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Random and Deterministic Forests

Forest-based classification and prediction is one of the most commonly used
nonparametric statistical methods in many scientific and engineering areas,
particularly in machine learning and analysis of high-throughput genomic
data. In this chapter, we first introduce the construction of random forests
and deterministic forests, and then address a fundamental and practical
issue on how large the forests need to be.

6.1 Introduction to Random Forests

We have seen that tree-based data analyses are readily interpretable. How-
ever, tree-based methods have their limitations. First, tree structure is
prone to instability even with minor data perturbations. This is gener-
ally the case for all stepwise model selection procedures. Second, thanks
to the advancement of genomics and informatics, high-dimensional data
are very common. As illustrated in Example 1.7, many studies use tens of
thousands of gene expressions to predict an outcome using several tens or
hundreds of subjects. This phenomenon with a large number of variables
and limited number of observations is commonly referred to as the “large
p and small n” problem (e.g., Kosorok and Ma 2007; Zhang et al. 2008).
To leverage the richness of a data set of massive size, we need to broaden
the classic statistical view of “one parsimonious model” for a given data
set. Third, due to the adaptive nature of the tree construction, theoretical
inference based on a tree is usually not feasible. Generating more trees may
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80 6. Random and Deterministic Forests

provide an empirical solution to statistical inference (Zhang 1998a; also see
Chapter 12).

To address these limitations, the method of forests has emerged as an
ideal solution. Here, a forest refers to a constellation of any number of tree
models. Such an approach is also referred to as an ensemble. In general, a
forest consists of hundreds or thousands of trees, so it is more stable and less
prone to prediction errors as a result of data perturbations (Breiman 1996,
2001). While each individual tree is not a good model, combining them
into a committee improves their value. It is important to note that trees
in a forest should not be pruned to the “smallest” size level as described
in Section 2.3. In fact, as discussed by Breiman (1996, 2001), it would be
counterproductive to pool “good” models into a committee.

From a practical point of view, having many trees also provides us with
an opportunity to utilize more information (i.e., more variables) in the
data set, and hence we can seek more insights into and have a deeper
understanding of the data. In some applications, different trees may unravel
alternative pathways to disease prognosis or development.

How is a random forest constructed? Suppose that we have n observations
and p predictors. The following is the algorithm:

1 Draw a bootstrap sample. Namely, sample n observations with re-
placement from the original sample.

2 Apply recursive partitioning to the bootstrap sample. At each node,
randomly select q of the p predictors and restrict the splits based on
the random subset of the q variables. Here, q should be much smaller
than p.

3 Let the recursive partitioning run to the end and generate a tree.

4 Repeat Steps 1 to 3 to form a forest. The forest-based classification
is made by majority vote from all trees.

If Step 2 is skipped, the above algorithm is called bagging (bootstraping
and aggregating) (Breiman 1996). Bagging should not be confused with
another procedure called boosting (Freund and Schapire 1996). One of the
boosting algorithms is Adaboost, which makes use of two sets of interven-
ing weights. One set, w, weighs the classification error for each observation,
and the other, β, weighs the voting of the class label. Boosting is an it-
erative procedure, and at each iteration, a model (e.g., a tree) is built. It
begins with an equal w-weight for all observations. Then, the β-weights
are computed based on the w-weighted sum of error, and w-weights are
updated with β-weights. With the updated weights, a new model is built
and the process continues. Unlike bagging, boosting generally builds a very
simple model such as a tree with one split. According to Leo Breiman’s
Wald Lecture, boosting does not perform as well as bagging. More relevant
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for the spirit of this book, boosting inhibits interpretation. Indeed, the re-
peated sampling in bagging facilitates exposure of subpopulations/groups
with distinctive characteristics.

In forest construction, several practical questions often arise. Here, we
discuss some of those issues. Firstly, how many trees do we need in a forest?
Breiman (2001) chose to run 100 trees in several examples and others have
used much larger numbers. We will discuss in Section 6.2 as to how large
a random forest needs to be. As Breiman (2001) noted, the accuracy of a
random forest depends on two key factors: the prediction strength of the
individual trees and the correlation of the trees. Thus, we may keep the
size of a random forest to the minimal level if the trees can achieve the
highest strength and have the weakest correlation.

Secondly, does a random forest overfit the data without pruning the
individual trees? Breiman (2001) showed that there is no overfitting issue
by the Strong Law of Large Numbers. The prediction error of a random
forest converges as the size of the forest increases, and the error has an
upper bound that is directly related to the strength and the correlation of
the trees in the forest.

