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Abstract

Sphingolipid metabolism constitutes a complex pathway system that includes biosynthesis 
of different types of sphingosines and ceramides, the formation and recycling of complex
sphingolipids and the supply of materials for remodeling. Many of the metabolites have several 

roles, for instance, as substrates and as modulators of reactions in other parts of the system. The large
number of sphingolipid compounds and the different types of nonlinear interactions among them
render it difficult to predict responses of the sphingolipid pathway system to perturbations, unless one 
utilizes mathematical models. The sphingolipid pathway system not only invites modeling as a useful
tool, it is also a very suitable test bed for developing detailed modeling techniques and analyses, due
to several features. First, the reaction network is relatively well understood and many of the steps have 
been characterized, at least in vitro. Second, sphingolipid metabolism constitutes a relatively closed
system, such that most reactions occur within the system rather than between the system and other 
pathways. Third, the basic structure of the pathway is conserved throughout evolution, but some of 
the details vary among different species. This degree of similarity permits comparative analyses and
may one day elucidate the gradual evolution toward superior system designs. We discuss here some
reasons that make sphingolipid modeling an appealing companion to experimental research and
sketch out applications of sphingolipid models that are different from typical model uses.

Introduction
Most sphingolipid analyses over the past decades have in great detail characterized individual

metabolites, genes, or enzymes along with the reactions they catalyze (for example see refs. 1-7).
As other chapters in this book attest, these studies have greatly improved our understanding of the 
components of sphingolipid metabolism and we have by now assembled a fairly good impression
of the functionality of biosynthesis, metabolic conversions within the pathway and the ultimate
fates of the various sphingolipid compounds. While the detailed characterizations of the genomic,
metabolic and regulatory components are of undisputed importance, they do not paint a complete 
picture of how the integrated metabolic pathway system responds to environmental challenges, 
such as heat stress.

There are many reasons for why characterizing solely the parts of the sphingolipid pathway system 
is insufficient for a full understanding. The most obvious is the sheer number of components. In
yeast there are roughly twenty to thirty “base” metabolites like sphingosine and phytoceramide.8

However, many of these may exist in variant forms that differ in the lengths of their fatty acid 
chains, thereby multiplying the number of possibly relevant “players” several fold. In mammals,
many sphingolipids may furthermore bind to various carbohydrates, forming glycosphingolipids
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such as glucosylceramide and lactosylceramide, so that the number of all theoretically possible
combinations reaches into the thousands (for example, see ref. 9). It is presently unknown whether
every different combination of chain length and carbohydrate group plays a unique role for the
functioning of the organism, but it is to be expected that there are at least distinctive differences
between sphingolipids with long, as opposed to very long, fatty acid chains. As soon as large 
numbers of metabolites with subtle differences in their roles and functions are to be considered, 
the unaided human mind quickly becomes overwhelmed.

A second reason for failure in our intuitive predictive ability of global systems responses is
the nonlinear nature of the interactions between the contributing sphingolipids. Specifically, the 
human mind has problems handling numerical thresholds: a slight increase in a metabolite may 
lead to a correspondingly slight change in some output measure or to no response at all, whereas
a somewhat stronger increase has a distinctly different effect, such as the triggering of apoptosis. If 
several thresholds are in play, we simply can no longer make reliable predictions on responses. As 
a pertinent example, it is known that ceramide is a signaling compound associated with apoptosis,
while sphingosine-1-phosphate (S1P) is associated with anti-apoptosis.4,5,10 However, ceramide can
easily be converted into S1P and vice versa. Thus, will slight changes in enzyme activities somewhere
in the system ultimately lead to apoptosis or anti-apoptosis?

