior means as the point estimators: 

1
=ˆ

)(

1=

+−

∑
+

BI

i
I

Bi
β

β  (6-14) 

1
=ˆ

)2(

1=2

+−

∑
+

BI

i
I

Bi
σ

σ  (6-15) 

The confidence intervals can be computed directly from the percentile 
of the sample. For example, the 95% confidence interval of β̂ can be 
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constructed from the 2.5% and 97.5% percentile of )(iβ using the sample 
I

Bi
ii

1=
)2()( },{ +σβ . 

For a simple model like regression, Bayesian inference gives similar 
results to classical likelihood maximization. However, when a complicated 
model is involved, Bayesian inference may be more attractive because of 
the nature of Gibbs sampler: a complicated posterior distribution can be 
constructed from a collection of simpler conditional posteriors. The other 
advantage of Bayesian inference is that it can provide exact inference when 
the number of observations is small. In many cases, likelihood maximization 
computes confidence intervals based on the central limit theory. The 
approximation may be bad when the number of observations is small. Bayesian 
inference computes the confidence intervals directly using the sample drawn 
from the posterior and can provide more accurate confidence intervals when 
the sample size is small. 

3.1.3 A Numerical Example 

Data Generating Process 

We generate the data using the following model: 

iiiii exbxbxbby +++++ ,101,22,110 0...=  (6-16) 

)2
i  

The regressors ),...,,( ,10,2,1 iiii xxxx ≡  was generated using a multivariate 
normal distribution. The variance of dix ,  is 1 for 1,2,...,10=d . Each of the 
last five variables was not correlated with the other nine variables. The 
correlation coefficients among the first five variables ),...,,( ,5,2,1 iii xxx  were 
0.5. The true parameters used to generate iy  can be found in the first 
column of Table 6-2. 

We provide a numerical example of Bayesian inference and likelihood 
maximization for linear regression. Simulated data was generated from a 
linear regression model. Gibbs sampler, introduced above, was used to con-
duct Bayesian inference. We report estimation results using different sample 
sizes. 

The prior distribution is also a valuable asset when a large number of 
regressors (independent variables) is involved. One can impose a normal 
prior for regression coefficients with mean zero and reasonable variances. 
Bayesian inference then will automatically assign coefficients close to zero 
to independent variables that do not have explanatory power to the dependent 
variable. 

e ~ N (0,σ
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Table 6-2. Estimation results. 

True 
value 

MLE Gibbs sampler MLE Gibbs sampler 

 (15 Obs.) (15 Obs.) (30 Obs.) (30 Obs.) 

b0 = 1.5 2.01 (1.23, 2.80) 1.53 (0.44, 2.42) 1.69 (1.15, 2.23) 1.56 (0.95, 2.11) 
b1 = 1 0.62 (−0.92, 2.16) 0.75 (−0.48, 1.95) 0.65 (0.12, 1.18) 0.68 (0.14, 1.25) 
b2 = 1 2.26 (1.08, 3.44) 1.46 (0.21, 2.56) 1.63 (1.02, 2.24) 1.36 (0.70, 1.98) 
b3 = 0 1.37 (−0.03, 2.78) 0.22 (−1.01, 1.39) 0.25 (−0.28, 0.77) 0.19 (−0.39, 0.75) 
b4 = −1 −2.60 (−4.02, −1.18) −1.12 (−2.34, 0.24) −1.63 (−2.23, −1.02) −1.36 (−2.00, −0.71) 
b5 = −1 −1.89 (−2.89, −0.90) −1.18 (−2.24, 0.03) −1.63 (−2.16, −1.10) −1.46 (−2.02, −0.90) 
b6 = 1 2.10 (1.34, 2.86) 1.29 (0.32, 2.15) 0.84 (0.45, 1.23) 0.85 (0.43, 1.28) 
b7 = 1 −0.02 (−1.06, 1.02) 0.45 (−0.63, 1.56) 0.39 (−0.07, 0.85) 0.31 (−0.19, 0.78) 
b8 = 0 0.32 (−0.61, 1.24) 0.25 (−0.74, 1.22) −0.37 (−0.82, 0.09) −0.26 (−0.75, 0.24) 
b9 = −1 −0.27 (−1.21, 0.66) −0.05 (−1.04, 0.95) −0.89 (−1.52, −0.27) −0.90 (−1.56, −0.25) 
b10 = −1 −0.68 (−1.85, 0.49) −0.65 (−1.59, 0.41) −1.36 (−1.76, −0.96) −1.32 (−1.76, −0.90) 

2.25=2σ

 

0.90 2.54 0.87 1.25 
RMSE  3.07 2.03 1.98 1.86 

True 
value 

MLE Gibbs sampler MLE Gibbs sampler 

 (300 Obs.) (300 Obs.) (3,000 Obs.) (3,000 Obs.) 

b0 = 1.5 1.45 (1.28, 1.63) 1.44 (1.27, 1.62) 1.51 (1.45, 1.56) 1.51 (1.45, 1.56) 
b1 = 1 0.97 (0.74, 1.20) 0.95 (0.73, 1.19) 0.98 (0.91, 1.06) 0.98 (0.91, 1.06) 
b2 = 1 0.97 (0.73, 1.21) 0.96 (0.72, 1.20) 0.97 (0.90, 1.04) 0.97 (0.89, 1.04) 
b3 = 0 0.06 (−0.18, 0.29) 0.05 (−0.19, 0.29) 0.04 (−0.03, 0.11) 0.04 (−0.03, 0.11) 
b4 = −1 −1.06 (−1.28, −0.84) −1.05 (−1.27, −0.83) −1.06 (−1.13, −0.99) −1.05 (−1.12, −0.98) 
b5 = −1 −0.75 (−0.98, −0.52) −0.74 (−0.96, −0.51) −0.97 (−1.05, −0.90) −0.97 (−1.05, −0.90) 
b6 = 1 1.11 (0.94, 1.28) 1.10 (0.94, 1.28) 1.01 (0.95, 1.07) 1.01 (0.95, 1.07) 
b7 = 1 1.07 (0.90, 1.24) 1.06 (0.89, 1.22) 1.02 (0.96, 1.07) 1.02 (0.96, 1.07) 
b8 = 0 −0.02 (−0.20, 0.16) −0.02 (−0.20, 0.16) −0.02 (−0.07, 0.03) −0.02 (−0.07, 0.03) 
b9 = −1 −0.96 (−1.14, −0.79) −0.96 (−1.13, −0.78) −0.99 (−1.05, −0.94) −0.99 (−1.05, −0.93) 
b10 = −1 −1.07 (−1.24, −0.90) −1.06 (−1.24, −0.90) −1.04 (−1.10, −0.98) −1.04 (−1.10, −0.98) 

2.25=2σ

 
2.18 2.25 2.38 2.39 

RMSE 1.56 1.56 1.53 1.53 

 
We generated 3,000 pairs of iy  and ix . The regression parameters then 

were estimated using the first 15, 30, 300, and 3,000 pairs of observations. 
We generated an additional 3,000 pairs of observations to compute prediction 
errors using estimated parameters. The additional 3,000 pairs of observations 
are referred to as the testing dataset. 
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Likelihood Maximization 

The MLE estimators were calculated using Equations 6-8 to 6-10. 

Bayesian Inference Using Gibbs Sampler 

We conducted Bayesian inference using Gibbs sampler as described in 
Sect. 3.1.2. We chose = 3,000I  and = 1,000B . That is, only random 
numbers drawn during the last 2,000 iterations of the total 3,000 iterations 
were used to compute the estimated values. The prior distribution for β  is a 
multivariate normal distribution with mean zero and variance 1. The prior 
distribution for 2σ  is an inverse gamma distribution with 3=v  and 1=λ . 
The initial values were set to the mean of the prior distributions. All regres-
sion coefficients had initial values equal to 0. The initial value for 2σ  is 0.5. 

Estimation Results 

We first take a look at the converging process of the Gibbs sampler. 
Before the sample constructed using the Gibbs sampler can be used for 
model estimation, we must make sure that the Markov process involved had 
indeed converged. Figure 6-2 plots the sampling values of 2b  for the first 
300 iterations. It is clear that Gibbs sampler converged to the true value of 

2b  quickly after a few iterations. 

 
Figure 6-2. Sampling value of 2b  (sample size = 3,000). 
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Table 6-2 summarizes the estimation results. The second and third 
columns on the top panel report the estimation results of MLE and Gibbs 

sampler gave less extreme values. For example, the estimations for 2b , 4b , 
and 6b  were 2.26 , 2.60− , and 1.89−  using MLE. Gibbs sampler, on 
the other hand, gave more reasonable estimations (1.46, −1.12, and −1.18). 
Similar results can be observed when the first 30 pairs of observations were 

were used (reported on the lower panel), Gibbs sampler and MLE gave 
similar outcomes. Note that if we compare the the root mean square error 
(RMSE) using the testing dataset, Gibbs sampler gave smaller RMSE then 
that of MLE when the sample sizes were small (15 and 30 observations). 
The RMSE for large sample sizes were the same. 

3.2 Markov Chain Monte Carlo and Gibbs Sampler 

The MCMC method constructs the full posterior distribution by a collection 
of conditional posterior distributions with lower dimensions. Consider the 
full posterior distribution )|( Yf Θ , where ),...,,(= 21 kΘΘΘΘ  is a vector of 
parameters and hidden state variables. The vector Y  is the observed time 
series. Each component iΘ  could be a singleton or a vector. Without loss of 
generality, we assume iΘ  is a singleton in the following discussion. We can 
generate a Markov chain with )|( Yf Θ  as its invariant distribution from the 
following conditional densities: 

),,...,,|( 321 Yf kΘΘΘΘ  
),,...,,|( 312 Yf kΘΘΘΘ  

M  

),,...,,|( 121 Yf kk −ΘΘΘΘ  

),,...,,,...,,|(=),( )()(
1

1)(
1

1)(
2

1)(
1

1)(

1=

1)()( YfT i
k

i
z

i
z

iii
z

k

z

ii ΘΘΘΘΘΘΘΘ +
+
−

++++ ∏
 

Given initial values ),...,,(= (0)(0)
2

(0)
1

(0)
kΘΘΘΘ , the MCMC method generates 

Θ  by updating each of the k  elements sequentially. The first element 
(1)
1Θ  is drawn from ),,...,,|( (0)(0)

3
(0)
21 Yf kΘΘΘΘ . Then, (1)

2Θ  is drawn from 
),,...,,|( (0)(0)

3
(1)
12 Yf kΘΘΘΘ . Note that 1Θ has been updated with the latest 

sampling result. The process continues until all k  elements have been 
updated. Repeating the above process creates a Markov chain with the 
following transition density: 

used (the fourth and fifth columns). When a large number of observations 

sampler using the first 15 pairs of observations. Compared to MLE, Gibbs 
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If we can show that the invariant distribution of the transition density T  
is )|( Yf Θ , then we can use the above procedure to break down a high-
dimensional density into a collection of lower-dimensional densities. 
Specifically, we want to establish time-reversibility, which will lead us to the 
invariant distribution. The time-reversibility condition can be written as: 

),()|(=),()|( )(1)(1)(1)()()( iiiiii TYfTYf ΘΘΘΘΘΘ +++
 

To prove the time-reversibility condition, first note that we can write 
)|,...,(),,...,|(=)|,...,,( )()(
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2
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2
)(

1 YfYfYf i
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ii
k

iii
k

ii ΘΘΘΘΘΘΘΘ . Following 
Besag (Besag, 1974), we can multiply and divide )|,...,,( )()(
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Repeating the procedure on )(
2
iΘ  for the last term at the right hand side, 

the equation becomes: 
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Continuing for all )(i
zΘ , we have: 
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which is exactly the time-reversibility condition. It is easy to verify that 

)|( Yf Θ  is the invariant distribution of the Markov chain. When direct 
sampling of all )(i

zΘ  is possible, the above sampling procedure is called the 
Gibbs sampler (Geman and Geman, 1984). 

CONDITIONAL POSTERIOR DISTRIBUTIONS  
OF THE MARKOV SWITCHING MODELS 

The discussion of the MCMC and Gibbs sampler suggests that we can 
construct the joint posterior distribution )|( Yf Θ by a set of conditional 
distributions with lower dimensions. The strategy is to take advantage of the 
model structure and simplify the derivation. For the sake of convenience, the 
Markov switching model is restated here: 

4. 

at the right hand side and make the necessary rearrangement: 
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ttttt eysaasaay ++++ −11,11,00,10,0 )(=  (6-17) 

{0,1}∈ts  (6-18) 

ijtt pisjsP =)=|=( 1−  (6-19) 

)(0, 2σNet :  (6-20) 

A few useful notes should be mentioned regarding the equations. First, 
if the state vector ),...,,(= 21 TsssS  is known, then the standard Bayesian 
linear model analysis technique can be used to compute the posterior 
distribution of 0,0a , 0,1a , 1,0a , 1,1a , 2σ . Second, the posterior distribution 
of the transition probability depends on the state vector S  only. Finally, 
derivation of the posterior distribution of S  can be simplified by taking 
parameters in A  as fixed numbers. 

The tactic is clear from the above discussion. We can divide the 
parameters and hidden state variables into three sets. The first set is 

0,0a , 0,1a , 1,0a , 1,1a , and 2σ
00p  and 11p . The third set is the hidden state 

variables given the other two sets can be derived. We can then iterate 
through these three sets of conditional distributions to generate the joint 
posterior distribution )|( Yf Θ . 

4.1 Conditional Posterior Distributions of Regression 
Parameters 

To derive the posterior distribution of regression parameters, we first 
rewrite Equation 6-17 in matrix representation: 

)(0,~,= 2INeeXY σβ +  (6-21) 

where ),,,(= 1,11,00,10,0 aaaaβ ; X  is the collection of row vector 
),,(1,= 11 −− ttttt ysysx ; ),...,,(= 21 ′Teeee . 

The regression parameters are further divided into two sets: β and 2σ . 
We present the derivation of these two conditional posterior distributions in 
sequence: 

• ),,,|( 2
ijpSYf σβ  

• ),,,|( 2
ijpSYf βσ  

),,,2
ijpSY

variable S . The conditional posterior distribution of one set of random 

regression-related parameters . The second set is 
transition-related parameters 

(β |σ4.1.1 Deriving 
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Using the Bayes theory, the conditional posterior of β  is the complete 
likelihood function times the prior distribution of β : 

)(),,|(),,|( βββ priorpSYfpSYf ijij ∝  (6-22) 

We choose to use the conjugate prior for β  and all other parameters. 
Conjugate priors are very popular in Bayesian inference because they are 

likelihood function. 
For β , the conjugate prior is a multivariate normal distribution: 

),(~ 00 Σββ N  
where 0β  and 0Σ  are given. That is: 

)}()(
2
1{exp||)(2=)( 0

1
000

2 ββββπβ −Σ−−Σ −−
K

prior
 

)}()(
2
1{exp 0

1
00 ββββ −Σ−−∝ −

 (6-23) 

where K  is the length ofβ and ||)(2 0
2 Σ

−
K

π  is a known constant. 
From Equation 6-21, the likelihood function is: 

)}()(
2

1{exp)(2=),,|( 2
22 ββ

σ
πσβ XYXYpSYf

T

ij −′−−
−

 

)}()(
2

1{exp 2 ββ
σ

XYXY −′−−∝
 (6-24) 

22 )(2
T

−
πσ

exceptβ are considered given. 
Substituting Equations 6-23 and 6-24 into Equation 6-22, we get the 

following posterior distribution ofβ : 

)}()(
2
1)()(

2
1{exp),,|( 0

1
00 βββββββ XYXYpSYf ij −′−−−Σ′−−∝ −

 

)}()(
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1{exp 1

1
11 ββββ −Σ−−∝ −

 
where 

)()(= 2
0

1
0

121
01 YXXX ′−Σ′+Σ −−−−− σβσβ  

121
01 )(= −−− ′+ΣΣ XXσ  

 
 

considered to be the “natural” choice of the prior distribution given the 

is treated as a constant because all other parameters where th  e term
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Clearly, the posterior distribution ofβ follows a normal distribution: 

),(,,,| 11
2 Σβσβ NpSY ij ~  

),,,|( 2
ijpSYβσ

Again, using the Bayes theory: 

)(),,,,|(),,,|( 222 σσββσ priorpSYYfpSYf ijij ∝  (6-25) 

The conjugate prior of 2σ  is the inverse gamma (IG) distribution: 

),(
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 (6-26) 

The likelihood function is: 
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(6-27) 

where βXYe −≡ . Note that compared to Equation 6-24, we treat β  as a 
constant vector and arrive at a different likelihood function. 

Substituting Equations 6-27 and 6-26 back to Equation 6-25, we have the 
posterior distribution of 2σ : 

)}
2

(1{exp)1(),,,|(
02

1/2
0

2
2 eepSYf g

Tgv

ij
′

+
−

∝
++

λ
σσ
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The posterior distribution of 2σ  follows an inverse gamma distribution: 

),(,,,|2
ggij vIGpSY λβσ ~  

/2= 0 Tvv gg +  
)/2(= 0 eegg ′+λλ  

4.1.2 Deriving

6. Markov Switching Models for Outbreak Detection 
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4.2 Conditional Posterior Distributions of Transition 
Probability 

We begin our discussion from the likelihood function of S . Since the 
evolution of S  follows a Markov process, we know that the probability of 

ts  only depends on the value of 1−ts . That is: 

01
00

00
00

10
11

11
1112= )(1)(1=),|(=)|( nnnn

ijtt
T
tij pppppssfpSf −−Π −  (6-28) 

where ijn  is the count of transitions from state i to j. The count ijn  can be 
calculated directly from S . 

The conjugate priors of 00p  and 11p  are beta distributions: 

),( 010000 uubetap ~  
),( 101111 uubetap ~  

where ,iju  {0,1}, ∈ji  are constants chosen by domain experts. The densities 
of the prior distributions are: 

101
00

100
0000 )(1)( −− −∝ uu pppprior  (6-29) 

110
11

111
1111 )(1)( −− −∝ uu pppprior  (6-30) 

Combining the likelihood function (Equation 6-28) and the prior distributions 
(Equations 6-29 and 6-30), we have the posterior of 00p  and 11p : 

),(~| 0101000000 nunubetaSp ++  
),(~| 1010111111 nunubetaSp ++  

4.3 Conditional Posterior Distributions of Hidden States 

Deriving the conditional posterior distributions of S  is slightly more 
complicated. Our target is ),,,|( 2

ijpYSf σβ . A simpler but less efficient way 
is making use of ),,,,|( 2

ijtt pYssf σβ− , where ),...,,,...,,(= 1121 Tttt ssssss +−− . 
The posterior distribution ),,,|( 2

ijpYSf σβ  then can be approximated by 
combining individual ),,,,|( 2

ijtt pYssf σβ− . This method is usually referred 
to as the single-move Gibbs sampler. The method is less efficient compared 
to the multi-move Gibbs sampler that we will introduce below due to the 
dependency among ts . 
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The multi-move Gibbs sampler draws S  from ),,,|( 2
ijpYSf σβ  at once 

and usually leads to faster convergence. In the following discussion, we 
suppress β , 2σ , and ijp  since they play no roles in the derivation. Also, we 
use the following notations: 

),...,,(= 21 t
t yyyY  

),...,,(= 21 t
t sssS  

Before getting into the details of the multi-move Gibbs sampler, there are 
several useful properties that are worth mentioning. First, because of the 
Markov property of ts , 2+ts  contains no information about ts  given 1+ts : 
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It can be generalized to arbitrary future hidden states: 

)|(=),...,,,|( 1321 ++++ ttTtttt ssfsssssf  
A similar relation exists for future observations and states: 
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),,(
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),|(= 1 ttt yssf +  
It can be verified that, given 1+ts , future observations ( 1+ty , 2+ty ,…) and 

future states ( 2+ts , 3+ts ,…) contain no information about ts : 

),|(=),...,,,,...,,|( 1121 tttTttTttt yssfyyyssssf ++++  
Using the above relations, we have: 
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Equation 6-31 suggests that we can sample TS at once by first drawing Ts  
from )|( T

T Ysf , and then 1−Ts  from ),|( 1
1

−
−

T
TT Yssf ,…, and so on. By 

Bayes theory: 

)|()|(),|( 11
t

tttt
t

t YsfssfsYsf ++ ∝  (6-32) 

We only need to derive )|( t
t Ysf , Tt 1,2,...,=  for the multi-move Gibbs 

sampler. Following Kim (Kim and Nelson, 1999), )|( t
t Ysf  can be derived 

recursively by the following steps: 

(0) Given )|( 1
1

−
−

t
t Ysf  

(1) One-step ahead prediction of ts : 
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(2) Filtering for ts  
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(3) Computing the target ),|( 1
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At time 1=t , the iteration start with ),|(=)|( 11000

0
0 ppsfYsf , the 

unconditional probability of the state given current parameters. A reasonable 
choice is the steady-state probabilities: 

0011

11
110000 2

1=),|0=(=
pp

pppsf
−−

−π
 

0011

00
110001 2
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pp

pppsf
−−

−π
 

A more general discussion of the steady-state probabilities involving 
more than two states can be found elsewhere (Frihwirth-Schnatter, 2006). 

4.4 Estimating Markov Switching Models via the Gibbs 
Sampler 

As mentioned at the beginning of this section, our goal is to construct the 
joint posterior distribution )|,,,( 2 YpSf ijσβ . Following the general procedure 
of MCMC, the joint posterior distribution can be constructed using the 
following conditional posterior distributions: 

),,|(=),,,|( 22 SYfpSYf ij σβσβ  
),,|(=),,,|( 22 SYfpSYf ij βσβσ  
)|(=),,,,|( 0011

2
00 SpfSpYpf σβ  

)|(=),,,,|( 1100
2

11 SpfSpYpf σβ  
),|(=),,,|( 2

ijij pYSfpYSf σβ  
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The functions on the left hand side are the conditional distributions 
required by MCMC. The functions on the right hand side are the conditional 
distributions we are actually dealing with considering the special dependent 
structure of the Markov switching model. For example, the conditional 
posterior of the hidden state S does not depend onβ or 2σ givenY and ijp . 

Also, we use conjugate prior distributions to compute the posterior 
distributions listed above: 

),(~ 00 Σββ N  
),(

00

2
ggvIG λσ ~

 
),( 010000 uubetap ~  

),( 101111 uubetap ~  
A general rule to determine parameters for the prior distributions is that 

we want to provide as little information as possible. As a result, 0Σ  should 
have large diagonal elements; 

0gv  should be small and 
0gλ  should be large. 

However, we also want to have the posterior distributions with finite means 
and variances so that the estimation results have meaningful interpretation. 

distributions. A simple rule is to choose the parameters to ensure that the 
prior distributions have finite second moments. One may argue that the 
constraints may be too strong in the sense that the posterior distribution may 
still have a finite second moment even when the prior distribution does not. 
In practice, we find that imposing the additional constraint has little effect in 

computed from the estimation results are meaningful. 
To perform estimation using MCMC, a set of initial values are chosen: 

),,,,( (0)(0)
11

(0)
00

2(0)(0) Sppσβ . For iteration i , we repeat the following steps: 

1. Draw )(iβ  from ),,|( 1)2(1)( −− iiSYf σβ . 
2. Draw )2(iσ  from ),,|( )(1)(2 iiSYf βσ − . 
3. Draw )(iS  from ),,|( 1)(

11
1)(

00
−− ii ppYSf . 

4. Draw )(
00
ip  from )|( )(

00
iSpf . 

5. Draw )(
11

ip  from )|( )(
11

iSpf . 
6. Record ),,,,( )()(

11
)(

00
)2()( iiiii Sppσβ . 

The process is repeated for I  times, where I  is a predefined number. 
The number of iteration I  can be determined iteratively by checking whether 
the Markov chain has converged. Some useful discussion can be found else-
where (Cowles and Carlin, 1996). To ensure that the results are not influenced 
by the initial values, the initial B  iterations are discarded before computing 

restraining the estimation results but does ensure that the confidence intervals 

This imposes additional constraints on choosing the parameters for the prior 
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The confidence intervals can also be computed directly from the 
corresponding percentile of }{ )2(iσ . 

The BioPortal Outbreak Detection System (BiODS) detects outbreaks in 
time series based on the Markov switching models. The BiODS is one of the 

developing an integrated, cross-jurisdiction infectious disease information 
infrastructure. 

To demonstrate the application of the Markov switching models using a 
real-world dataset, we obtained a collection of chief complaints (CCs) for 
the time period June 30, 2000 to April 27, 2003 from a hospital in Taiwan. 
There were 368,151 CCs in our dataset. About a quarter of them contained 
Chinese characters. The BioPortal Multilingual Chief Complaint classifier 

Botulism-Like, Constitutional, Gastrointestinal (GI), Hemorrhagic, Neuro-
logical, Rash, Respiratory (RESP), Fever, and Other. The daily count of each 
syndrome then was analyzed using the Markov switching model. We present 
the estimation results of the GI syndrome below. 

Figure 6-3 plots the time series of the GI syndrome. It seems that there is 
no clear seasonal patterns. However, sporadic spikes are clearly visible. 
From the autocorrelation function shown in Figure 6-4, we can observe a 
very strong day-of-week effect as the autocorrelation coefficient peaks for 
lags that are multiples of 7. The other weaker pattern is a cyclical pattern of 
about 110 days. For the sake of clarify, we chose to incorporate the day-of-
week effect and ignore other autocorrelation patterns. The day-of-week 
effect was modeled using six dummy variables for Monday, Wednesday, 
Thursday, Friday, Saturday, and Sunday. The coefficients of these dummy 
variables were directly related to the average differences between a 
particular day-of-week and a Tuesday. Our Markov switching model was: 

tii
i

tttt edwysaasaay +++++ ∑−

6

1=
11,11,00,10,0 )(=

 (6-33) 

{0,1}∈ts  (6-34) 

the statistics. The posterior means of parameters are the average of the 
sample generated by the MCMC method. For example, the posterior mean of 

2σ  is: 

CASE STUDY 5.

(Lu et al., 2007, 2008) was used to classify CCs into nine syndromic categories: 

subsystems of the BioPortal project (Zeng et al., 2005), which is aimed at 



 Chapter 6
 
138 

ijtt pisjsP =)=|=( 1−  (6-35) 

)(0, 2σNet ~  (6-36) 

  
Figure 6-3. Gastrointestinal syndrome count time series. 

 

   
Figure 6-4. Autocorrelation function of the gastrointestinal syndrome count time series. 
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The derivation procedure for the posterior distributions remained unchanged. 

variables and the same procedure applied. The posterior distribution of tran-
sition probability remained unchanged. The conditional posterior distribution 
of hidden state variables needed minor modifications. 

We used Gibbs sampler to estimate the Markov switching model. The 
parameters and confidence intervals were computed from the last 2,000  
of 2,500 iterations. Figure 6-5 plots the autocorrelation function of the 

surprising to see that the long-term autocorrelation pattern of about 110 days 
still exists because we chose not to handle this pattern. The autocorrelation 
function is considered “clean” since most lags fall within the 95% band. 

 

  
Figure 6-5. Autocorrelation function of the residual. 

 
Table 6-3 summarizes the parameter estimation results. Both posterior 

means and 95% confidence intervals (CI) are listed. The constant term 00a  
was 39.77. It increased to 45.34 ( 1100 aa + ) when an outbreak occurred. The 
coefficient of the lagged term 1−ty  was 0.4 when there was no outbreaks. 
The change of the coefficient was small (0.05) when outbreaks occurred. 
These estimated coefficients ( ija ) corresponded to the long-term mean of 
non-outbreak and outbreak states, which are reported in the last two rows. 
The long-term mean of the non-outbreak state was 65.69, while the long-
term mean of the outbreak state was 82.35. Note that these values should be 

residuals. Most of the short-term autocorrelations were removed. It is not 

The additional dummy variables were included as additional independent 
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interpreted as the count of an “average Tuesday.” For the average value of 
another day-of-week, one can compute the value by adding the contribution 
of iw . Note that similar to the computation of unconditional mean (Equation 
6-5), the contribution of the dummy needs to be adjusted using the co-
efficient of 1−ty . For example, the contribution of 1w  (Monday) to the long-
term mean during the non-outbreak period is )/(1 1,01 aw − . As a result, on a 
non-outbreak Sunday, the average count was 110.96=0.4)27.16/(165.69 −+ . 
The transition probabilities 00p and 11p were 0.993 and 0.988, respectively. 

Table 6-3. Estimation results of the Markov switching model. 

Coefficient Mean (95% CI) 

00a
 39.77 (33.65, 46.13) 

01a
 5.57 (−1.09, 12.74) 

10a
 0.40 (0.31, 0.47) 

11a  0.05 (−0.03, 0.14) 

1w  (Mon) −1.70 (−4.55, 1.11) 

2w  (Wed) 1.77 (−0.69, 4.23) 

3w
 (Thu) 1.86 (−0.58, 4.24) 

4w  (Fri) 4.00 (1.50, 6.44) 

5w
 (Sat) 7.08 (4.65, 9.50) 

6w
 (Sun) 27.16 (24.55, 29.62) 

2σ  153.74 (137.00, 170.06) 
00p

 0.993 (0.987, 0.997) 

11p  0.988 (0.976, 0.996) 

Non-outbreak average 65.69 (62.16, 68.89) 

Outbreak average 82.35 (78.53, 86.36) 
 
Figure 6-6 plots the GI time series and the estimated outbreak states. 

The lower panel plots )|( YSf
observed time series. The posterior outbreak probability at each period is 
constrained between 0 and 1. As a result, the interpretation is more intuitive 
compared to other outbreak detection methods such as CUSUM and EWMA. 

The Markov switching model identified three major outbreak periods. 
The first period was during the end of 2000 and the beginning of 2001. The 

third outbreak period was at the beginning of 2003. The outbreak periods  
second outbreak period was between the first and third quarters of 2002. The 

, the posterior outbreak probability given the 
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were identified solely based on the specification of the model. As a result, 
the identified outbreak periods can only be interpreted as having higher time 
series values compared to the rest of the time series. The reason behind this 
needs to be further investigated. The state estimation results can guide the 
investigation efforts so that additional evidence can be collected to explain 
the observed time series dynamics. 

 
 

 
Figure 6-6. Estimated outbreak states. 

 
For researchers working on developing novel outbreak detection algo-

rithms, the estimation results can provide valuable information for their gold 
standard development. For practitioners using existing outbreak detection 
methods, the estimation results can guide them to choose proper training 
periods. For example, based on the estimation results, the first half of the 
time series is a better candidate then the second half. It may be worth the 
effort to investigate whether the outbreak identified during the end of 2000 
to the beginning of 2001 is related to disease outbreaks before the first half 
of the time series is used for model training. 
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QUESTIONS FOR DISCUSSION 

1. What are the advantages of the Markov switching model compared to 
traditional statistical surveillance methods? What are the disadvantages? 
Discuss. 

2. What approaches can be used to estimate the Markov switching models? 
What are their advantages and disadvantages? 

3. What is a conjugate prior? Provide examples of conjugate priors in 
standard linear regression models and the Markov switching models. 
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This book covers important topics of state-space models in general and Markov switching 
models in specific. Both classical estimation methods and Gibbs sampler are discussed in 
detail. The authors also provide sample programs that implement the algorithms discussed in 
the book. 
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ONLINE RESOURCES 

The R Project provides a cross-platform computational environment that is suitable to 
implement the Markov switching models. The project website can be found at http:// 
www.r-project.org/ 

The BioPortal project’s homepage is at http://bioportal.eller.arizona.edu 
 

http://www.r-project.org
http://www.r-project.org
http://bioportal.eller.arizona.edu
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Chapter 7 

DETECTION OF EVENTS IN MULTIPLE 
STREAMS OF SURVEILLANCE DATA 
Multivariate, Multi-stream and Multi-dimensional Approaches 

ARTUR DUBRAWSKI* 

CHAPTER OVERVIEW 

Simultaneous monitoring of multiple streams of data that carry corroborating 
evidence can be beneficial in many event detection applications. This chapter 
reviews analytic approaches that can be employed in such scenarios. We 
cover established statistical algorithms of multivariate time series baseline 
estimation and forecasting. They are relevant when multiple streams of data 
can be modeled jointly. We then present more recent methods which do not 
have to rely on such an assumption. We separately address techniques that 
deal with data in a specific form of a record of transactions annotated with 
multiple descriptors, often encountered in the practice of health surveillance. 
Future event detection algorithms will benefit from incorporation of machine 
learning methodology. This will enable adaptability, utilization of human 
feedback, and building reliable detectors using some examples of events of 
interest. That will lead to highly scalable and economical multi-stream event 
detection systems.  

surveillance 
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surveying diverse aspects of data even if it comes from a single source, can 

event detection over more traditional univariate analyses. Suppose for 
instance that today’s sales of cough and cold medications are insignificantly 
higher than normal, absenteeism among school children in the district is up 

to the region’s emergency rooms. None of these individual signals are 
substantial enough to cause an alert on their own, but when looked at in 

increase in sales of pain relief and anti-fever drugs. However, it appears to 
be aligned with an unexpected rise of sales of non-medication groceries. 
This may indicate that the population of the region has increased (e.g., due to 
a sunny winter weekend in a mountain town). That in turn may sufficiently 
explain the initial observation about pain killers and dismiss the concern of a 
possible outbreak of infectious disease based on the single-stream analysis. 
Or, suppose that among the chief complaints of two cases from two different 
hospitals in the same city on the same date there was mention of bloody 
stools in pediatric patients. The multiple mentions of “bloody stools” or 
“pediatric” is not a surprise but the tying together of these factors is 
sufficiently rare that seeing even just a few such cases is of interest. This is 
precisely the evidence (that was spotted manually, not by automated sur-
veillance) that was the first warning of the infamous Walkerton, Canada, 
outbreak of waterborne gastroenteritis in May 2000 (CMAJ, 2000).  

There has been a great deal of work in recent years on univariate event 
detection algorithms and on their applications to biosurveillance. The methods 
proposed and tested include control charts, regression methods derived from 
Serfling’s original work on seasonality modeling, wavelet approaches, moving 
average and its many variants (including exponentially weighted moving 
average), and the very popular cumulative sum (CUSUM) algorithm, to 
name just a few. The wide variety of methods reflects the wide variety of 
issues that occur in the variety of data sources that have been used. Issues 
that are faced in univariate time series analysis also affect multivariate 
approaches. New challenges, such as increased complexity of data and models, 
as well as new opportunities, such as the availability of independent sources 
of corroborating evidence, make multi-stream surveillance an attractive domain 
for ongoing research and applications. Researchers in the field of public health 
and biodefense have already attempted to exploit the benefits of simultaneous 

conjunction, they may raise concern. Or suppose that in monitoring sales

INTRODUCTION 1.

data, and a slightly higher than usual number of respiratory patients report 

yield improvements in accuracy, sensitivity, specificity and timeliness of 

Simultaneous monitoring of signals coming from distinct sources, or 

by one and a half standard deviation estimated from normal historical

of non-prescription medicines, a particular region reports an unexpected 
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Note that, in the context of multi-stream surveillance, the notion of multi-
variability may in practice imply one or more of the following meanings:  

• Combination of data sourced from multiple distinct streams (for 
example, emergency department visits and over-the-counter (OTC) 
drug sales; or animal health examination records vs. microbial test 
results of food samples taken at slaughter houses vs. complaints 
submitted by food consumers). This is what we call the multi-stream 
data.  

• Use of data records, perhaps originating from a single source, with 
multiple attribute fields (dimensions) such as spatial location and 
patient attributes such as age, gender, and symptoms. This data will 
be called multi-dimensional. 

• Consideration and evaluation of multiple possible causes for an 
observed bioevent. This scenario involves data with multi-dimensional 
outcomes, sometimes also called multi-focus data. 

Surveillance of multiple streams of data can often be tackled using the 
well known methods of multivariate time series analysis. This may make 
very good sense if the data from distinct streams is being supplied syn-
chronously and if the probabilistic characteristics of the processes generating 
the data are coherent across all streams. In those cases, it may be appropriate 
to treat such data as a single multivariate stream coming from a joint source. 
This assumption allows for building detectors of anomalies based on multi-
variate statistical models involving all component streams. These models can 
exploit correlations between observations recorded in different streams. This 
is the topic of the next section in which we focus on methods of multivariate 
data analysis. First, we quickly review popular approaches to modeling and 
forecasting multivariate baselines, and then we move on to review approaches 
to detecting significant departures of the multivariate data from their expected 
settings. In other cases, it may be more practical to simply set up separate 
detectors for each individual stream of data (note that, in general, each of 
them may be multivariate on their own accord) and to aggregate their 
indications in a separate procedure. That topic is discussed in the subsequent 
section. We also dedicate a section to cover the methods specifically designed 
to deal with multi-dimensional data due to the abundance of such data sources 
in the practice of biosurveillance.  

tracking of multiple sources of complementary evidence and multiple facets 
of the accessible data. However, this domain, being comparatively less explored, 
may also be relatively new to many practitioners of biosafety. This chapter 
aims at reviewing fundamental methods of multi-stream surveillance and it 
presents a few representative examples of its use. 
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MULTIVARIATE ANALYSIS 

A typical approach to anomaly detection in temporal domains is to first 
forecast the expected values of the monitored variables, and then to compare 
the actual current observations against their expected values, triggering an 
alert whenever the discrepancy is sufficiently large. Reliability of this process 
heavily relies on the quality of the forecast of the baseline. That may be a 
tough task. Its result depends on the level of understanding of the processes 
which generate the observations (which impacts the attainable accuracy of 
their models), as well as on the accuracy, relevance and completeness of the 
available data. 

In many event detection approaches, the phases of baseline forecasting 
and scoring of anomalousness are integrated, but for clarity of presentation 
we first focus on the first stage of the process: baseline modeling and fore-
casting. 

2.1 Modeling and Forecasting of Multivariate Baselines 

If the observed time series are stationary and their mutual dependencies 
do not change over time (ideally, if they are statistically independent),  
one may consider using multiple regression. In its simplest form, multiple 
regression produces a linear model of relationships between m independent 
variables (observations, e.g., records of daily sales of m different types of 
non-prescription medicines), xi, and one dependent variable (outcome, e.g., 
percentage of the local population affected by flu-like symptoms), y: 

mm xxxy ⋅++⋅+⋅+= ββββ K22110ˆ  
Here, ŷ  denotes the predicted value of the independent variable y, 

corresponding to the specific set of independent observations {x1, x2, …, xm}, 
and βi are the model parameters estimated from the available reference data 
(usually using the least squares method). If the above conditions are met, and 
if we have training data which accurately represents historical correlations 
between the observations and outcomes, we can build and use the above 
model to predict the outcomes based on actual observations.  

Multiple regression is rather naïve in the context of surveillance in that it 
ignores a likely possibility of the observations to depend on time. This 
caveat is targeted by the autoregressive (AR) models which represent the m-
dimensional vector tX  of current observations as a linear combination of 
observations made at k preceding time steps, it−X : 

tktkttt EXAXAXAX ++++= −−− ...2211  

2.
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Here, jA  are mm ×  matrices of autocorrelation coefficients estimated 
from training data, while tE  represents a vector of Gaussian noise. Multi-
variate autoregression can be directly applied to forecast expected values of 
the modeled time series based on the pattern of their past behavior. It can 
capture linear dependencies between the individual variables and their changes 
over the specific time horizon of analysis (k steps back), as well as linear 
relationships between the current and past observations in the series. 

The AR models are vulnerable to noise in data. That can be to some 
extent alleviated by adding smoothing components to the regression equation, 
obtained, for instance, by implementing a moving average (MA) procedure. 
The resulting multivariate ARMA model can then be represented by the 
equation below. jB  and jt−E  denote respectively the mm ×  matrix of 
moving average coefficients and the m-dimensional vector of residuals 
observed at the jth time step before t. Typically, the orders k and l as well as 
the components of matrices jA  and jB
Jenkins approach (Box et al., 1994): 

 

ltltttktkttt −−−−−− −−−++++= EBEBEBEXAXAXAX ...... 22112211
 

Note that ARMA models rely on stationarity of the modeled time series. 

stationary series. The result is the integrated ARMA, also known as the 
ARIMA model.  

Another way of predicting multivariate time series is provided by an 
extension of the popular general purpose forecasting method: Exponentially 
Weighted Moving Average (EWMA) (Lowry et al., 1992). The multivariate 
EWMA (MEWMA) equation can be written as follows: 

1)( −−+= ttt ZΛIΛXZ  
Here, tX  denotes the vector of current observations, tZ  is the vector of 

current forecast and 1−tZ  is the vector of the previous step forecast (all these 
vectors are m-dimensional). Λ  is a mm ×  diagonal matrix of smoothing 
factors, and I  represents the identity matrix of the same dimensions. 

Traditional multivariate forecasting methods considered so far have been 
already widely used in the context of public health and biodefense applications 
(reviews can be found in Sonneson and Frisen, 2005 and Rolka et al., 2007). 
These popular models do not explicitly account for seasonality. Instead, 
either seasonal effects are filtered out from the raw data before modeling, or 
the regression equations are complemented with components representing 
factors such as day of the week or season of the year. Holt-Winter’s method, 
commonly used in a variety of univariate forecasting applications, which 
separately identifies level, trend and seasonal components of time series, 
and whose multivariate extensions exist, has not made it, as of yet, to the 

If this assumption is not met, the standard approach is to differenciate the non-

 are determined using the Box–
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mainstream of biosurveillance applications. This also seems to be the case 

designed to account for non-stationarity of the modeled series (Lotze et al., 
2006).  

Many biosurveillance datasets consist of time series of counts. In such 
cases the standard Gaussian assumption, typically made in the context of 
basic multivariate regression, may not be appropriate. Held et al. (2005) 
present a regression model that works with Poisson and negative binomial 
observation models and its extension to multivariate disease surveillance.  

If the observed component time series are correlated, and if their 
temporal evolution can be explained by the dynamics of an underlying low-
dimensional process, it is possible to apply the concept of Linear Dynamical 
Systems (LDS, also known as state-space models, or Kalman filters). Siddiqi 

low-dimensional latent space model to represent dynamics of the set of more 

model evolves linearly under Markov assumptions over a sequence of dis-

of the expected future multivariate counts. 
Bayesian Networks (BN) provide a compact way to model probabilistic 

relationships among multiple variables of data. They became popular in the 
1990s as tools to support medical and equipment fault diagnoses, but since 

typical uses is to learn the historical baseline interactions among variables. A 
trained BN can then be queried for the likelihood of the submitted vector of 
observations, providing grounds for scoring anomalies. It could also be used to 
generate synthetic data representing null distribution in detection tasks 
(Wong et al., 2005b). Other usage models involve inference about the state of 
the monitored population (Cooper et al., 2004), or testing hypotheses about 
common causes of the observed events (Dubrawski et al., 2006).  

2.2 Detection of Events in Multivariate Time Series 

As soon as the characteristics of the reference data have been reliably 
captured by the baseline model, reliable predictions of future observations 
can be made as long as the data generating processes are stationary. These 
predictions can then be compared against the actual observations, and the 
extent of discrepancy can be used to generate alerts. 

of the forecasting methods based on the wavelet transform, which are well 

crete time steps, it is possible to reliably generate a stable and long sequence 

then they gained universal acclaim in a range of application domains. They 

et al. (2007) proposed an application of LDS to forecast baselines of multi-

medications. If the series are at least partially correlated, and if the latent 

also have found uses in public health and biodefense contexts, especially – but 

variate biosurveillance data. Their method uses a learned from historical data 

not exclusively – in setups where the involved data is categorical. One of their

than 20-dimensional series of daily counts of sales of distinct categories of 
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Statistical Process Control (SPC) is a popular methodology of monitoring 
stability of processes over time (Montgomery, 2000). SPC uses control 
charts to determine whether a possible departure of the monitored process 
from its normal setting warrants an alert. The simplest (and most common) 
multivariate version of a control chart that takes advantage of possible 
correlations between involved variables is the Hotelling method (Hotelling, 
1947). It learns from historical data the joint distribution of a set of signals. 
For example, when monitoring cough sales and nasal spray sales in a region’s 
pharmacies, that distribution could be modeled as a two-dimensional Gaussian 
with a mean daily cough sale count, mean nasal spray count and covariance 
matrix derived from data over the previous year. If any given day has counts 
that fall outside, say, the 99% confidence ellipse of the covariance matrix, an 
alarm is sounded. This could happen for three reasons: (1) cough sales are 
surprisingly low or high; (2) nasal sales are surprisingly low or high; or  
(3) neither set of sales are abnormal by themselves, but the ratio of sales is 
abnormal. Hotelling’s T2 statistic measures the distance of the vector of 
observations from its expectation: 

)()( 0
1

0
2 μXSμX −−= −TnT  

Here, n denotes the number of current observations under consideration, 
X  is the m-dimensional vector of means computed for the m monitored time 
series over the n observations, 1−S  is the inverse of the sample covariance 
matrix estimated (using the same n observations), 0μ  is the mm ×  matrix of 
m vectors of time series means computed using the historical baseline data, 
and the symbol T denotes transposition. Note than in the formula above, the 
covariance matrix is based on the observed sample. In practice, especially if 
the size of the sample of current observations is small, it is often replaced by 
the covariance derived from the historical baseline. Alternatively, to account 
for non-stationarity, it may be estimated from the batch of multivariate 
forecasts produced using one of the methods described before. In either case, 
the constant term n may need to be adjusted to reflect the actual size of the 
set of observations or forecasts used to estimate the covariance. Under null 
hypothesis of no difference between X  and 0μ , T2 is distributed as: 

),(
2 )1(~ mnmF

mn
nmT −−
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where F(m,n−m) represents Fisher’s F distribution with m degrees of freedom 
for the numerator and n − m degrees of freedom for the denominator. 
Whenever a new set of n m-variate observations arrives, T2 can be computed 
and compared against the critical T2 for the suitably selected threshold of 
sensitivity α in order to determine whether an alert is in order.  
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Hotelling’s approach has been successfully applied in multivariate bio-
surveillance, including the ESSENCE framework (Burkom et al., 2004, 
2005). Its appeal is primarily derived from its simplicity; however there are a 
few inconveniences involved. Unlike in the univariate case, the scale of the 
tracked statistic may be unrelated to the scales of any of the monitored 
variables. Also, when an alert is raised, it may not be immediately clear 
which variables have prompted it. A partial remedy is to run univariate 
control charts in parallel to the multivariate chart, so that the individual cul-
prits can be identified. But that approach cannot explain alerts generated due 
to the joint contribution of individually sub-critical observations. Hotelling’s 
method has been found to perform poorly at distinguishing location shifts 
(changes in mean of the joint distribution) from scale shifts (changes of the 
structure of correlations between variables). Some of those deficiencies can 
be addressed by using other control charts, such as multivariate CUSUM 
(Crosier, 1988; Pignatiello and Runger, 1990; Fricker, 2007) which can 
detect effects over multiple time scales. Another possibility is to preprocess 
data using, e.g., Principal Component Analysis (PCA) in order to remove 
correlations between variables and execute a set of univariate tests on a few 
individual, mutually independent principal components (Mohtashemi et al., 
2007).  

In general, anomaly detection motivated by the SPC line of thought does 
not consider specific signatures of the events of interest. Therefore, in general, 
it cannot be effectively used to distinguish between potential causes of a 
detected outbreak (i.e., anthrax vs. influenza) or to explain deviations caused 
by non-outbreak factors such as fluctuations in population or availability. In 
other words, it can successfully be used to answer the important question “Is 
there anything unexpected going on today?” but it falls short of explaining 
what may be causing the observed effects. For those reasons, multivariate 
control charts can be labeled as non-specific detectors. 

The Bayesian Network (BN) framework is especially convenient for 
developing specific detectors in multivariate scenarios. Arguably one of the 
largest ever evaluated Bayesian Networks is the core of the Population-wide 
Anomaly Detection and Assessment (PANDA) system introduced by Cooper 
et al. (2004). Every person residing in a region is modeled with about 20 
nodes, indicating whether or not they are infected by anthrax, what observed 
symptoms they have, and whether they present themselves at an Emergency 
Department (ED). Given a city of a million people, there is thus a network 
with 20 million nodes. Whether or not a person is infected with anthrax is 
related to whether there has been a recent anthrax attack on the city, and 
whether the attack was in the same postal code area as the person’s location. 
The diagnosis problem is to take the very few observed nodes of the city on 
any given day (the symptoms, demographics and home zip codes of patients 
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partitioning city residents into a set of equivalence classes, and iterating over 
all possible attack zip codes and times, inference was made tractable and 
specific detections possible. Further development of PANDA led to enabling 
multi-stream monitoring and detection using aggregated regional counts for 
OTC drug sales and multivariate records of ED visits for individual patients 
(Wong et al., 2005a). More recently, the method was extended to concurrently 
model multiple diseases which belong to the CDC Category A. The resulting 
PANDA+ system takes as input a time series of emergency department chief 
complaints, and it produces the posterior probability of each CDC Category 
A disease and several additional diseases, namely, influenza, crytosporidiosis, 
hepatitis A and asthma (Cooper et al., 2006). Shen and Cooper (2007) intro-
duced a Bayesian approach for detecting both specific and non-disease-
specific outbreaks.  

Another example of a successful application of the Bayesian approach to 
event detection in multivariate surveillance data is the Emerging Patterns in 
Food Complaints (EPFC) system (Dubrawski et al., 2006). It forms the 
analytic core of the Consumer Complaint Monitoring System II which helps 
the U.S. Department of Agriculture (USDA) monitor incoming reports on 
adverse effects of USDA-regulated food products on their consumers. These 
reports contain multi-dimensional, heterogeneous and sparse snippets of 
specific information about consumer demographics, the kinds, brands and 
sources of the food involved, symptoms of possible sickness, characteristics 
of foreign objects which could have been found in food, locations and times 
of occurrences, etc. The system uses probabilistic models of food safety 
problem scenarios, which are partly derived from small amounts of the 
available data, and partly crafted by hand under a close consult from domain 
experts. EPFC estimates how likely it is for a newly reported complaint case 
to be a close copy of some other case in the past data, if both have been 
generated by the same specific underlying cause, such as, for instance, mali-
cious contamination of raw food at a plant. Each new case is evaluated against 
a range of potentially relevant past cases and against a number of predefined 
plausible food safety failure scenarios. The top matches are reported to 
human analysts for further investigation. A unique feature of EPFC is  
the ability to remain sensitive to signals supported by very little data – 
significant alerts can be raised on the basis of a very few complaints from 
consumers, provided that the few complaints are consequences of significantly 
similar and explicable root causes. 

Bayesian Networks belong to the broader Machine Learning family of 
Graphical Models. Another prominent part of that family is made of Hidden 
Markov Models (HMMs). The key assumption leading to the use of HMMs 

who actually reported to an ED) and infer the probability distribution  
over whether there was an attack and, if so, which area was affected. By 
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is that complete knowledge of the current state of the world is not directly 
observable. Therefore, HMMs attempt to model how the measurable signals 
are affected by presence or absence of the considered diseases (states) and 
the environmental conditions (in that, they are very similar to Bayesian 
Networks). In addition, HMMs try to capture how the state of the world 
changes over time. The objective is to estimate which of the multiple dis-
crete states best explains a set of recent observations (that is, for example, 
whether the particular disease outbreak is ongoing, in what phase it is, or 
whether there are no identifiable outbreaks going on). The model of 
temporal variability is plausibly simplified with the Markov assumption: the 
current state does not depend on any other previous states than the one 
immediately preceding it. This key statement makes the underlying mathe-
matics tractable, while not limiting the utility of the attainable models in a 
range of practical situations. HMMs yield themselves naturally to multi-
variate observation scenarios with multi-dimensional outcomes (multiple 
states), where specificity of detection is required. Typically, the structure of 
an HMM is dictated by the formulation of the modeling problem. Its para-
meters can be either estimated from historical data, or extracted from human 
expertise, or they could result from a combined approach. Madigan (2005) 
provides a very good overview of HMMs approaches to biosurveillance. In 
addition, it points out the utility of these models in handling asynchronous 
observations arising in scenarios where data points taken from different 
sources come at various frequencies or at independent and random paces. 
This is a very useful feature, given that the standard regression models 
described above are not designed to handle such cases well. 

If a strong model of informative relationships between the multiple data 
streams is available, and if the statistical characteristics of these streams are 
coherent, then building joint multivariate models is the strategy of choice. In 
practice, the level of understanding of inter-stream relationships, as well the 
amount of the available data needed to build reliable multivariate models, 
may be too limited for the standard approach.  

If the streams can be treated as independent of each other, they may be 
fitted with individual detectors and the system would raise an alert whenever 
any of the streams gets out of control. Such a parallel approach requires 
special attention to multiple testing phenomena as the probability of at least 
one stream causing an alert quickly increases with the number of independently 
monitored streams. For m streams and expected per-stream false alarm rate 
α, this probability equals 1 − (1 − α)m. A typical approach to trim the risk of 

MULTI-STREAM ANALYSIS 3.
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The alternative is to derive an algorithm which would aggregate the 
output of the independently constructed single-stream detectors. Typically, 

3.1 Consensus Approach 

Roure et al. (2007) discuss an example of the consensus approach. It con-
siders three streams of independently collected food and agriculture safety 
data involving records of daily counts of condemned and healthy cattle, 
counts of positive and negative microbial tests of food samples, and counts 
of passed and failed sanitary inspections conducted at the U.S. Department 
of Agriculture-regulated slaughter houses. Roure et al. use a temporal scan 
algorithm as their basic detection tool, although any single-stream pro-
babilistic anomaly detection method could be used in its place. It slides a 
fixed-width time window along the temporal dimension and compares the 
positive and negative counts inside of it against the aggregated counts 
observed during the outside period of reference, and – depending on the 
sizes of the involved samples – it applies either Chi-square or Fisher’s exact 
test of independence to the obtained two-by-two contingency table. The 
more the observed counts of positives and their proportion to negatives inside 
the time window differ from the expectation based on the counts aggregated 
during the reference interval, the lower the p-value resulting from the test. 

A parallel surveillance system would monitor the individual streams of 
p-values and trigger an alert if one or more of them went below a pre-set 
threshold, say α = 0.05. It would have lower than attainable detection power 
if the available streams of data actually carried corroborating evidence.  
In the consensual approach, the anomaly detection algorithm monitors the 
aggregate of the component p-values which represents the consensus estimate 
of strangeness. At first glance, it might be tempting to apply Bonferroni’s 
method for correction against effects of multiple testing and signal an alarm 
whenever the smallest p-value passes the corrected test. That, in terms of 
detection power, would bring results equivalent to applying Min (minimum) 

fore such methods are often labeled as based on consensus. 
individual detectors must agree to cause the system-wide alert, and there-

detectors. Often, a very conservative Bonferroni correction or a more balanced 

stream is out of control or many of them are near critical. In a sense, these 

tivity decreases the number of alerts generated by the component detectors, but
it may also adversely affect detectability of events and timeliness of detection. 

false alerts due to multiple testing is to decrease sensitivity of the individual 

False Discovery Rate method is used (Wasserman, 2004). Reduction of sensi- 

streams is completely ignored. 
In addition, in a parallel approach, a potentially useful interplay between the

the aggregate detector is made sensitive to cases when more than one 
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function to the set of p-values. In most cases, it makes more practical sense 
to use one of the techniques of combining p-values such as Fisher’s (Fisher, 
1948) or Edgington’s (Edgington, 1972).  

Since p-values follow a uniform distribution under the null hypothesis, 
the Fisher statistic (the doubled sum of natural logarithms of the m independent 
p-values) has a χ2 distribution with 2m degrees of freedom. Conceptually, 
this approach is easier to understand as computing an aggregate statistic 
which is the product of the component p-values. It also turns out (Jost) that 
there exists a closed form solution for the combined p-value, pF: 
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Edgington’s aggregation is based on an additive model for p-values. If S 
denotes the sum of the m component p-values, then Edgington’s aggregate 
can be computed as follows: 
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The summations stop as soon as S ≤ 1. 
Figure 7-1 illustrates the effects of Fisher’s and Edgington’s aggregations 

of p-values computed separately for two independent streams of data. These 
p-values, labeled P1 and P2, correspond to the horizontal and the vertical 
axes of the graph, respectively. If simply the individual streams are taken 
into consideration, and if the critical sensitivity is set to α = 0.05, then  
the null hypothesis will be rejected if either P1 < 0.05 or P2 < 0.05, and the 
corresponding rejection regions in the graph would be rectangular in shape. 
The Min aggregation will result in concatenation of these two rectangles, as 
the null hypothesis will be rejected whenever at least one of the p-values is 
lower than critical. Fisher’s and Edgington’s methods add to the rejection 
region the instances where both component p-values are just slightly greater 
than critical. That enables flagging cases in which the individual streams are 
of marginal interest on their own, but they appear unusual when the cor-
responding pieces of evidence are combined. Both aggregates are, on  
the other hand, more conservative than the Min algorithm when either of 
the component p-values is substantially greater than critical, which makes 
sense in many practical situations. Fisher’s method is multiplicative and as 
such it is sensitive to small numbers of low p-values. Additive by design, 
Edgington’s method is slightly more sensitive to cases with multiple border-
line p-values. This distinction determines in practice the choice between 
these two approaches.  
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Figure 7-1.  Effects of aggregation of two independent p-values using α = 0.05. Min criterion 
leads to rejecting null hypothesis if the individual p-values fall inside either of the shaded 
rectangular areas. The boundaries of the rejection regions for Fisher’s and Edgington’s 
methods are shown with the solid blue and the dashed red line, respectively.  

 
An alternative heuristic approach to combining signals produced by a 

number of independent univariate control charts has been proposed in 
(Yahav and Shmueli, 2007). It uses either a majority vote or an “M + n” rule 
to aggregate indications of the individual charts. The majority vote triggers 
an alert if more than half of the component detectors signal alerts. The 
“M + n” rule distinguishes a specific subset of M detectors and requires that 
all items in that set, as well as at least n other detectors, must be activated for 
the combined system to raise an alert. The method was originally tested on 
single-stream data and used a set of different control charts concurrently 
monitoring the same stream, but a similar approach may potentially be applic-
able to multi-stream scenarios.  

3.1.1 Handcrafting Specific Detectors 

Fisher’s or Edgington’s methods can be referred to as non-specific con-
sensual detectors because they are treating each of the component streams 
equally in their targeting of departures from the joint null distribution. That 
can be useful when no information about the particular signatures of the 
patterns of interest is available. Otherwise, tweaking the basic model may 
produce better results. For example, in (Roure et al., 2007) a hypothetical 
outbreak scenario is used in which a ramp up in positive observations occurs 
simultaneously in all (three) data streams and a handcrafted extension to 
Fisher’s method is designed to benefit from the additional piece of structural 
information about the targeted pattern. The modified detector considers the 
same combined p-value as the original, but then it chooses not to signal an 
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alarm if fewer than two of the uncombined p-values are below a set thres-
hold. Those are the cases where the evidence definitely does not match the 
scenario of interest, since at most one stream departs from its null distribution. 
The specific detector constructed this way reduces the number of false positives 
and that in turn allows for an increase of sensitivity and, consequently, 
enables earlier detections. Figure 7-2 presents a set of Activity Monitoring 
Operating Characteristic curves obtained for the temporal scan detectors 
set to work on the individual streams of data (labeled A, B and C), plain 
Fisher’s aggregation method (F), and the specific, modified Fisher’s detector 
explained above (F+). As anticipated, Fisher’s aggregation substantially 
improves detection power (timeliness as well as alert frequency) over the 
results obtained using the individual streams, and the handcrafted specific 
multi-stream detector slightly outperforms the basic Fisher’s approach. 

 

 

 

 

 

 

 

 

 
Figure 7-2. AMOC curves for univariate detectors (A, B, and C), non-specific Fisher’s 
method (F), and manually designed specific detector (F+). The horizontal axis of the graph 
corresponds to the number of detects outside of the period of the injected synthetic outbreaks, 
the vertical axis denotes the time to detection in days from the first day of the outbreak. 

3.1.2 Learning Specific Detectors from Data 

relevance and high detection power when facing changing environments can 
become a serious technical and organizational challenge (Dubrawski et al., 
2006). Machine learning provides an appealing framework for using the 
labeled historical data to automatically train classifiers capable of dis-
criminating periods of time that may belong to a specific outbreak type, from 
periods during which no such outbreaks occur. Following the idea behind the 

lying complexity of the processes represented in data. Also, maintaining their 
Manual design of specific detectors may be impractical due to the under-
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handcrafted specific detector, machine learning methods can be used to support 
filtering out false alarms from the stream of aggregated p-values produced 
by one of the consensual techniques (Figure 7-3).  
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Figure 7-3. Schematic diagram of the idea of the filtering approach to constructing specific 
multi-stream detectors. P-values of single-stream tests are first processed by the consensual 
aggregation filter which rejects the null hypothesis whenever the combined p-value is lower 
than critical. If that happens, the candidate alert is checked by the event-type-specific filter 
which only allows raising alerts when the characteristics of the statistically significant events 
match the predefined patterns of interest, otherwise the candidate alerts are ignored. 

 
That would be achievable if we could use the available labeled training 

data to train classifiers which could reliably tell apart potentially false 
detections from true ones. In (Roure et al., 2009), a classifier is trained from 
a real multi-stream data with injected synthetic outbreaks. Days belonging to 
the period of known outbreaks are labeled as positive training examples, 
while the days following the outbreak periods are used as negatives. The 
features prepared for training are derived from the p-values obtained for the 
individual streams, as well as their Fisher aggregates. The vector of features 
can be composed of those sets of p-values extracted for a few consecutive 
days ending at the day of the analysis and a few different widths of the 
temporal scan windows. The results presented below use three consecutive 
days and three widths of the observation interval (1-, 2- and 3-day wide). 
Therefore, the input space consists of 36 real-valued features corresponding 
to the Cartesian product of four streams of p-values, three temporal scan 
window widths and 3 days. 
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Figure 7-4 depicts the AMOC curves for the Fisher-based non-specific 
detector (F), manually designed specific detector (F+), and the classifier-
based specific detector (L). The classifier clearly beats all of the previously 
discussed detectors. This is not surprising since it has access to all of the  

 

 

 

 

 

 

 

 

 

 
Figure 7-4. AMOC curves for Fisher-based detector (F), handcrafted specific detector (F+), 
the classifier-based specific detector (L), and the density-based with negative labels only 
(F+FP), labels from one (F+TP1) and ten (F+TP10) outbreaks. 

An important practical limitation of machine learning approaches is that 
in real-world scenarios it is hard to expect availability of many labeled events 
in data. The process of labeling can be difficult, time consuming and some-
times expensive, and the frequency of occurrence of actual, documented and 
attributed adverse events is typically (and luckily) quite low. However, the 
availability of identified negative examples is in practice usually much 
better. In such cases, a density model can replace the classifier. If only 
negative examples are available (the non-outbreaks), one can build a model 

query it whenever a candidate alert is raised by the non-specific detector. 
The alert can then be lifted if the query returns a sufficiently high likelihood 
value. That would happen whenever the considered case looks similar to 

method of Kernel Density Estimation to construct such a filter. They also 

some are available. Then, each candidate alert can be checked against historical 
distributions of positive and negative examples, and the final decision can 
be determined using, e.g., Bayes’ rule. Note that this approach can also handle 
multi-focus scenarios with a number of distinct types of outbreaks: each type 
can be tackled by a separate density model.  

propose to independently construct density models for positive examples if 

of their distribution in the feature space similar to that described above, and 

previously recorded negative examples. Roure et al. use a non-parametric 



7. Detection of Events in Multiple Streams of Surveillance Data 161
 
information accessible to its competitors, in addition to 100 example out-
breaks. These labeled examples allow the classifier to identify the winning 
combination of features and the kinds of patterns it seeks to match. Figure 7-4 
also includes three curves for density-based detectors: one using only negative 
labels (F+FP), another using positive labels from just one outbreak (F+TP1) 
and one that uses positive labels from ten independent outbreaks (F+TP10). 
The observed characteristics of density-based detectors fall between the hand-
crafted and the classification-based detector characteristics: they significantly 
outperform the first and perform worse than the latter. This result follows 
intuition since the classification-based detector has access to much more 
information than the density-based models. In general, as expected, the more 
informed the detectors, the greater their power. For most parts of the AMOC 
curves, F+TP10 outperforms F+TP1, which in turn outperforms F+FP.  

The utility of machine learning as a pragmatic approach to data-driven 
event detection has also been advocated by others (Neill, 2007). We expect it 
to make a substantial impact on the methodology of surveillance. It has already 
been demonstrated that it is possible to learn efficient detectors of specific 
types of events from labeled multi-stream data. The automatically built 
detectors are sometimes able to match and outperform the manually designed 
alternatives in terms of both speed of detection and accuracy. That particular 
finding is very interesting as it could lead to substantial reductions in costs of 
development and maintenance of future event detection systems. Recent 
advances in machine learning research, especially related to semi-supervised 
and active learning methods, will boost development of cost-effective multi-
stream surveillance systems. They will enable efficient training of specific 
multi-focus detection models from sparsely labeled examples, and they will 
incorporate user’s feedback for continued adaptation of the models to 
changing environments after their deployment, leading to smart and 
economical surveillance systems.  

3.2 Multi-Stream Spatial Scan 

Spatial scan statistic (Kulldorff, 1997) and space-time scan statistic 
(Kulldorff, 2001) are often used in the public health community to detect 
spatio-temporal concentrations of disease cases. These methods have a long 
and successful history and their fundamental variants typically monitor a 
single stream of spatially labeled data, detecting regions and times where the 
magnitude of signal is significantly higher than expected. The fundamental 
algorithms may become computationally infeasible in large-scale deploy-
ments. The Fast Spatial Scan algorithm (Neill and Moore, 2004) resolves 
this issue by using smart data structures and branch-and-bound search for 
the most unusual spatio-temporal sub-region. 
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A simple extension of the univariate spatial or space-time scan would 
follow the idea of parallelization of multi-stream detectors, but that would 
not use the information about the potential interplay between multiple streams 
to boost the detection power. Alternative approaches, presented in (Burkom, 
2003) and (Kulldorff et al., 2007), characterize each stream with the log-
likelihood ratios and assume that they are mutually independent. Then a region 
with the highest sum of log-likelihood ratios is flagged. These methods are 
non-specific in that they try to distinguish between the cases in which all 
streams are affected and those when no streams are indicative. In practice 
though, different types of events may have specific and varying effects on 
the individual streams. In addition, the individual streams are typically not 
independent of each other as they may be influenced by common confounding 
factors such as population size, availability constraints, seasonal effects, and 
the features of the ongoing outbreak.  

Cooper, 2008) attacks those challenges by modeling the joint distribution of 
all data streams given each possible hypothesis: either no outbreak is going 
on, or an outbreak of a specific type is occurring in the specific spatial region. 
Empirically, it achieves faster and more accurate detections of emerging 
outbreaks while modeling and distinguishing between different types of 
events. It was demonstrated to work well with uninformative priors, while 

types (e.g., a terrorist anthrax attack vs. seasonal flu). Detection models for 
MBSS can be learned from labeled training data, from expert knowledge, or 
from a combination of the two, even if the number of the available labeled 
events is relatively small.  

In multivariate time series data, the atomic events of interest have already 
been aggregated into two or more time series, indexed usually by day, hour 
or week. Thus, at each time step, there might be one number characterizing 
daily volume for OTC cold medicines sales, one number for school absenteeism, 
one for the count of gastrointestinal emergency room admits, etc. In large 
surveillance projects there may be hundreds of thousands of such time series, 
with perhaps ten or twenty for each of the monitored geographic locations 
such as an individual zip code, for example. Such aggregated data yields 
itself to analysis using the methods described before. 

However, often the source data used to obtain interval aggregates comes 
in the form of a record of transactions. Each entry in it corresponds to a 
unique discrete event such as an emergency room admission or a placed 

MULTI-DIMENSIONAL ANALYSIS 4.

higher detectability and discriminative power can be achieved for specific event 

The Multivariate Bayesian Spatial Scan (MBSS) algorithm (Neill and 
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prescription order. Each of these events may involve many categorical 
descriptors (also referred to as attributes, features or dimensions) such as 
gender of a patient, syndromes, geographic location, age group, test results, 
diagnoses, etc. Performing analyses which account for these multiple 
descriptors requires methods specifically designed to deal with the multi-
dimensional data. 

