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Abstract Motif discovery in biological sequences is an important field in
bioinformatics. Most of the scientific research focuses on the de novo discovery of
single motifs, but biological activities are typically co-regulated by several factors
and this feature is properly reflected by higher order structures, called composite
motifs, or cis-regulatory modules or simply modules. A module is a set of motifs,
constrained both in number and location, which is statistically overrepresented and
hence may be indicative of a biological function. Several methods have been studied
for the de novo discovery of modules. We propose an alternative approach based on
the discovery of rules that define strong spatial associations between single motifs
and suggest the structure of a module. Single motifs involved in the mined rules
might be either de novo discovered by motif discovery algorithms or taken from
databases of single motifs. Rules are expressed in a first-order logic formalism and
are mined by means of an inductive logic programming system. We also propose
computational solutions to two issues: the hard discretization of numerical inter-
motif distances and the choice of a minimum support threshold. All methods have
been implemented and integrated in a tool designed to support biologists in the
discovery and characterization of composite motifs. A case study is reported in
order to show the potential of the tool.

5.1 Introduction

In biological sequence analysis, a motif is a nucleotide or amino-acid sequence pat-
tern which appears in a set of sequences (DNA, RNA or protein) with much higher
frequency than would be expected by chance. This statistical overrepresentation is
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expected to be indicative of an associated biological function. Examples of motifs
include DNA- and RNA-binding sites for regulatory proteins, protein domains and
protein epitopes.

DNA and RNA motifs are key to deciphering the language of gene regulatory
mechanisms and, in particular, to fully understand how gene expression is regu-
lated in time and space. For this reason, de novo (or ab initio) motif discovery, i.e.
identifying motif sites (signals) in a given set of unaligned biological sequences,
has attracted the attention of many biologists. However, they are also difficult to
identify, since motifs often produce weak signals buried in genomic noise (i.e. the
background sequence) [8]. This problem is known to be NP-hard [22], thus it is also
an interesting arena for computer scientists.

Most of the motif discovery tools reported in the literature are designed to dis-
cover single motifs. However, in many (if not most) cases, biological activities
are co-regulated by several factors. For instance, transcription factor-binding sites
(TFBSs) on DNA are often organized in functional groups called composite motifs
or cis-regulatory modules (CRM) or simply modules. These modules may have a
biologically important structure that constrains both the number and relative posi-
tion of the constituent motifs [34].

One example, among many that could be cited, is ETS-CBF, a cis-regulatory
module constituted by three single motifs, ©A, uB and CBF (core-binding fac-
tor). Both uA and puB are binding sites for two transcription factors belonging
to the ETS proteins family, Ets-1 and PU.1, respectively. CBF is a protein that is
implicated in the activation of several 7" and myeloid cell-specific promoters and
enhancers. Enhancers are cis-regulatory sequences which control the efficiency of
gene transcription from an adjacent promoter. ETS-CBF is a common compos-
ite motif of enhancers implicated in the regulation of antigen receptor genes in
mouse and human. A comparative study of the tripartite domain of the murine
immunoglobulin p heavy-chain (IgH) enhancer and its homologous in human
has demonstrated that in both species the activity of the gene enhancer is strictly
dependent on ETS-CBF [12].

Therefore, it is of great interest to discover not only single motifs but also the
higher order structure into which motifs are organized, i.e. the modules. This prob-
lem is also known as composite [38] or structured [32] motif discovery.

Over the past few years, a plethora of single motif discovery tools have been
reported in the literature (see the book by Robin et al. [36]). They differ in three
aspects:

1. The representation of a pattern that constitutes a single motif,
2. The definition of overrepresentation of a motif pattern and
3. The search strategy applied to pattern finding.

A single motif can be represented either by a consensus sequence, which contains
the most frequent nucleotide in each position of the observed signals, or by a po-
sition weight matrix (PWM), which assigns a different probability to each possible
letter at each position in the motif [46].
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Both consensus sequences and PWMs are derived by the multiple alignments of
all the known recognition sites for a given regulatory factor and represent the speci-
ficity of a regulatory factor for its own recognition site. They refer to a sequence
that matches all the sequences of the aligned recognition sites very closely, but not
necessarily exactly. In a consensus sequence, this concept is expressed by notations
that indicate which positions of the consensus sequence are always occupied by
the same nucleotide (exact match) and which one can vary and how (allowed mis-
match), without affecting the functionality of the motif. Considering the example
DNA consensus sequence T[CTING{A}A, it has to be read in the following way:
the first, fourth and sixth position in the consensus are always occupied by T, G and
A, where T stands for thymidine, G for guanine and A for adenine; no mismatches
are allowed in these positions. The second nucleotide in the sequence can be a
cytosine (C) or alternatively a T. This mismatch does not affect the effectiveness
of the recognition signal. The third position of the consensus can be occupied by
any of the four nucleotide bases (A, T, C, G). At the fifth position any base can be
present except A.

A PWM of a DNA motif has one row for each nucleotide base (A, T, C, G) and
one column for each position in the pattern. This way, there is a matrix element for
all possible basis at every position. The score of any particular motif in a sequence
of DNA is the sum of the matrix values for that motif’s sequence. This score is the
same of the consensus only when the motif perfectly matches the consensus. Any
sequence motif that differs from the consensus in some positions will have a lower
score depending on the number and type of nucleotide mismatches.

In contrast to these sequence patterns, spatial patterns have also been investi-
gated [19], where spatial relationships (e.g. adjacency and parallelism) and shapes
(e.g., -helices in protein motifs) can be represented.