Thirdly, selecting the subset of q variables in node splitting is an impor-
tant feature of random forests. Commonly used choices are log(p) or

√
p.

However, there is a caveat with this idea. For example, in genetic stud-
ies, we tend to have a huge number of genetic markers (on the order of a
million) and some environment variables (ranging from one to hundreds).
The environment variables have few chances to be selected in the random
forest, not because they are not important, but because there are relatively
so few of them. Furthermore, even among genetic markers, not all of them
should be treated equally. Thus, in practice, we should be cautious about
the fact that the random forest treats all predictors indiscriminately. In
Section 6.5, we discuss some approaches to overcoming this issue.

Finally, after a forest is formed, how do we understand the information
in the forest, especially if it is too large to examine the individual trees?

6.2 The Smallest Forest

Although the method of forests addresses the two challenges that the tree-
based methods face, it also loses some of the advantages that the tree-based
methods possess. Most importantly, because of so many trees in a forest, it
is impractical to present a forest or interpret a forest. This is what Breiman
referred to as a “black-box” in his 2002 Wald lectures presented at the an-
nual meeting of the Institute of Mathematical Statistics. Zhang and Wang
(2009) explored whether it is possible to find a common ground between
a forest and a single tree so that we retain the easy interpretability of the
tree-based methods and avoid the problems that the tree-based methods
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suffer from. In other words, does a forest have to be large, or how small can
a forest be? To answer this fundamental question, the key idea is to shrink
the forest with two objectives: (a) to maintain a similar (or even better)
level of prediction accuracy; and (b) to reduce the number of the trees in
the forest to a manageable level.

To shrink the size of a forest while maintaining the prediction accuracy,
we need a criterion to determine the importance of a tree in a forest in terms
of prediction performance. Zhang and Wang (2009) considered three op-
tions and found that the measure “by prediction” outperformed the others.
Specifically, a tree is removed if its removal from the forest has the minimal
impact on the overall prediction accuracy. First, calculate the prediction
accuracy of forest F , denoted by pF . Second, for every tree, denoted by T ,
in forest F , calculate the prediction accuracy of forest F−T that excludes T ,
denoted by pF−T . Let Δ−T be the difference in prediction accuracy between
F and F−T :

Δ−T = pF − pF−T . (6.1)

The tree T p with the smallest Δ
T

is the least important one and hence
subject to removal:

T p = arg min
T∈F

(Δ−T ). (6.2)

To select the optimal size subforest, Zhang and Wang (2009) track the
performance of the subforests. Let h(i), i = 1, . . . , Nf − 1, denote the per-
formance trajectory of a subforest of i trees, where Nf is the size of the
original random forest. Note that h(i) is specific to the method measuring
the performance, because there are many subforests with the same number
of trees. If there is only one realization of h(i), they select the optimal size
iopt of the subforest by maximizing h(i) over i = 1, . . . , Nf − 1:

iopt = argmax
i=1,...,Nf−1

(h(i)). (6.3)

If there are M realizations of h(i), they select the optimal size subforest
by using the 1-se as described by Breiman et al. (1984). That is, they first
compute the average h(i) and its standard error ˆσ(i):

h(i) =
1
M

∑
j=1,...,M

hj(i), i = 1, . . . , Nf − 1, (6.4)

σ̂(i) = var(h1(i), . . . , hM (i)), i = 1, . . . , Nf − 1. (6.5)

Then, find the im that maximizes the average h(i) over i = 1, . . . , Nf − 1:

im = arg max
i=1,...,Nf−1

(h(i)). (6.6)

As discussed by Breiman et al. (1984), the 1-se rule tends to yield a more
robust and parsimonious model.
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TABLE 6.1. Comparison of prediction performance of the initial random forest,
the optimal subforest, and a previously established 70-gene classifier

Predicted Observed outcome
Method Error rate outcome Good Poor
Initial random forest 26.0% Good 141 17