The key part of the WSARE algorithm is the synthesis of data to 
represent baseline distribution. One way of doing that is to use a Bayesian 
Network trained to model joint probability distribution of the values of the 
attributes of the reference data. The available dimensions can usually be 
divided into environmental attributes, such as the season and the day of week 
that may cause trends in the data, and response attributes, such as syndrome 
or gender of a patient reporting to an emergency room. During the BN 
structure learning phase, environmental attributes are prevented from having 
parents because, although we are not interested in predicting their dis-
tributions, we still want to use them to predict the response attributes. Once 
the BN structure is learned, the reference data is used to estimate conditional 
probability distributions which represent the baseline behavior given the 
environmental attributes observed on the current day. As an example, sup-
pose we are monitoring emergency room data and that the environmental 
attributes Season, Day of Week, and Weather cause fluctuations in this data. 
Also, let the response attributes be x1, …, xm. Assuming that today is a 
snowy winter Saturday, we can use the joint probability distribution captured 
by the Bayesian network to produce the conditional probability distribution 

The What’s Strange About Recent Events (WSARE) algorithm detects 

component (Wong et al., 2005b). WSARE requires records within a spe-
cified temporal period to be defined as recent. Records preceding the recent 
data in time are used to produce a baseline dataset that represents normal 
behavior. WSARE compares the recent data against the baseline data to find 
a combination of dimensions which corresponds to the most significant 
change in recent records. This change is described using a rule, which is 
composed of components in the form j

ii vx = , where ix  is the ith attribute 
and j

iv  is the jth value of that attribute. For example, the one-component 
rule Gender = Male characterizes the subset of the data involving males. Like 
SQL SELECT queries, rules in WSARE can consist of multiple conjunctive 

ponent rule could be {Gender = Male} AND {Home Location = NW}, which 
identifies the group consisting of males living in the northwest region of the 
city. WSARE identifies the rule which selects the group of records with 
the most significant change in its proportion between the recent dataset and 
the baseline dataset. 

components (connected using the logical AND). For example, a two com-

anomalous patterns in discrete, multi-dimensional datasets with a temporal 
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P(x1,…,xm | Season = Winter, Day of Week = Saturday, Weather = Snow), 
which represents the baseline distribution given the conditions for the 
current day. The baseline dataset can then be produced by sampling a large 
number of records from this conditional probability distribution. 

The Israel Center for Disease Control evaluated WSARE retrospectively 
using an unusual outbreak of influenza among school children. The algorithm 
monitored patient visits to community clinics over 18 days in spring 2004. 
The considered dimensions included the visit date, area code, ICD-9 code, 
age category, and day of week (which was used as the only environmental 

area code and age category, indicating involvement of children aged 6–14 
having viral symptoms within a specific geographic area. WSARE made that 
detection on the second day from the onset. Similarly, in a retrospective 
analysis of the Walkerton outbreak, it was determined that WSARE would 

An important feature of WSARE is its ability to identify data dimensions 
which are responsible for the alert. It does so by exhaustively searching for 
the most surprising pattern across all combinations of attribute = value pairs 
up to a certain size, and reporting the identified set of such pairs. An 
important practical implication is that the users do not have to specify which 
dimensions to monitor since every conceivable query is taken under con-
sideration. Therefore no important event can be missed, as long as it is 
represented in data and if it makes it to the top of the significance rankings. 

Multivariate detections provided by WSARE come at a substantial com-
putational expense, mostly due to the costs of randomization tests. Facing 
datasets of sizes and dimensionalities typically found in biosurveillance 

Once the baseline dataset is generated, a search for the highest scoring 
rule, which characterizes the set of attribute = value terms with the most 
unusual shift in proportions between the baseline and recent datasets, is 
conducted. Significance of the winning rule is measured using a randomiz-
ation procedure consisting of several iterations. At each iteration, the dates 
are randomly swapped between records in the recent and the baseline data-
sets to produce a synthetic set of data. Then, the best scoring rule is found in 
it. At the end, ranking of the original highest scoring rule with respect to the 
best rules derived from multiple synthetic sets is determined. That rank, 
divided by the number of randomization trials, defines the empirical p-value. 
An alert is triggered whenever this p-value is lower than a threshold, for 
example, 0.01. 

actual influenza outbreak in the data. The rules that characterized the 

have detected the outbreak one day before a boil-water advisory was released 

attribute). Two of the five flagged anomalous patterns corresponded to the 

if its alarm threshold was set to the level that permitted two false positive

anomalous patterns consisted of the same three attributes of ICD-9 code, 

alerts per year. 
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applications, WSARE is able to produce results in reasonable times when 
aiming at rules up to the size of about 3. In most practical cases that is 
perfectly acceptable, but it also illustrates a challenge of scalability commonly 
encountered when analyzing highly multi-dimensional data. 

A substantial part of the computational effort in such scenarios can often 
be attributed to the retrieval of time series of counts of events which match a 

ware techniques that enables fast response to certain aggregation queries 
against very large datasets. It pre-computes multiple views of selected data 
by aggregating values across all possible attribute combinations (a “group-
by” operation in database terminology). The resulting data structures (data 
cubes) can then be used to dramatically accelerate visualization and query 

aggregation at different levels within a dimension (e.g., levels of state, city, 
and school district within area dimension) to allow the multi-dimensional 
viewing of data at different granularity (in support of drill-down and roll-up 
functions). Typical aggregation functions include, but are not limited to, 
sum, average, percentage of total, ranking (topN), and time to date (specific 
to time dimension). It normally takes hours or even longer to create a data 
cube (including aggregation and indexing) and at least minutes to update it, 
while it takes only seconds to query it for a pre-summarized parameter set. 
However, when responding to an ad hoc query (which does not have the 
corresponding aggregation existing in the cube), the retrieval procedure has 
to sift through the raw data and do the “group by”-like database query “on 
the fly.” This task inevitably takes longer. In many biosurveillance applications, 
the advanced time series queries more often take the form of ad hoc rather 
than pre-determinable queries. This is particularly true if we give the users 
the ability to request on the fly analyses such as spatial scan, anomaly detection 
or outbreak diagnosis against dynamically selectable or exhaustively monitored 
geographical regions and demographic subsets of data.  

A solution is provided by the T-Cube data structure (Sabhnani et al., 
2007a). T-Cube is an in-memory cached sufficient statistic equivalent to the 
data cubes known in OLAP applications. It generalizes over the idea of AD-
trees (Moore and Lee, 1998) which allows highly compressed main-memory 
storage and very fast retrieval of aggregate statistics such as counts, means 
and variances from large multi-dimensional datasets. AD-trees have been very 
successful in speeding up statistical algorithms, such as Bayesian Network 
learning, association rule learning, or decision tree learning, that need to 
search over many conjunctive queries, many contingency tables or many 
conditional probability tables of large datasets. 

The essential property of the T-Cube is that once built, time series for 
any query (in a general class including conjunctions of disjunctions) can be 

specific query. Online Analytical Processing (OLAP) is a category of soft-

tasks associated with large datasets. Normally, the data cube also includes 
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in the raw dataset. One example of such a query is “retrieve the series of 
daily counts of emergency department visits by all males in postal codes 

et al., 2007) involves a dataset with about 25 dimensions of arities varying 
from 2 to 80, covering a record of about 12,000 transactions, spanning over 
more than 2,000 temporal intervals. The application required a search 
through all combinations of attribute = value pairs of sizes 1 and 2, with the 

involved expectation-based temporal scan executed to detect unusual short 
term increases in counts of specific aggregated time series. The total number 
of individual temporal scan tests for such a dataset exceeded nine billion. 
Each such test involves a Chi-square test of independence performed on a 

series of interest (one of the four million series) and the baseline counts, 
within the current temporal window of interest (one of 2,000+) and during 
the reference interval. The complete set of computations, including the time 
necessary to retrieve and aggregate all the involved time series, compute and 
store the test results, load source data and build the T-Cube structure, etc., 
took about 8 h of CPU time. Using a commercial database tool the average 
time to retrieve one of the involved queries on the same hardware approached 

pull all the required time series from the database, not including any 
processing or execution of statistical tests. 

T-Cube is not a fits-all replacement for on-disk OLAP data structures. It 
is specifically designed for very rapid searching of millions of combinations 
and time series aggregations of demographic, spatial, syndromic, and similar 
dimensions within probabilistic models (Sabhnani et al., 2007b). Rapid access 
to complex extracts of data not only makes the data-intensive analyses feasible, 
but it also enables the user-level data navigation (drill-downs, roll-ups, 
visualization) at interactive speeds (Ray et al., 2008).  

 CONCLUSION 

Modern biosurveillance is set to realize benefits from simultaneous con-
sideration of evidence originating from multiple corroborating sources of 
information. The most important of these benefits include improved power 
and specificity of detection. Already, several promising analytic algorithms 

5.

180 ms. Therefore, without the T-Cube, it would take about 9 days just to 

15213, 15217 and 15206, excluding children, which were specific to gastro-

obtained in constant time, which does not depend on the number of records 

2-by-2 contingency table formed by the counts corresponding to the time 

intestinal or respiratory syndromes.” An example given in (Dubrawski 

total number of such combinations in excess of four million. The analysis 

have been proposed and a few of them have been successfully transitioned to  
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practice. Nonetheless, further development is still required in order to fully 
exploit the opportunities. The key challenges include scalability of the algo-
rithms and computational tractability of the corresponding datasets; ability to 
handle non-stationary processes with complex patterns of inter-stream relation-
ships; reliability of detection even if the available data is scarce, incomplete 
and noisy in prediction as well as in the model estimation phase; and the 
ability to deal with heterogeneous types of data. Future multi-stream event 
detection systems will benefit from incorporation of machine learning. This 
will enable adaptability to changes in analytic environment, consideration of 
human feedback, and model estimation from sparsely labeled data. These 
algorithms will be capable of performing large-scale inferences in support 
of the analyst decisions and they will guide their users in support of data 
exploration, problem diagnosis and isolation. They will also provide predictive 
analytic capabilities for proactive mitigation of risk of adverse bioevents.  

Many thanks to Andrew Moore, Jeff Schneider, Gregory Cooper, Daniel Neill, 
Weng-Keen Wong, Josep Roure and Maheshkumar Sabhnani for providing 
information used in the text. This work is partially supported by the Centers 
for Disease Control (award number R01-PH000028) and by the National 

QUESTIONS FOR DISCUSSION 

1. What are the fundamental differences between multivariate, multi-stream 
and multi-dimensional event detection problems? 

2. What are the conditions of applicability of statistical multivariate base-
line estimation and event detection approaches to multi-stream problems?  

3. What is the impact of multiple hypotheses testing on reliability of multi-
stream detection scenarios?  

4. Why does a direct application of detection threshold adjustment techniques 
such as Bonferroni correction or False Discovery Rate not boost the 
power of the resulting aggregated multi-stream detector?  

5. What are the key challenges in design and practical application of multi-
stream event detection systems? How can some of them be addressed 
with the use of machine learning methodology? 

Science Foundation (under grants number 0325581 and 0911032). 
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ONLINE RESOURCES 

• Engineering Statistics Handbook  
(http://www.itl.nist.gov/div898/handbook/index.htm):  
This interactive handbook developed and hosted by the National Institute of 
Standards and Technology is a rich source of information about funda-
mental methods of statistical analysis. It includes comprehensive des-
criptions of multivariate control charts which can be used to monitor 
multi-stream data. 

• Dataplot  
(http://www.itl.nist.gov/div898/software/dataplot/homepage.htm):  
Dataplot is a free, public-domain, multi-platform software for scientific 
visualization, statistical analysis, and modeling developed at the National 
Institute of Standards and Technology. Its extensive functionality includes a 
set of statistical process control and time series analysis methods; it also 
supports process monitoring.  

http://www.itl.nist.gov/div898/handbook/index.htm):
http://www.itl.nist.gov/div898/software/dataplot/homepage.htm):
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• SaTScan™  

(http://www.satscan.org/):  
SaTScan™ is a free software that analyzes spatial, temporal and space-
time data using the spatial, temporal, or space-time scan statistics. It can 
also scan multiple datasets simultaneously to look for clusters that occur 
in one or more of them. 

• WSARE and Fast Spatial Scan  
(http://www.autonlab.org/autonweb/downloads/software.html):  
Free downloadable implementations of WSARE and scalable spatial scan 
are available from the Carnegie Mellon University Auton Lab web site. 

•  T-Cube  
 (http://www.autonlab.org/T-Cube/):  

A public demo version of the T-Cube prototype web interface is avail-
able at the CMU Auton Lab web site. It includes massive screening and 
detection functions which can be executed against user-supplied or locally 
available example multi-dimensional data to demonstrate efficiency of 
the underlying data structure.  

• WEKA  
(http://www.cs.waikato.ac.nz/ml/weka/):  
WEKA is a free Java language library including many machine learning 
algorithms which can be used to implement data-driven approaches to 
detection of events in multi-stream surveillance. 

 

 

http://www.satscan.org/):
http://www.autonlab.org/autonweb/downloads/software.html):
http://www.autonlab.org/T-Cube/):
http://www.cs.waikato.ac.nz/ml/weka/):
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ALGORITHM COMBINATION FOR IMPROVED 
PERFORMANCE IN BIOSURVEILLANCE 

INBAL YAHAV *, THOMAS LOTZE , and GALIT SHMUELI  

CHAPTER OVERVIEW 

This chapter proposes an enhancement to currently used algorithms for 
monitoring daily counts of pre-diagnostic data. Rather than use a single algo-
rithm or apply multiple algorithms simultaneously, our approach is based on 
ensembles of algorithms. The ensembles lead to better performance in terms 
of higher true alert rates for a given false alert rate. Combinations can be 
employed at the data preprocessing step and/or at the monitoring step. We 
discuss the advantages of such an approach and illustrate its usefulness using 
authentic modern biosurveillance data. 

Keywords: 
diagnostic data 

INTRODUCTION 

In 1918 one of the deadliest influenza pandemics in history erupted, 
called the Spanish Flu. Approximately 20–40% of the worldwide population 
fell ill and over 50 million people died. Outbreaks followed shipping routes 
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from North America through Europe, Asia, Africa, Brazil and the South 
Pacific. The pandemic reached its peak after 5–6 months. Nearly 40 years 
later, in February 1957, the Asian influenza pandemic erupted in the Far 
East. Unlike the Spanish Flu, the Asian influenza pandemic virus was quickly 
identified and vaccines were available 6 months later. Approximately two 
million people died in this outbreak (compared to the 50 million in the 
Spanish Flu). Other known outbreaks in history, such as the Hong Kong Flu 
(1968–1969), the Avian Flu (1997) and SARS (2003) also resulted in high 
death tolls over the years. Unfortunately the threat of new pandemic outbreaks 
is still looming. 

Humanitarian Logistics at Georgia Tech have shown that pandemic outbreak 
effects can be greatly reduced if quarantine is imposed at the early stages of 
the disease.1 The U.S. Centers for Disease Control & Prevention (CDC) lay 
out guidelines and strategies for reducing disease transmission, including use 
of personal protective equipment (e.g., masks and gloves), hand hygiene, and 
safe work practices. The CDC also recommends actions to be taken during 
the earliest stage of a pandemic, when the first potential cases or disease 
clusters are detected. These include individual-level containment measures 
such as patient isolation and identification, monitoring, and quarantine of 
contacts.2 

The early detection of disease outbreaks therefore plays a major role  
in preventing disease transmission and reducing the size of the affected 
population. In modern biosurveillance a wide range of pre-diagnostic and 
diagnostic daily counts are monitored for the purpose of alerting public 
health officials when there is early evidence of a disease outbreak. This is in 
contrast to traditional biosurveillance, where only diagnostic measures (such 
as mortality and lab reports) are examined, usually locally, and at aggre-
gation levels such as weekly, monthly, or annually. Moreover, in modern 
biosurveillance the goal is prospective while traditional biosurveillance is 
more retrospective in nature. Although the tasks and data types and structures 
differ widely between traditional and modern biosurveillance, most monitoring 
algorithms have been migrated from traditional to modern systems. The 
result is that current modern biosurveillance detection methods suffer from 
multiple statistical and practical limitations that greatly deteriorate their 
ability to achieve their intended purpose. For a general overview of the 
statistical challenges that arise in biosurveillance see Shmueli and Burkom 
(2008). In particular, there is often a mismatch between the types of  

                                                 
1 http://www.tli.gatech.edu/research/humanitarian/projects.php 
2 http://www.hhs.gov/pandemicflu/plan/appendixf.html. 

mission of diseases can be diminished. Researchers at the Center for 
A major goal of public health is to figure out whether and how trans-

http://www.tli.gatech.edu/research/humanitarian/projects.php
http://www.hhs.gov/pandemicflu/plan/appendixf.html


8. Algorithm Combination for Improved Performance in Biosurveillance 175
 
algorithms being used and the data structure of modern biosurveillance data. 
This means that the assumptions behind those algorithms with regards to 
baseline behavior and outbreak nature are often violated in the modern bio-
surveillance context. Another important problem is that of multiplicity: when 
monitoring multiple data sources with multiple streams, using multiple 
monitoring algorithms, the unavoidable result is a large inflation in false 
alarm rate. In the case of biosurveillance the implication of excess false 
alerts outweighs the benefit of an early detection, as the practical result is 
that public health users ignore alerts altogether. An excess of false alerts 
usually leads to the ignoring of true alerts, and potentially to deletion of the 
alerting system altogether. An example is the rocket-alert system in the 
city of Ashkelon, Israel that was recently disconnected because of five false 
alarms in April 2008 which led to panic. Thus, when a rocket fell on a 
shopping mall in Ashkelon the following month, there was no early warning.3 

In this chapter we focus on a solution to two important problems: that of 
multiplicity in monitoring algorithms and the unknown nature of the out-
break signature. We show that by combining results from multiple algorithms 
in a way that controls the overall false alert rate, we can actually improve 
overall performance. The remainder of the chapter is organized as follows. 
Section 2 describes control charts in general and the limitations of applying 
them directly to raw modern biosurveillance data. It then describes a pre-
processing step that is needed before applying control charts. In Sect. 3 we 
describe an authentic modern biosurveillance dataset and the simulation of 
outbreak signatures. Section 4 introduces the notion of model combinations 
in terms of combining residuals and combining control chart output. Section 5 
applies the different combination methods to our data, and we display results 
showing the improvement in detection performance due to method combination. 
Section 6 summarizes the main points and results and describes potential 
enhancements. 

CONTROL CHARTS AND BIOSURVEILLANCE 

Control charts (also referred to as monitoring charts) are used to monitor 
a process for some quality parameter in order to detect anomalies from 
desired behavior. In the context of modern biosurveillance, control charts are 
used to monitor aggregated daily counts of individual healthcare seeking 
behavior (such as daily arrivals to emergency departments or medication 
sales), for the purpose of early detection of shifts from expected baseline 
behavior. Three control charts are commonly used to monitor such pre-

                                                 
3 http://www.haaretz.com/hasen/spages/983479.html, accessed May23, 2008. 

2. 
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diagnostic daily data, and are implemented (with some variations) in the 
three main national biosurveillance systems in the U.S.: BioSense (by CDC), 
ESSENCE (by DoD), and RODS. The three charts are Shewhart, Cumulative 
Sum (CuSum) and Exponential Weighted Moving Average (EWMA) charts. 
These control charts are described in detail in Sect. 2.1. 

an independent and identically-distributed (iid) normal distribution with 
constant mean and variance. Daily pre-diagnostic counts usually fail to meet 
this assumption. In reality time series of such daily counts often contain 
seasonal patterns, day-of-week effects, and holiday effects (see Figure 8-1 
for illustration). Monitoring such data therefore requires an initial processing 
step where such explainable patterns are removed. Such methods are 
described in Sect. 2.2. For illustration, compare Figures 8-1 and 8-2 that 
show a series of daily military clinic visits before and after preprocessing. 
One explainable pattern that is removed is the day-of-week effect, which is 
clearly visible in Figure 8-1, but absent from Figure 8-2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-1. Raw series of number of daily military clinic visits with respiratory complaints. 
 
The second challenge of applying control charts in the modern bio-

surveillance context is that each type of chart is most efficient at capturing a 
specific outbreak signature (Box and Luceno, 1997). Yet, in the context of 
biosurveillance the outbreak signature is unknown, and in fact the goal is to 
detect a wide range of signatures for a variety of disease outbreaks, conta-
gious and non-contagious, both natural and bioterror-related. It is therefore 
unclear which method should be used to detect such a wide range of 
unspecified anomalies. 

backs. First, control charts assume that the monitored statistics follow 
Using control charts to monitor biosurveillance data has two major draw- 
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Figure 8-2. Daily military clinic visits series after removing explainable patterns. 

2.1 Control Chart Overview 

We briefly describe the most popular control charts in statistical quality 
control, which are widely used in modern biosurveillance systems: 

Shewhart. The Shewhart chart is the most basic control chart. A daily 
sample statistic (such as a mean, proportion, or count) is compared against 
upper and/or lower control limits (UCL and LCL), and if the limit(s) are 
exceeded, an alarm is raised. The control limits are typically set as a multiple 
of standard deviations of the statistic from the target value (Montgomery, 
1997). It is most efficient at detecting medium to large spike-type outbreaks. 

CuSum. Cumulative Sum (CuSum) control charts monitor cumulative 
sums of the deviations of the sample statistic from the target value. CuSum 
is known to be efficient in detecting small step-function type changes in the 
target value (Box and Luceno, 1997). 

EWMA. The Exponentially Weighted Moving Average (EWMA) chart 
monitors a weighted average of the sample statistics with exponentially 
decaying weights (NIST/SEMATECH Handbook). It is most efficient at 
detecting exponential changes in the target value and is widely used for 
detecting small sustainable changes in the target value. 

Table 8-1 summarizes for each of the three charts its monitoring statistic 
(denoted Shewhartt, EWMAt and CuSumt), the upper control limit (UCL) for 
alerting, the parameter value that yields a theoretical 5% false alert rate, and 
a binary output indicator that indicates whether an alert was triggered on day 
t (1) or not (0). Yt denotes the raw daily count on day t. We consider one-
sided control charts where an alert is triggered only when there is indication 
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of an increase in mean (i.e., when the monitoring statistic exceeds the UCL). 
This is because only increases are meaningful in the context of healthcare 
seeking counts. 

2.2 Preprocessing Methods 

There are a variety of methods for removing explainable patterns from time 
series. Methods generally are either model-based or data-driven. Model-based 
methods remove a pattern by directly modeling the pattern via some specific-
ation. An example is a linear regression model with day-of-week indicators. 
Data-driven methods either suppress certain patterns (e.g., differencing at a 
certain lag) or “learn” patterns from the data (e.g., exponential smoothing). 
In the following we describe three methods that have been shown to be 
effective in removing the types of explainable effects that are often exhibited 
in pre-diagnostic daily count series (day-of-week, holiday, seasonal, and 
autocorrelation). For a more detailed discussion of preprocessing methods 
see Lotze et al. (2008) and Lotze and Shmueli (2008). In the following we 
describe three methods that produce next-day forecasts. The forecasts are 
then subtracted from the actual counts to produce residuals. 

Method 1: Holt-Winters exponential smoothing, using smoothing para-
meter values α = 0.4, β = 0, and γ = 0.15 as suggested in Burkom et al. 
(2007). In addition, we do not update the forecasting equation if the percent-
age difference between the actual and fitted values is greater than 0.5. 

Method 2: 7-day differencing (residuals are equal to the difference between 
the values of the current day and the same day 1 week previous). Equivalently, 
forecasts are obtained by using the values from 1 week previous. 

Method 3: Linear regression of daily counts, using as covariates sine and 
cosine yearly seasonal terms, six day-of-week dummy variables, and a linear 
trend term. Only data in the first year are used for parameter estimation 
(training data). 

Table 8-1. Features of three main control charts. 

 Shewhart EWMA CuSum 
Monitored  Shewhartt = Yt EWMAt =  CuSumt =  
Statistic   λYt + (1 − λ)EWMAt−1  Max (0, CuSumt−1 + Yt − σ/2) 

UCL  UCL = μ + k × σ UCL = EWMA0 + k × σ  UCL = μ + h × σ 

  s2 = λ/(2 − λ) × σ2   
Theoretical 5% 
Threshold 

k = 1.5 k = 1.5 h = 2.5 

Output  St = if 
[Shewhartt>UCL] 

Et = if [EWMAt >UCL] Ct = if [CuSumt>UCL] 
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DATA AND OUTBREAKS 

3.1 Data Description 

Our data is a subset of the dataset used in the BioALIRT program 
conducted by the U.S. Defense Advanced Research Projects Agency (DARPA) 
(Siegrist and Pavlin, 2004). The data include six series from a single city, 
where three of the series are indicators of respiratory symptoms and the other 
three are indicators of gastrointestinal symptoms. The series come from three 
different data sources: military clinic visits, filled military prescriptions, and 
civilian physician office visits. Figures 8-3 and 8-4 display the six series of 
daily counts over a period of nearly 2 years. We illustrate the methods throug-
hout this chapter using the series of respiratory symptoms collected from 
military clinic visits (top panel). 
 

Figure 8-3. Daily counts of military clinic visits (top), military filled prescriptions (middle) 
and civilian clinic visits (bottom), all respiratory-related. 

3.2 Outbreak Signatures 

Before preprocessing the raw data, we inject into the raw data outbreak 
signatures. The insertion into the raw data means that we assume that effects 
such as day-of-week and holidays will also impact the additional counts 
due to an outbreak. We simulate two different outbreak signature shapes: a 

3. 
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single-day spike and a multiple-day lognormal progression. We set the size 
of the affected population to be proportional to the variance of the data series 
(Lotze et al., 2007). 
 

 
Figure 8-4. Daily counts of military clinic visits (top), military filled prescriptions (middle) 
and civilian clinic visits (bottom), all gastrointestinal-related. 

 

because biosurveillance systems are designed to detect early, more subtle 
indications of a disease outbreak. We also consider a lognormal progression 
signature, because incubation periods have been shown to follow a log-
normal distribution with parameters dependent on the disease agent and route 
of infection. In order to generate a trimmed lognormal signature (Burkom, 
2003), we set the mean of the lognormal distribution to 2.5 and the standard 
deviation to 1. We trim 30% of the long tail, limiting the outbreak horizon to 
approximately 20 days. This choice of parameters results in a gradually 
increasing outbreak with a slow fading rate (long tail). Figure 8-5 illustrates 
the process of injecting a lognormal outbreak into the raw data. 

We consider the problem of linearly combining residuals and/or control 
chart output vectors for improving the performance of automated bio-
surveillance algorithms. In order to better evaluate the contribution of each 

For the single-day spike, we consider small to medium spike sizes, 

COMBINATION MODELS 4.
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of the two levels of combination, we first examine residual combinations and 
control chart combinations separately: when combining residuals from different 
preprocessing techniques, we use a single control chart (see Figure 8-6); 
when combining control chart outputs we use a single preprocessing tech-
nique (see Figure 8-7). We then examine the additional improvement in 
performance from optimizing the complete process (combining both resi-
duals and control charts). 
 

 
Figure 8-5. Injecting a lognormal outbreak signature into raw data, and preprocessing the 
resulting series. 
 
 

 
Figure 8-6. Combining residuals. 
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Figure 8-7. Combining control chart outputs. 
 
We assume that the data are associated with a label vector Ot, which 

denotes whether there is an actual outbreak at day t. We further assume a 
sufficient amount of training data. The labeled vector and sufficient training 
data are essential when seeking an optimal combination that increases the 
true alert rate while maintaining a manageable false alert rate. 

4.1 Residual Combination 

The idea of using an ensemble is inspired by machine learning classifier 
techniques, which have produced improved classification by combining 
multiple classifiers. We used a simple method as our main combination 
method: a linear combination of next-day forecasts that minimizes the mean 
squared errors of past data. The coefficients for this linear combination can 
be determined using linear regression, with the forecasters as predictors and 
the actual value as the dependent variable. We also compared combinations 
using a day-of-week modification: residual combinations are optimized 
separately using only past data from the same day of the week. 

4.2 Control Chart Combination 

In this section, we assume that the raw data have undergone a pre-
processing step for removing explainable patterns. Thus, the input into the 
control charts is a series of residuals. We consider the three monitoring 
charts described in Sect. 2: Shewhart, EWMA and CuSum. We construct a 
linear combination of the monitoring binary output for the purpose of 
maximizing the true alert rate, while constraining the false alert rate to be 
below a specific threshold. This formulation yields the following mixed 
integer programming optimization problem: 
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where wi is the weight of control chart i, and FAt (TAt) is an indicator for 
a false (true) alert on day t. The constraints can be interpreted as follows: 

 (Bin) restricts the false alert (FA) and true alert (TA) indicators on day t 
to be binary. 

 (FA) is a set of n (training horizon) constraints that determine whether 
the combined output tCtEtS CwEwSw ×+×+×  yields a false alert on 
day t: 

 If there is an outbreak on day t, then 01 =− tO  and the constraint is 
satisfied. 

 Otherwise ( 11 =− tO ) we compare the combined output with the thres-
hold T = 1. If the combined output is greater than the threshold, we set 

tFA  to 1. 

Similarly (TA1 and TA2) is a set of 2n constraints that determine whether 
the combined output tCtEtS CwEwSw ×+×+×  yields a true alert on day t. 

Finally, we set the false alert rate to be less than α (FA_sum). 

EMPIRICAL STUDY AND RESULTS 

In this section we describe the results obtained from applying the 
combination methods to authentic pre-diagnostic data with simulated out-
breaks. We start by describing the experimental design and then evaluate 
the methods’ performance. 

5.1 Experiment Design 

We inject into the raw series 100 outbreak signatures, in random 
locations (every 10 weeks on average). Each outbreak signature is a spike of 
size 0.5 × σ (~60 cases), with probability 0.6, and a trimmed lognormal 

5. 
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curve of height 5 × σ (~450 cases). The peak of the lognormal curve is 
typically on the fifth or sixth day. We inject a mixture of the two outbreak 
signatures to illustrate the robustness of the algorithm combination. We 
repeat this test setting 20 times. 

When combining control charts, the desired false alert rate is varied in 
the range α∈{0.01, 0.05, 0.1, 0.2}. We set the threshold of the monitoring 
charts to meet the desired overall false alert rate α, using 1 year of training 
data (referred to as the experimental threshold). 

5.2 Results 

5.2.1 Residuals Combination 

In this section we compare four preprocessing methods, two simple 
methods and two combinations. The simple methods are Holt-Winters’ 
exponential smoothing and linear regression. The two combination methods 
are a combination of Holt-Winters and linear regression residuals and a day-
of-week variant of this combination. We then monitor each of the residual 
series with a Shewhart control chart. Because the preprocessing methods use 
different lengths of training data, we use the remaining dataset to compute 
the threshold that gives us the α = 0.05 false alert rate. The resulting true 

 

 
Figure 8-8. True alert rate distribution for Holt-Winters, linear regression, their combination, 
and a day-of-week combination. Means are marked by solid white lines and medians by 
dashed white lines. 

alert rate is shown in Figure 8-8, which displays the true alert rate distribution  
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for each of the four methods. Means and medians are marked as solid and 
dashed white lines, boxes correspond to the inter-quartile range, and the lines 
extend between the fifth and 95th percentiles. 

The figure depicts the advantage of the day-of-week combined preprocess-
ing, which has the highest mean, median and 75th percentile. 

5.2.2 Control Chart Combination 

We start by preprocessing the raw series using Holt-Winters exponential 
smoothing. Control charts (Shewhart, EWMA, CuSum, and the combined 
output) are then used to monitor the series of residuals. Finally, we calculate 
the false and true alert rates produced by each method. For the lognormal 
outbreak signature, we consider a true alert only if the alert took place before 
the peak, because timely alerting plays an important role in diminishing the 
spread of a disease. 

In the first experiment we optimize the control chart combination separately 
for each of the 20 tests. Figure 8-9 depicts the results of this experiment. The 
different panels correspond to different levels of experimental threshold α. 
Each panel shows the true alert rate distribution for each of the four methods. 
The results clearly show the advantage of the combined method in terms of 
both increasing true alert rate, subject to a given false alert rate, and in 
reducing the variance of the true alert rate. 

 
Figure 8-9. True alert rate distribution for three control charts and their combination, by false 
alert rate (α = 0.01, 0.05, 0.10, 0.20). Means are marked by solid white lines. 
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The main drawback of the first experiment is that the computation is very 
time consuming. Since achieving the optimal weights for the control charts 
is an NP complete problem, computation time increases exponentially in the 
length of the training data. Moreover, examining the actual weights shows 
that EWMA and Shewhart charts dominate the combination such that alerts 
are mostly determined by one of them (e.g., Shewhart) combined with an 
alert by one other method (e.g., either EWMA or CuSum). In an effort to 
reduce computation time, yet seek for good combinations, we take a hybrid 
approach: we choose among a small set of pre-determined combinations that 
appear to work well. This approach greatly reduces computation time and 
allows for real-time computation in actual settings. 

Based on the general results found in the first experiment for the optimal 
weights, in the next experiment we chose two settings of pre-set weights: 

1. Shewhart +: The algorithm signals an alert at time t if the Shewhart 
statistic signals an alert, and at least one other chart signals an alert. 

2. EWMA +: The algorithm signals an alert at time t if the EWMA 
statistic signals an alert, and at least one other chart signals an alert. 

The resulting true alert rates are shown in Figure 8-10. We observe that 
for a very low experimental false alert rate threshold (α = 0.01) the two new 
combination charts (Shewhart + and EWMA +) do not perform as well as the 

 
Figure 8-10. True alert rate distribution for select combinations, by false alert rate (α = 0.01, 
0.05, 0.10, 0.20). 

individual Shewhart and EWMA charts. However, when the experimental 
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false alert rate threshold is higher (α = 0.05) the new charts perform at least 
as well as the ordinary charts, and even outperform the optimal combination 
(based on training data) when α > 0.05. None of the methods violated the 
experimental false alert rate threshold by more than 10% when α = 0.01, and 
3% when α ≥ 0.05. 

5.2.3 Combining Residuals and Monitoring 

After examining the combination of residuals separately from combining 
control chart outputs, we now examine the effect of using combined pre-
processing methods monitored by combined control charts on detection 
performance. The false alert rate is set to α = 0.05 and we observe the 
resulting true alert rate. We compare the performance of the different pre-
processing methods monitored by either Shewhart, or Shewhart+. Figure 8-11 
presents the resulting true alert rate distributions for each of the different 
combinations. We see that using Shewhart+ increases the true alert rate by 
approximately 50% compared to Shewhart. Also, the day-of-week residual 
combination outperforms the alternative preprocessing methods. The best 
performance is obtained by using both the day-of-week residual combination 
and applying the Shewhart+ to monitor the series. Thus, method combination 
provides improved detection at each of the preprocessing and monitoring 
levels, as well as when they are combined. 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 8-11. True alert rate distribution when combining residuals and control chart outputs 
(top panel is Shewhart +, bottom panel is Shewhart). 
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In this chapter we propose methods for improving the detection perform-
ance of univariate monitoring of non-stationary pre-diagnostic data by 
combining operations at each of the two stages of the outbreak detection task, 
data preprocessing and residual monitoring, for the purpose of increasing 
true alert rate for a given false alert rate. 

Improved performance by combining control chart output is achieved by 
formulating the true alert/false alert tradeoff as a mixed integer programming 
problem (MIP). The MIP enables us to find the weights that optimize the 
combination method. To decrease computation time we take a hybrid approach 
where the weight optimization is carried out over a restricted set of com-
binations, which is obtained from a training stage. We show that the hybrid 
approach still provides improved performance. Our empirical experiments 
confirm the advantage of this portfolio approach in each of the stages 
(preprocessing and monitoring) separately and in the mixture of both. 

Future extensions include adaptive combinations, where the weights of 
each method change dynamically over time, based on more current history. 
Another extension is using machine learning methods that automatically 
adjust combination weights based on current and recent performance, and on 
the most recent weight vector. 

QUESTIONS FOR DISCUSSION 
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Chapter 9 

MODELING IN SPACE AND TIME 
A Framework for Visualization and Collaboration 

DANIEL A. FORD ,*, JAMES H. KAUFMAN , and YOSSI MESIKA  

CHAPTER OVERVIEW 

This chapter describes the Spatiotemporal Epidemiological Modeler 
(STEM), now being developed as an open source computer software system 

stem, STEM is designed to offer the research community the power and 
extensibility to develop, validate, and share models on a common collaborative 

supports users in creating and configuring the components that constitute a 
model. This chapter defines modeling terms (canonical graph, decorators, 

Keywords: Open source tools; Modeling; Visualization; Infectious disease trans-
mission; Collaboration 
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platform. Its innovations include a common representational framework that 

etc.) and discusses key concepts (e.g., labels, disease model computations).

for defining and visualizing simulations of the spread of infectious disease in 

Figures illustrate the types of visualizations STEM provides, including geo- 

space and time. Part of the Eclipse Technology Project, http://www.eclipse.org/ 

graphical views via GIS and Google Earth™ and report generated graphics. 
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INTRODUCTION 

In 2006, an article in Science concluded that “our knowledge of influenza 
transmission is incomplete, and more basic data are needed to make models 
accurate and to give them predictive weight” (Ash and Roberts, 2006). The 
“startling spread” of the Avian Influenza underscored the need to “build a 
long-lasting international infrastructure to monitor and thwart threats from 
such emerging infections.” The development of the Spatiotemporal Epi-

A computer software system for defining and visualizing simulations of 
the spread of infectious disease in space and time, STEM can track the 
progress of specified infectors across designated populations. Its ultimate 
goal is to provide a common platform with the power and extensibility to 
develop, validate, and share models. As an open source system, STEM 
allows researchers to leverage the work of others by re-using components 

re-use. By virtue of its design and its unique framework, STEM can reduce 
duplication, allow models to be compared and refined, support collaborative 

help protect the health of all populations around the world. 

MODELING: AN OVERVIEW 

In January 2006, we described how STEM could be used to track Avian 
Flu among humans and ducks in Thailand and display the progress of the 
disease in a series of maps (Ford et al., 2006). In that article, we set forth our 
vision of STEM as an open source framework to support sharing across the 
research and public health communities. 

Interest in modeling has intensified since January 2006, when our article 
was published in the International Journal of Health Geographics. A literature 
search on PubMed in May 2008 listed 118 “related articles,” 85 of them 
published in 2006 or later. Still, only a subset presented epidemiological 
models, and most of them tended to focus on a single population type 
affected by a single disease. Or they assumed that the population being affected 
by a disease was “well mixed” and either not distributed (zero dimensional 
simulation) or geographically distributed in a uniform manner. Such approaches 
represent complex realities only incompletely. Moreover, they do not purport 
to offer a common platform that allows researchers to share components for 
creative re-use, making it possible for them to collaborate in understanding 
and solving complex problems. 

1.

2.

efforts to understand disease transmission in a global society, and ultimately 

developed by their peers as well as offering their own work up for others to 

demiological Modeler (STEM), then underway and in its second phase as
of this writing, is an effort to create such an infrastructure. 
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Today we remain committed to STEM as a framework upon which 
disease models can be developed, simulated, and shared by many different 
researchers. This chapter will focus on that framework and illustrate how 
STEM’s capabilities allow users to develop models and visualize the spread 
of disease across time and space. 

ABOUT STEM 

STEM is being developed as an open source software system and is part 
of the Eclipse open source application development framework whose develop-
ment is being managed by the Eclipse Foundation, http://www.eclipse.org. It 
is a subproject of the Eclipse Technology Project, http://www.eclipse.org/stem. 

The Eclipse framework offers many advantages to Java™ based software 
development projects such as STEM. Eclipse is based on the industry 
standard Open Services Gateway Initiative (OSGi, http://www.osgi.org) 
software component architecture. In fact, Eclipse serves as the reference 
implementation of the standard. The OSGi standard partitions software into 
distinct components, known as bundles or plug-ins. These can be independently 
developed, deployed, and managed. These characteristics and the concept of 
declarative software extension points, also a feature of Eclipse, enable a soft-
ware system like STEM to be easily extended by the addition of new plug-ins. 

Designed from the start to be extensible, STEM’s implementation is such 
that its main components, the core representational framework, graphical user 
interface (GUI), simulation engine, disease model computations, and the various 
data sets, are all partitioned into separate plug-ins. This makes it relatively 
straightforward for a third party to augment or replace any one of the system’s 
components. For instance, STEM can be extended by supplying additional 
disease models, enhanced geographic or other visualizations, or alternative data 
sets. Another advantage of the Eclipse framework is that it offers true platform 
independence. Currently, versions of STEM are available for the Microsoft 
Windows, Apple Mac, and Linux operating systems; versions for other 
operating systems, supported by Eclipse, will be available as demand dictates. 

As part of Eclipse, STEM is distributed under the Eclipse Public License 
(EPL), http://www.eclipse.org/legal/epl-v10.html. This license is attractive 
to the STEM project because it is fairly unrestrictive, allowing re-use of the 
code and even commercial exploitation. These traits lend themselves to 
furthering the altruistic goals of STEM by enabling others to exploit the code 
base for their own purposes. This in turn attracts a community of developers, 
users, and resources that support the system. 

3.

STEM includes all of the data sets, mathematics, and visualizations 
required to develop sophisticated simulations of disease spread over geographic 

http://www.eclipse.org
http://www.eclipse.org/stem
http://www.osgi.org
http://www.eclipse.org/legal/epl-v10.html
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The disease modeling mathematics built into STEM are standard text-
book implementations of disease models: a SIR model, with states of sus-
ceptible, infectious, and recovered; a SEIR model, that adds an exposed state; 
and a SI model, with the recovered state removed. Difference equations 
compute the number of population members entering and leaving the specified 
disease states in a particular interval of time, using stochastic or deterministic 
computations. These models are provided both as examples and as base classes 
that can easily be extended to simplify the task of creating new state-of-the-art 
models. STEM also provides examples of how to add such extensions. 

To support users in developing and refining models, STEM provides two 
main types of visualizations. Geographic displays represent disease spread 
on maps provided by STEM; alternately, output can be viewed on Google 
Earth™. Report generation displays plot simulation data values with respect 
to time or other data values. 

3.1 A Common Collaborative Framework 

As an epidemiological modeling system, STEM’s main innovation is its 
framework that partitions a disease model into constituent components that 
represent different aspects of a disease model. For instance, there are com-
ponents that represent disease model computations, geography, population 
data, and the passage of time. The key feature of STEM’s innovation is that 
it includes a component that represents the grouping or aggregation of other 
components. This allows the basic individual components to be combined in 
creative ways to make useful groupings that can be shared and reused. This 
group component is called a model in STEM, and it can group other models 
as well as basic components. 

The ability of one STEM model to contain another model is incredibly 
powerful. It allows for the creation of detailed subcomponents whose com-
plexity is hidden within the confines of their encompassing models. For 
instance, a researcher can create a model that represents a particular country. 
This model may itself contain complex submodels that define such things as 
the country’s geography and its transportation infrastructure. The transportation 

                                                 
1 These are set forth in ISO 3166–1 Geographic Coding Standard: Codes for the Representation 

of Names of Countries and Their Subdivisions - Part 1. 

regions (countries, continents) or even the entire planet. The data sets distributed 
with STEM include the geography, transportation systems (e.g., roads, air 
travel), and population for the 244 countries and dependent areas defined by 
the International Standards Organization.1 The resolution of the data sets 
covers most countries, with some exceptions, to administrative level 2. In the 
United States, level 2 corresponds to counties. 
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infrastructure submodel in turn may contain complex submodels for different 
types of transportation systems (e.g., air travel, rail, road, etc.). 

Using STEM, researchers modeling the spread of a disease in a particular 
country can create their own STEM model that combines the model of  
the country with population demographics, for instance. The details of the 
country model can be included in their simulations simply by referencing the 
country submodel. The design goal of STEM is that the country submodel 
will be a standardized community resource that is maintained and refined by 
many different contributors. Over time, the country model will become more 
accurate, detailed, and valuable. As its use and support increase within the 
community, it will become easier to compare and share different models 
because their underlying components will be the same. 

As a common collaborative platform, STEM enables the import and 
export of models so that they can be easily shared among researchers.  
A researcher who has developed a detailed country model that includes 
population demographics can import a component with specialized disease 
mathematics from another researcher and combine the two. The new com-
bination can then even be re-exported for still others to leverage. Because 
this type of collaboration is a key design point of STEM, the system attaches 
descriptive metadata to each component that conforms to the Dublin Core 
Metadata standard, http://www.dublincore.org, developed by library science 
researchers. This standard defines a set of attributes that specify such things 
as the title, description, and version of the component, as well as identifying 
who created it and when. This metadata allows the research community, and 
individual researchers, to identify, understand, and trust (or not) each of the 
components they are using. 

3.2 A Common Representational Framework 

To enable the goal of creating a common collaborative framework, the 
design of STEM needs to have a powerful representational framework. This 
framework must be such that instances can be assembled from disparate 
components and it must be able to represent the state of any type of arbitrary 
simulation one might envision. The representational framework used by STEM 
is a graph. A graph is a powerful mathematical abstraction for representing 
entities (i.e., things in the world) and their relationships (Widgren, 2004; 
Myers et al., 2003; Gross and Yellen, 2003). More formally, a graph is a set 
of nodes, edges, and labels. Nodes generally correspond to entities, while 
edges form a link between two nodes and represent some relationship between 
them. Labels are attached to either a node or an edge and represent some 
aspect of their host, such as the name of the entity or of the relationship. 
Each node may have more than one label, but each edge will only have one. 

http://www.dublincore.org
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In STEM, nodes typically represent geographic regions while edges 
represent relationships between regions. There may be any number of edges 
between any two nodes, reflecting the fact that in the real world there may be 
any number of relationships between any two geographic locations. For 

could easily exchange population members); a different edge between the 

Completely different edges could also exist, for instance, ones that represent 
human air travel or even the flight paths of migratory birds. A label on a 
node might represent the physical area of the corresponding geographic region, 
the number of population members of a particular type who live there, or a 
mathematical representation of the state of a particular disease at that location. 
In case of a border edge, the label might record the length of the border between 
the two regions; in the case of the road edge, the label might indicate the 
type of road and how much traffic it carries between the two regions. 

The graph that includes all of the nodes, edges, and labels necessary to 
represent the state of the simulation is called the canonical graph. It is the 
canonical graph that is constructed from the contributed components that are 
aggregated together by a STEM model. Each component is either a graph 
that contains a collection of nodes, edges, and/or labels, or is another sub-
model that produces its own canonical graph of its contents. The canonical 
graph of a model, thus, is the union of the canonical graphs of its submodels 
and the contents of any graphs it contains. When this collection is combined, 

a single model at the root; it is the canonical graph of this model that is used 
as the canonical graph of the simulation, as illustrated in Figure 9-1. 

In STEM, a scenario serves as the specification of a simulation. It 
references a single model which will be used to create a canonical graph and 
binds together information that specifies the time steps of the simulation and 
initialization. Figure 9-1 shows two scenarios referencing the same model 
instance. This illustrates the situation where two simulations are to be run 
using the same model, but with different initialization. For instance, the 
point of infection could be different between the two simulations; everything 
else would be the same. 

In addition to containing graphs, which basically just hold data, and other 
submodels, a model in STEM can contain computational specifications as 
well. This is the mechanism through which disease model computations are 
included in a simulation. The specification of a “unit” of computation is 
called a decorator. There may be any number of decorators in a simulation, 

the sharing of a common border (i.e., two regions are physically adjacent and 

same two nodes might represent a road that connects the two locations. 

and labels attach themselves to their targets. The composed model hierarchy has 

instance, an edge between two nodes might represent a relationship such as 

and they have two particular functions. The first is to initialize (or “decorate”) 

references are resolved such that edges connect geographical regions with nodes
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Figure 9-1. STEM components can be combined to compose a model that is used by two 
different scenarios. 
 
the canonical graph; and the second is to compute the next state of the graph 
at each simulation cycle. A scenario may also contain decorators, the pur-
pose of which is to perform scenario specific initialization, such as inserting 
infected individuals into the canonical graph. The order in which decorators 
are invoked to perform initialization and on each cycle strictly respects the 
model hierarchy, with the scenario decorators always being last. Thus, when 
a canonical graph is being initialized, the scenario decorators always have 
the last opportunity to perform modifications to complete initialization of the 
canonical graph. 

A simulation in STEM begins with an initialized canonical graph and a 
starting time. The first step in a simulation is to determine the next point in 
time that will be used to update the state of the canonical graph. Once this 
value is determined, the internal STEM simulation engine invokes, in specific 
order, the decorators associated with the canonical graph. These computations 
take the time point as input and compute the next state of the graph as it will 
be at that future time. When these computations are complete, the state of the 
entire graph is changed to the next value just computed. This process continues 
until stopped by the user, or, if specified, a predetermined end-time is reached. 

The sequence of time intervals that will be used in a simulation is spe-
cified in STEM by a sequencer. During a simulation, the sequencer instance 
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for the time to use for that cycle. 
Each scenario references a single sequencer, a single model, and a set of 

decorators, and completely defines a simulation. 
The last component of STEM to discuss is an experiment. An experiment 

specific base scenario that is modified slightly for each simulation. This allows 
a researcher to vary one or more parameters – for instance, the infectious 
rate of a disease model or the initial number of infectious individuals – and 
examine how the model is affected. 

3.3 Creating and Configuring Components 

STEM’s user interface, shown in Figure 9-2, allows researchers to easily 
create, configure, and compose these components. To create a component, a 

 

Figure 9-2. The Designer Perspective of STEM is a drag and drop interface useful for 
composing the graph that defines a scenario. The screen shot shows a scenario for modeling 
an “experimental” disease model in Cuba. The model for Cuba as well as the disease has been 
added to the scenario. The property editor shows details about the disease model as well as 
the Dublin Core (not visible in the image). 

is a specification of a collection of simulations that are based on a single 

associated with the simulation is referenced at the beginning of each cycle 

user invokes a “wizard” that gives prompts for the details required for the  



9. Modeling in Space and Time 199
 
component’s creation. Existing components can be edited with customized 
editors that make it easy to modify the component’s configuration (e.g., change 
a population value). Model composition is accomplished using the editors as 
well by “dragging and dropping” iconic component representations into the 
specific editor. 

The configuration interface allows a user to specify a simulation scenario, 
selecting a geographic model, one or more population types, and one or 
more disease models. The disease models can be configured by having their 
parameters altered from their (reasonable) default values. The specification 
of initial conditions for the simulation such as the “seeding” of infectious 
population members at locations in the model is also part of the interface. 

When the configuration is complete, the user moves on to the Simulation 
Perspective, a display that shows several views of the model and the state of 
the simulation. The distribution of a population is illustrated by highlighting 
a geographic region using intensity to indicate relative numbers and color to 

 

Figure 9-3. The STEM simulation perspective showing a visualization of an infectious 
disease in Tokyo, Japan. This figure shows a map view representing the “current state” of an 
outbreak. This GIS view is the default view provided included in STEM. 

indicate disease state. Figure 9-3 illustrates how STEM represents a disease  
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state visually, using a GIS representation. This representation may be 
adjusted using either logarithmic or linear intensity scales using a varying 
gain factor. After the simulation is started, the simulation display updates 
itself after each time step and displays the current state information. Letting 
the simulation run animates the display so that the progression of a disease 
can be watched in “real time.” Users can also run multiple simulations in 
batch mode as an experiment to compare results and gain insights into the 
impact of different variables on transmission. 

3.3.1 Labels 

In the compositional modeling framework, labels play a special role  
in that they can store two “state” values simultaneously. They have a 
“current” value which, collectively, records the current state of the graph. 
They can also have a “next” value which is used, collectively, to store the 
next state of the graph. For example, labels on nodes can represent different 
(diseased) states of a population. The fraction of people infectious or 
recovered from a disease might be represented by a dynamic label, the value 
of which changes in time. Figure 9-4 shows how the STEM map view can be 
used to visualize different disease states using dynamic labels. 
 
 

4a) Susceptible 4b) Exposed 

 4c) Infectious  4d) Recovered 
Figure 9-4. Visualizing labels. This figure represents the fraction of people in each of the 
Susceptible State (a), Exposed State (b), Infectious State (c), and Recovered State (d) at the 
same instant in time during a simulation of an infectious disease. 
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Other label values can be visualized and monitored in a similar way (or 
logged to a file). Since label values on nodes (and edges) may serve both as 

to visualize the inputs to and progress of a simulation. In addition to 

and to do quantitative analysis. Figure 9-5 shows the same simulation of 

Other report views provide the trajectory of these dynamic variables in phase 
space (for example, plotting I(t) vs. S(t)). 

 
The visualization capabilities of STEM are themselves Eclipse plug-ins 

so users may easily add new components to visualize data. The built in 
components include the GIS Map View shown in Figures 9-3 and 9-4 as well 
as plug-ins that direct output to other viewers, for example, Google Earth™ 
as shown in Figure 9-6. 

input to and output from a model, it is important to provide appropriate tools 

Figure 9-5. STEM also provides report views allowing the user to graph dynamic label variables. 

allowing users to monitor the disease state variables as a function of time. 

In the plots above, four locations are being monitored; the state variables, S (susceptible), 

Japan shown in Figure 9-3 but now a time series view has been activated 

E (exposed), I (infectious), and R (recovered), are plotted as a function of time in separate graphs

providing a visual map, it is also desirable to graph the dynamic label values 

for each monitored location. 
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3.3.2 Disease Model Computations 

(Schaffer and Bronnikova, 2001). The basic SEIR disease model assumes a 
uniform population at a single location and that the population members are 
well “mixed,” meaning that they are equally likely to meet and infect each 
other. The built in decorators in STEM allow for either fixed or variable 
populations. For a normalized population, the model is defined by the four 
equations below: 

• Δs = μ − βs·i + αr − μs 
• Δe = βs·i − εe − μe 
• Δi = εe − γi − μi 
• Δr = γi − αr − μr 
Where: 
• s is the normalized Susceptible population 
• i is the normalized Infectious population 

The current version of STEM includes decorators for both deterministic 
and stochastic SI, SIR, and SEIR models based on finite difference equations 

Figure 9-6. Google Earth™ as an Alternate View. In this figure, an infectious disease model 
(without air travel) is running in Asia and with the output directed to the Google Earth viewer™. 
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• μ is the background mortality rate, and, because it is assumed that the 
population was not growing or shrinking significantly before the 
onset of the disease, μ is also assumed to be the birth rate. 

• γ  is the Infectious recovery rate. This coefficient determines the rate 
at which Infectious population members Recover. 

• α is the immunity loss rate. This coefficient determines the rate at 
which Recovered population members lose their immunity to the 
disease and become Susceptible again. 

• ε  is the incubation rate. This coefficient determines the rate at which 

In order to turn these zero dimensional equations into a spatiotemporal 

The first allows for mixing of populations that are connected by appropriate 
edges. A mixing model is appropriate, for example, when populations in 
adjacent connected regions are commuting between the regions on a time 
scale less than or of the same order as the simulation time step. A second 
model of transportation, also using the edges defined in STEM, model trans-
portation as a packet model where the transportation packet itself is a node in 
which a disease state may evolve in time. The packet model is appropriate 
in ships or airplanes where the transportation time is longer than the finite 
difference time unit. STEM also provides examples of how a user can “extend” 
the built in decorator models and create their own advanced experimental 
models (Cummings et al., 2004). The built in “experimental example” shows 
how a user can extend the base models by adding nonlinearity to the infection 
term (βs·i) defined above (Liu et al., 1987). 

Today STEM is a work in progress. The various models and reference 
data included in STEM are provided as examples of how users can create 
and define their own models and data. While we have made, and continue to 
make, every effort to ensure the data reflects information available today in 
the public domain, we do not represent or guarantee the accuracy of data or 
of the original sources, including populations, area, population densities, and 
geographic information (precise latitudes and longitudes, etc.). In some cases, 
estimations were used to provide approximations for population densities 
where no public data could be found. We based the mathematical models in 

Exposed population members become Infectious. 

• β is the disease transmission (infection) rate. This coefficient determines 
the number of population members that become Exposed per population 
member in the Infectious state, assuming the entire population is in 
the Susceptible state. 

CONCLUSION 4.

solution (Haberman, 1998), two transportation models are included in STEM. 
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STEM on standard textbook models (e.g., SIR, SEIR), but have not validated 
them independently. Accordingly, we give users the capability to adjust the 
rate constants in these mathematical models to create their own approximations 
or models of infectious disease. In addition to changing rate constants, advanced 
users will want to code their own mathematics extending the simple base 
models. 

We do not claim that the simple base models included in STEM are 
optimal for any particular infectious disease. We recognize that the creation 
of a good model for real disease is part of modern epidemiological research. 
In developing STEM, we are looking to provide a framework to support 
researchers in creating, exchanging, and validating sound disease models. 
Part of our plan is to build tools into STEM to help users do their own 
validation studies of various models. 

QUESTIONS FOR DISCUSSION 

ACKNOWLEDGEMENTS 

This project is being developed under Contract Number FA7014-07-
C0044 with the U.S. Air Force Surgeon General’s Office (AF/SG) and 
administered by the Air Force District of Washington (AFDW). The Air 
Force has not accepted the products depicted and issuance of a contract does 
not constitute Federal endorsement of IBM Almaden Research Center. 

eclipse.org) for support of the technology project and the open source 

What advantages does this provide to the developers and to the researchers 
who will use it? 

2. According to its developers, “STEM’s main innovation is its framework 
that partitions a disease model into constituent components that represent 
different aspects of a disease model.” Discuss. 

3. What types of visualizations are available to users of STEM? Describe the 
geographic representations and report-generated graphics STEM provides. 

As a collaborative platform, STEM will support and be supported by the 
research community. Their involvement and their contributions will contribute 
to STEM as part of an infrastructure for global health. 

The authors also acknowledge the Eclipse Foundation (http://www. 

1. STEM is being developed as an open source computer software system. 

technology that provide the foundation for STEM. 
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TA-CHIEN CHAN and CHWAN-CHUEN KING* 

CHAPTER OVERVIEW 

In the control of infectious diseases, epidemiologic information and 
useful clustering algorithms can be integrated to garner key indicators from 
huge amounts of daily surveillance information for the need of early 
intervention. This chapter first introduces the temporal, spatial and spatio-
temporal clustering algorithms commonly used in surveillance systems – the 
key concepts behind the algorithms and the criteria for appropriate use. This 
description is followed by an introduction to different statistical methods that 
can be used to analyze the clustering patterns which occur in different 
epidemics and epidemic stages. Research methods such as flexible analysis 
of irregular spatial and temporal clusters, adjustment of personal risk factors, 
and Bayesian approaches to disease mapping and better prediction all will be 
needed to understand the epidemiologic characteristics of infectious diseases 
in the future. 
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INTRODUCTION 

Spatial epidemiology has been commonly utilized to describe and to 
analyze the geographical distributions of diseases in recent decades. The 
distribution patterns of diseases are further investigated by several risk 
factors including demographic variables, levels of social economic status, 
environmental factors, genetic variations, exposure-related behaviors, contact 
patterns, specific niche of the etiologic agent, and modes of transmission [1, 2]. 
In general, descriptive epidemiologic studies present the mortality or incidence 
rate of an interesting disease by using thematic maps. The best example is 
John Snow’s cholera map used in 1854 (Figure 10-1). Snow plotted all fatal 
cholera cases on the map to find that the contaminated pump was located on 
Broad Street in London, United Kingdom [http://www.ph.ucla.edu/epi/snow/ 
snowmap1_1854_lge.htm]. In recent decades, the geographic information 
system (GIS) has been applied to understand the epidemiology of infectious 
diseases, particularly the relationship among agent, host and environment 
[3, 4]. And it even helped to eliminate cholera outbreaks in Bangladesh [5]. 
 

 
Figure 10-1. John Snow’s dot map of cholera cases in 1854 (Source: http://www.ph.ucla.edu/ 
epi/snow/snowmap1_1854_lge.htm). 
 

Surveillance, a public health endeavor to monitor health data regularly by 
searching for evidence of a change, is the most cost-effective way to provide 
early warning signals and then to prevent outbreaks of infectious diseases 
[6]. The traditional analysis of geographical distribution of disease cases is 
generally to mark darker colors in a choropleth map1 with the location of 
cluster cases that can be identified visually. This approach is easily misled 

                                                 
1 Choropleth Map: A thematic map in which areas are distinctly colored or shaded to 

represent classed values of a particular phenomenon. 

1.

http://www.ph.ucla.edu/epi/snow/snowmap1_1854_lge.htm
http://www.ph.ucla.edu/epi/snow/snowmap1_1854_lge.htm
http://www.ph.ucla.edu
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by the misclassification of symbology2 or by neglecting temporal factors. On 
the other hand, much progress has been made in spatial techniques, which 
are frequently used to indicate the extent of “clustering” across a map. The 
follow-up spatial analysis can determine whether the increase in each epi-
demiologic measure is localized or general and even where high risk areas 
are located with statistically significant increases [7]. Furthermore, develop-
ment of spatial and temporal clustering methods may provide a more 
integrated picture of the dynamic diffusion of disease cases that could block 
further transmission more effectively. In other words, the combination of 
surveillance, spatial techniques, and statistical methods – particularly the 
methods developed for characterizing the spatial and temporal clustering, can 
not only improve the surveillance system but can also enhance the effective-
ness of the surveillance system to reach public health goals. 

CURRENT COMMONLY USED METHODS  
IN SPATIAL, TEMPORAL, AND TEMPO-
SPATIAL CLUSTERING 

Investigating disease clusters is an urgent task for public health authorities 
and professionals. If the disease happened non-randomly in temporal and 
spatial units, the clustering cases in time and place would be observed. Since 
outbreaks of emerging infectious diseases (EID) have been increasing rapidly 
in the past 2–3 decades, infectious disease surveillance becomes the most 
important task in public health. With the advances of information technology, 
electronic disease reporting systems have been established in many parts of 
the world. The real-time collection of disease information through the Internet 
is becoming more feasible [8]. However, numerous data need to be sum-
marized. Therefore, the development of more convenient algorithms to detect 
temporal and spatial clustering is necessary to help public health staff with 
routine monitoring. In general, temporal clustering algorithms focus on setting 

triggered [8–10]. Spatial clustering algorithms test the null hypothesis, which 
assumes the disease is randomly distributed. If the null hypothesis is rejected 
by the predefined confidence level, the so-called “spatial clusters” would 
occur. Since time and place are the two most important epidemiological 

                                                 
2 Symbology: The set of conventions, rules, or encoding systems that define how geographic 

features are represented with symbols on a map. A characteristic of a map feature may 
influence the size, color, and shape of the symbol used. 

2. 

up the baseline data for determining the threshold cut-off values. When
the observation value exceeds the expected value, the alert signal will be 

10. Surveillance and Epidemiology of Infectious Diseases 
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characteristics in infectious disease outbreaks, recently efforts have tried to 
consider both simultaneously. 

2.1 Temporal Clustering Methods 

2.1.1 Historical Limit, the Concept of Moving Average, and Scan 
Statistics 

Historical Limit 

Historical limit is a method that was frequently used to monitor infectious 
disease surveillance data in the United States before 2001 by requiring 
historical information – generally at least 5 years of background data – to 
serve as the upper baseline data for statistical aberration detection. If the 
observed value is higher than the 95% confidence limit of this upper baseline 
data, it is assumed that an outbreak would occur [10]. Therefore, the levels 
of baseline data in this method are easily influenced by the large-scale 
epidemic(s) of the past. 

The Early Aberration Reporting System (EARS), developed by the 
Centers for Disease Control and Prevention in the United States of America 
(US-CDC), consists of a class of quality control (QC) charts, including the 
Shewhart chart (P-chart), moving average (MA), exponentially weighted 
moving average (EWMA), and variations of cumulative sum (CUSUM) [10]. 
In temporal analysis of syndromic surveillance data, a common approach is 
the use of a sample estimate for obtaining the baseline mean and standard 
deviation (SD) to circumvent the possible difficulties associated with the 
baseline trend that may be complicated by the seasonality and daily fluctuation 
of the syndromic data [9]. 

The Application of Moving Average 

In 1989, Stroup et al. [11] used three simple moving average measures, 
moving average in mean, moving average in medium, and scan statistics, to 
implement historical limit methods on notifiable infectious diseases. The 
concept of analysis adopted the general form shown in  Equation 10-1. The 
numerator X0 was the observation value at the current time point (the temporal 
unit that can be daily or weekly or monthly, defined by the users). The 
denominator, serving as a baseline, was calculated as a mean or a median 

Public health professionals have used three main methods – historical

temporal clustering. 
limit, cumulative sum (CUSUM), and time series to detect cases with
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value of the same time period plus the pre- and post-periods within the past 
5 years (e.g., total 15 time points) (Figure 10-2). 

Baseline
X 0  (10-1) 

 

 
Figure 10-2. Baseline for comparison cases reported for March 1987 [11]. 

 
Since 1989, the historical limit method has been employed in the 

summarized surveillance results of the U.S.A. published in the Morbidity 
and Mortality Weekly Report (MMWR). The case numbers of a reported 
specific disease for a given health outcome in the three most recent time 
periods (pre-, current, post-) are compared with historical incidence data on 

years. The results are shown by comparing the ratio of the current case 
numbers with the historical mean and SD. The historical mean and SD 
involve the 15 totals of the three time intervals, including the same pre-
viously mentioned three periods (the current period plus the preceding one 

historical data. For example, if we want to know whether the influenza-like 
illness (ILI) cases in September of 2008 are unusual or not, the ILI case 
numbers of August, September and October in each year from 2003 to 2007 
need to be added up to obtain a mean or a median for comparison. For an 
infectious disease with a strong seasonality trend, the seasonally adjusted 
CUSUM can be applied. That is, the positive one-sided CUSUM where the 
count of interest is compared with the 5-year mean ± SD for that specific 

the same health outcome from the same three time periods of the preceding 5 

period, and the subsequent one period over the preceding 5 years) as the 

10. Surveillance and Epidemiology of Infectious Diseases 

period. Similarly, Taiwan’s emergency department syndromic surveillance 
system can track diseases with strong holiday, post-holiday, or weekend effect 
because closures of most local clinics occur on most holidays/weekends.  
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To verify the accuracy and sensitivity of the outbreak detection, the 
epidemiologic investigation has to be followed. In 1993, Stroup et al. [12] 
compared the historical limit method with three other methods (bootstrap, 
jackknife, delta) for estimating standard error to detect abnormal time 
clusters. The results showed that the values estimated by using the historical 
limit method and delta method were close to the true value. The variance 
values estimated by the two methods were under-estimated, which might 
result in over-alert. Therefore, using bootstrap in the historical limit method 

2.1.2 Cumulative Sum 

Cumulative sum (CUSUM), a method initially used in quality control, 

was to set up a control limit under a steady period. The strength of CUSUM, 
similar to the exponentially weighted moving average control chart, is to 
detect small shifts in the process mean even without historical data for 3–5 
years. Two important parameters are used in CUSUM. First, an appropriate 
value for the control limit, h, is based on the average run length (ARL) of the 
CUSUM, while the failure rate is acceptable within a time interval for 
quality control that can be regarded as the upper limit of failure rate in 

other parameter is k, which represents the minimum standardized difference 
from the running mean. The traditional CUSUM chart generally uses the 
sum of differences both above and below the mean to detect anomalies in 
either direction. For biosurveillance, an upper sum SH is used to look only 
for excessive counts in which small differences are ignored and only 

to detect a shift of one SD. 
Since the anthrax attack [10] that occurred shortly after the September 

11, 2001World Trade Center Attack, more interest has arisen in using public 
health approaches that could rapidly detect “unusual events” without 
requiring several years of background data. Therefore, newly developed non-
historical aberration detection methods can analyze data as short as 1 week. 

ments from C1, C2 to C3 to increase the sensitivity of the detection based on 

then developed [9]. For C1 and C2, the CUSUM threshold reduces to the 
mean plus 3 standard deviations (SD). The mean and SD for the C1 are 
based on the raw data from the past 7 days. The mean and SD for the C2 and 
C3 are based on the data from 7 days, ignoring the two most recent days to 

to obtain an estimated confidence interval is a good statistical approach. 

quality control or the case number of a studied disease in surveillance. The 

has recently been applied to surveillance [13]. The original idea of CUSUM 

day/week/other time unit t) are counted. A common practice is to set k at 0.5 

a positive one-sided CUSUM calculation from a week’s information, was 

differences of at least 2k standard deviations above the mean μt (mean of 

To consider daily variation, the revised CUSUM method, using the measure-
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minimize the bias. For C1 and C2, the test statistic on day t was calculated as 
St = max [0, (Xt − (μt + k*σt))/σt] where Xt is the count data (number of 
cases) on day t, k is the shift from the mean to be detected, and μt and σt are 
the mean and standard deviation of the counts during the baseline t time 
period. For C1, the baseline period is (t-7 to t-1); for C2 the baseline is (t-9 
to t-3). The test statistic for C3 is the sum of St + St-1 + St-2 from the C2 
algorithm. Using these C1, C2 and C3, outbreaks of any infectious disease 
with a strong seasonal or regular fluctuation trend can be easily detected. 
This is particularly useful for an agent such as influenza virus, in which 
different types or subtypes of the virus are dominant each year in addition to 
continuous antigenic drifts. 

2.1.3 Time Series 

Based on the epidemiologic characteristics of each infectious disease, 
certain diseases have trends in the periodicity of epidemics. Therefore, 

epidemiologic data or to predict future time points in a series. The fine-
tuning characteristics of ARIMA involve adding lags of the different series 
and/or considering time lags of the forecast errors to the prediction equation 

selected is very critical. The cyclical pattern of time intervals such as seasons 
or months or other time units should be represented in the training data. 
Then, the dynamic pattern would be updated and predicted by the latest data. 
This time series model has recently been used in predicting the impact of 
several infectious diseases related to climate changes. 

