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Abstract

Gangliosides, characteristic complex lipids present in the external layer of plasma membranes,
deeply influence the organization of the membrane as a whole and the function of specific
membrane associated proteins due to lipid-lipid and lipid-protein lateral interaction. 

Here we discuss the basis for the membrane-organizing potential of gangliosides, examples of 
ganglioside-regulated membrane protein complexes and the mechanisms for the regulation of 
ganglioside membrane composition.

Introduction
Glycosphingolipids (GSL) are components of all animal cell membranes and, among these,

gangliosides, sialic acid containing compounds, are abundant in the plasma membranes of 
neurons. Ceramide,1 the hydrophobic backbone of all sphingolipids, is constituted by a long 
chain amino alcohol, 2S,3SS R 2-amino-1,3-dihydroxy-octadec-4-ene (sphingosine), linked to a fatty 
acid by an amide bond. The hydrophilic head group of glycosphingolipids is an oligosaccharide 
chain, highly variable due to the sugar structure, content, sequence and connections. Sialic acid2

is the name that identifies all the derivatives of 5-amino-3,5-dideoxy-D-glycero- -D-galacto- -non-2-
-ulopyranosonic acid, or neuraminic acid. Three main sialic acids are known: the 5-N-acetyl-, theNN
5-N-acetyl-9-NN O-acetyl- and the 5-N-glycolyl-derivative. Healthy humans have only the first two,NN 3-6

the 5-N-acetyl derivative being 85-90% of the total. The high Ka and the resulting negative charge NN
confer them a strong amphiphilc character.

Due to the high heterogeneity of the both the hydrophibic and hydrophilic portion,
glycosphingolipids are a very large family of natural compounds as shown in Table 1, were the
main gangliosides from nervous system are reported.

Gangliosides (ganglioside nomenclature is in accordance with the IUPAC-IUBMB
recommendations7) belong to external leaflet of the plasma membrane8 and are highly enriched
in the pre and postsynaptic membranes of the synaptic terminals. With their hydrophilic oligosac-
charide chains, they face the extracellular environment, providing ideal sites of interaction with
extracellular molecules, including toxins, matrix components, adhesion molecules and specific
receptors and enzymes on the surface of adjacent cells (trans interactions). Moreover, they have
proven to be able to laterally interact with proteins belonging to the same membrane, modulating 
their biological functions (cis interactions).9-29

In the last 10 years it has emerged the concept that GSL possess a high potential for the creation of 
lateral order in biological membranes, contributing to the creation and/or stabilization of membrane 
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macro- and microdomains.30 Lipid membrane microdomains, or lipid rafts, areas in the membrane
characterized by a lateral organization dictated by the properties of their lipid components, have 
been involved in several biological events.31-39 The coexistence of lipids in different physical phases
within the same model membrane was probably the first evidence leading to the concept of lipid
rafts. Lipid bilayers at physiological temperature usually exist in a liquid-disordered (ld) phase chardd -
acterized by high fluidity, in which the lipid acyl chains are disordered and highly mobile. Lowering 
the temperature below the melting point freezes the lipid acyl chains in an ordered gel phase with
very limited freedom of movement. Membrane lipids can also exist in a third physical phase, the
liquid-ordered (lo) phase, in which the acyl chains of lipids are extended and ordered, as in the gel
phase, but have higher lateral mobility in the bilayer. The lo phase is stabilized by the presence of 
cholesterol, that fill the hydrophobic gaps between the phospholipid or glycolipid acyl chains.40,41

Lipid rafts and GSL-rich microdomains are more ordered than the ld phase, being in this regardd
similar to a lo or a metastable gel phase.