Poor 53 58
Optimal subforest 26.0% Good 146 22

Poor 48 53
Published classifier 35.3% Good 103 4

Poor 91 71

Finally, they choose the smallest subforest such that its corresponding h
is within one standard error (se) of h(im) as the optimal subforest size iopt:

iopt = min
i=1,...,M

(h(i) > (h(im) − σ̂(im)), (6.7)

which is the critical point of the performance trajectory.
Using a microarray data set on Breast Cancer Prognosis (van de Vijver et

al. 2002), Zhang and Wang (2009) examined several approaches to selecting
the smallest forest. To begin the process, an initial forest is constructed
using the whole data set as the training data set. As the first approach, one
bootstrap data set is used for execution and the out-of-bag (oob) samples
for evaluation. As the second approach, the oob samples are used for both
execution and evaluation. As the third approach, the bootstrap samples
are used for both execution and evaluation. Lastly, bootstrap samples are
redrawn for execution and again redrawn for evaluation. It appears that
the first approach works well for the Breast Cancer Prognosis data set
that includes 288 samples, each of which contains the response variable
defined by whether the patients remained disease-free five years after their
initial diagnoses or not. Using the first approach and after replicating the
bootstrapping procedure 100 times, they found that the sizes of the optimal
subforests fall in a relatively narrow range, of which the 1st quartile, the
median, and the 3rd quartile are 13, 26, and 61, respectively. This allows
them to choose the smallest optimal subforest with the size of 7.

To compare the performance of the initial random forest with this opti-
mal subforest, they used the two forests as classifiers in the original data
set. Table 6.1 presents the misclassification rates based on the oob sam-
ples. The classifier proposed by van de Vijver et al. (2002) is included in
the table as the benchmark.

Table 6.1 demonstrates that the optimal subforest, while much smaller,
is comparable to the initial random forest in terms of prediction.
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6.3 Importance Score

Unlike a tree, a forest is generally too overwhelming to interpret. One solu-
tion is to summarize or quantify the information in the forest, for example,
by identifying “important” predictors in the forest. If important predictors
can be identified, a random forest can also serve as a method of variable
(feature) selection, and we can utilize other simpler methods such as clas-
sification trees by focusing on the important predictors. The question is:
how do we know a predictor is important? To answer this question, various
measures of variable importance have been proposed (e.g., Breiman 2001,
Friedman 2001, Chen et al. 2007). In the following, we present several vari-
able importance measures.

6.3.1 Gini Importance

During the course of building a forest, whenever a node is split based on
variable k, the reduction in Gini index in (4.4) from the parent node to
the two daughter nodes is added up for variable k, and this is done over
all trees in the forest, giving rise to a simple variable importance score.
Although Breiman noted that Gini importance is often very consistent with
the permutation importance measure (http://www.stat.berkeley.edu/
∼breiman/RandomForests), others found it undesirable for being in favor
of predictor variables with many categories (see, e.g., Strobl et al. 2007).
This phenomenon appears similar to the undesirable end-cut preference
problem discussed at the end of Section 4.1.

6.3.2 Depth Importance

Chen et al. (2007) introduced an importance index that is similar to Gini
importance score, but considers the location of the splitting variable as well
as its impact. Specifically, whenever node t is split based on variable k, let
L(t) be the depth of the node and S(k, t) be the χ2 test statistic from the
variable, then 2−L(t)S(k, t) is added up for variable k over all trees in the
forest. Here, the depth is 1 for the root node, 2 for the offspring of the
root node, and so forth. This depth importance measure was found useful
in identifying genetic variants for complex diseases, although it is not clear
whether it also suffers from the same end-cut preference problem.

6.3.3 Permutation Importance

The third importance index is the permutation importance, referred to as
the variable importance. For each tree in the forest, we count the number
of votes cast for the correct class. Then, we randomly permute the values
of variable k in the oob cases and recount the number of votes cast for
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the correct class in the oob cases with the permuted values of variable k.
The permutation importance is the average of the differences between the
number of votes for the correct class in the variable-k-permuted oob data
from the number of votes for the correct class in the original oob data, over
all trees in the forest.

The permutation importance index is arguably the most commonly used
choice. There are a few important issues to note. Firstly, the permutation
importance index is not necessarily positive, and does not have an upper
limit. Secondly, both the magnitudes and relative rankings of the permu-
tation importance for predictors can be unstable when the number, p, of
predictors is large relative to the sample size. This is certainly the case for
genomic data. Thirdly, the magnitudes and relative rankings of the per-
mutation importance for predictors vary according to the number of trees
in the forest and the number, q, of variables that are randomly selected to
split a node. As presented by Genuer et al. (2008), the effect of the num-
ber of trees in the forest is relatively minor, although more trees lead to
better stability. However, the magnitude of the importance may increase
dramatically as q increases, although the rankings may remain the same.
To illustrate this, we simulated data based on a microarray data set on
Breast Cancer Prognosis (van de Vijver et al. 2002). That study had 295
samples with 24,496 genes. We randomly selected four genes to generate
a binary (e.g., normal or abnormal) outcome y. Let x1, x2, x3, and x4 be
the expression intensities of the four selected genes. Then, the response
is derived by y = I(

∑4
i=1 xi > 0); here recall that I(·) is the indicator

function.
Figure 6.1 displays the importance scores of the four selected genes with

a range of q’s. Before the computation, genes with correlation greater than
0.1 with any of the four selected genes (in terms of the expression level)
are removed, to avoid the potential effect of correlation. There are 1000
trees in the forest. Clearly, the importance score tends to increase as the
q increases. However, the four genes keep the same order of importance.
Without going into detail, we should note that the effect of the forest size
on the importance scores is relatively minor.