2.2 Spatial Clustering Methods 

To analyze spatial data, the characteristic of the data – pointed data or 
regional data – needs to be examined first. In general, northern, southern, 
central and eastern Taiwan regional data are frequently used in routine 
surveillance for monitoring possible changes of several important infectious 
diseases in different geographical areas. Once the outbreaks occur, point data 
will be gathered by collecting the geo-coding information of the cases’ 
addresses or by using a Global Positioning System (GPS) to locate any 

to better predict the temporal trend. The Serfling model uses regression by

possible time and wave of the outbreak. The ARIMA models fit better with 
grated moving average model (ARIMA) or the Serfling model to predict the 

used in the excess mortality data analysis of influenza or pneumonia and 

time series data that can be applied to better understand the characteristics of 

influenza. Using these methods, the training period of the dataset to be 

researchers could use time series models such as the autoregressive inte-

adding sine and cosine functions to adjust the periodicity. It is frequently 

10. Surveillance and Epidemiology of Infectious Diseases 
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important sites related to possible exposures of the cases for further detailed 
investigation. 

The next step is to select appropriate methods for analysis of spatial 
clustering. Three methods of spatial clustering, including global cluster, 
local cluster and focused cluster, are frequently used for analyzing 
epidemiologic data [14]. Spatial autocorrelation, involving global indices 
and local indices as the degree of association between a factor of interest and 
its specific location, is a convenient approach to explore the degree of spatial 
clustering among cases and the possible associated spatial risk [14]. 

2.2.1 Global Clustering Test 

Global cluster detection methods can help to determine whether or not 
spatial clustering exists in any place of the study period statistically [15]. 
Positive spatial autocorrelation reflects a “clustering” of points related to a 
particular variable of interest to be assessed. Negative spatial autocorrelation 
(e.g., spatial outliers) displays inverse correlation between the tested neighbor-
ing areas based on the attribute of interest. A zero spatial autocorrelation 
indicates a random distribution rather than a cluster or a dispersed distribution. 
This method is particularly useful if the source of infection is unknown or 
not easily identified. The limitation of this method is that it cannot identify 
the specific location(s) of spatial cluster(s). 

Clustering tests involve four types – (1) area-based tests for global 
clustering, (2) point-based tests for global clustering, (3) area-based tests for 
local clustering, and (4) point-based tests for local clustering. Different 
statistical tests are used for each of these four types, depending on the type 
of data. Area data emphasize analysis on the relationship between the tested 
area and its neighboring area. Pointed data stress the distance between the 
two points. However, the central point of an area can be regarded as a point 
and then be tested in point data. Besides, both LISA and Moran’s I spatial 
autocorrelation tests in Table 10-1 can be applied to point or polygon data, 
depending on the definition of the spatial relationship. If public health 
authorities have pointed data, more hypotheses can be tested and better 
diffusion dynamics of cases can be described. To protect patients’ privacy, 
more area-type data are available than pointed-type data, particularly for 
those infectious diseases with higher social stigma. 

Table 10-1 summarizes the clustering methods. The first two methods 
(Whittemore’s test and K nearest neighbors) are global tests for pointed data 
and the next three methods are local tests for pointed data. Whittemore’s test 
is to measure the mean distance of all cases divided by the mean distance of 
all individuals in that area. IF this ratio is less than 1, it reflects there is a 
cluster. In addition, the K nearest neighbor method assumes that the spatial  
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Table 10-1. Summary of the most commonly used spatial clustering algorithms. 
 

Data format 
(point/polygon) 

Type of method 
(global/local) 

Statistical methods Authors 

Point Global Whittemore’s test Whittemore et al. (1987) 
Point Global K nearest neighbors Cuzick and Edwards (1990) 
Point Local Geographical analysis 

machine (GAM) 
Openshaw et al. (1987) 

 
Point Local Besag and Newell test Besag and Newell (1991) 
Point Local Satscan Kulldorff (1995) 
Area Global Moran’s I Moran (1950) 
Area Global Geary’s C Geary (1954) 
Area Local Gi Getis and Ord (1992) 
Area Local Local indicator of spatial 

association (LISA) 
Anselin (1995) 

 
 

distribution of cases is random. If the observed value is higher than the 
expected value, it means a spatial cluster is present there. However, this test 
does not point out where the cluster is. 

On the other hand, two global tests for area-type data are Moran’s I and 
Geary’s C tests. Moran’s I statistic works by comparing the value at any one 
location with the value at all other locations. Moran’s I is the most frequently 

reveal whether there is evidence of clustering or indication of the evidence 
of hot spots, shown by geographic boundary aggregated data. The results of 
Moran’s I vary between −1.0 and +1.0. The Moran’s I > 0, =0, and <0 
indicate the positive spatial autocorrelation, random distribution, and negative 
correlation, respectively. If areas are close together with similar values, the 
Moran’s I result is high. Geary’s C statistic is used to describe differences at 
the local level by measuring the deviations in intensity values of each point 
with one another. The values of the C statistic vary between 0 and 2, where 

than 1 indicate evidence of positive spatial autocorrelation, and values 
between 1 and 2 indicate evidence of negative spatial autocorrelation. 

2.2.2 Local Clustering Test 

This method can provide definitive information on the specific location 
of clusters derived from local autocorrelation indices to evaluate clustering 
trends of an interested variable or factor, particularly under the condition 
with unidentified source of the infection, by determining whether the data 

 

 

values equal to 1 represent spatial independence for each point, values less 

used as the screening tool for clusters in global testing. It is generally used to 

10. Surveillance and Epidemiology of Infectious Diseases 
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are spatially similar or different at that specific area/site [16]. Practically, 
public health personnel can use this method to define the risk areas of a 

of dengue in 2002 in Taiwan was fast spreading. First, we investigated 
whether clustering occurred using the “global cluster” test. Then, the 
boundary between Kaohsiung City and Kaohsiung County was identified by 
“local cluster” test, and prevention and control efforts were immediately 
implemented. In infectious disease epidemiology, the local clustering test is 
very useful in investigating not only the source of the infection but also 
potentially unidentified risk areas that might facilitate subsequent diffusion 
and further spread of cases. 

Satscan is a point-based test for local clustering whereas Local Indicator 
of Spatial Autocorrelation (LISA) is an area-based test for local clustering. 
Both methods are very frequently used. LISA divides the significant areas 
into four categories: (1) high-high for central area is high and neighboring 
area is also high, (2) high-low, (3) low-high and (4) low-low. The other area-
type data local test is Gi and its calculation is quite simple. High Gi value 

value indicates the existence of cluster in low Gi value areas, similar to high-
high and low-low areas in LISA, but it does not involve the other two 
categories in the LISA method. 

Scan Statistic 

Spatial scan method, initially used to detect clusters in cancer epi-
demiology [17], has been applied to infectious diseases since 2000, such as 
bovine tuberculosis in Argentina, Toxoplasmosis in Southeast Asia, West 
Nile encephalitis in the United States, and human granulocytic ehrlichiosis 
near Lyme disease in Connecticut [18, 19]. The spatial scan can handle both 
point and area types of data, and it takes the central point of each polygon of 
the area-type data to be calculated. Nowadays, Satscan, which uses a circular 
window (circle centroid) to scan the entire study area to calculate the 
likelihood ratio, has become the most popular tool to detect diseases clusters. 
For any given location of the centroid, the radius of the screened window is 
continuously changed to take any value between zero to a certain upper 
limit. 

The size of the circular window changes until the predefined population 
is screened. The maximum size of this circular window in the tested area has 
to be less than 1/2 of the target population to get a meaningful likelihood 
ratio in comparison with those in other areas and to avoid the overlap areas 
as well. After scanning the whole area, the area of the maximum likelihood 
ratio with statistical significance, so-called “clustering area,” will be obtained. 

disease for further prevention and control efforts. For example, the epidemic 

represents the presence of clusters in high Gi value areas whereas low Gi 
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Local Indicator of Spatial Autocorrelation 

In many studies, the LISA method has frequently served as the spatial 
risk index to identify both significant spatial clusters and outliers [22]. Spatial 

opposite to its neighboring areas. The definition of a LISA index is: 

1
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where I(i) = the LISA index for region i, Wij = the proximity of region i to 
region j, where a value of 1 means the region i is next to the region j, and a 
value of 0 means the region i is far away from the region j, Xi = the value for 
the tested variable in region i, Xj = the value for the tested variable in region 
j, X  = the mean value of the tested variable, δ = the standard deviation of 
Xi, and n = the total number of regions to be tested. 

A positive l(i) value of the LISA index designates that a region and its 

area-specific cases of an interested infectious disease in the tested region and 
its neighboring areas approach homogeneity. In contrast, a negative l(i) 
value, which tends toward the opposite values between Xi and Xj (i.e., 
Xi = high, Xj = low or vice versa), specifies that the spatial dependency is 
negative, thereby suggesting that the region is a spatial outlier in relation to 
neighboring regions. In general, a Monte Carlo statistical test is used to 
evaluate the significance of spatial clusters and outliers [23]. Using LISA 
index values, risk areas of any infectious disease, such as dengue in southern 
Taiwan, have been classified into several different risk levels for implementing 
various control strategies to counteract outbreaks [24]. 

GAM and Besag and Newell Tests 

The other two local clustering methods for pointed data are geographical 
analysis machine (GAM) and Besag and Newell tests. GAM is to test 
whether there is a statistically significant high disease rate by comparing 
each circle of the studied area with various radius values. The Besag and 
Newell test assumes that k is the minimum case number of the clustering 
area and then uses each case as a center to look for k-1 cases regarded as a 
cluster. In this way, the lacking neighboring cases force the investigator to 

However, the circular window in the spatial scan method is not the natural 

outliers present particular areas that have values of the tested variable 

[21] have been developed recently. 
shape of most clusters. Therefore, an ellipse shape [20] and irregular shape

neighboring areas tend toward local spatial dependency. In other words, 

10. Surveillance and Epidemiology of Infectious Diseases 
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look for further areas so that the case number divided by larger searching 
area becomes a smaller value implying “cases without cluster.” Both of these 
two methods result in the overlaps of sub-clusters (circles with different 
radius values or different k-1 cases), in which case the GAM method offers 
higher repetition without independence that may provide more false positives. 

2.2.3 Focused Clustering Test 

The “focused clustering” test is to assess the clustering of the observed 
cases around a fixed point – the smallest scope that is different from “general 
clustering” or “local clustering” without having any prior information on the 
centre of clustering. Therefore, this test has been used to investigate raised 
incidence of disease, particularly the rare disease or the beginning period of 
an outbreak of infectious disease, in the vicinity of pre-specified putative 
sources of increased risk. In addition, the focused clustering method is 
applied to detect whether there is an excess risk or a cluster of cases of a 
disease around a putative source of the infection [25]. Stone’s test [26] is a 
very popular method used in testing “focused clustering” since it is based on 
traditional epidemiological estimates after adjusting the important confounders – 
standardized mortality ratio (SMR) or standardized incidence ratio (SIR). 

The following summary Table 10-1 helps readers to firstly assess which 
type of spatial data – pointed format or area format – are collected. Then, 
global clustering tests can be employed to examine the presence of clusters 
or not. If the answer is “yes,” subsequent local clustering tests will be 
followed to indicate the exact location of the case clustering areas. All these 
methods can be found in GIS software or free statistic test R packages.3 
Different statistic tests using the same datasets can also be simultaneously 
compared and evaluated to find out which one offers the best power. In 
general, spatial scan statistic has good power in detecting hot spot clusters. 

2.3 Spatial and Temporal Clustering Methods 

In addition to a spatial clustering method, temporal factors must also be 
taken into consideration. Analysis of spatial clustering data is quite similar to 
the data analysis in cross-sectional study design in epidemiology. When the 
distribution of the cumulative cases is displayed, it only explains the results 
of the overall pattern without definite conclusions on causal inference. Once 

                                                 

 

3 The R Package for Multidimensional and Spatial Analysis: This is a group of programs 
(Macintosh and VAX/VMS) that allows public health data analyzer to perform with ease 
various complex multidimensional and spatial analysis procedures (http://www.r-project.org). 

http://www.r-project.org
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the temporal factors are included into the analysis, the results can clearly 
show the different waves of the epidemics, the transmission patterns, and 
possible risk factors that are involved in different time periods. Then, the three 
most important epidemiologic characteristics – person, place and time – can 
be simultaneously integrated to obtain more insights than each characteristic 
alone. Here we briefly introduce two methods, namely Knox method and the 
space-time scan statistic, which integrate spatial and temporal factors. 

2.3.1 Knox Method 

The Knox method is to test for space-time interactions, particularly when 
there are different impacts of time factor on the studied population in various 
regions [27, 28]. The time and geographical location of each case is obtained. 
For each possible pair of cases, the distances between them are also 
calculated in time and space. If many of the cases that are “close” in time are 
also “close” in space or vice versa, then there is a space-time interaction. 
Users can predefine how close the time period and the geographical distance 
are to one another of those studied cases in temporal and spatial units, based 
on their research questions. Then for each space-time combination, expected 
values will be calculated by a 2 × 2 contingency table [29]. Cases are 
assumed to be rare, independent events, distributed as a Poisson variable. 
The significance of the departure of the observed number of close pairs (O) 
from the expected number (E) is tested using d, where: 

)(
)(

OVar
EOd −

=
 

The Knox test is attractive in epidemiologic data analysis because it is 
simple and straightforward to calculate the test statistic without requiring the 
knowledge of controls. However, the Knox test can be biased if the population 
growth is not constant for different geographical areas (e.g., distribution does 
not meet Poisson distribution). For detecting an “early” outbreak of infectious 
disease, such bias is not a major problem to be considered. 

2.3.2 Space-Time Scan Statistic 

Space-Time Scan Statistic [16], an improved version of the purely spatial 
scan method, is defined by a cylindrical window with a circular geographic 
base and with height corresponding to time. The base will vary the radius 
continuously. The height reflects any possible time interval of less than or 
equal to half the total study period. The likelihood in each cylinder will be 

A d value greater than 1.96 indicates that there is a statistically significant 
cluster at p-value 0.05. 

10. Surveillance and Epidemiology of Infectious Diseases 
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calculated. Using the cylinder with the maximum likelihood, and then 
selecting the tempo-spatial one with more than its expected number of cases, 

Comparing the Knox and space-time distance methods, the Knox method 
categorizes the individual case’s space-time distance into several groups and 

The space-time scan statistic, a purely spatial scan, uses the cylinder as the 
scanning window and the height is time. It scans over the study area by the 
different radii of the base to calculate the observed values in different areas. 
The expected value can be calculated by Monte Carlo simulation. Finally, 
the question on tempo-spatial clusters can be tested to determine whether the 
observed value exceeds the expected value. For example, if point data of 
individual cases from outbreaks of infectious diseases such as dengue or 
enterovirus-related cases are available, the Knox method is very suitable to 
apply. Alternatively, when an overall incidence or prevalence rate from 
different geographical regions rather than individual case data is available, 
the space-time scan method is more appropriate to use. 

CASE STUDIES USING SPATIAL CLUSTERING 
METHODS IN INFECTIOUS DISEASE 
EPIDEMIOLOGY 

The following sections introduce the application of the above spatial and 
spatio-temporal methods to infectious diseases with public health significance, 
including respiratory spread, gastrointestinal-related (GI) transmission, vector-
borne transmission, zoonotic and emerging infectious diseases. 

3.1 Respiratory Spread 

increasing cases of acquired immunodeficiency syndrome (AIDS) and multi-
drug resistant tubercle bacilli. The incidence rate of TB in the Fukuoka 
Prefecture urban area of Japan (Figure 10-3a) in 2001 was higher than that of 
the nationwide data. Using local cluster tests for pointed data by spatial scan 
statistics and spatial-temporal scan statistics, the spatial analysis alone 
identified TB clusters in different geographical areas of Japan that occurred 
in different years (Figure 10-3b), including: (1) Chikuho coal mining area in 
1999, 2002, 2003 and 2004, (2) Kita-Kyushu industrial area in 2000, and 
(3) Fukuoka urban area in 2001 [30]. However, using the space-time analysis, 
the most likely clusters were found in the Kita-Kyushu industrial area in 

3. 

Epidemics of tuberculosis (TB) have reemerged in recent years due to the 

distance between the cases is determined by the user-based research questions. 
then uses a test similar to the Chi-square test. The temporal and spatial

is denotes the most likely cluster. 
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Kyushu industrial area in 2000 before the occurrence of other spatial clusters 
from 2002 to 2004. Further analysis found that the occurrence of TB in the 
clusters located in northern Fukuoka Prefecture in 2000 were also significantly 
higher than those clusters identified in other years. In conclusion, spatial 
method alone can be used to evaluate the cluster cases in each year whereas 

within a specific time period and their dynamic changes over different time 
periods and places as well. 

 
 

 
 

 

 
Figure 10-3. (a)The Space-time Analysis detected clusters of TB cases in Kita-Kyushu 
industrial area located in the northern Fukuoka Prefecture during 1999~2004, based on the 
historical data from 1999 to 2004 [30]. (b) Locations of the clusters of TB cases detected in 
Fukuoka Prefecture from 1999 to 2004, based on a purely spatial analysis [30]. 

2000. In other words, clusters of cases had already appeared in the Kita-

spatial-temporal methods can be applied to find out where cluster cases are 
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3.2 GI-Related Transmission 

Giardia lamblia is the most frequently identified human intestinal proto-
zoa in Canada with an estimated prevalence of 4–10%. The spatial scan 
statistic was used to identify local spatial clusters of those cases with pointed 
data, to measure the possible “rural” effect from the distribution of the giardiasis 
and to explore the associations between the area-specific giardiasis rates and 
the manure application on agricultural land and livestock density [31]. Finally, 
giardiasis clusters in southern Ontario were identified (Figure 10-4a). How-
ever, neither livestock density (Figure 10-4b) nor manure application on agri-
cultural land plays an important role in the epidemiology of giardiasis there. 

 

 
Figure 10-4. (a) Spatial distribution of giardiasis with significant high rate of giardiasis 
clusters located in southern Ontario during 1990–1998, (b) Spatial distribution of cattle 
density in southern Ontario[31]. 

3.3 Vector-Borne Transmission: Dengue as an Example 

To retrospectively detect spatio-temporal dengue clusters at patients’ 
homes (point-type data) in Iracoubo, French Guiana and the disease onset 
dates during 2001 [32], GIS integrated with the Knox method was employed. 
Heterogeneity in the variations of relative risk (RR) in space and time was 
found to be associated with mosquito factors, including mosquito feeding 
cycle, host-seeking behavior, and life span of mosquitoes. Particularly, 
higher RR values were more likely to be identified in the time periods and 
areas with shorter temporal and spatial distances (Figure 10-5a) and more 
clear suspected/confirmed dengue clusters were detected in shorter time 
distances (Figure 10-5b). In addition, confirmed dengue cases showed 
more clear higher risk (in red color) than suspected dengue cases, illustrating 
the importance of laboratory diagnosis. The cluster analysis also proved that 
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the probability of observing a dengue case outside of 100 m around the dengue 
foci, a distance measured to correspond to a statistical threshold, was low. 
However, this threshold could vary if the case numbers increased with the 
improved surveillance system. By contrast, Taiwan’s GIS analysis of con-
firmed dengue cases showed that the relocation diffusion occurred more 
frequently as the duration of the epidemic wave in that epidemic site became 
longer [33]. In other words, spatial limit of transmission, expanding distribution 
of mosquito vectors even after control efforts, and dynamic changes in 
populations at risk (e.g., susceptible) can be obtained more precisely once 
integrated temporal and spatial data are simultaneously analyzed. The 

 
 

 
 

 

 
 

Iracoubo, French Guiana during 2001, when space-distance and time-distance from the first 

area for dengue fever (within 100 m and 30 days boundaries), derived from both the laboratory- 

Figure 10-5. (a) The relative risk (RR) calculated from the confirmed dengue cases in 

cases (B) in Iracoubo, French Guiana. Vertical dark

situation might be even more complicated for malaria, which involves  

positive dengue cases (A) and all suspected 
periodicity, and horizontal dark lines correspond to apparentlines indicate an apparent temporal 

spatial breaks [32]. 

index suspected dengue case varied from 0 to 500 m and from 0 to 60 days, respectively. Color
areas indicated their RR values significantly greater than 1 (p < 0.001) [32]. (b) Main risk
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different species of mosquitoes and their variations in ecology [34], and for 
yellow fever, in which the immunity following vaccination means public 
health officials need to consider the “population at risk” as well as naturally 
acquired infection [35]. 

3.4 Zoonosis: Rabies as an Example 

Zoonotic diseases involve the ecology of infectious diseases while animals 
in nature are sick. Therefore, the surveillance of zoonosis must start from the 

 
 

 
 

 

 

terrestrial rabies virus variants – defined by monoclonal antibody typing [36]. (b) The 

of both animals and humans. Solid arrow (Right) indicates the geographical distribution of

Figure 10-6. (a) Reservoirs for Rabies Virus in the United States. Geographic distribution of 

“positive” rabies identified by laboratory diagnosis. Dashed arrow (Left) indicates reported cases

distribution of rabies in the USA, using complete web-based easily updated rabies RabID data 

with the samples tested as “negative” for rabies [36]. 

targeted animal population, its ecological niche and possible associated  
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environmental factors [4]. Particularly, a disease such as rabies would lead to 
higher case fatality rates if proper treatment and control were not implemented 
in a timely manner. Therefore, a GIS web-based platform for the surveillance 
of rabies named “RabID” was set up to rapidly map the animal rabies cases, 
to track the rabies reservoir and then to disseminate this information for public 
education at the US-CDC [36]. Several geographically discrete terrestrial 
wildlife reservoirs were identified (Figure 10-6a). In addition, real-time and 
web information on the type of animals infected and associated genotypes 
and strains of rabies virus identified by monoclonal antibodies have been 
shared among local animal and public health personnel across various geo-
graphical areas. This information will certainly facilitate the timely manage-
ment of rabies control (Figure 10-6a and b). In other words, GIS information 
with integrated spatial epidemiologic characteristics is very useful for prevention 
and control on zoonotic or vector-borne infectious diseases, from public health 
planning to implementation and evaluation of the effectiveness of control. 

3.5 EID: Avian Influenza as an Example 

Avian influenza has been an increasing public health threat since the 
cross-country spread during 2003–2004. Between October 2005 and June 
2006, 161 outbreaks of highly pathogenic avian influenza (HPAI) H5N1 
occurred in poultry villages of Romania [37]. Using two combined temporal 
and geostatistical methods, Anselin’s local indicator of spatial autocorrelation 
statistics (LISA) for area-type data and space-time permutation scan statistic 
for point-type data, the clusters of H5N1 were identified. The former method 
focuses only on spatial clusters and the latter method simultaneously con-
siders temporal and spatial clusters. The space-time permutation scan statistic 
method is particularly useful in infectious diseases with shorter incubation 
period but closely associated with large-scope ecology and also in those 
situations where the numbers of populations at risk is unknown in syndromic 
surveillance [18]. The results found that the locations of the clusters were 
different by using the two different cluster algorithms (Figure 10-7a and b). 
The origin, evolution and increasing spread of the epidemic can be grasped 
more clearly. The outbreak first appeared in the region of the Danube River 
Delta by the introduction of the virus, implying the importance of landscape 
epidemiology. Then, the movement of poultry might facilitate its further 
spread to central Romania the next year. Using the spatio-temporal methods, 
the progression of the outbreak from a confined, local epidemic extended to 
a large, nationwide epidemic can be fully understood. Such efforts are very 
helpful to minimize the spread of the next H5N1 epidemic in other countries 
and the future global spread of HPAI H5N1 viruses. 
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Figure 10-7. (a) One cluster (open circle) of HPAI subtype H5N1 and the villages with 
outbreaks (filled circle) in Romania, October 2005–June 2006, were identified by the local 

subtype H5N1 and the villages with outbreaks (filled circle) in Romania, October 2005–June 

 
To summarize the analysis of temporal and spatial clusters for infectious 

diseases with different modes of transmission, both the transmissibility and 
pathogenicity of the microbial agents are the key factors to determine the 
best method to be selected. For the diseases with high transmissibility and 
high pathogenicity, the rapidly cross-geographical spread shown by a cross-
sectional map with the appearance of cases might indicate an emerging 
infectious disease which needs to use integrated spatio-temporal clustering 
methods for further data analysis. For the diseases with low transmissibility 

indicator of spatial autocorrelation statistic [37]. (b) Three clusters (open circle) of HPAI 

2006, were identified by the space-time permutation scan statistic [37]. 
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and high pathogenicity, the spatial clustering method can capture the distribution 
of the cases. For the diseases with high transmissibility and low patho-
genicity, temporal clustering methods would need to be used to obtain warning 
signals as early as possible. 

Until now, we have not had the perfect method to detect all kinds of 
clusters. Due to the unknown clustering pattern, it is better to use more than 
two methods to cross-validate the clusters before drawing a final conclusion. 

4. CONCLUSIONS, LIMITATIONS AND FUTURE 
DIRECTIONS 

4.1 What We Have Learned in the Past 

Spatial and temporal clustering methods have been applied to prevention 
and control measures of infectious diseases, from improving surveillance 
systems, real-time integrating of clinical, microbiologic, environmental and 
epidemiologic data, to understanding the epidemiologic characteristics of 
infectious diseases and evaluating the effectiveness of control measures. 

In routine surveillance systems, the algorithms such as CUSUM, ARIMA 
and Satscan have been widely used in different surveillance systems to detect 
early abnormal signals. The sensitivity and specificity of the algorithms for 
aberration detection need to be evaluated by each algorithm using different 
datasets. In general, the incorporation and integration of several different 
algorithms to complement each other can help to verify the occurrence of an 
outbreak. 

For those infectious diseases with high communicability such as measles, 
smallpox or a disease with a high case fatality rate such as rabies, Ebola 
hemorrhagic fever and highly pathogenic avian influenza H5N1, or a disease 
with fast transmissibility such as the 2009 swine-origin H1N1 in human 
populations, the real-time integration of clinical, microbiologic, environmental 
and epidemiologic data is crucially important to increase the efficiency and 
accuracy of surveillance. Spatio-temporal analysis of the updated confirmed 
cases is frequently compared with that of the reported suspected cases for 
investigating how the epidemic expands rapidly and where analysis can be 
further improved. These analytic results can then provide positive feedback 
to improve the surveillance system and can also point out those high risk 
areas in need of more attention. 

In the analysis of epidemiologic data of an infectious disease, spatial and 
temporal clustering algorithms can be applied after collecting the spatial 
information using GPSs of geo-coded addresses of the studied cases and their 
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exposure sites. Through fully understanding the epidemiologic characteristics 
of the outbreak disease, the specific prevention and control strategies can 
be formulated based on scientific data. This is most important for emerging 
infectious diseases when the etiologic agent is not known, such as the cross-
country outbreak of severe acute respiratory syndrome (SARS) in 2003. For 
example, the modes of transmission, the time period that is most communic-

4.2 Limitations of GIS Studies and Unsolved Problems 

Several limitations of GIS studies need to be improved including data 
collection, quality of data to statistical methods and interpretation of the data. 

4.2.1 Data Collection and Quality of GIS Data 

In data collection, timely data and “modifiable area unit problem” (MAUP) – 
similar to ecological fallacies in epidemiology – are the two major barriers. 
Available timely data are important to fast-spreading infectious diseases 
such as most respiratory infections. In addition, the high quality of GIS data 
is another limitation in many developing countries. By contrast, those pointed 
address data of cases related to privacy are generally inaccessible in developed 
countries. Most importantly, for infectious diseases involving higher social 
stigma or patients’ private life such as tuberculosis, sexual transmitted disease 
(STD) or AIDS, the pointed data for spatial cluster analysis will be very 
difficult to obtain. Then, the problem of spatial precision or polygon data 
will make it very hard to investigate the evolution of the outbreak by time 
and place simultaneously or to search for interesting hypotheses. Since most 
public health systems are governed by local departments, it is very likely 
those surveillance data are frequently aggregated into administrative units. 
Unfortunately, different densities and distribution patterns of disease, such as 
cholera in Figure 10-8, exhibited from different aggregated administration  

unclear at the initial stage of disease outbreaks [38]. The subsequent cases 
after the introduction of prevention and/or control measures can also be 
carefully evaluated to verify the most effective strategy, using time-based 
integrated surveillance data. The visualized dynamic distributions of cases in 
various time periods and places at different levels of the public health system, 
from local, state/provincial to national and international, can be presented to 
generate hypotheses and to verify the success of containing the outbreak for 
decision-makers. Most importantly, evidence of spatial clustering along with 
other epidemiological findings and laboratory tests may indicate a possible 
infectious etiology for emerging infectious disease, similar to Epstein Barr 
virus for Hodgkin’s disease [39]. 

able, and the spatial patterns of the cases with different social contacts are 
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Figure 10-8. Different density maps and distribution patterns of cholera are shown by using 
different aggregative levels [40]. 
 

appropriate spatial units related to possible hypotheses at the initial stage of 
data collection. 

4.2.2 Limitations in Statistical Methods and Interpretation of Data 

Several unsolved statistical methods include too small value of relative 
risk to be detected, multiple covariate adjustment in spatial analysis, and 

among study areas was lower than 1.5, the sensitivity of the detecting clusters 
dropped dramatically. However, the specificity can still keep a high perform-

should be low. Then, the false negative might be high. Under this circumstance, 
it is better to take specimens for laboratory diagnosis to increase the specificity. 
In addition, the demographic variables such as age structure and gender ratio 
are the frequently encountered confounding variables and other basic covariates 
should be adjusted for the risk. In dealing with fast-spreading infectious 

gathering, and better statistical power all must be considered. 

boundaries [40]. Therefore, researchers need to think about the most 

diseases, higher precision of the temporal and spatial units, real-time data 

better prediction during the occurrence of fast dynamic changes of cases in 

ance level (above 95%). For an infectious disease with low pathogenicity, the 

time and place. According to a simulated study [41], when the relative risk 

relative risk is almost close to l and the sensitivity of the clustering algorithm 
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4.3 Future Directions 

Many challenges of infectious diseases are common in different countries, 
including the impact of global warming on infectious diseases, emergency 
responses to EID, timely collection, and interchanges of high quality data to 
develop better control strategies. All these related issues need international 
collaboration. From our experiences, future global needs will involve flexible 
cluster methods to analyze irregular clusters, adjustment for personal risk 
factors, and application of Bayesian approaches to disease mapping and 
better prediction. 

4.3.1 

Due to the natural barriers and the movement of humans, hosts and the 

algorithm intends to enhance the performance of detecting true clusters, 
flexibility of the shape will be needed. Risk-adjusted Nearest Neighbor 

ellipse shape Satscan [20] are all used to solve the problem of detecting 
clusters with irregular shape. 

4.3.2 Adjustment for Personal Risk Factors 

All ecologic data may involve the possible risk of “ecologic fallacy,” and 
particularly the aggregated data might involve too many risk factors together. 

4.3.3 Bayesian Method for Better Prediction [43] 

Bayesian hierarchical spatial models have become widespread in disease 

vectors, the realistic shapes of clusters in most situations are irregular. If the 

Flexibility of the Cluster Method in Detecting Irregular Clusters 

algorithms, incorporating the data of important risk factors such as age, gender,

Hierarchical clustering (RNNH), Support Vector Machine (SVM) [42], and 

use posterior distribution of space–time interactions for predictions, information

Detailed information is always difficult to collect through routine surveillance. 

over space and time must be applied to estimate typical patterns for each area.

ten covariates, would need to be adjusted using Satscan 8.0. In clustering 

Based on the extension of the Bayesian hierarchical models, the problems 

mapping and ecologic studies of health-environment associations. In order to

in detecting small numbers of events, particularly a small incidence of cases

In general, the demographic information such as age and gender, as total of 

in the early wave of an outbreak, may soon be overcome in the future.

occupation into analyses will help figure out the epidemiological conditions to
form clusters.
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QUESTIONS FOR DISCUSSION 

2. Are there any differences in using spatio-temporal analysis methods to 
analyze the data of an acute infectious disease versus a chronic disease? 

3. Do you agree that the irregular clustering shapes and Bayesian model 
may enhance the capability to detect the true clusters? 

4. Real-time syndromic surveillance is important for the early detection of 
abnormal events. Which clustering methods would you use to detect an 
early outbreak in a real-time manner? 

REFERENCES 

1. Elliott P, Wartenberg D: Spatial epidemiology: current approaches and future challenges. 
Environmental health perspectives 2004, 112(9):998–1006. 

2. Spatial epidemiology [http://en.wikipedia.org/wiki/Spatial_epidemiology]. 
3. Gesler W: The uses of spatial analysis in medical geography: a review. Social science & 

medicine (1982) 1986, 23(10):963–973. 
4. Peterson AT: Ecologic niche modeling and spatial patterns of disease transmission. 

Emerging infectious diseases 2006, 12(12):1822–1826. 
5. Ali M, Emch M, Donnay JP, Yunus M, Sack RB: Identifying environmental risk factors 

for endemic cholera: a raster GIS approach. Health & place 2002, 8(3):201–210. 
6. Teutsch SM, Churchill RE: Principles and Practice of Public Health Surveillance, 2nd 

Edn. New York, NY: Oxford University Press; 2000. 

1. How can different clustering methods be applied to infectious diseases 

of California at Berkeley and on GIS and spatial statistics by Dr. Tzai-Hung 

with various modes of transmission? 

10. Surveillance and Epidemiology of Infectious Diseases 

http://en.wikipedia.org/wiki/Spatial_epidemiology


232 Chapter 10
 

 

7. Pascutto C, Wakefield JC, Best NG, Richardson S, Bernardinelli L, Staines A, Elliott P: 
Statistical issues in the analysis of disease mapping data. Statistics in medicine 2000, 
19(17–18):2493–2519. 

8. Wu TS, Shih FY, Yen MY, Wu JS, Lu SW, Chang KC, Hsiung C, Chou JH, Chu YT, 
Chang H et al: Establishing a nationwide emergency department-based syndromic 
surveillance system for better public health responses in Taiwan. BMC public health 
[electronic resource] 2008, 8:18. 

9. Jackson ML, Baer A, Painter I, Duchin J: A simulation study comparing aberration 
detection algorithms for syndromic surveillance. BMC medical informatics and decision 
making [electronic resource] 2007, 7:6. 

10. Hutwagner L, Browne T, Seeman GM, Fleischauer AT: Comparing aberration detection 
methods with simulated data. Emerging infectious diseases 2005, 11(2):314–316. 

11. Stroup DF, Williamson GD, Herndon JL, Karon JM: Detection of aberrations in the 
occurrence of notifiable diseases surveillance data. Statistics in medicine 1989, 8(3):323–
329; discussion 331–322. 

12. Stroup DF, Wharton M, Kafadar K, Dean AG: Evaluation of a method for detecting 
aberrations in public health surveillance data. American journal of epidemiology 1993, 
137(3):373–380. 

13. Williams SM, Parry BR, Schlup MM: Quality control: an application of the cusum. BMJ 
(Clinical research ed.) 1992, 304(6838):1359–1361. 

14. Longley PA, Goodchild MF, Maguire DJ, Rhind DW: Geographic Information System 
and Science. England: John Wiley & Sons, Ltd; 2001. 

15. Kulldorff M: Statistical methods for spatial epidemiology: Tests for randomness. GIS 
and Health 1998. 

16. Kulldorff M, Athas WF, Feurer EJ, Miller BA, Key CR: Evaluating cluster alarms: a 
space-time scan statistic and brain cancer in Los Alamos, New Mexico. American 
journal of public health 1998, 88(9):1377–1380. 

17. Kulldorff M, Nagarwalla N: Spatial disease clusters: detection and inference. Statistics in 
medicine 1995, 14(8):799–810. 

18. Kulldorff M, Heffernan R, Hartman J, Assuncao R, Mostashari F: A space-time 
permutation scan statistic for disease outbreak detection. PLoS medicine 2005, 2(3):e59. 

19. Kleinman KP, Abrams AM, Kulldorff M, Platt R: A model-adjusted space-time scan 
statistic with an application to syndromic surveillance. Epidemiology and infection 2005, 
133(3):409–419. 

20. Kulldorff M, Huang L, Pickle L, Duczmal L: An elliptic spatial scan statistic. Statistics 
in medicine 2006, 25(22):3929–3943. 

21. Tango T, Takahashi K: A flexibly shaped spatial scan statistic for detecting clusters. 
International journal of health geographics [electronic resource] 2005, 4:11. 

22. Anselin L: Local indicators of spatial association – LISA. Geographical Analysis 1995, 
27:93–116. 

23. Kelsall JE, Diggle PJ: Non-parametric estimation of spatial variation in relative risk. 
Statistics in medicine 1995, 14(21–22):2335–2342. 

24. Wen TH, Lin NH, Lin CH, King CC, Su MD: Spatial mapping of temporal risk 
characteristics to improve environmental health risk identification: a case study of a 
dengue epidemic in Taiwan. The Science of the total environment 2006, 367(2–3):631–
640. 

25. Tango T: Score tests for detecting excess risks around putative sources. Statistics in 
medicine 2002, 21(4):497–514. 



233

 

26. Stone R: Investigation of excess environmental risks around putative sources: statistical 
problems and a proposed test. Statistics in medicine 1988, 7:649–660. 

27. Knox G: The detection of space-time interactions. Applied Statistics 1964, 13:25–29. 
28. Pike MC, Smith PG: Disease clustering: a generalization of Knox’s approach to the 

detection of space-time interactions. Biometrics 1968, 24(3):541–556. 
29. Gilman EA, McNally RJ, Cartwright RA: Space-time clustering of acute lymphoblastic 

leukaemia in parts of the U.K. (1984–1993). European Journal of Cancer 1999, 
35(1):91–96. 

30. Onozuka D, Hagihara A: Geographic prediction of tuberculosis clusters in Fukuoka, 
Japan, using the space-time scan statistic. BMC infectious diseases [electronic resource] 
2007, 7:26. 

31. Odoi A, Martin SW, Michel P, Middleton D, Holt J, Wilson J: Investigation of clusters 
of giardiasis using GIS and a spatial scan statistic. International journal of health 
geographics [electronic resource] 2004, 3(1):11. 

32. Tran A, Deparis X, Dussart P, Morvan J, Rabarison P, Remy F, Polidori L, Gardon J: 
Dengue spatial and temporal patterns, French Guiana, 2001. Emerging infectious 
diseases 2004, 10(4):615–621. 

33. Kan CC, Lee PF, Wen TH, Chao DY, Wu MN, Lin NH, Huang SY, Shang CS, Fan IC, 
Shu PY, Huang JH, Pai L, King CC: Two clustering diffusion patterns identified from 
the 2001–2003 dengue epidemics, Kaohsiung, Taiwan. The American journal of tropical 
medicine and hygiene 2008, 79(3):344–352. 

34. Guerra CA, Snow RW, Hay SI: Defining the Global Spatial Limits of Malaria 
Transmission in 2005. In: Global Mapping of Infectious Diseases – Methods, Examples, 
and Emerging Applications. Edited by Hay SI, Graham A, Rogers DJ. Oxford, United 
Kingdom: Academic Press; 2007. 

35. Rogers DJ, Wilson AJ, Hay SI, Graham AJ: The Global Distribution of Yellow Fever 
and Dengue. In: Global Mapping of Infectious Diseases – Methods, Examples, and 
Emerging Applications. Edited by Hay SI, Graham A, Rogers DJ. Oxford, United 
Kingdom: Academic Press; 2007. 

36. Blanton JD, Manangan A, Manangan J, Hanlon CA, Slate D, Rupprecht CE: 
Development of a GIS-based, real-time internet mapping tool for rabies surveillance. 
International journal of health geographics 2006, 5:47. 

37. Ward MP, Maftei D, Apostu C, Suru A: Geostatistical visualisation and spatial statistics 
for evaluation of the dispersion of epidemic highly pathogenic avian influenza subtype 
H5N1. Veterinary research 2008, 39(3):22. 

38. Chen Y-D, Tseng C, King CC, Wu TSJ, Chen H: Incorporating Geographical Contacts 
into Social Network Analysis for Contact Tracing in Epidemiology: A Study on Taiwan 
SARS Data. In: Intelligence and Security Informatics: Biosurveillance. Edited by Zeng 
D, Gotham I, Komatsu K, Lynch C, Thurmond M, Madigan D, Lober B, Kvach J, Chen 
H. Heiderberg, Germany: Springer-Verlag; 2007. 

39. Alexander FE, Williams J, McKinney PA, Ricketts TJ, Cartwright RA: A specialist 
leukaemia/lymphoma registry in the UK. Part 2: Clustering of Hodgkin’s disease. British 
journal of cancer 1989, 60(6):948–952. 

40. Koch T: Cartographies of Disease: Maps, Mapping, and Medicine. Redlands, CA: ESRI 
Press; 2005. 

41. Aamodt G, Samuelsen SO, Skrondal A: A simulation study of three methods for 
detecting disease clusters. International journal of health geographics [electronic resource] 
2006, 5:15. 

10. Surveillance and Epidemiology of Infectious Diseases 



234 Chapter 10
 
42. Zeng D, Chen H, Lynch C, Eidson M, Gotham I: Infectious Disease Informatics and 

Outbreak Detection. In: Medical Informatics: Knowledge Management and Data Mining 
in Biomedicine. Edited by Chen H, Fuller SS. New York: Springer; 2005. 

43. Abellan JJ, Richardson S, Best N: Use of space-time models to investigate the stability 
of patterns of disease. Environmental health perspectives 2008, 116(8):1111–1119. 

SUGGESTED READING 

1. International Journal of Health Geographics, http://www.ij-healthgeographics.com 
2. Waller LA, Gotway CA: Applied Spatial Statistics for Public Health Data. Hoboken, NJ: 

John Wiley & Sons, 2004. 
3. Lawson AB: Statistical Methods in Spatial Epidemiology, 2nd Edn. Hoboken, NJ: Wiley, 

2006. 
4. Lawson AB: Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. 

Boca Raton: CRC Press, 2009. 

ONLINE RESOURCES 

Free Software: 
1. Epi Info, http://www.cdc.gov/epiinfo/downloads.htm 
2. Quantum GIS 0.9, http://download.qgis.org/downloads.rhtml 
3. R, http://www.r-project.org/ 
4. Satscan, http://www.satscan.org/download.html 
5. Geosurveillance, http://www.acsu.buffalo.edu/~rogerson/geosurv.htm 
6. Online Periodic Regression Models, http://www.u707.jussieu.fr/periodic_regression/. 
7. Geoda, http://geodacenter.asu.edu/ 

Free Maps: 
1. World Shapefile, http://www.cdc.gov/epiinfo/shape.htm 
2. Geography Network Explorer: http://www.geographynetwork.com/ 

 

http://www.ij-healthgeographics.com
http://www.cdc.gov/epiinfo/downloads.htm
http://download.qgis.org/downloads.rhtml
http://www.r-project.org
http://www.satscan.org/download.html
http://www.acsu.buffalo.edu/~rogerson/geosurv.htm
http://www.u707.jussieu.fr/periodic_regression
http://geodacenter.asu.edu
http://www.cdc.gov/epiinfo/shape.htm
http://www.geographynetwork.com


235 

Chapter 11 

AGE-ADJUSTMENT IN NATIONAL 
BIOSURVEILLANCE SYSTEMS 
A Survey of Issues and Analytical Tools for Age-Adjustment  
in Biosurveillance 

 and ELENA N. NAUMOVA  

CHAPTER OVERVIEW 

The practice of biosurveillance primarily involves measuring disease 
cases accurately and precisely in a given population. However, measuring 
the size and composition of the actual population at risk for the diseases 
under surveillance is just as important, particularly when the objective of 
surveillance is to measure rates of disease. The purpose of this chapter is 
to explore the issues pertaining to selection of the population denominator in 
population surveillance, with a particular focus on age and age-adjustment. 
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disease patterns. 

Keywords: Population dynamics; Surveillance; Age-adjustment; Age-period-cohort 
analysis; Standardization 

 

                                                 
 Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA 
 Tufts University Initiative for the Forecasting and Modeling of Infectious Diseases 

(InForMID), Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA 

© Springer Science+Business Media, LLC 2011 

D. Zeng et al. (eds.), Infectious Disease Informatics and Biosurveillance,
Integrated Series in Information Systems 27, DOI 10.1007/978-1-4419-6892-0_11,  

1

This chapter presents an overview of several data sources commonly avail-

2

STEVEN A. COHEN

of graphical and statistical tools to help assess and adjust for age effects in 

1,2 1,2



236 Chapter 11
 

INTRODUCTION 

1.1 Disease Surveillance 

Disease surveillance is one of the critical functions of local, state, regional, 
and national public health departments. The development and maintenance 
of health information systems that accurately and precisely collect surveillance 
data and disseminate this information to relevant parties serves as the foundation 
for nearly every aspect of public health programs and policies. Improved 
prediction and prevention of disease can result if epidemiologists, public 
health organizations, local, state, and federal government, and medical 
institutions work together to ensure that all diseases are properly reported 
and documented. Much of the resources, energy, and scope of disease 
surveillance are focused on accurately capturing all diseases that occur in the 
population being assessed, and rightfully so. However, the population of the 
United States is changing rapidly in terms of both size and composition. In 
order to correctly characterize disease in the US and its constituent parts, 
attention must be paid to properly estimate the population at risk, the 
denominator of the basic measures of epidemiology and surveillance: disease 
prevalence and incidence. There are numerous considerations to take into 
account when selecting the appropriate population denominator in surveillance. 
The remainder of this chapter outlines several of the important considerations 
of selecting a population denominator, with particular attention focused on 
the issue of age-adjustment in disease surveillance. 

1.2 Case Studies of Influenza: Age-Specificity Within 
Population Subgroups 

Few diseases affect the entire population with the same intensity. Many 
diseases disproportionately affect one or more population subgroups more 
than the rest of the population. For example, the age-specific mortality rate 
from pneumonia and influenza (P&I) deaths is nearly 100 times higher in 
people aged 65 and over (22.1/100,000 person-years) than for children under 
1 year old, the group having the second-highest influenza mortality rate 
(0.3/100,000 person-years). From 1990 through 1998, 90% of influenza-
associated deaths occurred among the population age 65 and older (Thompson 
et al., 2004). The following describes two specific case studies illustrating 
age differences in influenza patterns in two U.S. population subgroups. 

 
 

1.
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1.2.1 Influenza and Respiratory Infection Hospitalizations  
in Milwaukee, Wisconsin (1996–2006) 

On a smaller scale, age-specific disease patterns are discernible even within 
population subgroups such as children. In a study of respiratory disease 
surveillance in children, data were abstracted from a database of medical 
billing claims from Children’s Hospital of Wisconsin, located in Milwaukee, 
from 1996 to 2006. The objective of the study was to determine how age 
patterns of several respiratory diseases differed from that of influenza. The 
distribution of respiratory infections in the population 0–18 years of age in 
Wisconsin is shown in Figure 11-1. The risk of upper respiratory infection 
peaks at age one, and then, as is the case for many other diseases in young 
children, declines rapidly with age with the rate of decline decreasing as age 
increases. Age patterns of influenza are similar in shape to both total and 
upper respiratory infection patterns, except much lower in overall magnitude. 
To that end, there appears to be more uncertainty or variability in the average 
annual counts of influenza in this population, as the trend for influenza is 
less smooth than for respiratory infections. 
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Figure 11-1.  Average annual age-specific rates of respiratory infections and influenza in 
Wisconsin children (1996–2006) in a population of children from Children’s Hospital of 
Wisconsin. 
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1.2.2 Pneumonia and Influenza in the US Elderly (1991–2004) 

Although many diseases of early childhood peak in infancy and decrease 
with age in children, the opposite is true for many diseases in the elderly 
population. Disease incidence tends to increase with age in the older population, 
nearly exponentially, for some infections. To illustrate, approximately 14 
million P&I cases from hospitalization claim records were abstracted from 
the Centers for Medicare and Medicaid Services’ (CMS) surveillance data 
containing all Medicare-eligible hospitalizations in the United States from 
1991 through 2004. As of July 1, 2005, there were approximately 42.4 
million Medicare beneficiaries in the United States and its territories (The 
Henry Kaiser Family Foundation). To qualify for Medicare, a person must 
be a permanent resident of the United States. The person must be either age 
65 or above and eligible to receive Social Security benefits, or under age 65 
if already receiving Social Security benefits or if diagnosed with end-stage 
renal disease (Centers for Medicare and Medicaid Services). This case study 
focuses on the former: those age 65 and above. 

Pneumonia and influenza cases peak in the elderly population in the early 
1980s, yet because the population size decreases with increasing age, incidence 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11-2 . Average annual pneumonia and influenza hospitalization counts and rates 
(1998–2002) and population counts (2000) for the United States elderly (65+) (Source: 
Centers for Medicare and Medicaid Services). 

rates increase nearly exponentially as age increases (Figure 11-2). These and  
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other age trends in disease dynamics underscore the need to address age in 
population-based disease surveillance, particularly in the young and the elderly. 

1.3 Population Dynamics 

Population aging in the US results in both the numbers and proportions 
of people in the older age groups increasing. A few key forces are responsible 
for the aging of the population. First, in almost every developed nation, 
mortality has decreased markedly over the last century. In the U.S., this has 
resulted in life expectancies of 76.7 years for men and women combined in 
2000. Life expectancy is projected to increase to between 80.5 and 82.9 
years by 2050, with female life expectancy higher than that of males 
(Tuljapurkar et al., 2000). Decreasing mortality in older ages, coupled 
with a general decline in fertility (Bongaarts, 1998), has contributed to the 
“rectangularization” of the population (Cohen, 2003). This means that the 
population contains a relatively equal distribution of members in each age 
group, compared to other populations with higher fertility and mortality, 
where population size tends to decrease more sharply with age. 

The second major demographic change affecting the US population with 
substantial implications for disease patterns in the elderly is the population 
size entering the older age groups. The Baby Boomers, born in the two 
decades following World War II, will begin to turn 65 in 2011, and by 2030 
the number of people age 65 and over in the US is projected to be 71.5 
million, compared to just 35 million in 2000, which represents just over 20% of 
the projected population (US Census Bureau Population Projections Website). 

Population size and shape are of particular importance when describing 
infectious disease patterns in the population. The older population, as dis-
cussed above, is one of the population subgroups most detrimentally affected 
by morbidity and mortality from a variety of enteric diseases (Federal 
Interagency Forum on Aging-Related Statistics). Moreover, the oldest old 
are at particularly high risk of many infectious diseases. By 2050, persons 
age 85 and above are projected to represent 5% of the population, compared 
to just 1.5% in 2000, and the number of people in the US aged 85 and over is 
projected to be 21 million, compared to 4.1 million in 2000. For comparison, 
the youth dependency ratio (the ratio of persons less than 18 years of age to 
persons age 18–64), declined since the mid-century Baby Boom, and is 
projected to stabilize at approximately 40 youths per 100 working-age adults 
between now and 2040 (US Census Bureau Population Projections Website). 
Changes to the US population structure are of particular importance when 
considering that the two population subgroups that change in size and com-
position the most, the elderly and children, tend to be the same populations 
that experience the highest levels of disease. 
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DENOMINATOR DATA SOURCES 

In population-based disease surveillance, special attention should be paid 
to the proper selection of the population denominator to provide an accurate 
picture of the population at risk of the disease. The US Census Bureau is 
possibly the most cited source for population data used for studies of disease 
in the US. Caution should be exercised when using Census data as population 
data for disease surveillance, however. There are several issues the researcher 
should consider when doing so, including: 

2. 

1. Do the Census-based population counts cover the geographic 
population at risk? 

2. Does the time interval the population counts represent match that of 
the disease surveillance data? 

3. Do the Census population counts have the age breakdown (e.g., single 
year, 5 year age groups, etc…) to coincide with the disease counts? 

For example, in the literature related to influenza research, several 
longitudinal population-based studies have employed US Census estimates 
for individual intercensal years (Simonsen et al., 2005; Rizzo et al., 2006). 
However, in some longitudinal influenza studies, researchers examined un-
adjusted numbers of influenza cases over time, which does not account for 
population change that may have played a role in causing numbers of cases 
to increase or decrease over time (Simonsen et al., 2000). This is analogous 
to using data from one census and applying that population longitudinally, as 
is done in some studies in other disciplines. Other influenza studies performed 
involving population estimates mentioned the use of Census data, but did not 
specify which data was used, for example, decennial census data, intercensal 
estimates, linearly interpolated data, or other related data (Thompson et al., 
2004; Fry et al., 2005). Two of the main types of Census data publicly 
available to public health researchers are described below. 

2.1 Decennial Census 

The US Census Bureau conducts a national census every 10 years. This 
analysis uses data from Census 2000. In the decennial censuses, US house-
holds were sent a Census form to complete. Most households were sent a 
“short form,” which asks basic demographic information about the household, 
including number of residents and ages of household members. One-sixth of 
households were sent a “long form,” which is basically population-based, 
consisting of many questions related to socioeconomic status as well as demo-
graphic information not asked in the standard short form. The short form 
questions, mostly pertaining to population and related statistics, are summarized 
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on various geographical levels in Summary File 1. Long form questions are 
generally tabulated in Summary File 3. Both files are publicly available on 
the Census website. 

The data files from the decennial US Census are extremely rich and 
contain extensive and detailed information on the population structure of the 
United States, states, regions, and local areas. Most of these datasets are 
easily accessible and the online template found for data extraction is user-
friendly. The main drawback of this data is the fact that these data exist only 
at 10-year intervals. In 1999, for example, the latest available data available 
from the decennial census represented the population 9 years prior. As dis-
cussed above, the population composition of the United States has changed 
and continues to change rapidly over time, and using outdated data might not 
reflect the true population composition over the time period of disease 
surveillance. 

If the objective of disease surveillance is to examine temporal disease 
patterns for one or more decades of time, researchers should consider using 
some form of interpolation based on the decennial censuses. Although the 
population structure does not change exactly linearly from one census to the 
next, linear interpolation has been shown to closely approximate the population 
of study over time, particularly for large areas such as states and regions 
(Cohen et al., 2008). 

2.2 Intercensal Population Estimates 

The US Census Bureau provides population estimates for the years 
between and including the decennial census years. The Population Estimates 
Program, a division of the Census Bureau, produces these data, which can be 
found on the main Census Bureau website. The data are mostly publicly 
available and downloadable, but require some formatting manipulations to 
use in commercial spreadsheets and statistical software. 

There are several limitations to the use of intercensal data in surveillance 
studies. The first is data accessibility. While the Census Bureau maintains a 
website containing detailed intercensal data, these data may not be available 
for all desired years and geographical levels that coincide with continuous 
surveillance data. Likewise, data is not available for all desired racial and 
ethnic groups, age categories, and other related factors at all geographic 
levels. As described above, the interface for extracting intercensal data is not 
as user-friendly as that of American FactFinder, which is used to extract 
decennial census data. Also, the sheer size of the data can be problematic not 
only for downloading, but also for manipulating within disease databases. 
For example, the size of county-level data files containing intercensal counts 
for each year by single year of age and gender is 229 MB. 
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Despite these drawbacks, intercensal data or interpolated data should be 
considered, whenever possible, to assign appropriate and corresponding 
population data to surveillance data to obtain population incidence or pre-
valence, particularly when assessing historical surveillance data over multiple 
years. These, together with specialized databases (e.g., Medicare enrollment 
files), can be utilized to draw a more complete and accurate picture of the 
population at risk for disease. The Census Bureau itself actually encourages 
the use of these data for disease surveillance. According to the US Census 
Bureau, some of the applications of intercensal estimates include federal fund-
ing allocations, denominators for per capita time series, as survey controls, 
in monitoring recent demographic changes, and, as in the case of this study, as 
denominators for vital rates (US Census Bureau Population Estimates Website). 

GRAPHICAL TOOLS TO ASSESS AGE 
PATTERNS OF DISEASE 

3.1 Population Pyramids 

To illustrate the age and sex composition of a population, the population 
pyramid is a practical graphical tool that consists of two histograms aligned 
on the vertical axis, one typically representing males, the other representing 
females. The vertical axis itself represents age or age groupings. As with any 
histogram, the length of the bar represents the size of the population, either 
actual numbers or proportion of the total population in that age group. 

An example from the US Census Bureau for the years 1970 and 2000 is 
shown in Figure 11-3. In these pyramids, age is broken down into 5-year age 
groups; males are shown on the left bars and females on the right bars. The 
length of the bar shows the total population counts for each gender and age 
group. The shape of the pyramid shows several properties of the population. 
In 1970, the US population could be described as young, in that the largest 
age-specific populations were those between ages 0–4 and 25–29. The 
population of older adults was comparatively small. The population pyramid 
in 1970 is roughly symmetric, except at the oldest ages, suggesting that there 
were no substantial discrepancies in population size between males and females. 
In 2005, the population shape became more rectangular, meaning that there 
was a more even distribution of population by age in the US. Because the 
bars represent population size, not proportion, it can also be observed that 
the overall population size increased between 1970 and 2000, because of the 
larger bar sizes in 2000. At the oldest ages, the female population is larger 
than the male population. This was true in 1970, but the magnitude of the 
absolute difference between males and females grew between 1970 and 2000. 

3. 



Figure 11-3. Population pyramids for US, 1970 and 2000. 

3.1.1 Disease Pyramids 

The utility of population pyramids extends to more than just the 
visualization of population alone. Population pyramids can also be adapted 
to describe age distributions of diseases, including counts and rates. Disease 
pyramids for upper respiratory diseases from the Children’s Hospital of 
Wisconsin are shown in Figure 11-4. The disease pyramid illustrates that the 
majority of childhood upper respiratory hospitalizations occur in the population 
ages 0–2, with a peak at age 1. One of the important features of population 
or disease pyramids is that they allow the visual comparison of two groups 
by age; typically those two groups are males and females. In the case of the 
Children’s Hospital data, we observe that males had slightly higher total 
counts of hospitalizations than females. 
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Figure 11-4 . Disease pyramid showing average number of total annual upper respiratory 
infection cases extracted from Children’s Hospital of Wisconsin (1996–2006). 

 
A closer inspection of individual diseases reported by Children’s Hospital 

suggests age and gender patterns of certain diseases (Figure 11-5). Specifically, 
the sex ratio, the ratio of asthma cases comparing females to males, differs 
by age in this population. Between ages 0 and 13, there were between 40 and 
60 new cases of asthma in females for every 100 cases in males, but this 
ratio increased to nearly 100 female cases to every 100 male cases for 
children between age 14 and 18. Whether these differences are due to true 
patterns of disease in this population, or due to reporting practices or some 
other related factor is a matter of further study. Thus, disease pyramids can 
be employed to visually assess age patterns of disease and how those age 
patterns differ by gender or some other binary or categorical variable. Caution 
must be used when interpreting data from disease pyramids, however, and 
should generally be used only in conjunction with population pyramids for 
the area under surveillance. In the case of the Children’s Hospital of Wisconsin, 
it could be speculated, for example, that as children enter the teenage years, 
they may be less likely to receive their healthcare from a children’s hospital 
than younger children, which may influence, in part, the overall decline of 
asthma cases with age in this population of children. 
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Children’s Hospital of Wisconsin (1996–2006). 

3.2 Lexis Surfaces 

One of the major limitations of population and disease pyramids to show 
age effects is that they represent only one point in time, or, in the case of the 
above data, an average over time. A series of population or disease pyramids 
can be used to show temporal changes to the distribution of disease or 
population by age through presenting multiple pyramids at once, or through 
animation. However, presentation of multiple pyramids on a screen or page 
becomes cumbersome, and animation requires advance technical capabilities 
and still can only show population or disease pyramids one-at-a-time. 

To overcome this limitation, users of historical surveillance data can 
employ the use of a graphical tool originally developed for use in demo-
graphy, which can easily be adapted for use in public health surveillance. 
This tool, the Lexis diagram, is basically a three-dimensional chart with age 
on the vertical axis plotted against time on the horizontal axis (Vandeschrick, 
2001). The z-axis for a Lexis surface can be age- and time-specific disease 
rates or counts. In traditional Lexis surfaces, the horizontal distance represented 
on the x-axis between two time points must be the same as the vertical distance 
between the same age differences on the y-axis (Figure 11-6). However, this 
rule can be relaxed, depending upon the data available and the level of 
desired detail. 

Figure 11-5 . Disease pyramid showing average number of total asthma cases extracted from 
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Figure 11-6. Schematic of Lexis diagram with illustration of cohort and period rates. 

 
In the Lexis diagram, diagonal lines represent a single individual’s life 

line. A collection of life lines can be viewed in a cohort or period perspective. 
In the Lexis diagram illustrated in Figure 11-6, the light gray square represents 
the age-specific disease rates for all 2-year-olds that occurred in 1992. The 
solid parallelogram in the lower left represents one type of cohort disease 
rate: the 1-year disease rate for all those born in 1990. The hashed parallelo-
gram in the lower right is another type of cohort disease rate. This parallelo-
gram represents the annual cohort disease rate for all those who were age 0 
on January 1, 1993. 

By incorporating the third dimension expressed by a color or texture 
scheme, Lexis surfaces can be adapted for a variety of surveillance settings. 
Modified Lexis surfaces were used in a 2007 study of influenza in New York 
City. This study explored the relationships between peak timing and severity 
of respiratory illness and influenza outbreaks by aggregated age groups for 
five influenza seasons (Olson et al., 2007). The counts and rates were aggre-
gated into broad, uneven age groups, and thus did not focus specifically on the 
relationship between age and respiratory illness within population subgroups. 

Using data from the Centers for Medicare and Medicaid Services, national 
pneumonia and influenza cases were tallied by age and influenza season, 
defined as July 1 through June 30 of the following year for the 65+ population. 
The Lexis surface illustrates the intensity of disease in the population as well 
as age patterns of disease in each influenza season (Figure 11-7). For each 
season, the maximum number of cases occurred in those between age 75 and 
85. Clear differences among influenza seasons can also be observed. 
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Centers for Medicare and Medicaid Services). 

ANALYTICAL TOOLS FOR AGE-ADJUSTMENT 

4.1 Age-Period-Cohort Analysis 

4.1.1 Background 

Age-period-cohort models allow for the possibility that three related, but 
separate parameters – age, period, and cohort – are associated with patterns 
of morbidity and mortality (Sacher, 1956) and can be mathematically 
assessed using linear models accounting for each of these factors separately 
(Collins, 1982). This approach has particular utility in modeling historical 
surveillance data. The age-period-cohort approach has been applied extensively 
for the study of several diseases and mortality. Wilmoth and colleagues 

Figure 11-7. Pneumonia and influenza cases by year and age, July 1991–June 2004 (Source: 

4. 

demonstrated that after age and period effects were taken into account, 
cohort effects on mortality were consistent and strong, providing a more  

comprehensive picture of mortality than the more traditional age and period 
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models (Wilmoth et al., 1990). In a study of breast cancer in Spanish 
women, after age and period effects were taken into account, women born in 
the 1950s were three times more likely to die of breast cancer than those 
born in the 1890s (Cayuela et al., 2004). A modified version of the age-
period-cohort model was employed to demonstrate key cohort differences in 
melanoma mortality using population-based surveillance data in Canada 
(MacNeill et al., 1995). The findings of the aforementioned research emphasize 
the importance of assessing these three related, but distinct, demographic 
dimensions of disease and mortality patterns. 

Findings from these and other age-period-cohort modems is suggestive 
that certain exogenous factors exist for any given birth cohort, and that those 
factors can be directly or indirectly related with the overall health and 
viability of the individuals in that birth cohort (Derrick, 1927). Hobcraft and 
colleagues argue further that the idea of a cohort effect is valid only in the 
sense that cohorts are representative proxies for a set of underlying conditions 
that are common to people who are born in or live through contemporaneously 
and at similar ages. In other words, cohorts themselves are not the cause of 
any observed cohort effects, and thus must be treated accordingly (Hobcraft 
et al., 1982). Although the ascertainment of the specific set of environmental 
or socioeconomic conditions that account for any observed patterns of disease 
cannot be immediately determined using this approach, the age-period-cohort 
approach allows the researcher to assess general age, temporal, and cohort 
patterns of disease simultaneously. 

4.1.2 Model Specification 

The basic model equation is shown in Equation 11-1. 

( )ap a p clog P&I Rate α β γ= + +  (11-1) 

The parameters αa, βp, and γc, represent age, period, and cohort effects, 
respectively. Since, by definition, the sum of age and cohort effects equals 
the period effect using all possible age, period, and cohort effects, this model 
can be modified to account for the perfect collinearity that would result from 
such a model. By including indicator variables to represent cohort, one or 
more of these variables can be omitted from the model so as to reduce the 
possibility of collinearity from the identity properties of age, period, and cohort. 

4.1.3 Graphical Tools 
 

The Lexis surface is a logical and effective graphical tool for age-period-
cohort models of disease rates. In the Lexis surface, vertical peaks and 
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valleys are the period effects, horizontal peaks and valleys represent age 
effects, and diagonal patterns are cohort effects. Figure 11-8 illustrates how 
the Lexis surface reflects age, period, and cohort effects for influenza 
surveillance, where the horizontal axis is influenza season, defined as 1 year, 
July 1 through June 30, and the y-axis is age. 

 

4.2 Standardization and Decomposition 

A crude disease rate is a simple and straightforward measure of disease 
burden in a population. It is defined simply as the total number of disease 
cases, incident or prevalent, divided by the total population count. As dis-
cussed above, population composition may differ among populations. For 
example, consider two hypothetical populations, one from State A and the 
other from State B. Let us assume that the population of State A is pro-
portionately older than the population of State B. If there is a disease under 
surveillance that is more prevalent in older ages, the crude disease rate in 
State A will be greater than the rate in State B, even if the age-specific 
disease rates are identical. While this may accurately reflect that there is 
overall more disease in State A than in State B, the calculated crude rates 
mask the fact that the differences in disease burden between State A and 
State B are actually due to differences in population age composition, not 
differences in the magnitude of disease occurrences. 

Standardization is a common method of accounting for such differences 
in age composition among populations when estimating disease rates. In 
practice, standardizing rates typically involves applying age-specific rates or 
counts comparing two or more populations using a single, common population 
structure, called a population standard. There are two types of standardization 
available for biosurveillance systems: direct and indirect standardization. Both 

Figure 11-8. Schematic Lexis surface for age-period-cohort models. 
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can be utilized for comparing one region over time or comparing multiple 
regions, and both can be applied for the entire population age spectrum, or 
just a subset of the age spectrum. 

4.2.1 Direct Standardization 

Direct standardization is used when age-specific rates from two or more 
populations are known and applied to a common population standard. Table 
11-1 shows counts and rates for a hypothetical disease, and actual population 
counts by broad age categories for Arizona and Utah. 

Table 11-1. Disease rates for Arizona and Utah. 

 Disease Counts Population Countsa Disease Rates (Per 1,000) 

Age Arizona Utah Arizona Utah Arizona Utah 

0–19 909 554 1,518,188 810,977 0.599 0.683 
20–39 3,067 2,054 1,498,212 702,911 2.047 2.922 
40–59 4,212 1,944 1,242,696 466,604 3.389 4.166 
60+ 7,034 2,073 871,536 252,677 8.071 8.204 
aSource US Census Bureau, 2000 decennial census 

 
In this case, the crude disease rate for Arizona and Utah is identical, 2.97 

per 1,000, which can be obtained by dividing the number of cases by the 
population at risk, which is 15,222 cases/5,130,632 people for Arizona and 
6,625 cases/2,233,169 people for Utah. However, the age-specific rates are 
consistently higher in Utah than in Arizona for all four age groups. Utah also 
has a younger population, where 11.3% of the total population is age 60 and 
above, compared to 17.0% in Arizona. Likewise, the percent of the population 
under age 20 is 36.3 and 29.6% for Utah and Arizona, respectively. 

To make the populations more comparable, direct standardization provides 
better estimates of disease burden in Arizona and Utah, since the age-specific 
disease rates are known in both states. In direct standardization, age-specific 
disease rates are applied to a common population. Here are the steps for 
direct standardization. 

1. The first step in standardization is selecting the population standard. 
The choice of population standard is arbitrary; common choices include 
one of the populations being compared, the average population of the 
populations being compared, or some national or regional standard 
population. 

2. Calculate the proportion of the entire population represented by each 
age group. 
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3. Multiply the age-specific disease rates for each population by the 
population proportions calculated in Step 2. 

4. Sum the values calculated in Step 3. The results are age-adjusted 
disease rates. 

The age-standardization for the Arizona and Utah example is shown in 
Table 11-2. The standard of choice was the US national population from 
Census 2000. 

Table 11-2. Age standardization example with steps. 

Step 1 Step 2 Step 3 Age 
Standard 
Population  
(US) 

Proportion  
of Total 
Population 

Rate × Proportion 
(Arizona) 

Rate × Proportion 
(Utah) 

 

0–19 80,473,265 0.285952 0.171285 0.195305  
20–39 81,562,389 0.289822 0.197985 0.846861  
40–59 73,589,052 0.261490 0.764109 1.089368  
60+ 45,797,200 0.162735 0.677999 1.335078  
Total 281,421,906 1 1.81 per 1,000 3.47 per 1,000  Step 4

 
Thus, the results obtained from direct standardization show age-adjusted 

disease rates of 1.81 and 3.47 cases per 1,000 for Arizona and Utah, res-
pectively. The difference between the crude and the adjusted rates emphasizes 
the need to account for age in calculating population-based characteristics of 
disease occurrence. In this case, two states appear to have identical disease 
rates, when in reality, the disease rates in Arizona are much lower than those 
of Utah, with the age composition of the population responsible for masking 
the difference in rates. 

