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Computational physiology for the cardiovascular system is entering a new and 
exciting phase of clinical application. Biophysically based models of the human 
heart and circulation, based on patient-specific anatomy but also informed by popu-
lation atlases and incorporating a great deal of mechanistic understanding at the 
cell, tissue, and organ levels, offer the prospect of evidence-based diagnosis and 
treatment of cardiovascular disease.

The clinical value of patient-specific modeling is well illustrated in application 
areas where model-based interpretation of clinical images allows a more precise 
analysis of disease processes than can otherwise be achieved. For example, Chap. 6 
in this volume, by Speelman et al., deals with the very difficult problem of trying 
to predict whether and when an abdominal aortic aneurysm might burst. This 
requires automated segmentation of the vascular geometry from magnetic reso-
nance images and finite element analysis of wall stress using large deformation 
elasticity theory applied to the geometric model created from the segmentation. The 
time-varying normal and shear stress acting on the arterial wall is estimated from 
the arterial pressure and flow distributions. Thrombus formation is identified as a 
potentially important contributor to changed material properties of the arterial wall. 
Understanding how the wall adapts and remodels its material properties in the face 
of changes in both the stress loading and blood constituents associated with inflam-
matory processes (IL6, CRP, MMPs, etc.) is a major challenge for this field and one 
that calls on a robust framework for multiscale modeling (see below) as well as the 
detection of blood biomarkers that provide further patient-specific data. Note that 
an increasing trend in biomechanics research, where there is a need to model tissue 
adaptation to a changing environment, is to underpin constitutive models with 
microstructural tissue models that deal with structure/function relations and to link 
these models through mixture theory to the cellular signaling pathways that alter 
gene expression and hence tissue composition.

Another example of patient-specific modeling using image data is described in 
Chap. 10 by Sermesant and Razavi on “Personalized computational models of the 
heart for cardiac resynchronization therapy (CRT),” which addresses the question 
of why one third of heart failure patients who receive CRT apparently gain no ben-
efit. The premise is that patient outcomes can be improved by optimizing lead 
placement using predictive subject-specific anatomically and biophysically based 
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modeling of a patient’s heart (in this case using eikonal equations). The data 
sources from the XMR suite at King’s College London (which includes an MR 
scanner and an X-ray C-arm) are anatomical MRI, endocardial mapping, cine MRI, 
and left ventricular pressure via a catheter.

Chapter 1 provides an overview of imaging modalities with which the image data 
are obtained that serve as the basis for 3D patient-specific modeling. The chapter 
specifically focuses on patients with heart rhythm disorders, such as atrial fibrilla-
tion. Therapeutic strategies for dealing with atrial fibrillation based on a biophysical 
model of the human atria are discussed by Virag et al. in Chap. 4. Patient-specific 
image segmentation for heart modeling is illustrated by Vadakkumpadan et al. in 
Chap. 9. Here the challenges are achieving image segmentation for both the ven-
tricular geometry and the fibrous structure of myocardium. Chapter 8 by Wenk et al. 
examines myocardial material properties and stress distributions in normal and fail-
ing human hearts. An application of patient-specific modeling to the hypoxic 
response and microvasculature dynamics is given by Nathan and Qutub in Chap. 11. 
Sachse in Chap. 3 provides a discussion on imaging modalities at the (sub-)cellular 
level of cardiac physiology and the promise of patient-specific modeling at the cel-
lular level. In comparison to these biophysically detailed models, the simpler heart 
and circulation models of Arts et al. in Chap. 2 offer the prospect of rapid parameter 
estimation in a clinical setting. The future in my view lies in combining both types 
of models such that the parameters of the simpler models can be linked to the more 
biophysically detailed models that provide a more mechanistic understanding of 
disease processes.

A recent trend in clinical application modeling is to combine patient-specific 
information (especially from clinical imaging) with population data stored in an 
atlas. For example, Chap. 7 by Backhaus et al. describes the Cardiac Atlas Project 
(CAP), which is establishing a web-accessible structural and functional atlas of the 
normal and pathological heart for clinical, research and educational purposes. This 
database or atlas, which is based on open source PACS system (Dm4chee) coupled 
with open source graphical display software (cmgui) and web2.0 metadata tech-
nologies, contains anatomical and functional heart data from 10,000 patients. An 
initial goal of the atlas, based on fitting finite element geometric models to each 
individual heart, is to facilitate statistical analysis across population groups of 
regional heart shape and wall motion characteristics, and to facilitate data fusion 
between different imaging protocols and modalities. In order to link this subject-
specific kinematic information to the physical mechanisms behind cardiac function, 
the CAP database is also designed to include annotated clinical data from, for 
example, coronary angiography, ECG, histology, blood proteins, peptides, and 
other serological data. In combination with whole heart multiscale finite element 
modeling tools this will offer an immensely valuable resource for studying the 
clinically important mechanisms behind cardiac diseases. In the longer term it may 
also include genetic information as this becomes available.

The use of patient-specific modeling to assist with decision-making in critical 
care is another important topic – addressed in Chap. 5 by Neal. The need for almost 
real-time solution in this situation means that the models are typically based on 
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ordinary differential equations (ODEs), rather than partial differential equations 
(PDEs). A number of examples are given including hemodynamic models for car-
diac output estimation and simulating the response to traumatic brain injury, and 
models of glucose and insulin dynamics for controlling blood glucose levels. The 
major challenges with these models are (i) the need for rapid parameter estimation, 
and (ii) the need to link the parameters of these ODE models to more biophysically 
based PDE models.

In Chap. 12, an overview is given of a software structure to create patient-specific 
models. It focuses on the modular nature of models for multi-scale systems, the 
interactions between different scales and the importance of databases to generate 
the predictions required by physicians.

An essential prerequisite for the inclusion of models in clinical workflows is the 
establishment of modeling standards and web-accessible model and data reposito-
ries that demonstrate model reproducibility. These issues are touched on in a num-
ber of chapters of the book. For a model to be worth including as part of a clinical 
workflow, as when used within a diagnostic process, the model outputs, for given 
inputs, must be demonstrably reproducible to within machine precision. To this 
end, the modeling community has invested much effort over the last few years in 
establishing XML-based standards for biological modeling, in particular the SBML 
(http://www.sbml.org), CellML (http://www.cellml.org) and FieldML (http://www.
fieldml.org) standards. Minimum information standards, such as MIRIAM (http://
www.ebi.ac.uk/miriam) for model annotation and MIASE (http://www.biomodels.
net/miase) for annotation of a simulation experiment, have been developed. Model 
repositories based on these standards are also well developed, for example, biomod-
els.org and models.cellml.org. Furthermore, open source software packages that 
use these standards and include the Application Programming Interfaces (APIs) 
that enable the models in the web databases to be imported into the simulation 
environments, are also now well developed – and are used by many of the authors 
in this volume. Another key challenge to embedding models in clinical workflows 
is the development of metadata standards that link the components of the models to 
the biological and clinical terms used in the standard ontologies such as the Gene 
Ontology (GO – http://www.geneontology.org) for molecular and cellular pro-
cesses, the Foundation Model of Anatomy (FMA – sig.biostr.washington.edu/
projects/fm/AboutFM.html ) for anatomical nomenclature and relationships and 
SNOMED CT (http://www.ihtsdo.org) for clinical terms, including the terminology 
associated with disease. Another role for the metadata associated with CellML and 
FieldML models is to connect models used in clinical workflows to the electronic 
health records (EHRs) used in healthcare systems for storing patient data.

This book is very timely and the editor is to be congratulated for bringing 
together a very interesting and relevant set of chapters from some of the world’s 
leading cardiovascular modelers.
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Advances in medical technologies such as noninvasive imaging have had a proven 
impact on diagnosis, surgical planning, and clinical management with resultant 
improvements in clinical outcomes. In research, new and improved imaging modal-
ities, combined with novel genetically engineered animal models and recent 
advances in genomic and proteomic profiling, are increasing our integrative knowl-
edge of pathophysiology from the level of molecular networks to organ systems 
scales. This has led many workers to suggest that these advancements may acceler-
ate progress to personalized and predictive medicine [2].

In traditional medicine, findings from large clinical trials determine clinical 
treatments. Based on a trial, a particular therapy may benefit a majority of patients, 
but differences between individuals can dramatically impact the outcome and effi-
cacy of a specific therapy [5]. The characteristics of an individual undergoing 
therapy likely differ from the mean of the clinical trial population, thus the therapy 
may not benefit every patient, or worse, may even complicate the disease process. 
Physicians therefore take into account differences like gender, weight, height, and 
age in their clinical decisions, but numerous other patient characteristics – not nec-
essarily of pathological nature – may still lead to adverse effects. Personalized and 
predictive medicine tries to fill that gap by using information from that patient’s 
gene or protein profile.

In a parallel development, ongoing improvements in computation power have 
facilitated the solving of computational models of physiology of increasing com-
plexity (for example, the high-performance Graphical Processor Unit (GPU) 
Radeon R800 of ATI from 2009 is about 50 billion times faster than the IBM 1620 
from 1961). For many models in physiology, it is impossible to find an analytical 
solution and computers are used to obtain numerical solutions. Many computa-
tional models of physiology are written in terms of coupled ordinary and/or partial 
differential equations (ODEs and/or PDEs). An example of a set of coupled ODEs 
is the description of sodium and potassium ion kinetics through nerve membrane 
(with time as the independent variable), proposed by Hodgkin and Huxley [4]. 
A partial differential equation is an equation where a function depends on more 
independent variables. An example of a PDE is the monodomain equation that 
describes the propagation of cellular transmembrane voltage as a function of three 
spatial dimensions and time. One of the most used computational tools for solving 
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PDEs on a complex domain, such as the heart, is the finite element method. In the 
finite element method, the entire geometric reconstruction of the anatomy (obtained, 
for example, by MRI) is subdivided into smaller elements, with bordering point-
wise nodes to construct a mesh [3]. The solution is approximated on the mesh by 
linear or higher-order functions, which are defined in the elements. The finite ele-
ment method is used for models throughout this book to solve, for example, for 
atrial electrophysiology (Chap. 4), ventricular mechanics (Chap. 8), ventricular 
electrophysiology (Chap. 9), ventricular electromechanics (Chaps. 9–12), and 
blood–wall interactions in abdominal aortic aneurysms (Chap. 6).

Computational models of physiology are based on physico-chemical principles 
and are testable, reproducible, and allow easy manipulation of parameters without 
affecting others [1, 6]. Such models have already proven to be useful in elucidating 
biological mechanisms in health and disease [11] from gene to whole-organ level 
[10]. For example, a sensitivity analysis with a computational model of dyssyn-
chronous heart failure showed that ventricular dilation and electrical dyssynchrony 
combined, synergistically decreased regional cardiac function [7]. Clinical indices 
of regional cardiac function that are based on strain magnitudes are sensitive to this 
combination, whereas indices that are based on strain timing are insensitive to 
this combination. The study also showed that strain magnitude-based indices reflect 
better the relative nonuniform distribution of regional work in the myocardium. 
These findings might explain why strain magnitude-based indices of cardiac 
regional function are better predictors of reverse remodeling in cardiac resynchro-
nization therapy [8].

Because of these advancements in technology and increased knowledge of 
physiological mechanisms, it has been proposed that computational models of 
physiology tailored to individual patient characteristics will eventually prove to be 
a valuable and versatile technology that improves medical care in a myriad of dis-
ciplines [9] and especially in cardiology could serve as an enabler of personalized 
medicine [11]. This book therefore focuses on the potential of patient-specific com-
putational models of cardiovascular physiology to predict or optimize outcomes of 
clinical treatments. Two main reasons underlie this choice: first, cardiovascular 
disease is still the leading cause of death in most industrialized countries; second, 
cardiac models represent one of the most advanced areas of computational biology, 
bridging from the subcellular to the circulatory level [12], making them an excellent 
candidate for mechanistic patient-specific modeling.

Chapter 1 provides an overview of imaging modalities, which can be used to 
create patient-specific models. It also discusses anatomical models already being 
used in the clinic, which are used to visualize impulse conduction in the atria mea-
sured by electroanatomic mapping. Finally, electrophysiology research is discussed 
that may be translated to the bedside.

It is important that for the creation of a patient-specific model, patient 
burden – i.e., due to measurements of a patient’s state – is kept to a minimum. 
Chapter 2 focuses on obtaining patient-specific cardiovascular models in which 
adaptation rules are used. This approach leads to a reduction in the number of 
measurements that are needed to adjust for patient-specific fitting and conventional 
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measurements can be used much more efficiently, enabling to obtain hidden 
diagnostic information that normally would depend completely on invasive tech-
niques. In addition, the model proposed in this chapter may also be used to assess 
different treatment protocols by simulation of the prognosis after intended 
treatments.

Chapter 3 provides an overview of techniques related to modeling of normal and 
diseased cardiac cells focusing on approaches that have a high potential for clinical 
translation. The chapter discusses how cellular structure and function are altered in 
cardiac disease, methods for measuring these alterations, and briefly discusses math-
ematical approaches for functional modeling of (altered) cellular electrophysiology.

An example of a future application of a mechanistic model of atrial fibrillation 
– and how it may be used in the clinic – is given in Chap. 4. Different types of 
sustained atrial fibrillation dynamics were simulated and the results agreed with 
those observed in the clinic.

Whereas the majority of recent patient-specific models include 3D representa-
tions of organs [9], Chap. 5 discusses the application of simpler models in critical 
care. This chapter illustrates several hemodynamic and glucose/insulin models that 
have been developed and already applied in critical care settings to manage patient 
homeostasis. Although many of these simpler models have existed for decades, 
their use in critical care patient-specific modeling has become available only 
recently.

The risk of abdominal aortic aneurysm (AAA) rupture is nowadays mainly esti-
mated based on the maximum diameter of the dilated aorta. Chapter 6 describes the 
current status of AAA wall stress analyses – obtained from patient-specific models 
– including the discussion of relevant factors like initial wall stress, nonlinear mate-
rial behavior, and thrombus. The chapter also discusses the clinical perspectives of 
AAA wall stress analysis with respect to AAA rupture risk and growth.

Not all model parameters can be obtained patient-specifically. Therefore, a need 
exists for a publicly accessible database that offers supplemental data. Chapter 7 
describes the Cardiac Atlas Project (CAP), which is a web-accessible structural and 
functional atlas of the normal and pathological heart for clinical, research, and 
educational purposes. This atlas’ purpose extends beyond the “normal” database: 
an initial goal of the atlas is to facilitate statistical analysis across population groups 
of regional heart shape and wall motion characteristics, via the application of math-
ematical modeling tools.

A noninvasive method for estimating myocardial material properties in  vivo 
would be of great value in the design and evaluation of new surgical and medical 
strategies to treat and/or prevent heart failure. In Chap. 8, finite element models of 
a normal human subject and a patient with diastolic heart failure were created using 
tagged magnetic resonance (MR) images and noninvasive left ventricular (LV) 
pressure measurements. Diastolic and systolic myocardial material parameters 
were estimated by matching LV volumes and stresses were evaluated.

One of the parameters that cannot be obtained directly and patient-specifically 
is myocardial fiber architecture in the ventricles. Chapter 9 describes a method for 
constructing models of whole-heart electrophysiology and electromechanics from 
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structural and diffusion tensor magnetic resonance images acquired ex vivo, and 
presents a processing pipeline for estimating patient-specific myocardial fiber ori-
entations from images scanned in vivo. These modeling techniques in combination 
with the proposed methodology for estimating patient-specific myocardial fiber 
orientations constitute a step toward patient-specific simulations of cardiac electro-
physiology and mechanics.

Of all heart failure patients, those with the additional complication of dyssyn-
chronous contraction (often due to a conduction defect such as bundle branch 
block) have the worst prognosis. Cardiac resynchronization therapy (CRT) involves 
placing a pacemaker to improve the synchronicity of cardiac contraction. It has 
recently been shown that CRT is an effective method of treating patients with dys-
synchronous heart failure, inducing significant reductions in morbidity and mortal-
ity in large clinical trials. However, clinical trials have also demonstrated that up to 
30% of patients may be classified as non-responders. The development of patient-
specific models may maximize response to CRT. In Chap. 10, a computational 
model of cardiac electromechanics based on a clinical case was successfully used 
to predict the acute effects of ventricular pacing on cardiac function with four dif-
ferent pacing conditions.

The three leading causes of death in most industrialized countries (cardiovascu-
lar disease, cancer, and stroke) involve an hypoxic response. Individual patients can 
vary tremendously in their response to hypoxic exposure, and to therapies targeting 
hypoxic pathways. In Chap. 11, the sources of patient variability related to oxygen 
sensing and response are discussed and computational modeling approaches are 
addressed. These models capture essential processes involved in hypoxia and 
microvascular dynamics, and offer promise as tools to advance patient-specific 
therapeutic design.

Building a patient-specific model of the heart involves many steps from data 
acquisition to model result. Chapter 12 discusses a multiscale framework for mod-
eling of cardiac electromechanics that includes a model database, image segmenta-
tion, and several mechanistic models from cell to system.
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1.1 � Introduction

The use of numerical methods in clinical medicine has grown exponentially over the 
past decade. This is particularly true in clinical cardiac electrophysiology (EP), which 
is focused on the diagnosis, prevention and treatment of heart rhythm abnormalities. 
Part of the reason for this is the suitability of cardiac rhythm pathology to numerical 
modeling. At the tissue level, the mechanisms of electrical propagation within the 
heart are relatively deterministic both in health and during arrhythmias [31]. As a 
result, for many applications, there is remarkable correlation between prediction and 
measurement [30]. Another reason is the availability of detailed anatomical and 
physiologic imaging data in cardiology, including: echocardiography (transthoracic, 
transesophageal, and intracardiac), computed tomography (CT), magnetic resonance 
imaging (MRI), nuclear medicine, and positron emission tomography.

