
12
Analysis of Multiple Discrete
Responses

In Chapter 11 we introduced some contemporary approaches to analyzing
longitudinal data for which the responses are continuous measurements.
In fact, most people imply continuous responses when they refer to lon-
gitudinal data. The analysis of discrete longitudinal data is a relatively
new, though active, subject. Readers who are interested in methodologi-
cal developments may find many unanswered questions in this chapter. The
purpose of this chapter is to shed some light on this growing subject. In the
statistical literature, the topic may be tagged with clustered or correlated
discrete/binary outcomes. So far, most progress has been made toward the
binary outcomes; hence, therein lies the focus of this chapter.

Sometimes, correlated discrete responses are generated from a single end-
point by repeatedly measuring it on individuals in a temporal or spatial
domain. They are called longitudinal discrete responses. Examples 12.1 and
12.2 represent this class of data. Other times, as in Example 12.3 and in
Section 12.3, the correlated responses consist of distinct endpoints. In re-
cent years, we have witnessed more and more studies that involve both
types of responses, such as Example 12.4.

Example 12.1 To investigate racial differences in the cause-specific preva-
lence of blindness, Sommer et al. (1991) used a randomly selected, stratified,
multistage cluster sample of 2395 Blacks and 2913 Whites 40 years of age
and older in East Baltimore. Those 5208 subjects underwent detailed oph-
thalmic examinations by a single team. In this study, the authors observed
bivariate binary responses in a spatial domain for each subject, namely, the
blindness of left and right eyes. The authors found that the leading causes
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of blindness were unoperated senile cataract, primary open-angle glaucoma,
and age-related macular degeneration. They also concluded that the pat-
tern of blindness in urban Baltimore appears to be different among Blacks
and Whites. Whites are far more likely to have age-related macular degen-
eration, and Blacks to have primary open-angle glaucoma. Subsequently,
Liang, Zeger, and Qaqish (1992) reanalyzed these data, comparing different
statistical approaches.

Example 12.2 From 1974 to 1977, a team of investigators conducted a
longitudinal study of the respiratory health effects of air pollutants among
children and adults living in six cities in the United States. The study de-
sign was reported by Ferris et al. (1979) and Sommer et al. (1984). The
selection of the cities was to cover a range of air quality based on their
historic levels of outdoor pollution. In all but one small city, the initial
examinations included all first- and second-grade school children. In the
small city, children up to the fifth grade were included. The study subjects
were reexamined annually for three years. At each visit, the investigators
collected information regarding the number of persons living in the house,
familial smoking habits, parental occupation and education background,
the fuel used for cooking in the house, pulmonary function, respiratory
illness history, and symptom history. In Ware et al. (1984), they selected
10,106 children 6 to 9 years of age at the enrollment and analyzed wheeze
status (yes, no) of the children as a longitudinal binary outcome. Addi-
tional analyses have been conducted by Zeger, Liang, and Albert (1988)
and Fitzmaurice and Laird (1993) among others.

Example 12.3 This is an example where the risk of two distinct, but
presumably correlated, outcomes were studied, i.e., respiratory disease and
diarrhea in children with preexisting mild vitamin A deficiency.

Sommer and colleagues (Sommer et al. 1983 and 1984) conducted a
prospective longitudinal study of 4600 children aged up to 6 years at en-
try in rural villages of Indonesia between March 1977 and December 1978.
Their research team examined these children every 3 months for 18 months.
An average of 3135 children were free of respiratory disease and diarrhea at
the examination. At each examination, they recorded interval medical his-
tory, weight, height, general health status, and eye condition. They found
that the risk of respiratory disease and diarrhea were more closely associ-
ated with vitamin A status than with general nutritional status.

Example 12.4 Genes underlie numerous conditions and diseases. A vast
number of genetic epidemiologic studies have been conducted to infer ge-
netic bases of various syndromes. Multiple clustered responses naturally
arise from such studies. For example, Scourfield et al. (1996) examined the
gender difference in disorders of substance abuse, comorbidity anxiety, and
sensation seeking, using the database from the Genetic Epidemiology Re-
search Unit, Yale University School of Medicine, New Haven, Connecticut,



12.1 Parametric Methods for Binary Responses 201

�
��
Mother

000110

Father

�
��
Wife

001110

��
Proband 1

�
��
Daughter

100 010

Son
�
��

Daughter

000

�
��
100000

�
��
101 000

��
Proband 2

�
��
000

FIGURE 12.1. Two pedigrees of different family sizes. Each square or circle rep-
resents a family member. The left pedigree pinpoints the relationship of relatives
to the proband. A sequence of three bits (0 or 1) is displayed within all squares
and circles, marking the status of substance abuse, anxiety, and sensation seeking,
respectively.

under the leadership of Professor Kathleen Merikangas. Two hundred sixty-
two probands, through whom the other family members are ascertained,
are included in the database. Information regarding a variety of psychiatric
disorders and predictive covariates, e.g., gender, has been recorded for all
probands and some of their relatives (parents, siblings, offspring, etc.). The
pedigrees in Figure 12.1 illustrate typical family structures. We should note
that the first proband has six relatives in the record, whereas the second
one has four. In other words, the family size varies from pedigree to pedi-
gree. It is also important to realize that multiple disorders, i.e., three, are
evaluated for every member of a family.

12.1 Parametric Methods for Binary Responses

Suppose that Yi = (Yi1, . . . , Yiqi )′ is a vector of binary responses for subject
i, i = 1, . . . , n. In Example 12.1, qi = 2 for all 2913 subjects, and (Y1, Y2)
indicates the blindness of the left and right eyes. Likewise, we can easily
define the response vector for Examples 12.2 and 12.3.

Parametric models have dominated the applications involving multiple
binary responses. Log-linear and marginal models are in the spotlight in
the literature. We give a brief discussion of these two models and strongly
recommend reading related articles and books cited in this chapter.
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12.1.1 Log-Linear Models

One of the most popular and conceptually simple models for multiple binary
responses is the log-linear model that assumes the joint probability of Yi

to be of the form

IP{Yi = yi} = exp

⎡
⎣ qi∑

j=1

θijyij +
∑

j1<j2

θij1j2yij1yij2 + · · ·

+θi1···qiyi1 · · · yiqi + Ai(θi)] , (12.1)

where
θi = (θi1, . . . , θiqi , θi12, . . . , θi,qi−1,qi , . . . , θ1···qi)

is the (2qi−1 − 1)-vector of canonical parameters and exp[Ai(θi)] is the
normalizing constant.