Lateral phase separation of complex lipids in phospholipid bilayers can be observed in binary 
mixtures of diacyl lecithins differing in chain length and/or saturation42-44 and in ternary mixtures 
of palmitoyloleyl PC, dioleyl PC and cholesterol. However, GSL strongly differ from glycerolipids
for their molecular structure and conformational properties, thus leading to a strong tendency 
to segregate within phospholipid bilayers (reviewed in ref. 41). Gangliosides display the ability 
to associate with a pre-existing ordered domain or to segregate in their own domains, that can 
be distinct from the cholesterol-enriched phase. The segregation of one ganglioside component 
with respect to the other has been observed in mixed micelles of two gangliosides with the same
acyl chain but different hydrophilic headgroups.45,46 Lateral separation of gangliosides also occurs
in one-component as well as in two-component, two-phase phosphatidylcholine bilayers and in 
phospholipid bilayers in the presence of cholesterol and/or sphingomyelin.47-55 The formation of 
separate GM1–enriched and cholesterol-enriched liquid-ordered phases was observed56 in ternary 
sphingomyelin/GM1/cholesterol vesicles and in lipid monolayers.57

Studies conducted on model membranes led to the following statements. (1) The presence 
of an amide nitrogen, of a carbonyl oxygen and of a hydroxyl group at the water/lipid interface
in the common hydrophobic ceramide backbone confers to sphingolipids to act both as donors 
and acceptors for the formation of hydrogen bonds58; this feature is unique for sphingolipids
among complex membrane lipids and the formation of a hydrogen bond network at the water/
lipid interface strongly stabilizes the segregation of a rigid segregated phase enriched in sphingo-
lipids. (2) In the case of GSL, the presence of the bulky oligosaccharide hydrophilic headgroup 
termodinamically favours their segregation within a biological membrane. Phase separation with
clustering of GSL in a phospholipid bilayer is a spontaneous process driven by the minimization
of the interfacial free energy. The interfacial area increases with the size of the oligosaccharide
chain, with a corresponding more pronounced segregation.59-71 These predictions based on the
geometrical parameters of the GSL molecules are experimentally confirmed by the observation 
that phase separation is present in mixed micelles of two different gangliosides45,46 with the same
fatty acid composition and that the extent of ganglioside phase separation in glycerophospholipid
bilayers depend on the surface area occupied by the GSL oligosaccharide chain, that is usually 
increasing with the number of sugar residues.50-52 (3) Membrane complex lipids, in particular 
glycerophospholipids, are highly heterogeneous in their fatty acid composition. The hydrophobic
portion of complex lipids is very heterogeneous, but in sphingomyelin and gangliosides (at least in
the nervous system), saturated acyl chains like palmitic and stearic acid are the main components72

(Table 2). The presence of saturated acyl chains (that can be tightly packed with a high degree of 
order in the hydrophobic core of a bilayer) favours the phase separation of a rigid, liquid-ordered
phase. In the case of GSL, for GM1 it has been shown that distribution in the fluid phase of a 
phospholipid bilayer54 is inversely correlated with the acyl chain length and directly correlated 
with the degree of unsaturation.

These data clearly demonstrate that sphingolipids form laterally separated phases characterized
by reduced fluidity and hydrocarbon chain mobility. An hypothetical model for sphingolipid 
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segregation in cell membranes is presented in Figure 1. Segregation of membrane sphingolipids is
responsible for the creation of less fluid membrane regions, where membrane-associated proteins
can be confined, favouring lateral interactions between sphingolipids and/or proteins that are
segregated in the same lipid domain or preventing interactions between proteins that are associ-
ated with different domains.