Significant progress has also been made towards understanding more basic 
pathophysiologic mechanisms of arrhythmias. Genetic studies have revealed the 
specific channel defects responsible for the Long QT [80] and Brugada Syndromes 
[22], for example. Similarly, patch-clamp techniques have shed light upon the 
chronic effects of atrial fibrillation on cellular ion currents [85]. However, extending 
the cellular pathophysiologic mechanism to tissue and whole-organ level treatment 
is difficult. For instance, although the ionic mechanisms for Brugada syndrome have 
been known for nearly 15 years, only recently was it found that electrical sequelae 
were due to localized mechanisms that could be treated by ablation [49]. Similarly, 
there remains a substantial gap between our understanding of disease mechanism 
and effective therapy for many arrhythmia disorders. For many of these diseases, 
advances in computational modeling may play an integral role in advancing our 
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understanding and management. For instance, modeling may be able to more accu-
rately predict the location of the sustaining sites of atrial fibrillation, allowing cura-
tive ablation, or may be able to predict the optimal site of left ventricular lead 
position in patients undergoing biventricular implantable defibrillator implantation.

This chapter will review the current use of computer modeling in the treatment 
of cardiovascular disease in the area of cardiac electrophysiology. We will then 
discuss potential future directions in the field. We believe that the implementation 
of modeling in clinical medicine holds great potential for diagnosing and treating 
complex heart rhythm disorders.

1.2 � Imaging Methods Used in Patient-Specific Modeling

Diagnostic imaging plays a central role in patient-specific modeling, combining 
anatomic and physiologic measurements to evaluate, characterize and display car-
diovascular structure and function.

1.2.1 � Echocardiography

Echocardiography studies the interaction between ultrasound and cardiac tissues or 
blood. This information includes both position (echo) and speed (Doppler) infor-
mation which are then used to create 2D and 3D displays of cardiac structure and 
function. Transthoracic [9] and intracardiac [65] ultrasound are currently used to 
provide information about ventricular dyssynchrony that can assist with cardiac 
resynchronization therapy (CRT). In some cases, echocardiography is used in real-
time to guide catheter position during ablation [19]. Additionally, anatomic data 
from intracardiac echo may also be integrated into 3D electroanatomic models for 
mapping and ablation [72]. From a modeling perspective, echo data may also be 
used to estimate local tissue strain using speckle tracking [37], providing regional 
data for finite-element models, as described below.

1.2.2 � Computed Tomography

X-ray energy passing through tissue is selectively absorbed, scattered, or transmitted 
based upon the tissue properties. Integrating this information from multiple angles 
as the X-ray source and detectors are rotated around the patient creates a detailed 
2-dimensional image of a particular “slice” of a patient’s anatomy. Computational 
methods are used to combine data from adjoining “slices” to form 3D anatomic 
models of patient anatomy. These models can be integrated into real time mapping 
systems to create detailed cardiac models for ablation [3]. These models can be 
used for many purposes in electrophysiology, including understanding the anatomy 
of patients with congenital heart disease with arrhythmias undergoing ablation [79], 
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defining the location of scar in patients undergoing endocardial ventricular tachycardia 
(VT) ablation [3], and localizing the coronary arteries in patients having an epicar-
dial VT ablation [86].

1.2.3 � Nuclear Imaging

Nuclear tracers, which are selectively absorbed by cardiac tissue, can be detected 
and used to evaluate functional differences in blood flow and cardiac viability. 
Myocardial ischemia is a common, reversible cause of ventricular tachycardia [40], 
and can be detected using nuclear imaging prior to implantable cardioverter-
defibrillator (ICD) implantation or VT ablation. Data from nuclear imaging is not 
frequently used to build computer models for arrhythmia analysis at this time, 
although recent work [17] suggests incorporation of positron emission tomography 
images may reduce or eliminate the need for detailed substrate mapping during 
ventricular tachycardia ablation procedures.

1.2.4 � Magnetic Resonance Imaging

During an MRI, the magnetic moments of protons within the body align with the direc-
tion of a magnetic field. A radio frequency electromagnetic field is then briefly turned 
on, causing the protons to alter their alignment relative to the field. When this field is 
turned off the protons return to the original magnetization alignment, creating a signal 
that can be detected by the scanner. The position of protons in the body can be deter-
mined by applying additional magnetic fields during the scan, which allows an image 
of the body to be built up. As a result, MRI has greater contrast than CT in the visualiza-
tion of soft tissue, with the additional benefit of not requiring ionizing radiation. Recent 
research has shown the utility of mapping ventricular scar using MRI during VT abla-
tion [14]. Like CT data, MRI anatomical data is commonly used in EP procedures.

Delayed enhancement MRI techniques permit identification of scar location and 
extent. This information has shown to be useful for predicting risk [71] of sudden 
cardiac arrest, and showing lesion extent after ablation of atrial fibrillation [46]. 
Diffusion tensor MRI data provides information on myocardial fiber angles [27], 
which may be useful to predict wavefront conduction properties.

1.2.5  Use of Imaging Data

Alone or in combination, these imaging techniques can be used to diagnose condi-
tions associated with clinical arrhythmias, such as arrhythmogenic right ventricular 
cardiomyopathy using MRI [73] or left atrial thrombus with intracardiac ultrasound 
[60]. They are also used to monitor disease progression (measuring left ventricular 
ejection fraction several months after myocardial infarction to assess need for a 
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ICD [16]), and track response to therapy (response to biventricular pacing using 
echocardiography [75]).

Imaging is also critically important in the creation of accurate, patient-specific 
clinical models. For many applications, the high-resolution, multi-slice CT or MRI 
data are important to capture anatomic details needed in the model, such as wall 
thickness and scar. For other applications, physiologic information, such as the 
cardiac output obtained from echocardiography, is important to understand the 
physiologic effects of different interventions, as required to evaluate the effects of 
different pacing regimens. Complex simulation, such as the study of the effects of 
resynchronization therapy on regional stress and strain, may require combining 
multiple imaging modalities into a model (see for example Chap. 10).

1.3 � Current Use of Patient-Specific Models in Cardiac 
Electrophysiology

In the electrophysiology lab, computational modeling of both anatomy and electri-
cal activation is routinely performed to define cardiac anatomy and guide 
intervention.

1.3.1 � Overview of Modeling During Invasive Electrophysiology 
Study and Ablation

Current 3D electroanatomic mapping systems integrate catheter position to create a 
“shell” representing the internal volume of the chamber of interest. This shell may 
be used in isolation or “merged” with detailed 3D anatomic information from CT 
[3], MRI [7], and/or ultrasound imaging [57] data. As a result, clinically useful 
models of cardiac anatomy may be created, in which catheter movements are pro-
jected in real-time within the cardiac geometry. Using these anatomical maps, addi-
tional information can be added to gain further insight into an individual patient’s 
condition, including electrogram voltage (substrate mapping) and temporal activa-
tion (activation mapping). Substrate mapping is currently used to define areas of scar 
in both the atria and ventricles [81], which is important since arrhythmias often criti-
cally depend upon the presence of scar and their associated conduction abnormali-
ties. Substrate mapping has also been used to help diagnose arrhythmogenic right 
ventricular cardiomyopathy [12]. Activation mapping can illustrate the path by 
which wavefronts perpetuate arrhythmias, guiding ablation of critical pathways [2].

Another mapping technique involves evaluating the correlation between a paced 
beat and the native arrhythmia morphology, termed pace mapping, which can be 
used to localize an arrhythmia source [82]. Lastly, entrainment mapping localizes 
sites within an arrhythmia circuit. Recent studies entrainment mapping has 
improved our understanding of atrial flutter circuits [67].



51  Integrating State-of-the-Art Computational Modeling with Clinical Practice

These techniques have dramatically improved the accuracy and safety of 
radio-frequency ablation, but there remains significant room for improvement. 
Limitations of these techniques include respiratory changes in pulmonary venous 
anatomy between imaging and the EP study [50], and errors in the accuracy of map 
registration at baseline [26] and after the start of ablation [45]. Also, it is important to 
note that the majority of today’s clinical models are anatomic; clinical functional mod-
eling applications simulating action potential dynamics are not widely available.

1.3.2 � Current Application of Computer Modeling  
in Atrial Arrhythmias

Atrial arrhythmias differ in their needs for modeling during invasive studies. An 
overview of the use of modeling for these arrhythmias, and of limitations of current 
technology, is discussed below.

1.3.2.1 � Atrial Fibrillation

Currently, it is hypothesized that atrial fibrillation (AF) is maintained by focal ecto-
pic beats predominantly from within the pulmonary vein [23] in paroxysmal AF 
and by multiple wavelet reentry in persistent AF [29]. Each type of AF requires a 
slightly different ablation strategy, necessitating different mapping techniques.

State of the art AF ablation often involves creation of a shell and integrating this 
shell with imaging data. Positional accuracy with current technology is approxi-
mately ±1.4 cm [4], and frequently better. The catheter can then be placed at either 
the ostium for paroxysmal AF, or in a wide circumferential pattern [1] around the 
pulmonary veins for persistent AF, rather than within the veins (which may cause 
stenosis), for ablation.

Once ablation begins, the model also serves to record the sites of ablation 
(Fig. 1.1). In this way, linear lesions can be created with sequential, adjoining abla-
tion lesions to create lines of functional conduction block. This function is impor-
tant to prevent multiple burns at the same site in the posterior left atrium, given the 
proximity to the esophagus [61] and the possibility of esophageal injury [62].

Other phenomena can be mapped in patients with atrial fibrillation. Locations of 
sites of autonomic innervation, called ganglionated plexi, can be localized using 
high-output pacing [42]. The locations of the plexi can then be noted within the 
atrial anatomic model for subsequent ablation, as these sites may be the source of 
focal triggers of AF [55].

Konings et al. [36] described the presence and distribution of fractionated elec-
trograms during AF, and the complex fractionated atrial electrograms were later 
shown to be possible candidates for ablation [48]. Ideally, functional relationships 
could be compared simultaneous activation patterns of local tissue to identify sites 
which drive, or maintain AF. Recent work has enabled the simultaneous comparison 
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of local rate and regularity, determined by Fast Fourier Transform, to identify drivers 
in near real time [39].

The use of current computational modeling in clinical practice has already had 
significant impact on clinical electrophysiology. The use of electroanatomical map-
ping systems has significantly reduced fluoroscopy exposure to patient and physi-
cian [76], and research suggests that incorporating CT data may improve outcome 
[33]. Improved methods of electroanatomic mapping may integrate ablation time 
and power to predict successful lesion creation, or identify potential sites of edema 
which may be resistant to ablation.

Detailed computational modeling has also provided significant insight into the 
mechanisms of AF initiation and maintenance (Chap. 4). Haissaguerre et al. found 
that AF cycle length is inversely proportional to the number of focal drivers sustain-
ing fibrillation [25]. Gong et al. have shown the importance of dynamic repolarization 
heterogeneity in the initiation of AF with computer models. However, these applica-
tions are currently limited to the research laboratory due to time requirements.

Limitations and Future Directions. Currently, modeling in AF still suffers from 
notable shortcomings. For instance, with regard to AF ablation, CFAE are often 
mapped and targeted for ablation. However, the mechanisms of CFAE are 
not defined, and CFAE may not represent critical mechanisms for arrhythmias. 
Additionally, the mechanisms sustaining AF have not been fully elucidated, preventing 

Fig. 1.1  3D electroanatomic model of left atrial anatomy (viewed from the left anterior oblique 
cranial angulation) created using the NavX system (St. Jude, CA) during a typical atrial fibrillation 
ablation. Real-time catheter positions are displayed (lasso catheter, coronary sinus catheter, and 
ablation catheter). Sites of ablation are noted by white circles. RSPV right superior pulmonary 
vein, LSPV left superior pulmonary vein, LIPV left inferior pulmonary vein, LAA left atrial 
appendage
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ablation of physiologic driver sites. Finally, mapping is typically performed on a 
point-by-point basis, although multisite mapping has been investigated [39].

1.3.2.2 � Atypical Atrial Flutter and Focal Atrial Tachycardia

Atypical atrial flutter is a macro-reentrant atrial arrhythmia whose circuit does not 
involve the tissue between the inferior vena cava ostium and the tricuspid valve 
[68]. Similar to atrial fibrillation, atrial anatomic models of both the left and right 
atria are created. In contrast to AF, however, creating a map of atrial activation 
sequence (activation mapping) is central to localizing the atrial flutter. Once the 
reentrant pathway is known, an entrainment map is created. An entrainment map 
evaluates both the proximity to the circuit and the conduction properties of local 
tissue. The optimal site for ablation is a site both within the circuit and an area with 
relatively slow conduction velocity [6]. Ablation at this area is likely to cure the 
arrhythmia.

Focal atrial tachycardia is an arrhythmia caused by abnormal automaticity – a 
cluster of cells that have acquired the ability to depolarize spontaneously and rap-
idly, overdriving the normal pacemaker cells of the heart [68]. Like atypical atrial 
flutter, activation mapping is performed. Frequently, however, the arrhythmia is 
short-lived, and mapping needs to be performed rapidly. In many cases, a non-
contact array is used to capture activation information, which is then projected onto 
a patient-specific model of atrial anatomy [53]. An example of an activation map 
of a focal atrial tachycardia created using a noncontact array is shown in Fig. 1.2.

Fig. 1.2  Non-contact activation mapping of focal atrial tachycardia superimposed on a left atrial 
anatomic map combining anatomical and functional information to predict arrhythmia source. 
Ablation at the white circle terminated the arrhythmia, which could not subsequently be 
re-induced. RSPV right superior pulmonary vein, LSPV left superior pulmonary vein, LIPV left 
inferior pulmonary vein, LAA left atrial appendage, RIPV right inferior pulmonary vein
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Limitations and Future Directions. Currently, both activation and entrainment 
mapping are time-intensive processes, requiring prolonged procedure times and 
X-ray exposure to the patient and physician during ablation of atypical atrial flutter 
or focal atrial tachycardia. Additionally, noncontact activation mapping may have 
limited accuracy at distances greater than 40 mm from the mapping catheter [78]. 
Future work may allow fully automated anatomical, activation, and entrainment 
mapping using robotic navigation systems, discussed below.

1.3.3 � Current Application of Computer Modeling  
in Ventricular Arrhythmias

Ventricular arrhythmias also present specific challenges for both clinical and 
research-directed computational modeling.

1.3.3.1 � Premature Ventricular Contractions and Ventricular Tachycardia

Recent research has shown that ablation of post-infarction premature ventricular 
contractions (PVCs) improves left ventricular function [69]. From a procedural 
standpoint, PVC ablation often involves creation of a left ventricular geometry and 
pace-mapping to find an identical paced morphology to the PVC.

VT ablation often involves creation of a left ventricular endocardial and some-
times epicardial anatomy, and a combination of scar, pace, and entrainment mapping 
(Fig. 1.3) to locate and ablate critical isthmuses [58].

Additionally, as VT procedures include more patients with nonischemic cardio-
myopathy, epicardial ablation is more frequently attempted [10]. New techniques allow 
incorporation of cardiac CT scan data, showing the course of the major arteries [86] 
to avoid injury during ablation. Furthermore, mapping of the phrenic nerve [18] can 
be accomplished with high-output pacing and marking the electroanatomic map in 
order to prevent injury and ipsilateral diaphragmatic paralysis.

Limitations and Future Directions. VT ablation is typically guided to regions of 
scar [14]. However, alterations in ventricular action potential duration and conduc-
tion velocity cannot yet be integrated into clinical models. These may be useful in 
better defining critical areas for arrhythmia maintenance.

Additional challenges for current mapping techniques include the possibility of 
endocardial and epicardial wavefront dissociation [15], and cardiac movement dur-
ing mapping [44]. Accurately modeling transmural wavefront heterogeneity may 
require modeling of anisotropy (the property of being directionally dependent) in 
wavefront velocity between longitudinal and transmural axes. The issue of cardiac 
movement is extremely complex for modelers, as movement has the potential to 
change electrophysiologic properties, such as conduction velocity, relative to their 
timing in the cardiac cycle.
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1.3.3.2 � Ventricular Fibrillation

Ventricular fibrillation (VF) is a life-threatening ventricular arrhythmia which 
accounts for approximately 120,000 deaths each year in the United States [11]. VF 
is characterized by rapid and irregular activation of the ventricular myocardium 
resulting in uncoordinated ventricular contraction. Survivors of VF typically 
undergo placement of an ICD [16], but until recently no specific therapies for VF 
existed.

In the last few years, however, both idiopathic [35] and post-infarction [54] 
ventricular fibrillation associated PVCs have been successfully ablated, reducing 
subsequent VF episodes. Additionally, Brugada and Long QT syndromes, associ-
ated with polymorphic VT (PMVT) and VF, have also reported successful ablation 
procedures [24]. These advances have been facilitated by the ability to map and ablate 
initiating beats. Although large-scale trials have not yet been performed in these 
populations, VF ablation has the potential to significantly reduce ICD shocks, 
which have a significant negative impact on patient quality of life [52] and may 
cause congestive heart failure and death [56].

Limitations and Future Directions. VF has only recently received attention for 
treatment with ablation [35]. Like AF, however, sustaining mechanisms are unable 
to be mapped and targeted in real-time. Similar to VT, altered tissue characteristics 
are unable to be incorporated into clinical models.

