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Abstract

Sperm DNA damage is associated with poorer assisted reproductive 
treatment (ART) outcomes including reduced fertilization rates, embryo 
quality, and pregnancy rates and higher rates of spontaneous miscarriage 
and childhood diseases. It shows promise as a more robust biomarker of 
infertility than conventional semen parameters. Among the sperm DNA 
testing methods, the alkaline comet assay is a sensitive, reliable, and 
powerful tool to detect even low levels of DNA damage within individual 
sperm. The present chapter provides an overview of the use of the alkaline 
comet assay in sperm. This includes the need for standardization of the 
alkaline comet assay protocol and its present strengths and weaknesses. 
Since sperm DNA damage is often the result of increased oxidative stress 
in the male reproductive tract, primarily formed due to an imbalance 
between reactive oxygen species generation and antioxidant depletion, a 
novel addition to the comet assay to measure oxidized bases is explored. 
The potential use of antioxidant therapy to protect against such damage is 
also described. Finally, the diagnostic and prognostic values of sperm DNA 
damage measures in determining the assisted reproductive technology 
(ART) success are discussed.
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The Need for Novel Diagnostic  
and Prognostic Tests

Male infertility is implicated in more than 40% of 
couples presenting for treatment with assisted 
reproductive technology (ART). Conventional 
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semen analysis continues to be the only routine 
test to diagnose male infertility. However, semen 
analysis cannot discriminate between the sperm 
of fertile and infertile men [1]. Recent evidence 
has suggested that instability in the genomic 
material of the sperm nuclei is a more robust 
parameter in measuring the fertility potential of 
sperm, either in vivo or in vitro. For a test to be 
useful diagnostically or prognostically, it must 
have a threshold value that provides a discrimina-
tory power above or below the threshold value 
with little overlap between groups of fertile and 
infertile men and couples with ART success and 
failure. However, neither the routine semen anal-
ysis nor the available sperm DNA tests yet meet 
these standards (reviewed in references [2, 3]).

The primary function of the sperm is to deliver 
the paternal genome to the oocyte. Recent studies 
have shown a number of sperm nuclear abnor-
malities such as DNA strand breaks, Y chromo-
some microdeletions, alterations in chromosome 
number, distorted epigenetic regulation and 
sperm’s environmental milieu during epididymal 
transport and ejaculation. Factors such as 
increased oxidative stress or low levels of anti-
oxidants may have implications on male repro-
ductive health [4]. As the structural organization 
of the sperm chromatin is also essential for the 
normal function of the sperm [5], characterization 
of sperm DNA quality has gained importance. In 
recent years, comet assay, TUNEL, SCSA, and 
SCDA or Halo assay, in situ nick end labeling 
have been studied extensively to analyze sperm 
chromatin integrity. Each of these tests deter-
mines different aspects of DNA integrity, but to 
date, combining all the studies available in meta-
analysis shows that these tests lack the statistical 
power and diagnostic potential necessary to 
incorporate them into routine clinical use.

Causes of Sperm DNA Damage

In recent years, the generation of reactive oxy-
gen species (ROS) has been widely studied in 
the male reproductive tract and reported to be a 
concern because of their toxic effects on sperm 

quality and function (reviewed by Saleh and 
Agarwal [6]). They have been shown to cause 
DNA fragmentation in the reproductive tract as 
well as damage in ejaculated sperm [7]. High 
levels of ROS have also been reported in the 
seminal plasma of infertile men [8]. Sperm are 
vulnerable to the oxidative-stress-mediated dam-
age, due to their structure with a high proportion 
of polyunsaturated fatty acids in their plasma 
membranes [9]. As sperm cannot repair such 
damage, sperm DNA has evolved to protect itself 
by compact packaging of the sperm DNA by 
protamines [10, 11].

The exact mechanisms by which ROS induces 
DNA damage are poorly understood, However, 
ROS-induced sperm DNA damage is exemplified 
by DNA cross-links, frameshifts, production of 
base free sites, chromosomal rearrangements and 
DNA base-pair oxidation [12–14]. It is also well 
known to cause strand breaks, with the levels of 
ROS correlated with increased percentage of sin-
gle and double-strand damage in sperm [15–17]. 
ROS-mediated DNA damage is also seen in the 
formation of modified bases, which are often 
converted into strand breaks and considered to be 
important biomarkers for oxidative DNA damage 
[18]. Finally, ROS cause gene mutations such as 
point mutations and polymorphism [19, 20].