Segregation of Membrane Lipids and Detergent-Resistant
Membrane Domains

The interest for lipid membrane domains became very strong when many proteins deputed
to cell signaling were found to be preferentially associated with an environment of lipids highly 
enriched in sphingolipids and cholesterol. The possible role of lipid membrane domains in the 
transport of GPI-anchored proteins from the Golgi apparatus to the apical plasma membrane of 
polarized cells originated the now widely used term “lipid rafts”.73

Originally, the existence of a membrane fraction characterized by a peculiar lipid composition
leading to a liquid-ordered or highly organized phase was operationally defined on the basis of the
insolubility in aqueous nonionic detergents.74 Most components of the cell membrane are solu-
bilized by detergents.75 In contrast, many cellular components are insoluble in nonionic (Triton 
X-100) under certain experimental conditions. After detergent treatment, the detergent insoluble 
membrane domain can be separated from the rest of the cell thanks to its relative light density 
(due to its richness in lipids),74 using continuous or discontinuous density gradients. Low-density,
detergent-insoluble fractions were isolated from a wide variety of cultured cells, including almost all 

Figure 1. The scheme shows the different metabolic pathways that determine the membrane 
ganglioside content and pattern. Neo-biosynthesis occurs through the ER and Golgi apparatus
the, but shedding of vesicles and monomers, together with a sialidase-sialyltransferase cycle
participate to determine the finale ganglioside content and composition of the membrane.



170 Sphingolipids as Signaling and Regulatory Molecules

mammalian cell types76-91 and tissues92-98 investigated so far, yeasts99 and protozoans.100 In following 
time, a wide range of different detergents95,96,101,102 was used and several “detergent-free” procedures 
for the separation of low-density membrane fractions corresponding to lipid membrane domains 
were developed.103,104 When comparatively analyzed, low-density membrane fractions obtained
after cell lysis under the dramatically different experimental conditions described above, are very 
similar but not identical.77,90,91,105-116 Low-density membrane fractions always contain a highly 
resistant supramolecular structure possible corresponding to the native core of lipid membrane
domains suggesting that the low-density membrane fraction composition correspond to that of 
physiological lipid membrane domains and that it is not determined by a random rearrangement of 
cell components induced by the experimental conditions used. Nevertheless, it cannot be excluded 
that the differences observed by some Authors might be simply due to contingent situations, since 
the standardization of the experimental procedures is sometime difficult and the overall composition
of DRM fractions or the association of specific molecules with it seem to be affected by even tiny 
modifications of several conditions, including agents used for membrane disruption,77,93,95,98,101,104,110

mechanical procedures used to obtain or aid membrane solubilization,110 temperature74,101,116,117 and 
ratio between detergent and biological material.98,118 However, several studies indicate that at least
in some cases the differences observed in the composition of low density DRM fractions isolated 
by different methods might reflect the existence of different levels of order within lipid membrane
domains and/or of biochemically distinct lipid membrane domains within the plasma membrane
of the same cell. This is particularly clear if the results obtained by the use of different detergents are 
compared.74,101,119-122 Thus, differential detergent solubilization might prove to be a powerful tool 
to study different lipid membrane domain subpopulations.

The existence of lipid membrane domains in natural cell membranes was suggested by the
observation that glycosphingolipids at the cell surface form clusters, which have been visualized by 
immuno-electron microscopy using antiglycosphingolipid antibodies.79,123-126 Several approaches, 
relying on more advanced technologies including single-particle tracking or single fluorophore 
tracking microscopy,127-132 fluorescence recovery after photobleaching,133 fluorescence resonance 
energy transfer134,135 and atom force microscopy136 are now available allowing the detection and

Table 2.  Ratio between the components of sphingolipid-cholesterol enriched 
membrane fraction in rat cerebellar granule cells differentiated in culture

Molar Ratio,
Gangliosides as 1

Molar 
Ratio,%

Asymmetry,
Layer

Proteins 0.04 0.26 Both, largely inner

Ceramide 0.20 1.32 Outer

Sphingomyelin 1.40 9.20 Outer

Gangliosides 1.00 6.63 Outer

Phosphatidylcholine 7.00 46.45 Outer

Plasmalophosphatidylcholine 0.01 0.07 Outer?

Phosphatidylserine 0.40 2.65 Inner

Phosphatidylethanolamine 0.70 4.64 Largely Inner

Plasmalophosphatidylethanolamine 0.10 0.66 Inner?