Fig. 1.3  Left ventricular voltage map projected on an endocardial LV model used for ablation of 
VT. Red denotes low voltage and purple as high. Ablation lesions are shown in yellow Ablation 
targeted VT sources in scar border (intermediate voltage, yellow). Patient has been free from VT 
for 6 months since ablation
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1.3.4 � Application in Remote Catheter Manipulation

In the past, mapping and ablation were accomplished by the manual manipulation 
of catheters by physicians at the bedside. Presently, there are robotic systems 
which assume the task of physically moving catheters based upon input by physi-
cians at computer stations [59]. This provides several advantages for patients and 
physicians: decreased fluoroscopy exposure for both the patient and physician, 
and highly repeatable catheter placement [66]. These systems are potentially 
important from a modeling perspective as well, since they could be used to sys-
tematically acquire data for anatomical and functional model creation [59]. Once 
arrhythmogenic sites have been identified, the ablation catheter may be directed to 
the specified site.

Limitations and Future Directions. Current robotic navigation systems are lim-
ited either by low force at the catheter-tissue interface (for magnetic systems [41]) 
or relative insensitivity of tip force for robotic systems [83]. Future work may be 
directed toward allowing both navigation methods to tailor ablation catheter tissue 
pressure to the size and depth of ablation lesion desired. Later versions of robotic 
navigation systems may allow the combination of automated data collection, 
patient-specific modeling, and semi-autonomous ablation: potentially an extremely 
useful tool in the management and treatment of arrhythmias.

1.3.5 � Application in Cardiac Resynchronization Therapy

Currently, multiple imaging methods are used in cardiac resynchronization therapy. 
Echo modalities, including pulse Doppler [8], speckle tracking [74], and real-time 
3D echocardiography [34] are used to evaluate for ventricular dyssynchrony. Pre-
procedure CT and delayed-enhancement MRI are used to define scar location and 
extent. Recent work has examined using magnetic navigation systems to guide LV 
lead placement [63].

Limitations and Future Directions. In a recent clinical trial, the presence of 
echocardiographic dyssynchrony in patients with a narrow QRS (duration <120 ms) 
did not predict response to CRT [5] in a large clinical trial. Future work may evalu-
ate the utility of models to predict response to CRT, as discussed in Sect. 1.4.3 and 
Chap. 10.

1.3.6 � Application in Sudden Cardiac Death

It is well established that patients with reduced left ventricular function are at 
increased risk of sudden cardiac death, and these patients routinely undergo ICD 
implantation [47]. Further attempts to identify at-risk individuals prior to device 
implantation have had mixed results. Numerical methods have included calculations 
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of microvolt T-wave alternans (TWA), heart rate variability (HRV), baroreflex 
sensitivity (BRS), and signal average ECG (SAECG). TWA measures subtle beat-
to-beat alterations in the T-wave duration in patients at a heart rate of about 
110  bpm. A recent trial has shown the negative predictive value of TWA to be 
approximately 95% [13]. This test is likely most useful in conjunction with invasive 
electrophysiology study [21], whose results provide additional information regard-
ing SCD risk.

HRV measures low-frequency variations in heart rate, regulated by the auto-
nomic nervous system [77]. Heart rate variability can be assessed by several metrics 
including frequency domain (Fast Fourier Transform (FFT) spectral analyses) and 
temporal domain (most commonly the standard deviation of the RR intervals, 
SDNN). Recent studies have shown predictive value for HRV indices [38], but large 
scale prospective trials are lacking.

Signal-averaged ECG techniques measure electrical potentials after the QRS 
(late-potentials). Savard et  al. [70] found that SAECG help risk-stratify patients 
after myocardial infarction. Recent work supports the use of SAECG in the risk 
stratification of patients with Brugada syndrome [28].

Interesting work summarized by Ghanem et  al. [20] has shown the utility of 
electrocardiographic imaging in potentially identifying pro-arrhythmic substrate, 
guiding therapy, and evaluating risk for sudden death. Additionally, several investi-
gators [84] have shown the utility of multiscale modeling in predicting the effects 
of drug therapy on sudden cardiac death.

Limitations and Future Directions. Currently, noninvasive predictors of sudden 
death have suboptimal accuracy, requiring invasive electrophysiology study to 
improve identification of patients at risk [13] or the combination of multiple modali-
ties to improve accuracy [21]. Additionally, multiscale modeling of the effects of 
medications on sudden death may show different effects within different models 
[84]. Despite these limitations, computer modeling may both help to identify 
mechanisms of VT/VF and improve the prediction of sudden death in patients by 
accurately simulating cardiac anatomy and pro-arrhythmic substrate.

1.4 � Future Applications of Computer Modeling in Clinical 
Cardiac Electrophysiology

From the above discussion, it is clear that despite the great technological achieve-
ments in numerical techniques over the past few decades, the use of modeling has 
not yet reached its full potential. It can also be argued that future applications of 
computer modeling have even greater potential to significantly investigate, diag-
nose, and treat arrhythmia disorders. Future computer modeling may also allow a 
preview of the predicted effects of a particular therapy before that therapy is imple-
mented. Below we discuss how techniques and disease-specific applications in 
computer modeling may impact clinical care in EP.
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1.4.1 � Atrial Arrhythmias

Patient-specific modeling has strong potential to improve the management and ablation 
of atrial arrhythmias. Currently, AF is treated in the EP lab in primarily an anatomical 
fashion, with a significant focus on pulmonary vein isolation [51] and the creation 
of linear lesions [1]. Future clinical modeling (Chap. 4) may permit lesions targeted 
precisely to the mechanisms which sustain AF, resulting in a much greater probability 
of AF cure with significantly less tissue destruction and atrial impairment [43]. This 
is important, as we do not fully understand the long-term implications of the exten-
sive atrial ablation currently required for AF management.

Specifically, patient-specific computational modeling may be able to predict 
where the mechanisms that sustain human AF are most likely to lie. This would be 
accomplished by incorporating anatomical information from MRI scar imaging 
[64], fiber orientation either from MRI or anatomical studies to predict conduction, 
and activation maps either from multi-electrode catheters placed within the heart.

Even further in the future, surface electrogram data may be integrated into ana-
tomical models to non-invasively localize driver sites. Once driver sites were identi-
fied, external beam radiation may be used to ablate these drivers, with minimal 
impact on normal tissue.

1.4.2 � Ventricular Arrhythmias

Ventricular arrhythmias are also potential applications for patient-specific compu-
tational modeling. The mechanisms of VF, as described above, are poorly under-
stood. Future computational modeling may include patient-specific anatomy from 
echo, CT, or MRI; ventricular fiber structure from diffusion tensor MRI [27]; and 
VF timing data from endocardial and epicardial catheters. These detailed models 
may begin to look for structure in the chaotic wavefronts to determine if particular 
locations are critically important to the maintenance of VF. Models could also 
explore the ionic disturbances within ventricular cells which support VF, and how 
drugs may be designed to block these effects [84].

1.4.3 � Resynchronization Therapy and Congestive Heart Failure

Future applications of computational modeling may also include prediction of 
responders to CRT with biventricular defibrillators (see also Chap. 10). In our labo-
ratory in collaboration with the Cardiac Mechanics Research Group at the 
Department of Bioengineering at the University of California San Diego (Chap. 
12), we are working toward this end by the creation of patient-specific models of 
left and right heart structure, function, and electrical activation (Fig. 1.4).
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Presently, this is achieved with the use of patient-specific CT data, but may in the 
future include echo strain imaging, which has the potential to provide additional 
information about ventricular load characteristics. Applying known characteristics 
of normal, diseased, and scarred myocardium, responders to CRT may be predicted. 
For instance, it has been shown that strain heterogeneity, or mechanical discoordina-
tion [32], predicts CRT response more accurately than mechanical dyssynchrony.

As technology improves, it may also be possible to predict, in a patient-specific 
model, where the best location for LV lead placement, given a patient’s venous anat-
omy. Thus, during left ventricular lead placement, once the coronary sinus venous 
anatomy is know, computer models could determine the optimum branch of the coro-
nary sinus, and location within that branch, to place the left ventricular lead.

1.5 � Conclusion

Complex numerical methods are currently used in electrophysiology to define 
patient anatomy, define arrhythmia pathways, and target ablation. However, patient 
specific modeling has significantly potential to advance future treatment of cardiac 
arrhythmias when functionally important myocardial sites or specific types of ion 

Fig.  1.4  Patient-specific finite element model of the left (red, late) and right ventricles (blue, 
early activation) in a patient with dilated cardiomyopathy and left bundle branch block. Model 
allows calculation of stress and strain throughout the myocardial walls for specific nodes, at which 
the equations governing activation and motion are solved. LBBB left bundle branch block. Shin, 
Jun. Patient-specific Modeling of Cardiac Electromechanics in Dyssynchronous Heart Failure. 
La Jolla, CA: UCSD, Master’s thesis, 2009. With permission from Jun Shin
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channels can be predicted for individual patients. Achieving these goals will require 
advances in both the automation of time-intensive steps of modeling and merging 
of anatomical and functional data sets. Clearly, modeling is approaching the level 
of sophistication required to make the jump from laboratory to bedside for the 
benefit of patient care.
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2.1 � Introduction

Over the last few decades, technological developments have made diagnostic 
information of the cardiovascular system far more detailed. These improvements 
are prominently attributed to the general availability of many imaging techniques, 
such as ultrasonic echo imaging, computer tomography (CT), Magnetic Resonance 
Imaging (MRI), and Positron Emission Tomography (PET). After primary diagnosis, 
treatment starts by following a protocol that is considered best, given the available 
information. Following the standard route, such protocol is a result of empirical 
clinical studies, where effects of different treatments are compared statistically in 
large groups of patients with similar pathology. With increase of diagnostic detail, 
groups become less uniform, forcing us to make the subgroups smaller and more 
numerous. Due to the technological improvements, the choice and possible gradu-
ation of therapeutic interventions increase too. As a result, with the conventional 
epidemiological setup of such studies, it will ever be more difficult to reach the 
level of significance for obtaining better treatment protocols.

Instead of following the empirical route, we propose to pay extra attention to use 
physiological and physical principles in finding the most accurate diagnosis and 
best treatment for the patient. In contrast with the epidemiological approach, the 
physiological approach deals primarily with causes and effects. Many physiological 
relationships related to cell, tissue, organ, or whole system can be approached by a 
mathematical relation. Thus, patient characteristics may be simulated by a computer 
model, composed of a network of applied physiological relationships. By adjusting 
relevant parameters in the computer model, so that model simulation and measure-
ments agree, we obtain a patient-specific simulation, which can be used for further 
improvement of diagnosis and better planning of treatment.
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Fig. 2.1  Patient-specific modeling. (a) The forward model describes selected relevant physiologic 
processes. Many parameters of the model are obtained by direct measurement. A few parameters 
may be tuned to obtain a better fit with average physiological behavior. (b) With more comprehen-
sive models, usually there are too many parameters for a reliable fit. Physiological knowledge of 
adaption of subsystems to load is used to simulate a most likely state of adaptation, thus narrowing 
down uncertainty in many parameters. A remaining relatively small set of parameters is fit to avail-
able measurements for assessment of the status of the patient. Investigation whether critical values 
in the simulation are within the normal or pathologic range allows diagnostic differentiation. 
(c) After the model is found to describe the status of a patient accurately, a therapeutic intervention 
may be simulated to obtain a prognosis for that intervention. Simulation of adaptation effects is 
likely to improve the long-term prognosis
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Patient-specific modeling is intended to simulate the most likely status of a 
patient, given the available measurements. If we do not know anything, the patient 
is considered the normal average because that state is most likely. After having 
decided on what aspects patient-specific modeling will be focused, the forward 
model is designed to simulate relevant physiological principles by quantitative 
equations, which are governed by a set of parameters describing for instance size, 
structure, and function of the constituting parts (Fig.  2.1a). Starting from known 
boundary conditions, e.g., in time and space, a crude simulation of the normal state 
is obtained by forward model calculation. When comparing the results of the latter 
simulation with known physiological data, many discrepancies are to be expected. 
Therefore, the forward model is incorporated in a feedback loop, aiming to fit the 
model to known physiological data by tuning a carefully selected subset of model 
parameters. Positive criteria for parameter selection are physiological relevance, 
large sensitivity, and large uncertainty about the value due to lack of information. 
Thus, a simulation is obtained that may serve as the starting point for patient-spe-
cific simulation.

For patient-specific simulation, the same strategy may be used as for obtaining 
the basic simulation of the normal state. In contrast with average physiological 
behavior, for a specific patient, there is not as much quantitative information avail-
able. With less information, reliability of the estimate can be maintained only if the 
number of adjustable parameters is reduced to those parameters that describe 
patient’s pathology best.

Currently, there is a tendency in patient-specific modeling to demand more 
information to be measured with application of modern technology. Nevertheless, 
for reasons of efficiency and for minimizing load to the patient, it is important to 
use the scarcely available, expensive information about the specific patient with 
utmost efficiency. We think that much efficiency can be gained by application of 
physical, physiologic, and pathophysiologic principles, to be incorporated in the 
model. The gain in model quality is illustrated by the example below, where a 
pathologic state is described by estimating the value of a single causal parameter.

We assume that most pathology has a causal focus that leads to a syndrome, 
reflecting the sum of resulting processes and compensations. For example, a 
stenotic aortic valve hampers left ventricular outflow, resulting in hypertrophy of 
the left ventricle, which, on its turn, hampers diastolic filling and other abnormali-
ties. In modeling terms, change of a single pathologic parameter, i.e., narrowing of 
the open aortic valve, causes many other parameters such as left ventricular mass 
and stiffness to change according to standard physiological principles. Instead of 
fitting all changing parameters, we may adjust only the single pathologic parameter 
while using known physiological principles to simulate further consequences. 
Comparing effects of these consequences with measured data may result in a more 
reliable estimate of the few causal pathologic parameters than as would be obtained 
with more conventional estimation of all deviant parameters separately.

Following the latter strategy, we propose to include the process of adaptation in 
the patient-specific simulation, implying that the model adjusts properties like size 
and structure of the subsystems to changes in chronic load, which are generated by 
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the model itself (Fig. 2.1b). Thus, the model becomes self-structuring. For example, 
if blood pressure increases chronically, load of the left ventricle will increase too. 
According to known physiological principles, the increase of mechanical load 
results in increase of tissue mass (hypertrophy) of that ventricle. The latter increase 
will decrease mechanical load per mass of tissue, thus closing a control loop for 
mass of the left ventricular wall. Eventually, a new steady state is reached.

By inclusion of adaptation in the model, the number of model parameters is 
reduced considerably, since many parts of the circulation have the same type of 
tissue in common. For instance, geometry of the heart chambers and blood vessels 
is largely determined by adaptation properties of myocardial tissue and vascular 
tissue, respectively.

Patient-specific modeling is intended to estimate prognostic outcomes (Fig. 2.1c). 
For simulation of a prognosis, there will be no role for parameter fitting, since 
measurements about future are not available. Incorporation of adaption in the 
model remains important because intended interventions will change the distribu-
tion of load, causing long-term compensations. Prognostic outcomes are to be 
simulated for different types and degrees of therapeutic intervention. The simula-
tion with the best outcome may indicate best treatment.

In this chapter, we discuss the strategy of designing patient-specific models 
aiming to facilitate diagnosis and treatment. First, a flexible modular setup of mod-
eling is proposed. Next, physiologic mechanisms should be selected for incorpora-
tion in the model. Furthermore, the measurement protocol and the proper set of 
parameters should be chosen for fitting the model to available patient data. 
Incorporation of modeling adaptation of tissues to chronic mechanical load is pre-
sented as a major issue, aiming to restrict the number of estimated parameters to a 
minimum. Although the proposed principles will hold generally for patient-specific 
modeling, we have focused our examples on modeling of the cardiovascular 
system.

2.2 � Cardiovascular Forward Models

Forward models generate simulations by straightforward calculation using a 
model with known parameters, known boundary conditions in space, and known 
starting conditions. Here, we focus on modeling hemodynamics and mechanics 
of the cardiovascular system on a beat-to-beat basis. The cardiovascular system 
encompasses the heart, blood vessels, valves, and nervous communications. Most 
models described in the literature focus on a part of the cardiovascular system. 
Electrical activation of the atrial myocyte has been modeled by Luo and Rudy 
[30, 39], attributing a large role to currents through channels in membranes. 
Several modifications were proposed to accommodate the behavior of ventricular 
myocytes in the human and in other species ([45], Chap. 3). Moving to a higher 
level of integration, the cardiac tissue was modeled by mutual connection of 
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myocytes, thus simulating propagation of a depolarization wave through cardiac 
tissue ([25, 44], Chaps. 2 and 9). Shortly after depolarization of the myocyte, a 
pulse of intracellular calcium causes temporary cross-bridges between actin and 
myosin, resulting in the systolic pulse of mechanical stress and strain [38]. 
Within a cardiac wall, myocytes are arranged in fibers, forming a distinct helical 
structure [42]. Stress and strain delivered by the myocytes are transferred to the 
myofiber structure, forming the myocardial tissue. Finite element models are 
developed to simulate how the work as delivered by the myofibers is converted to 
pump work of the left ventricle, sometimes combined with a right ventricle [15, 
20, 24, 50]. In a few instances, the finite element representation of cardiac cham-
bers was incorporated in a model of circulatory hemodynamics ([21, 24, 41], 
Chaps. 8–10), thus providing a more realistic estimate of the hemodynamic 
boundary condition. Finite element models are advantageous in their ability to 
analyze regional differences in load and performance of the cardiac wall, at the 
cost, however, of a large computational effort. When not being interested in 
regional differences, the relation between mean myofiber mechanics and pump 
function can be described accurately by the much simpler and (more than 1,000 
times) faster one-fiber model of cardiac chamber mechanics [1, 29].