The sphingolipid pathway is usually shown as a more or less linear material flow system, or
as a forward pathway with a few branches, beginning with the condensation of palmityl-CoA
and serine and leading toward complex sphingolipids (CS), such as MIPC (for example see refs. 
2,4,5,11,12). While these representations indeed capture the main flow, closer inspection reveals 
that there are numerous metabolic or regulatory feedback loops. For instance, dihydrosphingosine 
(DHS) and phytosphingosine (PHS) are key compounds at the center of the pathway. At the same
time, they inhibit the production of phoshphatidylserine (PS), in a reaction that competes with 
serine palmitoyltransferase (SPT) for the same key substrate serine and of diacylglycerol (DAG),
which is involved with the kinetics of complex sphingolipids. Palmitoyl-CoA is not only one of the
inputs to biosynthesis, it is also produced in the lyase reaction with DHS-P and PHS-P. Thus, the
uni-directionality of the sphingolipid pathway no longer holds as soon as these “loops” are taken 
into account. It may also happen that metabolites exert competing effects on some other part of 
the system, for instance, by serving simultaneously as input substrate and as a modulator of one 
of the catalytic steps in the system (e.g., see pathway diagrams in refs. 13, 14). These complexities 
render mathematical modeling a valuable tool with unique facilities that are difficult—if not 
impossible—to match with wet experiments.

A noteworthy feature of complex systems precluding reliable predictions is the fact that a 
pathway may exhibit new responses when it is put into its regulatory context. As an example, let
us look at the simplest of pathways, a linear chain of reactions, which is here considered with one 
input and three intermediates (Fig. 1A). It does not require much imagination to predict what will 
happen if the input is raised to a higher level: the intermediates X, Y and Z will correspondingly 
change in concentration. Similarly, if the input is decreased, X, Y and Z will follow. We may not 
know how fast the adjustments will happen and what the final values of X, Y and Z might be, but we 
have a firm grasp of the qualitative response. Indeed, it is very easy to set up a mathematical model
that captures the situation. While there are many options for such a model, the typical approach is
a set of ordinary differential equations (ODEs), whose right-hand sides may be formulated as mass
action kinetics, with Michaelis-Menten rate laws, as power-law functions, or with any number of 
other representations. For the present discussion, the particular mathematical format is essentially 
immaterial and we perform the illustration with a power-law model that is designed according to 
the guidelines of Biochemical Systems Theory (BST15-19). The result is shown in Eq. (1).

(1)
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In this formulation, X, Y and Z are generic representations of the metabolites. Their powers of 
0.5 are typical in BST.18 The parameters k1, k2 and k3 are rate constants. E represents (the activity of )
the enzyme that catalyzes the conversion of X into Y. We include it explicitly in these equations, 
because it will be the bridge to the extension following below. We could similarly include enzymes 
for the conversion of Y into Z and for the degradation of Z, but because their activities are assumed
to be constant and because we do not explicitly use them in the following, we merge them with
the rate constants k2 and k3, respectively. The left-hand sides of Eq. (1) are “dotted” variables that
represent their change with respect to time; thus, for instance, = dX/dt.

To execute computational analyses, we need to specify parameter values. Because we only intend 
to illustrate the complications in predicting system responses, the parameters are chosen almost
arbitrarily, but so that they are typical and that all variables have a nominal steady-state value of 1
if the Input has a magnitude of 1. Specifically, we set the rate constants k1, k2 and k3 equal to 1.

For a baseline simulation, we start the system at the steady state (1, 1, 1). As expected, the 
system rests at this point and X, Y and Z do not change in value. Beginning at time t  10, we
reduce the input to 0.75 and, not surprisingly, the levels of X, Y and Z decrease. With the given
settings, they approach the same value of 0.5625 (Fig. 2A). Doubling the input has the opposite 
effect: It raises the levels of X, Y and Z to 4 (results not shown). If we ignore the input in our
discussion and just study X, Y and Z, we correctly conclude that changes in X cause correspond-
ing changes in Y and Z.

Now suppose that Z is a sphingolipid with signaling function. Specifically, let us assume that
it activates a transcription factor TF, which is responsible for the up-regulation of gene G, which 
codes for the enzyme catalyzing the conversion of X into Y (Fig. 1B). The former pathway is now 
embedded in a logic loop. This loop is easy to grasp in its organization, but its specific effects
and the responses of the metabolic pathway are no longer easy to predict. Intuition may suggest 
that the positive feedback might magnify any changes in input, but it seems difficult to make 
specific predictions. For instance, how will changes in input affect the regulatory loop and the
steady-state values of X, Y and Z? The answer may be surprising: with the given information
alone, particular responses are not predictable with any reliability. It is again straightforward to
set up BST equations capturing the situation. A possible implementation is shown in Eq. (2),
which is an augmentation of the system in Eq. (1). The new parameters are again chosen so that 
all variables have “normal” values of 1 at the steady state. For simplicity of discussion, we will 
keep all parameters constant throughout the next set of simulations, except for the activation
of TF. In other words, our “control parameter” is the strength of activation of TF by Z; it is
coded here as p. The control parameter p is always positive or 0, because a negative value would 
represent inhibition rather than activation. For the baseline case p  0, Z has no influence on TF.
Gene regulation is in effect decoupled from the metabolic pathway and the reaction between
X and Y runs with the former baseline enzyme activity (E  1); the situation is exactly the same
as shown before in Figure 2A.