Phosphatidylinoisitol 0.10 0.66 Largely Inner

Phosphatidylinoisitolmonophosphate 0.01 0.07 Inner

Phosphatidylinoisitoldiphosphate 0.01 0.07 Inner

Cholesterol 4.10 27.21 Both, largely inner
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the study of lipid membrane domains in intact cell membranes.137,138 However, these techniques
are very heterogeneous and and data obtained with different approaches are sometime conflict-
ing. As example, there is no agreement on their average size that ranges from 26 nm to about 2 
	m.129,133,135,136,139-144

Lipid Membrane Domain Functions
Gangliosides and Lipid Membrane Domains in the Nervous System

Neuronal and glial lipid membrane domains, prepared from cultures of neural cells or ner-
vous tissues118,145,146 are rich in gangliosides, sphingomyelin, cholesterol and proteins involved in
mechanisms of signal transduction that are relevant for neuronal functions.90,91,94,102,106,108,117,147-168

Lipid membrane domains in the nervous system cells has been involved in neurotrophic factor
signaling,149-152 cell adhesion and migration,150,158,162 axon guidance, synaptic transmission,150,157

neuron-glia interactions163,164 and myelin genesis.165 The involvement of lipid membrane domains
in neuronal and glial signal transduction includes several different ways: 1) receptors and effec-
tor proteins permanently resident in lipid membrane domains can be activated, giving rise to
signal propagation that involves other components intrinsically present in the lipid membrane 
domain. Examples are neurotrophin receptors of the trk family, EGFR, PDGFR, p75NTR, 
GFR�149-152 and the neural cell adhesion molecule TAG-1.106,166,169 Src family tyrosine kinases 
are among the effector signaling proteins that are most commonly engaged in these cases; 2) the 
activation of membrane receptors is followed by the recruitment to lipid membrane domains 
of receptors themselves or effector signaling proteins that are not located in lipid membrane 
domains under basal conditions, or, the activation of receptors that are associated with lipid
membrane domains under resting conditions determines their translocation outside lipid mem-
brane domains. Examples of the former are the receptor tyrosine kinase c-Ret, recruited into lipid
membrane domains by its GPI-anchored coreceptor GFR�149,150,152 and the neuronal adhesion
receptor NCAM, recruited into lipid membrane domains by cis- or trans- interaction with its 
membrane bound, GPI-anchored ligand, prion protein.162

Both modes implies changes in the reciprocal interactions of lipid membrane domain compo-
nents. Changes in the lipid and/or protein composition of lipid membrane domains and in the
interactions of the lipid (in particular glycosphingolipid) components with specific proteins of 
functional relevance could thus be very relevant during the process of neuronal adhesion, survival,
migration, differentiation and senescence.

Properties of lipid membrane domains from rat cerebellar granule cells at different stages of 
development in culture are available.72 The surface occupied by these structures increased during 
development, with the maximum ganglioside density in fully differentiated neurons. On the other 
hand, a high content of ceramide was found in the domains of aging neurons. The sphingolipid/
glycerophospholipid molar ratio was more than doubled during the initial stage of development, 
corresponding to axonal sprouting and neurite extension, whereas the cholesterol/glycerophos-
pholipid molar ratio gradually decreased during in vitro differentiation. Phosphorylated phos-
phoinositides were very scant in the domains of undifferentiated cells and dramatically increased
during differentiation and aging.

