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9.1  Introduction

The practice of cardiovascular care has seen significant advances in the past 40 years 
with dramatic reduction of mortality from heart diseases. Nevertheless, cardiac dis-
eases remain the leading cause of morbidity and mortality in the developed world 
and are on the rise in developing countries [37]. It is well recognized that the con-
ventional clinical practice of using population-based metrics to prescribe “one size 
fits all” treatment methods does not provide optimal health care for many patients 
because of the individual variability in pathophysiology. Moreover, in many situa-
tions, physicians do not have a way of predicting patient responses to various thera-
peutic interventions, and therefore have to rely on “trial and error” to identify the 
treatment-response relationship. An emerging paradigm that addresses these chal-
lenges is the so-called personalized medicine, which seeks to develop diagnosis and 
treatment methods that can be tailored by the physician a priori according to the 
specific needs of an individual patient [25, 44, 52]. Application of such personalized 
approach to cardiac care can dramatically improve the treatment of heart diseases. 
To fully utilize the quality and diversity of clinically available data for personalized 
cardiac care, it is necessary to integrate structural and functional data at molecular, 
cellular, tissue, and organ level into a consistent framework which can be used to 
predict the outcomes of therapeutic interventions. Computational modeling provides 
a powerful tool to perform this data integration [29, 32].

Among the different data collection techniques, imaging has attained special 
significance due to the recent advances in acquisition technologies. Ex vivo magnetic 
resonance imaging (MRI) technologies have facilitated the acquisition of geometry 
and tissue architecture of the heart at very high spatial resolution. Modern ex vivo 
anatomical MR scanners can image the cardiac histoanatomy of small experimental 
animals, such as rabbit, with an isotropic resolution in the order of 10−5 m [11]. 
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Advanced ex vivo diffusion tensor (DT) MR equipments can measure the diffusivity 
of water in the tissue with a resolution in the order of 10−4 m [20]. The primary 
eigenvectors of the DTs have been shown to be aligned with the fiber orientations. 
Evidence also suggests that the secondary and tertiary eigenvectors are oriented 
normally to the main cell axes, in the myocardial laminar plane and perpendicular 
to it, respectively. These developments in ex vivo imaging have facilitated the con-
struction of image-based representative models of cardiac structure with unprece-
dented detail [32, 49]. Similarly, advances in in vivo imaging methods have placed 
at physicians’ disposal the structural details of patient hearts in hitherto unavailable 
detail. State-of-the-art MRI and computed tomography (CT) methods can image 
the myocardial geometry of patient hearts at resolutions that are less than a milli-
meter [15, 30]. Furthermore, it is now feasible to use MRI in combination with late 
gadolinium enhancement to acquire the geometry of scar and peri-infarct zones of 
patient hearts with myocardial infarction [39]. These advances have placed image-
based modeling at the threshold of patient-specific applications.

The purpose of this chapter is twofold. First, we briefly explain the methods we 
have developed to construct high-resolution representative models of the whole-
heart electrophysiology and electromechanics from images acquired ex vivo. 
Second, we present a pipeline that we have implemented to estimate patient-specific 
myocardial fiber orientations from in vivo images. The whole-heart electrophysiol-
ogy is modeled using a continuum approximation of tissue properties, which 
accounts for current fluxes in the extracellular and intracellular spaces, transmem-
brane currents through ionic channels, pumps, and exchangers, as well as changes in 
ionic concentrations including intracellular calcium cycling. The electromechanical 
modeling incorporates, in addition to cardiac electrophysiology, representations of 
the myofilament dynamics, ventricular contraction, and blood flow through the cir-
culatory system. These modeling techniques in combination with the proposed 
methodology for estimating patient-specific cardiac fiber orientations constitute a 
step toward personalized simulations of cardiac electrophysiology and mechanics.

In the following, Sect. 9.2 describes our methods for segmenting high-resolution 
ex vivo images of the heart, Sect. 9.3 describes our methods for generating electro-
physiological meshes from segmented images, Sect. 9.4 outlines the generation of 
mechanical meshes, Sect. 9.5 explains our methodology for simulating cardiac 
electrophysiology, Sect. 9.6 presents our methodology for simulating cardiac elec-
tromechanics, Sect. 9.7 outlines the electrophysiological modeling of an infarcted 
canine heart, Sect. 9.8 presents the electromechanical modeling of a normal canine 
heart, and Sect. 9.9 presents our pipeline for generating patient-specific computa-
tional cardiac meshes. Section 9.10 concludes the chapter.

