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Preface

Multiple complex pathways, characterized by interrelated events and con-
ditions, represent routes to many illnesses, diseases, and ultimately death.
Although there are substantial data and plausibility arguments support-
ing many conditions as contributory components of pathways to illness
and disease end points, we have, historically, lacked an effective methodol-
ogy for identifying the structure of the full pathways. Regression methods,
with strong linearity assumptions and data-based constraints on the extent
and order of interaction terms, have traditionally been the strategies of
choice for relating outcomes to potentially complex explanatory pathways.
However, nonlinear relationships among candidate explanatory variables
are a generic feature that must be dealt with in any characterization of
how health outcomes come about. It is noteworthy that similar challenges
arise from data analyses in Economics, Finance, Engineering, etc. Thus,
the purpose of this book is to demonstrate the effectiveness of a relatively
recently developed methodology—recursive partitioning—as a response to
this challenge. We also compare and contrast what is learned via recur-
sive partitioning with results obtained on the same data sets using more
traditional methods. This serves to highlight exactly where—and for what
kinds of questions—recursive partitioning–based strategies have a decisive
advantage over classical regression techniques.

This book is a revised edition of our first one entitled Recursive Par-
titioning in the Health Sciences. A decade has passed since we published
the first edition. This new edition reflects recent developments that are
either new or have increased in importance. It also covers areas that we
neglected before, particularly the topic of forests. The first edition focused
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on two aspects. First, we presented the tree-based methods entirely within
the framework of Breiman et al. (1984). Second, the examples were from
health sciences. Although it is difficult to do justice to all alternative meth-
ods to Breiman et al. (1984), we feel they deserve emphasis here. We also
realize that the methods presented herein have applications beyond health
sciences, and an outreach to other fields of science and societal significance
is overdue. This is the reason that we have changed the title. Lastly, we have
experienced the rapid advancement of genomics. Recursive partitioning has
become one of the most appealing analytic methods for understanding or
mining genomic data. In this revision, we demonstrate the application of
tree- and forest-based methods to understanding genomic data.

Having expanded the scope of our book, we are aiming at three broad
groups: (1) biomedical researchers, clinicians, bioinformaticists, geneticists,
psychologists, sociologists, epidemiologists, health services researchers, and
environmental policy advisers; (2) consulting statisticians who can use the
recursive partitioning technique as a guide in providing effective and in-
sightful solutions to clients’ problems; and (3) statisticians interested in
methodological and theoretical issues. The book provides an up-to-date
summary of the methodological and theoretical underpinnings of recursive
partitioning. More interestingly, it presents a host of unsolved problems
whose solutions would advance the rigorous underpinnings of statistics in
general.

From the perspective of the first two groups of readers, we demonstrate
with real applications the sequential interplay between automated produc-
tion of multiple well-fitting trees and scientific judgment leading to respec-
ification of variables, more refined trees subject to context-specific con-
straints (on splitting and pruning, for example), and ultimately selection
of the most interpretable and useful tree(s). In this revision we include new
and substantively important examples, some of which are related to bioin-
formatics and genomics and others are outside the realm of health sciences.
The sections marked with asterisks can be skipped for application-oriented
readers.

We show a more conventional regression analysis—having the same ob-
jective as the recursive partitioning analysis—side by side with the newer
methodology. In each example, we highlight the scientific insight derived
from the recursive partitioning strategy that is not readily revealed by more
conventional methods. The interfacing of automated output and scientific
judgment is illustrated with both conventional and recursive partitioning
analysis.

Theoretically oriented statisticians will find a substantial listing of chal-
lenging theoretical problems whose solutions would provide much deeper
insight than heretofore about the scope and limits of recursive partitioning
as such and multivariate adaptive splines and forests in particular.

We emphasize the development of narratives to summarize the formal
Boolean statements that define routes down the trees to terminal nodes.
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Particularly with complex—by scientific necessity—trees, narrative output
facilitates understanding and interpretation of what has been provided by
automated techniques.

We illustrate the sensitivity of trees to variation in choosing misclassi-
fication cost, where the variation is a consequence of divergent views by
clinicians of the costs associated with differing mistakes in prognosis.

The book by Breiman et al. (1984) is a classical work on the subject of
recursive partitioning. In Chapter 4, we reiterate the key ideas expressed in
that book and expand our discussions in different directions on the issues
that arise from applications. Other chapters on survival trees, adaptive
splines, forests, and classification trees for multiple discrete outcomes are
new developments since the work of Breiman et al. (1984).

Heping Zhang wishes to thank his colleagues and students, Joan Buen-
consejo, Theodore Holford, James Leckman, Ju Li, Robert Makuch, Kath-
leen Merikangas, Bradley Peterson, Norman Silliker, Daniel Zelterman, and
Hongyu Zhao among others, for their help with reading and commenting on
the first edition of this book. He is also grateful to many colleagues includ-
ing Drs. Michael Bracken, Dorit Carmelli, and Brian Leaderer for making
their data sets available to the first version of this book. This revision was
supported in part by NIH grants K02DA017713 and R01DA016750 to Hep-
ing Zhang. Burton Singer thanks Tara Gruenewald (UCLA) and Jason Ku
(Princeton) for assistance in developing some of the new examples. In ad-
dition, Drs. Xiang Chen, Kelly Cho, Yunxiao He, Yuan Jiang, and Minghui
Wang, and Ms. Donna DelBasso assisted Heping Zhang in computation
and proofreading of this revised edition.
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1
Introduction

Many scientific problems reduce to modeling the relationship between two
sets of variables. Regression methodology is designed to quantify these
relationships. Due to their mathematical simplicity, linear regression for
continuous data, logistic regression for binary data, proportional hazard
regression for censored survival data, and mixed-effect regression for lon-
gitudinal data are among the most commonly used statistical methods.
These parametric (or semiparametric) regression methods, however, may
not lead to faithful data descriptions when the underlying assumptions are
not satisfied. As remedies, extensive literature exists to perform diagno-
sis of parametric or semiparametric regression models, but the practice of
the model diagnosis is uneven at best. A common practice is the visual-
ization of the residual plots, which is a straightforward task for a simple
regression model, but can be highly sophisticated as the model complexity

ence of higher-order interactions among potent predictors. Nonparametric
regression has evolved to relax or remove the restrictive assumptions.

In many cases, recursive partitioning provides a useful alternative to the

classes of nonparametric regression methods: Classification and Regression
Trees (CART) and Multivariate Adaptive Regression Splines (MARS). In
the last two decades, many methods have been developed on the basis of
or inspired by CART and MARS, and some of them are described in this

©

grows. Furthermore, model interpretation can be problematic in the pres-

parametric regression methods built on recursive partitioning. Importantly,

book. Although relatively new, the applications of these methods are far

1

recursive partitioning is a statistical technique that forms the basis for two

H. Zhang and B.H. Singer, Recursive Partitioning and Applications, 
Springer Series in Statistics, DOI 10.1007/978-1-4419-6824-1_1,

parametric regression methods. The theme of this book is to describe non-

  Springer Science+Business Media, LLC 2010



2 1. Introduction

reaching, as a result of increasing complexity of study designs and the mas-
sive size of many data sets (a large number of observations or variables).

Although most commercial applications of recursive partitioning-based
methods have not been well-documented through peer-reviewed publica-
tions, there is no doubt about their extensive use. For example, they have
been used by financial firms [banking crises (Cashin and Duttagupta 2008),
credit cards (Altman 2002; Frydman, Altman and Kao 2002; Kumar and
Ravi 2008), and investments (Pace 1995 and Brennan, Parameswaran et
al. 2001)], manufacturing and marketing companies (Levin, Zahavi, and
Olitsky 1995; Chen and Su 2008), and pharmaceutical industries (Chen et
al. 1998). They have also been applied in engineering research. Bahl and
colleagues (1989) introduced a tree-based language model for natural lan-
guage speech recognition, and Wieczorkowska (1999) used decision trees to
classify musical sounds. Desilva and Hull (1994) used the idea of decision
trees to detect proper nouns in document images. Geman and Jedynak
(1996) used a related idea to form an active testing model for tracking
roads in satellite images. In addition, decision trees have been used in sci-
entific, social, and musical studies including astronomy (Owens, Griffiths,
and Ratnatunga 1996), computers and the humanities (Shmulevich et al.
2001), chemistry (Chen, Rusinko, and Young 1998), environmental ento-
mology (Hebertson and Jenkins 2008), forensics (Appavu and Rajaram
2008), and polar biology (Terhune et al. 2008).

The best-documented, and arguably most popular uses of tree-based
methods are in biomedical research for which classification is a central
issue. For example, a clinician or health scientist may be very interested
in the following question (Goldman et al. 1982 and 1996; Zhang et al.
1998): Is this patient with chest pain suffering a heart attack, or does he
simply have a strained muscle? To answer this question, information on
this patient must be collected, and a good diagnostic test utilizing such
information must be in place. Tree-based methods provide one solution for
constructing the diagnostic test.

To help readers understand the methods and appreciate the applications,
while explaining the methodology in its entirety, we emphasize the appli-
cations of these methods. Moreover, it should become apparent from those
applications that the resulting models have very natural and useful inter-
pretations, and the computation will be less and less an issue. Specifically,
we will see that the tree representations can be stated as a string of hi-
erarchal Boolean statements, facilitating conversion of complex output to
narrative form.

In Section 1.1 we give a number of examples for which recursive partition-
ing has been used to investigate a broad spectrum of scientific problems. In
Section 1.2 we formulate these scientific problems into a general regression
framework and introduce the necessary notation. To conclude this chapter,
we outline the contents of the subsequent chapters in Section 1.3.
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1.1 Examples Using CART

Recursive partitioning has been applied to understand many problems in
biological, physical, and social science. The examples selected below are
not necessarily fully representative, but they give us some idea about the
breadth of applications.

Example 1.1 Chest Pain
Goldman et al. (1982, 1996) provided a classic example of using CART.

Their purpose was to build an expert computer system that could assist
physicians in emergency rooms to classify patients with chest pain into
relatively homogeneous groups within a few hours of admission using the
clinical factors available. This classification can help physicians to plan for
appropriate levels of medical care for patients based on their classified group
membership. The authors included 10,682 patients with acute chest pain in
the derivation data set and 4,676 in the validation data set. The derivation
data were used to set up a basic model frame, while the validation data
were utilized to justify the model and to conduct hypothesis testing.

Example 1.2 Coma
Levy et al. (1985) carried out one of the early applications of CART.

To predict the outcome from coma caused by cerebral hypoxia-ischemia,
they studied 210 patients with cerebral hypoxia-ischemia and considered
13 factors including age, sex, verbal and motor responses, and eye opening
movement. Several guidelines were derived to predict within the first few
days which patients would do well and which would do poorly.

Example 1.3 Mammalian Sperm
Mammalian sperm move in distinctive patterns, called hyperactivated

motility, during capacitation. Figure 1.1(a) is a circular pattern of hyperac-
tivated rabbit spermatozoa, and Figure 1.1(b) displays a nonhyperactivated
track. In general, hyperactivated motility is characterized by a change from
progressive movement to highly vigorous, nonprogressive random motion.
This motility is useful for the investigation of sperm function and the assess-
ment of fertility. For this reason, we must establish a quantitative criterion
that recognizes hyperactivated sperm in a mixed population of hyperac-
tivated and nonhyperactivated sperm. After collecting 322 hyperactivated
and 899 nonhyperactivated sperm, Young and Bod (1994) derived a classi-
fication rule based on the wobble parameter of motility and the curvilinear
velocity, using CART. Their rule was shown to have a lower misclassifi-
cation rate than the commonly used ones that were established by linear
discriminant analysis.

Example 1.4 Infant Fever
Important medical decisions are commonly made while substantial un-

certainty remains. Acute unexplained fever in infants is one such frequently
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FIGURE 1.1. Motility patterns for mammalian sperm. (a) Hyperactivated and
(b) nonhyperactivated

encountered problem. To make a correct diagnosis, it is critical to utilize in-
formation efficiently, including medical history, physical examination, and
laboratory tests. Using a sample of 1,218 childhood extremity injuries seen
in 1987 and 1988 by residents in family medicine and pediatrics in the
Rochester General Hospital Emergency Department, McConnochie, Rogh-
mann, and Pasternack (1993) demonstrated the value of the complementary
use of logistic regression and CART in developing clinical guidelines.

Example 1.5 Pregnancy Outcome
Birth weight and gestational age are strong predictors for neonatal mor-

tality and morbidity; see, e.g., Bracken (1984). In less developed countries,
however, birth weight may not be measured for the first time until sev-
eral days after birth, by which time substantial weight loss could have
occurred. There are also practical problems in those countries in obtaining
gestational age because many illiterate pregnant women cannot record the
dates of their last menstrual period or calculate the duration of gestational
age. For these considerations, Raymond et al. (1994) selected 843 singleton
infants born at a referral hospital in Addis Ababa, Ethiopia, in 1987 and
1988 and applied CART to build a practical screening tool based on neona-
tal body measurements that are presumably more stable than birth weight.
Their study suggests that head and chest circumferences may adequately
predict the risk of low birth weight (less than 2,500 grams) and preterm
(less than 37 weeks of gestational age) delivery.

Example 1.6 Head Injury
Head injuries cause about a half million patient hospitalizations in the

United States each year. As a result of the injury, victims often suffer from
persistent disabilities. It is of profound clinical importance to make early
prediction of long-term outcome so that the patient, the family, and the
physicians have sufficient time to arrange a suitable rehabilitation plan.
Moreover, this outcome prediction can also provide useful information for
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FIGURE 1.2. Classification tree for colon cancer diagnosis based on gene ex-
pression data. Inside each node are the number of tumor (C) and normal (N)
tissues

assessing the treatment effect. Using CART, Choi et al. (1991) and Temkin
et al. (1995) have developed prediction rules for long-term outcome in pa-
tients with head injuries on the basis of 514 patients. Those rules are simple
and accurate enough for clinical practice.

Example 1.7 Gene Expression
As we mentioned earlier, there has been great interest in applying tree-

based methods to understand high-throughput genomic data. Zhang et al.
(2001) analyzed a data set from the expression profiles of 2,000 genes in
22 normal and 40 colon cancer tissues (Alon et al. 1999). Figure 1.2 is a
classification tree constructed from that data set for the diagnosis of colon
cancer based on gene expression profiles.

Example 1.8 Marketing and Management
Not only have the recursive partitioning-based methods been used in sci-

entific research, but they have also been used in commercial applications.
Levin et al. (1995) developed a customer-oriented decision support system
for the marketing decisions of the Franklin Mint, a leading Philadelphia-
based worldwide direct response marketer of quality collectibles and luxury
home decor products. Based on the customers’ attributes and characteris-
tics, the system finds the “right” audience for promotion. In another appli-
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cation, Alfaro Cortés et al. (2007) used classification trees and an AdaBoost
algorithm to predict corporate failure.

Example 1.9 Chemical Compounds
Recursive partitioning has been employed to aid drug development. To

screen large chemical databases in corporate collections and chemical li-
braries, Chen et al. (1998) used recursive partitioning to develop three-
dimensional pharmacophores that can guide database screening, chemical
library design, and lead optimization. They encoded the three-dimensional
features of chemical compounds into bit strings, which were then selected
to predict the biological activities of the compounds.

Example 1.10 Musical Audio
As a part of a large-scale interdisciplinary MAMI project (Musical Audio

MIning project) conducted at Ghent University, Martens (2002) attempted
to extract the tonal context from a polyphonic musical audio signal and
to convert this information into a meaningful character sequence. First,
a musical signal is decomposed in different sub-bands and represented as
neural patterns by an auditory peripheral module. This process converts the
musical signal eventually into a real vector in a 69-dimensional space, which
is the predictor space. The class label represents one of the 24 keys (the
12 major and 12 minor keys in the so-called Shepard chords). We used 120
synthesized sounds, 5 from each of the following: Shepard sequences; Bass
sequences, sampled from a Yamaha QS300 synthesizer; Piano sequences,
sampled from a Yamaha QS300 synthesizer; Strings sequences, sampled
from a Yamaha QS300 synthesizer; and Dance-lead sequences, sampled
from a Waldorf Micro Q synthesizer. Then, a classification tree is used in
the conversion of 120 synthesized sounds into a character string.

1.2 The Statistical Problem

Examples 1.1–1.10 can be summarized into the same statistical problem as
follows. They all have an outcome variable, Y, and a set of p predictors,
x1, . . . , xp. The number of predictors, p, varies from example to example.
The x’s will be regarded as fixed variables, and Y is a random variable.
In Example 1.3, Y is a dichotomous variable representing either hyperacti-
vated or nonhyperactivated sperm. The x’s include the wobble parameter
of motility and the curvilinear velocity. Obviously, not all predictors appear
in the prediction rule. Likewise, the x’s and Y can be easily identified for
the other examples. The statistical problem is to establish a relationship
between Y and the x’s so that it is possible to predict Y based on the values
of the x’s. Mathematically, we want to estimate the conditional probability
of the random variable Y,

IP{Y = y |x1, . . . , xp}, (1.1)
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or a functional of this probability such as the conditional expectation

IE{Y |x1, . . . , xp}. (1.2)

Many applications (e.g., Example 1.1) involve dichotomous Y (0 or 1),
the conditional expectation in (1.2) coincides with the conditional prob-
ability in (1.1) with y = 1. In such circumstances, logistic regression is
commonly used, assuming that the conditional probability (1.1) is of a
specific form,

exp(β0 +
∑p

i=1 βixi)
1 + exp(β0 +

∑p
i=1 βixi)

, (1.3)

where the β’s are parameters to be estimated.
In the ordinary linear regression, the conditional probability in (1.1) is

assumed to be a normal density function,

1√
2π

exp
[
− (y − μ)2

2σ2

]
, (1.4)

where the mean, μ, equals the conditional expectation in (1.2) and is of a
hypothesized expression

μ = β0 +
p∑

i=1

βixi. (1.5)

The σ2 in (1.4) is an unknown variance parameter. We use N(μ, σ2) to
denote the normal distribution corresponding to the density in (1.4).

In contrast to these models, recursive partitioning is a nonparametric
technique that does not require a specified model structure like (1.3) or
(1.5). In the subsequent chapters, the outcome Y may represent a censored
measurement or a correlated set of responses. We will cite more examples
accordingly.

1.3 Outline of the Methodology

In this book, we will describe both classic (mostly parametric) and modern
statistical techniques as complementary tools for the analysis of data. The
five types of response variables listed in Table 1.1 cover the majority of
the data that arise from applications. Table 1.1 is meant to highlight the
content of this book. Thus, it is not a complete list of methods that are
available in the literature.

Chapter 2 is a practical guide to tree construction, focusing on the statis-
tical ideas and scientific judgment. Technical details are deferred to Chapter
4, where methodological issues involved in classification trees are discussed
in depth. We refer to Breiman et al. (1984) for further elaboration. Section
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TABLE 1.1. Correspondence Between the Uses of Classic Approaches and Re-
cursive Partitioning Technique in This Book

Type of
Parametric methods

Recursive partitioning
response technique

Ordinary linear Regression trees and
Continuous regression adaptive splines

in Chapter 10

Binary
Logistic regression Classification trees and
in Chapter 3 forests in Chapters 4 and 6

Censored
Proportion hazard Survival trees
regression in Chapter 8 in Chapter 9
Mixed-effects models Regression trees and

Longitudinal in Chapter 11 adaptive splines
in Chapter 11

Multiple Exponential, marginal, Classification trees,
discrete and frailty models all in Chapter 12

4.2.3 on Nested Optimal Subtrees is relatively technical and may be difficult
for some readers, but the rest of Chapter 4 is relatively straightforward.
Technical differences between classification trees and regression trees are
very minimal. After elucidating classification trees in Chapter 4, we intro-
duce regression trees briefly, but sufficiently, in Section 10.2, focusing on
the differences. To further demonstrate the use of classification trees, we
report a stratified tree-based risk factor analysis of spontaneous abortion
in Section 5.1.

The most notable addition to this edition is Chapter 6 that introduces
forest-based classification and prediction. As a result of many applications
where the size of the data is huge, such as high-throughput genomic data,
forest-based methods are in high demand.

Chapters 7 to 9 cover the analysis of censored data. The first part is
a shortcut to the output of survival trees. We present classical methods
of survival analysis prior to the exposition of survival trees in the last
compartment of this coverage.

Chapter 12 on classification trees for multiple binary responses is nearly
parallel to survival trees from a methodological point of view. Thus, they
can be read separately depending on the different needs of readers.

We start a relatively distinct topic in Chapter 10 that is fundamental to
the understanding of adaptive regression splines and should be read before
Chapter 11, where the use of adaptive splines is further expanded.

Before discussing the trees and splines approaches, we will describe their
parametric counterparts and explain how to use these more standard mod-
els. We view it as important to understand and appreciate the parametric
methods even though the main topic of this book is recursive partitioning.



2
A Practical Guide to Tree
Construction

We introduce the basic ideas associated with recursive partitioning in the
context of a specific scientific question: Which pregnant women are at the
greatest risk of preterm deliveries? Particular emphasis is placed on the
interaction between scientific judgment by investigators and the produc-
tion of informative intermediate-stage computer output that facilitates the
generation of the most sensible recursive partitioning trees.

The illustrative database is the Yale Pregnancy Outcome Study, a project
funded by the National Institutes of Health, which had been under the lead-
ership of Dr. Michael B. Bracken at Yale University. The study subjects
were women who made a first prenatal visit to a private obstetrics or mid-
wife practice, health maintenance organization, or hospital clinic in the
greater New Haven, Connecticut, area between May 12, 1980, and March
12, 1982, and who anticipated delivery at the Yale–New Haven Hospital.
For illustration, we take a subset of 3,861 women from this database by
selecting those women whose pregnancies ended in a singleton live birth
and who met the eligibility criteria for inclusion as specified in detail by
Bracken et al. (1986) and Zhang and Bracken (1995).

Preterm delivery will be the outcome variable of interest. Based on the
extant literature, Zhang and Bracken (1995) considered 15 variables a priori
as candidates to be useful in representing routes to preterm delivery. The
variables are listed in Table 2.1.

©

H. Zhang and B.H. Singer, Recursive Partitioning and Applications, 9
Springer Series in Statistics, DOI 10.1007/978-1-4419-6824-1_2,
  Springer Science+Business Media, LLC 2010
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TABLE 2.1. A List of Candidate Predictor Variables

Variable name Label Type Range/levels
Maternal age x1 Continuous 13–46

Currently married,
Marital status x2 Nominal divorced, separated,

widowed, never married
Race x3 Nominal White, Black, Hispanic,

Asian, others
Marijuana use x4 Nominal Yes, no

Times of using x5 Ordinal >= 5, 3–4, 2, 1 (daily)
marijuana 4–6, 1–3 (weekly)

2–3, 1, < 1 (monthly)
Years of education x6 Continuous 4–27

Employment x7 Nominal Yes, no

Smoker x8 Nominal Yes, no

Cigarettes smoked x9 Continuous 0–66

Passive smoking x10 Nominal Yes, no

Gravidity x11 Ordinal 1–10

Hormones/DES x12 Nominal None, hormones, DES,
used by mother both, uncertain

Alcohol (oz/day) x13 Ordinal 0–3

Caffeine (mg) x14 Continuous 12.6–1273

Parity x15 Ordinal 0–7
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FIGURE 2.1. An illustrative tree structure. x1 is age and x13 is the amount of
alcohol drinking. Circles and dots represent different outcomes.

2.1 The Elements of Tree Construction

To pin down the basic ideas, consider the simple tree diagram in Figure
2.1. The tree has three layers of nodes. The first layer, depth of 1, is the
unique root node, namely, the circle on the top. One internal (the circle)
node is in the second layer (depth of 2), and three terminal (the boxes)
nodes are respectively in the second and third layers. Here, the root node
can also be regarded as an internal node. Both the root and the internal
nodes are partitioned into two nodes in the next layer that are called left
and right daughter nodes. Sometimes, the daughter nodes are also referred
to as offspring nodes or descendants. By definition, however, the terminal
nodes do not have offspring nodes.

To understand the construction of Figure 2.1, we need to answer three
basic questions:

• What are the contents of the nodes?

• Why and how is a parent node split into two daughter nodes?

• When do we declare a terminal node?

The root node contains a sample of subjects from which the tree is grown.
Those subjects constitute the so-called learning sample, and the learning
sample can be the entire study sample or a subset of it. For our example, the
root node contains all 3,861 pregnant women who were the study subjects of
the Yale Pregnancy Outcome Study. All nodes in the same layer constitute
a partition of the root node. The partition becomes finer and finer as the
layer gets deeper and deeper. Therefore, every node in a tree is merely a
subset of the learning sample.

Figure 2.1(b) illustrates a hypothetical situation. Let a dot denote a
preterm delivery and a circle stand for a term delivery. The two coordinates
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represent two covariates, x1 (age) and x13 (the amount of alcohol drinking),
as defined in Table 2.1. We can draw two line segments to separate the
dots from the circles and obtain three disjoint regions: (I) x13 ≤ c2; (II)
x13 > c2 and x1 ≤ c1; and (III) x13 > c2 and x1 > c1. Thus, partition I
is not divided by x1, and partitions I and II are identical in response but
derived differently from x1 and x13.

In the same figure, panel (a) is a tree representation of this separation.
First, we put both the dots and the circles into the root node. The two
arrows below the root node direct a dot or circle to terminal node I or the
internal node in the second layer, depending on whether or not x13 ≤ c2.
Those with x13 > c2 are further directed to terminal nodes II and III based
on whether or not x1 ≤ c1. Hence, the nodes in panel (a) correspond to the
regions in panel (b). When we draw a line to separate a region, it amounts
to partitioning a node in the tree. The precise maps between regions I to
III and terminal nodes I to III, respectively, can be found in Figure 2.1.

The aim of recursive partitioning is to end up with the terminal nodes
that are homogeneous in the sense that they contain either dots or circles.
We accomplished this goal in this artificial example. We should note that
the two internal nodes are heterogeneous because they contain both dots
and circles. Given that the dots and circles represent preterm and term
deliveries, respectively, Figure 2.1 would suggest that all pregnant women
older than a certain age and drinking more than a certain amount of alcohol
daily deliver preterm infants. Consequently, this would demonstrate a hy-
pothetically ideal association of preterm delivery with the age and alcohol
consumption of the pregnant women.

Complete homogeneity of terminal nodes is an ideal that is rarely realized
in real data analysis. Thus, the realistic objective of partitioning is to make
the outcome variables in the terminal nodes as homogeneous as possible.
A quantitative measure of the extent of node homogeneity is the notion of
node impurity. The simplest operationalization of the idea is

Number of women having a preterm delivery in a node
Total number of women in the node

.

The closer this ratio is to 0 or 1, the more homogeneous is the node.

2.2 Splitting a Node

We focus on the root node and observe that the same process applies to the
partition of any node. All allowable splits, with appropriate discretization
of continuous variables, are considered for the predictor variables in Table
2.1. To understand the process, let us focus initially on the variable x1

(age). It has 32 distinct age values in the range of 13 to 46. Hence, it
may result in 32 − 1 = 31 allowable splits. For example, one split can be
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TABLE 2.2. Allowable Splits Using Race

Left daughter node Right daughter node
White Black, Hispanic, Asian, others
Black White, Hispanic, Asian, others
Hispanic White, Black, Asian, others
Asian White, Black, Hispanic, others
White, Black Hispanic, Asian, others
White, Hispanic Black, Asian, others
White, Asian Black, Hispanic, others
Black, Hispanic White, Asian, others
Black, Asian White, Hispanic, others
Hispanic, Asian White, Black, others
Black, Hispanic, Asian White, others
White, Hispanic, Asian Black, others
White, Black, Asian Hispanic, others
White, Black, Hispanic Asian, others
White, Black, Hispanic, Asian Others

whether or not age is more than 35 years (i.e., x1 > 35). In general, for
an ordinal (e.g., times of using marijuana) or a continuous (e.g., caffeine
intake) predictor, xj , the number of allowable splits is one fewer than the
number of its distinctly observed values. For instance, there are 153 different
levels of daily caffeine intake ranging from 0 to 1273 mg in the 3,861 study
subjects. Thus, we can split the root node in 152 different ways based on
the amount of caffeine intake.

What happens to nominal predictors is slightly more complicated. In
Table 2.1, x3 denotes 5 ethnic groups that do not have a particular order.
Table 2.2 lays out 25−1 − 1 = 15 allowable splits from this ethnicity vari-
able. Generally, any nominal variable that has k levels contributes 2k−1−1
allowable splits.

Adding together the numbers of allowable splits from the 15 predictors
in Table 2.1, we have 347 possible ways to divide the root node into two
subnodes. Depending on the number of the predictors and the nature of
the predictors, the total number of the allowable splits for the root node
varies, though it is usually not small. The basic question to be addressed
now is: How do we select one or several preferred splits from the pool of
allowable splits?

Before selecting the best split, we must define the goodness of a split.
What we want is a split that results in two pure (or homogeneous) daughter
nodes. However, in reality the daughter nodes are usually partially homo-
geneous. Therefore, the goodness of a split must weigh the homogeneities
(or the impurities) in the two daughter nodes. If we take age as a tentative
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splitting covariate and consider its cutoff at c, as a result of the question
“Is x1 > c?” we have the following table:

Term Preterm
Left Node (τL) x1 ≤ c n11 n12 n1·

Right Node (τR) x1 > c n21 n22 n2·
n·1 n·2

Now let Y = 1 if a woman has a preterm delivery and Y = 0 otherwise.
We estimate IP{Y = 1 | τL} and IP{Y = 1 | τR} by n12/n1· and n22/n2·,
respectively. Introduce the notion of entropy impurity in the left daughter
node as

i(τL) = −n11

n1·
log
(

n11

n1·

)
− n12

n1·
log
(

n12

n1·

)
. (2.1)

Likewise, define the impurity in the right daughter node as

i(τR) = −n21

n2·
log
(

n21

n2·

)
− n22

n2·
log
(

n22

n2·

)
. (2.2)

Then, the goodness of a split, s, is measured by

ΔI(s, τ) = i(τ) − IP{τL}i(τL) − IP{τR}i(τR), (2.3)

where τ is the parent of τL and τR, and IP{τL} and IP{τR} are respectively
the probabilities that a subject falls into nodes τL and τR. At present,
IP{τL} can be replaced with n1·/(n1·+n2·) and IP{τR} with n2·/(n1·+n2·).

The criterion (2.3) measures the degree of reduction in the impurity by
going from the parent node to the daughter nodes.

To appreciate these concepts in more detail, let us go through a concrete
example. If we take c = 35 as the age threshold, we have a 2 × 2 table

Term Preterm
Left Node (τL) 3521 198 3719

Right Node (τR) 135 7 142
3656 205 3861

Then, i(τL) in (2.1) equals

−(3521/3719) log(3521/3719)− (198/3719) log(198/3719) = 0.2079.

Similarly, i(τR) in (2.2) is 0.1964, and i(τ) = 0.20753. Substituting these
impurities into (2.3), we have ΔI(s, τ) = 0.00001.

We know that there are 31 allowable age splits. Table 2.3 reports ΔI(s, τ)
for all allowable age splits. From Table 2.3, we see that the greatest reduc-
tion in the impurity comes from the age split at 24. This table is an impor-
tant piece of output for an investigator to examine. In particular, it might
be judged to be more interesting to force an age split at age 19, stratifying
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TABLE 2.3. The Goodness of Allowable Age Splits

Split Impurity 1000∗Goodness
value Left node Right node of the split (1000Δ)

13 0.00000 0.20757 0.01
14 0.00000 0.20793 0.14
15 0.31969 0.20615 0.17
16 0.27331 0.20583 0.13
17 0.27366 0.20455 0.23
18 0.31822 0.19839 1.13
19 0.30738 0.19508 1.40
20 0.28448 0.19450 1.15
21 0.27440 0.19255 1.15
22 0.26616 0.18965 1.22
23 0.25501 0.18871 1.05
24 0.25747 0.18195 1.50
25 0.24160 0.18479 0.92
26 0.23360 0.18431 0.72
27 0.22750 0.18344 0.58
28 0.22109 0.18509 0.37
29 0.21225 0.19679 0.06
30 0.20841 0.20470 0.00
31 0.20339 0.22556 0.09
32 0.20254 0.23871 0.18
33 0.20467 0.23524 0.09
34 0.20823 0.19491 0.01
35 0.20795 0.19644 0.01
36 0.20744 0.21112 0.00
37 0.20878 0.09804 0.18
38 0.20857 0.00000 0.37
39 0.20805 0.00000 0.18
40 0.20781 0.00000 0.10
41 0.20769 0.00000 0.06
42 0.20761 0.00000 0.03
43 0.20757 0.00000 0.01

TABLE 2.4. The Largest Goodness of Split from All Predictors

Variable x1 x2 x3 x4 x5 x6 x7 x8

1000ΔI 1.5 2.8 4.0 0.6 0.6 3.2 0.7 0.6
Variable x9 x10 x11 x12 x13 x14 x15

1000ΔI 0.7 0.2 1.8 1.1 0.5 0.8 1.2
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FIGURE 2.2. Node splitting, recursive partitioning process. Node 1 is split into
nodes 2 and 3 and then node 2 into nodes 4 and 5.

the study sample into teenagers and adults. This is tantamount to selecting
the second-best split by our numerical criterion while using scientific judg-
ment in a decisive manner to overrule the automated procedure. We view
this kind of interactive process as fundamentally important in producing
the most interpretable trees.

This best or preferred age split is used to compete with the best (or re-
spectively preferred) splits from the other 14 predictors. Table 2.4 presents
the greatest numerical goodness of split for all predictors. We see that the
best of the best comes from the race variable with 1000ΔI = 4.0, i.e.,
ΔI = 0.004. This best split divides the root node according to whether
a pregnant woman is Black or not. This partition is illustrated in Figure
2.2(a), where the root node (number 1) is split into nodes 2 (Black) and 3
(non-Black).

After splitting the root node, we continue to divide its two daughter
nodes. The partitioning principle is the same. For example, to further di-
vide node 2 in Figure 2.2(b) into nodes 4 and 5, we repeat the previous
partitioning process with a minor adjustment. That is, the partition uses
only 710 Black women, and the remaining 3,151 non-Black women are put
aside. The pool of allowable splits is nearly intact except that race does not
contribute any more splits, as everyone is now Black. So, the total num-
ber of allowable splits decreases from 347 to at least 332. The decreasing
trend of the number of allowable splits is noteworthy, although it is not
necessary for us to be concerned with the precise counts here. After the
split of node 2, we have three nodes (numbers 3, 4, and 5) ready to be
split. In the same way, we can divide node 3 in Figure 2.2(b) as we did for
node 2. But remember that this time we consider only the 3,151 non-Black
women. Furthermore, there are potentially 24−1−1 = 7 race splits because
the category of non-Black women comprises Whites, Hispanics, Asians, and
other ethnic groups. Hence, there can be as many as 339 allowable splits
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for node 3. One important message is that an offspring node may use the
same splitting variable as its ancestors. After we finish node 3, we go on
to nodes 4 and 5, and so on. This is the so-called recursive partitioning
process. Because we partition one node into two nodes only, the resulting
tree is called a binary tree.

A further interpretive consideration arises in the splitting process when
the top 2, 3, or even more variables have goodness of split values within
several significant digits of each other. Here are at least two scenarios to
consider:

• If all candidate variables are equally plausible substantively, then
generate separate trees using each of the variables to continue the
splitting process.

• If only one or two of the candidate variables is interpretable in the
context of the classification problem at hand, then select them for
each of two trees to continue the splitting process.

It can also happen that none of the variables provides genuine improvement
in classification at a given splitting opportunity. However, on substantive
grounds, it may make sense to include one or two of the variables linked to
the parent node in question. It is often useful to force such a variable into
the tree with a judgmentally selected cut point, and continue the splitting
process from the new daughter node. You frequently find a very good split
at the next step. The equivalent of this hand-tailored step is not part of
current automated splitting algorithms, as it would require them to look
two steps ahead at particular splitting opportunities. The central point is
that hand-cultivation of trees, as we are discussing it here, is an important
aspect of recursive partitioning for single trees, as well as for production of
forests.

This book focuses on the binary trees. Readers who are interested in
multiway trees are referred to Kass (1980), Quinlan (1993), Kim and Loh
(2001), and the references therein. C4.5, CHAID, and CRUISE are the
names of programs that implement the methods in those articles, respec-
tively. Briefly, C4.5 creates a binary or multiway split according to the type
of the split variable. The split is binary for an ordinal variable. The split
is M -way if the variable is categorical with M levels. For example, when
race is considered to split the root node in Figure 2.2, it would yield five
daughter nodes, one for each of the five racial groups. Obviously, there are
situations where it may not be necessary to have a daughter node for every
level of the categories, and it makes sense to collapse some of the levels or
in effect some of the daughter nodes. This is exactly what CHAID attempts
to accomplish as a revision to C4.5. CRUISE is another program that pro-
duces the same number of daughter nodes as the number of the levels of a
categorical variable, but it tries to control the favorism over the variables
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FIGURE 2.3. A hypothetical example from Gruenewald et al. (2008). Inside
each node are the node number (top) and the average positive effect (bottom).
Underneath an internal node is the splitting variable. Above the arrows are the
splitting values for the respective nodes.

with more allowable splits. In addition, SSPS has a decision tree procedure
that can grow both binary and multiway trees (http://www.ssps.com).

Although the existing methods accommodate multiway splits for cate-
gorical variables only, it may be useful to allow multiway splits for ordinal
variables. For example, Gruenewald et al. (2008) introduced applications
of regression trees to examine diverse pathways to positive and negative
effect in adulthood and later life. They considered a candidate set of nine
sociodemographic (gender, marital status, educational level), personality
(extraversion and neuroticism), and contextual (work stress, relationship
quality, financial control, health status) variables. Based on their under-
standing, they presented a hypothetical tree structure as displayed in Fig-
ure 2.3 that includes a three-way split of the root node (i.e., node 1) base
on the score of extraversion. Motivated by this practical example, it will
be a very useful project to develop trees that allow multiway splits for any
variables. Instead of doing so arbitrarily, it would be wise to set a limit
on the maximum number of allowable ways to split a node for any given
variable. In addition, a penalty factor should be considered when selecting
the final choice of the node split so that multiway splits are not unfairly
favored over binary splits.

In theory, we can convert between binary and multiway trees by further
splitting or merging of nodes, but in practice, due to the fact that different
criteria and different priorities are used in selecting the splits, the end
products are generally different. So far, the distinction between binary and
multiway trees is usually drawn at the conceptual level or in terms of
interpretation, and there is not enough literature to assess the performance
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of the two classes of trees. We refer to Kim and Loh (2001) for a relatively
recent discussion.

2.3 Terminal Nodes

The recursive partitioning process may proceed until the tree is saturated
in the sense that the offspring nodes subject to further division cannot
be split. This happens, for instance, when there is only one subject in a
node. Note that the total number of allowable splits for a node drops as we
move from one layer to the next. As a result, the number of allowable splits
eventually reduces to zero, and the tree cannot be split any further. Any
node that we cannot or will not be split is a terminal node. The saturated
tree is usually too large to be useful, because the terminal nodes are so
small that we cannot make sensible statistical inference; and this level of
detail is rarely scientifically interpretable. It is typically unnecessary to wait
until the tree is saturated. Instead, a minimum size of a node is set a priori.
We stop splitting when a node is smaller than the minimum. The choice of
the minimum size depends on the sample size (e.g., one percent) or can be
simply taken as five subjects (the results are generally not so meaningful
with fewer than five subjects). In some applications, we may also wish to
impose the condition that the resulting daughter nodes have a minimal size
(say five subjects) to allow meaningful comparisons.

During the early development of recursive partitioning, stopping rules
were proposed to quit the partitioning process before the tree becomes too
large. For example, the Automatic Interaction Detection(AID) program
proposed by Morgan and Sonquist (1963) declares a terminal node based
on the relative merit of its best split to the quality of the root node.

Breiman et al. (1984, p. 37) argued that depending on the stopping
threshold, the partitioning tends to end too soon or too late. Accordingly,
they made a fundamental shift by introducing a second step, called pruning.
Instead of attempting to stop the partitioning, they propose to let the
partitioning continue until it is saturated or nearly so. Beginning with this
generally large tree, we prune it from the bottom up. The point is to find a
subtree of the saturated tree that is most “predictive” of the outcome and
least vulnerable to the noise in the data. This is a sophisticated process,
and it will be delineated in Chapter 4.

The partitioning and pruning steps can be viewed as variants of forward
and backward stepwise procedures in linear regression. The partition of a
node in a tree amounts to the addition of a new term to a linear model.
Likewise, pruning some nodes at the bottom of a tree corresponds to delet-
ing a few terms from a linear model.
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FIGURE 2.4. The computer-selected tree structure. N: sample size; NPT: number
of preterm cases.

2.4 Download and Use of Software

Trees can be constructed from standard statistical software such as R and
SPSS. Various related computer programs are freely available for perform-
ing most of the data analyses in this book. Most of them can be downloaded
from Heping Zhang’s web site: http://c2s2.yale.edu/software.

A program called RTREE is specifically for growing binary trees, and the
RTREE is also integrated into another program called Willows that has
other functions to be discussed later. RTREE can be run in either of two
modes: automatic or manual. We recommend running the automatic mode
first to produce a tree sketch, which then can be used as the reference to run
the manual mode. Chapter 13 (the appendix) provides detailed information
on the use of this program.
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Figure 2.4 is a tree produced automatically by the computer following
the ideas described above and the details in Chapter 4. Let us examine the
2,980 non-Black women who had no more than four pregnancies. The split
for this group of women is based on their mothers’ use of hormones and/or
DES. If their mothers used hormones and/or DES, or the answers were not
reported, they are assigned to the left daughter node. The right daughter
node consists of those women whose mothers did not use hormones or DES,
or who reported uncertainty about their mothers’ use. Thus, women with
the “uncertain” answer and the missing answer are assigned to different
sides of the parent node although these two types of answers are practically
the same. To resolve this conflict, we can force the women with missing
answers to the same node as those who answered “uncertain.” To do so,
we need to manually change the split. Numerically, the goodness of split,
Δ, changes from 0.00176 to 0.00148. This leads to the tree in Figure 2.5.

The tree in Figure 2.5 is also smaller than the one in Figure 2.4. This
is because the further pruned nodes are less stable, and the significance of
the corresponding splits lacks justification. The relative risk and its confi-
dence interval reported for each split are calculated using a cross-validation
procedure, as will be elaborated in Section 4.6.

The principal features of Figure 2.5 answer the original question about
which pregnant women are most at risk of preterm delivery: (a) non-Black
women who have four or fewer prior pregnancies and whose mothers used
DES and/or other hormones are at highest risk. In particular, 19.4% of
these women have preterm deliveries as opposed to 3.8% whose mothers
did not use DES; and (b) among Black women who are also unemployed,
11.5% had preterm deliveries, as opposed to 5.5% among employed Black
women.

The changes that we made to Figure 2.4 are limited for illustrative pur-
poses. One may probe the tree further and find some other trees worth
examining. For example, employment status may just serve as a proxy for
more biological circumstances. We can replace it with related biological
measures if they are actually available. Zhang (1998b) presents another in-
teresting example of altering the splits of various nodes—a process called
swapping by Chipman, George, and McCulloch (1998)—in order to achieve
a higher precision of tumor classification.
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FIGURE 2.5. The final tree structure. N: sample size; RR: relative risk estimated
by cross-validation; CI: 95% confidence interval; NPT: number of preterm cases.



3
Logistic Regression

We have seen from Examples 1.1–1.6 that the status of many health con-
ditions is represented by a binary response. Because of its practical im-
portance, analyzing a binary response has been the subject of countless
works; see, e.g., the books of Cox and Snell (1989), Agresti (1990), and the
references therein. For comparison purposes, we give a brief introduction
to logistic regression.

3.1 Logistic Regression Models

Logistic regression is a standard approach to the analysis of binary data.
For every study subject i we assume that the response Yi has the Bernoulli
distribution

IP{Yi = yi} = θyi

i (1 − θi)1−yi , yi = 0, 1, i = 1, . . . , n, (3.1)

where the parameters
θ = (θ1, . . . , θn)′

must be estimated from the data. Here, a prime denotes the transpose of
a vector or matrix.

To model these data, we generally attempt to reduce the n parameters
in θ to fewer degrees of freedom. The unique feature of logistic regression
is to accomplish this by introducing the logit link function:

θi =
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p

j=1 βjxij)
, (3.2)
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where
β = (β0, β1, . . . , βp)′

is the new (p + 1)-vector of parameters to be estimated and (xi1, . . . , xip)
are the values of the p covariates included in the model for the ith subject
(i = 1, . . . , n).

To estimate β, we make use of the likelihood function

L(β;y)

=
n∏

i=1

[
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p

j=1 βjxij)

]yi
[

1
1 + exp(β0 +

∑p
j=1 βjxij)

]1−yi

=

∏
yi=1 exp(β0 +

∑p
j=1 βjxij)∏n

i=1[1 + exp(β0 +
∑p

j=1 βjxij)]
.

By maximizing L(β;y), we obtain the maximum likelihood estimate β̂ of
β. Although the solution for β̂ is unique, it does not have a closed form. The
Newton–Raphson method, an iterative algorithm, computes β̂ numerically;
see, e.g., Agresti (1990, Section 4.7).

The interpretation of the parameter β is the most attractive feature of
the logit link function. Based on (3.2), the odds that the ith subject has
an abnormal condition is

θi

1 − θi
= exp(β0 +

p∑
j=1

βjxij).

Consider two individuals i and k for whom xi1 = 1, xk1 = 0, and xij = xkj

for j = 2, . . . , p. Then, the odds ratio for subjects i and k to be abnormal
is

θi/(1 − θi)
θk/(1 − θk)

= exp(β1).

Taking the logarithm of both sides, we see that β1 is the log odds ratio of the
response resulting from two such subjects when their first covariate differs
by one unit and the other covariates are the same. In the health sciences,
exp(β1) is referred to as the adjusted odds ratio attributed to x1 while
controlling for x2, . . . , xp. The remaining β’s have similar interpretations.
This useful interpretation may become invalid, however, in the presence of
interactive effects among covariates.

3.2 A Logistic Regression Analysis

In this section we analyze the Yale Pregnancy Outcome data using logistic
regression. Most statistical packages include procedures for logistic regres-
sion. We used SAS to perform the analysis. First, we start with a model that
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includes all predictors in Table 2.1 as main effects and use the backward
stepwise procedure to select variables that have significant (at the level
of 0.05) main effects. Recall that preterm delivery is our response variable.
For the selected variables, we then consider their second-order interactions.

In Table 2.1, three predictors, x2 (marital status), x3 (race), and x12

(hormones/DES use), are nominal and have five levels. To include them in
logistic regression models, we need to create four (dichotomous) dummy
variables for each of them. For instance, Table 2.1 indicates that the five
levels for x2 are currently married, divorced, separated, widowed, and never
married. Let

z1 =
{

1 if a subject was currently married,
0 otherwise,

z2 =
{

1 if a subject was divorced,
0 otherwise,

z3 =
{

1 if a subject was separated,
0 otherwise,

z4 =
{

1 if a subject was widowed,
0 otherwise.

Likewise, let

z5 =
{

1 for a Caucasian,
0 otherwise,

z6 =
{

1 for an African-American,
0 otherwise,

z7 =
{

1 for a Hispanic,
0 otherwise,

z8 =
{

1 for an Asian,
0 otherwise,

and

z9 =
{

1 if a subject’s mother did not use hormones or DES,
0 otherwise,

z10 =
{

1 if a subject’s mother used hormones only,
0 otherwise,

z11 =
{

1 if a subject’s mother used DES only,
0 otherwise,

z12 =
{

1 if a subject’s mother used both hormones and DES,
0 otherwise.

Note here that the subject refers to a pregnant woman. Thus, z9 through
z12 indicate the history of hormones and DES uses for the mother of a
pregnant woman.
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TABLE 3.1. MLE for an Initially Selected Model

Selected Degrees of Coefficient Standard
variable freedom Estimate Error p-value

Intercept 1 −2.172 0.6912 0.0017
x1(age) 1 0.046 0.0218 0.0356

z6(Black) 1 0.771 0.2296 0.0008
x6(educ.) 1 −0.159 0.0501 0.0015

z10(horm.) 1 1.794 0.5744 0.0018

TABLE 3.2. MLE for a Revised Model

Selected Degrees of Coefficient Standard
variable freedom Estimate Error p-value

Intercept 1 −2.334 0.4583 0.0001
x6(educ.) 1 −0.076 0.0313 0.0151
z6(Black) 1 0.705 0.1688 0.0001
x11(grav.) 1 0.114 0.0466 0.0142
z10(horm.) 1 1.535 0.4999 0.0021

Due to missing information, 1,797 of the 3,861 observations are not used
in the backward deletion step by SAS PROC LOGISTIC. Table 3.1 provides
the key information for the model that is selected by the backward stepwise
procedure. In this table as well as the next two, the first column refers to
the selected predictors, and the second column is the degrees of freedom
(DF). The third column contains the estimated coefficients corresponding
to the selected predictors, followed by the standard errors of the estimated
coefficients. The last column gives the p-value for testing whether or not
each coefficient is zero. We should note that our model selection used each
dummy variable as an individual predictor in the model. As a consequence,
the selected model may depend on how the dummy variables are coded. Al-
ternatively, one may want to include or exclude a chunk of dummy variables
that are created for the same nominal variable.

The high proportion of the removed observations due to the missing in-
formation is an obvious concern. Note that the model selection is based on
the observations with complete information in all predictors even though
fewer predictors are considered in later steps. We examined the distribu-
tion of missing data and removed x7 (employment) and x8 (smoking) from
further consideration because they were not selected in the first place and
they contained most of the missing data. After this strategic adjustment,
only 24 observations are removed due to missing data, and the backward
deletion process produces another set of variables as displayed in Table 3.2.

We have considered the main effects, and next we examine possible
(second-order) interactions between the selected variables. For the two se-
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TABLE 3.3. MLE for the Final Model

Selected Degrees of Coefficient Standard
variable freedom Estimate Error p-value

Intercept 1 −2.344 0.4584 0.0001
x6(educ.) 1 −0.076 0.0313 0.0156
z6(Black) 1 0.699 0.1688 0.0001
x11(grav.) 1 0.115 0.0466 0.0137

z10 (horm.) 1 1.539 0.4999 0.0021

lected dummy variables, we include their original variables, race and hor-
mones/DES uses, into the backward stepwise process to open our eyes a
little wider. It turns out that none of the interaction terms are significant
at the level of 0.05. Thus, the final model includes the same four variables
as those in Table 3.2. However, the estimates in Table 3.2 are based on
3,837 (i.e., 3861 − 24) observations with complete information for 13 pre-
dictors. Table 3.3 presents the information for the final model for which
only 3 observations are removed due to missing information in the four
selected variables. The different numbers of used observations explain the
minor numerical discrepancy between Tables 3.2 and 3.3.

From Table 3.3, we see that the odds ratio for a Black woman (z6) to
deliver a premature infant is doubled relative to that for a White woman,
because the corresponding odds ratio equals exp(0.699) ≈ 2.013. The use
of DES by the mother of the pregnant woman (z10) has a significant and
enormous effect on the preterm delivery. Years of education (x6), however,
seems to have a small, but significant, protective effect. Finally, the number
of previous pregnancies (x11) has a significant, but low-magnitude negative
effect on the preterm delivery.

We have witnessed in our analysis that missing data may lead to serious
loss of information. As a potential consequence, we may end up with im-
precise or even false conclusions. For example, by reviewing Tables 3.1 and
3.3, we realize that x1 is replaced with x11 in Table 3.3 and the estimated
coefficients for the remaining three predictors are notably different. The
difference could be more dramatic if we had a smaller sample. Therefore,
precaution should be taken in the presence of missing data. In Section 4.8,
we will see that the tree-based method handles the missing data efficiently
by either creating a distinct category for the missing value or using surro-
gate variables. These strategies prevent the tragic consequence of missing
data.

Although it is not frequently practiced, we find it useful and important to
evaluate the predictive performance of the final logistic model. To this end,
we make use of ROC (receiver operating characteristic) curves (see, e.g.,
Hanley, 1989). We know that we cannot always make perfect classifications
or predictions for the outcome of interest. For this reason, we want to
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FIGURE 3.1. ROC curve for the final logistic regression model

make as few mistakes as possible. Two kinds of mistakes can occur when
we predict an ill-conditioned outcome as normal or a normal condition
as abnormal. To distinguish them, statisticians refer to these mistakes as
type I and type II errors, respectively. In medical-decision making, they are
called false-positive and false-negative diagnoses, respectively. In reasonable
settings, these errors oppose each other. That is, reducing the rate of one
type of error elevates the rate of the other type of error. ROC curves reflect
both rates and quantify the accuracy of the prediction through a graphical
presentation.

For subject i, we estimate her risk of having preterm delivery by

θ̂i =
exp(−2.344− 0.076xi6 + 0.699zi6 + 0.115xi,11 + 1.539zi,10)

1 + exp(−2.344 − 0.076xi6 + 0.699zi6 + 0.115xi,11 + 1.539zi,10)
,

(3.3)
i = 1, . . . , 3861, using the estimates in Table 3.3. For any risk threshold
r (0 ≤ r ≤ 1), we calculate the empirical true and false-positive probabili-
ties respectively as

TPP =
the number of preterm deliveries for which θ̂i > r

the total number of preterm deliveries

and

FPP =
the number of term deliveries for which θ̂i > r

the total number of term deliveries
.