Finally, there are conflicting numerical reports with regard to the pos-
sibility that the permutation importance overestimates the variable im-
portance of highly correlated variables (see, e.g., Strobl et al. 2008 and
Dı́az-Uriarte and Alvarez de Andrés 2006). Genuer et al. (2008) specifi-
cally addressed this issue with simulation studies and concluded that the
magnitude of the importance for a predictor steadily decreases when more
variables highly correlated with the predictor are included in the data set.
We also performed a simulation to examine this issue. We began with the
four selected genes. Then, we identified the genes whose correlations with
any of the four selected genes are at least 0.4. Those correlated genes are
divided randomly in five sets of about same size. Finally, we added one,
two, . . . , and five sets of them sequentially together with the four selected
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FIGURE 6.1. The dependence of the permutation importance on the choice of q.
The x-axis is q and the y-axis the importance score. Each curve is for one of the
four selected genes.

genes as the predictors. Figure 6.2 is consistent with the result of Genuer
et al. (2008). We can see that the rankings of the predictors are preserved.

Furthermore, let us examine the impact of the correlation from a differ-
ent point of view. We again began with the four selected genes and then
included genes that are correlated with any of the correlated gene at least
0.6, 0.4, and 0.2. We see from Figure 6.3 that the magnitude of the impor-
tance for a gene increases as we restrict the correlation to a higher level.

It is reasonable to say that although variable importance is an important
concept in random forests, we need to be cautious in the interpretation. In
practice, the ranking is more relevant than the magnitude.

6.3.4 Maximum Conditional Importance

To overcome some of the issues raised above, Wang et al. (2010) intro-
duced a maximal conditional chi-square (MCC) importance by taking the
maximum chi-square statistic resulting from all splits in the forest that use
the same predictor. Through simulation studies, Wang et al. (2010) found
that MCC can distinguish causal predictors from noise. In addition, they
compared the specificity (true negative probability) and sensitivity (true
positive probability) of the importance indices introduced above using var-
ious genetic models. All indices have high specificity, i.e., screening out
SNPs that are not associated with an underlying trait. However, MCC has
the highest sensitivity in identifying the causal SNPs. Another use of MCC
is to assess interactions. For example, consider the interaction between two
predictors xi and xj . For xi, suppose its MCC is reached in node ti of a tree
within a forest. Whenever xj splits an ancestor of node ti, we count one and
otherwise zero. The final frequency, f, can give us a measure of interaction
between xi and xj , and through the replication of the forest construction
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FIGURE 6.2. The dependence of the permutation importance on the number of
correlated predictors. The x-axis is the number of correlated sets of genes and the
y-axis the importance score. Each curve is labeled with the gene number. The
forest size is set at 1000. q equals the square root of the forest size for the left
panel and 8 for the right panel.
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we can estimate the frequency and its precision. As an illustration, in Fig-
ure 6.4 we present the heat map from the following simulation carried out
by Wang et al. (2010).

They generated 100 predictors independently, each of them is the sum of
two i.i.d. binary variables (0 or 1). This is to mimic genotypes derived from
SNPs in genetic studies. For the first 16 predictors, the underlying binary
random variable has the success probability of 0.282. For the remaining 84,
they draw a random number between 0.01 and 0.99 as the success probabil-
ity of the underlying binary random variable. The first 16 predictors will be
used as the risk variables in our simulation and the remaining 84 the noise
variables. The outcome variable is generated as follows. The 16 risk vari-
ables are divided equally into four groups, and without loss of generality,
say sequentially. Once these 16 risk variables are generated, we calculate
the following probability on the basis of which the response variable is
generated:

w = 1 − Π(1 − Πqk)

where the first product is with respect to the four groups, the second prod-
uct is with respect to the first predictors inside each group, and q0 =
1.2 × 10−8, q1 = 0.79, and q2 = 1. The subscript k equals the randomly
generated value of the respective predictor. For example, if x1 = 1, then
k = 1 and we use q1, i.e., 0.79 for the first predictor. The response variable
takes the value of 1 with the probability w and 0 otherwise.