The overrepresentation of motif patterns has been defined in several ways. In
some motif-discovery algorithms, a score is defined for each pattern (e.g., p-value
[47] or z-score [43]), and the observed motif scores are compared with expected
scores from a background model. In other algorithms, two separate values are com-
puted when evaluating motifs, one concerning the support, or coverage, of a motif,
and the other concerning the unexpectedness of a motif [35]. A third approach is to
use a measure of information content [25] of discovered patterns.

Search strategies can be categorized as enumerative (or pattern-driven) and
heuristic (or sequence-driven). The former enumerate all possible motifs in a given
solution space (defined by a template pattern) and test each for significance, while
the latter try to build a motif model by varying some model parameters such that
a matching score with sequence data is maximized. In general, enumerative algo-
rithms find optimal solutions for discrete representations of relatively short motifs,
but do not scale well to larger motifs and continuous models. TEIRESIAS [35]
is more sophisticated in using information about the relative occurrences of sub-
strings; therefore, it can be used to discover discrete representations of longer
motifs. Among the heuristic-based approaches, the most common is the expectation-
maximization (EM) [5], which is a deterministic local search algorithm. EM may
converge very fast, but the optimality of the returned point strongly depends on
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the starting point (seed). For this reason, it is used in combination with some
randomization techniques in order to escape from a poor local optimum even if
the chosen seed is bad [6].

Algorithms for the de novo discovery of modules, together with the parameters
of their constituent motifs [14,41, 52], are more recent. These algorithms, which
exploit some form of spatial information (e.g., spatial correlation) on constituent
motifs to identify a module, are considered particularly promising since they may
offer both improved performance over conventional discovery algorithms of sin-
gle motifs and insight into the mechanism of regulation directed by the constituent
motifs [26]. However, in order to restrict the search space, they make some as-
sumptions which limit their flexibility in handling variations of either the number
or length of the constituent motifs or the spacing between them. For instance, the
hierarchical mixture (HMx) model of CISMODULE [52] requires the specification
of both the length of the module and the total number of constituent motif types.
Moreover, CISMODULE does not capture the order or precise spacing of multiple
TFBSs in a module. Segal and Sharan [41] propose a method for the de novo dis-
covery of modules consisting of a combination of single motifs which are spatially
close to each other. Despite the flexibility of their method in handling modules,
they assume that a training set (with positive and negative examples of transcrip-
tional regulation) is available in order to learn a discriminative model of modules.
The method EMC module proposed by Gupta and Liu [14] assumes a geometrical
probability distribution on the distance between TFBSs.

Although a recent study [18] has shown a significant improvement in predic-
tion success when modules are considered instead of isolated motifs, it is largely
believed that without some strong form of inductive bias,! methods for de novo
module discovery may have performance close to random. For this reason, another
line of module discovery methods has been investigated (e.g., Cister [13], Module-
Searcher [1], MScan [20], Compo [39]), which takes a list of single motifs as input
along with the sequence data in which the modules should be found. Single motifs
are taken from motif databases, such as TRANSFAC [15] and JASPAR [37], and the
challenges concern discovering which of them are involved in the module, defining
the sequence of single motifs in the module and possibly discovering the inter-motif
distances.”

Module discovery methods can be categorized according to the type of frame-
work, either discrete (e.g., CREME [42]) or probabilistic (e.g., Logos [51]), adopted
to model modules. In a discrete framework, all constituent motifs must appear in a
module instance. This simplifies inference and interpretation of modules, and of-
ten allows exhaustive search of optimal constituent motifs in a sequence window

! The inductive bias of a learning algorithm is the set of assumptions that the learner uses to predict
outputs given inputs that it has not encountered. It forms the rationale for learning since without it
no generalization is possible [29].

2 The distance is typically evaluated as the number of nucleotides which separate two consecutive
single motifs. More sophisticated distance measures might be used in future works if significant
progress is made in the prediction of DNA folding.
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of a given length. Conversely, a probabilistic framework is more expressive, since it
relaxes the hard constraints of discrete frameworks and associates each module with
a score which is a combination (e.g., the sum) of motifs and distance scores. Issues
of probabilistic frameworks are local optima and interpretability of results.

A recent assessment of eight published methods for module discovery [21] has
shown that no single method performed consistently better than others in all situa-
tions and that there are still advances to be made in computational module discovery.
In this chapter, we propose an innovative approach to module discovery, which can
be a useful supplement or alternative to other well-known approaches. The idea is
to mine rules which define “strong” spatial associations between single motifs [27].
Single motifs might either be de novo discovered by traditional discovery algorithms
or taken from databases of known motifs.

The spatial relationships considered in this work are the order of motifs along
the DNA sequence and the inter-motif distance between each consecutive couple of
motifs, although the mining method proposed to generate spatial association rules
has no limitation on both the number and the nature of spatial relationships. The as-
sociation rule mining method is based on an inductive logic programming (ILP) [31]
formulation according to which both data and discovered patterns are represented in
a first-order logic formalism. This formulation also facilitates the accommodation
of diverse sources of domain (or background) knowledge which are expressed in a
declarative way. Indeed, ILP is particularly well suited to bioinformatics tasks due
to its ability both to take into account background knowledge and to work directly
with structured data [30]. This is confirmed by some notable success in molecular
biology applications, such as predicting carcinogenesis [44,45].

The proposed approach is based on a discrete framework, which presents several
advantages, the most relevant being the straightforward interpretation of rules, but
also some disadvantages, such as the hard discretization of numerical inter-motif
distances or the choice of a minimum support threshold. To overcome these issues,
some computational solutions have been developed and tested.

The specific features of this approach are:

e An original perspective of module discovery as a spatial association rule mining
task;

e A logic-based approach where background knowledge can be expressed in a
declarative way;

e A procedure for the automated selection of some parameters which are difficult
to properly set;

e Some computational solutions to overcome the discretization issues of discrete
approaches.