Model (12.1) appears to involve too many parameters. In practice, how-
ever, it is usually greatly simplified. Two steps are critical to this simpli-
fication. First, most data are regular in the sense that the components of
θi correspond to fixed coordinates. In other words, θi does not depend on
i, and this subscript can be removed. In Examples 12.1–12.3, the vector
of canonical parameters, θi, does not depend on i. For instance, Example
12.3 involves only 22 − 1 = 3 parameters. Second, the canonical param-
eters with respect to the terms with the third- or higher-orders are gen-
erally hypothetically set to zero. The resulting models are referred to as
the quadratic exponential model (see, e.g., Zhao and Prentice 1990; Fitz-
maurice and Laird 1995). Estimating those “removed” parameters could
otherwise raise a tremendous challenge to data analysis.

In family studies as illustrated by Example 12.4, the vector of canonical
parameters, θi, may not have a fixed coordinate system. Although the
number of interested disorders is three for every subject, the size of pedigree
differs when the entire pedigree is regarded as a unit, or cluster. In such
applications, it is vital to form a parametric system that reflects the nature
of Yi. This practice depends, however, on individual applications.

Next, let us take a look at the quadratic exponential model in which the
canonical parameters have a fixed coordinate system:

IP{Y = y} = exp

⎡
⎣ q∑

j=1

θjyj +
∑
j<k

θjkyjyk + A(θ)

⎤
⎦ , (12.2)

where
θ = (θ1, . . . , θq, θ12 · · · θq−1,q).

Based on model (12.2), the canonical parameters have certain interpreta-
tions. Precisely, we have

log
[
IP{Yj = 1|Yk = yk, Yl = 0, l 	= j, k}
IP{Yj = 0|Yk = yk, Yl = 0, l 	= j, k}

]
= θj + θjkyk.
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Thus, θj is the log odds for Yj = 1 given that the remaining components
of Y equal zero. In addition, θjk is referred to as an association parame-
ter because it is the conditional log odds ratio describing the association
between Yj and Yk provided that the other components of Y are zero. It
is important to realize that the canonical parameters are the log odds or
odds ratio under certain conditions, but we should be aware of the fact
that these conditions may not always make sense.

Why is model (12.1) called a log-linear model? Let us consider a bivari-
ate case. It follows from model (12.2) that the joint probability for the n
bivariate vectors is

exp[θ1(n21 + n22) + θ2(n12 + n22) + θ12n22 + nA(θ)], (12.3)

where n11 =
∑n

i=1(1 − yi1)(1 − yi2), n12 =
∑n

i=1(1 − yi1)yi2, n21 =∑n
i=1 yi1(1 − yi2), and n22 =

∑n
i=1 yi1yi2 are the cell counts in the fol-

lowing 2 × 2 table:

Y2

0 1

Y1
0 n11 n12

1 n21 n22

It is easy to see that the expression in (12.3) equals

n!
n11!n12!n21!n22!

mn11
11 mn12

12 mn21
21 mn22

22 ,

where
log(mjk) = μ + λY1

j + λY2
k + λY1Y2

jk , (12.4)

with

μ = (θ1 + θ2)/2 + θ12/4 + A(θ), (12.5)
λY1

1 = −θ1/2 − θ12/4 + A(θ), (12.6)
λY2

1 = −θ2/2 − θ12/4 + A(θ), (12.7)
λY1Y2

11 = θ12/4, (12.8)

and λY1
2 = −λY1

1 , λY2
2 = −λY2

1 , and λY1Y2
12 = λY1Y2

21 = −λY1Y2
22 = −λY1Y2

11 .
In other words, (n11, n12, n21, n22) follows a multinomial distribution with
means specified by the log-linear effects in (12.4). This is usually how the
log-linear models are introduced (e.g., Agresti 1990, Chapter 5). Further,
Equations (12.5)–(12.8) provide another way to interpret the canonical pa-
rameters.

12.1.2 Marginal Models

As we mentioned earlier, the interpretation of canonical parameters in the
log-linear model depends on certain conditions that are not always of clin-
ical relevance. On the other hand, after the reformation of the log-linear
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model in (12.4), the canonical parameters have one-to-one relationships
with the “marginal” parameters as delineated in (12.5)–(12.8). Here, the
marginal parameters refer to the main and interactive effects in model
(12.4). For many investigators, the question of utmost importance is related
to the marginal parameters that are defined directly from the marginal dis-
tribution of the responses, unlike the canonical parameters, which involve
all responses at once.

One possibility is to reparametrize the log-linear model in terms of marginal
means, correlations, etc. In fact, the Bahadur representation is another typ-
ical method to represent the log-linear model, and it directly extends the
multinomial distribution by including additional multiplicative factors to
take into account the association among the components of Y (Bahadur
1961; Fitzmaurice et al., 1993; Diggle et al. 1991). In mathematical form,
we have

IP{Y = y} =
q∏

j=1

μ
yj

j (1 − μj)(1−yj)

×(1 +
∑

j1<j2

ρj1j2rj1rj2 +
∑

j1<j2<j3

ρj1j2j3rj1rj2rj3 + · · · + ρ1···qr1 · · · rq),

where

μj = IE{Yj},

rj = (yj − μj)/
√

μj(1 − μj),

ρj1···jl
= IE{Rj1 · · ·Rjl

},
j = 1, . . . , q.

The Bahadur representation is one step forward in terms of formulating
the log-linear model as a function of the parameters such as means and
correlations that we used to see in the analysis of continuous responses.
This representation is, however, severely handicapped by the fact that the
“hierarchal” correlations entangle the ones at lower orders and the means
and that it is particularly problematic in the presence of covariates. To
address the dilemma between the parameter interpretability and feasibility,
Liang et al. (1992) proposed the use of marginal models parametrized by
the means, the odds ratios, and the contrasts of odds ratios. Specifically,
let

γj1j2 = OR(Yj1 , Yj2) =
IP{Yj1 = 1, Yj2 = 1}IP{Yj1 = 0, Yj2 = 0}
IP{Yj1 = 1, Yj2 = 0}IP{Yj1 = 0, Yj2 = 1} ,

ζj1j2j3 = log[OR(Yj1 , Yj2 |Yj3 = 1)] − log[OR(Yj1 , Yj2 |Yj3 = 0)],

and generally,

ζj1···jl
=

∑
yj3 ,...,yjl

=0,1

(−1)b(y) log[OR(Yj1 , Yj2 |yj3 , . . . , yjl
)],
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where b(y) =
∑l

k=3 yjk
+ l − 2.

