
3
Logistic Regression

We have seen from Examples 1.1–1.6 that the status of many health con-
ditions is represented by a binary response. Because of its practical im-
portance, analyzing a binary response has been the subject of countless
works; see, e.g., the books of Cox and Snell (1989), Agresti (1990), and the
references therein. For comparison purposes, we give a brief introduction
to logistic regression.

3.1 Logistic Regression Models

Logistic regression is a standard approach to the analysis of binary data.
For every study subject i we assume that the response Yi has the Bernoulli
distribution

IP{Yi = yi} = θyi

i (1 − θi)1−yi , yi = 0, 1, i = 1, . . . , n, (3.1)

where the parameters
θ = (θ1, . . . , θn)′

must be estimated from the data. Here, a prime denotes the transpose of
a vector or matrix.

To model these data, we generally attempt to reduce the n parameters
in θ to fewer degrees of freedom. The unique feature of logistic regression
is to accomplish this by introducing the logit link function:

θi =
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p

j=1 βjxij)
, (3.2)
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24 3. Logistic Regression

where
β = (β0, β1, . . . , βp)′

is the new (p + 1)-vector of parameters to be estimated and (xi1, . . . , xip)
are the values of the p covariates included in the model for the ith subject
(i = 1, . . . , n).

To estimate β, we make use of the likelihood function

L(β;y)

=
n∏

i=1

[
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p

j=1 βjxij)

]yi
[

1
1 + exp(β0 +

∑p
j=1 βjxij)

]1−yi

=

∏
yi=1 exp(β0 +

∑p
j=1 βjxij)∏n

i=1[1 + exp(β0 +
∑p

j=1 βjxij)]
.

By maximizing L(β;y), we obtain the maximum likelihood estimate β̂ of
β. Although the solution for β̂ is unique, it does not have a closed form. The
Newton–Raphson method, an iterative algorithm, computes β̂ numerically;
see, e.g., Agresti (1990, Section 4.7).

The interpretation of the parameter β is the most attractive feature of
the logit link function. Based on (3.2), the odds that the ith subject has
an abnormal condition is

θi

1 − θi
= exp(β0 +

p∑
j=1

βjxij).

Consider two individuals i and k for whom xi1 = 1, xk1 = 0, and xij = xkj

for j = 2, . . . , p. Then, the odds ratio for subjects i and k to be abnormal
is

θi/(1 − θi)
θk/(1 − θk)

= exp(β1).

Taking the logarithm of both sides, we see that β1 is the log odds ratio of the
response resulting from two such subjects when their first covariate differs
by one unit and the other covariates are the same. In the health sciences,
exp(β1) is referred to as the adjusted odds ratio attributed to x1 while
controlling for x2, . . . , xp. The remaining β’s have similar interpretations.
This useful interpretation may become invalid, however, in the presence of
interactive effects among covariates.

3.2 A Logistic Regression Analysis

In this section we analyze the Yale Pregnancy Outcome data using logistic
regression. Most statistical packages include procedures for logistic regres-
sion. We used SAS to perform the analysis. First, we start with a model that
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includes all predictors in Table 2.1 as main effects and use the backward
stepwise procedure to select variables that have significant (at the level
of 0.05) main effects. Recall that preterm delivery is our response variable.
For the selected variables, we then consider their second-order interactions.

In Table 2.1, three predictors, x2 (marital status), x3 (race), and x12

(hormones/DES use), are nominal and have five levels. To include them in
logistic regression models, we need to create four (dichotomous) dummy
variables for each of them. For instance, Table 2.1 indicates that the five
levels for x2 are currently married, divorced, separated, widowed, and never
married. Let

z1 =
{

1 if a subject was currently married,
0 otherwise,

z2 =
{

1 if a subject was divorced,
0 otherwise,

z3 =
{

1 if a subject was separated,
0 otherwise,

z4 =
{

1 if a subject was widowed,
0 otherwise.