These features provide our module discovery tool several advantages with
respect to competitive approaches. First, spatial association rules, which take
the form of A = C, provide insight both into the support of the module (repre-
sented by A A C) and into the confidence of possible predictions of C given A.
Predictions may equally concern both properties of motifs (e.g., its type) and spa-
tial relationships (e.g., the inter-motif distance). Second, the declarative knowledge
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representation facilitates the development and debugging of background knowledge
in collaboration with a domain expert. Moreover, knowledge expressed in a declar-
ative way is re-usable across different tasks and domains, thus easing the burden of
the knowledge engineering effort. Third, the resort to first-order (or relational) logic
facilitates the representation of input sequences, whose structure can be arbitrarily
complex, and increases the explanatory power of discovered patterns, which are
relatively easy to interpret for domain experts. Fourth, computational solutions
devised for both the problem of selecting a minimum support threshold and the
problem of discretizing numerical data fulfill the twofold goal of improving the
quality of results and designing tools for the actual end-users, namely biologists.
Further significant advantages are:

e No prior assumption is necessary either on the constituent motifs of a module or
on their spatial distribution;

e Specific information on the bases occurring between two consecutive motifs is
not required.

This work also extends our previous study [48], where frequent patterns are
generated by means of the algorithm GSP [3]. The extension aims to: (1) find asso-
ciation rules, which convey additional information with respect to frequent patterns;
(2) discover more significant inter-motif distances by means of a new discretiza-
tion algorithm which does not require input parameters; (3) automatically select the
best minimum support threshold; (4) filter redundant rules; (5) investigate a new
application of an ILP algorithm to a challenging bioinformatics task.

The chapter is organized as follows. Section 5.2 presents a formalization of the
problem, which is decomposed into two subproblems: (1) mining frequent sets of
motifs, and (2) mining spatial association rules. Input and output of each step of the
proposed approach are also reported. Section 5.3 describes the method for spatial
association rule mining. Section 5.4 presents the solution to some methodological
and architectural problems which affect the implementation of a module discovery
tool effectively usable by biologists. Section 5.5 is devoted to a case study, which
shows the application of the developed system. Finally, conclusions are drawn.

5.2 Mining Spatial Association Rules from Sequences

Before proceeding to a formalization of the problem, we first introduce some general
notions on association rules.

Association rules are a class of patterns that describe regularities or co-
occurrence relationships in a set 7 of homogeneous data structures (e.g., sets,
sequences and so on) [2]. Formally, an association rule R is expressed in the form
of A= C, where A (the antecedent) and C (the consequent) are disjoint conditions
on properties of data structures (e.g., the presence of an item in a set). The meaning
of an association rule is quite intuitive: if a data structure satisfies A, then it is
likely to satisfy C. To quantify this likelihood, two statistical parameters are usually
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computed, namely support and confidence. The former, denoted as sup(R, T), es-
timates the probability P(A A C) by means of the percentage of data structures
in T satisfying both A and C. The latter, denoted as conf(R, T'), estimates the
probability P(C|A) by means of the percentage of data structures which satisfy
condition C, out of those which satisfy condition A. The task of association rule
mining consists in discovering all rules whose support and confidence values exceed
two respective minimum thresholds. When data structures describe spatial objects
together with their spatial relationships, mined association rules are called spatial,
since conditions in either the antecedent or the consequent of a rule express some
form of spatial constraint.

We now give a formal statement of the module discovery problem, which is
decomposed into two subproblems as follows:

1. Given: A set M of single motifs, a set 7' of sequences with annotations about
type and position of motifs in M and a minimum value t,,;,,
Find: The collection S of all the sets Si, S», ..., S, of single motifs such that,
for each §;, at least t,,;, sequences in 7" contain all motifs in S;.

2. Given: A set S € S and two thresholds o,,;,, and K,
Find: Spatial association rules involving motifs in S, such that their support and
confidence are greater than o,,;, and k,,;,, respectively.

Single motifs in M can be either discovered de novo or taken from a single motif
database. Each S; € S is called motif set. The support set of S; is the subset T’s; of
sequences in T such that each sequence in Ts; contains at least one occurrence of
each motif in S;. According to the statement of subproblem (1) |Ts; | > Tin- Ts; is
used to evaluate both support and confidence of spatial association rules mentioned
in subproblem (2).

The proposed approach is two-stepped since it reflects this problem decompo-
sition. In the first step, motif sets which are frequent, i.e., have a support greater
than t,,,, are extracted from sequences annotated with predictions for known single
motifs. Only information about the occurrence of motifs is considered, while spa-
tial distribution of motifs is ignored. This step has a manifold purpose: (1) enabling
biologists to guide deeper analysis only for sets of motifs which are deemed poten-
tially interesting; (2) filtering out sequences which do not include those interesting
sets of motifs; (3) lowering the computational cost of the second step.

In the second step, sequences that support specific frequent motif sets are ab-
stracted into sequences of spaced motifs. A sequence of spaced motifs is defined as
an ordered collection of motifs interleaved with inter-motif distances. Each inter-
motif distance measures the distance between the last nucleotide of a motif and
the first nucleotide of the next motif in the sequence. Spatial association rules are
mined from these abstractions. In order to deal with numerical information on the
inter-motif distance, a discretization algorithm is applied. The algorithm takes into
account the distribution of the examples and does not significantly depend on input
parameters as in the case of classical equal width or equal frequency discretization
algorithms. Details on both steps are reported below.
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5.2.1 Mining Frequent Motif Sets

To solve the first sub-problem, we resort to the levelwise breadth-first search [28]
in the lattice of motif sets. The search starts from the smallest element, i.e., sets
with one motif in M, and proceeds from smaller to larger sets. The frequent sets of
i motifs are used to generate candidate sets of (i + 1) motifs. Each candidate set,
which is potentially frequent, is evaluated against the set 7" of sequences, in order to
check the actual size of its support set. Then it is pruned if its support is lower than
Tmin- FOr instance, given M = {x, y,z} and T as in Fig.5.1a, the set S = {x, y}
is supported by Ts = {t2,t3}. If 7,;y = 2, then § is returned together with other
frequent motif sets in S.