Seminal plasma is contaminated with ROS 
[21, 22] primarily produced by leukocytes and 
defective sperm [23]. The presence of elevated 
levels (>1 × 106/mL) of leukocytes in the semen is 
defined as leukocytospermia [24] and is associ-
ated with increased levels of ROS, leading to 
sperm DNA damage [25]. Cytoplasmic droplets 
are also associated increased ROS generation and 
poor sperm quality [26, 27].

Environmental and Lifestyle Hazards

It has recently been reported that male fertility 
declines with age, even though spermatogenesis 
continues [28]. An increase in male age has been 
associated with increased genetic and chromo-
somal defects [29, 30]. Men over 37 years have 
been shown to three times more sperm DNA 
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damage then men aged <37 years [31, 32]. Male 
germ cells are particularly vulnerable to environ-
mental chemicals and xenobiotics that cause 
DNA damage [33]. Studies also show the adverse 
impact of some occupations to increase the 
sperm DNA damage, for example among coke 
oven workers [34]. Oh et al. [35] concluded that 
there are elevated levels of DNA damage among 
waste incineration workers, when compared with 
men from similar origin. Further, men working 
in the factories with organic molecules such as 
styrene show a significant amount of increase 
in sperm DNA damage [36]. Similarly, men 
working in the insecticide and pesticide indus-
tries have higher levels of sperm DNA damage 
[37, 38].

A further hazard for sperm DNA is by phar-
macological exposure to drugs. This has become 
very common as molecular medicine advances, 
especially in the field of cancer. Chemothera-
peutic drugs are genotoxic to the male germ 
cells. A well-known example for such an inter-
vention is the cyclophosphamide [39, 40] in 
animal model. Hellman et al.’s [41] cyclophos-
phamide treatment resulted in a five fold increase 
in DNA damage. Environmental exposure of xen-
obiotics cannot be avoided in our contemporary 
lifestyle because these pollutants are present in 
our food, water, and air. Studies have shown the 
association between environmental estrogens 
and derived compounds and male infertility 
through elevated sperm DNA damage [42]. 
Environmental pollutants such as organochlo-
rides [43] and smog [44] also have the ability to 
induce DNA damage. Bennetts et  al. [45] 
showed that estrogenic compounds such as 
2-hydroxyestradiol induce redox cycling activi-
ties and concomitant sperm DNA damage. 
These examples support the belief that expo-
sure to xenobiotics has powerful impacts on 
sperm DNA and sperm functions, leading to 
male infertility.

Lifestyle choices also play an important role 
in male infertility. For example, smoking and 
consumption of alcohol and caffeine have been 
associated to the increase in nuclear DNA damage 
of the white blood cells [46, 47]; on the contrary, 

very little is known about their effect on sperm 
DNA [48]. There is a very strong and significant 
correlation between smoking and genetic defects 
in the sperm [49, 50]. Smoking increases oxida-
tive stress, which results in depletion of antioxi-
dants in the seminal plasma, thereby inducing 
oxidative DNA damage to the sperm [15] and 
mutagenic adducts [51]. Recent studies have also 
suggested a possible link between cell-phone use 
associated with electromagnetic radiations and 
sperm DNA damage [52–56]. Finally, physical 
factors such as mild scrotal heating [57] and radio 
frequencies [55] have also been proven to dimin-
ish sperm DNA integrity.

The Comet Assay: What Does  
It Measure?

For a sperm DNA test to be clinically useful, (a) it 
should measure both single- and double-strand 
breaks, as both may be important and the oocyte 
has limited ability to repair fragmented paternal 
DNA, (b) it should measure the level of DNA 
fragmentation in each sperm, as an ejaculate is 
known to show a high degree of variation, (c) the 
methodology should be appropriate for cell lysis 
and DNA decondensation for full extent of 
damage to be determined, (d) the test must have 
strong predictive capacity for pregnancy outcome 
and little overlap between fertile and infertile samples. 
Among the tests currently available, the alkaline 
comet assay addresses the first three above-mentioned 
issues but useful thresholds have not been estab-
lished yet to validate the assay.

Initially, the comet assay [58] was designed to 
characterize the structure of the nucleus. However, 
when electrophoresis of DNA strands after alka-
line denaturation came into existence in 1988 by 
Singh et al., the detection of DNA damage within 
the nucleus became a possibility. Collins et al. [59] 
suggested that the migrated comet tail after elec-
trophoresis consists of fragments originated from 
relaxation of supercoiled loops and single-stranded 
DNA formed under alkaline conditions. Some 
studies suggest that double-strand DNA breaks 
alone may be detected under neutral conditions 
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(pH 8–9) [60, 61], and in these studies the level of 
measurable DNA damage is low compared to the 
alkaline comet assay. This is due to either the mea-
surement of additional DNA damage by the alka-
line condition or the relatively higher migration of 
DNA strands under alkaline conditions [62].