4.2.2 Indirect Standardization 

When age-specific disease rates are not available or if the data quality 
of these rates is poor due to small number of events or sample size, but the 
population structure and the crude disease rate are available, indirect 
standardization is a logical choice. One additional requirement for indirect 
standardization is that there must be some standard or comparison age-
distribution of rates available. In the case of indirect standardization, this set 
of standardized rates is applied to the population composition of the study 
population to estimate a standardized prevalence or incidence rate ratio. 
Using the example of Arizona and Utah described in Sect. 4.1.1, Table 11-3 
illustrates the steps involved in indirect standardization. For this example, it 
can be assumed that age-specific disease rates are unknown for both states, 
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and only the crude rates are known. The standard disease rates will be pro-
vided by the national population. 

1. Obtain a standard distribution of disease rates. 
2. Obtain population distribution(s) of the population(s) under study. 
3. Multiply the standard disease rates by each of the populations of 

study to estimate expected number of disease cases in each of the 
populations. 

4. Sum the total number of expected cases. 
5. To obtain the standardized disease rate, divide the expected number 

of cases in each population by the respective actual number of cases, 
and multiply that figure by the crude rate of the standard population: 

Expected No. of casesStandardized rate Crude rate in standard
Observed No. of cases

= ×   

Table 11-3. First four steps of indirect standardization  

Step 1 Step 2 Step 3 Age 
Disease 
Rates in 
US/1,000 

Population Composition 
AZ (UT) 

Expected Number of 
Cases 
AZ (UT) 

 

0–19 0.700 1,518,188 810,977 1,062.7 567.7  
20–39 2.323 1,498,212 702,911 3,480.3 1,632.9  
40–59 3.563 1,242,696 466,604 4,427.7 1,662.5  
60+ 7.711 871,536 252,677 6,720.4 1,948.4  
Total 3.060 5,130,632 2,233,169 15,691 5,811  Step 4 

 
In this example, the standardized rate for Arizona is 15,691/15,222 × 3.060, 

which is equal to 3.154 cases per 1,000. The standardized rate for Utah is 
6,625/5,811 × 3.060, which equals 3.489 cases per 1,000. These results, though 
starkly different than the results obtained through direct standardization, still 
indicate that disease rates are higher in Utah than in Arizona, which is con-
sistent with the findings obtained through direct standardization. The choice 
of standardization method depends upon the surveillance data available to 
the researcher. Whenever possible, however, direct standardization should be 
used. Despite the choice of method, these findings emphasize the need to 
address the issue of confounding by age and provide two potentially useful 
tools for statistically controlling for this important characteristic in the 
calculation of prevalence or incidence rates from population-based disease 
surveillance. 
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4.2.3 Decomposition 

To quantify exactly how much the difference between two disease rates – 
A and B – is due to differences in age composition between two populations, 
decomposition methods can be used. Consider an example of reported 
cryptosporidiosis in the elderly for two regions, the Northeast and the South. 
Let Ri and Pi represent the rate and proportion of the population represented 
in age group i, respectively. Superscripts will denote the region for each 
population in this example, but can denote different time points, states, etc… 
in other situations. The equation for decomposition analysis is found in 
Equation 11-2. 

N SR CDR CDRΔ = − =
0.5 [ ][ ] 0.5 [ ][ ]N S N S N S N S

i i i i i i i i
i i

P P R R R R P P× − + + × − +∑ ∑  (11-2) 

The first term represents the effect of age, and the second term represents 
the effect of rate itself. The crude rates of cryptosporidiosis are 5.588 per 
10,000 for the Northeastern states and 5.241 per 10,000 for the Southern 
states, a difference of 0.347 per 10,000 or 6.5% (Table 11-4). 

Table 11-4. Illustration of decomposition of differences between rates. 

Age Pop.N Pop.S N
iP  S

iP  N
iR  S

iR  Age 

Effect 

Rate 

Effect 

65–74 2,096,915 3,687,911 0.474 0.505 3.12 3.08 −0.0947 0.0196 

75–84 1,644,519 2,603,338 0.372 0.356 5.98 5.55 0.0913 0.1566 

85+ 678,461 1,018,007 0.154 0.139 12.23 12.27 0.1804 −0.0059 

Total 4,419,895 7,309,256 1 1   0.1769 0.1703 
 
The results indicate that 0.177 or 51.0% of the difference in crude rates is 

attributable to differences in age composition, and 0.170 or 49.0% of the 
difference in crude rates is attributable to differences in age-specific rates of 
cryptosporidiosis. 

This section discussed two-factor decomposition, which allows for the 
possibility of two factors, the difference in rate and the difference in age, to 
comprise the difference in disease rates completely. There are additional 
methods, such as three-factor decomposition, and two-factor decomposition 
with an interaction term, that are available for use if such a factor is of 

Please see the Suggested Readings for further details. 
 

 

interest to the researcher, but these topics will not be discussed in this chapter. 
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Standardization and decomposition can be applied in a variety of settings 
and for almost any disease for which there is variation in rates by age to 
account for compositional effects of age. The strength of standardization lies 
more in adjusting for age effects rather than quantifying age effects, whereas 
decomposition allows the researcher to quantify the effect of age, but cannot 
provide adjustments for age effects. It should be noted that there are no 
unique solutions to decomposition analyses; there are several possible ways 
to decompose a difference in disease rates between populations. However, 
the decomposition of a difference in rates by age using a two-factor decom-
position provides an efficient and easily interpretable measure of the age 
effect in population-based disease rates. 

4.3 Summary Disease Measures 

In some situations, knowing age-specific disease rates may be useful 
with respect to understanding disease dynamics in the population, but may 
be cumbersome to deal with when analyzing surveillance data. One of the 
major shortcomings of standardization and decomposition is that the adjusted 
rates are still just one rate, and do not express the true underlying distribution of 
disease by age in the population. There are other, more case-specific measures 
available and others that can be developed to fulfill this need. 

For example, using the Medicare data described above, it was observed 
that pneumonia and influenza hospitalization rates increase approximately 
exponentially between ages 65 and 99. Since P&I rates increase approximately 
exponentially with age in the elderly population, the age-acceleration co-
efficient can be defined as the log of the rate of increase in disease rates with 
age. The age increase of P&I is a relative measure of disease burden in the 
elderly. This is based on a new approach that uses and takes advantage of 
having disease rates by single-year of age (Figure 11-9). 

The burden of pneumonia and influenza is highest in the oldest old, and 
this measure captures the relationship between age and disease rates. The 
standard approach of using overall age-adjusted rates gives priority to the 
age groups with the highest populations, which is generally the youngest 
elderly, given that population size decreases with increasing age. This out-
come variable, however, effectively weights each age equally, and since P&I 
rates increase substantially with age in the oldest old, this approach reflects 
P&I patterns across all ages simultaneously in the elderly population, including 
those at the highest risk of disease (Cohen et al., 2007). The age-acceleration 
coefficient is just one of numerous potential measures of disease burden that 
summarize disease patterns with respect to age into one meaningful measure-
ment that can be compared over time and across geographic regions. 
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5. CONCLUSIONS 

Disease processes are inherently linked to population dynamics that play 
an important role in the magnitude and scope of disease distribution. Though 
often overlooked, age patterns of disease can serve as a potential confounder 
in the estimation of disease rates, but at the same time, can reveal important 
aspects of the disease and disease transmission within the population at risk. 
There are a variety of methods to account for age, some graphical, some 
statistical. Recognizing these effects and making appropriate adjustments 
should be a key component in disease surveillance. Seemingly small absolute 
differences in population counts can make a substantial difference in the 
estimation of age-specific rates, and that proper estimation of the denominator 
is critical in public health surveillance of disease. 

Figure 11-9. Illustration of age acceleration coefficient methodology. 
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MODELING IN IMMUNIZATION  
AND BIOSURVEILLANCE RESEARCH 

C. RAINA MACINTYRE1,*, JAMES G. WOOD1,  
ROCHELLE WATKINS2, and ZHANHAI GAO1 

CHAPTER OVERVIEW 

This chapter introduces the key concepts in mathematical modeling of 
vaccine-preventable diseases, and special features of vaccination such as 
herd immunity, disease elimination and waning immunity. It also reviews 
the interface of biosurveillance with monitoring and control of vaccine-
preventable diseases. 

Keywords: Vaccines; Immunization; Mathematical Modeling; Biosurveillance 

Before immunization was widespread, infectious diseases were the 
leading cause of death in children. Vaccination is named from the Latin “of 

vaccination. Louis Pasteur, in 1881, generalized the term “vaccination” to 
include preventive inoculation with all kinds of infectious agents. The first 
vaccines included smallpox (1804), plague (1890), diphtheria antiserum (1895) 
and typhoid (1899). The public health impact of vaccination in the twentieth 
century was significant. Campaigns to vaccinate for/against diphtheria were 
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introduced in schools between 1933 and 1936 and for infants from 1940  
to 1945; for pertussis in the early 1940s; and the triple antigen DTP was 
introduced in the early 1950s. The greatest success story has been the 
smallpox vaccine, which led to the global eradication of smallpox (Hinman, 
1999). 

Yet infectious diseases are still with us, resulting in deaths from diseases 
preventable by vaccines. In addition, emergence of new infections and re-
emergence of old infections continue to challenge us. There are many historical 
examples of epidemics of previously rare diseases when immunization pro-
grams have failed or ceased. For example, there were two major epidemics 
of polio in Holland in 1984 and in 1991 in a religious group who refused 
immunization (Oostvogel et al., 1994). In the United Kingdom, epidemics of 
whooping cough in the 1970s and 1980s and of measles in current times 
have followed decreased immunization rates (Miller et al., 1992; Ashmore 
et al., 2007; Dobson, 2008). In the former USSR, collapse of public health 
infrastructure resulted in epidemics of diphtheria, which was previously rare. 
More than 115,000 cases and 3,000 deaths from diphtheria were reported 
from 1990 to 1997 in the Russian Federation (Centers for Disease Control 
and Prevention, 1996). 

In 2000 The Institute of Medicine produced a report, Vaccines for the 
twenty-first Century, which attempted to rank priorities for vaccine develop-
ment in the USA (Institute of Medicine, 2000). The highest priority was for 
vaccines against CMV, influenza, diabetes, multiple sclerosis, rheumatoid 
arthritis, group B streptococcus and pneumococcus (Institute of Medicine, 
2000). The trend of vaccine development with more immunogenic and less 
reactogenic vaccines as well as more complex combination vaccines has 
seen a steep increase in the number of childhood vaccines routinely used in 
developed countries. 

1.1 Role of Modeling for Vaccination Programs 

In most sciences, research questions are answered by planned repeated 
experiments. For infectious diseases (IDs), experimenting in communities is 
rarely ethical or possible. Instead, we rely on observational data that are sub-
ject to reporting delays, supplemented by periodic population samples such 
as cross-sectional serosurveys. The fluctuating nature of infectious disease 
risks make mathematical models of pathogen transmission an attractive tool 
to aid policy formulation from such data. Modeling aids policy decisions on 
how best to respond to emerging infections such as SARS, pandemic influenza 
or deliberately released smallpox. It can also assist in determining and 
measuring the effect of introducing a new vaccine and the best age to 
administer it. Correct predictions of epidemics of measles in the United 
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Kingdom and in New Zealand based on modeling have emphasized its 
relevance to immunization policy (Gay et al., 1995; Roberts and Tobias, 
2000). 

Population effects such as indirect protection of unvaccinated individuals 
due to reduced transmission (herd immunity) are difficult to capture in 
clinical trials. Although specialized trial designs can measure aspects of herd 
immunity (e.g., the protection conferred to staff in a childcare centre where 
children are vaccinated for influenza), it is relatively simple to use models to 
calculate herd immunity effects from standard clinical trial data. 

However, continued surveillance of vaccination-related data is necessary 
both to determine the epidemiologic impact and to refine models used for 
predictive purposes. For example, in the UK, the Netherlands and parts of 
the USA there has been a resurgence of Haemophilus Influenzae disease 10 
years after commencement of population vaccination (Galil et al., 1999; 
Rijkers et al., 2003; Trotter et al., 2003). This is attributed to the change to a 
less effective vaccine, an accelerated schedule and reliance on a catch-up 
campaign. Modeling is a useful tool for probing the relative impact of these 
kinds of effects and, therefore, has an important role in monitoring, evaluating 
and predicting the impact of vaccination programs. 

In the first half of this chapter, we introduce key concepts in infectious 
disease transmission and describe the Susceptible-Infectious-Recovered model. 
We then go on to illustrate the relationship between vaccine coverage, the 
reproduction number and disease elimination. We also summarise a number 
of the refinements of this model that are commonly used in immunization 
modeling today. 

1.2 The Interface with Biosurveillance 

In the second half of the chapter, we cover some of the basic bio-
surveillance techniques for infectious diseases and their application to 
estimation of basic infectious disease parameters. Recent work that incorporates 
more structured transmission models into biosurveillance analysis is also 
described, with discussion of the strengths and weaknesses. 
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Even the simplest mathematical models of disease transmission rely on 
good surveillance data to make meaningful predictions. Traditional surveillance 
tools for immunization tend to involve specific studies such as testing for 
immunity in cross-sectional studies. However, data streams such as notifications 
of confirmed infections and vaccination coverage data are now available at 
relatively short delays and considerable theoretical work has recently been 
devoted to analysis of outbreak data. 
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2. MODELING OF VACCINATION PROGRAMS 

Mathematical modeling of infectious diseases has a lengthy history 
(Heesterbeek, 2002). There are now several quality texts which describe 
modeling approaches to infectious diseases in detail (Bailey, 1975; 
Anderson and May, 1999; Diekmann and Heesterbeek, 2000; Daley and 
Gani, 2001; Keeling and Rohani, 2007). In this section we illustrate the basic 
concepts and outline some refinements to this approach. 

2.1 Key Concepts 

2.1.1 The Basic Reproductive Number (R0) 

R0 is the average number (technically a ratio) of secondary cases generated 
by a typical infectious person at the beginning of an epidemic of a given 
infectious disease in a fully susceptible population. While R0 reflects  
the intrinsic transmission potential of the organism, it is also influenced by 
environmental factors such as genetics, behavior and climate, so that different 
values can apply in different communities. The lower the value of R0, the 
easier it is to eradicate the disease, provided an effective vaccine exists. 

In general, however, we deal with populations that have some immunity 
to disease. In this situation, we can define a related quantity Rt, which is the 
average number of secondary cases generated by a typical infectious person 
at time t. The value of Rt varies with time and will decrease as population 
immunity rises, reflecting a reduced potential for disease transmission. 

2.1.2 Force of Infection 

There are measurable risks of acquiring non-communicable diseases, and 
the situation is the same for communicable diseases. However, the ability of 
communicable diseases to be transmitted from person to person and the 
potential for immunity to arise from infections or immunization leads to a 
more specialized form of risk. The instantaneous risk of a susceptible person 
acquiring a communicable disease is known as the force of infection for that 
disease. The force of infection (often denoted by the symbol λ) is specific to 
the infectious agent and the population and time period of interest. 

Like risks for non-communicable diseases, the force of infection is 
dependent on social and behavioral factors (e.g., hygiene in the case of 
Hepatitis A infection (Jacobsen and Koopman, 2005)) but a key difference 
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is that it can also depend on the prevalence of infection. Acquisition of a  
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communicable disease often requires contact with an infectious person, and 
in many cases the risk is proportional to the prevalence of infection with that 
disease in the community. 

2.1.3 Disease States 

For many communicable diseases (e.g., measles, rubella, smallpox), a 
population can be divided into three broad categories: Susceptible people 
(S), Infectious people (I) and Immune people (R) (Anderson and May, 
1999). Although there are many exceptions to this simple framework, it 
provides a basis for a mathematical description of infectious disease 
transmission in a large population. 

2.2 The SIR Model 

Imagine that we wish to describe the transmission of an infectious 
disease in a large population of N individuals. Assuming that infections are 
directly transmitted from person to person, we can express the force of 
infection as: 

N
Here we have introduced the parameter  representing the instantaneous 

rate at which infections are caused by a single infectious person. We also 
require a parameter to describe the rate of recovery from infection (denoted 
by γ). This parameter is the inverse of the duration of infection (D), so that 
γ = 1/D. 

states and rates of transfer between these states 

Figure 12-1. Schematic for SIR model, showing states and flow variables. 
 
Although in reality infections lead to discrete changes in the numbers of 

individuals in each state, in large populations it is convenient to disregard 
this and allow a continuous flow between these states. This allows us to 
represent the SIR model as a system of differential equations: 
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Iλ = ×β

In Figure 12-1, a schematic of the SIR model is shown, with disease 

( I )  

β

γ λ

(12-1)
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(12-2) 

This model leads to epidemic dynamics as illustrated in Figure 12-2 

 

Figure 12-2. Change in susceptible, infectious and recovered populations as calculated with 

2.2.1 The Basic Reproduction Number in the SIR Model 

In this basic SIR model, there is a key parameter that determines if an 
epidemic occurs or not. Imagine that a single infectious case is introduced 
into an otherwise susceptible population at the beginning of their infectious 
period. At this time, S ≈ N so that dI/dt ≈ (β − γ)I. Thus the number of 
infectious people will grow only when the ratio β/γ > 1. This ratio is called 
the basic reproduction number and is denoted by R0, and for the SIR model 
defined in Equation 12-2 is given by: 

0R β
γ

=   (12-3) 
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(β = 0.5, D = 6, N = 1 million). 

an SIR model with parameters β = 0.5, D = 6, N = 1 million. 

dS IS
dt N
dI IS I
dt N
dR I
dt

β

β γ

γ

= −

= −

=

  



12. Modeling in Immunization and Biosurveillance Research 
 

The dynamics of transmission in the SIR model change at R0 = 1, with an 
epidemic occurring if R0 > 1 but not if R0 ≤ 1. 

2.3 Endemic Dynamics 

How is infection sustained in a community? In the epidemic SIR model 
given in Equation 12-2, only one epidemic can occur, after which the 
majority of the community is left immune. The proportion left immune is 
equivalent to the attack rate (ar) during the epidemic, and can be calculated 
by solving the non-linear equation: 

( ) 01 ra Ra e−− =   (12-4) 

What would happen if infection were reintroduced to this population? In 
r

epidemic can only begin if ar < 1 − 1/R0. In fact, this is never the case 
following an epidemic in a completely susceptible population because the 
attack rate is always greater than (1 − 1/R0). 

If we define the proportion of the population that is susceptible at time t 
as , and the effective reproduction number as Rt = R0x, then a 
threshold in a population with some immune people occurs at Rt = 1, with 
epidemics occurring when Rt > 1 but not for Rt ≤ 1. What is needed to sus-
tain long-term infectious dynamics is a source of new susceptible individuals. 
This occurs in real populations via births, or through non-immune migrants. 

2.3.1 The Endemic SIR Model 

Consider an idealized population, with a life-expectancy of L years 
(generated by a constant risk of death µ = 1/L) and a birth rate of B in the 
whole population. When children are born, they have maternal antibodies to 
a number of infectious diseases in their body (aided by breast milk), which 
provide some protection against infection during their first few months of 
life. This is relevant to immunization, but for simplicity we will ignore this 
and assume that newborns are born susceptible if unvaccinated and immune 
if vaccinated. On the basis of these assumptions, we can write down the 
endemic 

(12-5) 
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rthis case, we know that S ≈ (1 − a )N, so that dI/dt ≈ [β(1 − a ) − γ]I. An 

x(t) = S(t)/N

 SIR model incorporating vaccination: 

( )

( )

1 d

d

d

dS IS B p S
dt N
dI IS I
dt N
dR I Bp R
dt

β μ

β γ μ

γ μ

⎧ + − −⎪
⎪
⎪ = − +⎨
⎪
⎪ = + −⎪⎩

  

= −
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Here, 
Assuming that the population remains constant in size (B = µN), the model 
leads to repeated epidemics of decreasing size such as shown in Figure 12-2. 
Vaccination results in a decreased overall incidence, an increase in the inter-
epidemic period and a decrease in the amplitude of the oscillation of 
incidence, with more marked effects at higher vaccine coverage levels. 

2.3.2 Immunization 

Equation 12-5 describes the infection dynamics when immunization is 
provided at birth. This is easy to incorporate into the endemic SIR model – 
instead of directing all newborns into the susceptible compartment, a pro-
portion  are directed into the immune class instead. This proportion p is 
actually the product of two factors: the proportion of infants who are 
vaccinated ( ) and the efficacy of the vaccine (VE). 

2.3.3 Waning of Immunity 

The duration of immunity also varies between infections, and may differ 
for vaccine-derived immunity as opposed to natural infection. For diseases 
such as measles, natural infection seems to produce lifelong immunity. For 
varicella (chicken pox), second attacks are observed with some regularity 
suggesting that not all individuals experience lifelong immunity. The immune 
response after vaccination can differ from that due to natural infection and in 
some cases is of limited duration. 

This effect can easily be incorporated into the endemic SIR model: if we 
assume that immunity due to vaccination is equivalent to that due to natural 
infection, then the model takes the form: 

(12-6) 

2.3.4 Equilibrium 

After a period of time, the model states tend toward constant values. If 
R0 < 1, there will be no epidemic, and the infection will die out. If R0 > 1, a 
series of epidemics with shrinking peaks will occur as the dynamics lead 
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 p is the proportion of infants who are successfully vaccinated. 

p

v
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( )
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dt N
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β μ ω
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toward equilibrium levels of susceptible, infectious and immune individuals. 
Introducing a vaccination program changes the dynamics in several ways: it 
results in a reduced overall incidence, a longer inter-epidemic period and an 
increase in the amplitude of the oscillation of incidence, with more marked 
effects as vaccine coverage rises. 

The equilibrium values can be calculated by setting the right hand side of 
Equation 12-6 equal to zero. The prevalence of infection is either zero, or it 
satisfies the equation: 

(12-7) 

The significance of this expression can be illuminated through some 
simple examples. 

1. No vaccination (p = 0) and lifelong immunity (ω = 0): in this case, 
we find that I is proportional to 1 − 1/R0, so that whenever R0 > 1 
infection will persist, while when R0 < 1 the equilibrium prevalence 
of infection is zero. 

2. Vaccination with lifelong immunity: in this case, I is proportional to 
1  1/((1 − p)R0). Thus if p is large enough so that (1 − p)R0 < 1, then 
the vaccination program should eliminate the infection. 

3. 100% coverage with a 100% effective vaccine (p = 1) with waning 
rate equal to the death rate: in this case, I is proportional to 1 − 2/R0. 
Thus, even when the average duration of immunity is equal to the 
average life-expectancy, infection can only be eliminated if R0 < 2. 
Thus, the duration of immunity can severely limit the effectiveness of 
vaccination programs. 

Figure 12-3 illustrates the effect of vaccination (VE = 1, no waning) on 
incidence. Note the reduced average incidence, and the longer time between 
epidemic peaks as coverage rises. 

Figure 12-4 shows the effect of vaccination on the reproduction number 
over time ( ). Near equilibrium, Rt ≈ 1 but the start of a vaccination program 
upsets this equilibrium, pushing Rt below 1. However, after a period of time, 
susceptibles build up enough to start a new epidemic if vaccination coverage 
is only 50%. This cycle repeats itself as the system moves towards a new 
equilibrium value. However, if coverage is as high as 70%, this is sufficient 
to push Rt below 1 permanently, leading to elimination of infection. In this 

0

more than 67% of the population are immune, the disease will be eliminated. 
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case, the  parameters β = 0.5, D = 6 lead to an R    of 3, which means that if 

Rt

 
0

1
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prevalence of infection, as calculated using the endemic SIR model with parameters β = 0.5, 

 

Figure 12-4. Effect of vaccination on the effective reproduction number (Rt). Note that for the 
t

below 1 permanently. 
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D = 6, N = 1 million. 

Figure 12-3. Effect of increasing vaccination coverage starting from a nearly constant 

parameters β = 0.5, D = 6, N = 1 million, 70% vaccination coverage is enough to reduce R  
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2.4 More Realistic Models 

The above models are valuable because they reproduce observed aspects 
of infectious diseases, including epidemic cycles and changes in epidemiology 
as a result of vaccination, yet rely on only a few parameters. However, they 
provide only a rather crude representation of reality and often more com-
plicated models are necessary. Here we detail a few common refinements. 

2.4.1 Age-Related Risks 

In the above model the population implicitly has an age-distribution 
that declines exponentially with age. This is a reasonable model for some 
developing countries but does not describe the demography of developed 
countries, which have an almost constant age-distribution with the exception 
of the very old. While arbitrary age-distributions can be accommodated in 
refinements of the endemic model, a good approximation to the dynamics is 
gained by using a constant age-distribution with a maximum age equal to the 
life-expectancy in the population (Anderson and May, 1999). 

The risk of infection can also vary with age. It is self-evident that 
personal contacts of individuals tend to be clustered in certain age groups 
(typically near the same age as the individual). This suggests that the force 
of infection should also vary by age. This is usually incorporated into models 
by using a Who-Acquires-Infection-From-Whom (WAIFW) matrix, which 
can be partially estimated from incidence and immunity data (Anderson and 
May, 1999) and augmented with data from studies specifically tracking age-
related contacts (Mossong et al., 2008). 
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2.4.2 Vaccine Efficacy 

Immunization programs also change age-related risks. In the above 
model, vaccines are provided to a proportion of each birth cohort as soon as 
they are born. However, in practice, maternally-derived immunity of infants 
can require delaying vaccination by up to 12 months, and multiple doses of 
vaccine, spaced at intervals of a month are often required. In addition, 
children often receive vaccine doses later than the time recommended in the 
schedule, and the immune response may be delayed by up to 1 month follow-
ing vaccination. These kinds of features can be incorporated by allowing 
explicit age-dependency in the model equations (they become partial 
differential equations). 
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Modeling immunization by routine vaccination of birth cohorts is also 
only applicable in some cases. Vaccination programs for influenza tend to 
target a proportion of older individuals each year, while “catch-up” vaccination 
of a number of birth cohorts at once is common in developing countries and 
is often part of new immunization programs in developed countries. 

2.4.3 Stochasticity 

variation. This is justified on the basis of applying them to large populations, 
in which prevalence of the infection is considerable. When the population 
is small, or prevalence is very low, chance events can greatly influence the 
dynamics. This element of chance can be incorporated by assigning pro-
babilities instead of rates to transitions between states. Stochastic methods 
are commonly used in individual-based models, in which characteristics of 
individuals are seen as an important component of dynamics. A detailed 
introduction to stochastic methods in infectious disease modeling can be 
found in (Daley and Gani, 2001). 

2.5 Special Issues for Vaccination 

Modeling of vaccination programs must account for the complexities of 
infectious diseases and the impact of vaccination programs. For example, 
vaccination programs change disease epidemiology, usually resulting in a 
right-shift of age-specific incidence. Universal vaccination programs can 
also confer herd immunity, the strength of which depends on the coverage 
and efficacy of the vaccine as well as the R0 for the pathogen. 

For some pathogens, such as influenza, cross-protection against related 
strains must be taken into consideration, as must the potential for strain replace-
ment with non-vaccine strains. This may also be an issue for pneumococcal 
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vaccination programs, where there is evidence of changing colonisation 
patterns in highly-vaccinated populations (Veenhoven et al., 2004). Vaccination 
can also have secondary benefits in cases such as super-infection, where, for 
example, invasive pneumococcal disease often follows influenza infection 
(Brundage, 2006). Preventing influenza infection is likely to also prevent the 
invasive disease, so that the benefit of vaccination is enhanced. 

Finally, vaccination is unique because it affords primary prevention to 
healthy people, with the possibility of adverse events or side effects. For many 

The models described above are deterministic and do not include random 
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individuals, the benefits of vaccination may not occur or be delayed into the 
distant future. On the other hand herd immunity can provide protection even 
to those who choose not to become vaccinated. This provides the prospect of 
eliminating or eradicating infection when a vaccine is effective enough to 
make this possible. However, since vaccination programs across the world 
vary greatly, elimination may need to be sustained in individual countries or 
regions for many years before eradication is achieved. This means that even 
though the current risk of infection in the elimination phase is very small, 
vaccination programs for diseases such as polio must be maintained until 
eradication is achieved in order to avoid a return to endemic infection. 

2.5.1 Data Requirements and Surveillance 

Surveillance systems are a core contributor to modeling data and 
comprise the ongoing acquisition of information for use in public health 
action. Surveillance should be practical, timely and uniform, and the data are 
not necessarily complete. Surveillance systems can be passive, active or 
sentinel in nature. Of these, passive surveillance is the most commonly used. 
It is initiated by the data provider, is cheaper and easier to establish than 
active surveillance, but often underestimates disease burden. In active sur-
veillance, the investigator actively solicits reports from providers. This type 
of surveillance is used commonly in outbreaks, is usually more complete 
than passive surveillance, but can be resource-intensive and expensive. A 
compromise between active and passive systems can be achieved with 
sentinel surveillance, which utilizes a sample of sites, can provide relatively 
detailed information, is cheaper than active surveillance, but may be less 
complete. Other data that contribute to mathematical models include sero-
epidemiologic data from population-based serosurveys, enhanced surveillance 
data, vaccine coverage data and vaccine efficacy estimates from clinical trials. 

In terms of pandemics and emerging infections, early detection systems 
such as signalling of elevated emergency department presentations of atypical 
pneumonia to trigger active containment are important. These should aim to 
have the capacity to estimate both the effective reproduction number Rt, and 
to be sensitive enough to detect the impact of interventions such as isolation 
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and quarantine, pharmaceutical treatment and prophylaxis, genetic changes 
in the pathogen such as development of resistance to treatments and vaccine 
effectiveness. 
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3. MATHEMATICAL MODELS  
FOR BIOSURVEILLANCE OF VACCINE-
PREVENTABLE DISEASE 

The field of biosurveillance has advanced rapidly over the last decade, 
making use of varied forms of data from diverse sources. The most notice-
able advances in biosurveillance practice have occurred among real-time 
syndromic surveillance systems which aim to allow the early detection of 
outbreaks of both known and unknown pathogens. Although diagnostic data 
sources are by definition slower to register an event than syndromic (or pre-
diagnostic) sources, the surveillance of diagnostic data provides valuable 
specific information for monitoring population health outcomes and informing 
health policy. 

While routine  analyses of real-time biosurveillance systems have been 
developed to facilitate early detection of bioterrorist or emerging disease 
threats, analysis of vaccine-preventable disease data is generally retrospective 
in nature, and not performed in real-time. In addition to monitoring laboratory 
confirmations of notifiable infectious diseases, biosurveillance for immunization 
programs is largely aimed at capturing data that informs influential assump-
tions in transmission models, such as age-specific immunity. Information on 
immunity is derived from large-scale cross-sectional serosurveys that are 
resource-intensive and are generally performed at intervals of several years. 
More routine surveillance of population immunity data would be particularly 
beneficial for diseases where vaccine-derived immunity is lost over time and 
would substantially improve the accuracy of related models. The routine 
application of modeling approaches to vaccine-preventable disease data, 
including both diagnostic and immunization data, offers the means to ensure 
that the impact of population health interventions are closely monitored. 

Biosurveillance methods conventionally applied to both syndromic and 
diagnostic disease data, including aberration and cluster detection, have the 
potential to improve the analysis of immunity and morbidity data for vaccine-
preventable diseases, and are currently underutilised in this field. Approaches 
to spatio-temporal analysis such as scan statistics could support assessment 
of the need for targeted interventions to decrease susceptibility or control 
disease transmission, and compliment more detailed modeling approaches. 
Cluster detection methods provide a different means of identifying local 
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indicators of increased disease risk that could be used to inform targeted 
interventions to improve disease control. 
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More structured modeling approaches can also be incorporated in 
biosurveillance to evaluate disease risk and disease transmission within 
populations. The routine use of simple modeling approaches can greatly 
improve our understanding of the impact of disease prevention and control 
programs. Emerging disease threats such as pandemic influenza highlight 
the need for modeling methods to provide early, accurate and timely epi-
demiological information to inform and evaluate disease control efforts. 
Traditional deterministic models of infectious diseases, such as those out-
lined above, are useful for describing transmission of established diseases in 
large populations. However, the need to identify the key characteristics of 
transmission from small numbers of cases has stimulated development of 
models that are based on surveillance and contact tracing data and reflect the 
closer integration of surveillance, modeling and disease control interventions 
(Matthews and Woolhouse, 2005). 

Stochastic effects have been shown to be important in the early stages of 
epidemics. Studies of disease transmission traditionally divide populations 
into subgroups as a means to include heterogeneity. However, these methods 
are unable to capture the role of individual variation in outbreak dynamics, 
and estimates of reproductive numbers at the population level can mask 
significant individual-level variation in transmission. Individual variation in 
infectiousness can have important implications for evaluating transmission 
and predicting the epidemic course in emerging disease outbreaks (Lloyd-
Smith et al., 2005). 

The increasing availability of detailed outbreak surveillance data has 
provided more evidence of the stochastic nature of epidemics and improved 
the ability of modeling methods to produce meaningful epidemiological 
information from small case numbers (Matthews and Woolhouse, 2005). 
Rapid collection and modeling of surveillance data can provide valuable 
information for public health decision-making. 

3.1 

Recently, statistical techniques have been developed for estimating and 
monitoring the effective reproductive number of an outbreak in its early 
stages. These methods could contribute to the rapid evaluation of disease 
control measures during an epidemic and facilitate improved disease control. 
The effective reproduction number is a time-dependent parameter that 
quantifies the average number of secondary infections caused by a typical 
infectious case. The reproductive number provides an indicator of the future 
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Models of the Reproductive Number  
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course of the epidemic and critical information for planning for epidemic 
control (Wallinga and Lipsitch, 2007). 

Real-time estimation of reproductive numbers would have practical value 
for communicable disease control, enabling epidemiologists to evaluate the 
impact of the control measures implemented. Several models have been 
designed to allow estimation of the reproductive number from routine sur-
veillance data, and three prominent approaches are used here to illustrate the 
variation in practical applications and methods. Together, these approaches 
allow routine surveillance of the reproduction number under the conditions 
of disease elimination as well as during epidemics, providing sufficient case-
based surveillance data are available. 

3.1.1 Surveillance of Disease Elimination 

Farrington and co-workers (2003) describe the use of a branching 
process model for the surveillance of vaccine-preventable diseases which 
has practical application for monitoring the elimination of diseases that are 
controlled by mass vaccination. This model uses an approximation to the 
epidemic process which requires only surveillance data on the occurrence of 
cases and epidemiological information that permits the linkage of cases to 
specific outbreaks. This approach contrasts with earlier modeling methods 
which, although being more accurate, require information on the number of 
susceptible individuals which may not be available in a surveillance setting. 
A high level of case ascertainment is required, which limits the applicability 
of the model in some settings and for diseases which are not well-controlled. 
A stochastic random variable is used to model the number of secondary 
cases produced by each case in each generation of the epidemic. External 
causes of stochasticity and the importation and exportation of cases are 
ignored. The model assumes a homogenous pattern of disease spread, and 
has been used to estimate the reproduction number for measles in the United 
States of America (Farrington et al., 2003) and Australia (Becker et al., 
2005). 

3.1.2 Surveillance of Epidemics 

In an epidemic context where transmission rates are high, and where 
partial tracing information is available, Cauchemez et al. (2006) propose a 
generic method that enables the real-time estimation of changes in the 
reproductive number of an outbreak. The method requires surveillance count 
data, data on the onset of symptoms, and contact tracing data for a subset of 
cases. As tracing of transmission of disease between all individuals in an 
outbreak is time consuming and generally infeasible, models estimate the 
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epidemic parameters based on the assumption that the traced cases represent 

Inferences about the temporal pattern of the reproduction number are 
based on the output of a Bayesian hierarchical model which uses a Markov 
Chain Monte Carlo (MCMC) algorithm to identify the generation interval 
based on the case tracing data. The output from the MCMC is used to 
allocate untraced cases to an observed primary case using a Monte Carlo 
algorithm, and correction for censorship is performed. The method does not 
require knowledge of the generation interval and is suitable for use with 
daily real-time surveillance data. The model is associated with six main 
assumptions about the epidemic and data, including that all cases are detected, 
and that secondary cases are always reported after their index case. (Cauchemez 
et al., 2006) This method allows real-time evaluation of the efficacy of out-
break control measures based on variation in disease transmission. 

3.1.3 Parameter-Free Epidemic Surveillance 

Unlike the preceding methods, Haydon et al. (2003) developed a straight-
forward parameter-free method to estimate epidemic parameters based on 
reconstructing the epidemic tree using available contact tracing data. A flexible 
set of assumptions allow allocation of untraced cases to the epidemic tree 
based on selection from cases that were known to be infectious at the time of 
infection using both spatial and temporal data. Reconstructing the outbreak 
allows the reproduction number to be estimated without having to fit equa-
tions to the data and with fewer assumptions than required for deterministic 
modeling approaches. This approach allows the estimates to be obtained 
more directly from the data, assuming that the methods of reconstructing the 
disease transmission pathways are not biased. Reconstruction of the outbreak 
also allows the model to encompass the spatial and temporal variability 
inherent in the data, estimation of the variability in the reproduction number 
over space and time, the exploration of the effect of alternative control 
measures, and the effect of long-range transmission events (Haydon et al., 
2003). 

3.2 Summary 
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In summary, modeling approaches for the analysis of infectious disease 
surveillance data have been developed which are suitable for use in both 
the environments of disease elimination and epidemics. The routine use of 
these types of models in surveillance systems will allow further evaluation 
of the benefits of mathematical modeling in the applied surveillance context. 

a random sample of all cases.
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Practical application of the modeling methods reviewed in the routine 
surveillance of vaccine-preventable diseases is dependent on the availability 
of sufficiently detailed case-based surveillance data and high case detection 
rates. These data are not always routinely available, even in developed 
countries. Advancements in disease control leading to a decrease in the 
burden of disease may improve the ability of health jurisdictions to collect 
the required data (Leung et al., 2008). 

The parameter-free method described by Haydon et al. (2003) provides a 
straightforward means to analyse spatial data associated with epidemics, and 
the usefulness of this approach in practice requires further investigation. 
Spatio-temporal analysis of disease transmission provides a method which 
could be integrated with other information sources such as population and 
environmental data, to improve models of disease spread. 
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QUESTIONS FOR DISCUSSION 

1. Eradication of smallpox is the greatest success of immunization to date. 
Currently the WHO is conducting immunization programs aimed at 
eradicating polio and measles. The R0 for measles has been estimated at 
15 or higher, whereas for smallpox it was between 3 and 6. Discuss how 
the value of R0 can influence the success of vaccination programs. (Hint: 
read point 2) under the section Equilibrium.) 

2. By reducing the prevalence of infection, population-based immunization 
programs reduce exposure to infection. This tends to raise the average age 
at which people become infected. Can you think of situations in which 
this might have negative consequences? (Hint: infections with Rubella.) 

3. When an epidemic occurs, one of the easiest things to record is the 
timing of cases. However, it is not enough to tell us the R0 of the pathogen. 
What other data would need to be collected to help us determine the R0? 
(Hint: think about the timing involved in infection.) 

4. As an epidemiologist in charge of the overall public health management of 
a recent outbreak of a vaccine-preventable disease in the local community, 
how could the results of a mathematical model of the early progress of the 
outbreak facilitate your planning for outbreak control? 
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Chapter 13 

NATURAL LANGUAGE PROCESSING  
FOR BIOSURVEILLANCE 
Detection and Characterization from Textual Clinical Reports 

WENDY W. CHAPMAN1,*, ADI V. GUNDLAPALLI2,  
BRETT R. SOUTH2, and JOHN N. DOWLING1 

CHAPTER OVERVIEW 

Information described in electronic clinical reports can be useful for both 
detection and characterization of outbreaks. However, the information is in 
unstructured, free-text format and is not available to computerized applications. 
Natural language processing methods structure free-text information by 
classifying, extracting, and encoding details from the text. We provide a 
brief description of the types of natural language processing techniques that 
have been applied to the domain of outbreak detection and characterization. 
We group textual data generated by a healthcare visit into four classes: chief 
complaints, emergency care notes, hospitalization notes, and discharge reports. 
For each class of data, we illustrate uses of the data for outbreak detection 
and characterization with examples from real applications that extract 
information from text. We conclude that a modest but solid foundation has 
been laid for natural language processing of clinical text for the purpose of 
biosurveillance, with the main focus being on chief complaints. To provide 
more accurate detection and to assist in investigating and characterizing 
outbreaks that have already been detected, future research should focus on 
tools for extracting detailed clinical and epidemiological variables from clinical 
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Chapter 13

reports. Areas of challenge include identifying contextual modifiers of clinical 
conditions, identifying useful temporal information, and integrating information 
across reports for a more complete view of a patient’s clinical state. 

Keywords: Natural language processing; Biosurveillance; Syndromic surveillance; 
Text processing; Information extraction; Infectious disease 

INTRODUCTION 

This quote from another century sums up the challenges faced by those
working in text processing of medical data. Although the “sense” – context 
and details of a medical note describing a patient’s visit and illness – are 
readily apparent to a trained human reader, training computers to understand 
the same information is a daunting task. 

Consider a situation in which a novel strain of avian influenza (H5N1) 
with pandemic potential is causing outbreaks of disease among domestic and 
commercial poultry in many parts of the world with sporadic transmission to 
humans. Public health agencies and medical personnel everywhere including 
the U.S. are concerned about the first imported case of avian influenza that 
would most likely go undetected. Identifying subsequent cases too would 
pose a challenge if by coincidence the index case occurred during the annual 
winter respiratory season. 

Whereas structured data such as chief complaints and ICD-9 diagnoses 
are often the first pointers to a pool of patients that fit a particular case 
definition, there are epidemiologic and clinical clues in the patient’s encounter 
that are accessible only by reviewing the entire clinical record. These clues 
include a history of recent travel to a disease-affected region, contact with 
others with similar symptoms, and unusual severity of disease in otherwise 
healthy individuals. A manual reading of records, such as provider notes and 
microbiology, radiology, and pathology reports, offers the most reliable, though 
resource-intensive, method of extracting relevant information. As an alter-
native, mining the electronic records using natural language processing (NLP) 
offers information extraction and discovery in a reproducible, resource-
sparing, and efficient manner. 

In this chapter, we provide an overview of the data sources used for 
biosurveillance (Sect. 2), focusing on clinical data sources that are stored in 
textual format. We briefly describe the natural language processing techniques 
currently in use to process free-text clinical reports into a form that can be used 
by surveillance systems and illustrate uses of textual clinical data for outbreak 
detection and characterization with examples from real applications (Sect. 3). 
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OVERVIEW OF DATA SOURCES  
FOR BIOSURVEILLANCE 

The earlier the detection, the more time stakeholders have to mitigate an 
infectious disease outbreak. To this end, a variety of data sources have been 
utilized for predicting an outbreak before detailed and confirmatory medical 
information is available. Several surveillance systems have utilized population- 
and individual-level data of human behavior prior to seeking medical attention. 
Others have employed traditional healthcare data to detect an outbreak when 
patients seek medical care in ambulatory, emergency, and inpatient settings. 
Yet others have used various combinations of data sources to further refine 
biosurveillance and increase specificity. In all these systems, the data used 
for biosurveillance can be broadly classified as either structured data – such 
as ICD-9 codes – or unstructured data – such as free text. 

Structured data are relatively easy to parse, process, manipulate, and 
analyze mainly by matching codes and terms. Though the overall benefit or 
utility of different data sources for biosurveillance is not fully established, it 
is generally accepted that structured data provide greater sensitivity over 
specificity, thus identifying events that warrant further investigation by 
public health agencies and other stakeholders. Unstructured free text in the 
patient’s medical record allows access to information and details that are 
generally not available in structured data sources. Mining and encoding this 
text may allow for increased specificity in detecting an infectious disease 
outbreak and identifying epidemiologic details. 

2.1 Surveillance from Non-clinical Data Sources 

Although the electronic medical record (EMR) contains a wealth of data 
potentially useful for biosurveillance, many non-clinical data sources may 
provide earlier evidence of an outbreak or may provide information com-
plementary to that contained in an EMR. Below, we provide a short overview 
of structured and unstructured data sources outside of the EMR that are 
being used for surveillance. 

2.1.1 Structured Non-clinical Data 

Structured data sources have been used extensively for biosurveillance, 
mainly because of their availability and relative ease of accessing and 
processing. It is also postulated that these data sources may reveal patterns of 
behavior among the population before they seek formal medical attention, 
thus providing a very early indicator of an infectious disease outbreak. Some 
sources are self-evident with regard to the population seeking symptomatic 
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relief of, or expressing concern for, symptoms, including over-the-counter 
medication and health-related sales of items used for common syndromes, 
such as respiratory, febrile and gastrointestinal illnesses, calls to local 911 
centers, poison control center calls (for gastrointestinal illnesses), health-
related web sites access data, medical provider advice hotline data or symptoms 
reported to a telephone health advice service, healthcare provider database 
searches, and Internet-based illness reporting. Others have attempted to link 
changes in patterns of everyday life to disease outbreaks, and these include 
airline travel volume (influenza spread and mortality), school/work absentee 
volume, and commuter road, mass transit and entertainment venue usage. 
Other data sources that may be important for predicting outbreaks, including 
zoonotic diseases, take account of weather data, disease vector data and ill-
nesses and death in animals. 

2.1.2 Textual Non-clinical Data 

The importance of unstructured or textual data, especially Internet-based 
information for monitoring emerging infectious diseases and reporting public 
health outbreaks, is growing. A number of public and private global surveillance 
systems aggregate and post unstructured data concerning public health from 
a variety of Internet-based sources in an attempt to create an automated real-
time Internet surveillance for epidemic intelligence. For example, ProMed-
mail (the Program for Monitoring Emerging Diseases) is an Internet-based 
reporting system that rapidly disseminates information on outbreaks of 
infectious diseases and acute exposures to toxins that affect human health. 
Sources of moderated information include local and national media reports, 
official reports, online summaries, local observers and others. 

In contrast, HealthMap [1] and Global Health Monitor [2] automatically 
collect news from the Internet about human and animal health and plot the 
data on a World map, using an established dictionary to map textual data and 
extract geographical location and mention of the disease [3]. Global Health 
Monitor is an online system for detecting and mapping infectious disease 
outbreaks that appear in news stories. Global Health Monitor takes an 
ontology-centered approach to knowledge understanding and linkage to external 
resources. Indicators and warnings gathered from public domain reports of 
infectious disease outbreaks have been mined using keyword and text searching 
to create a heuristic staging model for the detection and assessment of out-
breaks for both front-line personnel and decision-makers [4]. The Public 
Health Agency of Canada sponsors a similar early warning system that 
mines available free-text Internet reports in seven languages for disease 
outbreaks and provides the feed for subscribers as the Global Public Health 
Intelligence Network [5]. 
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2.2 Surveillance from Clinical Data Sources 

Once a patient presents to a healthcare facility, structured and unstructured 
data are generated and stored in the EMR, and that data may be repurposed 
from the goal of documentation to assist surveillance systems in detecting 
and characterizing outbreaks. Below, we summarize some structured and 
unstructured data sources in the EMR. 

2.2.1 Structured Clinical Data 

As an individual seeks medical attention, structured data are generated as 
part of the encounter. In general, these vary in terms of availability in electronic 
format, accessibility, and timeliness. Early indicators in this context are 
referred to as pre-diagnostic indicators and include such data as ambulance 
call chief complaints, emergency department or ambulatory clinic total patient 
volume or structured chief complaint data, volume of unscheduled hospital 
or intensive care unit admissions, influenza-like illness (ILI) monitoring by 
sentinel physicians, laboratory order data, test ordering patterns (e.g., influenza, 
lumbar puncture), and radiology imaging ordering volume. As the patient 
advances through the healthcare system, the data sources available include 
outcomes of emergency department and ambulatory clinic visits by diagnosis, 
usually in the form of ICD-9 codes, laboratory test results, including micro-
biology, pharmacy prescriptions filled, acute diagnoses in nursing home 
populations, unexplained deaths and medical examiner case volume, and 
insurance claims or billing data, including Medicare or Medicaid claim forms 
filed. 

2.2.2 Textual Clinical Data 

Unstructured data in the form of free text comprises most of the medical 
record and is manifest mainly as notes generated by healthcare providers and 
laboratory and imaging reports. Although more difficult to access, the 
majority of the data regarding the health status of the patient, including 
details of laboratory and radiology exams, along with past medical, family, 
social, and travel history, are only found in these free-text records. For 
biosurveillance purposes, highly relevant epidemiologic clues to infectious 
diseases, such as exposure to someone with a similar illness, travel to an 
endemic region, or specific symptoms, are available only in free-text medical 
records. Thus, extracting patient-level data from unstructured free-text data 
is an important first step in understanding the clinical state of a patient. 
Identifying features from text in turn should translate to improved identification 
of patients of interest and ultimately to improved care at both the patient and 
population level. 
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Most commonly available textual clinical data include emergency depart-
ment (ED) triage chief complaint data in free text, clinical narrative reports 
(often in the EMR), ED patient summaries, radiology imaging dictated 
reports, and admission, progress, procedure, operative, and discharge notes. 

In this chapter, we focus on these data sources – clinical textual data 
generated by a patient’s visit to an inpatient or outpatient healthcare facility. 
In the next section, we describe the different types of text and natural 
language processing methodologies currently in use to analyze these data 
sources and provide an overview of the clinical textual data sources being 
used for biosurveillance. 

SURVEILLANCE FROM TEXTUAL CLINICAL 
DATA SOURCES 

3.1 Methodologies for Processing Clinical Textual Data 

Natural language processing applications strive to classify, extract, and 
encode information from text. Several strategies exist for automated processing 
of electronic clinical text. Applications developed for biosurveillance can be 
described using three main categories: (a) keyword-based, (b) statistical, and 
(c) symbolic. Many applications use one or more of these techniques to 
extract and classify information from biomedical texts. Simpler text processing 
techniques may not be appropriately labeled as natural language processing 
methodologies, per se, but for simplicity, we use the term NLP to describe 
all of the text processing techniques described throughout this chapter. 

Below we give a broad description of the three methodologies with 
examples from the biosurveillance domain. For a more detailed description 
of the challenges inherent in processing textual clinical documents, see [6]. 

3.1.1 Keyword-Based NLP Techniques 

Keyword-based methods involve text processing techniques that utilize a 
specific list of terms, keywords, or phrases to identify variables of interest. 
For instance, a keyword search for identifying fever in a report may include 
the terms “fever” and “febrile.” This list of words or phrases can be expanded 
by finding synonyms and term variants stored in standard vocabularies such 
as the UMLS Metathesaurus [7]. Because many of the conditions in clinical 
reports are described as being absent in the patient [8], term lists are often 
coupled with a negation algorithm [8–11] to differentiate between conditions 
the patient has (e.g., “complains of fever”) and conditions that are negated 
(e.g., “denies fever”). 
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The main advantage of keyword-based methods is their simplicity – 
keyword searches are easy to implement, and they are flexible in their ability 
to include new keywords as needed. Keyword searches perform quite well in 
a few circumstances. First, keyword searches designed for a small number of 
clinical concepts can be successful, because it may be possible to come up 
with the majority of textual variants used for a few concepts. The example of 
fever supports this claim – one study showed that a keyword-based algo-
rithm could successfully identify fever in ED reports with a few synonyms 
for fever, a simple negation algorithm, and a regular expression pattern for 
the patient’s temperature [12]. Second, if the input text is linguistically simple, 
keyword searches may be sufficient. Many of the chief complaint classifiers 
described in Sect. 3.3.1 use keyword searches to effectively classify patients 
into syndrome categories and identify specific clinical conditions from chief 
complaints. For example, the New York City Syndromic Macros [13] classify 
patients with chief complaint strings including the words “cough,” “coughing,” 
“sob,” and “wheezing” as Respiratory patients and can classify respiratory 
chief complaints with fairly high sensitivity and specificity [14]. 

There are several disadvantages to keyword-based methods. First, key-
word searches cannot recognize words that are not in their keyword list. 
There are too many synonyms, abbreviations, and textual variants for 
expressing medical concepts to maintain an accurate keyword list for a large 
set of clinical concepts. Second, the more a textual document resembles 
natural language, the more linguistically complex the text becomes and the 
less effective a keyword search will be. Since keyword-based approaches 
primarily focus on identifying concepts in isolation they ignore important 
contextual information crucial for understanding the description of a patient’s 
clinical state, such as uncertainty, temporality, and relationships among con-
cepts. Statistical and symbolic techniques attempt to address the more 
challenging aspects of processing natural language. 

3.1.2 Statistical NLP Techniques 

Statistical text classification techniques employ the frequency distribution 
of the words to automatically classify text into one of a distinct set of 
predefined categories. Various statistical models have been applied to the 
problem of text classification, including Bayesian belief networks, decision 
trees, regression models, nearest neighbor algorithms, neural networks, and 
support vector machines. The basic component in all statistical techniques is 
the frequency distribution of words or characters in the text. In the domain of 
biosurveillance, statistical text classification techniques have been applied to 
triage chief complaints [15–18] and chest radiograph reports [19]. Several 
chief complaint classifiers use statistical techniques to classify free-text 
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triage chief complaints into syndrome categories. Some statistical classifiers 
use the frequency distribution of the words in the chief complaints to predict 
the classification. For example, “vomiting” would be more likely to be 
classified as Gastrointestinal than Respiratory or Neurological, because chief 
complaints in the training set that contained the word “vomiting” were classified 
most frequently as Gastrointestinal. Other statistical chief complaint classifiers 
model the frequency distribution of contiguous characters, such as “asth” 
and “heez,” rather than entire words [20]. 

Beyond frequency distribution of words, statistical techniques can be 
used for higher level reasoning. MPLUS uses Bayesian networks to make 
inferences about the underlying meaning of words. For instance, the phrase 
“hazy opacity in the left lower lobe” implies the concept localized infiltrate 
which implies the disease pneumonia [21]. One chief complaint classifier 
[22] uses a weighted semantic similarity score grouping method that is 
capable of automatically assigning previously un-encountered symptoms to 
appropriate syndrome groups using the UMLS Metathesaurus [7]. 

An advantage of statistical techniques is the ability to reason under 
uncertainty. Disadvantages include the need for a labeled training set for 
learning distributions and relationships in the data and less ability to explain 
the outcome to users. For some of the same reasons keyword-based methods 
are ineffective in understanding clinical text, unless a statistical model 
includes linguistic and domain knowledge, statistical techniques can also fall 
short in extracting meaning from text. 

3.1.3 Symbolic NLP Techniques 

Symbolic NLP techniques utilize linguistic information in attempting to 
interpret free text. NLP methodologies applied to biosurveillance have 
leveraged knowledge of syntax (the way words are arranged together in a 
sentence), semantics (the meaning of linguistic expressions), and discourse 
(relationships between groups of sentences) to interpret text. Syntax can be 
important in understanding the context surrounding a relevant condition in a 
document. For example, syntax informs us of the scope of the negation term 
“denies” in the sentence “Patient denies cough but has experienced shortness 
of breath” so that we understand cough is absent but shortness of breath is 
present. Having a semantic model of a domain can be critical in under-
standing the meaning represented in a clinical document. Ontologies that 
explicitly model relationships among concepts in a domain can be helpful in 
making inferences that humans make, such as the fact that a stomach cramp 
is a type of abdominal pain or that a localized infiltrate occurs in patients 
with pneumonia. Discourse knowledge is also important in understanding 
complex narratives like ED reports or discharge summaries, which describe 
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a patient’s course over time. Making sense of the narrative involves under-
standing relationships among concepts in the text, such as temporal relations 
(e.g., “the vomiting began after she ate at the fast food restaurant”) and 
coreferential relationships (e.g., the fact that “chest pain” and “it” refer to the 
same condition in “Patient complains of chest pain. It radiates down her left 
arm.”). Most NLP applications that address clinical text more complicated 
than chief complaints incorporate some type of symbolic techniques in their 
processing. 

3.1.4 Evaluation of Text Processing Methods in Biosurveillance 

Three types of evaluations have been applied to NLP applications for 
biosurveillance: feature detection, case detection, and outbreak detection. In 
this chapter, we focus on the first two. 

Feature detection studies validate the ability of the methodology to 
classify, extract, or encode features from text. A feature may be among other 
things a syndrome category, a specific clinical concept, or a concept modifier. 
Feature detection studies evaluate the technical accuracy of the application 
based on the input text without considering whether or not the input text 
represents the true clinical state of the patient. For instance, a feature 
detection study for chief complaint classification may measure whether the 
chief complaint classifier assigns the correct category to the chief complaint, 
using the meaning of the chief complaint as the reference standard. Feature 
detection studies ignore the possibility that the input text may present an 
incomplete or even inaccurate representation of the patient’s clinical state. 
Still, feature detection studies perform a useful function in determining 
whether the NLP application is performing the task it was designed to perform. 
The majority of evaluations of NLP applications in the biosurveillance domain 
are feature detection studies that evaluate the ability of the applications to 
classify chief complaints into syndrome categories or identify pneumonia-
related concepts from chest X-ray reports, for example. 

Once the ability to detect features from text is verified, the ability of 
encoded features to diagnose individual cases of interest (case detection) 
can be addressed. The reference standard for case detection studies is not 
necessarily the text being processed, because the concern is no longer how 
well the application can identify information from the textual source but 
rather how well the identified feature can identify cases of interest. There-
fore, the reference standard depends on the finding, syndrome, or disease 
being diagnosed. A reference standard for the syndrome a patient exhibits 
when presenting to the ED may include the dictated ED note; a reference 
standard for a patient’s final diagnosis may comprise expert review of the 
complete medical record. 
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An example of how feature identification and case detection studies 
differ is a study on fever detection [12]. The application for identifying fever 
in chief complaints performed with perfect sensitivity and specificity in the 
feature identification evaluation. However, in the case detection study that 
measured how well the automatically extracted variable of fever from chief 
complaints identified patients who had a true fever based on the reference 
standard of ED record review, the chief complaint detector performed with 
sensitivity of only 61%. Despite the fact that the NLP application made no 
mistakes in determining if fever was described in a chief complaint, the chief 
complaints did not always mention fever when the patient was febrile in the 
ED, resulting in imperfect case detection ability. 

3.2 Textual Documentation Generated from a Visit  
to a Healthcare Facility 

When a patient comes in contact with the healthcare system, multiple 
types of data are electronically generated to document the clinical state of 
the patient and the types of procedures and tests performed on the patient. A 
patient with acute onset of a disease of concern in biosurveillance often 
makes first contact with an ambulatory care clinic, which may be an 
outpatient primary care clinic or emergency room. After an ambulatory visit, 
a patient is released to return home or may be admitted to the hospital. 
During the ambulatory and the hospitalization phase of patient care, vast 
amounts of clinical data are generated and often stored in an electronic medical 
record system. Figure 13-1 demonstrates the flow of clinical data over time 
from an ambulatory visit to hospitalization. 

Automated surveillance systems have been successfully developed and 
implemented in a relatively short period of time in large part because they 
leverage pre-existing electronic data, including clinical data generated from 
a healthcare visit. Surveillance systems initially focused their efforts on early 
detection of outbreaks. More recently, surveillance systems are attempting 
not only to detect outbreaks but to characterize the nature of the outbreaks. 
The best data source for surveillance depends on the question being asked of 
the system. Early detection requires early data that may not be as complete, 
whereas characterization may call for more detailed data that are not avail-
able until later in a patient’s course of care. 
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Figure 13-1.  Temporal flow of clinical data when patient visits a healthcare facility. ICD-A 
refers to versions of ICD coding. 

 
Most automated biosurveillance systems currently monitor clinical data 

generated from the ambulatory care process, which is one of the earliest 
points in which a patient makes contact with the healthcare system. Systems 
monitoring ambulatory data from military hospitals have access to encoded 
admit diagnoses like ICD-9 codes, which are rarely available outside of 
military clinical care. Systems that monitor ICD admit codes typically group 
patients into syndrome categories by comparing a patient’s admit code to a 
list of codes that represent a particular constellation of symptoms of interest, 
such as a list of respiratory or gastrointestinal codes. If the admit code 
assigned to the patient is in the list of respiratory codes, for example, the 
patient is classified as a respiratory case. The system monitors the temporal 
frequency and the spatial distribution of patients with the same classification 
to look for aberrations that may indicate an outbreak. 

After an ambulatory care visit, most hospitals generate a discharge 
diagnosis for the patient in the form of an ICD code. However, in most 
hospitals, that code is not available for hours or even days after the patient 
leaves the urgent care facility. Therefore, many surveillance systems monitor 
triage free-text chief complaints, which are nearly ubiquitously available 
from emergency departments and acute care clinics throughout the United 
States as soon as a patient is admitted to the ambulatory clinic. Like classifying 
patients from coded admit diagnoses, surveillance systems monitoring chief 
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complaints typically classify patients into syndrome categories based on the 
chief complaint. However, because chief complaints comprise free-text 
descriptions, the chief complaints must first be processed to determine what 
category the text represents. In Sect. 3.3.1.2 we describe the state-of-the-art 
in chief complaint classification. 

The CDC has noted the need for an expansion of surveillance data 
sources to include laboratory, radiology, and even outpatient records [23] so 
that we can track more specific case definitions with less baseline noise [24]. 
Moreover, characterization of an outbreak requires more detailed clinical 
information to provide health situational awareness during a community 
outbreak or disaster to track and manage available hospital resources. To do 
this, we need real-time clinical connections with hospitals and health systems 
to obtain de-identified but detailed clinical data for patients in acute care 
settings. 

In the section below we describe in detail the different types of clinical 
data used for surveillance, focusing on current research and applications of 
natural language processing technologies for detecting cases of concern and 
for characterization of outbreaks. 

3.3 Overview of Clinical Textual Data Sources  
and Their Application in Biosurveillance 

Table 13-1 summarizes much of the research on NLP applications for 
detecting and characterizing disease outbreaks from textual clinical data sources. 
For each different data source, such as chief complaints and chest X-ray 
reports, the table lists whether the evaluation addressed feature identification 
or case detection, whether the goal was detection or characterization, the 
target output from the NLP application, such as syndrome classification or 
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Earlier identification of suspicious symptoms or constellations of symptoms 
promises earlier detection of outbreaks, and chief complaints are available 
early in the patient care process. However, there is a tradeoff between the time-
liness and the completeness of clinical data. Most current surveillance systems 
monitor admit codes or chief complaints; however, some systems are beginning 
to monitor more detailed clinical data that are available later in a patient 
visit, such as ambulatory notes, radiology reports, and discharge summaries. 
Because electronically available clinical reports are not as timely as chief 
complaints, they may not be as useful for early detection of small outbreaks. 
But clinical reports contain a wealth of information regarding a patient’s 
clinical condition that can aid an investigation of a suspected outbreak, 
along with epidemiological factors useful for characterizing or responding 
to an outbreak. 

coded clinical condition, the reference standard used in the study, and the  



13. Natural Language Processing for Biosurveillance 

 

Data Source Evaluation 
Type 

Goal of System: 
Detection or 
Characterization 

Target Reference 
Standard 

Technique Used 

Chief 
complaints 

Feature 
identification 

Detection: 
syndrome 
categories 

Seven 
syndromes [1] 

Physician 
classification 
based on chief 
complaints 

Naïve Bayesian 
classifier (CoCo) 

Chief 
complaints 

Feature 
identification 

Detection: 
syndrome 
categories 

Seven 
syndromes [2] 

Physician 
classification 
based on chief 
complaints 

MPLUS 

Chief 
complaints 

Feature 
identification 

Detection: 
syndrome 
categories 

Respiratory 
syndrome [3] 

ICD-9 discharge 
diagnoses 

Ngram classifier 
trained on chief 
complaints whose 
classifications came 
from ICD-9 diagnoses

Chief 
complaints 

Feature 
identification 

Detection: 
syndrome 
categories 

Seven 
syndromes [4] 

Physician and 
nurse 
classification 
based on chief 
complaints 

BioPortal chief 
complaint classifier 

Chief 
complaints 

Feature 
identification 

Detection: 
syndrome 
categories 

Seven 
syndromes [5] 

Physician 
classification 
based on chief 
complaints 

Naïve Bayesian 
classifier CoCo and 
NYC DOHMH 
keyword search with 
and without 
preprocessing by CCP 
and EMT-P  

Chief 
complaints 

Feature 
identification 

Detection: 
syndrome 
categories 

Respiratory 
syndrome [6] 

Physician 
classification 
based on chief 
complaints and 
triage notes 

NCDetect classifier 
with and without 
preprocessing by  
EMT-P 

Chief 
complaints 

Feature 
identification 

Detection: 
syndrome 
categories 

Eight 
syndromes [7] 

Physician 
classification 
based on chief 
complaints 

Chinese-English 
translation followed 
by classification by 
BioPortal 

Chief 
complaints 

Feature 
identification 

Characterizatio
n: clinical 
conditions 
comprising 
syndromic 
peaks 

Clinical 
conditions 
associated with 
respiratory and 
gastrointestinal 
syndrome [8] 

Physician 
classification 
based on chart 
review  

Manual annotation of 
conditions for cases 
identified by 
NYSDOH chief 
complaint classifier 

(Continued)

Table 13-1. Overview of biosurveillance feature identification and case detection studies of 
NLP methods. 
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Data Source Evaluation 
Type 

Goal of System: 
Detection or 
Characterization 

Target Reference 
Standard 

Technique Used 

Chief 
complaints 

Feature 
identification 

Detection and 
characterization: 
clinical 
conditions 

Clinical 
conditions 
associated 
with seven 
syndromes [9]

Physician 
classification 
based on chief 
complaints 

Naïve Bayesian 
Classifier (SyCo) 

Chief 
complaints 

Feature 
identification 

Detection and 
characterization: 
clinical 
conditions 

Clinical 
conditions 
[10] 

No reference 
standard – case 
mix prevalence 

Coded chief 
complaints (CCC-
EDS) 

Chief 
complaints 
and 
emergency 
department 
notes 

Feature 
identification 
and Case 
detection 

Detection: 
physical finding 

Fever [11] Physician 
classification 
based on review 
of chief 
complaints and 
ED notes 

Keyword search, 
NegEx, and 
identification of 
hypothetical 
statements 

Emergency 
department 
notes 

Feature 
identification 

Detection: 
syndrome 
category 

Acute lower 
respiratory 
syndrome 
[12] 

Physician 
classification 
based on review 
of ED notes 

Manual annotation of 
features subsequently 
classified by machine 
learning algorithms 

Emergency 
department 
notes 

Feature 
identification 

Detection and 
characterization: 
clinical 
conditions 

Clinical 
conditions 
related to 
lower 
respiratory 
illness [13] 

Physician 
classification 
based on review 
of ED notes 

MetaMap 

Emergency 
department 
reports 

Feature 
identification 

Detection and 
characterization: 
clinical 
conditions 

Clinical 
conditions 
related to 
lower 
respiratory 
illness [14] 

Physician 
classification 
based on review 
of ED reports 

Topaz 

Emergency 
department 
triage notes 

Feature 
identification 

Detection and 
characterization: 
clinical 
conditions 

Negated 
clinical 
conditions 
[15] 

Physician review 
of system output 

Keyword search and 
NegEx 

Chest X-ray 
reports 

Feature 
identification 

Detect and 
characterization: 
radiological 
findings and 
impressions 

Mediastinal 
findings 
consistent 
with 
inhalational 
anthrax [16] 

Physician 
classification 
based on review 
of chest X-ray 
reports 

Identify Patient Sets 
(IPS) system to create 
a probabilistic 
keyword search that 
uses NegEx for 
negation identification

Chest X-ray 
reports 

Feature 
identification 

Detection and 
characterization: 
radiological 
findings and 
impressions 

Findings 
related to 
acute bacterial 
pneumonia 
[17] 

Physician 
classification 
based on review 
of chest X-ray 
reports 

SymText, keyword 
search 
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Chest X-ray 
reports 

Case 
detection 

Detection: 
disease cases 

Nosocomial 
pneumonia in 
infants in the 
NICU setting 
[18] 

Physician 
classification 
based on chart 
review and NNIS 
definition 

MedLEE 

Chest X-ray 
reports 

Case 
detection 

Detection: 
hospital 
infections 

Bloodstream 
infections 
[19] 

Physician 
classification 
based on chart 
review 

SymText 

Chest X-ray 
reports 

Case 
detection 

Detection: 
radiological 
findings and 
impressions 

Findings 
consistent 
with 
tuberculosis 
[20] 

Local health 
department’s 
tuberculosis 
registry 

Electronic medical 
record and a clinical 
event monitor with 
MedLEE 

Chest X-ray 
reports 

Feature 
identification 
and Case 
detection 

Detection and 
characterization: 
Radiological 
findings and 
impressions 

Findings 
related to 
pneumonia 
[21] 

Physician 
classification 
based on review 
of chest X-ray 
reports 

Multi-threaded 
Clinical Vocabulary 
Server (MCVS) 

Chest X-ray 
reports 

Case 
detection 

Detection and 
characterization: 
disease cases 

Severity 
classes for 
patients with 
community-
acquired 
pneumonia 
[22] 

Physician 
classification 
based on review 
of chest X-ray 
reports and 
discharge 
summaries 

MedLEE 

Discharge 
summaries 

Case 
detection 

Detection and 
characterization: 
disease cases 

Severity 
classes for 
patients with 
community-
acquired 
pneumonia 
[22] 

Physician 
classification 
based on review 
of chest X-ray 
reports and 
discharge 
summaries 

MedLEE 

Full 
electronic 
patient record 

Feature 
identification 

Detection and 
characterization: 
clinical 
conditions and 
epidemiological 
variables  

Conditions 
related to 
Influenza-like 
illness and 
epidemiologic 
variables [23]

No reference 
standard – 
prevalence 
comparison 
against structured 
patient record 

Keyword search and 
NegEx, MedLEE 

Full 
electronic 
patient record 

Feature 
identification 
and Case 
detection  

Detection and 
characterization: 
clinical 
conditions and 
epidemiological 
variables 

Clinical 
conditions  
and 
epidemiologi
c variables 
[24] 

Physician 
classification 
based on chart 
review 

Multi-threaded Clnical 
Vocabulary Server 
(MCVS) 

Full 
electronic 
patient record 

Case 
detection 

Detection: 
syndrome cases 

Influenza-like 
illness [25] 

Physician 
classification 
based on chart 
review 

Keyword search and 
NegEx 
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NLP technique that was evaluated. In this section, we describe the data 
sources people have used in these studies and highlight some of the results 
from evaluation of NLP methodologies applied to clinical text for bio-
surveillance. 