5.2.2 Mining Spatial Association Rules

The sequences in the support set Ts of a frequent motif set S are represented as
chains of the form (my,dy,ma, ..., d,—1, my), where each m; denotes a single mo-
tif (m; € M), while each d;,i = 1,2,...,n — 1, denotes the inter-motif distance
between m; and m; ;. Each chain is a sequence of spaced motifs. For instance,
sequence #, in Fig. 5.1a is represented as (x, 10, y, 92, y).

From a biological viewpoint, slight differences in inter-motif distances can be
ignored. For this reason, we can group almost equal distances by applying a dis-
cretization technique which maps numerical values into a set of closed intervals.

a t,) .tttgcggcactgttgtcatttccggggt (y) aagatggctgcagtccgaatgectgageatcaa..
(t,) ..gagca (x) ggaatgccga (y) gactgatttgt —-——-- gttcgetattt (y) tcaaggtcca...
10bp 92bp
t,) ..gagac (x) gatgcgcc (y) ctgacggttta ——------ tcgaatcggctaag (y) tcaatcag...
" 8bp 98bp
b X e Ko
’ short .
medium

short-medium distance

Fig. 5.1 (a) Three different annotated sequences (¢, ¢, t3) belonging to the set 7" where motifs
x and y have been found. The grey semi-boxes underline the nucleotide sequences between two
consecutive motifs (inter-motif distance). Inter-motif distances are expressed in base pairs (bp).
(b) Closed-intervals of inter-motif distances
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Therefore, a sequence of spaced motifs can be further abstracted into an ordered
collection of motifs interleaved by symbols (e.g., short, medium, and large) rep-
resenting a range of inter-motif distance. For instance, by considering the closed
intervals in Fig. 5.1b, both sequences #, and 73 in Fig.5.1a are represented by the
following sequence of spaced motifs:

(x, short, y, medium, y). (5.1

Each sequence of spaced motifs is described in a logic formalism which can be
processed by the ILP system SPADA (Spatial Pattern Discovery Algorithm) [24]
to generate spatial association rules. More precisely, the whole sequence, the con-
stituent motifs and the inter-motif distances are represented by distinct constant
symbols.®> Some predicate symbols are introduced in order to express both prop-
erties and relationships. They are:

e sequence(t): t is a sequence of spaced motifs;

e part_of(t,m): The sequence ¢ contains an occurrence m of single motif;

e is_a(m,x): The occurrence m is a motif x;

e distance(my,m,,d): The distance between the occurrences m; and m5 is d.

A sequence is represented by a set of Datalog* ground atoms, where a Datalog
ground atom is an n-ary predicate symbol applied to n constants. For instance, the
sequence of spaced motifin (5.1) is described by the following set of Datalog ground
atoms:

sequence(ty),

part_of (t,m1), part_of (t, mz), part_of (t2,m3),

. . . (5.2)
is.a(my, x), is.a(ma, y), is.a(ms, y),

distance(my, my, short), distance(my, m3, medium).

The set of Datalog ground atoms of all sequences is stored in the extensional part
DEg of a deductive database D. The intensional part D of the deductive database
D includes the definition of the domain knowledge in the form of Datalog rules. An
example of Datalog rules is the following:

short_medium_distance(U, V') < distance(U, V, short). 53)
short_medium_distance(U, V) < distance(U, V, medium). ’

They state that two motifs’ are at a short_medium_distance if they are at ei-
ther short or medium distance (Fig.5.1b). Rules in Dy allows additional Datalog

3 We denote constants as strings of lowercase letters possibly followed by subscripts.
4 Datalog is a query language for deductive databases [9].
3 Variables are denoted by uppercase letters possibly followed by subscripts, such as U and V.
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ground atoms to be deduced from data stored in Dg. For instance, rules in (5.3)
entail the following information from the set of Datalog ground atoms in (5.2):

short_medium_distance(my, my),
. : (5.4)
short_medium_distance(mo, m3).

SPADA adds these entailed Datalog ground atoms to set (5.2), so that atoms with
the predicate short_medium_distance can also appear in mined association rules.

Spatial association rules discovered by SPADA take the form A = C, where
both A and C are conjunctions of Datalog non-ground atoms. A Datalog ground
atom is an n-ary predicate symbol applied to n terms (either constants or variables),
at least one of which is a variable. For each association rule, there is exactly one
variable denoting the whole sequence and other variables denoting constituent mo-
tifs. An example of a spatial association rule is the following:

sequence(T), part_of (T, M), is_.a(My, x), distance(My, M3, short),

My # My = is-a(Ma.y) o
where variable 7" denotes a sequence, while variables M; and M» denote two dis-
tinct occurrences of single motifs (M, # M>) of type x and y, respectively. With
reference to the sequence described in (5.2), T corresponds to t, while the two
distinct occurrences of single motifs M and M, correspond to m; and m, respec-
tively. By means of this association rule, it is possible to infer which is the single
motif that follows in a short distance a single motif x. The uncertainty of the infer-
ence is quantified by the confidence of the association rule.