Src family protein tyrosine kinases, (c-Src, Lyn and Fyn) known to participate to the process of 
neuronal differentiation, were associated with the lipid membrane domains in a way specific for the
type of kinase and for the developmental stage of the cell.72 Within the lipid membrane domains,
ganglioside GM3 has been found closely associated with c-Src and Csk in neuroblastoma Neuro2a 
cells90 and GD3 associated with Src-family kinase Lyn and the neural cell adhesion molecule TAG-1 
in rat brain94,169 and cerebellar granule cells. In these cells, a complex lipid environment character-
ized by the presence of many ganglioside species and other membrane lipids (mainly cholesterol 
and dipalmitoylphosphatidylcholine) is essential for the interaction with the domain of c-Src, Lyn,
Fyn, TAG-1 and prion protein.72,102,117,148 The presence of Src family nonreceptor tyrosine kinases 
in lipid membrane domains of neurons is particularly interesting, because many facts indicate that 
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c-Src and other kinases of this family are important in the process of neuronal differentiation and
in neuronal function.170-177 As mentioned above, in neuroblastoma Neuro2a cells, c-Src and Csk,
are associated with GM3 ganglioside within lipid membrane domain and neuritogenic concen-
tration of gangliosides are able to induce c-Src activation followed by mitogen-activated protein 
kinases activation.90 In these cells, anti-GM3 antibody is also able to induce differentiation.174 In rat 
cerebellum and cerebellar neurons, GD3 ganglioside is associated with Lyn and the neural cell 
adhesion molecule TAG-1 and antibody-mediated cross-linking of TAG-1 or GD3 induce Lyn 
activation.94,106,169 Glycosphingolipids were essential for TAG-1-dependent signaling via Lyn and for
the maintenance of the differentiated neuronal phenotype, since incubation of cerebellar neurons
with the glycosphingolipid-degrading enzyme endoglycoceramidase in the presence of its activator
protein reduced the levels of cell surface glycosphingolipids, caused the redistribution of TAG-1
from nondomain membranes to the lipid membrane domain fraction, abolished TAG-mediated
Lyn activation and consequent phosphorylation of p80 and induced neurite retraction.169

A possible role of lipid membrane domains in the pathogenesis of spontaneous and transmis-
sible neurodegenerative diseases was recently highlighted by the discovery that a number of mol-
ecules causally connected to such diseases are associated with these domains. The most prominent
examples are represented by the amyloid precursor protein (APP) in Alzheimer’s disease and by 
the prion protein. In both cases, the generation of the aberrant forms of these proteins, which are 
responsible for the onset of the disease, seems to be localized in the lipid membrane domains and/
or dependent from the structure of the domain itself.178,179

The Glycosynapse
Altered GM3 ganglioside expression plays a multiple role in the control of tumor cell motil-

ity, invasiveness and survival. Adhesion of B16 melanoma cells (expressing high levels of GM3) 
to endothelial cells, that express LacCer and Gg3, is mediated by GM3-LacCer or GM3-Gg3 
interaction and leads to enhanced B16 cell motility and thereby initiates metastasis.105,180 GM3 is
highly expressed in noninvasive, superficial bladder tumors compared with invasive bladder tu-
mors, where the activities of glycosyltransferases responsible for GM3 synthesis were consistently 
upregulated.181,182 Enhanced GM3 expression achieved by pharmacological treatment with brefeldin 
A,181,183 or the exogenous administration of GM3182 suppressed the tumorigenic activity and/or 
the invasive potential of human colonic and bladder tumor cell lines and the stable overexpression 
of GM3 synthase in a mouse bladder carcinoma cell line reduced cell proliferation, motility and
invasion with concomitant increase in the number of apoptotic cells.184 High expression levels
of GM3 with concomitant expression of the tetraspanin CD9 in colorectal185,186 and bladder181

cancer cell lines inhibited Matrigel and laminin-5-dependent cell motility.
At the molecular level, GM3 control on the properties of tumor cells requires a complex 