The extent of DNA damage in individual cells 
could be monitored by the use of image analyzing 
system. Presently, different commercial software 
packages are available to measure the comet 
parameters. A fully automated comet analyzing 
system has also been developed [63]. In the past, 
different methodologies were used to measure the 
extent of DNA damage such as the proportion of 
cells with altered tail DNA migration, approaches 
classifying comets into several categories based 
on the tail migration [64, 65]. However, these 
approaches are generally limited to electropho-
retic conditions. Hughes et al. [66] reported that 
the evidence for intact DNA is considered more 
important in relation to fertility status than mea-
surement of other comet parameters that could be 
altered by the experiment conditions.

The commonly used comet parameters are 
percentage head DNA, percentage tail DNA, tail 
length, and olive tail moment. The software sys-
tem analyzes the light intensities (fluorescence) 
in the head relative to the tail to determine the 
percentage of DNA present in the head and tail. 
The background light intensity is subtracted from 
head and tail intensities to get the actual value. 
Also, the sperm populations are known to be 
more heterogeneous, and the baseline values of 
DNA damage of sperm population in an ejaculate 
are substantially higher than those in somatic 
cells [67]. Although, few number of sperm could 
be analyzed in the comet assay, Hughes et al. [66] 
demonstrated that the analysis of 50 sperm is 
sufficient to provide a measurement of DNA 
damage of the total sperm population with a 
coefficients of variation lower than 4%.

The comet assay is highly sensitive to detect 
extensive fragmented cell in the form of nonexis-
tent heads or a large diffused tail termed as 
“ghost” or “clouds” or “hedgehogs” [68]. In such 
cases, the comet image system cannot interpret 
the full extent of DNA damage [69]; therefore, it 
is advisable to consider the ghosts as completely 
damaged cells. In sperm, such highly damaged 

cells should not be excluded during analysis 
[70]. The DNA-specific fluorescent dyes are used 
for comet visualization. The most frequently 
used fluorescent dyes are ethidium bromide, 
propidium iodide, DAPI, SYBR Green I, and 
benzoxazolium-4-quinolinum oxazole yellow 
homodimer [71]. Addition of an antifade reagent 
along with fluorescent dyes could significantly 
reduce fluorescence quenching [72]. Nofluorescent 
dyes such as silver nitrate are also reported for 
comet assay; however, the efficiency of the assay 
is reduced [73]. Excess of fluorescence dye could 
increase the background intensity of the slides 
thereby very low-molecular-weight DNA frag-
ments could not be measured. Hence, standard-
ization of the comet assay is required for accurate 
performance.

Strengths of Comet Assay

The comet assay is one of the most sensitive tech-
niques available to measure DNA damage, and 
according to Aravindan et al. [74], the results of 
comet assay are also related to the results obtained 
from the TUNEL assay. The alkaline comet assay 
could be used in all the cell types and also in the 
sperm [75]. The assay requires only a few numbers 
of cells; hence, the assay is possible in cases of 
oligospermia and testicular biopsy. The DNA 
damage data can be collected at the level of indi-
vidual cells, making the analysis efficient. The 
removal of protamines and histones during the 
assay reveals the total DNA damage in the cell. 
The range of DNA damage measured in sperm 
using the alkaline comet assay varies from 0–100% 
showing its capacity to identify sperm with much 
or little damage. A further advantage is that, unlike 
the TUNEL and SCSA, which detect primarily 
breaks in histone-associated chromatin, the comet 
assay has a broader use in detecting breaks in both 
protamine- and histone-bound chromatin equally.