As r varies continuously, the trace of (TPP, FPP ) constitutes the ROC
curve as shown in Figure 3.1. In the medical literature, the true positive
and negative probabilities are commonly referred to as sensitivity and speci-
ficity.

Figure 3.1 indicates that the final logistic regression model improves the
predictive precision over a random prediction model. The latter predicts
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the risk of 1 and 0 by tossing a fair coin. The ROC curve for this random
prediction is featured by the dotted straight line. It is evident from Figure
3.1 that a great deal of variation is not explained and hence that further
improvement should be sought.

Note also that the ROC curve is drawn from the resubstitution estimate
of the risk, which tends to be optimistic in the sense that the ROC curve
may have an upward-biased area. The reason is as follows. The prediction
in (3.3) was derived to “maximize” the area under the ROC curve based
on the Yale Pregnancy Outcome Study data. If we conduct another simi-
lar, independent study, which we call a validation study, it is almost sure
that we will end up with an optimal prediction that differs from equation
(3.3), although the difference may not be substantial. The other side of the
coin is that if we make predictions for the subjects in the validation study
from equation (3.3), the quality of the prediction is usually downgraded as
compared to the prediction made for the original Yale Pregnancy Outcome
Study. In some applications, validation studies are available, e.g., Goldman
et al. (1982, 1996). In most cases, investigators have only one set of data. To
assess the quality of the prediction, certain sample reuse techniques such
as the cross-validation procedure are warranted (e.g., Efron, 1983). The
cross-validation procedure will be heavily used in this book, specifically in
Chapters 4 and 9–12. The basic idea is that we build our models using part
of the available data and reserve the left-out observations to validate the
selected models. This is a way to create an artificial validation study at
the cost of reducing the sample size for estimating a model. The simplest
strategy is to cut the entire sample into two pieces of equal size. While
one piece is used to build a model, the other piece tests the model. It is
a sample reuse mechanism because we can alternate the roles for the two
pieces of sample.



4
Classification Trees for a Binary
Response

In this chapter we discuss the technical aspect of the recursive partitioning
technique, following the brief introduction from Chapter 2. This chapter,
particularly the less technical parts of it, is helpful for understanding the
methodological and theoretical aspects of recursive partitioning as well as
for efficiently and correctly using the computer software. For clarity, we
concentrate on the simplest case—a binary response. However, the basic
framework of recursive partitioning is established here.

4.1 Node Impurity

Since a tree consists of nodes, the property of the tree depends on that
of the nodes. We introduced the entropy impurity in (2.1) and (2.2) as
one measure for assessing the node homogeneity. As described by Breiman
et al. (1984), there are also other choices of impurity functions. Here, we
present a general definition of node impurity.

As we are presently concerned with a binary outcome, the impurity of a
node τ is defined as a nonnegative function of the probability, IP{Y = 1 | τ},
which is the prevalence rate of diseased (or ill-conditioned) subjects in the
group represented by node τ. Intuitively, the least impure node should have
only one class of outcome (i.e., IP{Y = 1 | τ} = 0 or 1), and its impurity
is zero. For instance, all terminal nodes in Figure 2.1 are pure. On the
other hand, node τ is most impure when IP{Y = 1 | τ} = 1

2 . That is, if
we take a subject from node τ, it is equally likely that this subject is an
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FIGURE 4.1. Impurity functions

ill-conditioned or a normal subject. In general, the impurity function has
a concave shape (see Figure 4.1) and can be formally defined as

i(τ) = φ(IP {Y = 1 | τ}), (4.1)

where the function φ has the properties (i) φ ≥ 0 and (ii) for any p ∈ (0, 1),
φ(p) = φ(1 − p) and φ(0) = φ(1) < φ(p).

Common choices of φ include

(i) φ(p) = min(p, 1 − p), (4.2)
(ii) φ(p) = −p log(p) − (1 − p) log(1 − p), (4.3)
(iii) φ(p) = p(1 − p), (4.4)

where 0 log 0 = 0. They are illustrated by Figure 4.1. In the context of
discriminating a binary class, Devroye et al. (1996, p. 29) call these φ’s the
F-errors. In particular, (4.2) is the Bayes error, i.e., the minimum error;
(4.3) is the entropy function; and (4.4) is half of the asymptotic nearest
neighbor error, or Gini index. The Bayes error is rarely used in practice
due to some undesirable properties as explained by Breiman et al. (1984,
p. 99). The Gini criterion also has some problems, as will be pointed out
at the end of this section. Hence, from now on the impurity refers to the
entropy criterion unless stated otherwise.

The computation of impurity is simple when the prevalence rate IP{Y =
1 | τ} in node τ is available. In many applications such as prospective stud-
ies, this prevalence rate can be estimated empirically from the data. At
other times, additional prior information may be required to estimate the
prevalence rate. For example, let us consider a case–control study with,
say, 100 controls and 100 cases. We need to know or guess a priori the
prevalence rate for the disease of interest among the underlying population
from which the 200 study subjects are selected and to which we would gen-
eralize our conclusions. As an example, suppose that the population preva-
lence is 0.004. That is, there are four cases per 1,000 subjects randomly
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selected from the population. Then, using Bayes’ theorem, the prevalence
rate within a node τ is

IP{Y = 1 | τ} =
IP{Y = 1, τ}

IP{τ}

=
IP{Y = 1}IP{τ |Y = 1}

IP{Y = 1}IP{τ |Y = 1} + IP{Y = 0}IP{τ |Y = 0} ,

where, marginally, IP{Y = 1} = 1 − IP{Y = 0} = 0.004. The conditional
probabilities IP{τ |Y = 1} and IP{τ |Y = 0} can be estimated from the
data. The former is the conditional probability for a random subject to fall
into node τ given that the subject’s response is 1. The latter conditional
probability has a similar interpretation. Suppose that 30 of the 100 cases
and 50 of the 100 controls fall into node τ. Then, IP{τ |Y = 1} = 30/100 =
0.3 and IP{τ |Y = 0} = 50/100 = 0.5. Putting together these figures, we
obtain

IP{Y = 1 | τ} =
0.004 ∗ 0.3

0.004 ∗ 0.3 + 0.996 ∗ 0.5
= 0.0024.

The criterion first defined in (2.1) and again in (4.3) has another in-
terpretation. This different view is helpful in generalizing the tree-based
methods for various purposes. Suppose that Y in node τL follows a bino-
mial distribution with a frequency of θ, namely,

IP{Y = 1 | τL} = θ.

Then, the log-likelihood function from the n1· observations in node τL is

n11 log(θ) + n12 log(1 − θ).

The maximum of this log-likelihood function is

n11 log
(

n11

n1·

)
+ n12 log

(
n12

n1·

)
,

which is proportional to (2.1). In light of this fact, many node-splitting
criteria originate from the maximum of certain likelihood functions. The
importance of this observation will be appreciated in Chapters 9 and 11.

So far, we only made use of an impurity function for node splitting. There
are also alternative approaches. In particular, it is noteworthy to mention
the twoing rule (Breiman et al., 1984, p. 38) that uses a different measure
for the goodness of a split as follows:

IP{τL}IP{τR}
4

⎡
⎣∑

j=0,1

|IP{Y = j|τL} − IP{Y = j|τR}|

⎤
⎦

2

.

For a binary response, this twoing rule coincides with the use of the Gini
index. It has been observed that this rule has an undesirable end-cut prefer-
ence problem (Morgan and Messenger, 1973 and Breiman et al., 1984, Ch.
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11): It gives preference to the splits that result in two daughter nodes of
extremely unbalanced sizes. To resolve this problem, a modification, called
the delta splitting rule, has been adopted in both the THAID (Messenger
and Mandell 1972 and Morgan and Messenger 1973) and CART (Breiman
et al. 1984) programs. Other split functions may also suffer from this prob-
lem, but our observations seem to indicate that the Gini index is more
problematic.

4.2 Determination of Terminal Nodes

Recall that the objective of recursive partitioning is to extract homogeneous
subgroups of the study sample. Whether we have achieved this objective
depends on whether the terminal nodes are indeed homogeneous. In other
words, the quality of a tree is merely the quality of its terminal nodes.
Hence, for a tree T we define

R(T ) =
∑
τ∈T̃

IP{τ}r(τ), (4.5)

where T̃ is the set of terminal nodes of T and r(τ) measures a certain
quality of node τ, as will be specified in the following two sections. Broadly
speaking, r(τ) is similar to the sum of the squared residuals in the lin-
ear regression. The purpose of pruning is to select the best subtree, T ∗,
of an initially saturated tree, T0, such that R(T ) is minimized. We will
explain how to determine terminal nodes, or equivalently, the subtree T ∗,
in the following four subsections. Readers who are less interested in the
methodological development may skip them.

4.2.1 Misclassification Cost

We have several issues to take care of. First, we need to define r(τ) from
which we establish the tree quality, R(T ). Then, we discuss how to estimate
R(T ) and how to use it in pruning a tree.

The node impurity is an obvious candidate for r(τ). In the present con-
text, however, r(τ) is commonly chosen as the misclassification cost, be-
cause we are focused on classifying the binary outcome. By the same token,
one would wonder why we do not partition the node by minimizing the
misclassification cost in the first place. We defer the answer to the end of
this section. Nevertheless, in Chapters 9 and 11 we see that r(τ) and the
splitting criterion are sometimes based on the same measure.

In many applications, the tree-based method is used for the purpose of
prediction. That is, given the characteristics of a subject, we must predict
the outcome of this subject before we know the outcome. For example, in
the study of Goldman et al. (1982), physicians in emergency rooms must
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predict whether a patient with chest pain suffers from a serious heart disease
based on the information available within a few hours of admission. To this
end, we first classify a node τ to either class 0 (normal) or 1 (abnormal),
and we predict the outcome of an individual based on the membership of
the node to which the individual belongs. Unfortunately, we always make
mistakes in such a classification, because some of the normal subjects will be
predicted as diseased and vice versa. For instance, Figure 3.1 pinpoints the
predictive performance of a logistic regression model to these false-positive
errors and false-negative errors. In any case, to weigh these mistakes, we
need to assign misclassification costs.

Let us take the root node in Figure 2.2(b). In this root node, there
are 205 preterm and 3656 term deliveries. If we assign class 1 for the root
node, 3656 normal subjects are misclassified. In this case, we would wrongly
predict normal subjects to be abnormal, and false-positive errors occur.
On the other hand, we misclassify the 205 abnormal subjects if the root
node is assigned class 0. These are false-negative errors. If what matters
is the count of the false-positive and the false-negative errors, we would
assign class 0 for the root node, because we then make fewer mistakes.
This naive classification, however, fails to take into account the seriousness
of the mistakes. For example, when we classify a term delivery as preterm,
the baby may receive “unnecessary” special care. But if a preterm baby is
thought to be in term, the baby may not get needed care. Sometimes, a
mistake could be fatal, such as a false-negative diagnosis of heart failure.
In most applications, the false-negative errors are more serious than the
false-positive errors. Consequently, we cannot simply count the errors. The
two kinds of mistakes must be weighted.

Let c(i|j) be a unit misclassification cost that a class j subject is classified
as a class i subject. When i = j, we have the correct classification and
the cost should naturally be zero, i.e., c(i|i) = 0. Since i and j take only
the values of 0 or 1, without loss of generality we can set c(1|0) = 1. In
other words, one false-positive error counts as one. The clinicians and the
statisticians need to work together to gauge the relative cost of c(0|1). This
is a subjective and difficult, but important, decision. Later, in Section 4.5
we will introduce an alternative pruning procedure that avoids this decision.

Here, for the purpose of illustration, we take a range of values between
1 and 18 for c(0|1). For the reasons cited above, we usually assume that
c(0|1) ≥ c(1|0). The upper bound 18 is based on the fact that 3656 : 205 =
17.8 : 1. Note that 3656 and 205 are the numbers of term and preterm
deliveries in the root node, respectively. Table 4.1 reports the misclassifica-
tion costs for the five nodes in Figure 2.2(b) when these nodes are assumed
either as class 0 or as class 1.

For example, when c(0|1) = 10, it means that one false-negative error
counts as many as ten false-positive ones. We know that the cost is 3656
if the root node is assigned class 1. It becomes 225× 10 = 2250 if the root
node is assigned class 0. Therefore, the root node should be assigned class
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TABLE 4.1. Misclassification Costs

Assumed Node number
Class 1 2 3 4 5

c(0|1) 1 3656 640 3016 187 453
1 0 205 70 135 11 59
10 0 2050 700 1350 110 590
18 0 3690 1260 2430 198 1062

0 for 2250 < 3656. In other words, the class membership of 0 or 1 for a
node depends on whether or not the cost of the false-positive errors is lower
than that of the false-negative errors. Formally, node τ is assigned class j
if ∑

i

[c(j|i)IP{Y = i | τ}] ≤
∑

i

[c(1 − j|i)IP{Y = i | τ}]. (4.6)

Denote the left-hand side of (4.6) by r(τ), which is the expected cost result-
ing from any subject within the node. This cost is usually referred to as the
within-node misclassification cost. It appears less confusing, however, to call
it the conditional misclassification cost. Multiplying r(τ) by IP{τ}, we have
the unconditional misclassification cost of the node, R(τ) = IP{τ}r(τ). In
the following discussions, the misclassification cost of a node implies the
unconditional definition, and the within-node misclassification cost means
the conditional one.

Earlier in this section, we mentioned the possibility of using r(τ) to split
nodes. This proves to be inconvenient in the present case, because it is
usually difficult to assign the cost function before any tree is grown. As
a matter of fact, the assignment can still be challenging even when a tree
profile is given. Moreover, there is abundant empirical evidence that the
use of an impurity function such as the entropy generally leads to useful
trees with reasonable sample sizes. We refer to Breiman et al. (1984) for
some examples.

Having defined the misclassification cost for a node and hence a tree,
we face the issue of estimating it. In this section, we take c(0|1) = 10, for
example. The process is the same with regard to other choices of c(0|1).
According to Table 4.1, we can estimate the misclassification costs for nodes
1 to 5 in Figure 2.2(b). As reported in Table 4.2, these estimates are called
resubstitution estimates of the misclassification cost.

Let Rs(τ) denote the resubstitution estimate of the misclassification cost
for node τ. Unfortunately, the resubstitution estimates generally underes-
timate the cost in the following sense. If we have an independent data set,
we can assign the new subjects to various nodes of the tree and calculate
the cost based on these new subjects. This cost tends to be higher than
the resubstitution estimate, because the split criteria are somehow related
to the cost, and as a result, the resubstitution estimate of misclassification
cost is usually overoptimistic. In some applications, such an independent
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TABLE 4.2. Resubstitution Estimates of Misclassification Costs (unit cost:
c(0|1) = 10)

Node Node Weight Within-node Cost
number class IP{τ} cost r(τ) Rs(τ)

1 0 3861
3861

10∗205
3861

2050
3861 = 0.531

2 1 710
3861

1∗640
710

640
3861 = 0.166

3 0 3151
3861

10∗135
3151

1350
3861 = 0.35

4 0 198
3861

10∗11
198

110
3861 = 0.028

5 1 506
3861

1∗453
506

453
3861 = 0.117

data set, called a test sample or validation set, is available; see, e.g., Gold-
man et al. (1982, 1996). To obtain unbiased cost estimates, sample reuse
procedures such as cross-validation are warranted.

4.2.2 Cost–Complexity

Although the concept of misclassification cost has its own merit, a major
use of it in the tree context is to select a “right-sized” subtree, namely,
to determine the terminal nodes. For example, in Figure 2.2, panel (a)
represents a subtree of the tree in panel (b). Because a tree (or subtree)
gives an integrated picture of nodes, we concentrate here on how to estimate
the misclassification cost for a tree. This motivation leads to a very critical
concept in the tree methodology: tree cost-complexity. It is defined as

Rα(T ) = R(T ) + α|T̃ |, (4.7)

where α (≥ 0) is the complexity parameter and |T̃ | is the number of termi-
nal nodes in T . Here, the tree complexity is really another term for the tree
size. |T̃ | is used as a measure of tree complexity, because the total number
of nodes in tree T is twice the number of its terminal nodes minus 1, i.e.,
|T | = 2|T̃ | − 1. The difference between Rα(T ) and R(T ) as a measure of
tree quality resides in that Rα(T ) penalizes a big tree.

For any tree with over, say, 20 nodes, many subtrees are possible, and
the combinatorics involved are usually complicated. The use of tree cost-
complexity allows us to construct a sequence of nested “essential” subtrees
from any given tree T so that we can examine the properties of these
subtrees and make a selection from them.

We earlier discarded the idea of using the resubstitution approach to
estimating the node misclassification cost. The resubstitution approach,
however, plays a different, useful, role in evaluating the cost-complexity.
Let us take another look at the five-node tree, denoted by T0, in Figure
2.2(b). Using the resubstitution estimates in Table 4.2, the cost for T0

is 0.350 + 0.028 + 0.117 = 0.495 and its complexity is 3. Thus, its cost-
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complexity is 0.495+3α for a given complexity parameter α. The question
is, Is there a subtree of T0 that has a smaller cost-complexity? The following
fact is critical to the answer to this question.

Theorem 4.1 (Breiman et al. 1984, Section 3.3) For any value of the com-
plexity parameter α, there is a unique smallest subtree of T0 that minimizes
the cost-complexity.

This theorem ensures that we cannot have two subtrees of the smallest
size and of the same cost-complexity. We call this smallest subtree the
optimal subtree with respect to the complexity parameter. For example,
when α = 0, the optimal subtree is T0 itself. Why? Note that T0 has two
additional subtrees. One, denoted by T1, is plotted in Figure 2.2(a) and its
cost-complexity is 0.166 + 0.350 + 0 ∗ 2 = 0.516. The other subtree, call it
T2, contains only the root node, and its cost-complexity is 0.531 + 0 ∗ 1 =
0.531. We see that both 0.516 and 0.531 are greater than 0.495. In general,
however, the optimal subtree corresponding to α = 0 may not be the initial
tree.

We can always choose α large enough that the corresponding optimal
subtree is the single-node tree. In fact, when α ≥ 0.018, T2 (the root node
tree) becomes the optimal subtree, because

R0.018(T2) = 0.531 + 0.018 ∗ 1 = 0.495 + 0.018 ∗ 3 = R0.018(T0)

and

R0.018(T2) = 0.531 + 0.018 ∗ 1 < 0.516 + 0.018 ∗ 2 = R0.018(T1).

Although R0.018(T2) = R0.018(T0), T2 is the optimal subtree, because it is
smaller than T0. This calculation confirms the theorem that we do not have
two subtrees of the smallest size and of the same cost-complexity.

It is interesting to point out that T1 is not an optimal subtree for any α.
This is because T0 is the optimal subtree for any α ∈ [0, 0.018) and T2 is
the optimal subtree when α ∈ [0.018,∞). Two observations are noteworthy.
First, not all subtrees are optimal with respect to a complexity parameter.
This is important, because we cannot afford to consider all subtrees. We
regard such subtrees as nonessential. Second, although the complexity pa-
rameter takes a continuous range of values, we have only a finite number of
subtrees. Consequently, an optimal subtree is optimal for an interval range
of the complexity parameter, and the number of such intervals has to be
finite. For example, our tree T0 gives rise to two intervals.

It remains to find the limits of these intervals, or the thresholds of α and
to make use of the corresponding optimal subtrees. These issues will be
addressed in Section 4.2.3.
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4.2.3 Nested Optimal Subtrees∗

To have a better picture, we use an expanded tree structure as displayed
in Figure 4.2, in which the nodes are numbered from 1 to 9. Note that
each internal node has a number of offspring terminal nodes. We derive
the first positive threshold parameter, α1, for this tree by comparing the
resubstitution misclassification cost of an internal node to the sum of the
resubstitution misclassification costs of its offspring terminal nodes. The
latter is denoted by Rs(T̃τ ) for a node τ. Here, Tτ may be viewed as a
subtree rooted at node τ, and T̃τ contains the terminal nodes of Tτ , i.e.,
the offspring terminal nodes of node τ in the larger tree.

Table 4.3 presents Rs(τ), Rs(T̃τ ), and |T̃τ | in columns 2 to 4, respectively.
This information is vital to the comparison of the cost-complexity of a node
with those of its offspring terminal nodes. For example, the cost of node
3 per se is Rs(3) = 1350/3861 = 0.350. It is the ancestor of terminal
nodes 7, 8, and 9. The units of misclassification cost within these three
terminal nodes are respectively 154, 25, and 1120. Hence, Rs(T̃3) = (154 +
25 + 1120)/3861 = 0.336. Thus, the difference between Rs(3) and Rs(T̃3)
is 0.350 − 0.336 = 0.014. On the other hand, the difference in complexity
between node 3 alone and its three offspring terminal nodes is 3−1 = 2. On
average, an additional terminal node reduces the cost by 0.014/2 = 0.007,
as given in the last column of Table 4.3.

The question is: What happens if an internal node becomes a terminal
node? In other words, what is the consequence of pruning off all offspring
nodes of an internal node? For instance, if we cut the offspring nodes of the
root node, we have the root-node tree whose cost-complexity is 0.531 + α.
For it to have the same cost-complexity as the initial nine-node tree, we
need 0.481 + 5α = 0.531 + α, giving α = 0.013. We can also find out the
consequence of changing node 2 to a terminal node. Then, the initial nine-
node tree is compared with a seven-node subtree, consisting of nodes 1 to
3, and 6 to 9. For the new subtree to have the same cost-complexity as the
initial tree, we find α = 0.021. In fact, for any internal node, τ 	∈ T̃ , the
value of α is precisely

Rs(τ) − Rs(T̃τ )
|T̃τ | − 1

.

The first positive threshold parameter, α1, is the smallest α over the |T̃ |−1
internal nodes. According to Table 4.3, α1 = 0.007 for the present example.

Using α1 we change an internal node τ to a terminal node when

Rs(τ) + α1 ≤ Rs(T̃τ ) + α1|T̃τ |
until this is not possible. This pruning process results in the optimal subtree
corresponding to α1. In fact, this first threshold yields the tree presented
in Figure 2.2(b).

After pruning the tree using the first threshold, we seek the second
threshold complexity parameter, α2, in the same way as the first one except
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FIGURE 4.2. Construction of nested optimal trees. Inside each node are the node
number (top) and the units of the misclassification cost (bottom). Next to the
node are the number of abnormal (top) and normal (bottom) subjects in the
node.

TABLE 4.3. Cost–Complexity

Node Rs(τ) Rs(T̃τ ) |T̃τ | α

9 0.290 0.290 1
8 0.006 0.006 1
7 0.040 0.040 1
6 0.306 0.296 2 0.010
5 0.117 0.117 1
4 0.028 0.028 1
3 0.350 0.336 3 0.007
2 0.166 0.145 2 0.021
1 0.531 0.481 5 0.013

Minimum 0.007
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that the once pruned subtree in Figure 2.4(b) plays the role of an initial
tree. We knew from our previous discussion that α2 = 0.018 and its optimal
subtree is the root-node tree. No more thresholds need to be found from
here, because the root-node tree is the smallest one.

In general, suppose that we end up with m thresholds,

0 < α1 < α2 < · · · < αm, (4.8)

and let α0 = 0. The threshold αk (k = 0, . . . , m) must increase by con-
struction. Also, let the corresponding optimal subtrees be

Tα0 ⊃ Tα1 ⊃ Tα2 ⊃ · · · ⊃ Tαm , (4.9)

where Tα1 ⊃ Tα2 means that Tα2 is a subtree of Tα1 . In particular, Tαm

is the root-node subtree. These are so-called nested optimal subtrees. The
final subtree will be selected from among them.

The construction of the nested optimal subtrees proves the following
useful result:

Theorem 4.2 If α1 > α2, the optimal subtree corresponding to α1 is a
subtree of the optimal subtree corresponding to α2.

To pave the road for the final selection, what we need is a good estimate of
R(Tαk

) (k = 0, 1, . . . , m), namely, the misclassification costs of the subtrees.
We will select the one with the smallest misclassification cost.

When a test sample is available, estimating R(T ) for any subtree T is
straightforward, because we only need to apply the subtrees to the test
sample. Difficulty arises when we do not have a test sample. The cross-
validation process is generally used by creating artificial test samples. The
idea will be described shortly.

Before describing the cross-validation process, we may find it helpful to
recall what we have achieved so far. Beginning with a learning sample,
we can construct a large tree by recursively splitting the nodes. From this
large tree, we then compute a sequence of complexity parameters {αk}m

0

and their corresponding optimal subtrees {Tαk
}m
0 .

The first step of cross-validation is to divide the entire study sample into
a number of pieces, usually 5, 10, or 25 corresponding to 5-, 10-, or 25-fold
cross-validation, respectively. Here, let us randomly divide the 3861 women
in the Yale Pregnancy Outcome Study into five groups: 1 to 5. Group 1
has 773 women and each of the rest contains 772 women. Let L(−i) be the
sample set including all but those subjects in group i, i = 1, . . . , 5.

Using the 3088 women in L(−1), we can surely produce another large
tree, say T(−1), in the same way as we did using all 3861 women. Take each
αk from the sequence of complexity parameters as has already been derived
above and obtain the optimal subtree, T(−1),k, of T(−1) corresponding to
αk. Then, we would have a sequence of the optimal subtrees of T(−1), i.e.,
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{T(−1),k}m
0 . Using group 1 as a test sample relative to L(−1), we have an

unbiased estimate, Rts(T(−1),k), of R(T(−1),k). Because T(−1),k is related to
Tαk

through the same αk, Rts(T(−1),k) can be regarded as a cross-validation
estimate of R(Tαk

). Likewise, using L(−i) as the learning sample and the
data in group i as the test sample, we also have Rts(T(−i),k), (i = 2, . . . , 5)
as the cross-validation estimate of R(Tαk

). Thus, the final cross-validation
estimate, Rcv(Tαk

), of R(Tαk
) follows from averaging Rts(T(−i),k) over i =

1, . . . , 5.
The subtree corresponding to the smallest Rcv is obviously desirable. As

we see in Section 4.4, the cross-validation estimates generally have substan-
tial variabilities. Bearing in mind the uncertainty of the estimation process
and the desire of constructing a parsimonious tree structure, Breiman et
al. (1984) proposed a revised strategy to select the final tree, which takes
into account the standard errors of the cross-validation estimates. Let SEk

be the standard error for Rcv(Tαk
). We discuss how to derive SEk in Sec-

tion 4.3. Suppose that Rcv(Tαk∗ ) is the smallest among all Rcv(Tαk
)’s. The

revised selection rule selects the smallest subtree whose cross-validation es-
timate is within a prespecified range of Rcv(Tαk∗ ), which is usually defined
by one unit of SEk∗ . This is the so-called 1-SE rule. Empirical evidence
suggests that the tree selected with the 1-SE rule is more often than not
superior to the one selected with the 0-SE rule (namely, the tree with the
minimal Rcv). We will revisit the Yale Pregnancy Outcome Study in Sec-
tion 4.4 and present the numerical details of the entire tree-growing and
pruning steps including the cross-validation procedure.

4.3 The Standard Error of Rcv∗

It is always important to assess the uncertainty of the statistical estimates.
Given the complexity of the recursive partitioning procedure, it is intri-
cate and perhaps even impossible to derive the standard error for the
cross-validation estimate of the tree misclassification cost. Many factors
contribute to this complication: We make no distributional assumptions
regarding the response, and the tree is determined by a forward stepwise
growing procedure followed by a nested, bottom-up pruning step. The tree
pruning is particularly complicated and makes analytic derivations pro-
hibitive. What follows is the heuristic argument given by Breiman et al.
(1984, Section 11.5). For more theoretically oriented readers, this heuris-
tic argument may serve as a starting point. We refer to Lugosi and Nobel
(1996) and Donoho (1997) for some of the theoretical developments related
to classification trees.

Recall that every subject in the entire study sample was used once as a
testing subject and was assigned a class membership m + 1 times through
the sequence of m + 1 subtrees built upon the corresponding learning sam-
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ple. Let Ci,k be the misclassification cost incurred for the ith subject while
it was a testing subject and the classification rule was based on the kth
subtree, i = 1, . . . , n, k = 0, 1, . . . , m. Then,

Rcv(Tαk
) =

∑
j=0,1

IP{Y = j}C̄k|j , (4.10)

where C̄k|j is the average of Ci,k over the set Sj of the subjects whose
response is j (i.e., Y = j). Namely,

C̄k|j =
1
nj

∑
i∈Sj

Ci,k, (4.11)

where nj is the number of subjects in Sj . We know that Ci,k’s are likely to
be correlated with each other, because Ci,k is the cost from the same sub-
ject (the ith one) while the subtree (the kth one) varies. For convenience,
however, they are treated as if they were not correlated. Then, the sample
variance of each C̄k|j is

1
n2

j

⎛
⎝∑

i∈Sj

C2
i,k − njC̄

2
k|j

⎞
⎠ ,

and it follows from (4.10) and (4.11) that the heuristic standard error for
Rcv(Tαk

) is given by

SEk =

⎧⎨
⎩
∑

j=0,1

(
IP{Y = j}

nj

)2

(
∑
i∈Sj

C2
i,k − njC̄

2
k|j)

⎫⎬
⎭

1/2

. (4.12)

4.4 Tree-Based Analysis of the Yale Pregnancy
Outcome Study

In this section we apply the recursive partitioning technique to the data
from the Yale Pregnancy Outcome Study. Figure 4.3 is the sketch of a large
tree with 53 nodes. This large tree produces a sequence of 11 nested optimal
subtrees corresponding to 11 complexity parameters, {αk}10

0 . Again, we
choose C(0|1) = 10. In Figure 4.3, these complexity parameters are placed
at the nodes that could become terminal nodes for the given parameters.
We can see the gradual change of the tree structure as we increase the
complexity parameter.

Using the cross-validation procedure, we estimated the misclassification
costs for the 11 optimal subtrees and then calculated their standard errors
via (4.12). We used 5- and 10-fold each once, and the numerical results are
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FIGURE 4.3. An initial large tree indexed by a sequence of complexity parameters

reported in Figure 4.4. The variation between the estimates from 5- and
10-fold cross-validations seems to suggest that the standard error given in
(4.12) may be slightly underestimated. A more thorough examination may
be done by repeating the cross-validation procedure a number of times and
computing the empirical estimates of standard error.

Figure 4.4 indicates that the 1-SE rule selects the root-node subtree. The
interpretation is that the risk factors considered here may not have enough
predictive power to stand out and pass the cross-validation. This statement
is obviously relative to the selected unit cost C(0|1) = 10. For instance,
when we used C(0|1) = 18 and performed a 5-fold cross-validation, the
final tree had a similar structure to the one presented in Figure 4.2 except
that node 2 should be a terminal node. When the purpose of the analysis
is exploratory, we may prune a tree using alternative approaches. See the
next section for the details.

4.5 An Alternative Pruning Approach

We see from the discussion in Section 4.4 that the choice of the penalty
for a false-negative error, C(0|1) = 10, is vital to the selection of the final
tree structure. It must be appropriately chosen and justified if classifying
subjects is the primary aim of the analysis. In many secondary analyses,
however, the purpose is mainly to explore the data structure and to gener-
ate hypotheses. See, e.g., Zhang and Bracken (1995, 1996). Thus, it would
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FIGURE 4.4. Cross-validation esti-
mates of misclassification cost for
a sequence of nested optimal trees.
5- and 10-fold estimates are respec-
tively indicated by • and +. Also
plotted along the estimates are the
intervals of length of two SEs (1 SE
along each direction).

be convenient to proceed with the analysis without assigning the unit of
misclassification cost. In later chapters (9 and 11), when we deal with re-
sponses of a more complicated nature, it would be even harder or infeasible
to adopt the idea of assigning misclassification costs. Moreover, as discussed
by Zhang et al. (1996), the premise under which the cross-validation pro-
cedure is performed may not hold in some practices, because we may grow
and prune trees manually. Furthermore, in some data for which variables
may be grouped broadly as genetic and environmental, it may be interest-
ing to have genetic factors appear before the environmental ones during the
recursive partitioning. In other situations, information may be collected se-
quentially, and it can be important to partition the data using the variables
that are readily available. Finally, ad hoc tree “repairs” may be desirable
on a case-by-case basis. This involves changing the splitting variables and
splitting levels so that the tree structure is easier to interpret in a clinical
sense. To summarize, a tree structure resulting from an automatic pro-
cedure is not necessarily what we would like to have. Sometimes, there
may also be a methodological and/or practical incentive to seek alterna-
tive backward pruning procedures. Next, we describe one such procedure
in the spirit of the proposal suggested by Segal (1988) for survival trees
(see Chapter 9).

After the large tree T is grown, assign a statistic Sτ to each internal node
τ from the bottom up. We shall return to the detail of this assignment later.
Then, we align these statistics in increasing order as

Sτ1 ≤ Sτ2 ≤ · · · ≤ Sτ|T̃ |−1
.

Select a threshold level and change an internal node to a terminal one if its
statistic is less than the threshold level. Two approaches are available for
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FIGURE 4.5. A roughly pruned subtree from Figure 4.3

choosing the threshold. A simple one is to take a threshold corresponding
to a specified significance level, say 0.05.

The second approach constructs a sequence of nested subtrees in the
spirit of Section 4.2.3, and the threshold emerges as a result of reviewing
these nested subtrees. The nested subtrees are produced as follows: Locate
the smallest Sτ over all internal nodes and prune the offspring of the highest
node(s) that reaches this minimum. What remains is the first subtree. Re-
peat the same process until the subtree contains the root node only. As the
process continues, a sequence of nested subtrees, T1, . . . , Tm, will be pro-
duced. To select a threshold value, we make a plot of minτ∈Ti−T̃i

Sτ versus
|T̃i|, i.e., the minimal statistic of a subtree against its size. Then, we look
for a possible “kink” in this plot where the pattern changes. Although this
seems subjective, it offers us an opportunity to apply our clinical knowledge
together with the purely statistical information to determine the final tree
structure.

Let us use the large tree in Figure 4.3 and see what happens when this
alternative pruning approach is applied. Before proceeding with the prun-
ing, it is helpful for us to take a careful look at the tree in Figure 4.3.
Observe that many nodes are the offspring of the two nodes corresponding
to complexity parameters α4 and α6. Considering the tree complexity, it is
hard to imagine that we would keep these offspring in the final tree by any
means. Thus, it makes sense here to perform a rough pruning first by cut-
ting these offspring nodes before the formal pruning. Note, however, that
α1 through α5 are smaller than α6. Then, we ought to prune the offspring
of all nodes corresponding to the complexity parameters α1 through α5.
As a result, we have a subtree as presented in Figure 4.5, and all internal
nodes in this tree are labeled. The new pruning procedure is applied to this
smaller tree instead. Obviously, this step is not needed for an automated
computer program.

As described above, we need to assign a statistic to each internal node.
We accomplish it with two steps. First, we assign a raw statistic to each
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internal node. For example, we have the following 2 × 2 table for the root
node:

Term Preterm
Left Node 640 70 710
Right Node 3016 135 3151

3656 205 3861

From this table, we calculated a relative risk (RR) of preterm as

(70/710)/(135/3151) = 2.3.

Then, the logarithm of the relative risk is 0.833. Note also that the standard
error for the log relative risk is approximately√

1/70 − 1/710 + 1/135− 1/3151 = 0.141.

See Agresti (1990, p. 56). Hence, the Studentized log relative risk is

0.833/0.141 = 5.91.

This Studentized log relative risk will be used as the raw statistic for the
root node. Likewise, we can calculate the raw statistics for all internal nodes
as reported in Table 4.4.

Next, for each internal node we replace the raw statistic with the max-
imum of the raw statistics over its offspring internal nodes if the latter is
greater. For instance, the raw value 1.52 is replaced with 1.94 for node 4;
here, 1.94 is the maximum of 1.47, 1.35, 1.94, 1.60, corresponding to nodes
7, 8, 9, and 10. The reassigned maximum node statistic is displayed in the
third row of Table 4.4. We see that the maximum statistic has seven distinct
values: 1.60, 1.69, 1.94, 2.29, 3.64, 3.72, and 5.91, each of which results in a
subtree. Thus, we have a sequence of eight (7+1) nested subtrees, including
the original tree in Figure 4.5. The seven subtrees are presented in Figure
4.6.

Figure 4.7 plots the sizes of the eight subtrees against their node statis-
tics. If we use 1.96 as the threshold (corresponding to a significance level
of 0.05), tree 3 would be chosen as the final tree. Also, Figure 4.7 seems
to suggest a kink at tree 3 or 4. Interestingly, tree 4 was selected by the

TABLE 4.4. Statistics for Internal Nodes

Node # 1 2 3 4 5
Raw Statistic 5.91 2.29 3.72 1.52 3.64
Max. Statistic 5.91 2.29 3.72 1.94 3.64

Node # 6 7 8 9 10
Raw Statistic 1.69 1.47 1.35 1.94 1.60
Max. Statistic 1.69 1.94 1.94 1.94 1.60
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FIGURE 4.6. A sequence of nested subtrees
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FIGURE 4.7. Tree size versus internal node statistics

pruning procedure introduced in Section 4.2.3 when c(0|1) = 18. See the
discussion in the end of Section 4.4. Therefore, the alternative approach
described here may be used as a guide to the cost selection of c(0|1).

En route to determining the final tree structure, we must remember that
interpretations are of paramount importance. Note that the tree selection is
based on a resubstitution estimate of relative risk. This estimate is poten-
tially biased upward, because the splits are chosen by the impurity function,
and the impurity relates closely to the relative risk. As a consequence of the
selection bias, we cannot rely on the resubstitution estimate to interpret
the tree results. In Section 4.6 we describe a way to adjust for the bias
based on Zhang et al. (1996).

4.6 Localized Cross-Validation

As mentioned earlier, a selected split results in the following 2 × 2 table:

Preterm
yes no

Left Node a b
Right Node c d

Without loss of generality, assume that a(c + d)/(c(a + b)) > 1. That
is, the left node has higher risk than the right node. Let the true mean
frequency counts be a∗, b∗, c∗, and d∗ when we apply the selected split
to an independent, identically distributed sample with the same number of
term and preterm subjects, namely, a+c = a∗+c∗ and b+d = b∗+d∗. The
selection bias implies that IE(a) > a∗ and IE(d) > d∗. In words, a and d are
on average greater than a∗ and d∗, respectively. We use a cross-validation
procedure to estimate the degrees of overshoot in a and d. We view it as a
localized procedure, because the cross-validation is performed among the
subjects within the node of interest.

A key idea is that the bias is a result of the selection process, and it is
not specific to the cutoff value of the selected split. Suppose that we divide
the sample in a node into learning and test subsamples. Using the learning
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sample, we can find a split that maximizes the impurity and leads to a 2×2
table Tl. Then, we apply the selected split to the test sample and derive
another 2 × 2 table Tt. We can use the differences in the frequency counts
between Tl and Tt to estimate the bias, a − a∗ and d − d∗.

Formally, we randomly divide the population of interest into v subpop-
ulations. For instance, if v = 5, let Li (i = 1, 2, 3, 4, 5) denote each of the
five subpopulations and L(−i) (i = 1, 2, 3, 4, 5) the sample after removing
Li. We use L(−1) to select a split s∗1 over the originally selected covariate;
s∗1 results in two 2 × 2 tables, T1 and T(−1) :

T(−1)

Preterm
yes no

Left Node a(−1) b(−1)

Right Node c(−1) d(−1)

T1

Preterm
yes no

Left Node a1 b1

Right Node c1 d1

We can always redefine the nodes for T(−1) in such a way that

a(−1)(c(−1) + d(−1))
c(−1)(a(−1) + b(−1))

> 1,

and adjust T1 accordingly. Next, we repeat this same process for all i and
estimate the bias in a by the maximum of 1

4

∑5
1 a(−i) −

∑5
1 ai and a − 0.5

to guarantee that the frequency is positive. Similarly, we estimate the bias
in d by the maximum of 1

4

∑5
1 d(−i) −

∑5
1 di and d − 0.5. We correct the

frequency counts by subtracting the corresponding bias and computing the
relative risk and its standard error using these values.

For example, the adjusted 2 × 2 table for the root node in Figure 4.5 is

Term Preterm
Left Node 683 70 753

Right Node 2973 135 3108
3656 205 3861

Then, the cross-validation estimate of relative risk is

(70/753)/(135/3108) = 2.14,

which is a little smaller than the resubstitution estimate of 2.3. Meanwhile,
the standard error of the log cross-validation estimate is approximately√

1/70− 1/753 + 1/135− 1/3108 = 0.1414.

Hence, the approximate 95% confidence interval for the relative risk is

(2.14 exp(−1.96 ∗ 0.1414), 2.14 exp(1.96 ∗ 0.1414)) = (1.62, 2.82).

Similarly, we can calculate the cross-validation estimate of relative risk for
each internal node as shown in Figure 2.5.
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FIGURE 4.8. Comparison of ROC curves obtained by the tree structure and
logistic regression model

4.7 Comparison Between Tree-Based and Logistic
Regression Analyses

To compare the predictive power of the tree structure with the logistic
regression model established in (3.3), we draw two ROC curves in Figure
4.8. The area under the curve is 0.622 for the tree-based model and 0.637 for
the logistic model. When these models are applied to future test samples,
their predictive power is expected to be even lower. Therefore, it is obvious
from these ROC curves that there is much that needs to be done to improve
our understanding of the determinants of preterm deliveries. For example,
new risk factors should be sought.

Here, we describe two analytic strategies that are worth considering in
tree-based analyses. Recall that we used only one predictor at a time when
partitioning a node. In principle, a linear combination of the predictors
can also be considered to split a node. The shortcomings with such an
extension are threefold: (a) It is computationally difficult to find an optimal
combination at the time of splitting. Partial solutions have been proposed
in the literature. (b) The resulting split is not as intuitive as before. This is
practically problematic. A Boolean summary of routes to a given terminal
node assignment is closer to narrative disclosure and graspable by the end
user. Linear combinations—unless they define a new scale—are not readily
interpretable. (c) The combination is much more likely to be missing than
its individual components. Thus, the optimality of the selected combination
is dubious. Given these drawbacks, an exhaustive search for an optimal
linear combination may not be worthwhile.

To make a more efficient use of data, to seek a more accurate predictive
rule, and in the meantime, to avoid unjustifiable computational complica-
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TABLE 4.5. Definition of Dummy Variables from Terminal Nodes in Figure 2.5

Variable label Specification
z13 Black, unemployed
z14 Black, employed
z15 non-Black, ≤ 4 pregnancies, DES not used
z16 non-Black, ≤ 4 pregnancies, DES used
z17 non-Black, > 4 pregnancies

tions, it is a good idea to combine the logistic regression models and the
tree-based models. The first approach is to take the linear equation derived
from the logistic regression as a new predictor. Not surprisingly, this new
predictor is generally more powerful than any individual predictor. In the
present application, the new predictor is defined as

x16 = −2.344− 0.076x6 + 0.699z6 + 0.115x11 + 1.539z10. (4.13)

See Table 2.1 and equation (3.3) for the variable specification and the pre-
dicted risk equation. Figure 4.9 displays the final tree, which makes use of
both the original and the created predictors. It is interesting to note a few
points from Figure 4.9: (a) Education shows a protective effect, particu-
larly for those with college or higher education. Not only does education
participate in the derivation of x16 defined in (4.13), but itself also ap-
pears on the left-hand side of Figure 4.9. It did not appear, however, in
Figure 2.5. (b) Age has merged as a risk factor. In the fertility literature,
whether a women is at least 35 years old is a common standard for preg-
nancy screening. The threshold of 32 in Figure 4.9 is close to this common
sense choice. (c) The risk of delivering preterm babies is not monotonic
with respect to the combined score x16. In particular, the risk is lower
when −2.837 < x16 ≤ −2.299 than when −2.299 < x16 ≤ −2.062. To the
contrary, monotonicity holds when the risk is predicted with the logistic
equation (3.3). The ROC curve for the new classification tree is shown in
Figure 4.10, and the area under this curve is 0.661. We achieved some, but
not much, improvement in predictive power.

The second approach is to run the logistic regression after a tree is grown.
For example, based on the tree displayed in Figure 2.5, we can create five
dummy variables, each of which corresponds to one of the five terminal
nodes. Table 4.5 specifies these five dummy variables. In particular, the
leftmost terminal node contains 512 unemployed Black women. The dummy
variable, z13, equals 1 for the 512 unemployed Black women and 0 for the
rest. Next, we include these five dummy variables, z13 to z17, in addition to
the 15 predictors, x1 to x15, in Table 2.1 and rebuild a logistic regression
model. The new equation for the predicted risk is

θ̂ =
exp(−1.341 − 0.071x6 − 0.885z15 + 1.016z16)

1 + exp(−1.341− 0.071x6 − 0.885z15 + 1.016z16)
. (4.14)
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NPT=23 NPT=63 NPT=15

N=3861
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FIGURE 4.9. The final tree structure making use of the equation from the logistic
regression. N: sample size; NPT: number of preterm cases.
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FIGURE 4.10. Comparison of ROC curves obtained by the tree structure (dot-
ted), logistic regression model (solid), and their hybrid (the first approach, short-
-dashed; the second approach, long-dashed)

Looking at it carefully, we see that the equation above is very similar
to equation (3.3). The variables z15 and z16 are an interactive version of
z6, x11, and z10. The coefficient for x6 is nearly intact. If any, the difference
lies in the use of an additive or an interactive model. As expected, the ROC
curve corresponding to (4.14) is very close to that from (3.3) as displayed
in Figure 4.10. The area under the new curve is 0.642, which is narrowly
higher than 0.639.

It is important to realize that our comparison of predictive power is based
on ROC curves that were derived by the resubstitution approach. The same
precision usually does not hold when the prediction rule is applied to a
test sample. Although we demonstrated some potential improvement of
precision by the hybrids of the tree-based and logistic regression models,
the same degree of improvement is possible, but not guaranteed, for a test
sample.

4.8 Missing Data

We have described major issues involved in the tree-growing and pruning
steps, assuming no missing data. In many applications, however, missing
data occur. We introduce three notable approaches for dealing with missing
data. One approach makes use of surrogate splits (Breiman et al. 1984,
Section 5.3). Another approach is to impute the missing values (Little and
Rubin 1987). If we perform this imputation prior to the tree construction,
the data set can be regarded as if it is “complete.” However, it would be
more complex if the imputation is specific to the node. Zhang et al. (1996)
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named the third strategy as the “missings together” (MT) approach, which
was also implemented by Clark and Pregibon (1992). Depending on the
purpose of data analysis, data analysts may choose either approach. Since
the MT approach is relatively straightforward, we describe it first. The
disadvantage, especially with a high proportion of missing observations, is
that the MT may be ineffective when the true values corresponding to the
missings are heterogeneous.

4.8.1 Missings Together Approach

The key idea of the MT approach is this. Suppose that we attempt to split
node τ by variable xj and that xj is missing for a number of subjects. The
MT approach forces all of these subjects to the same daughter node of node
τ. In contrast, both daughter nodes may contain some of these subjects by
using surrogate splits instead.

Consider variable xj . If it is a nominal variable with k levels, the missing
value is regarded as an additional level. Then, xj has k + 1 levels. On the
other hand, when xj has a natural order, we first make two copies x

(1)
j

and x
(2)
j of xj . Suppose that xj = (xj1, . . . , xjN )′. If the component xji

is missing, set x
(1)
ji = −∞ and x

(2)
ji = ∞. Here, −∞ and ∞ can be any

numbers that are, respectively, smaller and larger than observable xj .
For example, let us take xj = (2,−4, NA, 1, 7, NA)′; here NA stands for

missing values. Then,

x
(1)
j = (2,−4,−∞, 1, 7,−∞)′ and x

(2)
j = (2,−4,∞, 1, 7,∞)′.

Originally, xj contributes three allowable splits, namely, (1) xj > −4 versus
xj ≤ −4; (2) xj > 1 versus xj ≤ 1; and (3) xj > 2 versus xj ≤ 2. If we want
to put all subjects with missing xj in the same node, we have the following
seven allowable splits: (1) xj > −4 or NA versus xj ≤ −4; (2) xj > 1 or
NA versus xj ≤ 1; (3) xj > 2 or NA versus xj ≤ 2; (4) NA versus non-NA;
(5) xj > −4 versus xj ≤ −4 or NA; (6) xj > 1 versus xj ≤ 1 or NA; (7)
xj > 2 versus xj ≤ 2 or NA. It is important to note that when x

(1)
j is

used as a splitting variable, it generates the first four allowable splits; and
likewise, x

(2)
j produces the last four allowable splits. Since both x

(1)
j and

x
(2)
j can yield the fourth allowable split, they together result in the seven

allowable splits as listed above. Because of this observation, we can replace
xj with its two variants x

(1)
j and x

(2)
j so that the subjects with missing xj

are sent to the same node.
Here are some of the advantages of the MT approach. It is very sim-

ple to implement. In fact, if we have a core recursive partition algorithm
that assumes no missing data, we can still use the same algorithm without
modification when the raw data contain missing values. The trick is that
we can use the MT approach to prepare another data set with “complete”
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information. Lastly, we can easily trace where the subjects with missing
information are located in a tree structure.

4.8.2 Surrogate Splits

Contributed by Breiman et al. (1984), surrogate splits is an important
technique for handling missing data in tree-based methods. Let us imagine
that race is missing for, say, 10 subjects in Figure 2.5. Since race is the
splitting variable for the root node, we have a problem in deciding to which
daughter node we send these 10 subjects. The “missings together” approach
described above sends all 10 subjects to one daughter node. On the other
hand, surrogate splits attempt to utilize the information in other predictors
to assist us in making such a decision. For example, an obvious choice of
replacing race is the second-best splitting variable, a so-called competitive
split. The problem is that a competitive split does not necessarily offer a
good replacement for race when race is missing. Therefore, it is a good idea
to look for a predictor that is most similar to race in classifying the subjects.
What, then, do we mean by “similar”? One measure of similarity between
two splits suggested by Breiman et al. (1984) is the coincidence probability
that the two splits send a subject to the same node. For instance, the 2×2
table below compares the split of “is age > 35?” with the selected race
split.

Black Others
Age ≤ 35 702 8
Age > 35 3017 134

702+134=836 of 3861 subjects are sent to the same node, and hence
836/3861 = 0.217 can be used as an estimate for the coincidence probability
of these two splits. In general, prior information should be incorporated in
estimating the coincidence probability when the subjects are not randomly
drawn from a general population, such as in case–control studies. In such
cases, we estimate the coincidence probability with

IP{Y = 0}M0(τ)/N0(τ) + IP{Y = 1}M1(τ)/N1(τ),

where Nj(τ) is the total number of class j subjects in node τ and Mj(τ)
is the number of class j subjects in node τ that are sent to the same
daughters by the two splits; here j = 0 (normal) and 1(abnormal). IP{Y =
0} and IP{Y = 1} are the priors to be specified. Usually, IP{Y = 1} is
the prevalence rate of a disease under investigation and IP{Y = 0} =
1 − IP{Y = 1}.

Definition 4.1 The Best Surrogate Split
For any split s∗, split s′ is the best surrogate split of s∗ when s′ yields

the greatest coincidence probability with s∗ over all allowable splits based
on different predictors.
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It is not unlikely, though, that the predictor that yields the best surro-
gate split may also be missing. Then, we have to look for the second best,
and so on. If our purpose is to build an automatic classification rule (e.g.,
Goldman et al., 1982, 1996), it is not difficult for a computer to keep track
of the list of surrogate splits. However, the same task may not be easy for
humans. Surrogate splits could contain useful information for the analyst
who is trying to extract maximal insight from the data in the course of
determining the final tree. On the other hand, due to the limited space,
surrogate splits are rarely published in the literature, and hence their use-
fulness is hampered by this practical limitation.

There is no guarantee that surrogate splits improve the predictive power
of a particular split as compared to a random split. In such cases, the
surrogate splits should be discarded.

If surrogate splits are used, the user should take full advantage of them. In
particular, a thorough examination of the best surrogate splits may reveal
other important predictors that are absent from the final tree structure,
and it may also provide alternative tree structures that in principle can
have a lower misclassification cost than the final tree, because the final tree
is selected in a stepwise manner and is not necessarily a local optimizer in
any sense.

4.9 Tree Stability

One of the most serious concerns in applying the tree-based methods is tree
stability. For example, if we take a random sample of 3861 with replacement
from the Yale Pregnancy Outcome Study, what is the chance that we come
to the same tree as presented in Figure 2.5? Unfortunately, this chance is
not so great. To be fair, however, we should acknowledge that this is not
an uncommon phenomenon. All stepwise model selections potentially suffer
from the same problem. Although model stability is a generally important
issue and deserves serious attention, it would be ironic for us to question
the tree stability while not being concerned with the model instability in
general. For example, we do not see many papers that employ stepwise
logistic regression to explore alternative model structures.

Despite the general model instability, the tree structure is not as shaky
as it looks. In practice, the real cause of concern regarding tree stability is
the psychological effect of the appearance of a tree. Based on the evidence
presented by Breiman et al. (1984, Section 5.5.2), competitive trees of dif-
ferent appearances can give fairly stable and consistent final predictions.
So, tree stability is a reasonable concern and should be examined in the
same way as in the use of other model selection procedures, but it should
not discourage us from using the tree-based methods.
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When using a tree-based method, we usually either have a test sample
or apply cross-validation. We can investigate tree stability by studying the
tree from the test sample or the trees generated during cross-validation.
Certain parts of a tree are more stable than others, and hence it is a useful
practice to distinguish the less stable parts from the stable ones; see, e.g.,
Zhang et al. (1996). The justification of the less stable part may require
more data.