supermolecular membrane organization that defines highly specialized detergent-insoluble
lipid membrane domains. The term “glycosynapse” has been proposed by S. Hakomori187,188 to 
generally describe a membrane microdomain involved in carbohydrate-dependent adhesion.
Carbohydrate-dependent adhesion in glycosynapse, occurring through GSL-GSL interactions 
or through GSL-dependent modulation of adhesion protein receptors (such as integrins) leads
to signal transduction events reflecting in deep changes in the motility and invasiveness of tumor 
cells. In the case of GM3-dependent adhesion of melanoma cells, it has been shown that GM3 is 
closely associated with c-Src, Rho and Ras within glycosphingolipid-enriched membrane domains 
and binding with Gg3 or anti-GM3 antibody stimulates focal adhesion kinase phosphorylation and
c-Src activity.105 This molecular assembly defines a classically Triton X-100 insoluble GSL-enriched
microdomain (“glycosynapse 1”), that can be isolated and separated from a caveolin-containing 
low-density membrane fraction in B16 cells.189 A similar association between a sialoglycolipid and
c-Src and other related signaling molecules was observed for GM3 also in neuroblastoma cell,90 for 
disialylgalactosylgloboside in renal carcinoma cells190 and for monosialyl-Gb5 in breast carcinoma 
cells.191 Tetraspanin CD9 and integrin�3 or�5 also are colocalized within a distinct low-density,
Brij 98-insoluble glycolipid-enriched domain (“glycosynapse 3”). The presence of GM3 positively 
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modulated CD9/integrin association. In fact, association between CD9 and integrin in the Chinese 
hamster ovary mutant cell line ldlD14 (deficient in UDP-Gal-4-epimerase) has been shown by 
co-immunoprecipitation experiments when cells were grown in the presence of galactose, allowing 
GM3 synthesis, or supplementing cells with exogenous GM3 Colocalization of CD9,�3 and GM3
in cells was observed in intact ldlD14 cells in the presence but not in the absence of galactose.192 The
formation of �3/CD9/GM3 complexes strongly inhibited the laminin-5-dependent motility in
ldlD14 cells. On the other hand, it has been shown that CD9/GM3 complexes are essential for the 
regulation of integrin-mediated cell adhesion and signal transduction in oncogenic transformation,
suggesting a crucial role for GM3 complexed with CD9 and integrin �3�1 or �5�1 in the control 
of tumor cell motility and invasiveness. v-Jun-transformed mouse and chicken embryo fibroblasts
were characterized by lower GM3 levels and down—regulated GM3 synthase mRNA levels respect 
to the nontransformed counterparts.193 Reversion of oncogenic phenotype of v-Jun-transformed 
cells to normal could be achieved by enhanced GM3 synthesis through its gene transfection.
When v-Jun-transformed cells were transfected with GM3 synthase expression plasmid, leading 
to increased GM3 synthase activity and GM3 cellular levels, their ability anchorage-independent 
growth in agar was strongly reduced. During phenotypic reversion induced by GM3 synthase 
transfection, the association of CD9/�5�1 complex (shown by co-immunoprecipitation and 
confocal microscopy experiments) was increased. Remarkably, the N-glycosylated form of �1 in-
tegrin was preferentially associated with the complex in GM3 synthase gene transfectants.193 GM3
levels were 4-5 times higher in the noninvasive KK47 cell line (originated from superficial human
bladder cancer) than in the invasive YTS1 human bladder cancer cell line. Knock down of CD9 or 
pharmacologically achieved GM3 depletion in KK47 cells induces the phenotypic conversion to
invasive variants. On the other hand, exogenous GM3 addition induces the phenotypic reversion
of the highly invasive and metastatic cell lines YTS1 to low motility variants. The changes in cell
motility were strictly correlated with the association of CD9 with�3 integrin. This interaction was 
higher in nonivasive than in highly invasive cells and was modulated by the cellular levels of GM3: 
CD9/�3 integrin association was reduced by GM3 depletion in KK47 and conversely enhanced
by exogenous GM3 addition in YTS1 cells. GM3 levels in glycosynapse controls not only CD9/
�3 integrin association, but also the activation state of c-Src. c-Src is present in higher amount in
the glycosynapse fraction in YTS1 cells and it is activated in cells with low GM3 levels and high
invasive potential (YTS1 or GM3-depleted KK47). On the other hand, exogenous addition of 
GM3 to YST1 cells caused Csk traslocation to the detergent-insoluble fraction and consequent
inactivation of c-Src, influencing cell motility.194