Because timeliness is critical in detecting outbreaks, automated surveillance 
systems have focused on the earliest clinical data sources: ICD admit codes 
and triage chief complaints. Therefore, the bulk of the research on outbreak 
detection from textual clinical data is aimed at chief complaint classification, 
which we describe below. 

3.3.1 Triage Chief Complaints 

Chief complaints are generally the first electronically available clinical 
description of a patient – a short description of what brings the patient to 
medical attention. The chief complaint is usually recorded by a healthcare 
professional, such as a triage nurse or physician, but may also be entered by 
a clerk. Most chief complaints are recorded as unstructured free text. How-
ever, some institutions maintain a pick list from which the user must select a 
particular chief complaint for the patient. In rare cases, the chief complaint is 
immediately converted to an ICD code. The chief complaint may be in the 
patient’s own words (or those of a relative or friend). But more often, some 
interpretation is added by the recorder. For example, if the patient complains 
of “pain in the chest going into the left arm,” the chief complaint may be 
recorded as “angina.” In many cases, only a limited number of characters are 
allowed to be entered. In an attempt to be brief, the nurses or clerks some-
times utilize creative abbreviations, summarize the complaints in their own 
words, and make decisions about the most important or relevant complaint in 
order to reduce the size of the textual entry. Therefore, some complaints 
conveyed by the patient may not be included in the entry. 

The fundamental objective of syndromic surveillance is to identify illness 
clusters early, before diagnoses are confirmed by laboratory testing and 
reported, and to mobilize a rapid response. Most syndromic surveillance 
systems classify patients into syndrome categories based either on the ICD 
admit diagnosis, which is only available in limited settings such as military 
hospitals, or the triage chief complaint. To classify a patient based on a chief 
complaint, some systems first preprocess the textual string to remove punc-
tuation and replace abbreviations and acronyms with standardized terms. 
Next, a chief complaint classifier assigns a syndrome category to the chief 
complaint. Once a patient is classified into a syndrome category, a surveillance 
system can monitor patients for spatial and temporal aberrations that may 
indicate an outbreak. 
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Various chief complaint classifiers have been developed and evaluated 

we describe both the characteristics of existing chief complaint classifiers 
and the performance with which the classifiers can detect and characterize 
outbreaks. 

3.3.1.1 Characteristics of Chief Complaint Classifiers 

In order to examine how chief complaint classifiers work and how they 
differ from each other, we distributed a survey to the developers of 12 
classifiers: 

ESSENCE CCP classifier [25] 
Ontology-enhanced BioPortal CC classifier [22] 
NC DETECT Syndrome Case Report [26] 
Coded Chief Complaints (CCC-EDS) [27] 
CC-MCSVM (Chief Complaints Multiclass SVM) 
N-gram CC Classifier [16] 
CoCo [15] 
SyCo [17] 
NYC Syndromic Macros [13] 
BioSense Sub-syndromes [28] 
EARS (TSS) [29] 
MPLUS [18] 

The 12 classifiers in the survey map chief complaints to 20 unique 
syndrome categories. The only syndrome all classifiers map to is Respiratory 
syndrome. Other syndrome categories and the number of classifiers that use 

Respiratory (12) Rash (7) 
Gastrointestinal (7) Fever (5) 
Hemorrhagic (5) Lymphadenitis (3) 
Severe illness or Death (3) Specific infection (2) 
Localized cutaneous lesion (3) Influenza-like (2) 
Constitutional (2) Meningoencephalitis (1) 
Diarrhea (2) Sepsis (1) 
Vomiting (1) Shock/Coma (1) 
Cold (1) Asthma (1) 
Injury (1)  
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The 12 classifiers also vary in whether they use keyword-based, statistical, 
or symbolic techniques, and in whether they map to concepts in a standardized 
vocabulary, as shown in Table 13-2. Statistical techniques include support 
vector machines (CC-MCSVM), n-gram classification using words and 
characters as n-grams (N-gram), naïve Bayes’ (CoCo and SyCo), and 
Bayesian networks (MPLUS). BioPortal and NC Detect first map the text to 
UMLS concepts and then map the concepts to syndrome categories. 

 
Table 13-2. Methods used to classify chief complaints. 

Classifier Keyword Statistical Symbolic Map to 
Vocabulary 

Essence ●    

BioPortal ●  ● ● 

NC Detect ●  ● ● 

CC-EDS ●    

CC-MCSVM  ●   

N-gram  ●   

CoCo  ●   

SyCo  ●   

NYC ●    

BioSense ●    

EARS (TSS) ●    

MPLUS  ● ●  

 
As shown in Table 13-3, some classifiers classify the chief complaint 

directly to a syndrome category, e.g., “SOB” = Respiratory. Others first classify 
the chief complaint string to a clinical concept name, then map the concept 
name to a syndrome category using deterministic, probabilistic, or ontology-
based mapping, e.g., “SOB” = dyspnea = Respiratory. The advantage of 
mapping directly to a syndrome category is simplicity. The advantage of 
mapping to concepts and then to syndromes is the ability for a user to create 
individualized syndrome definitions based on a set of limited reason-for-visit 
categories. This ability would be particularly useful for monitoring syndromes 
of interest in a particular location or if the user believed a new syndrome not 
ordinarily being monitored was developing (such as SARS in 2002). Techniques 
for mapping a concept to a syndrome are deterministic (e.g., dyspnea always 
gets mapped to Respiratory), probabilistic (e.g., P(Respiratory|dyspnea) = 
0.92), or ontologic (e.g., dyspnea is a breathing disorder, which is a 
Respiratory illness). 
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Chief complaints may describe more than one reason for a patient’s visit. 
Some chief complaint classifiers assign a single syndrome to a string, e.g., 
“short of breath/vomiting” = Respiratory. However, as shown in Table 13-4, 
most classifiers can assign multiple syndromes to a chief complaint string, 
e.g., “short of breath/vomiting” = Respiratory and Gastrointestinal. 

 
Table 13-3. Mapping from chief complaints to syndromes. 

Classifier Map Directly 
to Syndromes 

Map to Concepts 
Then to Syndromes 

Technique for 
Mapping from 
Concept to Syndrome 

Essence  ● Deterministic 
BioPortal  ● Ontology 
NC Detect ●   
CC-EDS  ● Deterministic 
CC-MCSVM ●   
N-gram ●   
CoCo ●   
SyCo  ● Probabilistic 
NYC ●   
BioSense  ● Deterministic 
EARS (TSS)  ● Deterministic 
MPLUS  ● Probabilistic 

 
Table 13-4. Number of syndromes output for single chief complaint. 

Classifier Single Syndrome Multiple Syndromes 

ESSENCE  ● 
BioPortal  ● 
NC Detect  ● 
CC-EDS  ● 
CC-MCSVM  ● 
N-gram  ● 
CoCo ●  
SyCo  ● 
NYC ●  
BioSense  ● 
EARS (TSS)  ● 
MPLUS  ● 
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3.3.1.2 Performance of Chief Complaint Classifiers 

Because most surveillance systems rely on chief complaints to classify 
patients into syndromes, many of the studies applying NLP to biosurveillance 
have been aimed at evaluation of chief complaint processing. 

Feature identification studies for chief complaint classification – 
Several studies have evaluated the ability to classify chief complaints into 
various syndrome categories in order to detect possible outbreaks. All but a 
few studies to date have addressed classification of chief complaints in the 
English language. One study used the BioPortal chief complaint classifier to 
classify Chinese chief complaints that were first translated with a Chinese-
English translation module [30]. An n-gram classifier has been applied to 
chief complaints in Turkish [31] and Italian [32]. 

Keyword-based, statistical, and symbolic techniques have all success-
fully been applied to the problem of syndrome category classification for 
respiratory, gastrointestinal, neurological, constitutional, hemorrhagic, botulinic, 
rash, and other syndromes [13, 15–18, 22, 25–29], with sensitivities and 
specificities generally between 80 and 100%. A main challenge in classify-
ing chief complaints into syndrome categories is the prevalence of acronyms, 
abbreviations, and misspellings in chief complaint text [33, 34]. For that 
reason, many of the chief complaint classifiers use a preprocessor for 
normalizing the text. However, one study showed that typical preprocessing 
techniques such as spell-checking and synonym replacement did not improve 
classification performance for a statistical or a keyword-based classifier [14]. 
Several classifiers [14, 22, 35] preprocess chief complaints with the emergency 
medical text processor (EMT-P), a system for cleaning chief complaint text 
data [33]. EMT-P not only cleans chief complaints but also splits chief com-
plaints into multiple problems when relevant. For example, EMT-P would 
split “left sided numbness/pain” into one complaint for “left sided numbness” 
and one for “left sided pain.” Splitting chief complaints significantly improved 
classification performance of the naïve Bayesian classifier CoCo [14] by 
allowing CoCo to assign multiple classifications to a single chief complaint. 
In addition, EMT-P maps each problem in a chief complaint to a UMLS 
concept, which can then be mapped to a syndrome category. 

Case detection studies for chief complaint classification – Although 
applications that process chief complaints show high technical accuracy, 
when applied to the problem of case detection, performance is only moderate 
due to the fact that chief complaints often do not contain enough clinical 
detail to accurately represent the patient’s clinical state. Case classification 
studies have compared the classification made from the chief complaint 
against a reference standard classification based on either ICD-9 discharge 
diagnoses [36, 37] or manual review of clinical textual reports [12, 38, 39]. 
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The studies have shown sensitivities ranging from 10 to 77%, depending on 
the syndrome. Chief complaint classification typically performs with higher 
sensitivity when classifying more common syndromes like respiratory and 
gastrointestinal and with lower sensitivity on more rare syndromes like botulinic 
syndrome. Moderate case detection ability is a disadvantage of using chief 
complaints for surveillance, but the predictive performance must be weighed 
against the great advantages of nearly ubiquitous availability and timeliness. 

When attempting to detect more specific syndromes, like febrile syndromes 
in which a patient has a fever and a symptom related to a relevant syndrome 
(e.g., “fever and cough”), sensitivity plunges to between 0 and 12% [40]. 
This study suggests that chief complaints, although useful for general syndrome 
classification, do not contain enough information to identify febrile syndromes. 

Characterization of outbreaks from chief complaints – Because chief 
complaints do not present a granular view of a patient’s clinical state, they 
may not provide an accurate method for characterizing outbreaks, but a few 
studies have shown that chief complaints can contribute to outbreak char-
acterization. A study on fever detection from chief complaints showed 61% 
sensitivity but 100% specificity, indicating that all patients with chief 
complaints describing a fever actually had a fever. Although not all patients 
with fever were detected from chief complaints, investigation of an outbreak 
for which chief complaints showed a high rate of fever could maintain 
confidence in the positive febrile classifications. Another study investigated 
peaks indicated by chief complaint syndrome classifications to look for con-
cerning signs and symptoms [41]. By allowing the chief complaint-generated 
peaks to direct the investigation, the investigators could quickly and easily 
target patients of concern for manual chart review. 

In our introductory scenario of attempting to detect cases of avian 
influenza, classification of chief complaints to Respiratory syndrome would 
be expected to have a moderate to high sensitivity for identifying outbreaks 
of respiratory disease. However, the specificity would be low; the outbreak 
could be due to avian influenza or any other respiratory condition, including 
non-infectious causes. The cases in the Respiratory outbreak would have 
to be examined further to determine if the features of avian influenza were 
present. Ultimately, natural language processing could also be used to 
identify conditions of concern in textual reports for patients comprising 
those peaks, and several researchers are developing and evaluating tools for 
just that purpose, as we describe next. 

3.3.2 Ambulatory Visit Notes 

In some institutions, triage nurses not only generate a chief complaint but 
also a triage note that expands on the chief complaint. After triage, once a 
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patient is admitted to an ambulatory facility and has been examined by a 
physician, the physician generates an ambulatory note that typically des-
cribes the patient’s reason for coming to the facility, the history of the present 
illness, the patient’s past medical history, relevant diseases experienced by 
family members, results of a physical examination and of tests performed 
while the patient was in the ambulatory facility, a diagnosis if there is one, 
and the plan for managing the patient’s illness. 

Ambulatory visit notes are required documents necessary for evaluation 
of quality of care delivery, for billing, and for legal purposes. The notes may 
be generated by physicians through dictation and transcription, may be 
directly entered into the EMR through typing or structured entry, or may be 
handwritten. Therefore, not all healthcare facilities have electronically avail-
able ambulatory visit notes, and the timeliness of electronic notes varies 
depending on the mode of generation. 

Ambulatory visit notes contain symptoms, findings, test results, descriptions 
of chronic conditions, and diagnoses that can be very useful in detecting and 
understanding outbreaks. Since many people with sudden onset of a new 
illness may first present to an ambulatory care facility, the reports promise 
granular and timely information on the nature of an outbreak. 

A few studies have verified the intuitive hypothesis that information in 
emergency department notes can more accurately classify patients into 
syndrome categories than can chief complaints [42–44]. Researchers have 
begun developing and evaluating information extraction applications for 
identifying clinical conditions relevant for detection and characterization of 
outbreaks from triage notes and emergency department reports. EMT-P has 
been used in conjunction with a negation algorithm called NegEx [8] to 
index UMLS concepts in triage reports [45]. Indexed triage notes can 
provide a timely but more descriptive characterization of a patient than a 
chief complaint can. A system called Topaz [46] identifies 55 respiratory-
related clinical conditions such as shortness of breath, hypoxia, and pneumonia 
from emergency department reports. Identifying the conditions with Topaz 
involves indexing UMLS terms using MetaMap [47], applying regular 
expressions to conditions that require a numeric value (such as fever), and 
determining whether the condition is negated, occurred in the past history, 
was mentioned hypothetically, or was experienced by someone other than 
the patient [48]. 

Having access to coded representations of clinical conditions in ambulatory 
notes promises to improve the ability to detect relevant cases and therefore 
to detect outbreaks by providing a more granular description of a patient’s 
illness in a relatively timely manner. For example, the detection of coded 
representations of influenza-like illness could lead to the timely detection of 
an outbreak of avian influenza with much greater specificity than monitoring 
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for an increase in respiratory syndrome cases. In addition to improving 
detection capabilities, coded clinical conditions from ambulatory care reports 
could be helpful in guiding and informing investigation of a potential out-
break. In the case of avian influenza, ED reports could inform investigators 
of the clinical features and the severity of the disease, for example, whether 
pneumonia was a characteristic of the illness. 

3.3.3 Inpatient Reports: Progress and Findings 

Once a patient is admitted to a healthcare facility there are important 
sources of free-text clinical data generated during the normal clinical care 
process that provide useful information for biosurveillance. These inpatient 
free-text clinical documents can be classified into two categories: reports 
that document inpatient clinical progress or lack thereof and reports that 
characterize and document specific findings that occur as a result of tests and 
procedures. Progress reports include notes written by clinicians documenting 
clinical progress, procedures, and consultations requested or provided. Inpatient 
progress notes may contain only narrative text, may follow a traditional 
SOAP note format (i.e., subjective, objective, assessment, plan), or may include 
templated sections including subheadings that direct the content of each 
specific note section. Findings are documented in free text from specific 
diagnostic testing, including impressions and results from radiology pro-
cedures, pathology, and microbiology. Both of these inpatient report types 
may contain specific header information that lists the patient, date of patient 
encounter, diagnosis or service provided, and contextual information regarding 
history of illness. 

Free-text clinical documents are used to convey the decision-making 
process, perspectives, and plans of the clinicians responsible for a patient’s 
care. Therefore, inpatient free-text narratives link the various components of 
the medical record and describe the temporal clinical course as well as 
severity of a patient’s hospitalization. Inpatient narratives are also used by 
coders and financial departments for medical billing purposes and to create 
the legal medical record for the patient. Inpatient records could theoretically 
be useful in a more complete characterization of avian influenza cases. They 
might be the only source of information such as patient travel to an area 
where the disease is already known to be occurring or the fact that a patient 
is homeless. Inpatient records could also be the source of information on 
testing done for viral diseases and the results, although, if available, direct 
examination of laboratory records would probably provide easier access to 
such information. 

Though electronic inpatient reports are a central component of the electronic 
medical record, they are not readily extractable or widely available from 
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most EMR systems. This is starting to change, for example, in the case of 
healthcare systems and hospitals like the Department of Veterans Affairs, 
Kaiser Permanente, the Mayo Clinic, the Cleveland Clinic, Columbia 
Presbyterian Medical Center, and the University of Pittsburgh Medical Center, 
but the majority of this development is largely driven by vendor-supported 
product solutions and large data warehousing efforts at the local level. 

Compared with ED chief complaints and ambulatory care notes, inpatient 
reports provide a less timely source of information for biosurveillance pur-
poses (see Figure 13-1). In some systems, through concurrent charting, 
progress reports are immediately available; in other systems, there is a 
substantial delay in availability of the documents. Even if the information is 
not timely enough for early detection of an outbreak, because of the granularity 
of the information described in these reports, information extracted from 
inpatient document sources can be used to describe the magnitude and 
severity of an outbreak. 

Like ambulatory visit notes, progress and finding reports are complex 
narratives involving detailed descriptions of the diagnostic process over time 
and therefore pose substantial challenges to NLP applications. There may be 
a certain amount of redundancy found in inpatient clinical document sources, 
particularly for those documenting patient clinical progress – this redundancy 
can be a blessing and a curse to NLP applications. In some cases, these 
documents are also driven by templated document structures meant for ease 
of information entry and may also contain imbedded note sections that 
contain laboratory, medication management, and other results information. 
Inpatient documents, particularly progress reports, may also be very lengthy 
and may contain copying and pasting of previously entered information by 
other providers, thus introducing ambiguity and contradictory information 
that NLP applications or biosurveillance algorithms may have difficulty 
reconciling. 

In the context of outbreak detection, many of the studies using inpatient 
reports have focused on chest radiograph reports for identification of patients 
with pneumonia-related findings [19, 49, 50]. These applications have been 
able to identify pneumonia-related concepts in radiology reports with 
accuracies similar to that of physicians reading the reports, with sensitivities 
and specificities above 90%. One study created a text processor to identify 
chest radiographs with mediastinal widening consistent with an anthrax 
infection [51]. And another identified tuberculosis from chest X-ray reports 
[52] using an NLP application called MedLEE [53]. MedLEE contributed to 
a larger decision support system for identifying patients with possible 
tuberculosis who were not yet isolated [52, 54], and the chest radiograph-
based rule that used MedLEE’s output was the most useful rule for 
improving tuberculosis respiratory isolation. 
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To our knowledge, no studies have compared accuracy and timeliness 
of inpatient reports for case detection. But one study did show increased 
sensitivity and specificity of case detection for influenza-like illness from the 
full patient record, which includes inpatient reports, when compared to chief 
complaints or ambulatory notes [44]. Inpatient reports may also contribute to 
outbreak characterization by providing descriptions of clinical conditions 
that are not contained in the structured record. Moreover, inpatient notes 
often record epidemiological factors that can help locate the source of an 
outbreak or characterize the extent of spread. Gundlapalli and colleagues 
[55] used MedLEE to identify factors such as homelessness, alcohol or drug 
abuse, and exposure to infected individuals among a cohort of patients seen 
at a VA healthcare system. 

3.3.4 Discharge Reports 

Discharge reports describe the clinical condition of the patient at the time 
of hospital discharge or transfer to another facility for additional care. These 
document sources also provide the reason for hospitalization, a summary of 
the care provided during the course of hospitalization, significant findings, 
procedures performed, discussion and planning for follow-up care, and some-
times clinician instructions given to other providers who may provide future 
care for that patient. Discharge reports may also contain brief instructions 
given to the patient and family for recovery and follow-up care. There are 
two general categories of discharge reports: those that are written for patients 
discharged from the hospital alive, called discharge summaries, and death 
reports written for patients who die during hospitalization. 

Discharge reports are required documents necessary for evaluation of 
quality of care delivery, billing, and legal purposes. Thus every inpatient 
admission should have at least a short summary of pertinent information for 
documentation of the clinical care provided during hospitalization and the 
status of the patient at the time of discharge. Like electronic inpatient notes, 
the availability of electronic discharge reports depends on the institution 
providing care and the degree with which that institution has implemented 
EMR technology. One study compared electronic to handwritten discharge 
summaries and found that that electronic discharge summaries are in some 
ways lower quality than handwritten ones [56]. 

Because discharge reports contain a summary of the clinical course and 
status of the patient at time of discharge, the reports provide a level of 
granularity of information other document sources do not contain. Death 
reports usually have a short free-text section listing various conditions 
leading to the cause of death and are provided to public health entities for 
purposes of public record. 
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Compared with emergency department chief complaints, discharge reports 
are on the opposite side of the spectrum of information timeliness. Discharge 
reports may be available anywhere from a day to weeks after hospitalization. 
Because of their lack of timeliness, discharge notes would likely add little to 
the detection or characterization of an outbreak of an acute infectious disease 
like avian influenza, which may account for the dearth of biosurveillance 
NLP research directed at discharge summaries in spite of several applications 
developed for information extraction from discharge summaries, such as 
pneumonia severity, negated conditions, de-identification of patient health 
information, and smoking status. 

The causes of death from death certificates are routinely coded to yield 
structured data and are used for determining the mortality associated with 
pneumonia and influenza. These are reported as weekly statistics by the 
CDC (http://www.cdc.gov/flu/weekly/) and the data are used to assess the 
severity of the annual influenza season in the U.S. Although there are 
references to mining cause of death from death certificates for various 
conditions, we know of no research on information extraction from death 
notes for the specific purpose of biosurveillance. Death certificates could be 
important in retrospectively searching for patients with diseases such as 
avian influenza who died before a confirmatory diagnosis was made as they 
may have been coded generically as influenza and/or pneumonia. 

CONCLUSION AND DISCUSSION 

A patient’s encounter with the healthcare system generates a variety of 
clinical information, a large portion of which is in free-text format. For the 
purposes of biosurveillance, it is first important to clarify the question we 
wish to answer. Are we concerned with the detection of an infectious disease 
outbreak among a group of patients seen at a facility? Or are we concerned 
with looking deeper into the characterization of the outbreak in terms of 
epidemiological factors that are associated with that disease? The data 
sources and techniques required to answer these two distinct, though related, 
questions may be different. Another key issue to consider is timeliness – 
early detection relies on data sources that are available earlier and that are 
amenable to efficient processing. In contrast, clinical notes that offer epi-
demiological clues are available later and often require more detailed 
processing. 

In spite of years of research applying NLP techniques to clinical reports, 
much work still remains before we reach the stage when all clinical notes 
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biosurveillance or other application areas. Routine application of NLP for 
biosurveillance will require moving beyond the task of identifying clinical 
conditions in isolation (e.g., finding instances of cough in a report) toward 
understanding the context of the clinical condition within the reports and 
across different reports. To understand the content of a report the way a 
human reading the report would, our applications must identify information 
such as whether the condition is negated, how much certainty the physician 
has in the diagnosis, who experienced the condition, when the condition 
began and how long the condition has existed. Moreover, to automatically 
summarize a patient’s clinical state over time for investigation of an out-
break, an NLP application will require the ability to integrate information 
across reports and model the flow of information over time. 

At one level, we may need a paradigm shift in NLP methodologies for a 
machine to read and summarize a clinical note as intended by the original 
author. Understanding the situation as the author of the report does may 
require a fusion of patient-level data with population-level knowledge of 
circulating infectious diseases. Though challenging, the benefits of this work 
will extend beyond biosurveillance to other domains such as adverse events 
detection, injury surveillance, chronic disease management, and clinical/ 
translational research. 

In the meantime, the techniques and applications we have described in 
this chapter can be useful tools in combination with human knowledge for 
detection and characterization of outbreaks. Natural language processing 
techniques may not be capable of providing intelligent substitutes for clinical 
record investigation, but extracting and encoding information from the un-
structured portion of the EMR can assist humans in detecting, investigating, 
and responding to outbreaks. 
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ONLINE RESOURCES 

Biosurveillance Standards 
Consensus syndrome definitions, ontology, and API: http://www.code. 

google.com/p/syndef/. 

Data Sets 
Repository of de-identified clinical notes: http://www.dbmi.pitt.edu/blulab/ 

nlprepository. 
Chief complaint set: http://www.code.google.com/p/syndef/. 

Open Source NLP Tools and Algorithms 
clinical Text Analysis and Knowledge Extraction System (cTAKES): http:// 

www.ohnlp.org. 
Hitex: https://www.i2b2.org/software/index.html. 
NegEx and ConText: http://www.code.google.com/p/negex/. 
CoCo: http://www.openrods.sourceforge.net/. 
NLP toolkit in the Python programming language: http://www.nltk.org/ 
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KNOWLEDGE MAPPING  
FOR BIOTERRORISM-RELATED LITERATURE 

YAN DANG*, YULEI ZHANG, HSINCHUN CHEN,  

CHAPTER OVERVIEW 

This chapter describes major Knowledge Mapping techniques and how 
they are used for mapping bioterrorism-related literature. The invisible 
college, which consists of a small group of highly productive and networked 
scientists and scholars, is believed to be responsible for the growth of scientific 
knowledge. By analyzing scholarly publications of these researchers using 
select content analysis, citation network analysis, and information visualization 
techniques, Knowledge Mapping helps reveal this interconnected invisible 
college of scholars and their ideas. This chapter outlines the important tech-
niques used in Knowledge Mapping, presents how these techniques are used 
for mapping bioterrorism-related literature, and shows some findings related 
to the productivity status, collaboration status, and emerging topics in the 
bioterrorism domain. 

Keywords: Knowledge mapping; Invisible college; Bioterrorism-related literature 

INTRODUCTION 

In Diane Crane’s seminal book on “Invisible Colleges: Diffusion of Know-
ledge in Scientific Communities” (Crane, 1972), she suggests that it is the 
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“invisible college,” a small group of highly productive scientists and scholars, 
that is responsible for the growth of scientific knowledge. Crane shows that 
many scientific disciplines go through similar stages of initiation, growth, 
expansion, maturation, and decline. The productive scientists and scholars 
form a network of collaborators in promoting and developing their fields 
of study. The presence of an invisible college or network of productive 
scientists linking separate groups of collaborators within a research area has 
been evident in many studies (Chen, 2003; Shiffrin and Börner, 2004). 

“Knowledge Mapping,” which is based on content analysis, citation net-
work analysis, and information visualization, has become an active area of 
research that helps reveal such an interconnected, invisible college or network 
of scholars and their seminal publications and ideas. 

According to Chaomei Chen in his Mapping Scientific Frontiers book 
(Chen, 2003), Knowledge Mapping helps “depict the spatial relations between 
research fronts, which are areas of significant activity. Such maps can also 
simply be used as a convenient means of depicting the way in which research 
areas are distributed and conveying added meaning of their relationships… 
By using a series of chronically sequential maps, one can see how knowledge 
advances. Mapping scientific frontiers involves several disciplines, from the 
philosophy and sociology of science, to information science, scientometrics, 
and information visualization.” 

Two forces are contributing to the rapid development and the over-
whelming interest in Knowledge Mapping. First, the availability of online 
publications, from scientific Abstracts and Indexes (A&I), full-text articles, 
and online preprints, to digital dissertations, multimedia (e.g., video and 
audio files) magazine and journal articles, and multilingual Web-accessible 
patent filings, has made it possible to more systematically examine the 
scientific output produced by members of the invisible college. Secondly, 
recent advances in text mining, network analysis, and information visualization 
techniques have provided more scalable and accurate methods to understand 
and reveal the interconnections between scientific disciplines and scholars. 

Bioterrorism attacks against civilians are usually intended to cause wide-
spread panic and terror (Lane et al., 2001). Bioterrorism has been given a 
high priority in national security since 9/11 and the Anthrax attacks. The 
U.S. Government has attempted to monitor and regulate biomedical research 
labs, especially those that study bioterrorism agents/diseases. However, 
monitoring worldwide biomedical researchers and their work is still an issue. 
Given the explosive growth of literature resources in the biomedical domain 
and advances in text mining, network analysis, and information visualization 
techniques, Knowledge Mapping can be used to help monitor worldwide 
bioterrorism research. 
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The remainder of this chapter is organized as follows. The next section 

discusses the literature review from three perspectives: the online resources, 
the units of analysis, and the analysis techniques for Knowledge Mapping. The 
subsequent section shows the research design. The following two sections pro-
vide an explanation of the testbed and analysis results, as well as a discussion 
of mapping bioterrorism literature. The last section summarizes this chapter. 

LITERATURE REVIEW 

2.1 Online Resources for Knowledge Mapping 

Various online resources are available for mapping scientific knowledge. 
They vary from formal to informal publications; from text-based to multi-
media presentations; and from academic literature to industry-relevant inter-
national patents. 

One type of online resources is abstracts and indexes (A&I). A&I contain 
abstract and index (bibliographic) information and are used to locate articles, 
proceedings, and occasionally books and book chapters in various subjects. 
Most abstracts and indexes are available electronically. Public and university 
libraries often subscribe to such databases and services. Only a very few 
biological or scientific databases are searchable for free on the Web, pri-
marily databases generated by the National Library of Medicine (http:// 
www.nlm.nih.gov/), such as MEDLINE (medicine) or TOXLINE (toxicology). 
There are A&I databases in almost every subject area, e.g., BIOSIS (biology), 
COMPENDEX (engineering and technology), ERIC (education), etc. 

Another type of online resources includes commercial full-text journal 
articles and digital libraries. Many commercial publishers have made their 
online content available on the Web. The most prominent service of this type 
is provided by the Web of Science (http://scientific.thomson.com/products/ 
wos/), a product of Thomson Scientific. The Web of Science provides seam-
less access to current and retrospective information from approximately 
8,700 research journals from around the world. More recently, many pro-
fessional societies have made their articles available through various digital 
libraries. For example, the ACM Digital Library (http://portal.acm.org/ 
dl.cfm) contains 54,000 online articles from 30 journals and 900 proceedings 
of the Association for Computing Machinery. The IEEE Computer Society 
Digital Library (http://www.computer.org/portal/site/csdl/index.jsp) provides 
online access to 18 IEEE journals and 150 proceedings in computer science. 

A third type of online resources contains free full-text articles and  
e-prints. In addition to commercial resources for journal articles, there is also 
a grassroots movement initiated by the academic community to provide free 
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access to journals and books. For example, on the Free Medical Journals site 
(http://www.freemedicaljournals.com/), users can find many important 
academic journals made available online, free and in full-text. HighWire 
Press (http://highwire.stanford.edu/lists/freeart.dtl), a service affiliated with 
Stanford University, is believed to be the largest archive of free full-text 
science articles. As of December 20, 2006, it provides access to more than 
1.5 million free full-text articles in many subject disciplines. In some scientific 
disciplines, e-prints (scientific or technical documents circulated electronically 
to facilitate peer exchange, including preprints and other scholarly papers) 
are strongly encouraged and accepted by the community. For example, the 
arXiv.org service (http://arxiv.org/), supported by Cornell University, pro-
vides open access to about 400,000 e-prints in Physics, Mathematics, Computer 
Science, and Quantitative Biology. 

Citation indexing systems and services form another type of online 
resources. In addition to accessing bibliographic and full-text content of 
scientific articles, aggregated and individualized citation information is critical 
in the assessment of highly-cited, influential papers and authors. The Science 
Citation Index (http://scientific.thomson.com/products/sci/), a product of 
Thomson Scientific, provides access to bibliographic information, abstracts, 

Google Scholar (http://scholar.google.com/intl/en/scholar/) also supports 
broad access to scholarly literature. A user can search across many dis-
ciplines and sources: peer-reviewed papers, theses, books, abstracts, and 
articles. The service features many advanced search functionalities, including 
ranking articles based on how often an article has been cited in other scholarly 
literature. CiteSeer (http://citeseer.ist.psu.edu/citeseer.html) is another example 
of an advanced search system (for computer and information science 
literature) that is built upon citation information. It was one of the first 
digital libraries to support automated citation indexing and citation linking. 

In addition to formal literature published in journals, magazines, and 
conference proceedings, Ph.D. and Master’s theses and dissertations constitute 
a significant part of scientific knowledge generated. University Microfilms 
(UMI) was founded in 1938 to collect, index, film, and republish doctoral 
dissertations in microfilm and print. Currently, UMI’s dissertation abstract 
database has archived over 2.3 million dissertations and Master’s theses. 
Some two million of them are available in print, microfilm, and digital 
format, via its ProQuest system (http://il.proquest.com/brand/umi.shtml). 
More recently, the Networked Digital Library of Theses and Dissertations 
(NDLTD, http://www.ndltd.org/) was formed to promote the adoption, 
creation, use, dissemination, and preservation of electronic analogues to the 
traditional paper-based theses and dissertations. Via electronic theses and 
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dissertations (ETD), graduate students learn electronic publishing as they 
engage in their research and submit their own work, often in a rich multi-
media format. Universities learn about digital libraries as they collect, 
catalog, archive, and make ETDs accessible to scholars worldwide. 

Patent publications have often been used to evaluate science and tech-
nology development status worldwide (Narin, 1994). While academic literature 
represents fundamental scientific knowledge advancement, patents reveal 
scientific and technological knowledge that has a strong potential for 
commercialization. There are several governmental or intergovernmental patent 
offices that control the granting of patents in the world. The United States 
Patent and Trademark Office (USPTO, http://www.uspto.gov/), European 
Patent Office (EPO, http://www.european-patent-office.org/index.en.php), 
and Japan Patent Office (JPO, http://www.jpo.go.jp/) combined issue nearly 
90% of the world’s patents. USPTO handles over 6.5 million patents with 
3,500–4,000 newly granted patents each week. EPO handles over 1.5 million 
patents with more than 1,000 newly granted patents each week. JPO handles 
over 1.7 million patents with 2,000–3,000 newly granted patents each week. 
All three patent offices provide search systems for Web-based access. 

Business and industry articles and reports are also important for know-
ledge mapping. Critical science and technology knowledge eventually flows 
from academic literature and patents to various industries and companies. At 
the other end of the knowledge mapping resources are various business and 
industry articles and reports; some are reported in general-interest science 
and technology magazines and newspapers, while others can be purchased 
from industry-specific consulting firms. For example, timely, in-depth industry-
specific or technology-specific reports are available at sites such as: 
Forrester (http://www.forrester.com), IDC (http://www.idc.com), and Gartner 
(http://www.gartner.com), among others. 

In addition to the abovementioned formal publications generated by 
scholars, students, and industry practitioners, the Web has enabled virtually 
anyone to become an online publisher. There is potentially interesting 
scientific, product, and marketing information that has been generated and 

chat rooms, blogs, multimedia sites, social networking sites, and virtual worlds. 
However, the diversity and quality of such information varies significantly. 
It is often quite difficult to use such Web-based, self-produced information 
for technology assessment or knowledge mapping. 

2.2 Units of Analysis for Knowledge Mapping 

For knowledge mapping analysis, pre-processing of raw online resources 
is needed. Each article, patent, or report needs to be processed to identify key 
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indicators for further analysis and comparison. Among the most common units 
of analysis for knowledge mapping are: authors or inventors, publications 
and publication outlets, institutions (companies or universities), countries or 
regions, subject and topic areas (broad categories or specific topics), and 
timeline (publication date). 

Authors or inventors: The most critical unit of analysis for knowledge 
mapping consists of the researchers, authors, and inventors who are the pro-
ductive members in the invisible college. Extracting the author or inventor 
field from various knowledge sources is a non-trivial task. Although HTML, 
XML, and structured database representations have made automatic name 
identification easier (than in the paper-based format), author name extraction 
and identification is difficult in different cultural contexts (e.g., recognizing 
Chinese names), especially when a publication does not contain complete 
first and last names. For example, common names such as “W. Zhang” and 
“L. Liu” abound in the Chinese Academy of Sciences (one of the most 
productive and largest academic research institutions in the world). 

Publications and publication outlets: Different academic publications 
have different levels of prestige; most are measured based on their Impact 
Factor (an aggregate, normalized number based on citation counts). For 
example, the Impact Factor of Science was 30.927 in 2005; while the 
Journal of Computational Biology Impact Factor was 2.446. There are many 
other publications that do not even have an Impact Factor score. In order to 
determine the value and impact of a researcher’s work, quality is more 
important than quantity. Quality is often determined based on the prestige of 
a publication outlet. The number of citations is also a major determinant. 
A seminal or landmark paper can often help define a person’s career or a 
particular field. For example, while many good academic articles are cited 
hundreds of times, Albert Einstein’s seminal paper on “Can quantum-
mechanical description of physical reality be considered complete?” that 
appeared in Physical Review in 1935 was cited 3,753 times (based on  

ScienceWatch (http://www.sciencewatch.com/), the most cited paper of the 
past two decades (1983–2002) was: Chomczynski, N. Sacchi, “Single-step 
method of RNA isolation by acid guanidinium thiocyanate phenol chloro-
form extraction,” Analytical Biochemistry, 162(1): 156–9, 1987. The paper 
received a citation count of 49,562 (based on data from Thomson Scientific’s 
Web of Science). However, correctly parsing and identifying unique publication 
names is a difficult task as many databases record those names in cryptic, 
shorthand forms, e.g., Analyt. Biochem, Proc. Natl. Acad. Sci., J. Biol. Chem., 
J. Gen. Physiol., Physiol., Lond., etc. While many are easily recognizable by 
domain scientists, a computer program would have difficulty parsing them 
correctly. 
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Institutions: While researchers publish their research, it is often the 

institutions (companies or universities) that are the owners and keepers of 
the resulting intellectual property. An analysis based on institutional output 
and productivity can help depict an institution’s relative strength and 
position in the competitive knowledge landscape. Knowledge mapping can 
help reveal not just the invisible college of researchers, but the “invisible 
college of institutions.” A comparison between basic university research and 
applied industry invention can also foster an understanding of the pro-
gression and impact of knowledge creation. 

Countries or regions: Similar to institutional analysis, it is often important 
to analyze publications (especially patents) based on their countries or regions 
(e.g., Europe vs. Asia) of origin. This kind of analysis is useful for depicting 
a competitive international landscape and is often relied upon for governmental 
research policy and funding decisions. For example, the U.S. National 
Nanotechnology Initiative (NNI) has performed excellent cross-regional 
analyses for worldwide nanotechnology research, development, and funding. 

Subject and topic areas: Academics are often defined by their traditional 
academic boundaries in colleges or departments. However, researchers often 
work in several (often related) subject or topic areas. Academic publication 
outlets are also defined by their fields of interest and focus. While most 
academic journals provide a list of interested topics, some information 
resources are more comprehensive in their listings. For example, the USPTO 
provides a detailed patent classification scheme (USPC), which consists of 
two levels. The first level contains about 450 categories; while the second 
contains about 160,000 categories. In addition to these predefined subject 
categories, important topic-specific keywords, phrases, and concepts can 
be extracted from the title, abstract, and text body of an article. However, 
advanced Natural Language Processing (NLP) techniques are needed for 
such topic identification purposes. 

Timeline: All scientific disciplines evolve over time. Most of the online 
resources for mapping scientific knowledge contain explicit publication 
dates. Dynamic analysis and visualization of changes in research topics and 
citation networks could help reveal advancements in scientific knowledge. 

2.3 Analysis Techniques for Knowledge Mapping 

Three types of analysis are often adopted in knowledge mapping research: 
text mining, network analysis, and information visualization. 

2.3.1 Text Mining 

Text mining, sometimes referred to as text data mining, refers generally 
to the process of deriving high quality information from text (according to 
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Wikipedia, http://en.wikipedia.org/wiki/Text_mining). Text mining usually 
involves the process of structuring the input text (usually parsing, along with 
the addition of some derived linguistic features and the removal of others, 
and subsequent importation into a database), deriving patterns within the 
structured data, and finally evaluation and interpretation of the output (Chen 
and Chau, 2004). Typical text mining tasks include entity and relation 
extraction, text categorization, text clustering, sentiment analysis, and document 
summarization (Chen, 2001). 

For knowledge mapping research, text mining can be used to identify 
critical subject and topic areas that are embedded in the title, abstract, and 
text body of published articles. While most structured fields (such as authors, 
publication outlets, dates of publication, institutions, etc.) can be parsed 
from online resources, extracting meanings or semantics from multimedia 
publications requires advanced computational techniques. Different processing 
algorithms are needed for different media types, e.g., text (Natural Language 
Processing), image (color, shape, and texture-based segmentation), audio 
(indexing by sound and pitch), and video (scene segmentation). 

Text mining consists of two significant classes of technique: Natural 
Language Processing (NLP) and content analysis. In NLP, automatic indexing 
and information extraction techniques are effective and scalable for concept 
extraction. In content analysis, clustering algorithms, self-organizing map, 

and PathFinder network are techniques often adopted for knowledge mapping 
analysis. 

2.3.2 Network Analysis 

Recent advances in social network analysis and complex networks have 
provided another means for studying the network of productive scholars in 
the invisible college. 

One collection of methods that is recommended in the literature for 
studying networks is Social Network Analysis (SNA) (McAndrew, 1999; 
Sparrow, 1991; Xu and Chen, 2005a). Because SNA is designed to discover 
patterns of interactions between social actors in social networks, it is especially 
apt for co-authorship network analysis. SNA is capable of detecting sub-
groups (of scholars), discovering their pattern of interactions, identifying 
central individuals, and uncovering network organization and structure. It 
has also been used to study criminal networks (Xu and Chen, 2005a, b). 

Complex networks of individuals and other entities have been traditionally 
studied under the random graph theory (Albert and Barabasi, 2002). How-
ever, later studies suggested that real-world complex networks (such as 
collaboration or co-authorship networks) may not be random but may be 
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http://en.wikipedia.org/wiki/Text_mining


 
governed by certain organizing principles. This prompted the study of real-
world networks. These studies have explored the topology, evolution and 
growth, robustness and attack tolerance, and other properties of networks. 

2.3.3 Information Visualization 

The last step in the knowledge “mapping” process is to make knowledge 
transparent through the use of various information visualization (or mapping) 
techniques. Information representation and user-interface interaction are 
two dimensions often considered in information visualization research (Zhu 
and Chen, 2005). 

Shneiderman (Shneiderman, 1996) proposed seven types of information 
representation methods including the 1D (one-dimensional), 2D, 3D, multi-
dimension, tree, network, and temporal approaches. 

1D representation: The 1D approach represents abstract information as 
one-dimensional visual objects and displays them on the screen in a 
linear or a circular manner (Eick et al., 1992; Hearst, 1995). 
2D representation: A 2D approach represents information as two-
dimensional visual objects. Visualization systems based on 2D output of 
a self-organizing map (SOM) (Chen et al., 1996; Huang et al., 2003, 
2004; Kohonen, 1995) belong to this category. 
3D representation: A 3D approach represents information as three-
dimensional visual objects. One example is the WebBook system (Card 
et al., 1996) that folds Web pages into three-dimensional books. 
Multi-dimensional representation: The multi-dimensional approach 
represents information as multi-dimensional objects and projects them 
into a three-dimensional or a two-dimensional space. This approach often 
represents textual documents as a set of key terms that identify the theme 
of a textual collection. The SPIRE (Spatial Paradigm for Information 
Retrieval and Exploration) system presented in (Wise et al., 1995) belongs 
to this category. 
Tree representation: The tree approach is often used to represent hier-
archical relationships. The most common example is an indented text list. 
Other tree-based systems include the Tree-Map (Johnson and Shneiderman, 
1991), the Cone Tree (Robertson et al., 1991), and the Hyperbolic Tree 
(Lamping et al., 1995). 
Network representation: The network representation method is often 
applied when a simple tree structure is insufficient for representing complex 
relationships. Complexity may stem from citations among many academic 
papers (Chen and Paul, 2001; Mackinlay et al., 1995) or from inter-
connected Web pages on the Internet (Andrews, 1995). 
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Temporal representation: The temporal approach visualizes information 
based on temporal order. Location and animation are two commonly 
used visual variables to reveal the temporal aspect of information. Visual 
objects are usually listed along one axis according to the time when they 
occurred, while the other axis may be used to display the attributes of 
each temporal object (Eick et al., 1992; Robertson et al., 1993). 

To achieve effectiveness, an effective information representation method 
needs to be integrated with user-interface interaction. Recent advances in 
hardware and software allow quick user-interface interaction, and various 
combinations of representation methods and user-interface interactions have 
been employed. Interaction between an interface and its users not only 
allows direct manipulation of visual objects displayed, but also allows users 
to select what is to be displayed and what is not (Card et al., 1999). 

This section presents a generic framework for literature analysis of 
bioterrorism. The framework aims at analyzing the “invisible college” of 
researchers and their associated institutions, countries, and research topics. 
We believe the proposed framework will be useful for knowledge mapping 
of other scientific disciplines. 

Figure 14-1 shows the research design for mapping worldwide bio-
terrorism research literature. The design consists of three components. The 
first component, data acquisition, involves gathering the bioterrorism agents/ 
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Figure 14-1. Research design: mapping worldwide bioterrorism research literature. 
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diseases-related research literature from the MEDLINE database. The second 
component, data parsing and cleaning, contains methods to parse data into a 
relational database and consolidate the parsed facts. The last component, 
data analysis, involves identifying the productivity status, collaboration 
status, and emerging topics within the bioterrorism research area. 

3.1 Data Acquisition 

In this component, research articles were retrieved from the MEDLINE 
database. Compiled by the U.S. National Library of Medicine (NLM) and 
published on the Web by Community of Science, MEDLINE is the world’s 
most comprehensive source of life science and biomedical bibliographic 
information. It contains nearly 11 million records from over 7,300 different 
publications from 1965 to November 16, 2005 (http://medline.cos.com/). All 
the related articles were collected by using keyword filtering. 

3.2 Data Parsing and Cleaning 

In data parsing, the title, abstract, and authors’ information for each 
article were parsed and stored in a relational database. The institutions and 
countries of the authors were parsed out by using dictionaries of countries, 
states, cities, and institutions. All the author names of an article were parsed 
out, but only the first author’s institution was kept for later analysis. 

In facts consolidating, some variations of foreign institution names and 
city names were spot checked and fixed manually. 

3.3 Data Analysis 

In this component, we conducted three types of analysis. We used biblio-
graphic analysis to study the productivity of authors, institutions, and countries. 
We also assessed the trends and evolution of bioterrorism agents/diseases 
research activities. We used co-authorship analysis to study collaboration 
between researchers. We also detected the independent or isolated research 
groups in the field. We used Self-Organizing-Map (SOM) to discover active 
research topics and identify emerging research topics in different time spans. 

RESEARCH TESTBED 

We built two sets of test data based on human- and animal-related  
bioterrorism agents/diseases, respectively, by retrieving related research 
articles from the MEDLINE database. For the human bioterrorism agents/ 
diseases dataset, we retrieved 178,599 publication records from MEDLINE 
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(1964–2005) by searching article abstracts and titles using 58 keywords 
from the Centers for Disease Control and Prevention (CDC)’s list of agents by 
category (http://www.bt.cdc.gov/Agent/agentlist.asp). For the animal bio-
terrorism agents/diseases dataset, we retrieved 135,774 publication records 
from MEDLINE (1965–2005) by searching article abstracts and titles using 
58 keywords from the World Organization for Animal Health (OIE)’s list of 
diseases by species (http://www.oie.int/eng/maladies/ en_classification.htm). 

As shown in Figure 14-2, there have been an increasing number of 
publications in MEDLINE for both human agents/diseases research and 
animal agents/diseases research since 1986. Although publications in both 
topic areas increased rapidly, the number of publications in human agents/ 
diseases research is greater than the number of publications in animal 
agents/diseases research. 

 

Figure 14-2. Number of publications by year. 
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Figures 14-3 and 14-4 show the number of publications on major human 
and animal agents/diseases in different years. For research related to human 
agents/diseases, the number of publications on Anthrax surged after 2001. 
Since 1987, the number of publications on Botulism has been highest among 
the CDC’s category A agents. For research related to animal agents/diseases, 
the number of publications on Foot-and-mouth disease (FMD) surged after 
the outbreak in the UK in 2001. The number of publications on West Nile 
Virus (WNV) surged after an outbreak in France in 2000 and after reported 

http://www.bt.cdc.gov/Agent/agentlist.asp
http://www.oie.int/eng/maladies/en_classification.htm


 

 
Figure 14-3. Human agents/diseases-related bioterrorism publications. 

  

 

 
Tables 14-1 and 14-2 show the characteristics of the two datasets. For 

human agents/diseases, E. coli and Q fever, both in CDC’s agents category B, 
had the greatest number of publications among all the agents/diseases. 
Botulism had the highest number of publications in category A, followed by 
Anthrax and Plague. There were relatively fewer publications in category C. 
For animal diseases/agents, most publications were about Q fever. There 
were also many publications on Vesicular stomatitis, Foot-and-mouth disease, 
and Rabies. 

 

32314. Knowledge Mapping for Bioterrorism-Related Literature

Figure 14-4. Animal agents/diseases-related bioterrorism publications. 

human cases in the U.S. in 2003. The number of publications on Avian 
Influenza increased after an H7N2 outbreak in New York in 2003 and an 
H5N1 outbreak in Asia in 2004. 
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Table 14-1.  The human bioterrorism agents/diseases dataset characteristics broken down by 
CDC’s agents category. 

Agent/disease Number of 
publications 

Number of 
unique authors 

Number of unique 
countries 

Category A 8,635 23,891 89 
 Botulism 3,780 9,988 56 
 Anthrax 1,674 5,579 54 
 Plague 1,504 4,169 55 
 Smallpox 846 2,623 43 
 Viral hemorrhagic fever 678 1,945 35 
 Tularemia 494 1,454 30 
Category Ba 170,460 356,162 157 
 E. coli 106,479 212,338 124 
 Q fever 34,312 115,136 144 
Category C (Only Nipah 
virus and hantavirus) 

919 2,974 50 

Overallb 178,599 381,684 159 
    a Only the two most researched diseases in category B are shown 
    b Some articles mention multiple diseases 
 

Table 14-2. The animal bioterrorism agents/diseases dataset characteristics broken down by 
OIE’s diseases. 

Agent/disease Number of 
publications 

Number of 
unique authors 

Number of unique 
countries 

Q fever 33,999 114,600 144 
Vesicular stomatitis 2,374 7,281 41 
Foot-and-mouth disease 2,338 7,159 63 
Rabies 2,209 5,509 81 
Brucellosis 1,955 5,585 77 
Anthrax 1,240 4,236 50 
Paratuberculosis 997 2,616 37 
Japanese encephalitis 988 2,870 39 
West Nile virus 944 2,086 35 
Avian influenza 717 3,446 41 
Overalla 135,774 320,630 165 

   a Only top ten diseases are shown 

ANALYSIS RESULTS AND DISCUSSION 

Significant insights were gained about the “invisible college” of researchers 
and their associated institutions, countries, and research topics. In this section, 
we discuss our analysis results for research related to human agents/diseases 
and research related to animal agents/diseases respectively. 
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5.1 Human Agents/Diseases-Related Bioterrorism 
Research 

In the following subsections, we present the analysis results and findings 
on human agents/diseases-related bioterrorism research. 

5.1.1 Productivity Status 

Bibliographic analysis was used to identify the most productive countries, 
institutions, and researchers in bioterrorism research. Tables 14-3 to 14-5 list 
the top ten countries, institutions, and researchers with the highest numbers 
of human agents/diseases-related publications respectively. As shown in 
Table 14-3, the United States had the most publications in human agents/ 
diseases research, followed by Japan and the United Kingdom. At the 
institution level (shown in Table 14-4), Harvard University had the most 
publications, followed by the University of Wisconsin-Madison and Institute 
Pasteur-Paris. At the researcher level (shown in Table 14-5), Raoult, D., 
from WHO Collaborative Center for Rickettsial Reference and Research, 
France, had the most publications, followed by Inouye, M., from the Robert 
Wood Johnson Medical School in New Jersey, and Yamamoto, K. from 
Tohoku University in Japan. Most of these researchers who had the most 
publications usually performed research related to CDC’s category B agents 
such as Q fever and E. coli. 

 
Table 14-3. Top ten countries for human agents/diseases research. 

Rank Country Number of 
publications 

1 United States 65,810 
2 Japan 16,023 
3 United Kingdom 12,091 
4 Germany 10,598 
5 France 8,732 
6 Canada 6,367 
7 Italy 4,193 
8 Sweden 3,933 
9 Spain 3,847 
10 India 3,589 
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Table 14-4. Top ten institutions for human agents/diseases research. 

Rank Institution Number of 
publications 

1 Harvard Universitya 1,389 
2 University of Wisconsin-Madison 1,131 
3 Institute Pasteur-Paris 1,125 
4 University of Tokyo 883 
5 Centers for Disease Control and Prevention-Atlanta 849 
6 Stanford University 815 
7 University of Maryland-Baltimore 813 
8 Osaka University 798 
9 Yale University 785 
10 University of California-Davis 782 

   a  Harvard University includes Harvard Medical School, the John F. Kennedy School of Government, and all 
other departments 

 
Table 14-5. Top ten researchers for human agents/diseases research. 

Rank Researcher Institution Number of   
publications 

1 Raoult, D. WHO Collaborative Center for Rickettsial 
Reference and Research, France 

220 

2 Inouye, M. Robert Wood Johnson Medical School, 
New Jersey 

163 

3 Yamamoto, K. Tohoku University, Japan 159 
4 Rowe, B. Central Public Health Laboratory, 

London, UK 
148 

5 Peters, C.J. 145 

6 Levine, M.M. University of Maryland-Baltimore 143 
7 Dougan, G. Imperial College London, UK 140 
8 Ito, K. Kyoto University, Japan 140 
9 Kaback, H.R. Howard Hughes Medical Institute, UCLA  136 
10 Watanabe, K. University of Tokyo, Japan 134 

Co-authorship analysis was used to identify and visualize collaboration 
between researchers. We analyzed different collaboration groups based on 
different agents/diseases and different regions. For example, Figure 14-5 
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Branch-Galveston 
University of Texas Medical 

shows the collaboration status of researchers on Anthrax. The node in the  

5.1.2 Collaboration  Status 



 
network represents an individual researcher. The bigger the node, the more 
publications the researcher has published. The link between two researchers 
means that these two researchers have published one or more scientific 
articles together. The thicker the link, the more articles these two authors 
have published together. We included only researchers who published more 
than five articles. The largest group in the center consists of researchers from 
the United States. The second largest group is from France. The smaller 
groups are from India, Israel, Italy, and the United Kingdom. Figure 14-6 

for CDC’s category A agents/diseases. There are six groups, all from Iran. 
The two largest groups with the most productive researchers are from 
Pasteur Institute of Iran (top) and Tehran University of Medical Sciences 
(bottom). Both groups focused on botulism. 
 
 

The United States 

France 

India 

United 
Kingdom

Italy

Israel
 

Figure 14-5. Collaboration status of researchers on Anthrax. Researchers with more than five 
articles are shown. 
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Botulism 

Botulism Toxin
 

category A agents/diseases. 

5.1.3 Emerging Topics 

Content map analysis was used to identify the emerging topics and 
trends. Figures 14-7 and 14-8 show the evolution of major research topics in 
human agents/diseases literature for two time periods, 1996–2000 and 2001–
2005 respectively. 

The nodes in the folder tree and colored regions are topics extracted from 
research papers. The topics are organized by the multi-level self-organizing 
map algorithm. The conceptually closer technology topics (according to co-
occurrence patterns) are positioned closer geographically. Numbers of 

of the topic regions also correspond to the number of documents assigned to 
the topics. Region color indicates the growth rate of the associated topic: the 
warmer the color, the higher the growth rate. The growth rate is defined as 
the number of articles published in the previous time period/the number of 
articles published in the following time period for a particular topic (region). 
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Figure 14-6. Collaboration status of researchers in states that sponsor terrorism on CDC’s 

papers under each topic are presented after the topic labels. The sizes 



 
It can be observed that dominating topic regions during 1996–2000 are: 

“Botulinum toxin type,” “Francisella tularensis,” “Clostridium botulinum,” 
“Effect of Botulinum toxin,” “V Antigens,” and “Ebola viruses.” The sizes of 
these topic regions suggest that they were the key technology topics during 
the 5 years preceding 2000. Among these dominating topics, “Botulinum 
toxin type,” “Effect of Botulinum toxin,” “Ebola viruses,” and “V Antigens” 
are emerging topics. During 2001–2005, dominating topics are: “Yersinia 
pestis,” “Centers for Disease Control,” “Protective antigens,” “Francisella 
tularensis,” and “Botulinum neurotoxin.” The new important topics are: 
“Biological weapons,” “Anthracis spores,” and “Smallpox vaccination.” We can 
see a shift in research interest towards the use of Anthrax spores and 
biological weapons after 2000. 

 

 
Figure 14-7. Content map for human agents/diseases literature (1996–2000). 
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Figure 14-8. Content map for human agents/diseases literature (2001–2005). 

5.2 Animal Agents/Diseases-Related Bioterrorism 
Research 

5.2.1 Productivity Status 

Tables 14-6 to 14-8 list the top ten countries, institutions, and researchers 
with the most numbers of animal agents/diseases-related publications 
respectively. As shown in Table 14-6, the United States had the most 
publications in animal agents/diseases research, followed by Japan and the 
United Kingdom. At the institution level (shown in Table 14-7), CDC- 
Atlanta had the most publications, almost twice as many as National Taiwan 
University and Institute Pasteur-Paris in the second and third rank. At the 
researcher level (shown in Table 14-8), Chen, D. S. from National Taiwan 
University had the most publications, followed by Williams, R. from King’s 
College Hospital, London, UK, and Raoult, D. from WHO Collaborative 
Center for Rickettsial Reference and Research, France. 
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Table 14-6. Top ten countries for animal agents/diseases research. 

Rank Country Number of  
   publications 

1 United States 39,901 
2 Japan 10,392 
3 United Kingdom 9,369 
4 France 6,115 
5 Italy 5,970 
6 Germany 5,269 
7 India 4,308 
8 Spain 3,695 
9 Canada 3,568 
10 Taiwan 3,146 

 
Table 14-7. Top ten institutions for animal agents/diseases research. 

Rank Institution Number of  
  publications 

1 Centers for Disease Control and Prevention-Atlanta 1,300 
2 National Taiwan University 685 
3 Institute Pasteur-Paris 638 
4 602 
5 University of California-Davis 551 
6 University of Pittsburgh 529 
7 Mayo Clinic-Rochester 521 
8 University of Southern California 500 
9 Mahidol University (Thailand) 479 
10 U.S. Department of Agriculture-Agricultural Research 

Service 
458 

Table 14-8. Top ten researchers for animal agents/diseases research. 

Rank Researcher Institution Number of  
publications 

1 Chen, D.S. National Taiwan University 209 
2 Williams, R. King’s College Hospital, London, UK 203 
3 Raoult, D. WHO Collaborative Center for Rickettsial 

Reference and Research, France 
198 

4 Lee, S.D. Veterans General Hospital, Taipei, Taiwan 163 
5 Liaw, Y.F. Chang Gung Memorial Hospital, Taiwan 159 
6 Hayashi, N. Osaka University, Japan 151 
7 Okamoto, H. Jichi Medical School, Japan 142 
8 Carreno, V. Viral Hepatitis Research Foundation, 

Madrid, Spain 
139 

9 Prusiner, S.B. University of California, San Francisco 137 
10 Purcell, R.H. National Institute of Allergy and Infectious 

Diseases, Maryland 
130 
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5.2.2 Collaboration Status 

We analyzed different collaboration groups for animal agents/diseases 
research. For example, Figure 14-9 shows the collaboration status of researchers 
on West Nile Virus. We only included researchers who published more than 
five articles. The largest group in the center consists of researchers from the 
United States. 

 
 
 

 
Figure 14-9. Collaboration status of researchers on West Nile Virus. Researchers with more 
than five articles are shown. 

5.2.3 Emerging Topics 

We analyzed the emerging research topics based on different animal 
agents/diseases. Foot-and-mouth Disease (FMD) is one of the most devastating 
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diseases of farm animals. It occurs throughout the world and is a significant  



 
hazard to agriculture. The 2001 epidemic in the UK led to the loss of six 
million livestock. Here we use FMD as an example of the analysis of emerg-
ing topics. Figures 14-10 and 14-11 show the evolution of major research 
topics related to FMD for two time periods, 1996–2000 and 2001–2005 
respectively. 

It can be observed that dominating topic regions during 1996–2000 are: 
“High resolution ultrasound,” “Brachial artery diameter,” “Mean age,” “Risk 
factors,” “Animal products,” “Endothelium-dependent vasodilation,” and 
“Oxidative stress.” The sizes of these topic regions suggest that they were 
the key technology topics during the 5 years preceding 2000. During 2001–
2005, dominating topics are: “Fibromuscular dysplasia,” “Foot-and-mouth 
disease virus,” “Outbreak of Foot-and-mouth disease,” “Reactive Hyperemia,” 
and “United Kingdom.” These dominating topics are also the emerging ones. 
These topics are due to the outbreak of FMD in the UK in 2001. 

 
 

 
Figure 14-10. Content map for FMD-related literature (1996–2000). 
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Figure 14-11. Content map for FMD-related literature (2001–2005). 

Knowledge Mapping, aimed at the processes of charting, mining, analyz-
ing, sorting, enabling navigation of, and displaying knowledge, helps reveal 
the interconnected, invisible college or network of scholars and their seminal 
publications and ideas. In this chapter, we discussed different types of online 
resources often used for Knowledge Mapping, the various units of analysis 
for Knowledge Mapping, and the three major types of Knowledge Mapping 
analysis techniques: Text Mining, Network Analysis, and Information 
Visualization. We applied these techniques to mapping worldwide bio-
terrorism literature, and studied the productivity of researchers, institutions, 
and countries, the collaborations among researchers, and the emerging 
research topics and trends. 
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6. CONCLUSION 
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network analysis of comprehensive nanotechnology findings across tech-
nology domains, inventors, institutions, and countries. 
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Abstracts and Indexes: 

(such as MEDLINE or TOXLINE) (http://www.nlm.nih.gov/) 
The primary databases generated by the National Library of Medicine 
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CHAPTER OVERVIEW 

Contact tracing is an important control measure in the fight against 
infectious disease. Healthcare workers deduce potential disease pathways and 
propose corresponding containment strategies from collecting and reviewing 
patients’ contact history. Social Network Analysis (SNA) provides healthcare 

SNA, they are able to identify prominent individuals in disease pathways as 

review the role of SNA in supplementing contact tracing and present a case 
study of the Taiwan SARS outbreak in 2003 to demonstrate the usefulness of 
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1. INTRODUCTION 

Contact tracing is a public health tool used in the fight against infectious 
disease, and is based on the assumption that disease is transmitted via close 
personal contact. From patients’ contact history, healthcare workers attempt 
to break the chain of transmission by first tracing the source of infection and 
then identifying other potential patients exposed to the disease so that  
they may be monitored and, if necessary, treated (Eames and Keeling, 2003; 
Rothenberg et al., 2003). Since contact tracing requires intensive manual 
effort in interviewing patients and collecting their contact records, contact 
tracing is most effective when the number of infected cases or reproductive 
ratio of the disease is low (Eames and Keeling, 2003). Contact tracing has been 
applied to the control of Sexually Transmitted Diseases (STDs), Tuberculosis 

Syndrome (SARS) in 2003. 
The effect of social networks on STD transmission has long been 

recognized and has triggered the development of control measures for STDs. 

patients share a common sexual contact, their contact tracing records should 
be kept in one folder and analyzed as a unit or lot (Rothenberg et al., 2003). 

for target screening, and its basic premise is similar to the concept of clusters 
in Social Network Analysis (SNA) (Rothenberg and Narramore, 1996). How-

until the emergence of Acquired Immunodeficiency Syndrome (AIDS) in the 
1980s; its rapid spread was believed to be related to fast growing sexual 
networks augmented by the ease of long distance travel. In 1984, Auerbach 

assess the role of sexual relationships in AIDS transmission. They eventually 
linked 40 patients across ten cities in the USA in a network graph and 
supported the long held hypothesis that AIDS is transmitted via pathogens. 

In 1985, Klovdahl (1985) formally established the connection between 
contact tracing and SNA, using the same dataset from the Auerbach et al. 
study to demonstrate how SNA could be applied to examine two causal 
criteria of transmission: exposure and temporality. In addition, he recapped 
the relationship between an STD’s spread and the structure of social net-
works, and he introduced the potential usage of centrality measures in SNA 
to identify prominent individuals in STD transmission. In 1994, Klovdahl et al. 
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(1994) further proved the concept of incorporating SNA into disease investi- 

In the 1960s, for instance, Dr. Havlak suggested that if several syphilis 

et al. (1984) initiated a contact investigation of 19 patients in California to 

gation with a large scale study in Colorado Springs, Colorado, in which over 

(TB), and some newly emerging diseases, such as Severe Acute Respiratory 

ever, the consideration of using SNA to enhance contact tracing wasn’t begun 

600 individuals were directly or indirectly connected to each other in one

This “lot system” has facilitated the identification of potential STD patients 

network. 
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For more than 20 years following Klovdahl’s 1985 paper, SNA has been 
successfully applied to the studies of several STD outbreaks. The epidemio-
logical insights that SNA can provide have also evolved from the static 
identification of core groups to the investigation of transmission dynamics. 
In this chapter, we review the development of SNA in the field of epidemio-
logy and present a case study of the Taiwan SARS outbreak in 2003 to 
discuss the role of geographical contacts in disease investigation. 

The remainder of this chapter is organized as follows. We first review 
two important SNA tools for contact tracing: network visualization and 
measures. Then we discuss how SNA is applied in order to identify prominent 
individuals in disease pathways and study the dynamics of disease trans-
mission. Finally, we present the case study and conclusions. 

2. NETWORK VISUALIZATION AND MEASURES 
IN SNA 

In any society, individuals develop their relationships with others and 
form their own personal networks through social activities. From these 
networks, they may seek advice for important decisions, obtain resources 
useful for their jobs, and create alliances for supporting their beliefs. Based 
on the observation of how individuals act in a society, instead of supporting 
the idea that people are autonomous, SNA proposes that people’s behavior is 
better explained by seeing them as embedded in a network of relationships. 
By reconstructing a social network, SNA researchers seek to understand 
people’s behavior and organizational structures from their linkages with each 
other. 

In SNA, the relationship of individuals is described as a socio-matrix 
(Scott, 2000; Wasserman and Faust, 1994). It creates a one-to-one mapping 

between its row and column persons (1 for existence and 0 otherwise). A 

which individuals are symbolized as nodes and connected to each other with 

the most active or “popular” persons since they are linked to the largest 
number of people. Person F is also important although he/she doesn’t have 

have the chance to establish relationships with each other in the future. In 

sample network. 
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SNA, these three people are said to be central or prominent within the 

groups of friends. Without Person F, these two groups of people may not 

edges or ties for their relationships. Figure 15-1 shows a sample friendship 

as many connections as Persons A and G: Person F bridges two different 

socio-matrix can also be visualized as a socio-gram or social network in 

network of ten individuals. In this network, Persons A and G are considered 

between participants, and each cell indicates whether a relationship exists 
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Figure 15-1. A sample friendship network of ten individuals. 
 

Centrality measures are quantitative indicators for finding those “central” 
individuals from a network, originally developed in communication scenarios. 
From a topological perspective, people who are able to receive or control the 
mainstream of message flow typically stand in a position similar to the central 
point of a star (Freeman, 1978/79), such as the location of Person A in the 
network above. Various centrality measures, such as degree and betweenness, 
can be employed to determine the importance of a node within a network. 
For example, the degree is the number of edges that a node has. Since the 
central point of a star has the largest number of edges connecting it to the 
other nodes, a node with a higher degree is topologically considered to be 
more central to its network (Freeman, 1978/79; Wasserman and Faust, 1994). 
The betweenness measures “the extent to which a particular node lies 
between the various other nodes” (Scott, 2000) because the central point also 
sits between pairs. The higher betweenness a node has, the more potential it 
has to be a gatekeeper controlling the connections (such as communications) 
between the others (Scott, 2000). Table 15-1 lists the degree and betweenness 
of nodes in our sample friendship network. From this table we can see how 
these measures can reveal the prominence of people in a network. 