Thanks to computer technology, it becomes feasible now for us to ex-
amine a massive number of alternative trees. Bayesian approaches aided
by Markov Chain Monte Carlo (MCMC) have emerged recently; see, e.g.,
Chipman et al. (1998) and Denison et al. (1998). The idea is to obtain a
posterior likelihood for a large number of trees and select a tree with the
highest likelihood using the MCMC algorithm. The difficulty is, however,
that many priors must be specified, and this could make it impractical
to popularize the use of Bayesian CART. Nevertheless, Bayesian ideas are
fruitful, particularly if the selection and justification of the priors could be
substantially simplified and standardized. In addition, Bayesian methodol-
ogy could open new possibilities to explore a forest of trees within which
all trees have a reasonably high credential in terms of the posterior proba-
bility. The size and the quality of the forest can provide information with
regard to the tree stability.

Later in Chapter 6, we will describe random and deterministic forests.
If the purpose of the data analysis is prediction, the forests are clearly
favorable relative to a tree for both precision and stability.

4.10 Tree for Treatment Effectiveness

Although this chapter is mainly concerned with classifying a binary re-
sponse, the method can be modified for other important applications. For
example, in a typical randomized clinical trial, different treatments (say two
treatments) are compared in a study population, and the effectiveness of
the treatments is assessed by averaging the effects over the treatment arms.
However, it is possible that the on-average inferior treatment is superior
in some of the patients. The trees provide a useful framework to explore
this possibility by identifying patient groups within which the treatment
effectiveness varies the greatest among the treatment arms. To this end, we
cannot straightforwardly use the impurity function as defined in (4.2)–(4.4).
However, we can replace the impurity with the Kullback–Leibler divergence
(Kullback and Leibler 1951). To do so, let py,i(t) = P (Y = y|t, Trt = i)
be the probability that the response is y when a patient in node t received
the i-th treatment. Then, the Kullback–Leibler divergence within node t
is
∑

y py,1 log(py,1/py,2). Note that the Kullback–Leibler divergence is not
symmetric with respect to the role of py,1 and py,2, but it is easy to sym-
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metrize it as follows:

DKL(t) =
∑

y

py,1 log(py,1/py,2) +
∑

y

py,2 log(py,2/py,1).

A simpler and more direct measure is the difference

DIFF (t) =
∑

y

(py,1 − py,2)2.

It is noteworthy that neither DKL nor DIFF is a distance metric and
hence does not possess the property of triangle inequality. Consequently, the
result does not necessarily improve as we split a parent node into offspring
nodes. However, this does not prevent us from splitting a node or building
a tree.

We should remind that the current goal is not to find a pure node,
but to find a node within which the treatments have different effects. In
other words, we want to identify groups so that the clinicians may have the
easiest time to make a clinical recommendation. Once the splitting criterion
is chosen, the rest of the recursive partitioning can proceed similarly. We
applied this method to a clinical trial on ovulation in a study of women with
polycystic ovary syndrome, and the results of analysis shall be reported
elsewhere.

For pruning, we could also incorporate clinical information. For example,
we can merge any pair of terminal offspring nodes if the same treatment is
preferred in both of them, because the splitting does not change the clinical
decision and hence is uncalled for.

Later in Chapter 9, we will introduce survival trees where the outcome
variable is censored. A similar issue of treatment effectiveness in terms of
survival time may arise from clinical trials. Again, one solution is to define
a splitting criterion that compares the survivorship in different treatment
arms.

4.11 Implementation∗

We have seen that a large number of splits must be searched in order to
grow a tree. Here, we address the computational issue of designing a fast
search algorithm.

Recall that the partitioning process is the same for all internal nodes
including the root node. Therefore, it suffices to explain the process with the
root node. Moreover, we encounter really two types of predictors: ordered
and unordered. For simplicity, we use daily alcohol intake in Table 2.1 as
an example for ordered predictors. This variable, x13, takes a value from
0, 1, 2, and 3. The race variable, x3, in the same table will serve as an
example of nominal (not ordered) predictors.
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For each of x3 and x13 we need to construct a matrix that holds the
numbers of normal and abnormal subjects at every level of the predictor.
The two corresponding matrices are:

Matrix A3(root) for x3

Whites Blacks Hispanics Asians Others

y
0 2880 640 103 20 13
1 128 70 6 1 0

Matrix A13(root) for x13

0 1 2 3

y
0 1113 1 2245 297
1 76 0 110 19

As displayed in Table 2.2, x3 generates 25−1 − 1 = 15 allowable splits;
here the number “5” in the exponent is the number of the levels of x3. The
question is, How can we search over these 15 choices efficiently? To this
end, we introduce a binary array of length 5 as follows:

Level: Whites Blacks Hispanics Asians Others
Array: 1 0 1 0 1

where a bit “1” indicates that a subject who has the corresponding race
group goes to the left daughter node. Hence, the array above implies that
3008 Whites, 109 Hispanics, and 13 others are in the left node, while the
remaining 731 Blacks and Asians are in the right node.

Each of the 15 allowable splits corresponds to a distinct assignment of
bits for the array. In fact, we know that any integer from 1 to 15 can be
expressed in a binary format as displayed in Table 4.6. If we take 7 from
Table 4.6, its binary representation is 00111. This array indicates that 3008
Whites and 710 Blacks should be in the right daughter node. The use of
the binary representation following the original order of 1 to 15 is a little
troublesome, however, for the following reason.

Note that the binary representation for 1 is 00001. Thus, the first allow-
able split is to put the 13 subjects in the “others” racial group in the left
node and the remaining 3848 subjects in the right node. Now, the binary
representation of 2 is 00010. Then, the next split would exchange node
assignments for the 13 others and the 21 Asians. Thus, from the first to
the second splits, two groups of subjects are involved. As a matter of fact,
three groups of subjects must be switched as we move from the third to
the fourth split, because the binary representations of 3 and 4 differ by
three bits. The housekeeping for these movements is not convenient. For-
tunately, there is a simple algorithm that can rearrange the order of the
integers such that the binary representation changes only one bit as we go
from one integer to the next. This rearrangement is also given in Table 4.6.
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TABLE 4.6. Binary Representation of Integers

Original order Rearranged order
Integer Binary Integer Binary

1 00001 1 00001
2 00010 3 00011
3 00011 2 00010
4 00100 6 00110
5 00101 7 00111
6 00110 5 00101
7 00111 4 00100
8 01000 12 01100
9 01001 13 01101

10 01010 15 01111
11 01011 14 01110
12 01100 10 01010
13 01101 11 01011
14 01110 9 01001
15 01111 8 01000

The importance of the rearrangement is that only one group needs to be
reallocated as we evaluate the splits from one to the next. This makes it
very simple to update the changes, and in fact, it cannot be simpler.

Since the first binary array under the rearranged order is 00001, the
first split is still the one that sends the 13 others to the left node and the
remaining 3848 subjects to the right. Then, matrix A3(root) breaks into
two parts:

Left
Others

y
0 13
1 0

Right
Whites Blacks Hispanics Asians

2880 640 103 20
128 70 6 1

The impurities for the left and right daughter nodes are respectively 0
and 0.208. Thus, the goodness of the split is

0.2075− 3848
3861

∗ 0.208 − 13
3861

∗ 0 = 0.0002,

where 0.2075 is the impurity of the root node.
The second binary array under the rearranged order is 00011. Hence, the

21 Asian subjects join the left node in the second split. The record is then
modified to:

Left
Asians Others

y
0 20 13
1 1 0

Right
Whites Blacks Hispanics

2880 640 103
128 70 6



62 4. Classification Trees for a Binary Response

The goodness of this split is 0.00006. Analogously, we can evaluate the
goodness of the remaining 13 splits. In general, when the matrix “A” is
prepared for the node to be split, it is very fast to find the best candidate
split for a particular nominal predictor, because the number of computing
steps is proportional to the number of allowable splits, which is rarely
above 127, corresponding to a nominal predictor with 8 levels. Since it is
unusual to use recursive partitioning with many fewer than 127 subjects,
the number of computing steps will not be beyond the magnitude of the
sample size. Importantly, we need to create the matrix only for the root
node, because the corresponding matrices for the subsequent nodes can be
obtained as a by-product of the search for the best split.

A similar process applies to finding the best candidate split from x13 or
any other ordered predictors. First, we send all subjects for which x13 = 0
to the left daughter node, because 0 is the minimum of the observed x13.
Hence, A13(root) is divided into

Left
0

y
0 1113
1 76

Right
1 2 3
1 2245 297
0 110 19

This split gives rise to a goodness of split of 0.0005. Next, the subjects
whose x13 equals 1 move to the left node, because 1 is adjacent to 0. Then,
the subjects with x13 = 2 are switched to the left node, and so on. There-
fore, whenever we proceed to the next split, one more slice (i.e., column)
of A13(root) is moved to the left node. The number of moves depends
on the number of the distinctly observed data points for the predictor;
in the worst case, it is in the order of the sample size. Therefore, after
A13(root) is determined, the number of needed computing steps is at most
a constant proportion of the sample size. The constant is smaller than 10.
Moreover, when we split the subsequent nodes, the number of subjects be-
comes smaller and smaller. In fact, for a given predictor the total number of
computing steps for splitting all nodes in the same layer is usually smaller
than that for splitting the root node.

To conclude, the total number of computing steps needed to construct
a tree of d layers is about cpn log(n) + 10dpn, where p is the number of
predictors, n is the sample size, and the term, cpn log(n), results from
preparing the A matrices. Obviously, the second term generally dominates
the first term.
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Examples Using Tree-Based Analysis

5.1 Risk-Factor Analysis in Epidemiology

In epidemiologic studies, one of the most frequently encountered issues
is to evaluate the association between a set of putative risk factors and a
disease outcome, controlling for another set of potential confounders. In this
chapter, we illustrate how to apply the tree-based method in this regard.
The discussion is mostly adopted from Zhang and Bracken (1996).

5.1.1 Background

Spontaneous abortion, one of the most difficult reproductive outcomes to
study using epidemiologic methods, will be the outcome of interest; see,
e.g., Zhang and Bracken (1996). The difficulties in this area of research in-
clude failure to detect a large proportion (perhaps majority) of spontaneous
abortions and the large number of known and suspected confounding risk
factors that must be considered before evaluating the possible role of new
factors. The situation is shared by many diseases such as cancer, AIDS,
and coronary heart disease.

Our illustrative data come from a continuation project of the Yale Preg-
nancy Outcome Study. The study population consists of women receiving
prenatal care at 11 private obstetrical practices and two health mainte-
nance organizations in southern Connecticut during the period 1988 to
1991. There were 2849 women who had initial home interviews during 5
to 16 weeks of pregnancy between April 5, 1988, and December 1, 1991,
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TABLE 5.1. List of Putative Risk Factors

Characteristics No. of subjects %‡

Currently employed
No 638 5.3
Yes 2211 4.6

Standing 2+ hours at work daily
No 2559 4.6
Yes 290 5.9

Walking 2+ hours at work daily
No 1894 4.9
Yes 955 4.5

Sitting 2+ hours at work daily
No 1230 5.2
Yes 1619 4.4

Vibration at work
No 2756 4.7
Yes 93 5.4

Commute to work
No 705 4.8
Yes 2144 4.7

Reaching over the shoulders on the job
No 1584 4.5
<1/day 530 4.5
1+/day 735 5.4

Carrying loads over 20 lb on the job
No 2154 4.4
<1/day 318 3.8
1+/day 386 7.3

‡ Percentage of spontaneous abortions

and whose pregnancies resulted in a singleton live birth or spontaneous
abortion. Initial home interviews were conducted early in the pregnancy
so that evaluation of spontaneous abortion in mid-to-late first and sec-
ond trimesters would be possible. A more detailed description of the study
design has appeared elsewhere (Bracken et al. 1995).

Of particular interest are the effects of the eight job-related putative risk
factors as listed in Table 5.1 on spontaneous abortions. Also presented in
this table is the information regarding the characteristics of the study sub-
groups defined by the individual risk factor. To evaluate these risk factors,
Zhang and Bracken included 18 potential confounders that might alter the
association of interest. As given in Table 5.2, these potential confounders
have been examined frequently in the relevant literature; see Zhang and
Bracken (1996) for more information. The list of confounders concentrates
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TABLE 5.2. Potential Confounding Factors

Variable name Label Type Range/levels
Maternal age x1 Continuous 13–45
Years of education x2 Continuous 8–20

Married, Cohabiting
Marital status x3 Nominal Separated/Widowed

Divorced, Not married
White, Black

Race x4 Nominal Hispanic, Asian
Others

Mother’s height x5 Continuous 51–73 (inches)
Years of smoking x6 Continuous 0–25
Smoked marijuana x7 Binary Yes, No
Exposure to someone

x8 Binary Yes, Noelse’s marijuana use
Used cocaine x9 Binary Yes, No
Used birth control x10 Binary Yes, No
Smoked x11 Binary Yes, No
Stopped smoking x12 Binary Yes, No
Gravidity x13 Ordinal 0–2, 3+
Infertility x14 Binary Yes, No
Induced abortion x15 Binary Yes, No
Stillbirth x16 Binary Yes, No
Spontaneous abortion x17 Binary Yes, No
Ectopic spontaneous

x18 Binary Yes, Noabortion

on maternal characteristics before pregnancy. It includes demographic and
behavioral factors as well as ones related to pregnancy history.

5.1.2 The Analysis

The analysis proceeds in four steps. The first step evaluates the marginal
association between spontaneous abortion and each of the eight risk fac-
tors. In the second step, the tree-based method is applied, using the 18
confounders in Table 5.2 as predictors. As a result, the study sample is
stratified into seven subgroups. Then, Mantel–Haenszel’s method is em-
ployed in the stratified samples to derive adjusted relative risks. Logistic
regression is conducted for the purpose of comparison.

First, we examine the marginal association between spontaneous abor-
tion and the eight putative risk factors using the χ2 test. Table 5.3 features
the crude relative risks (RR) and their 95% confidence intervals (CI). “Car-
rying loads over 20 lb on the job” shows significant marginal association
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=0.096=0.037
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multiple miscarriages

FIGURE 5.1. The tree structure for the sample stratification. Reproduced from
Figure 1 of Zhang and Bracken (1996).

at the level of 0.05. This factor has three categories: (a) those who did
not carry loads over 20 lb daily at work (unemployed women included); (b)
those who carried loads over 20 lb less than once per day; and (c) those who
carried loads over 20 lb at least once a day. Seventy-five, 11, and 14 percent
of the subjects, respectively, fall in each of these categories. Although there
is hardly any difference in the rates of spontaneous abortion between the
first two categories, the difference is significant between the first two and
the third. Using the group not carrying loads over 20 lb as the reference,
the relative risk due to carrying loads over 20 lb at least once daily is 1.71,
and its 95% confidence interval is (1.25, 2.32).

As the second step, we make use of the tree-based method to stratify the
study sample into a number of meaningful and homogeneous subgroups,
each of which corresponds to a terminal node in the tree structure. In
this exercise, we use the alternative pruning approach described in Section
4.5 and adopt the missings together strategy of Section 4.8 to handle the
missing data. Similar to the tree constructed in Figure 2.5, we end up with
the tree in Figure 5.1 for the present data.

Figure 5.1 can be read as follows. Node 1 is the entire study popula-
tion of 2849 pregnant women. The overall rate of spontaneous abortion is
4.7%. This sample is first divided into two age groups: 13–35 and >35. The
younger group is called node 2 and the older group node 3. Note that the
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TABLE 5.3. Marginal Associations Between Spontaneous Abortion and the Pu-
tative Risk Factors

Factor No. of subjects %‡ RR CI
Currently employed

No 638 5.3 Reference
Yes 2211 4.6 0.86 0.59–1.25

Standing 2+ hours at work daily
No 2559 4.6 Reference
Yes 290 5.9 1.27 0.78–2.08

Walking 2+ hours at work daily
No 1894 4.9 Reference
Yes 955 4.5 0.93 0.65–1.32

Sitting 2+ hours at work daily
No 1230 5.2 Reference
Yes 1619 4.4 0.84 0.61–1.17

Vibration at work
No 2756 4.7 Reference
Yes 93 5.4 1.14 0.48–2.72

Commute to work
No 705 4.8 Reference
Yes 2144 4.7 0.98 0.67–1.43

Reaching over the shoulders on the job
No 1584 4.5 Reference
<1/day 530 4.5 1.01 0.64–1.59
1+/day 735 5.4 1.21 0.83–1.77

Carrying loads over 20 lb on the job
No 2154 4.4 Reference
<1/day 318 3.8 0.85 0.47–1.54
1+/day 386 7.3 1.64 1.09–2.46

‡ Percentage of spontaneous abortions
Based on Table 2 of Zhang and Bracken (1996)
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rates of spontaneous abortion in nodes 2 and 3 become 4.1% and 8.6%,
respectively. Age 35 is a traditional choice of age grouping for perinatal
studies, and it is an interesting coincidence that the computer also found
the traditional choice to be optimal. Then, we continue to split nodes 2 and
3. The greatest reduction of impurity is found through race for the younger
group as node 2 is divided into three ethnic groups. Usually, the tree-based
method splits a node into two subgroups only. The computer selected the
racial split as: “White, Asian, and Hispanic” versus “Black and others.”
Since there was no spontaneous abortion reported among the 60 Hispanic
pregnant women, we separated them from White and Asian women. The
older group (node 3) is split by the prior use of any birth control.

Only one node, number 5 in the third level of the tree, is further divided.
It is the group of young, White or Asian women, constituting the majority
of the study sample. Their risk of spontaneous abortion is 3.7%. For them,
the partition is whether they have smoked more than 13 years. Finally, if
they have smoked for less than 13 years, they would be in node 9, which
is again divided into nodes 11 and 12 according to previous history of
spontaneous abortion (≤ 1 versus ≥ 2).

As identified by rectangles, there are seven terminal nodes (numbers 4,
6, 7, 8, 10, 11, and 12) in Figure 5.1. Since every study subject eventually
falls into one terminal node (for example, a woman older than 35 belongs
to terminal node 7 if she did not take any birth control), the seven terminal
nodes define seven strata of the entire study sample.

Next, we use Mantel–Haenszel’s method (Mantel and Haenszel, 1959) to
find the adjusted relative risks based on the stratification defined by Figure
5.1. To explain this process, we use employment as an example. For each
terminal node, we have a 2 × 2 table in which the columns correspond to
the outcome (yes, no) and the rows to the exposure (yes, no) as follows:

ai bi n1i

ci di n0i

m1i m0i ni

i = 1, . . . , 7. As a result, we have the following seven 2 × 2 tables:

0 46
0 14

45 1461
18 404

18 204
2 69

9 127
4 44

4 45
2 29

13 123
3 27

12 104
5 17

With the analogy to the Mantel and Haenszel (1959) statistic, our sum-
mary relative risk estimate is

r =
∑7

i=1 ain0i/ni∑7
i=1 cin1i/ni

.
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Applying this formula to the seven tables, we have

r =
0 + 45∗422

1928 + 18∗71
293 + 9∗48

184 + 4∗31
80 + 13∗30

166 + 12∗22
138

0 + 18∗1506
1928 + 2∗222

293 + 4∗136
184 + 2∗49

80 + 3∗136
166 + 5∗116

138

= 0.85.

The limits of 100(1 − α)% confidence interval for the relative risk can be
obtained from r(1±zα/2/χ), where zα/2 is the upper α/2 percentile of the
standard normal distribution, and the χ2-statistic, developed by Cochran
(1954) and Mantel and Haenszel (1959), can be computed as follows:

χ2 =
(|
∑7

i=1(ai − Ai)| − 0.5)2∑7
i=1 Vi

, (5.1)

where
Ai =

n1im1i

ni
and Vi =

n1in0im1im0i

n2
i (ni − 1)

,

i = 1, . . . , 7. For the present seven tables, χ2 = 1.093, giving a 95% confi-
dence interval (0.62, 1.16) for the relative risk.

If the stratification were determined a priori without the help of the tree-
based method, this approach of adjustment would be the same as the one
used by Mills et al. (1991) and Giovannucci et al. (1995) among others.
Moreover, if the linear discriminant analysis were used to stratify the data,
it would be the approach proposed by Miettinen (1976). In all cases, the
confounding factors are controlled through the strata. In other words, we
use tree-based methods to reduce the data dimension of the confounding
factors and to construct a filter for the evaluation of new risk factors. So, the
first stage of analysis is the sample stratification based on the confounders,
and the second stage is the calculation of the adjusted relative risk for the
new risk factors.

As reported under the column of RR in Table 5.4, one risk factor showed
significant effects. That is “carry load over 20 lb at least once daily”
[RR=1.71, 95% confidence interval= (1.25, 2.32)]. Nevertheless, a more
modest risk factor is “reaching over the shoulders at least once daily”
[RR=1.35, 95% confidence interval=(1.02, 1.78)]. Table 5.4 presents more
detail on the association of the risk factors to spontaneous abortion. In this
table, the adjusted RR is the Mantel–Haenszel estimate, and the adjusted
odds ratio (OR) is from logistic regression.

For the purpose of comparison, Zhang and Bracken (1996) also reported
analysis based on logistic regression. The model selection is not conven-
tional. Instead, they made use of Figure 5.1. The main and the second-
order interaction effects of the five variables (age, race, years of smoking,
miscarriage, and use of birth control) that stratify the study sample are
included in the initial logistic regression. A forward stepwise procedure se-
lected a logistic model with three significant terms: age (p-value = 0.002),
race (Whites and Asians, p-value = 0.04), and race (Hispanic, p-value =
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TABLE 5.4. Adjusted Relative Risk and Odds Ratio of Spontaneous Abortion
Attributed by Individual Putative Risk Factor

Factor RR CI OR CI
Currently employed

No Reference
Yes 0.85 0.62–1.16 0.82 0.55–1.23

Standing 2+ hours at work daily
No Reference
Yes 1.27 0.83–1.94 1.28 0.76–2.17

Walking 2+ hours at work daily
No Reference
Yes 0.97 0.60–1.56 0.95 0.65–1.38

Sitting 2+ hours at work daily
No Reference
Yes .81 0.63–1.05 0.80 0.57–1.14

Vibration at work
No Reference
Yes 1.11 0.58–2.13 1.11 0.44–2.80

Commuting to work
No Reference
Yes 0.96 0.59–1.54 0.96 0.65–1.44

Reaching over the shoulders on the job
No Reference
<1/day 0.98 0.58–1.67 1.02 0.63–1.64
1+/day 1.35 1.02–1.78 1.30 0.87–1.95

Carrying loads over 20 lb on the job
No Reference
<1/day 0.91 0.43–1.93 0.87 0.47–1.61
1+/day 1.71 1.25–2.32 1.75 1.13–2.71

Based on Table 2 of Zhang and Bracken (1996)
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0.01). Then, they examined eight additional logit models by adding and
then deleting one of the eight putative risk factors, one at a time, into
the selected 3-term logit model. The results are reported in the last two
columns of Table 5.4. It is apparent from Tables 5.3 and 5.4 that the three
estimates of risk (crude RR, adjusted RR, and adjusted OR) give very close
answers. Therefore, for the present analysis, the 18 potential confounders
are proven not to be confounders.

In summary, Zhang and Bracken (1996) found that risk of spontaneous
abortion increases as women carry loads over 20 lb at least once a day, or
reach over the shoulders at least once a day, neither of which is recognized
as a risk factor in the extant literature. Hence, these occupational exposures
merit additional study.

5.2 Customer Credit Assessment

In this section, we analyze the “German Credit” data set retrieved from the
Machine Learning Repository, University of California, Irvine (Asuncion
and Newman 2007). This data set includes 1000 past credit applicants from
whom 20 characteristics (predictive variables) were collected. The response
variable is the credit rating of “Good” or “Bad” for each applicant. The
goal of credit scoring is to determine whether the 20 historical variables can
provide information about who is likely to default on loans in the future,
and a classification decision tree may serve as an efficient screen tool for
future loan applicants. This data set was originally prepared by Professor
Dr. Hans Hofmann in Germany.

One program to perform tree-based analysis is to use a user-contributed
program rpart() in R available from http://cran.r-project.org. In
the following, we assume that the data set has been input into R. The
response variable is saved in factor y and all predictors are saved in matrix
x reflecting the properties in Table 5.5.

As discussed above, misclassification cost is an important concept for
classifying a node and for pruning a tree, particularly under the original
framework of CART (Breiman et al. 1984). Based on the suggestion of the
data provider, we choose the following misclassification matrix:

Observed Outcome
Classified Outcome Good Bad

Good 0 5
Bad 1 0

Thus, let us define the loss matrix, lossm, in R as follows:

> lossm=matrix(c(0, 1, 5, 0), 2, 2)



72 5. Examples Using Tree-Based Analysis

TABLE 5.5. Personal Characteristics

Variable name Label Type Range/levels
Checking account x1 Nominal [−∞, 0), [0, 200)
status (DM) [200,∞), none
Duration of credit x2 Continuous 4–72 (months)
Credit history x3 Nominal no credits taken

all credits paid
credits paid now
delay in paying
critical account

Purpose x4 Nominal car (new/old)
furniture/equipment
radio/television
domestic appliances
repairs/education
retraining/business
others

Credit amount x5 Continuous 250–18424
Savings (DM) x6 Nominal [0, 100), [100, 500)

[500, 1000), [1000,∞)
unknown/none

Employment x7 Nominal unemployed, 1-,
since (year) 1–4-,4–7-,≥ 7
Installment (%) x8 Continuous 1–4
Marital status x9 Nominal M:div/sep
and sex F:div/sep/married

M/F:single
M:married/widowed

Other debtors x10 Nominal none, guarantor
guarantors co-applicant
Residence since x11 Continuous 1–4
Property x12 Nominal real estate

life insurance, etc.
Age (year) x13 Continuous 19–75
Oth installment x14 Nominal bank,stores,none
Housing x15 Nominal rent,own,free
Existing credits x16 Continuous 1–4
Job x17 Nominal unemployed non-resident

unskilled resident
skilled/official, etc.

No. people liable x18 Continuous 1–2
Telephone x19 Nominal Yes, No
Foreign worker x20 Nominal Yes, No
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and specify this loss matrix in the loss option of rpart(). We use the en-
tropy impurity as the spitting criterion, corresponding to the information
option. Thus, we can grow an initial tree by

> gmcrd=rpart(y ~., data=x, parms=list(loss=lossm,
+ split=’information’))

The numerical result can be reviewed by using print() and a tree plot can
be produced by using plot() and text().

> print(gmcrd)
n= 1000

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 1000 700 1 (0.7000 0.3000)
2) x1=13,14 457 300 0 (0.8687 0.1313)
4) x14=143 381 190 0 (0.9002 0.0997)
8) x4=41,44,48 57 0 0 (1.0000 0.0000) *
9) x4=40,42,43,45,46,49 324 190 0 (0.8827 0.1173)
18) x3=34 129 30 0 (0.9535 0.0465) *
19) x3=30,31,32,33 195 160 0 (0.8359 0.1641)
38) x7=74,75 82 35 0 (0.9146 0.0854) *
39) x7=71,72,73 113 88 1 (0.7788 0.2212)
78) x5< 4180.5 95 75 0 (0.8421 0.1579)
156) x17=173 65 30 0 (0.9077 0.0923) *
157) x17=171,172,174 30 21 1 (0.7000 0.3000) *
79) x5>=4180.5 18 8 1 (0.4444 0.5556) *

5) x14=141,142 76 54 1 (0.7105 0.2895)
10) x4=41,410,42,43 44 30 0 (0.8636 0.1364)
20) x7=72,74 17 0 0 (1.0000 0.0000) *
21) x7=71,73,75 27 21 1 (0.7778 0.2222) *
11) x4=40,46,49 32 16 1 (0.5000 0.5000) *

3) x1=11,12 543 303 1 (0.5580 0.4420) *
> plot(gmcrd, uniform = T)
> text(gmcrd, use.n = T)

Within each node, the sample size (n), the misclassification cost (loss), the
classified membership yval, and the probabilities of the two classes (yprob)
are presented. With the exception of the root node, the splitting variable
and its values are displayed to define the nodes. For example, x1=13,14
means that within node 2, the 457 clients either do not have a checking ac-
count or its balance is at least 200 DM. The translation from the numerical
coding in the data set to the description requires the reader to review the
original data description. Figure 5.2 provides the graphical presentation of
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FIGURE 5.2. An initial tree structure for the German credit data. The node split
points to the left daughter. The class membership and sample composition of the
terminal nodes are displayed.

the tree. We should note that the postscript file was slightly edited to be
consistent with the numerical output and for better visualization.

To illustrate the pruning step, we can output the cost complex parame-
ters as in Table 4.3 by using printcp() and plotcp().

> printcp(gmcrd)
CP nsplit rel error xerror xstd

1 0.138571 0 1.00000 1.00000 0.020702
2 0.080000 1 0.86143 0.86714 0.053805
3 0.017619 2 0.78143 0.85000 0.046969
4 0.012143 7 0.68714 0.86286 0.046493
5 0.010000 9 0.66286 0.90857 0.051339
> plotcp(gmcrd)

In the printout, xerror is the relative error estimated by a 10-fold (by
default) cross validation and xstd is the standard error of the relative
error. Figure 5.3 is a graphical presentation of the relative error versus
the cost-complexity parameter. Both the numerical output and the plot
indicate that the minimal error, 0.85, was reached with an s.e. 0.047 when
the tree has three terminal nodes or two splits. Note that the CP in the
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FIGURE 5.3. The cost complexity parameter plot generated by plotcp(). The
vertical lines indicate the range of 1 s.e.

numerical output differs from those in the graph, mainly because the CP
values are not unique in an interval. Applying the 1-se rule, we are looking
for the smallest subtree with the error below 0.85 + 0.047 = 0.897, which
leads to the tree with two terminal nodes or one split as displayed in Figure
5.4. This also can be seen from Figure 5.3.

From this example, the cross-validation based 1-se rule is a very stringent
rule in tree pruning. The one-split tree in Figure 5.4 is obviously not too
helpful in identifying potentially important factors or making good predic-
tions. The misclassification cost went from 700 in the root node to a sum
of 603 in the two terminal nodes.

Although the misclassification cost is not used in node splitting, it does
affect the tree structure. To make the point, we let the misclassification
costs for the two types of errors be the same and reconstruct the tree.
Based on the R output below, we can choose 0.02 as the CP to produce the
final tree as displayed in Figure 5.5. The trees in Figures 5.4 and 5.5 are
clearly different. This example underscores the importance and difficulty in
choosing the misclassification costs. For readers who find the choices of the
misclassification costs difficult or even arbitrary, the alternative pruning
approach described in Section 4.5 seems more practical.
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FIGURE 5.4. The final tree for the German credit data. Inside each node are the
node number (top) and the units of the misclassification cost (bottom). Next to
the node are the number of bad (top) and good (bottom) applicants in the node.
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FIGURE 5.5. The final tree structure for the German credit data using equal mis-
classification cost. The node split points to the left daughter. The class member-
ship and sample composition of the terminal nodes are displayed. x1=13,14 means
that a checking amount has a balance; x2 is duration of credit; x3=32,33,34

means a credit history during which all credits were paid until now or with a
delay or other issues; x6=64,65 means a saving account or bonds with a balance
of 1000 DM or no information on such accounts.
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FIGURE 5.6. A tree constructed by RTREE for the German credit data. Inside
each node are the number of bad (top) and good (bottom) applicants in the node.

> rp1=rpart(y ~., data=x, parms=list(split=’information’))
>printcp(rp1)

CP nsplit rel error xerror xstd
1 0.051667 0 1.00000 1.00000 0.048305
2 0.046667 3 0.84000 0.99667 0.048258
3 0.018333 4 0.79333 0.85667 0.046062
4 0.016667 6 0.75667 0.86333 0.046178
5 0.010000 10 0.69000 0.83000 0.045583
>credit.rp1=prune(rp1, cp=0.02)
>plot(credit.rp1, uniform = T); text(credit.rp1, use.n = T)

For example, when we set the significance level, corresponding to the
pruning χ2-statistic, between 10−5 and 10−4, the rtree program produces
the tree in Figure 5.6, which has the same number (four) of splits as the
tree in Figure 5.5. Three of the four splits are the same (the sides for some
of the nodes are switched), the differing one resulted from a different node
being further partitioned. Thus, the heuristic pruning approach is some-
what related to the pruning based on cross-validation and misclassification
cost.



6
Random and Deterministic Forests

Forest-based classification and prediction is one of the most commonly used
nonparametric statistical methods in many scientific and engineering areas,
particularly in machine learning and analysis of high-throughput genomic
data. In this chapter, we first introduce the construction of random forests
and deterministic forests, and then address a fundamental and practical
issue on how large the forests need to be.

6.1 Introduction to Random Forests

We have seen that tree-based data analyses are readily interpretable. How-
ever, tree-based methods have their limitations. First, tree structure is
prone to instability even with minor data perturbations. This is gener-
ally the case for all stepwise model selection procedures. Second, thanks
to the advancement of genomics and informatics, high-dimensional data
are very common. As illustrated in Example 1.7, many studies use tens of
thousands of gene expressions to predict an outcome using several tens or
hundreds of subjects. This phenomenon with a large number of variables
and limited number of observations is commonly referred to as the “large
p and small n” problem (e.g., Kosorok and Ma 2007; Zhang et al. 2008).
To leverage the richness of a data set of massive size, we need to broaden
the classic statistical view of “one parsimonious model” for a given data
set. Third, due to the adaptive nature of the tree construction, theoretical
inference based on a tree is usually not feasible. Generating more trees may
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provide an empirical solution to statistical inference (Zhang 1998a; also see
Chapter 12).

To address these limitations, the method of forests has emerged as an
ideal solution. Here, a forest refers to a constellation of any number of tree
models. Such an approach is also referred to as an ensemble. In general, a
forest consists of hundreds or thousands of trees, so it is more stable and less
prone to prediction errors as a result of data perturbations (Breiman 1996,
2001). While each individual tree is not a good model, combining them
into a committee improves their value. It is important to note that trees
in a forest should not be pruned to the “smallest” size level as described
in Section 2.3. In fact, as discussed by Breiman (1996, 2001), it would be
counterproductive to pool “good” models into a committee.

From a practical point of view, having many trees also provides us with
an opportunity to utilize more information (i.e., more variables) in the
data set, and hence we can seek more insights into and have a deeper
understanding of the data. In some applications, different trees may unravel
alternative pathways to disease prognosis or development.

How is a random forest constructed? Suppose that we have n observations
and p predictors. The following is the algorithm:

1 Draw a bootstrap sample. Namely, sample n observations with re-
placement from the original sample.

2 Apply recursive partitioning to the bootstrap sample. At each node,
randomly select q of the p predictors and restrict the splits based on
the random subset of the q variables. Here, q should be much smaller
than p.

3 Let the recursive partitioning run to the end and generate a tree.

4 Repeat Steps 1 to 3 to form a forest. The forest-based classification
is made by majority vote from all trees.

If Step 2 is skipped, the above algorithm is called bagging (bootstraping
and aggregating) (Breiman 1996). Bagging should not be confused with
another procedure called boosting (Freund and Schapire 1996). One of the
boosting algorithms is Adaboost, which makes use of two sets of interven-
ing weights. One set, w, weighs the classification error for each observation,
and the other, β, weighs the voting of the class label. Boosting is an it-
erative procedure, and at each iteration, a model (e.g., a tree) is built. It
begins with an equal w-weight for all observations. Then, the β-weights
are computed based on the w-weighted sum of error, and w-weights are
updated with β-weights. With the updated weights, a new model is built
and the process continues. Unlike bagging, boosting generally builds a very
simple model such as a tree with one split. According to Leo Breiman’s
Wald Lecture, boosting does not perform as well as bagging. More relevant
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for the spirit of this book, boosting inhibits interpretation. Indeed, the re-
peated sampling in bagging facilitates exposure of subpopulations/groups
with distinctive characteristics.

In forest construction, several practical questions often arise. Here, we
discuss some of those issues. Firstly, how many trees do we need in a forest?
Breiman (2001) chose to run 100 trees in several examples and others have
used much larger numbers. We will discuss in Section 6.2 as to how large
a random forest needs to be. As Breiman (2001) noted, the accuracy of a
random forest depends on two key factors: the prediction strength of the
individual trees and the correlation of the trees. Thus, we may keep the
size of a random forest to the minimal level if the trees can achieve the
highest strength and have the weakest correlation.

Secondly, does a random forest overfit the data without pruning the
individual trees? Breiman (2001) showed that there is no overfitting issue
by the Strong Law of Large Numbers. The prediction error of a random
forest converges as the size of the forest increases, and the error has an
upper bound that is directly related to the strength and the correlation of
the trees in the forest.

Thirdly, selecting the subset of q variables in node splitting is an impor-
tant feature of random forests. Commonly used choices are log(p) or

√
p.

However, there is a caveat with this idea. For example, in genetic stud-
ies, we tend to have a huge number of genetic markers (on the order of a
million) and some environment variables (ranging from one to hundreds).
The environment variables have few chances to be selected in the random
forest, not because they are not important, but because there are relatively
so few of them. Furthermore, even among genetic markers, not all of them
should be treated equally. Thus, in practice, we should be cautious about
the fact that the random forest treats all predictors indiscriminately. In
Section 6.5, we discuss some approaches to overcoming this issue.

Finally, after a forest is formed, how do we understand the information
in the forest, especially if it is too large to examine the individual trees?

6.2 The Smallest Forest

Although the method of forests addresses the two challenges that the tree-
based methods face, it also loses some of the advantages that the tree-based
methods possess. Most importantly, because of so many trees in a forest, it
is impractical to present a forest or interpret a forest. This is what Breiman
referred to as a “black-box” in his 2002 Wald lectures presented at the an-
nual meeting of the Institute of Mathematical Statistics. Zhang and Wang
(2009) explored whether it is possible to find a common ground between
a forest and a single tree so that we retain the easy interpretability of the
tree-based methods and avoid the problems that the tree-based methods
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suffer from. In other words, does a forest have to be large, or how small can
a forest be? To answer this fundamental question, the key idea is to shrink
the forest with two objectives: (a) to maintain a similar (or even better)
level of prediction accuracy; and (b) to reduce the number of the trees in
the forest to a manageable level.

To shrink the size of a forest while maintaining the prediction accuracy,
we need a criterion to determine the importance of a tree in a forest in terms
of prediction performance. Zhang and Wang (2009) considered three op-
tions and found that the measure “by prediction” outperformed the others.
Specifically, a tree is removed if its removal from the forest has the minimal
impact on the overall prediction accuracy. First, calculate the prediction
accuracy of forest F , denoted by pF . Second, for every tree, denoted by T ,
in forest F , calculate the prediction accuracy of forest F−T that excludes T ,
denoted by pF−T . Let Δ−T be the difference in prediction accuracy between
F and F−T :

Δ−T = pF − pF−T . (6.1)

The tree T p with the smallest Δ
T

is the least important one and hence
subject to removal:

T p = arg min
T∈F

(Δ−T ). (6.2)

To select the optimal size subforest, Zhang and Wang (2009) track the
performance of the subforests. Let h(i), i = 1, . . . , Nf − 1, denote the per-
formance trajectory of a subforest of i trees, where Nf is the size of the
original random forest. Note that h(i) is specific to the method measuring
the performance, because there are many subforests with the same number
of trees. If there is only one realization of h(i), they select the optimal size
iopt of the subforest by maximizing h(i) over i = 1, . . . , Nf − 1:

iopt = argmax
i=1,...,Nf−1

(h(i)). (6.3)

If there are M realizations of h(i), they select the optimal size subforest
by using the 1-se as described by Breiman et al. (1984). That is, they first
compute the average h(i) and its standard error ˆσ(i):

h(i) =
1
M

∑
j=1,...,M

hj(i), i = 1, . . . , Nf − 1, (6.4)

σ̂(i) = var(h1(i), . . . , hM (i)), i = 1, . . . , Nf − 1. (6.5)

Then, find the im that maximizes the average h(i) over i = 1, . . . , Nf − 1:

im = arg max
i=1,...,Nf−1

(h(i)). (6.6)

As discussed by Breiman et al. (1984), the 1-se rule tends to yield a more
robust and parsimonious model.
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TABLE 6.1. Comparison of prediction performance of the initial random forest,
the optimal subforest, and a previously established 70-gene classifier

Predicted Observed outcome
Method Error rate outcome Good Poor
Initial random forest 26.0% Good 141 17

Poor 53 58
Optimal subforest 26.0% Good 146 22

Poor 48 53
Published classifier 35.3% Good 103 4

Poor 91 71

Finally, they choose the smallest subforest such that its corresponding h
is within one standard error (se) of h(im) as the optimal subforest size iopt:

iopt = min
i=1,...,M

(h(i) > (h(im) − σ̂(im)), (6.7)

which is the critical point of the performance trajectory.
Using a microarray data set on Breast Cancer Prognosis (van de Vijver et

al. 2002), Zhang and Wang (2009) examined several approaches to selecting
the smallest forest. To begin the process, an initial forest is constructed
using the whole data set as the training data set. As the first approach, one
bootstrap data set is used for execution and the out-of-bag (oob) samples
for evaluation. As the second approach, the oob samples are used for both
execution and evaluation. As the third approach, the bootstrap samples
are used for both execution and evaluation. Lastly, bootstrap samples are
redrawn for execution and again redrawn for evaluation. It appears that
the first approach works well for the Breast Cancer Prognosis data set
that includes 288 samples, each of which contains the response variable
defined by whether the patients remained disease-free five years after their
initial diagnoses or not. Using the first approach and after replicating the
bootstrapping procedure 100 times, they found that the sizes of the optimal
subforests fall in a relatively narrow range, of which the 1st quartile, the
median, and the 3rd quartile are 13, 26, and 61, respectively. This allows
them to choose the smallest optimal subforest with the size of 7.

To compare the performance of the initial random forest with this opti-
mal subforest, they used the two forests as classifiers in the original data
set. Table 6.1 presents the misclassification rates based on the oob sam-
ples. The classifier proposed by van de Vijver et al. (2002) is included in
the table as the benchmark.

Table 6.1 demonstrates that the optimal subforest, while much smaller,
is comparable to the initial random forest in terms of prediction.
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6.3 Importance Score

Unlike a tree, a forest is generally too overwhelming to interpret. One solu-
tion is to summarize or quantify the information in the forest, for example,
by identifying “important” predictors in the forest. If important predictors
can be identified, a random forest can also serve as a method of variable
(feature) selection, and we can utilize other simpler methods such as clas-
sification trees by focusing on the important predictors. The question is:
how do we know a predictor is important? To answer this question, various
measures of variable importance have been proposed (e.g., Breiman 2001,
Friedman 2001, Chen et al. 2007). In the following, we present several vari-
able importance measures.

6.3.1 Gini Importance

During the course of building a forest, whenever a node is split based on
variable k, the reduction in Gini index in (4.4) from the parent node to
the two daughter nodes is added up for variable k, and this is done over
all trees in the forest, giving rise to a simple variable importance score.
Although Breiman noted that Gini importance is often very consistent with
the permutation importance measure (http://www.stat.berkeley.edu/
∼breiman/RandomForests), others found it undesirable for being in favor
of predictor variables with many categories (see, e.g., Strobl et al. 2007).
This phenomenon appears similar to the undesirable end-cut preference
problem discussed at the end of Section 4.1.

6.3.2 Depth Importance

Chen et al. (2007) introduced an importance index that is similar to Gini
importance score, but considers the location of the splitting variable as well
as its impact. Specifically, whenever node t is split based on variable k, let
L(t) be the depth of the node and S(k, t) be the χ2 test statistic from the
variable, then 2−L(t)S(k, t) is added up for variable k over all trees in the
forest. Here, the depth is 1 for the root node, 2 for the offspring of the
root node, and so forth. This depth importance measure was found useful
in identifying genetic variants for complex diseases, although it is not clear
whether it also suffers from the same end-cut preference problem.

6.3.3 Permutation Importance

The third importance index is the permutation importance, referred to as
the variable importance. For each tree in the forest, we count the number
of votes cast for the correct class. Then, we randomly permute the values
of variable k in the oob cases and recount the number of votes cast for
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the correct class in the oob cases with the permuted values of variable k.
The permutation importance is the average of the differences between the
number of votes for the correct class in the variable-k-permuted oob data
from the number of votes for the correct class in the original oob data, over
all trees in the forest.

The permutation importance index is arguably the most commonly used
choice. There are a few important issues to note. Firstly, the permutation
importance index is not necessarily positive, and does not have an upper
limit. Secondly, both the magnitudes and relative rankings of the permu-
tation importance for predictors can be unstable when the number, p, of
predictors is large relative to the sample size. This is certainly the case for
genomic data. Thirdly, the magnitudes and relative rankings of the per-
mutation importance for predictors vary according to the number of trees
in the forest and the number, q, of variables that are randomly selected to
split a node. As presented by Genuer et al. (2008), the effect of the num-
ber of trees in the forest is relatively minor, although more trees lead to
better stability. However, the magnitude of the importance may increase
dramatically as q increases, although the rankings may remain the same.
To illustrate this, we simulated data based on a microarray data set on
Breast Cancer Prognosis (van de Vijver et al. 2002). That study had 295
samples with 24,496 genes. We randomly selected four genes to generate
a binary (e.g., normal or abnormal) outcome y. Let x1, x2, x3, and x4 be
the expression intensities of the four selected genes. Then, the response
is derived by y = I(

∑4
i=1 xi > 0); here recall that I(·) is the indicator

function.
Figure 6.1 displays the importance scores of the four selected genes with

a range of q’s. Before the computation, genes with correlation greater than
0.1 with any of the four selected genes (in terms of the expression level)
are removed, to avoid the potential effect of correlation. There are 1000
trees in the forest. Clearly, the importance score tends to increase as the
q increases. However, the four genes keep the same order of importance.
Without going into detail, we should note that the effect of the forest size
on the importance scores is relatively minor.

Finally, there are conflicting numerical reports with regard to the pos-
sibility that the permutation importance overestimates the variable im-
portance of highly correlated variables (see, e.g., Strobl et al. 2008 and
Dı́az-Uriarte and Alvarez de Andrés 2006). Genuer et al. (2008) specifi-
cally addressed this issue with simulation studies and concluded that the
magnitude of the importance for a predictor steadily decreases when more
variables highly correlated with the predictor are included in the data set.
We also performed a simulation to examine this issue. We began with the
four selected genes. Then, we identified the genes whose correlations with
any of the four selected genes are at least 0.4. Those correlated genes are
divided randomly in five sets of about same size. Finally, we added one,
two, . . . , and five sets of them sequentially together with the four selected
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FIGURE 6.1. The dependence of the permutation importance on the choice of q.
The x-axis is q and the y-axis the importance score. Each curve is for one of the
four selected genes.

genes as the predictors. Figure 6.2 is consistent with the result of Genuer
et al. (2008). We can see that the rankings of the predictors are preserved.

Furthermore, let us examine the impact of the correlation from a differ-
ent point of view. We again began with the four selected genes and then
included genes that are correlated with any of the correlated gene at least
0.6, 0.4, and 0.2. We see from Figure 6.3 that the magnitude of the impor-
tance for a gene increases as we restrict the correlation to a higher level.

It is reasonable to say that although variable importance is an important
concept in random forests, we need to be cautious in the interpretation. In
practice, the ranking is more relevant than the magnitude.

6.3.4 Maximum Conditional Importance

To overcome some of the issues raised above, Wang et al. (2010) intro-
duced a maximal conditional chi-square (MCC) importance by taking the
maximum chi-square statistic resulting from all splits in the forest that use
the same predictor. Through simulation studies, Wang et al. (2010) found
that MCC can distinguish causal predictors from noise. In addition, they
compared the specificity (true negative probability) and sensitivity (true
positive probability) of the importance indices introduced above using var-
ious genetic models. All indices have high specificity, i.e., screening out
SNPs that are not associated with an underlying trait. However, MCC has
the highest sensitivity in identifying the causal SNPs. Another use of MCC
is to assess interactions. For example, consider the interaction between two
predictors xi and xj . For xi, suppose its MCC is reached in node ti of a tree
within a forest. Whenever xj splits an ancestor of node ti, we count one and
otherwise zero. The final frequency, f, can give us a measure of interaction
between xi and xj , and through the replication of the forest construction
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we can estimate the frequency and its precision. As an illustration, in Fig-
ure 6.4 we present the heat map from the following simulation carried out
by Wang et al. (2010).

They generated 100 predictors independently, each of them is the sum of
two i.i.d. binary variables (0 or 1). This is to mimic genotypes derived from
SNPs in genetic studies. For the first 16 predictors, the underlying binary
random variable has the success probability of 0.282. For the remaining 84,
they draw a random number between 0.01 and 0.99 as the success probabil-
ity of the underlying binary random variable. The first 16 predictors will be
used as the risk variables in our simulation and the remaining 84 the noise
variables. The outcome variable is generated as follows. The 16 risk vari-
ables are divided equally into four groups, and without loss of generality,
say sequentially. Once these 16 risk variables are generated, we calculate
the following probability on the basis of which the response variable is
generated:

w = 1 − Π(1 − Πqk)

where the first product is with respect to the four groups, the second prod-
uct is with respect to the first predictors inside each group, and q0 =
1.2 × 10−8, q1 = 0.79, and q2 = 1. The subscript k equals the randomly
generated value of the respective predictor. For example, if x1 = 1, then
k = 1 and we use q1, i.e., 0.79 for the first predictor. The response variable
takes the value of 1 with the probability w and 0 otherwise.

Wang et al. (2010) used the foregoing procedure to generate the first 200
possible controls (the response variable equals 0) and the first 200 possible
cases (the response variable equals 1). This completes the generation of
one data set, and a random forest can be built. Finally, they replicated the
entire process 1000 times.

We can see from Figure 6.4 that the interactions within the 4-SNP groups
are present and the interactions across the 4-SNP groups are absent. This
figure seems to suggest that MCC can be utilized as a mechanism to detect
interactions among predictors.

Lastly, to compare MCC with the permutation importance, let us ex-
amine the impact of including correlated predictors on MCC. In the same
simulation as that for Figure 6.5, we also obtained the result for MCC as
presented in Figure 6.5. Clearly, the inclusion of correlated genes has little
impact on MCC.

6.4 Random Forests for Predictors with
Uncertainties

In general, we base our analysis on predictors that are observed with cer-
tainty, or we assume so. However, this is not always the case. For example,
to identify genetic variants for complex diseases, haplotypes are sometimes
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FIGURE 6.4. Interaction heat map. The x-axis is the sequence number of the
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predictor. The intensity expresses the frequency when the potential interacting
predictor precedes the primary predictor in a forest.

the predictors. A haplotype consists of alleles in multiple loci that are
transmitted together on the same chromosome. In genomewide association
studies, a haplotype is a combination of single nucleotide polymorphisms
(SNPs) on a chromatid. The current technologies are capable of genotyping
the SNPs with a great level of confidence, but not so for haplotypes, which
have to be statistically inferred from the SNPs (see, e.g., Lin et al. 2002).
As a result, haplotypes are available in frequencies. This issue also arises
from other studies. For example, race is a predictor in almost all epidemio-
logical studies. Even though it may be recorded as “White,” “Black,” etc.,
some subjects really are half white and half black or in other proportions.
In the following, we describe the use of the random forest idea proposed by
Chen et al. (2007) to address these uncertainties in the predictors.

For clarity, we assume x1 is the only categorical variable with uncer-
tainties, and it has K possible levels. For the i-th subject, xi1 = k with a
probability pik (

∑K
k=1 pik = 1). In a typical random forest, the “working”

data set is a bootstrap sample of the original data set. Here, a “working”
data set is generated according to the frequencies of x1 while keeping the
other variables intact. Thus, the data set would be {zi1, xi2, . . . , xip, yi}n

i=1,
where zi1 is randomly chosen from 1, . . . , K, according to the probabilities
(pi1, . . . , piK). Once the data set is generated, the rest can be carried out
in the same way as for a typical random forest. The procedure is similar if
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FIGURE 6.6. A schematic diagram to construct a forest for predictors with un-
certainties. Predictors x1, x2, . . . , xp are not directly observed, and hence the raw
data are referred to as “unphased data.” The frequencies of the predictors can be
estimated, and these frequencies are used to generate “phased data” in which the
values of the predictors are drawn according to the distribution of the predictors.
One tree is built for each phased data set. Finally, the importance score for each
predictor is computed in the forest.

there are additional predictors with uncertainties, and in fact, this is the
case for haplotype-based genetic analysis. We refer to Chen et al. (2007)
for details. Figure 6.6 illustrates this process, and a computer program
HapForest is available from http://c2s2.yale.edu/software.

A caveat with the tree- and forest-based method is that it is not fea-
sible to perform theoretically based statistical inference such as the com-
putation of statistical significance and confidence interval. For hypothesis
testing, a general, while computationally intensive, approach is to generate
data under the null hypothesis and examine the distribution of the critical
statistics using the replicated permutation samples. For example, to assess
the significance of association between a haplotype and a disease, the null
distribution for an importance index can be empirically estimated by ran-
domly permuting the disease status in the raw data and then going through
the process in Figure 6.6 to produce one set of importance indices for all
haplotypes under the null hypothesis. Repeating this process can estimate
empirically the null distribution for all haplotypes.