Figure 1. A) Simple linear pathway, in which an Input substrate is sequentially converted into
metabolites X, Y and Z. Z is the substrate for another process or transported out of the system.
B) Linear pathway from Figure 1A embedded in a “logic loop” consisting of a transcription factor 
TF, a gene G and an enzyme E. Grey arrows indicate activating effects. See Text for details.
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(2)

If pf is greater than 0, Z activates TF, which subsequently leads to a change in the expression of 
gene G and a concordant alteration in enzyme activity E. One should expect the altered enzyme
activity to change the balance between X, Y and Z. If so, Z would change in response to changes in
X and Y and the change in Z would subsequently affect TF, G, E and, thus, indirectly the balance
between X, Y and Z, leading to a cycle of events. Will the system spiral out of control? All the sud-
den, predictions become doubtful, thus demonstrating the necessity of a mathematical model.

In order to explore the effect of TF activation per simulation, let us set p0.1. The value is small
in magnitude, which implies that the activation is not particularly strong. At the beginning of the 
experiment, the system is still in the steady state where each variable has a value of 1. As before we 
reduce the input to 75% at t  10. Metabolite X again decreases initially but, in contrast to the
unregulated system, “recovers” to some degree (Fig. 2B). If pf  is set to a slightly increased value of 
0.24, X actually returns close to its original value of 1. Y and Z assume the same values as before (Fig.
2C). Exploration of other values of pf  show that small magnitudes in p result in values for X that

Figure 2. Simulation results for the pathways in Figures 1A,B and Equations (1) and (2). A) 
Response of the pathway in Figure 1A to a reduction of input to 75%. The situation is equivalent
with Figure 1B if the control parameter is set as p  0. B) Response of the pathway if p  0.1. 
C) Response for p  0.24. D) Response for p  0.4. E) Limit cycle response for p  0.51.



268 Sphingolipids as Signaling and Regulatory Molecules

are close to 0.5625, while larger values lead to higher values. Meanwhile, Y and Z always reach the
same value of 0.5625, no matter what the value of pf ; or what the value of X, for that matter. These 
observations lead to an intriguing conclusion: If we did not know the structure of the pathway,
we would surely conclude that Y and Z had nothing to do with X, because they always have the 
same values, independent of the value of X. Yet, X is their only precursor substrate!

Something quite different happens if pf  is set higher: The metabolites begin to oscillate, before
reaching their new steady state (Fig. 2D). For even larger values, the system “dies.” For instance, 
if pf  0.8, the oscillations become so strong that one of the variables vanishes (result not shown).
In between the former, reasonable values and these large values lies a small range of values for p
(p( � 0.51) where the system exhibits yet another behavior: it oscillates in a stable fashion so that 
after some while the amplitude and frequency remain constant (Fig. 2E). The so-called limit cycle
oscillations in this small range are very interesting mathematically, because they are able to tolerate
perturbations, from which they recover. Sustained oscillations have been observed in the expression 
of actual genomes and in metabolic systems, such as glycolysis.20-23

The simulations with the simple pathway demonstrate that it is not necessarily possible to
grasp intuitively the full functionality of a system if it is taken out of its context. Considering the
complexity of sphingolipid metabolism and its regulation, one must therefore wonder to what
degree intuition is sufficient when global responses are to be predicted.