Weaknesses of Comet Assay

One disadvantage of the comet assay is that it 
lacks standardized protocols, which makes it 
difficult to combine the results from different 
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laboratories [76]. This should be resolved by 
agreement on an optimal protocol (see next sec-
tion). The assay is criticized for the use of high 
pH conditions, which is known to denature the 
alkaline-labile sites measurable after electropho-
resis [77], making it difficult to discriminate 
between endogenous and induced DNA breaks. 
However, labile sites may be considered as 
another form of potential damage, and some con-
sider this as a strength, in that an indication of 
existing and potential damage may be more 
important clinically. The assay is also criticized 
for an underestimation of DNA damage that may 
occur through entangling of DNA strands or the 
presence of proteins and cross-linked DNA 
strands, which could restrict the movement of 
DNA fragments during electrophoresis. In some 
protocols, incomplete chromatin decondensation 
will not allow all strand breaks to be revealed. 
Overlapping comet tails decrease the accuracy of 
the assay, and few small tail fragments are lost or 
too small fragments are difficult to be visualized. 
As in other DNA tests, strong reducing agents are 
sometimes used to remove protamines, and they 
may increase what is perceived to be baseline 
damage. Also, the assay requires a laborious 
process of analysis and shows high interla
boratory variation and, hence, is not used clini-
cally [78]. Owing to a labor-intensive and sensitive 
protocol, the assay requires skilled technicians for 
accuracy. Finally, the available software to mea-
sure DNA damage cannot recognize “Ghost cells” 
without head DNA and overlapping comet tails, 
making the scoring difficult. However, most of 
these weaknesses can be corrected with appropri-
ate protocols and training.

Need for Standardized  
Methodology for the Comet

The comet assay is currently used primarily for 
genotoxic studies, although it is a test with great 
potential for ART [79]. For use with sperm, a 
number of academic and methodological issues 
need to be addressed, as there is no generally 
accepted protocol for the assay, even though 
international groups of scientists [53, 80–82] 
have used it extensively.

The first variation relates to lysis conditions. 
Absence of cytoplasm in sperm makes it difficult 
to optimize lysis conditions compared to the 
somatic cells. For example, in some labs, lysis of 
plasma membranes is performed by incubating 
cells with a buffer (usually containing Proteinase 
K, Triton X-100, and high concentrations of 
NaCl) for a short time (3 h), in others a long, even 
overnight period (18 h) [83–85].

As discussed previously, the sperm genomic 
DNA is more highly condensed than somatic 
cells preventing the migration of the comet tail, 
so for use with sperm it requires the use of 
additional steps to decondense the tightly packed 
DNA. A wide range of strong reagents (Proteinase 
K, Triton X-100, Dimethyl Sulfoxide, DTT, and 
LIS) have been used to remove protamines and 
histones [67, 83, 84, 86–88], but these agents 
may also induce damage. The presence of these 
different approaches prevents interlaboratory 
comparisons.

To reduce the level of laboratory-induced 
damage and make the assay more reproducible, 
our group has replaced Proteinase K with DTT 
and LIS and for a shorter duration of 3 h [85].

Another difference between labs is the pH at 
which the assay is performed. Currently, electro-
phoresis is carried out with wide range of buffers 
with pH ranging from pH 8.0 to 13.5 [66, 67, 
84–86, 89]. Such a wide range of pH conditions 
again makes results difficult to compare, as the 
extent of DNA migration is highly influenced by 
the degree of alkali denaturation and the pH 
value.

A further confusion from “comet” studies 
comes from the lack of standardization of comet 
parameters described in different studies. There 
are several parameters used in comet studies. 
McKelvey et  al. [90] described it as “DNA 
migration can be determined visually by the 
categorization of comets into different “classes” 
of migration. The percentage of DNA in the tail 
(percent migrated DNA), tail length and tail 
moment (fraction of migrated DNA multiplied 
by some measure of tail length). Of these, tail 
moment and/or tail length measurements are 
the most commonly reported, but there is much 
to recommend the use of per cent DNA in tail, 
as this gives a clear indication of the appearance 
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of the comets and, in addition, is linearly related 
to the DNA break frequency over a wide range 
of levels of damage. The approach or parameter 
used must be clearly defined and, if not typical, 
be justified.”

Hughes et  al. [67] recommended the use of 
percent tail DNA, as its coefficients of variation 
was less than 4%. Measurement of fifty comets 
from a single slide is reported to have a coeffi-
cient of variation of less than 6% within a sperm 
population [67]. They also reported the reproduc-
ibility of the image analysis software with 
repeated analysis of individual sample showed a 
coefficient of variation of less than 5.4%.

Tice et al. [71] recommended the measure-
ment of tail length, percent tail DNA and tail 
moment, finding different results between tail 
DNA and tail moment. However, Kumaravel 
and Jha [91] did not find any statistical differ-
ence with olive tail moment and percentage tail 
DNA to analyze the extent of DNA damage. 
The percentage of tail DNA is reported to be 
directly proportional to the dosage of radiation 
and concentration of hydrogen peroxide. By 
contrast, the olive tail moment is highly influ-
enced by the study conditions, so it is not con-
sistent between labs and, thus, not advisable 
for use.