9.2  Image Segmentation

To generate image-based models of the heart, it is necessary to classify (or segment) 
the voxels in the structural MR image into different groups, such as normal tissue, 
diseased tissue (or infarct), background, etc. We developed a processing pipeline 
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for the segmentation of the structural MR image as illustrated in Fig. 9.1. The figure 
shows the results as an example image slice is processed through the steps 1–4 in 
the pipeline. The original example slice is shown in the leftmost column of the 
figure. The steps of the pipeline are briefly explained in detail below. More details 
of our segmentation methodology can be found elsewhere [48, 49].

9.2.1  Suspension Medium Removal

In the first step of our segmentation pipeline, the structural MR image is processed 
to label and “remove” the voxels corresponding to the cavity content, and the 
medium in which the heart was suspended during the image acquisition. First, the 
myocardial boundary of the whole heart is extracted using a combination of two-
dimensional (2D) edge detection [24] and three-dimensional (3D) region growing 
[1]. Next, from the image that represents the myocardial boundary, voxels that cor-
respond to the suspension and cavity medium are extracted using the region-growing 
algorithm. Finally, the suspension medium is removed from the original structural 
MR image by assigning the background intensity to all voxels that correspond to 
the medium. Step 1 in Fig. 9.1 shows the myocardial boundary, suspension medium, 
and myocardium for the example slice.

9.2.2  Level Set Segmentation

In the next step, a level set method is applied to the image of the myocardium to 
separate the larger coronary arteries and interlaminar clefts, as well as to refine the 
myocardial boundary extracted during the previous steps. Level set methods have 

Fig. 9.1 The processing pipeline we have developed to generate computational models of the 
whole heart from high-resolution ex vivo structural MR images
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the inherent capability to implicitly track complex topologies [21]. This characteristic 
makes them highly suitable for the delineation of the complex coronary artery network 
and interlaminar clefts. Step 2 in Fig. 9.1 illustrates the level set segmentation for 
the example slice.

9.2.3  Segmentation of Ventricles

In the third step of our pipeline, segmentation of the ventricular myocardium is 
performed. In this step, in each slice, the ventricular portion of the tissue is labeled 
by fitting a closed spline curve through landmark points placed around the ventri-
cles and along the atrioventricular border. All voxels that belong to tissue inside the 
curve are marked as ventricular. Step 3 in Fig. 9.1 shows the landmarks, spline, and 
ventricular myocardium for the example slice. The identification of landmark 
points is performed manually for a number of slices that are evenly distributed in 
the image. The landmarks for the remaining slices are obtained by linearly interpo-
lating the manually identified points.

9.2.4  Infarct Segmentation

Frequently, hearts have undergone structural remodeling, most notable infarction. 
After the delineation of the ventricles, any infarct tissue present is labeled. First, a 
fractional anisotropy (FA) image is generated from the DTMR image by computing 
the FA of the DT at each voxel [8]. FA quantifies the degree of anisotropy – of dif-
fusion of water in the tissue – in a single number. The infarct region is characterized 
by lower anisotropy [12]. On the basis of this difference in FA values, the infarct 
region is separated from the normal myocardium by applying the level set segmen-
tation to the 3D FA image. Step 4 in Fig. 9.1 shows the segmentation of the FA 
image slice that corresponds to the example slice. Next, the infarct region is subdi-
vided into two areas: a core, which is assumed to contain inexcitable scar tissue, 
and a peri-infarct zone, which is assumed to contain excitable but pathologically 
remodeled tissue, by thresholding the structural MR image based on the intensity 
values of the voxels. The core has high or low intensity, while the peri-infarct zone 
has medium intensity [39, 53]. Step 4 in Fig. 9.1 illustrates the final segmentation 
of the example slice. Once any infarct areas present are identified, segmentation of 
the structural MR image is complete.

9.3  Electrical Mesh Generation

The electrical mesh is a finite element mesh in which each element is assigned a 
unit vector that indicates the orientation of myocardial fibers inside that element. 
We generate the finite element mesh directly from segmented images using commercial 



1499 Modeling of Whole-Heart Electrophysiology and Mechanics

software known as Tarantula (http://www.meshing.at/Spiderhome/Tarantula.html). 
For details regarding the mesh generation methodology as well as the examination 
of mesh quality metrics such as aspect ratio, skewness, maximum angle, and mini-
mum angle, the reader is referred to a recent paper [33]. The paper also contains 
performance metrics of benchmark electrophysiological simulations and a com-
parison with other mesh generation techniques. The unique advantage of the soft-
ware is that it can generate unstructured meshes directly from segmented images. 
Figure 9.2a shows a mesh generated for the processed slice shown in Fig. 9.1. 
Figure 9.2b presents a small region of the mesh in detail. As the figure illustrates, 
the interior tissue volume is meshed at low resolution, while the interface between 
tissue and non-tissue is refined by a factor of about two.