Chen et al. (2007) and Wang et al. (2009) applied this method to a
genetic data set on age-related macular degeneration (AMD), which is a
leading cause of vision loss in the elderly. Using a genomewide significance
level of 0.05, they confirmed one well-known haplotype, ACTCCG (on chro-
mosome 1), and revealed several novel haplotypes, TCTGGACGACA (on
chromosome 7), GATAGT (on chromosome 5), and TCTTACGTAGA (on
chromosome 12). Using permutation, these novel haplotypes were associ-
ated with AMD beyond chance by a genomewide 5% significance level.
The haplotype on chromosome 1 is in the gene called complement factor
H (Klein et al. 2005), the one on chromosome 7 is located in the Bardet–
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Biedl syndrome 9 gene, the one on chromosome 5 is in the region of the
Sarcoglycan delta, and the one on chromosome 12 is in the Ankyrin repeat
and sterile alpha motif domain containing 1B (Wang et al. 2009).

6.5 Random Forests with Weighted Feature
Selection

The second step in the construction of a random forest is to select a subset
of the predictors (features) to split a node. By this random selection, all
features are treated with the same chance of being selected. This could be
problematic when the number of available predictors is huge such as mil-
lions of SNPs in a genomewide association (GWA) study. It would take a
large number of trees to give those important predictors enough chances to
be selected in the first place. Furthermore, in a GWA study, besides geno-
types, there tend to be a few covariates such as demographic variables that
must be considered. Consequently, there is a severe imbalance in the num-
ber of SNPs and the number of “environmental” covariates. The standard
random forest procedure is not effective in identifying potentially impor-
tant environmental variables, because they are simply overwhelmed by the
number of SNPs.

A simple, seemingly effective approach is to perform a univariate test us-
ing each predictor, e.g., the allelic χ2 statistic for each SNP. Then, instead
of drawing a subset of the q variables with equal probability for all pre-
dictors, the sampling probability is refined as a monotonic function of the
χ2 value. This approach is similar to the enriched random forest approach
(Amaratunga et al. 2008) proposed in gene expression analyses.

In a simulation study in which the number of risk-enhancing SNPs is
relatively small, Chen et al. (unpublished data) confirmed that the typical
random forest is ineffective, as expected (Genuer et al. 2008), in identifying
the underlying SNPs and environmental factors. However, the weighted
random forest of a similar size yielded a much superior performance in
terms of the number of prediction errors and the power of uncovering the
important predictors.

6.6 Deterministic Forests

If we examine individual trees in a forest, we tend to find trees with com-
parable structures that have similar classification performance when the
number of features is large relative to the number of samples, particularly
evident in the analysis of microarray data. This observation was the moti-
vation behind Zhang et al. (2003) in which the authors proposed a forest
with trees of similar structures and similar performance. This forest could
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FIGURE 6.7. The frame of the deterministic forest. Each of S1, S2, S3 is one of
the top three splits of the corresponding node. Inside the terminal nodes are the
results in one of the trees from the analysis of the leukemia data set.

provide more precise and biologically interpretable classification rules than
any individual tree, and is reproducible—for this reason, such a forest is
called deterministic forest.

Zhang et al. (2003) proposed and examined a simple way of forming a
deterministic forest. They selected a prespecified number, say 20, of the
top splits of the root node and a prespecified number, say 3, of the top
splits of the two daughter nodes of the root node. This use of top nodes
gives rise to a total of 180 possible (20 by 3 by 3) trees. When they applied
this procedure to a leukemia data set (Golub et al. 1999), they noted that
many of the trees are perfect or nearly perfect in classifying the subjects in
the learning sample. For example, in Figure 6.7, S1 is one of the top three
splits of the root node, S2 is one of the top three splits of the second node,
and S3 is one of the top three splits of the third node. Inside the terminal
nodes are the results in one of the trees, illustrating a perfect classification
in the learning sample.

An alternative, but computationally more challenging, approach is to
prespecify a general structure such as “A” trees as the first step. An “A
tree”’ (see, e.g., Figure 6.7) is a tree that is symmetric on the left and right.
Then, we search for trees of a desired performance for inclusion in the forest.
The performance of this procedure warrants further investigation.

6.7 A Note on Interaction

In classical statistical inference, the assessment of interaction requires pre-
specification of the interaction term. For example, in a linear model in-
volving response Y , and two predictors x1 and x2, the product term x1x2
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is the common representation of the interaction effect. In general, how-
ever, interactions refer to any deviation from the additive effects. The trees
and forests provide a very flexible framework without prespecifying the in-
teractions. Instead, we can assess interactions after trees and forests are
grown. Furthermore, trees and forests can suggest existence of interactions
even when the effect of those interactions may be too small to be detected
individually. From a theoretical point of view, it would be important to
establish a theoretical framework to assess interactions that are difficult to
specify a priori.



7
Analysis of Censored Data: Examples

7.1 Introduction

Censored survival time is the outcome of numerous studies. We select a
few examples from the medical literature to give a glimpse of the scope of
studies involving censored survival time. Although survival time is usually
the time to death, it can be broadly referred to as the time to the occurrence
of an event of interest. For example, age of onset for breast cancer can be
interpreted as a survival time.

Example 7.1 Ansell et al. (1993) performed a tree-based survival analysis
on 127 consecutive women with stage IIIB to stage IV ovarian cancer. Be-
tween November 1982 and July 1988, those patients had undergone surgical
procedures as treatment for advanced ovarian cancer. The survival status
of the patients was monitored from the time of the surgery to January 30,
1992. Eighty-four patients had died during this period of time, and the re-
maining 43 were still alive at the final date of the study. Hence, the survival
time of the 43 alive patients was censored. The study goal is to scrutinize
demographic and tumor-related prognostic (clinical, radiological, and bio-
chemical) factors that predict survival. Based on their analysis, Ansell et
al. defined three groups of patients with significantly (at the level of 0.05)
different survival functions.

Example 7.2 From 1974 to 1989, 1578 patients were entered in three
Radiation Therapy Oncology Group malignant glioma trials. Curran et
al. (1993) used this sample to examine the associations of survival time
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to pretreatment patient status and tumor characteristics, and treatment-
related indicators. The survival time was calculated from the date of the
treatment to November 1991. The pretreatment factors include age, per-
formance status, and tumor histopathology. Extent of surgery is one of the
five treatment-related variables. Using the recursive partitioning technique,
the authors identified six subgroups with distinct survival durations. The
most important stratification is whether or not the patient was younger
than 50 years of age.

Example 7.3 The determinants of life span are complex and include ge-
netic factors. To explore the effect of three (H − 2b, H − 2k, and H − 2d)
haplotypes on the T-cell functions and ultimately on survival, Salazar et al.
(1995) conducted an experimental study using 1537 mice that were born
between April 14 and July 28, 1987. The experiment ended on February
2, 1991. During the experiment period, the survival durations of 130 mice
(in addition to those that were still alive at the end) were censored (not
observed) because of accidental drowning of 5 and sacrifice of 125 for im-
munologic studies. The authors found that males lived longer than females
except for H − 2d homozygotes, for which there was no sign of significant
difference at the level of 0.05.

What do Examples 7.1–7.3 have in common? As in Examples 1.1–1.6,
the observations from every subject include a number of predictors such
as prognostic factors in Example 7.1 and genetic components in Example
7.3. What makes it more special here is the outcome of interest, which is
a clearly defined, but sometimes unobservable, survival time. Depending
on the nature of study, the survival time, denoted by T, may be calculated
from the time of the treatment (e.g., surgery in Example 7.1) or the time of
birth (e.g., Example 7.3) to the time of death (or broadly, the time when an
event occurs). Due to practical constraints, we are not able to observe all
subjects until after death. Thus, all studies have a clearly defined end. For
example, the last day is February 2, 1991, in Example 7.3. Sometimes, the
end of study may be the day when a prespecified number of study subjects
have died. Those subjects that were alive at the end of the study have a
censored survival time. In other words, their survival times were actually
longer than what we could observe. There are also other circumstances in
which we cannot observe the relevant survival time. For instance, 130 mice
in Example 7.3 died from a cause other than the one of interest. They
would have survived longer if they had not been killed by accidents or been
sacrificed. In many human clinical trials, some subjects may be lost before
the end of the study because of various health conditions or inconvenience
(e.g., having moved out of the study area).

Figure 7.1 elucidates two typical study designs and three common types
of censoring. In panel (a), all subjects enter into a study at the same time.
When the study ends on a planned date, type I censoring occurs. If the
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FIGURE 7.1. Three types of censoring

study is terminated after a given number of subjects have died, we have
type II censoring. For both types of censoring, subjects may be either alive
at the end of study or lost to follow-up during the study period. In panel
(b), subjects enter into a study at different times. The censoring is classified
as type III. In almost all cases where the tree-based methods have been
applied, types I and III, called random censoring, are involved. Type II
censoring times among subjects are not independent. We will not discuss
further the distinction between random and nonrandom censoring. All of
these types are right censoring, or censoring to the right.

Although we do not pursue it here, left censoring and interval (dou-
ble) censoring also arise in practice (e.g., Peto 1973). Particularly in AIDS
(acquired immunodeficiency syndrome) research, estimating the time from
the HIV (human immunodeficiency virus) infection to the development of
AIDS, called the incubation period, is very important to the control and
prevention of AIDS (e.g., Brookmeyer 1991). The difficulty is that the time
of HIV infection is unknown and the incubation period is left-censored.
Supposing that the duration from the onset of HIV infection to the AIDS
death is of interest, interval censoring occurs.

In summary, we cannot observe the survival time for all study subjects.
To take into account the fact of survival being censored, we use δ to indicate
whether a subject’s survival is observed (if it is one) or censored (if it
is zero). Although the survival time is the sole outcome, it involves two
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response variables: the observed time, denoted by Y, and the censoring
indicator. In the absence of censoring, the observed time is the survival
time, and hence Y = T. Otherwise, the observed time is the censoring time,
denoted by U. The relationship among T, Y, U, and δ is Y = min(T, U)
and δ = I(Y = T ), where I(·) is an indicator function defined as follows:

I(A) =

{
1 if condition A is met,
0 otherwise.

(7.1)

We will explain later how to use the ideas expressed in Chapter 4 to
analyze censored survival data. The rules of the game are essentially the
same. First, a comparable “node impurity” is needed in tree growing; that
is, we must define a partitioning criterion by which one node is split into
two, two into more, and so on. Second, to guide tree pruning, an analogous
“cost-complexity” needs to be formulated so that we can choose a “right-
sized” tree, or equivalently, determine the terminal nodes. Before discussing
these details, we present a tree-based survival analysis in Section 7.2 and
reveal the potential of such an analysis in providing new scientific results
that are not so readily attainable with other more standard methods.

7.2 Tree-Based Analysis for the Western
Collaborative Group Study Data

The Western Collaborative Group Study (WCGS) is a prospective and
long-term study of coronary heart disease. In 1960–61, 3154 middle-aged
white males from ten large California corporations in the San Francisco Bay
Area and Los Angeles entered the WCGS, and they were free of coronary
heart disease and cancer. After a 33-year follow-up, 417 of 1329 deaths were
due to cancer and 43 were lost to follow-up. Table 7.1 provides part of the
baseline characteristics that were collected from the WCGS. A more de-
tailed description of study design and population is available from Ragland
et al. (1988). Table 7.1 gives a brief description of the predictors. In par-
ticular, body mass index (BMI) and waist-to-calf ratio (WCR) are two
measures of obesity. The question of primary interest here is whether obe-
sity as indicated by BMI and WCR is associated with the risk of cancer.

In classifying binary outcome, the impact of using different splitting cri-
teria is relatively minor. However, the impact appears to be greater for the
analysis of censored data. As we will introduce later, several criteria have
been studied in the literature. We use two of them in Figure 7.2. One is
based on the log-rank statistic and the other from a straightforward ex-
tension of node impurities. The next two chapters will provide in-depth
discussions, but for the moment, we concentrate on the practical aspect of
the analysis.



7.2 Tree-Based Analysis for the Western Collaborative Group Study Data 101

TABLE 7.1. Eight Selected Baseline Variables from the WCGS

Characteristics Descriptive Statistics
Age 46.3 ± 5.2 years
Education High sch. (1424), Col. (431), Grad. (1298)
Systolic blood pressure 128.6 ± 15.1 mmHg
Serum cholesterol 226.2 ± 42.9 (mg/dl)
Behavior pattern Type A (1589), type B (1565)
Smoking habits Yes (2439), No (715)
Body mass index 24.7 ± 2.7 (kg/m2)
Waist-to-calf ratio 2.4 ± 0.2

BMI > 27.2
yesno/NA
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FIGURE 7.2. The survival trees using the log-rank statistic and a straightforward
extension of impurity.
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FIGURE 7.3. Kaplan–Meier curves within terminal nodes. The two panels cor-
respond to the two trees in Figure 7.2.

How do we answer the clinical question from the survival trees? A com-
monly used approach is to draw Kaplan–Meier curves within all terminal
nodes and then to compare these curves. Figure 7.3 is prepared following
this common wisdom. Thus, the survival trees are employed as a means of
stratifying the study sample. This is particularly useful when the propor-
tionality assumption is violated in the Cox model introduced in the next
chapter.

Let us first examine the tree on the left of Figure 7.2. As in the propor-
tional hazard model (see Section 8.2.3), age and cholesterol are important
attributes for survival. The hostile score seems to matter, but it requires a
threshold so high (greater than 3.9) that only 8 subjects crossed the line.
Instead of WCR as in the proportional hazard model, BMI, another mea-
sure of obesity, expresses some influence on the survival, but is limited to a
group of 43 subjects. If we remove three survival curves for the three rela-
tively small nodes, the left panel in Figure 7.3 suggests three major, distinct
characteristics of survival, two of which are determined by age (terminal
nodes I and VI). The curve for terminal node II shows that lower cholesterol
levels have a dramatic protective effect on survival due to cancer.

The six survival curves on the right of Figure 7.3 display four major
distinct characteristics of survival. Terminal nodes III and IV deserve our
special attention. Let us point out that there are 173 missing values on BMI
in terminal node III, of which 18 died from cancer. This death proportion
is about the same as that among those who had BMI measured. Although
subjects in terminal node I (younger and lower WCR group) had enjoyed
the longest survival time, those in terminal node III had a very close survival
duration. What is surprising is that this is a group with relatively high
WCR and BMI. Based on the survivorship of terminal node II and the
discussion above, when only one of WCR and BMI is high, the risk of death
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is increased. The survivorship of terminal node V seems to raise another
point. For those of age about 50 to 60, moderately high SBP is protective for
survival due to cancer. These observations shed some new light on cancer
death that was not uncovered from previous analyses. However, the extent
of their validity warrants further investigation.



8
Analysis of Censored Data: Concepts
and Classical Methods

Before presenting the methods of survival trees, we should be aware of the
methodology in place that is commonly used to analyze censored survival
data. It is strategically wise to understand the data and answer scientific
questions by different methods and from different perspectives.

8.1 The Basics of Survival Analysis

Survival analysis involves a variety of issues and a thorough coverage is far
beyond our scope. Useful textbooks are available at different levels such
as Kalbfleisch and Prentice (1980), Miller (1981), and Lee (1992). Here,
we focus on basic issues that are relevant to the understanding of survival
trees.

Table 8.1 presents the survival time in days along with the smoking
history for a random set of 60 subjects from the 1988 Western Collaborative
Group Study. We will reanalyze the entire study in Section 8.2.3. What we
should notice for the moment is that the censored time is indicated by a
plus sign, “+,” following the time.

The fundamental question is, How do we describe the survival time of
the samples in Table 8.1? This leads to the most basic concept in survival
analysis: survival function. It is the probability of surviving longer than a
given time. Symbolically, the survival function is defined as

S(t) = IP{T > t}. (8.1)
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TABLE 8.1. A Random Sample from the Western Collaborative Group Study

Smoked Time (days) Smoked Time (days) Smoked Time (days)
yes 11906+ yes 9389+ yes 4539+
yes 11343+ yes 9515+ yes 10048+
yes 5161 yes 9169 no 8147+
yes 11531+ yes 11403+ yes 11857+
yes 11693+ no 10587 yes 9343+
yes 11293+ yes 6351+ yes 502+
yes 7792 no 11655+ yes 9491+
yes 2482+ no 10773+ yes 11594+
no 7559+ yes 11355+ yes 2397
yes 2569+ yes 2334+ yes 11497+
yes 4882+ yes 9276 yes 703+
yes 10054 no 11875+ no 9946+
yes 11466+ no 10244+ yes 11529+
yes 8757+ no 11467+ yes 4818
yes 7790 yes 11727+ no 9552+
yes 11626+ yes 7887+ yes 11595+
yes 7677+ yes 11503 yes 10396+
yes 6444+ yes 7671+ yes 10529+
yes 11684+ yes 11355+ yes 11334+
yes 10850+ yes 6092 yes 11236+
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Another concept that is of almost equal importance is the hazard function:

h(t) =
limΔt→0 IP{T ∈ (t, t + Δt)}/Δt

IP{T > t} . (8.2)

The hazard function is an instantaneous failure rate in the sense that it
measures the chance of an instantaneous failure per unit of time given
that an individual has survived beyond time t. Note that the numerator of
(8.2) is the density function of T, or minus derivative of the denominator.
Therefore, knowing the survival function is enough to derive the hazard
function and vice versa.

The next question is, How do we estimate the survival or hazard function
from data such as the samples in Table 8.1 (ignoring the smoking history
for the time being)? Two general answers are available to this question. The
first one assumes specific knowledge for the distribution of the survival time
and hence is parametric, but the second does not and is nonparametric, or
distribution-free. We defer the second approach to Section 8.1.1.

For the first approach, different distributions of survival can be assumed.
For example, one simple choice is to assume that the survival function is
exponential, i.e.,

S(t) = exp(−λt) (λ > 0), (8.3)

where λ is an unknown constant. In fact, λ is the hazard function. Thus,
equivalent to (8.3) is that h(t) = λ, i.e., a constant hazard function. Hav-
ing made such an assumption, it remains to estimate the only unknown
parameter, λ, namely, the hazard. This is usually done by maximizing the
likelihood function.

When the survival time Ti of individual i is observed, the corresponding
density f(Ti) contributes to the likelihood function. When the censoring
time Ui is observed, however, the value of the survival function appears
in the likelihood function. Thus, the full likelihood function under the as-
sumption (8.3) for the data in Table 8.1 is

L(λ) =
60∏

i=1

[λ exp(−λTi)]δi [exp(−λUi)]1−δi , (8.4)

the log of which is

l(λ) =
60∑

i=1

{δi[log(λ) − λYi] − λ(1 − δi)Yi}

= log(λ)
60∑

i=1

δi − λ

60∑
i=1

Ti

= 11 log(λ) − λ(11906 + 11343 + · · · + 11236),

where 11 is the number of uncensored survival times and the summation
is over all observed times. Therefore, the maximum likelihood estimate of
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the hazard, λ, is

λ̂ =
11

527240
= 2.05/105, (8.5)

which is the number of failures divided by the total observed time; in other
words, there were 2.05/105 failures per day. When the hazard function is
constant, the estimate in (8.5) follows from the definition.

Assumption (8.3) is one possibility and does not necessarily lead to an
adequate fit to the data. Due to censoring, a simple χ2 goodness-of-fit
test is not appropriate. Hollander and Proschan (1979) proposed a formal
test, described below, making use of the Kaplan–Meier curve. In practice,
some graphical approaches are more intuitive and easier to appreciate. Af-
ter presenting the Kaplan–Meier Curve in Section 8.1.1, we can compare a
parametric fit with the nonparametric Kaplan–Meier Curve. Another useful
approach is hazard plotting (Nelson 1972), similar to probability plotting.
It plots the empirical cumulative hazard function against the assumed the-
oretical cumulative hazard function at times when failures occurred. Here,
the cumulative hazard function is defined as

H(t) =
∫ t

0

h(u)du. (8.6)

Since the hazard is not a density function, the cumulative function may
be greater than one. For the exponential survival function, the cumulative
hazard function is a linear function: λt.

In Table 8.1 there are 11 time points where deaths occurred. It is easy
to obtain the theoretical cumulative hazard function. To calculate the em-
pirical value at time Ti, we first find the number of subjects who survived
up to time Ti, denoted by Ki, and then the number of failures at time Ti,
denoted by di. The hazard rate at Ti is estimated by di/Ki, i.e., the ratio
of the number of failures to the number of subjects at risk. The cumulative
hazard at Ti is the sum of all hazard rates before and at Ti. Table 8.2 dis-
plays the process of calculating both empirical and theoretical cumulative
hazard functions, where the survival function is assumed to be exponential.
The hazard plot in Figure 8.1 implies that the exponential survival is not
appropriate for the data, because the empirical and theoretical cumulative
hazard functions do not match each other. Therefore, we should refit our
survival data by assuming different distributions and then check the good-
ness of fit. We leave it to interested readers to find appropriate parametric
models.

8.1.1 Kaplan–Meier Curve

We have shown how to fit survival data with parametric models and have
also realized that a particular parametric assumption may not be appropri-
ate for the data. Here, we describe the most commonly used nonparametric
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TABLE 8.2. Cumulative Hazard Functions

Survival Risk set Failures Hazard rate Cumulative hazard
time K d d/K Empirical Assumed
2397 57 1 0.0175 0.0175 0.0491
4818 53 1 0.0189 0.0364 0.0988
5161 51 1 0.0196 0.0560 0.1058
6092 50 1 0.0200 0.0760 0.1249
7790 44 1 0.0227 0.0987 0.1597
7792 43 1 0.0233 0.1220 0.1597
9169 39 1 0.0256 0.1476 0.1880
9276 38 1 0.0263 0.1740 0.1902

10054 30 1 0.0333 0.2073 0.2061
10587 26 1 0.0385 0.2458 0.2170
11503 13 1 0.0769 0.3227 0.2358

•
•
•

•
•
•

•
•

•

•

•

FIGURE 8.1. Cumulative hazard plot
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TABLE 8.3. Product Limit Estimate of Survival Function

Survival Risk set Failures Ratio Product
time K d (K − d)/K Ŝ(t)
2397 57 1 0.982 0.982
4818 53 1 0.981 0.982 ∗ 0.981 = 0.963
5161 51 1 0.980 0.963 ∗ 0.980 = 0.944
6092 50 1 0.980 0.944 ∗ 0.980 = 0.925
7790 44 1 0.977 0.925 ∗ 0.977 = 0.904
7792 43 1 0.977 0.904 ∗ 0.977 = 0.883
9169 39 1 0.974 0.883 ∗ 0.974 = 0.860
9276 38 1 0.974 0.860 ∗ 0.974 = 0.838

10054 30 1 0.967 0.838 ∗ 0.967 = 0.810
10587 26 1 0.962 0.810 ∗ 0.962 = 0.779
11503 13 1 0.923 0.779 ∗ 0.923 = 0.719

method of constructing survival curves, developed by Kaplan and Meier
(1958).

The mechanism of producing the Kaplan–Meier curve is similar to the
generation of the empirical cumulative hazard function. The first three
columns of Table 8.3 are the same as those in Table 8.2. The fourth column
in Table 8.3 is one minus the fourth column in Table 8.2, namely, the
proportion of individuals who survived beyond the given time point. The
last column is a recursive product of the fourth column, giving the product-
limit estimate of survival function Ŝ(t). Figure 8.2 is a plot of Ŝ(t) against
time, the so-called Kaplan–Meier curve.

As mentioned earlier, the Kaplan–Meier curve can also be used to check
the adequacy of a parametric survival model. For example, we embedded
the exponential survival function into Figure 8.2. It is clear that the expo-
nential survival function underestimates the survival in the early stage and
overestimates later. In other words, as also shown by Figure 8.1, the para-
metric model inflates the hazard rate earlier and shrinks it later. What,
then, is the point of using parametric models? When they are appropri-
ate, parametric models can provide a more precise estimate of survival,
and their parameters may have clinical interpretation. Miller (1983) exam-
ined specific cases where the asymptotic efficiencies of the Kaplan–Meier
estimator are low, especially for high censoring proportions.

8.1.2 Log-Rank Test

In many clinical studies, estimating a survival function is the means, not
the goal. A common goal is to compare the survival distributions of various
groups. For example, we may be interested in whether the survival distribu-
tions of the smoking and nonsmoking groups in Table 8.1 differ. As a first
step, we may view the Kaplan–Meier curves graphically, as illustrated in
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FIGURE 8.2. The Kaplan–Meier (solid) curve and the exponential survival (dot-
ted) curve

Figure 8.3. The short vertical lines along the survival curves in this figure
mark the censoring times. The two curves appear to be different. In par-
ticular, the nonsmokers seem to have survived longer. Note, however, that
Table 8.1 contains a small fraction of the Western Collaborative Group
Study. Hence, the clinical conclusions drawn here are for the purpose of
illustrating the method. A complete analysis will be conducted later.

Although graphical presentations are useful, it is also important to test
the significance of the difference in the survival distributions. Many test
statistics have been developed and studied in depth. Among them is Man-
tel’s log-rank test, generalized from Savage’s (1956) test. The name of ‘log-
rank’ was given by Peto and Peto (1972).

At the distinct failure times, we have a sequence of 2 × 2 tables

Dead Alive
Smoking ai ni

Nonsmoking
di Ki

For the data in Table 8.1, the counts of ai, di, ni, and Ki are calculated
in Table 8.4. The log-rank test statistic is

LR =
∑k

i=1(ai − Ei)√∑k
i=1 Vi

, (8.7)

where k is the number of distinct failure times,

Ei =
dini

Ki
,
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FIGURE 8.3. The Kaplan–Meier curves for smoking (dotted) and nonsmoking
groups (solid)

TABLE 8.4. Calculation of Log-Rank Test

Time Risk set Failures
Ti Ki di ai ni Ei Vi

2397 57 1 1 47 0.825 0.145
4818 53 1 1 43 0.811 0.153
5161 51 1 1 41 0.804 0.158
6092 50 1 1 40 0.800 0.160
7790 44 1 1 35 0.795 0.163
7792 43 1 1 34 0.791 0.165
9169 39 1 1 31 0.795 0.163
9276 38 1 1 30 0.789 0.166

10054 30 1 1 24 0.800 0.160
10587 26 1 0 21 0.808 0.155
11503 13 1 1 11 0.846 0.130
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and

Vi =
(

di(Ki − ni)ni

Ki(Ki − 1)

)(
1 − di

Ki

)
.

Since the log-rank test statistic has an asymptotic standard normal distri-
bution, we test the hypothesis that the two survival functions are the same
by comparing LR with the quantiles of the standard normal distribution.
For our data, LR = 0.87, corresponding to a two-sided p-value of 0.38.

8.2 Parametric Regression for Censored Data

What we have discussed so far is only enough to deal with simple issues
such as the comparison of two survival functions. In most applications,
however, the question of interest is more challenging. In Examples 7.1–7.3,
we have seen that the determinants of survival are multifactorial. How,
then, do we establish the relationship between survival and a number of
covariates? We present two approaches to answering this question. The first
one is intuitively appealing, but not quite successful.

8.2.1 Linear Regression with Censored Data∗

Consider the simple linear regression model

Yi = α + βxi + εi,

for n pairs of observations (xi, Yi) (i = 1, . . . , n). In the absence of censor-
ing, it is standard to estimate the regression coefficients through the least
squares criterion. That is, the estimates α̂ and β̂ are those values of α and
β that minimize the sum of squares

n∑
i=1

(Yi − α − βxi)2 = n

∫
z2dF̂ (z; α, β), (8.8)

where F̂ (z; α, β) is the empirical distribution of Yi −α−βxi (i = 1, . . . , n).
In the censored case, Miller (1976) proposed replacing F̂ (z; α, β) in (8.8)

with the Kaplan–Meier estimate. This proposal is conceptually simple, but
it has two serious shortcomings: (a) The analytic properties of the result-
ing estimates α̂ and β̂ are difficult to study because the minimum of (8.8)
can occur at a discontinuity point. In fact, the estimates are, in general,
inconsistent (Buckley and James 1979). (b) The method faces computa-
tional obstacles in multiple regression because the occurrence of minima
at discontinuity points makes it necessary to have a grid search for the
estimates.

To overcome the problems with Miller’s method and stay in the domain
of the standard linear regression, Buckley and James (1979) suggested a
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different idea. For a censored time, we have Ui < Ti. If we knew the differ-
ence Ti −Ui, we could add it to our observed time Yi. After this, we would
not have censored data, and the standard methodology would be applica-
ble. Obviously, we do not know the difference. Their first step is to replace
the difference by the conditional mean difference IE(Ti − Ui|Ti > Ui). In
other words, the observations become

Y ∗
i = Yiδi + IE(Ti|Ti > Yi)(1 − δi) (i = 1, . . . , n).

It is important to observe that IE(Y ∗
i ) = α + βxi when the linear model

holds for the underlying survival time. It follows that

IE

[
n∑

i=1

(xi − x̄)(Y ∗
i − βxi)

]
= 0,

which is analogous to the normal equations in the standard linear regres-
sion. Because of this fact, Buckley and James chose the slope estimate β̂
such that

n∑
i=1

(xi − x̄)(Y ∗
i − β̂xi) = 0.

This type of estimate is called an M-estimate in the context of robust
statistics (e.g., Huber 1981).

Unfortunately, Y ∗
i is still not available from the data. In the second step,

Buckley and James adopted a self-consistent approach to approximate Y ∗
i

for censored individuals. On average, it is βxi. Given that we observed a
censoring time Ui, what is a reasonable estimate of Δi = Y ∗

i −βxi? To find
the answer, consider the adjusted time Zi = Yi − βxi (i = 1, . . . , n). We
can find the Kaplan–Meier estimate Ŝ(z) for the adjusted time Zi. Now,
Δi can be estimated by a weighted average of Zk among those uncensored
individuals for whom Zk > Δi, i.e., those who survived beyond Δi under
the adjusted time scale. More precisely,

Δ̃i =
∑

{k:δk=1,Zk>Δk}

v(Zk)
Ŝ(Zk)

Zk,

where v(Zk) = limΔ→0 S(Zk − Δ) − S(Zk). Then, we use

Ỹi(β) = βxi + Δ̃i

to replace the censoring time. Such a replacement leads to an estimator β̃
that satisfies

β̃ =
∑n

i=1(xi − x̄)[Yiδi + Ỹi(β)(1 − δi)]∑n
i=1(xi − x̄)2

. (8.9)

Since both sides of (8.9) depend on β, the solution needs to be found by
an iterative algorithm. Unfortunately, an exact solution is not guaranteed.
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When no solution exists, Buckley and James found that the iterations usu-
ally settle down to oscillating between two values. Once a slope β̃ is chosen,
the corresponding estimate α̃ of the intercept is

α̃ =
1
n

n∑
i=1

[Yiδi + Ỹi(β)(1 − δi)] − β̃x̄.

Since a unique solution is not guaranteed, the properties of the estimates
are also difficult to study. We described these unsuccessful attempts because
they could otherwise lead to an easy extension of the tree-based method
for the analysis of censored data. In that case, we could attach a patch to
any censored time and use it as if it were a survival time.

8.2.2 Cox Proportional Hazard Regression

Instead of making assumptions directly on the survival times, Cox (1972)
proposed to specify the hazard function. As before, suppose that we have
a set of predictors x = (x1, . . . , xp) in addition to our survival time. The
Cox proportional hazard model assumes that

λ(t;x) = exp(xβ)λ0(t), (8.10)

where β is a p× 1 vector of unknown parameters and λ0(t) is an unknown
function giving a baseline hazard for x = 0. As a trivial note, the part xβ
can be extended to a general function in x. The unique feature of (8.10) is
that if we take two individuals i and j with covariates xi and xj , the ratio
of their hazard functions is exp((xi − xj)β), which is free of time. In other
words, the hazard functions for any two individuals are parallel in time. It
is critical to keep this fact in mind when we validate the assumption (8.10)
in applications.

Note that λ0(t) is left to be arbitrary in (8.10). Thus, the proportional
hazard can be regarded as semiparametric. To estimate β, Cox suggested
using a conditional likelihood without estimating the nuisance λ0(t). He
argued that no information can be contributed about β by time intervals
in which no failures occur, because the component λ0(t) might be zero in
such intervals. Therefore, the likelihood should be conditioned on the set
of uncensored times.

At any time t, let R(t) be the risk set, i.e., the individuals who were at
risk right before time t. For each uncensored time Ti, the hazard rate is

h(Ti) = IP{A death in (Ti, Ti + dt) | R(Ti)}/dt.

Hence, under the proportional hazard model,

IP{A death in (Ti, Ti + dt) | R(Ti)} = exp(xβ)λ0(Ti)dt
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and

IP{Individual i fails at Ti | one death in R(Ti) at time Ti}

=
exp(xiβ)∑

j∈R(Ti)
exp(xjβ)

.

The conditional probability above is the contribution of failed individual
i to the conditional likelihood and altogether the conditional likelihood is
the product

L(β) =
∏

failure i

exp(xiβ)∑
j∈R(Ti)

exp(xjβ)
. (8.11)

Maximizing the conditional likelihood (8.11) gives rise to the estimates of
β. Like the ordinary maximum likelihood estimates, β̂ has an asymptotic
normal distribution. We refer to Fleming and Harrington (1991) for the
detailed theory.

To further justify the use of the conditional likelihood (8.11), Kalbfleisch
and Prentice (1973) showed that (8.11) is also the joint probability of the
ranks of the observed times as compared to the uncensored times only.
More precisely, define

Ri =

{
rank of Yi among uncensored times if δi = 1,
rank of the preceding uncensored time if δi = 0.

Then the joint probability distribution of (Ri, δi) (i = 1, . . . , n) equals
(8.11).

Once β̂ is available, there are a variety of ways to estimate the baseline
hazard λ0(t). The entire model estimation and validation procedure has
been implemented in standard software such as the coxph and cox.zph
functions in SPLUS. See S-PLUS guide (1995).

8.2.3 Reanalysis of the Western Collaborative Group Study
Data

We entered the eight predictors in Table 7.1 into an initial Cox’s model and
used a backward stepwise procedure to delete the least significant variable
from the model at the threshold of 0.05. Table 7.1 gives a brief description
of the predictors. In particular, body-mass index (BMI) and waist-to-calf
ratio (WCR) are two measures of obesity. Due to the missing values of
education, BMI and WCR, 277 subjects were removed first in the model
selection. After three steps, we deleted education from the model, and 277
subjects still had missing values on BMI and WCR. After one more step, we
removed BMI from the model and then added back into the model selection
5 subjects whose WCRs were complete. The computation was carried out
in SPLUS, and the final model was built by the function
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TABLE 8.5. Parameter Estimation for Cox’s Model

Variable Coefficient S.E. p-value
Age (age) 0.0934 0.009 0.000
Serum cholesterol (chol) 0.0026 0.001 0.033
Smoking habits (smoke) 0.2263 0.103 0.029
Waist-to-calf ratio (wcr) 0.7395 0.271 0.006

FIGURE 8.4. Log-log Kaplan–Meier curves for 16 cohorts

coxph(Surv(time, cancer)~age + chol + smoke + wcr).

The estimates of the coefficients, their standard errors, and p-values are
reported in Table 8.5.

Before we finish with Cox’s model, we must assess the proportional haz-
ard assumption. To this end, we use both a graphical approach and a
theoretical approach developed by Grambsch and Therneau (1994).

To use the graphical approach, we dichotomize age, serum cholesterol,
and waist-to-calf ratio at their median levels. Then, the 2882 (= 3154−272)
subjects are divided into 16 cohorts. Within each cohort i, we calculate
the Kaplan–Meier survival estimate Ŝi(t). Next, we plot log(− log(Ŝi(t)))
versus time as shown in Figure 8.4. In each of the four panels, four curves
are displayed.
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Now, how do we assess the proportional hazard assumption on the basis
of Figure 8.4? It follows from the definition of hazard function in (8.2) that

h(t) = −d log(S(t))
dt

,

which is equivalent to

S(t) = exp
(
−
∫ t

0

h(z)dz

)
.

According to (8.10), the survival function is

S(t;x) = exp
[
−
∫ t

0

exp(xβ)λ0(z)
]

= exp
[
− exp(xβ)

∫ t

0

λ0(z)
]

. (8.12)

In other words,

log(− log[S(t;x)]) = xβ + log
[∫ t

0

λ0(z)
]

. (8.13)

As a consequence, the log-log survival curves in our 16 cohorts are supposed
to be parallel if the proportional hazard assumption holds. Figure 8.4 does
not suggest any clear violation of the assumption, although some crossover
of curves can be identified in the bottom-right panel.

Using the SPLUS function cox.zph to test whether the assumption is
met in the statistical sense, the global p-value is 0.3. However, there may
be some marginal violation with respect to age for which the p-value is
0.04. In summary, the proportional hazard model appears reasonable to
the WCGS data.

In summary, Table 8.5 suggests that age, high serum cholesterol level,
smoking, and obesity have negative effects on survival. This is obviously an
old story that has been repeated by many epidemiologic and experimental
studies.



9
Analysis of Censored Data: Survival
Trees and Random Forests

We elucidated in Chapter 4 the usefulness of the recursive partitioning
technique for the analysis of binary outcomes. Not only can this technique
be extended to the analysis of censored data, but also, as pointed out
by Gordon and Olshen (1985), tree-based regression is applicable to more
general situations than that of the proportional hazard regression described
previously. As a matter of fact, the most popular use of the tree-based
methods is in the area of survival analysis.

9.1 Splitting Criteria

Several splitting criteria have been developed since the publication of the
CART book of Breiman et al. (1984). We describe them in chronological
order. Although the relative merits of these criteria are not clearly resolved,
it seems safe for users to begin with the use of the log-rank statistic. In
many applications, it is useful to generate trees from different criteria and
select one of them based on scientific judgment. In this sense, a theoretical
settlement of one criterion being superior to others is less important.

9.1.1 Gordon and Olshen’s Rule∗

Gordon and Olshen (1985) made the first attempt to adapt the idea of
recursive partitioning to cover censored survival analysis. When classifying
binary outcomes in Section 4.1, we introduced the concept of node impurity.
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1 1 1

0 0 0time time time

(a) (b) (c)

FIGURE 9.1. Three possible Kaplan–Meier curves for a homogeneous node. (a)
All observations were censored; (b) all failures occurred at the same time and
there was no censored observation afterward; (c) all failures occurred at the same
time, followed by censored times

1

0 time

A Kaplan--Meier curve of a pure node

A generic Kaplan--Meier curve

The distance (or area)
between the two curves

FIGURE 9.2. The L1 Wasserstein distance between two Kaplan–Meier curves

What would be an appropriate measure of node impurity in the context
of censored data? We would regard a node as pure if all failures in the
node occurred at the same time. In such circumstances, the shape of the
Kaplan–Meier curve within the node has three possibilities, as depicted in
Figure 9.1. In other words, the curve has at most one drop. Let P be the
collection of all such Kaplan–Meier curves.

One way to judge the node impurity is to see how far the within-node
Kaplan–Meier curve deviates from any of the curves in P . To this end,
we need first to define a distance between the two Kaplan–Meier curves.
Gordon and Olshen used the so-called Lp Wasserstein metrics dp(·, ·) as the
measure of discrepancy between the two survival functions. Graphically,
when p = 1, the Wasserstein distance d1(S1, S2) between two Kaplan–
Meier curves S1 and S2 is the shaded area in Figure 9.2. In general, dp(·, ·)
is defined as follows.
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Let F1 and F2 be two distribution functions. The Lp Wasserstein distance
between F1 and F2 is

[∫ 1

0

|F−1
1 (u) − F−1

2 (u)|pdu

]1/p

, (9.1)

where F−1
i (u) = min{t : Fi(t) ≥ u}, i = 1, 2.

Now, let us take F1(t) = 1 − S1(t) and F2(t) = 1 − S2(t). Note that
F1 and F2 have all the properties of a distribution function except that
they may not approach 1 at the right end, which occurs when the longest
observed time is censored; see, e.g., Figure 9.1(a, c). Formally,

lim
t→∞

F1(t) = m1 ≤ 1 and lim
t→∞

F2(t) = m2 ≤ 1.

Such F1 and F2 are called improper distribution functions. If we can gener-
alize the distance metrics in (9.1) to improper distribution functions, then
we can define the distance between two Kaplan–Meier curves as that be-
tween the respectively flipped improper distribution functions. Indeed, the
Lp Wasserstein distance between S1 and S2 can be defined as[∫ m

0

|F−1
1 (u) − F−1

2 (u)|pdu

]1/p

, (9.2)

where the upper limit of the integral m is the minimum of m1 and m2.
To avoid technicalities, this definition is slightly simpler than the original
version of Gordon and Olshen.

We are ready now to define the node impurity. If a node is pure, the cor-
responding Kaplan–Meier curve should be one of the three curves in Figure
9.1. Otherwise, we can compare the within-node Kaplan–Meier curve with
the three forms of curves in Figure 9.1. These comparisons reveal the degree
of node purity. In formal terms, the impurity of node τ is defined as

i(τ) = min
δS∈P

dp(Sτ , δS), (9.3)

where Sτ is the Kaplan–Meier curve within node τ, and the minimization
minδS∈P means that Sτ is compared with its best match among the curves
of the forms depicted in Figure 9.1.

In general, the numerical implementation of (9.3) is not a straightforward
task, although it is clear in a theoretical sense thanks to the fact that the
distance is a convex function. When p = 1, the impurity in (9.3) can be
viewed as the deviation of survival times toward their median. When p = 2,
the impurity in (9.3) corresponds to the variance of the Kaplan–Meier dis-
tribution estimate of survival. Other than the theoretical generality, there
is no loss for us to choose p equal to either 1 or 2.

After the preparation above, we can divide a node into two as follows.
First, we compute the Kaplan–Meier curves as in Section 8.1.1 separately
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for each daughter node. Then, we calculate the node impurities from (9.3).
A desirable split can be characterized as the one that results in the smallest
weighted impurity. This selection procedure is identical to that discussed
in Section 2.2. Indeed, we use (2.3) again to select a split; namely, the
goodness of a split s is

ΔI(s, τ) = i(τ) − IP{τL}i(τL) − IP{τR}i(τR). (9.4)

Once a node is partitioned into two, we can continue to partition re-
cursively as in the classification of binary outcome and eventually reach
an initially large tree. The pruning of a large survival tree is the topic of
Section 9.2.

9.1.2 Maximizing the Difference

Using the distance between two Kaplan–Meier curves, we can split a node
with an alternative measure. Heuristically, when two daughter nodes are
relatively pure, they tend to differ from each other. In other words, if one
split gives rise to two different-looking daughter nodes, each of them is
likely to be relatively homogeneous. It is perhaps easier to think about the
situation in the analysis of variance table where the larger the between vari-
ation is, the smaller the within variation is. Finding two different daughters
is a means to increase the between variation and consequently to reduce the
within variation. The latter implies the homogeneity of the two daughter
nodes. If we take this point of view, we then select a split that maximizes the
“difference” between the two daughter nodes, or, equivalently, minimizes
their similarity. For example, we may select a split such that d1(SL, SR) is
maximized; here SL and SR are the Kaplan–Meier curves of the left and
right daughter nodes. Unfortunately, some empirical evidence appears to
suggest that this idea does not perform as well as the other splitting criteria
do.

As we discussed in Section 8.1.2, the log-rank test is a commonly used
approach for testing the significance of the difference between the survival
times of two groups. Motivated by this fact, Ciampi et al. (1986) and Segal
(1988) suggested selecting a split that results in the largest log-rank test
statistic. Although not extensive, numerical evidence indicates that the
log-rank test is a satisfactory dissimilarity criterion in the construction of
survival trees.

9.1.3 Use of Likelihood Functions∗

Several likelihood-based splitting criteria have also been proposed in the
literature. Davis and Anderson (1989) assume that the survival function
within any given node is an exponential function with a constant hazard,
as given in (8.3). Within each node, the likelihood function can be easily



9.1 Splitting Criteria 123

obtained as in (8.4). Under their assumption, the maximum of the log
likelihood in node τ is

l(τ) =
∑
i∈τ

δi[log(λ̂τ ) − 1], (9.5)

where λ̂τ is the hazard estimate. They select the split that maximizes
l(τL) + l(τR); here τL and τR are two daughter nodes.

The splitting criterion of LeBlanc and Crowley (1992) and Ciampi et
al. (1995) are both based on the assumption that the hazard functions in
two daughter nodes are proportional, but unknown. The difference between
their two approaches is whether the full or partial likelihood function in
the Cox proportional hazard model should be used. Here, we describe only
how to make use of the full likelihood and introduce a splitting rule that is
slightly simpler than that of LeBlanc and Crowley (1992) at a conceptual
level.

We shall see shortly that the use of likelihood generated from the Cox
model as the basis of splitting requires much more in-depth understand-
ing of survival concepts than does that of the log-rank test. On the other
hand, LeBlanc and Crowley (1992) acknowledged that their simulation
studies suggested similar performance between the two approaches. There-
fore, those who are interested basically in the practical use of survival trees
may choose to skip the following discussion. From a methodological point
of view, it is useful to know how parametric ideas can be adopted in the
nonparametric framework.

Assuming the proportional hazard model, all individuals in node τ have
the hazard

λτ (t) = θτλ0(t), (9.6)

where λ0(t) is the baseline hazard independent of the node and θτ is a
nonnegative parameter corresponding to exp(xβ) in (8.10). Recall that at
the time of splitting we use one covariate at a time and treat the value of
that covariate as the same inside each daughter node. This is why exp(xβ)
becomes a single parameter θτ in (9.6).

Based on (9.6) and following (8.12), the survival function of individuals
in node τ is

S(t; τ) = exp[−θτΛ0(t)], (9.7)

where Λ0(t) is the baseline cumulative hazard function integrated from
λ0(t).

Using the same argument that led to the full likelihood in (8.4), we have
the full likelihood function within node τ as

L(θτ , λ0) =
∏

{i∈ node τ}
[λ0(Ti)θτ ]δi exp[−Λ0(Ui)θτ ]. (9.8)
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Then, the full likelihood of the entire learning sample for a tree T can be
expressed as

L(θ, λ0; T ) =
∏
τ∈T̃

L(θτ , λ0), (9.9)

which is the product of the full likelihoods contributed by all terminal nodes
of T .

Every time we partition a node into two, we need to maximize the full tree
likelihood (9.9). It is immediately clear that this would be too ambitious for
computation, because maximizing (9.9) is usually impractical. Even worse
is the fact that the cumulative hazard Λ0 is unknown in practice, and it
must be estimated over and over again, since it is shared by all nodes.
Given the potential number of splits we have to go through, it is obviously
computationally prohibitive to pursue the precise solution. Furthermore,
due to the overall role of Λ0, it is not apparent that we would arrive at the
same tree structure if we split the nodes in different orders. For example,
after the root node is divided, we may split the left daughter node first and
then the right one, and we may reverse the order. It is desirable that this
order has no consequence on the tree structure. As a remedy, LeBlanc and
Crowley propose to use a one-step Breslow’s (1972) estimate:

Λ̂0(t) =

∑
i:Yi≤t δi

|R(t)| , (9.10)

where the denominator |R(t)| is the number of subjects at risk at time
t. Hence, it is simply the Nelson (1969) cumulative hazard estimator; see
Table 8.2. The one-step estimate of θτ is then

θ̂τ =

∑
{i∈ node τ} δi∑

{i∈ node τ} Λ̂0(Yi)
, (9.11)

which can be interpreted as the number of failures divided by the expected
number of failures in node τ under the assumption of no structure in sur-
vival times.

LeBlanc and Crowley (1992) suggest splitting a node on the basis of
deviance within each of the daughter nodes. To avoid the introduction of
deviance, we prefer splitting a node without it. Recall at the end of Section
2.2 that the entropy node impurity is proportional to the maximum of the
log likelihood function under the binomial distribution. Thus, we maximize
the “likelihood” function (9.9) by substituting θ with (9.11) and λ0 with

λ̂0(Yi) =
δi

|R(t)| ,

which follows from (9.10).
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Note that λ̂0(Yi) can be estimated before the splitting. If we were to
split node τ into nodes τL and τR, we would maximize the sum of the log
likelihoods from the two daughter nodes; that is,

∑
i∈τL

{δi log[λ̂0(Yi)θ̂τL ] − Λ̂0(t)θ̂τL} +
∑
i∈τR

{δi log[λ̂0(Yi)θ̂τR ] − Λ̂0(t)θ̂τR}.

In contrast, if the deviance measure were used, we would need only to
replace λ̂0 in the expression above with Λ̂0.

9.1.4 A Straightforward Extension

All splitting rules except that of Davis and Anderson (1989) are relatively
complicated, particularly to those who are unfamiliar with survival analy-
sis. Are there any simple methods that are potentially useful? In Section
8.2.1, we made an attempt to create “complete” observations for the cen-
sored times. If successful, we may use the regression trees of Breiman et al.
(1984) without any modification. Unfortunately, the adding-back process
is complicated and does not possess desirable properties.

Zhang (1995) examined a straightforward tree-based approach to cen-
sored survival data. Note that we observe a binary death indicator, δ, and
the observed time. If we regard them as two outcomes, we can compute
the within-node impurity, iδ, of the death indicator and the within-node
quadratic loss function, iy, of the time. For example, iδ(τ) can be chosen
as the entropy in (4.4) and iy(τ) as the variance of Yi in node τ standard-
ized by the variance in the learning sample (or optionally the parent node).
Alternatively, perhaps more reasonably, we can exclude censored survival
times while deriving iy(τ). Then, the within-node impurity for both the
death indicator and the time is a weighted combination: wδiδ +wyiy. Zhang
(1995) explored the effect of various weights wδ and wy and found the equal
weights (1:1) to be a reasonable choice.

One would naturally be skeptical regarding the performance of such a
splitting rule. Several applications to real data, including Section 7.2, have
indicated that this approach is a fruitful alternative. Perhaps surprisingly,
a preliminary simulation (Zhang 1995) suggested that this simple exten-
sion outperforms the more sophisticated ones in discovering the underlying
structures of data. More extensive simulations are warranted, though. In
Section 9.6, we present an example in which Gruenewald et al. (2006) first
constructed trees based on the outcome (dead or alive) only, and then exam-
ined the survival curves post hoc. This application vindicates the notion
that simple tree-based approaches can be effective in analyzing censored
data.
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9.2 Pruning a Survival Tree

Using any of the splitting criteria above, we can produce an initial tree. The
next issue is obviously, How do we prune the initial survival tree, T ? Recall
the discussion in Section 2.3; the key element in pruning is the introduction
of cost-complexity. In (4.7), we defined the cost-complexity of tree T as

Rα(T ) = R(T ) + α|T̃ |, (9.12)

where R(T ) is the sum of the costs over all terminal nodes of T . It is clear
that the remaining steps are identical to those in Section 4.2.3 if we can
define an appropriate node cost R(τ) for survival trees.

While proposing their splitting criteria, most authors have also suggested
pruning rules that are closely related to the splitting principles. For in-
stance, Gordon and Olshen (1985) suggested using the impurity (9.3) also
as the node cost, R(τ). Davis and Anderson (1989) take −l(τ) in (9.5) as
R(τ). The truth of the matter is that the splitting and pruning rules do
not have to be directly related. In practice, as long as it is appropriate, one
should feel free to match a splitting rule with any of the pruning rules. It
would be a useful project to scrutinize whether there exists a robust match
that results in satisfactory fits to censored data in a variety of settings.

Akin to the cost-complexity, LeBlanc and Crowley (1993) introduced the
notion of split-complexity as a substitute for cost-complexity in pruning a
survival tree. Let LR(τ) be the value of the log-rank test at node τ . Then
the split-complexity measure is

LRα(T ) =
∑
τ �∈T̃

LR(τ) − α(|T̃ | − 1).

Note that the summation above is over the set of internal (nonterminal)
nodes and |T̃ | − 1 is the number of internal nodes. The negative sign in
front of α is a reflection of the fact that LRα is to be maximized, whereas
the cost-complexity Rα is minimized. LeBlanc and Crowley recommend
choosing α between 2 and 4 if the log-rank test is expressed in the χ2

1 form.
A penalty of 4 corresponds roughly to the 0.05 significance level for a split,
and that of 2 is consistent with the use of AIC (Akaike 1974). As is the
case in the classification of binary outcome (see, e.g., Section 4.6), the log-
rank test statistic is usually overoptimistic for each split, due to the split
selection. LeBlanc and Crowley used bootstrap techniques to deflate the
value of LR.

In addition, Segal (1988) recommended a practical bottom-up procedure.
This procedure was described in the context of classifying a dichotomous
outcome in Section 4.5, except that now the χ2 statistic should be replaced
with the log-rank test statistic (8.7). We will go through this procedure
with real data in Section 9.5.
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9.3 Random Survival Forests

Once we are able to construct a survival tree, we can use the same method
described in Section 6.1 to construct a random survival forest. Not sur-
prisingly, Leo Breiman undertook this task. More recently, Ishwaran et al.
(2008) proposed a random survival forest using a few log-rank-based split-
ting rules (Segal 1988; LeBlanc and Crowley 1993) and implemented their
method in R package: randomSurvivalForest. Through examples, they
concluded empirically that random survival forests using log-rank splitting
performed well in terms of the prediction error. Cox regression, in contrast
to the random survival forests, became progressively worse as the number
of noise variables increased. Also, it is expected that the performance of
random survival forests can be limited by a high censoring rate.

9.4 Implementation

The implementation of survival trees is more complicated than that of
classification trees. The calculation of the Kaplan–Meier curves, log-rank
statistics, or likelihood functions is not an easy task if it has to be repeated
a large number of times. It is prudent to achieve the greatest computational
efficiency.