It is quite unfortunate that evaluating the full likelihood based on the
new set of parameters, μj , γj1j2 , and ζj1···jl

, is generally complicated. To
gain insight into where the complications arise, let us go through the details
for the bivariate case. We need to specify the probability IP{Y1 = y1, Y2 =
y2} def= p(y1, y2) for four possible combinations of (y1, y2). The following
four equations can lead to the unique identification of the four probabilities:

p(1, 1) + p(1, 0) = μ1,

p(0, 1) + p(1, 1) = μ2,

p(1, 1) + p(1, 0) + p(0, 1) + p(0, 0) = 1,

p(1, 1)p(0, 0) = γ12p(0, 1)p(1, 0).

From the first three equations, we have p(1, 0) = μ1 − p(1, 1), p(0, 1) =
μ2 − p(1, 1), and p(0, 0) = 1 − μ1 − μ2 + p(1, 1). If we plug them into the
last equation, we have a quadratic equation in p(1, 1),

(1 − γ12)p2(1, 1) + [1 + (γ12 − 1)(μ1 + μ2)]p(1, 1) − γ12μ1μ2 = 0,

and the solution for p(1, 1) def= μ11 is (Dale, 1986){
1+(γ12−1)(μ1+μ2)−{[1+(γ12−1)(μ1+μ2)]

2+4(1−γ12)γ12μ1μ2}− 1
2

2(1−γ12) if γ12 	= 1,

μ1μ2 if γ12 = 1.

Using this solution, it is easy to conclude that

p(y1, y2) = μy1
1 (1 − μ1)1−y1μ2(1 − μ2)1−y2 + (−1)y1−y2(μ11 − μ1μ2).

When we have more than two responses, the problem could be intractable
if we do not reduce the dimension of the parameters appropriately such as
setting γj1j2 = γ.

12.1.3 Parameter Estimation∗

In the log-linear and marginal models we have not introduced covariates.
As a matter of fact, the issue of most interest to us is modeling the dis-
tribution of Y in the presence of covariates as in the previous chapters.
In principle, it is straightforward to incorporate a set of the covariates, x,
into the models. The canonical parameters θ in the log-linear model (12.2)
and the marginal parameters in the marginal models can be defined as a
function of x, which is called the link function in the context of generalized
linear models (McCullagh and Nelder 1989, p. 27).

Depending on the specification of the link function, finding the maximum
likelihood estimates of the parameters is not impossible; see, e.g., Section
12.2.3. Nevertheless, a more common practice is to make use of so-called
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generalized estimating equations (GEE), which simplify the estimation pro-
cess while retaining some of the most important asymptotic properties of
the estimates as elaborated below (Liang and Zeger 1986).

Now, let us turn back to model (12.2) and explain how to use the idea
of generalized estimating equations. First, we reexpress the probability in
vector form:

IP{Y = y} = exp[θ′z − A(θ)], (12.9)

where z = (y′,w′)′ and w is a
(

q
2

)
-vector consisting of (y1y2, . . . , yq−1yq)′.

For model (12.9), we assume that there exists a vectorial link function η
that transforms x coupled with a condensed vector of parameters β to θ,
e.g., θ = η(x′β). Then, the GEE approach attempts to solve the unbiased
estimating equations (Godambe 1960; Zhao and Prentice 1990)

U(β) =
n∑

i=1

JV −1
i

(
yi − μ
wi − ω

)
= 0, (12.10)

where ω = IE{w}, Vi = Cov(zi), and J = ∂θ/∂β′.
Liang et al. (1992) called (12.10) GEE2, because it is a second-order

extension of the estimating equations proposed by Liang and Zeger (1986).
However, if we set the block off-diagonal matrices in J and Vi to zero in
(12.10), then (12.10) becomes GEE1, which can be less efficient than GEE2
when the link function is misspecified. We should also note that the block
off-diagonal elements of the covariance matrix Vi cannot be determined
by μ and ω. To avoid estimating additional parameters, so-called working
matrices are usually used to replace the underlying matrices (Zhao and
Prentice 1990).

The solution β̂ to (12.10) has, asymptotically as n → ∞, a multivari-
ate normal distribution with mean 0 and covariance matrix that can be
consistently estimated by(

n∑
i=1

JViJ
′

)−1( n∑
i=1

JVi

(
yi − μ
wi − ω

)(
yi − μ
wi − ω

)′
ViJ

′

)(
n∑

i=1

JViJ
′

)−1

evaluated at β̂ (Liang et al., 1992). It also turns that U(β) resembles the
quasi-score function derived from the quasi-likelihood as introduced in (9.5)
of McCullagh and Nelder (1989).

Likewise, if we are interested in the pairwise odds ratio and use the
marginal models, then we assume a link function between parameters μj

and γjk, and covariates x. The rest of the derivation for GEE is identical
to that above.

12.1.4 Frailty Models

In Example 12.4, we have encountered different numbers of binary re-
sponses among different measurement units, namely, families. Let the data
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for family i consist of binary responses Yij and covariates xij , j = 1, 2, . . . , ni,
i = 1, 2, . . . , I. Here, I is the number of families, and ni is the number of
relatives in the ith family, i = 1, 2, . . . , I.

In such family studies, the association of the health condition between
relatives is of interest. One approach is to generalize the log-linear model
introduced in Section 12.1.1 and to include higher-order interaction terms.
Particularly, based on Connolly and Liang (1988), we may assume

logitIP{Yij = 1|Yil, l 	= j,xi} = Fni(Wij ; θ) + xijβ, (12.11)

where Wij =
∑ni

l�=j Yil, Fni is an arbitrary function, and θ is a parameter.
This leads to the joint probability for the outcome in the ith family

log IP{Yi = yi|xi} = α +
ni∑

j=1

yijxijβ +
Wi+yij−1∑

l=0

Fni(l; θ). (12.12)

Related to model (12.12), Bonney (1986, 1987) introduced several classes
of regressive logistic models, assuming simple Markovian structures of de-
pendence among the traits of family members. In essence, these regres-
sive logistic models are ordinary logistic regression models except that the
“covariates” are derived from a set of common sense covariates and the
outcomes of other family members. The regressive logistic models are prac-
tically appealing and have been widely used in segregation analysis.

Babiker and Cuzick (1994) noted two major problems with model (12.12)
and its like. First, the parametrization depends on the family size ni, and
the coefficients obtained from different families are irreconcilable. Second,
they pointed out that the conditional coefficients often are not easily con-
verted to parameters of interest even when the family sizes are the same.
For these concerns, they proposed the use of a simple frailty model. In most
family studies, however, their simple one-frailty model cannot address ques-
tions of importance. To this end, it is useful to enhance the simple frailty
model by considering the relationship among relatives.

