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5.1  Introduction

Decision-making in critical care occurs on a time scale of hours, minutes, or even 
seconds and requires synthesizing large amounts of patient-specific (PS) data. It is 
therefore sensible to make use of PS modeling applications in critical care since 
they offer tools for integrating disparate data into a single system view and leverage 
computing power to provide decision support information in a timely manner. PS 
modeling can be used to aid diagnosis, to estimate occult physiological variables, 
and to test potential therapies in silico before administering them to a patient. They 
can therefore help clinicians determine what happened to the patient in the past, 
what is happening in the present, and what will happen in the future.

PS models are computational representations of human anatomy, physiology, or 
pathology that are tuned to match data from one individual as opposed to data from 
a population. These models supply clinicians with decision support information that 
is applicable to a single patient rather than a patient group. Generally, PS modeling 
systems developed for critical care scenarios must be computationally tractable 
enough to provide this decision support information in real or near-real time. This is 
an important distinction between critical care PS models and those developed for 
less time-sensitive scenarios (such as predicting a patient’s response to cardiac 
resynchronization therapy, for example (Chap. 10, [18, 19])). Because computa-
tional timeliness is an issue, critical care PS models are usually limited to algebraic 
or ordinary differential equations (ODEs) and are optimized to simulate only those 
PS features that are essential for providing accurate decision support information. 
Hence, researchers in critical care PS modeling often adopt a “simple first” approach 
to model development. The goal of this approach is to identify effective, “minimal 
models” that keep computational burdens small but still provide accurate decision 
support information. Minimal models also have the advantage of being easier to 
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understand and use once deployed. This advantage is crucial because in time-sensitive 
scenarios, it is essential to optimize not only the computational overhead of the 
modeling system being used but also the user’s interaction with the system.

Critical care environments are often data-rich, since clinicians must monitor 
unstable patients thoroughly and continuously. Therefore, critical care PS modelers 
have the advantage of access to large amounts of detailed physiological data. 
Modelers can leverage this abundance to create PS simulations that are accurate on 
a high-resolution time scale, a luxury often unavailable outside the critical care 
setting. By representing a patient systemically, rather than in a reductionist manner, 
PS models can coalesce these large critical care datasets into a single, coherent 
picture of a patient’s status. For example, given a PS hemodynamic model, ECG 
signals can be used to drive the simulated heart, from which the blood flow can be 
obtained. The latter can be constrained by afterload data derived from the patient’s 
arterial catheter.

Despite over a century of quantitative biological modeling, only recently has 
the store of biological knowledge and computational power become sufficient 
to achieve the long-sought goal of applying PS quantitative modeling to real- 
time clinical decision-making. The first section of this chapter describes several 
 examples of recent PS modeling applications in critical care, some of which are 
based on models created decades earlier. Working from these examples, the second 
 section describes the major challenges currently faced by researchers in critical 
care PS modeling.

5.2  Examples of Patient-Specific Modeling in Critical Care

Although the field of applied PS modeling is relatively young, some important 
examples of applications in critical care exist. Many involve simulating cardiovas-
cular or blood glucose dynamics, as these systems must be managed closely in the 
critical care environment.

5.2.1  Hemodynamic Models

Maintaining a patient’s hemodynamic homeostasis is a primary task in critical care, 
and it is not surprising that many critical care PS models simulate cardiovascular 
dynamics. Figure 5.1a shows a basic example of a hemodynamic model used for 
estimating a patient’s systemic vascular resistance (SVR). Given its simplicity, one 
may not think of this as a PS model in the modern sense, but it is nonetheless a 
computational representation of a patient’s physiology, which is parameterized to 
match PS pressure and flow data. This particular model is based on the fluid analog of 
Ohm’s Law. As Ohm’s Law relates voltage and current to electrical resistance, the fluid 
analog relates a pressure difference and fluid flow to fluid resistance. This model, 
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which has been in use for decades, treats the systemic vasculature as a single resis-
tive element. It is computationally simple and provides an estimate of an important 
physiological variable that helps medical decision-making.