Details on the association rule discovery algorithm implemented in SPADA are
reported in the next section.

5.3 SPADA: Pattern Space and Search Procedure

In SPADA, the set O of spatial objects is partitioned into a set S of reference (or
target) objects and m sets Ry, 1 < k < m, of task-relevant (or non-target) objects.
Reference objects are the main subject of analysis and contribute to the computation
of the support of a pattern, while task-relevant objects are related to the reference
objects and contribute to accounting for the variation, i.e., they can be involved in
a pattern. In the sequence described in (5.2), the constant #, denotes a reference
object, while the constants m 1, m, and m3 denote three task relevant objects. In this
case, there is only one set R; of task-relevant objects.

SPADA is the only ILP system which addresses the task of relational frequent
pattern discovery by dealing properly with concept hierarchies. Indeed, for each set
Ry, a generalization hierarchy Hj is defined together with a function v, which
maps objects in Hj into a set of granularity levels {1,..., L}. For instance, with
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motif Level 1
‘/l\‘ Lovel 2
X y z
/ e /l T o Ta
m, v m, v .. Level3
m,

Fig. 5.2 A three-level hierarchy defined on motifs

reference to the sequence described in (5.2), it is possible to define a three-level
hierarchy H; (Fig.5.2), where the top level represents a generic single motif, the
middle level represents distinct single motifs in M and the lowest level represents
specific occurrences of motifs. In this example, the function ¥; simply maps the
rootto 1, x, y, and z to 2 and m1, m, and m3 to 3.

The set of predicates used in SPADA can be categorized into four classes. The
key predicate identifies the reference objects in S (e.g., sequence is the key predicate
in description (5.2)). The property predicates are binary predicates which define
the value taken by an attribute of an object (e.g., length of a motif, not reported
in description (5.2)). The structural predicates are binary predicates which relate
task-relevant objects (e.g., distance) as well as reference objects with task-relevant
objects (e.g., part_of). The is_a predicate is a binary taxonomic predicate which
associates a task-relevant object with a value of some H.

The units of analysis D|s], one for each reference object s € S, are subsets of
ground facts in D g, defined as follows:

D[s] = isa(R(s)) UD[s|R()]U | J DIri|R(s)). (5.6)
r; €R(s)

where:

e R(s) is the set of task-relevant objects directly or indirectly related to s;

o is_a(R(s)) is the set of is_a atoms specified for each r; € R(s);

e DJ[s|R(s)] contains both properties of s and relations between s and some
ri € R(s);

e DJri|R(s)] contains both properties of r; and relations between r; and some
rj € R(s).

This notion of unit of analysis is coherent with the individual-centered represen-
tation [7], which has some nice properties, both theoretical (e.g., PAC-learnability
[49]) and computational (e.g., smaller hypothesis space and more efficient search).
The set of units of analysis is a partitioning of Dg into a number of subsets D|s],
each of which includes ground atoms concerning the task-relevant objects (transi-
tively) related to the reference object s. With reference to the sequence described
in (5.2), R(t2) = {m1,m2,m3}, and D[t,] coincides with the whole set of ground
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atoms, including those inferred by means of rules in the intensional part Dy of the
deductive database. If several reference objects had been reported in (5.2), D|[t;]
would have been a proper subset.

Patterns discovered by SPADA are conjunctions of Datalog non-ground atoms,
which can be expressed by means of a set notation. For this reason they are also
called atomsets [10], by analogy with itemsets introduced for classical association
rules. A formal definition of atomset is reported in the following.

Definition 5.1. An atomset P is a set of atoms po(ty), p1(t},13), p2(t3,13), ...,
Pr (trl, trz), where py is the key predicate, while p;, i = 1,...,r, is either a struc-

tural predicate or a property predicate or an is-a predicate.

Terms tij are either constants, which correspond to values of property predicates,
or variables, which identify reference objects either in S or in some Ry. Each p;
is a predicate occurring either in Dg (extensionally defined predicate) or in Dy
(intensionally defined predicate). Some examples of atomsets are the following:

Py = sequence(T), part_of (T, M), is_.a(M, x)

Py = sequence(T), part_of (T, M), is_.a(M1, x), distance(M, M5, short)

P3 = sequence(T), part_of (T, My), is.a(My, x), distance(My, M5, short),
is-a(Ma,y)

where variable 7' denotes a reference object, while variables M; and M, denote
some task-relevant objects. All variables are implicitly existentially quantified.

Atomsets in the search space explored by SPADA satisfy the linkedness [16]
property, which means that each variable denoting a task-relevant object in an atom-
set P defined as in Definition 5.1 must be transitively linked to the reference object
l(} by means of structural predicates. For instance, variables M, and M, in Py, P,
and P; are transitively linked to 7' by means of the structural predicates distance
and part_of. Therefore, P, P, and P3 satisfy the linkedness property.

Each atomset P is associated with a granularity level /. This means that all tax-
onomic (is_a) atoms in P refer to task-relevant objects, which are mapped by some
Y into the same granularity level /. For instance, atomsets Py, P, and Ps are asso-
ciated with the granularity level 2 according to the hierarchy H; in Fig.5.2 and the
associated function ¥;. For the same reason, the following atomset:

Py = sequence(T), part_of (T, My), is-.a(My, motif)

is associated with the granularity level 1.
In multi-level association rule mining, it is possible to define an ancestor relation
between two atomsets P and P’ at different granularity levels.

Definition 5.2. An atomset P at granularity level [ is an ancestor of an atomset
P’ at granularity level [/, [ < [’, if P’can be obtained from P by replacing each



5 Mining Spatial Association Rules for Composite Motif Discovery 99

task-relevant object i € Hy at granularity level / (I = v (h)) with a task-relevant
object &', which is more specific than 4 in Hy and is mapped into the granularity

level I’ (I" = Y (h')).