Let us take the three-generation pedigree in Figure 12.1 as an example.
We can introduce three types of unobserved frailties U i

1, U
i
2, and U i

3 for the
ith family that represent common, unmeasured environmental factors; ge-
netic susceptibility of the family founders; and the transmission of relevant
genetic materials from a parent to a child. Here, a family founder is an
individual whose parents were not sampled in the pedigree. To avoid tech-
nical complications, suppose that these frailties are independent Bernoulli
random variables; that is,

IP{U i
k = 1} = θk = 1 − IP{U i

k = 0},

for k = 1, 2, 3. A critical assumption is that for the ith family and con-
ditional on all possible U i

k’s, denoted by U i, the health conditions of all
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family members are independent and

logit(IP{Y i
j = 1|U i}) = xi

jβ + ai
jγ, (12.13)

where β and γ are vectors of parameters, and

ai
j = (U i

1, U
i
2,2j−1 + U i

2,2j , U
i
2,2j−1U

i
2,2j)

′

harbors the frailties. The construction of ai
j is based on assuming the ex-

istence of a major susceptibility locus with alleles A and a, as clarified
below.

The frequency of allele A is θ2, and (U i
2,2j−1, U

i
2,2j) indicate the presence

of allele A in the two chromosomes of the jth member of the ith family.
Based on the Mendelian transmission, θ3 = 0.5. The parameter interpre-
tation in model (12.13) is most important. The β parameters measure the
strength of association between the trait and the covariates conditional on
the frailties, while the γ parameters indicate the familial and genetic con-
tributions to the trait. Note that γ = (γ1, γ2, γ3)′. If γ2 = 0 and γ3 	= 0,
it suggests a recessive trait because a genetic effect is expressed only in
the presence of two A alleles. On the other hand, if a completely dominant
gene underlies the trait, genotypes Aa and AA give rise to the same effect,
implying that γ2 = 2γ2 + γ3, i.e., γ2 = −γ3.

The frailty model (12.13) is closely related to many existing models for
segregation analysis, all of which can be traced back to the classic Elston–
Stewart (1971) model for the genetic analysis of pedigree data. The Elston–
Stewart model was originally designed to identify the mode of inheritance of
a particular trait of interest without considering the presence of covariates.
The frailty model (12.13) is quite similar to the class D logistic regressive
models of Bonney (1986, 1987). The major difference is the method for
modeling familial correlations as a result of residual genetic effects and
environment. The regressive models make use of the parental traits and
assume the conditional independence among siblings on the parental traits.
In contrast, the frailty model assumes the conditional independence among
all family members on the frailty variable. Conceptually, frailty variables
defined here are very similar to that of ousiotype introduced by Cannings
et al. (1978) in pedigree analysis, where a unique ousiotype (essence) for
each individual is assumed to represent unobservable genetic effects. Many
other authors including Bonney (1986, 1987) adopted the ousiotype as the
genotype. Frailty model (12.13) can be viewed as a further clarification of
the ousiotype into a major genotype of focus and residual unobservable
effects.

In terms of computation, when both U and Y are observable, the com-
plete log-likelihood function is easy to derive, and the EM algorithm (Demp-
ster, Laird, and Rubin 1977) can be applied to find the parameter estimates.
A detailed development of the frailty model for segregation analysis will be
presented elsewhere (Zhang and Merikangas 1999).
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12.2 Classification Trees for Multiple Binary
Responses

Many applications of parametric models have a notable common feature.
That is, the models usually involve relatively few covariates, and there is
little discussion of model selection. Although the theoretical models are not
confined by the number of covariates, the reality of specifying parametric
candidate models and then selecting the final model can be a serious chal-
lenge. To resolve this practical problem, Zhang (1998a) considered various
automated approaches under the tree paradigm as a complement to the
existing parametric methods. The discussions here are based on the work
of Zhang (1998a).

12.2.1 Within-Node Homogeneity

Without exception, we need to define a new splitting function and cost-
complexity in order to extend classification trees for the analysis of multiple
discrete responses. First, we show how to generalize the entropy criterion
(4.3) to the present situation making use of the log-linear model (12.9). We
use the same idea as we derived (2.1). For the sake of simplicity, we assume
that the joint distribution of Y depends on the linear terms and the sum
of the second-order products of its components only. That is, we assume
that the joint probability distribution of Y is

f(y; Ψ, θ) = exp(Ψ′y + θw − A(Ψ, θ)), (12.14)

where w =
∑

i<j yiyj. Now we define the generalized entropy criterion, or
the homogeneity of node τL, as the maximum of the log-likelihood derived
from this distribution, which equals

h(τL) =
∑

{subject i∈τL}
(Ψ̂′yi + θ̂wi − A(Ψ̂, θ̂)), (12.15)

where Ψ̂ and θ̂ may be viewed as the maximum likelihood estimates of Ψ
and θ, respectively. Obviously, the homogeneity of node tR can be defined
by analogy. The node impurity i(τ) can be chosen as −h(τ) if you will.
Having defined the homogeneity (or impurity) measure, we plug it into
(2.3) to form a splitting rule.

In addition to the homogeneity (12.15), there are other possibilities worth
considering. If the responses were continuous, it would be natural to mea-
sure the node homogeneity through their covariance matrix. Therefore, it
is reasonable to explore a homogeneity measure via a covariance matrix
such as (11.38) for regression trees.

Within a node τ, we can measure its homogeneity (counter variation) in
terms of the distribution of Y by

h1(τ) = − log |Vτ |, (12.16)
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where |Vτ | is the determinant of the within-node sample covariance matrix
of Y. The use of the logarithm is to ensure the subadditivity

nτh1(τ) ≤ nτLh1(τL) + nτRh1(τR),

where nτ , nτL , and nτR are respectively the numbers of subjects in node τ
and its left and right daughter nodes τL and τR.

When we have a single binary response, criterion (12.16) is essentially
the Gini index in (4.4). This is because

|Vτ | =
nτ

nτ − 1
pτ (1 − pτ ),

where pτ is the proportion of diseased subjects in node τ.
Further, as a direct extension from the criterion (11.38) used in the trees

for continuous longitudinal data, another measure of within-node homo-
geneity that deserves our attention is

h2(τ) = − 1
nτ

∑
i∈ node τ

(yi − ȳ(τ))′V −1(yi − ȳ(τ)), (12.17)

where V −1 is the covariance matrix of Yi in the root node.
Finally, based on the discussion in the previous section, it would be more

appropriate to replace the covariance matrix Vτ with a matrix constituted
by the pairwise odds ratios when we deal with multiple binary responses.
The consequence warrants further investigation.