Figure 5.1b illustrates a more complicated hemodynamic model based on fluid 
analogs of electrical transmission laws. The model uses a collection of Windkessel 
(“wind-chamber,” see below) compartments [10, 32] to simulate segments in the 
circulation that not only provide energy loss via resistive pathways but also energy 

a

b

Fig. 5.1 Lumped-parameter, hemodynamic models. (a) A simple electrical analog model of 
blood flow through the systemic vasculature for estimating systemic vascular resistance. 
(b) A more complex electrical analog model that simulates blood pressures, flows, and volumes 
throughout the cardiovascular system
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storage via vessel compliance. This kind of formulation allows the modeler to 
account for blood volumes (analogous to electrical charge) throughout circulatory 
compartments along with blood pressures and flows. Although this model does not 
directly correspond to any published PS modeling application, it is used here to 
illustrate a common modeling technique used in hemodynamic simulations. The 
code for the model in Fig. 5.1b includes a set of algebraic equations and ODEs that 
are solved using numerical, as opposed to analytical, methods. In the interest of 
model sharing and reproducibility, this code is presented in the appendix. It is written 
in the Mathematical Modeling Language (MML) used for simulations within the 
free JSim environment [17]. A digital copy of the original model file is also available 
from the author upon request.

The hemodynamic modeling techniques used to create the models in Fig. 5.1 are 
by no means new (see, for example, [30]). These so-called “lumped parameter” 
models (they lump groups of resistive and/or capacitive elements together) have 
been used in the past to estimate cardiac output (CO) [8, 25, 38], to study the effects 
of orthostatic stress on the cardiovascular system [15], to analyze the Valsalva and 
Forced Vital Capacity maneuvers [23], to predict hemodynamics in traumatic brain 
injury patients [37] (see below), and to create educational tools in physiology [7, 34]. 
However, it is only within the last 10–20 years that computing power has increased 
to the point where models of this complexity can be solved within a time frame that 
is realistic for critical care decision-making.

5.2.1.1  Cardiac Output Estimation

The gold-standard measurement of CO is thermodilution, a procedure that requires an 
indwelling catheter. Therefore, less-invasive means of obtaining accurate CO would 
substantially reduce patient health risks. Emphasizing this fact, Kouchoukos et al. [20] 
referred to the creation of a reliable, noninvasive continuous CO measurement tech-
nique as an “El Dorado.” Several researchers have explored the use of models like those 
in Fig. 5.1 for estimating cardiac output (CO) from more readily available, less risky 
continuous measurements like arterial blood pressure (ABP) and heart rate (HR).

The origins of the hemodynamic models applied to the problem of CO estima-
tion can be traced to work done by Otto Frank over 100 years ago [10, 32]. In 1899, 
Frank published the first major quantitative study that related systemic arterial 
system properties to arterial pressures and flows. His widely used Windkessel 
model, which simulates a compliant, fluid-filled chamber, laid the foundation for 
much of the hemodynamic modeling work that has followed, including model-
based CO estimation studies.

One of the first PS model-based CO estimation methods to emerge was that of 
Wesseling et al. [38]. Their “Model Flow” method relies on a simple three-element 
Windkessel model of blood flow out of the left ventricle and into the systemic circula-
tion. In order to compute a continuous CO estimate, this method relies on PS age, ABP, 
and HR data along with an initial CO measurement used to calibrate the model.

A recent study by De Wilde et al. [8] also describes the development of a 
model-based CO estimation technique called Hemac that is similar to the Wesseling 
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Model Flow method. Whereas the Model Flow method uses an aortic pressure–
volume relationship (compliance) based on population-averaged in vitro data, the 
Hemac method bases the relationship on PS data obtained from in vivo measure-
ments on the aorta. In a recent clinical study, authors showed that the Model Flow 
and Hemac CO estimation methods were more accurate than three other methods 
not based on models, including the commercially available LiDCO CO estimation 
system [22]. However, this particular study was limited to 24 surgical patients 
without congestive heart failure, with normal heart rhythm and reasonable periph-
eral circulation. Indeed, one of the current challenges in the field of CO estimation 
is to demonstrate a method’s utility across a broad spectrum of patient conditions.