Wang et al. (2010) used the foregoing procedure to generate the first 200
possible controls (the response variable equals 0) and the first 200 possible
cases (the response variable equals 1). This completes the generation of
one data set, and a random forest can be built. Finally, they replicated the
entire process 1000 times.

We can see from Figure 6.4 that the interactions within the 4-SNP groups
are present and the interactions across the 4-SNP groups are absent. This
figure seems to suggest that MCC can be utilized as a mechanism to detect
interactions among predictors.

Lastly, to compare MCC with the permutation importance, let us ex-
amine the impact of including correlated predictors on MCC. In the same
simulation as that for Figure 6.5, we also obtained the result for MCC as
presented in Figure 6.5. Clearly, the inclusion of correlated genes has little
impact on MCC.

6.4 Random Forests for Predictors with
Uncertainties

In general, we base our analysis on predictors that are observed with cer-
tainty, or we assume so. However, this is not always the case. For example,
to identify genetic variants for complex diseases, haplotypes are sometimes
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FIGURE 6.4. Interaction heat map. The x-axis is the sequence number of the
primary predictor and the y-axis the sequence number of the potential interacting
predictor. The intensity expresses the frequency when the potential interacting
predictor precedes the primary predictor in a forest.

the predictors. A haplotype consists of alleles in multiple loci that are
transmitted together on the same chromosome. In genomewide association
studies, a haplotype is a combination of single nucleotide polymorphisms
(SNPs) on a chromatid. The current technologies are capable of genotyping
the SNPs with a great level of confidence, but not so for haplotypes, which
have to be statistically inferred from the SNPs (see, e.g., Lin et al. 2002).
As a result, haplotypes are available in frequencies. This issue also arises
from other studies. For example, race is a predictor in almost all epidemio-
logical studies. Even though it may be recorded as “White,” “Black,” etc.,
some subjects really are half white and half black or in other proportions.
In the following, we describe the use of the random forest idea proposed by
Chen et al. (2007) to address these uncertainties in the predictors.

For clarity, we assume x1 is the only categorical variable with uncer-
tainties, and it has K possible levels. For the i-th subject, xi1 = k with a
probability pik (

∑K
k=1 pik = 1). In a typical random forest, the “working”

data set is a bootstrap sample of the original data set. Here, a “working”
data set is generated according to the frequencies of x1 while keeping the
other variables intact. Thus, the data set would be {zi1, xi2, . . . , xip, yi}n

i=1,
where zi1 is randomly chosen from 1, . . . , K, according to the probabilities
(pi1, . . . , piK). Once the data set is generated, the rest can be carried out
in the same way as for a typical random forest. The procedure is similar if
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FIGURE 6.6. A schematic diagram to construct a forest for predictors with un-
certainties. Predictors x1, x2, . . . , xp are not directly observed, and hence the raw
data are referred to as “unphased data.” The frequencies of the predictors can be
estimated, and these frequencies are used to generate “phased data” in which the
values of the predictors are drawn according to the distribution of the predictors.
One tree is built for each phased data set. Finally, the importance score for each
predictor is computed in the forest.

there are additional predictors with uncertainties, and in fact, this is the
case for haplotype-based genetic analysis. We refer to Chen et al. (2007)
for details. Figure 6.6 illustrates this process, and a computer program
HapForest is available from http://c2s2.yale.edu/software.

A caveat with the tree- and forest-based method is that it is not fea-
sible to perform theoretically based statistical inference such as the com-
putation of statistical significance and confidence interval. For hypothesis
testing, a general, while computationally intensive, approach is to generate
data under the null hypothesis and examine the distribution of the critical
statistics using the replicated permutation samples. For example, to assess
the significance of association between a haplotype and a disease, the null
distribution for an importance index can be empirically estimated by ran-
domly permuting the disease status in the raw data and then going through
the process in Figure 6.6 to produce one set of importance indices for all
haplotypes under the null hypothesis. Repeating this process can estimate
empirically the null distribution for all haplotypes.