As was shown by the data presented in Table 8.4, whether to calculate the
within-node Kaplan–Meier curve or to conduct a two-node log-rank test, we
need to compute four key quantities, Ki, di, ai, and ni, which were defined
in Section 8.1.2. Obviously, we want efficient algorithms for updating these
quantities while searching for the best node split. For instance, let Ki(τ)
be the number of individuals at risk at time ti within node τ. We consider
splitting τ into τL and τR, say, based on BMI. To make the matter simpler,
suppose that BMI takes only three distinct levels in our data: 24, 26, and
28. First, we should obtain Ki at each level of BMI and label them as
K24

i , K26
i , and K28

i . Then, the first allowable split is to let the individuals
with BMI of 24 be contained in τL and the rest in τR. It is clear that
Ki(τL) = K24

i and Ki(τR) = K26
i + K28

i . For the next allowable split,
we add K26

i to Ki(τL), whereas Ki(τR) is reduced by K26
i . This goes on

until we run out allowable splits. The point here is that we should count
Ki’s once for every level of the predictor and use them subsequently in the
splitting.

The approaches described are implemented in Heping Zhang’s stree,
which is a standalone program freely available at

http://c2s2.yale.edu/software/stree.
For those who are familiar with R, they can use the R function rsf() in
the user distributed randomSurvivalforest package.
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FIGURE 9.3. An initial large tree obtained by the log-rank testing statistic.
The top and bottom numbers under the node are respectively the original and
maximized values of the statistic

9.5 Survival Trees for the Western Collaborative
Group Study Data

In Section 7.2 we showed how to draw conclusions from survival trees. Here,
we provide the details for the construction of the trees in Figure 7.2. This
helps us gain insight into the actual process of survival tree generation.

Let us first use the log-rank test statistic as the basis of node splitting.
Figure 9.3 presents the profile of an initial tree with 39 nodes. The original
(top) and maximized (bottom) values of the log-rank test statistic are given
for each node split. As explained in Section 4.5, the maximized value of
the statistic is the maximum of all log-rank test statistics over the subtree
rooted at the node of focus. Obviously, the original and maximized log-rank
test statistics are identical for all terminal nodes. If we take the root node
as an example, both the original and maximized log-rank test statistics are
129.4, because 129.4 is the maximum statistic over the entire tree.

Although we can prune the tree in Figure 9.3 using cross-validation based
on the measure of cost-complexity or split-complexity, we decided here to
use the alternative pruning method. The reason for this decision is that we
can actually get our hands on the steps involved in the pruning process.
In Figure 9.4, we plot the maximum log-rank test statistics against the
tree size. The tree size in the plot is determined by taking one of the
maximum statistics as the threshold and then pruning off all offspring of
an internal node whose the maximum log-rank test statistic is below the
threshold. What we want to look for in such a plot is a “kink” in the trend.
Although this is an unguaranteed, subjective process, it seems to work fine
in practice, provided that we use it with caution. After viewing the scatter
plot in Figure 9.4, we chose the final tree with 13 nodes, as illustrated on
the left-hand side of Figure 7.2.
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FIGURE 9.4. Maximum log-rank statistic vs. tree size

For comparison, we also grow trees using another splitting criterion. In
particular, on the right-hand side of Figure 7.2 we displayed a tree derived
from the use of the combined impurity wδiδ +wyiy. It is important to point
out here that data analysts do not have to take the computer output as
it stands. Reasonable and justifiable changes can be made. To emphasize
this point, let us explain what we did before the construction of the tree
in the right panel of Figure 7.2. At first, we arrived at a tree with 7 nodes
by reviewing an analogous scatter plot to Figure 9.4. If we had taken that
7-node tree, the right daughter node of the root node would have been a
terminal node. To make the tree compatible in size to the one on the left
of Figure 7.2, we sought to partition the right daughter node of the root
node by lowering the pruning threshold of the maximum log-rank statistic
within an internal node. This, however, results in a tree that was slightly
larger than what we wanted. As a remedy, we pruned off two internal nodes
because their maximum log-rank statistics are relatively small.

9.6 Combinations of Biomarkers Predictive of
Later Life Mortality

Biomarkers that reflect possible dysregulation in multiple biological sys-
tems such as cardiovascular and immune systems are useful to predict
downstream morbidity and mortality in elderly populations (Danesh et al.
1998; McEwen 2003). The general approach for prediction is to combine the
indicators of health risks in additive scoring algorithms, commonly referred
to as allostatic load (McEwen 2003). While that approach has provided
realistic prediction of the risks in many older people, the blackbox-like
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summary score that it creates may also obscure understanding of multisys-
tem dysregulation. To overcome the shortcoming of the existing approach,
Gruenewald et al. (2006) introduced the recursive partitioning technique
to identify a set of high-risk pathways. They considered mortality over
the 12-year period as the outcome, and examined 13 biomarkers. Those
biomarkers, representing various regulatory systems in the body, include
systolic and diastolic blood pressures, epinephrine (EPH in μg/g creat),
norepinephrine (NE in μg/g creat), cortisol, dehydroepiandrosterone, high-
density lipoprotein cholesterol (HDL in mg/dL), total cholesterol, glycosy-
lated hemoglobin, IL-6 (pg/mL), fibrinogen, C-reactive protein (CRP, mg/
L), and albumin. See Gruenewald et al. (2006) for detailed justifications as
to why these biomarkers were selected.

Participants in the study of Gruenewald et al. (2006) were from the
MacArthur Study of Successful Aging. This longitudinal study included
older adults between 70 and 79 years old with cognitive and physical func-
tioning levels in the top third of their age group on two measures of cog-
nitive and four measures of physical functioning. The participants were
from three community-based cohorts (Durham, NC; East Boston, MA;
and New Haven, CT). Of the 4030 age-eligible adults, a cohort of 1313
met screening criteria and were invited to participate; 1189 (530 men, 659
women) agreed to participate and provided informed consent. As part of
the baseline data collection, which occurred in 1988 and 1989, participants
completed face-to-face and phone interviews. Eighty-three percent of the
participants provided blood samples and 85.5% provided overnight urine
samples. Follow-up interviews took place in 1991 and 1995. Missing infor-
mation on the biomarkers is a serious limitation of this study. There are
only 339 females (51.4%) and 328 males (61.9%) who had data for all 13
biomarkers. Gruenewald et al. (2006) performed and reported the primary
analyses using subsamples of male and female participants with complete
data, although they also conducted the analyses including participants with
partially available biomarkers and the general findings are consistent. To
evaluate the performance of the trees, we use about two-thirds of the data
to grow a tree and one-third to assess the tree. As shown in the root node of
Figure 9.5, a total of 204 males was used in the construction of this figure.

Although the survival or censoring time is available from the partici-
pants, Gruenewald et al. (2006) constructed the tree in Figure 9.5 using a
more straightforward approach, namely, through a binary outcome (dead
or alive), which is in the spirit of discussion in Section 9.1.4. Then, they
defined high-risk pathways by examining the survival curves in the termi-
nal nodes of Figure 9.5. They noted that in the male samples, for example,
11 of the 13 biomarkers were in one or more high-risk pathways and that
biomarkers in the neuroendocrine and immune systems appeared more fre-
quently in high-risk pathways. They also revealed different risk profiles in
females. Their findings illustrated the utility of recursive partitioning tech-
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FIGURE 9.5. A tree reconstructed from Figure 1 in Gruenewald et al. (2006).
This is one of the trees in a forest using the males only. The number of people
who were dead (top) or alive (bottom) is depicted next to the node. Below each
node is the splitting variable, and its corresponding splitting value is depicted
inside the node beneath the node number

niques in an important area, and sometimes the solution does not have to
be complicated.

It is interesting to note that NE was used to split nodes 1 and imme-
diately node 2. This is another example to underscore the usefulness of
considering multiway splits based on variables with ordinal scales, as we
suggested in Section 2.2.



10
Regression Trees and Adaptive Splines
for a Continuous Response

The theme of this chapter is to model the relationship between a continuous
response variable Y and a set of p predictors, x1, . . . , xp, based on obser-
vations {xi1, . . . , xip, Yi}N

1 . We assume that the underlying data structure
can be described by

Y = f(x1, . . . , xp) + ε, (10.1)

where f is an unknown smooth function and ε is the measurement error
with mean zero but unknown distribution.

In ordinary linear regression, f is assumed to be of the form f(x) =∑p
1 xiβi. Then, the estimation of the function f becomes a problem of es-

timating parameters β. Thanks to its simplicity, linear regression is among
the most frequently used statistical techniques. In applications, however,
the underlying data structure cannot always be summarized by a simple
model, and hence the restrictive assumptions behind the simplicity may
result in poor fits. Accordingly, alternatives to linear regression are of con-
siderable interest for understanding the relationship between the covariates
and the response. Nonparametric procedures using splines offer one solu-
tion to this problem. They are based on the idea that a smooth function can
be well approximated by piecewise polynomials (see, e.g., De Boor 1978).
Here, we focus on two classes of models that are built upon the recursive
partitioning technique. One is regression trees, and the other is multivariate
adaptive regression splines (MARS, Friedman 1991).

Regression trees fit a constant to the response within every terminal
node, whereas adaptive splines use piecewise linear functions as the basis
functions. The key difference between MARS and CART lies in the fact
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FIGURE 10.1. One-dimensional MARS (the thinner piecewise line) and CART
(the step function) models. The dotted curve is the underlying smooth function

that the regression function is continuous in MARS with respect to a con-
tinuous covariate, but not in CART. Therefore, MARS models are more
appealing when continuity is a concern. In some applications such as image
compression (e.g., Gersho and Gray 1992, and Poggi and Olshen 1995), ex-
tracting homogeneous predictive regions of the data is of scientific interest;
hence regression trees are appropriate. Figure 10.1 offers a schematic com-
parison between MARS and CART models. An earlier version of MARS
for one-dimensional smoothing was established by Friedman and Silver-
man (1989). The presentation here includes the modifications to MARS
proposed by Zhang (1994).

10.1 Tree Representation of Spline Model and
Analysis of Birth Weight

Before presenting the methods, let us see what results from the use of
MARS for analyzing the Yale Pregnancy Outcome Study, as introduced
in Chapter 2. In Section 3.2 we realized that two variables, x7 (marijuana
use) and x8 (passive exposure to marijuana), have a substantial number
of missing values. They were removed from the final logistic regression
analysis at that time, and now we again do not consider them. Hence, the
present analysis includes 13 of the 15 predictors in Table 2.1. The response
is birth weight in grams. As in the previous logistic regression, we use 3836
complete observations out of the entire 3861 subjects.
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Figure 10.2 presents a fitted regression model using MARS for our data,
where z5 and z10 are dummy variables defined in Section 3.2, indicating
a White woman and the use of DES by the pregnant woman’s mother,
respectively. An explicit mathematical formula for the MARS model will
be given in (10.41). The representation of the MARS model in Figure 10.2
shows the relationship between adaptive splines and classification trees,
because they both are based on the recursive partitioning of the domain
formed by the covariates.

At the top of Figure 10.2, which we used to call the root node, is the
function

3141.3 + 296.4z5 − 21.7x9 + 111x15 − 276.3z10. (10.2)

It can be used to calculate the initial value of predicting the birth weight for
any newborn. For instance, if the mother is a White nonsmoking woman
(z5 = 1, x9 = 0), her mother did not use DES (z10 = 0), and she was
pregnant once before (x15 = 1), then her newborn is assigned an initial
weight of 3141.3+296.4∗1−21.7∗0+111∗1−276.3∗0 = 3548.7 grams. At the
second layer, there is a zero inside the left daughter node and −414.1(x6−
25) inside the right daughter node, as separated by the question of “x6 >
25?” This means, for example, that −414.1∗ (27−25) = −828.2 grams will
be reduced from the newborn’s initially assigned weight if his or her mother
had 27 years of education. However, no change is made if the mother had
no more than 25 years of education. Other nodes in Figure 10.2 can be
interpreted similarly.

In summary, on average, White babies are 296.4 grams heavier than the
others, and the use of DES by the pregnant woman’s mother reduces a
newborn’s weight by 276.3 grams. We see negative effects of high levels of
education (more than 25 years, x6 > 25), parity (x15 > 1), and gravidity
(x11 > 5). Two terms involve x9, the number of cigarettes smoked. One
(−21.7x9) appears in the root node, and the other [21.7(x9 − 9)] in the
terminal nodes. The sum of these two terms suggests that the number of
cigarettes smoked has a negative effect when the number is beyond a half
pack of cigarettes per day.

The tree representation in Figure 10.2 is left and right balanced because
we have an additive spline model. That is, each term involves only one pre-
dictor. However, in the presence of product terms of two or more predictors,
the tree representation of a MARS model is not necessarily balanced, which
is similar to those classification trees that we have seen before.

10.2 Regression Trees

In Chapter 4 we have pointed out that we need a within-node impurity
or, directly, a node splitting criterion to grow a large tree and then a cost-
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complexity criterion to prune a large tree. These general guidelines apply
whenever we attempt to develop tree-based methods.

For a continuous response, a natural choice of node impurity for node τ
is within-node variance of the response:

i(τ) =
∑

subject i∈τ

(Yi − Ȳ (τ))2, (10.3)

where Ȳ is the average of Yi’s within node τ. To split a node τ into its two
daughter nodes, τL and τR, we maximize the split function

φ(s, τ) = i(τ) − i(τL) − i(τR), (10.4)

where s is an allowable split. Unlike the goodness of split in (2.3), the split
function in (10.4) does not need weights. Furthermore, we can make use of
i(τ) to define the tree cost as

R(T ) =
∑
τ∈T̄

i(τ) (10.5)

and then substitute it into (4.7) to form the cost-complexity.
To compare with the use of MARS, we construct regression trees for the

birth weight data analyzed in the preceding section. Figure 10.3 outlines
the profile of this large tree.

Figure 10.4 displays the result of pruning the tree in Figure 10.3. It plots
the tree size (the bottom x-axis) and the complexity parameter (the top
x-axis) against the deviance (the y-axis), or equivalently, the variance.

We can see that there is a relatively large drop of deviance at the com-
plexity parameter 2.5E6, and the decrement is gradual after that point.
Pruning the tree with the complexity parameter 2.5E6 leads to the final
tree in Figure 10.5, which also depicts the empirical distributions of birth
weight within all terminal nodes. In this final tree, the number of cigarettes
smoked per day is used twice, once at 8 and the other time at 1. One may
change these cutoff values to 9 and 0, respectively, to simplify the interpre-
tation, which would correspond to smoking half a pack and to not smoking.

Both MARS and CART confirm that White women tend to deliver heav-
ier infants. Women smoking about or more than half a pack of cigarettes
per day give birth to smaller infants. The tree in Figure 10.5 indicates that
women having delivered before subsequently deliver larger infants. In the
MARS model, the number of previous pregnancies contributes to the infant
birth weight as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
0 if no previous pregnancy,
111 if one previous pregnancy,
25 if two previous pregnancies,
−66 if three previous pregnancies,
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FIGURE 10.3. The profile of an initial regression tree for birth weight

FIGURE 10.4. Subtree complexity and deviance
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FIGURE 10.5. A pruned regression tree for birth weight. On the top is the tree
structure with the average birth weights displayed for the terminal nodes and at
the bottom the within-terminal-node histograms of birth weight
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FIGURE 10.6. Truncated basis functions

This MARS model provides a more specific relationship between the history
of pregnancy and birth weight.

The computation here is done in SPLUS. A sample code of our com-
putation is given below. The response variable is labeled as btw and all
predictors as allpreds. To reduce the computation burden, we grow the
initial tree, requiring the minimal node size to be 80.

birth.tree <- tree(btw ~ allpreds, minsize=80, mincut=40)
plot(birth.tree, type="u")
plot(prune.tree(birth.tree))
final.tree <- prune.tree(birth.tree, k=2500000)
tree.screens()
plot(final.tree, type="u")
text(final.tree)
tile.tree(final.tree)

10.3 The Profile of MARS Models

Building a MARS model is a complicated process, and hence it is very
helpful to know what kinds of models MARS produces. For readers who
are interested mainly in the applications, this section should provide enough
background for their needs.

MARS models can be reorganized to have the form of

β0 +
∑

βij(xi − τj)∗ +
∑
i�=k

βijkl(xi − τj)∗(xk − τl)∗ + · · · , (10.6)

where (xi − τj)∗ is either the negatively truncated function (xi − τj)+

or the positively truncated one (xi − τj)−. Here, for any number a, let
a+ = max(0, a) and a− = a+ − a. Figure 10.6 displays these two truncated
functions.

Note that the sum of multiplicative terms in model (10.6) is over different
predictors, as is dictated by the conditions such as i 	= k for the second-
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FIGURE 10.7. MARS model: 2.5 + 4(x1 − 0.3)+ − (x1 − 0.3)− + 4(x2 − 0.2)+−
(x2 − 0.2)−− 4(x2 − 0.8)+

order terms. In other words, the same predictor is not allowed to appear
more than once in a single term. As a consequence, in the one-dimensional
case, model (10.6) becomes

β0 +
M∑

k=1

βk(x − τk)∗, (10.7)

because we cannot have higher-order multiplicative terms without using
the same predictor more than once. Model (10.7) is a sum of truncated
line segments and is called a piecewise linear function, as illustrated by
Figure 10.1. It is noteworthy that model (10.7) would be equivalent to a
regression tree model if the truncated function (x − τk)∗ were replaced
with an indicator function I(x > τk) defined in (7.1) in Section 7.1. A
linear combination of indicator functions produces a step function, as is
also depicted in Figure 10.1.

Furthermore, model (10.6) can be regarded as a generalization of regres-
sion trees. The two types of model are identical if the predictors are cate-
gorical. When the predictors are continuous, model (10.6) can be converted
into a regression tree model by changing the truncated linear functions into
the indicator functions.

With two continuous predictors, x1 and x2, Figures 10.7 and 10.8 display
two representative MARS models. What we should notice from Figures 10.7
and 10.8 is that the predictor space of (x1, x2) is partitioned into several
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FIGURE 10.8. MARS model: 2.5 + 5(x1 − 0.3)+ − (x1 − 0.3)− + 4(x2 − 0.2)+−
(x2 − 0.2)−− 4(x2 − 0.8)+ + 2(x1 − 0.3)+(x2 − 0.2)+ − 5(x1 − 0.3)+(x2 − 0.2)−

rectangles. In regression trees, a flat plane is used to fit the data within each
rectangle, and obviously the entire fit is not continuous in the borders of
the rectangles. In contrast, the MARS model is continuous, and within each
rectangle, it may or may not be a simple plane. For instance, the MARS
model in Figure 10.7 consists of six connected planes. However, the MARS
model in Figure 10.8 has both simple planes and “twisted” surfaces with
three pieces of each. The twisted surfaces result from the last two second-
order terms, and they are within the rectangles (i) x1 > 0.3 and x2 < 0.2,
(ii) x1 > 0.3 and 0.2 < x2 < 0.8, and (iii) x1 > 0.3 and x2 > 0.8. Figure
10.9 provides a focused view of the typical shape of a twisted surface.

What are the differences between the MARS model (10.6) and the or-
dinary linear regression model? In the ordinary linear model, we decide a
priori how many and what terms are to be entered into the model. How-
ever, we do not know how many terms to include in a MARS model prior
to the data modeling. In Figure 10.1, the MARS model is represented by
four line segments, but it could be three, five, or any number of segments.
In practice, we do assign a limit, such as 20 or 50, to the maximum number
of terms that can be included in a MARS model, depending on the data
dimension. The choice of this limit is much easier to choose than is spec-
ifying the exact number of terms in a model, and its impact is relatively
small in the model selection. Another key difference resides in that every
term in a linear model is fully determined, while it is partially specified in
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FIGURE 10.9. A twisted surface: x1x2

the MARS model. Particularly, the location of the knot, τk, in (x − τk)∗

needs to be determined from the data. This is why (10.6) is an adaptive
spline model. Furthermore, the predictors xi need to be selected during the
course of building model (10.6), and whether multiplicative terms, such as
(x1 − τ1)+(x2 − τ2)+, prove to be necessary is also data driven. In ordinary
linear regression, however, these decisions are to be made before the model
estimation. The common feature shared by (10.6) and the ordinary linear
regression model is that the coefficient β’s will be linear coefficients after
the other model parameters are fixed.

10.4 Modified MARS Forward Procedure

MARS was originally developed by Friedman (1991). In this section we
present a modified MARS forward algorithm described by Zhang (1994).
The two chief differences between the original and the modified versions
are the exact solution to the best knot and the constraints between knot
locations. During this forward process, we need to understand two issues:
how to enter predictors into the MARS model and how to find the best
knots.

First, we present the outline of the algorithm in order to quickly grasp
the process by which the terms are added into the model (10.6). Then, we
elaborate all steps.
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The Forward Algorithm

0. Enter the intercept term, β0. Namely, include a constant, 1, as the first
basis function.

1. Find the combination of predictor xi and knot τ1 that gives the best
fit to the data when the pair of basis functions

(xi − τ1)+ and (xi − τ1)−

is added to the model.

2. If K basis functions have been entered, find the combination of predictor
xk, knot τl, and an existing term, denoted by s, that yields the best
fit to the data when

s(xk − τl)+ and s(xk − τl)−

are added to the model.

3. Repeat step 2 until the maximum number of basis functions have been
collected.

Step 0 is trivial, although we should note that the value of β0 changes
during the course of adding more terms. For the remaining three steps, we
need to clarify the meaning of the best fit to the data:

Definition 10.1 The Least Squares Criterion
For any regression function f(x; θ) depending on the pair of predictors,

x, and a set of unknown parameters, θ, we search for a set of solutions, θ̂,
that minimize the residual sum of squares (RSS)

N∑
1

(Yi − f(xi; θ))2 (10.8)

over the entire domain of θ. In other words, our parameter estimates are
based on the least squares criterion.

To understand what is involved in step 1, it is helpful to know precisely
what the MARS model looks like at this step. After step 0, the MARS
model includes a constant term, and the best constant based on the least
squares criterion (10.8) is Ȳ , the sample average of Y. In step 1, we consider
adding a pair of

(xi − τ1)+ and (xi − τ1)−

into the existing model that has the constant term only. Thus, the candidate
MARS model in the present step is of the form

β0 + β1(xi − τ)+ + β2(xi − τ)−, (10.9)



10.4 Modified MARS Forward Procedure 145

TABLE 10.1. Step-by-Step Cumulation of a MARS Model. The newly added
terms are underlined

Step Fitted Model
0 −0.71
1 0.68−2.18x2 − 7.1(x2 − 0.72)+

2(a) −0.41 − 2.18x2 − 7.92(x2 − 0.72)++1.28x1 + 3.59(x1 − 0.55)+

2(b) −0.4 − 3.37x2 − 8.21(x2 − 0.72)+ + 1.36x1 + 3.05(x1 − 0.55)+

+2.65x2x3 − 30.4x2(x3 − 0.94)+

2(c) −0.39 − 3.17x2 − 8.24(x2 − 0.72)+ + 1.32x1 + 3.09(x1 − 0.55)+

+2.56x2x3 − 37x2(x3 − 0.94)+−0.4x2x4 − 0.81x2(x4 − 0.84)+
...

...

for some i = 1, . . . , p, and a knot τ. Note here that

(xi − τ)− = (xi − τ)+ − (xi − τ),

which implies that (xi − τ)− is a linear combination of (xi − τ) and (xi −
τ)+. As a result, we do not need two truncated functions in (10.9). For
computational consideration, it is easy to replace (10.9) with an equivalent
model

β0 + β1xi + β2(xi − τ)+. (10.10)

Model (10.10) is preferred for two reasons. First, knot τ, a nonlinear pa-
rameter, appears only once, and this fact makes it easier to derive the best
knot. Second, it is clear from (10.10) that we cannot always add a pair
of basis functions, due to linear dependency. After xi is entered into the
model, we can add only a single term, (xi−τ)+ (or alternatively (xi−τ)−),
as we consider additional basis functions generated by the sample predic-
tor. However, for conceptual consistency we did not raise this issue in the
description of step 2.

In Section 10.9 we will present a few numerical examples. For instance,
in Example 10.4 we will use the MARS model to fit a three-dimensional
model. Particularly, Table 10.1 offers a taste of how the MARS model is
accumulated gradually for that example.

The most important technical question is, How do we find the best knot
τ in conjunction with the predictor xi? We defer the answer to Section
10.6. Instead, we address an easier question first, What happens after the
best τ is found, together with its associate predictor? Model (10.10) is a
linear model with respect to the coefficient β’s. Because we use the least
squares criterion, the estimation of β’s is a standard process in fitting the
linear models.

Step 2 is a further step to enlarging an existing MARS model. After a
pair of basis functions, say x1 and (x1 − τ1)+, are produced by step 1,
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there are three ways by which the existing model can be expanded. This is
because the new pair can be associated with one of the three existing basis
functions in (10.10). When the new pair of basis functions are multiplied
by the constant basis function, they remain the same in the larger model.
The resulting MARS model is one of

β0 + β1x1 + β2(x1 − τ1)+ + β3xi + β4(xi − τ)+, for i 	= 1, (10.11)

or
β0 + β1x1 + β2(x1 − τ1)+ + β3(x1 − τ)+. (10.12)

However, if the new pair of basis functions are multiplied by x1, a pair of
multiplicative basis functions (not the original basis functions) are attached
to the existing model as follows:

β0 + β1x1 + β2(x1 − τ1)+ + β3x1xi + β4x1(xi − τ)+, (10.13)

where i 	= 1. Similarly, the new pair can be merged with (x1 − τ1)+, and
this leads to the model

β0 +β1x1 +β2(x1−τ1)+ +β3(x1−τ1)+xi +β4(x1−τ1)+(xi−τ)+, (10.14)

where i 	= 1. The best of models (10.11)–(10.14) is then selected in step 2.
Step 3 repeats step 2 and keeps expanding the existing model by adding
one or two new terms and leaving the existing terms intact. The new terms
can be viewed as the product of a new pair of basis functions and one of
the existing basis functions.

These forward steps can produce a large collection of basis functions. In
practice, we stop the process when we are certain that the number of basis
functions is well beyond a reasonable model size in accordance with the
data. Furthermore, we also restrict the highest order of the multiplicative
terms. In most applications, the third order appears to be reasonably high.

We then face the same issue as in the context of classification trees. What
do we do about such a large MARS model? Obviously, we need to delete
some of the basis functions. Fortunately, this backward elimination is easier
than tree pruning, at least at a conceptual level. This is the topic of Section
10.5.

10.5 MARS Backward-Deletion Step

As in Section 10.4, we will first outline the backward algorithm, and then
explain the steps in detail. The most important concept in this step is the
generalized cross-validation criterion, as defined below.

The Backward Algorithm
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0. Begin with the MARS model that contains all, say M, basis functions
generated from the forward algorithm.

1. Delete the existing nonconstant basis function that makes the least
contribution to the model according to the least squares criterion.

2. Repeat step 1 until only the constant basis remains in the model.

Suppose that we start with a five-basis-function model

f1(x) = β0+β1x1+β2(x1−τ1)
++β3(x1−τ1)

+x2+β4(x1−τ1)
+(x2−τ )+ (10.15)

in step 0. One of the following four nonconstant basis functions,

x1, (x1 − τ1)+, (x1 − τ1)+x2, and (x1 − τ1)+(x2 − τ)+,

can be removed in step 1. If we remove x1, the new model is

β0 + β1(x1 − τ1)+ + β2(x1 − τ1)+x2 + β3(x1 − τ1)+(x2 − τ)+. (10.16)

Fitting model (10.16) to the data, we have an RSS, denoted by RSS1, as
defined in (10.8). Similarly, we can sequentially remove any of the other
three basis functions and obtain the respective RSS from RSS2 to RSS4.
If, say, RSS3 is the largest RSS, the third basis function, (x1 − τ1)+x2, is
removed first. Then, we repeat the same process, beginning with

f2(x) = β0 + β1x1 + β2(x1 − τ1)+ + β3(x1 − τ1)+(x2 − τ)+.

After a total of four steps, we should reach the constant basis in the
model. During this process, we have a sequence of five nested models,
fk, k = 1, . . . , 5, which includes both the initial five-basis-function model
and the constant-basis model. These five models are candidates for the final
model. The remaining question is, Which one should we select? The answer
would be obvious if we had a criterion by which to judge them. Friedman
and Silverman (1989), Friedman (1991), and Zhang (1994) use a modified
version of the generalized cross-validation criterion originally proposed by
Craven and Wahba (1979):

GCV (k) =
∑N

i=1(Yi − f̂k(xi))2

N [1 − (C(k)/N)]2
, (10.17)

where f̂k comes from fk by plugging in the fitted parameters, k = 1, . . . , 5,
and C(k) reflects the model complexity as shall be specified below. The
numerator of GCV (k) is the RSS of model fk, and hence GCV (k) reflects
both the lack of fit and the model complexity. Therefore, GCV (k) is parallel
to the cost-complexity in the tree-based methods. We use GCV (k) as the
optimal criterion for model selection, and the final MARS model should
lead to the smallest GCV.
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Based on the discussion in Friedman and Silverman (1989) and Friedman
(1991), an empirically best choice for C(k) is 3 to 5 times the number of
the nonconstant basis functions in the corresponding model.

Model selection criteria are ways to balance the lack of fit, size of the
model, and scientific interpretability. Why is this balance important? Two
issues are noteworthy. One is bias (as opposed to precision), and the other
is variance (as opposed to stability). A large model that is “wisely” chosen
tends to have a smaller bias in predicting the outcome, but it also suffers
a greater variability. The backward-deletion procedure is designed to find
the optimal compromise between these two factors.

So far, we have presented only a “big picture” of the MARS algorithm.
In the subsequent sections, we will discuss in detail some technical issues
that we must deal with when developing this methodology.

10.6 The Best Knot∗

At the technical level, the most difficult part of the MARS algorithm is to
locate the best knot in steps 1 and 2 of the forward algorithm, which is
where we spend most of the computation time. The understanding of this
section requires familiarity with linear algebra and linear regression.

The linearly truncated functions displayed in Figure 10.6 are the simplest
nonlinear functions, but we still need to pay special attention to the knot
that is a nonlinear parameter. Particularly, the truncated functions are
not differentiable at the knot. Hence, a general optimization routine is not
applicable for locating knots. Here, we derive an explicit formula for the
best knot based on the ideas of Hinkley (1971), Friedman and Silverman
(1989), and Zhang (1991). Our line of derivation is adopted from Zhang
(1994).

Note that step 1 of the forward algorithm stated in Section 10.4 is a
special case of the second step. We need to introduce vector and matrix
notations and clearly formulate the problem involved in step 2.

When entering step 2, we assume that we have found K basis functions.
Applying each of the K basis functions to the N observations, we obtain
K corresponding basis vectors, denoted by b0, . . . ,bK−1. For instance, the
first basis function is the constant 1. Thus, the first basis vector, b0, is an
N -vector of all ones. Moreover, if (xi − τ1)+ is the second basis function,
then

b1 = ((x1i − τ1)+, . . . , (xNi − τ1)+)′.

For convenience, we also write the vector above as

(x(i) − τ11)+,

where x(i) = (x1i, . . . , xNi)′ and 1 = b0 = (1, . . . , 1)′.
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Now, we need to find another pair of basis functions that gives the best
fit to the data when the basis functions are merged with one of the existing
basis functions. Under the new notation, this means the following. Suppose
that the basis functions under consideration are xk and (xk − τ)+ (note
their equivalence to (xk − τ)+ and (xk − τ)−). They generate two basis
vectors, x(k) and (x(k) − τ1)+. After merging these two basis vectors with
one of the existing basis vectors, we consider adding the following two basis
vectors,

bl ◦ x(k) and bl ◦ (x(k) − τ1)+, (10.18)

l = 0, . . . , K, into the existing model, where ◦ is the operation of multiplying
two vectors componentwise. The pair (10.18) is ruled out automatically if
bl has x(k) as a component. In addition, bl ◦ x(k) will be excluded if this
vector is already in the model. To avoid these details, we assume that both
basis vectors in (10.18) are eligible for inclusion. Let

B = (b0, . . . ,bK ,bl ◦ x(k)),
bK+1(τ) = bl ◦ (x(k) − τ1)+,

and
r = (I − PP ′)Y,

where Y = (Y1, . . . , YN )′, PP ′ = B(B′B)−1B′, and P ′P is an identity
matrix. Thus, r is the residual vector when the existing K basis vectors
and one new (fixed) basis vector are entered. For any given τ, if we also
enter bK+1(τ) into the model, the least squares criterion equals

‖r‖2 − (r′bK+1(τ))2

b′
K+1(τ)(I − PP ′)bK+1(τ)

. (10.19)

The second term in (10.19) is a function of τ ; but the first one is not and
hence is irrelevant to the search for the best knot. Here comes the key task:
We must find the best τ such that

h(τ) =
(r′bK+1(τ))2

b′
K+1(τ)(I − PP ′)bK+1(τ)

(10.20)

is maximized. Consequently, the residual sum of squares in (10.19) would
be minimized.

The critical part is that we can express h(τ) in (10.20) as a more explicit
function of τ if we restrict τ to an interval between two adjacent observed
values of xk. Without loss of generality, suppose that x1k, . . . , xNk are in
increasing order and that they are distinct. For τ ∈ [xjk, xj+1,k), we have

bK+1(τ) = (bl ◦ xk)(−j) − τbl(−j), (10.21)

where v(−j) = (0, . . . , 0, vj+1, . . . , vN )′ for any vector v. Then, the numer-
ator of h(τ) equals the square of

r′(bl ◦ xk)(−j) − τr′bl(−j), (10.22)
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which is a linear function of τ because neither r′(bl ◦ xk)(−j) nor r′bl(−j)

depends on τ. Furthermore, the denominator of h(τ) is

||(bl ◦ xk)(−j)||2 − ||P ′(bl ◦ xk)(−j)||2 + τ2(||bl(−j)||2 − ||P ′bl(−j)||2)
−2τ(b′

l(−j)(bl ◦ xk)(−j) − (bl ◦ xk)′(−j)PP ′bl(−j)). (10.23)

Thus, h(τ) is a ratio of two quadratic polynomials in τ specified in (10.22)
and (10.23). Precisely,

h(τ) =
(c1j − c2jτ)2

c3j − 2c4jτ + c5jτ2
,

where

c1j = r′(bl ◦ xk)(−j), (10.24)
c2j = r′bl(−j), (10.25)

c3j = ||(bl ◦ xk)(−j)||2 − ||P ′(bl ◦ xk)(−j)||2, (10.26)
c4j = b′

l(−j)(bl ◦ xk)(−j) − (bl ◦ xk)′(−j)PP ′bl(−j), (10.27)

c5j = ||bl(−j)||2 − ||P ′bl(−j)||2. (10.28)

The subscript j of these constants reminds us of the particular interval
for τ. Some algebra reveals that the minimizer of h(τ) on the interval
[xjk, xj+1,k) is either xjk or

c2jc3j − c1jc4j

c2jc4j − c1jc5j
, (10.29)

if the latter is indeed in the interval.
It is important to observe that finding the best knot is trivial if we

have the constant c’s ready. Fortunately, the calculation of these c’s is not
as complicated as it looks. Let us take c1j and c4j to illustrate what is
involved in the process.

We start with j = 1 and calculate c11 and c41 by definition. Then, we
move on to j = 2. It is easy to see that

c12 = c1j − r2b2lx2k, (10.30)

where r = (r1, . . . , rN )′ and bl = (b1l, . . . , bNl)′. Similarly, for the first term
of c42 we have

b′
l(−2)(bl ◦ xk)(−2) = b′

l(−2)(bl ◦ xk)(−1) − b2
2lx2k.

For the second term of c4j , we need to create two temporary (K + 1)-
vectors:

w1j = P ′(bl ◦ xk)(−j),

w2j = P ′bl(−j).
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Then

w12 = w11 − b2lx2kp2·,

w22 = w21 − b2lp2·,

where p2· is the second row vector of P. Therefore,

c42 = c41 − b2
2lx2k − b2lw′

11p2· − b2lx2kw′
11p2· + b2

2lx2k||p2·||2. (10.31)

Why do we need the recurrence formulas (10.30) and (10.31)? If we
obtained c11, it takes two multiplications and one subtraction to derive
c12. Furthermore, if c41 is already prepared, it takes 5(K + 1) steps to
update the vectors w12 and w22; 3(K+1) operations for computing w′

11p2·,
x2kw′

11p2·, and ||p2·||2; and hence 8(K + 1) + 11 operations altogether to
reach c42. The importance of this tedious counting lies in the fact that the
number of operations needed to move from c11 to c12 is a constant and that
the number of operations from c41 to c42 is proportional to the number of
existing basis functions. Moreover, the numbers of required operations are
the same as we move from c1j to c1,j+1 and from c4j to c4,j+1. In fact, it
takes fewer than 18K operations to update all c’s from one interval to the
next. Thus, the best knot associated with xk and bl can be found in a total
of 18KN operations. There are at most Kp combinations of (k, l), implying
that the best pair of basis functions can be found in about 18K2pN steps.
Therefore, if we plan to build a MARS model with no more than M terms,
the total number of operations needed is on the order of M3pN. This detail
is relevant when we implement and further extend the algorithm.

We have explained in detail how to find the candidate knot within each
interval of the observed data points. The general search strategy is to scan
one interval at a time and keep the best knot.

10.7 Restrictions on the Knot∗

10.7.1 Minimum Span

There is another technicality in implementing the MARS algorithm that
we have not mentioned. In the previous section we attempted to find the
best knot. In practice, especially when the signal-to-noise ratio is low, the
MARS model could be vulnerable to the noise when the knots are too close
to each other. To resolve this practical issue, Friedman and Silverman (1989,
Section 2.3) introduced a concept of minimum span by imposing a fixed
number of observations between two adjacent eligible knots. The minimum
span is m if at least m observations are required between the knots. Then,
the next question is, How do we choose a reasonable minimum span? Based
on a coin-tossing argument, Friedman and Silverman (1989) suggested

m = − 1
2.5

log2[−(1/N) ln(1 − α)], (10.32)
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where 0.01 ≤ α ≤ 0.05 in the one-dimensional case.
This is the idea: In the one-dimensional case, the underlying model is

Yi = f(xi) + εi (1 ≤ i ≤ N).

Although εi is as likely to be positive as negative, it has a good chance to
hit a long run of either sign. Inside the region where a “long” run occurs,
the spline would follow the run and deviate from the underlying function.
Interestingly, the response of the spline to such a locally long run will
not degrade the fit outside the problematic region if we place one knot at
the beginning of the run, one at the end, and at least one in the middle
(for possible curvature). If we expect the maximum length of the run in
N binomial trials to be Lmax, we can avoid the problem by requiring a
minimum span of Lmax/3 because we cannot place three knots within the
run. To be a little bit conservative, we may take the minimum span as
Lmax/2.5 instead. Unfortunately, we do not know Lmax. But with a certain
degree of confidence we know how large it can get. Precisely, the probability
of observing a run of length L(α) = − log2[−(1/N) ln(1 − α)] or longer in
N binomial trials is approximately α. Therefore, with the minimum span
(10.32) the chance for the spline to experience difficulties is α%.

10.7.2 Maximal Correlation

Note, however, that the minimum span (10.32) is applicable when the data
points are one unit apart. This is not the case in many, perhaps most,
applications. With unequally spaced data points, it appears to be a good
idea to impose a distance, not a number of observations, between eligible
knots. Therefore, it should be adjusted by the factor (xN − x1)/(N − 1).
Also, we may want to have an average of at least one observation that
separates two adjacent knots. Based on these considerations, we should
revise the minimum span in (10.32) as

m = max

{
− xN − x1

2.5(N − 1)
log2[−(1/N) ln(1 − α)],

1
N

3∑
i=1

(xN−i+1 − xi)

}
.

(10.33)
The minimum span in (10.33) is a choice for the univariate splines; how-

ever, we are interested in multivariate splines. Zhang (1994) points out
potential problems that may arise in the multivariate case. The design ma-
trix involved in the MARS model degenerates as the number of terms in
the model increases, and the problem becomes even more challenging as the
knots get closer together. The use of minimum span cannot eliminate the
degeneracy completely. Furthermore, in the multivariate case we must take
into account relationships among the predictors, and some of the predictors
may be categorical. The concept of minimum span needs to be redefined
to consider what we would encounter in multivariate splines.
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The following proposition of Zhang (1994) is an important clue for us to
turn the concept of minimum span to a new one: maximal correlation.

Proposition 10.1 Suppose that xi is an ordered predictor. For x1i ≤ τ ≤
xNi, let b(τ) = (xi − τ1)+. For τ1 < τ2, the correlation, ρ(τ1, τ2), between
b(τ1) and b(τ2) decreases as δ = τ2 − τ1 increases.

Proof. It suffices to show that the derivative of ρ with respect to δ is non-
negative for any given τ1.

Suppose that xj ≤ τ1 < xj+1 and xk ≤ τ1 + δ < xk+1, for some 1 ≤ j ≤
k < N. Let Yi = xi − τ1, i = 1, . . . , N. Then, ρ(τ1, τ1 + δ) equals∑

i>k Yi(Yi − δ) −
∑

i>j Yi

∑
i>k(Yi − δ)/N

([
∑

i>j Y 2
i − (

∑
i>j Yi)2/N ]{

∑
i>k(Yi − δ)2 − [

∑
i>k(Yi − δ)]2/N})1/2

.

The derivative of ρ(τ1, τ1 + δ) with respect to δ has the same sign as⎡
⎣−∑

i>k

Yi + (1 − k/N)
∑
i>j

Yi

⎤
⎦
⎧⎨
⎩
∑
i>k

(Yi − δ)2 −
[∑

i>k

(Yi − δ)

]2

/N

⎫⎬
⎭

+(k/N)
∑
i>k

(Yi − δ)

⎡
⎣∑

i>k

Yi(Yi − δ) −
∑
i>j

Yi

∑
i>k

(Yi − δ)/N

⎤
⎦ . (10.34)

After some manipulations, it is easy to see that the expression (10.34)
equals

1
N

⎧⎨
⎩
∑
i>k

(Yi − δ)2 −
[∑

i>k

(Yi − δ)

]2

/(N − k)

⎫⎬
⎭
⎛
⎝ k∑

i=j+1

Yi − kδ

⎞
⎠ ,

which does not exceed zero, because δ ≥ Yi for i ≤ k.
Geometrically, the proposition can be viewed as follows. Suppose that xi

takes an integer value from 1 to 5 and τ1 = 1. We can make a scatter plot
of 5 points using b(1) as the abscissa and b(τ) as the ordinate. See Figure
10.10. As τ moves farther away from 1, the resulting 5 points become more
and more near a flat line, indicating that the correlation between b(τ) and
b(1) decreases as τ increases.

The proposition above reveals that the closer together the knots are, the
more correlated are the terms added to the model. In other words, imposing
a minimum span is one way to control the correlation among adopted bases.
Hence, it would be more direct to control the correlation in the first place.

It is noteworthy to point out that the proposition does not imply that
ρ(τ1, τ1 + δ1) > ρ(τ2, τ2 + δ2) for δ1 < δ2 when τ1 	= τ2. Thus, we need
to watch out for the potential boundary effects of the correlation ρ(τ1, τ2).
To illustrate the situation in the univariate model, suppose that the model
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FIGURE 10.10. Correlation between basis vectors

has two knots τ1 and τ2 (τ1 > τ2), with τ1 in the interior and τ2 near
the boundary; we consider the inclusion of a third knot τ3. The candidate
τ3 can be chosen closer to τ2 than to τ1 without violating the correlation
threshold, because ρ(τ2, τ2 + δ) tends to be less than ρ(τ1, τ1 + δ). By fixing
δ and varying τ, it can be seen graphically that ρ(τ, τ + δ) increases as τ
moves from the left to the right. As a consequence, knots on the left edge
of the interval are presumably allowed to be closer together.

To resolve this potential problem, Zhang (1994) introduced a modified
correlation. Suppose τ1, . . . , τk are the knots that have already been in-
cluded in the model, and the next knot τ, associated with a predictor xi,
is to be determined. Let ρ+ be the generalized linear correlation between
(xi−τ1)+ and the previously adopted bases and let ρ− be similarly defined
using (xi − τ1)−. Precisely,

ρ−(τ) = 1 − ||(I − PP ′)b−(τ)||2
‖b−(τ) − b̄−(τ)1‖2

, (10.35)

ρ+(τ) = 1 − ‖(I − PP ′)b(τ)‖2

||b(τ) − b̄(τ)1||2
, (10.36)

where a bar denotes the average of a vector, and b−(τ) = (xi − τ1)−.
The modified correlation is defined by max(ρ+, ρ−). We have observed

that ρ+ tends to be larger when τ is near the right end, while ρ− tends to
be larger at the left end. As a result, the use of max(ρ+, ρ−) discourages
knots near either end. In what follows, ρ will be referred to as the modified
correlation.

10.7.3 Patches to the MARS Forward Algorithm

Here, we incorporate the maximal correlation into the MARS forward al-
gorithm.

In step 0, we initialize an outset maximal correlation, R∗. For most users,
R∗ = 0.9999 should be a fine choice. This R∗ safeguards us from a numerical
correlation too close to (perhaps even greater than) 1.
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In step 1, after the first knot τ1 associated with a predictor xi1 is found,
we define the onset maximal correlation R through the minimum span L,
associated with xi1 , as follows:

R =

⎧⎨
⎩

max{ρ(τ1 − L), ρ(τ1 + L)}, if xi1N − L ≥ τ1 ≥ xi11 + L,
ρ(τ1 − L), if τ1 + L > xi1N ,
ρ(τ1 + L), otherwise,

where ρ(τ) is the modified correlation coefficient induced by t and the knot
τ1. If R > R∗, set R = R∗; that is, R∗ prevents R from being numerically
almost 1.0.

When we add a new knot τk associated with a predictor xik
to the set

of knots τ1, . . . , τk−1 in step 2, the modified correlation coefficient ρ(τk),
induced by τk and the knots τ1, . . . , τk−1, must be less than the current
R. As more knots are inserted into the model, the modified correlation
induced by the new candidate knot and knots already in the model generally
increases. Therefore, R should show an increase as needed, although it is
never allowed to exceed R∗. A tentative scheme for making R increase is
to calculate a temporary R̃ that is analogous to R in step 1:

R̃ =

⎧⎨
⎩

max{ρ(τk − L), ρ(τk + L)}, if xikN − L > τk > xik1 + L,
ρ(τk − L), if τk + L > xikN ,
ρ(τk + L), otherwise.

We then update R with R̃ if R̃ is indeed between R and R∗.
Updating R requires the calculation of ρ at different locations. Would

this be a serious computational burden? No. It is obvious that the de-
nominators and the numerators of ρ−(τ) and ρ+(τ) can be updated in a
manner analogous to the approach used for (10.23)–(10.31). As a result,
we are able to check the acceptability of an optimal knot at the same time
we are locating it.

10.8 Smoothing Adaptive Splines∗

We assume in model (10.1) that the underlying function f is smooth. On
the contrary, the truncated spline basis functions are not smooth nor is the
MARS model (10.6). Although this is not a major problem, it has appar-
ently caused enough concern. Two types of solutions are available. One is to
determine the model structure with the linearly truncated basis functions
and then replace the basis functions with the smooth cubic functions, as
shall be discussed in Section 10.8.1. The other approach is more dramatic
and makes direct use of the cubic basis functions. This will be discussed in
Section 10.8.2.
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FIGURE 10.11. Placement of artificial knots

10.8.1 Smoothing the Linearly Truncated Basis Functions

Friedman (1991) described an ad hoc approach that repairs a MARS model.
The repaired model has continuous derivatives. If we only need a model that
is differentiable, we can use the approach taken by Tishler and Zang (1981)
and Zhang (1991).

Suppose that xi is involved in the model, and say, three distinct knots,
τ1 < τ2 < τ3, are placed on xi. Also, assume that the minimum and max-
imum of xi are τ0 and τ4. Then, we insert an artificial knot in the middle
of two adjacent τ ’s, namely,

νi = (τj−1 + τj)/2, (j = 1, . . . , 4).

The placement of ν is illustrated in Figure 10.11. Next, we replace the basis
function (xi − τj)+ (j = 1, 2, 3) in the original MARS model with⎧⎪⎨

⎪⎩
0 xi ≤ νj ,
2νj+1+νj−3νj

(νj+1−νj)2 (xi − νj)2 + 2νj−νj+1−νj

(νj+1−νj)3
(xi − νj)3 νj < xi < νj+1,

xi − νj xi ≥ νj+1.

After the replacement is done, we can reestimate the coefficients of the
modified model from the data. Then the model has continuous derivatives.

10.8.2 Cubic Basis Functions

In Section 10.4 we have used x and (x− τ)+ as the seed basis functions. If
instead, we built the spline model by attaching

β1x + β2x
2 + β3x

3 + β4[(x − τ)+]3

to an existing basis function, we would end up with a cubic adaptive spline
model. The function [(x − τ)+]3 has a continuous derivative, and so does
the resulting spline model. The key question is, Can we still find the best
knot efficiently? The answer is yes if we restrict the candidate knots to
the observed data points. There seems to be little benefit in removing this
restriction for the cubic splines.

Following the discussion in Section 10.6, suppose that b0, . . . ,bK are
basis vectors already included in the model and that the new set of basis
vectors,

xk,x2
k,x3

k, and [(xk − τ1)+]3,

is multiplied by a previous basis vector bl. Here, the power of a vector is
with respect to the components of the vector.
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Recall from (10.19) and (10.20) that the RSS due to the MARS model
including both the existing and the new basis functions is ‖r‖2−h(τ), with
h(τ) defined in (10.20). Here, r is the residual vector when b0, . . . ,bK , xk,
x2

k, and x3
k are entered into the model. Note, however, that with the use of

cubic basis functions we need to change bK+1(τ) in (10.21) to

[(bl ◦ xk)(−j) − τbl(−j)]3.

The critical fact to realize is that we deal with a similar set of constant
c’s as defined in (10.24)–(10.28) when searching for the best knot from one
observed data point to the next. For example, we need to update

r′(bl ◦ bl ◦ bl ◦ xk ◦ xk ◦ xk)(−j).

This is obviously more complicated than c1j , but the principle is the same.

10.9 Numerical Examples

In this section we present a few simulated examples to illustrate the use
and the interpretation of the adaptive spline model. First, we examine
what happens when the data are purely noise; namely, there does not exist
a deterministic functional structure. Then, we study three examples repre-
senting one-, two-, and three-dimensional functions. At the end, we revisit
the model displayed in Figure 10.2 and explain how it was formulated.

Example 10.1 Pure Noise
Before we use the MARS algorithm to build a model, it is important to

probe whether the algorithm picks up false signals when none exists. The
pure noise model is ideal for such an exercise. Friedman and Silverman
(1989), Friedman (1991), and Zhang (1994), among others, have conducted
many experiments and concluded that the MARS algorithm and its vari-
ants are very reliable for not falsely reporting signals. This assertion will
be confirmed in Example 10.4, where the final MARS model excludes all
nuisance predictors that play no role in the underlying model.

Example 10.2 Motorcycle Impact Data
This is a one-dimensional model with a challenging structure. Both Fried-

man and Silverman (1989) and Zhang (1994) used this example to illustrate
the use of adaptive spline models. The name of the example reflects the
fact that the data mimic those in a simulated experiment to investigate the
efficacy of helmet use in motorcycle crashes (Silverman 1985).

Suppose that the underlying function is of the form

f(x) =

{
0 if −0.2 ≤ x < 0,

sin[2π(1 − x)2] if 0 ≤ x ≤ 1.
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FIGURE 10.12. Motorcycle example: simulated data (the dots), the true function
(the solid curve), the MARS fit (the dashed curve), and the loess fit (the dotted
curve)

First, we take 50 random points from the interval [−0.2, 1.0] and denote
them by xi, i = 1, . . . , 50. Then, we generate a series of 50 random num-
bers from the normal distribution, namely, εi ∼ N [0, max2(0.05, xi)], i =
1, . . . , 50. Finally, the observation is the convolution of the signal, f(x), and
the noise, ε. That is,

Yi = f(xi) + εi, i = 1, . . . , 50.

It is interesting to note here that the noise variance is proportional to
the magnitude of the predictor. Thus, this example attests to the use of
adaptive spline models when the measurement errors are heterogeneous.

Figure 10.12 shows a plot of the simulated data (the dots) and the under-
lying function (the solid curve). Eight knots corresponding to eight basis
functions were added into the MARS model during the forward step in
the order 0.12, 0.480, 0.817, −0.00656, 0.547, 0.345, 0.233, and 0.741. Four
basis functions were removed on the basis of generalized cross-validation in
the backward step. The selected MARS model is

0.0033 + 0.1832x− 9.0403(x + 0.00656)+ + 14.6662(x− 0.12)+

−10.9915(x− 0.547)+ + 10.8185(x− 0.817)+.

This fitted model is also plotted in Figure 10.12 (the dashed curve) along
with a smoothed curve (the dotted one) resulting from the loess() function
in SPLUS.

As shown by Figure 10.12, the MARS fit catches the shape of the un-
derlying function quite well except for the artificial jump at the right end,
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FIGURE 10.13. Residuals and absolute errors for the motorcycle data. The dots
and the solid curve are from the loess fit. The plus signs and the dotted curves
come from the MARS fit

which appears to be a result of three clustered, relatively large positive
noises. The loess fit has problems at both ends, although the fit may be
improved if we attempt to find the optimal bandwidth of this smoothing
method. What is important to notice is that three of the four MARS knots
are placed at the critical locations of the underlying function. The last knot
appears to be the result of relatively high noise.