GM3 and EGF Receptor
The function of growth factor receptors can be modulated by gangliosides13 and lon time

ago epidermal growth factor receptor (EGFR) was identified as the target of the inhibitory 
action of GM3.195 GM3 inhibited EGFR autophosphorylation without competing with EGF
for receptor binding13,196,197 and without affecting receptor dimerization.198 The sialyllactose 
oligosaccharide is essential for ganglioside-receptor interaction and that the substitution with 
any other sugar negatively affects the binding.199 However, the molecular basis of this inter-
action has been only recently fully elucidated, emphasizing the importance of side-by-side 
carbohydrate-carbohydrate interactions between GM3 oligosaccharide and a N-linked glycan 
bearing multiple GlcNAc terminal residues on the receptor.200,201 GM3/EGFR interaction is 
facilitated by the enrichment of EGFR in classical ganglioside-enriched, cholesterol-sensitive, 
Triton X-100 insoluble membrane domains.202,203 However, other GSL- and lipid raft-dependent 
factors can affect EGFR function. Caveolae and caveolin-1 are involved in the modulation 
of EGFR signaling204,205 and EGFR is localized within a caveolin-rich fraction in A431 cells.
However, EGFR-containing membrane fragments can be separated from caveolae.110,206 In a 
keratinocyte-derived cell line, GM3 overexpression induced a shift of caveolin-1 to EGFR-rich 
membrane regions, allowing its functional interaction with the EGFR receptor, that caused 
inhibition of EGFR tyrosine phosphorylation and dimerization.207 Thus, GM3 influences EGFR 
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signaling by a second distinct molecular mechanism modulating EGFR/caveolin-1 association.
Moreover, GM3 negatively regulates as well the ligand-independent cross-talk of EGFR with 
integrin receptor signaling, disrupting when accumulated in cultured cells, the interaction of 
integrin �1 subunit with EGFR.208

GM3, Caveolae and the Regulation of Insulin Receptor and PDGF Receptor
Insulin receptors (IR) are present in detergent-resistant membranes from normal adipocytes209

and localized in caveolae in intact cells,210 where the �-subunit of IR interacts with caveolin-1
through a binding motif recognizing the scaffold domain of caveolin-1.211 IR can form distinct 
complexes with caveolin-1 and GM3 within lipid membrane domains.212 The interaction between 
GM3 and IR is direct and specific and was abolished in IR mutants where the lysine residue at 944
was replaced with arginine, valine, serine, or glutamine, suggesting that an electrostatic interaction
between the negatively charged sialyllactose chain of GM3 and the positively charged amino group 
of lysine 944, located in close proximity to the transmembrane domain sequence of IR, is essential 
for the formation of the GM3/IR complex. In 3T3-L1 adipocytes, the induction of insulin resis-
tance by treatment with TNF� was accompanied by the upregulation of GM3 synthase, leading 
to an increase of cellular GM3,210,213 that accumulated in detergent-resistant membranes. In insulin
resistance, the association of IR with GM3 was increased, while its association with caveolin-1
was decreased, indicating that the excess amount of GM3 in lipid membrane domains leads to the
displacement of IR from the complex with caveolin-1, thus suggesting that the regulation of IR/
caveolin-1 by GM3 could be responsible for the changes in insulin response in adipocytes.212

A similar regulatory mechanism has been recently observed for PDGFR.214 Overexpression 
of the N-terminal domain of PAG, caused the accumulation of GM1 at the cell surface, with the 
consequent displacement of PDGFR from caveolin-rich fractions and caveolae, without altering 
the caveolar distribution of caveolin-1. The same redistribution of PDGFR has been observed after 
incubation of cells with exogenous GM1. Increased GM1 cellular levels lead to the displacement 
of another growth factor receptor, PDGF, from caveolae,214 negatively regulating Src mitogenic 
signaling. However, in this case it is not known whether the formation of a PDGFR-GM1 com-
plex is required for its uncoupling from caveolae. Since caveolin-1 can direct bind sphingolipids,
including GM1, in this case it cannot be excluded that GM1 forms a complex with caveolin-1, or
that an enrichment in GM1 inside the caveola induces a deep reorganization of caveolar membrane, 
thus excluding PDGFR from caveolae.