12.2.2 Terminal Nodes

To construct a useful tree structure, a rigorous rule is warranted to deter-
mine the terminal nodes and hence the size of the tree. As in Section 4.2.2,
we need to prepare a tree cost-complexity,

Rα(T ) = R(T ) + α|T̃ |,

as was first introduced in (4.7). Zhang (1998a) considered three definitions
for the cost R(T ) with respect to h, h1, and h2. Using h(τ) he defined

R(T ) = −
∑
τ∈T̃

∑
{subject i∈τ}

log f(yi; Ψ̂, θ̂), (12.18)

where f is introduced in (12.14), and Ψ̂ and θ̂ are estimated from the
learning sample. Note, however, that subject i may or may not be included
in the learning sample.

Using h1(τ) Zhang introduced

R1(T ) = −
∑
τ∈T̃

nτ log |Vτ |,
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where Vτ is the covariance matrix of Y within node τ with the average
obtained from the learning sample even though Y may not be included in
the learning sample. It turned out that h1(τ) and R1(T ) are not as useful as
the other choices. For the data in Section 12.3, h1(τ) in (12.16) suffered an
undesirable end-cut preference problem. This phenomenon was described
at the end of Section 2.2 as a side effect of using the Gini index for a single
binary outcome. Because h1(τ) can be viewed as a generalization of the
Gini index, it is not surprising that h1(τ) manifested the problem. Thus,
we remove h1(τ) and R1(T ) from further discussion.

Likewise, for h2(τ) we have

R2(T ) = −
∑
τ∈T̃

∑
{subject i∈τ}

(yi − ȳ(τ))′V −1(yi − ȳ(τ)), (12.19)

where V and ȳ(τ) are estimated from the learning sample only.
After Rα(T ) is defined, the rest of the procedure is identical to that in

Section 4.2.3. We should mention, however, that a theoretical derivation of
the standard error for R(T ) seems formidable. As a start, Zhang (1998a)
suggested repeating the cross-validation procedure ten times. This process
results in an empirical estimate of the needed standard error. Although
it was not explicitly stated, this in effect introduced the idea of bagging,
except that it was for the purpose of determining the tree size.

12.2.3 Computational Issues∗

Because each node may have many possible splits, the homogeneity (12.15)
must be computed a large number of times. Therefore, it is important to
reduce the computational burden as much as possible by designing efficient
algorithms. Computing y and w is relatively simple, so the critical part is
to find Ψ̂ and θ̂. To simplify the notation, we attach w to y and θ to Ψ and
let

z = (y′, w)′ and Φ = (Ψ′, θ)′.

According to Fitzmaurice and Laird (1993), Φ̂ can be found through the
following updating formulas:

Φ(J+1) = Φ(J) + V −1(y)(ȳ − IE{Y}), (12.20)

where IE{Y} and V −1(y) are the mean and covariance matrix of Y given
model parameters at Φ(J), respectively, and ȳ is the sample average of Y
within a given node. Not surprisingly, the computation of V (Y) requires
more time. Moreover, it depends on the current value Φ(J) and makes
the updating formula more vulnerable to a poor initial value of Φ. Both
numerical and theoretical evidence suggests that it is better to replace the
theoretical value of V (Y) with the sample covariance matrix V0 of Y within
a given node. In our application, the use of V0 leads to satisfactory numer-
ical results. From a theoretical point of view, as Φ(J) converges to a stable
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point and if the sample size is sufficiently large, IE{Y} and V (Y) should
be close to ȳ and V0, respectively. So, the following simplified updating
formula takes over the one in (12.20):

Φ(J+1) = Φ(J) + V −1
0 (ȳ − IE{Y}). (12.21)

12.2.4 Parameter Interpretation∗

We have noted earlier that the canonical parameters correspond to condi-
tional odds or odds ratios and that the conditions in these odds may not be
appropriate. We illustrate here how to transform the canonical parameters
to the marginal parameters that have natural interpretations.

Let γ = IE(w) and μ = (μ1, . . . , μq)′ = IE(Y). Now we introduce an
“overall” measure of pairwise correlations:

ρ =
γ −

∑
i<j μiμj√∑

i<j μi(1 − μi)μj(1 − μj)
. (12.22)

Next, we show how to derive the estimates of marginal distribution pa-
rameters, μ and ρ, and their standard errors by making use of those of
Φ = (Ψ′, θ)′. The estimates for μ̂ and ρ̂ can be directly computed by sub-
stituting Φ̂ into the distribution function. What follows explains how to
find the standard errors.

It is easy to see that

∂μ

∂Φ′ = Cov(Y,Z′), and
∂γ

∂Φ′ = Cov(w,Z′).

By the chain rule, we have

∂ρ

∂Φ′ =
∂ρ

∂γ

∂γ

∂Φ′ +
∂ρ

∂μ′
∂μ

∂Φ′

= Cov(w,Z′)
∂ρ

∂γ
+

∂ρ

∂μ′Cov(Y,Z′).

Therefore, ( ∂µ
∂Φ′
∂ρ
∂Φ′

)
=
(

I 0
∂ρ
∂µ′

∂ρ
∂γ

)
Cov(Z) def= JV.

Since V is the information matrix with respect to Φ, the information matrix
for μ and ρ is

I(μ, ρ) = (V J ′)−1V (JV )−1 = (J−1)′V −1J−1.

Considering potential model misspecification as discussed by Fitzmaurice
and Laird (1993) and Zhao and Prentice (1990), we should adopt a robust
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estimate for the covariance matrix of μ̂ and ρ̂ from Royall (1986) as follows:

V̂ (μ̂, ρ̂) = [nτI(μ̂, ρ̂)]−1
∑[

(V̂ Ĵ ′)−1

(
yi − μ̂
wi − γ̂

)

×
(

yi − μ̂
wi − γ̂

)′
(Ĵ V̂ )−1

]
[nτI(μ̂, ρ̂)]−1

=
1
n2

τ

Ĵ
∑(

yi − μ̂
wi − γ̂

)(
yi − μ̂
wi − γ̂

)′
Ĵ ′,

where nτ is the number of subjects in node τ and the summation is over all
subjects in node τ. From the formula above it is numerically straightforward
to compute the standard errors for μ̂ and ρ̂.

12.3 Application: Analysis of BROCS Data

12.3.1 Background

Building-related occupant complaint syndrome (BROCS) is a nonspecific
set of related symptoms of discomfort reported by occupants of buildings.
It occurs throughout the world in office buildings, hospitals, etc. The most
common symptoms of BROCS include irritation of the eyes, nose, and
throat; headache; and nausea. The cause of BROCS is generally not known.
To enhance the understanding of BROCS, Zhang (1998a) analyzed a sub-
set of the data from a 1989 survey of 6800 employees of the Library of
Congress and the headquarters of the Environmental Protection Agency in
the United States. The discussion here is similar to the analysis of Zhang
(1998a). In his analysis, Zhang built trees using the entire sample. But in
order to validate the trees, we divide the sample equally into two sets: one
to build the tree and one to validate it. Again, we also considered 22 pre-
dictors as the risk factors of BROCS (represented by 22 questions in Table
12.1) and 6 binary responses (each of which includes a number of specific
health discomforts as given in Table 12.2). The purpose is to predict the
risk of BROCS by identifying contributing factors.