Neal and Bassingthwaighte [25] have also recently published a model-based 
CO and total blood volume estimation method using a hemodynamic model similar 
to the one in Fig. 5.1b. Based on the work of Lu et al. [23], their model was 
constructed using a network of Windkessel compartments that simulate blood 
pressures, flows, and volumes in a 21-segment representation of the cardiovascular 
system. The authors created an algorithm that tuned this hemodynamic model to 
match a baseline set of hemodynamics from a given subject. The tuned parameters 
were then used in an open-loop version of the model to estimate CO from mean 
ABP and HR data obtained from single subjects. Unlike other CO estimation tech-
niques, this method does not require an invasively obtained ABP curve, but uses 
mean ABP instead, which can be estimated noninvasively. Although the Neal and 
Bassingthwaighte CO estimation method provided good estimates of CO in preclinical 
studies, the tuning procedure used to match baseline PS data took hours to com-
pute using commercially available desktop processing power. This bottleneck 
must be removed either through an increase in computational power or a simplifi-
cation of the tuning process and/or model design before such a method becomes 
viable in a critical care setting.

Exemplified by the Neal and Bassingthwaighte model, one of the major chal-
lenges in PS modeling lies in creating computationally efficient tuning methods for 
matching model output to PS data. These methods can be time-intensive, since 
multiple model runs are often required to complete the tuning process. Researchers 
have addressed this issue recently and created methods for reducing the burden of 
parameter tuning in detailed hemodynamic models [14, 29]. These methods are 
discussed below in Sect. 5.3, “Current challenges.”

5.2.1.2  Simulating Response to Traumatic Brain Injury

Hemodynamic PS modeling has also been applied to the treatment of traumatic 
brain injury in pediatric patients. Wakeland et al. [37] developed a six-compartment 
ODE-based model that simulates blood pressures, volumes, and flows in intracranial 
arteries, capillaries, and volumes. The model also simulates the aggregated CSF 
volume, brain tissue volume, and (if applicable) intra- and extracranial hematoma 
volumes. In a clinical study, researchers used this model to anticipate individual 
patients’ responses to head of bed tilt and respiratory rate change therapies. They 
first tuned the model to PS hemodynamic data obtained from an initial instance of 



86 M.L. Neal

one of these physiological challenges. Then, using the newly parameterized model, 
they simulated the effects of future challenges, and compared the model’s predic-
tions of intracranial pressure with data from actual challenges performed during 
the same therapy session (within 2–3 h) and in subsequent sessions performed on 
other days. The researchers demonstrated that their PS modeling system could be 
implemented in a critical care environment and used to make predictions about indi-
vidual patient’s responses to traumatic brain injury therapy. However, they obtained 
only modest success when they validated model predictions against data from nine 
pediatric ICU patients. Model predictions made within a single therapy session were 
favorable in 27% of these cases, and those made between sessions were favorable in 
10% of cases. Wakeland et al. propose that their system may be improved by adding 
more physiological detail to their model and by incorporating higher resolution clinical 
data. Additionally, as in the Neal and Bassingthwaighte model, the Wakeland et al. PS 
modeling application requires a significant amount of time for model tuning (in excess 
of 20 min) and stands to benefit from more efficient tuning methods and increases 
in computing power.

5.2.2  Models of Glucose and Insulin Dynamics

The management of blood glucose levels in ICU patients is also a major challenge 
in critical care. Even nondiabetic patients can suffer from hyperglycemia in the 
ICU, a condition that worsens hospital outcomes due to increased susceptibility to 
infection, myocardial infarction, and other illnesses. At the same time, improper 
treatment of hyperglycemia can result in hypoglycemia, which is also associated 
with impaired outcomes.

5.2.2.1  Controlling Blood Glucose Levels

PS models have recently been applied to predict and control blood glucose levels in 
ICU patients at risk for hyper- and hypoglycemia. Van Herpe et al. [36] developed a 
system for predicting blood glucose levels in ICU patients based on system identifica-
tion techniques. In this method, the underlying physiological system responsible for 
glucose dynamics is treated as a black box, and optimization methods are used to 
find an empirically-based, single-equation model that accurately relates a set of input 
data (initial blood glucose levels, body temperature, flow of carbohydrate calories, etc.) 
to output data (predicted blood glucose levels). They demonstrated that an adaptive 
modeling system that alters their model to account for PS features was more accurate 
in predicting future blood glucose values in the ICU.