Chen et al. (2007) and Wang et al. (2009) applied this method to a
genetic data set on age-related macular degeneration (AMD), which is a
leading cause of vision loss in the elderly. Using a genomewide significance
level of 0.05, they confirmed one well-known haplotype, ACTCCG (on chro-
mosome 1), and revealed several novel haplotypes, TCTGGACGACA (on
chromosome 7), GATAGT (on chromosome 5), and TCTTACGTAGA (on
chromosome 12). Using permutation, these novel haplotypes were associ-
ated with AMD beyond chance by a genomewide 5% significance level.
The haplotype on chromosome 1 is in the gene called complement factor
H (Klein et al. 2005), the one on chromosome 7 is located in the Bardet–
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Biedl syndrome 9 gene, the one on chromosome 5 is in the region of the
Sarcoglycan delta, and the one on chromosome 12 is in the Ankyrin repeat
and sterile alpha motif domain containing 1B (Wang et al. 2009).

6.5 Random Forests with Weighted Feature
Selection

The second step in the construction of a random forest is to select a subset
of the predictors (features) to split a node. By this random selection, all
features are treated with the same chance of being selected. This could be
problematic when the number of available predictors is huge such as mil-
lions of SNPs in a genomewide association (GWA) study. It would take a
large number of trees to give those important predictors enough chances to
be selected in the first place. Furthermore, in a GWA study, besides geno-
types, there tend to be a few covariates such as demographic variables that
must be considered. Consequently, there is a severe imbalance in the num-
ber of SNPs and the number of “environmental” covariates. The standard
random forest procedure is not effective in identifying potentially impor-
tant environmental variables, because they are simply overwhelmed by the
number of SNPs.

A simple, seemingly effective approach is to perform a univariate test us-
ing each predictor, e.g., the allelic χ2 statistic for each SNP. Then, instead
of drawing a subset of the q variables with equal probability for all pre-
dictors, the sampling probability is refined as a monotonic function of the
χ2 value. This approach is similar to the enriched random forest approach
(Amaratunga et al. 2008) proposed in gene expression analyses.

In a simulation study in which the number of risk-enhancing SNPs is
relatively small, Chen et al. (unpublished data) confirmed that the typical
random forest is ineffective, as expected (Genuer et al. 2008), in identifying
the underlying SNPs and environmental factors. However, the weighted
random forest of a similar size yielded a much superior performance in
terms of the number of prediction errors and the power of uncovering the
important predictors.

6.6 Deterministic Forests

If we examine individual trees in a forest, we tend to find trees with com-
parable structures that have similar classification performance when the
number of features is large relative to the number of samples, particularly
evident in the analysis of microarray data. This observation was the moti-
vation behind Zhang et al. (2003) in which the authors proposed a forest
with trees of similar structures and similar performance. This forest could
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FIGURE 6.7. The frame of the deterministic forest. Each of S1, S2, S3 is one of
the top three splits of the corresponding node. Inside the terminal nodes are the
results in one of the trees from the analysis of the leukemia data set.

provide more precise and biologically interpretable classification rules than
any individual tree, and is reproducible—for this reason, such a forest is
called deterministic forest.

Zhang et al. (2003) proposed and examined a simple way of forming a
deterministic forest. They selected a prespecified number, say 20, of the
top splits of the root node and a prespecified number, say 3, of the top
splits of the two daughter nodes of the root node. This use of top nodes
gives rise to a total of 180 possible (20 by 3 by 3) trees. When they applied
this procedure to a leukemia data set (Golub et al. 1999), they noted that
many of the trees are perfect or nearly perfect in classifying the subjects in
the learning sample. For example, in Figure 6.7, S1 is one of the top three
splits of the root node, S2 is one of the top three splits of the second node,
and S3 is one of the top three splits of the third node. Inside the terminal
nodes are the results in one of the trees, illustrating a perfect classification
in the learning sample.

An alternative, but computationally more challenging, approach is to
prespecify a general structure such as “A” trees as the first step. An “A
tree”’ (see, e.g., Figure 6.7) is a tree that is symmetric on the left and right.
Then, we search for trees of a desired performance for inclusion in the forest.
The performance of this procedure warrants further investigation.

6.7 A Note on Interaction

In classical statistical inference, the assessment of interaction requires pre-
specification of the interaction term. For example, in a linear model in-
volving response Y , and two predictors x1 and x2, the product term x1x2
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is the common representation of the interaction effect. In general, how-
ever, interactions refer to any deviation from the additive effects. The trees
and forests provide a very flexible framework without prespecifying the in-
teractions. Instead, we can assess interactions after trees and forests are
grown. Furthermore, trees and forests can suggest existence of interactions
even when the effect of those interactions may be too small to be detected
individually. From a theoretical point of view, it would be important to
establish a theoretical framework to assess interactions that are difficult to
specify a priori.
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