Figure 10.13 gives a detailed view of the residuals and the absolute er-
rors. The residuals are the differences between the observation and the fit,
whereas the absolute errors are the absolute differences between the true
function value and the fitted value. Both panels of this figure suggest that
the MARS model is preferable to the loess fit.

For the present example, estimating the minimum and maximum of the
underlying functions is the impetus to the original experiment (Silverman
1985). Figure 10.12 shows that the MARS model gives a precise estimate
of the minimum, while the loess offers a good estimate of the maximum.
But both fits overestimate the other end of the function.

Example 10.3 An Additive Model
We use this example to illustrate an important point in building the

MARS model: collinearity. Our data are simulated following the description
of Hastie (1989) except that we used a higher noise level.

We simulated 100 observations from the model

Yi =
2
3

sin(1.3xi1) −
9
20

x2
i2 + εi,

where xi1, xi2, and εi were generated from the standard normal distribution
N(0, 1). The theoretical correlation between xi1 and xi2 is 0.4.
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With two predictors, the MARS allows for the second-order product
term. The selected MARS model is

0.77 − 6.14(x1 − 0.48)+ + 5.81(x1 − 0.24) + 1.58x2 − 2.16(x2 + 0.6)+

−1.92(x1 + 1.36)+(x2 − 1.97)+. (10.37)

Note that the original model is an additive model, but the MARS model
includes an interaction term: (x1 + 1.36)+(x2 − 1.97)+. This most likely is
a result of the collinearity between x1 and x2, which confuses the MARS
algorithm. How do we deal with this problem? First, let us forbid the use
of the second-order product term. Then, a new MARS model is selected as
follows:

0.45 − 1.73(x1 − 0.48)+ + 1.48(x1 + 0.61)+

+1.5x2 − 2.06(x2 + 0.6)+ − 2.21(x2 − 1.49)+. (10.38)

If we know the truth, model (10.38) is preferable to model (10.37). The
question is, When do we forbid the use of higher-order product terms when
the true model is not known? Friedman (1991) suggests comparing the GCV
values obtained from various models for which different orders of interac-
tions are considered. In this example, the GCV for model (10.37) is 1.37,
whereas it is 1.28 for model (10.38). This indicates that the parsimonious
model (10.38) serves us better.

In theory, the lower-order models constitute a subset of the class of high-
order models. Due to the stepwise nature of the MARS algorithm, we do
not necessarily end up with a better model by starting with a broader
collection of models. In practice, we should build several MARS models by
allowing different orders of interactions. Unless the GCV value suggests an
improvement by a higher-order model, we always favor a lower-order one.

To examine the performance of model (10.38), we rewrite it as two ad-
ditive components as follows:

f1(x1) = −0.8 − 1.73(x1 − 0.48)+ + 1.48(x1 + 0.61)+,

f2(x2) = 1.25 + 1.5x2 − 2.06(x2 + 0.6)+ − 2.21(x2 − 1.49)+,

where the intercepts were roughly guessed by splitting 0.45. Figure 10.14
plots the observed data points, and the underlying and the fitted compo-
nents of the model. Although not always, in the present case, the structures
of the underlying components are well preserved in the MARS fit.

Example 10.4 An Interactive Model
In the previous examples, we did not consider interaction terms in the

underlying functions, nor did we consider nuisance predictors that play no
role in the model. To challenge the MARS algorithm, let us allow a second-
order interaction term and two nuisance predictors in a hypothetical model.
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FIGURE 10.14. A simulated example of an additive model. The observed data,
the underlying curve components, and the fits are displayed by dots, solid curves,
and dotted curves, respectively

We took the underlying function to be

1
20

exp(4x1) − x2 exp(2x2 − x3)

and drew the additive noise from the standard normal distribution. The
predictors x1 to x5 were generated independently from the uniform distri-
bution on [0,1]. The sample size was chosen to be 150.

When the MARS model is restricted to be additive, we obtained

−0.58− 2.07x2 − 8.61(x2 − 0.716)+ + 5.71(x1 − 0.547)+ + 1.13x3 (10.39)

as the final choice with a GCV value of 1.44. In contrast, if the model is
allowed to include the second-order interaction terms, we selected

−0.0025−3.22x2−8.67(x2−0.716)++5.50(x1−0.547)++2.37x2x3 (10.40)

with a GCV value of 1.38. Models (10.39) and (10.40) are similar, but they
differ in the critical interaction term. The latter is slightly favorable in terms
of the GCV value. Also, it is noteworthy to mention that model (10.40) was
selected again when the third-order interaction terms were permitted in the
candidate models.

So far, MARS models appear to be capable of capturing the underlying
function structure. We should be aware of the fact that the algorithm can
be fooled easily. Note that the five predictors, x1 to x5, were generated
independently. What happens if we observe z = x2 + x3, not x3? Theo-
retically, this does not affect the information in the data. If we took the
difference z − x2 as a new predictor prior to the use of the MARS algo-
rithm, we would arrive at the same model. If we use z directly along with
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the other predictors, the new underlying model becomes

1
20

exp(4x1) − x2 exp(3x2 − z).

The fitted model is

0.11− 2.70x2− 9.89(x2− 0.716)+ + 5.50(x1 − 0.547)+ + +2.57(z− 1.145)+.

Although (z−1.145)+ can be viewed as some sort of interaction between x2

and x3, we do not see an interaction between x2 and z as being interpretable
as the underlying model. This is due partially to the high correlation be-
tween x2 and z (the empirical value is 0.73). Perhaps it is too much to
ask; nevertheless, it is prudent to scrutinize the predictors first before get-
ting into the MARS algorithm. For example, simple principal component
analyses among the predictors are helpful, especially in the presence of
collinearity.

Example 10.5 MARS Model for Birth Weight

Now we revisit the analysis of birth weight for the data from the Yale
Pregnancy Outcome Study, as was reported in Section 10.1. We use the
same variable names as previously defined in Table 2.1 and Section 3.2.
When the model is restricted to be additive, we cumulate 29 terms in the
forward step in the order z5, x9, (x9−9.2)+, x15, (x15 −1.14)+, x11, (x11 −
4.93)+, z10, x14, (x14−77.1)+, x6, (x6−14.67)+, z6, z11, x1, (x1,−34.11)+,
(x6−25)+, (x6−26)+, (x6−20.74)+, (x14−160.5)+, (x1,−42)+, (x11−8)+,
(x6−24)+, (x15−6)+, (x15−5)+, (x15−2)+, (x1,−38.28)+, (x1,−36.53)+,
and (x11 − 5.45)+. From these basis functions, the backward step selects 9
terms: z5, x9, (x9−9.2)+, x15, (x15−1.14)+, (x11−4.93)+, z10, (x6−25)+,
and (x6 − 26)+. It does not appear particularly meaningful to keep the
last two terms in our final model, because they are hardly different from
a practical point of view. Thus, the last one is removed. To make the
interpretation more straightforward, we change the cutoff values for x9,
x11, and x15, from 9.2, 4.93, and 1.14 to 9, 5, and 1, respectively. After
these steps of computer selection and manual adjustment, we arrive at the
following model:

3141 + 296.4z5 − 21.7x9 + 21.7(x9 − 9)+ + 111x15 − 88.6(x15 − 1)+

−102.9(x11 − 5)+ − 276.3z10 − 414.1(x6 − 25)+, (10.41)

which is the mathematical expression of Figure 10.2.



11
Analysis of Longitudinal Data

In health-related studies, researchers often collect data from the same unit
(or subject) repeatedly over time. Measurements may be taken at different
times for different subjects. These are called longitudinal studies. Diggle,
Liang, and Zeger (1994) offer an excellent exposition of the issues related
to the design of such studies and the analysis of longitudinal data. They
also provide many interesting examples of data. We refer to their book
for a thorough treatment of the topic. The purpose of this chapter is to
introduce the methods based on recursive partitioning and to compare the
analyses of longitudinal data using different approaches.

11.1 Infant Growth Curves

The data for this example were collected from a retrospective study by Dr.
John Leventhal and his colleagues at Yale University School of Medicine,
New Haven, Connecticut. Their primary aim was to study the risk factors
during pregnancy that may lead to the maltreatment of infants after birth
such as physical and sexual abuse. The investigators recruited 298 children
born at Yale–New Haven Hospital after reviewing the medical records for
all women who had deliveries from September 1, 1989, through September
30, 1990. Detailed eligibility criteria have been reported previously else-
where such as Wasserman and Leventhal (1993) and Stier et al. (1993).
The major concern underlying the sample selection was the ascertainment
of cocaine exposure. Two groups of infants were included: those whose
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FIGURE 11.1. Growth curves of body weights for 20 representative infants

mothers were regular cocaine users and those whose mothers were clearly
not cocaine users. The group membership was classified from the infants’
log of toxicology screens and their mothers’ obstetric records. In addition,
efforts have been made to match the unexposed newborns with the exposed
ones for date of birth, medical insurance, mother’s parity, age, and timing
of the first prenatal visit. The question of our concern is whether a mother’s
cocaine use has a significant effect on the growth of her infant.

After birth, the infants were brought back to see their pediatricians.
At each visit, body weight, height, and head circumference were recorded.
Figure 11.1 shows the growth curves of body weights for 20 randomly chosen
children.

Figure 11.1 suggests that the variability of weight increases as children
grow. Thus, we need to deal with this accelerating variability while model-
ing the growth curves. In Section 11.5.5 we will explain the actual process
of fitting these data. At the moment, we go directly to the result of analysis
reported in Zhang (1999) and put on the table what the adaptive spline
model can offer in analyzing longitudinal data.

Using mother’s cocaine use, infant’s gender, gestational age, and race
(White or Black) as covariates, Zhang (1999) identified the following model,

f̂(x) = 0.744 + 0.029d− 0.0092(d− 120)+ − 0.0059(d− 200)+

+(ga − 28)+{0.2 + 0.0005d− 0.0007(d− 60)+ − 0.0009(d− 490)+}
+s{−0.0026d + 0.0022(d− 120)+}, (11.1)
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where d stands for infant’s age in days and ga for gestational age in weeks.
The variable s is the indicator for gender: 1 for girls and 0 for boys. The
absence of mother’s cocaine use in model (11.1) is a sign against its promi-
nence. Nonetheless, we will reexamine this factor later.

According to model (11.1), the velocity of growth lessens as a child ma-
tures. Beyond this common sense knowledge, model (11.1) defines several
interesting phases among which the velocity varies. Note that the knots for
age are 60, 120, 200, and 490 days, which are about 2, 4, 8, and 16 months.
In other words, as the velocity decreases, its duration doubles. This insight
cannot be readily revealed by traditional methods. Furthermore, girls grow
slower soon after birth, but start to catch up after four months. Gestational
age affects birth weight, as immense evidence has shown. It also influences
the growth dynamics. In particular, a more mature newborn tends to grow
faster at first, but later experiences a slower growth as opposed to a less
mature newborn. Finally, it is appealing that model (11.1) mathematically
characterizes the infant growth pattern even without imposing any prior
knowledge. This characterization can provide an empirical basis for fur-
ther refinement of the growth pattern with expert knowledge as well as
assessment of other factors of interest.

11.2 The Notation and a General Model

To analyze longitudinal data, first we need to formulate them into a general
statistical framework. To this end, some notation is inevitable. Suppose that
we have recruited n subjects into a longitudinal study. Measurements are
repeatedly taken for every subject over a number of occasions (sometimes
referred to as visits or examinations).

Table 11.1 provides an abstract representation of the data such as those
plotted in Figure 11.1. To simplify the presentation, we restrict all subjects
to have the same number of occasions q in the table. For subject i at occa-
sion j, xk,ij and Yij are respectively the measurement of the kth covariate

TABLE 11.1. Longitudinal Data Configuration

Occasion (visit or examination)
Subject 1 · · · q

1 t11, x1,11, · · · , xp,11, Y11 · · · t1q, x1,1q, · · · , xp,1q, Y1q

...
...

...
i ti1, x1,i1, · · · , xp,i1, Yi1 · · · tiq, x1,iq, · · · , xp,iq, Yiq

...
...

...
n tn1, x1,n1, · · · , xp,n1, Yn1 · · · tnq, x1,nq, · · · , xp,nq, Ynq

Reproduced from Table 1 of Zhang (1997)
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xk (k = 1, . . . , p) and the observed value of the response Y at measurement
time tij (j = 1, . . . , q, i = 1, . . . , n). In the growth curve data, we have four
(p = 4) covariates in addition to age (measurement time t) of visits. Birth
weight is the outcome variable Y.

The problem of interest is to model the relationship of Y to the mea-
surement time, t, and the p covariates, x1 to xp, namely, to establish the
relationship

Yij = f(tij , x1,ij , . . . , xp,ij) + eij , (11.2)

where f is an unknown function, eij is the error term, j = 1, . . . , q, and
i = 1, . . . , n. Estimating model (11.2) such as the derivation of model (11.1)
is imperative for addressing scientific questions for which the data are col-
lected.

Model (11.2) differs from a usual multivariate regression model, e.g.,
(10.1), in that eij (j = 1, . . . , q) has an autocorrelation structure Σi within
the same subject i. As will be defined below, the specification of Σi varies
from a parametric approach to a nonparametric one.

11.3 Mixed-Effects Models

Mixed-effects models are commonly used to analyze longitudinal data; see,
e.g., Crowder and Hand (1990, Ch. 6) and Laird and Ware (1982). They
assume that

Yij =
p∑

k=0

βkxk,ij +
r∑

k=0

νkizk,ij + εij , (11.3)

where the β’s are unknown parameters, νi = (ν1i, . . . , νpi)′ is a p-dimensional
random vector, εi = (εi1, . . . , εip)′ is a p-dimensional vector of measurement
errors, and for convenience, tij is replaced with x0,ij . The vector νi reflects
the random fluctuation of subject i toward the population, and it is re-
ferred to as random coefficients, coupled with random effects z1 to zr. The
specification of random effect factors has to be decided on a case-by-case
basis.

Model (11.3) is called a mixed-effects model or simply a mixed model in
light of the fact that the model facilitates both fixed-effect parameters β
and random-effect parameters νi. Sometimes, model (11.3) is also referred
to as a two-stage linear model because of the hierarchal assumptions as
delineated below.

The first stage describes the distribution for εi within the same individ-
ual, and the second stage takes into account the across-individual variations
expressed through νi. Specifically, we assume, in the first stage, that

εi ∼ N(0, Ri), i = 1, . . . , n, (11.4)
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and in the second stage that

νi ∼ N(0, G), i = 1, . . . , n, (11.5)

and νi and νj , resp. εi and εj , (for i 	= j) are independent, i, j = 1, . . . , n.
Moreover, we assume that anything between two individuals is independent
of each other.

We can regard model (11.3) as a specific case of model (11.2) in the sense
that

f(tij , x1,ij , . . . , xp,ij) =
p∑

k=0

βkxk,ij

and

eij =
p∑

k=0

νkixk,ij + εij ,

j = 1, . . . , q, i = 1, . . . , n. Let yi = (Yi1, . . . , Yiq)′. Then assumptions (11.4)
and (11.5) imply that

IE{yi} = Xiβ, Σi = Cov{yi} = XiGX ′
i + Ri,

where Xi is the design matrix for individual i, i.e.,

Xi =

⎛
⎜⎜⎜⎜⎜⎜⎝

x0,i1 · · · xp,i1

...
...

...
x0,ij · · · xp,ij

...
...

...
x0,iq · · · xp,iq

⎞
⎟⎟⎟⎟⎟⎟⎠

, i = 1, . . . , n.

What are the essential steps in applying model (11.3) for the analysis of
longitudinal data? A convenient approach to carry out the computation is
the use of PROC MIXED in the SAS package. One tricky step is the specifica-
tion of random effects. It requires knowledge of the particular study design
and objective. See Kleinbaum et al. (1988, Ch. 17) for general guidelines.
Following this step, it remains for us to specify the classes of covariance
structures Ri in (11.4) and G in (11.5).

In practice, Ri is commonly chosen as a diagonal matrix; for example,
Ri = σ2

1I; here I is an identity matrix. The resulting model is referred to
as a conditional independence model. In other words, the measurements
within the same individuals are independent after removing the random-
effect components. In applications, a usual choice for G is σ2

2I. The dimen-
sion of this identity matrix is omitted, and obviously it should conform with
G. The subscripts of σ remind us of the stage in which these covariance
matrices take part.

There are many other choices for covariance matrices. A thorough list
of options is available from SAS Online Help. Diggle et al. (1991) devote
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TABLE 11.2. A Sample SAS Program for Analyzing Longitudinal Data

data one;
infile ’infant.dat’;
input infantID race npp mage gender coc ga age wtkg;
eage = exp(age/100.);
run;
proc mixed;

model wtkg = coc gender|age gender|eage ga|age ga|eage;
repeated /type=ar(1) subject=person;

run;

an excellent chapter on the understanding of covariance structure for lon-
gitudinal data. Ironically, the simplest choice is still taken for granted in
most of the applications. We will offer a general and brief guideline for es-
timating the covariance structure and also illustrate use of some graphical
approaches in real applications.

For comparison, let us analyze the infant growth data with PROC MIXED
in SAS. The initial model includes eight main-effect terms [race, the num-
ber of previous pregnancies (coded as npp), mother’s age at delivery (mage),
mother’s cocaine use (coc), gestational age (gage), child’s gender, child’s
age at a visit, and an exponential transformation of the child’s age] and
four interaction terms (gender and gestational age by age and the trans-
formation of age). These variables are specified in the model statement in
Table 11.2 as fixed effects. Subject number is the only random effect. In
addition, the covariance is set to have an AR(1) structure (see, e.g., Box
et al. 1994, p. 58) in the repeated statement.

Using the backward stepwise deletion, we conclude with the following
model:

−4.0 + 0.18c + 0.194ga − 0.115s + 0.02d− 0.0008sd

+0.006 exp(d/100)− 0.0005ga exp(d/100), (11.6)

where c denotes mother’s cocaine use and the other variables are the same
as those in model (11.1). Most of the p-values are below the 0.05 level
except for s (child’s gender) and exp(d/100), which are at the 0.2 level
and are kept to accompany the second-order interaction terms. From this
model, mother’s cocaine use manifests itself with a marginal significance of
0.03.

Broadly, model (11.6) gives rise to similar conclusions to what the spline
model (11.1) does. However, model (11.1) fits the data better than model
(11.6). An important point to remember is that considering the transfor-
mations and interactions for the predictors in a mixed model is usually
tedious and time-consuming. The spline model may offer a much quicker
and sometimes more realistic look into the data structure. We recommend
using spline models first and refining them based on expert knowledge.
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11.4 Semiparametric Models

As in multiple linear regression, the linear assumption in mixed-effects mod-
els makes it inconvenient to explore nonlinear time trends. To accommodate
general time trends for longitudinal data, Diggle et al. (1991, p. 111) and
Zeger and Diggle (1994) presented the following semiparametric model:

Yij = β0 +
p∑

k=1

βkxk,ij + μ(tij) + ei(tij), (11.7)

where μ is an unspecified smooth function. Unlike mixed-effects models, the
semiparametric model (11.7) includes a practically arbitrary time trend.
Note also that the error term in model (11.7) is explicitly expressed as
a function of time, and it corresponds to the sum of two parts in model
(11.3): individual random effects and measurement errors. Precisely, Diggle
et al. assume that {Yij(t), t ∈ R} for i = 1, . . . , n are independent copies
of a stationary Gaussian process, {Y (t)}, with variance σ2 and correla-
tion function ρ(Δ). This means that for any time points t1, . . . , tk and an
increment Δ,

(Y (t1), . . . , Y (tk)) and (Y (t1 + Δ), . . . , Y (tk + Δ))

have the same multivariate normal distribution, and the correlation be-
tween Y (t) and Y (t + Δ) is ρ(Δ). Examples of ρ(Δ) are

exp(−αΔ) and exp(−αΔ2), (11.8)

where α needs to be estimated from the data.
As an example of the back-fitting algorithm of Hastie and Tibshirani

(1990), Diggle et al. (1991) proposed to fit model (11.7) in three steps: (a)
Find a kernel estimate of μ for a given estimate β̂ using the residuals model

Yij − β̂0 −
p∑

k=1

β̂kxk,ij = μ(tij) + ei(tij). (11.9)

(b) Update the estimate β̂ from the residuals rij = Yij − μ̂(tij) using
generalized least squares,

β̂ = (X ′Ψ−1X)−1X ′Ψ−1r, (11.10)

where X = (X ′
1, . . . , X

′
n)′, r is the concatenate vector of rij for i = 1, . . . , n

and j = 1, . . . , q, and Ψ is a block diagonal covariance matrix with the
ith block being the covariance matrix Σi. (c) Repeat steps (a) and (b) for
convergence, which typically takes a few iterations.

We will not discuss how to obtain a kernel estimate of μ required in
step (a) and refer to Hart and Wehrly (1986), Rice and Silverman (1991),
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Truong (1991), and Altman (1992). It is important to point out, though,
that μ̂ must be computed numerically and cannot be expressed in a closed
form unless adaptive splines are adopted.

Step (b) involves a covariance matrix that by itself is unknown. With
a simple choice of ρ(Δ) it is usually not difficult to estimate Ψ and β
simultaneously.

Further details on the implementation and theoretical properties of this
method are available in Zeger and Diggle (1994) and Moyeed and Diggle
(1994).

11.5 Adaptive Spline Models

The mixed-effects model (11.3) and the semiparametric model (11.7) pro-
vide very useful means for model building with longitudinal data. It is also
important for us to realize some limitations of these models and seek an
alternative.

Both the mixed-effects models and the semiparametric models are para-
metric with respect to the covariates. Hence, they have limited flexibility
for including transformations of, and interactions among, covariates.

Semiparametric models allow for a general time trend, but they can be
handicapped in the presence of interactive effects between time and some of
the covariates. If the covariates are categorical, it is possible to fit different
trends at different levels of the variables. Obviously, the success of this
attempt depends severely on the sample size available. When a covariate
is on a continuous scale, the solution is not apparent.

To overcome the limitations of the mixed-effects models and the semi-
parametric models posed above, Zhang (1997) considered a functionally
nonparametric model

Yij = f(tij , x1,ij , . . . , xp,ij) + ei(x∗,ij , tij), (11.11)

where f is an unknown smooth function and the x∗ indicates some de-
pendency of the error term on the explanatory variables. This dependency
will be clarified in Section 11.5.2. To avoid technicalities, we assume again
that ei(x∗,ij , t) is a high-dimensional stationary Gaussian process. Model
(11.11) can be regarded as a generalization of the semiparametric model
(11.7). It distinguishes itself from the general model (11.2) by explicitly
expressing the error term as a function of time.

The discussion below is mostly adopted from Zhang (1997), where he
proposed multivariate adaptive splines for the analysis of longitudinal data
(MASAL).

The goal of MASAL is to fit model (11.11). It requires three broad steps:
(a) Given a covariance structure for ei(x∗,ij , tij), find an adaptive spline
estimate of f using the ideas introduced in Chapter 10. (b) Update the
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estimate of the covariance structure from the residuals, rij = Yij − f̂ij ,
i = 1, . . . , n and j = 1, . . . , q. (c) Repeat steps (a) and (b) until convergence.

These three steps are similar to those stated in the previous section.
Crowder and Hand (1990, p. 73) vividly described it as a see-saw algo-
rithm. As a matter of fact, if every step of the estimation is based on
maximizing a certain likelihood function, this three-step algorithm is a
“generalized” version of the method called restricted maximum likelihood
estimation (REML), which was introduced by Patterson and Thompson
(1971) to estimate variance components in a general linear model and has
recently been applied in the longitudinal data setting (e.g., McGilchrist and
Cullis 1991). The merits of the REML estimators in the context of mixed
models have been explored by many authors (e.g., Cressie and Lahiri 1993,
and Richardson and Welsh 1994). It is reasonable to hope that some of
the important properties of REML estimators also hold for the MASAL
estimators.

Section 11.5.1 describes the implementation of step (a), and Section
11.5.2 addresses that of step (b).

11.5.1 Known Covariance Structure

When Σi’s (or equivalently the block diagonal matrix Ψ) are given, we
employ the weighted sum of squares (WSS) as the measure of goodness-of-
fit for model (11.11). That is,

WSS(f) = (y − f)′Ψ−1(y − f), (11.12)

where
y = (y′

1, . . . ,y
′
n)′ (11.13)

and
f = (f(t11, x1,11, . . . , xp,11), . . . , f(tij , x1,ij , . . . , xp,ij),

. . . , f(tnq, x1,nq, . . . , xp,nq))′.

From a structural point of view, the forward algorithm in Section 10.4
and the backward algorithm in Section 10.5 still apply to the present case.
The difference resides in the realization of every step. Here, we emphasize
the differences and difficulties and refer to Zhang (1997) for the details.

Obviously, the source of differences is the autocorrelation of the resid-
ual term in model (11.11). When the covariance matrix Ψ is assumed to
be known, we can transform y so that the transformed observations are
independent. In other words, we work on

z = Ψ− 1
2 y, (11.14)

where Ψ− 1
2 Ψ− 1

2 = Ψ−1.
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If model (11.11) were a linear model, the transformed data would lead
to a weighted least squares estimate of f similar to (11.10). Unfortunately,
model (11.11) is not linear, and we will see why the nonlinearity deserves
special attention.

Recall the construction of an initial MARS model (10.10). The first and
also critical step in the forward algorithm is to find the best knot τ̂ associ-
ated with a covariate xk such that the WSS in (11.12) is minimized when
f is chosen to be of the form

f = β01 + β1xk·· + β2(xk·· − τ1)+, (11.15)

where

xk·· = (xk,11, . . . , xk,1q, . . . , xk,i1, . . . , xk,iq , . . . , xk,n1, . . . , xk,nq)′.

This is the concatenate vector for all values of predictor xk.
With the specification in (11.15) and the transformation in (11.14),

model (11.11) becomes the following regression model:

z = β0Ψ− 1
2 1 + β1Ψ− 1

2 xk·· + β2Ψ− 1
2 b(τ) + Ψ− 1

2 e, (11.16)

where b(τ) = (xk·· − τ1)+. Finding τ̂ is not difficult, but it is challenging
to find the solution in the least possible time. Speed is a concern because
the same algorithm is used many times.

What are potential impediments to designing such a desirable algorithm?
First, the WSS in (11.12) needs to be expressed as a simple function of τ.
Second, we ought to be able to calculate the WSS efficiently as we search
τ̂ through the observed range of xk. We have demonstrated that these
are possible in Chapter 10, where Ψ is essentially an identity matrix. The
problem in model (11.16) is that

Ψ− 1
2 b(τ) 	= (Ψ− 1

2 xk·· − Ψ− 1
2 1)+,

due to the nonlinearity. We refer to Zhang (1997) for the derivation of an
explicit and efficient algorithm for finding τ̂ .

11.5.2 Unknown Covariance Structure

In practical problems, it is virtually always the case that the covariance
structure is unknown. We need to estimate both the covariance structure
Ψ and fixed-effect function f, alternately. In the preceding section, we ex-
plained how to estimate the fixed-effect function using adaptive splines for
any given covariance structure. The question now is how to update the
covariance structure when the function is estimated.

For any estimate f̂ of function f we can calculate the residuals rij =
Yij − f̂ij , where f̂ij is the estimated function value for the ith subject at
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occasion j, j = 1, . . . , q, i = 1, . . . , n. Note that one of the assumptions
in model (11.11) is the normality of the residuals. Thus, the question is
really, How do we estimate the covariance matrix of a q-variate normal
distribution based on the observed data?

The answer is relatively easy if q is much smaller than n, because the
sample covariance matrix would serve as an estimate of the covariance
matrix. This results in the so-called unstructured estimate of the covariance
matrix. In many applications, however, q is not small relative to n, and
hence it is often desirable to impose certain restrictions on the underlying
covariance structure, e.g., the compound symmetry structure:

Σi = σ2

⎛
⎜⎜⎜⎝

1 ρ · · · ρ
ρ 1 · · · ρ
...

...
...

...
ρ ρ · · · ρ

⎞
⎟⎟⎟⎠ . (11.17)

This covariance matrix is sometimes referred to as uniform correlation (Dig-
gle et al. 1991, p. 56).

When the times are equally spaced, the following stationary form is also
a reasonable choice for Σi⎛

⎜⎜⎜⎜⎜⎝

σ2 σ1 · · · σq−2 σq−1

σ1 σ2 · · · σq−3 σq−2

...
...

...
...

...
σq−2 σq−3 · · · σ2 σ1

σq−1 σq−2 · · · σ1 σ2

⎞
⎟⎟⎟⎟⎟⎠ . (11.18)

In general, the Σi’s are assumed to depend on a common parameter vector
θ (Laird and Ware 1982). In the case of compound symmetry, θ = (σ2, ρ).
For the stationary form, θ = (σ2, σ1, . . . , σq−1).

It is natural to wonder whether these ad hoc structures are appropriate
and whether there are general guidelines for making such a decision. These
issues are always puzzling in the analysis of longitudinal data regardless of
the analytic methods. To get some insights into these issues, let us follow
the discussion in Diggle et al. (1991, Chapter 5).

To select a reasonable covariance structure, we must first understand
the attributes of the covariance structure. Although not necessarily ex-
clusive, three major underlying stochastic processes usually underlie the
covariance structure, and they are random effects, serial correlation, and
measurement error. In general, we assume that these three potential sources
of uncertainty function in an additive manner:

eij = x′
∗,ijui + w(tij) + εij , (11.19)

where the three terms represent, respectively, random effects, serial corre-
lation, and measurement error.
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In (11.19), ui is a vector of Gaussian variables with mean zero and
covariance matrix G, corresponding to the random effects x∗,ij . As dis-
cussed in Zhang (2004), x∗,ij may depend on time tij only. For example,
x∗,ij = (φ1(tij), . . . , φv(tij))′, where φk(t) is a prespecified function of t. In
the current implementation of MASAL, φk(t) = tk−1, k = 1, 2, 3. The user
can choose to include any or none of the constant (k = 1), linear (k = 2),
and square (k = 3) terms.

In some studies, for example, the response profile of one subject may have
a greater uncertainty than those of others. Hopefully, this difference in the
variability can be characterized through a subset, or transformations, of
the original p covariates. However, this has to be implemented in MASAL.

Although the extent may vary, it is conceivable that some lasting vari-
abilities within the same subject may manifest themselves through time as
we repeatedly collect measurements. In other words, the response profile
of one subject is likely to be an autocorrelated time series. This autocorre-
lation is reflected by w(t). We assume that w(t) is a stationary Gaussian
process with mean zero, covariance σ2

2 , and correlation function ρ(Δ).
Finally, measurement errors arise in virtually any study. Their magnitude

may depend on the quality of equipment, the experience of the investiga-
tors, etc. In (11.19), εij denotes these “isolated” measurement errors. It is
common to assume that the εij ’s are independently identically distributed
as N(0, σ2

1).
The synthesis of (11.19) with the associated assumptions implies that

Σi = Cov(ei) = X ′
∗,iGX∗,i + σ2

2H + σ2
1Iq, (11.20)

where X∗,i is the design matrix from the ith subject restricted to the ran-
dom effects only, and H is the autocorrelation matrix⎛

⎜⎝
1 ρ(t2 − t1) · · · ρ(tq − t1)
...

...
...

...
ρ(tq − t1) ρ(tq − t2) · · · 1

⎞
⎟⎠ . (11.21)

Here, we assume that tij = tj for j = 1, . . . , q and i = 1, . . . , n. Two pop-
ular choices of ρ are given in (11.8). To avoid being overly complex, we
may restrict G in (11.20) to have compound symmetry. In this regard, it
is important to note that a covariance structure with compound symmetry
may not necessarily be apparent from the observed data. To demonstrate
this point, we simulated 100 vectors of 5-dimensional normal random vari-
ables with variance 4 and uniform correlation 0.2. The sample covariance
matrices from two experiments are⎛
⎜⎜⎜⎜⎝

4.35 1.00 1.08 0.95 1.05
1.00 4.28 1.20 1.15 1.55
1.08 1.20 3.44 0.44 1.53
0.95 1.15 0.44 4.19 0.87
1.05 1.55 1.53 0.87 3.90

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

3.96 0.60 1.16 0.81 0.54
0.60 4.39 0.82 0.32 0.88
1.16 0.82 4.06 0.25 0.19
0.81 0.32 0.25 3.59 0.58
0.54 0.88 0.19 0.58 3.31

⎞
⎟⎟⎟⎟⎠ .
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TABLE 11.3. Variables in the Simulation

Variable Characteristics Specification
t Time 1 to q
x1 Baseline Covariate Uniform [0,1]
x2 Baseline Covariate Uniform [0,1]
x3 Baseline Covariate Uniform [0,1]
x4 Time-Dependent Covariate Uniform [0,1]
x5 Time-Dependent Covariate Uniform [0,1]
x6 Time-Dependent Covariate Uniform [0,1]
Y Response Variable The model (11.11)

Reproduced from Table 2 of Zhang (1997).

Visually, they do not seem to possess compound symmetry even though
the data that were generated follow it. Therefore, in practice, it may not
be wise to abandon the use of compound symmetry unless there is a clear
trend in the covariance structure that contradicts it.

After we set up the basic structure for Σi, we can estimate its parameters
by maximizing the reduced log-likelihood function for Ψ,

lr(Ψ) = − log(|Ψ|) − (y − f̂)′Ψ−1(y − f̂), (11.22)

where Ψ is the block diagonal matrix with Σi’s along the diagonal.

11.5.3 A Simulated Example

In this section we demonstrate the use of MASAL with a simulated data
set. Table 11.3 lists the variables involved in the simulation, including time
t, response Y, three baseline covariates x1 to x3, and three time-dependent
covariates x4 to x6.

Example 11.1 Consider a 5-dimensional function

f(t,x) = 10t + 10 sin(x1x4π) + 20(x2 −
1
2
)2 + 5x5. (11.23)

This is one of the functional structures studied by Zhang (1997). A few
points are worth mentioning. First, x3 and x6 are not in f, and hence they
are noise (or nuisance) predictors. Second, the function includes both linear
and nonlinear terms. Lastly, it also has additive and multiplicative terms.

The data simulation process is as follows. We choose n = 100 and q = 5.
The observations for Y are obtained from model (11.11). The measurement
error is generated from a 5-dimensional normal distribution with a covari-
ance matrix whose diagonal elements equal 4 and off-diagonal elements 0.8.



176 11. Analysis of Longitudinal Data

TABLE 11.4. Model Fitting for Example 11.5.3

Iteration The Fitted Model dc lr
1 3.79 + 9.92t + 27.3x1x4 − 21x1(x4 − 0.47)+

−61.6(x1 − 0.53)+(x4 − 0.47)+ − 10.2x2

+12.8(x2 − 0.43)+ + 94.7(x2 − 0.75)+x5

−107(x2 − 0.75)+(x5 − 0.22)+ + 5.76x5

+8.13(x4 − 0.47)+ − 11.4(x4 − 0.75)+x5 2091 −1525
2 3.89 + 9.91t + 28.7x1x4 − 14.9(x1 − 0.6)+x4

−69.8(x1 − 0.4)+(x4 − 0.53)+ − 8.55x2

+19.4(x2 − 0.54)+ + 5.34x5 1 −1190
3 3.9 + 9.91t + 28.6x1x4 − 15(x1 − 0.6)+x4

−70(x1 − 0.4)+(x4 − 0.53)+ − 8.57x2

+19.4(x2 − 0.54)+ + 5.37x5 0.001 −1189

The sample covariance matrices from the signal (or the true function) and
the noise are respectively⎛

⎜⎜⎜⎜⎝
4.97 0.42 0.29 1.08 1.12
0.42 4.20 1.15 0.59 1.21
0.29 1.15 3.83 0.75 1.16
1.08 0.59 0.75 3.89 1.29
1.12 1.21 1.16 1.29 4.33

⎞
⎟⎟⎟⎟⎠

and ⎛
⎜⎜⎜⎜⎝

12.9 6.12 6.47 5.46 5.86
6.12 13.7 7.50 6.42 6.90
6.47 7.50 16.6 5.62 5.98
5.46 6.42 5.62 16.3 6.78
5.86 6.90 5.98 6.78 15.3

⎞
⎟⎟⎟⎟⎠ .

These two matrices show that the size of the occasionwise signal-to-noise
ratio is in the range of 2.6 to 4.3.

During the fitting, the maximum number of terms is 20, and the highest
order of interactions permitted is 2. To examine the change in the itera-
tive model-building process, we report not only the subsequent models in
Table 11.4, but also a measure of difference, dc, between two consecutive
covariance matrices and the log-likelihood, lr, in (11.22).

All information in Table 11.4 (the fitted model, dc, and lr) reveals that
further continuation of cycling has little effect on the fit. The two nuisance
predictors, x3 and x6, do not appear in any of the models. The fitted models
after the second iteration capture all four terms in the original structure.
Let us choose the model in the third iteration as our final model. We see
that t and x5 are included as linear effects with roughly the same coefficients
as the true values. The sum −8.57x2 +19.4(x2− 0.54)+ corresponds to the
quadratic term 10(x2− 1

2 )2 in the true model. The knot 0.54 is close to the
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FIGURE 11.2. Comparison of the true (10 sin(x1x4π)) and MASAL (11.24)
curves along two diagonal lines: x1 = x4 (left) and x1 = 1 − x4 (right)

underlying center 0.5 of the parabola, and the coefficients match reasonably
with the true values. The only multiplicative effects are for x1 and x4. The
proxy for their sinusoidal function is 28.6x1x4 − 15(x1 − 0.6)+x4 − 70(x1 −
0.4)+(x4 − 0.53). In Figure 11.2, we compare 10 sin(x1x4π) with

28.6x1x4 − 15(x1 − 0.6)+x4 − 70(x1 − 0.4)+(x4 − 0.53) (11.24)

along the two diagonal lines x1 = x4 and x1 = 1 − x4.
This example demonstrates that the MASAL model is capable of uncov-

ering both the overall and the detailed structure of the underlying model.
On the other hand, it is very easy to make the MASAL model fail by
increasing the noise level. In that case, we may not have any better alter-
native.

For comparison, let us see what happens when the mixed-effects model
(11.3) is employed. We adopted a backward stepwise procedure by initially
including 7 linear terms, t and x1 to x6, and their second-order interaction
terms. The significance level for including a term in the final model is 0.05.
The following model was derived:

−0.5+10.6t+9.5x1+4.49x2+13.8x4−1.44tx4−6.4x1x4−10.2x2x4. (11.25)

Some aspects of model (11.25) are noteworthy. Firstly, it does not have a
quadratic term of x2 because “we did not know” a priori that we should
consider it. Secondly, it excludes the linear term of x5. Thirdly, it includes
two interaction terms tx4 and x2x4 that are not in the true model. Lastly,
the interaction term between x1 and x4 proves to be significant, but it is
difficult from a practical standpoint to consider the nonlinear terms of x1

and x4.
In fairness to the mixed-effects model, we fitted the data again by at-

taching x2
2 and x5 to model (11.25). Not surprisingly, they turned out to be
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FIGURE 11.3. Body weights of twenty-six cows

significant, but the interaction term x1x4 was not. Thus, we lost the true in-
teraction terms while retaining the two false ones. The point is that there
is nothing wrong theoretically with the mixed-effects model. We end up
with an imprecise model usually because we do not know where we should
start from. The present example is a simulation study. The real problems
are generally more difficult to deal with. In a word, the importance of the
mixed-effects model is undeniable, but we also should realistically face its
limitations.

11.5.4 Reanalyses of Two Published Data Sets

To explain further the use of MASAL and compare it with that of more
standard approaches, we analyze two published data sets.

Example 11.2 Body Weights of Cows
The data for this example are taken from Table 5.2 of Diggle et al.

(1991). The outcome measure is the body weights of 26 cows in a 2 by 2
factorial experiment. The body weights of these cows were measured at 23
unequally spaced times over 22 months. Like Diggle et al., we use a rescaled
time unit of ten days. Figure 11.3 depicts the growth curves of the cows
in the rescaled time as marked under the curves. As in Figure 11.1, the
variability of growth curves is greater as the cows gained more weight.

The two factors are presence or absence of iron dosing and of infection
with paratuberculosi. The question of clinical interest is the factorial effect
on the body weight. These factors determine four factorial groups: control,
iron dosing, infection, and iron dosing with infection. We introduce two
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dummy variables: x1 as the indicator for iron dosing and x2 as that for
infection. In addition, we use x3 = x1x2 as the interaction between x1 and
x2.

We will take an analytic strategy different from that of Diggle et al.
(1991, p. 102) in two aspects. First, they took a log-transformation of body
weights to stabilize the variance over time. Figure 11.4 displays the sample
covariance matrices (the dots) against time for the body weights and their
log-transformations. This figure shows that the variance of the transformed
weights varies over time with a roughly quadratic trend, as was also noted
by Zhang (1997). Therefore, it is not particularly evident that the log-
transform indeed stabilized the variance over time. On the other hand, the
variance obtained from the original body weights seems to be described well
by a Gaussian form in (11.27) below. For these reasons, we will analyze the
original body weights, not their log-transformations. As a side note, the
log-transformation has little effect on the trend of the autocorrelation.

Since the time trend is not their primary interest, Diggle et al. had a
clever idea of avoiding fitting the time trend while addressing the major
hypothesis. This was made possible by taking a pointwise average of the
growth curve for the control group (x1 = x2 = 0) and then modeling the
differences between the weights in other groups and the average of the con-
trols. They assumed quadratic time trends for the differences. Generally
speaking, however, it is wise to be aware of the shortcomings of this ap-
proach. Twenty-three parameters are needed to derive the average profile
for the control group although the actual trend can be fitted well with a
fewer number of parameters. As a consequence, the differences may involve
a greater variability and eventually could influence the final conclusion.
Since MASAL is designed to fit an arbitrary time trend, the differencing
is no longer necessary, nor is it desirable. Thus, we will fit directly the
body weights based on the two factors and time. This clarifies the second
difference between our strategy and that of Diggle et al.

The number of occasions, q = 23, is obviously large as opposed to the
number of subjects, n = 26. It does not make much sense to use an unstruc-
tured covariance matrix. Thus, we have to explore the covariance structure
before doing any modeling. When we choose a covariance structure, it is
clearly important to capture the overall time trend, but it could be counter-
productive if we devoted too many degrees of freedom in the time trend.

The top two panels in Figure 11.4 display respectively the autocorrelation
against the time difference Δij = ti − tj (left) and the variance against
time (right) on the original weight scale. The time difference Δ will be
referred to as lag. The autocorrelation seems to decrease linearly in lag,
and the variance behaves as a Gaussian function. Specifically, using the
least squares method, we fitted the autocorrelation as a linear function of
lag and arrived at

ρ̂(Δ) = 0.94 − 0.0037Δ. (11.26)
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FIGURE 11.4. Covariance structures of body weights (top) and their log-trans-
formations (bottom). The dots are the sample estimates, and the solid lines and
curves are the least squares fits
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TABLE 11.5. Basis Functions Entered in the Initial Forward Step

Step Basis function
1 Intercept
2 x1, x2, and x3

3 t and (t − 6)+

4 (t − 17.4)+

5 (t − 9.7)+

6 tx2 and (t − 23.2)+x2

7 (t − 17.7)+x2

8 (t − 4.4)+x2

9 (t − 25.8)+

10 tx1 and (t − 12.5)+x1

11 (t − 62.7)+x2

12 tx3 and (t − 44.7)+x3

13 (t − 41.4)+x3

14 (t − 50.5)+x3

For the variance we have

σ̂2(t) = exp(4.73 + 0.097t− 0.00083t2). (11.27)

Following (11.26) and (11.27), we assume that the covariance structure
can be characterized by

ρ(Δ) = φ1 + φ2Δ and σ2(t) = exp(ν1 + ν2t + ν3t
2). (11.28)

Thus, the problem of estimating the covariance structure becomes that
of estimating parameters φ and ν in (11.28), because the within-subject
covariance matrix, Σi, is a function of ρ(Δ) and σ2(t) evaluated at the
measurement times.

We first use (11.26) and (11.27) as our initial estimates. In the subsequent
iterations, the estimates will be derived from maximizing the log-likelihood
(11.22) by holding f̂ fixed. For example, as Table 11.7 shows, the covariance
estimates in the second iteration are

ρ̂(Δ) = 0.96−0.0078Δ and σ̂2(t) = exp(5.09+0.06t−0.00045t2). (11.29)

In many applications, data are collected for some specific aims. In this
example, for instance, the main interest now is to examine the effect of iron
dosing, infection, and their potential interaction on the growth of cows. In
such a circumstance, we have nothing to lose by entering the three variables
x1 to x3 of clinical interest into the MASAL model before the forward step
starts to cumulate basis functions. Table 11.5 displays the basis functions in
the order they appear during the forward step in the first (initial) iteration.
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TABLE 11.6. Model Fitting for Body Weights of Cows

Iteration The Fitted Model lr
1 117 + 9.1t − 6.4(t − 6)+ + 2.5(t − 9.7)+

−1.9(t− 25.8)+ − 2.2x2t + 2x2(t − 4.4)+

−4.4x2(t − 17.7)+ + 4.5x2(t − 23.2)+ -3197
2 117 + 9.1t− 6.1(t − 5.7)+ + 2.2(t − 9.7)+

−1.9(t − 25.8)+ − 2.3x2t + 2.1x2(t − 4.4)+

−4.2x2(t − 17.4)+ + 4.3x2(t − 23.2)+ -3134
3 117 + 9.1t− 6.1(t − 5.7)+ + 2.2(t − 9.7)+

−1.9(t − 25.8)+ − 2.3x2t + 2.1x2(t − 4.4)+

−4.2x2(t − 17.4)+ + 4.3x2(t − 23.2)+ -3134

TABLE 11.7. Covariance Estimates

Iteration Estimated covariance equation
1 ρ̂(Δ) = 0.94 − 0.0037Δ

σ̂2(t) = exp(4.73 + 0.097t− 0.00083t2)
2 ρ̂(Δ) = 0.96 − 0.0078Δ

σ̂2(t) = exp(5.09 + 0.06t− 0.00045t2)
3 ρ̂(Δ) = 0.96 − 0.0079Δ

σ̂2(t) = exp(5.09 + 0.06t− 0.00045t2)

Holding the 20 terms in Table 11.5 as if they were fixed, we remove
one least-significant term at a time. This deletion process gives rise to 19
reduced models, from which we choose the one leading to the smallest
GCV. The selected model in the initial iteration is the first one in Table
11.6. Two subsequently selected models are also given in the same table.
Besides, Table 11.7 displays the estimates of the covariance parameters in
all iterations. These tables indicate that the fitting process converges at the
second iteration. The discrepancy between the second and third iterations
is negligible. Thus, we choose the final MASAL as

117 + 9.1t − 6.1(t − 5.7)+ + 2.2(t − 9.7)+ − 1.9(t − 25.8)+

−{2.3t− 2.1(t − 4.4)+ + 4.2(t − 17.4)+ − 4.3(t − 23.2)+}x2. (11.30)

To evaluate the adequacy of model (11.30), we display the residuals and
fitted curves in Figure 11.5. In the left panel, both the residuals and predic-
tions are transformed via the square root of the third-iteration covariance
matrix presented in Table 11.7. The separate growth curves on the right-
hand side are drawn for infected and uninfected cows. The weights between
the two groups were not substantially different for the first half year. How-
ever, from the sixth to eighth months, the infected cows had grown much
more slowly than had the uninfected ones, causing a difference between the
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FIGURE 11.5. Residual plot (left) and the fitted growth curves (right)

two groups. The magnitude of the difference is about the same throughout
the last two-thirds of the study period.

To have a direct look into how well the model (11.30) fits the data, we
plot the prediction curves together with the observations for infected and
uninfected cows, respectively, in Figure 11.6. For the sake of comparison,
the mean curves are also depicted in the figure. For the uninfected cows,
the mean curve has more wiggle than the fitted curve, but otherwise they
are close. For the infected cows, the fitted curve is practically identical to
the mean curve. Therefore, it is evident from Figures 11.5 and 11.6 that
model (11.30) provides a useful fit to the data.

Are the terms in the selected model (11.30) statistically significant? It
is important to realize that MASAL selects models not based on the tra-
ditional standard of significance. Instead, it makes use of GCV. The two
standards are clearly related, but generally they do not lead to the same
model. In fact, because of the adaptive knot allocation and exhaustive
search of basis functions, the GCV criterion is usually more stringent than
the significance level of 0.05, as shown in Table 11.8. Assigning exact sig-
nificance levels to the terms in (11.30) is an open question. Thus, we use a
straightforward, but potentially biased, approach.

First, we hold the eight basis functions in (11.30) as if they were chosen
prior to the model selection. Then, model (11.30) is a linear regression
model. Table 11.8 shows the information related to the significance level of
each term. All p-values are far below a traditional mark of 0.05.

In retrospect, all terms in model (11.30) are highly “significant” if we
have certain faith in the p-values. Could iron dosing and the interaction
between iron dosing and infection play a role that is nevertheless significant
at a less ambitious level? To answer this question, we add x2 and x3, for
example, to model (11.30). It turns out that x2 and x3 do not really affect
the coefficients of the existing terms in model (11.30), and they are not
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FIGURE 11.6. Fitted growth curves (solid) and mean curves (dotted) surrendered
by the observed data points

TABLE 11.8. Significance of Model Parameters with Fixed Basis Functions

Basis function t-Statistic p-value
Intercept 47.5 < 10−9

t 25.6 < 10−9

(t − 5.7)+ −11.8 < 10−9

(t − 9.7)+ 6.1 < 10−8

(t − 25.8)+ −6.2 < 10−8

tx2 −5.0 < 10−6

(t − 4.4)+x2 4.0 0.00007
(t − 17.4)+x2 −10.0 < 10−9

(t − 23.2)+x2 8.6 < 10−9



11.5 Adaptive Spline Models 185

significant at all (p-values > 0.5). This analysis confirms that of Diggle
et al. (1991). Interestingly, however, when fitting the log-weights, Zhang
(1997) found that the interaction plays a significant role.

Example 11.3 Blood Glucose Levels
The data for this example are taken from Table 2.3 of Crowder and

Hand (1990). Six students at Surrey University were offered free meals in
exchange for having their blood glucose levels measured. Six test meals were
given for each student at 10 a.m., 2 p.m., 6 a.m., 6 p.m., 2 a.m., and 10 p.m.
Blood glucose levels were recorded ten times relatively to the meal time as
follows. The first glucose level was measured 15 minutes before the meal,
followed by a measurement at the meal time. The next four measurements
were taken a half-hour apart, and the last four (some five) measurements
one hour apart. Figure 11.8 shows the growth curves of glucose level for
different meal times with the first two records removed.

The primary issue is the time-of-day effect on the glucose variational pat-
tern. Since the hours are periodic, we use x1 to indicate the morning time
and x2 the afternoon time. Furthermore, we use three additional dummy
variables, x3 to x5, to discriminate two meal times in each of the morning,
afternoon, and night sessions. Because of the primary interest, we enter x1

to x5 into the model up front.
Crowder and Hand (1990, p. 13) conducted some preliminary analysis

for these data, using the concept of the total area under the curve (AUC).
In other words, if we take a subject at a meal time, we have a growth
curve of glucose level. Above a reasonably chosen “basal” level there is an
area under the curve. The information contributed by the curve is then
compressed into a single number—the area. After this data compression,
a simple t-test can be employed. The AUC is obviously an interpretable
feature of the curve, whereas it contains limited information. Crowder and
Hand also pointed out some fundamental limitations in the use of AUC.
Here, we attempt to fit the glucose pattern as a function of meal time and
measurement time. Furthermore, we will treat the first two measurements
(before and at the meal time) as predictors instead of responses because
they may reflect the up-to-date physical status of the subject.

As a prelude to the use of MASAL, we need to explore the covariance
structure. As an initial attempt, we make use of the sample covariance
matrix from the first hand residuals that are obtained as follows. For every
meal time and every measurement time, we have six glucose levels from the
six students. It is easy to find the group average of these six levels. Then,
the first hand residuals are the glucose levels less their corresponding group
averages. Using these residuals we plot in Figure 11.7 the sample variance
against time (left) and the sample correlation against the lag (right). The
figure also exhibits the estimated curves by the least squares method:

σ̂2(t) = exp
(
0.535 − 0.0008t− 6.2t2/105 + 1.4t3/107

)
(11.31)
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FIGURE 11.7. Initial covariance structure. The dots are the sample estimates
and the curves the fitted values

and
ρ̂(Δ) = sin

(
0.71 − 0.074Δ + 1.4Δ2/105

)
, (11.32)

where t denotes time in minutes and Δ is the time lag. Note in (11.32) that
we use a sinusoid function to ensure that the correlation is between −1 and
1, although the trend shows a roughly quadratic pattern.

We employ (11.31) and (11.32) to form the initial estimate of the covari-
ance matrix. In the subsequent iterations, the covariance matrix will be
estimated by the maximum likelihood method based on the residuals from
the MASAL models.