In 2008, Chase and colleagues [5] published a clinical validation study assessing 
the impact on patient mortality of a PS model-based glucose control system imple-
mented in an ICU. They showed that their “Specialised Relative Insulin Nutrition 
Tables” (SPRINT) system reduced the hospital mortality of ICU patients by 26% 
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for those staying 3 days or more. Mortality was reduced by 32% for patients staying 
4 days or more and 35% for patients staying 5 days or more. This study provides 
an important example of a PS modeling application that has passed through the 
processes of design, development, preclinical testing and clinical testing and 
emerged as a valuable tool for the ICU. Time will tell whether SPRINT is widely 
adopted as a standard of care.

There are several important features of the SPRINT system that contribute to its 
success. First, the system is based on a time-tested model of insulin and glucose 
 dynamics called the Bergman minimal model [2, 3]. This ODE-based model simulates 
time courses of insulin and glucose following injection of insulin into a patient’s blood-
stream. By tuning the model parameters to match PS data obtained from intravenous 
glucose tolerance tests, the model provides indexes of a patient’s insulin sensitivity, 
glucose effectiveness, and first-phase insulin response. These three model parameters 
provide the ICU clinician with a thorough view of a patient’s glucose homeostasis, and 
can help guide the administration of insulin for controlling blood glucose levels.

The Bergman model’s simplicity has likely contributed to its viability and adop-
tion as a clinical and educational tool. SPRINT is based on an extended Bergman 
model but is still simple enough to be translated into a paper-based protocol in an 
ICU. Thus, no interaction with a computer is required to employ the SPRINT system 
and model results can be retrieved immediately. As shown by the reductions in 
mortality of the large patient population studied by Chase et al., this minimal 
approach to PS modeling can prove effective despite its simplicity.

To further illustrate the value of blood glucose modeling, researchers have recently 
found that the insulin sensitivity variable computed by the SPRINT model can be 
used as a negative predictor of sepsis in ICU patients [28]. This provides an example 
of how PS modeling can help clinicians with challenging diagnostic tasks and also 
demonstrates an important, perhaps overlooked value in model-based estimation of 
physiological variables. As surrogates for unavailable or overly risky in vivo measure-
ments, these variables can be used as additional biomarkers to aid clinical diagnoses 
and prognoses. To provide a second example, Neal and Bassingthwaighte found that 
their model-derived total blood volume loss estimates predicted survival/nonsurvival 
following severe hemorrhage in pigs [25]. Obtaining an actual total blood volume 
measurement on a person (or a pig) in a critical care scenario is not feasible; therefore, 
clinicians have no way of knowing the predictive value of this variable for survival, 
time to death, etc. However, a model-based estimate of total blood volume can be 
used as a surrogate measurement and can be tested for its predictive value, as can any 
other physiological variable computed by a PS model.

5.3  Current Challenges

Although much progress has been made in applying computational PS modeling 
systems to challenges in critical care, these applications have yet to become widely 
adopted standards. Considering the computational power presently available to 
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clinicians and the fact that PS models used in critical care must often rely on time-
tested, minimal models, it is somewhat surprising that more success stories of 
applied PS modeling in critical care do not exist. The field of PS modeling as a 
whole is young, and researchers face many challenges in translating modeling work 
performed in the biomedical research realm into useful, clinically validated tools.

5.3.1  Clinical Validation

Many current efforts in PS modeling for critical care are at the stage where compu-
tationally timely models have been built and can be parameterized to match indi-
vidual patient data, but have yet to be validated against large-n clinical data sets [27]. 
These kinds of validation studies can be financially and temporally expensive since 
they require IRB approval, patient recruitment, and data collection. It is only after 
data have been collected from human subjects that the iterative cycle of refining the 
PS modeling application under development begins.