The centrality measures are categorized as micro-level measures and 
focus on the status of individual nodes in a social network. In contrast, 
macro-level measures reflect a network’s overall structure and are usually 
used for network-to-network comparison, such as the number of components 
and network density. A component in graph theory is defined as a maximal-
connected sub-graph. Two nodes belong to the same connected component if 
they are connected directly with an edge or indirectly through other nodes. 
The number of components consequently shows the number of connected 
sub-graphs and reflects the degree to which people are grouped in a network 
(Scott, 2000). The number of components in our sample friendship network 
is 1. If we remove Person F from the network, its number of components 
would become 2. Network density is calculated with the proportion of exist-
ing edges to the maximum possible edges among nodes (Wasserman and Faust, 
1994). If two social networks have the same number of nodes, the network 
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Table 15-1. Degree and betweenness of nodes in the sample friendship network. 

Node Degree Betweenness 
A 5 25 
G 4 21 
F 2 20 
B, C 2 0 
D, E, H, I, J 1 0 

 
density can differentiate their interaction intensity. According to combinatorics, 
the maximum possible edges of our sample network totals (10 × 9)/2 = 45. 
Its existing edges are 10. Therefore, its network density is 10/45 = 0.2222. 
The frequently used macro- and micro-level measures are summarized in 
Table 15-2. It is noted that in some occasions the average value of a micro-
level measure can also serve as a macro-level measure. For example, the 
average degree of nodes can also indicate network participants’ interaction 
intensity and replace the network density in usage. 

Table 15-2. Summary of frequently used network measures. 

Measure Type Description 
Degree Micro The total number of other nodes adjacent to a node 
Betweenness Micro The degree to which a node lies between various other 

nodes 
Closeness Micro The degree to which a node is close to the other nodes 
Information Centrality Micro The extent to which the information flowing in all paths 

comes from a specific node 
Number of Components Macro The number of connected sub-graphs in a network 
Density Macro The proportion of existing edges to the maximum 

possible edges 
Number of N-Clique Macro The number of maximal sub-graphs in which any two 

nodes have a geodesic distance no greater than N 

3. SNA IN EPIDEMIOLOGY 

When applied to epidemiology, a social network is called a contact network. 
It represents accumulated linkages among patients with their potential contacts 
of infection in a period of time. Therefore, unlike the actual route of trans-
mission which is a one-to-one mapping between patients for their infection, 
a contact network typically depicts a many-to-many relationship. From a 
contact network, disease investigators can visualize the potential scenarios or 
social factors that triggered an outbreak and propose corresponding 
containment strategies to control it. 
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3.1  Static Analysis of Linkage in a Contact Network  
for STDs 

The main strength of SNA in disease analysis is its ability, through 

those key individuals are referred to as the core group and bridges (Thomas 
and Tucker, 1996; Wasserheit and Aral, 1996). The concept of a core group 

network and exhibit high values in the degree and betweenness measures. 

and Narramore, 1996; Wasserheit and Aral, 1996). These bridge people may 
not have many sexual partners, but accidentally channel the disease to a 

but high betweenness. 
In epidemiology, the central questions in SNA studies usually surround 

which group rather than which person facilitates a disease’s spread. Therefore, 
investigators need to categorize patients into several groups according to 
their demographic characteristics and then calculate the average values of 
centrality measures for each group. In the Colorado Springs study, Rothenberg 
et al. (1995) estimated the relationship of centrality rankings with the per-
ceived risk of AIDS and categorized the behaviors of their participants into 
six categories: prostitutes, paying and nonpaying partners, injection drug users 
and their partners, and other. They reported that prostitutes and nonpaying 
partners who ranked highest in information centrality were more likely to 
engage in high-risk sexual activities, such as anal sex, and know someone 
with AIDS. In a separate study of a syphilis outbreak, Rothenberg et al. (1998b) 
found that people with syphilis were more central within the outbreak network 
based on their significantly higher betweenness. From the network visualization, 
they further uncovered that a group of young girls served as the core group 
of the outbreak by connecting two different ethnic groups of men. 

3.2 Transmission Dynamics of STDs 

A contact network is analogous to a snapshot which captures the process 
of disease distribution within a given period of time. Comparing a series of 
contact networks with macro-measures enables the study of transmission 
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bridges, transfer the disease from one subpopulation to another (Rothenberg 

different class of subpopulation (e.g., different economic class) via their 

was introduced by Yorke et al. (1978) in the 1970s and postulates that epi-
demics or endemics of an STD are maintained by a small group of sexually 

centrality measures, to identify key individuals in an outbreak. For STDs, 

of their active sexual life, those core group members inevitably behave like 

purchase of sexual services. Therefore, they may exhibit low degree values 

the central point of a star connecting to a large number of others in a contact 

However, the wide spread of an STD requires individuals who, acting as 

active individuals who persistently infect other healthy people. Because 
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dynamics by examining the change in transmission patterns over time. In the 
literature, there are two major perspectives in studying transmission dynamics 
with SNA: risky behavior and epidemic phases. In 1998, Rothenberg et al. 
(1998a) presented results from a longitudinal study in Colorado Springs as 
an example of the risky behavior perspective. Ninety-six AIDS patients were 
repeatedly interviewed for 3 years about their contacts with others, including 
sexual contact, drug use, and needle sharing. For each type of contact, the 
researchers constructed three serial contact networks at 1-year intervals and 
compared the structure of those serial networks to assess network stability 
and changes in risky behavior. According to the study results, one group of 
patients showed a significant decrease in needle sharing based on the gradually 
smaller average degree and size of components in the group’s contact networks. 

The dynamic topology of transmission proposed by Wasserheit and Aral 
(1996) provides a theoretical ground for using SNA to identify the epidemic 
phases of STDs. Wasserheit and Aral extended the core group theory and 
suggested that STD transmission is determined not only by the change rate 
of sexual partners but also by interaction with healthcare programs. According 
to their dynamic topology as shown in Figure 15-2, in an early phase of 
transmission or a growth phase, an STD must first enter a sexual network in 
which the change rate of sex partners is high enough to allow the STD to 
establish itself and grow within a subpopulation. With a consistent increase 
of infected individuals, the disease eventually expands to other subpopulations 
via bridges: people who have sexual contact with more than one subpopulation. 

When the STD starts to spread simultaneously in various subpopulations, 
this is described as a hyperendemic phase. At this point, healthcare workers 
would begin to notice the disease, initiate an investigation, and develop inter-
vention programs and curative therapies. If these measures were effective, 
the number of incidents would gradually decrease, thereby transitioning to a 
decline phase. The STD eventually would arrive at an endemic phase and  

 
Figure 15-2. Wasserheit and Aral’s dynamic topology adapted from (Wasserheit and Aral, 
1996). 
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reside in a marginalized subpopulation where the number of sexual partners 
may be high but contact with healthcare systems is restricted or minimal 
(Wasserheit and Aral, 1996). 

According to Wasserheit and Aral’s topology, Potterat et al. (2002a) 
suggested that the structure of sexual contact networks is more accurate than 
secular trend data for indicating epidemic phases. To prove their concept, 
they constructed a sexual contact network of chlamydial patients in Colorado 
Springs from 1996 to 1999. They found that while the number of reported 
cases increased by 55% during this period of time, the network was 
relatively fragmented and lacked cyclic structures in comparison with an 
outbreak contact network. These circumstances indicated that the chlamydial 
transmission was in either a stable or a declining phase. Cunningham et al. 
(2004) further examined the structural characteristics of a contact network 
associated with epidemic phases. They compared the structures of two 
contact networks which respectively represented the periods during and after 
an epidemic. They reported that after the epidemic, the overall network 
centrality declined but the component density increased. This finding is 
consistent with Wasserheit and Aral’s topology that in the decline phase the 
disease would be restrained in sexual networks that have intensive sexual 
exchange but limited access to the healthcare system. 

3.3 From STDs to Tuberculosis 

Before the year 2000, SNA studies for disease outbreaks all emerged 
from the study of STDs. One reason for this could have been the availability 
of contact tracing data. Compared to other infectious diseases, such as 
influenza, STDs are heavily dependent on personal connections for trans-
mission and hence can be controlled by contact tracing and taking appropriate 
intervention actions. Another reason may be related to the capability of 
network presentation. Since SNA was originally developed to study social 
phenomena via person-to-person linkage, its network presentation is inherently 
used to portray the relationships between people and contains only individuals 
as actors in the network graph. This kind of presentation may be sufficient 
for STDs but is not sophisticated enough to describe the scenarios of indirect-
contact or airborne transmission. Klovdahl et al. (2001) addressed this 
limitation with their investigation of a tuberculosis (TB) outbreak in Houston, 
Texas. They first used the conventional presentation of SNA and constructed 
a person-to-person contact network to analyze the outbreak. However, only 
12 personal contacts were identified among the 29 patients. Through further 
collaboration with local healthcare workers, they found that geographical 
contact was more important than personal contact in understanding the 
outbreak. By including places such as bars and restaurants in their contact 
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network, they were finally able to connect those 29 patients directly or 
indirectly in a network (Klovdahl et al., 2001). 

Since then, several outbreak studies have adopted the same approach of 
incorporating geographical contacts into SNA (Abernethy, 2005; Andre et al., 
2007; De et al., 2004; McElroy et al., 2003). McElroy et al. (2003) included 
clubs as nodes in their networks and showed the potential connections 
among 17 TB patients between 1994 and 2001 in Wichita, Kansas. De et al. 
(2004) also found a positive relationship between attendance at a motel bar 
and a gonorrhea infection in Alberta, Canada, in 1999 and used a contact 
network with the motel bar to demonstrate this connection. Based on these 
studies, many researchers believe that it is important to examine the social 
context of disease transmission in a contact network. Geographical locations 
are places of aggregation and create opportunities for social interaction. 
Including geographical locations in contact networks can not only help to 
reveal potential places for indirect or casual transmission contact, but can 
also help to identify social context which groups people and facilitates 
pathogen transfer. 

3.4 Summary of SNA Studies in Epidemiology 

Table 15-3 summarizes several SNA epidemiology studies in chrono-
logical order. Although Klovdahl’s conceptual paper was published in 1985, 
the application of SNA in STD investigation did not start until the Colorado 
Springs study in 1994. Through the Colorado Springs study, SNA not only 
empirically demonstrated its ability to support contact tracing but also 
examined structural evolution of contact networks. Since then, STD with 
sexual contact has been the focus of analysis. In 2001, SNA was further 
applied to TB. Including geographical contact in the contact network was 
proposed to demonstrate airborne and casual contact transmission in public 
places. Because of the rich insights it provides, the inclusion of geographical 
contacts gradually became a standard practice for both TB and STDs to 
show the potential connection of patients via their daily activities. 

Nonetheless, SNA has some limitations just like any other analytical 
tools. First, the accuracy of analysis depends on the quality of contact tracing 
data (Blanchard, 2002; Ghani et al., 1997). If contact tracing is not well 
executed and some key patients are not identified, a constructed contact 
network could be fragmented and fail to present a complete picture of trans-
mission scenarios. All the analyses based on the contact network consequently 
could be misleading. Second, the qualitative visualization and quantitative 
measures of SNA are just tools for disease investigators to explore the 
phenomenon. To understand an outbreak with SNA, the investigators still 
need to consider many factors, including: environmental and social contexts, 
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patient demographics, disease pathogen characteristics, etc. In addition, they 
need to interpret those data with their own domain expertise and insights 
(Rothenberg and Narramore, 1996). 

Table 15-3. Summary of SNA studies in epidemiology. 

Study Disease Type of Analysis Location 
Klovdahl et al., 1994 STD (AIDS) Static Colorado Springs 
Woodhouse et al., 1994 STD (AIDS) Static Colorado Springs 
Rothenberg et al., 1995 STD (AIDS) Static Colorado Springs 
Latkin et al., 1995 STD (AIDS) Static Baltimore 
Rothenberg et al., 1998b STD (Syphilis) Static Atlanta 
Rothenberg et al., 1998a STD (AIDS) Dynamic (Risk) Colorado Springs 
Potterat et al., 1999 STD (AIDS) Dynamic (Risk) Colorado Springs 
Klovdahl et al., 2001 TB Static Houston 
Potterat et al., 2002a STD (Chlamydia) Dynamic (Phase) Colorado Springs 
Potterat et al., 2002b STD (AIDS) Dynamic (Phase) Colorado Springs 
McElroy et al., 2003 TB Static Wichita-Sedgwick 
Cunningham et al., 2004 STD (Syphilis) Dynamic (Phase) Baltimore 
De et al., 2004 STD (Gonorrhea) Static Alberta 
Andre et al., 2007 TB Static Oklahoma City 

4. A CASE STUDY: THE SARS OUTBREAK  
IN TAIWAN 

For our case study, we investigated the role of geographical contacts in 
disease analysis. In this section, we first review the Taiwan SARS outbreak 
of 2003 and introduce its contact tracing dataset. Then we present the two 
analyses, connectivity and topology analyses, used in our investigation. 

4.1 Taiwan SARS Outbreak and Contact Tracing 
Dataset 

SARS is an infectious disease caused by a novel coronavirus named 
SARS-associated coronavirus (SARS-CoV) (CDC, 2003; Lipsitch et al., 
2003). Its first human case was identified in Guangdong Province, China, on 
November 16, 2002 (Chu et al., 2005). In February 2003, a medical doctor 
from Guangdong Province went to Hong Kong and infected at least 17 other 
guests during his stay at a hotel, initiating a global epidemic of SARS 
(Donnelly et al., 2003; Peiris et al., 2003). The epidemic ended in July 2003, 
with more than 24 countries reporting suspected or probable cases, including 
Canada, Singapore, and Taiwan. 
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SARS caused great public health concerns because of its rapid inter-
national spread, high case fatality rate, and unusual nosocomial infection. 

close personal contact, through exposure to infectious respiratory droplets or 
body fluids. Some studies have also suggested that SARS may be transmitted 

hospitals, or communities (Chen et al., 2004; Peiris et al., 2003; Yu et al., 2004). 
In Taiwan, a series of hospital outbreaks caused the number of SARS 

cases to dramatically increase to over 300 between April to June 2003 (Chu 

symptoms. The hospital was reported as having a hospital outbreak on April 
22 and closed on April 24. Seven hospitals subsequently reported incidents 
of nosocomial infection and some suspended their emergency room operations, 
including a teaching hospital in Taipei. This series of outbreaks were suspected 
to have been triggered by inter-hospital transfer and the movement of SARS 
patients (Chu et al., 2005). On July 5, 2003, Taiwan was officially removed 
from a World Health Organization (WHO) list of SARS-affected areas. 

The Taiwan SARS data was collected by the Graduate Institute of Epi-
demiology at National Taiwan University during the SARS period. It contains 
the contact tracing records of 961 suspected and confirmed SARS patients in 
Taiwan and their treatment histories. The records are comprised of two main 

those recognized interactions with known SARS patients in household, 
workplace, and hospital settings. The geographical contacts include visits to 
high-risk areas of infection, such as SARS-affected countries and hospitals. 
Table 15-4 summarizes the numbers of records and patients involved in each 
type of contact. It should be noted that a patient may have multiple records 
in a type and across types of contacts. 

Table 15-4. Summary of the Taiwan SARS databaset. 

Main category Type of contact Record Suspected patients Confirmed patients 
Family member 177 48 63 
Roommate 18 11 15 
Colleague 40 26 23 

Personal 

Close contact 11 10 12 
Foreign travel 162 100 27 
Hospital visit 215 110 79 
Hospital admission 622 401 153 
Hospital workplace 142 22 120 

Geographical 

High-risk area 38 30 7 
Total 1425 638 323 
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categories, personal and geographical contacts. The personal contacts are 

a SARS patient without a known source of infection in the middle of April. 

The majority of SARS patients were infected in healthcare and hospital settings 

et al., 2005). The outbreaks started when a municipal hospital in Taipei received

(Peiris et al., 2003). SARS is highly contagious and transmitted primarily via 

A week after her admission several healthcare workers gradually developed 

via indirect contact based on infection incidents in transportation vehicles, 
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4.2 Contact Network Construction 

In order to present both personal and geographical contacts at one time, 
we adopted a two-mode network approach to construct a SARS contact 
network. This kind of approach has been taken in several studies, such as the 
Houston tuberculosis study by Klovdahl et al. (2001) and the Alberta 
gonorrhea study by De et al. (2004). The network contains two types of 
nodes, patients and geographical locations. We linked two patient nodes with 
an edge if they were family members or had an identified interaction. We 
connected a patient node to a location node, such as a hospital or foreign 
country, if the patient had been there during the SARS period. The con-
struction of a contact network is demonstrated in Figure 15-3. 

 

 

 

 

 

 

 

 
Figure 15-3. Example of contact network construction. 

4.3 Connectivity Analysis 

Connectivity is the degree to which a contact type can link individual 
patients in a network which can then be measured by the number of 
components. In order to understand how SARS spreads, connectivity analysis 
can be used to show the relative importance of geographical contacts, based 
on their ability to connect patients. If a type of contact has relatively high 
connectivity, it should significantly decrease the number of components from 
the total number of patient nodes. The types of contacts we investigated in 
this analysis are listed in Table 15-5. 

Table 15-6 shows our results for the two main categories of contacts. 
After applying all available records, we can reduce the number of components 
in the network from 961 to 10. If we use the personal contacts alone for 
construction, the number of components decreases to 847 and the network is 
too sparse to get a comprehensive picture of how SARS spread in those 
patients. In contrast, the geographical contacts reduce the number of com-
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ponents to 82. This suggests that the majority of patients had been to the 
same place or places before the onset of their symptoms, indicating that 
knowing and analyzing the geographical contacts is important for under-
standing this outbreak. 

Table 15-5. Types of contacts in the investigation. 

Personal contacts Geographical contacts 
Family members Foreign travel 
Roommates Hospital visits 
Colleagues Hospital admissions 
Close contacts Hospital workplaces 
 High-risk areas 

Table 15-6. Results of connectivity analysis for main categories. 

 Number of components 
Personal contacts 847 
Geographical contacts 82 
Personal + geographical 10 

 
We further examined the connectivity of each type of contact, with Table 

15-7 showing the results. Hospital-related contacts are the top 3 contacts in 
connectivity, consistent with the fact that SARS patients were primarily 
infected in the hospital setting. 

Table 15-7. Connectivity analysis of the nine types of contacts. 

Main category Type of contacts Number of components 
Personal Family member 893 
 Roommate 946 
 Colleague 943 
 Close contact 949 
Geographical Foreign travel 943 
 Hospital visit 753 
 Hospital admission 409 
 Hospital workplace 823 
 High-risk area 924 

4.4 Topology Analysis 

A traditional social network, or one-mode network, is comprised of only 
one set of nodes and describes person-to-person relationships. A two-mode 
network, on the other hand, has the ability to portray micro and macro 
relations simultaneously. In topology analysis, the goal is to investigate the 
value of a two-mode contact network for deducing potential disease pathways. 
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Since a two-mode network contains two sets of nodes with different 
layers, personal and geographical, it emphasizes the relationships between 
patients and their visits to high-risk locations. Figure 15-4 shows the large 
number of patients whom have had contact with hospitals with outbreaks of 
nosocomial infection, such as Heping Hospital; the nodes representing patients 
surround each hospital. Through patients’ visits and admissions, there are 
unusually complex linkages formed among the hospitals. These linkages 
may explain the series of hospital outbreaks in Taiwan. 

Since a one-mode network is comprised of only patient nodes, we have 
to degrade geographical relations to person-to-person ones. To do this, we 
connect two patients together if they have been to the same geographical 
location. Figure 15-5 shows the transformed one-mode network. Generally, 
geographical contacts are collected to indicate potential occasions for infection 
when personal contacts are not traceable. After degrading, the linkage among 
patients was unnecessarily amplified to such a degree that meaningful patterns 
from the contact network could no longer be identified. In contrast, a two-mode 
contact network preserves important clues about the outbreaks from both 
person-to-person and person-to-location relations, even when hundreds of 
patients are involved in the graph. 

Figure 15-4. Two-mode SARS contact network. 
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Figure 15-5. One-mode SARS contact network. 
 

Figure 15-6. Potential bridges among hospitals and households. 
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The two-mode network stresses person-to-location relationships and 
presents patients as clusters around high-risk areas. In this type of layout, 
patients acting as bridges among major clusters are easily seen and identified. 
Figure 15-6 shows the potential bridges among the major hospitals with 

When investigating a hospital outbreak, including geographical contacts 
in the network is also useful for seeing possible disease transmission scenarios. 
Figure 15-7 demonstrates the evolution of a small contact network at Heping 
Hospital through the onset dates of symptoms. On April 16, Mr. L., a laundry 
worker in Heping Hospital, had a fever and was reported as a suspected 
SARS patient. On April 16 and 17, Nurse C took care of Mr. L. On April 21, 
Ms. N, another laundry worker, and Nurse C began to have symptoms. On 
April 24, Heping Hospital was reported to have a hospital outbreak. On May 1, 
Nurse C’s daughter had a fever. From the evolution of the network, develop-
ment of the hospital outbreak can be readily discerned. 

 

Figure 15-7. Example of network evolution through the onset dates of symptoms. 

5. CONCLUSIONS 

SNA has been demonstrated to be a good supplemental tool in the 
investigation of contact tracing. Compared to the traditional process of 
reviewing contact records one by one, SNA provides healthcare workers 
with a more efficient method of integrating and visualizing the relevant 
records in a contact network to discern potential linkages among patients, 
thus revealing disease pathways. Network measures, especially centrality 
measures, enable investigators to examine the context of transmission and 
develop effective intervention programs by identifying important individuals 
who may cause or exacerbate an outbreak. In addition, some studies have 
used SNA to study the transmission of disease dynamics, demonstrating that 
the structure of a contact network is a more accurate indicator of epidemic 
phases than the traditional secular trend data. 
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Incorporating geographical contact information in SNA allows disease 
investigators to analyze infectious diseases other than STDs. While personal 
contact provides direct evidence for the causality of infection, geographical 
contact captures the factors of human aggregation in disease transmission 
and provides potential leads to indirect or casual infection. In our case 
study, the role of a type of contact in disease transmission can be potentially 
identified by its ability to join patients together. Including geographical 
locations can significantly aid in establishing linkages among patients. Because 
these locations can play an important role in facilitating the transfer of pathogens, 
they require the attention of epidemiologists and other investigators of infectious 
disease. 
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QUESTIONS FOR DISCUSSION 

1. Contact tracing is an important control measure in the fight against an 
infectious disease. If you want to use contract tracing to control a develop-
ing outbreak, what kinds of data will you collect during the interview 
with confirmed patients? Discuss the question from two perspectives: 
disease control and outbreak analysis. 

2. A contact network depicts the potential pathways of disease propagation 
among patients. Discuss the strengths and weaknesses of a contact 

3. Assume that you have a set of STD contact tracing data. It includes 
patients’ sexual contacts, patronized bars and motels, and demographic 
information, such as patients’ residency, gender, age, occupation, and 
income level. Discuss the kinds of analysis that can potentially be per-
formed with this dataset and list your steps to investigate them using 
SNA. 

4. Geographical contact information provides additional insights but can 
also create some problems when you include it in your disease analysis. 
Discuss the downsides of including geographical contacts in disease 
analysis and ways to reduce or eliminate them. 
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SUGGESTED READINGS 

Klovdahl, A. S., 1985, Social Networks and the Spread of Infectious Diseases: The AIDS 
Example, Soc. Sci. Med. 21:1203–1216. 

This is Klovdahl’s 1985 conceptual paper which set out the program for SNA to support 
contact tracing analysis. It comprehensively discusses the relationships between disease 
transmission and the structure of social networks and points out the directions that SNA can 
contribute to the disease investigation, such as using centrality measures to find key 
individuals. 

Scott, J., 2000, Social Network Analysis: A Handbook. Sage Publications Inc, London. 

This is a good book for beginning reading about SNA. Rather than providing extensive 
details for each measure or method, it summarizes the key concepts of SNA and introduces 

ONLINE RESOURCES 

UCINET is a popular SNA software by Analytic Technologies. It can be downloaded at 
http://www.analytictech.com/ with a 100-day trial. It provides both SNA visualization and 
analysis modules. 

An online book for SNA is available at http://faculty.ucr.edu/~hanneman/nettext/. It 

readers how to perform SNA with UCINET. 
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them in a comprehensive way with clear examples. We (strongly) recommend reading this book

contains good examples which illustrate basic concepts and methods of SNA and shows 

before reading Wasserman and Faust’s “Social Network Analysis: Methods and Applications.” 

http://www.analytictech.com
http://faculty.ucr.edu/~hanneman/nettext
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MULTI-AGENT MODELING OF BIOLOGICAL 
AND CHEMICAL THREATS 

KATHLEEN M. CARLEY*, ERIC MALLOY, and NEAL ALTMAN 

CHAPTER OVERVIEW 

When pandemics, chemical spills, and bio-warfare attacks occur cities 
must respond quickly to mitigate loss of life. Which interventions should be 
used? How can we assess intervention policies for novel and low frequency 
events? Reasoning about such events is difficult for people due to the high 
level of complexity and the multitude of interacting factors. Computational 
models, however, are a particularly useful tool for reasoning about complex 
systems. In this paper, we describe a multi-agent dynamic-network model 
and demonstrate its use for policy assessment. BioWar is a city-level multi-
agent dynamic-network model of the impact of epidemiological events on a 
city’s population. Herein, we describe BioWar and then use it to examine 
the impact of school closures and quarantine on the spread and impact of 
pandemic influenza. Key aspects of the model include utilization of census 
data to set population characteristics, imputed social networks among agents, 
and flexible disease modeling at the symptom level. This research demonstrates 
that high-fidelity models can be effectively used to assess policies. 

Keywords: BioWar, Multi-agent simulation, Pandemics, Dynamic networks 
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1. INTRODUCTION 

Evaluating the potential impact of social policies and estimating the 
unintended impacts of catastrophic events are key needs in the socio-policy 
arena. Most approaches to addressing these issues suffer from an inability to 
think through a wide range of alternatives and an inability to consider multiple 
interactions that are ever present in complex socio-cultural arenas. Herein, 
we demonstrate the value of high-fidelity multi-agent simulations for supporting 
such decision making. 

We describe BioWar (Carley et al., 2006), a city-level dynamic-network 
multi-agent simulation system for reasoning about the impact of epidemio-
logical events on city populations. Key aspects of the model are described. 
Then we illustrate the power of this model by using it to examine the 
potential impact of school closures and quarantines on the dispersion and health 
impact of pandemic influenza. Key validation challenges are discussed. 

2. WHY MULTI-AGENT MODELING 

Multi-agent models are increasingly described as the test-bed of choice 
for examining complex systems, particularly complex human social behavioral 
systems (Maxwell and Carley, 2009). The promise of these models is that 
they enable the researcher to focus on the activities of individuals and to 
derive social outcomes from the activities of and interactions among large 
numbers of heterogeneous agents. Such models, in comparison to laboratory 
or field experiments, are more ethical when dealing with life-threatening 
conditions, and typically are more cost-effective and time-effective for 
collecting data and reasoning about the impacts of policy (Carley, 2009). 

Also, from a policy evaluation perspective, one of the key issues is 
veridicality. The veridicality of the model drives its design, assessment and 
validation (Carley, 1996). In general, the higher the level of veridicality the 
greater the problem domain flexibility, and the less likely it will be to validate 
the model in its entirety, and the greater the need for some validation. 
Consequently, developers either build simple models that in theory could be 
validated in full but for which there is no reason to validate them; or highly 
veridical models that can be used to address a plethora of policy issues but 
which can never be completely validated. Another key tradeoff is that as the 
Model Social Agent becomes more sophisticated, the number of agents that 
can interact within the model and that data can be gathered on with the same 
computational resources decreases. Consequently, there are models that have 
highly sophisticated and accurate agent models with only a handful of such 
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agents or models with extremely simple agents represented by a handful of 
rules but millions of such agents. 

In this paper we present BioWar, which takes a middle of the road 
approach. The BioWar model is sufficiently veridical that it can only be 
validated in parts, but can be used to address a wide number of policy issues. 
In addition, the agents in BioWar are sufficiently detailed and accurate that 
they make many human-level mistakes resulting in populations of hundreds 
of thousands of agents, rather than millions that can be simulated in a 
reasonable amount of time and space. 

3. BIOWAR 

BioWar is a scalable city-wide simulation, capable of simultaneously simu-
lating the impact of background diseases, natural disease outbreaks and 
bioterrorism attacks on the population’s behavior at the level of the 
individual. The simulator incorporates social and institutional networks, 
weather and climate conditions, and the physical, economic, technological, 
communication, health, and governmental infrastructures which modulate 
disease outbreaks and individual behavior. Individual behaviors include 
health seeking, entertainment and work/school patterns. A wide variety of 
output reports are generated based on the user’s needs including absenteeism 
patterns, pharmaceutical purchases, doctor’s office insurance claims reports, 
and hospital/emergency room reports (Figure 16-1). 

Figure 16-1. BioWar system diagram. 
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3.1 Agents 

Agents are simulated individuals and are a fundamental unit of interest in 
BioWar. Agents are individually differentiated by demographics, location, 
medical condition and occupation. While agents move and interact within a 
metropolitan area, they in turn form the environment within which diseases 
are nurtured and spread. 

BioWar was constituted to support simulations for a metropolitan area at 
a 1:1 ratio, so agents are structured to be fairly lightweight in terms of 
computational resources and memory requirements. This allows simulation 
of populations in excess of 1,000,000 agents employing what are currently 
considered moderately sized workstations. 

3.1.1 Agent Characteristics 

Simulated agents consist of a data structure and a set of algorithms to 
determine agent behavior. Agent characteristics such as age, sex and marital 
status are initialized to conform to the census demographics reported for the 
target metropolitan area. Agents also have a set of agent-to-agent connections 
(the social network) that defines strong social links between agents that is 
initialized based on social network research and a knowledge vector that 
helps define affinity between agents who come in contact. 

An agent contains individual information about: 

 Demographics: age, gender, race, occupation. 
 Customary locations: home, work or school. 
 Current location. 
 Current and past diseases: disease type, state, symptoms. 
 Social network: family, friends, coworkers, other strong ties. 
 

Agents are generated prior to simulation using demographic data for 
specific U.S. cities (primarily drawn from population and economic census 
information) along with templates on how agents should be located and 
grouped: 

 Residency by location (aggregations of census tracts). 
 School district geography. 
 Social network partner types, interaction rates and network sizes. 
 Family size and composition. 

Because agents are generated separately from the simulation proper, the 
same population may be reused as an initial starting point for multiple 
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simulations if desired. Equally, a fresh population can always be drawn up if 
desired. Populations can be scaled at any ratio between 0 and 100% of the 
base population data. 

3.1.2 Agent Behavior 

Agent activities include location-based movement and interaction with 
other agents with a corresponding possibility of infection. When agents visit 
locations as customers or are absent from their jobs and schools, they 
generate indicator data such as medical diagnoses, purchases of over-the-
counter drugs, visits to medical information web sites and absentee reports 
as well as additional reports based on perfect knowledge (for example, the 
simulator knows with perfect certainty an agent’s health status, while an 
agent generates indicators based on perceivable symptoms in “deciding” if 
they should visit a pharmacy and what to buy while there). 

Agent characteristics are used as inputs to a population-specific set of 
algorithms, algorithms which influence their behavior in key areas, particularly 
healthcare seeking: 

 Probability of absence. 
 Recreational preferences. 
 Rates of preexisting medical conditions. 
 Likelihood of seeking medical assistance, by type of treatment. 
 Workday duration, workweek and holiday schedules. 

These algorithms were intended to emulate a modern technical society 
and in particular the USA in the early twenty-first century. These values 
may reside in parameter files, affording modification or localization, or 
within the program source. 

3.1.3 Daily Agent Cycle 

BioWar advances on a tick by tick basis. Ticks are resolved separately, 
but the simulator takes the time of day, day of week and holiday schedule 
into account when determining agent activities for each tick. The basic daily 
cycle for agents starts at midnight with two ticks spent at home and resting, 
two ticks at work or school (if the agent is of the correct age) and two ticks 
spent at home but active. Agents may break the basic cycle by being absent 
from home, work or school due to their health, because they choose an 
alternative activity (broadly referred to as recreation) or for unspecified 
other reasons (a residual value based on historical absentee counts). On 
weekends and holidays, agents do not go to work or school. This normal 
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cycle may be interrupted by deliberately inserted interventions or attacks 
which are triggered by time or events in the simulation. 

Agents are always placed in a geographical location appropriate for their 
selected activity. BioWar supports both workers and “customers” at all 
locations (customers are consumers of the location’s service – students are a 
school’s customer in this sense). BioWar creates locations for the simulation 
based on actual economic census data as to type and number and distributes 
them geographically within the metropolitan area using location database 
information where available and randomly if not. Locations are nodes of 
agent activity, typically structures (such as schools, businesses or homes) or 
places of public gathering (such as parks). While agents consider distance as 
a factor in selecting the next location to go to, movement between locations 
is highly abstract; agents do not spend time in transit but are placed at the 
appropriate location at the start of each tick. 

3.1.4 Agent Interaction 

While an individual agent’s actions are largely determined independently 
of the other agents, agents potentially interact with each other on every tick. 
BioWar uses two methods to select candidate agents for interaction: social 
network-based and random. Once an agent is added to the interaction list, 
the interaction is resolved in a uniform way. 

The social network represents strong ties between individuals, including 
family, friends, coworkers and classmates, using the University of Chicago 
General Social Services (GSS) survey data with the addition of “schoolmate” 
for younger agents, a population not covered by the GSS (2009). Because 
the research data on social networks emphasizes relatively strong ties, the 
BioWar social network size range is relatively small in relation to the total 
number of agents in the simulation. BioWar simulates a single metropolitan 
area at a time, so an agent’s social network partners are artificially constrained 
to the agent population in the simulation. 

Selection of potential partners from the social network is affected by the 
agent’s current location. For instance, an agent at their workplace selects 
from agents in their social network who currently share that location, which 
increases interaction with coworkers during business hours. 

In addition to the social network, random interactions are used to simulate 
casual or chance contacts (for example, with a fellow bus passenger). During 
each tick, BioWar selects agents from the full agent pool to add to an agent’s 
interaction list. BioWar’s random selection algorithm biases the selection 
towards agents who are physically close to the target agent. 

The combined list of candidate interaction partners is then resolved. The 
probability of actual interaction is adjusted by the degree of similarity between 
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agents, as represented by their knowledge vector. If the interaction occurs, 
agents can exchange knowledge and infectious diseases. After infection, the 
disease progresses in the infected agent according to the disease model. 

3.2 Diseases 

The current version of BioWar includes a default set of 66 diseases. 
Users may add additional diseases and customize existing diseases. Diseases 
include naturally occurring types as well as variants which are weaponized 
for biological attacks or which have been eliminated due to public health 
initiatives. 

3.2.1 Disease Model 

BioWar employs a symptom-based general disease model. Each disease 
has its own set of symptoms, timing of disease phases, variability in presen-
tation based on age, gender, and race, and contagiousness. Each symptom 
has its own severity and progression timing. Furthermore, symptoms are 
assigned an “evoking strength” so that diagnoses based on symptoms will 
not only reflect accepted medical protocols but will also mimic the errors 
inherent in these protocols. 

Each instance of a disease infecting an agent is individually represented 
and progresses through time as the agent goes about his or her daily routines. 
Diseases can propagate through a population, a process which is probabi-
listically determined by agent risk factors, the transmissibility of the disease, 
and the spatial and temporal proximity of uninfected agents to infected 
agents. 

In human populations, certain demographic groups are more likely to be 
susceptible to particular diseases than others. These risk factors increase a 
person’s susceptibility to diseases through either host factors or environmental 
factors to which that person is exposed. For example, individuals who have 
contact with animals (sheep shearers, for example) are more likely to 
contract cutaneous anthrax than other occupations. In BioWar, risk factors 
are distributed a priori to individuals in the population according to 
demographic characteristics based on age, sex, race, and disease prevalence. 

In constructing our disease model, we used historical accounts of known 
anthrax releases (Inglesby et al., 1999), documents from the October, 2001 
bioterrorism attack (Perkins et al., 2002), and disease knowledge bases 
(USAMRIID, 2001; West, 2001; Isada et al., 2003). We have also drawn on 
the experience of other medical expert systems developed to assist in diagnosis 
to ground our disease model in well-founded medical knowledge represen-
tations (Miller et al., 1982). 
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3.2.2 Disease Introduction 

The current disease model supports three different means of introducing 
diseases into the simulation: attacks, outbreaks and background introduction. 
Diseases are not rigidly restricted to use one introduction method, although 
the default individual disease definitions were generally established with 
either attack/outbreak or background introduction in mind. 

Attacks are under the user’s control – severity, disease type, duration, and 
attack locations can be controlled separately. No default attack is programmed. 
Attacks might be created to simulate a bioterrorism event, accidental release 
or arrival of a new disease into a city. BioWar models airborne transport of 
spore-based diseases as well as agent infection. 

Outbreak introduction allows diseases to be instantiated into a simulated 
population in a predetermined pattern, much like what might be expected 
over the normal course of a year. Diseases like influenza, which are seasonal 
and whose annual severity varies, are well suited for outbreak introduction. 
Although outbreak diseases can be controlled by the user, the default disease 
pattern would normally be acceptable except when special circumstances 
need to be considered. 

Unlike the first two groups, background instantiation is controlled at 
simulation time by prevalence statistics gathered from California Department 
of Health data repositories. Background diseases are considered to be chronic 
diseases, so agents are selected to have background diseases at the start of 
the simulation based upon these statistics. Furthermore, background disease 
cases normally persist for the duration of the simulation. 

3.2.3 Disease Progression 

Agents experiencing disease state transitions are modeled as nondeter-
ministic automata. As past medical history affects these transitions, this is a 
non-Markovian model. At any time within the duration of a state, a medical 
intervention can occur and the state can be changed. The state of the disease 
also affects the medical intervention. 

Each disease instance progresses through up to five phases: 

1. Incubation: the period of time before the agent begins presenting 
symptoms due to a bacterial or viral infection. 

2. Early symptomatic (prodromal): the period of time during which an 
infected agent may experience mild or nondescriptive symptoms. 
Many diseases omit this phase, or have no known or identifiable 
early symptomatic period. 
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symptoms. In many diseases, this phase may not be distinct from the 
early symptomatic phase. 

4. Communicable: the period of time during which an infected agent 
may infect other agents. This phase may overlap with the above 
phases. Noncontagious diseases do not have this phase. 

5. Recovery/death: a period of time during which an infection resolves 
or causes death. 

In the current version of BioWar, the length of each phase except 
recovery/death is generally determined uniformly randomly using a range 
provided by expert analysis. Recovery and death of an agent, when not 
affected by treatment, is determined by a Bernoulli process with p equal to 
the death rate of the disease among untreated victims (again, determined by 
expert analysis). The duration of dying and recovering is likewise stochasti-
cally determined. 

3.2.4 Medical Diagnosis and Treatment 

BioWar employs a symptom-driven diagnosis and treatment model. 
Symptoms are important in BioWar on two levels. They motivate agent 
behavior and determine the initial diagnosis of agents entering the medical 
system. Agents with symptoms self-diagnose, stay home from work, visit 
their doctor or pharmacist, and change their patterns of interacting with others, 
depending on the severity of symptoms. This symptom-based disease model 
permits the representation of outliers and stochastic flux (not everyone with 
the same disease presents the same symptoms). The symptoms are assigned 
two different measures that influence which symptoms agents get and how 
that changes their behavior (Miller et al., 1982). 

The first, frequency, is a qualitative measure of how frequently people 
with a particular disease will manifest a particular symptom. Frequency is 
denoted by a number between 1 and 5 that answers the question: “In patients 
with disease x, how often does one see symptom y?” For example, patients 
with the diagnosis of anthrax will have a fever frequency of 5 – nearly all 
patients with anthrax will have fevers at some point in the course of their 
disease. Second, the evoking strength is a qualitative measure of how 
frequently a doctor will associate a particular symptom with a particular 
disease. 

Evoking strength is coded as a number between 0 and 5. It answers the 
question: “When you see symptom y, how often would a doctor think the 
cause is disease x?” For example, fever symptoms are not specific to any 
one disease – in our disease profile of anthrax, fever is given an evoking 

3. Late symptomatic (manifestation): the period of time during which 
an infected agent may experience severe and/or disease-specific 
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anthrax should be considered thus the evoking strength for this is 5. Evoking 
strength is similar to specificity. Symptoms are present during both 
symptomatic phases with time-varying severity. Our current implementation 
of time-varying severity is a simple additive increase over time since a 
symptom was introduced. 

Agents self-diagnose on the basis of visible or palpable symptoms. 
Medical personnel diagnose on the basis of visible symptoms and other 
information, which can include laboratory tests of varying accuracy (type 1 
and 2 errors are possible) and report time. Due to the covert nature of 
weaponized biological attacks, doctors and ER personnel may or may not be 
anticipating the appearance of a particular bioagent, resulting in some degree 
of misdiagnosis. Moreover, doctors and ER personnel take time to file a 
report, delaying institutional realization of a bioattack. 

BioWar employs a symptom-based differential diagnosis model to obtain 
information on the diseases infecting an agent who visits a medical facility. 
Our goal was not to build an error-free diagnosis model. Rather, we use 
differential diagnosis, as do medical doctors, which allows the possibility of 
initial misdiagnosis and the revision of diagnoses with additional infor-
mation (e.g., lab results). We have based the model on the Internist1/QMR 
diagnosis model, but have augmented the results with probabilistic “switches” 
to help control aspects of the returned diagnosis (including rate of correct 
and incorrect diagnoses, and distribution of primary and secondary diagnoses 
by ICD-9 code). As such, our model is not a true computational diagnostic 
tool, but serves to control the simulator’s response to diseases in a simulated 
population. 

Initial medical diagnosis is simulated based on the apparent symptoms 
and their evoking strengths. To determine which disease a person has, the 
groups of evoking strengths of symptoms associated with potential diseases 
are compared and the highest one is chosen as the diagnosed disease. In 
other words, the disease most strongly associated with the most severe set of 
symptoms is chosen. This produces a certain amount of inaccuracy, mimicking 
the real world. The diagnosis determines whether a person is treated properly 
or not and whether advanced tests are ordered. Subsequent diagnosis can 
update the primary diagnosis based on the appearance of new symptoms and 
on the results of diagnostic testing. Chief complaints are not necessarily the 
same as discharge diagnosis, which is consistent with observed hospital per-
formance (Begier et al., 2003). Treatment may not be immediately effective 
and symptoms vary in visibility and type of testing required for their detection. 
In the current version of BioWar, treatment is modeled as a simple time-
delayed probability of a success. 
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strength of 1. However, widened mediastinum is a more specific manifestation 
of anthrax – in patients who have a widened mediastinum, the diagnosis of 
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3.3 Cities 

BioWar creates a scaled representation of a real metropolitan area by 
using census, geographic and climatic data for a given geographic area, the 
“input deck.” Data from the input deck is used to instantiate a specific city 
instance for use in a simulation. For example, a cross tabulation of population 
by sex, race and age for a given geographic area, when instantiated, becomes 
a list of individual agents who, in aggregate, reflect the composite statistics 
used to create them. 

In addition to agents, BioWar also creates a set of functionally differen-
tiated locations where agents live, work, study, shop and relax. Each location 
is placed within the geographical outline of the metropolitan area, avoiding 
water features. The number and type of locations conform to census economic 
data. Agents are associated with a specific home and age appropriate school 
and work locations. They will also visit other locations based on medical 
need or for other activities such as recreation. With the exception of homes, 
locations function as workplaces and may be open to “customers” who visit 
the location for services (e.g., a school’s customers are students). 

In all BioWar cities created to date, the basic unit used to create a BioWar 
input deck is the US Office of Management and Budget Metropolitan Area 
(MA): 

Metropolitan and micropolitan statistical areas (metro and micro areas) 
are geographic entities defined by the US Office of Management and Budget 
(OMB) for use by Federal statistical agencies in collecting, tabulating, and 
publishing Federal statistics. A metro area contains a core urban area of 
50,000 or more population, and a micro area contains an urban core of at 
least 10,000 (but less than 50,000) population. Each metro or micro area 
consists of one or more counties and includes the counties containing the 
core urban area, as well as any adjacent counties that have a high degree of 
social and economic integration (as measured by commuting to work) with 
the urban core. (U.S. Census Bureau, 2008) 

Two types of metropolitan areas are used for BioWar (U.S. Census 
Bureau, 1994): 

 Metropolitan Statistical Areas (MSA) – A stand-alone metropolitan 
area. 

 Primary Metropolitan Statistical Area (PMSA) – A predefined subunit 
of a metropolitan area with a population of one million or more (the 
parent metropolitan area is termed a “Consolidated Metropolitan 
Statistical Area” (CMSA)). 

In many simulation runs, subsets of the MSA or PMSA are used. In this 
case, specific counties (or county equivalents) that are the building blocks 
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for the metropolitan area are selected from within the defined metropolitan 
area and only data from those counties is used to build the input deck. In all 
cases, the simulation area consists of contiguous land areas and any 
intervening water features (rivers, lakes or bays). 

3.4 Additional Features 

3.4.1 Climate and Weather 

BioWar includes climate and wind models which generate weather profiles 
typical for each of the simulated regions, including seasonal variation. These 
profiles are varied for each instantiation of the simulation but the averaged 
measures match historic records. 

Weather, particularly precipitation, occasionally affects normal agent 
behavior through events such as school closure due to snow, but the primary 
purpose and utility of the climate inputs is in modeling transport of wind 
borne attack agents. For this purpose, the simulation provides several wind 
transport models which can be selected as part of the attack specification. 

3.4.2 Chemical Attacks 

In addition to biological agents, BioWar supports attacks using chemicals. 
As with biological attacks, BioWar includes default chemical definitions 
which the user may modify, or the user may add additional definitions. The 
effect of chemicals on agents is similar to diseases in the sense that the agent 
expresses the effect of chemical exposure through symptoms which medical 
personnel use to diagnose and treat the afflicted. 

3.4.3 Interventions 

Running in default mode, BioWar is well suited for examining how well 
disease progresses in a population and evaluating methods for monitoring 
public health and disease detection. In cases where the analyst wishes to 
dynamically alter simulation behavior during execution, BioWar provides 
interventions. From a user perspective, interventions are a specialized scripting 
language which changes elements of the default simulation behavior for a 
specified (but adjustable) duration of the simulation run. For instance, an 
intervention can force agents to shelter in place in response to a chemical 
attack. 

Interventions include a triggering event, such as the occurrence of a 
disease, a disease diagnosis or simply a fixed time, followed by a specification 
of the simulation element(s) affected by the intervention (typically a subset 
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of the agent population) and then the behavioral effect. The analyst has 
considerable flexibility in adjusting the parameters of any intervention 
although the suite of available intervention types is limited to the modifiable 
behaviors built into the simulation. In more complex studies, fresh interven-
tions are often introduced to the simulation to support specific research 
needs. 

While interventions can be completely scripted prior to simulation start 
for autonomous execution, they can also be created and inserted by the analyst 
during the simulation run. Using a simple command line interface, the analyst 
can pause the simulation to insert interventions, or an intervention can be 
created which automatically pauses the simulation on a triggering event, 
waiting until the analyst crafts any desired additional intervention(s) and 
chooses to continue the simulation. 

3.4.4 Scalability and Configurability 

In common with most large simulations, BioWar employs a large number 
of constants and parameters that affect program execution. Wherever possible, 
these values are made available to the user rather than hidden in the code. 
Based on the expected utility, two levels of access are provided: 

 Configuration values – read from commented configuration files in 
the input directory. These contain the constant values most typically 
adjusted by the user, input file names and desired output reports. 
While all values have default settings, some are considered as place 
holders that the user is expected to adjust. 

 Environment values and Definition files – these values are again read 
from files but are values which users seldom wish to change, for 
which the standard default values are considered sensible or which 
are complex to adjust. The file format and location are less accessible 
to the user but are available without program modification. 

Commonly adjusted parameters include: 
 Simulation scale: size of simulation relative to actual city, typically 

from 10 to 100% of actual. 
 Simulation duration: duration of simulation execution, typical values 

range from 3 months to 2 years. 
 Output: data recorded by BioWar during execution is output in the 

form of reports. Since the overhead in report output can be substantial, 
the user can limit output to include only the relevant reports. 

A few inputs have no default settings: 
 Attacks: injection of abnormal events is purely at the option of the user. 
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 Interventions: again, dynamic modification of simulation behavior is 
considered to be a user task. 

The simulation will, however, run without problems if no attacks or 
interventions are provided. 

4. ILLUSTRATIVE RESULTS 

BioWar can be used as a standalone tool or as a utility to generate data 
streams for processing by other tools. For example, BioWar has been used 
as a data generator for blind testing and evaluation of syndromic surveillance 
algorithms by creating sets of hospital and clinic records, some of which 
contain bioterrorism incidents and some which do not. 

As an illustration of its capabilities as a standalone tool, BioWar was 
used to evaluate two response strategies for an outbreak of avian influenza 
in a U.S. city (see also Lee et al., 2008). The simulation used a 1:1 
representation of Norfolk, VA, as a test location. The city was instantiated 
based on year 2000 census data, with a total of 1,530,908 agents. BioWar 
then simulated the population for a year. Early in the simulation, 100 cases 
of a virulent strain of avian influenza were introduced in randomly selected 
agents. The disease strain is communicable from agent to agent but an agent 
can only contract the disease once. 

Once the disease was established, the simulation was varied by introduc-
ing possible response strategies into the simulation. The three conditions 
tested were: 

 Do nothing; run simulation to completion normally. 
 Close all schools for 60 days when 50 active disease cases occur. 
 Make agents quarantine themselves by staying home for 60 days 

when 50 active disease cases occur. 

In each scenario, agents continue to interact with each other and can 
contract the diseases normally (i.e., measures such as wearing respirators or 
limiting interpersonal contacts were not simulated nor was vaccination 
attempted). When schools are closed, students will not attend school, but 
continue to move between other simulated locations. In the quarantine case, 
agent mobility is curtailed. 

Each response case was executed ten times. In the do nothing cases, 
agent mortality is high and the majority of agents contract the disease. 
Closing schools had little to no effect on mortality or the number of days 
agents are sick. Strict quarantine measures do reduce agent mortality drama-
tically (Figure 16-2). 
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Figure 16-2. Average number of avian influenza deaths for each tested response strategy. 

These runs suggest the importance of limiting the variety rather than the 

smaller units for the duration of the quarantine response. Of course, promptly 
imposing such a long, strict quarantine is not entirely realistic, but the results 
immediately suggest a number of questions for further exploration: 

 What is the minimum duration of strict quarantine required to cut 
mortality? 

 How does quarantine compare with prompt isolation of patients? 
 Would simply reducing the number of normal agent-to-agent 

contacts or lowering the probability of disease transmission have a 
similar effect? 

 How quickly does the quarantine response need to be imposed and is 
there a point after which this response is no longer a viable option? 

5. VALIDATION ISSUES 

In general, the level and type of validation should depend on why the 

context, validation of key variables and some calibration is appropriate for 
highly veridical models like BioWar. A typical approach to validation is input 
validation where a model is developed based on some theory, instantiated 
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model was built and how the results are to be used (Burton, 1995b). In a policy 

number of agent connections. In effect, the city divides itself into a series of 



with data from a real situation, and then used to generate a series of results 
about variable “y.” These results are typically never checked against real-
world data given the paucity of data and the low frequency of events; but are 
used to set policy directions. This approach has been taken with BioWar. In 
addition, in previous work, we were able to show that BioWar could generate 

anthrax, and general influenza events (Chen et al., 2006). 
In general, validation, as practiced for engineering models, may be 

inappropriate at worst and impossible at best for highly veridical models like 
BioWar (given the model complexity, large number of variables and infeasi-
bility of constructing a complete response surface). The data needed to 
completely validate such models does not exist. Rather, to do any type of 
validation we have had to collect disparate data from a wide variety of 
sources, from disparate time periods, populations, and under different environ-
mental conditions, fuse the data together, and then use it collectively to 
validate aspects of the model. We note that the time and resources spent on 
BioWar validation has exceeded that used to build the model, run the virtual 
experiments, and analyze the results. It is also important to recognize that 
validation to a single historic event tends to lead to model over-fitting. To 
avoid this, we have used three historic scenarios: anthrax cases, smallpox 
cases and influenza. Finally, we have used a nontraditional validation practice 

strated that BioWar can generate results quantitatively and qualitatively 
similar to those produced by standard SIR models. 

6. CONCLUSION 

There are several key limitations to the approach described here. First 
the model is very U.S. centric. As such, to use it in a foreign context would 
require segregating and rebuilding the U.S.-centered features such as doctors’ 
offices being closed on weekends and evenings and use of the emergency 
rooms at hospitals in those cases. A second limitation is that second order 
infections acquired while in a hospital are not modeled. Whether this is a 
significant impact on the results is not known. Third, the construction of 
cities is a data intensive and time consuming process. While it is relatively 
straightforward to build the population from census data and impute the 
social networks among agents, the process of building the physical landscape 
to match an actual city is complex. In particular, data on schools, location of 
public gathering spots and so on are often not readily available in machine 
readable form. Approximations can be used; but that means that variations 
due to the exact physical geography cannot be accounted for. 
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It should be noted that a key feature of this approach is the city modeling. 
The ability to construct cities from census-level data exists independent of 
BioWar. As such, artificial cities can be developed and used in contexts 
other than disease propagation. 

BioWar can be used to examine a wide number of interventions and 
estimate the relative impact of those interventions in mitigating the population’s 
response to infectious disease. Behavior in terms of infection, death and 
recovery can be explored. Since diseases are modeled at the symptom level, 
new diseases and those that are only hypothetical can be rapidly modeled 
and the repercussions of their dispersion explored. In general, this approach 
holds great promise for policy analysis. 
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1. Compare statistical forecasting and multi-agent simulation from basic 
theory. What type of data is needed for statistically reasoning about 
events like pandemics? Given the paucity of such data, how can the little 
data that is available be effectively utilized to improve simulation 
models? 

2. Engineering simulations are often not stochastic and so can be empirically 
validated against device data. In contrast socio-cultural simulations are 
stochastic and generate a distribution of possibilities. Hence validation 
against a historical event can lead to over-fitting. What are the dangers of 
over-fitting? 

3. What are key interventions? How would you model them? What data 
could be gathered to make sure that the representation of the inter-
ventions is accurate? 
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Keeling, M.J. and Rohani, P. (2007). Modeling Infectious Diseases in Humans and Animals, 
Princeton University Press: Princeton, NJ. 

Provides a comprehensive introduction to infectious disease modeling and has an associated 
web site. R and C++ models. 

Epstein, J.M. and Axtell, R. (1996). Growing Artificial Societies: Social Science From the 
Bottom Up. MIT Press/Brookings Institution: Cambridge, MA. 

Early multi-agent simulation system showing the power of bottom-up reasoning even when 
using highly simplistic models. 

http://www.econ.iastate.edu/tesfatsi/abmread.htm 
Provides a good general introduction to multi-agent simulations. 

ONLINE RESOURCES 

Simulations of disease need to make use of existing disease descriptions 
and ontologies. These tend to be maintained by the military, the CDC and 
various professional societies: 

http://www.cdc.gov/datastatistics/ 
http://diseaseontology.sourceforge.net/ 

http://www.pandemicsimulation.com/Members/admin/ontologies-for-pandemic-
simulations 
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agent sites: 

http://www.econ.iastate.edu/tesfatsi/ace.htm 
http://www.casos.cs.cmu.edu/ 

Illustrative bio and health models 

http://www.casos.cs.cmu.edu/projects/biowar/ 

 

https://www.vbi.vt.edu/public_relations/press_releases/chicago_pandemic_ 
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CHAPTER OVERVIEW 

This chapter describes the evolution, design and operation of an integrated 
health alerting and notification system. Although modern information and 
communication technologies have evolved rapidly in the last decade and sig-
nificantly improved the technical foundation for health alerting and notification, 
published literature to communicate lessons learned, best practices, system 
design, development and operation from real-world experiences is still limited. 
In this chapter, we outline the functional and technical requirements as well 
as architecture and components of the New York State (NYS) Integrated 
Health Alerting and Notification System (IHANS), address issues that affect 
the effectiveness and timeliness of health alerting, discuss the concept of 
unified messaging and the current standard alert message distribution frame-
work, and present case studies of health alerting in emergency events and 
exercises. Experience from development and operation of this system has 
shown the important role of an integrated health alert system in public health 
arising from both changes in information and telecommunication technologies 
and new demands on the public health and healthcare systems. 
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1. INTRODUCTION 

Since 2001, health alerting and notification have become a critical com-
ponent of public health information systems in general and especially in 
infectious disease prevention, detection, and management (ASTHO, 2005). 
This chapter is concerned with the design principles, technical foundation, 
messaging and data standards, and existing and future communication tech-
nologies for health alerting and notification. We will describe the architecture 
and operational experience of the New York State Department of Health 
(NYSDOH) as it developed an integrated health alerting and notification 
system (IHANS). We will also discuss lessons learned from our experience 
using the system for alerting and notification in health emergency events and 
exercises. 

After studying this chapter, readers should understand the importance of 
an IHANS in all-hazard emergency preparedness and response. They should 
be able to describe the main design objectives of an IHANS and its functional 
and technical requirements. Furthermore, we hope readers will gain an 
understanding of the architecture and components of an IHANS and how 
they can be used to integrate communication technologies with the important 
functions of unified messaging, controlling access, and providing users with 
applications and data. To this end we provide, in Sect. 3.1, detailed discussions 
of system architecture, the unified messaging concept, communication 
directories, and messaging standards. These technical sections conclude with 
a review of the various communication methods needed to ensure delivery 
and receipt of health alerts in a timely manner; incorporating several com-
munication technologies (phone calls, e-mails, faxes, etc.) into an alerting 
system helps to overcome the limitations of each individual method. No less 
important, as described in Sect. 3.2, is the framework for a wide range of 
emergency data exchange standards to support operations, logistics, planning, 
and finance that has arisen to ensure data sharing among various systems 
and jurisdictions. 

Following these sections on system design, we conclude this chapter 
with a review of New York State’s experiences both in developing and 
utilizing an IHANS (Sect. 4) and a discussion of lessons learned over the 
years of its operation (Sects. 5 and 6). 

382 



17. Integrated Health Alerting and Notification 
 

2. AN INFRASTRUCTURE FOR HEALTH ALERT 
AND NOTIFICATION SYSTEMS 

The West Nile virus outbreak of 1999 and anthrax attacks of 2001 
emphasized the importance of the nation’s ability to prepare for and respond 
to bioterrorism and public health emergencies (Koblentz, 2003). 

State and local health departments play an important role in public health 
emergency preparedness and response (CDC, 2007a). However, most state 
and local public health agencies lack the capacity to respond effectively to 
threats from emerging infectious diseases and bioterrorism (Salinsky, 2002). 
The Centers for Disease Control and Prevention (CDC) and the National 
Association of County and City Health Officials (NACCHO) conducted a 
joint e-mail test in 1999 to determine how quickly they could contact local 
health departments in the event of a health alert or bioterrorist emergency, 
and only 35% of these messages were delivered successfully. Another survey 
by the CDC in 1999 determined that only 45% of local health departments 
had the capacity to send alerts by fax to laboratories, physicians, state health 
agencies, the CDC, and others; less than 50% had high-speed continuous 
access to the Internet; and 20% lacked e-mail capability (Baker, 2005). 

With support for the Health Alert Network program and other initiatives 
from the CDC, the NYSDOH has developed an enterprise information infra-
structure for secure data communication over the Internet. This system was 

To address these deficits in health emergency communication, in 1999 
the CDC began implementing the Health Alert Network (HAN) initiative to 
ensure that state and local health departments have rapid and timely access 
to emergent health information; a cadre of highly trained professional per-
sonnel; and evidence-based practices and procedures for effective public 
health preparedness, response, and service on a 24/7 basis (CDC, Health 
Alert Network). The HAN program significantly improved the communication 
infrastructure for response to bioterrorism and other health emergencies. 
Although the HAN was originally created as a national system, state and 
local HANs have become extremely important in responding to terrorism 
and urgent health threats (Baker and Porter, 2005). In 2003, 89% of local 
health agencies had developed continuous high-speed Internet access, more 
than twice the coverage (less than 40%) in 1998 (NACCHO, 2003). In 2007, 
all state public health departments could receive and evaluate reports of 
urgent health threats 24/7/365, whereas in 1999 only 12 could do so (CDC, 
2008b). In addition, health alerting and notification has been included as 
one of the bioterrorism and public health preparedness functions, and its 
implementation using identified standards has been described in the Public 
Health Information Network Functions and Specifications, version 1.2 (CDC, 
2002). 
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used successfully to deploy an integrated surveillance system for West Nile 
virus statewide within 3 months of the outbreak (Gotham et al., 2001). 
Utilizing this infrastructure, the NYSDOH developed an Integrated Health 
Alerting and Notification System (IHANS) for New York State. IHANS was 
designed to be fully compatible with the Public Health Information Network 
(PHIN) Requirements, version 2.0 (CDC, 2007b) and PHIN Preparedness 
Partner Communications and Alerting Functional Requirements, version 1.0 
(CDC, 2005) and to meet requirements of PHIN Preparedness Key Perform-
ance Measures, version 1.0 (CDC, 2008a). IHANS is also compatible with 
Common Alerting Protocol (CAP) standards, version 1.1 (OASIS, 2005a). 
IHANS provides rapid dissemination of health alerts and communications to 
public health personnel and partners using multiple channels, including phone, 
cell phone, pager, e-mail and fax, with selective distribution based on urgency 
and sensitivity of the message (Loonsk et al., 2005). 

3. REQUIREMENTS FOR A HEALTH ALERT  
AND NOTIFICATION SYSTEM 

3.1 System Architecture 

The purpose of an IHANS is to receive, process, manage and disseminate 
alerts, advisories, informational messages and other information for the 
public health agency and its partners, which may include but are not limited 
to local health departments (LHDs), healthcare providers and personnel in 
emergency preparedness and response. In addition to a unique problem that 
exists in the development of public health systems – that is, multiple local, 
state and federal jurisdictions need to operate in concert (Yasnoff et al., 
2001) – the increasing need for health alerting from not only different 
program areas within a public health agency but also external partners, such 
as LHDs, with various levels of requirements adds significant complexity to 
the design and development, beyond that faced by traditional information 
systems. Due to the simultaneous needs for rapid receipt and dissemination 
of health alerts and communications using multiple channels of distribution, 
the system design should be based on the concept of unified messaging. This 
is the integration of several different communications media, allowing users 
to retrieve and send voice, fax, and e-mail messages from a single interface, 
whether it is a land-line phone, wireless phone, PC, or Internet-enabled PC 

A critical success factor of a successful IHANS is an up-to-date directory 
of public health contact information for key officials with whom the agency 
must communicate, and from whom the agency must receive communications. 
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A public health directory is intended to be a central repository of accurate 
public health contact information used for general business communications 
needs or for sending critical alerts and notifications in emergency circum-
stances. This directory’s design should follow functional requirements and 
technical specifications in the PHIN Functions and Specifications, version 
1.2, in particular function 7: Directories of Public Health and Clinical 
Personnel (CDC, 2002), and PHIN Preparedness Partner Communications 
and Alerting Functional Requirements, version 1.0 (CDC, 2005) from the 
CDC. With the final goal being to create an integrated health alerting and 
notification process among various programs with different business needs, 
while allowing them to take advantage of the agency enterprise communi-
cations infrastructure, it is critical to have a feasible approach to integrating 
health alerting functionalities in heterogeneous applications. 

Extensible Markup Language (XML) is playing an increasingly important 
role in the exchange of a wide variety of data on the Web and elsewhere 
(World Wide Web Consortium, 1999); it is the ideal messaging protocol to 
create and deploy flexible alerting integration solutions based on message-
oriented middleware (MOM) architecture. Application integration may be 
achieved using asynchronous message queues, which draws on the features 
and strengths of using XML as the data representation standard (Mitch, 2006). 
In our implementation at the NYSDOH, this approach has been proven to be 
very effective because the ability to communicate via HTTP and parse XML 
documents is available at all major applications and the use of XML as a 
document-based messaging model allowed loosely coupled relationships among 
applications. Not only has it improved operational security, coordinated alert-
ing activities and simplified technical operations without requiring invasive 
modification and service interruption of existing programs, but it has also 
significantly reduced costs as each program does not have to develop its own 
alerting application. 

The NYSDOH IHANS architecture shown in Figure 17-1 describes the 
components that were used to integrate communication technologies into the 
alerting process with unified messaging, access, applications and data. 

The system architecture in Figure 17-1 consists of five main layers:

systems and enterprise infrastructure. These are shown horizontally and 
connected by two vertical elements: XML-based Messaging Framework and 
Intelligent Load Balancing and Failover. Building foundation for this system 
are dedicated programs and services that provide guidance and support. 

Within this architecture, via unified access by either Internet or phone to 
the system, communication systems link contact data from the communication 
directory with business logic for health alert and notification, taking advantage  

385

unified access, business logic, communication directory, communication 



Chapter 17

Figure 17-1. NYSDOH integrated health alert and notification system architecture. 
 
of the enterprise infrastructure, including the underlying telecommunication 
network. The architecture is open, using industry standards wherever possible 
that enables the system to be readily integrated into a mixed platform environ-
ment. The XML-based messaging framework provides an environment that 
allows other programs to create new alert-enabled public health information 
technology applications. The intelligent load balancing and failover element 
provides unified high availability and system redundancy across all layers. 
The design of this system is guided by the public health informatics element, 
especially creation of technical specifications, integration of various techno-
logies and development of data standards, policy and quality control solutions. 
The development, implementation and maintenance of this system are 
supported by application development and infrastructure support elements 
with talented application developers and dedicated 24/7 support services. 
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3.1.1 System Components 

One of the main functional requirements of health alerting and notification 
that was implemented in the NYSDOH IHANS is the ability to send  
information via specified message format that allows recipients to view the 
message via a secure, Web-based interface. It also has the ability for threaded 
communication using a secure discussion forum. Message notification is 
delivered immediately and simultaneously through multiple methods of 
communication including phone, fax, numeric pager and e-mail. The alert 
message is directed to appropriate recipients according to role assignment in 
the NYSDOH Communication Directory (ComDir), described below. This 
system allows the alert to be sent either interactively from the NYSDOH 
IHANS, which is a Web-based interface for generating manual alerts, or 
automatically from various applications, such as electronic laboratory reporting 
of test results to LHD officials in response to pre-defined rules and triggers. 

Various information technology and telecommunication methods under 
principles of public health informatics have been used in the development of 
this system to receive, process, manage and disseminate routine and emergency 
communications with public health partners and personnel (Figure 17-2). 

 

Figure 17-2. Data flow diagram for NYSDOH health alert and notification system. 
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3.1.2 Unified Messaging Concept 

Function 8: Public Health Information Dissemination and Alerting of the 
PHIN Functions and Specifications, version 1.2 (CDC, 2002) and PHIN Pre-
paredness Partner Communications and Alerting Functional Requirements, 
version 1.0 (CDC, 2005) require immediate distribution of messages through 
one or more mechanisms (phone, e-mail, fax or pager) and the ability to use 

provides a powerful and flexible solution to meet these requirements. 
Although modern communication technologies have overcome distance and 
time barriers so that people can communicate in real time or near-real time 
no matter where they are, other limitations must be overcome, such as the 

Engineering Consortium, 2005). The unified messaging concept addresses 
these limitations so that the system can communicate to anyone, anywhere, 
at anytime using different technologies. Unified messaging also allows an 
open and nonproprietary system architecture; although each component may 
not be from the same vendor, all can work together by industry standards.  

Figure 17-3. Unified messaging concept. 
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Within the NYSDOH IHANS, each communication component (phone, 
fax, e-mail, and secure Internet) was developed on a different platform, but 
they were all integrated successfully using unified messaging. The system 
has the capacity for singular delivery – that is, any message can be sent to a 
particular user – because it utilizes the following: a single alias; a single 
repository where all messages are stored for easy access/retrieval and inte-
gration, such as converting text to speech; a single point of access, where the 
user can find all messages through a central, intuitive Web interface; and 
multiple communication routes, allowing a message to be sent to the user via 
different methods (see Figure 17-3). 

3.1.3 NYSDOH Communication Directory 

Based on the concept and functional requirements of a public health 
directory, the NYSDOH’s Health Commerce System (HCS) ComDir is the 
central repository of each user organization’s critical role assignments. It is a 
self-maintained, person-based, up-to-date listing of business and emergency 
contact information that is used, via integration with IHANS, for broad-
casting notifications at various urgency levels using multiple modes of 
communication and device types. ComDir maintains three categories of 
roles: “Emergency” and “Business” office contacts designed to reach 
locations within an organization and “Person Contacts” designed to reach 
directly those individuals serving in specific roles or job functions in a given 
organization for whom the information in the notification would be most 
relevant (e.g., the Commissioners of Health at LHDs for an emergency 
operations alert or Infection Control Practitioners at hospitals for an alert 
about a potential disease outbreak). Role structure is flexible; there are 
currently over 700 roles customized specifically to the business of the nearly 
200 different types of HCS user organizations. The literature stresses the 
importance of gathering and maintaining necessary contact information 
during intervals of everyday operations between emergencies, so that the 
directory is complete, accurate, and accessible when needed (Auf der Heide, 
1989; National Science and Technology Council, 2000; CDC, 1999, 2000). 