12.3.2 Tree Construction

Since some of the predictors have missing information, the missings to-
gether strategy described in Section 4.8.1 is adopted in the tree construc-
tion. To ensure that there is a reasonable number of subjects in every node,
taking into account both the study sample size and the number of responses,
Zhang (1998a) suggested not partitioning any node that has fewer than 60
subjects. In addition, the entire sample is equally divided into a learning
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TABLE 12.1. Explanatory Variables in the Study of BROCS

Predictor Questions
x1 What is the type of your working space?

(enclosed office with door, cubicles, stacks, etc.)
x2 How is your working space shared?

(single occupant, shared, etc.)
x3 Do you have a metal desk? (yes or no)
x4 Do you have new equipment at your work area?

(yes or no)
x5 Are you allergic to pollen? (yes or no)
x6 Are you allergic to dust? (yes or no)
x7 Are you allergic to molds? (yes or no)
x8 How old are you? (16 to 70 years old)
x9 Gender (male or female)
x10 Is there too much air movement at your work area?

(never, rarely, sometimes, often, always)
x11 Is there too little air movement at your work area?

(never, rarely, sometimes, often, always)
x12 Is your work area too dry?

(never, rarely, sometimes, often, always)
x13 Is the air too stuffy at your work area?

(never, rarely, sometimes, often, always)
x14 Is your work area too noisy?

(never, rarely, sometimes, often, always)
x15 Is your work area too dusty?

(never, rarely, sometimes, often, always)
x16 Do you experience glare at your workstation?

(no, sometimes, often, always)
x17 How comfortable is your chair? (reasonably,

somewhat, very uncomfortable, no one specific chair)
x18 Is your chair easily adjustable?

(yes, no, not adjustable)
x19 Do you have influence over arranging the furniture?

(very little, little, moderate, much, very much)
x20 Do you have children at home? (yes or no)
x21 Do you have major childcare duties? (yes or no)
x22 What type of job do you have?

(managerial, professional, technical, etc.)
This table is reproduced from Table 1 of Zhang (1998a).
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TABLE 12.2. Six Clusters of BROCS

Response Cluster Included Symptoms
y1 CNS difficulty remembering/concentrating, dizziness,

lightheadness, depression, tension, nervousness
y2 Upper runny/stuffy nose, sneezing, cough, sore throat

Airway
y3 Pain aching muscles/joints, pain in back/shoulders/

neck, pain in hands/wrists
y4 Flu-like nausea, chills, fever
y5 Eyes dry, itching, or tearing eyes, sore/strained eyes,

blurry vision, burning eyes
y6 Lower wheezing in chest, shortness of breath, chest

Airway tightness
This table is reproduced from Table 2 of Zhang (1998a).

and a validation sample in order to assess the performance of various ap-
proaches. The learning sample is used to construct trees and the validation
sample to compare the predictive power of the constructed trees.

When h(τ) in (12.15) is used as a measure of node homogeneity, we
obtained an initial tree with 65 nodes. Applying R(T ) defined in (12.18) as
the tree cost, we derived a sequence of 33 nested optimal subtrees from the
initial tree. Figure 12.2(a) plots the log cost of these subtrees against their
complexity. In contrast, the use of h2(τ) in (12.17) results in a starting tree
of 199 nodes. Then, we obtained a sequence of 69 nested optimal subtrees
using R2(T ) in (12.19) as the tree cost. See Figure 12.2(b).

The subtree cost estimate and its standard error were derived from ten
repetitions of 5-fold cross-validation. Each time, we have a 5-fold cross-
validation estimate of the cost for every subtree. Repeating ten times gives
ten such estimates. The average and the square root of the sample variance
of these ten estimates are used as the tree cost estimate and its standard
error, respectively. Based on Figure 12.2, we selected a 6-terminal-node
final subtree from the initial tree using h(τ) shown in Figure 12.3 and a
7-terminal-node final subtree from the other initial tree depicted in Figure
12.4.

12.3.3 Description of Numerical Results

Table 12.3 suggests that terminal node 7 in Figure 12.3 is most troublesome.
Subjects in this terminal node complained about more problems in nearly
all clusters than everyone else. This is because the air quality in their
working area was poor, namely, often too stuffy and dusty. For the same
reasons, subjects in terminal nodes 5 and 6 also reported relatively more
symptoms. In contrast, subjects in terminal node 10 experienced the least
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FIGURE 12.2. Cost-complexity for two sequences of nested subtrees. Panels (a)
and (b) come from trees using h(τ ) and h2(τ ), respectively. The solid line is the
log cross-validation (CV) estimates of cost, and the dotted line is the log of one
standard error above the estimated cost estimated by cross-validation

Yes
Was there often

too much air movement?

node 9

node 2

Was air sometimes
too dusty?

1912

node 5 node 6

node 3

node 1
3400
3400

too stuffy?
Was air often

node 7

Was your area
never too dry?

node 10 node 11

122

532956

1488

node 4
1229

node 8
1107

often too dusty?
Was air

Yes

Yes

No/NA

No/NA Yes No/NA

No/NA

No/NA Yes

1921 1479

1205
683
716 974 505

1099
106

997
999

110
100

FIGURE 12.3. Tree structure for the risk factors of BROCS based on h(τ ). Inside
each node (a circle or a box) are the node number and the numbers of subjects
in the learning (middle) and validation (bottom) samples. The splitting question
is given under the node
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TABLE 12.3. Estimates of Symptom Prevalence Rates in the Terminal Nodes of
the Tree in Figure 12.3

Terminal Cluster of symptoms
node # CNS U.A. Pain Flu-like Eyes L.A.

5 0.14† 0.29 0.29 0.15 0.03 0.10
0.14¶ 0.24 0.24 0.14 0.02 0.08

6 0.21 0.30 0.35 0.16 0.05 0.07
0.20 0.31 0.35 0.19 0.05 0.07

7 0.29 0.49 0.51 0.29 0.08 0.12
0.27 0.49 0.47 0.25 0.06 0.11

9 0.10 0.19 0.16 0.15 0.02 0.27
0.08 0.20 0.17 0.13 0.01 0.18

10 0.07 0.09 0.10 0.06 0.01 0.03
0.07 0.11 0.12 0.06 0.01 0.02

11 0.21 0.26 0.24 0.17 0.05 0.09
0.08 0.14 0.26 0.08 0.04 0.04

†Based on the learning sample.
¶Based on the validation sample.

discomfort because they had the best air quality. Overall, Figure 12.3 and
Table 12.3 show the importance of air quality around the working area.