During the validation process researchers often find that their models need to 
be revised to generate accurate simulations. This process can involve increasing the 
model’s detail, replacing/editing components of the model, or testing out an 
entirely new model design. Such revisions can be cumbersome and difficult, espe-
cially with models of higher complexity. Currently, researchers have access to few 
tools that would make the revision of more complex models less cumbersome and 
error-prone. The potential utility of a modular modeling approach that addresses 
these issues is discussed below in the “Model interoperability” section.

As discussed by Neal and Kerckhoffs [27], even when researchers are able to 
 successfully test and validate their PS models against a significant number of patients, 
the question remains whether their system, once deployed, will actually effect clinical 
decision-making and improve patient outcomes. Whereas large-n validation studies 
have been the traditional endpoint of biosimulation modeling research, PS modelers 
will be faced with the additional task of deploying PS modeling systems into a clinical 
setting and demonstrating their effectiveness as decision support tools. The process 
does not end there, however. In order for a PS modeling system to become a standard 
of care it will require approval by the FDA, or similar regulatory agencies in other 
countries as a medical device.

5.3.2  Timely Tuning Methods

One of the challenges in using more modern, detailed physiological models to 
simulate PS phenomena lies in tuning the models to match PS data. Whereas a 
simple fluid dynamics model like that of Wesseling et al. [38] has a minimum number 
of free parameters to adjust, a more sophisticated, multicompartment model like 
that of Neal and Bassingthwaighte requires tuning scores of parameter values. In 
lieu of this computational hurdle, researchers have created more streamlined tuning 
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procedures for multicompartment hemodynamic models. For example, Pope et al. 
[29] employed parameter sensitivity and subset selection methods to reduce the 
complexity of a multicompartment cardiovascular model used to identify biomarkers 
that distinguish between healthy young and elderly populations. Additionally, Hann 
et al. [14] developed an “integral-based parameter identification method” that can 
be used to quickly and accurately tune a minimal cardiovascular model to match PS 
data. This integral-based approach was also applied in creating the successful SPRINT 
system discussed above. Models that employ adaptation rules also seem promising 
in reducing the number of parameters (Chap. 2).

5.3.3  Variability in Patient Anatomy, Physiology  
and Clinical Scenario

Each patient in a critical care scenario is unique, and the importance of developing 
accurate, automated tuning algorithms that account for differences between patients 
cannot be overstated. However, if a patient presents with a feature that violates 
the underlying assumptions of a model, often the only way to account for this abnor-
mality is to change the equations of the model itself. For example, suppose a clinician 
would like to use a cardiovascular model such as that in Fig. 5.1b to simulate the 
hemodynamics of an infant undergoing surgery to repair Tetralogy of Fallot. In this 
case, the patient’s anatomy is different from the anatomy assumed in the computa-
tional model, due to a ventricular septal defect and overriding aorta. The clinician 
will require a new model that includes an abnormal arrangement of blood flow 
before and possibly after the surgical procedure (because the end goal of some heart 
defect surgeries is a noncanonical arrangement of blood flow). Furthermore, if a cardio-
pulmonary bypass (CPB) machine is employed during the surgical procedure, the 
simulation must account for its use as well. None of these conditions would be present 
in a model that assumes canonical cardiovascular anatomy. Therefore, given the 
anatomical and physiological variation present in humans and the variation in clinical 
scenarios between patients, there is a general challenge to devise a modeling approach 
that can readily account for this diversity. This challenge must be addressed if PS 
modeling is to realize its full potential in critical care.

There are two solutions to this challenge: precoordination and postcoordination of 
models. Pre-coordinating models to account for the variations in blood flow described 
above would require modeling each possible noncanonical blood flow arrangement 
ahead of time, either using separate models for each arrangement, or model “switches” 
that toggle between flow arrangements in a single model. This solution requires 
model developers to anticipate every possible noncanonical arrangement of blood 
flow whether due to patient anatomy or the application of artificial shunting mecha-
nisms (such as a CPB machine). The approach presents a potentially intractable 
combinatorial problem, given the number of separate models or switchable model 
subcomponents that must be created to account for all blood flow arrangements.