Sphingolipid Models and Their Potential Uses
Over a span of several years, we have been developing a series of increasingly more sophisticated

models of sphingolipid metabolism.13,14,24,25 The models were formulated as systems of nonlinear
ordinary differential equations in the format of power-law functions, as suggested in BST.18

Choosing this framework, it was straightforward to set up symbolic equations that reflect the
known or assumed connectivity and regulatory signals of the pathway system. While this part of 
the model design phase was manageable with reasonable effort, the estimation of suitable parameter 
values was very challenging. Indeed, our case study confirmed common experience that parameter
estimation is the bottleneck of biological modeling. In our case, the estimation was based on lit-
erature information, de novo experiments and some default assumptions based on experience with
BST.14 The resulting model was subsequently tested in the typical fashion, namely with stability, 
sensitivity and robustness analyses, through comparisons with experimental data that had not been 
used in the estimation phase and through qualitative reality checks based on biological experience. 
After many iterations and revisions, the model appeared reasonable and was semi-quantitatively 
validated with additional wet experiments.13

It would be counterproductive to use the limited space of this chapter to review the steps of 
a typical modeling process in general or even within the context of sphingolipid metabolism, 
because both have been described in recent years and at various levels of sophistication and detail 
(for example see refs. 10, 14, 18, 24). Instead, it seems more beneficial to ask what we may do with 
such models, once they are validated. Again, many typical uses of models have been described in
the literature and we will simply mention some of them. However, other uses are less typical and
will receive more attention in the following.

The first and foremost role of a mathematical model is the integration of diverse data and other 
pieces of information, such as kinetic characteristics of enzymes, expression profiles of genes, protein 
abundances and maybe even semi-qualitative clinical observations. This integration often shows
very clearly whether we have a good grasp of the functionality of the pathway, because most initial
efforts of merging all information into one mathematical construct fail. Typical failures become
apparent in lacking stability or robustness of the model that is accompanied by unduly high sen-
sitivities. In the former case, small variations in input or in some variable may cause the model to
“crash” in a sense that one or more variables vanish. In the latter case, the system “overreacts” to
small changes in parameters. For instance, a 5% increase in some enzyme activity could lead to a 
220% increase in some metabolite, which is unreasonable in most cases. Relatively straightforward
diagnostic tools weed out such systems (for example, see ref. 18).
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If a model appears reasonable, we can further test our intuitive grasp of the system through
simulation studies that represent What-If scenarios, as we employed them before. For example,f
the reduction in an enzyme activity is easily implemented in the model and simulation results
can possibly be validated with wet experiments. An integrated model of sphingolipid metabolism
also allows us to follow the fate of metabolites of interest, many of which are recycled or involved
in several reactions. A good model, with slight adaptations, even permits the tracking of labeled
substrates, from input to their ultimate fates.10,14 As a variation on this theme, a reliable model 
may be used to study the relative contributions of different pathways to a common goal, such as
the formation of rafts that become structural elements of membranes.

In a study of a slightly different nature, we asked the question whether a yeast cell mounts a 
response to stress by up-regulating a small number of enzymes (genes) a lot or whether it changes 
the activities of many enzymes a little bit. Intuitively one could easily find rationale for either
strategy. On one hand, up- or down-regulating only one or two genes or enzymes appears to be
the simpler strategy. On the other hand, drastic changes in some part of the pathway could lead to
concomitant and undesired side effects. In our test case of the diauxic shift, the modeling analysis
suggested that many enzymes are involved in the response.24

Sphingolipid metabolism has been analyzed experimentally in different organisms, some of 
which are phylogenetically close. This similarity permits the cautious extrapolation and use of the 
model in an untested organism. This type of model transfer was demonstrated by using the origi-
nal S. cerevisiae model with some adaptations to study sphingolipid metabolism ine Cryptococcus
neoformans (Cn), an airborne fungal pathogen that may cause life-threatening infections.25 The 
main challenge this organism faces is the distinct difference in pH between alkaline or neutral 
extracellular environments, such as alveolar spaces or the bloodstream and the acidic environment 
of the intracellular phagolysosome of the host’s phagocytic cells, in which the organism lives and 
grows during a crucial phase of its virulence cycle.26 Earlier work in Del Poeta’s laboratory had 
suggested the involvement of sphingolipids in growth under acidic conditions, but it had not been 
possible to characterize the specifics of this process.27 The model results together with subsequent
validation studies led to the very specific proposition that inositol phosphoryl ceramide synthase
(Ipc1) and inositol sphingolipid phospholipase C (Isc1) affect the function of the plasma mem-
brane H�-ATPase pump (Pma1) through modulation of the level of phytoceramides and complex
sphingolipids.25