Besides for the heart, models have also been developed for spatial and temporal 
flow profiles in blood vessels (Chap. 6). Blood flow pulses, generated by the heart, 
are propagated as pressure-flow waves along the compliant arteries [51]. At bifur-
cations and other irregularities, these waves are partially reflected. In the microcir-
culation, vessel diameters are so small that viscous effects of blood prevail over 
inertial effects. Consequently, the microcirculation behaves macroscopically like a 
peripheral resistance with compliance. About the venous side of the circulation, not 
much is known, but on a physical basis, one may expect that contraction of the atria 
causes variations in flow and pressure, resulting in propagation of pulse waves 
upstream along the veins.

Although the function of a heart valve is simply conduction of flow in forward 
direction and blockade of flow in backward direction, finite element models have 
been developed to understand flow patterns and pressure gradients in and around 
the valves [23]. Models of aortic valve hemodynamics have helped to understand 
how this valve closes efficiently at the end of systole [49]. The mitral valve is more 
complicated because their leaflets are attached to actively contracting papillary 
muscles. For better understanding of the pathologic mitral valve, flow phenomena 
in and around the normal mitral valve have been modeled to serve as reference. 
When relating pressure gradient to flow without a need for knowing local flow 
phenomena, much simpler models can be used. Following the Navier–Stokes equa-
tion for pressure drop in a flow field, pressure drop is a summation of inertial 
effects, steady-state acceleration (Bernouilli effect), and viscous effects. Vortices 
distal to a valve are responsible for further loss of energy. Human heart valves are 
so large that viscous effects are of minor importance. Besides simulating forward 
flow, such models also can describe backward flow (regurgitation) through a leak-
ing valve with formation of vortices and turbulence inclusive [10].
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2.3 � Integration to a Comprehensive Circulatory System

Patient-specific simulation requires that a wide variety of measurements can be 
combined to estimate the mechanical and hemodynamic status of heart and circula-
tion as a whole. For that purpose, models of heart chamber, blood vessels, and valve 
have to be integrated into a comprehensive model. Models integrating many parts 
into a complete system are relatively scarce. One of the earliest models of a compre-
hensive cardiovascular system has been designed in the group of Guyton [17, 31]. 
This model focused on blood pressure and flow control. Several models [18, 33, 37, 
43, 46] have been designed to simulate the closed-loop circulation on a beat-to-beat 
basis. All these models suffer from the major problem that uncertainties of the 
parameter values in each subsystem add up to such a high level of overall inaccuracy 
that the reliability of the simulation is severely affected. After all, for a patient-
specific simulation, values should be attributed to all these parameters. Measurement 
of so many parameter values is not realistic when being confined to common clinical 
methods. Somehow, the number of parameters with patient-specific values should 
be limited, while the simulation as a whole should still be realistic.

In modeling hemodynamics and mechanics of heart and circulation, we propose 
a modular setup of the model. With the simplest set of modules, the circulation can 
already be simulated as a realistic working system. When focusing on specific parts 
of the system, modules should allow replacement by more detailed ones, having 
implemented desired specific aspects. Such a plug-in modular setup requires clear 
definition of input and output for the separate modules.

The CircAdapt model [3, 29] has been designed to act as backbone for a modular 
setup in modeling heart and circulation. In this model, the whole circulation is 
composed of a limited number of module types, i.e., chambers, valves, tubes, and 
resistances (Fig. 2.2a). Atria and ventricles are represented by chambers having a 
wall, composed of contractile myocardial tissue. Large arteries and veins are repre-
sented by nonlinearly elastic tubes that can conduct pressure waves. Tubes and 
chambers can be connected by valves, whose effective orifice area depends on 
direction and magnitude of flow through the valve and on pressure drop over the 
valve. Peripheral vascular beds of the various organs may be simulated by a resis-
tance connecting the arterial module to the venous module. Besides organs, tissues 
may also be handled as modules. Myocardial tissue is simulated by a nonlinearly 
elastic material harboring myofibers that contract after depolarization. Vascular 
tissue is considered nonlinearly elastic.

In the basic version of the CircAdapt model, the ventricular section is described 
by the TriSeg model, where left ventricular free wall, septum, and right ventricular 
wall meet in a common junction line, thus forming left and right ventricular cavity. 
Furthermore, the whole heart is encapsulated in an elastic pericardial chamber 
(Fig. 2.2a). Sections of the CircAdapt model can be replaced easily. For example, 
when incorporating a finite element model of the left ventricle as a module, first 
both ventricles are handled as uncoupled chambers (Fig. 2.2b), thus readily neglecting 
direct mechanical ventricular interaction. For a chamber, the CircAdapt model 
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requires cavity pressure to be known as a function of volume only. Next, the single 
left ventricular chamber can be replaced by a finite element model of that chamber. 
The latter module should be designed so that pressure is delivered as a function of 
cavity volume (Fig. 2.2c). The sequence of depolarization is modeled by a set of 
delay times for electrical conduction (Fig. 2.2d). In a more sophisticated ventricular 
section, the pair of ventricles can be replaced by a finite element model of the 
coupled ventricles (Fig.  2.2e). Furthermore, the simple description of the whole 

Fig. 2.2  Modular setup to model the complete circulation. (a) The CircAdapt model describes 
pressures and flows in heart and circulation. Meaning of symbols: L/R A/V = left/right atrium/
ventricle; peri = pericardium; sys, pulm = systemic, pulmonary circulation. Four modules are used, 
i.e., contractile chambers, nonlinearly elastic tubes, valves, and peripheral resistances. The TriSeg 
module describes LV–RV interaction. (b) To prepare incorporation of a finite element model of 
the left ventricle, the TriSeg module may be replaced by simpler, but less accurate independent 
ventricles. (c) Based on (b), the LV may be replaced by the finite element model. (d) The sequence 
of electrical depolarization may be included. SA, AV = sinoatrial and atrioventricular nodes. 
(e) Replacement of the TriSeg module by a finite element representation of both coupled ventricles. 
(f) Replacement of the single-channel systemic circulation module by a more complex, multiple-
organ representation
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systemic circulation (Fig. 2.2f) may be replaced by a realistic tree of arteries and 
veins feeding and draining the different organs, respectively. The blood vessels may 
be designed to propagate pressure waves and reflect these waves at bifurcations. 
Because the backbone of CircAdapt requires very little computational effort, it can 
be used conveniently for setting realistic hemodynamic boundary conditions to the 
more detailed versions of subsystems [22].

The modular setup is advantageous because the various modules such as blood 
vessels and chambers are composed of a few types of tissues. Parameters related to 
the tissue are therefore largely general, resulting in great reduction of the number 
of unknown parameters. An important problem remains, however. Geometry of the 
different components of the circulatory system varies per individual. Accurate measure-
ment of all these dimensions is impractical, even often impossible in a regular 
clinical setting. Along the lines of abovementioned strategy on patient-specific 
modeling, we propose to solve the latter problem by attributing properties of adap-
tation to mechanical load for the different tissues.

2.4 � Adaptation Rules

Adaptation is a property attributed to the tissue. For a given tissue, various types of 
load or concentrations may be sensed and compared with tissue-specific set points. 
Following the physiological principle that both sensing of load and the resulting 
compensatory actions take place in and around the same cell, we assume that a 
discrepancy between actual load and its set point causes an adaptive action in the 
direct environment of the location where the load has been sensed. Different tissue 
types will have different adaptation rules. Currently, we confine ourselves to sens-
ing of mechanical load and the resulting adaptation effects such as growth or 
changes in structure or function. The adaptation effects will change dimensions and 
structure of heart and blood vessels, so that the sensed discrepancies between actual 
and referenced levels of load are counteracted, thus closing the loop of control by 
adaptation (Fig. 2.1b). If adaptation is complete, a stationary state will be reached 
with load near the set-point values, implying that load is uniformly distributed over 
the tissues. Adaptation appears the driving force to self-organization of the consti-
tuting elements of the circulation. Because the set points of load mark the range of 
optimal performance of the tissue, in its adapted state, the tissue works in the opti-
mal range. Consequently, it is to be expected that the whole organ is likely to work 
near its optimum range too.

Geometries and functional properties of the different parts of the cardiovascular 
system are regulated by a few properties that have the constitutive tissues in 
common. By a first simplistic approach, within the cardiovascular system we dis-
tinguish two main types of tissue, i.e., the nonlinearly elastic vascular tissue and the 
actively contracting myocardium. In Fig.  2.3 and the section below, adaptive 
actions for myocardial tissue are summarized.
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For the myocardium, roughly two types of hypertrophy are distinguished [12, 36, 
40]. Pressure overload induces concentric hypertrophy, characterized by thickening 
of the wall, while cavity volume remains unaffected. Volume overload induces eccen-
tric hypertrophy, characterized by thickening of the wall and proportional increase of 
inner diameter. At first sight, these adaptive actions suggest that both systolic stress 
and strain are sensed to induce adaptive changes in wall mass and cavity diameter, 
finally resulting in fixed levels of systolic stress and strain. Although the proposed 

Fig. 2.3  Modeling adaptation of tissues to mechanical load. (a) Myocardium consists of myocytes, 
forming a network of myofibers, embedded in an extra-cellular matrix of collagen fibers (ECM). 
Sarcomere length is maintained in the working range. Stretch of the ECM induces growth of tissue 
mass (hypertrophy). A large strain range during ejection causes the ECM to soften, resulting in 
dilatation of the heart cavity. (b) A cylindrical section of myocardium is subject to deformation 
during the cardiac cycle. Planes of sheets are parallel to the myofibers with the extra condition that 
sheet orientation is so that shear between the sheets is maximum. (c) A series of myocytes, forming 
a myofiber, tends to straighten by systolic stress. The resulting forces on the ECM, perpendicular 
to the myober cause the myofiber to migrate through the ECM. (d) Model of the blood vessel wall. 
Similar to the myocardial ECM, wall stress causes tissue mass to grow. Furthermore, shear stress 
along the tube interior, invoked by flow, causes the blood vessel to dilate
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mechanism that systolic stress induces growth of myocardial mass seems logic, at a 
closer look, the proposed mechanism appears not likely because hypertrophy did not 
correlate well with changes in systolic stress [13, 32]. A better candidate for control 
of myocardial mass appears a pathway through sensing diastolic stress or stretch in 
the extracellular matrix [13, 19, 35]. According to this hypothesis, excess of the dia-
stolic stress over a set-point value would induce growth of myocardial mass 
(Fig. 2.3a). Therefore, increase of volume load would stretch the wall, thereby inducing 
wall mass to increase. Similarly, an increase of afterload would hamper full ejection, 
resulting in an increase of end-systolic volume. With unchanged venous return, next 
beat will start with increased cavity volume, thus also causing stretch of the wall, 
resulting in increase of wall mass. Therefore, the proposed adaption rule that stretch 
of the extracellular matrix causes increase of wall mass is in agreement with induction 
of hypertrophy by both volume load and pressure load, respectively.

Apparently, increase of preload and afterload both induce hypertrophy of the 
myocardial wall, although the type of hypertrophy is different. Differentiation 
between concentric and eccentric hypertrophy is obtained by postulating the adap-
tation rule that high strain during the cardiac cycle causes the myocardial tissue to 
soften (Fig.  2.3a), resulting in dilatation of the cavity [14]. With the latter rule, 
volume load induces dilatation, thus fulfilling the conditions of eccentric hypertrophy. 
With pressure load, systolic strain is not increasing, implying that cavity size 
remains relatively unaffected. The resulting hypertrophy is therefore concentric.

The sarcomere is the basic unit that is responsible for myocardial contraction. 
The working range of sarcomere length seems to be narrow [16], indicating the 
presence of a control mechanism for sarcomere length (Fig. 2.3a). Although the 
rule is simple, the mechanism of this adaptive control is not clear. Sarcomere length 
may be adjusted by adding more sarcomeres in series or by slippage of myocytes 
in the structure of the myocardial tissue [34].

In modeling the heart with its myofiber structure in three dimensions, myofiber 
orientation must be known for implementation in the related finite element model. 
Measurement of fiber orientation is practically impossible in the living heart. With 
utmost effort, fiber orientation may be determined with MRI diffusion tensor 
imaging [47], but even then, accuracy is likely not to be sufficient for reliable cal-
culation of local stress and strain in the myocardium [6, 8]. Since fiber orientation 
cannot be measured reliably, we search to estimate the distribution of fiber orienta-
tion by assuming proper adaptation rules. It has been suggested that the myofiber 
would search for a direction with an optimal strain level [4], but a more likely can-
didate is directioning by stress along the myofiber, which rule is equivalent with 
directioning by transverse shear strain at the beginning of systole [24] (Fig. 2.3c). 
With this adaptation rule, the myofiber searches for straight pathways of systolic 
stress. If the myofibers were not straight before contraction, the extracellular matrix 
around the myofibers would be deformed in systole, thus imposing stresses perpen-
dicular on the myofibers. With the proposed adaptation rule, we assume that the 
active myofiber migrates through the passive matrix structure until the oblique stress 
component disappears. As a result, myofiber pathways tend to follow straight (geo-
desic) pathways in systole, while maintaining their straightness in diastole.
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In myocardial tissue, the myofibers are arranged in sheets [26] (Fig.  2.3b). 
Sheets facilitate cross-deformation of the myocardium. Although sheet orientation 
appeared not reproducible interindividually [9] in dogs, we attempted to search an 
adaptation rule for it. Because myofibers are contained in sheets, sheet planes are 
indeed always parallel to the orientation of myofibers. Given the latter constraint, 
sheets were observed to have formed along the plane through the myofibers 
oriented so that shear is maximum [2]. Theoretically, two different plane orienta-
tions that satisfy shear to be maximum can be found, albeit these maxima might be 
different in height. Both maxima result in two nearly perpendicular solutions for 
sheet orientation, explaining the finding of large interindividual differences. On 
photographs of cross-sections of myocardial tissue, both solutions appear realistic, 
even near a single location, as shown by the existence of sheet boundaries that cross 
about perpendicularly.

Morphologically, blood vessels are composed of three layers, the intima, the 
media, and the adventitia. For simplicity, we consider the wall as a single entity 
(Fig.  2.3d). Shear stress induced by blood flowing along the inner wall is 
claimed to control vascular diameter [7]. With increase of flow, shear stress 
increases, invoking dilatation of the wall. As a result, flow velocity and shear 
stress along the inner wall surface decrease, counteracting the originally sensed 
increase of shear stress. Thus, the control loop for vessel diameter is closed. It 
should be mentioned, however, that the mechanism is more complicated. In 
small blood vessels, the level of shear rate is about fixed and universal, but in 
large vessels, this rate appears much smaller. For instance, in mice as well as 
elephant, peak aortic velocity is about 1 m/s, whereas aortic diameters are very 
different [11]. Therefore, the level of mean shear rate in the aorta of small 
animals is much larger than that in large animals. Since viscosity of blood is not 
very different among the different species, the level of shear stress along the 
inner wall is also very different. It has also been found that within the same 
individual, mean shear rate is smaller in the large arteries than in the small ones. 
Apparently, interindividually as well as intraindividually, for the smaller blood 
vessels, shear stress controls diameter, whereas for the larger arteries, there is an 
additional mechanism making the blood vessel somehow more sensitive to shear 
stress. Besides adaptation of diameter, a blood vessel adapts its wall thickness to 
transmural pressure, so that wall stress remains about constant.

2.5 � Examples of Patient-Specific Modeling

2.5.1 � Reference State

Patient-specific modeling is directed to estimate the most likely status of the 
patient, considering all useful information that is available by clinical observa-
tion. Focusing on mechanics and hemodynamics, we use the CircAdapt model as 
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a basis for modeling the dynamics of the whole circulation. Before any 
observation on the patient is made, the patient is most likely to be normal. For 
a normal healthy person, mean aortic blood pressure, cardiac output, and heart 
rate were set to the general average (Table 2.1). During the resting state, blood-
vessel diameter adapted to accommodate the set point for shear rate, which is 
equivalent with keeping the level of shear stress fixed. At a state of moderate 
exercise, cardiac output and heart rate were multiplied by 3.0 and 2.0, respec-
tively. Then, for the blood vessels, wall thickness adapted to accommodate wall 
stress. For the heart walls, cavity volume and wall thickness adapted to 
accommodate myofiber strain and passive myofiber stress. Mean sarcomere length 
was maintained. Valve diameters were set equal to that of the connected large 
blood vessels. In Fig. 2.4, resulting hemodynamic signals are shown as a function 
of time during the cardiac cycle for the left side of the heart at rest. This normal 
state was used as starting condition for patient-specific modeling.

2.5.2 � Non-invasively Obtained LV Pump Function  
and Myofiber Function

A set of noninvasive measurements was used to investigate to what extent left ven-
tricular function was affected in normal elderly people [27]. In this study, a group 
of healthy elderly volunteers (60–74 years) was compared with a group of healthy 
young volunteers (19–26 years). Systolic and diastolic blood pressures were mea-
sured by use of an arm cuff (Fig.  2.5, upper left panel). With MRI tagging [5], 
rotation and contraction of each section were quantified in five to seven short-axis 
slices of the left ventricle as a function of time. Torsion of the LV was quantified 
as the base-to-apex gradient of rotation, multiplied by the outer radius of the left 
ventricle. From the MRI data, LV cavity and wall volumes were estimated as a 
function of time. In a model of adaptation of fiber orientation to deformation of the 

General hemodynamics
  Mean blood pressure (92 mmHg) 12.2 kPa

Mean blood flow at rest/exercise 85/255 ml/s
Cycle time (1/HR) at rest/exercise 850/425 ms

Blood vessels
Shear rate in large blood vessels 60 s−1

Wall stress 700 kPa
Sarcomere

Maximum strain 0.23 –
Mean sarcomere length 2.0 mm
Maximum passive stress 7.5 kPa
Maximum active stress 60 kPa

Table  2.1  Parameter values 
for a normal circulation
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LV, for the given LV geometry the transmural distribution of fiber orientation was 
estimated in a simulation of the beating heart, using the adaptation rules as men-
tioned in relation to Fig.  2.3a. [4, 24]. From the directly measured torsion and 
volume decrease during the ejection phase, together with estimated myofiber ori-
entation, the transmural difference of myofiber strain was quantified (Fig.  2.5, 
lower left panel).