A more scalable, manageable, and flexible approach to this complex problem is 
to postcoordinate the models. In this approach, users have access to a repository of 
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smaller, interoperable, modular models that can be recombined “on the fly” to 
simulate a wide variety of PS conditions. For example, if a patient goes on CPB, a 
CPB module can be retrieved from the repository, and then merged with a PS 
systemic circulation model (perhaps extracted from the system in Fig. 5.1b) to 
simulate the rerouting of the patient’s blood flow through the bypass machine. As 
a design principle, modularity is a time-tested method of dealing with complexity [1], 
and it has been leveraged in a myriad of industrial fields to organize and optimize 
the creation of complex products [33]. A modular approach to PS modeling would theo-
retically provide a means for clinicians to create PS models across a wide spectrum 
of clinical cases. In the next section, I provide more details on biosimulation model 
interoperability and its applicability in creating PS models for critical care.

5.3.4  Model Interoperability

Because modelers usually choose to code in whatever simulation language is most 
comfortable for them, published physiological models that may have applicability in 
critical care are coded in a variety of languages for a variety of simulation platforms. 
Consequently, these models are not readily shareable or reproducible between research 
groups. Model code often languishes on laboratory hard drives when it could be built 
upon and/or repurposed to address clinically relevant problems. Some researchers have 
tackled this issue and developed methods that facilitate the reuse of published biosimu-
lation models. For example, systems biologists, who focus on modeling chemical 
networks, have created a number of standards for model reproduction among their 
research community. The Systems Biology Markup Language (SBML [16]), an XML-
based model description format, is one such standard that acts as a lingua franca for 
encoding chemical network models. Using a common set of SBML parsing and simula-
tion tools, systems biologists can readily reuse models coded by independent research 
groups. The systems biology community has also created other standards for curating 
published models in a centralized database [21] and for describing the tasks required 
for the reproduction of published model results [24].

This work within the systems biology community is an example of a success story 
in addressing the larger issue of biosimulation model interoperability. However, a 
standard like SBML does not scale beyond the chemical network domain. Furthermore, 
most of the modeling applications described above simulate phenomena at the tissue 
or organ level. Therefore, as discussed by Neal and Kerckhoffs [27], to encourage 
model interoperability, the PS modeling community needs standards for describing, 
curating, and reproducing models that scale beyond chemical networks to include 
higher levels of biological organization. These standards can be applied not only as 
part of the modular, postcoordination PS modeling approach described above but also 
to encourage model reuse and development among the greater modeling community.

Currently, the most ambitious attempt to create a model description standard that 
applies across physical modeling scales and modeling languages is the Semantic 
Simulation (SemSim) approach [26]. In this approach, the codewords and mathematical 
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dependencies of existing biosimulation models are annotated against concepts in 
standardized reference sources like the Foundational Model of Anatomy (FMA, [31]), 
the Gene Ontology (GO, [13]), the Chemical Entities of Biological Interest (ChEBI) 
ontology [9], and the Ontology of Physics for Biology (OPB, [6]). Once annotated 
within the SemSim format, physiological models become semantically interoperable, 
allowing for more automation of common modeling tasks. When a user combines mul-
tiple SemSim models, the merged model not only compiles, but also is biologically 
meaningful. For example, a user may want to combine a heart model with a systemic 
circulatory model. Suppose both models include a codeword that gives values for left 
ventricular (LV) outflow but in the heart model this codeword is a variable output, 
whereas LV outflow is a static parameter in the systemic circulatory model. Semantic 
interoperability helps automate the merging of these models into a biologically mean-
ingful result. Cast in the SemSim format, a computer can recognize that both models 
simulate LV outflow, and thus, the user may want to couple the models at that point so 
that LV outflow from the heart model replaces the static LV outflow codeword in the 
systemic circulatory model. Without semantic composability, there is no way to auto-
mate this merging process beyond simply copying blocks of code from one model into 
another, and in doing so, there is no guarantee that the result will be biologically con-
sistent. With semantic interoperability, a computer can recognize that having two different 
codewords that simulate the same physical property is contradictory, and can prompt the 
user to resolve the contradiction, thus retaining biological meaning in the merged model.