The successful use of the yeast model in the investigation of a fungal pathogen suggests that it
might even be possible to study the evolution of design principles governing sphingolipid func-
tion, based on comparative model analyses of sphingolipid metabolism in closely related and more 
distant species. Along the same lines, a major future project should convert and test the yeast model
for analyses of the mammalian analogues. This “extrapolation” is much more complicated, because 
mammalian sphingolipids are often bound to carbohydrates, which leads to a multiplication in 
the number of potentially relevant compounds, as discussed before.28 This explosion in number
may appear overwhelming for a model analysis. However, trying to understand the mammalian
systems without computational approaches seems to be incomparably more complicated. It is 
clear that a mammalian model could be very useful for the exploration of pathways leading from
health to diseases such as cancer, where we have strong indication that sphingolipids are involved 
(for example see ref. 29).

As a first step toward comparative studies, the sphingolipid system of the same organism may 
be studied at different grades of granularity. For instance, our present yeast model accounts only 
partially for compartmentalization. As a next step, it might be fruitful to distinguish sphingolipids 
and precursors with different fatty acid chain lengths. Accounting for this detail will require a 
substantial increase in model size and require additional biological information about the relevant 
compounds of different sizes and their respective roles.

As a more detailed example of an atypical model investigation, consider the immediate
sphingolipid response in yeast to heat stress. Genome studies have strongly supported the in-
volvement of several genes, such as MSN2/4 and4 YAP1.30 However, preliminary concentration
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measurements of key sphingolipids indicate that the heat stress response is much faster than 
any gene-regulatory mechanism could accomplish, exhibiting metabolic changes within a few 
minutes (Fig. 331; and Y.A. Hannun, pers. comm.; see also ref. 32). Within about 8 minutes,
dihydrosphingosine-phosphate (DHS-P) and phytosphingosine-phosphate (PHS-P) increase to
8- and 15-fold levels, respectively, before resuming almost normal values after about 20 minutes.
DSH and PSH respond more slowly, peaking after about 15 minutes at 6- and 11-fold levels.
Phytoceramide accumulates gradually over a period of about an hour, peaking at a level that is
about 8 times higher than baseline. Dihydroceramide shows the same pattern, but with a peak 
accumulation of only about two-fold.

This fast change in metabolic profile is intriguing and not explainable with gene regulatory 
actions. We have seen a similarly quick response to heat stress in the trehalose cycle in yeast, which, 
according to careful in vivo NMR measurements, begins producing trehalose within two minutes.30

Again, a gene regulatory response is too slow for such a response. As it turned out in the trehalose
case, three key enzymes of the trehalose pathway are heat sensitive. The two enzymes controlling 
trehalose production are more active at higher temperatures, while trehalase is less active.33 A
preliminary mathematical model analysis suggests that the relatively slight changes in activity are
sufficient to mount the fast, observed response.30

Given the similarity of the heat response task in the case of trehalose and sphingolipids it is
reasonable to ask whether there are heat-sensitive enzymes within the sphingolipid pathway as well.
If so, would a single enzyme be sufficient to mount the observed sphingolipid response? Would
combinations of two or more enzymes be sufficient?

A mathematical model might help us identify such enzymes. First, it would of course be possible
to launch a major simulation study, changing one or a few enzymes at a time and then testing 
whether metabolic concentration patterns like the one observed can be generated. However, some
prudence might help us prescreen some possibilities and favor or disfavor particular hypotheti-
cal scenarios. To permit an objective, yet lucid exploration, we reduced the sphingolipid system
to a minimum and converted it into a much simplified mathematical model. Thus, consider the
reduced core of sphingolipid metabolism that contains only those components that appear most 
important (Fig. 4).