In a closer look, from these noninvasively obtained data, the systolic 
pressure–volume and stress–strain relations could be estimated too (Fig. 2.5, upper 
right panel). The CircAdapt model was fit by patient-specific adjustment of arterial 
wall stiffness, peripheral resistance, LV reference volume, and duration of systolic 
activation. By this fit, difference between simulated and measured values of the fol-
lowing variables was minimized: systolic and diastolic arterial pressure, ejection 
time, and end-diastolic LV volume. Measured values of heart rate, stroke volume, 
and wall mass were substituted directly in the model. It was concluded that with 
noninvasive techniques, estimates were obtained of the transmural difference of 
myofiber strain, time courses of mean myofiber stress and strain, and time courses 
of pressure and volume of the left ventricle (Fig. 2.5, lower right panel). From this 
study, it was concluded that in the elderly shortening of the myofibers in the suben-
docardium was 21% less than in the subepicardium, as compared with the young 
reference group, where this difference was not significant [48].

Fig. 2.4  Normal pressures, 
flows and volumes of the left 
heart, simulated with the 
CircAdapt model
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Fig. 2.5  Patient-specific modeling of LV mechanics and hemodynamics, rendering transmural 
differences in myofiber strain and pump function of the left ventricle. With MRI-tagging, stroke 
volume V

stroke
, LV end-diastolic volume V

lv,ed
 and wall volume V

wall
 are determined. Using adapta-

tion of fiber orientation by systolic straightening (Fig. 2.3c), torsional deformation of the LV wall 
is modeled. Torsion, measured with MRI tagging, renders an estimate of the transmural difference 
of myofiber strain in the LV wall. With the CircAdapt model, parameters are adjusted for a best 
fit between measured and simulated aortic pressure, ejection time and end-diastolic LV volume. 
Cycle time t

cycle
, V

stroke
, and V

wall
 are substituted directly. As a result, time courses of LV pressure 

and volume and LV myofiber stress and strain are simulated, thus estimating function of LV 
myocardium and LV pump function
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2.5.3 � Complete Pressure–Volume Loop of the Left Ventricle

Estimation of diastolic LV pressure by non-invasive means is a challenge. Clinically, 
noninvasiveness is important because measurements can be repeated with fewer 
burdens to the patient to monitor the status of a patient in time. Realistic estimates 
of LV pressure can be made, following the principles as outlined below (Fig. 2.6). 
With 2D-echocardiography, LV wall mass and cavity volume at the beginning and 
end of ejection are measured. Cardiac output is calculated by multiplication of heart 
rate with stroke volume, as derived from 2D-echocardiography. With the pulsed 
Doppler ultrasound technique, flow velocity in the orifice of the aortic valve is 
measured. Systemic peripheral resistance and aortic stiffness are adjusted so that 
maximum and minimum aortic pressures match measured systolic and diastolic 
arterial pressure. Aortic orifice, and intensity and duration of LV contraction are 
adjusted so that amplitude, shape, and duration of aortic flow velocity match the 
measurements. Thus, the systolic time course of LV pressure is known. A more 
difficult problem is to determine diastolic LV pressure.

Flow velocity in the mitral valve orifice is measured in the same session as that 
measurement in the aortic valve orifice. Assuming that the valves are working 
properly, effective mitral valve orifice area equals cardiac output divided by mean 
mitral flow velocity. Commonly, mitral flow velocity is characterized by an early 
filling peak, the E-wave that immediately follows mitral valve opening and an atrial 
peak, the A-wave, which is related to atrial contraction. The width of the E-wave 
depends on the characteristic oscillation frequency of the system formed by the 
inertia of the blood in the mitral valve orifice and the combined compliance of left 
atrium and left ventricle. The narrower the E-wave is, the less compliant the ven-
tricle should be. Knowing LV compliance and the time course of LV volume, infor-
mation is obtained about diastolic pressure changes.

Because so many steps are to be made and so many cross-relations are to be 
expected to influence the estimate, we have used the complete CircAdapt model 
(Fig. 2.2a) to fit simulated values with the measured values by proper variation 
of the adjustable parameters (Table 2.2). As a result, a time course of LV pressure 
is obtained, satisfying all measurements simultaneously. Predicted LV pressure 
and invasively measured LV pressure were found to agree closely in systole as 
well as diastole (Fig. 2.6, lower panels).

2.5.4 � Delay of the LV Activation in Left Bundle Branch Block

For proper cardiac pump function, the left and right ventricle should be activated 
about simultaneously. With left bundle branch block (LBBB), the left ventricle 
cannot be activated directly from the AV-node because of a conductance block. 
Then, activation of the LV occurs through the right ventricle by tissue conduction, 



36 T. Arts et al.

Fig.  2.6  Non-invasive estimation of complete LV pressure–volume loop, including diastolic 
pressure. Systolic LV function is obtained similar to the situation, indicated in Fig.  2.5. The 
CircAdapt model is used to estimate the dynamics of LV filling, where an important role is attrib-
uted to compliance of the LV and to inertia of the mitral valve tract. Simulation and measurements 
were fit on timing and amplitudes of flow phenomena, as detected by ultrasonic Doppler measure-
ments of aortic and mitral flow velocity, and as indicated by the triangular arrowheads in the upper 
right panel. LV pressure and volume are estimated as a function of time. For this patient, predicted 
pressure has been compared with invasively measured pressure. As can be seen in the lower left 
enlargement, measured and estimated diastolic pressure closely agree. The model also provides an 
estimate of LA pressure
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which is much slower than regular conduction. The delay between LV activation 
relative to RV activation can be estimated electrically, but it cannot be easily deter-
mined what effects are to be expected hemodynamically. Quantification of the 
delay of contraction may be derived by comparing the instants of pressure rise in 
left and right ventricle, respectively [28] (Fig. 2.7, lower left panel). These mea-
surements are not simple due to their invasiveness.

Asynchrony of left and right ventricular contraction can be recognized also by 
detection of abnormal motion of the septum at the onset on systole (Fig. 2.7), using 
ultrasonic M-mode echocardiography. In a patient-specific simulation, the TriSeg 
module (Fig.  2.2a) was used to simulate ventricular interaction. By this model, 
motion of the septum relative to that of the left ventricle was simulated. In an 
experiment on a dog, septal motion was measured directly with M-mode echocar-
diography. In the model, the delay of LV activation was adjusted until simulated 
and measured septal displacement matched best. As a result, left and right 
ventricular pressures were simulated as a function of time. In the experiment, left 
and right ventricular pressures were also measured directly with catheter-tip 
manometers. Simulated and measured pressure agreed in shape (Fig. 2.7, lower left 
panel), indicating that aberrations in septal motion can be used to quantify the delay 
between left and right ventricular pressure noninvasively.

2.6 � Discussion

A strategy for patient-specific modeling has been described. Although the proposed 
principles of this strategy will hold for a wide field of applications, we have focused 
our examples on modeling the cardiovascular system.

The design of the applied patient-specific model depends on available measure-
ments and on the target parameter that should be quantified. The set of target 
parameters is a main determinant of the system to be simulated. The set of measured 
variables and signals determine the extension of the model by which these vari-
ables can be simulated as well. Comparison of true measurements and simulated 

Table 2.2  Measured variables and adjusted parameters for patient-specific fit

Systolic aortic pressure Systemic peripheral resistance
Diastolic aortic pressure Arterial stiffness
Aortic peak velocity Aortic valve diameter
Flow rise time Rise time of LV contraction
Duration of ejection Duration of myocardial systole
Shape factor of aortic flow velocity curve LV contractility
Duration of isovolumic relaxation phase Decay time of relaxation
Mitral E-wave velocity Mitral valve diameter
Mitral A-wave velocity Atrial stiffness
Width of E-wave Ventricular stiffness
End-diastolic LV volume LV reference volume
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measurements is used to fit unknown, hidden parameters that are needed for esti-
mating the set of target parameters.

Incorporation of adaptation rules for chronic mechanical load of heart and blood 
vessels appears an important tool to obtain a realistic simulation of the normal state 
of the circulation. Geometry of heart chambers and blood vessels appear to become 
physiologic by self-structuring of the model. In addition, pressure and flow signals 
appear physiologic without many precautions. In most pathologies, a single defect 
results in variation of many structural parameters due to adaptation effects. The 
model is designed to deal with these mutually related effects. For prognosis of a 
therapeutic intervention, inclusion of adaptation is also advantageous to estimate 
long-term effects of changes in mechanical load due to the applied intervention. 
Incorporation of adaptation rules greatly reduces the amount of parameters that 
should be found by fitting. Consequently, the fit of the remaining smaller set of 
parameters is more stable and reliable. For myocardium and blood vessel walls, we 

Fig. 2.7  Noninvasive estimation of left to right ventricular pressure delay in a dog heart with left 
bundle branch block (LBBB). With M-mode echocardiography, septal motion is quantified. Delay 
of electrical activation and rise-time of myocardial mechanical activation were adjusted for best 
match between measured and simulated septal motion as characterized by indicators t

p
 and h. 

LBBB induces a typical oscillation during ejection, as compared with normal contraction (dotted 
lines). Simulated and invasively measured LV and RV pressure agreed quite well
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have proposed adaptation rules that apparently work, but we must realize that we 
may not understand the real mechanism of adaptation.

In a few examples, we have shown that bringing together noninvasively mea-
sured information gathered from different modalities can render estimates of 
hidden variables that normally require invasive measurements. For instance, the 
transmural difference in myofiber shortening can be estimated non-invasively with 
MRI-tagging. By adding noninvasive arm-cuff measurements of systolic and dia-
stolic pressure, available information appears sufficient to estimate the pressure–
volume loop of the left ventricle and the stress–strain loop of the related myofibers. 
In addition, when combining measurements obtained in standard noninvasive 
cardiologic measuring protocol, i.e., measurement of blood pressure, ultrasonic 
echocardiography, and pulsed Doppler of the aortic and mitral valve, estimates can 
be obtained of diastolic left ventricular pressure. Currently, measurement of the 
latter variable requires invasive techniques. It is therefore to be expected that 
patient-specific modeling will increase clinical possibilities to monitor variables in 
patients, which are currently not easily accessible for that purpose due to required 
invasiveness.

Patient-specific models will become increasingly important. Given the wide 
variety of applied measuring techniques, the structure for patient-specific modeling 
should be flexible. In this respect, the trial with the CircAdapt model of the whole 
circulation shows that its modular setup is very convenient. Modules can be added 
to accommodate specific measurements. Modules can be replaced by more detailed 
ones, if that is required by the focus of clinical attention. The environment of 
remaining modules is used to render the necessary physiologic boundary conditions 
for the more detailed module in focus. Because there is not much experience with 
predictive medicine, much work has to be done to evaluate its potentials and limita-
tions in treatment planning.
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3.1 � Introduction

Cardiovascular diseases (CVDs) are the major cause of death in the developed 
world. Also, CVDs produce significant economic burden on society [37]. 
Development and implementation of approaches for prevention, diagnosis, and 
treatment of CVDs constitute large-scale and long-term efforts of healthcare sys-
tems, industry, and academia. Despite significant advances in technologies such as 
cardiac imaging and medical devices in the last decades, there are still major gaps 
in our basic knowledge of CVDs and their diagnosis and treatment, in particular, in 
individual patients.

Recently, patient-specific modeling has been suggested to support established 
diagnostic and therapeutic approaches in various medical disciplines [46], includ-
ing cardiology and cardiac surgery. Patient-specific modeling is commonly based 
on clinical image data and/or physiological data from an individual patient, which 
are applied with methods of computational engineering, mathematical analysis, and 
computer visualization with the goal to understand mechanisms of disease, monitor 
patients, and evaluate treatment options specifically for this subject. Patient-specific 
modeling of the cardiovascular system is an active and diverse field of research 
covering molecular to multiorgan level [54]. Research foci at the macroscopic level 
include modeling of tissue electrophysiology, whole-heart electromechanics, valve 
mechanics, and blood flow. Patient-specific modeling at the microscopic and 
molecular level is still in its infancy but promises to provide valuable information 
on very basic mechanisms of, for instance, genetic diseases and their effects at 
cellular and tissue level. Promising applications of patient-specific cellular model-
ing are the tailoring of specialized pharmaceuticals, e.g., ion-channel blockers, 
parameterization of medical devices, e.g., biventricular pacemakers, treating the 
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CVD of an individual patient by taking his/her genotype and phenotype into 
account, and advanced diagnosis, e.g., quantitatively characterizing stages of heart 
failure based on the remodeling of cellular microstructure and protein 
distributions.

In order to appreciate the potential and issues of patient-specific cellular model-
ing, the following sections provide an overview of cardiac cells, their structure, 
function, and diseases. Methods for microscopic imaging of cardiac cells are pre-
sented based on fluorescence labeling. Approaches for functional modeling of 
cardiac cells are detailed. Studies on ion-channel mutations in humans and their 
effect on electrophysiology of cardiac myocytes serve as examples for patient-
specific modeling of cell function. Furthermore, structural modeling approaches 
based on microscopic imaging and image processing are presented. In the final sec-
tion, a perspective on potential clinical applications and implementation of patient-
specific cellular modeling is given.

3.2 � Cardiac Cells

The main function of the cardiac ventricles and atria is to pump blood by their 
mechanical contraction and relaxation. Ventricles and atria are composed of muscle 
tissues specialized for this mechanical activity and its coordination by electrical 
signaling. Cardiac tissues are a composite of various cell types including myocytes, 
fibroblasts, neuronal and endothelial cells. Structural and functional properties of 
these cells vary significantly during development and aging, among species and 
tissue types, and in the heart. This short overview focuses on myocytes and fibro-
blasts, which are the dominant cell types in heart.

Myocytes are the volumewise dominating cells in cardiac tissue. The phenotype 
of cardiac myocytes is diverse and depends on location in the tissue, functional role, 
and species. Their functional role is primarily force generation that causes mechan-
ical contraction of the cell and tissue. As in other striated muscle cells, force is 
generated by molecular interactions of actin and myosin filaments, which are 
assembled in the so-called sarcomeres. The energy carrier for this actin–myosin 
interaction, the so-called cycling of cross-bridges or actin-activated myosin II 
ATPase cycle, is adenosine triphosphate (ATP), which is produced in the mitochon-
dria by oxygenation of nutrients. Force generation in myocytes is initiated and 
controlled by electrical activity of the cell. The signal transduction from electrical 
activity to force generation is based on calcium fluxes. Processes underlying this 
signaling are summarized by the term excitation-contraction coupling (ECC).

Electrical signaling in cardiac tissue can be observed at various levels: (1) At 
myocyte level, electrical signaling initiates and controls contractility. The primary 
electrical signal initiating ECC is the depolarization of the myocyte membrane 
(sarcolemma). Various proteins in the sarcolemma, internal membranes, and intra-
cellular compartments contribute to electrical signaling and ECC. (2) At level of 
cell clusters, coupling via so-called gap junction channels in the sarcolemma serves 
for synchronizing electrical and mechanical activity of neighboring myocytes. 
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Gap  junction channels provide for low-resistance electrical pathways between 
myocytes. (3) At macroscopic level, electrical signaling enables synchronized 
activity of different compartments of the heart. The structural basis for this 
synchronization of compartments comprises the excitation and conduction system 
composed of specialized myocytes, e.g., the sinoatrial and atrioventricular node, 
bundle branches, and Purkinje fibers.

Myocytes of the excitation and conduction system are structurally and function-
ally distinct from myocytes of the working myocardium. The latter are the major 
force generators in the heart. Myocytes of the ventricular myocardium are cylindri-
cally shaped with irregular, flat ends. Locally, these cells are commonly aligned in 
such a manner that their long axes are parallel. Mammalian ventricular myocytes 
exhibit invaginations of the sarcolemma, the so-called transverse tubular system 
[10, 42], which serves for synchronization of ECC and is the site of multiprotein 
signaling complexes. Volume and length of atrial myocytes are, in general, smaller. 
While differences of myofilament volume density between atrial and ventricular 
myocytes are small, ventricular myocytes exhibit a significantly larger volume 
density of mitochondria.

Fibroblasts are by number the dominant cells in many types of cardiac tissue 
[66]. Their volume is much smaller than myocyte volume. For instance, in rat ven-
tricle, the ratio of myocyte to fibroblast volume was estimated to be 59.7:1 [56]. 
Their functional role is primarily production of extracellular matrix (ECM) proteins 
such as collagen and elastin. Some cardiac pathophysiologies, e.g., myocardial 
infarction and inflammation, are associated with activation of fibroblasts and altera-
tions of their phenotype. Fibroblast activation can lead to fibrosis, hypertrophy, and 
heart failure. Fibroblasts, in contrast to myocyte, are nonexcitable but can be elec-
trically coupled to myocytes and thus contribute to tissue electrophysiology in vari-
ous manners.

The space between cardiac cells is called the interstitial space. Interstitial fluid and 
the ECM occupy it. The fluid is transport medium for nutrients, metabolites, salts, 
hormones, enzymes, and neurotransmitters. The interstitial space is connected via 
clefts in the endothelium of capillaries with the vascular space, which enables flux of 
plasma into and out of interstitial space primarily due to pressure gradients.