Semantic interoperability is just one level of model interoperability and is an impor-
tant step in reaching even higher, more powerful levels of interoperability. The US 
military, specifically the Simulation Interoperability Standards Organization (SISO), 
has been researching this issue to optimize the creation of defense-related simulations. 
Tolk et al. [35] define six levels of interoperability for simulation systems: technical, 
syntactic, semantic, pragmatic, dynamic, and conceptual.

•	 Technical interoperability. A protocol exists for exchanging data (bits) between 
participating model components.

•	 Syntactic interoperability. A common data format is applied to share informa-
tion between model components.

•	 Semantic interoperability. The meaning of the data is shared between model 
components.

•	 Pragmatic interoperability. The use of the data (i.e., the context of its applica-
tion) is shared between model components.

•	 Dynamic interoperability. Components react to time-dependent changes in their 
internal assumptions and constraints. The effect of the system’s operation is 
shared between model components.

•	 Conceptual interoperability. Model components share a common understanding 
of the assumptions and constraints of a simulation’s abstraction of reality.

Presently, most interoperability solutions in software engineering and simulation 
only provide the technical and syntactic levels. However, researchers are now 
exploring how Semantic Web technologies can help realize semantic and pragmatic 
interoperability for simulations [4, 11, 12, 26].
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The issue of model interoperability has been stressed here because to fully tap 
the potential of PS modeling in critical care, modeling applications must be able to 
account for unforeseen patient conditions, must be designed for use by nonengineers, 
and must be optimized for efficiency. A modular approach using minimal, opti-
mized, interoperable models is the most logical design paradigm that addresses all 
of these issues. Although a challenging area of research, model interoperability is 
a potentially powerful catalyst for the development of PS modeling in critical care. 
A modular modeling approach will also help streamline the cumbersome, iterative 
model design cycle discussed above by eliminating common hand-coding tasks and 
coding-related errors.

This being said, modular PS modeling has its own limitations to consider as well. 
While researchers can validate single standalone models against empirical data, there 
is no way to do this for all the possible recombinations of model components from a 
repository of modular models. Therefore, while the individual component models 
that comprise a composite PS model may be validated individually, the composite 
model may not. Validating all the possible model recombinations from a repository 
of model components is not tractable. Therefore, clinicians composing novel PS 
models “on the fly” must realize that such models may not have been tested against 
empirical data prior to use. Instead of attempting to validate all possible recombina-
tions of the model repository components, a modular modeling system will have to 
be validated by analyzing whether the composite models as a group successfully 
matched empirical data, improved patient outcomes, etc. Furthermore, because 
modular modeling allows the user to create novel models, flexible, adaptable parameter 
tuning programs will also be required to match model output to patient data.

5.4  Vision for the Future

Much work remains before more PS modeling systems become standards of care in 
critical care environments. With access to sophisticated modeling tools and scores 
of published models, many modelers have begun testing their work in preclinical 
and/or clinical settings. Thus, many PS modeling efforts are at the validation stage, 
one of the main challenges that researchers currently face in PS modeling in general. 
However, PS modeling researchers must ultimately go beyond the traditional end-
points of modeling research so they not only demonstrate that their models are valid 
but also that their modeling systems actually improve medical decisions and patient 
outcomes when implemented in a critical care environment.

Another research area that must be explored before PS modeling becomes a stan-
dard of care involves identifying the optimal means of deploying and using a PS 
modeling system in the clinical environment. If a modeling system requires in-depth 
quantitative knowledge of the model(s) involved in simulating patient dynamics, 
specialized technicians will be required to manipulate the system. In this case it may 
be most logical for clinical centers to develop modeling cores with members special-
izing in PS modeling applications. Alternatively, if a modeling system does not 
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require in-depth, technical knowledge to tune and execute, specialization may not be 
required. In this case, critical care physicians and nurses will be able to use the 
modeling systems themselves (as is the case with the SPRINT protocol). Initially, 
PS modeling systems will focus on delivering accurate PS information to the clini-
cian, and usability improvements will occur later, as the utility of such systems is 
demonstrated. Once demonstrated, we will likely see interface improvements that 
make PS modeling accessible to a broad spectrum of users.
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