The generation of the electrical mesh is completed by mapping the fiber orienta-
tions onto the finite element mesh by interpolating the primary diffusion vectors on 
the centroids of the elements. First, a reference vector field is constructed by com-
puting the primary eigenvector of each tensor in the previously interpolated DTMR 
image. This vector field is in the same coordinate system as the finite element mesh. 
The fiber orientation assigned to an element in the mesh is the direction of that 
vector in the reference field nearest to the centroid of the element. It must be noted 

Fig. 9.2 Electrical mesh generation: (a) mesh corresponding to the slice shown in Fig 9.1; (b) 
enlarged view of the small region enclosed by the box in (a); (c) 2D projection, on the xz plane, 
of orientations assigned to the mesh shown in (a); (d, e) show enlarged views of small regions 
enclosed by the boxes in septum and LV in (c), respectively

http://www.meshing.at/Spiderhome/Tarantula.html
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that the two-step interpolation process correctly handles cases, where two diffusion 
vectors that form an obtuse angle are close together, because the reference field is 
constructed based on the interpolation of original diffusion weighted images, and 
the nearest neighbor interpolation does not involve spatial averaging of multiple 
vectors. Also, the nearest neighbor interpolation performed here does not produce 
any artifacts because the spatial resolution of the reference vector field is greater 
than or equal to that of the mesh in all our data. Figure 9.2c shows the 2D projec-
tion, on the xz plane, of derived fiber orientations that are mapped to the mesh 
shown in Fig. 9.2a. The arrows are colored according to the y component of the 
diffusion vectors. Due to the transmural rotation of the fibers [18–20], the arrows 
are lighter near the epi- and endocardial surfaces, and darker near the midwall. 
Figure 9.2d shows the enlarged view of a small region in the septum. Since the 
original slice shown in Fig. 9.1 intersects the septum nearly at a right angle, the 
rotation of the fibers is evident in Fig. 9.2d: the arrows are longer near the surfaces, 
where the fibers are oriented in the base–apex direction, and shorter near midwall, 
where the fibers aligned with the circumferential direction [18–20]. Figure 9.2e 
shows an enlarged view of a small region in the left ventricular (LV) myocardium. 
The arrows are densely distributed near the surfaces, demonstrating the higher reso-
lution of the mesh in those regions.

9.4  Mechanical Mesh Generation

In this section, we describe our methods for generating computational meshes for 
the simulation of cardiac mechanics. The structure of the finite element hexahedral 
mesh for our mechanical model consists of two 6 × 6-element layers, as shown in 
Fig. 9.3a. The portion of the mesh where the two layers are attached formed the LV, 
the upper detached layer formed the septum, and the remaining lower layer formed 

Fig. 9.3 (a) Overview of fitting the hexahedral mesh to the geometry obtained from segmenting 
the MRI scans (the red mesh). See text for details. (b) Wireframe of the hexahedral mesh. The LV 
is solid and the RV is transparent. The center node of the blue surface (upper red node) was posi-
tioned to the RV apex. The yellow lines correspond to those in panel (a). (c) Final hexahedral 
mesh. The arrows point to locations where corner elements were removed. Fibers within laminar 
sheets of normal canine ventricles visualized as streamlines. (d, e) Visualization of the laminar 
sheets located near the epicardium and endocardium, respectively. The colors in the sheets trace 
individual fibers
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the right ventricle (RV). Layer surfaces labeled 1–4 in Fig. 9.3a defined the 
 endocardium and epicardium of the ventricles, where surface 1 (green) was the LV 
endocardium, surfaces 2 and 3 (blue) formed the RV endocardium, and surface 4 
(red) defined the epicardium.

To reconstruct the geometry of the mechanical mesh, a least-squares fitting 
method is used to define the nodal coordinates and their derivatives of the epicardial 
and endocardial surfaces. This fitting algorithm is described elsewhere [19, 27]. For 
the nodes that reside within the LV midwall, the spatial coordinates and its deriva-
tives are calculated as the averages of the corresponding nodes on the epicardium 
and endocardium. To ensure continuity with respect to the global coordinates, all 
derivatives are defined with respect to arc length, as done by Nielsen et al. [27]. 
After the fitting, corner elements of the mesh are nearly prisms with two nearly 
triangular faces, which result in the degeneration of mesh quality. Therefore, the 
mesh is further refined by decreasing the size of the layers’ corner elements and 
increasing that of the elements adjacent to the corner elements, while retaining the 
overall shape of the mesh. These smaller corner elements are then removed from 
the mesh. The arrows in Fig. 9.3c point to the locations of the corner elements. 
Finally, mesh elements are subdivided to distribute the ventricular volume more 
evenly among elements. As a result, the initial mesh of 72 elements (Fig. 9.3b) 
becomes a final hexahedral mesh of 172 elements and 356 nodes (Fig. 9.3c).