3.3 � Cardiovascular Diseases and Cellular Phenotype

Various diseases affect the heart. These can be caused extrinsically (outside of the 
heart) or intrinsically. They can affect all regions of the heart including coronary 
arteries, valves, and muscle. In this overview, we focus on genetic diseases, con-
genital heart defects, and coronary artery diseases.

Gene mutations can cause a variety of cardiac diseases [3]. Mutations in the 
coding region of a protein can affect its function, e.g., loss or gain of function, and/
or trafficking. Mutations in the promoter region of a protein can cause its overex-
pression or underexpression. Ion-channel mutations (channelopathies) and their 
effects on cellular and tissue electrophysiology are extensively examined in clinical 
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and basic research. A plethora of mutations of cardiac ion channels have been identified, 
which are associated with symptoms including sudden cardiac death, atrial fibrilla-
tion, and developmental abnormalities. For instance, mutations of the gene SCN5A, 
which encodes the alpha subunit of the voltage-gated sodium channel underlying 
fast inward sodium current, are accounted for the Brugada, Romano–Ward, and 
related arrhythmia syndromes [3, 52]. Loss-of-function KCNJ2 mutations underlie 
the Andersen–Tawil syndrome [49, 62]. The KCNJ2 gene encodes Kir2.1 subunits, 
which assemble homotetramerically or heterotetramerically with other Kir2.x sub-
units to form channels that conduct the inward rectifier potassium current. KCNQ1 
gain-of-function mutations can cause atrial fibrillation and short QT syndrome 
[24]. Coassembly of KCNQ1 and KCNE1 subunits forms ion channels that conduct 
the slow delayed rectifier potassium current. Similarly, loss- and gain-of-function 
KCNH2 mutations can cause long and short QT syndrome, respectively [48, 58]. 
KCNH2 encodes the alpha subunit of ion channels conducting the delayed rectifier 
cardiac potassium current. The rare Timothy syndrome is caused by mutations of 
CACNA1C gene [67], which encodes the L-type calcium channel Ca

v
1.2 alpha-1 

subunit. The mutations affect inactivation of the ion channel, which plays a major 
role in ECC of cardiac myocytes [68]. Timothy syndrome is associated with 
arrhythmias and structural defects of the heart. Several mutations have been identi-
fied, which indirectly modulate ion channel function. These mutations are in regu-
latory proteins, e.g., phospholamban and junctin, and scaffolding proteins, e.g., 
A-kinase-anchoring proteins and ankyrin-B.

Genetic causes can also underlie congenital heart defects, which reflect abnor-
malities of heart development and are present at birth. Also, virus infections and 
environmental conditions have been suggested to cause congenital heart defects. In 
most cases, however, the cause of congenital heart defects is not known. Open heart 
reconstructive surgery in the neonatal period is the state-of-the-art approach to 
repair heart defects including hypoplastic left heart syndrome, Tetralogy of Fallot, 
transposition of great arteries, and truncus arterious [69]. Untreated congenital 
heart defects can lead to heart failure.

Coronary artery disease is the most common type of CVDs. It is typically caused 
by plaque buildup in the vessels that supply the heart muscle. This process termed 
atherosclerosis can lead to stiffening of the vessel wall, stenosis and even complete 
blocking of the vessels. Increased risk of coronary artery disease is associated with 
diabetes, high blood pressure, smoking, alcohol abuse, and abnormal cholesterol 
levels. Treatment options include lifestyle modifications, risk factor management, 
pharmacologic therapy, and surgical interventions such as coronary artery bypass 
graft surgery, angioplasty, and stenting. Coronary artery disease can lead to myocar-
dial ischemia, infarction, and congestive heart disease. Myocardial ischemia has sig-
nificant implications on cellular metabolism, electrophysiology, and viability, in 
particular, of myocytes with high metabolic demand. Prolonged interruption of blood 
flow, due to coronary artery disease or other reasons, causes apoptosis and necrosis.

In the past, studies on disease-associated remodeling of heart anatomy and func-
tion were focused on characterizing alterations at macroscopic level. Newer con-
cepts of cardiac remodeling focus on the pivotal role of remodeling at microscopic 
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level. These concepts suggest that remodeling of metabolism, structure, and function 
at microscopic level constitute the basic mechanisms underlying macroscopic 
remodeling and heart failure. Structural remodeling at microscopic level includes 
altered shape, volume, and arrangement of cells and cellular compartments as well 
as density and distribution of proteins. For instance, in a canine model of pacing-
induced heart failure, myocytes exhibited increased size, decreased density of 
L-type calcium channels, and an irregular, sparse t-system [19]. Similar alterations 
of the t-system have been reported in chronically ischemic porcine myocytes [22] 
and indicated for failing human myocytes [31, 33, 39, 73].

Diseased associated functional remodeling at cellular level include altered elec-
trical and ECC signaling. Various changes in the action potential shape result from 
alterations in the expression and function of proteins in diseased cells. Prominent 
causes for these alterations are genetic diseases that were discussed previously in 
this section. However, alterations can also be a consequence of other disease types. 
For instances, reduction of potassium currents is a common theme in hypertrophied 
and failing ventricular myocardium in animals models. In these disease models, 
hypertrophy and heart failure were induced by pacing protocols, surgical, and phar-
macological interventions. Several studies demonstrated that ECC is altered in 
diseased cells. For instance, calcium events are dyssynchronous in failing myocytes 
[22, 39].

3.4 � Imaging of Cardiac Cells

Optical microscopy is the major imaging modality in studies at cellular scale.  
A general advantage of this modality is that it allows for imaging of living prepara-
tions [15]. Here, we focus on scanning confocal microscopy [9], which offers three-
dimensional imaging of cellular structure and function at sub-micrometer resolution. 
Confocal microscopy necessitates a fluorescent dye or autofluorescent material in 
the imaged region. Fluorescent dyes or materials can be excited by light, e.g., from 
a laser, of a specific wavelength, which causes emission of light of a different wave-
length. Some dyes can be attached to molecules such as antibodies.

The spatial resolution, i.e., separability of neighboring objects in the image data, 
is much higher with confocal microscopy systems than with standard optical micro-
scopes. Nevertheless, the spatial resolution of confocal systems can still pose dif-
ficulties in image analysis depending on the size and shape of imaged structures.  
A measure of the separability is the Rayleigh criterion. Resolution can be estimated 
by analysis of the response of an imaging system to given signal sources.

In general, the response g of a confocal (or other) imaging system to given 
sources can be described by convolution of the sources f with the point spread func-
tion (PSF) h and the space vector x [20]:

	 ( ) ( )( ) ( ) ( )dx .g x f h x f x h x x
∞

−∞
= × = −′ ′ ′∫∫∫ 	 (3.1)
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In this approximation, it is assumed that the response is linear and invariant with 
respect to translation. The resolution can be derived from measured PSFs [5], 
which are the image of a subresolution region of fluorescent dye, for instance, glass 
beads with a diameter of <0.1 mm and surface coated with dye. PSFs of confocal 
systems typically display directional anisotropy with the full width at half maxi-
mum 2–3 times larger in direction of the laser beam than orthogonal to it [5, 59, 60, 
64]. Spatial resolutions of state-of-the-art confocal systems are ~0.3 mm in horizon-
tal (orthogonal to the laser) and ~1 mm in vertical (parallel to the laser) direction 
for excitation and emission wavelengths close to 500 nm and using a lens with a 
numerical aperture of 1.4.

A limitation of confocal microscopy is depth-dependent attenuation of signal 
intensity. This attenuation is an inherent property of confocal imaging systems. It 
can be described as a function of attenuation coefficients for exciting light a

exc
 and 

emitted light a
emi

:

	 = +exc emi

(0)
ln ( )

( )

I
z

I z
a a 	 (3.2)

with the depth z. Commonly, wavelengths and thus attenuation coefficients of the 
exciting and emitted light differ. Some confocal imaging systems allow for auto-
mated attenuation correction.

Various fluorophores are available for labeling of cellular structures and proteins 
[15]. A natural fluorophore is green fluorescent protein (GFP), which is expressed 
in jellyfish. GFP can be added or inserted to the coding sequence of proteins, which 
allows for imaging of expression, trafficking and localization of these GFP fusion 
proteins. Man-made fluorophores include fluorescein isothiocyanate (FITC) and 
the Alexa, Rhodamine, and DyLight Fluor families. Fluorophores can be conju-
gated to various molecules including antibodies for labeling of proteins and dextran 
of different molecular weights. The latter is membrane impermeable and allows for 
labeling of the extracellular space.

Structural labeling approaches have been complemented with functional label-
ing, e.g., of membrane voltage, intracellular calcium, and pH. Di-4-anepps and di-
8-anepps are well-established membrane voltage-sensitive dyes, which respond 
with a ~10% intensity change per 100 mV [11, 17]. Fura-2 and Indo-1 are popular 
indicators of the intracellular calcium concentration [18]. SNARF-1 allows for 
imaging of intracellular pH [4, 8].

Recent confocal microscopy systems enable simultaneous imaging of sev-
eral fluorophores, e.g., to study colocalization of proteins and structures. 
Separation of the fluorophores is possible due to differences in the wavelengths 
of their excitation and/or emissions. Excitation of fluorophores can be simulta-
neously or individually. Further separation of fluorophores can be achieved by 
filtering of emitted light, e.g., with absorptive and dichroic filters. These 
approaches are, in particular, useful for acquisition of structural together with 
functional information.
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3.5 � Modeling of Cardiac Cells

3.5.1 � Functional Modeling

3.5.1.1 � Development and Implementation of Functional Models

In general, the first step in development of a functional model of cardiac (and other) 
cells is its design, which can be based on biophysical, experimental and theoretical 
insights. Most often, existing models are selected, extended or integrated for devel-
opment of a new model. Selection of the model is commonly based on its ability 
in reconstruction of the measured data, assumed similarity between the existing 
model and model in development, feasibility of implementation, and computational 
demands.

The next step in model development is the parameterization of the model com-
ponents. Only some simple models allow parameterization by direct calculation 
based on features in measured data. The parameterization is commonly an optimi-
zation problem, which requires the definition of a cost function describing the fit of 
simulated data to given data. Commonly, the parameterization is performed with 
numerical approaches. Typical numerical approaches include the steepest decent, 
conjugate gradient, Nelder–Mead method, and simulated annealing [50]. Simulated 
annealing is a stochastic method capable of revealing the global minimum of a cost 
function also in cases where it exhibits many local minima. Recently, a further 
stochastic optimization technique, the particle swarm optimization, has been sug-
gested for model parameterization [63]. All these methods require frequent execu-
tion of the model with varying parameters. Model parameterization can be a time 
consuming process. The quality of its results is dependent on the ability of the 
model in reconstruction of the measured data and their quality.

Most models of cell function consist of sets of ordinary differential equations, 
which are solved with numerical methods, for instance, Euler and Runge–Kutta 
methods [50]. For solving models that are based on partial differential equations, 
finite difference and finite element methods are the most common numerical 
approaches [53].

3.5.1.2 � Models of Cardiac Cells

Electrophysiological modeling of cardiac cells is an established field of research 
[53]. Electrophysiological models provide a mathematical description of ion trans-
port through membranes and between cellular compartments and allow for recon-
struction of measured data such as membrane currents and voltages. A major 
motivation to develop these descriptions has been to test hypotheses on basic bio-
physical mechanisms underlying electrical signaling in cardiac cells, either in an 
a-posteriori manner to explain experimental data or in a predictive manner to probe 
cellular behavior under specific conditions.
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Commonly, electrophysiological models of cardiac cells are not created from 
scratch, but by re-parameterization and integration of existing models of ion chan-
nels, transporters and exchangers, e.g., the established Hodgkin–Huxley or Markov 
models of ion channels. The parameterization of electrophysiological cell models 
is commonly based on data measured using a variety of experimental preparations 
and techniques. Experimental techniques include whole-cell and patch-clamp 
approaches. Standard experimental preparations are native cells isolated from 
tissue, membrane patches, and protein expression systems such as bacteria, yeast, 
and frog oocytes.

Electrophysiological models have been developed for a variety of cardiac cells 
including ventricular and atrial myocytes [28, 40], Purkinje cells [70], sinus and 
atrioventricular node cells [26], and fibroblasts [56]. Some of these models recon-
struct electrophysiology of human myocytes (Fig.  3.1). The models integrate 
descriptions of major currents through membrane proteins. These models can serve 
as a basis for personalized modeling, in particular, of diseased cells, by parameter 
adjustment and/or replacement of model components.

Electrophysiological cell models constitute a major tool to study effects of ion 
channel mutations. Commonly, an existing model is adjusted by either reparameter-
ization or substitution of model components that describe the affected protein. For 
instance, effects of Timothy syndrome have been modeled by reparameterization of 
a model component describing currents through Ca

v
1.2 channels, in particular, with 

respect to the disease caused voltage-dependent inactivation of these ion channels 
[68]. Short QT and other effects related to a KCNH2 gain of function mutation have 

Fig. 3.1  Schematic of electrophysiological model of human ventricular myocyte [28]. Ion currents 
are depicted by arrows. The model includes descriptions of sodium, potassium, and calcium 
currents through the membrane. Furthermore, the model specifies calcium currents between intra-
cellular compartments and calcium binding to various proteins
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Fig. 3.2  State diagram of a biophysically detailed model of force development [55]. (a) Two state 
variables, T and TCa, describe the calcium binding to troponin C. (b) Two state variables, TM

on
 

and TM
off

, describe the configuration of tropomyosin. (c) Ten state variables detail the actin–
myosin interaction and ATP hydrolysis. M and A symbolize myosin and actin, respectively. ATP, 
ADP, and P

i
 represent adenosine triphosphate, adenosine diphosphate, and phosphate, respec-

tively. States transitions are depicted by arrows, strong binding by a closed circle, and weak bind-
ing by a tilde. The arrows are labeled with rates coefficients, which are functions of e.g. ATP 
concentration, cross-bridge density XB, and sarcomere stretch velocity

been studied by re-parameterization of the related model component [72]. Effects 
of the Andersen–Tawil syndrome on cellular and tissue electrophysiology have 
been studied in a human electrophysiological cell model by substitution of its 
Kir2.x current model [49, 62]. A difficulty of this approach is related to potential 
cellular remodeling in response to the mutation. This remodeling is commonly not 
characterized, and thus, its effects on cellular electrophysiology are not considered 
in most experimental studies.

Models of ECC in cardiac myocytes describe a signaling cascade starting with 
electrical activation and causing force development in the myofilaments followed 
by cell contraction. Most models implement a mechanism called calcium-induced 
calcium release, which is based on the experimental findings that extracellular cal-
cium ions carried by voltage-gated L-type calcium channels into the cell interior 
can trigger calcium release from the sarcoplasmic reticulum through ryanodine 
receptors (RyRs). Models differ significantly in their focus, scale, and detail in 
reconstructing the ECC signaling cascade. Biophysically detailed models off ECC 
have been developed to describe the unit events underlying calcium transients, i.e., 
sparks produced by calcium release from the sarcoplasmic reticulum through RyR 
channels. Some models of ECC have a partial overlap with electrophysiological 
and force development models as those typically include a description of calcium 
transients and binding of calcium to troponin C (Figs. 3.1 and 3.2).
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Biophysically realistic models of cellular force generation apply the calcium 
transient as modulator for actin–myosin interactions. Models differ in their level of 
detail in the description of the underlying processes. Detailed models describe cellular 
force generation starting with the binding of calcium to troponin C resulting in 
shifting of the troponin–tropomyosin complex followed by structural changes of 
the tropomyosin–actin configuration, which allow the binding of myosin heads to 
actins. Simplified models lump and/or neglect some of these processes. An example 
for a detailed model is shown in Fig. 3.2 [55]. The model has three compartments, 
which cover the binding of intracellular calcium to troponin C, conformational 
changes of tropomyosin, and the actin–myosin interactions. The model applies as 
input the concentration of intracellular calcium, the sarcomere stretch, and the sar-
comere stretch velocity. Major model output is the normalized cellular tension. 
Furthermore, the model provides information on protein state probabilities, calcium 
binding to troponin C, and ATP hydrolysis.

Integration of the described models allows for comprehensive description of 
cellular physiology. An example is the integration of electrophysiological and force 
generation models, which can be used to study effects of electrophysiological 
alterations, such as mutations of ion channels and related to pharmacologic therapy, 
on force generation. Integration of models, e.g., of electrical conduction and pas-
sive mechanics of tissue, allows for description of processes beyond the cellular 
scale toward modeling of a complete organism. Major challenges of model integra-
tion include design and implementation of mode interfaces, efficient numerical 
solution of combined models, and handling of model inconsistencies. An example 
for inconsistencies in a combined electrophysiological and force generation model 
is the multiple but different description of calcium binding to troponin C. Resolution 
of this type of inconsistency might necessitate model adaption or redesign.

Most functional models have been implemented in programming languages such 
as Fortran, C, and Matlab. Specialized languages have been developed for model 
implementation, for instance, the languages CellML [35, 36] and SBML [25], both 
based on the XML markup language. Software packages for cellular modeling and 
simulation include CESE [44], COR [13], JSim [30], Neuron [7], OpenCell (for-
merly PCEnv) [47], QuB [43], and Virtual Cell [61]. The list includes tools origi-
nally developed for modeling of ion channels and various cell types beyond those 
found in the heart.

3.5.2 � Structural Modeling

3.5.2.1 � Development of Structural Models

This section describes image-based approaches for structural modeling of cardiac 
cells. The focus is on data from confocal microscopy, which are applied to recon-
struct imaged objects using methods of digital image processing. Confocal micros-
copy has limitations with respect to spatial resolution, signal-to-noise ratio, and 
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depth-dependent signal attenuation. Image processing can be applied to improve 
image quality [59]. The section starts with an introduction of image processing 
techniques, which are typically performed before application of the data in development 
of structural models and quantitative image analysis. Typical formats for the processing 
and application of image data are introduced.