In summary, agreement on a standardized 
protocol for the comet to necessary to compare 
results between groups. To reduce the additional 
DNA damage caused during the assay proce-
dure, the duration of lysis, the composition of 
the lysis buffer, the method of decondensation, 
the pH for unwinding, and electrophoresis con-
dition and parameters to be reported should be 
standardized.

Clinical Significance of DNA 
Fragmentation Measured  
by the Comet Assay

The alkaline comet assay is proving to be a useful 
diagnostic tool for male infertility. The clinical 
importance of the comet assay in assessing male 
infertility has been demonstrated by a number of 
authors [79, 92–94]. However, until recently, its 

predictive value in assisted reproduction outcome 
has been assessed by few [86, 95].

In a recent study from our group [82] of 360 
couples having IVF or ICSI we reported that 
sperm DNA damage is associated with poorer 
ART outcomes and promises to be a more robust 
biomarker of infertility than conventional semen 
parameters. We found significant inverse corre-
lations between DNA fragmentation, fertiliza-
tion rate, and embryo quality assessed by the 
alkaline comet assay (to detect both double and 
single strand breaks) following IVF treatment. 
A decrease in fertilization rates were observed 
as DNA damage of native semen and DGC 
sperm increased. Low DNA damage (0–20%) 
showed a significantly higher fertilization rate 
compared with DNA damage >60%. Our work 
supports that of Morris et  al. [88] who also 
reported a significant correlation between fertil-
ization and DNA damage when measured by the 
neutral comet assay (measuring double-strand 
breaks only). However, by contrast, no correla-
tions were observed between fertilization rates 
and DNA fragmentation measured in alkaline 
comet assay by Tomsu et al. [95].

Our study [82] also showed a decrease in 
embryo quality following IVF treatment, as DNA 
fragmentation increased both in native semen and 
DGC sperm. The embryo quality showed a sig-
nificant decrease, when DNA damage was greater 
than 60% in the native semen. The embryo cumu-
lative score calculated according to Steer et  al. 
[96] was 15.5 in the group where sperm DNA 
fragmentation was <20% and was only 7.3 where 
sperm DNA fragmentation was >60% in DGC 
sperm. Similarly, Tomsu et al. [95] showed a neg-
ative correlation between embryo quality and 
DNA fragmentation in both the native semen and 
the DGC sperm. However, Morris et al. [88] did 
not find any association in embryo quality and 
DNA damage. In contrast to associations follow-
ing IVF, we did not find any correlation between 
sperm DNA damage and fertilization rate or 
embryo quality when ICSI was used as a treat-
ment of choice [82].

Using pregnancy as the outcome measure, 
Morris et  al. [88] did not find an association 
between clinical pregnancy and sperm DNA 
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fragmentation measured by the neutral comet 
assay. Similarly, Tomsu et  al. [95] in a small 
study (n = 40) no associations were found. 
However, we found a significant difference in 
DNA fragmentation of clinically pregnant and 
nonpregnant couples following IVF [82]. By con-
trast, although couples undergoing ICSI who 
failed to achieve a clinical pregnancy tended to 
have more DNA fragmentation but it was not 
statistically significant.

Further Uses of the Comet  
to Measure DNA Adducts

A major cause of sperm DNA damage is oxida-
tive stress due to the generation of the ROS 
from contaminating leukocytes, defective 
sperm, and antioxidant depletion [23, 97]. FPG 
is the commonly used bacterial repair enzyme 
that could recognize and excise 8-OHdG and 
other modified bases generated by ROS. This 
FPG enzyme has been shown to possess affini-
ties toward the various modified DNA bases 
[98, 99]. The catalytic activity of FPG involves 
a three-step process: (a) hydrolysis of the 
glycosidic bond between the damaged base and 
the deoxyribose, (b) incision of DNA at abasic 
sites, leaving a gap at the 3¢ and 5¢ ends by 
phosphoryl groups, and (c) removal of termi-
nal deoxyribose 5¢-phosphate from 5¢ terminal 
site to excise the damaged base showed by 
Kuznetsov [100].