For instance, the atomset P4 defined above is an ancestor of Pq, since P; can be
obtained from P4 by replacing motif with x.

By associating an atomset P with an existentially quantified conjunctive formula
eqc(P) obtained by transforming P into a Datalog query, we can now provide a
formal definition of the support of P on a deductive database D. We recall that
D has an extensional part Dg and an intensional part D;. Moreover D includes
several units of analysis D|[s] one for each reference object.

Definition 5.3. An atomset P covers a unit of analysis D|s] if D[s] U Dy logically
entails eqc(P) (D[s] U Dy = eqc(P)).

Each atomset P is associated with a support, denoted as sup(P,D), which is
the percentage of units of analysis in D covered by P. The minimum support for
frequent atomsets depends on the granularity level / of task-relevant objects. It is
denoted as 0y, [I] and we assume that o,,;,[] + 1] < o,uinll], [ = 1,2,..., L-1.

Definition 5.4. An atomset P at granularity level / with support sup(P,D) is frequent
if sup(P, D) > o»[l] and all ancestors of P are frequent at their corresponding
levels.

In SPADA, the discovery of frequent atomsets is performed according to both
an intra-level and an inter-level search. The intra-level search explores the space of
patterns at the same level of granularity. It is based on the level-wise method [28],
which performs a breadth-first search of the space, from the most general to the
most specific patterns, and prunes portions of the search space which contain only
infrequent patterns.

The application of the level-wise method requires a generality ordering, which
is monotonic with respect to pattern support. The generality ordering adopted by
SPADA is based on the notion of 8-subsumption [33].

Definition 5.5. P; is more general than P, under -subsumption (P; >4 P») if
and only if P; 6-subsumes P, i.e., a substitution § exists, such that P10 C P;.

For instance, with reference TO the atomsets Py, P, and P3 reported above, we
observe that P; 6-subsumes P> (P; =g P») and P, 6-subsumes P; (P> =g P3)
with substitutions 8; = 6, = Q.

The relation >¢ is a quasi-ordering (or preorder), since it is reflexive and transi-
tive but not antisymmetric. Moreover, it is monotonic with respect to support [24],
as stated in the following proposition.

Proposition 5.1. Let Py and P, be two atomsets at the same level I, defined as in
Definition 5.1. If Py >=¢ P,, then sup(Py, D) > sup(P2, D).
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It is noteworthy that if P; >4 P, and P; is not frequent (sup(P1, D) < 0in[l]),
then also P; is not frequent (sup(Pa, D) < 0min[l]). This monotonicity property of
>g with respect to the support allows for pruning the search space without losing
frequent atomsets.

In the inter-level search, atomsets discovered at level / are refined by descending
the generalization hierarchies up to finding task-relevant objects mapped at level
[ + 1. These are the only candidate atomsets considered for evaluation, since other
candidates would not meet the necessary condition for atomsets to be frequent at
level [ + 1 when 0, + 1] < 0in[l] (see Definition 5.4). This way, the search
space at level / + 1 is heavily pruned. Moreover, information on the units of analysis
covered by atomsets at level / can be used to make more efficient the evaluation of
the support of atomsets at level / + 1. Indeed, if a unit of analysis D[s] is not covered
by a pattern P at granularity level /, then it will not be covered by any descendant
of P atlevel l + 1.

Once frequent atomsets have been generated at level /, it is possible to generate
strong spatial association rules, i.e., rules whose confidence is higher than a thresh-
old Kin[l]. In particular, each frequent atomset P at level [ is partitioned into two
atomsets A and C such that P = A A C and the confidence of the association rule
A = C is computed. Different partitions of P generate different association rules.
Those association rules with confidence lower than «,,;,[/] are filtered out.

We conclude by observing that in real-world applications a large number of fre-
quent atomsets and strong association rules can be generated, most of which are
uninteresting. This is also true for the module discovery problem (e.g., constituent
motifs with a large inter-motif distance). To prevent this, some pattern constraints
can be expressed in a declarative form and then used to filter out uninteresting atom-
sets or spatial association rules [4].

5.4 Implementation

The development of a module discovery tool effectively usable by biologists de-
mands for the solution of several problems, both methodological and architectural.
Methodological problems involve data pre-processing, namely discretization of nu-
merical data, and the automated selection of some critical parameters such as
minimum support. Architectural problems concern the interface of the tool with
the external world, either to acquire data and parameters or to communicate results.
In this section, solutions to these problems are briefly reported.

5.4.1 Choosing the Minimum Support Threshold

Setting up the minimum support threshold o,,;, is not a trivial problem for a biolo-
gist when assuming no a priori knowledge about structural and functional features
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Fig. 5.3 (a) Functional dependence of the number of spatial association rules from the minimum
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Algorithm 1 Automated setting of 0,

1: find_minsup(i,[oy, 03],[min, max])

2: ifi > MAX_ITERS then

3:  return (o + 02)/2

4: end if

5: no_Rules <— SPADA((0, + 03)/2)

6: if no_Rules > max then

70 Owin < find_minsup(i + 1, [0, (01 + 02)/2],[min, max])
8: else if no_Rules < min then

9:  Opin < find-minsup(i + 1, [(01 + 02)/2, 02],[min, max])
10: else
11: o < (01 +02/2)
12: end if
13: return o,,,

of potential modules. For this reason, we follow the approach suggested in [23]:
users are asked to choose an interval [min, max] for the number of association rules
they want to examine, and a value for o,,;, is then automatically derived. Indeed,
the number of association rules generated by SPADA depends on 0,,;, according
to some function ¢, which is monotonically decreasing (Fig. 5.3a). Therefore, the
selection of an interval [min, max] for the number of association rules corresponds
to the selection of an interval {07, 02] for the support, which includes the optimal
value 0,,,.