Looking at once at Figures 3 and 4, we can formulate the following as a framework for preliminary 
hypotheses. The concentration of phytoceramide at one to two hours exhibits a sustained level 
at eight times its baseline. This increased level requires that: (1) more material is produced per 

Figure 3. Fold changes in sphingolipids following heat stress at time t  0. Abbreviations: DHS: 
dihydrosphingosine; PHS: phytoshpingosine; DHC: dihydro-ceramide; PHC: phyroceramide; 
–P: –phosphate. Data adapted from Jenkins et al31 and Hannun, Y.A.: pers. comm.
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biosynthesis or recycling of complex sphingolipids (cf.); (2) material is simply reorganized within
the pathway system; (3) the loss of sphingolipids is reduced; or (4) several of the previous options 
are combined. The second option may be discarded off-hand: A simple reorganization or shift of 
fluxes in the neighborhood of DSH and PSH would require decreased levels of the substrates of 
these reactions, but decreases in concentrations are not observed. Although some of the biosyn-
thetic genes are affected by heat, the first option alone also seems questionable, because DSH-P and 
PSH-P respond most quickly, whereas one would expect a response through increased biosynthesis
to cause increases in DHS and PHS first. Besides, if PHC is the target and biosynthesis was the
mechanism, why should DSH-P and PSH-P be increased at all? Similar arguments seem to hold
for the recycling of complex sphingolipids. One could surmise that a direct change in E7C and/
or E8 could be a good strategy toward an increased level of PHC. However, this is apparently 
not a strategy pursued by the cell. Pursuing the third (or fourth) option, the observed metabolite
profile could possibly be achieved through a reduction in the lyase reaction (E5D(( , E5P), which
would lead to an accumulation of the phosphorylated forms. This change would have to be fol-
lowed by increased sphingoid base PPase (E4D(( , E4P) and hydroxylase (E4D(( , E4P) activity, which
would gradually shift the increasing amounts of DSH-P and PSH-P toward the dephosphorylated 
forms and from there to ceramide (E6C(( , CC E6S). It is interesting to note that the dihydro- and the
phyto-forms of sphingolipids essentially form parallel pathways, but that the target profile after
heat stress is distinctly different between the two pathways. This observation suggests that the
involved enzymes might have different affinities for the dihydro- and the phyto-forms, at least 
under heat stress conditions.

Complex systems have a way of tricking our intuition and our hand waving arguments could
simply turn out to be wrong. Nevertheless, it is possible to test these scenarios with a model. In
order to keep our exploration as simple as possible, we created a reduced model reflecting the sim-
plified pathway shown in Figure 4; it is shown in Eq. (3). Because the only purpose of this model is
a proof of concept showing whether or not changes in enzyme activities could lead to something 
like the observed metabolite profile, we set the model up in a minimalistic fashion, again using 
(almost arbitrary) default parameter values and enzyme activities set to a nominal value of 1, so 
that the steady state consists of unity values. These intentional simplifications may show us the
consequences of introduced changes more clearly than a model that is parameterized from actual
data, but of course we cannot expect to obtain numerically valid simulation results.

Figure 4. Reduced and simplified diagram of parts of the sphingolipid pathway involved in heat 
stress response. Abbreviations of metabolites are presented in Figure 3. Names of enzymes
are not of relevance, but can be found in.14 E7C, E7S and E8 are collective representations
for the interactions between the simple and complex sphingolipids.
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(3)

As a first simulation, we start the model at the steady state (1, …, 1). Because all values are 1, all
later results automatically represent “fold” changes. At time t 2, we reduce the lyase activity (E5D(( ,
E5P) (Fig. 5A). Even with different magnitudes and different changes for the lyases with respect 
to DHS-P and PHS-P, the resulting sphingolipid profiles are not even close to the observations in 
Figure 3; instead, they primarily lead to accumulation of DHS-P and PHS-P (Fig. 5B).

For a second exploration, we double the (biosynthetic) input starting at t  2. The result is 
increased mass in the system, but the resultant profile is similar to that in Figure 5B (results not
shown). As a variation on the same theme, we increase the input more gradually and assume that
after a while the substrates for biosynthesis become limiting, thereby reducing the input flux (Fig.
5C). The model now yields a peaking profile, but all metabolites respond in parallel (Fig. 5D).