The fiber and laminar sheet structural information for the mechanical mesh is 
obtained from the DTMR image dataset. To this end, tensors and their gradients are 
defined at each node of the finite element mesh and interpolated within the finite 
elements using Hermite interpolation. The values at the nodes are computed using 
a least-squares method, which minimizes the sum of the squared distances between 
the DTs from the DTMR image and the tensors from the interpolated tensor field. 
The minimization is performed in the so-called log-Euclidean metric space, which 
was introduced previously by Arsigny et al. [3]. Since artifacts appear when voxels 
of MR images represent both ventricular tissue and surrounding media, a regular-
ization of the approximated tensor field was employed to smooth the tensor field 
and eliminate the partial volume effect on the DTs at the epicardial and endocardial 
surfaces. The eigenvectors of the tensors in the interpolated tensor field represent 
the fiber and laminar sheet structure of the reconstructed hearts. Figure 9.3d illus-
trates the fiber orientations and laminar structure near the epicardium of the antero-
lateral part of a mechanical mesh that was built using our methods. Figure 9.3e 
illustrates the fiber orientations and laminar sheets near the endocardium.

9.5  Modeling of Electrophysiology: General Aspects

This section describes the methodology associated with simulating the electro-
physiological behavior of the heart. The simulation of propagation of a wave of 
transmembrane potential is performed by solving a reaction-diffusion partial dif-
ferential equation (PDE) for the transmembrane potential [31] on the electrical 
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finite element mesh. This equation describes current flow through cardiac cells that 
are electrically well connected by means of low-resistance gap junctions, allowing 
for a continuum representation of current flow in the heart. Cardiac tissue has 
orthotropic passive electrical conductivities that arise from the cellular organization 
into fibers and laminar sheets. Global conductivity values are obtained by combin-
ing ventricular fiber and sheet organization with myocyte-specific local conductiv-
ity values [51]. Current flow in the tissue is driven by active processes of ionic 
exchange across myocyte membranes (See also Chaps. 3 and 4). These active elec-
trical processes are represented by the ionic model of myocyte membrane behavior, 
where current flow through ion channels, pumps, and exchangers in the myocyte 
membrane as well as subcellular Ca cycling between cell compartments and buffers 
are governed by a set of ordinary differential (ODE) and algebraic equations. 
Simultaneous solution of the PDE with the set of ionic model equations represents 
the simulation of electrical wave propagation in the heart. Our laboratory has exten-
sive expertise in simulating electrical activity in the heart using this approach [4, 
38, 45], where a biophysical model of myocyte active behavior is combined with a 
model of cardiac structure and geometry; review of all the modeling details can be 
found in [31].

9.6  Modeling of Electromechanics: General Aspects

To simulate cardiac electromechanics, the electrical component of the model 
(described in the previous section) is coupled to a mechanical component. A sche-
matic of the electromechanical model is shown in Fig. 9.4. Physiologically, when 
an electrical wave propagates through the heart, the depolarization of each myocyte 
initiates a release of Ca from its intracellular Ca stores, followed by binding of Ca 
to Troponin C and cross-bridge cycling. The latter forms the basis for contractile 
protein movement and development of active tension in the cell, ultimately result-
ing in the deformation of the ventricles. Thus, the intracellular Ca released during 
the electrical activation couples the electrical and mechanical components. It serves 
as an input to a biophysical cell myofilament model representing the generation of 

Fig. 9.4 Overall scheme of the image-based electromechanical model
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active tension within each myocyte, where a set of ODEs and algebraic equations 
describe Ca binding to Troponin C, cooperativity between regulatory proteins, and 
cross-bride cycling.

Contraction of the ventricles arises from the active tension generated by the 
cardiac cells. Ventricular deformation is described by the equations of passive car-
diac mechanics [17, 46, 47], with the myocardium being an orthotropic (due to fiber 
and laminar sheet organization), hyperelastic, and nearly incompressible material 
with passive mechanical properties defined by an exponential strain energy func-
tion. Simultaneous solution of the myofilament model equations with those repre-
senting passive cardiac mechanics on the finite element mechanical mesh constitutes 
the simulation of cardiac contraction. During contraction, the stretch ratio (i.e., the 
ratio of myocyte length before and after deformation) and its time derivative affect 
myofilament dynamics, including length-dependent Ca sensitivity, providing a 
feedback loop.

Finally, to simulate the cardiac cycle, conditions on chamber volume and pres-
sure are imposed by a lumped-parameter model of the systemic and pulmonic cir-
culatory systems, as shown in Fig. 9.4. The lumped-parameter model is based on 
the implementation by Kerckhoffs et al. [23], which we modified.