When a eukaryotic or prokaryotic base repair 
enzyme or glycosylase is introduced as an inter-
mediate step during the alkaline comet assay, the 
modified bases can be converted into single-
strand breaks [101, 102]. Addition of base repair 
enzymes can increase the sensitivity of the assay 
by including the modified bases, resulting in 
total DNA damage measured after the alkaline 
comet assay [103]. Among the modified bases, 
8-OHdG is the most commonly studied bio-
marker and is often selected as a representative 
of oxidative DNA damage due to its high 
specificity, potent mutagenicity, and relative 
abundance in DNA [33, 104]

Clinical Significance of Existing 
Strand Breaks Plus Adducts 
Measured by the Comet Assay

To analyze modified bases in the sperm DNA, we 
have used the prokaryotic repair enzyme (FPG) 
as an intermediate step during the alkaline comet 
assay, to introduce breaks at sites of modified 
bases [82]. We found inverse relationships 
between total DNA damage (existing strand 
breaks plus modified bases) and IVF and ICSI 
outcomes after conversion of modified bases to 
DNA strand breaks by FPG. There was a signifi-
cant increase in DNA damage after treatment 
with the DNA glycosylase FPG in both native 
and DGC samples. In the IVF patients, addition 
of the FPG enzyme showed a significant increase 
in mean percentage of sperm DNA fragmentation 
in nonpregnant compared with that from preg-
nant couples (55 vs. 72) in the native semen and 
(42 vs. 56) in DGC sperm. Similarly, in ICSI 
couples, when modified bases were included, 
the percent DNA damage between pregnant and 
nonpregnant couples was markedly different  
(63 vs. 80 in native semen, and 50 vs. 65 in DGC 
sperm), in contrast to comet assay without FPG 
where it was not significant.

The Risks of Using Sperm  
with Damaged DNA

Sperm DNA damage measured by SCSA, 
TUNEL, and alkaline and neutral comet assays 
has been closely associated with all the stages of 
ART outcome such as fertilization, embryo qual-
ity, implantation pregnancy, and spontaneous 
abortion [105, 106]. A limited amount of sperm 
DNA damage can be repaired by the oocyte post 
fertilization, but above a threshold limit this pro-
cess is either incomplete or inappropriate, result-
ing in genetic mutations and may impact the 
viability of the embryo and the health of the off-
spring [107]. Men suffering from male infertility 
have high levels of sperm with DNA damage, 
which result in an negative impact on their ART 
outcome [25, 108–112].
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In recent years, sperm DNA damage has 
gained interest to understand the fertilization 
process to improve fertility diagnostics. The 
influence of DNA damage on fertilization rates 
in assisted reproduction is still controversial. 
A number of papers have analyzed the possible 
association between sperm DNA damage and fer-
tilization rates in vitro [16, 106, 111, 113–127]. 
But, many of these papers suggest that sperm 
DNA damage does not affect fertilization rates 
[106, 111, 115, 117–120, 126, 127]. Sperm with 
damaged DNA are still capable of fertilization 
[93] but its effect is prominent in the later stages 
[128]. Sperm with abnormal chromatin packing 
and DNA damage is showed to result in decon-
densation failure, which results in fertilization 
failure [25]. It is also showed that that a signifi-
cantly proportion of nondecondensed sperm in 
human oocytes has a higher DNA damage, com-
pared to decondensed sperm and higher degree of 
chromatin damage, this may prevent the initia-
tion or completion of decondensation, and may 
be an important factor leading to a failure in 
fertilization [129]. A negative correlation between 
the proportion of sperm having DNA strand 
breaks and the proportion of oocytes fertilized 
after IVF is established [114].

Measurement of sperm DNA damage has been 
shown to have a significant negative effect on the 
developing embryo [130]. Poor sperm DNA qual-
ity is associated with poor blastocyst develop-
ment and the failure to achieve a clinical 
pregnancy. Sperm DNA damage has a significant 
impact on embryo development [16, 95, 105, 
114, 126, 129, 131–133]. However, a number of 
studies have contradicted the influence of DNA 
damage on embryo development [106, 108, 109, 
112, 115–119, 122, 123, 126, 127]. Abnormalities 
in the embryo seen in vitro can be more directly 
related to male factors because the results can be 
assessed without the interference of female fac-
tors such as uterine and endocrine abnormalities 
that may lead to miscarriage after embryo trans-
fer [134]. The embryonic genome is activated on 
day three, and its transcriptional products take 
over from the regulatory control provided by 
maternal messages stored in the oocyte [132]. 

The effect of sperm DNA damage has been 
attributed to embryo development, particularly 
between four and eight cell stage of preimplanta-
tion development until which the embryonic 
genome is transcriptionally inactivated and the 
paternal genome plays a significant contributory 
role in embryo function during the transcriptional 
activity [133]. Therefore, the effect of sperm 
DNA damage impacts more on pregnancy rates 
than embryo quality [115].