Based on a different criterion, h2(τ), Figure 12.4 demonstrates again the
importance of air quality. It uses nearly the same splits as Figure 12.3 except
that “experiencing a glare” also emerged as a splitting factor. By comparing
terminal nodes 10 and 11 in Figure 12.4, it appears that “experiencing a
glare” resulted in more discomfort for all clusters of symptoms.

12.3.4 Alternative Approaches

We mention two alternative approaches that make direct use of the tree
methods for a single outcome as described in earlier chapters. First, we
could grow separate trees for individual clusters of symptoms and then at-
tempt to summarize the information. Depending on the number of clusters,
this approach could be very laborious and not necessarily as productive, as
explained by Zhang (1998a). The second approach is to create a surrogate
response variable. This surrogate response can be taken as the sum of the
positive responses in the six clusters or a more sophisticated linear combina-
tion derived from a descriptive principal components analysis (Kleinbaum
et al. 1988, p. 604). It is regarded as descriptive because the responses are
binary, which do not satisfy the conditions of principal components analy-
sis. Then, we can treat the surrogate response as a numerical variable and
grow a regression tree for it. After such a regression tree is grown, we can
regard it as a classification tree for the original binary outcomes. We refer
to Zhang (1998a) for details.
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TABLE 12.4. Estimates of Symptom Prevalence Rates in the Terminal Nodes of
the Tree in Figure 12.4

Terminal Cluster of symptoms
node # CNS U.A. Pain Flu-like Eyes L.A.

5 0.15† 0.27 0.27 0.21 0.04 0.24
0.12¶ 0.25 0.26 0.18 0.02 0.21

8 0.09 0.13 0.14 0.08 0.01 0.04
0.08 0.14 0.15 0.07 0.01 0.03

9 0.16 0.41 0.34 0.20 0.04 0.10
0.18 0.29 0.28 0.17 0.01 0.05

10 0.19 0.29 0.30 0.13 0.04 0.06
0.18 0.30 0.32 0.16 0.04 0.06

11 0.31 0.36 0.57 0.28 0.10 0.08
0.28 0.37 0.51 0.30 0.08 0.08

12 0.28 0.48 0.51 0.28 0.08 0.10
0.27 0.49 0.47 0.25 0.06 0.11

13 0.56 0.61 0.44 0.56 0.22 0.61
0.18 0.45 0.36 0.18 0.18 0.27

†Based on the learning sample.
¶Based on the validation sample.

12.3.5 Predictive Performance

To compare the predictive performance of the trees constructed in Figures
12.3 and 12.4, we produce ROC curves (see Section 3.2 for the description of
ROC curves) for individual clusters. Figure 12.5 displays two sets of ROC
curves: one from the prediction rule based on Figure 12.3 and the other
on Figure 12.4. In addition, the areas under the ROC curves are listed.
Each panel of Figure 12.5 corresponds to a cluster. The performance of the
two trees is very close, as indicated by both the ROC curves and the areas
under the curves, although Figure 12.4 is decisively better than Figure 12.3
for the clusters of “flu-like” and “lower airway.”

12.4 Ordinal and Longitudinal Responses

The homogeneity h(τ) can be further extended to analyze longitudinal
binary responses and polytomous responses. For longitudinal data, the time
trend can be incorporated into the parameters introduced in (12.14), hence
allowing h(τ) to be a function of time.

For ordinal responses, we describe the method proposed by Zhang and Ye
(2008). Let zij be the jth ordinal response in the ith subject, taking a value
of 1, . . . , K. Note here that K is the same for all response variables, although
in principle we can create extra levels with zero frequency to accommodate
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FIGURE 12.5. Comparison of ROC curves for the classifications tree in Figures
12.3 and 12.4 among individual clusters. The true positive probability (TPP)
is plotted against the false positive probability (FPP). The solid line indicates
the performance of a random prediction. The dotted and dashed ROC curves
respectively come from Figures 12.3 and 12.4, and the areas under them are also
reported
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different K’s. We define K − 1 indicator variables yijk = I(zij > k), for
k = 1, . . . , K − 1. Recall I(·) is the indicator function. Let

yij = (yij,1, · · · , yij,K−1)′,
yi = (y′

i1, · · · , y′
in)′, (12.23)

Then, the observed responses from the ith unit can be rewritten as

yi = (yi1,1, · · · , yi1,K−1, · · · , yin,1, · · · , yin,K−1)′.

Now, the components of the yi are binary, and hence we can use the same
procedure as described in Section 12.2.1.

12.5 Analysis of the BROCS Data via Log-Linear
Models

Building a log-linear model with standard software such as SAS and SPLUS
is usually a prohibitive task when we include a large number of factors
into the model and consider their higher-order interactions. In the present
application, given the six response variables it is not realistic to scrutinize
all 22 covariates in the same model. In fact, it was still computationally
too ambitious when we entered only four variables (in their original scale)
that appeared in Figures 12.3 and 12.4. As a compromise, we dichotomized
the four variables based on the splits and created four dummy variables:
z1 = I(x10 > 3), z2 = I(x12 > 3), z3 = I(x13 > 3), and z4 = I(x15 > 3).
In log-linear models, we assume that the sample counts for the 210 cross-
classification cells of y’s and z’s are independent Poisson random variables
with expected values to be modeled.

We started with a model that allows for third-order interactions between
two of the six response variables and one of the four dummy variables. The
first PROC CATMOD statement of the SAS program in Table 12.5 carried out
the estimation for the initial model. Insignificant terms (p-value ≥ 0.05)
were removed from the model sequentially, which led to the final log-linear
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model with the expected cell counts specified by

exp

[
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The second PROC CATMOD statement of the SAS program in Table 12.5
performed the computation for model (12.24). The results were organized
in Table 12.6 in five categories based on the grouping of the terms in model
(12.24).