9.7  Cardiac Electrophysiology Modeling Example: Ventricular 
Tachycardia in the Infarcted Canine Heart

This section presents an example of the image-based electrophysiological model 
approach described above. It examines ventricular tachycardia (VT) in an image-
based 3D model that incorporates accurate infarct geometry and composition. 
Complex myocardial remodeling that occurs in postinfarcted hearts has been shown 
to give rise to substrates that could initiate or anchor VT reentrant activity. The 
degree of myocardial injury in the infarcted region is dependent on tissue proximity 
from the site of occlusion. Tissue that experiences zero perfusion undergoes cellular 
necrosis and formation of scar tissue. Infarct-shape analysis has demonstrated that 
strands of viable tissue within electrically passive scar tissue could provide alternate 
pathways for propagation. In addition, partial perfusion in the adjacent peri-infarct 
zone tissue results in ion channel and gap junction remodeling that have been shown 
to result in slowed conduction and altered action potential morphology. The com-
plexity of tissue remodeling within the infarct has made it difficult to elucidate the 
specific mechanisms that give rise to postinfarction VT and its morphology.

The model was built using previously described methods from an infarcted 
canine heart, which was scanned 4-week postinfarction using structural MR and 
DTMR at a resolution of 350 × 350 × 800 mm3 and interpolated using cubic splines 
to a resolution of 200 × 200 × 200 mm3. The top row in Fig. 9.5 shows the geometry 
of the model. The ionic kinetics in the normal myocardium and peri-infarct zone 
were represented by the Luo–Rudy dynamic model [26]. Membrane kinetics in the 
peri-infarct zone was modified based on data from literature. Previous studies of 
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peri-infarct zone in infarcted canine hearts have reported a reduction in peak 
sodium current to 38% of the normal value [35], in peak L-type calcium current to 
31% of normal [13], and in peak potassium currents I

Kr
 and I

Ks
 to 30 and 20% of 

the maximum [22], respectively. These modifications result in longer action poten-
tial duration (APD) and decreased excitability compared to the normal myocar-
dium. To examine the arrhythmogenic propensity of the infarct substrate, an 
aggressive pacing protocol was delivered from the apex, similar to protocols used 
for clinical evaluation of patients with myocardial infarction. Pacing commenced 
at a basic cycle length of 250 ms for five beats (S1); 450 ms after the last S1, six 
stimuli were delivered at progressively shorter coupling intervals, starting at 
190 ms and decreasing in steps of 10 ms. The induced activity was monitored for 
additional 2.5 s.

The bottom row in Fig. 9.5 illustrates the events that lead to VT induction. It 
depicts isochrones of activation times for time periods during the fourth stimulus of 
the aggressive pacing protocol (panel c) and during the resulting VT (panel d). For 
each activation map, the image on the right presents the intramural activation pat-
tern on a slice through the heart, the location of which is indicated by the white 

Fig. 9.5 The geometry of the infarcted canine heart model and activation times during VT induc-
tion. (a) Anterior view of geometry, where the ventricles are colored in red, atria in chocolate 
brown, infarct core in yellow, and peri-infarct zone in blue; (b) the geometry split in half along a 
horizontal view axis plane; (c) epicardial and transmural activation times during the fourth pacing 
stimulus; (d) activation map showing the VT circuit
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dotted line on the epicardium in panel c. When the propagating wavefront from the 
pacing site reaches the peri-infarct zone, conduction significantly slows as com-
pared to the surrounding normal tissue. Faster wavefronts from the normal myocar-
dium converge into the peri-infarct zone laterally (white arrows) activating the 
entire peri-infarct zone. The transmural view show late activation of the peri-infarct 
zone due to the wavefront propagating from the normal myocardium. Since the 
peri-infarct zone has a longer APD, it remains refractory, while the surrounding 
myocardium is fully recovered. As the pacing rate is increased, the wavefront 
encounters refractory tissue, resulting in conduction block. This region of block 
later becomes the conduit for wavefront propagation from the intramural PZ toward 
the surface. When pacing is completed, the activation from within the peri-infarct 
tissue develops into an epicardial quatrefoil reentry. The reentry core remains 
within the peri-infarct and is sustained throughout the simulation with a rotation 
frequency of 5 Hz.

Previous experimental studies of infarcted canine hearts have reported the induc-
tion of VT with epicardial reentry morphology [5]. The simulations revealed that 
decreased excitability, longer APD, and reduced conduction velocity throughout 
the peri-infarct zone promoted conduction block and wave break that develops into 
epicardial reentry. Furthermore, the simulation showed that the site of wave break 
and reentry formation occurred in both the epicardial and intramural portions of the 
peri-infarct zone. Thus, this study showcased the utility of image-based computa-
tional modeling in predicting sites of reentry formation and maintenance.