The communication directory contains categorized contact information, 
roles, and communication devices for every organization; access to this 
information is controlled by rules associated with the requestor: as an 
individual user, or as the holder of a role in the organization, or as an 
electronic data system. ComDir provides the ability to query and search 
contact information by person name, role, organization, organization type, 
and jurisdiction. As required by the PHIN Preparedness Partner Communi-
cations and Alerting Functional Requirements, version 1.0, ComDir also 
enables users to prioritize the dialing/contact sequence of their emergency 
contact numbers for both business and after hours (CDC, 2005). 

389



Chapter 17

In addition, this directory is used to support the authorization of access to 
different data systems within the NYSDOH HCS. It is fully capable of 
supporting the directory exchange of data with partners using standardized 
data exchange formats (LDIF) and protocols to support partner communi-
cations such as Directory Services Markup Language (OASIS, 2002). 

3.1.4 Data Integration and Communication Using XML Messaging 

As the need for health alerting increases – not only in the NYSDOH but 
also in its public health partners, such as local health departments and other 
state agencies with different messages and target audiences – it is extremely 
important to have transparent, secure and guaranteed integration of data for 
alerting across multiple programs. For this purpose, an XML alert messaging 
protocol and an alert messaging component was developed to provide a 
single interfacing solution for public health information systems requiring a 
health alerting function (see Figure 17-4). 

Figure 17-4. Diagram of XML schema for alert messaging protocol. 
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It is important to realize that the role of this component is not to initiate a 
health alert but rather to provide a framework that combines data security, 
reliability, and interoperability of communication standards, such as 
standard vocabulary and consistent meanings. It allows NYSDOH programs, 
public health partners, and their technical staff to create consistent, robust 
and interoperable alerting ability with minimal modification and disruption 
of service. The system guarantees delivery of messages by queuing 
messages and can be configured to automatically resend messages; it also 
keeps all messages in persistent storage until the message is sent out. Another 
advanced feature of this system is advanced archiving; when a message is 
processed, it is automatically archived in a database for viewing and 
extraction at a later date. Scheduled alerting is also made possible in this 
system, which can send alerts out at specified dates and times. For example, 
a bed availability survey alert is sent out every Tuesday at 8:00 p.m. 

3.1.5 Communication Methods 

Emergency notification by phone is a variation of voice broadcasting, 
which is a recent mass communication technique that broadcasts phone 
messages to hundreds or thousands of call recipients at once. In a state-of-
the-art voice broadcasting system, the delivery of alert messages is not only 
timely but also confirmed: a “press through” feature allows the call recipient 

key to confirm receipt. If the system detects a no-answer condition or busy 
signal, the calling business rules direct the system to retry the call up to three 
times, sequentially integrating attempts to other phone numbers prioritized 
in the person’s contact record; if it detects an answering machine, the 
recipient is instructed to view the complete content of the notification posted 
on the HCS Website; however, the built-in dialing logic calls for the full set 

confirms the receipt of the call or three attempts have been made to reach 
each contact number the user has in the directory. While our alerts are mainly 
initiated from a Web-based application, the interactive voice response (IVR) 
system also provides alternatives using several “canned” XML message 
formats. The alert messages can be either pre-recorded or live-recorded by 
the IVR, or they can be left, via a Text-To-Speech (TTS) tool, as computer-
generated synthesized speech with real voices. 

Another method of emergency communication is fax broadcasting using 
a network digital fax server. When a fax alert message is generated, it is sent 
to the Simple Mail Transfer Protocol (SMTP) gateway of the fax server in 
the form of an e-mail message with optional attachments, which will be 
converted into fax format and transmitted. Using digital T1 lines, the system 
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supports a high volume of fax traffic with a conservatively estimated 
capacity of 3,168 pages/h. Other features that significantly enhance the alert 
process include Error Correction Mode (ECM), which can correct errors in 
received images caused by phone line noise, guaranteeing that faxes will be 
sent and received correctly, as long as the sending or receiving machine also 
supports ECM; use of specific cover pages for different types of notifications; 
incorporation of a Fax Archive service with offline, long-term mode or 
continually active online mode; system backup and restore function for disaster 
recovery; and a variety of system-wide and individual notification reports. 

Electronic mail (abbreviated “e-mail” or, often, “email”) is a store and 
forward method of composing, sending, storing, and receiving messages over 
electronic communication systems. For emergency notification, our system 
uses SMTP for Internet-based e-mail to recipients outside the NYSDOH and 
Notes remote procedure call (NRPC), the Lotus Notes Domino network 
protocol for e-mail to recipients within the organization. Since e-mail messages 
are generally not encrypted and relatively easily intercepted and read, the 
e-mail notification contains only nonsensitive information with instructions 
for recipients to log on to the NYS Health Commerce System to read the full 
notification on the Web-based Notification Viewer. 

Because of the sensitive nature of emergency notification, the full-text 
messages are posted on a secure notification viewer on the NYS HCS. 
Although recipients are notified of the location of each newly posted 
message by phone, fax, and/or e-mail, access to the posted messages may be 
open to all HCS users or only to target audiences. Posted messages can be 
deleted by the system administrator and be sorted by either date posted, 
audience type, or keyword. 

3.2 Standard Alert Message Distribution Framework 
for Data Sharing Among Emergency Information 
Systems 

As the need has grown for information sharing and data exchange across 
the local, state, tribal, national and nongovernmental organizations that pro-
vide emergency response and disaster management services, it has become 
clear that scientifically-based technical standards – including common 
communication and data standards – are critical to the nation’s ability to 
prepare for, prevent, respond to, and recover from emergency incidents 
(DHS, 2004). Following closely the development of a growing suite of 
specific message standards developed by federal agencies and standard 
governance organizations, the NYSDOH has designed a “system to system” 
data communication interface using public standards, including the Common 
Alerting Protocol (CAP) data interchange standard (OASIS, 2005a) and the 
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Emergency Data Exchange Language (EDXL), a broad initiative to create an 
integrated framework for a wide range of emergency data exchange standards 
to support operations, logistics, planning and finance (OASIS, 2005b). For 
emergency notification, our system can utilize CAP both as a stand-alone 
messaging protocol and as a payload for EDXL messages. 

4. CASE STUDY 

The NYSDOH IHANS has been used extensively since its inception. 
Every user of the system is able to receive alerts and lower-level notific-
ations by virtue of being assigned to a role targeted in that notification or by 
being included in a ComDir list of recipients for that alert. Additionally, 
there are currently 625 trained and certified users of the IHANS application 
who are authorized to send alerts and notifications to the HCS users 
applicable to their jurisdiction. A large number of notifications have been 
sent though the system that originated from not only the NYSDOH but many 
other sources, including the CDC, LHDs, New York City Department of Health 
and Mental Hygiene (NYCDOHMH) and NYS Department of Homeland 
Security (see Table 17-1). 

Since the launch of the system in 2002, the usage has increased signi-
ficantly every year, which shows a remarkable success of this system. It also 
demonstrates the ability of the system to handle a large volume of notifi-
cations, which we attribute to its sound design concepts, innovative system 
architecture and strong technical infrastructure (see Table 17-2). 

Table 17-1. Usage of the integrated health alert and notification system in New York. 

Notification Source Notification  
Type CDC LHD NYCDOH NYSDHS NYSDOH Other 

Total 

Advisory 107 18 17 44 

Informational 
message 

7 17 16 1 

Update 41 0 3 0 7 2 53 

CDC Centers for Disease Control and Prevention, LHD Local Health Department, NYCDOHMH New York 
City Department of Health and Mental Hygiene, NYSDHS New York State Department of Homeland 
Security 

Table 17-2. Number of notifications by year, as of 12/31/2006. 

2002a 2003 2004 2005 2006 
2 170 293 254 1,536 

a The system was operational on November 2002 
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198 19 403 
Alert 7 17 20 0 136 8 188 
Drill 9 436 11 4 405 227 1,092 

385 13 439 

Total 171 488 67 49 1,131 269 2,175 
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Figure 17-5 shows the usage of the NYSDOH IHANS by type of notifi-
cation and source of notification over time since the beginning of the system. 

The success of an emergency notification depends not only on the ability 
of the system to send or receive/forward messages rapidly, it also largely 
relies on the ability of the notification recipients to acknowledge and act on 
information in the message. Especially important for these functions is a 
distributed model of system use across jurisdictions, so the system can be 
tailored for the parameters of the jurisdiction currently sending a notification. 
Metadata, such as keyword, approver of the notification, document templates 
and source, can be customized to act also as a local notification system, 
enhancing the credibility of notifications sent at each jurisdictional level 
and the usefulness of the system across the multi-jurisdictional base of user 
organizations. Distributed use of the IHANS adds to its embeddedness in the 
overall public health community in NYS and increases user familiarity and 
ownership of the system, creating an environment for ongoing enhancement 
of its usefulness. 

 
Figure 17-5. Usage of New York State integrated health alert and notification system by type 
of notification, by month and year. 

 
A set of examples of system use illustrate this point. Key to measuring 

system success is the timeliness and completeness of message receipt by 
targeted recipients. Ensuring that the information gets through to the right 
people at the right time is essential in responding to disease conditions or 
other urgent public health business. 
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LHDs are key targeted recipients of IHANS communications sent by the 
NYSDOH or other LHDs. Beginning in January 2005, NYS began testing 
the use of its IHANS system with the CDC during its annual State Epi-X 
alert proficiency test drills. The purpose of these drills is to test the ability of 
Epi-X to transmit an alert regarding a disease situation to its registered user 
community. The NYSDOH agreed with CDC that the Epi-X alerts would be 
sent to a NYSDOH Public Health Preparedness warning point, and that the 
alert would be further cascaded to the appropriate NYS recipients via the 
NYSDOH IHANS system. In this way, upkeep of redundant sets of contact 
information by each agency is eliminated and notification protocols are 
harmonized to one system, rather than multiple, for the end user/recipient. 
The mode of cascading the alert from one agency to the other also allowed 
us to measure NYSDOH readiness to receive and act on an alert from another 
agency. Table 17-3 summarizes the series of annual drills conducted in January 
2005, January 2006, December 2006, and December 2007, respectively referred 
to hereafter as Year 1, Year 2, Year 3 and Year 4. 
Table 17-3. Local Health Department performance during annual CDC Epi-X alerting 
proficiency tests. 

Date/time Epi-X alert 
received 

1/14/05a;  1/26/06;  
9:15 a.m. 

12/01/06;  
8:46 a.m. 

12/27/07;  
10:58 a.m. 

Time elapsed: 
NYSDOH receives 
and cascades Epi-X 
alert to LHDs via 
IHANS (minutes) 

15 (11:33 a.m.) 14 (9:29 a.m.) 13 (8:59 a.m.) 10 (11:08 a.m.) 

Drill start time 
awareness A U U U 
Percent of LHDs 
responding (58 
including 
NYCDOHMH) 

58/58; 100% 58/58; 100.0% 54/58; 93% 57/58; 98% 

Mean response time 
(minutes) 

39.6  
No outlier 

W/o outlier: 7.3 
With outlier: 11.1 

W/o outlier: 9.5 
With outlier: 11.9 

W/o outlier: 9:38 
With outlier: 12.36 

Standard deviation 
(minutes) 

7 
No outlier 

W/o outlier: 9.7 
With outlier: 30.4 

W/o outlier: 5.61 
With outlier: 
17.96 

W/o outlier: 3.78 
With outlier: 22.58 

Modal response time 
(minutes) 39 2 8 7 

Min. response time 
(minutes) 2 2 3 7 

Max. response time 
(minutes) 

64 
No outlier 

W/o outlier: 65 
With outlier: 227 

W/o outlier: 29 
With outlier: 135 

W/o outlier: 30 
With outlier: 176 

W/o without, A announced, U unannounced 
a The January 2005 test was actually for the 2004 CDC Epi-X Proficiency Test cycle, which was delayed 
from December 2004. That delay pushed the 2005 next annual test to January 2006. To get the annual test 
cycle in sync, NYSDOH and CDC conducted a second 2006 drill in December of that year and now conducts 
their annual tests in December of the test year since that time. 
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Table 17-3 shows the analysis of samples of LHD drill response data 
from each of the four Epi-X drills. These results demonstrate a clear capacity 
for the IHANS alerting process on the part of LHDs and the NYSDOH as 
well as an ongoing improvement in that capacity and support for the cascade 

receipt of the Epi-X alert to sending the cascade notification to LHDs is 
acceptable by CDC standards (CDC, 2005), by the fourth year of drills that 
turnaround time was reduced by 33% to 10 min, and improvements were 
shown each subsequent year in between. 

The Year 1 drill had the slowest mean response time by the LHDs of the 
four drills: 39 min, as opposed to the shortest mean response time in Year 2, 
which was 7.3 min. This represents an 81% reduction of the mean response 
time for the same group. Data from the Year 3 and Year 4 drills indicate that 
this improvement was persistent over time, with each drill demonstrating an 
approximate 75% reduction in response time from that seen in Year 1. 

Additionally, examination of the data shows the Year 1 LHD sample as 
having the largest/slowest mean response time. After cleaning the data, 
(conservative removal of extreme outliers from Years 2–4 data sets with 
each outlier removed being >4 standard deviations from the mean), the Year 
1 data showed no outliers and a fairly normal distribution around the higher 
mean. Examining the data in the remaining three drills discloses the 
narrowing of the variability in each sample when the single extreme outlier 
is removed from the calculations in each data set. Therefore, the LHDs were 
reducing their mean response time in subsequent years. Their individual 
performances were becoming more consistent with each other and closer to a 
much smaller/faster group mean response time. LHDs are also adept as users 
of the IHANS to send notifications. Sixty-four percent of the 625 HCS users 
certified and trained in using the IHANS notification sending tool are HCS 
users located at LHDs. Specifically for the purpose of maintaining LHD and 
NYSDOH skill capacities in use of the alerting and notification process, 
NYSDOH has conducted its own drills of IHANS with the LHDs during 
every grant year. During the summer of 2007, NYSDOH introduced the 
cascading process to LHDs and simultaneously drilled both their capacity to 
receive alerts effectively and to further disseminate the alert message among 
their own local contacts using the IHANs system. An additional aspect of the 
process measured was that drills were conducted both during business and 
after hours, to ensure that the LHD after-hours readiness to respond is 
equally robust. Table 17-3 and Figure 17-6 demonstrate the LHD performance 
during these cascading drills. 

Overall, LHDs performed well on the cascading technique, though the 

 
mean turnaround time of approximately 60 min for both business hours and  
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Figure 17-6. 2007 LHD cascading alert drill results. 
 
after-hours drills, with inclusion of outliers (and approximately 48 min with 
removal of outliers) does show a need for improvement to comply more 
closely with CDC standards. At the time of writing, a second round of 
cascading drills with the LHDs is currently being developed for the summer 
of 2008, which will examine progress made toward improving the cascade 
capacity and achieving the goal of reducing that turnaround time to comply 
with CDC standards. 

The NYSDOH ComDir collects contact information for the nearly 70,000 
HCS users. Alerting and notifications using IHANS is being rapidly adopted 
throughout the agency for reliable communications regarding disease 
outbreaks, early warnings and distribution of guidelines and protocols with 
their colleagues at healthcare facilities. Hospitals are very active users of the 
HCS system and receive alerts and other notifications that are both manually- 
and system-driven through IHANS and the IVR. Recently, hospitals have 
been drilled specifically for readiness to act on a notification, including a 
surprise, after-hours alert. 

The first drill was conducted to alert 147 NYS hospitals – Hospital 
Resources and Services Administration (HRSA) grantees – at 9:00 a.m. and 
have them immediately respond (within 1 h) to report data to the NYSDOH 
in the HCS Health Emergency Response Data System (HERDS) regarding 
their capacities of available bed types. Overall, hospitals performed very 
well and showed a very good level of preparedness in both receiving and 
confirming the HERDS activation alert message and especially in the critical 
capability of responding to the alert message with the required action of 
entering their data into HERDS within the 1 h required time interval. 
Approximately 96% confirmed receiving the alert message within 3 h of the 
notification being sent. Approximately 89% of the hospitals met the exercise 
deliverable of entering data into the survey within 1 h of being notified to do 
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so. Ultimately, 99% of the hospitals provided their data to the HERDS 
system survey. Figure 17-7 illustrates hospital progress over the course of 
the drill in confirming receipt of the alert following its initiation. 

 
The second drill called for hospital action, again to HERDS, but was sent 

during the evening to night hours shift (initiated at 20:18). Figure 17-8 
illustrates the timeliness of the notification delivery and confirmation in 
responding to the alert, which was sent at the most urgent notification level 
by both phone and e-mail to ten different ComDir roles at 236 hospitals 
across the state. The total number of individuals contacted after de-duplication 
was 2,507. Of the individuals confirming receipt of the alert, 1,034 confirmed 
via e-mail and 2,030 individuals confirmed via phone, such as home phone 
and cell phone, given the late hour of the notification. Overall, approximately 
75% of hospitals confirmed receipt of the notification within the first 3 h 
following the notification. 

• 232/236 hospitals confirmed receiving the alert message. 
• 146/147 HRSA grantee hospitals confirmed receiving the alert message. 
• 155 hospitals logged onto HERDS as follow-up to the notification, as 

did the NYS Office of Homeland Security, LHDs and NYSDOH 
offices. 
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Figure 17-7. 2007 HAvBED drill facility response to alert. 
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Cumulative Count of Hospitals Confirming Alert Over Time
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 Figure 17-8. Hospital response to after-hours drill. 

5. DISCUSSION 

From our experience in the design and operation of New York State’s 
Integrated Health Alert and Notification System, each current electronic 
communication technology has its own limitations. 

Emergency notification by voice broadcasting relies heavily on answering 
machine detection technology and the logic to play a unique message to 
answering machines without message truncation; this technology has approxi-
mately a 10–15% failure rate. Operation of our voice broadcasting system is 
largely dependent on the traditional public switched telephone network (PSTN), 
which has matured and is typically reliable but still subject to outages, such 
as the Northeast Blackout in 2003 has showed (Beatty et al., 2006). 

Fax broadcasting has its own deficiencies, including dependency on the 
operational status of recipient fax machines, late or lost faxes at the recipient 
site, poor document quality and transmission quality. 

E-mail is a very old technology, which predated the inception of the 
Internet. Reliability is a serious issue as e-mail messages have to go through 
intermediate computers before reaching their destination, creating multiple 
possible points of failure. Another risk factor is unsolicited commercial  
e-mail (spamming) that can result in information overload for many computer 
systems. Security is another serious issue, as e-mail messages are generally 
unencrypted and SMTP has no ability for authentication of senders. 
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In our system design, the unified messaging concept allows the system to 
minimize the inherent limitation of current technologies and maximize the 
probability that the recipient will receive the notification by at least one 
communication pathway. Nevertheless, future development of similar systems 
should take advantage of new and emerging technologies to address these 
issues. For example, Secure/Multipurpose Internet Mail Extensions (S/MIME) 
can be used for end-to-end message encryption. 

New alternative communication technologies should also be considered 
to ensure continuity of alert operation in disaster situations and improve 
message delivery capacity; examples are satellite phones (mobile phones that 
communicate directly with orbiting communications satellites) and high-
frequency radio networks (which allow for both short- and long-distance 
voice and data communications). Distributing full content of notification 
messages can be made more active and timely by using Web feeds (a data 
format used for serving users frequently updated content). Threaded discussion 
for each notification would provide more interactive post-alert communication 
and collaboration opportunities for a broad audience, including notification 
recipients and senders. In an emergency situation, ability for secure instant 
messaging (IM), which is a form of real-time communication between two 
or more people based on typed text, will allow real-time, presence-enabled 
and easy collaboration among a group of users or direct communication 
between individual users. 

With the introduction of multiple electronic communication technologies 
into an integrated health alert and notification system, it is important that a 
message and data integration framework is developed to ensure the consis-
tency and accuracy of the message as well as target audiences. 

A uniform, all-technologies, all-hazards messaging standards with the 
essential features for both existing and emerging alert systems and techno-
logies is essential for interoperable health alert and notification among public 
health preparedness and emergency response communities. 

6. CONCLUSIONS 

In this chapter, we presented the system design, supporting technical 
concepts and informatics standards, and existing and future electronic 
communication technologies for an IHANS and its implementation at the 
NYSDOH. These ideas can be used to develop similar systems elsewhere. 
While it has been a consensus among public health agencies that development 
of stovepipe information systems cannot be continued, it has become more 
important than ever to integrate public health emergency preparedness 
functions, including health alerting and notification, as funding to states and 
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localities to maintain and improve their preparedness is declining (Trust for 
America’s Health, 2007). 

However, federal and state governments will continue to provide funding 
categorically because of the political and governmental process. Although it 
is well recognized that an integrated system design and implementation 
alone cannot provide an inclusive solution to the current silo systems, it 
offers an effective way to provide shared alerting and notification capability. 
At the same time, implementing an integrated health alert and notification 
system can be problematic. 

We were able to overcome several technical and programmatic challenges 
in the implementation at the NYSDOH with support from department 
executives, well-defined business rules, an effective development plan, state-
of-the-art technical infrastructure, highly talented staff, and active program 
involvement. It is understandable that many other public health agencies 
might not have the same capabilities; these should consider more conser-
vative approaches, including using a service provider for less critical or 
costly functionalities. 

innovative approach to the system design and development has markedly 
increased the ability of the NYSDOH and its public health partners to exchange 
and react to secure, rapid and reliable health alerts and notifications. These 
findings suggest that not only the utilization of new and emerging techno-
logies but also national messaging standards is needed to enable intero-
perable and effective emergency communication. 
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use of a system, both for everyday operations and emergency operations, is a 

and for the concept of “readiness to respond.” This dual use is key to the 
success of the IHANS system, and data described in Table 17-1 demonstrate 
that dual use of IHANS for a variety of notifications every day, from inform-
ational messages to highest level alerts. While readiness to respond can be 
enhanced by system refinements, it is only ongoing practice that makes a 
system second nature to its users, so that during an emergency situation 
actions can be taken without hesitation or delay. The drill results presented 

in the response capacity of our constituents. 
Implementation of this system over the years has demonstrated that the 

key component of a successful informatics model for integrating data systems 

here demonstrate that user experience over time has resulted in improvement 
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1. Why are health alert and notification systems important for all-hazard 
emergency preparedness and response? 

2. List and describe the main design objectives and functional and technical 
requirements of an integrated health alert and notification system. 

3. Describe the architecture and components of an integrated health alert 
and notification system and how they can be used to integrate com-
munication technologies into the health alert and notification process 
with unified messaging, access, applications and data. 

4. What is the unified messaging concept, and what is its importance in 
health alert and notification systems? 

5. What is a public health directory? Describe its importance in health alert 
and notification systems. 

6. Describe XML messaging and how it can be used for data integration 

7. Why did the NYSDOH decide to use XML messaging for data inte-
gration and communication for health alert and notification? 

8. What are the typical communication methods for health alert and 
notification? How can they be used together to overcome limitations of 
any individual method? 

9. What is the current standard alert message distribution framework for 
data sharing among emergency information systems? 

10. What are the recommendations for design and implementation of an 
integrated health alert and notification system? 

402 

and communication for health alert and notification. 

QUESTIONS FOR DISCUSSION 



17. Integrated Health Alerting and Notification 
 

REFERENCES 

Auf der Heide, E. (1989). Principles of preparation and coordination, The Center of Excellence in 
Disaster Management and Humanitarian Assistance; http://www.orgmail2.coe-dmha.org/ 
dr/flash.htm. 

Baker, E. L. (2005). The public health infrastructure and our nation’s health. Annual Review 
of Public Health 26:303–18. 

Baker, E. L., and Porter, J. P. (2005). The Health Alert Network: partnerships, politics, and 
preparedness, Journal of Public Health Management & Practice 11(6):574–576. 

Beatty, M., Phelps, S., Rohner, C., et al. (2006). Blackout of 2003: public health effects and 
emergency response. Public Health Reports 121: 36–44. 

CDC (1999). Health Alert Network cooperative agreement guidance document. 
CDC (2000). National electronic disease surveillance system cooperative agreement guidance 

document. 
CDC (2002). Public health information network functions and specifications, version 1.2; 

http://www.cdc.gov/phin/library/documents/pdf/PHIN_Functions_Specifications_12180
2.pdf. 

CDC (2005). Partner communications and alerting functional requirements, version 1.0; 
http://www.cdc.gov/phin/library/documents/pdf/PCA%20_RSv1.0.pdf. 

CDC (2007a). Public health emergency response guide for state, local, and tribal public health 
directors; http://www.bt.cdc.gov/planning/pdf/cdcresponseguide.pdf. 

CDC (2007b). Public health information network requirements, version 2.0; http://www.cdc. 
gov/phin/library/documents/pdf/111759_requirements.pdf. 

CDC (2008a). Key performance measures, version 1.0 (Apr. 12, 2008); http://www.cdc.gov/ 
phin/library/documents/pdf/KPM_RSv1.0.pdf. 

CDC (2008b). Public health preparedness: mobilizing state by state (Apr. 12, 2008); 
http://www.emergency.cdc.gov/publications/feb08phprep/pdf/feb08phprep.pdf. 

Gotham, I. J., et al. (2001). West Nile virus: a case study in how NY State health information 
infrastructure facilitates preparation and response to disease outbreaks. Journal of Public 
Health Management and Practice 7:75–86. 

Intel Corporation (2007). International 2- and 4-port voice processing boards (Mar. 21, 2007); 
http://www.intel.com/network/csp/products/3048web.htm. 

tutorials/unified_mess. 
Koblentz, G. (2003). Biological terrorism: understanding the threat and America’s response. 

In Countering Terrorism: Dimensions of Preparedness, eds. A. M. Howitt and R. L. 
Pangi. Cambridge: The MIT Press. 

Loonsk, J. W., McGarvey, S. R., Conn, L. A., et al. (2005). The public health information 
network (PHIN) preparedness initiative. Journal of the American Medical Informatics 
Association 13(1):1–4, M1815. 

Mitch, A. (2006). XML Problem-Design – Solution. New York: Wiley Publishing, Inc. 
NACCHO (2003). National association of county and city health officials, local public health 

agencies better equipped to handle bioterrorist attacks. Res. Brief No. 8 (Jan. 2003). 
Washington, DC. 

National Science and Technology Council (2000). Effective disaster warnings; http://www. 
sdr.gov/NDIS_rev_Oct27.pdf. 

403

CDC (1999). Health Alert Network; http://www2a.cdc.gov/han/index.asp. 

Jones, S. (2004). The Basics of Telecommunications. International Engineering Consortium. 
Unified messaging; http://www.iec.org/online/ 

http://www.orgmail2.coe-dmha.org
http://www.cdc.gov/phin/library/documents/pdf/PHIN_Functions_Specifications_12180
http://www.cdc.gov/phin/library/documents/pdf/PCA%20_RSv1.0.pdf
http://www.bt.cdc.gov/planning/pdf/cdcresponseguide.pdf
http://www.cdc
http://www.cdc.gov
http://www.emergency.cdc.gov/publications/feb08phprep/pdf/feb08phprep.pdf
http://www.intel.com/network/csp/products/3048web.htm
http://www
http://www2a.cdc.gov/han/index.asp
http://www.iec.org/online


Chapter 17

OASIS (2002). Organization for the advancement of structured information standards. 
Directory Services Markup Language (DSML) (Apr. 12, 2002); http://www.oasis-
open.org/committees/dsml/docs/DSMLv2.doc. 

OASIS (2005a). Organization for the advancement of structured information standards, 
common alerting protocol 1.1, OASIS Standard (Oct. 1, 2005); http://www.oasis-open.org/ 
committees/download.php/14759/emergency-CAPv1.1.pdf. 

OASIS (2005b). Organization for the advancement of structured information standards, 
EDXL-DE 1.0. OASIS Standard (Oct. 1, 2005); http://www.oasis-open.org/committees/ 
download.php/18772/EDXL-DE%201.0%20Standard.pdf. 

Salinsky E. (2002). Public Health Emergency Preparedness: Fundamentals of the System, 
National Health Policy Forum Background Paper. Washington, DC: George Washington 
University. 

Trust for America’s Health (2007). Ready or Not? Protecting the public’s health from  
disease, disasters, and bioterrorism; http://www.healthyamericans.org/reports/bioterror07/ 
BioTerrorReport2007.pdf. 

U.S. Department of Homeland Security (2004). National incident management system (Mar. 
1, 2004); http://www.fema.gov/pdf/emergency/nims/nims_doc_full.pdf. 

w3.org/XML/. 
Yasnoff, W. A., Overhage, J. M., Humphreys, B. L., et al. (2001). A national agenda for 

public health informatics: summarized recommendations from the 2001 AMIA spring 
congress. Journal of the American Medical Informatics Association 8(6):535–545. 

SUGGESTED READING 

Bates, R. (2006). Voice & Data Communications Handbook, 5th ed. Osborne: McGraw-Hill. 
Mitch, A. (2006). XML Problem – Design – Solution. New York: Wiley Publishing, Inc. 
O’Carroll, P. (2002). Public Health Informatics and Information Systems. New York: Springer. 
Song, I. (2003). Conceptual Modeling – ER 2003. Berlin/Heidelberg: Springer. 
Whitten, J. (2005). Systems Analysis and Design Methods, 7th ed. New York: McGraw-Hill/ 

Irwin. 

ONLINE RESOURCES 

Public Health Information Network. http://www.cdc.gov/phin/. 
Health Alert Network. http://www.phppo.cdc.gov/HAN/Index.asp. 
COMCARE Data Standards. http://www.comcare.org/Data_Standards.html. 
World Wide Web Consortium, Extensible Markup Language (XML). http://www.w3.org/ XML/. 
National Incident Management System. http://www.fema.gov/pdf/emergency/nims. 
OASIS Emergency Management Technical Committee. http://www.oasis-open.org/committees/ 

tc_home.php?wg_abbrev=emergency. 
 
 
 
 

404 

World Wide Web Consortium (2010). Extensible markup language (XML); http://www. 

http://www.oasis-open.org/committees/dsml/docs/DSMLv2.doc
http://www.oasis-open.org/committees/dsml/docs/DSMLv2.doc
http://www.oasis-open.org/committees/dsml/docs/DSMLv2.doc
http://www.oasis-open.org
http://www.oasis-open.org/committees
http://www.healthyamericans.org/reports/bioterror07
http://www.fema.gov/pdf/emergency/nims/nims_doc_full.pdf
http://www.cdc.gov/phin
http://www.phppo.cdc.gov/HAN/Index.asp
http://www.comcare.org/Data_Standards.html
http://www.w3.org
http://www.fema.gov/pdf/emergency/nims
http://www.oasis-open.org/committees
http://www


 

Chapter 18 

DESIGN AND PERFORMANCE OF A PUBLIC 
HEALTH PREPAREDNESS INFORMATICS 
FRAMEWORK 
Evidence from an Exercise Simulating an Influenza Outbreak 

IVAN J. GOTHAM1,2,*, DEBRA L. SOTTOLANO1, LINH H. LE1, 
MICHAEL J. PRIMEAU1, LORETTA A. SANTILLI1,  

1 1

AND MARY E. HENNESSEY1 

CHAPTER OVERVIEW 

Public Health Emergency Preparedness (PHEP) seeks to achieve and 
maintain a state of “readiness” within the community of response partners 
to detect, respond to, and mitigate health emergencies, such as large-scale 
infectious disease outbreaks. The activities, workflows, and information 
exchanges in this process are optimized when embedded as a part of routine 
public health practice. Information systems supporting PHEP “readiness” are 
also optimized when embedded within an informatics framework supporting 
a community of information trading partners engaged in routine (day-to-day) 
health information exchange. This chapter describes the attributes of a model 
informatics framework for support of PHEP; evaluates its performance during a 
full-scale exercise simulating an outbreak of a highly infectious novel strain 
of influenza; and discusses how the attributes of the framework contributed 
to the state of readiness in the response community. 
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1. INTRODUCTION 

Public health emergency preparedness (PHEP) has been defined as the 
capability of the public health and healthcare systems, communities, and 
individuals to prevent, protect against, quickly respond to, and recover from 
health emergencies, particularly those whose scale, timing, or unpredict-
ability threatens to overwhelm routine capabilities (Nelson et al., 2007a). 
It is a state of sustainable “readiness to act,” for all sectors and stakeholders 
involved in preparedness efforts (DHS, 2008), that is achieved over time as 
part of the essential public health activities health departments practice daily 
(Seid et al., 2007). 

The practice of informatics supports and advances the state of PHEP. 
Public health informatics is defined as “the systematic application of inform-
ation and computer science and technology to public health practice, research, 
and learning” (O’Carroll, 2003). As information is essential to support every 
phase of emergency planning and response, informatics can advance the 
state of “readiness” by assuring effective PHEP functions, workflow, and 
information exchange among the various partners that must participate in 
detection, response, and recovery during public health emergencies (Weiner 
and Trangenstein, 2007). 

Understanding the PHEP processes, workflow, and decision structure 
among cross-jurisdictional and cross-discipline partners during a health 
emergency is fundamental for defining PHEP functions: information capture, 
analysis, visualization for situational awareness, decision making, information 
dissemination, and response (Nelson et al., 2007b). Similarities among the 
various workflow models in Table 18-1 and the key functions of the NYSDOH 
Informatics Infrastructure (Figure 18-1) illustrate commonalities in the PHEP 
workflows of major state, federal, and international public health agencies. 

What type of informatics framework is best suited to enabling PHEP? 
PHEP activities and supportive functions are most effective when integrated 
with everyday public health activities (Baker et al., 2005; Koh et al., 2008; 
Nelson et al., 2007b, c; DHS, 2004). Thus an effective informatics frame-
work for supporting PHEP should be based on information infrastructure and 
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public health activities. The value of this “dual use” framework is that it has 
the potential to evolve naturally towards a sustained “readiness to act” among 
the key partners needed in a PHEP response. 

 
Table 18-1. Major models of public health emergency preparedness functions and workflows. 

Homeland security 
target capabilities 
(DHS, 2007a) 

CDC goals & 
related functions 
(CDC, 2005)  

WHO 
guidelines for 
integrated 
disease 
surveillance 
(Perry et al., 
2007) 

Bravata key 
decisions and 
tasks (Bravata  
et al., 2004) 

NYSDOH 

informatics 
infrastructure key 
functions 
(Gotham et al., 
2001, 2007) 

Common 
capabilities: 
communications; 
intelligence & 
information sharing 
& dissemination 

Timely, accurate 
communications; 
Functions: partner 
communications, 
alerting (PCA); 
analysis & 
visualization 
(AVR) 

Analyze & 
interpret: 
disease patterns, 
data trends; 
create case 
demographics 
visuals. 
Calculate rates, 
action thresh- 
holds; describe 
risk factors, 
needed public 
health action 

Communication: 
with first 
responders, 
public health, 
clinicians, 
officials & the 
public 

Alerts, 
communications: 
role based 
contact via 
multimode 
alerting; Data 
visualization & 
situational 
awareness: real-
time view of 
integrated data 
supports 
executive 
decisions 

Prevent: gather 

recognize 
indicators; produce 
intelligence & 
analysis; detect 

Prevent: 
interventions to 
prevent human 
illness from 
CBRNE agents  
Function: Early 
event detection, 
(EED) 

Identify: Case 
detection; data 
capture of 
suspect priority 
diseases present 

conduct lab 
testing to 
diagnose 
suspected cases; 
maintain routine 
surveillance 

Diagnosis: based 
on clinical 
symptoms; 
Management: 
care of exposed, 
acutely ill; 
Prevention: 
isolation & 
prophylaxis 

Local health 
disease 
reporting: 
statewide disease 
case reporting; 
Health facility 
surveillance:  

demographics, 
infectious disease 
admits; ED 
patient visits, 
admits, bed 
utilization 

(Continued) 
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in inpatients, 

information; 

CBRNE agents outpatients; 
report patient 
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Homeland security 
target capabilities 
(DHS, 2007a) 

CDC goals & 
related functions 
(CDC, 2005)  

WHO 
guidelines for 
integrated 
disease 
surveillance 
(Perry et al., 
2007) 

Bravata key 
decisions and 
tasks (Bravata  
et al., 2004) 

NYSDOH 

informatics 
infrastructure key 
functions 
(Gotham et al., 
2001, 2007) 

Protect: 
epidemiological 
surveillance, 
investigation; lab 
testing 

Detect, report: 
classify events; 
identify CBRNE 
agents; 
Investigate: risk 
factors, causes; 
interventions; 
Functions: 
outbreak 
management 

connecting lab 
systems (CLS) 

Report: use of 
standard case 
definitions, 
when, how to 

diseases & 
conditions; 
immediately 
report notifiable 
diseases across 
jurisdictions. 
Investigate: use 
investigation & 
lab results to 
confirm the 
outbreak 

Surveillance: 
collect, manage, 
interpret data; 
Reporting: 
confirmed, 
suspect cases 
across 
jurisdictions. 
Outbreak 
investigation: 
verify cases are 
an outbreak 

Local health 
disease reporting, 
epidemiological 
investigation & 
response; Lab 
reporting: 
contact tracing; 
transmit 
electronic lab test 
results; dynamic 
surveillance, 
surveys; health 
facilities report 
patient 
demographics 

quarantine; mass 
prophylaxis; surge; 
critical resource 
logistics & 
distribution 

Control: provide 
guidance 
countermeasures; 
Function: 
countermeasure & 
response 
administration 
(CRA) 

Respond: treat 
cases & contacts 
using standard 
case 
management 
guidelines, 
infection control 
measures; 
involve 
community in 
response 

Outbreak 
control: 
determine, 
perform out-
break control 
measures, 
institute 
quarantine 

Health facility 
resource 
reporting, 
response: Track 
assets, resources, 
surge capacity, 
countermeasures, 
bed availability; 
event patient 
admissions & 
tracking 

 
Assessing the effectiveness or performance of PHEP systems presents 

unique challenges, as health emergencies are rare. Several efforts have been 

 

 
 

Table 18.1 (Continued) 
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Commerce 

report priority 

(OMS) & 

Respond: isolation, 

undertaken to measure the effectiveness of PHEP, including written assessments
(Costich and Scutchfield, 2004) and exercises such as SNS drills (ASTHO,

is generally recognized that full-scale exercises are the best test of a system’s  
 
 
 

2004) and the TOPOFF program (DHS, 2003a, b). While precise measurement
of PHEP remains a challenge (Asch et al., 2005; Nelson et al., 2007 a, b, c), it 
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ability to prepare for and respond to an emergency (Nelson, 2007). The 
Department of Homeland Security (DHS) National Preparedness Guidelines 
contains a Target Capabilities List (TCL) that identifies and defines prepared-
ness capabilities and corresponding metrics against which achievement of a 
task or capability outcome can be assessed (DHS, 2007b). National Planning 
Scenarios (DHS, 2006) and Exercise Evaluation Programs (DHS, 2007c) 
provide standardized use cases for evaluation of performance metrics. One 
such scenario is pandemic influenza. 

 

Figure 18-1. Framework for a model informatics infrastructure. 
 

Over the past decade the New York State Department of Health (NYSDOH) 
has evolved an informatics infrastructure that enables electronic health 
information exchange across the state health enterprise (Gotham et al., 2001, 
2002, 2007). The infrastructure encompasses the NY Health Commerce 
System (HCS), which is secure, integrated, interoperable, and web-based. It 
is in daily use for routine health information exchange applications by all 
NY local health departments (LHDs), healthcare organizations, and service 
providers (see Gotham et al., 2007). NYS PHEP functions (Table 18-1) are 
embedded within this dual-use infrastructure. In Spring of 2006, NY State 
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conducted a full-scale Communicable Disease EXercise (CDEX) in the eight 
counties surrounding the Buffalo metropolitan area in western NY State. 
CDEX was data driven and designed to assess the state, regional, and local 
ability to identify, track, monitor, and mitigate the outbreak of a highly 
infectious novel strain of influenza. The generic PHEP functions used by 
the exercise participants to respond to the scenario included health alerting, 
epidemiological surveillance, healthcare response, dashboard visualization, and 
situational awareness (Table 18-1). The exercise provided the opportunity to 
measure the response rates and utilization metrics for these PHEP functions. 
This chapter applies these results to an assessment of the effectiveness of the 
informatics framework in supporting PHEP functions during a full-scale 
emergency. 

2. MODEL INFORMATICS FRAMEWORK  
FOR HEALTH INFORMATION EXCHANGE 

Among systems for information sharing and communications, the lack of 
interoperability across traditional organizational or jurisdictional boundaries 
has resulted in problems in responding to emergency situations (Bravata et al., 
2004; Burkle, 2003) and has been noted as a deficiency in national exercises 

researchers, and experts call for standards-based interoperable systems for 
seamless health information exchange (Baker et al., 2005; Brailer, 2004; 
Burkle & Hayden, 2001; CDC, 2008; Loonsk et al., 2006) and prescribe 
required system capabilities and performance metrics (DHS, 2007b). Key 
findings of the AMA/APHA Linkages Leadership Summit point to the need 
for PHEP components to operate within an informatics framework for health 
information exchange that is real-time, standards-based, secure, interoperable, 
integrated, reliable, highly available, and in common use by all stakeholders 
for both day-to-day and disaster operations, such as infectious disease out-

Figure 18-1 depicts the framework for a model informatics infrastructure 
and the characteristics of each layer that provide reliability, user support, 
integrated information and decision support, as well as familiarity, knowledge, 
security, and trust in the system. The value of this framework is user and 
system “readiness to act, and interact” (DHS, 2007d): 

 The Technical Infrastructure layer is the foundation for the system’s 
reliability, availability, interoperability, efficiency, and security (see 
CDC, 2007; DHS, 2007a; Gotham et al., 2001, 2007; NYSDOH, 

410

(DHS, 2007a). In response, governmental agencies, national organizations, 

2006; Loonsk et al., 2006; OASIS, 2005a, b; HITSP, 2007). 

breaks (Lyznicki et al., 2007; AMA/APHA, 2007). 



18. Design and Performance  
 

 The Enabling Services layer interacts with system users and provides 

functions, information relevance, and familiarity with system (Gartner, 
2008; Popovich et al., 2002). 

 

set of activities among diverse stakeholders (Gotham et al., 2001, 
2007; Popovich et al., 2002). 

 The Integrated Information Exchange layer is the first that describes 
a set of interoperable and essential functions – compliant with and 
supportive of DHS, CDC, and WHO frameworks – for accomplishing 
critical PHEP tasks and information exchange described earlier while 
simultaneously supporting the essential services of everyday public 
health practice (CDC, 2007; DHS, 2007a; Perry et al., 2007). 

 The Value/Synergies and the Health Information Exchange Community 
layers represent a linked community of users committed to use of the 
framework as a whole, based on trust of the system’s security and the 
reliability, accuracy, and relevance of the information created and 
available in that environment. The value and synergies that emerge 
from the opportunities for working across subject domains and from 
the linkage and sharing of information expand with the diversity and 
number of participant organizations and information exchange activities 
supported within the community (Baker et al., 2005; Burkle, 2001; 
Koh et al., 2008; Nelson et al., 2007b, c; Perry et al., 2007; Popovich 
et al., 2002). 

What are the key attributes of NY’s informatics framework? The NYSDOH 
Health Commerce System (HCS) is a multi-tiered architecture (Figure 18-2) 
and is functionally compliant with national interoperability standards (e.g., 
Loonsk, 2007, OASIS, 2005a, b, HITSP, 2007). HCS operates within an 
informatics framework as described in Figure 18-1. The framework supports 
a diverse set of applications cross-cutting the scope of routine health information 
exchange, including: disease case and lab reporting, vital records, healthcare 
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reusable services needed to establish defined and modifiable access, 

The Policy/Business Rules layer defines protocols, requirements, re-

consistent vocabulary and well-defined concepts, and a user interface 

sponsibilities, and business rules that support a coordinated, efficient 

enabling immediate and familiar deployment of commonly needed 

3. 
FRAMEWORK FOR HEALTH INFORMATION 
NEW YORK  STATE’S INFORMATICS 

EXCHANGE AND INTEGRAL SUPPORT 
OF PUBLIC HEALTH PREPAREDNESS 
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finance, healthcare utilization, managed care, medical conduct, controlled 
substance prescription reporting, licensed practitioner prescription pad orders, 
heavy metal and lead poisoning registries, malformations and cancer registry 
reporting, environmental and clinical laboratory proficiency reporting. In 
total, HCS currently supports some 200 health information applications, 
75,000 users, and 15,000 participant organizations (see Gotham et al., 2007). 
Given this mission, the HCS architecture is highly available and includes full 
off-site disaster recovery capacity (Figure 18-2). 

 

 
Figure 18-2. New York State Health Commerce System architecture. 

 
Health information exchange applications share core integration services 

for generic functions such as notification/alerting, communications directory 
(ComDir) services, secure collaboration, GIS and data visualization (see 
Figure 18-2; also Gotham et al., 2007). ComDir is a centralized repository of 
role and contact information. Directory coordinators at each HCS organization 
assign users to functional roles within their view of ComDir and maintain 
contact information for both routine and emergency communications. The 
health alerting system uses contact information from the ComDir to notify 
targeted organizations and persons in specified functional roles within those 
organizations using automated phone calls, e-mail, fax, and secure web post-
ings (Figure 18-2). 

Access control is single sign-on and role-based. Role assignments made 
in ComDir by coordinators at participant HCS organizations enable access 
to application roles, data, and information appropriate to that organization. 
Access is conveyed instantaneously once a coordinator assigns a user to a 
ComDir role. Distributed access control allows the organization to assure 
appropriate access to applications and information within the organizational 
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hierarchy. Access rules within the HCS information structure provide both 
open and restricted access to information, data, and applications (Gotham 
et al., 2003). Applications and information provision systems with restricted 
access use a hierarchical model to enable both vertical and horizontal flows 
of information appropriate to organization type and roles within that 
organization (see Gotham et al., 2002, 2007). 

Organizations joining HCS are required to execute organization and user 
agreements covering security, data sharing, and nondisclosure. NY State 
Public Health Law requires all regulated healthcare facilities in NY State to 
abide by the HCS security agreements; maintain adequate levels of user 
accounts and coordinator designees to meet the state’s disaster preparedness 
requirements; and maintain accurate and up-to-date role and contact 
information in ComDir (NYS, 2005a, b). 

Oversight of the HCS system is a shared governance process with 
healthcare and local health department partners. Ongoing hands-on training 
sessions and drills reinforce skills in the use of the system. These partner 
groups also assist with coordination of drills, training, and requirements 
gathering. Online tutorials and reporting guidelines are available on the HCS 
training website. A dedicated accounts and help desk unit supports HCS 
account sign-up and user assistance. 

How does NY’s informatics framework enable and support PHEP? 
The HCS is an ideal platform for health preparedness, given its overarching 
informatics framework and routine use by the universe of partner organizations 
needed to facilitate detection and respond to a health event or emergency. As 
such, NY State has evolved a core set of interoperable PHEP workflows 
within HCS (Table 18-1) and also instantiated the capacity for automated 
exchange of standardized surveillance and response data with external entities, 
such as national infectious disease informatics portals (Zeng et al., 2004, 2005) 
and federal healthcare resource portals (AHRQ, 2005). The HCS prepared-
ness systems have supported statewide response to emergent infectious disease 
events, emergency disaster declarations, health resource shortages, elevated 
national threat levels, and high-profile security events (Gotham et al., 2001, 
2007). The HCS infrastructure is an integral component of NYSDOH incident 
management and PHEP plans (Gotham et al., 2007), including pandemic 
influenza (NYSDOH, 2006). 

What are the core systems supporting PHEP activities and functions within 
the HCS informatics framework? Health alerting and other notifications 
occur through the HCS Integrated Health Alerting and Notification System 
(IHANS) (Gotham et al., 2001, 2007) using contact information derived 
from ComDir to notify appropriate roles and organizations that secure alert 
notifications have been posted on the HCS health alert network (HAN) file 
viewer. Notifications are sent using multiple pathways, including automated 
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pathways, including automated phone calls, e-mail, and fax. On receiving a 
notification, users in the notified roles log into the HCS system, access the 
HAN file viewer, and download the alert document. 

In an actual health event, NYSDOH activates a dedicated, open website 
within the HCS portal to provide general situational awareness to the HCS 
community at large, as was the case during the emergence of West Nile 
Virus in North America in 1999 (Gotham et al., 2001). This website provides 
timelines, updates, response protocols, plans, procedures, and links to data 

Electronic disease case reporting in NY State occurs through the HCS 
Communicable Disease Electronic Surveillance System (CDESS) (Gotham 
et al., 2003), where LHDs report detailed patient demographics and disease-
specific supplemental data for 65 reportable disease conditions. CDESS also 
supports contact tracing activities and is integrated with a standards-based 
Electronic Clinical Laboratory Reporting System (ECLRS) (Gotham et al., 
2003). Electronic reporting of test results to ECLRS by clinical labs is 
mandated by public health law in NY State (NYS, 2007). Positive test results 
for reportable disease conditions are transmitted by hospital, commercial, 
and public health laboratories to ECLRS and automatically routed to the 
LHD of jurisdiction for case establishment or confirmation. IHANS auto-
matically alerts the county of jurisdiction on receipt of high-priority disease 
results. The NYSDOH Wadsworth Public Health Laboratory is a reference 
laboratory and part of the CDC Laboratory Response Network (LRN). Its 
Clinical Laboratory Information Management System (CLIMS) records and 
tracks test results on specimens submitted to the laboratory and also reports 
electronically to ECLRS. 

Healthcare response in NY is supported by the HCS Health Emergency 
Response Data System (HERDS) (Tanielian et al., 2005; Gotham et al., 2007). 
HERDS is a statewide dynamic data reporting and visualization system 
supporting surveillance reporting (e.g., event-related patient admissions, 
deaths, and ED traffic) and resource and asset tracking (surge capability, bed 
availability, patient tracking, and medical encounter measures). Data reported 
into HERDS by healthcare facilities is immediately available to LHDs, as 
well as regional and state health jurisdictions, for planning and response. 
HERDS data is also available to the state and local incident command staff 
for planning, allocation, and distribution of state and federal stockpiled 
inventories of resources in an emergency. HERDS has been used in respond-
ing to emergency disaster declarations and healthcare resource shortages, in 
exercises for tracking bed and resource capacities, and in ongoing reporting 
activities, such as influenza and bed availability surveillance (Gotham et al., 
2007). It is currently deployed to all hospitals, nursing homes, adult and 
home care facilities, clinics, and public schools statewide. 

414



18. Design and Performance  
 
and applications needed for response. Executive-level decision support and 
situational awareness is achieved through an Executive DashBoard (EDB), 
providing summary-level visualization and integration of data feeds from 
response systems such as HERDS, CDESS, and ECLRS via drill-down 
charts, graphs, and maps. Access to the EDB is limited to key executive 
roles in ComDir for participating LHDs, hospitals, state and regional health 
offices, and other response partners. IHANS notifies HCS organizations on 
activation of the event-specific website and EDB. 

EVALUATION OF FRAMEWORK RESPONSE 
DURING A FULL-SCALE EXERCISE 

4.1 Exercise Scenario, Scope, and Extent 

CDEX lasted from May 15th through June 15th, 2006. The participating 
organizations included 8 LHDs, 26 hospitals, and the Central and Western 
Regional State Health Offices. Counties participating in the exercise ranged 
from 43,000 to 930,000 in population. Participating hospitals ranged from 
60,000/20,000 to 10/64 Emergency Department/Inpatient admissions per 
year. The scenario initiated with 900 passengers exposed to index cases 
aboard three local charter flights returning to the Buffalo region. Within 48 h 
of returning home an index case is admitted to a local hospital and dies, 
followed in close suit by family members. Specimen samples are sent by 
hospitals to the NYSDOH Wadsworth Laboratory where they test positive 
for a novel strain of influenza, “H7N2.” Hospitals experience a concomitant 
surge of thousands of admissions and hundreds of deaths. Hospitals continue 
to submit specimens to Wadsworth Laboratory for confirmation. LHDs 
follow up with contact tracing of passengers from their jurisdictions on the 
airline manifests and report large numbers of disease cases and deaths of 
nonhospitalized cases. Hospital resources, such as Intensive Care Units, 
ventilators, and antiviral inventories, are overwhelmed. Hospital, county, and 

4.2 Preparedness Functions Used in the Exercise 

The data flow within and between PHEP systems and organizations 
participating in the exercise is shown in Figure 18-3. IHANS supported all 

4. 

state emergency plans are activated. The Federal Strategic National Stockpile 
(SNS) is called upon to provide additional resources. 

alerting functions. General situational awareness of the CDEX event as it  
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Figure 18-3. CDEX inject and public health emergency preparedness data flow within HCS 
informatics framework. 

evolved was made available to the exercise participants as well as the entire 
HCS community through the event-specific CDEX website. Electronic disease 
case reporting and contact tracing of index patients occurred through 
CDESS. The Wadsworth public health CLIMS system reported “H7N2” test 
results to ECLRS from mock specimens shipped to the Wadsworth Lab from 
participating hospitals. The hospital instance of HERDS (HERDS-H) was 
used by hospitals to report patient admissions and deaths by age group, resource 
needs, bed availability, emergency plan status, supply and medication 
inventories, ICU and ventilator needs. A county-based HERDS instance 
(HERDS-C) was used to push airline passenger manifest information to the 
LHDs of jurisdiction for follow-up contact tracing in CDESS. HERDS-C 
was also used for aggregate reporting of outside-of-hospital deaths by LHDs. 
Executive-level decision support and situational awareness were provided 
through the Executive DashBoard (EDB) using summary displays of data 
feeds from contributing PHEP systems (Figure 18-3). Access to the EDB 
was limited to key executive roles in participating organizations, including 
public health directors, hospital CEOs, lead epidemiologists, and directors of 
preparedness, disease control, and emergency departments. 
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4.3 Exercise Injects and Data Pushed to Exercise 

Participants 

The information flow within and between HCS preparedness functions 

request, and exercise “playbook” data. Injects customized to each exercise 
participant organization (EPO) were placed in their respective secure file 
viewer, and IHANS was used to notify the target organization of new injects. 
Injects and notifications were sent unannounced and thus confirmation of 
access by the recipients is equivalent to a response to unannounced alerts or 
emergence of information about the event. Details regarding injects, organi-
zations affected, actions, and response times are summarized in Table 18-2. 

Table 18-2. CDEX inject descriptions by organization, dates, response times allotted and actions 
requested. 
Organi-
zation type 

Inject ID Date/time 
inject alert 
sent 

Organi- 
zations 
alerted 

Expected 
responsea 

Action step 1 
requested 

Action step 2 
requested 

LHD LHD01.I 5/18/2006 
13:26 

1 asapb 
to 1 LHD 

 

LHD LHD02.I 5/19/2006 
15:08 

1 asap 
to 1 LHD 

 

LHD LHD03.C 5/22/2006 
14:38 

8 asap Pick up airline 
manifest 1 from 
HERDS-C 

Use data – 
contact 
tracking in 
CDESS 

LHD LHD04.H 5/23/2006 
16:49 

8 asap Review hospital  

LHD LHD05.C 5/24/2006 
14:16 

8 asap Pick up airline 
manifest 2 from 
HERDS-C 

Use data – 
contact 
tracking in 
CDESS 

LHD LHD06.L 5/26/2006 
10:02 

8 asap 
results on cases 
in ECLRS 

 

LHD LHD07.I 5/26/2006 
10:10 

8 asap Review school 
closing policies 

 

12:41c 
d

playbook datae 
Use data – 
report deaths 
in HERDS-C 

09:26c 
d

playbook datae 
Use data – 
report deaths 
in HERDS-C 

Hospital HOSP01.I 5/18/2006 
11:57 

1 asap 
to 1 hospital 

 

(Continued) 
 

Informational injects were sent to participating organizations for initiation or  

for sharing injects, alerts, and data among organizations participating in
the exercise is shown in Figure 18-3. Three types of injects were used to
drive the exercise scenario and concomitant response: informational, action-
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LHD LHD08.P 6/02/2006 8 76.8 h  Pick up 

Pick up lab test 

LHD LHD09.P 6/09/2006 8 80.1 h  Pick up 

Info. inject sent 

Info. inject sent 

Info. inject sent 

data in HERDS-H
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Organi-
zation type 

Inject ID Date/time 
inject alert 
sent 

Organi- 
zations 
alerted 

Expected 
responsea 

Action step 1 
requested 

Action step 2 
requested 

Hospital HOSP02.I 5/19/2006 
14:38 

2 asap 
to 2 hospitals 

 

Hospital HOSP03.I 5/22/2006 
10:40 

1 asap Ship specimens 
to public health 
lab 

 

Hospital HOSP04.I 5/23/2006 
12:56 

26 asap Ship specimens 
to public health 
lab 

 

Hospital HOSP05.H 6/13/2006 
10:47 

27 asap Update resource 
requests in 
HERDS 

 

15:53c 
d

playbook dataf 

13:25g 
d

playbook dataf 

c

d

playbook dataf 

09:54c 
d

playbook dataf 

LHD local health department, HCS health commerce system, HERDS-H health emergency 

ECLRS electronic clinical lab reporting system (integrated with CDESS) 

a

basap – immediate action requested 
cFriday 
dTime given in actual time, cob next business day. Exercise time amounted to 24 h 
eSynthetic data on out of hospital deaths 
f

g

 

availability of, background information and data and requested that the 
recipient organization take one or more steps to complete an activity. The 
hospital exercise playbooks contained detailed hospital-specific data for that 

resource, bed, and patient care data that would normally be expected for that 
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Table 18.2 (Continued) 

week on event-related Emergency Department (ED) traffic, hospital admis-

16:51  

Synthetic data driving hospital outbreak related admits, deaths, resource utilization 

such as ICU and ventilator usage. They also provided hospital-specific baseline 

Time allotted to pick up inject or playbook and complete action(s) requested 

sions, and deaths by age group and event-related resource utilization, 

Hospital HOSP09.P 6/09/2006 27 79.6 h Pick up 

Hospital HOSP08.P 6/02/2006 27 72.7 h Pick up 

Hospital HOSP06.P 5/19/2006 27 73.6 h Pick up 

Hospital HOSP07.P 5/26/2006 27 100 h Pick up 

response data system, hospital instance, HERDS-C health emergency response data 

continuance of the exercise scenario. Action-requests provided, or referenced 

system, LHD instance, CDESS communicable disease electronic surveillance system, 

Friday of Memorial Day weekend 

Info. inject sent 

HERDS-H 

HERDS-H 

HERDS-H 

HERDS-H 

Operationalize
data in 

Operationalize
data in 

Operationalize
data in 

Operationalize
data in 
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responses and reporting of facility status, asset needs (equipment, supplies, 
medications), and bed availability into HERDS-H. Playbooks also drove 
reporting of event-related admissions and deaths by age group and ED 

therefore available to LHDs, state and regional health offices, and incident 
command staff, driving their response (Figure 18-3). 

Mock Health Alerts were also disseminated as the scenario evolved. 
These were posted on the HCS health alert viewer and made available to all 
HCS users. The IHANS system sent phone notifications of the postings to 
key roles at Exercise Participant Organizations (EPO). LHD staff, who also 
have access to the IHANS system for alerting within their jurisdictions, were 
encouraged to use it to cascade exercise alerts within their participating 
jurisdiction. Seven of the eight participating LHDs cascaded these alerts 
using IHANS. 

The CDEX website was activated at the beginning of the exercise and 
EPOs were alerted. Other Non-Participating Organizations Alerted (NPO-A) 
at the same time included the remaining hospitals and LHDs in the state and 
also all nursing homes statewide. The process of accessing the CDEX website 
by other Non-Participating HCS Organizations who were Not Alerted (NPO-
NA) was therefore strictly passive, their users logging on to HCS during the 
exercise as a matter of their routine use of the system. NPO-As were apprised 
of the exercise in advance and encouraged to access the CDEX website for 
situational awareness via informational notifications through the IHANS 
system. The NPO-NAs (e.g., pharmacies, individual providers) were not 
informed of activation of the CDEX website out of concern over misinter-
pretation of the exercise as an actual event. 

4.4 Methodology Used in Measuring Preparedness 
Function Responses 

Organizational responses to informational injects were measured as time 
in minutes from transmission of alert notification to the time at which the 
first user in that organization downloaded the inject or health alert content. 
Organizational responses to action-request inject notifications were measured 
as time in minutes from transmission of alert notification to the time at 
which the first user in that organization downloaded the inject content and, 

time of year. LHDs were also sent playbook data to enable their reporting of 
aggregate out-of-hospital deaths through the HERDS-C. 

419

The hospital playbook data was used to drive hospitals’ operational 

patient traffic into HERDS. The hospital data reported into HERDS-H was 
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where requested by the inject, subsequently initiated an action using a PHEP 
function as listed in Table 18-2. Response expectations for playbook data 
injects were that the requested responses (Table 18-2) occur by close 

4.5 

Responses to inject alerts reflect the organizations’ ability to receive an 
unannounced notification from IHANS, access HCS to receive new infor-
mation or requested actions, and immediately initiate those actions (Tables 
18-1 and 18-2; Figure 18-3). For local health departments these functions 
involved accessing data on potentially exposed patients in their jurisdiction 
and initiating contact tracing; picking up positive laboratory test results on 

hospital reports on event patients and deaths and resource requirements in 

admissions and deaths and resource and medical countermeasure needs and 
immediately reporting to LHDs and NY State via HERDS-H (Figure 18-3). 

Response times measured for informational and action-request injects for 
LHDs and hospitals are shown in Table 18-3. The overall average response 
time for LHDs accessing inject content was 29 min (90% CL [23,35]) from 
alert initiation. Responses to action step injects (accessing passenger manifests 
and initiating contact tracing in the CDESS reporting system) averaged 
103 min (90% CL [80,127]) from alert initiation. Responses to action step 
injects (accessing laboratory test results on specimens from suspect cases 
submitted by hospitals and reported by Wadsworth Laboratory into ECLRS/ 
CDESS) averaged 75 min (90% CL [43,107]) from time of alert initiation. 

For hospital participants, the overall average response time in accessing 
inject content was 49 min (90% CL [43,56]) from alert initiation. One of the 
injects, an urgent request, required hospitals to review and update their 
admissions and resource data reported into the HERD-H system. The average 
time for hospitals to complete this request was 175 min (90% CL [161,189]) 
from alert initiation. 

 

(17:00 h) of the next business day. The absolute amount of time to complete 
the response varied depending on when the playbook notification was trans-
mitted. Playbook responses were measured as the number of organizations 
accessing playbook data and responding with data reported into HERDS 
within 5, 50, and 100% of the time between alert transmission and close of 
the next business day. User and organization utilization of situational 
awareness functions was tracked for the CDEX website and the EDB. 
IHANS used all alerting modalities for announcing injects. 

420

suspect cases and initiating case reports on infected patients; accessing 

their jurisdiction. For hospitals these functions involved reviewing event patient 

Action-Request Injects 
Responses to Informational and PHEP 
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In sum, on average LHDs and hospitals were able to receive an ad hoc 
urgent notification, access HCS, and retrieve the content within 50 min from 

surveillance and lab reports within 1.75 h of notification. On urgent request, 
hospitals were able review, update, and report resource and medical counter-

initiation. 

4.6 Responses to Operational Data Injects 

The response to hospital playbook injects reflects the facilities’ ability to 
receive a request, gather information, and report patient admissions and 
resource impact within a requested deadline. Reporting resource needs and 
facility status via HERDS supports state and local incident command ability 
to distribute state and federal stockpiles as needed. Hospital-based reporting 
of event-related patient admissions and deaths by age group provides state 
and local epidemiologists with detailed information on the extent, severity, 
and age-specificity of the emergent virus. LHD reports of out-of-hospital 
deaths provide additional epidemiological information to neighboring LHDs 
and the NYSDOH. 

Measures of responses to playbook injects by LHDs and hospitals are 
shown in Table 18-4. All LHDs accessed and downloaded the playbook 
injects within 5% of the time allotted, and on average 81% (8) recorded the 
requested information into HERDS-C within the same interval. Seventy-five 
percent (20) of hospitals accessed and downloaded the playbook injects 
within 5% of the time allotted, and on average 47% (26) completed reporting 
of the requested data into HERDS-H in the same time interval. Eighty percent 
of LHDs completed the response function within 5% of the requested time, 
and the same percentage of hospitals completed the activity within 50% of 
the requested time. All organizations were able to complete these activities 
within the requested timeframes (Table 18-4). 

 
 
 
 
 
 
 
 
 
 
 

422

measure requirements and event patients and deaths within 3 h of alert 

initiation of the notification. LHDs were able to initiate accessing disease 



18. Design and Performance  
 

Ta
bl

e 
18

-4
. L

H
D

 a
nd

 h
os

pi
ta

l t
im

e 
re

sp
on

se
s 

to
 in

je
ct

 n
ot

ifi
ca

tio
ns

 a
s 

to
 u

pd
at

es
 in

 e
xe

rc
is

e 

C
um

ul
at

iv
e 

nu
m

be
r a

cc
es

si
ng

 p
la

yb
oo

k 

N
um

be
r/(

%
 to

ta
l o

rg
an

iz
at

io
ns

) 

C
um

ul
at

iv
e 

nu
m

be
r a

cc
es

si
ng

 a
nd

 
re

po
rti

ng
 p

la
yb

oo
k 

da
ta

 to
 

H
ER

D
S 

sy
st

em
 w

ith
in

 p
er

ce
nt

 

to
ta

l o
rg

an
iz

at
io

ns
) 

In
je

ct
 ID

 
D

at
e/

tim
e 

pl
ay

bo
ok

 
no

tif
ic

at
io

n 
se

nt
 

N
um

be
r 

al
er

te
d 

Ex
pe

ct
ed

 
re

sp
on

se
a  

5%
  

50
%

  
10

0%
 

5%
 

50
%

 
10

0%
 

LH
D

08
.P

 
6/

02
/2

00
6 

12
:4

1b  
8 

76
.8

 h
 

8/
(1

00
) 

8/
(1

00
) 

8/
(1

00
) 

6/
(7

5)
 

6/
(7

5)
 

8/
(1

00
) 

LH
D

09
.P

 
6/

09
/2

00
6 

09
:2

6b  
8 

80
.1

 h
 

8/
(1

00
) 

8/
(1

00
) 

8/
(1

00
) 

7/
(8

7)
 

7/
(8

7)
 

8/
(1

00
) 

A
ve

ra
ge

 p
er

ce
nt

 L
H

D
s r

es
po

nd
in

g 
 

SD
 

10
0 

10
0 

10
0 

81
 

 8
 

81
 

 8
 

10
0 

H
O

SP
06

.P
 

5/
19

/2
00

6 
15

:5
3b  

27
 

73
.6

 h
 

H
O

SP
07

.P
 

5/
26

/2
00

6 
13

:2
5c  

27
 

10
0 

h 
21

/(7
8)

 
22

/(8
1)

 
27

/(1
00

) 
15

/(5
5)

 
15

(5
5)

 
27

/(1
00

) 
H

O
SP

08
.P

 
6/

02
/2

00
6 

16
:5

1b  
27

 
72

.7
 h

 
14

/(5
2)

 
16

/(5
9)

 
27

/(1
00

) 
5/

(1
8)

 
8/

(3
0)

 
27

/(1
00

) 
H

O
SP

09
.P

 
6/

09
/2

00
6 

09
:5

4b  
27

 
79

.6
 h

 
27

/(1
00

) 
27

(1
00

) 
27

/(1
00

) 
21

/(7
8)

 
21

/(7
8)

 
27

/(1
00

) 
A

ve
ra

ge
 p

er
ce

nt
 h

os
pi

ta
ls

 re
sp

on
di

ng
 

 S
D

 
75

 
 2

0 
80

 
 1

7 
10

0 
47

 
 2

6 
50

 
 2

1 
10

0 
Se

e 
Ta

bl
e 

18
-2

 fo
r i

nj
ec

t d
es

cr
ip

tio
ns

 
LH

D
 lo

ca
l h

ea
lth

 d
ep

ar
tm

en
t, 

H
ER

D
S 

he
al

th
 e

m
er

ge
nc

y 
re

sp
on

se
 d

at
a 

sy
st

em
, H

C
S 

he
al

th
 

a b Fr
id

ay
 

c

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

pl
ay

bo
ok

 d
at

a 
an

d 
ac

tio
ns

 ta
ke

n 
to

 o
pe

ra
tio

na
liz

e 
da

ta
 a

nd
 

re
po

rt 
in

 H
ER

D
S.

 

co
m

m
er

ce
 sy

st
em

 

H
ER

D
S.