Likewise, let

z5 =
{

1 for a Caucasian,
0 otherwise,

z6 =
{

1 for an African-American,
0 otherwise,

z7 =
{

1 for a Hispanic,
0 otherwise,

z8 =
{

1 for an Asian,
0 otherwise,

and

z9 =
{

1 if a subject’s mother did not use hormones or DES,
0 otherwise,

z10 =
{

1 if a subject’s mother used hormones only,
0 otherwise,

z11 =
{

1 if a subject’s mother used DES only,
0 otherwise,

z12 =
{

1 if a subject’s mother used both hormones and DES,
0 otherwise.

Note here that the subject refers to a pregnant woman. Thus, z9 through
z12 indicate the history of hormones and DES uses for the mother of a
pregnant woman.
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TABLE 3.1. MLE for an Initially Selected Model

Selected Degrees of Coefficient Standard
variable freedom Estimate Error p-value

Intercept 1 −2.172 0.6912 0.0017
x1(age) 1 0.046 0.0218 0.0356

z6(Black) 1 0.771 0.2296 0.0008
x6(educ.) 1 −0.159 0.0501 0.0015

z10(horm.) 1 1.794 0.5744 0.0018

TABLE 3.2. MLE for a Revised Model

Selected Degrees of Coefficient Standard
variable freedom Estimate Error p-value

Intercept 1 −2.334 0.4583 0.0001
x6(educ.) 1 −0.076 0.0313 0.0151
z6(Black) 1 0.705 0.1688 0.0001
x11(grav.) 1 0.114 0.0466 0.0142
z10(horm.) 1 1.535 0.4999 0.0021

Due to missing information, 1,797 of the 3,861 observations are not used
in the backward deletion step by SAS PROC LOGISTIC. Table 3.1 provides
the key information for the model that is selected by the backward stepwise
procedure. In this table as well as the next two, the first column refers to
the selected predictors, and the second column is the degrees of freedom
(DF). The third column contains the estimated coefficients corresponding
to the selected predictors, followed by the standard errors of the estimated
coefficients. The last column gives the p-value for testing whether or not
each coefficient is zero. We should note that our model selection used each
dummy variable as an individual predictor in the model. As a consequence,
the selected model may depend on how the dummy variables are coded. Al-
ternatively, one may want to include or exclude a chunk of dummy variables
that are created for the same nominal variable.

The high proportion of the removed observations due to the missing in-
formation is an obvious concern. Note that the model selection is based on
the observations with complete information in all predictors even though
fewer predictors are considered in later steps. We examined the distribu-
tion of missing data and removed x7 (employment) and x8 (smoking) from
further consideration because they were not selected in the first place and
they contained most of the missing data. After this strategic adjustment,
only 24 observations are removed due to missing data, and the backward
deletion process produces another set of variables as displayed in Table 3.2.

We have considered the main effects, and next we examine possible
(second-order) interactions between the selected variables. For the two se-
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TABLE 3.3. MLE for the Final Model

Selected Degrees of Coefficient Standard
variable freedom Estimate Error p-value

Intercept 1 −2.344 0.4584 0.0001
x6(educ.) 1 −0.076 0.0313 0.0156
z6(Black) 1 0.699 0.1688 0.0001
x11(grav.) 1 0.115 0.0466 0.0137

z10 (horm.) 1 1.539 0.4999 0.0021

lected dummy variables, we include their original variables, race and hor-
mones/DES uses, into the backward stepwise process to open our eyes a
little wider. It turns out that none of the interaction terms are significant
at the level of 0.05. Thus, the final model includes the same four variables
as those in Table 3.2. However, the estimates in Table 3.2 are based on
3,837 (i.e., 3861 − 24) observations with complete information for 13 pre-
dictors. Table 3.3 presents the information for the final model for which
only 3 observations are removed due to missing information in the four
selected variables. The different numbers of used observations explain the
minor numerical discrepancy between Tables 3.2 and 3.3.

From Table 3.3, we see that the odds ratio for a Black woman (z6) to
deliver a premature infant is doubled relative to that for a White woman,
because the corresponding odds ratio equals exp(0.699) ≈ 2.013. The use
of DES by the mother of the pregnant woman (z10) has a significant and
enormous effect on the preterm delivery. Years of education (x6), however,
seems to have a small, but significant, protective effect. Finally, the number
of previous pregnancies (x11) has a significant, but low-magnitude negative
effect on the preterm delivery.