9.8  Cardiac Electromechanics Modeling Example: 
Electromechanical Delay in the Normal Canine Heart

Despite recent advancements in the understanding of the electromechanical activa-
tion sequence during normal sinus rhythm, characterization of the spatiotemporal 
interactions between electrical activation and mechanical contraction throughout 
the ventricular volume remains incomplete. This stems from the fact that current 
experimental techniques are limited by their inability to simultaneously evaluate 
the 3D electrical and mechanical activity of the heart at a high spatiotemporal reso-
lution; therefore, alternative approaches must be undertaken. In this section, the 
image-based electromechanical model of the normal canine ventricles was 
employed to obtain insight into the 3D electromechanical activation sequence dur-
ing the normal sinus rhythm. To do so, we examined the distribution of the electro-
mechanical delay (EMD), the time interval between the onset of myocyte 
depolarization and that of myofiber shortening, throughout the ventricular volume 
during the normal sinus rhythm.

Sinus rhythm was simulated by stimulating the endocardial surface at specific 
locations as if activation originated from the Purkinje network. The timings and 
locations were adjusted until the activation pattern matched experimental data [14, 
43]. We employed the canine ionic model in [16], in which we incorporated an 
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equation to represent Ca buffering by Troponin C [42]. Myofilament dynamics 
were governed by the biophysical model [36].

To determine the 3D distribution of EMD, the local time difference between 
myocyte depolarization and onset of myofiber shortening was calculated through-
out the ventricles. Myocyte depolarization is defined as the instant at which the 
transmembrane potential exceeds 0 mV. Onset of shortening was defined as the 
instant when local myofiber shortening reaches 10% of its maximal value [41].

Transmural, short-axis maps of the electrical and mechanical activation (i.e., 
onset of myofiber shortening) times are shown in Fig. 9.6a and b, respectively. 
Electrical activation generally began from the endocardium and propagated to the 
epicardium and from the apex to the base; mechanical activation also followed this 
pattern. Transmural maps of EMD at the same short-axis views are shown in 
Fig. 9.6c and reveal that there are transmural differences in EMD throughout the 
LV free wall. EMD at the late-activated epicardium was longer than that at the early 
activated endocardium. To understand how these transmural differences in EMD 
arise, temporal traces of transmural myofiber strain at the mid-base of the anterior 
left ventricle are presented in Fig. 9.6d, and they demonstrate that the late-activated 
epicardium is prestretched, as indicated by the positive myofiber strain. This pre-
stretch delays the onset of myofiber shortening and results in a prolonged EMD.

Previous experimental studies have shown that during normal sinus rhythm, 
there are differences in EMD on the epicardium between the apex and base [34, 41]. 
In addition, a local transmural difference in EMD has been reported at one single 
location at the anterior wall [6]. Our simulation results further these experimental 
findings and demonstrate that the 3D distribution of EMD is heterogeneous 
throughout the ventricular volume in the normal canine heart.

Understanding how this 3D distribution of EMD is altered under diseased condi-
tions, such as dyssynchronous heart failure, and under different loading conditions 
could be particularly important to improving pacing therapies that aim to recoordi-
nate mechanical contraction, such cardiac resynchronization therapy (CRT). Although 
CRT has been shown to improve quality of life and reduce hospitalizations [7], a 

Fig. 9.6 Transmural, short-axis maps of electrical activation (a), mechanical activation (b), and 
electromechanical delay (c) during sinus rhythm in the normal canine heart. (d) Temporal traces 
of myofiber strain at the LV anterior wall
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substantial number of patients do not respond to CRT, making it difficult to justify the 
expense of its broader application (Chap. 10). Thus, further advancements in optimi-
zing CRT delivery and improving the selection criteria of potential CRT res ponders 
will necessitate mechanistic insights into the 3D interaction between elec trical 
activation and mechanical activation under healthy and diseased conditions.

9.9  On the Road to Patient-Specific Modeling

In the preceding sections, we described the methodologies that we have developed 
to construct representative models of cardiac structure and to study electrophysio-
logical and electromechanical phenomena of the heart by simulating with numeri-
cal models. In this section, we present the techniques that we have developed to 
build models that are based on the specific architecture and electromechanical 
properties of the patient’s diseased heart. Such personalized cardiac models in 
combination with high-performance computing can provide clinical researchers 
with quick and noninvasive access to critical information about electrophysiologi-
cal and electromechanical phenomena and events in the hearts of individual patients. 
Ultimately, such patient-specific information will aid physicians to arrive at highly 
personalized decisions for electrophysiological interventions as well as prophy-
laxis, thereby dramatically improving cardiac healthcare. To illustrate, current 
radiofrequency ablation approaches to treating ventricular arrhythmia rely solely on 
the physician’s experience in identifying and destroying the arrhythmogenic sub-
strate, a task that is complicated by the variations in the morphology of structural 
remodeling (infarct) across different patients (Chap. 1). With the aid of realistic 
patient-specific computational models, physicians will be able to simulate different 
ablation scenarios, predict the results, and select the optimal intervention.