We undertook three iterations for this example, and the changes from
iteration to iteration were minor. In fact, the basis functions were nearly
identical in the three iterations. There are changes in the estimates for the
covariance parameters from the initial iteration to the second one, but little
afterwards. The following MASAL model is from the third iteration:

8.5 − 0.5x1 − 0.49x2 − 0.017t + 0.016(t− 220)+, (11.33)

led by the covariance structure

σ̂2(t) = exp
(
1 − 0.0024t− 9.17t2/105 + 1.87t3/107

)
and

ρ̂(Δ) = sin
(
0.793 − 0.00857Δ + 1.65Δ2/105

)
.

From (11.33), we see that the glucose levels were higher when the test
meals were given at night, but whether the meals were eaten in the morning
or afternoon did not matter because the coefficients for x1 and x2 are very
close. The glucose level drops linearly for 3 1

2 hours after the meal and then
stays flat.
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TABLE 11.9. Differences of Glucose Levels Between Different Meal Times

Dummy variables Coefficient S.E. p-value
x1 −0.46 0.142 0.001
x2 −0.43 0.141 0.003
x3 0.02 0.142 0.896
x4 −0.03 0.147 0.863
x5 0.10 0.135 0.447

Figure 11.8 compares the model (11.33) to the original paths of the
glucose levels at 6 different meal times. Looking at the plots at the 10 a.m.
meal time, the fit may not catch the underlying trend well enough. Some
detailed features at the 10 p.m. meal time may be missed by the MASAL
model. Overall, the MASAL model appears to reflect the underlying process
of blood glucose levels.

After performing an AUC analysis, Crowder and Hand concluded that
there was a significant difference of the glucose levels between 10 a.m. and
10 p.m. meals, which, in some aspects, is similar to what we stated above.
Finally, we revert to the primary question: How different are the glucose
levels at different meal times? To answer this, we use the old trick by adding
x3, x4, and x5 to model (11.33) at once. Table 11.9 reports the information
for the five dummy variables only. The coefficients corresponding to x3,
x4, and x5 are practically inconsequential and statistically insignificant.
Therefore, what seems to matter is whether the meals were given at night.

11.5.5 Analysis of Infant Growth Curves

In previous examples, we have used MASAL to fit the growth curve data
that were collected with a relatively regular schedule. In Example 11.3, the
blood glucose levels were measured at the same time for the six subjects.
In many other situations such as the example in Section 11.1, data come
from a rather irregular schedule due to various practical limitations. It is
time for us to take a detailed look at the growth curves presented in Section
11.1.

As opposed to the data in Examples 11.2 and 11.3, Figure 11.1 reveals a
distinguished irregularity feature of the data: Different children made their
visits during the study period at different ages (in days). This irregularity
makes it difficult to scrutinize the covariance structure.

To assess the time trend for the variance at any time point d between 1
and 540 days, we collect a number of cross-sectional body weights, zd, from
all children whose last visit was after d days. If a child visited the doctor
on day d, the child’s weight is included in zd. However, if a child visited the
doctor before and after, but not on, day d, we include the interpolated value
between the two adjacent weights in the shortest time interval containing
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FIGURE 11.8. Blood glucose levels and the models. The thinner lines are indi-
vidual paths, and the thicker ones the fits
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day d. This can be viewed as cutting the growth curves displayed in Figure
11.1 vertically on every day and then collecting all intersected points into
zd. Zhang (1999) found that the variance indeed increases with age and
that the pattern can be adequately described by a cubic polynomial.

To fully specify the covariance structure, we also need to gauge the auto-
correlation of weights between any two days. Because of the irregular time
schedule, an efficient way of examining the autocorrelation is the use of the
variogram (Diggle et al. 1991, pp. 50-51). For a stochastic process Y (t), the
variogram is defined as

γ(Δ) =
1
2
E{Y (t) − Y (t − Δ)}2, Δ ≥ 0.

If Y (t) is stationary with variance σ2, the autocorrelation is a simple trans-
formation of the variogram as follows:

ρ(Δ) = 1 − γ(Δ)/σ2.

Although we have realized that the variance is not constant over time, we
hope that the variogram is still informative in revealing the autocorrelation
structure.

To obtain the sample variogram as a function of lag, we proceeded in two
steps following a procedure described by Diggle et al. (1991, p. 51). First, we
subtract each observation Yij on day dij from the average over a one-week
period to derive an initial residual rij , j = 1, . . . , Ti, i = 1, . . . , n. Then,
the sample variogram is calculated from pairs of half-squared residuals

vijk =
1
2
(rij − rik)2

with a lag of Δijk = dij − dik. At each value of lag Δ, the average of v is
taken as the sample variogram γ̂(Δ). Remarkably, Zhang (1999) discovered
that the autocorrelation follows a linear trend.

After these explorations, it appears reasonable to postulate the following
structure for the covariance structure:

σ2(d) = exp(ν0 + ν1d + ν2d
2 + ν3d

3), d = day 1, . . . , day 540 (11.34)

and
ρ(Δ) = φ0 + φ1Δ, Δ = lag 1, . . . , lag 539. (11.35)

Model (11.1) results from using (11.34) and (11.35) as the backbone of
the covariance matrix and going through the same iterative process as in
the previous examples.

How well does the MASAL model fit the data? We address this ques-
tion graphically. In Figure 11.9, we plot the residuals against the predicted
values. In the original scale, as we expected, the variability is greater for



190 11. Analysis of Longitudinal Data

• • •
•

• •
•
••••

•

• •

• •
••

•

•
••

•

• • ••
•

• ••
••

••
•

•
• ••

••
•• •

••
•

•
• •• •

•
• • •

•

•
•

• • • • • • • •

•
•

• •
•
•

•
•

•
••

•
•
•

• • •
• • •

•
•

•
•

•
•• •

•

•

•
•

•
•

• • • • • • • •• •
•

•• •
• • •

•

•

• • •

•

•
• •• • • •

•
•

•

•

•

•
•

• •
•

•
•

• •
• • •

•

•
•

•

• •

•• •

•

•

• •
••• • • •

•
•
•

• •
•

• •
•

•
•

•

• •

•
• •

•
•

•

• •

•
•

• • •
•

•
• •

•
•• •

••

•• •
•

• • •
• •

•
• •

•

•
•

•
•

• • • •
• •

•
•

• •
•

•• •
•

•
•

•
• • •

• • • •
•

•

• •

•

• •

• • •

• •
•

• •
• •

•
•

•

•
••

• •
•

•
••
•

•

• • ••
• • •

•
•

••
•

•

•

• • •
• •

• • • • ••
•

•
• • •

• •

••

•
• • • •

• •
•

• •

• •

• •
• • •

•
•

•
• • •

•

• • • •

•• •
•
•

•
•

•
•

• • •
•

• •

•
•

• •

•

•

•

••

• •

•

•
• • •

•
• • •

••
• •

• •
•

••••• •• •• ••••• •
••

•

• •
•

• • • •
•

•• •
• •

•
•

•
•

•

•

• •
•

• •
•• • •

•
•

•
•

••
• • • •• ••

• • • • •
•

•

• • •
•

• •
••

•

••

•
•

• •
•

•
•

•
•
•

•
•• • •• ••

•
•

•
•

•
• •

•

• • • •• •
• ••

• • • •••

• •

• • •

•

•

•• • • • • ••• • •

•

•
•

•

•

•

• •
• •

•

••

•
•

•
••

• •

•

•
•
• •• •

• • • •
• ••

•• • • • •

•

•
• •

•

•
• •• •

•

•
• • • • • • •

• •
• • • • •

•

•
•

• •

•

•
•

• •
• •

•
• • • •

•
••••

•

• •
• •

•
•

•
•
•
•

•

•
•

•

• • •
••

•
•

• • •
• •

•

•
•

• •

•

• •
•

•
•

• •
• • •

• •
• •

••
• •

•
•

• •

•

•

•
•

• •

•
• • •

•
••

• •

•

• •
• •

•
•

•
•

•
•• •

••
• • • •

•

•
• •

•

•

••
•

•
• •

•

•
• • • • •

•• •
• •

•
•

•
•

•

•
• •

•
•••

•

•

•

• •••••
• •

•

• •
••

• •
•

•
•

•

• •
•

•

•
••

•
• • • •

•

•
• •

•
•

•
•

• • • • • • •
•

•
•

•
••

•
•

• •

•
• •

•
•

•
•

• •••
••

•
•

•

•
• •

•
•

• •

•
•• •

•
•
•

•
•

•

••
•

•
•

•

• •• • • •

•

•• • •
• •• •

•

••
•

• •
•

•
•

•

••

•

•
•

•

•
• •

•

•
•• • • • •

•

•
• • • •

••
•

• • •
•

•
•
•

•
• • •

•
•
• • •

•
•

•
• •

••
•

•

• • •
• • •

•

• •
•

•
•

• • •
• • • •

•
•

• •

•

••• •
•

•••
•

• •
•
•

•

•

• • •

•

• •
•

•

•

•

•
•

•
• •• • • • • •

••

•

•
•

•

•

•• • • ••
••• • •

•

••
• • •

•

• •
•

•

•

•
•

•

•
•

•
•

•
•

• •

•
••

•
•• • • •

•

•
•
•

•

•
•

•• • • •
• • • •

•

• •
• •

•

•

•
•

•

•••
• •

•
• • •

•

•

•
•

• •

•

• •
•

•
•

•
•

•

•
•

•
•

••

•

•
•

• • • •

•

•
• •

•

• •

•
•

• •

• ••
••

• • • • •
• •• • •

•
•
••

•
• • •

•
•

• •
•

•
• • • • •

•

•
•

• • •
• • • •

• •
• • •

•
• •

• •

•

• •

•
• •

•

•

• • • •
• •

•
• •

•
•

• •
•

•
•

•
•

• •• •

•
•

• •
••

•
•
•

•
•

•
•

•
•

•
• •

•

• •
•

•
•

• • •
•

• •

•
•

• • •
•

•

•

•

•
•

•
• •

• •

• • • •
• •

•

• • • • • •

•
••• •

•
•

•

•

••
•

••

• • •

•
•

•

•

• •
•

• • • •
•
•

•
•

•
•••

•
•

•

•

•

•

•

•

• •
• •

• • • • • •
• • •

• •
• •

•
•

•
•
•

• • •
• ••

• ••

•
•

•

•

•
•

• •
• •

• • • •

•
•

••

•

• •

•
• •• • •

•
• • •

•

• •
••

••
••
•
••

•

•
• •

•
•

• •
•

•
•

••

• •

•

•

•
•

•
• •

•
•
•

• • • •
•••

• •

• •

•

•
•

•
•

•

•

•

• •
• •

•

• •
•••

• • ••
•

•
•••
•

• • ••
•

•

•

•

••
•

•

• •
•
• •

• • • • • • •••
•••

•
•

•

• •
•

• • • •
•• •

• • • ••••
•

•
•

• • • • •• • •
•

•
••

•
•

•
•
•

•• •

•

•

•

•
• • • •

•
••

•
•
•

• •
•

•
•

••••
• • •

••
••

••
••• • • •

• •
• • •

••
•

• •
•

•

• •

•
•
•

• •
• •

••

•

•
•••

••
•

•

•••

•

•

• •
•

• • • ••
• •

•
•

•
• •

• ••

• •
•

•
••
•
••••• •

• •
•
•••

•

•

•
•• •

• •
•
•

• •

• •
•

•
•

•

•

• • •
• • •

•

•
• ••

•
•

••
••

•
•

• •
•

• •
•

•
• • •

•

• •
•
•
•

•
•

•
•

• •
•

•

•

•• •

• •
•

• •
•

•

•

•
••

•

•

• •

• •• • • ••
•

• •

•
• •

•
• •

•

•

•
•• • •

•
•

• •

•

•• •

•
•
•

•

•
•

•

• ••
•
• •

•
•

• •

•

•

• • •
•

• •
•

•
••

• •
•
• •

••
•• • • • •• •

••
•

•

••
•

• •
••

•
• •

•

•

• ••
•
•

•

•

•

•
•• •

•

• •

•

•

•

• ••• • • •
•

• •

•
•

•

• • • • •
• •

• ••

•
•• •

• •
•• •

• •

•

•
•

••
• •

•

•
• •

•
•

•
•
•

•

• •
•

• •• •• •

• •• •

•
•

• • • • •
•

•
•

••• •

•

•

•
• •

•
•

•

•

•
• • • • •

•• •
•

•
•
•

•

•
• •

•
• •

• •

••

• •
•

••
•

•

••

•
• •

•
• • • •

•• • • • • • ••

•

•
•

•

•

• •
• •

•
•

•• •• •
•

• •

•
•

• •
•

•

• ••
• •

•
•• •

•
•• •

• •

•

•
•

•
• •

• •

••

•
•

•

•

•
•

••
•

•
•

• ••
•

•
•

•• ••• •• • • •

• •

•
••• •

•

••• • • •

•

• •

••
•

• • •

• ••

•• •
•
• •

•

•

•
••

•

•

• •
•

• •
• •

•

•
•
• • •

• •• ••
•

••
•

•
• •

•

• • • • •
• •

• ••

• • •

• •

•
•

•
•
•
•
••

•
•• • •

•
•

• • •
• • •

• • •• • •• • •

• • • •
•

• •

•
•

• • • •
• •

•
•
•

•

•
•
•

• •• •
•

• • •
•

••

•

•

•

• •
•

•

•
•

•

•

• • • •• •
• • •

•
••••

•
• • • •

•
•

•
• • ••

•
•

•
••

•
• ••

•
•

• • •
•

•
•

•
•

•
•

•

•

• • •

•

•

•
•

• • •
•
• • • •

•

• • ••

•
•

•

•
• •

•

• •
•

• • ••
•
•

•• ••

•
• •

•
•

•• • • • •

•

•

• •

•
•

• • • •
• •

•

• •
•

•
•

•• •

•
•

•
•
•

• • •

• • •
• •

• •

• ••

•
•

• •
•

• •
•

• •

•
•
•• •• •

•

•
• • •

•

• •
•

•

•
• •

•

•

•
•

• • • • •
• •

•

•
•••••

•
• •

•
•

•
•• • •

•
•

• • • • •
•

•
•

•

•

•
• •

• •

•
•• • • •

•
•
•
•

•
•

• •
• •

•

••••
•••

•

•

••
•

•
•
•

•

•
•

•
••

•
••

• •
•

••
•

• •

•
• •

•
•

•
• •

•••
•
• • • •

••
•
• •

•
•

• •

•
•

•
• • •• •

• ••••
•
••
•

••

•
•

• • •
•

•
• •

•

•
• •

•
•

•

•

•
•

• • •

•
•• •

•

•

•
•

•
• •

•

•

•
• •

• •
•
•

• • • •
•• • • • •

•
•
••

•
•

•
• • •

• • •

•

•
••

•

•

•••• •
• •

•
•

•
•

••

••

•••
•

•
•

•

•

• •
• • •

• •
•• •

• • •
•• •

•
•

• •

•

•

• • • ••• •••
•

•

• •
•

•
•

•

• •
•

• ••

•
•

• •
•

••

•

••
• • ••

•
• •

• •
•

••
• •

•
•

• • •

• • • • • •
••

•

•
•

•

•

•
•

•• •• ••

•
•

••
••

• • •

•
• •

•
•

•
•

•
• •

• • •
•

•
••

•

••

•

•
• •

•
• • • •

•

•
•

•
• ••

•

• • •

•

• • • •
•

• •

•
•

•••

•
• •• •

• •
• •

• •
••

• •
•• •

•
•••

•

•

•
• •

•
• •

•

• •

• •
•

•
•

•
• •

•

•

•

•
•

•

• •

•
•
•

• •

•

• • •• •
• • • • •

•• • • • •
•

• • • •
•• •

•

•

• • •
• •

• •
•

• •

•

•
•

•
•
•

••

•

•

••

•••
•
•
• •

• • •

• • •• • • •

•

••
• •

• •
• •

• •

••
•

•
•

•
•

•••• • •

••
•

•
•

•

• •
•

• •
•

• ••••••
•

•
••••

•

• •

•
•

•
•

• •• •

•

• • • • •
•

• •
•
•

•

•

• •

• •

•
•
• •

• •
•

•
• •••

•

•
•

•

•
•
•

• •
• •

• • •
• ••

•

•
•

•
•

•

••

•

•

• • •
•••• • •

•
• •

•
• •

•
• •

• •
• •

• • •

•

•• • ••
• •

• •
•

• • ••
•

•
• •

•
•

•
• •

•

•••
•

• ••
•

• •
•

• • •
•

•
• • •

•

•
• •

•
• •

•
• • •

• • • • • • •
•

• •
•

•
• •

••
•
•

• •
•

•
•
• •

•
•

• • • ••
•

••
•

•

•

•
• •

• •
•
•

•
• •

•

• •••
•
• •

• • • •
•• •

• •
• ••

•

•
• •

•
• •

•
• •

•

•
•

• •

•
• •

•
•• •

• •

•
• •

•

• •
• ••

•
•

• • •
•

•
• • • • •

• •• •
• •

• •

• •

•

•

•
•

•

••
••

•

••

•
•

•
•

•
•••

•

•
•
•

•

•

•
•
•

•

•

••

•

•
•
••

••

•
••

••

•

•

• ••
•

•

•

•
• •

•

•

•

• •
• •

•
• • •

•

•
•
••

•

•

•

•

••
•

•

•
•

•
•
•
••

•

•

•
•

•

•

•

•

•

•

•

• •

•

•
• ••• ••

•
•

•

•

•

•

•

• •

•
•

•

• • •

•

•

• •• •

•
•

•
•

•

•

•

•

•
•

•
•

• •

• •

• •
•

•

•

• •

•

•

•
•

•

•

•

••

•
•
• •

•
•

•

•

•
• •

•

•
•
•

•

•

••
•

•
•

•

•

•

•

• •

•

•

••
•

••

• •

•

•
• •

•
•

•••

•

•
•

•

• •

•

• •

•

•

•

•

•

•
• • •

•
•

•

••
•

•

••

•

•

•

•

•

•
•

•

•

• • •
•

•

•

•

•

•
•

• • •• •

•

• •
•• •

•
•

•

•
•

• •

•

•

•
•

•

•

•
•••

• • •
•

•

••
•

•

•

•

•
•

•
•

•
•

•
• • •

•

•
• •

•

•
•

•
•

• •

•
• •

•
•

• •
•

•
•

•

•

•
•
•

•
•

•

• • •

•••

•

•
•

•
•
•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•

• • •

••
• •

•

•

•

•

•
•

•
••••

•
•••••••

•
•

•

•
•

•

•

•
•

•
•••

•

•

•
•

•
• •

•

•

••

•

•

• •

•
•

•
• •

•

•

•

•

•

•

•

•
••
••••
• •

• •
•

•

•

• •

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•
••

•

• •
•
• •

••

•

•

•
•

•
•

•

•
•

••
•

•
•

•
•

•
•

•

••

•

•
•

•

•
•

•

•

••

•• •
••
•• •

•

•

•

•

•

•

•

•
•
••
•

•
•

•
•

•
•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

• •

•

••

•
•

•
•

•

•
•
•

•

•

• ••
•

••

•

• • •
•
•

•

•
•

•

•
••

•
•

•

•

• •

•

•

•

•
•

• •
•

• •
•
•

•

•
•
•
•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

•
• ••

•

•
• • •

• •

•

•

•
•

•

•

• •

•

•
•

• •

• •
•

•
•

• •

•

•

•
•

•
•

•

•

•

•

•

•
• ••

• • •

•

••
• •

••
•

•
•

•
•

•

•

•
•
•

•
•
•
••
•
•

•

•
••

•

•

•

•

•

•
•

•
•

•

•

•
•

••

••
•

•
•

•

•
•

•

•

•

•
•

•

•

••

•

•

•
•
••

•••
•
•

•

•
•
•
•

•

•
•

• •

•

•

•

•
•

•

•
••

•
•

• •

•

•

•
•

•
•

•

•

• •
•
••
•
••

•

•

•

•
•

•

•

• •

•

• •

•
•

•

•
•

••

•

••

•

•

•

•
• •

•

•

• •

•

••
•

•

•

•

•

•

•
•

•

•

• ••

• •
•

•
•
•

•

••••

•
•••

•

•
• •

• •

•

•
•

•

•
•

•

•

•

•

•

• •

•

•
•••
• •

•

•

•

•
• • •

•
•

•

•• •

•

•

•

••

•
•••

•

••
•

•

•

•
•

•

•
•

•

•

•

•
•

•
••

•

• •

•

•

•

•
••
• •

• •
•

•

•
•

•

•
•
••

•
•
••

•

• •
•
•

•

•

•
•

•

•

• • •

•

•

•

•
•

•

• •
•

• •
•••

••

•

•

•

•

•

•
• •

•••
••
• • •

•

•
•••

•
• •

•

•

•
•

•

•

•

• •

•

•
•

••

•

•
•

•

•

•
•

•
•

•

• •
•

•

•

•

•

•

•

•

•

• •
• •

•
•

• •

•

•
•• •

•

•

•

•
•

•
• •

•

•

•

•

•
•

•

•

•
•

•
•

•

• •
•

•

• •

•

•

•

•

•

•

•
•

•

•

•
•

•
• •

•
•

• •

•

•
•

•

•
•

•

• ••

• •
•

• •••

•••
•
•

•

•

••

•
•

•
• •

•

•

•

•
•

•
• • •

•

•

•

•

•
••
• •

•
•

•
•

•
•

•

•

••

•

•

•
•

•

•

•
•

•

•

• •
• •

••

•

••

•

•

•
••

•

•

• • •
••

•

• •

•
•

••

•

•

•
• •

•

•

•

•

•
•

•

•

•
•

•

•

•

• •
••

•

•

•

•

•
• •

•

• •
•

•

•
•

•
•

• •

•
••

•
•

•

•

•
•

•
•

•
•

•

••
•

•

•

•

•

•

•
•
•

•
•

•
• •

•

•

•

•

•
•

•

••
•
•

•

•

•

•

•

• •
••

•
•

•
•

•

•

•
•

•
••

•
•
•
•• •

•
• •

•
•

• •
•

•

•

•

•

• • •

• •
••

••

•
•

•

•

•

•

• •

•
•

•

•
•
•

•

•

••

•

• •
•

•
•
• • •

•

•
•

•

•

•

•

•
•

•
•

••

•

••

•
•

• •
•

•

••

•

•

•

•
•• •

•

•

•

•
•

•
•

•
•

•
• • •

•
•
•

•
• •

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

•••
••
•
• •

•
•
•
•
•
•

•
• • ••

•

•

•

•

• •
•

•

•

•

•

• •
•

• ••
•
•
•
•
•
••
•

• •

•

• •

• •
•
• •

•
•

•

•

••
••
•

•

•
•

•
• • •

•
•
• • •

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

••
•

• •

•

•
•

• •

•

•
•

•

•

•

•••
•

•
••
•
•

••
•
•

•••
•

••

•
•
•• •

•
• •

•

•
•

•

•

•

•

•

•

•

•
•
•

••

•

•

•
••

••

•

•

•
••

•

•
•

•
• •

•
••
•
•

•
•

•

•

•
•

•

•

••

•

•

•
•

•
•

•

•

••••
•
•

•

•

•
•• •

•

•
•

• •

•

•

•

•

•
•

•
•

•

•
• •

•

•

•

•

• • •
•

••

••
•

•

•
• •

•

•

•

• •

•

•
•

•

•

•
•

• •

•

• •

•

•

•

•

•

•

•
•
•

•

•

•
•

•
• •

•

••
•

•

•
•
••

•

•

•

•

•
•••

•
••

••

•

•

• •

•

•

•

•

• •

•
•

•

•
•

•

••

•

•
•

•

•

•

•
•

•

•

•

• ••

•

•
•

•
•

• •

•
•

•

• •

•

••

•

•

• •

•

•

•

•

•
•• •

• • •
•

•
•

•

•• •

•

•
• •

•
•

••

•

•
•

•

•

•
•
•

•

•
•

•

•

•• •

• •

•

•

•

•

•

• ••
• •

•
•

•

• •
•

•

•

• •
•

•

•

•

•

•

••

•

• •
••

•

•
•

•

•

•

•

•

•

•••
•

•

•

•••

•

•

•

•

•

•

•

•
•

•
•
•
•

•

•

•
•

•

•

•

•

•
•
• •

•

•

•
• ••
•

•

•

•

• •

•

•

•

•

•

•

•
•

•
•
•
•
•
•

•

•

•

••

•

•
•

••

•

•

•
•

••

• •
• •

•

•••

•

•

•

••
• •

••

• • •
• •

••

•

•

•
•

•

• •
•
•

•

•

••
•
•

•

•

• •

•
•

• •

•
•

• •
•

• •
•
••
•

•

••
•

•
•

•

•

•

•
•
•

•

•

• •

•

•
•

•

•

•

•
•

•

•

•

•

••

•

•

•

•

•
•

•
•

••
•

•
•

•

•

•

•••
•

•

•
•

•
•

•
•

•

•

•

••

•

•

• •

•

••

•
•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•
•
•

•

•

•

•

• • •

•

•
••
•

•

••

•

•

•
•

•

•

••••

•
•

• ••
•

•
•

••

•
•

•
•
•

•
•• •

•• • •

•

•

•
•

•

• ••
• • •

•
•

•• • •

•
•
•

•
•

• •

• •

• • ••
•

•

•

•

•

•

•
•

•

• •
• • •

•
••

•
••

•

•

•
•

•
•

•

•

•

•

•

•
• • •

• •

•
••

•

•
•••

•

•
• • •

•
••

•

•
•
•
•

•

•

••

•
•

•
•

•
•

•
•

•

•

•

•
• •

•

•
•

•

• • •

•

•

•

•

•

•
•

•

•
•
••

•

•
• •

•

•

• •

•

• •

•

• •

•

••
•
•
•

•

•
•

•
•

•

• ••

•

•
•
•

• •

•

•

•• •

•
•

•
• • •

• •
•

• •

•

•

•
•

• •

•

•

•

•

•

•
•

•
•

• •

• •

••

•
•
•

•

•
• •

•

•
•

•
••

•

•

•
• •

•

•
•

•

•

•

•

•

••

•

•

•

••
•

•

•

•

•
•

•
•

•

• •
•

•

•
•••
•

•
•

•

•

•

•

•

•

•
•

•

•
•

•
• ••

•

•

•

•

•

•

•
•

•
•

•
•• •

•
••

•

•

•
•
•
••
•
•

•

••••

•••

•
• ••

•

•

•

•

•

•
•

•
•
•

•
• •

••

•
••

•

•
•

•

• •

•

•

•

••

•
•
•
•

•
•

• •

•
•

•

• •
•

•

•
•

•
•

•

• • •

••
•••
•
•

•

••

•

•

•

•

•
•

•

•

•

•

•
•

•

••
•

•
•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•
•

•
•

•

•

•

• • •
•

•• •
•

•
•

•

•

•
•

•

• •• ••
• • •

•

•

••

•

•••

•

•

•
•

•

•

•
•
•

•

•

••

•
• •

•

•
•

•

•

•

•

• •
•

• •

•• •

•

•
•

•

•
•

•

•

• •

•

•

•

•

•
•
•
••••

•

•

••

•

•
•

•

• •

•

•
•
•

•

•
• •

•

••

•

•
•

• •
•

•

•

•
•

•

•

•

••
•
•

•

•

• • ••
• • •

••
••

•

•

•

•

•

• •

••
•
•

••
•

• ••

••
•

•
•

•

•
•

•

•
•

•

•

•
••

•
•

•

•
•
•

•

•

•

•

•

•

•

•
•

••
•

•

•

•

•
•

•

•
•

•
•

•

•

•
•

•
•

•

• •

• •

•
•
••

• ••
•

•
•

•

•

•

•

•
•

• •
•

• •

•

•

•
•

•

•

•
•

•

•

••

•

• •

• •

•

•

•

•

• •

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•• •

•
• ••
•

•
•
• • • •

•

•
•

• •

•
•

•
•

•
•

• •

•

•

•
•

•
•
•

•

•

•

•

•
•

•

•

•
•

••

•
•
•

•

•

•

•
• •

•

•
•

•

•
•

• •

•

•
•

•
•

•
•
•
•

••

•
•

•
•

•

•••

•

•••
•

•

•

• •

•

•

•

•
•

•
•
•••

•
•••
•

•

•
•
•
• •

•• •

•
•

•

•
• •

•
•

•

• • •
•
•

• •
• •

•

•

•
•

•

•
•

•

•

•
•

•
•

•

•

•
••
•
•

•

•
•

•

•

•

• •

• •

••
•

• •
•

•

•

•

•

•

• •
• •

•

• •
•

••

•

•• •

•

•
•

•• •

•

•
•

•
•

•
•

••

•

•

•• • ••

• •

••

•

•••

•

•

• •
•

•

•

•

• • •

•
• •

••

•
•

•

• •

•
• •

••

•

•
•

•

•

• • •

•

•
•

•

•
••

•

• • • • •
••

• •

•

•

• •
•

•

•

•

• •

•

•

•

•

•
•

•

•
••
•
•
• ••

•

•

•
•

•
•

•

•

•

• •
•

•
•

• •

••

•

•

• •••
•

••

•

•

•

• ••

•

•

•
•

• •
•

•

• •

•

•

•

• •

•

•

•• •
•

•

•
•

•

•

•
•

•

•
• • •

•

•

•
•

•

•
•

•
•

•••

•

•• •• •

• •

FIGURE 11.9. Residual plots against predictions. The left panel is in the original
scale and the right one in a standardized scale

a larger predicted value (see the left panel). After transforming the resid-
uals through the covariance matrix, no apparent structure emerges when
the transformed residuals are plotted against the transformed prediction.
Thus, these residual plots are in favor of the selected MASAL model and the
covariance structure (11.34) and (11.35). To further evaluate the MASAL
model, we plot the fitted curves surrendered by the observed points at
gestational ages of 36 and 40 weeks and for boys and girls, respectively,
in Figure 11.10. We chose 36 and 40 weeks because a 40-week delivery is
a typical full-term pregnancy, and 36 weeks is one week short of a term
delivery (37 weeks or later). It is clear that the fitted curves reside well
in the midst of the observations although there remain unexplained varia-
tions. Therefore, it is evident from Figures 11.9 and 11.10 that the selected
MASAL model is adequate and useful.

As we mentioned earlier, we are particularly interested in the effect of
cocaine use by a pregnant woman on her child’s growth. This variable,
denoted by c previously, did not stand out in the MASAL model. This is
clearly an indication of this factor’s limited impact. We should also real-
ize that our model-building and variable-selection procedures are not the
same as the traditional ones. Could cocaine use contribute significantly to
infant growth under a traditional model? To answer this question, we use
model (11.1) as our basis. Precisely, we hold all terms in this model as
fixed and examine the contribution of c by including c as a main effect or
an interaction term with one of the existing terms in addition to all terms
already in model (11.1). Table 11.10 presents the significance of these indi-
vidual terms, where the p-values are based on a two-sided t-test. Given the
number of tests that were undertaken, two terms involving the interactions
between cocaine use and gestational age may be worth pursuing. Overall,
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FIGURE 11.10. Observations and predictions for boys and girls born at 36 and
40 weeks. The thicker curves are from the MASAL model (11.1), and the ver-
tical lines indicate the knot locations. Model (11.6) is drawn in thinner curves
separately for the cocaine-use group (solid) and no-use group (dashed). Along
with the number of observations, the unweighted residual sum of squares (RSS)
is given respectively for models (11.1) and (11.6) inside each panel. This figure
is reproduced from Figure 4 of Zhang (1999)
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TABLE 11.10. The Impact of Cocaine Use on Infant Growth

Added term Coefficient t-statistic p-value
c 0.162 2.42 0.016

cd 0.0004 1.37 0.17
c(d − 120)+ 0.0003 0.96 0.34
c(ga − 28)+ 0.0166 2.69 0.007

cd(ga − 28)+ 0.00003 1.37 0.17
c(d − 60)+(ga − 28)+ 0.00005 1.68 0.093

c(d − 490+)+(ga − 28)+ 0.0001 0.35 0.73
csd 0.0002 1.10 0.27

cs(d − 120)+ 0.0004 0.71 0.48
c(d − 200)+ 0.0002 0.52 0.60

This table is reproduced from Zhang (1999)

our data do not support the hypothesis that cocaine use by a pregnant
woman influences her infant’s growth significantly.

11.5.6 Remarks

There are a number of research questions that are not explored here. The
most important ones are whether the iterative procedure for estimating
the covariance matrices converges, say, in probability, and how fast the
convergence is. When no covariates but time are involved, our iterative
procedure is analogous to the so-called iterated Cochrane–Orcutt procedure
studied by Altman (1992). In one-dimensional smoothing with correlated
errors, Truong (1991) and Altman (1992) provided some asymptotic and
numerical properties for the covariance estimates after the first iteration.
It would be interesting to extend their theoretical results to our iterative
scheme. Truong (1991) assumed certain structures for the errors. It would
be helpful to consider these structures when we apply MASAL for the
analysis of longitudinal data.

Our examples have repeatedly shown that the MASAL model almost
converges in the second iteration. This does not appear to be accidental,
provided that the initial covariance matrix is constructed with “careful”
thought. Next, we give a heuristic argument that supports the convergence
of the iterative algorithm. This argument will also reveal where the con-
vergence can be destroyed.

The convergence here refers to the gradual increase in the likelihood, lr,
defined in (11.22) as we move along with iterations. Suppose that we start
with an initial covariance matrix Ψ0, and f0 is the resulting initial MASAL
model. Then, the covariance matrix is reestimated by maximizing lr while
f0 is held fixed, giving Ψ1. Clearly,

lr(f0, Ψ1) = max
Ψ

lr(f0, Ψ) ≥ lr(f0, Ψ0). (11.36)



11.6 Regression Trees for Longitudinal Data 193

Next, beginning at Ψ1 we build another MASAL model, f1, by minimizing
the WSS defined in (11.12) or maximizing lr for the given Ψ1. If we indeed
have

lr(f1, Ψ1) = max
f in (10.6)

≥ lr(f0, Ψ1), (11.37)

then lr(f1, Ψ1) ≥ lr(f0, Ψ0), which shows that lr does not decrease from one
iteration to the next. The relationship in (11.36) is granted if we assume
a parametric covariance structure. Note critically, however, that MASAL
does not really guarantee the expression (11.37) due to its stepwise nature.
Moreover, the MASAL function f is chosen from a set of functions with
infinite dimensions; thus, blindly maximizing lr is not so meaningful, be-
cause larger models always have advantages over smaller ones. Note also
that we have lr(f1, Ψ1) ≥ lr(f0, Ψ0) if lr(f1, Ψ1) ≥ lr(f0, Ψ1). If necessary,
the MASAL algorithm can be modified to ensure the latter inequality. The
key idea is to use f0 as a reference while we build f1, which is originally
constructed from nothing. It warrants further investigation whether the
step-by-step increase of lr is at the price of missing a better model down
the road.

11.6 Regression Trees for Longitudinal Data

Segal (1992) modified and used regression trees described in Section 10.2
to model longitudinal data. If continuity is not a major concern, regression
trees provide a useful tool to stratify growth curves and help us answer
questions such as “Do the growth curves of body weights of cows in Ex-
ample 11.2 form covariate-specific clusters?” MASAL does not explicitly
extract meaningful subgroups of growth curves characterized by covari-
ates, although it is straightforward to infer the subgroups from a MASAL
model.

In theory, a regression tree model can be expressed by a function in
(10.6), namely, a MARS model. In reality, tree-based methods and adaptive
splines use different model-building techniques. As a consequence, they do
not necessarily end up with the same model.

It is also important to clarify the applicability of the regression trees, as
opposed to that of MASAL. We have seen that MASAL has no restriction
on the data structure. In contrast, the regression trees as formulated by
Segal (1992) can be applied to the longitudinal data with a regular struc-
ture. That is, all subjects should have the same number of observations and
should be arranged for measurements at a well-defined, consistent schedule.
A slight relaxation to this restriction will be discussed later.

In Section 10.2 we described regression trees in the ordinary regression
setting. Again, we need a within-node impurity in tree growing and a cost-
complexity criterion for tree pruning. So, we first establish the two key
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criteria and then expand our introduction by addressing other more tech-
nical issues.

For any node τ, let Ψ(θτ ) be the within-node covariance matrix of the
longitudinal responses and ȳ(τ) the vector of within-node sample averages
of the responses, where θτ is a vector of parameters that may depend on
the node. Then, an obvious within-node impurity as measured by the least
squares is

SS(τ) =
∑

subject i∈τ

(yi − ȳ(τ))′Ψ−1(θτ )(yi − ȳ(τ)). (11.38)

To split a node τ into its two daughter nodes, τL and τR, we aim at min-
imizing both SS(τL) and SS(τR). In other words, we maximize the split
function

φ(s, τ) = SS(τ) − SS(τL) − SS(τR), (11.39)

where s is an allowable split. Moreover, it is also reasonable to define the
tree cost as

R(T ) =
∑
τ∈T̄

SS(τ), (11.40)

and then the cost-complexity (4.7) follows naturally.
To use (11.38) in the regression trees, we need to figure out the covariance

matrix Ψ(θτ ), as we did in MASAL. Conceptually, Ψ(θτ ) is allowed to
change from node to node. This relaxation can cause several problems,
however. The split function, φ(s, τ), is not guaranteed to be nonnegative.
The cost of computation could be high. Most importantly, as the node size
becomes smaller and smaller, it is more and more unrealistic to estimate the
within-node covariance matrix precisely. Therefore, in practice, it is more
likely than not that we would choose a pooled sample covariance structure
for all nodes. Unlike MASAL, the regression trees of Segal (1992) do not
iteratively update the covariance and tree structures.

As we pointed out earlier, the regression trees of Segal require a regular
data structure. What can we do when the data are largely, but not perfectly,
regular? Example 11.3 on the blood glucose levels is such a case, where
there are a few missing responses, and one extra measurement was taken
at three meal times between 10 p.m. and 6 a.m. Segal (1992) proposed to
impute the missing responses using the EM algorithm (see, e.g., McLachlan
and Krishnan 1997). The merit of this solution is not clear. Some obvious
concerns arise. The first one is the computational efficiency. More seriously,
the imputation depends on the choice of the covariance structure. If the
imputation procedure is not particularly sensitive to the misspecification of
the covariance matrix, it is likely to produce reasonable and robust results.
These issues are largely unexplored.
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11.6.1 Example: HIV in San Francisco

In this section we illustrate regression trees with an application adapted
from Segal (1992). We wish to express our special gratitude to Professor
Mark Segal, at the University of California, San Francisco, who generously
sent his postscript files for us to produce Figures 11.11–11.13.

In Chapter 8 we have highlighted the importance of estimating the incu-
bation period from HIV infection to the onset of AIDS. The AIDS symp-
toms result from deterioration of the immune system. Thus, it is important
to understand the natural history of this immune function decay in order
to evaluate the therapeutic effects, to project the course of epidemic, etc.

The incubation period for AIDS is long (the median ≈ 10 years) and
varies among individuals. This variability is hypothetically due to the exis-
tence of subgroups expressing distinct patterns of immune-function decay
as measured by markers such as β2 microglobulin. Segal (1992) utilized the
regression trees to determine whether subgroups exist and, if so, whether
these subgroups can be characterized in terms of covariates.

The analysis involves 96 subjects in a cohort of 462 homosexual men
from sexually transmitted disease clinics, sexual partners of AIDS patients,
and the San Francisco community from 1983 to 1984. Annual reports were
made for the study participants with regard to information including so-
ciodemographic, medical history, and immune markers. The 96 subjects
were chosen because they had provided data on β2 microglobulin for their
first five annual visits, which consist of the response measurements. The
covariates entered into the tree-based analysis include age; education; race;
number of past episodes of syphilis, gonorrhea, genital herpes, and hepati-
tis B; number of male sex partners in the preceding year; history of blood
transfusion; and smoking and alcohol consumption. All the covariates are
baseline variables. Detailed study design has been described in Moss et al.
(1988).

Based on the sample correlations, Segal used a compound symmetry
covariance structure as defined in (11.17) and created the regression tree
in Figure 11.11.

Figure 11.12 displays subgroup-specific individual curves of β2 microglob-
ulin corresponding to the nodes in Figure 11.11. The average profile of β2

microglobulin for each node is shown in Figure 11.13.
From Figures 11.11–11.13, it appears that the less sexually active sub-

jects, specifically those who had fewer than 28 male partners in the preced-
ing year (node 2), had lower average levels of β2 microglobulin than their
more sexually active counterparts (node 3). Those more sexually active,
but without past syphilis, subjects (node 4) had a similar average pro-
file to those less sexually active subjects. The individuals who were more
sexually active and had past syphilis had the worst immune-function loss.
Further, Figure 11.13 also shows that the node-specific average profiles are
not parallel. The rate of immune function loss for the subjects in node 3
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FIGURE 11.11. β2 microglobulin regression tree. Adapted from Segal (1992)

is faster that that for the subjects in node 2, and likewise for nodes 4 and
5. It is noteworthy, however, that more sexually active individuals might
have been infected earlier. In other words, the number of sex partners may
not be the real cause, but instead it might have acted as a proxy for other
important factors such as different infection times that were not available
in the data.
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FIGURE 11.12. Patterns of β2 microglobulin for all individuals in four nodes of
the tree presented in Figure 11.11. This figure was composed using postscript
files made by Mark Segal
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12
Analysis of Multiple Discrete
Responses

In Chapter 11 we introduced some contemporary approaches to analyzing
longitudinal data for which the responses are continuous measurements.
In fact, most people imply continuous responses when they refer to lon-
gitudinal data. The analysis of discrete longitudinal data is a relatively
new, though active, subject. Readers who are interested in methodologi-
cal developments may find many unanswered questions in this chapter. The
purpose of this chapter is to shed some light on this growing subject. In the
statistical literature, the topic may be tagged with clustered or correlated
discrete/binary outcomes. So far, most progress has been made toward the
binary outcomes; hence, therein lies the focus of this chapter.

Sometimes, correlated discrete responses are generated from a single end-
point by repeatedly measuring it on individuals in a temporal or spatial
domain. They are called longitudinal discrete responses. Examples 12.1 and
12.2 represent this class of data. Other times, as in Example 12.3 and in
Section 12.3, the correlated responses consist of distinct endpoints. In re-
cent years, we have witnessed more and more studies that involve both
types of responses, such as Example 12.4.

Example 12.1 To investigate racial differences in the cause-specific preva-
lence of blindness, Sommer et al. (1991) used a randomly selected, stratified,
multistage cluster sample of 2395 Blacks and 2913 Whites 40 years of age
and older in East Baltimore. Those 5208 subjects underwent detailed oph-
thalmic examinations by a single team. In this study, the authors observed
bivariate binary responses in a spatial domain for each subject, namely, the
blindness of left and right eyes. The authors found that the leading causes
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of blindness were unoperated senile cataract, primary open-angle glaucoma,
and age-related macular degeneration. They also concluded that the pat-
tern of blindness in urban Baltimore appears to be different among Blacks
and Whites. Whites are far more likely to have age-related macular degen-
eration, and Blacks to have primary open-angle glaucoma. Subsequently,
Liang, Zeger, and Qaqish (1992) reanalyzed these data, comparing different
statistical approaches.

Example 12.2 From 1974 to 1977, a team of investigators conducted a
longitudinal study of the respiratory health effects of air pollutants among
children and adults living in six cities in the United States. The study de-
sign was reported by Ferris et al. (1979) and Sommer et al. (1984). The
selection of the cities was to cover a range of air quality based on their
historic levels of outdoor pollution. In all but one small city, the initial
examinations included all first- and second-grade school children. In the
small city, children up to the fifth grade were included. The study subjects
were reexamined annually for three years. At each visit, the investigators
collected information regarding the number of persons living in the house,
familial smoking habits, parental occupation and education background,
the fuel used for cooking in the house, pulmonary function, respiratory
illness history, and symptom history. In Ware et al. (1984), they selected
10,106 children 6 to 9 years of age at the enrollment and analyzed wheeze
status (yes, no) of the children as a longitudinal binary outcome. Addi-
tional analyses have been conducted by Zeger, Liang, and Albert (1988)
and Fitzmaurice and Laird (1993) among others.

Example 12.3 This is an example where the risk of two distinct, but
presumably correlated, outcomes were studied, i.e., respiratory disease and
diarrhea in children with preexisting mild vitamin A deficiency.

Sommer and colleagues (Sommer et al. 1983 and 1984) conducted a
prospective longitudinal study of 4600 children aged up to 6 years at en-
try in rural villages of Indonesia between March 1977 and December 1978.
Their research team examined these children every 3 months for 18 months.
An average of 3135 children were free of respiratory disease and diarrhea at
the examination. At each examination, they recorded interval medical his-
tory, weight, height, general health status, and eye condition. They found
that the risk of respiratory disease and diarrhea were more closely associ-
ated with vitamin A status than with general nutritional status.

Example 12.4 Genes underlie numerous conditions and diseases. A vast
number of genetic epidemiologic studies have been conducted to infer ge-
netic bases of various syndromes. Multiple clustered responses naturally
arise from such studies. For example, Scourfield et al. (1996) examined the
gender difference in disorders of substance abuse, comorbidity anxiety, and
sensation seeking, using the database from the Genetic Epidemiology Re-
search Unit, Yale University School of Medicine, New Haven, Connecticut,
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FIGURE 12.1. Two pedigrees of different family sizes. Each square or circle rep-
resents a family member. The left pedigree pinpoints the relationship of relatives
to the proband. A sequence of three bits (0 or 1) is displayed within all squares
and circles, marking the status of substance abuse, anxiety, and sensation seeking,
respectively.

under the leadership of Professor Kathleen Merikangas. Two hundred sixty-
two probands, through whom the other family members are ascertained,
are included in the database. Information regarding a variety of psychiatric
disorders and predictive covariates, e.g., gender, has been recorded for all
probands and some of their relatives (parents, siblings, offspring, etc.). The
pedigrees in Figure 12.1 illustrate typical family structures. We should note
that the first proband has six relatives in the record, whereas the second
one has four. In other words, the family size varies from pedigree to pedi-
gree. It is also important to realize that multiple disorders, i.e., three, are
evaluated for every member of a family.

12.1 Parametric Methods for Binary Responses

Suppose that Yi = (Yi1, . . . , Yiqi )′ is a vector of binary responses for subject
i, i = 1, . . . , n. In Example 12.1, qi = 2 for all 2913 subjects, and (Y1, Y2)
indicates the blindness of the left and right eyes. Likewise, we can easily
define the response vector for Examples 12.2 and 12.3.

Parametric models have dominated the applications involving multiple
binary responses. Log-linear and marginal models are in the spotlight in
the literature. We give a brief discussion of these two models and strongly
recommend reading related articles and books cited in this chapter.



202 12. Analysis of Multiple Discrete Responses

12.1.1 Log-Linear Models

One of the most popular and conceptually simple models for multiple binary
responses is the log-linear model that assumes the joint probability of Yi

to be of the form

IP{Yi = yi} = exp

⎡
⎣ qi∑

j=1

θijyij +
∑

j1<j2

θij1j2yij1yij2 + · · ·

+θi1···qiyi1 · · · yiqi + Ai(θi)] , (12.1)

where
θi = (θi1, . . . , θiqi , θi12, . . . , θi,qi−1,qi , . . . , θ1···qi)

is the (2qi−1 − 1)-vector of canonical parameters and exp[Ai(θi)] is the
normalizing constant.

Model (12.1) appears to involve too many parameters. In practice, how-
ever, it is usually greatly simplified. Two steps are critical to this simpli-
fication. First, most data are regular in the sense that the components of
θi correspond to fixed coordinates. In other words, θi does not depend on
i, and this subscript can be removed. In Examples 12.1–12.3, the vector
of canonical parameters, θi, does not depend on i. For instance, Example
12.3 involves only 22 − 1 = 3 parameters. Second, the canonical param-
eters with respect to the terms with the third- or higher-orders are gen-
erally hypothetically set to zero. The resulting models are referred to as
the quadratic exponential model (see, e.g., Zhao and Prentice 1990; Fitz-
maurice and Laird 1995). Estimating those “removed” parameters could
otherwise raise a tremendous challenge to data analysis.

In family studies as illustrated by Example 12.4, the vector of canonical
parameters, θi, may not have a fixed coordinate system. Although the
number of interested disorders is three for every subject, the size of pedigree
differs when the entire pedigree is regarded as a unit, or cluster. In such
applications, it is vital to form a parametric system that reflects the nature
of Yi. This practice depends, however, on individual applications.

Next, let us take a look at the quadratic exponential model in which the
canonical parameters have a fixed coordinate system:

IP{Y = y} = exp

⎡
⎣ q∑

j=1

θjyj +
∑
j<k

θjkyjyk + A(θ)

⎤
⎦ , (12.2)

where
θ = (θ1, . . . , θq, θ12 · · · θq−1,q).

Based on model (12.2), the canonical parameters have certain interpreta-
tions. Precisely, we have

log
[
IP{Yj = 1|Yk = yk, Yl = 0, l 	= j, k}
IP{Yj = 0|Yk = yk, Yl = 0, l 	= j, k}

]
= θj + θjkyk.
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Thus, θj is the log odds for Yj = 1 given that the remaining components
of Y equal zero. In addition, θjk is referred to as an association parame-
ter because it is the conditional log odds ratio describing the association
between Yj and Yk provided that the other components of Y are zero. It
is important to realize that the canonical parameters are the log odds or
odds ratio under certain conditions, but we should be aware of the fact
that these conditions may not always make sense.

Why is model (12.1) called a log-linear model? Let us consider a bivari-
ate case. It follows from model (12.2) that the joint probability for the n
bivariate vectors is

exp[θ1(n21 + n22) + θ2(n12 + n22) + θ12n22 + nA(θ)], (12.3)

where n11 =
∑n

i=1(1 − yi1)(1 − yi2), n12 =
∑n

i=1(1 − yi1)yi2, n21 =∑n
i=1 yi1(1 − yi2), and n22 =

∑n
i=1 yi1yi2 are the cell counts in the fol-

lowing 2 × 2 table:

Y2

0 1

Y1
0 n11 n12

1 n21 n22

It is easy to see that the expression in (12.3) equals

n!
n11!n12!n21!n22!

mn11
11 mn12

12 mn21
21 mn22

22 ,

where
log(mjk) = μ + λY1

j + λY2
k + λY1Y2

jk , (12.4)

with

μ = (θ1 + θ2)/2 + θ12/4 + A(θ), (12.5)
λY1

1 = −θ1/2 − θ12/4 + A(θ), (12.6)
λY2

1 = −θ2/2 − θ12/4 + A(θ), (12.7)
λY1Y2

11 = θ12/4, (12.8)

and λY1
2 = −λY1

1 , λY2
2 = −λY2

1 , and λY1Y2
12 = λY1Y2

21 = −λY1Y2
22 = −λY1Y2

11 .
In other words, (n11, n12, n21, n22) follows a multinomial distribution with
means specified by the log-linear effects in (12.4). This is usually how the
log-linear models are introduced (e.g., Agresti 1990, Chapter 5). Further,
Equations (12.5)–(12.8) provide another way to interpret the canonical pa-
rameters.

12.1.2 Marginal Models

As we mentioned earlier, the interpretation of canonical parameters in the
log-linear model depends on certain conditions that are not always of clin-
ical relevance. On the other hand, after the reformation of the log-linear
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model in (12.4), the canonical parameters have one-to-one relationships
with the “marginal” parameters as delineated in (12.5)–(12.8). Here, the
marginal parameters refer to the main and interactive effects in model
(12.4). For many investigators, the question of utmost importance is related
to the marginal parameters that are defined directly from the marginal dis-
tribution of the responses, unlike the canonical parameters, which involve
all responses at once.

One possibility is to reparametrize the log-linear model in terms of marginal
means, correlations, etc. In fact, the Bahadur representation is another typ-
ical method to represent the log-linear model, and it directly extends the
multinomial distribution by including additional multiplicative factors to
take into account the association among the components of Y (Bahadur
1961; Fitzmaurice et al., 1993; Diggle et al. 1991). In mathematical form,
we have

IP{Y = y} =
q∏

j=1

μ
yj

j (1 − μj)(1−yj)

×(1 +
∑

j1<j2

ρj1j2rj1rj2 +
∑

j1<j2<j3

ρj1j2j3rj1rj2rj3 + · · · + ρ1···qr1 · · · rq),

where

μj = IE{Yj},

rj = (yj − μj)/
√

μj(1 − μj),

ρj1···jl
= IE{Rj1 · · ·Rjl

},
j = 1, . . . , q.

The Bahadur representation is one step forward in terms of formulating
the log-linear model as a function of the parameters such as means and
correlations that we used to see in the analysis of continuous responses.
This representation is, however, severely handicapped by the fact that the
“hierarchal” correlations entangle the ones at lower orders and the means
and that it is particularly problematic in the presence of covariates. To
address the dilemma between the parameter interpretability and feasibility,
Liang et al. (1992) proposed the use of marginal models parametrized by
the means, the odds ratios, and the contrasts of odds ratios. Specifically,
let

γj1j2 = OR(Yj1 , Yj2) =
IP{Yj1 = 1, Yj2 = 1}IP{Yj1 = 0, Yj2 = 0}
IP{Yj1 = 1, Yj2 = 0}IP{Yj1 = 0, Yj2 = 1} ,

ζj1j2j3 = log[OR(Yj1 , Yj2 |Yj3 = 1)] − log[OR(Yj1 , Yj2 |Yj3 = 0)],

and generally,

ζj1···jl
=

∑
yj3 ,...,yjl

=0,1

(−1)b(y) log[OR(Yj1 , Yj2 |yj3 , . . . , yjl
)],
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where b(y) =
∑l

k=3 yjk
+ l − 2.