Figure 5. Two simulation scenarios with Equation (3) exploring the feasibility of simple changes 
in enzyme activities. A) The two lyases are reduced two minutes after initiation of heat 
stress. As a consequence (B), the phosphorylated sphingolipids accumulate. If in addition the 
input to the system changes in direct response to heat, the same metabolites increase more. 
Assuming that increased biosynthesis leads to substrate deprivation, the sphingolipid profiles 
begin to decrease.
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Uncounted simulations of this type may be executed and in the end it would be wise to formulate 
an optimization program that would guide the progression of simulations. Through manual explo-
ration, we developed a more complex heat stress response pattern in enzyme activities (Fig. 6A)
that actually produces a metabolic profile that qualitatively resembles the observations (Fig. 6B).
This profile is clearly not unique and not refined or optimized, because it is based on the simplified 
model with “invented” parameter values, rather than a fully parameterized model. Nonetheless, the
simulation constitutes proof of concept that temperature dependent enzymes could be the drivers 
of the very fast sphingolipid response to heat, as it is the case in the trehalose cycle. Interestingly, 
“successful” profiles like the ones in Figure 6A seem to require different affinities of the enzymes to
the dihydro- and phyto-forms of the metabolites.

In addition to simulation studies, the model format of an S-system within BST could be used 
to exhaust all possible means of achieving a desired profile at steady state. We have shown in a com-
pletely different context how such an analysis could be pursued10 (see also ref.19). In a nutshell, the 
mathematical features of the S-system model allow an elegant algebraic analysis of the entire space
of steady-state solutions in terms of enzyme activities that are consistent with a desired metabolic 
concentration profile. Among these consistent solutions, optimal transient solutions could be 
determined through dynamic analyses or nonlinear optimization studies.

Conclusion
The pathways of sphingolipid biosynthesis, utilization and recycling form an intriguingly 

complex system whose dynamics is difficult to predict with intuition alone. Mathematical modeling 
provides an aid in this regard, because it permits the integration of many pieces of information into
computational structures that are very easy to diagnose, interrogate and analyze through What-If
simulations. The bottleneck of setting up such models is the determination of parameter values,
which may be based on literature information characterizing genes, enzymes and metabolites in a 
steady-state situation, or on dynamic time trends, which can be measured with modern methods 
of mass spectrometry or nuclear magnetic resonance. Parameter estimation is the bridge between
wet experimentation and modeling and the need for improved parameter values, which are valid in

Figure 6. Simulation scenario with Equation (3) in which several enzymes have temperature
dependent activities. Profiles of changes in enzymes and input are given in (A); see Figure 3
for abbreviations. The corresponding sphingolipid profiles show a qualitatively similar pat-
tern as it was observed (Fig. 4). The “jagged” appearance of the simulated profiles is due to
discrete changes in enzyme activities.
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vivo and under relevant physiological conditions, gives clear indication that mathematical 
modeling is crucially dependent on solid experimental work. At the same time, once reliable models
are established, they become incomparably rich tools for analyses that are often unattainable with wet 
experimentation. For instance, it is at least theoretically feasible to determine all possible combinations
of enzyme activities that lead to an observed metabolite profile at steady state. As we indicated here
with an intentionally simplified analysis, it is also possible in principle to determine mathematically 
which enzymes would have to altered and in what manner, to obtain dynamic metabolite profiles as
they are observed in responses to perturbations such as heat stress.

Ultimately, reliable mathematical models will be used as valuable tools for exhaustive
prescreening studies for all kinds of scenarios and for creating novel and optimally discerning 
hypotheses that are then to be tested in the laboratory. If the history of physics is an indication of 
the future of biology, we might one day execute experiments only once the theory describing the
underlying system is sufficiently worked out and understood. Even if this procedure will become 
the norm in the future, one must expect that it will take many years and dedicated effort, both
experimentally and methodologically, to establish models of sufficient scope and reliability. Thus, 
the rise of mathematical modeling as a biological technique should not be seen as threatening 
to experimentation, but simply as an additional tool that is able to elucidate different aspects of 
a system. Modeling has improved tremendously over the past decades and successful collabora-
tions between biological and computational scientists in the recent past have begun to show that
their team efforts will be rewarding to both sides and reveal insights that neither side could have
obtained without the other.
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