Despite the potential impact, the application of electrophysiological simulations 
in personalized treatment is hampered by a significant barrier, namely the lack of 
technology to acquire the fiber structure of a given patient heart. While advanced 
MR and CT technologies can acquire the geometry of a patient heart in vivo up to 
submillimeter resolution [15, 28, 30], there is no practical method that physicians 
can use for noninvasively acquiring the fiber structure of a living patient heart. This 
limitation constitutes one of the major obstacles to the application of computational 
cardiac simulations in the clinical setting. To address this need, we have developed 
a methodology to predict fiber orientations of a patient heart from geometry 
acquired in vivo [50].

We hypothesize that fiber orientations of a patient heart can be accurately pre-
dicted given the geometry of the patient heart and an atlas human heart. If this 
hypothesis was proven, it will be possible to estimate fiber orientations of patient 
hearts from geometries acquired using modern in vivo MRI and CT technologies. 
We have tested this hypothesis, and developed, using state-of-the-art techniques, a 
processing pipeline for the estimation of patient-specific fiber orientations. The 
pipeline involves the use of tools of computational anatomy [9] to morph fiber 
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orientations of an atlas to match patient geometries (see, e.g., Chap. 7), thereby 
obtaining patient-specific fiber orientations.

The atlas is a normal human heart whose geometry and fiber orientations are 
acquired ex vivo using high-resolution (0.4297 × 0.4297 × 1 mm3) structural MRI 
and DTMR image, respectively. The reconstruction of the atlas geometry from the 
structural data was performed using methods described in the previous section on 
image segmentation. Figure 9.7 shows the atlas geometry. The reconstruction is 
highly detailed, retaining finer structures such as trabeculations and papillary 
muscles. A visualization of the atlas fiber orientations is shown in Fig. 9.8. As 
expected, the fibers form a counterclockwise helix on the epicardial surface.

9.9.1  Processing Pipeline for Estimating Patient- 
Specific Fiber Orientations

Figure 9.9a shows the processing pipeline that we have developed to estimate 
patient-specific fiber orientations of the heart. The pipeline involves three main 
steps, as shown in the gray blocks in the figure. The following subsections describe 
these steps and illustrate our methodology by showing how the estimation is per-
formed for an example patient who was scanned using in vivo CT.

9.9.2  Reconstruction of Patient Heart Geometry

In the first step, the patient heart structural MR or CT image is segmented to reconstruct 
the ventricular myocardium. In this segmentation, the voxels that correspond to the 
ventricular myocardium of the patient heart are labeled. The labeling is performed 

Fig. 9.7 The geometry of the normal human atlas heart. The left panel shows the anterior view, 
and the right panel shows the atlas split in half along a horizontal view axis plane. The ventricles 
appear in dark gray, and the atria in light gray
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by fitting closed splines through a set of landmark points that are semiautomatically 
placed along the epicardial and endocardial boundaries of the ventricles in the 
image. All voxels that lie inside the epicardial spline, but outside the endocardial 
splines are marked as myocardial. Similar to the extraction of ventricles from a 
high-resolution ex vivo image described previously, the placement of landmark 
points is performed manually for a number of slices that are evenly distributed in 
the image. The landmark points for the remaining slices are obtained automatically 
by linearly interpolating the manually identified points. Figures 9.9b and c illustrate 
the reconstruction of the ventricular geometry from the in vivo CT image of the exam-
ple patient. Incidentally, our experiments indicate that the number of image slices 
for which landmark points need to be placed manually is about 10% of the total 
number of slices, and the amount of time required for segmenting the myocardium 
from a typical in vivo image is less than 1 h.

9.9.3  Deformation of Atlas Heart Geometry

In the next step of the pipeline, the ventricular myocardium of the atlas heart is 
deformed to match the patient heart geometry. This deformation is performed in 
two phases. The first phase involves an affine transformation based on a set of 
landmarks points. Five manually identified landmarks, including the LV apex, the 
right ventriculoseptal junctions located at the base, and the right ventriculoseptal 

Fig. 9.8 A visualization of 
the fiber orientations in the 
normal human heart atlas
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junctions located midway between base and apex are used. Figure 9.9d shows the 
ventricular myocardium of the atlas heart, which is shown in Fig. 9.7. Figure 9.9e 
shows the patient geometry from Fig. 9.9c, together with the atlas ventricular 
myocardium. Figure 9.9f shows the patient geometry and the affine transformed 
atlas geometry.