Interpreting Table 12.6 rigorously and thoroughly would be difficult and
may be even impossible because of the mutual relationship among the re-
sponses and covariates. Our attempt here is merely to extract the major
message in a descriptive manner. Table 12.6 confirms the correlation be-
tween the 6 response variables. Conditional on everything else, the first re-
sponse variable (CNS) appears to be uncorrelated with the second (upper
airway) response because the final model does not contain the interaction:
y1 ∗ y2. Five of the 14 significant correlations between the 6 responses may
be mediated by the three dummy variables z2 to z4. The dummy variable
z1 (air movement) has significant effects only on the mean frequency of the
fourth (flu-like) and sixth (lower airway) clusters of symptoms. The air dry-
ness (z2) may not be significantly associated with the pain (y3) and lower
airway (y6) symptoms. Although we have seen the importance of air stuffi-
ness (z3) in the tree-based analysis, the log-linear model does not suggest
that it significantly affects the upper airway (y2) and eye (y5) problems.
Finally, the dusty air (z4) did not express significant association with the
eye (y5) and lower airway (y6) symptoms although we expect that the dusty
air would cause more eye discomfort. One might think that relatively few
reports in the eye cluster perhaps limited our power; however, the model
reveals its significant association with air dryness. One good explanation
comes from the tree in Figure 12.4, where we see that the combination of
dusty air with movement resulted in many more eye problems. Due to prac-
tical limitations, it was not possible to consider the interactions between
the covariates in the initial model. As a matter of fact, the interaction,
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TABLE 12.5. SAS Program for the Analysis of BROCS Data

data one;
infile ’BROCS.DAT’;
input x1-x22 y1-y6;
run;
data two; set one;
where x10 ne . and x12 ne . and x13 ne . and x15 ne .;
z1 = (x10 > 3); z2 = (x12 > 3);
z3 = (x13 > 3); z4 = (x15 > 3);
proc sort; by z1 z2 z3 z4 y1 y2 y3 y4 y6;
proc freq noprint;

tables z1*z2*z3*z4*y1*y2*y3*y4*y5*y6
/list out=counts;

run;
proc catmod data=counts; weight count;
model z1*z2*z3*z4*y1*y2*y3*y4*y5*y6 = _response_

/ml noprofile noresponse noiter;
loglin y1|y2|z1 y1|y2|z2 y1|y2|z3 y1|y2|z4

y1|y3|z1 y1|y3|z2 y1|y3|z3 y1|y3|z4
y1|y4|z1 y1|y4|z2 y1|y4|z3 y1|y4|z4
y1|y5|z1 y1|y5|z2 y1|y5|z3 y1|y5|z4
y1|y6|z1 y1|y6|z2 y1|y6|z3 y1|y6|z4
y2|y3|z1 y2|y3|z2 y2|y3|z3 y2|y3|z4
y2|y4|z1 y2|y4|z2 y2|y4|z3 y2|y4|z4
y2|y5|z1 y2|y5|z2 y2|y5|z3 y2|y5|z4
y2|y6|z1 y2|y6|z2 y2|y6|z3 y2|y6|z4
y3|y4|z1 y3|y4|z2 y3|y4|z3 y3|y4|z4
y3|y5|z1 y3|y5|z2 y3|y5|z3 y3|y5|z4
y3|y6|z1 y3|y6|z2 y3|y6|z3 y3|y6|z4
y4|y5|z1 y4|y5|z2 y4|y5|z3 y4|y5|z4
y4|y6|z1 y4|y6|z2 y4|y6|z3 y4|y6|z4
y5|y6|z1 y5|y6|z2 y5|y6|z3 y5|y6|z4;

run;
proc catmod data=counts; weight count;
model z1*z2*z3*z4*y1*y2*y3*y4*y5*y6 = _response_

/ml noprofile noresponse noiter;

loglin y1*z2 y1*z3 y2*z4 y1*y3 y2*y3 y4*z1 y5*z2
y2*y5 y3*y5 y1|y4|z4 y1|y5 y1|y6 y6|z1
y2|y4|z2 y2|y6 y3|y4|z3 y3|y4|z4 y3|y6|z3
y4|y5 y4|y6 y5|y6;

run;
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TABLE 12.6. SAS Program for the Analysis of BROCS Data

Effect Estimate Error Prob. Effect Estimate Error Prob.
--------------------------- ---------------------------
Y1 0.218 0.049 0.0000 Y2 -0.212 0.055 0.0001
Y3 -0.230 0.058 0.0001 Y4 0.137 0.055 0.0125
Y5 1.116 0.054 0.0000 Y6 0.427 0.053 0.0000
--------------------------- ---------------------------
Z1 0.604 0.030 0.0000 Z2 0.019 0.038 0.6161
Z3 -0.103 0.029 0.0004 Z4 0.322 0.022 0.0000
--------------------------- ---------------------------
Z1*Y4 0.112 0.028 0.0001 Z1*Y6 0.421 0.028 0.0000
Z2*Y1 0.117 0.019 0.0000 Z2*Y2 0.157 0.019 0.0000
Z2*Y4 0.080 0.020 0.0000 Z2*Y5 0.137 0.038 0.0002
Z3*Y1 0.146 0.020 0.0000 Z3*Y3 0.106 0.028 0.0001
Z3*Y4 0.100 0.021 0.0000 Z3*Y6 -0.090 0.026 0.0007
Z4*Y1 0.068 0.022 0.0016 Z4*Y2 0.214 0.018 0.0000
Z4*Y3 0.085 0.022 0.0001 Z4*Y4 0.090 0.022 0.0001
--------------------------- ---------------------------
Y1*Y3 0.210 0.020 0.0000 Y1*Y4 0.277 0.023 0.0000
Y1*Y5 0.202 0.043 0.0000 Y1*Y6 0.166 0.031 0.0000
Y2*Y3 0.345 0.017 0.0000 Y2*Y4 0.137 0.022 0.0000
Y2*Y5 0.290 0.047 0.0000 Y2*Y6 0.157 0.030 0.0000
Y3*Y4 0.189 0.023 0.0000 Y3*Y5 0.197 0.050 0.0001
Y3*Y6 0.088 0.032 0.0053 Y4*Y5 0.127 0.047 0.0061
Y4*Y6 0.250 0.032 0.0000 Y5*Y6 0.257 0.052 0.0000
--------------------------- ---------------------------
Z2*Y2*Y4 0.079 0.019 0.0000
Z3*Y3*Y4 0.063 0.020 0.0015 Z3*Y3*Y6 0.111 0.026 0.0000
Z4*Y1*Y4 0.067 0.021 0.0018 Z4*Y3*Y4 0.093 0.020 0.0000
---------------------------------------------------------
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z2 ∗ z4 ∗ y5, would be extremely significant if we knew that it should be
included.

In retrospect, log-linear models provide us with the opportunity to ex-
plore the association among many categorical variables. Due to the model’s
complexity, we are usually confined to simplistic choices of log-linear models
and have to give up the chance of exploring some important relationships.
The tree-based analysis offers a fruitful complement to the use of log-linear
models, particularly in dimension reduction and model specification.
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