Couples who failed to achieve a pregnancy 
are known to have a higher mean level of DNA 
fragmentation than pregnant couple after IVF 
treatment [105, 112, 115, 118–120, 122, 133, 
135]. This implies that sperm with DNA frag-
mentation can still fertilize an oocyte but that 
when paternal genes are “switched on,” further 
embryonic development stops, resulting in failed 
pregnancy [121]. In contrast to these reports, no 
significant association between sperm DNA 
damage and clinical pregnancies has been 
reported [88, 95, 114, 116, 123, 124, 126, 127, 
136, 137]. Studies using animal models show 
that oocytes and developing embryos can repair 
sperm DNA damage; however, there is a thresh-
old beyond which sperm DNA cannot be repaired 
[138]. They also reported that sperm with defec-
tive DNA can fertilize an oocyte and produce 
high-quality early-stage embryos, but then, as 
the extent of the DNA damage increases, the 
likelihood of a successful pregnancy decreases. 
Virro et al. [132] have shown that high levels of 
sperm DNA damage significantly decrease the 
pregnancy rates and results in higher rate of 
spontaneous abortions. An increase in sperm 
DNA damage is associated with decreased 
implantation, thereby a decrease in pregnancy 
rates [118]. By contrast, Bungum et al. [136] and 
Boe-Hansen et  al. [137] showed a decrease in 
implantation rates with increase in DNA damage 
but no effect is seen on clinical pregnancies. 
Frydman et  al. [106] showed increase in DNA 
damage not only decrease implantation and preg-
nancy rates but also increase spontaneous mis-
carriage rates. Lin et al. [127] also observed an 
increase in miscarriage rates with an increase in 
DNA damage.
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It is also shown that damage in the paternal 
genome could result in abnormalities occur during 
postimplantation development [139]. Genetic 
abnormalities in the paternal genome in the form 
of strand breaks are a significant cause of miscar-
riages [134]. Sperm DNA damage could likely be 
the cause of infertility in a large percentage of 
patients [140]. However, these studies may not 
causal, but simply associations between DNA 
damage and reduced ART outcomes. Are the 
tests clinically useful?

The Clinical Usefulness  
of the Comet Test

Two recent systematic reviews have shown that 
the impact of sperm DNA damage on ART out-
comes decreases from IUI to IVF and is least 
useful in ICSI [3, 141]. In IVF, using TUNEL 
and SCSA assays, the odds ratios is 1.57 (95% 
CI 1.18–2.07; p < 0.05). However, in our study 
using the alkaline comet [82] we obtained an 
odds ratio of 4.52 (1.79–11.92) in native semen 
and 6.20 (1.74–26.30) in DGC sperm for clini-
cal pregnancy following IVF, indicating its 
promise as a prognostic test. Owing to the high 
sensitivity of the test and level of damage 
observed when both strand breaks and modified 
bases were measured it was not possible to 
establish thresholds for our novel combined test. 
Following ICSI, the odds ratio for clinical preg-
nancy was 1.97 (0.81–4.77) using native semen 
and 2.08 (0.93-4.68) in DGC sperm showing 
less strength and supporting the combined odds 
ratio of 1.14 from the meta-analyses by Collins 
et  al. [141] and Zini and Sigman [3]. This 
supports the belief that ICSI bypasses genetic, 
as well as functional defects, but the results are 
counterintuitive. Given the many animal studies 
showing adverse effects of DNA damage on the 
long-term health of offspring (reviewed by 
Aitken et  al. [142]; Fernadez-Gonzalez et  al. 
[143]), we need to follow-up the children born 
by ISCI to make sure that this genetic heritage 
does not have long-term adverse effects of these 
children’s health even if short-term success in 
terms of pregnancies is achieved.

Two People but Just One  
Prognostic Test

The quest for one perfect test to predict a out-
come with multifactorial input is particularly 
unachievable when this outcome involves not just 
one individual but, in the case of ART, two 
partners. Since female factors such as age, occyte 
and embryo quality, and uterine competence all 
impact significantly on pregnancy, it is not 
surprising that if one test on the male partner is 
not acceptably strong. The current literature 
exemplifies how the controversies as to the use-
fulness of sperm DNA testing are exacerbated by 
flawed experimental design. Couples undergoing 
IVF treatment can be divided into those with 
female, male, and unexplained infertility. A large 
proportion of couples undergoing IVF treatment 
are due to female causes.