Contrary to [23], where a linear search of the optimal value is proposed, we ap-
ply a dichotomic search for efficiency reasons. The formulation of the algorithm is
recursive (see Algorithm 1). Initially, the procedure find_minsup is invoked on the
support interval [0, 1] and SPADA is run with 0,,;,, = 0.5. If necessary, find_minsup
is recursively invoked on either [0, 0.5] or [0.5, 1]. Since the convergence of the
algorithm cannot be proven, we stop the search when the number of recursive invo-
cations exceeds a maximum iteration threshold MAX_ITERS. A reasonable setting
is MAX_ITERS = 5, since after five iterations, the width of the interval [o7, 03] is
relatively small (le).
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5.4.2 Discretizing Numerical Values

SPADA cannot properly deal with numerical values of inter-motif distances.
Therefore, it is necessary to transform them into categorical values through some
discretization technique. The equal frequency (EF) discretization algorithm parti-
tions the initial range of values into a fixed number of intervals (or bins), such that
they have different width but approximately the same number of values. This parti-
tioning may significantly affect the subsequent rule mining step, but unfortunately,
choosing a suitable number of bins is by no means an easy task for a biologist.
For this reason, we investigated a new algorithm which, similarly to EF, partitions
the initial range according to data distribution, but, differently from EF, it needs no
input parameter.

This algorithm, called DUDA (Density-based Unsupervised Discretization
Algorithm), is mainly inspired by clustering algorithms based on kernel density
estimation [17], which groups together data that follow the same (typically normal)
distribution (see Algorithm 2). Histograms are used to model the distribution of
numerical data (inter-motif distances). The width w of each bin is computed by

resorting to Scott’s formula [40] w = 3'35/23, where n is the number of values to

discretize and s is the standard deviation of the values.

In this work, we look for bins so that the values in each bin are normally dis-
tributed. Partitions are identified by finding relative minimums in the histogram
of frequency distribution (Fig.5.3b), which are candidate split points for the
partitioning.

Once the initial partitioning is defined, the algorithm works iteratively: at each
iteration, it tries to merge two consecutive bins. Merging is performed when the
distribution of values in the partition obtained after merging fits a normal distri-
bution better than the two original bins. The decision of merging is based on the
Kolmogorov—Smirnov normality test, which typically works by verifying the null

Algorithm 2 DUDA: Density-based Discretization Algorithm

1: DUDA(P,F)

2: if number _of _partitions(P) > 1 then

3: bestL <0

4. for (a,b) € get_consecutive partitions(P) do
5: if L, < bestL then

6: (best_a, best_b) < (a, b)

7 bestL <— L,

8: end if

9:  end for
10:  if bestL < O then
11: return DUDA (merge(best_a, best_b, P), mergeF (best_a, best_b, F))
12:  endif
13: end if

14: return P
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hypothesis “Hy: data are normally distributed,” given a confidence level. In our
case, we find the minimum confidence level « for which Hj is not rejected, and we
use it to identify the best merging according to the following formula:

Laop =cgp- (Fg+ Fp) — (g Fo +ap - Fp), (5.7

where:

o F, (Fp) is the relative frequency of values in the partition a (b)

e oy, ap and «, p are the confidence values of the Kolmogorov—Smirnov test on a,
b and on the partition obtained after merging a and b, respectively;

e L, is the loss obtained after merging a and b.

Obviously, the smaller L, p, the better. The iteration stops when all possible L, p
are positive (no improvement is obtained) or no further merging is possible. The
algorithm is recursive: it takes as input the list of partitions and the list of frequencies
and returns a new list of partitions. The functions merge and mergeF take as input a
list of r elements and return a list of r — 1 elements, where two consecutive elements
are appropriately merged.

5.4.3 Data Acquisition and Result Processing

SPADA has been integrated in a system which takes the set T of sequences from a
text file. This file is processed in order to mine frequent motif sets as presented in
Sect.5.2.1. The output of this first step is an XML file which is stored in an XML
repository. The corresponding document type definition (DTD) is shown in Fig. 5.4.
For each frequent motif set S (|ts| > T,,), the XML file describes the support set
ts together with some simple statistics (e.g., the ratio |zs|/|T’|). The module that
implements the discretization algorithm DUDA (see Sect. 5.4.2) operates on data
stored in the XML repository.

A wrapper of SPADA loads XML data in the extensional part D g of the deduc-
tive database D used by SPADA itself, while rules of the intensional part D; can be

SEQUENCES

SEQUENCE* STATISTICS

(oo ]

[ SPACERMOTIF* J [ NUM OF SEQUENCES PERCENTAGE J

v
[ MoTIF J [ SPACER J [ ToTAL NUM OF SEQUENCES J

Fig. 5.4 Hierarchical structure arrangement of elements of the XML document type definition
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edited by the user through a graphical user interface. This wrapper is also in charge
of automatically setting the o0,,;, parameter as per Algorithm 1 in Sect. 5.4.1.

By merging consecutive bins through the rules in D, many spatial association
rules are discovered, which differ only in some intervals of inter-motif distances.
An unmanageably large number of association rules makes interpretation of results
cumbersome for the biologist. For this reason, association rules are filtered before
being shown to the user. Three filtering criteria are considered. The first criterion
selects the association rules with the smallest bins among rules with the same motifs,
the same confidence and supported by the same sequences. The second criterion
selects the association rules with the greatest support among those with the same
motifs and confidence, whose bins are included in the bins of the selected rules and
whose list of supporting sequences is included in the list of supporting sequences
of the selected rules. The last criterion selects the association rules with highest
confidence among those with the same motifs, whose bins are included in the bins
of the selected rules and whose list of supporting sequences is included in the list of
supporting sequences of the selected rules.