It is quite unfortunate that evaluating the full likelihood based on the
new set of parameters, μj , γj1j2 , and ζj1···jl

, is generally complicated. To
gain insight into where the complications arise, let us go through the details
for the bivariate case. We need to specify the probability IP{Y1 = y1, Y2 =
y2} def= p(y1, y2) for four possible combinations of (y1, y2). The following
four equations can lead to the unique identification of the four probabilities:

p(1, 1) + p(1, 0) = μ1,

p(0, 1) + p(1, 1) = μ2,

p(1, 1) + p(1, 0) + p(0, 1) + p(0, 0) = 1,

p(1, 1)p(0, 0) = γ12p(0, 1)p(1, 0).

From the first three equations, we have p(1, 0) = μ1 − p(1, 1), p(0, 1) =
μ2 − p(1, 1), and p(0, 0) = 1 − μ1 − μ2 + p(1, 1). If we plug them into the
last equation, we have a quadratic equation in p(1, 1),

(1 − γ12)p2(1, 1) + [1 + (γ12 − 1)(μ1 + μ2)]p(1, 1) − γ12μ1μ2 = 0,

and the solution for p(1, 1) def= μ11 is (Dale, 1986){
1+(γ12−1)(μ1+μ2)−{[1+(γ12−1)(μ1+μ2)]

2+4(1−γ12)γ12μ1μ2}− 1
2

2(1−γ12) if γ12 	= 1,

μ1μ2 if γ12 = 1.

Using this solution, it is easy to conclude that

p(y1, y2) = μy1
1 (1 − μ1)1−y1μ2(1 − μ2)1−y2 + (−1)y1−y2(μ11 − μ1μ2).

When we have more than two responses, the problem could be intractable
if we do not reduce the dimension of the parameters appropriately such as
setting γj1j2 = γ.

12.1.3 Parameter Estimation∗

In the log-linear and marginal models we have not introduced covariates.
As a matter of fact, the issue of most interest to us is modeling the dis-
tribution of Y in the presence of covariates as in the previous chapters.
In principle, it is straightforward to incorporate a set of the covariates, x,
into the models. The canonical parameters θ in the log-linear model (12.2)
and the marginal parameters in the marginal models can be defined as a
function of x, which is called the link function in the context of generalized
linear models (McCullagh and Nelder 1989, p. 27).

Depending on the specification of the link function, finding the maximum
likelihood estimates of the parameters is not impossible; see, e.g., Section
12.2.3. Nevertheless, a more common practice is to make use of so-called
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generalized estimating equations (GEE), which simplify the estimation pro-
cess while retaining some of the most important asymptotic properties of
the estimates as elaborated below (Liang and Zeger 1986).

Now, let us turn back to model (12.2) and explain how to use the idea
of generalized estimating equations. First, we reexpress the probability in
vector form:

IP{Y = y} = exp[θ′z − A(θ)], (12.9)

where z = (y′,w′)′ and w is a
(

q
2

)
-vector consisting of (y1y2, . . . , yq−1yq)′.

For model (12.9), we assume that there exists a vectorial link function η
that transforms x coupled with a condensed vector of parameters β to θ,
e.g., θ = η(x′β). Then, the GEE approach attempts to solve the unbiased
estimating equations (Godambe 1960; Zhao and Prentice 1990)

U(β) =
n∑

i=1

JV −1
i

(
yi − μ
wi − ω

)
= 0, (12.10)

where ω = IE{w}, Vi = Cov(zi), and J = ∂θ/∂β′.
Liang et al. (1992) called (12.10) GEE2, because it is a second-order

extension of the estimating equations proposed by Liang and Zeger (1986).
However, if we set the block off-diagonal matrices in J and Vi to zero in
(12.10), then (12.10) becomes GEE1, which can be less efficient than GEE2
when the link function is misspecified. We should also note that the block
off-diagonal elements of the covariance matrix Vi cannot be determined
by μ and ω. To avoid estimating additional parameters, so-called working
matrices are usually used to replace the underlying matrices (Zhao and
Prentice 1990).

The solution β̂ to (12.10) has, asymptotically as n → ∞, a multivari-
ate normal distribution with mean 0 and covariance matrix that can be
consistently estimated by(

n∑
i=1

JViJ
′

)−1( n∑
i=1

JVi

(
yi − μ
wi − ω

)(
yi − μ
wi − ω

)′
ViJ

′

)(
n∑

i=1

JViJ
′

)−1

evaluated at β̂ (Liang et al., 1992). It also turns that U(β) resembles the
quasi-score function derived from the quasi-likelihood as introduced in (9.5)
of McCullagh and Nelder (1989).

Likewise, if we are interested in the pairwise odds ratio and use the
marginal models, then we assume a link function between parameters μj

and γjk, and covariates x. The rest of the derivation for GEE is identical
to that above.

12.1.4 Frailty Models

In Example 12.4, we have encountered different numbers of binary re-
sponses among different measurement units, namely, families. Let the data
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for family i consist of binary responses Yij and covariates xij , j = 1, 2, . . . , ni,
i = 1, 2, . . . , I. Here, I is the number of families, and ni is the number of
relatives in the ith family, i = 1, 2, . . . , I.

In such family studies, the association of the health condition between
relatives is of interest. One approach is to generalize the log-linear model
introduced in Section 12.1.1 and to include higher-order interaction terms.
Particularly, based on Connolly and Liang (1988), we may assume

logitIP{Yij = 1|Yil, l 	= j,xi} = Fni(Wij ; θ) + xijβ, (12.11)

where Wij =
∑ni

l�=j Yil, Fni is an arbitrary function, and θ is a parameter.
This leads to the joint probability for the outcome in the ith family

log IP{Yi = yi|xi} = α +
ni∑

j=1

yijxijβ +
Wi+yij−1∑

l=0

Fni(l; θ). (12.12)

Related to model (12.12), Bonney (1986, 1987) introduced several classes
of regressive logistic models, assuming simple Markovian structures of de-
pendence among the traits of family members. In essence, these regres-
sive logistic models are ordinary logistic regression models except that the
“covariates” are derived from a set of common sense covariates and the
outcomes of other family members. The regressive logistic models are prac-
tically appealing and have been widely used in segregation analysis.

Babiker and Cuzick (1994) noted two major problems with model (12.12)
and its like. First, the parametrization depends on the family size ni, and
the coefficients obtained from different families are irreconcilable. Second,
they pointed out that the conditional coefficients often are not easily con-
verted to parameters of interest even when the family sizes are the same.
For these concerns, they proposed the use of a simple frailty model. In most
family studies, however, their simple one-frailty model cannot address ques-
tions of importance. To this end, it is useful to enhance the simple frailty
model by considering the relationship among relatives.

Let us take the three-generation pedigree in Figure 12.1 as an example.
We can introduce three types of unobserved frailties U i

1, U
i
2, and U i

3 for the
ith family that represent common, unmeasured environmental factors; ge-
netic susceptibility of the family founders; and the transmission of relevant
genetic materials from a parent to a child. Here, a family founder is an
individual whose parents were not sampled in the pedigree. To avoid tech-
nical complications, suppose that these frailties are independent Bernoulli
random variables; that is,

IP{U i
k = 1} = θk = 1 − IP{U i

k = 0},

for k = 1, 2, 3. A critical assumption is that for the ith family and con-
ditional on all possible U i

k’s, denoted by U i, the health conditions of all
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family members are independent and

logit(IP{Y i
j = 1|U i}) = xi

jβ + ai
jγ, (12.13)

where β and γ are vectors of parameters, and

ai
j = (U i

1, U
i
2,2j−1 + U i

2,2j , U
i
2,2j−1U

i
2,2j)

′

harbors the frailties. The construction of ai
j is based on assuming the ex-

istence of a major susceptibility locus with alleles A and a, as clarified
below.

The frequency of allele A is θ2, and (U i
2,2j−1, U

i
2,2j) indicate the presence

of allele A in the two chromosomes of the jth member of the ith family.
Based on the Mendelian transmission, θ3 = 0.5. The parameter interpre-
tation in model (12.13) is most important. The β parameters measure the
strength of association between the trait and the covariates conditional on
the frailties, while the γ parameters indicate the familial and genetic con-
tributions to the trait. Note that γ = (γ1, γ2, γ3)′. If γ2 = 0 and γ3 	= 0,
it suggests a recessive trait because a genetic effect is expressed only in
the presence of two A alleles. On the other hand, if a completely dominant
gene underlies the trait, genotypes Aa and AA give rise to the same effect,
implying that γ2 = 2γ2 + γ3, i.e., γ2 = −γ3.

The frailty model (12.13) is closely related to many existing models for
segregation analysis, all of which can be traced back to the classic Elston–
Stewart (1971) model for the genetic analysis of pedigree data. The Elston–
Stewart model was originally designed to identify the mode of inheritance of
a particular trait of interest without considering the presence of covariates.
The frailty model (12.13) is quite similar to the class D logistic regressive
models of Bonney (1986, 1987). The major difference is the method for
modeling familial correlations as a result of residual genetic effects and
environment. The regressive models make use of the parental traits and
assume the conditional independence among siblings on the parental traits.
In contrast, the frailty model assumes the conditional independence among
all family members on the frailty variable. Conceptually, frailty variables
defined here are very similar to that of ousiotype introduced by Cannings
et al. (1978) in pedigree analysis, where a unique ousiotype (essence) for
each individual is assumed to represent unobservable genetic effects. Many
other authors including Bonney (1986, 1987) adopted the ousiotype as the
genotype. Frailty model (12.13) can be viewed as a further clarification of
the ousiotype into a major genotype of focus and residual unobservable
effects.

In terms of computation, when both U and Y are observable, the com-
plete log-likelihood function is easy to derive, and the EM algorithm (Demp-
ster, Laird, and Rubin 1977) can be applied to find the parameter estimates.
A detailed development of the frailty model for segregation analysis will be
presented elsewhere (Zhang and Merikangas 1999).
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12.2 Classification Trees for Multiple Binary
Responses

Many applications of parametric models have a notable common feature.
That is, the models usually involve relatively few covariates, and there is
little discussion of model selection. Although the theoretical models are not
confined by the number of covariates, the reality of specifying parametric
candidate models and then selecting the final model can be a serious chal-
lenge. To resolve this practical problem, Zhang (1998a) considered various
automated approaches under the tree paradigm as a complement to the
existing parametric methods. The discussions here are based on the work
of Zhang (1998a).

12.2.1 Within-Node Homogeneity

Without exception, we need to define a new splitting function and cost-
complexity in order to extend classification trees for the analysis of multiple
discrete responses. First, we show how to generalize the entropy criterion
(4.3) to the present situation making use of the log-linear model (12.9). We
use the same idea as we derived (2.1). For the sake of simplicity, we assume
that the joint distribution of Y depends on the linear terms and the sum
of the second-order products of its components only. That is, we assume
that the joint probability distribution of Y is

f(y; Ψ, θ) = exp(Ψ′y + θw − A(Ψ, θ)), (12.14)

where w =
∑

i<j yiyj. Now we define the generalized entropy criterion, or
the homogeneity of node τL, as the maximum of the log-likelihood derived
from this distribution, which equals

h(τL) =
∑

{subject i∈τL}
(Ψ̂′yi + θ̂wi − A(Ψ̂, θ̂)), (12.15)

where Ψ̂ and θ̂ may be viewed as the maximum likelihood estimates of Ψ
and θ, respectively. Obviously, the homogeneity of node tR can be defined
by analogy. The node impurity i(τ) can be chosen as −h(τ) if you will.
Having defined the homogeneity (or impurity) measure, we plug it into
(2.3) to form a splitting rule.

In addition to the homogeneity (12.15), there are other possibilities worth
considering. If the responses were continuous, it would be natural to mea-
sure the node homogeneity through their covariance matrix. Therefore, it
is reasonable to explore a homogeneity measure via a covariance matrix
such as (11.38) for regression trees.

Within a node τ, we can measure its homogeneity (counter variation) in
terms of the distribution of Y by

h1(τ) = − log |Vτ |, (12.16)
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where |Vτ | is the determinant of the within-node sample covariance matrix
of Y. The use of the logarithm is to ensure the subadditivity

nτh1(τ) ≤ nτLh1(τL) + nτRh1(τR),

where nτ , nτL , and nτR are respectively the numbers of subjects in node τ
and its left and right daughter nodes τL and τR.

When we have a single binary response, criterion (12.16) is essentially
the Gini index in (4.4). This is because

|Vτ | =
nτ

nτ − 1
pτ (1 − pτ ),

where pτ is the proportion of diseased subjects in node τ.
Further, as a direct extension from the criterion (11.38) used in the trees

for continuous longitudinal data, another measure of within-node homo-
geneity that deserves our attention is

h2(τ) = − 1
nτ

∑
i∈ node τ

(yi − ȳ(τ))′V −1(yi − ȳ(τ)), (12.17)

where V −1 is the covariance matrix of Yi in the root node.
Finally, based on the discussion in the previous section, it would be more

appropriate to replace the covariance matrix Vτ with a matrix constituted
by the pairwise odds ratios when we deal with multiple binary responses.
The consequence warrants further investigation.

12.2.2 Terminal Nodes

To construct a useful tree structure, a rigorous rule is warranted to deter-
mine the terminal nodes and hence the size of the tree. As in Section 4.2.2,
we need to prepare a tree cost-complexity,

Rα(T ) = R(T ) + α|T̃ |,

as was first introduced in (4.7). Zhang (1998a) considered three definitions
for the cost R(T ) with respect to h, h1, and h2. Using h(τ) he defined

R(T ) = −
∑
τ∈T̃

∑
{subject i∈τ}

log f(yi; Ψ̂, θ̂), (12.18)

where f is introduced in (12.14), and Ψ̂ and θ̂ are estimated from the
learning sample. Note, however, that subject i may or may not be included
in the learning sample.

Using h1(τ) Zhang introduced

R1(T ) = −
∑
τ∈T̃

nτ log |Vτ |,
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where Vτ is the covariance matrix of Y within node τ with the average
obtained from the learning sample even though Y may not be included in
the learning sample. It turned out that h1(τ) and R1(T ) are not as useful as
the other choices. For the data in Section 12.3, h1(τ) in (12.16) suffered an
undesirable end-cut preference problem. This phenomenon was described
at the end of Section 2.2 as a side effect of using the Gini index for a single
binary outcome. Because h1(τ) can be viewed as a generalization of the
Gini index, it is not surprising that h1(τ) manifested the problem. Thus,
we remove h1(τ) and R1(T ) from further discussion.

Likewise, for h2(τ) we have

R2(T ) = −
∑
τ∈T̃

∑
{subject i∈τ}

(yi − ȳ(τ))′V −1(yi − ȳ(τ)), (12.19)

where V and ȳ(τ) are estimated from the learning sample only.
After Rα(T ) is defined, the rest of the procedure is identical to that in

Section 4.2.3. We should mention, however, that a theoretical derivation of
the standard error for R(T ) seems formidable. As a start, Zhang (1998a)
suggested repeating the cross-validation procedure ten times. This process
results in an empirical estimate of the needed standard error. Although
it was not explicitly stated, this in effect introduced the idea of bagging,
except that it was for the purpose of determining the tree size.

12.2.3 Computational Issues∗

Because each node may have many possible splits, the homogeneity (12.15)
must be computed a large number of times. Therefore, it is important to
reduce the computational burden as much as possible by designing efficient
algorithms. Computing y and w is relatively simple, so the critical part is
to find Ψ̂ and θ̂. To simplify the notation, we attach w to y and θ to Ψ and
let

z = (y′, w)′ and Φ = (Ψ′, θ)′.

According to Fitzmaurice and Laird (1993), Φ̂ can be found through the
following updating formulas:

Φ(J+1) = Φ(J) + V −1(y)(ȳ − IE{Y}), (12.20)

where IE{Y} and V −1(y) are the mean and covariance matrix of Y given
model parameters at Φ(J), respectively, and ȳ is the sample average of Y
within a given node. Not surprisingly, the computation of V (Y) requires
more time. Moreover, it depends on the current value Φ(J) and makes
the updating formula more vulnerable to a poor initial value of Φ. Both
numerical and theoretical evidence suggests that it is better to replace the
theoretical value of V (Y) with the sample covariance matrix V0 of Y within
a given node. In our application, the use of V0 leads to satisfactory numer-
ical results. From a theoretical point of view, as Φ(J) converges to a stable
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point and if the sample size is sufficiently large, IE{Y} and V (Y) should
be close to ȳ and V0, respectively. So, the following simplified updating
formula takes over the one in (12.20):

Φ(J+1) = Φ(J) + V −1
0 (ȳ − IE{Y}). (12.21)

12.2.4 Parameter Interpretation∗

We have noted earlier that the canonical parameters correspond to condi-
tional odds or odds ratios and that the conditions in these odds may not be
appropriate. We illustrate here how to transform the canonical parameters
to the marginal parameters that have natural interpretations.

Let γ = IE(w) and μ = (μ1, . . . , μq)′ = IE(Y). Now we introduce an
“overall” measure of pairwise correlations:

ρ =
γ −

∑
i<j μiμj√∑

i<j μi(1 − μi)μj(1 − μj)
. (12.22)

Next, we show how to derive the estimates of marginal distribution pa-
rameters, μ and ρ, and their standard errors by making use of those of
Φ = (Ψ′, θ)′. The estimates for μ̂ and ρ̂ can be directly computed by sub-
stituting Φ̂ into the distribution function. What follows explains how to
find the standard errors.

It is easy to see that

∂μ

∂Φ′ = Cov(Y,Z′), and
∂γ

∂Φ′ = Cov(w,Z′).

By the chain rule, we have

∂ρ

∂Φ′ =
∂ρ

∂γ

∂γ

∂Φ′ +
∂ρ

∂μ′
∂μ

∂Φ′

= Cov(w,Z′)
∂ρ

∂γ
+

∂ρ

∂μ′Cov(Y,Z′).

Therefore, ( ∂µ
∂Φ′
∂ρ
∂Φ′

)
=
(

I 0
∂ρ
∂µ′

∂ρ
∂γ

)
Cov(Z) def= JV.

Since V is the information matrix with respect to Φ, the information matrix
for μ and ρ is

I(μ, ρ) = (V J ′)−1V (JV )−1 = (J−1)′V −1J−1.

Considering potential model misspecification as discussed by Fitzmaurice
and Laird (1993) and Zhao and Prentice (1990), we should adopt a robust
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estimate for the covariance matrix of μ̂ and ρ̂ from Royall (1986) as follows:

V̂ (μ̂, ρ̂) = [nτI(μ̂, ρ̂)]−1
∑[

(V̂ Ĵ ′)−1

(
yi − μ̂
wi − γ̂

)

×
(

yi − μ̂
wi − γ̂

)′
(Ĵ V̂ )−1

]
[nτI(μ̂, ρ̂)]−1

=
1
n2

τ

Ĵ
∑(

yi − μ̂
wi − γ̂

)(
yi − μ̂
wi − γ̂

)′
Ĵ ′,

where nτ is the number of subjects in node τ and the summation is over all
subjects in node τ. From the formula above it is numerically straightforward
to compute the standard errors for μ̂ and ρ̂.

12.3 Application: Analysis of BROCS Data

12.3.1 Background

Building-related occupant complaint syndrome (BROCS) is a nonspecific
set of related symptoms of discomfort reported by occupants of buildings.
It occurs throughout the world in office buildings, hospitals, etc. The most
common symptoms of BROCS include irritation of the eyes, nose, and
throat; headache; and nausea. The cause of BROCS is generally not known.
To enhance the understanding of BROCS, Zhang (1998a) analyzed a sub-
set of the data from a 1989 survey of 6800 employees of the Library of
Congress and the headquarters of the Environmental Protection Agency in
the United States. The discussion here is similar to the analysis of Zhang
(1998a). In his analysis, Zhang built trees using the entire sample. But in
order to validate the trees, we divide the sample equally into two sets: one
to build the tree and one to validate it. Again, we also considered 22 pre-
dictors as the risk factors of BROCS (represented by 22 questions in Table
12.1) and 6 binary responses (each of which includes a number of specific
health discomforts as given in Table 12.2). The purpose is to predict the
risk of BROCS by identifying contributing factors.

12.3.2 Tree Construction

Since some of the predictors have missing information, the missings to-
gether strategy described in Section 4.8.1 is adopted in the tree construc-
tion. To ensure that there is a reasonable number of subjects in every node,
taking into account both the study sample size and the number of responses,
Zhang (1998a) suggested not partitioning any node that has fewer than 60
subjects. In addition, the entire sample is equally divided into a learning
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TABLE 12.1. Explanatory Variables in the Study of BROCS

Predictor Questions
x1 What is the type of your working space?

(enclosed office with door, cubicles, stacks, etc.)
x2 How is your working space shared?

(single occupant, shared, etc.)
x3 Do you have a metal desk? (yes or no)
x4 Do you have new equipment at your work area?

(yes or no)
x5 Are you allergic to pollen? (yes or no)
x6 Are you allergic to dust? (yes or no)
x7 Are you allergic to molds? (yes or no)
x8 How old are you? (16 to 70 years old)
x9 Gender (male or female)
x10 Is there too much air movement at your work area?

(never, rarely, sometimes, often, always)
x11 Is there too little air movement at your work area?

(never, rarely, sometimes, often, always)
x12 Is your work area too dry?

(never, rarely, sometimes, often, always)
x13 Is the air too stuffy at your work area?

(never, rarely, sometimes, often, always)
x14 Is your work area too noisy?

(never, rarely, sometimes, often, always)
x15 Is your work area too dusty?

(never, rarely, sometimes, often, always)
x16 Do you experience glare at your workstation?

(no, sometimes, often, always)
x17 How comfortable is your chair? (reasonably,

somewhat, very uncomfortable, no one specific chair)
x18 Is your chair easily adjustable?

(yes, no, not adjustable)
x19 Do you have influence over arranging the furniture?

(very little, little, moderate, much, very much)
x20 Do you have children at home? (yes or no)
x21 Do you have major childcare duties? (yes or no)
x22 What type of job do you have?

(managerial, professional, technical, etc.)
This table is reproduced from Table 1 of Zhang (1998a).
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TABLE 12.2. Six Clusters of BROCS

Response Cluster Included Symptoms
y1 CNS difficulty remembering/concentrating, dizziness,

lightheadness, depression, tension, nervousness
y2 Upper runny/stuffy nose, sneezing, cough, sore throat

Airway
y3 Pain aching muscles/joints, pain in back/shoulders/

neck, pain in hands/wrists
y4 Flu-like nausea, chills, fever
y5 Eyes dry, itching, or tearing eyes, sore/strained eyes,

blurry vision, burning eyes
y6 Lower wheezing in chest, shortness of breath, chest

Airway tightness
This table is reproduced from Table 2 of Zhang (1998a).

and a validation sample in order to assess the performance of various ap-
proaches. The learning sample is used to construct trees and the validation
sample to compare the predictive power of the constructed trees.

When h(τ) in (12.15) is used as a measure of node homogeneity, we
obtained an initial tree with 65 nodes. Applying R(T ) defined in (12.18) as
the tree cost, we derived a sequence of 33 nested optimal subtrees from the
initial tree. Figure 12.2(a) plots the log cost of these subtrees against their
complexity. In contrast, the use of h2(τ) in (12.17) results in a starting tree
of 199 nodes. Then, we obtained a sequence of 69 nested optimal subtrees
using R2(T ) in (12.19) as the tree cost. See Figure 12.2(b).

The subtree cost estimate and its standard error were derived from ten
repetitions of 5-fold cross-validation. Each time, we have a 5-fold cross-
validation estimate of the cost for every subtree. Repeating ten times gives
ten such estimates. The average and the square root of the sample variance
of these ten estimates are used as the tree cost estimate and its standard
error, respectively. Based on Figure 12.2, we selected a 6-terminal-node
final subtree from the initial tree using h(τ) shown in Figure 12.3 and a
7-terminal-node final subtree from the other initial tree depicted in Figure
12.4.

12.3.3 Description of Numerical Results

Table 12.3 suggests that terminal node 7 in Figure 12.3 is most troublesome.
Subjects in this terminal node complained about more problems in nearly
all clusters than everyone else. This is because the air quality in their
working area was poor, namely, often too stuffy and dusty. For the same
reasons, subjects in terminal nodes 5 and 6 also reported relatively more
symptoms. In contrast, subjects in terminal node 10 experienced the least
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FIGURE 12.2. Cost-complexity for two sequences of nested subtrees. Panels (a)
and (b) come from trees using h(τ ) and h2(τ ), respectively. The solid line is the
log cross-validation (CV) estimates of cost, and the dotted line is the log of one
standard error above the estimated cost estimated by cross-validation
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FIGURE 12.3. Tree structure for the risk factors of BROCS based on h(τ ). Inside
each node (a circle or a box) are the node number and the numbers of subjects
in the learning (middle) and validation (bottom) samples. The splitting question
is given under the node
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TABLE 12.3. Estimates of Symptom Prevalence Rates in the Terminal Nodes of
the Tree in Figure 12.3

Terminal Cluster of symptoms
node # CNS U.A. Pain Flu-like Eyes L.A.

5 0.14† 0.29 0.29 0.15 0.03 0.10
0.14¶ 0.24 0.24 0.14 0.02 0.08

6 0.21 0.30 0.35 0.16 0.05 0.07
0.20 0.31 0.35 0.19 0.05 0.07

7 0.29 0.49 0.51 0.29 0.08 0.12
0.27 0.49 0.47 0.25 0.06 0.11

9 0.10 0.19 0.16 0.15 0.02 0.27
0.08 0.20 0.17 0.13 0.01 0.18

10 0.07 0.09 0.10 0.06 0.01 0.03
0.07 0.11 0.12 0.06 0.01 0.02

11 0.21 0.26 0.24 0.17 0.05 0.09
0.08 0.14 0.26 0.08 0.04 0.04

†Based on the learning sample.
¶Based on the validation sample.

discomfort because they had the best air quality. Overall, Figure 12.3 and
Table 12.3 show the importance of air quality around the working area.

Based on a different criterion, h2(τ), Figure 12.4 demonstrates again the
importance of air quality. It uses nearly the same splits as Figure 12.3 except
that “experiencing a glare” also emerged as a splitting factor. By comparing
terminal nodes 10 and 11 in Figure 12.4, it appears that “experiencing a
glare” resulted in more discomfort for all clusters of symptoms.

12.3.4 Alternative Approaches

We mention two alternative approaches that make direct use of the tree
methods for a single outcome as described in earlier chapters. First, we
could grow separate trees for individual clusters of symptoms and then at-
tempt to summarize the information. Depending on the number of clusters,
this approach could be very laborious and not necessarily as productive, as
explained by Zhang (1998a). The second approach is to create a surrogate
response variable. This surrogate response can be taken as the sum of the
positive responses in the six clusters or a more sophisticated linear combina-
tion derived from a descriptive principal components analysis (Kleinbaum
et al. 1988, p. 604). It is regarded as descriptive because the responses are
binary, which do not satisfy the conditions of principal components analy-
sis. Then, we can treat the surrogate response as a numerical variable and
grow a regression tree for it. After such a regression tree is grown, we can
regard it as a classification tree for the original binary outcomes. We refer
to Zhang (1998a) for details.
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TABLE 12.4. Estimates of Symptom Prevalence Rates in the Terminal Nodes of
the Tree in Figure 12.4

Terminal Cluster of symptoms
node # CNS U.A. Pain Flu-like Eyes L.A.

5 0.15† 0.27 0.27 0.21 0.04 0.24
0.12¶ 0.25 0.26 0.18 0.02 0.21

8 0.09 0.13 0.14 0.08 0.01 0.04
0.08 0.14 0.15 0.07 0.01 0.03

9 0.16 0.41 0.34 0.20 0.04 0.10
0.18 0.29 0.28 0.17 0.01 0.05

10 0.19 0.29 0.30 0.13 0.04 0.06
0.18 0.30 0.32 0.16 0.04 0.06

11 0.31 0.36 0.57 0.28 0.10 0.08
0.28 0.37 0.51 0.30 0.08 0.08

12 0.28 0.48 0.51 0.28 0.08 0.10
0.27 0.49 0.47 0.25 0.06 0.11

13 0.56 0.61 0.44 0.56 0.22 0.61
0.18 0.45 0.36 0.18 0.18 0.27

†Based on the learning sample.
¶Based on the validation sample.

12.3.5 Predictive Performance

To compare the predictive performance of the trees constructed in Figures
12.3 and 12.4, we produce ROC curves (see Section 3.2 for the description of
ROC curves) for individual clusters. Figure 12.5 displays two sets of ROC
curves: one from the prediction rule based on Figure 12.3 and the other
on Figure 12.4. In addition, the areas under the ROC curves are listed.
Each panel of Figure 12.5 corresponds to a cluster. The performance of the
two trees is very close, as indicated by both the ROC curves and the areas
under the curves, although Figure 12.4 is decisively better than Figure 12.3
for the clusters of “flu-like” and “lower airway.”

12.4 Ordinal and Longitudinal Responses

The homogeneity h(τ) can be further extended to analyze longitudinal
binary responses and polytomous responses. For longitudinal data, the time
trend can be incorporated into the parameters introduced in (12.14), hence
allowing h(τ) to be a function of time.

For ordinal responses, we describe the method proposed by Zhang and Ye
(2008). Let zij be the jth ordinal response in the ith subject, taking a value
of 1, . . . , K. Note here that K is the same for all response variables, although
in principle we can create extra levels with zero frequency to accommodate
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FIGURE 12.5. Comparison of ROC curves for the classifications tree in Figures
12.3 and 12.4 among individual clusters. The true positive probability (TPP)
is plotted against the false positive probability (FPP). The solid line indicates
the performance of a random prediction. The dotted and dashed ROC curves
respectively come from Figures 12.3 and 12.4, and the areas under them are also
reported
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different K’s. We define K − 1 indicator variables yijk = I(zij > k), for
k = 1, . . . , K − 1. Recall I(·) is the indicator function. Let

yij = (yij,1, · · · , yij,K−1)′,
yi = (y′

i1, · · · , y′
in)′, (12.23)

Then, the observed responses from the ith unit can be rewritten as

yi = (yi1,1, · · · , yi1,K−1, · · · , yin,1, · · · , yin,K−1)′.

Now, the components of the yi are binary, and hence we can use the same
procedure as described in Section 12.2.1.

12.5 Analysis of the BROCS Data via Log-Linear
Models

Building a log-linear model with standard software such as SAS and SPLUS
is usually a prohibitive task when we include a large number of factors
into the model and consider their higher-order interactions. In the present
application, given the six response variables it is not realistic to scrutinize
all 22 covariates in the same model. In fact, it was still computationally
too ambitious when we entered only four variables (in their original scale)
that appeared in Figures 12.3 and 12.4. As a compromise, we dichotomized
the four variables based on the splits and created four dummy variables:
z1 = I(x10 > 3), z2 = I(x12 > 3), z3 = I(x13 > 3), and z4 = I(x15 > 3).
In log-linear models, we assume that the sample counts for the 210 cross-
classification cells of y’s and z’s are independent Poisson random variables
with expected values to be modeled.

We started with a model that allows for third-order interactions between
two of the six response variables and one of the four dummy variables. The
first PROC CATMOD statement of the SAS program in Table 12.5 carried out
the estimation for the initial model. Insignificant terms (p-value ≥ 0.05)
were removed from the model sequentially, which led to the final log-linear
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model with the expected cell counts specified by
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The second PROC CATMOD statement of the SAS program in Table 12.5
performed the computation for model (12.24). The results were organized
in Table 12.6 in five categories based on the grouping of the terms in model
(12.24).

Interpreting Table 12.6 rigorously and thoroughly would be difficult and
may be even impossible because of the mutual relationship among the re-
sponses and covariates. Our attempt here is merely to extract the major
message in a descriptive manner. Table 12.6 confirms the correlation be-
tween the 6 response variables. Conditional on everything else, the first re-
sponse variable (CNS) appears to be uncorrelated with the second (upper
airway) response because the final model does not contain the interaction:
y1 ∗ y2. Five of the 14 significant correlations between the 6 responses may
be mediated by the three dummy variables z2 to z4. The dummy variable
z1 (air movement) has significant effects only on the mean frequency of the
fourth (flu-like) and sixth (lower airway) clusters of symptoms. The air dry-
ness (z2) may not be significantly associated with the pain (y3) and lower
airway (y6) symptoms. Although we have seen the importance of air stuffi-
ness (z3) in the tree-based analysis, the log-linear model does not suggest
that it significantly affects the upper airway (y2) and eye (y5) problems.
Finally, the dusty air (z4) did not express significant association with the
eye (y5) and lower airway (y6) symptoms although we expect that the dusty
air would cause more eye discomfort. One might think that relatively few
reports in the eye cluster perhaps limited our power; however, the model
reveals its significant association with air dryness. One good explanation
comes from the tree in Figure 12.4, where we see that the combination of
dusty air with movement resulted in many more eye problems. Due to prac-
tical limitations, it was not possible to consider the interactions between
the covariates in the initial model. As a matter of fact, the interaction,
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TABLE 12.5. SAS Program for the Analysis of BROCS Data

data one;
infile ’BROCS.DAT’;
input x1-x22 y1-y6;
run;
data two; set one;
where x10 ne . and x12 ne . and x13 ne . and x15 ne .;
z1 = (x10 > 3); z2 = (x12 > 3);
z3 = (x13 > 3); z4 = (x15 > 3);
proc sort; by z1 z2 z3 z4 y1 y2 y3 y4 y6;
proc freq noprint;

tables z1*z2*z3*z4*y1*y2*y3*y4*y5*y6
/list out=counts;

run;
proc catmod data=counts; weight count;
model z1*z2*z3*z4*y1*y2*y3*y4*y5*y6 = _response_

/ml noprofile noresponse noiter;
loglin y1|y2|z1 y1|y2|z2 y1|y2|z3 y1|y2|z4

y1|y3|z1 y1|y3|z2 y1|y3|z3 y1|y3|z4
y1|y4|z1 y1|y4|z2 y1|y4|z3 y1|y4|z4
y1|y5|z1 y1|y5|z2 y1|y5|z3 y1|y5|z4
y1|y6|z1 y1|y6|z2 y1|y6|z3 y1|y6|z4
y2|y3|z1 y2|y3|z2 y2|y3|z3 y2|y3|z4
y2|y4|z1 y2|y4|z2 y2|y4|z3 y2|y4|z4
y2|y5|z1 y2|y5|z2 y2|y5|z3 y2|y5|z4
y2|y6|z1 y2|y6|z2 y2|y6|z3 y2|y6|z4
y3|y4|z1 y3|y4|z2 y3|y4|z3 y3|y4|z4
y3|y5|z1 y3|y5|z2 y3|y5|z3 y3|y5|z4
y3|y6|z1 y3|y6|z2 y3|y6|z3 y3|y6|z4
y4|y5|z1 y4|y5|z2 y4|y5|z3 y4|y5|z4
y4|y6|z1 y4|y6|z2 y4|y6|z3 y4|y6|z4
y5|y6|z1 y5|y6|z2 y5|y6|z3 y5|y6|z4;

run;
proc catmod data=counts; weight count;
model z1*z2*z3*z4*y1*y2*y3*y4*y5*y6 = _response_

/ml noprofile noresponse noiter;

loglin y1*z2 y1*z3 y2*z4 y1*y3 y2*y3 y4*z1 y5*z2
y2*y5 y3*y5 y1|y4|z4 y1|y5 y1|y6 y6|z1
y2|y4|z2 y2|y6 y3|y4|z3 y3|y4|z4 y3|y6|z3
y4|y5 y4|y6 y5|y6;

run;
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TABLE 12.6. SAS Program for the Analysis of BROCS Data

Effect Estimate Error Prob. Effect Estimate Error Prob.
--------------------------- ---------------------------
Y1 0.218 0.049 0.0000 Y2 -0.212 0.055 0.0001
Y3 -0.230 0.058 0.0001 Y4 0.137 0.055 0.0125
Y5 1.116 0.054 0.0000 Y6 0.427 0.053 0.0000
--------------------------- ---------------------------
Z1 0.604 0.030 0.0000 Z2 0.019 0.038 0.6161
Z3 -0.103 0.029 0.0004 Z4 0.322 0.022 0.0000
--------------------------- ---------------------------
Z1*Y4 0.112 0.028 0.0001 Z1*Y6 0.421 0.028 0.0000
Z2*Y1 0.117 0.019 0.0000 Z2*Y2 0.157 0.019 0.0000
Z2*Y4 0.080 0.020 0.0000 Z2*Y5 0.137 0.038 0.0002
Z3*Y1 0.146 0.020 0.0000 Z3*Y3 0.106 0.028 0.0001
Z3*Y4 0.100 0.021 0.0000 Z3*Y6 -0.090 0.026 0.0007
Z4*Y1 0.068 0.022 0.0016 Z4*Y2 0.214 0.018 0.0000
Z4*Y3 0.085 0.022 0.0001 Z4*Y4 0.090 0.022 0.0001
--------------------------- ---------------------------
Y1*Y3 0.210 0.020 0.0000 Y1*Y4 0.277 0.023 0.0000
Y1*Y5 0.202 0.043 0.0000 Y1*Y6 0.166 0.031 0.0000
Y2*Y3 0.345 0.017 0.0000 Y2*Y4 0.137 0.022 0.0000
Y2*Y5 0.290 0.047 0.0000 Y2*Y6 0.157 0.030 0.0000
Y3*Y4 0.189 0.023 0.0000 Y3*Y5 0.197 0.050 0.0001
Y3*Y6 0.088 0.032 0.0053 Y4*Y5 0.127 0.047 0.0061
Y4*Y6 0.250 0.032 0.0000 Y5*Y6 0.257 0.052 0.0000
--------------------------- ---------------------------
Z2*Y2*Y4 0.079 0.019 0.0000
Z3*Y3*Y4 0.063 0.020 0.0015 Z3*Y3*Y6 0.111 0.026 0.0000
Z4*Y1*Y4 0.067 0.021 0.0018 Z4*Y3*Y4 0.093 0.020 0.0000
---------------------------------------------------------
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z2 ∗ z4 ∗ y5, would be extremely significant if we knew that it should be
included.

In retrospect, log-linear models provide us with the opportunity to ex-
plore the association among many categorical variables. Due to the model’s
complexity, we are usually confined to simplistic choices of log-linear models
and have to give up the chance of exploring some important relationships.
The tree-based analysis offers a fruitful complement to the use of log-linear
models, particularly in dimension reduction and model specification.
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Appendix

In this chapter we provide some script files that show how to run the
RTREE program and how to read the output resulting from the execution
of the program. The analysis presented in Chapter 2 results from these
files.

13.1 The Script for Running RTREE
Automatically

To run the RTREE program, simply execute the program after downloading
it and then enter your inputs following the online instructions. A few simple
inputs are required from the user. We shaded the user inputs in the script
files to distinguish them from the other texts.

The illustration here assumes that a data set, named example.dat, is
saved in the same directory as the RTREE program. The user is asked to
enter the data file name. As introduced in Chapter 4, there are various
node-splitting criteria. The RTREE adopts either the entropy impurity
or the Gini index. The program can be run automatically or manually.
The user needs to specify the execution mode. If automatic mode is cho-
sen, no further question will be asked and the program creates two files,
example.inf and example.ps, in the same directory. We will explain the
example.inf file shortly, and Figure 2.4 is made from the example.ps file.
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----------This is the script file of running RTREE automatically-----------
================================================================
*This RTREE program implements the ideas expressed in:         *
*1. Zhang and Bracken (1995) Amer. J. of Epidemio., 141, 70-78.*
*2. Zhang, Holford, and Bracken (1995) Statistics in Medicine, *
*   15, 37-50.                                                 *
*This program is meant to be a research tool, and the users are*
*responsible for the correctness of their own analysis. Also,  *
*please send emails to:                                        *
*              heping.zhang@yale.edu                           *
*should you find any bugs or have any suggestions. If you use  *
*this program for your work, it is understood (a) that you will*
*keep the author of this program informed and (b) that you will*
*refer to this program as RTREE, not any other names.Thank you.*
*@Copyrighted by Heping Zhang, 1997. Distribution not limited. *
*Last updated on April 28, 1998.                               *
================================================================

Please input datafile name: 
Choose splitting rule [enter 1 for entropy(default) or 2 for
gini]: 
     For new users, it is important to read the following ... 
================================================================
*The tree is initialized. You will be asked whether you want to*
*control the tree construction process. For the first time, I  *
*would recommend you not controlling it. Instead, let the      *
*program run automatically. In that case, you should enter     *
*n as your answer. Both initial and pruned trees will be saved *
*in a file:               example.inf.
*If you wish, you can print the tree output and use it as a    *
*reference to rerun the program at the controlled mode by      *
*entering y as your answer.                                    *
================================================================
*WARNING: If you don’t want the file b3.inf to be overwritten,
use Ctrl-C to exit immediately.

!!!!!!!!!!!!!!!!!!!!!!  Now, enjoy  !!!!!!!!!!!!!!!!!!!!!!!!!!

Do you want to control the splitting [y/n(default)]? 

An initial tree with 129 nodes is grown, ready to prune
Prune is finished. There remain 13 nodes.
Ready to draw PS file.
Please view or print PS file: b3.ps
Press Enter to end this program!

example.dat

 1

n
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13.2 The Script for Running RTREE Manually

Understandably, running the RTREE program manually requires better
knowledge of the method than doing it automatically. On the other hand,
it provides us with an important opportunity to incorporate our scientific
judgment into the data analysis without compromising statistical principle.
Because of the stepwise nature of the tree-based method, the manual mode
allows the user to explore alternative tree structures, leading to trees of
better quality; See, e.g., Zhang (1998b). We recommend reading Chapter
4 before running the program in the manual mode.

During the course of execution, the user is asked whether a node needs
to be split. If the answer is yes, a computer-selected split is presented for
the user’s consideration. The split can be accepted, or the computer pops
up a list of the best candidate splits from all predictor variables. Although
Table 2.1 contains 15 variables, the script file here lists 22 variables. This is
because there are 7 ordinal or continuous variables that have missing values.
Thus, seven new variables are created, as discussed in Section 4.8.1. Those
best candidate splits are ordered according to their numerical quality, and
any of them can be chosen by entering the corresponding rank. Then some
information with regard to the properties of the chosen split is printed on
the screen. If none of the suggested splits is desirable, a completely new
split can be enforced. But the user should be familiar with the variable
names and distributions and be ready to enter the split. Read and follow
the online instructions for the input. If the user is ready to stop splitting,
simply answer no to all questions that ask whether a node should be split.
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----------This is the script file of running RTREE automatically-----------
================================================================
*This RTREE program implements the ideas expressed in:         *
*1. Zhang and Bracken (1995) Amer. J. of Epidemio., 141, 70-78.*
*2. Zhang, Holford, and Bracken (1995) Statistics in Medicine, *
*   15, 37-50.                                                 *
*This program is meant to be a research tool, and the users are*
*responsible for the correctness of their own analysis. Also,  *
*please send emails to:                                        *
*              heping.zhang@yale.edu                           *
*should you find any bugs or have any suggestions. If you use  *
*this program for your work, it is understood (a) that you will*
*keep the author of this program informed and (b) that you will*
*refer to this program as RTREE, not any other names.Thank you.*
*@Copyrighted by Heping Zhang, 1997. Distribution not limited. *
*Last updated on April 28, 1998.                               *
================================================================

Please input datafile name: 
Choose splitting rule [enter 1 for entropy(default) or 2 for
gini]: 
     For new users, it is important to read the following ... 
================================================================
*The tree is initialized. You will be asked whether you want to*
*control the tree construction process. For the first time, I  *
*would recommend you not controlling it. Instead, let the      *
*program run automatically. In that case, you should enter     *
*n as your answer. Both initial and pruned trees will be saved *
*in a file:               example.inf.
*If you wish, you can print the tree output and use it as a    *
*reference to rerun the program at the controlled mode by      *
*entering y as your answer.                                    *
================================================================
*WARNING: If you don’t want the file b3.inf to be overwritten,
use Ctrl-C to exit immediately.

!!!!!!!!!!!!!!!!!!!!!!  Now, enjoy  !!!!!!!!!!!!!!!!!!!!!!!!!!

Do you want to control the splitting [y/n(default)]? 

3861 cases in node 1.  Split [y/n]? 
The impurity of the split=0.203560
The resubstitution relative risk=2.301200 and
  its 95 percent confidence interval=(1.703034, 3.109462)
A 5-fold cross validation relative risk=2.143026 and 
  its 95 percent confidence interval=(1.586902, 2.894042)
This split uses categorical variable 3 and a case
goes to right for category[ies]
2
Accept this split [y/n]? y
3151 cases in node 2.  Split [y/n]? y
The impurity of the split=0.175190
The resubstitution relative risk=2.510655 and
  its 95 percent confidence interval=(1.472348, 4.281182)
A 5-fold cross validation relative risk=2.525424 and 
  its 95 percent confidence interval=(1.480783, 4.307023)
This split uses ordinal variable 11 and a case goes to right
if greater than 4.000000

example.dat

1

y

y

y
y
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Accept this split [y/n]? y
710 cases in node 3.  Split [y/n]? y
The impurity of the split=0.317509
The resubstitution relative risk=2.074219 and
  its 95 percent confidence interval=(1.065797, 4.036776)
A 5-fold cross validation relative risk=1.131193 and 
  its 95 percent confidence interval=(0.676505, 1.891481)
This split uses categorical variable 7 and a case
goes to right for category[ies]
1
Accept this split [y/n]? y
2980 cases in node 4.  Split [y/n]? y
The impurity of the split=0.165181
The resubstitution relative risk=3.480179 and
  its 95 percent confidence interval=(1.615488, 7.497205)
A 5-fold cross validation relative risk=1.274209 and 
  its 95 percent confidence interval=(0.833830, 1.947168)
This split uses categorical variable 12 and a case
goes to right for category[ies]
4,1,0
Accept this split [y/n]? n
rank: impurity variable no.
   1: 0.16518  12
   2: 0.16568  17
   3: 0.16569  6
   4: 0.16580  1
   5: 0.16610  14
   6: 0.16618  15
   7: 0.16618  22
   8: 0.16632  9
   9: 0.16632  18
  10: 0.16633  2
  11: 0.16637  21
  12: 0.16638  16
  13: 0.16640  5
  14: 0.16643  11
  15: 0.16643  19
  16: 0.16653  10
  17: 0.16657  8
  18: 0.16657  4
  19: 0.16659  13
  20: 0.16659  20
  21: 0.16660  7
  22: 0.16665  3
which one [enter the rank number, 0 for none of the above]?
0
Do you still want to split this node [y/n]? y
which variable [enter the variable number]: 12
This variable has 6 categories: 
0 1 2 3 4 -9 
Enter a sequence of 6 0’s and 1’s to specify the split.
For example, 1 1 0 0 0 0 sends the first two categories to one 
side and the rest to the other side.
Enter here: 1 1 0 0 1 1
The impurity of the split=0.164899
The resubstitution relative risk=5.096198 and
  its 95 percent confidence interval=(2.049671, 12.670928)
A 5-fold cross validation relative risk=1.823560 and 

y
y

y
y

n

0
0
0

0 0 1 1 0 0
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  its 95 percent confidence interval=(0.932500, 3.566081)
171 cases in node 5.  Split [y/n]? n
no split for node 5:2
512 cases in node 6.  Split [y/n]? n
no split for node 6:2
198 cases in node 7.  Split [y/n]? n
no split for node 7:2
31 cases in node 8.  Split [y/n]? n
no split for node 8:2
2949 cases in node 9.  Split [y/n]? n
no split for node 9:2
There remain 9 nodes.
Ready to draw PS file.
Please view or print PS file: example.ps
Press Enter to end this program!

n

n

n

n

n
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13.3 The .inf File

This is the .inf output file from the RTREE program running in automatic
mode. It has three parts. The first part checks and summarizes the vari-
ables. The second part provides information regarding the large tree before
pruning, and the last part is for the pruned tree. The formats for the last
two parts are the same. Their six columns are (i) node number (node 1 is
the root node); (ii) number of subjects in the node; (iii) left daughter node
number; (iv) right daughter node number; (v) the node-splitting variable;
and (vi) the splitting value corresponds to the node-splitting variable for
an internal node or the numbers of 0 and 1 outcomes in a terminal node.
For an internal node, a floating value is for a continuous or ordinal vari-
able and a set of integers for a nominal variable. Figure 2.4 is a graphical
presentation of the information from the last part of this file.



234 13. Appendix

------------------------------This is the .inf file-----------------------------
There are 15 covariates
Original status of variables are
1 3 3 3 1 1 3 3 1 3 1 3 1 1 1
1 refers to an ordinal covariate and a positive integer
i means a nominal one that has i categories.
For an ordinal covariate, the min. and max. will be given;
For a nominal one, the counts corresponding to each level
will be listed.
1: 13.000000 46.000000
2: 3017(1) 68(2) 69(3) 1(4) 703(5) 3(-9) 
3: 3008(1) 710(2) 109(3) 21(4) 6(5) 7(-9) 
4: 3488(0) 369(1) 4(-9) 
5: 1.000000 9.000000
6: 4.000000 27.000000
7: 1521(0) 1957(1) 1(2) 382(-9) 
8: 1116(0) 1221(1) 1524(-9) 
9: 0.000000 66.000000
10: 2146(0) 1700(1) 15(-9) 
11: 1.000000 10.000000
12: 3072(0) 30(1) 32(2) 1(3) 680(4) 46(-9) 
13: 0.000000 3.000000
14: 12.600000 1273.000000
15: 0.000000 7.000000

The initial tree:
  node  #cases   left   right  split var  cutoff
     1    3861      2       3      3       {2}
     2    3151      4       5     11        4.00000
     3     710      6       7      7       {1}
     4    2980      8       9     12       {4,1,0}
     5     171     10      11      6       15.00000
     6     512     12      13      1       26.00000
     7     198     14      15     10       {0}
     8      61 terminal node with distribution: 53 8 
     9    2919     16      17      6       12.00000/NA
    10     127     18      19      7       {1}
    11      44 terminal node with distribution: 43 1 
    12     443     20      21     14       45.50000
    13      69 terminal node with distribution: 65 4 
    14     120     22      23     14       187.20000/NA
    15      78     24      25     14       12.60000
    16     983     26      27     14       12.60000/NA
    17    1936     28      29      1       32.00000
    18      83     30      31     14       187.20000/NA
    19      44 terminal node with distribution: 35 9 
    20     258     32      33      1       19.00000
    21     185     34      35      7       {0}
    22      61 terminal node with distribution: 58 3 
    23      59 terminal node with distribution: 59 0 
    24      39 terminal node with distribution: 32 7 
    25      39 terminal node with distribution: 38 1 
    26      43 terminal node with distribution: 43 0 
    27     940     36      37     15        1.00000
    28    1602     38      39      1       30.00000
    29     334     40      41     14       174.60001/NA
    30      43 terminal node with distribution: 37 6 
    31      40 terminal node with distribution: 39 1 
    32     130     42      43      1       17.00000
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----------------------------The .inf file continued---------------------------
    33     128     44      45     13        0.00000
    34      47 terminal node with distribution: 35 12 
    35     138     46      47     15        0.00000
    36     772     48      49      6       11.00000
    36     772     48      49      6       11.00000
    37     168     50      51     14       307.50000/NA
    38    1320     52      53     15        1.00000
    39     282     54      55     15        0.00000
    40     206     56      57      6       16.00000
    41     128     58      59     15        0.00000
    42      61 terminal node with distribution: 57 4 
    43      69 terminal node with distribution: 56 13 
    44      59 terminal node with distribution: 57 2 
    45      69 terminal node with distribution: 61 8 
    46      46 terminal node with distribution: 37 9 
    47      92     60      61     14       133.50000
    48     177     62      63      7       {0}
    49     595     64      65     10       {1}
    50     119     66      67     14       101.60000
    51      49 terminal node with distribution: 48 1 
    52    1223     68      69     14       147.00000/NA
    53      97     70      71      8       {1,0}
    54      95     72      73     14       147.00000/NA
    55     187 terminal node with distribution: 187 0 
    56     102     74      75      6       15.00000
    57     104     76      77     14       75.60000
    58      50 terminal node with distribution: 48 2 
    59      78 terminal node with distribution: 78 0 
    60      45 terminal node with distribution: 39 6 
    61      47 terminal node with distribution: 46 1 
    62      75 terminal node with distribution: 65 10 
    63     102     78      79      6       10.00000
    64     235     80      81     14       14.10000
    65     360     82      83     14       378.00000/NA
    66      62 terminal node with distribution: 58 4 
    67      57 terminal node with distribution: 48 9 
    68     660     84      85      9       14.00000
    69     563     86      87      6       15.00000
    70      44 terminal node with distribution: 38 6 
    71      53 terminal node with distribution: 53 0 
(This second part is truncated from here to the end.)

The pruned tree:
  node  #cases   left   right  split var  cutoff
     1    3861      2       3      3       {2}
     2    3151      4       5     11        4.00000
     3     710      6       7      7       {1}
     4    2980      8       9     12       {4,1,0}
     5     171 terminal node with distribution: 154 17 
     6     512 terminal node with distribution: 453 59 
     7     198 terminal node with distribution: 187 11 
     8      61 terminal node with distribution: 53 8 
     9    2919     16      17      6       12.00000/NA
    16     983 terminal node with distribution: 932 51 
    17    1936     28      29      1       32.00000
    28    1602 terminal node with distribution: 1561 41 
    29     334 terminal node with distribution: 316 18 
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