In many studies, couples with male, female, 
and idiopathic infertility have been grouped 
together. In order to assess the clinical usefulness 
of a test for one partner of the infertile couple, the 
appropriate patient population should be identi-
fied. Future studies should be designed to mini-
mize the variation in these female factors. Only 
then can we accurately determine the effects of 
sperm DNA and thereby maximize the usefulness 
of the test.

Protection of DNA from Damage

In the male reproductive tract, oxidative stress is 
due to the increase in the production of ROS, 
rather than the decrease in the seminal antioxi-
dants. Owing to the lack of cytoplasm excluded 
during spermatogenesis, there is no self DNA 
repair mechanism in the sperm; therefore, anti-
oxidants in the seminal plasma are essential to 
reduce the oxidative stress, and it is the only 
available mechanism for the sperm to protest 
against oxidative-stress-mediated DNA damage. 
Naturally, the concentration of antioxidants in 
seminal plasma is 10 times greater than in blood 
plasma [144], and the presence of antioxidants 
in the seminal plasma protects the functional 
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integrity of the sperm against the oxidative 
stress [145]. Several other studies showed the 
role of antioxidants against ROS [21, 146–148]. 
However, some studies show limited protection 
of antioxidants against induced ROS [149].

Low levels of antioxidants in semen are associ-
ated with suboptimal semen parameters (Kao 
et  al. [189]) and increased sperm DNA damage 
[150]. Oral administration of the antioxidants has 
been shown to significantly increase antioxidant 
levels in the seminal plasma and an improvement 
in the semen quality [151–155]. Specifically, anti-
oxidant treatment to infertile patients by oral 
administration of vitamins significantly improved 
their sperm motility [152, 154, 156–158], sperm 
concentration [12, 159, 160], and normal mor-
phology of the sperm [152, 159]. Improvement in 
semen parameters by administration of oral anti-
oxidants were seen in volunteers as well as patients 
[154, 161]. Studies by Lenzi et  al. [162–164] 
reported a protective function of antioxidants on 
semen quality due to a reduction of ROS and a 
reduction in the lipid peroxidation of the mem-
brane. By contrast, other studies have shown no 
significant effects of oral antioxidant treatment on 
semen parameters [165–167]. The absence of 
effects in these studies may be due to shorter 
duration of treatment [167, 168] and/or very low 
dosage of antioxidants used [169].

Administration of oral antioxidants had been 
shown to significantly decrease sperm DNA 
damage [12, 170–173] and to reduce sperm DNA 
adducts [174] and the incidence of aneuploidy in 
sperm [175], thereby increasing the assisted 
reproductive success [176, 177].

Protection of sperm from DNA damage should 
also be monitored during sperm processing and 
cryopreservation when they are especially vul-
nerable. The absence of antioxidant protection 
in these procedures has been shown to increase 
sperm DNA damage [15]. Zalata et  al. [178] 
showed that high-speed centrifugation and 
removal of sperm from the protective seminal 
plasma resulted in ROS-mediated DNA damage. 
Addition of antioxidants in the sperm medium 
could decrease oxidative stress [179] and damage 
to sperm [180]. Donnelly et al. [181] showed that 
addition of vitamins in the sperm suspension 
media could protect the sperm from DNA 

damage. This in turn would have a positive effect 
on male infertility [174]. Cryopreservation of 
sperm is known to increase the level of sperm 
DNA damage [93, 182–184].

Oxidative stress occurs when the level of ROS 
exceeds the antioxidant protection resulting in 
sperm DNA damage. Approximately, half of 
infertile men exhibit oxidative stress [185]. In light 
of these considerations, future research to deter-
mine the best regime of antioxidant therapy so be 
pursued to find an effective treatment [186–188].

Conclusions and Future 
Recommendations

Clinical evidence shows the negative impact of 
sperm DNA fragmentation on reproductive out-
comes, and sperm from infertile men show higher 
levels of DNA fragmentation than the sperm of 
fertile or donor men. Recent studies have shown 
that the use of alkaline comet assay to test sperm 
DNA fragmentation is a useful tool for male 
infertility diagnosis and early predictor of ART 
outcomes. Below novel “comet” threshold values 
of sperm DNA fragmentation in both native 
semen and DGC sperm obtained from the alkaline 
comet assay, there is evidence of infertility in vivo 
and in vitro. Therefore, it is beneficial to assess 
sperm DNA fragmentation in couples presenting 
with infertility problems and also in patients 
undergoing ART. We encourage studies to ana-
lyze the impact of sperm DNA fragmentation 
and to validate the current protocol of the alka-
line comet assay through large multicenter trials, 
using good quality control, with standardized 
protocols.
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