3.5.2.2 � Image Processing

Imaging can be described as convolution of spatially distributed signal sources with 
a PSF (Eq. 3.1). Various methods for deconvolution of image data exist including 
Wiener and Fourier filtering, least squares regularization, and Bayesian approaches 
[6]. A standard approach is the iterative Richardson–Lucy algorithm [51]. 
Implementations of deconvolution algorithms are available in Matlab (The 
Mathworks, Inc., Natick, MA) and specialized packages for microscopic image data 
processing, e.g., Volocity (Perkin Elmer, MA), Huygens (Scientific Volume Imaging, 
The Netherlands), and Autoquant X (Media Cybernetics, Bethesda, MD).

Image data can exhibit background intensities that do not stem from the labeled 
proteins or structures. The background intensities can be caused by autofluores-
cence and offsets in the signal detection and amplification of the imaging system. 
Common image processing strategies to remove background intensities include 
their regionwise detection, interpolation of the intensities over the image volume, 
and their subtraction from the image intensities.

Depth-dependent attenuation of signal intensity is a process that affects both 
excitation and emitted light (3.2). It can be measured by analysis of signal intensi-
ties measured along the laser beam direction in image regions that were homoge-
neously labeled and should exhibit identical densities of the fluorescent marker. 
Intensities along this direction can be fit to a mono- or biexponential function. This 
procedure yields a slicewise scaling depth-dependent factor.

Various approaches exist for segmentation of image data [16, 53]. The seg-
mentation of microscopic images of cardiac cells and tissues yields regions that 
typically consist of cells, membranes, cellular compartments, or protein clusters. 
A simple approach to segmentation is thresholding of the image intensities. The 
approach yields segments, which are either within or outside of the thresholds. 
More advanced approaches include region growing, which iteratively assembles 
image segments starting from given points. The points identify image segments, 
which are then extended using thresholding in their neighborhood. Commonly, 
the approaches are applied on filtered images to reduce effects of image arti-
facts, in particular noise, on the segmentation procedure. The repertoire of 
approaches includes manual segmentation methods such as interactively deform-
able surfaces.

Image analysis methods range from simple counting of image segments and 
integration of signal intensities to complex tasks such as pattern recognition and 
topological characterization of image segments. Analysis of images from confocal 
microscopy can yield quantitative information on cells and their microstructure as 
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well as on protein densities and their spatial distribution. Quantitative information 
that can be extracted from segmented images of cardiac cells and tissue includes 
geometrical parameters of the transverse tubular system (Fig. 3.3), such as length, 
diameter, and volume of tubules [60], and of the myocytes, such as their length, 
width, height, and volume [34] (Fig. 3.4). Image analysis can also yield information 
on protein distributions, e.g., of caveolin-3, sodium–calcium exchange, and RyRs 
[29, 57, 65].

Of particular interest with respect to patient-specific modeling is the data that 
can be used in the parameterization and validation of functional models. These data 
provide the basis for modeling of disease states, which can be associated with sig-
nificant alterations of cell structure and protein distributions.

Fig. 3.3  Microstructure of cardiac ventricular myocytes [60]. (a) Cross-sectional image showing 
the transverse tubular system in an isolated cell. (b) 3D visualization of cell interior reveals the 
arrangement of the transverse tubular system. (c) A view from exterior on the sarcolemma indi-
cates that t-tubule opening are partly regularly organized. (d) Some regions exhibit regularly 
spaced t-tubules of simple topology
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3.5.2.3 � Model Representation

Confocal imaging systems commonly export image data in two- and three-dimensional 
matrices. Generally, results of image processing are provided in this format. Other 
formats can be more efficient with regard to applications in modeling and simula-
tion. A common format in many applications in image processing and biomedical 
modeling is the cubic voxel mesh, which can be directly derived from the image 
matrices and allows for simple conversion to models of various spatial resolutions. 
A frequently applied format type for visualization of models are surface meshes, 
e.g., with triangular elements generated with the marching cubes algorithm [38]. 

Fig. 3.4  Imaging and modeling of cardiac tissue [34]. The microscopic images are from (a) the 
epicardial surface and a depth of (b) 10 mm, (c) 20 mm, and (d) 30 mm into atrial myocardium. (e) 
A model of atrial myocyte cluster was created from the three-dimensional image stack. The model 
includes 17 complete and 21 partial myocytes. Scale: 50 mm in (a) applies to (a–d)
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The algorithm generates meshes of triangles approximating isointensity surfaces with 
subvoxel resolution. Modifications of the original algorithm assured closeness of the 
generated surfaces and permitted subvoxel resolution by adjusting positions of 
mesh nodes based on edge-wise interpolation of intensities [21]. Further formats 
for model representation include point sets and meshes of finite elements of variable 
size and polynomial degree.

3.6 � Clinical Perspective

Commonly, modeling of cardiac cells is based on data from animal experimental 
studies. Most of these experimental studies are based on the excision of the heart 
followed by dissection or cell isolation procedures using enzymes such as collage-
nase and protease. Of specific interest for patient-specific modeling of cardiac cells 
and clinical applications are biopsy techniques, which allow for minimal-invasive 
extraction of samples from a patient’s heart. A variety of myocardial biopsy tech-
niques are established in clinical diagnosis. Biopsies can be performed during car-
diac catheterization or surgical procedures. Samples obtained by myocardial biopsy 
can be labeled and imaged using the methods described above.

Alternatives to biopsy techniques are approaches for labeling and imaging of 
cells and tissues that can be applied in situ and in vivo. Fiber-optics confocal micro-
scopes have been developed for applications ranging from in situ imaging in small 
animals to clinical diagnosis of various diseases [1, 2, 12, 14, 23, 27, 45]. 
Difficulties of their application for imaging of cells and tissues in situ are related to 
the complicated access to organs inside of a body, the small depth penetration of 
confocal imaging, and the necessity to provide for fluorescent dyes in the imaged 
region. Combination of fiber-optics microscopy with endoscopic and catheter tech-
nology allows for steering of imaging probes into a patient’s heart. Methods for 
fluorescent labeling and local dye delivery have been developed, which can be 
applied to provide information on structure and function of living cardiac cells and 
tissues at submicrometer resolution (Figs. 3.4 and 3.5) [34].

Advancements in various aspects of patient-specific modeling of cells can be 
expected by high-throughput DNA-sequencing platforms [41]. These are now com-
mercially available and allow for subject-specific screening of mutations and poly-
morphisms. The genomic data can be applied for characterization of functional and 
structural consequences of these mutations and polymorphism using experimental 
approaches. For instance, functional consequences of ion-channel mutations can be 
characterized using site-directed mutagenesis [32], systems for protein expression in 
cells, and whole-cell voltage clamping systems [71]. Site-directed mutagenesis 
allows for creation of a defined mutation in the coding region of an ion channel pro-
tein. The protein is then expressed in a cell, e.g., frog oocyte. Patch-clamp techniques 
are applied to characterize electrophysiological properties of the ion channel.

Advancements in imaging, image processing, and screening technology indicate 
that cellular cardiac modeling will soon reach out beyond its established role as a 
research tool and establish a new role in clinical diagnosis and therapy. Several data 
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sources can provide input for patient-specific modeling of cardiac cells. Image data 
obtained from myocardial biopsy samples and catheter-based confocal microscopy 
can be processed using the previously described methods to yield parameters and 
geometries for modeling. DNA-sequencing platforms can identify mutations and 
polymorphisms in a patient. Functional consequences of a number of mutations 
have been already established and described in models.

Major challenges in the integration of patient-specific cellular modeling into a 
clinical environment are associated with patient safety and assessing its benefits 
versus costs. The development of clinically feasible protocols for data acquisition, 
analysis, and interpretation will be crucial. It can be expected that establishing this 
new technology will require extensive training of medical personnel. It will neces-
sitate that most of the processes underlying model generation and simulation are 
automated. Most methods used in these processes, e.g., digital image processing 
and computational modeling of cellular electrophysiology, are already well estab-
lished in applications beyond academic research. However, usage in clinical appli-
cations will require careful validation of the methods and assessment of their 
limitations.
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4.1 � Introduction

Atrial fibrillation (AF), the most common sustained form of cardiac arrhythmia, is 
an endemic disease with an increasing prevalence [14, 32]. Its polymorphic dynam-
ical nature severely hampers the development of a single therapy effective in all 
individual patients [23, 24]. The limited understanding of the AF mechanisms indi-
cates a clear medical need for improving current therapies, adapting them to various 
AF dynamics that can be found in different patient populations, and selecting the 
therapy that is optimal for an individual patient.

Several guidelines for the management of idiopathic AF have been proposed and 
provide a basis for the treatment of AF in clinical settings [19]. For paroxysmal and 
persistent AF, ventricular rate control and/or rhythm control (reduction of parox-
ysms) strategies are proposed, while for patients with permanent AF, the objective is 
sinus rhythm restoration. Pharmacological therapy with an antiarrhythmic drug is an 
important part of any rhythm control strategy. Restoration of sinus rhythm can also 
be achieved by electrical cardioversion, delivering an intracardiac or external electri-
cal shock, a difficult task being the maintenance of sinus rhythm after successful 
cardioversion. Other treatments have been directed at eliminating the triggers and 
modifying the AF electrophysiological substrate. Catheter ablation of AF has now 
become almost a standard procedure for patients with paroxysmal or idiopathic AF, 
especially for patient with focal triggers. Surgical ablation procedures, such as the 
maze procedure, are currently performed in patients undergoing concomitant open 
heart surgery. In addition to pharmacological or ablation therapies, some of the recent 
pacemakers and defibrillators have incorporated different features to prevent or 
terminate AF, such as overdrive pacing or antitachycardia pacing (ATP). However, 
no clinical study has yet proven the long-term clinical benefit.

Computer modeling of biophysical phenomena has gained increasing importance 
for research in physiology and biology, and the recent improvements in computational 
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speed have enabled in silico experiments in highly detailed and realistic biophysical 
models. The use of such models overcomes some of the limitations encountered in 
in vivo experimental or clinical research, by providing an access to all variables of 
interest at any temporal or spatial scales and by allowing the possibility of performing 
and repeating the experiments under controlled conditions. Existing biophysical  
models differ in the trade-off made between accuracy of the representation and the 
computational load: the more detailed the model, the greater the computational  
complexity. The choice of a specific model is dependent on the question to be 
answered. For instance, a model can be modified to selectively reproduce the physi-
ological parameters of a specific type of patient and, likewise, targeted modeling 
research can be conducted to find a dedicated treatment for the patient. The ability to 
accurately reproduce a specific physiological response in a model will, as a result, 
depend on the ability to implement all features that are pertinent to the application 
considered.

This chapter describes how a biophysical model of human atria can be used 
to simulate various types of AF dynamics and, on the basis of this, to evaluate 
and develop therapeutic strategies. Integrated functional computer modeling is 
considered today as a potentially effective solution for translational research in 
which the research results can be translated into clinically applicable therapeutic 
options [14].

The elements of the biophysical model of AF are described in Sect. 4.2. Next, in 
Sect. 4.3, specific variants of the model are presented, aimed at modeling different 
AF dynamics based on different tissue properties. These models were developed to 
reproduce the various dynamical mechanisms of AF suggested as being responsible 
for its polymorphic nature [23]. This section also describes the database of simu-
lated episodes of AF used in the various applications. Different therapies were 
subsequently tested on the specific AF dynamics. With this multifaceted approach, 
a large series of experiments could be conducted on a substrate corresponding to 
the physiological settings of a specific patient. The examples of model-based analysis 
and applications included in this chapter are: a study of the conditions leading to 
the spontaneous termination of AF (Sect. 4.4), the optimization of ablation patterns 
(Sect. 4.5), and the preliminary results of a study on the feasibility of therapeutic 
pacing for AF (Sect. 4.6).

4.2 � Computer Modeling of AF

Several computer models of the human atria have been developed over the last 
decades. Moe et  al. developed the first model of AF in 1964 using cellular 
automata [22]. About 40 years later, more sophisticated models that take into 
account a detailed description of the atrial cellular membrane kinetics together 
with several aspects of the complex atrial anatomy were conceived [8, 28, 36, 38]. 
In 2000, Harrild and Henriquez presented the first membrane-based model of 3D 
conduction in a realistic human atrial geometry [8]. However, the model’s heavy 
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computational demand precluded its use in studies on abnormal activation 
sequences. The design of simplified models that retain the salient features of 
atrial anatomy and electrophysiology has allowed the large-scale simulation of 
abnormal reentrant processes such as atrial arrythmias [36, 38] and associated 
therapies such as AF ablation [5, 28].

4.2.1 � Biophysical Model of Human Atria

The biophysical model used in the material presented in this chapter was developed 
by the Lausanne Heart Group (http://www.lausanneheart.ch) with the aim of simu-
lating several types of dynamics of AF and associated therapies such as ablation 
and pacing. This objective required the simulations of long periods of AF on a 
computer (several minutes or even hours of real-time AF); hence, it was designed 
such that the main aspects of a human atrial geometry were accounted for, while 
keeping computational load tractable [5, 38]. The model consists of three main 
components (Fig. 4.1): (1) realistic atrial geometry, (2) electrical propagation in the 
atrial tissue represented by a grid of atrial units, interconnected via resistors repre-
senting the interconnections of the myocytes at the gap junctions, and (3) atrial 
membrane kinetic model.

Fig. 4.1  The biophysical model of AF and its different components: (1) atrial geometry, (2) atrial 
tissue, and (3) atrial cellular model. Using the same geometry, AF models with different dynamics 
were realized by varying the properties of the atrial substrate

http://www.lausanneheart.ch
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4.2.1.1 � Atrial Geometry

Existing computer models of the atria extract the information about anatomy from 
several sources: commercially available, published atrial datasets [8, 28] or basic 
considerations from anatomy textbooks or devoted literature on atrial dimensions, 
atrial muscle bundles and strands, and propagation velocities [8, 36]. The geometry 
used in our model was derived from magnetic resonance images of the human atria 
segmented slice by slice, with 1 mm spacing [38]. These images formed the basis 
for a 3D atrial surface on which surface smoothing was applied to construct a mesh 
of 100,000 triangular elements (400 mm resolution). The model was given a realistic 
size and geometry, but the thickness of the atrial wall was taken to be infinitesimal 
(monolayer model). The resulting atrial geometry with the orifices for the valves 
and veins is presented in Fig.  4.1, illustrating the tricuspid valve, the two venae 
cavae and the coronary sinus in the right atrium (RA), the mitral valve and the four 
pulmonary veins in the left atrium (LA).

A thick-walled variant of this geometry was also constructed [35]. However, the 
increased computational load of this variant precluded its use in large-scale evaluations 
such as the ones presented in this chapter. This variant was used during incidental 
checks on the nature of the results obtained using the monolayer geometry.

4.2.1.2 � Electrical Propagation in Atrial Tissue

The mathematical formulation of the electrical propagation on the grid of atrial units 
interconnected via resistors has been described previously [38]. In the simplest 
version of the model, these resistors were all given an equal value, resulting in  
a surface with intrinsic homogeneous, isotropic properties. More sophisticated 
versions including anisotropy and heterogeneities in conductivity were also devel-
oped [11]. Fast conduction systems such as the Bachmann’s bundle, the crista 
terminalis, and the pectinate muscles were also included if deemed essential for a 
specific experiment [35].

4.2.1.3 � Atrial Cellular Model

A dynamical activation model, based on membrane channel ion kinetics, was 
assigned to each atrial unit of the grid. In a first step, a variant of the Luo and 
Rudy ventricular model (LR) [20] was used, adapted to atrial cellular properties 
[18]. In a second step, the kinetics of a dedicated atrial cellular model, the 
Courtemanche–Ramirez–Nattel model (CRN) [3], was implemented. This model 
has a much heavier computational load than the LR-model. In these two models, 
channel conductances could be adjusted to mimic specific substrate conditions 
present during AF. In the simplest variant, all cells were assigned homogeneous 
intrinsic kinetics properties. More sophisticated versions included heterogeneities 
in the membrane properties [12].
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4.2.2 � Modeling Different Types of AF

Atrial arrhythmias were initiated in the biophysical model of AF in a similar way 
as in clinical experiments, i.e., using a programmed stimulation protocol or a 
burst-pacing protocol. Burst pacing at 20 Hz near the sinoatrial node was eventually 
selected because it does not require any adjustment of timing of the stimulation 
protocol. In our baseline model of healthy atria, most of the attempts to initiate 
arrhythmias either failed or produced unstable reentrant waves that terminated 
after a few seconds. Conditions favorable for the perpetuation of AF were created 
in a model of pathologic atrial tissue. While using the same atrial geometry, 
different types of sustained AF dynamics could be obtained by using the basic 
atrial kinetics models modified to take into consideration the electrical remod
eling observed during AF and by varying the cellular or conduction properties to 
modify the atrial substrate, as summarized in Fig. 4.1. These models correspond 
to the different AF pathophysiologies proposed as being the cause of AF in the 
human heart [14].

4.2.2.1 � Multiple Wavelet AF

The first AF model was based on a homogeneous atrial tissue using the LR model 
adjusted to mimic electrical remodeling as observed in patients suffering from 
permanent AF, such as a shortening of the action potential duration [13]. The resulting 
AF dynamics revealed multiple reentrant wavelets (three to eight), continuously 
changing in size and direction due to functional or anatomical reentries [13]. This 
reentry can be described by the multiple wavelet hypothesis formulated by Moe 
et al. [22]. It corresponds to the observations made in human mapping experiments, 
classified as type III AF, by Konings et al. [17]. In this variant of our model, AF 
was sustained for more than 10 min, which is the longest simulation ever performed 
in a biophysical model of AF. These conditions were chosen as a basis to test thera-
peutic interventions.