 T
im

e 
gi

ve
n 

in
 a

ct
ua

l t
im

e,
 c

ob
 n

ex
t b

us
in

es
s d

ay
. E

xe
rc

is
e 

tim
e 

am
ou

nt
ed

 to
 2

4 
h 

423

da
ta

 w
ith

in
 p

er
ce

nt
 ti

m
e 

gi
ve

n 
to

 re
sp

on
d:

 

tim
e 

gi
ve

n 
to

 re
sp

on
d:

 N
um

be
r (

%
 

Ti
m

e 
al

lo
tte

d 
fr

om
 tr

an
sm

is
si

on
 o

f 
in

je
ct

 n
ot

ifi
ca

tio
n 

to
 a

cc
es

si
ng

 p
la

yb
oo

k 
da

ta
 o

n 
H

C
S,

 o
pe

ra
tio

na
liz

in
g 

da
ta

 a
s 

ap
pr

op
ria

te
 a

nd
 e

nt
er

in
g 

da
ta

 in
to

 

19
/(7

0)
 

22
/(8

1)
 

27
/(1

00
) 

10
(3

7)
 

10
/(3

7)
 

27
/(1

00
) 

Fr
id

ay
 o

f M
em

or
ia

l D
ay

 w
ee

ke
nd

 



Chapter 18 

4.7 Accessing Health Alert Postings by Key Roles at 
Local Health Departments and Hospitals 

Notifications that an alert had been posted on HCS were transmitted by 
NYSDOH IHANS to specific roles at the EPOs using phone, fax, and e-mail. 
On receipt of the notification, staff assigned to those roles were expected to 
log on to HCS, access the secure alert system viewer, and download the alert 
content. Table 18-5 details alert content, timing, and roles notified as well as 
average response rates for LHDs and hospitals. Because of the diversity of 
functional roles in ComDir, the event-related communiqués both informed 
the epidemiological response and supported local and healthcare risk com-
munications (Table 18-5). The overall average time to access all exercise 
health alert postings by key roles at LHDs (71 min) was significantly shorter 
than that observed for roles (194 min) at hospitals (P < 0.0005). 

4.8 Usage of CDEX Event-Specific Website for 
Situational Awareness 

During the exercise the CDEX website received 177,690 access hits by 
15,795 unique users. Eighty-seven percent of all users accessing HCS during 
the exercise also accessed the CDEX website. Details of usage statistics for 
the CDEX website by CDEX participants and non-participants are shown in 
Tables 18-6 and 18-7, respectively. EPOs accounted for 48% of the total 
usage of the site. Nearly 1,900 users from the EPOs accessed the site, of 
which 63% (11), on average, were repeat users. With the exception of one 
hospital, all EPOs accessed the site at least once per weekday over the 
duration of the exercise (Table 18-6). 

Non-participant organizations accounted for 52% of the access hits, with 
nearly 14,000 users distributed among 7,500 distinct organizations accessing 
the site (Table 18-7). All NPO-As statewide (LHDs, hospitals, and nursing 
homes) accessed the site, accounting for 70% of hits from non-participants. 
Large numbers of NPO-NAs also accessed the site, including adult and 
home care facilities, pharmacies, clinical labs, and clinics (Table 18-7). On 
average, 85% (11) of NPO-NAs that actually logged on to HCS also accessed 
the CDEX website. Of the non-participating organizations, those alerted also 
showed the highest percentages of repeat users (t-test alpha = 0.05, t = 3.5, 
p = 0.008, df = 8). 
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Chapter 18 

Absent alerting or direct participation in the exercise, large numbers of 
organizations encountered the event website and thus gained situational 
awareness of CDEX during the course of their routine activities on HCS. In 
an infectious disease event, the universe of participant organizations (see 
Table 18-7) would look to HCS for situational awareness, many also having 
the potential to serve as partners assisting in response or resource provision 
to facilitate the response (e.g., pharmacies). 

4.9  Executive DashBoard Usage for Situational 
Awareness by Key Decision Makers 

The PHEP systems (Figure 18-3) distributed detailed data on surveillance, 
case reporting, and healthcare resource status to subject matter experts 
involved in the exercise. The integrated data displayed via the EDB (Figure 
18.3) provided executives with summary visuals of key information needed 
for incident management, including event-related patient admissions, ED 
traffic, bed availability (e.g., ICU beds needed and available), equipment 
needs (e.g., adult and pediatric ventilators), medical countermeasure needs 
(e.g., antiviral inventories), and general supplies (e.g., PPE). The HCS data 
sharing and access rules allowed access to key executive roles at response 
partner organizations, including hospitals and local, regional, and central 
state health offices. 

Usage of the EDB by executive decision makers within EPOs is detailed 
in Table 18-8. EPOs were alerted via the IHANS system when the EDB was 
activated on 25 May 2006:15:00 h. Seventy-five percent of all EPOs 
accessed the EDB within 21 (4) h and 95% within 61 (39) h. On average 
53% (13) of all users in key roles within EPOs who accessed the EDB were 
repeat users. At the organization level, 98% (4) of EPOs had at least one 
executive user who accessed the EBD at least every other weekday, with 
77% (21) accessing it at least once every weekday. In sum, executive 
decision makers at organizations participating in the exercise returned to the 
EDB on a regular basis. 
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DISCUSSION AND LESSONS LEARNED 

5.1 How Well Did the Observed Exercise Responses 
Meet Expectations? 

well with the metrics published in the DHS Target Capabilities List (DHS, 
2007b) and the CDC’s target capabilities and critical tasks (CDC, 2008). The 
results of the CDEX exercise also agree well with functions supported, and 
responses observed, in actual health events and other drill scenarios (Gotham 
et al., 2001, 2007). 

During the 30 days of CDEX’s operation, the PHEP functions on HCS 
were in continual and repeated use by both the exercise participants as well 
as the general HCS health information exchange (HIE) community. The 
organizations participating in the exercise demonstrated the ability to receive 
alerts and update emergent information in a timely manner, immediately 
accessing and subsequently taking action via the electronic PHEP workflows 
supported within the HCS. Healthcare facilities were able to receive and 
assimilate complex exercise scenario data, operationalize it, and report their 
resource needs and patient admissions well within the expected response 
times. Key executive decision makers demonstrated repeated use of the 
integrated dashboard visualization tool for situational awareness throughout 
the exercise. The organizations within the HCS HIE community not directly 
involved in the exercise also demonstrated repeated use of the event-specific 
website for situational awareness. The alert system, supported by a broad-
based communications directory, demonstrated rapid and simultaneous 
support of multiple PHEP activities across organizations responding to an 
emergent event. These activities include the clinical as well as the risk 
communications response across local public health and healthcare sectors. 
The responses observed in the CDEX exercise – along with those observed 
in actual health events and other drill scenarios (Gotham et al., 2001, 2007) – 
support the conclusion that the NYS HIE community is in a state of 

 
 
 

5. 

From the perspective of the overall informatics framework for PHEP 

“readiness” to use the PHEP functions within the HCS informatics frame-
work for the detection of and sustained response to a public health emergency.

response, the functions and response times observed in this exercise agree 
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5.2 How Does the HCS Informatics Framework Enable 

a State of PHEP “Readiness”? 

Value and synergies gained through dual use (Figure 18-1). The CDEX 
scenario simulated an outbreak of a novel and highly infectious disease 
unfolding over a month. During this time participating organizations engaged 
in sustained, continuous use of the HCS PHEP functions in their response to 
the scenario. The response partners were also able to continue to engage in 
their day-to-day health information exchange activities on the HCS. At the 
same time, the global HIE community was informed of event status through 
their access to the open event website. The effectiveness of the “dual use” of 
HCS – facilitating both event-related situational awareness and routine 
information exchange – is illustrated by the fact that every local health 
department, hospital, and nursing home in the state accessed the site during 
the exercise. Experience with actual health events in the past has shown that 
the HCS HIE community sees the State’s system as the authoritative source 
of information about health events (Gotham et al., 2001, 2007). 

The diversity, activity, and breadth of the HCS HIE community enhances 
both readiness and capacity for response by enabling the incident command 
process to contact and increase the circle of engaged response partners as the 
situation requires. The intensity of CDEX website access by HCS organiz-
ations not directly involved in the exercise indicates a high degree of interest 
in the subject of pandemic disease events. By accessing the site and down-
loading its contents, these organizations were also provided the opportunity 
to improve their knowledge and increase their awareness of response plans 
and surveillance processes for such an event. The value and synergies realized 
from dual-use informatics frameworks is significant. Embedding PHEP 
functions within an existing informatics framework (Figure 18-1) that also 
supports a broad set of routine information health exchange activities for a 
large, diverse HIE community is a powerful enabling factor in establishing 
and sustaining a state of “readiness” and the capacity for response to health 
events within that community. 

Integrated information exchange (Figure 18-1). The electronic systems 
integrated within the HCS informatics framework support workflows essential 
for PHEP response to health events (Table 18-1; Figures 18-1 to 18-3) as 
well as day-to-day public health activities. In either mode, the electronic 
systems provide a continual flow of information between and within the 
horizontal and vertical hierarchy of healthcare organizations and state, regional, 

 
 
 

and local public health agencies. As these electronic systems are integrated  
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within the same framework, their data feeds are also easily integrated, sum-
marized, and presented in a single visual interface for decision support and 
situational awareness across HCS organizations. Embedded PHEP systems 
built on interoperability standards establish the substrate for integrated 
information exchange. However, well-defined policies and access rules, 
shared governance, data sharing and non-disclosure agreements – along with 
flexible, role-based access control distributed to participant organizations – 
are essential components for assuring that the “Exchange” in HIE actually 
happens in a timely manner. Having these policies, processes, and business 
rules in place for ongoing routine information exchange is absolutely critical 
to maintaining a state of “readiness” for rapid, unfettered information 
exchange required for effective event detection, response, and mitigation. 

Enabling services (Figure 18-1). The response rates to ad hoc infor-
mational and action-request inject alerts (Tables 18-2 and 18-3; Figure 18-3) 
observed in the exercise are indicative of a pre-existing state of “user-
readiness” within the participating organizations. This state is predicated on 
essential preconditions: respondents’ contact and role information in the 
communications directory must be accurate and up-to-date; respondents’ 
accounts must be active and users must know their authentication infor-
mation; respondents must be familiar with the response protocols for alerts; 
and each respondent must be intimately familiar with accessing and 
effectively using PHEP electronic systems. The key enabling services 
(Figure 18-1) promoting and supporting user familiarity and usage – such 
as training, help desk and account maintenance, common usability interface 
and terminology, and flexible access control – must be in routine daily 
operation well in advance of a health event in order to assure that precon-
ditions for user-readiness are met. 

Technical Infrastructure (Figures 18-1 and 18-2). The attributes of the 
underlying technical infrastructure supporting a dual-use infrastructure for 
routine health information exchange and PHEP must also reflect a state of 
“readiness”. The response rates observed in this study would not have been 
achievable without the capacity to support dual use as well as surge usage. 
The infrastructure must therefore have sufficient communication and 
computation capacity to support both in an emergency. It must be a trusted 
and reliable site that provides a secure and highly available environment 
with information for disaster recovery and alternate communications. The 
application architecture must be agile, flexible, and extensible and be able to 
leverage reusable and interoperable core services to rapidly assemble 

 
 
 

interconnected PHEP functions to meet emergent circumstances. Finally, it  
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must be able to support rapid dissemination and bi-directional exchange of 
data, information, and intelligence with data providers or external agencies 
using open interoperability standards for health information exchange. 

6. CONCLUSIONS 

This chapter provides evidence from a full-scale exercise on how a 
model informatics framework can enable and support an ongoing state of 

this framework is that information systems supporting PHEP “readiness” are 
optimized when embedded within a dual-use information infrastructure that 
supports a community of information trading partners engaged in routine 
(day-to-day) health information exchange, including the routine practice of 
public health. NYSDOH is currently pursuing two changes to the HCS 
system that will provide further research opportunities. The system’s user 
interface and organization is being redesigned to operate within a portalized 
environment with assistance from experts in human usability design. The 
changes will enable the opportunity to compare the impact of human interface 
design improvement on workflow improvement and information access by 
the user community. The HCS system is also being revised to enable bi-
directional, standards-based and automated exchange of health information 
with Regional Health Clinical Information exchange organizations emerging 
in NY State. These activities will enable NY to assess the efficacy of these 
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QUESTIONS FOR DISCUSSION 

information exchange (HIE)? How do they enable and support Public 
Health Emergency Preparedness (PHEP)? Discuss. 

2. From your readings in this chapter, list and prioritize five technical, or 
architectural, attributes of a model informatics framework that must be in 
place to achieve and sustain an operational HIE. Classify each as a 
foundational element or as an element that depends upon and extends the 

with each other to improve PHEP. 
3. Now list and prioritize five key non-technical attributes of a model 

informatics framework that must be in place to achieve and sustain an 
operational HIE. Discuss the inherent difficulties you expect would be 

attributes might require a great deal of inter- and intra-organizational 
change, what are the overarching benefits that would persuade decision 
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SYSTEM EVALUATION AND USER 
TECHNOLOGY ADOPTION 
A Case Study of BioPortal 

PAUL JEN-HWA HU1,*, DANIEL ZENG2,3, and 
HSINCHUN CHEN2 

CHAPTER OVERVIEW 

The surveillance of infectious disease and epidemic outbreaks has 
become increasingly challenging for public health professionals. Monitoring 
infectious disease and epidemic outbreaks is an information-intensive task 
that can be supported by effective data gathering, integration, analysis, and 
visualization. The BioPortal system, a Web-based portal that provides 
convenient access to distributed, cross-jurisdictional data about various data 

ment. This chapter attempts to raise awareness of the importance and difficulty 

matics or biodefense systems. To illustrate the fundamental system evaluation 
and user study aspects, including the research method, study design, measure-
ment instruments, and task design, we report two empirical studies of BioPortal. 
This chapter provides a non-technical perspective on the ongoing dialogues 
between public health and IT researchers, including the recognition that 
technical merits and novelty alone do not suffice to guarantee or sustain 
system success; it instead demands appropriate system design/functionality 
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sets related to infectious diseases, offers just such an informatics environ-
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and sound understanding of user behaviors. System evaluation and user study 
research thus can play a significant role in infectious disease information 
research. 

Keywords: System evaluation; User studies; BioPortal; Infectious disease informa-
tics; Biodefense systems 

INTRODUCTION 

The surveillance of infectious disease and epidemic outbreaks has 
become increasingly challenging for public health professionals (Ericsson 
and Steffen, 2000). Epidemic episodes of severe acute respiratory syndrome, 
foot-and-mouth disease (FMD), and West Nile virus (WNV), as well as 
potential outbreaks of avian influenza, have created enormous concerns both 
domestically and internationally (Thacker et al., 2001; Li et al., 2004). 
Bioterrorism threats also lurk on the horizon. The fallout of the September 
11 and subsequent anthrax attacks in the United States made bioterrorism a 
prominent threat to national security (Lane et al., 2001; Richmond and 
McKinney, 2007), adding complexity to the already challenging surveillance 
of infectious disease and epidemic outbreaks. Terrorists with biomedical or 

disease using biological agents (Siegrist, 1999). 
Monitoring an infectious disease or epidemic outbreak demands signifi-

cant amounts of information and therefore could be supported by advanced 
systems that focus on infectious disease informatics or biodefense and support 
effective data gathering, integration, analysis, and visualization. Developing 
such complex systems requires addressing the issues surrounding the diverse, 
heterogeneous, and voluminous data stored in various organizations, systems, 
or repositories, which span jurisdictional constituencies and incumbent 
administrative structures, both horizontally and vertically (Pinner et al., 
2003). Yasnoff et al. (2001) advocate fruitful collaborations among researchers 
and practitioners in public health and information systems. Yet though 
technological breakthroughs continue at a rapid rate, system evaluations 
have not advanced at the same pace. To realize the full potential of advanced 
infectious disease informatics and biodefense systems, we require effective 
forms of evaluation, which Rossi and Freeman (1989) define as the systematic 
application of social science research procedures to judge and improve the 
way information resources are designed and implemented. Yet as Davis et al. 
(1989, p. 982) note, “As technical barriers disappear, a pivotal factor in 

1.

biochemical competencies also might attack people living in target geo- 
graphic areas by deliberately developing and disseminating an infectious 

harnessing this expanding power of computer technology becomes our 
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ability to create applications that people are willing to use.” Contrary to the 
general perception, or misperception, evaluation is complex; in this case, it 
entails the intersection of infectious disease informatics, computer-based 
systems, and empirical methods (Friedman and Wyatt, 2006). Thus, as 
extant literature shows, the disparity between the benefits promised by an 
advanced system and the utilities actually received or perceived by users 
continues to widen to alarming proportions. 

Both methodological rigor and theoretical premises also are crucial to 
system evaluation. Observations of early deployments of innovative techno-
logies or advanced information systems seem to suggest that failures exceed 
successes; a case in point is the pioneer technology that enabled digital 
government before the turn of the century. As Heeks (1999) summarizes, 
approximately 20–25% of these initiatives were abandoned immediately 
after their implementation, and a further 33% fell short of their major 
objectives. In the remainder of cases, most experienced great difficulty in 
achieving sustainable success. In a similar way, the sustainable success of 
advanced infectious disease informatics or biodefense systems for the adopting 
institution or public health research community as a whole demands favorable 
outcomes and positive assessments with respect to the monitoring and 
analysis of infectious diseases or epidemic outbreaks by public health 
researchers and practitioners. 

Information systems attempt to improve user task performance (measured 
in effectiveness or efficiency) and enhance organization competitiveness. 
System development is engineering-oriented, aimed at solving problems in 
the target domain. Most previous infectious disease informatics research 
emphasizes the construction of novel or better solutions for users’ infor-
mation searches or analysis tasks as means to create advanced artifacts, such 
as models, methods, techniques, algorithms, or systems (i.e., instantiations). 
Again, system evaluation receives far less attention and usually takes place 
in an ad hoc manner. Technical advancements and novelty cannot guarantee 
the success of an infectious disease informatics or biodefense system; users 
often define its success, because a system’s utilities demand both system 
design/functionality and user behaviors and assessments. Any infectious 
disease informatics or biodefense system therefore must be thoroughly 
examined, and its effectiveness or utilities must be systematically evaluated. 
Our literature review reveals several essential evaluation dimensions, 
including user task performance effectiveness and efficiency, the system’s 
usefulness and ease of use, and user satisfaction (e.g., DeLone and McLean, 
1992; Hu, 2003). 

This chapter highlights specifically the importance of system evaluation 
and attempts to foster awareness of the challenges and difficulties of system 
evaluation endeavors. According to Gediga et al. (2002), a system evaluation 
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might be descriptive or predictive; the former describes the status and 
problems of a system, whereas the latter seeks to uncover recommendations 
for enhancements or future system developments. We focus on descriptive 
evaluations and examine the status of a working infectious disease infor-
matics environment, called the BioPortal system, according to user task 
performance effectiveness and efficiency, perceptions of its usefulness and 

their intention to use the system in the near future. 
BioPortal is a Web-based system that provides public health researchers 

and practitioners with convenient access to distributed, cross-jurisdictional 
data about several infectious diseases, such as WNV, FMD, and botulism 
(Zeng et al., 2004). Using seamless data integrations across various data formats 

data analysis functionalities and novel visualizations that display analysis 
results in an effective, intuitive, and easily comprehensible manner. 

on two evaluation studies. The first, a controlled experiment that involves 33 
graduate students, uses a spreadsheet-based program for benchmark purposes. 

experienced public health professionals affiliated with the State Health 
Services department in the United States. In addition to generating empirical 
evidence that suggests the practical utilities of BioPortal, our evaluation 
sheds light on specific areas for improvement to the current design and 
functionalities. We first provide an overview of BioPortal, then detail each 
evaluation study, and finally highlight some important results. 

AN OVERVIEW OF BIOPORTAL 

BioPortal (http://www.bioportal.org) is an integrated, cross-jurisdictional, 
Web-based portal that has been operational for testing and research purposes 
since 2004. BioPortal is loosely coupled with several state public health 
information systems in California and New York; these systems transmit 
WNV/botulism information through secure links to BioPortal using mutually 

The architectural design of BioPortal consists of three main components: 
a Web portal, a data store, and a communication backbone. The Web portal 
component constitutes the user interface and provides several essential 
functionalities that allow users to search or query available infectious 
disease-related data sets, visualize the results with novel spatiotemporal 

2. 
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agreed protocols. The integrated data reside in a data store internal to BioPortal, 

ease of use, and users’ satisfaction with the information support, as well as 

and system architectures/platforms, BioPortal offers advanced spatiotemporal 

To illustrate the fundamental aspects of the system evaluation, we report 

which automatically retrieves data items from sources (e.g., USGS) and saves 

The second study involves a field evaluation that targets three highly 

them in the data store. 

http://www.bioportal.org
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visualization designs, access analysis or prediction functions, and explore an 
advanced alerting mechanism. 

The data central to BioPortal come from different organizations and vary 
in structure and format. To ensure necessary data interoperability, it uses 
HL7 standards as the primary format. In general, contributing institutions 
transmit data to BioPortal as HL7-compliant XML messages through a 
secure network connection. After receiving these XML messages, BioPortal 
stores them directly in its data store. This HL7 XML-based design is 
advantageous compared with an alternative design that uses a consolidated 
database, which must consolidate and maintain the data fields for all data 
sets in the data store. To alleviate the computational requirements and 
probable performance bottlenecks associated with this HL7 XML-based 
approach, a core set of data fields supports frequent queries, then extracts 
them from all XML messages and stores them in a separate database table 
for fast retrieval. The system strikes a desirable balance between the need for 
maximal access to disease tracking and confidentiality-related concerns, as 
well as the risks of jeopardizing data reporting to the system. 

The communication backbone component uses a collection of source-
specific “connectors” to link to various sources. For example, data from New 
York’s HIN system are transmitted to BioPortal in a “push” manner, such 
that HIN sends secure public health information network messaging system 
(PHIN MS) messages to BioPortal at prespecified time intervals. The 
connector on BioPortal runs a data receiver daemon to listen for incoming 
messages. When a message is received, the connector examines the data 
integrity syntactically and normalizes the data, then stores the verified 
message in the internal data store through its data ingest control module. 
Other data sources, including USGS, may use a “pull-type” connector that 
periodically downloads data from the source Web site and examines and 
stores the data in the data store. Overall, the communication backbone 
component contains data receiving/sending functions, performs source-
specific data normalization, and provides data encryption capabilities when 
necessary. 

AN EXPERIMENT-BASED EVALUATION 
STUDY AND KEY RESULTS 

This evaluation study addresses two questions: Will users’ system choice 
significantly affect their task performance, perceptions of the system’s 
usefulness and ease of use, and satisfaction with the information support? 
Will the use of BioPortal generate improved task performance, more 
favorable perceptions of the system’s usefulness and easy of use, and higher 

3. 
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user satisfaction with the information support? We conducted a controlled 

associated with BioPortal. For benchmark purposes, our study also includes 
a spreadsheet-based program that mimics existing systems commonly used 
by public health researchers or practitioners for their surveillance. 

3.1 Hypotheses 

The value or utilities of BioPortal must be reflected in the surveillance 

vast amounts of rich, detailed, diverse data describing or related to particular 
infectious diseases, geographic or environmental contexts, or essential 
population characteristics. Specifically, the use of BioPortal should generate 

veness or efficiency. Effectiveness measures often rely on analysis accuracy, 

BioPortal than by an existing system. Efficiency can be assessed by the 
amount of time a user needs to complete an analysis task. Public health 

results or issue alerts in a timely manner. Practitioners and researchers thus 
should value BioPortal more if it enables them to identify and respond to 
potential threats, health hazards, or epidemic outbreaks with increased 
accuracy and timeliness. 

Users’ assessments are also essential; individual perceptions of BioPortal’s 
usefulness and ease of use might affect their system use. Perceived 
usefulness refers to the extent to which a user considers BioPortal useful in 
his or her work role (Davis, 1989), whereas perceived ease of use denotes 
the degree to which the user considers his or her use of BioPortal to be free 
of effort (Davis, 1989). All else being equal, people are more likely to use a 

therefore, perceived usefulness and ease of use represent crucial precursors. 
User satisfaction represents another critical aspect of system evaluation. 

We focus on user information satisfaction, which here refers to the user’s 

general end-user satisfaction is primarily based on the distinct importance of 
information support in the targeted public health context. If it is effective, 
users should exhibit greater information satisfaction with BioPortal. 
Accordingly, we test the following hypotheses: 

H1: The choice of system has a significant influence on the user’s 
analysis accuracy. 
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professionals constantly compete against time and must provide analysis 

experiment to examine individual task performance and assessments  

significant improvements in user task performance, as measured by effecti-

system that is easy to use. We expect the use of BioPortal to be voluntary; 

et al., 1983). Our decision to focus on user information satisfaction rather than 

such as whether a user produces more accurate results when supported by 

satisfaction with BioPortal with respect to information requirements (Ives

task performance achieved by researchers or practitioners, who often analyze 
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H2: The analysis accuracy associated with BioPortal is significantly 
greater than that of the benchmark spreadsheet program. 

H3: The choice of system has a significant influence on the amount of 
time the user needs to complete an analysis task. 

H4: The amount of time a user needs to complete an analysis task is 
significantly less when supported by BioPortal than by the bench-
mark spreadsheet program. 

H5: The choice of system has a significant influence on the user’s per-
ception of system usefulness. 

H6: Users perceive BioPortal as more useful than the benchmark 
spreadsheet program. 

H7: The choice of system has a significant influence on the user’s 
perception of the system’s ease of use. 

H8: Users perceive BioPortal as easier to use than the benchmark 
spreadsheet program. 

H9: The choice of system has a significant influence on the user’s 
satisfaction with the information support. 

H10: Users exhibit greater satisfaction with the information support from 
BioPortal than with that from the benchmark spreadsheet program. 

3.2  Experimental Design 

We adopt a randomized between-groups factors design, in which we 
define system at two levels: BioPortal versus a benchmark spreadsheet-based 
program. The subject’s general knowledge about public health represents the 
other factor, also defined at two levels – high versus low. Our design 
supports tests of our hypotheses and allows for direct comparisons of 
BioPortal and the benchmark program in terms of user task performance and 
assessment. In our experiment, we randomly assign subjects to BioPortal or 
the benchmark system, but not both, and maintain a balance in the system 
assignment to attain a comparable number of subjects in each experimental 
condition. 

3.3 Measurements 

We take a “gold-standard” approach to examine the accuracy of the 
subject’s analysis of each task. Three experts individually examined each 
analysis task carefully and generated a recommended result. We consolidate 
these recommendations to produce a gold-standard result for each task. In 
turn, we can measure the accuracy of a subject’s analysis of a particular task 
according to the corresponding gold-standard result and on the basis of a ten-
point scale, such that 1 indicates “completely incorrect” and 10 is “completely 
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correct.” All partially completed tasks receive a score of 1. We measure task 
performance efficiency using the amount of time a subject took to complete 
an analysis task. Our study design includes a 50-min time constraint, which 
is appropriate according to the results of our pilot study. We explicitly 
informed each subject of this time constraint before he or she started the 
experiment tasks. We use items adapted from previously validated scales 
(Davis, 1989) to measure perceived usefulness and perceived ease of use. 
Furthermore, to measure user information satisfaction, we use items from 
Ives et al. (1983). All question items employ a seven-point Likert scale, with 
1 being “strongly disagree” and 7 being “strongly agree.” In Appendix 1, we 
list the items used in the reported evaluation studies. 

3.4 Subjects 

Our subjects are graduate students from the business school or public 
health school at a major research university located in the United States. 
They participated in the study voluntarily and differ notably in their general 
knowledge about public health, which is high among public health students 
and low among business school students. All subjects received compensation 
for their time and effort and rendered their consent before taking part in the 
experiment. 

3.5 Experimental Tasks 

Several highly experienced public health researchers and professionals 
assessed the design of the particular analysis tasks to be completed by 
subjects in the experiment. Specifically, we created six analysis scenarios 
and designed a total of 11 tasks, ranging from simplistic frequency counts to 
fairly complex trend detection or pattern identification. In Appendix 2, we 
list the analysis scenarios and tasks used in the experiment. 

3.6 Data Collection 

We administered the experiment to subjects individually or in small 
groups of two or three persons. We used a scripted document to inform all 
subjects explicitly of the study’s purpose, experimental procedure, and how 
we would analyze and manage the data collected in the experiment. We 
specifically addressed concerns about information privacy and ensured 
subjects that we would perform data analyses at an aggregate level, not in 
any personally identifiable manner. 
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3.7 Evaluation Results 

Our experiment involves 33 subjects; among them, 17 used BioPortal 
and the remaining were supported by the spreadsheet system. In the BioPortal 
group, nine subjects are public health students and the remaining eight 

seven subjects are public health students, and nine subjects are from the 
business school. We have 20 male and 13 female subjects; our subjects are 
highly comparable in their key demographic characteristics (including age 
and education) and self-report similar general computer efficacy and Internet 
usage. 

We use the corresponding gold-standard result to evaluate the accuracy 

subject’s analysis accuracy across all the tasks and use the resulting overall 

(BioPortal versus the spreadsheet program) has a significant effect on the 
subject’s analysis accuracy (F-value = 8.46; p-value < 0.01). The accuracy 
recorded by BioPortal (mean = 81.94, SD = 21.23) is significantly higher 

significant effect on the amount of time required to complete an analysis task 

a task significantly faster (mean = 36.28 min, SD = 11.33 min) than their 

p-value < 0.01). Hence, our data support H3 and H4. 

Subjects perceive BioPortal as easier to use (mean = 2.31, SD = 1.06) than 
the spreadsheet program (mean = 3.24, SD = 0.88), and the difference is 
significant at the 0.01 level. Hence, our data support H5 and H6. Similarly, 
the effect of system choice on subjects’ perceptions of the system’s ease of 
use is significant statistically (F-value = 7.01; p-value < 0.05); that is, 
subjects consider BioPortal easier to use (mean = 2.31, SD = 1.06) than the 
spreadsheet program (mean = 3.24, SD = 0.88), significant at the 0.01 level. 
Hence, our data support H7 and H8. Finally, system choice has a significant 
influence on subjects’ satisfaction with the information support (F-
value =  12.01; p-value < 0.01). Subjects using BioPortal exhibit higher 
information satisfaction (mean = 2.34, SD = 1.02) than those using the 
spreadsheet program (mean = 3.68, SD = 1.23), with a statistically 
significant difference (p-value < 0.01). Therefore, our data support H9 and 
H10. 
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subjects are from the business school. In the spreadsheet system group, 

counterparts using the spreadsheet program (mean = 48.23 min, SD = 5.07 min; 

(F-value = 16.19; p-value < 0.01). Subjects supported by BioPortal complete 

accuracy to test H1 and H2. According to our results, system choice 

than that of the benchmark program (mean = 61.19, SD = 17.92; 

According to our results, system choice has a significant impact on subjects’ 
perceptions of the system’s usefulness (F-value = 6.45; p-value < 0.05). 

p-value < 0.01). Thus, our data support H1 and H2. System choice also has a 

of each analysis task performed by a subject. We then aggregate each 
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Overall, the data support all our hypotheses, suggesting that system 
choice in general has important influence on users’ task performance and 
assessments. In particular, the use of BioPortal can improve the surveillance 
task performance, as measured by analysis accuracy and time requirements. 
Our subjects consider BioPortal more useful and easier to use than the 
benchmark spreadsheet program, and they exhibit greater satisfaction with 
its information support. 

4. A FIELD USER STUDY AND KEY RESULTS 

and evaluation results. 

4.1 Research Questions 

following questions: 

4.2 Measurements 

Our study focuses on analysis accuracy, task completion time require-
ments, and users’ satisfaction with the information support provided by 
BioPortal, as well as their intentions to use it in the near future. Similar to 
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health professionals. Our objective was to gather and analyze their task 
We performed a field user study that targets three experienced public 

sections, we describe our research questions, measurements, subjects, tasks, 
performance and evaluative responses in the work context. In the following 

of BioPortal in its target public health settings. Specifically, we address the 
The objective of this field user study is to examine the value and utilities 

1. Does BioPortal provide sufficient query criteria or support (e.g., 
different query modes)? If not, what additional query criteria or 
support should be included? 

2. How useful are BioPortal’s aggregate views? Specifically, how do 
these views help public health professionals perform their analyses or 
problem-solving tasks? 

3. How useful is the GIS tool in BioPortal? How can this tool be 
enhanced and better support public health professionals’ analyses or 
problem-solving tasks? 

4. How useful is the Timeslider in BioPortal? Does this tool enhance 
health professionals’ analyses or problem solving? 

5. How do public health professionals assess BioPortal’s usefulness and 
ease of use? What is their satisfaction level with its information 
support and their intention to use it in the near future? 
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the experiment-based evaluation study, we measure analysis accuracy using 
the gold-standard results established by a panel of domain experts who also 
assisted in our task designs. The task completion time requirement equals the 
amount of time elapsed between the beginning and the completion of a task. 
We continue using the items adapted from Ives et al. (1983) to measure user 
information satisfaction and employ items from Davis (1989) to assess 
practitioners’ intentions to use BioPortal in their work context. The specific 
analysis scenarios and tasks used in the field study are in Appendix 3. 

4.3 Subjects 

Three public health professionals took part in our study voluntarily, one 
woman and two men. Our subjects are between 31 and 36 years of age and 
have doctoral degrees in public health or related disciplines. According to 
analyses of their self-assessments, these practitioners have fairly good 
general computer efficacy and use the Internet frequently and routinely. 
Each subject is highly knowledgeable about epidemiological practices and 
shows great confidence in analyzing and interpreting data about different 
infectious diseases or epidemic outbreaks. 

4.4 Tasks 

With the assistance of several domain experts, we designed a set of 
analysis scenarios and tasks that closely resemble some of the surveillance 
tasks common in public health. In Appendix 3, we list the specific scenarios 
and tasks used in this study. We emphasize user task performance (measured 
by analysis accuracy and task completion time) and satisfaction with the 
information support offered by BioPortal. We also collect from each 
practitioner his or her qualitative assessment of BioPortal, using several 
semi-structured questions. 

4.5 Evaluation Results 

As a group, our subjects accomplish satisfactory analysis accuracy, as 
suggested by an average score of 1.91 on a two-point scale, on which 2 
indicates completely correct, 1 means partially correct, and 0 is incorrect. On 
average, a subject took 1 h and 12 min (SD = 11.67) to complete all the 
tasks, which the subjects consider notably shorter than the time commonly 
required for their analyses using existing systems. The analysis of their eva-
luative responses shows high user information satisfaction; i.e., mean =  5.78, 
SD = 1.12, seven-point Likert scale, on which 7 is “strongly agree.” The 
subjects also exhibit high intentions to use BioPortal in the near future; i.e., 
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mean = 6.0, SD = 1.24, seven-point Likert scale on which 1 equals “strongly 
disagree” and 7 indicates “strongly agree.” Judging by the respective mean 
values, all of which are considerably higher than 4 (i.e., neutral), the three 
practitioners exhibit positive assessments of BioPortal’s usefulness and ease 
of use and strong intentions to use it in the near future. 

Furthermore, most of the qualitative assessments of BioPortal are positive. 
One practitioner noted, “Capability of BioPortal is huge – could link to state 
data and would have a great foundation. Serotypes also useful for linking 
cases epidemiologically.” In their evaluations, they indicate that BioPortal 
has an adequate design and is easy to use. A sample comment provides an 
illustration: “design is one of its strengths – very intuitive and user friendly.” 
Another subject made a similar remark: “BioPortal is a little easier to use 
than existing syndromic surveillance systems.” The practitioners appear 
particularly fond of the spatial temporal visualizer in BioPortal. According to 
one subject: “The GIS thing is big! Especially West Nile virus is big in [our] 
County – [we] would like to be able to look at the geographic spread. This 
could influence mosquito intervention, and see movement over time, when 
cases stop and/or pop up somewhere else. Would also be good for rabies.” 
The other subjects provide similar favorable assessments; one noted that 
“Just being able to pick a time period (for example, 1 week) and see how it 
unfolds. Also seeing the faded out cases very helpful.” The other commented 
further that “Aggregated views are good for overall picture of data and for 
answering specific questions by choosing 2 × 2 table variables.” Furthermore, 
the subjects expressed great appreciation for the built-in hot spot analysis in 
BioPortal; for example, “Hotspot analysis is instrumental to what this user 
does everyday – the job function is to detect any health event in the 
community before diagnoses” and “The hotspot analysis tool embedded in 
STV is very useful. When user clicked a mock data set, it went straight to 
STV, then used the tool to pick SatScan and parameters. Would be easier to 
use that way to change baseline.” 

In this chapter, we discuss system evaluation and user study issues in the 
context of infectious disease informatics. Using two empirical evaluation 
studies of the BioPortal system, we present in detail key elements of system 
evaluation and user study research, covering the overall research metho-
dology and critical considerations, together with study design, measurement 
instruments, and task design, as well as applicable system performance 
measures such as task performance efficiency, user information satisfaction, 
and usability. 
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To the best of our knowledge, systematic studies of system evaluation 

argue, based on our long and well-documented experience with IT adoption 
and evaluation studies in domains outside of infectious disease informatics, 
that this lack of attention could seriously undermine both research and 
practical efforts to attain sustainable success in the development and adoption 

considerations in the public health community. 

public health officials and information systems evaluation researchers could 
lead to new and exciting results. The studies presented in this chapter might 
be conceptualized as applications of known evaluation frameworks in the 
domain of infectious disease informatics. Further collaborative research with 
potentially high impact could deliver new evaluation frameworks tailored for 
other infectious disease informatics, depending on the specific characteristics 
of user behavior, task environment, organizational structure, and technology 
needs in this domain. 

QUESTIONS FOR DISCUSSION 

2. How can one effectively evaluate surveillance analytics functions 
provided by biosurveillance systems, with users in the loop? 

3. What are the key factors one needs to consider when designing bio-
surveillance tasks to evaluate the efficacy of the system? 

4. What are the key measurement instruments relevant to biosurveillance 
system evaluation? 

5. What are the unique challenges to technology adoption in biosur-
veillance, relative to technology adoption in the commercial world such 
as e-commerce and enterprise systems? 

Appendix 1: Listing of Question Items Used in the 
Evaluation Studies (Illustrated Using BioPortal) 

Perceived Usefulness 

1. Using BioPortal allows me to complete an analysis task more quickly. 
2. Using BioPortal can improve my analysis of public health problems or 

trends. 
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greater awareness of the importance of non-technical evaluation and adoption 

From a research perspective, we believe that ongoing dialogues between 

IDI tools and systems in practice? 

and user study issues in infectious disease informatics have been sparse. We 

1. What are the key factors facilitating/hindering wide adoption of advanced 

of infectious disease informatics systems. We hope this chapter helps raise 
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3. Using BioPortal can make me more productive in analyzing public health 
problems or trends. 

4. Using BioPortal can make me more effective in analyzing public health 
problems or trends. 

5. Using BioPortal can make my analysis of public health problems or 
trends easier. 

6. I would use BioPortal in my analysis of public health problems or trends. 
7. Overall, I find BioPortal useful for supporting my analysis tasks. 

Perceived Ease of Use: 

1. Learning to operate BioPortal would not be difficult for me. 
2. I find it easy to use BioPortal to analyze what I need to when examining 

public health problems or trends. 
3. I find it easy to learn the functions of BioPortal. 
4. My interaction with BioPortal is understandable. 
5. I find BioPortal flexible to interact with in analyzing public health 

problems or trends. 
6. It would be easy for me to become skillful in using BioPortal. 
7. Overall, I find BioPortal easy to use. 

User Information Satisfaction (UIS): 

1. BioPortal offers valuable utility in my analysis of public health problems 
or trends. 

2. I can understand the functions of BioPortal. 
3. Using BioPortal can quickly generate the analysis results that I need. 
4. The analysis results by BioPortal are reliable. 
5. The visualization designs of BioPortal are good. 
6. In general, I am satisfied with the response time of BioPortal. 
7. Overall, I find the results generated by BioPortal relevant to my analysis 

of public health problems or trends. 
8. The analysis results by BioPortal are accurate. 
9. Overall, I have good control over using BioPortal to complete an analysis 

task. 
10. BioPortal is flexible for supporting different analysis tasks in public 

health. 
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Intention to Use BioPortal: 

1. When I have access to BioPortal, I would use it as often as needed. 
2. To the extent possible, I intend to use BioPortal in my job. 
3. Whenever possible, I would use BioPortal for my tasks. 

Appendix 2: Listing of Analysis Scenarios and Tasks Used in 
the Experiment-Based Evaluation Study 

Scenario 1: Examine data related to WNV. 
Task 1: In 2002, which county in New York had the highest dead bird 

count? 
Task 2: Of the three listed bird species, Bluejay, Crow, and House 

Sparrow, which had the highest number of positive cases of West Nile virus? 
Scenario 2: Examine a correlation between botulism and gender. 
Task 3: In California, for year 2001, did more men or more women suffer 

from botulism? 
Task 4: In California, for year 2002, did more men or more women suffer 

from botulism? 
Scenario 3: Determine the occurrence of foot-and-mouth disease in 2001 

for three countries. 
Task 5: In 2001, in which week(s) do the highest number of foot-and-

mouth disease cases occur in Iran? 
Task 6: In 2001, in which week(s) do the highest number of foot-and-

mouth disease cases occur in Turkey? 
Task 7: In 2001, in which week(s) do the highest number of foot-and-

mouth disease cases occur in Argentina? 
Scenario 4: Determine the location of the most intensive outbreak of 

WNV during 1999 in New York. 
Task 8: During 1999, where (in which county) and when did the most 

intensive occurrence (i.e., highest number of cases) of West Nile virus 
happen in New York State? 

Scenario 5: Describe the spread (geographically and over time) of dead 
crow sightings for New York in 2002. 

Task 9: Please describe the spread (geographically and over time) of 
dead crow sightings in New York in 2002. 

Scenario 6: Determine correlations between the incidence of WNV and 
dead bird occurrences and mosquito pool counts. 
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counts? 

observe? 

Appendix 3: Listing of Analysis Scenarios and Tasks Used in 

Scenario 1: BioPortal Website Functionalities 
This scenario will focus on the use of the BioPortal Website. In this 

These characteristics include: 
– The number of cases with certain syndromes within a time period. 

– Detailed case information. 
– In this scenario, the user will make use of the following BioPortal 
functionalities: query, case detail display, aggregate view and advanced 
query. 

Data Set: Scottsdale Health Center Chief Complaints 
Task 1: Describe the number of positive cases in the current data set: 
Task 2: Find the time coverage (first and last case dates) in this data set 
Date of first case: _________; Date of last case: _________ 
Task 3: Identify the week with the highest number of cases. 
Task 4: Identify how many female patients with GI syndrome can be 

found within this data set. 
Task 5: Identify the patient ID of the first patient with botulism 

syndrome within the given data set. 
Task 6: For the female patients in the age group 30–39, identify the top 

three syndromes besides “unknown”: 
Scenario 2: Spatial-Temporal Visualizer (STV) 
This scenario, presented in two parts, will focus on the use of the STV 

tool to visually inspect the data distribution in both space and time. The user 
will be asked to identify information such as the peak number of cases, the 
area with the highest number of cases, and temporal and spatial distribution 
trends. The user will make use of the following tools provided in STV: Time 
Slider, GeoMap, Periodic Pattern Tool, Histogram and Timeline Tool. 

Scenario 2-A 
Data Set: User Study Test Data set 1 
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the Field Evaluation Study 

Task 10: Using the BioPortal system or the spreadsheets, as assigned, 

Task 11: (Continued from Task 10) If so, what correlation do you 

to investigate West Nile virus disease, can you determine if, during 2002,

– The date of the first case of a certain syndrome. 

there is a correlation between the dead bird occurrences and mosquito pool 

scenario, the user is asked to provide characteristics of the target data set. 
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Task 1: Start STV with the User Study Test Data set 1 and zip code 
boundary, isolate botulism cases (by removing other syndromes from the 
map), and then identify the day of week with the most botulism cases during 
the time period. 

Task 2: View the case distribution in the Histogram tool and describe the 
temporal distribution. 

Task 3: Examine the spatial distribution using moving time window and 
expanding time window techniques and describe the spatial movement trend 
of botulism cases. 

Scenario 2-B 
Data Set: Mesa Fire Department EMS data 
Task 1: Start STV with Mesa EMS data (between September 1, 2006 and 

September 30, 2006) and zip code boundary, change the color of categories 
with similar colors to avoid ambiguity, and then identify the hours of the 
most trauma cases. 

Task 2: Identify the zip codes with the most toxin/poison cases. 
Task 3: Identify the address of the youngest cardio-respiratory case in the 

Apache Junction area (the easternmost zip code). 
Task 4: Isolate the Apache Junction area and identify the day of week 

with the most general medicine cases: 
Scenario 3: Hotspot Analysis 
This scenario will target the use of the Hotspot Analysis tool embedded 

in the STV. Users will have two or three simulated data sets to evaluate. For 
each data set, the user will be asked to identify outbreaks and investigate 
case details using STV. 

Data Sets: Under User Study Page [in our simulation process, the first 
15–22 days are baseline data]. 

Task 1: Regarding 167 Hemo syndrome cases with one injected 
outbreak, describe the outbreak you discovered. 

Task 2: Regarding 300 GI syndrome cases with one short-term outbreak, 
describe the outbreak you discovered. 
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SYNDROMIC SURVEILLANCE FOR THE G8 
HOKKAIDO TOYAKO SUMMIT MEETING 

YASUSHI OHKUSA1,*, TAMIE SUGAWARA1, HIROAKI SUGIURA2, 
KAZUO KODAMA3, TAKUSHI HORIE4, KIYOSHI KIKUCHI5, KIYOSU 
TANIGUCHI1, and NOBUHIKO OKABE1 

CHAPTER OVERVIEW 

We conducted syndromic surveillance during the G8 summit meeting held 
in Toyako, Hokkaido, July 7–9, 2008, as a counter-measure to bioterrorism 
attacks or other health emergencies. Surveillance actually started on June 23, 
2 weeks prior to the G8 summit, and ended on July 23, 2 weeks after the 
closing of the meeting. Part of the syndromic surveillance for prescription 
drugs was fully automated, while the remainder was done manually through 
the Internet. Similarly, data on ambulance utilization was collected and 
included in the syndromic surveillance system. We also purchased data on 
OTC sales from two private research firms in Japan. In an effort to share 
the surveillance information and discuss whether further investigation was 
needed, virtual conferences were held and Hokkaido local government, local 
health departments and laboratory, National Institute of Infectious Diseases, 
and Ministry of Health, Labor and Welfare personnel were among the 
attendees. Information was collected automatically from 23 pharmacies on 
prescription drugs and manually entered for 71 pharmaceutical companies on 
drug sales. One fire department that covered the Toyako area and was in 
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charge of highlevel officers participated in the fully automated surveillance 
system, and seven other departments in the surrounding area conducted the 
manually-entered surveillance. OTC sales information was reported for 79 
drugs with a delay of 1 day, and thus had to be processed manually. Health 
conditions were reported by 472 households that agreed to participate in the 
web-based survey; this data was analyzed automatically. Fortunately, we did 
not observe any suspected outbreaks during G8. However, local health 
departments investigated seven cases based on abberrances in ambulance 
utilization detected by the syndromic surveillance. Undoubtedly, a fully 
automated surveillance system is the best method for detecting an early signs 
of outbreak. Nevertheless, we had to use a semi-automated surveillance 
system during the G8 summit due to a limitation on our data collection. Our 
attempt at syndromic surveillance showed that it was useful and suggested 
that a routine and fully automated surveillance system, without manual data 
entry, would be needed for closer monitoring to catch signs of any suspected 
outbreak in the community. A routinized and fully automatic system without 
manual input is the next step for syndromic surveillance in Japan. 

Keywords: Syndromic surveillance system; G8 summit meetings; Ambulance 
transfer; Prescription drug; School absenteeism; Full automatic 

1. INTRODUCTION 

Currently, when high profile events such as the G8 summit meetings, 
Olympic games, or other mass gatherings or important political events are 
held, syndromic surveillance is routinely performed as well [1, 2]. The first 
attempt at syndromic surveillance in Japan was conducted in 2000 when the 
Kyushu Okinawa G8 summit-related meeting was held in Fukuoka and 
Miyazaki [3]. However, it only reclassified notifiable or sentinel weekly 
reporting diseases enforced by Infectious Control Law into five syndromic 
categories; it did not monitor symptoms. The second attempt was conducted 
during the FIFA World Cup 2002 in Korea and Japan. The syndromic 
surveillance at that time required the reporting of symptoms of emergency 
hospitalized patients in five categories through a web site. However, its 
burden on the hospitals was too heavy and thus it was stopped 2 weeks after 
the final game in each stadium. Therefore, automated routine syndromic 
surveillance, which has been used in the U.S. or Taiwan, has not been 
performed officially to date. 

In order to build up routine syndromic surveillance in Japan, research 
was started in 2004, and a prototype system was made. This system was 
officially used during the Hokkaido Toyako G8 summit meeting held July 7–9, 
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2008, in Japan as a counter-measure to bioterrorism attacks or other health 
emergencies. This chapter discusses the workable systems in Japan as well 
as some of our relevant experiments. 

We performed three types of syndromic surveillance, i.e., for prescriptions, 
ambulance transfers, and OTC (non-prescribed, over-the-counter) drug sales, 
during the Hokkaido Toyako G8 summit meeting in July 2008. We also 
performed some experiments using data from Electronic Medical Records 
(EMR), orders for medical examinations, absenteeism at school, and noso-
comial outbreaks. In the following sections, we explain these surveillances 
in detail. Before that, we will explain the background and situation concern-
ing syndromic surveillance in Japan. 

2. BACKGROUND 

Infection Control Law in Japan has asked doctors to cooperate in 
syndromic surveillance for pandemic flu and smallpox since 2007. However, 
doctors have to report by typing the number of patients on the web site, as in 
the system used during the FIFA World Cup, or by sending a fax to local 
public health centers. It imposes a heavy burden of reporting, and thus it has 
not worked yet. Therefore, we need an automated system for routine 
syndromic surveillance. 

On the other hand, medical services for outpatients are well developed 
due to universal public health insurance. Even patients who have mild 
symptoms can visit a clinic freely in Japan. Thus the monitoring of outpatients 
provides very timely information to detect unusual events. Conversely, 
EMRs haven’t had much penetration, less than 10% at clinics and 20% at 
hospitals. Moreover, neither HL7 nor other standards are used by EMRs. 
Therefore, it is very difficult to develop a syndromic surveillance system 
using EMRs such as those in the U.S. We would have to develop a system 
for each EMR and this has a heavy cost. 

Privacy is a much bigger concern in Japan, in comparison with the U.S. 
Even zip codes, which are more specific than just the city, are not permitted 
to be used. Moreover, almost all hospitals and clinics have not connected 
EMRs to the outside even for public health purposes, so as to protect 
privacy. 

On the other hand, systems surrounding EMRs, such as medical claim 
data at clinics or hospitals, or prescription data at pharmacies, are recorded 
electronically at a much higher rate than EMRs. 
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3. METHODS 

3.1. Syndromic Surveillance for Prescriptions 

In Japan, there are about 40,000pharmacies and almost half of the drugs 
prescribed are delivered through pharmacies. Almost all pharmacies record 
prescriptions electronically. We collaborated with EM SYSTEMS Co. Ltd., 
which is the leading company of the systems for pharmacies and, especially, 
provides the Application Server Provider (ASP) system to more than 3,000 
pharmacies. The ASP system is very useful for syndromic surveillance 
because data transfer is unnecessary, and thus it can reduce costs dramatically 
and maintain confidentially. 

Because the system uses only prescription information and the symptoms 

by age, with the categories including: less than 15, 16–64, older than 65 
years old. 

results are shown on the home page on the secure Internet in the early 
morning. Figure 20-1 shows feedback on the home page for corporate 
pharmacies in the upper panel, and the lower panel is for public health 
centers or local government which has the responsibility to control health 
risk events. The left hand side shows the situation in each pharmacy. The 
first column shows the types of drugs. The second column shows alerts in 
each type of drug in this pharmacy at level three. The red circle means the 
highest level of alert was found. The third column summarizes the number of 
patients with each type of drug in this pharmacy. On the right hand side, it 
shows the proportion of pharmacies in this area which found alerts in each 
type of drug. If all pharmacies which are cooperating in the syndromic 
surveillance in this area find alerts in a type of drug on the same day, this 
green bar becomes longest and its score is 100. The buttons which are 
labeled as “Graph” provide figures of patients or outbreak detection in the 
community. Figure 20-2 provides an example of daily prescription of 
Tamiflu or Rirenza in a pharmacy for 5 years. If we find an aberration, the 
colored circles are marked. Figure 20-3 shows an example of daily outbreak 
detection in the community. Public health centers or local governments 
restrict access to the information at the community level and thus the 
feedback home page must be as shown in Figure 20-4. 

 
 

Amantazine), and anti-Varicella-Zoster virus drugs. The last two are classified 

The data collection and analysis are operated automatically at night and 

of patients are not recorded, the syndrome categories used are the types
of drugs. Currently, it monitors drugs for relief of fever and pain, drugs
for common colds, antiviral drugs, anti-influenza virus drugs (except for 
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Figure 20-1. Feedback HP for each corporate pharmacy. 
 

 

Figure 20-2. Patients who were prescribed Tamiflu or Rirenza at each corporate pharmacy for 
5 years. 

 
Aberration is defined through the multiple regression model. Namely, we 

regress the number of patients on each type of drug on dummies for the 
week number (1–52, 53), the day of the week (Sunday–Saturday), post-
holiday, and time trends such that: 
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Figure 20-3. Outbreak detection in the community for Tamiflu or Rirenza in adults. 
 

Figure 20-4. Feedback HP for local government or public health center. 
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by using Poisson regression. Three criteria are used for aberration: low level, 
if the probability of the number of observed cases that occur is less than 
2.5%, medium level, 1%, and high level, 0.1%. 
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When the Hokkaido Toyako G8 summit meeting was held, 32 pharmacies 
(approximately 5% of pharmacies) in the surrounding area of Toyako coope-
rated in this surveillance. 

3.2. Syndromic Surveillance for Ambulance Transfer 

In Japan, there are about 800 fire department headquarters and almost all 
of them record their activity or information about patients, but very few of 
them record patients’ symptoms. We have studied Tokyo Fire Department’s 
role in syndromic surveillance since 2005. Based on our findings, the Tokyo 
Local Government will adopt this system as their own policy as a counter-
measure to a bioterrorism attack, outbreak of infectious diseases, or other 
health risk incidents, and will complete construction and begin operating in 
2009. However, cities other than Tokyo are relatively small, and thus they 
cannot create their own systems themselves. Therefore, we have been 
constructing the reporting system with syndromic surveillance since 2007, 
collaborating with WAKO SHOUJI Co. Ltd. which develops and sells 
Bestoru, a reporting system for ambulance transfer at small fire departments. 
Bestoru has two types of systems: one a standalone system with the server in 
the headquarters of the fire department, and the other type is ASP. 

Recorded symptoms include fever, difficulty in breathing, diarrhea, 
vomiting, and convulsion. Several symptoms can be selected simultaneously 
and it analyzes every hour for 24 h, thus this system has high timeliness in 
comparison with other syndromic surveillance systems in Japan. This system 
is fully automated and there is no burden to ambulance teams except for 
their routine tasks. The aberration detection algorithm is the same as the 
syndromic surveillance for prescriptions as mentioned above. 

Figure 20-5 shows the top page of Bestoru, and running telop inform the 
ambulance transfer staff if some aberrations in the last 24 h were detected. 
Of course, it also provides such information to public health centers or local 
governments through the home page as in Figure 20-6 which is very similar 
to Figure 20-1, but classification is changed to symptoms instead of types of 
drugs. It also provides some graphs and aberration detection as in Figure 20-7. 

When the Hokkaido Toyako G8 summit meeting was held, this syndromic 
surveillance system had operated routinely at the Nishiiburi Fire Department 
which covers the Toyako area where the meeting was held. Moreover, the 
simpler version had been operating at the delegation team location for a 
week when the meeting was held. Other fire departments around the summit 
meeting also cooperated in reporting the number of transfers by symptom for 
1 month. 
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Figure 20-5. Top page of Bestoru. 
 

Figure 20-6. Feedback HP for local government or public health center. 
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Figure 20-7. Number of transferred due to vomiting for the last 2 months. 
 
Currently, Bestoru with syndromic surveillance has been operating 

routinely at two other departments besides Nishiiburi. The number of operating 
departments increased to 20 in 2007. However the share of Bestoru is just 
2.5%. It is important that syndromic surveillance is adjusted to systems in 
addition to Bestoru, as well as Bestoru increasing its share so as to cover a 
wider area in Japan. 

3.3. Syndromic Surveillance for OTC Drug Sales 

We can buy OTC sales data from private research firms in Japan, 
though it is provided without any charge from national chain phar-
macies in the U.S. Thus we cannot operate syndromic surveillance 
using OTC sales routinely; it must be used in surveillance for high 
profile events such as G8 summit meetings or the World Cup. 
However, its sensitivity and timeliness, especially in the case of OTC 
drugs for the common cold, have been confirmed in Japan [3]. 

For the Hokkaido Toyako G8 summit meeting, we monitored OTC 
sales of common cold drugs, drugs for relief of fever and pain, anti-
diarrhea drugs, drugs for eyes, and drugs for skin. In total, 71 pharmacies 
around the meeting location joined for 1 month, i.e., from 2 weeks 
before the meeting until 2 weeks after the meeting. However, so as to 
obtain more credible detection of aberrations, we used the past data of 
each pharmacy for 2 years. The aberration detection algorithm is the 
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same as the syndromic surveillance for prescriptions and ambulance 
transfer as mentioned above. 

Unfortunately, data transfer from pharmacies is not automatic, so 
the system requires manual input, which costs time and money. 
Usually, data transfer is completed by 2 o’clock p.m. After that it is 
analyzed and the results are shared by 5 o’clock in the evening. 
Therefore this system lacks timeliness in comparison with the two 
other syndromic surveillance systems. 

3.4. Joint Conference for Evaluation of Aberration 
Signals from the Syndromic Surveillance System 

Though aberration signals are reported from statistical analysis, we have 
to check manually and decide whether we require local public health centers 
to investigate so as to obtain more detailed information. Thus we held a joint 
meeting with the Hokkaido local government, local public health center, 
Hokkaido local public laboratory, National Institute of Infectious Diseases, 
and the Ministry of Health, Labor and Welfare everyday even on the 
weekend. 

4. RESULTS 

The G8 summit meeting closed without any health threat event or 
emergency. We used the system for 1 month. However, the syndromic 
surveillance system found some aberrations. Table 20-1 summarizes 
the results of aberration detection by surveillance. The surveillance for 
ambulance transfer found 40 aberrations, among which we found the 
high aberration seven times on the second, third, fourth, seventh, 
eighth, tenth and 17th of July. Since the timing is just before, during, 
or just after the meeting, and the location of aberration detection was 
very close to the meeting place, the local public health center 
investigated and collected information about characteristics of patients 
and their symptoms. Such information was reported to Hokkaido local 
government and the National Institute of Infectious Diseases; however, 
their evaluations determined that there was no public health threat. 
Two weeks later, the official disease surveillance reported an increase 
in the number of patients with Herpangina, and thus we conjecture 
that those aberrations were due to severe Herpangina cases. 
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Table 20-1. Number of aberration detections and their level by surveillance. 
 Ambulance Transfer Prescriptions OTC 

Low 23 8 1 
Middle 10 0 0 
High 7 0 0 

 
As mentioned before, the system was semi-automated, with part 

being automated and another part operated manually. Though all 
participants understood the importance of cooperating in this syndromic 
surveillance for the G8 summit meeting, it was difficult to maintain 
the focus needed for manual operation even for just 1 month. For 
example, Figure 20-8 shows the reporting rate for prescriptions from 
pharmacies. A sharp trough means Sunday, when most pharmacies are 
closed. About 30% of pharmacies reported automatically, so the 
minimum reporting rate is higher than 30%. It indicates clearly that 
the reporting rate declined gradually for 1 month. Other than manual 
data input, there were also some mistakes in manual calculations, and 
the system was down once. Though the system downtime was 
scheduled in advance, it affected the syndromic surveillance system 
heavily and the system showed its vulnerability. It is critical to have a 
fully automated syndromic surveillance approach with fault-tolerance 
measures. 

 

 Figure 20-8. Reporting rate in the surveillance for prescriptions. 
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5. CONCLUSIONS AND DISCUSSION 

The value of syndromic surveillance is obvious during large events. 
Routine syndromic surveillance practice is important to detect and prepare 
responses to bioterror attacks and emerging diseases such as the A/H1N1 
influenza. After the G8 summit meeting, we started to construct a routine 
syndromic surveillance system based on our experience with syndromic 
surveillance during the G8 summit meeting. In the three surveillance systems 
presented, we constructed the system of prescriptions for practical use 
covering all of Japan until the end of April 2009. In total, about 2,100 
corporate pharmacies, 5% of all pharmacies in Japan, are included. Because 
of a novel influenza outbreak, the system will expand to include 3,000 
pharmacies, about 7% of all pharmacies, until the end of June 2009. Other 
research [4] showed that a system with 1,200 pharmacies, if distributed 
uniformly in Japan, can function almost equivalently with the current 
sentinel surveillance for (seasonal) influenza. However, the corporate 
pharmacies do not distribute uniformly. In Figure 20-9 a smaller number of 
the population covered by one corporate pharmacy is marked with a dark 
color, whereas white-color regions show prefectures where we cannot operate 
this surveillance method. This figure shows there are some differences in 
covered population per corporate pharmacy, and the system has not yet been 
operated in two prefectures. The next step is to start this system in the two 

Figure 20-9. Population per corporate pharmacy. 
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prefectures. Moreover, the purpose of the syndromic surveillance is not to  
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trace the trend of the number of patients, but early detection. In order to 
maximize early detection, more pharmacies must join the effort. We believe 
it will be important to extend the system with more pharmacies before the 
second wave of this A/H1N1 pandemic develops this winter. 

6. OTHER SYNDROMIC SURVEILLANCE 
SYSTEMS AT THE EXPERIMENTAL LEVEL IN 
JAPAN 

Finally, we are also developing and constructing other syndromic surveil-
lance systems as experiments, other than the systems mentioned above. These 
remain at an experimental level, however, and will not operate practically in 
the near future. The systems summarized in this section include syndromic 
surveillance from EMRs, orders for medical examinations, absenteeism at 
school, and nosocomial outbreaks; we describe each system briefly. 

6.1. Syndromic Surveillance from EMRs 

Syndromic surveillance from EMRs is the most widely adopted syndromic 
surveillance used in the U.S. and Taiwan. However, as mentioned before, 
low penetration and no standardization in EMRs and high privacy concerns 
are a barrier to developing syndromic surveillance from EMRs in Japan. 
Nonetheless, we are developing syndromic surveillance from EMRs for 
outpatients and then applying it to inpatients so as to detect nosocomial 
outbreaks as early as possible. 

We have completed the development of a syndromic surveillance system 
for outpatients for three types of EMRs. One is the most widely used EMR at 
clinics in Japan and it has more than 2,000 users out of 0.1 million clinics in 
total. However the number of users of this type of EMR with syndromic 
surveillance is limited to just two clinics. We expect the number of 
cooperating clinics with this type of EMR will grow rapidly. The second 
type of EMR which has adopted syndromic surveillance has small prevalence, 
less than 100. Though only 12 clinics which use this type of EMR cooperate 
in syndromic surveillance, half of them are located in the same city, Izumo 
City, Shimane Prefecture, which has a population of about 200,000. The 
other half of them are covered by the same public health center, which 
covers a population of 22,000. Thus intensity of this syndromic surveillance 
is quite high. The third EMR is for one hospital with more than 600 beds as 
well as for detection of nosocomial outbreak, which it performs by moni-
toring inpatients. It is located in Izumo City, and has joined the EMR 
syndromic surveillance network there. 
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The system was started in 2006 and is presented in Figure 20-10. First, it 
searches for keywords such as fever or diarrhea in complaints in EMRs in a 
clinic or hospital. Then it counts the number of patients and sends the 
information to a web server which is outside the clinic or hospital, everyday 
at midnight. The web server calculates the proportion of clinics or hospitals 
which find some alerts of outbreak detection in the community. It also 
provides this information to the local government and local public health 
center, as well as to the cooperating clinics and hospital. 

 

Figure 20-10. System for electronic medical record. 
 
Figure 20-11 shows the home page on the web server. The left hand side 

shows the situation in each clinic and hospital. The first column shows the 
symptoms such as fever, respiratory symptoms, diarrhea, vomiting, 
convulsion, and fever with respiratory symptoms. Some symptoms are 
classified by gender or age class, under 15, under 65, and older than 65. The 
second column shows alerts in each symptom in this clinic or hospital at 
level three. The red circle means the highest level of alert was found. The 

472 



20. Syndromic Surveillance for the G8 Hokkaido Toyako Summit Meeting 
 
buttons labeled “graph” show the number of patients and alerts. The last 
column on the left hand side shows the number of patients with each 
symptom in this clinic or hospital. 

Figure 20-11. Feedback HP for each corporate clinic or hospital. 
 
On the right hand side, it shows the proportion of clinics or hospitals 

which found alerts in each symptom. If all clinics and hospitals which are 
cooperating in this project find alerts in a symptom in the same day, this 
green bar becomes longest and its score is 100. The buttons labeled “Graph” 
also show the number of outbreaks detected in the community. 

Figure 20-12 is provided by clicking the graph button on the left hand 
side. It shows the number of patients with each symptom in this clinic or 
hospital for 6 months. Red or yellow circles indicate high and medium level 
alerts in vomiting recently. The graph shown in Figure 20-13 is brought up 
by clicking the button on the right hand side; it shows the proportion of 
clinics or hospitals which found alerts in the last 6 months. The outbreak of 
vomiting seems to be significant even at the community level and the local 
public health center recommended intensified hand-washing to schools on 
September 4th. 

If the system finds the highest alert in a clinic or hospital, it sends an  
e-mail automatically to the clinic or hospital telling them to check the home 
page. Moreover, if the system receives the highest alert from multiple clinics 
and hospitals, it sends an e-mail to all clinics and hospitals as well as the 
local government and local public health center. 
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Figure 20-12. Number of patients due to vomiting and aberration detection at each clinic or 
hospital. 

 

Figure 20-13. Outbreak detection in the community. 
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This system confirmed the Norovirus outbreak in 2007 and detected the 
late influenza outbreak in the middle of March. Moreover, it detected the 
outbreak of meningitis in September. A doctor used the information about 
the early detection of influenza to announce to patients and neighborhood 
pharmacies to cancel leave plans and to purchase masks or rapid test kits. 

6.2. Syndromic Surveillance from Orders for Medical 
Examinations 

Even though EMRs have low penetration, claim data is gradually 
changing over to electronic format because public health insurance will limit 
the acceptance of claims from the web only starting in 2011. The Japan 
Medical Association has developed their own original claim data system, 
ORCA, and distributed it freely. ORCA will be used to record all treatment 
or medical examinations which are performed and which require patients to 
pay out-of-pocket. Thus, if we can draw some information from ORCA, 
especially for ordered or performed medical examinations, we can guess 
patients’ symptom even though ORCA does not record the results of such 
examinations. For example, the number of rapid tests for influenza will 
reflect the number of patients with influenza-like-illness, but not confirmed 
influenza. 

This system is currently under construction. However, ORCA users 
number more than 5,000 and it will increase to more than 10,000, which is 
10% of all clinics in Japan, by 2011. Therefore syndromic surveillance with 
ORCA also will cover a substantial number of clinics. Moreover, the Japan 
Medical Association already declared the use of ORCA for monitoring for 
outbreak of infectious diseases. Therefore, we hope that the Japan Medical 
Association will perform syndromic surveillance for medical examinations 
using ORCA. 

6.3. Syndromic Surveillance from Absenteeism at School 

School absenteeism is one source of syndromic surveillance in the U.S. 
[5] or Taiwan. Moreover, since school closure may mitigate an influenza 
epidemic [5], the monitoring of school absenteeism is important for control 
not only of seasonal influenza, but also pandemic flu. Actually, elementary 
and junior high schools in Japan sometimes close in the winter when the rate 
of absenteeism is higher than a certain level, about 30%. However such  
a criterion seems to be very high to control influenza activity. Therefore, 
we focus on school absenteeism below the closure level, so as to detect 
influenza or other infectious disease outbreaks as early as possible. 
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Unfortunately, school absenteeism is not recorded electronically to date. 
Thus, as a start, we are developing an absenteeism recording system on the 
web. It records the number of absentees by class and by symptoms, which 
are fever, headache, diarrhea or stomachache, vomiting or nausea, influenza, 
and others. Then we apply C1 of EARS to detect aberrations. The aberration 
information is shared with the education committee, local public health 
center, and doctors surrounding the school. 

Since September 2008, we are performing the number of cooperating 
schools to 20 elementary and junior high schools. We hope that the system 
can detect outbreaks early and trace their geographical spread among schools. 

6.4. Syndromic Surveillance for Nosocomial Outbreak 

As mentioned before, the syndromic surveillance for EMRs is also applied 
to detect nosocomial outbreaks [6]. Beginning in March 2007, two other 
university hospitals adopted this system. 

Moreover, we applied a similar syndromic surveillance system to long 
term care facilities for the elderly. The elderly population is increasing in 
Japan, and about 4% of the elderly live in long term care facilities. 
Sometimes, such facilities are attacked by influenza or Norovirus outbreaks 
and this becomes a public concern. However, long term care facilities do not 
have EMR systems and thus we are developing a recording system on the 
web initially, the same as for school absenteeism. We will then apply EARS 
C1 to detect aberrations. Currently, six facilities are cooperating in this 
experiment. We hope to extend the number of cooperating facilities and 
exchange aberration information among close facilities and local public 
health centers. 

QUESTIONS FOR DISCUSSION 

1. How should we design a syndromic surveillance system for high profile 
events such as Olympic Games or G8 summit meetings? 

2. How should we design a routine syndromic surveillance system? 
3. What is common and different in these surveillance designs? 

We acknowledge all participants of the syndromic surveillance for the 
G8 summit meeting. 
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