The Regulation of Glycosphingolipid Composition of the Plasma 
Membranes

Changes in the glycosphingolipid composition of the plasma membrane would predictably 
lead to very important biological consequences, thus all mechanisms possibly contributing to
these changes have a high functional significance. Changes in the activities of enzymes of the
biosynthetic pathway residing in Golgi apparatus have been associated with the changes in
GSL expression that are associated with neoplastic transformation or neuronal differentiation. 
However, both catabolic and biosynthetic enzymes for glycosphingolipids have been found
associated with the plasma membranes, thus local mechanisms for the regulation of the gly-
cosphingolipid composition of plasma membranes or restricted plasma membrane areas could 
be very important. The membrane-bound sialidase Neu3 has been identified and cloned215-217

and its trans activity in modifying the structure of gangliosides of adjacent cells has been 
proven.218-220 Moreover, the presence of sialyltransferase activities at the cell surface has been 
also reported.221-225 Thus, sialylation/desialylation cycles might be very important mechanisms
responsible for rapid and possibly transient changes of the plasma membrane ganglioside con-
tent and pattern. The presence of other active glycosylhydrolases, �-glucosidase,�-galactosidase
and �-hexosaminidase,220,226 in the plasma membrane has been demonstrated, implying that
local hydrolysis of glycosphingolipids at the cell surface might represent a general mechanism
for the control of glycosphingolipid composition. Moreover, gangliosides, as well as the other 
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sphingolipids, can be released from the cell surface in different forms, including shedding 
vesicles,227-229 whose controlled release from specific sphingo(glyco)lipid-enriched membrane
areas, could represent a further way to modify the lipid membrane domain composition and
organization. The mechanisms responsible for he control of plasma membrane glycosphingolipid
composition are depicted in Figure 2.

Figure 2. The figure shows the possible distribution of lipids belonging to the outer layer of a
lipid raft according to the pattern reported in Table 2. According to the well known concept
that the outer layer requires a larger surface with respect to the inner layer, that sphingolipids
and phosphatidylcholine are components of the outer layer and all together cover about 60% 
of the total lipid raft content, the larger portion of cholesterol must be located in the inner layer. 
This is in agreement with published data.230,231 Protein are not shown, but the larger portion 
should be associated to the inner layer, the main proteins recognised in lipid rafts, at least from 
a quantitative point of view, being those of cytoskeleton.166,232,233 In the panels only the elements 
inserted in the square belong to the lipid rafts. The left panel shows a random distribution of 
phosphatidylcholine, sphingomyelin, ceramide, gangliosides and a few molecules of cholesterol. 
These molecule must be organised as separated phases. We present three different possibility
in the right portion of figure. The upper panel shows five different area each one covered by 
the same species. The central panel shows all the sphingolipids in a single phase. The lower 
panel shows a phase where some phosphatidylcholine is distributed within sphingolipids. This 
lipid distribution has been experimentally proved.52 Specific sphingolipid-protein interactions
can modify this phase separation promoting subdomain organization.
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Conclusion
In this chapter, we describe the properties of gangliosides that underlie their roles as 
organizers of membrane organization and function. The potential for gangliosides 
in determining the properties of specific membrane areas characterized by a selective
enrichment in these lipids as well as their ability to engage specific lateral interactions
with membrane proteins have been discussed with the aid of examples covering the recent 
literature. In addition, we discussed the possibility that several metabolic pathways could
affect the local ganglioside composition of specific membrane districts, thus regulating 
signaling pathways originated within these membrane regions.
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