We have witnessed in our analysis that missing data may lead to serious
loss of information. As a potential consequence, we may end up with im-
precise or even false conclusions. For example, by reviewing Tables 3.1 and
3.3, we realize that x1 is replaced with x11 in Table 3.3 and the estimated
coefficients for the remaining three predictors are notably different. The
difference could be more dramatic if we had a smaller sample. Therefore,
precaution should be taken in the presence of missing data. In Section 4.8,
we will see that the tree-based method handles the missing data efficiently
by either creating a distinct category for the missing value or using surro-
gate variables. These strategies prevent the tragic consequence of missing
data.

Although it is not frequently practiced, we find it useful and important to
evaluate the predictive performance of the final logistic model. To this end,
we make use of ROC (receiver operating characteristic) curves (see, e.g.,
Hanley, 1989). We know that we cannot always make perfect classifications
or predictions for the outcome of interest. For this reason, we want to
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FIGURE 3.1. ROC curve for the final logistic regression model

make as few mistakes as possible. Two kinds of mistakes can occur when
we predict an ill-conditioned outcome as normal or a normal condition
as abnormal. To distinguish them, statisticians refer to these mistakes as
type I and type II errors, respectively. In medical-decision making, they are
called false-positive and false-negative diagnoses, respectively. In reasonable
settings, these errors oppose each other. That is, reducing the rate of one
type of error elevates the rate of the other type of error. ROC curves reflect
both rates and quantify the accuracy of the prediction through a graphical
presentation.

For subject i, we estimate her risk of having preterm delivery by

θ̂i =
exp(−2.344− 0.076xi6 + 0.699zi6 + 0.115xi,11 + 1.539zi,10)

1 + exp(−2.344 − 0.076xi6 + 0.699zi6 + 0.115xi,11 + 1.539zi,10)
,

(3.3)
i = 1, . . . , 3861, using the estimates in Table 3.3. For any risk threshold
r (0 ≤ r ≤ 1), we calculate the empirical true and false-positive probabili-
ties respectively as

TPP =
the number of preterm deliveries for which θ̂i > r

the total number of preterm deliveries

and

FPP =
the number of term deliveries for which θ̂i > r

the total number of term deliveries
.

As r varies continuously, the trace of (TPP, FPP ) constitutes the ROC
curve as shown in Figure 3.1. In the medical literature, the true positive
and negative probabilities are commonly referred to as sensitivity and speci-
ficity.

Figure 3.1 indicates that the final logistic regression model improves the
predictive precision over a random prediction model. The latter predicts
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the risk of 1 and 0 by tossing a fair coin. The ROC curve for this random
prediction is featured by the dotted straight line. It is evident from Figure
3.1 that a great deal of variation is not explained and hence that further
improvement should be sought.

Note also that the ROC curve is drawn from the resubstitution estimate
of the risk, which tends to be optimistic in the sense that the ROC curve
may have an upward-biased area. The reason is as follows. The prediction
in (3.3) was derived to “maximize” the area under the ROC curve based
on the Yale Pregnancy Outcome Study data. If we conduct another simi-
lar, independent study, which we call a validation study, it is almost sure
that we will end up with an optimal prediction that differs from equation
(3.3), although the difference may not be substantial. The other side of the
coin is that if we make predictions for the subjects in the validation study
from equation (3.3), the quality of the prediction is usually downgraded as
compared to the prediction made for the original Yale Pregnancy Outcome
Study. In some applications, validation studies are available, e.g., Goldman
et al. (1982, 1996). In most cases, investigators have only one set of data. To
assess the quality of the prediction, certain sample reuse techniques such
as the cross-validation procedure are warranted (e.g., Efron, 1983). The
cross-validation procedure will be heavily used in this book, specifically in
Chapters 4 and 9–12. The basic idea is that we build our models using part
of the available data and reserve the left-out observations to validate the
selected models. This is a way to create an artificial validation study at
the cost of reducing the sample size for estimating a model. The simplest
strategy is to cut the entire sample into two pieces of equal size. While
one piece is used to build a model, the other piece tests the model. It is
a sample reuse mechanism because we can alternate the roles for the two
pieces of sample.
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