5.5 Case Study

To show the potential of the integrated system, a pilot study is conducted on trans-
lation regulatory motifs located in the nucleotide sequences of untranslated regions
(UTRs) of nuclear transcripts (mRNAs) targeting mitochondria. These motifs are es-
sential for mRNA subcellular localization, stability and translation efficiency [50].
Evidence from recent studies supports the idea that the nature and distribution of
these translation regulatory motifs may play an important role in the differential
expression of mRNAs [11].

Datasets are generated as a view on three public biological databases, namely
MitoRes,® UTRef and UTRsite.” The view integrates data on UTR sequences and
their contained motifs, together with information on the motifs width and their start-
ing and ending position along the UTR sequences in the UTRminer [48] database.
We base our analysis on a set T of 728 3’UTR sequences relative to the human
species. Twelve motifs are initially considered (set M ). By setting t,,;, = 4, several
frequent motif sets (set S) are extracted in the first phase. We focus our attention on
the motif set S € S with the largest support set (111 3'UTR sequences). It contains
three motifs, which are denoted as x, y and z. The hierarchy defined on motifs has
three levels (Fig. 5.2), but we consider only the middle level, since the top level con-
veys little information on the constituent motifs of a module, while the bottom level
is too specific to find interesting rules.

® http://www2.ba.itb.cnr.it/MitoRes/
7 http://utrdb.ba.itb.cnr.it/
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To discretize inter-motif distances, both EF and DUDA discretization are tested
with two settings of the threshold o,,;, (40% and 50%) and one of k;,, (80%). The
number of intervals set for EF is 12. Since we have no prior knowledge on the
suitability of this choice, we intentionally define some distance predicates whose
semantics correspond to a merging operation of consecutive intervals (rules (5.3)
reported in Sect. 5.2.2 exemplify intensionally defined distance predicates for inter-
vals merging). This way, the comparison between EF and the discretization method
proposed in this chapter is fair and does not depend on our initial decision of parti-
tioning the distances in 12 intervals.

Experimentally, we observe that the running time varies significantly between
the two solutions (Table 5.1). Indeed, the use of intensionally defined predicates to
merge intervals slows down the discovery process and has the undesirable effect of
returning a large number of similar rules which have to be finally filtered out.

We also test the procedure for the automated selection of the o,,;, threshold. The
interval chosen for the number of spatial association rules is [min = 50, max = 100],
while MAX_ITERS = 6. After five steps, the system converges to g,,;, = 0.5313
and returns 85 spatial association rules (Table 5.2).

An example of spatial association rule discovered by SPADA is the following:

sequence(T),partof (T, M1),is-a(My, x), distance(My, M>,[—99.. — 18]),
iS_a(Mz, y), distance(Mz, M3, [—9935]), M1 7é Mz, M1 75 M3, M2 75 M3
= is.a(M3,2) (5.8)

This rule can be interpreted as follows: if a motif of type x is followed by a motif
of type y, their inter-motif distance falls in the interval [-99.. — 18], and the motif
of type y is followed by another motif at an inter-motif distance which falls in the
interval [—99..3.5], then that motif is of type z. The support of this rule is 63.96%,
while the confidence is 100%. The high support reveals a statistically overrepre-
sented module, which may be indicative of an associated biological function. This
module can also be represented by the following chain:

Table 5.1 Results for the two discretization algorithms

Omin Running time  No. of unfiltered rules  No. of filtered rules

Equal frequency 40%  >36h 1,817 84
50% >4h 220 36
DUDA 40% 4s 16 16
50% s 12 12

Table 5.2 Choosing the minimum support threshold

Iterationno. 1 2 3 4 5

No. rules 185 9 25 40 85

lof 0.5000  0.7500  0.6250  0.5625  0.5313
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(x,[=99.. — 18], , [~99..3.5], 2),

which is similar to that reported as (5.1) in Sect. 5.2.2, with the difference that here
intervals of inter-motif distances are reported. The high confidence means that when
the conditions expressed in the antecedent hold, the type z of the third motif in the
chain can be predicted with certainty. Therefore, the spatial association rule conveys
additional inferential information with respect to the frequent pattern.

5.6 Conclusions

In this chapter, we describe a new approach to module discovery by mining spa-
tial association rules from a set of biological sequences where type and position of
regulatory single motifs are annotated. The method is based on an ILP formulation
which facilitates the representation of the biological sequences by means of sets
of Datalog ground atoms, the specification of background knowledge by means of
Datalog rules and the formulation of pattern constraints by means of a declarative
formalism. Although results of the method are easy to read for a data-mining expert,
they are not intelligible for a biologist because of the use of first-order logic to repre-
sent spatial patterns. For this reason, the spatial association rule mining method has
been implemented in a tool which effectively support biologists in module discov-
ery tasks by graphically rendering mined association rules. The tool also supports
biologists in other critical decisions, such as selecting the minimum support thresh-
old. To face the hard discretion problem, which typically affects discrete approaches
like that described in this chapter, we have also implemented a new discretization
method, which is inspired by kernel density estimation-based clustering and needs
no input parameters.

The tool has been applied to a pilot study on translation regulatory motifs located
in the untranslated regions of messenger RNAs targeting mitochondria. The appli-
cation shows the potential of the approach and methods proposed in this chapter.
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