The second phase of deformation of atlas geometry involves a high-dimensional 
nonlinear deformation using an algorithm known as large deformation diffeomorphic 
metric mapping (LDDMM) [10]. The advantage of the LDDMM algorithm is two-
fold. First, it computes transformations that are smooth and invertible (diffeomor-
phic), thereby preserving the integrity of anatomical structures during deformation. 
In particular, connected sets remain connected and disjoint sets remain disjoint, 
smoothness of anatomical structures such as curves and surfaces is preserved, and 
coordinates are transformed consistently. Secondly the algorithm computes a geodesic, 
which is the shortest length path in the space of transformations that match the 
template and target, thereby quantifying the deformation via a scalar metric distance, 

Fig. 9.9 Our methodology for estimating patient-specific myocardial fiber orientations. (a) The 
processing pipeline for the estimation; (b) segmentation of an example patient heart image, where 
splines are shown in gray and landmarks in white; (c) ventricular geometry of the example patient 
heart; (d) the ventricular myocardium of the atlas; (e) patient and atlas ventricular geometries 
superimposed; (f) patient geometry and affine transformed atlas geometry; (g) patient geometry 
and atlas geometry after large deformation diffeomorphic metric mapping (LDDMM)
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and providing a superior registration quality. The deformation of the atlas geometry, 
using the affine transformation and LDDMM, matches the atlas geometry with the 
patient geometry. Figure 9.9g shows the patient geometry together with the atlas 
geometry after LDDMM deformation. The deformed atlas closely matches the 
patient geometry.

9.9.4  Deformation of Atlas Fiber Orientations

In the final step of the pipeline, the fiber orientations of the patient heart are esti-
mated. This step involves the application of the affine transformation matrix and the 
deformation field of LDDMM in sequence to deform the DTMR image of the atlas. 
The deformation of the DTMR image consists of spatial repositioning of the image 
voxels in accordance with the spatial transformation of geometry images and reori-
entation of the DTs. The reorientation of the DTs is performed by using the so-
called preservation of principal directions method [2]. This method preserves the 
principal direction of the DT as well as the plane spanned by the largest two eigen-
vectors, and therefore is well suited for the higher-order transformations that are 
involved in registering cardiac images. The deformation of the template DTMR 
image, by repositioning the image voxels and reorienting the DTs, gives an estimate 
of the patient heart DTs, the primary eigenvectors of which provide an estimate of 
the patient-specific fiber orientations. Figure 9.10 shows the estimated myocardial 
fiber orientations of the example patient. As expected, the fiber orientations appear 
clockwise helically near the endocardium, circumferentially near midwall, and 
anticlockwise helically near the epicardium.

Fig. 9.10 A visualization of the estimated myocardial fiber orientations of the example patient
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9.9.5  Pipeline Validation

The pipeline for estimating patient-specific fiber orientations was validated using 
six normal, one failing, and one infarcted canine hearts, all of which were scanned 
ex vivo with high-resolution DTMR to obtain ground truth fiber orientations. One 
normal canine heart was chosen as the “atlas” and the fiber orientations of all other 
hearts were estimated. The error in estimated fiber orientations was computed as 
the absolute difference between the inclination angles [40] of estimated orientations 
and ground truth orientations. It was found that the mean error in the normal, fail-
ing, and infarcted cases were 14, 14.3, and 18°, respectively. The overall mean error 
was 14.8°, which is comparable to the error of 12° in fiber orientations derived from 
DTMR images [40].

In addition to the above, we conducted simulations of paced propagation with 
ventricular models built using estimated and ground truth fiber orientations and 
compared the resulting activation time values. In normal canine hearts, simulations 
showed a difference of 7.8% in activation timing values between models built using 
ground truth fiber orientations and those using estimated fiber orientations. In fail-
ing and infarcted cases, the differences were 7.7 and 6.2%, respectively. These 
results show that the estimated fiber orientations can be reliably used in electro-
physiological simulations.

9.10  Conclusion

In conclusion, we have developed methods to construct high-resolution representa-
tive models of the whole-heart electrophysiology and electromechanics from 
images acquired ex vivo. Simulations with these models can provide new insights 
into cardiac function, in health and disease. Building upon our research in con-
structing representative models of the heart, we have developed a pipeline to create 
patient-specific computational meshes of the heart from in vivo images. The pipe-
line involves a method to accurately predict fiber orientations of patient hearts and 
constitutes a step toward patient-specific models of cardiac electrophysiology.
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