4.2.2.2 � Meandering Wavelet AF

The second AF model was based on a homogeneous atrial tissue having an overall 
slower propagation. It uses the CRN model adjusted to reproduce the restitution  
properties measured in human atrial cells during permanent AF [13, 34]. The result-
ing AF dynamics revealed several meandering wavelets (one to four), commonly 
accompanied by shifting leading circles. This dynamics corresponds to type I or type 
II AF as described by Konings et al. [17]. AF was not sustained for more than 40 s. 
These model specifications were chosen as a basis for studying spontaneous AF 
termination.
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4.2.2.3 � Heterogeneities

Other AF models were developed in which different types of heterogeneities were 
introduced. Patchy heterogeneities in the cellular membrane properties (with a char-
acteristic length scale of 2 cm) were introduced, which led to different AF dynamics 
[12]. A cholinergic AF model resulted in dominant mother rotors, supporting the 
hypothesis in which a single source of stable reentrant wave front maintains a fibril-
latory activity [15, 37]. Similarly, a model variant was created including patchy 
heterogeneities in action potential duration [7].

4.2.2.4 � Focal AF

The last AF model presented here was based on a mechanism different from 
that of functional reentry: the multiple source hypothesis, which postulates that 
a small number of foci is needed to maintain fibrillatory activity. It is now 
known that these foci of rapid ectopic activity, often located inside the pulmo-
nary veins, play a pivotal role in the initiation of AF in humans [9]. In order to 
study this particular situation, a model variant was developed that included 
several focal sources of rapid discharge (placed mainly in the pulmonary veins 
region) [10]. This model was used to study the mechanisms of ablation of focal 
sources.

4.2.3 � Link to Clinical Data

The link between computer simulations and clinical data is crucial for the valida-
tion of computer modeling assumptions and for the translation of research results 
into clinically relevant applications. First, in the computer modeling experiments, 
direct access to transmembrane potentials was available. This transmembrane 
potential was color-coded, red representing a value of 20 mV, and blue the resting 
potential of −80  mV. The complete distribution of instantaneous transmembrane 
potentials over the atrial surface was depicted as potential maps.

Electrical activity of the atria can also be recorded by electrodes in contact with 
the atrial wall (endocardial electrograms). This is the type of signals recorded during 
electrical mapping, either by catheter-guided electrodes during an electrophysiogical 
study or an ablation procedure or by the electrodes of an implantable device (pace-
maker or defibrillator). In our simulations, local endocardial electrograms at virtual 
electrodes positioned at 1  mm from the atrial surface were computed using a 
current source approximation [11]. These simulated electrograms were in agree-
ment with measured electrical mapping data during AF. The advantage of simula-
tions like these is that high-resolution maps over the entire atrial surface can be 
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produced, with maps that are unperturbed by any ongoing ventricular activity, 
movement artifacts, or recording noise.

Finally, the standard 12-lead surface electrocardiogram is the most commonly 
used noninvasive tool for diagnosing cardiac arrhythmias. In our study, it was 
simulated using a thorax model involving the geometries of a healthy subject’s 
torso, lungs, heart, and blood cavities derived from magnetic resonance images 
and using an equivalent double layer source model to compute the atrial compo-
nents of the electrocardiograms [35]. The inclusion of the volume conduction 
model resulted in electrocardiographic signals that are in all aspects similar to 
those observed clinically.

4.3 � Therapeutic Strategies for AF

4.3.1 � Modeling AF Therapies

A computer model able to simulate sustained AF with realistic properties offers 
the possibility of evaluating different therapies for AF. In atrial models, pharma-
cological interventions were simulated by modulating the ion kinetics of the atrial 
units [16]. The effectiveness of surgical or catheter ablation line patterns was 
simulated by modifying the conduction (via the resistivity) of the cardiac cells 
located on the ablation line [5]. Therapeutic pacing, as in overdrive or ATP proto-
cols, was simulated by injecting intracellular current in 3 mm2 areas at different 
locations [33]. Model-based studies of defibrillation have been mostly developed 
in ventricular models [31].

4.3.1.1 � AF Database

The evolving nature of AF was taken into consideration by performing multiple 
simulations for each of the therapeutic strategies studied. After the initiation of AF 
by means of rapid pacing, the evolving nature was accounted for by randomly 
selecting several moments in the ongoing sustained simulated AF (Fig.  4.2) and 
storing the subsequent episodes in a database. This methodology adds a statistical 
dimension to the analysis. In our studies on AF ablation [5, 30] and pacing of AF 
[33], up to 50 different instantaneous transmembrane potentials maps were taken as 
initial conditions for the application of the therapies. These snapshots correspond 
to different states of activity in the tissue, such as the number of wavelets and their 
spatial distribution. A similar approach was also used for the study of spontaneous 
termination of AF, where the elements of the database were chosen as initial condi-
tions from which the system evolved freely until termination [34].
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4.4 � Spontaneous Termination of AF

4.4.1 � Simulation of Spontaneously Terminated Episodes

Spontaneous termination of AF is frequently observed in patients, and this also 
took place in our computer simulations. In patients, within the first 24 h, up to 
50% of cases with a new onset of AF revert to sinus rhythm. However, if the AF 
episode lasted for more than 7 days, the chance of spontaneous cardioversion 
was greatly reduced [19]. So far the mechanisms of this termination are not fully 
understood. Identification of the spontaneous termination mechanisms could 
lead to a better understanding of AF and therefore to the development of more 
effective therapies. It is, however, difficult to study spontaneous AF termination 
episodes in any detail since they are transient and sometimes very short. Clinical 
studies have been conducted mostly on paroxysmal AF observed from 24-h 
Holter recordings [27], mapping experiments [25], or from data collected from 
implantable devices. The use of a biophysical model allows the generation of 
a  high number of spontaneously terminated AF episodes in a spatially more 
complete way than is possible in clinical settings [34]. For the study presented 
below, 50 episodes of spontaneous termination in both the LR and the CRN 
models were observed, and the mechanisms of termination could be studied in 
detail during the 8 s preceding termination.

Fig. 4.2  Creation of an AF database for the simulation of spontaneous termination and therapeutic 
strategies for AF. AF was initiated with a rapid pacing at the sinoatrial node (SAN) region at 20 Hz 
during 3  s. When pacing was stopped, sustained AF was obtained, and the AF database was 
constructed by randomly selecting instantaneous transmembrane potential maps at different time 
instants. A black-and-white scale was used here, black representing a value of 20 mV and white the 
resting potential of −80 mV
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4.4.2 � Temporal Scales of Termination

To assess the time scales involved in the AF termination process, the following 
parameters were assessed: the duration of the AF episode, the temporal evolution 
of AF cycle length (AFCL), and the AF dynamics characterized by the number 
of wave fronts (#WF) present in the atria [34]. Each measure was systematically 
performed globally in both atria, and separately in the RA and the LA (Fig. 4.3). 
In  the LR model, mean AF episode duration was 58.5 ± 56.2  s. AFCL and #WF 
started to increase on a global scale at about 1,600 ms prior to termination, for both 
the RA and the LA. However, a consistently higher #WF was found in the RA, 
while instants with faster AF (shorter AFCL) were observed in the LA. In the CRN 
model, mean AF episode duration was 8.5 ± 7.1 s and therefore shorter than for the 
LR model. The AFCL started to increase about 3 s before termination on a global 
scale but 800 ms earlier in the LA than in the RA. In a similar way, #WF started to 
decrease 1,800 ms earlier in the LA than in the RA. An asymmetry in dynamics 
between atria, even for a homogeneous substrate, was observed in the CRN model. 
Clinical observations in humans indicate that distinct frequency changes in the 

Fig. 4.3  Spontaneous termination in the Luo-Rudy (LR) and the Courtemanche–Ramirez–Nattel 
(CRN) models. The mean temporal evolution of AFCL and #WF during the 8 s preceding termina-
tion are shown for the two different models. For each model, instantaneous transmembrane poten-
tial maps for an example of AF termination episode are also presented. A color scale was used 
here, red representing a value of 20 mV and blue the resting potential of −80 mV
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process of spontaneous termination occur during the last few seconds before 
termination [27]. Ndrepepa et al. showed that the earliest detectable event prior to 
AF termination occurred on average 4  s before termination with a significant 
increase of cycle length in the LA first of all, followed by an increase in the RA 
about 1 s later [25]. In our simulations, a similar observation was made when using 
the CRN kinetics model. However, when using a model with a different AF dynamics, 
the LR model, the temporal dynamics of the spontaneous termination was different. 
Further investigations will be devoted to the precise description and understanding 
of these mechanisms.

4.4.3 � Spatial Scales of Termination

The spatial aspect of termination was assessed through a visual inspection of the 
extinction of the last active reentrant wave front before AF termination. In most 
cases, this last wave front was annihilated by one or several collisions, generating 
a larger wave front resembling normal activation, which died out in one of the 
extremities of the geometry. Therefore, the extinction site was the location where 
AF terminated, but not necessarily where electrical activity died.

In the LR model, no significant difference (p = 0.1096) was found between the 
number of episodes with an extinction site in the left atrium (21/50, 42%) and 
the number of episodes terminating in the right atrium (29/50, 58%). Therefore, 
AF based on multiple wavelets reentries did not terminate predominantly at a 
specific anatomic location on the atrium.

In the CRN model, significantly fewer episodes (p < 0.001) terminated in the LA 
(9/50, 18%) compared to the RA (41/50, 82%). This is very different from what has 
been observed in the LR model using the same atrial geometry. The role of atrial 
geometry still needs to be analyzed further. Model-based analysis is essential for 
understanding the spatial patterns involved in AF termination and its dependence 
on the underlying dynamics. This is a field where computer modeling offers unique 
possibilities since these detailed observations cannot be easily performed in clinical 
studies based on surface electrocardiograms or mapping data with a limited number 
of electrodes.

4.5 � Ablation of AF

Surgical ablation of AF aims at creating lines of block to interrupt electrical 
conduction and to prevent the AF reentrant process, the gold standard being the 
Maze III procedure developed by Cox et al. [4]. This complex ablation procedure 
has proven to be effective in treating chronic AF, but it can be time-consuming and 
associated with a risk of serious complications. Therefore, less-invasive radiofre-
quency catheter ablation alternatives were developed and investigated clinically. 
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However, the ideal location and number of ablation lines, their best connection, and 
appropriate length still remain to be determined.

Different ablation patterns were systematically studied in the biophysical model of 
chronic AF. For each pattern evaluated, results were averaged over 10–40 AF 
initial conditions on which a specific ablation pattern was applied instantaneously. 
The simulation results confirmed that the most complex ablation patterns led both to 
the best success rate and shortest time to AF termination. Ablation patterns involving 
lines in the right or left atrium only led to success ranges of 20–60% and 55–80%, 
respectively, while those combining lines in both atria showed an increased rate in the 
range 80–100% [30]. The best results were obtained with the Maze III pattern: 100% 
success rate in the biophysical model, which is in the upper range of clinical data 
showing a long-term success rate ranging from 80 to 99% [4]. Figure 4.4 shows an 
example of AF termination using this ablation pattern. Simulations studies were also 
directed at finding ablation patterns reproducing the maximum conversion rate of 100% 
obtained with the Maze III procedure while using a minimum number of lesions [30]. 

Fig. 4.4  Example of a successful ablation in the biophysical model of AF with the Maze III 
pattern (represented in the upper left box). t = 0 ms: AF initial condition, t = 965 ms: last reentry 
in the LA, t = 1,105 ms: last reentry in anterior RA, t = 1,400 ms: last reentry in posterior RA, 
t = 1,565 ms: uniform propagation wave fronts, t = 1,800 ms: uniform propagation wave front with 
prolonged action potential duration, t = 2,015 ms: final activity just before termination
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This was the case for the patterns combining an isolation of the pulmonary veins, the 
left isthmus line, and the line between vena cavae in the right atrium.

A comparison between in silico ablation results obtained in the biophysical 
model and in  vivo data from patients who underwent radiofrequency ablation 
showed a positive correlation for conversion rates to sinus rhythm and residual atrial 
flutter [29]. Computer modeling offers the possibility to test ablation line patterns 
in a reversible way in a human model, to test patterns not generally performed in 
clinical experiments, to observe the AF termination process in detail, and to study 
the impact of imperfections that may be present in the ablation lines.

4.6 � Pacing of AF

Several ATP techniques such as burst or ramp pacing are currently used clinically 
to terminate atrial tachycardia or atrial flutter. Pacing treatment has the advantage 
over electrical cardioversion in that the therapy is painless and the energy cost 
negligible. However, no ATP therapy has proved to be effective in terminating AF, 
probably due to its more complex dynamics, the variable number of wavelets and 
the smaller variable excitable gap [21]. On the other hand, the possibility of local 
atrial capture by rapid pacing has been shown in animal and human experiments 
during electrically induced or spontaneous AF [1, 6, 26]. The resulting paced AF 
cycle length was smaller than the original one and did not lead to termination but 
sometimes to a loss of capture.

To study these processes, we implemented and tested an ATP algorithm currently 
used in pacemakers, namely, burst pacing, and determined the optimal pacing sites 
and pacing periods leading to local capture of AF. We followed a methodology similar 
to that used in our previous studies on AF ablation, and for each pacing protocol 
tested, the results were the average values obtained following three different initial AF 
conditions [33].

4.6.1 � Pacing Protocol and Assessment of AF Capture

The pacing protocol is presented in Fig. 4.5. Burst pacing at constant cycle length was 
applied during 30 s, at 20–110% AFCL with 5% increments. Five pacing sites were 
evaluated: two sites in the RA, two sites in the LA, and one on the septum between 
both atria. Capture was defined as the ability of the pacing burst to take control over 
an area with a radius greater than 2 cm around the pacing site for a minimum of five 
consecutive beats. This definition was related to local capture around the pacing site, 
not to the generalized capture of both atria. Three different measures were used to 
describe the results. The capture interval was the pacing period interval (expressed in 
percentage of AFCL) for which capture was observed during more than 50% of the 
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time. Within this capture interval, time to capture was defined as the duration from the 
start of ATP pacing to the onset of the first capture episode, thus providing an indica-
tion of how rapidly capture was achieved. Finally, capture robustness was used as a 
measure of the ability to sustain capture, computed as the percentage of time spent in 
capture between the first capture episode and the end of the pacing protocol.

4.6.2 � AF Pacing Results

Capture results for the different pacing sites and the burst pacing protocol are 
summarized in Fig. 4.6. The optimal pacing period was similar for all pacing sites 
when computed as a percentage of the AFCL measured at the pacing location 
(68–83%), except for the isthmus pacing where a very narrow capture interval 
with only brief episodes of captures was observed. The expression of the capture 
interval as a percentage of AFCL allowed us to be independent of a specific AF 
cycle length and to compare results for the different pacing sites, even if longer 
AFCL were observed at some locations such as the septum. No significant differ-
ence was observed between the times to capture at the different pacing locations. 
Higher capture robustness was found in the right atrial free wall, the left atrial 

Fig. 4.5  Protocol for the simulation of AF pacing in the biophysical model of AF. Three initial 
conditions were extracted from the AF database. The burst pacing protocol was then tested at five 
different pacing sites. Local capture was assessed 2 cm away from the pacing site. Results were 
averaged on the different AF initial conditions and three measures describing the capture were 
computed
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appendage, and the pulmonary veins compared with the isthmus or the septum. 
However, when pacing only in one atrium, control in both atria was not observed. 
Obtaining capture in both atria was found possible only when pacing in the septum, 
although being far less robust. Figure 4.6 presents the spatial repartition of the 
wave fronts following capture for the different pacing sites. The wave fronts 
induced by pacing encompassed for some locations the major part of the paced 
atrium. However, this was often accompanied by residual waves outside the 
area of capture. AF termination was not possible due to the fact that a slowing 
down or an abrupt stop of the pacing protocol allowed these residual wavelets to 
penetrate the captured area and to reinitiate AF. These observations of capture loss 
are consistent with experimental data [6]. Taken together, these results suggest that 
modeling studies can be helpful in the optimization of pacing protocols for AF 
treatment. We found that ATP algorithms working well for slower atrial tachyar-
rhythmias cannot be directly transposed to terminate AF, which is faster and less 
organized. Nevertheless, parameters such as pacing sites and frequencies can be 
optimized to maximize pacing efficacy. This explorative study was based on three 
initial conditions. More simulations will be needed to define precisely optimal 
pacing protocols for AF, and to explain the underlying mechanisms of AF control 
and pace termination.

Fig. 4.6  Simulations results for AF pacing. For each of the five pacing sites, capture results are 
expressed with the capture interval, the time to capture, and the capture robustness. Three instan-
taneous transmembrane potential maps of AF activity during burst pacing at optimal frequency are 
also shown. The instantaneous transmembrane potential map on the right shows a time instant 
where the most favorable capture was achieved with the captured wave fronts induced by pacing 
highlighted in red
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4.7 � Conclusion

This chapter shows how a biophysical model can be used to increase our understanding 
of AF. It permits the simulation of different AF dynamics, the evaluation of the mecha-
nisms of spontaneous termination, and the study of currently used therapies for AF. 
The advantage of a computer modeling approach over clinical experiments lies in the 
possibility of performing systematic studies at detailed temporal and spatial scales, and 
thus offering a deeper insight into the underlying pathophysiological processes. While 
the biophysical model presented here is simplified in many aspects, the simulations are 
complex enough to reproduce observations made in humans, both in terms of obtained 
AF dynamics and the effectiveness of therapies. Today, with the emergence of math-
ematical models of increasing complexity, the challenge remains to reproduce 
phenomena with the least possible number of relevant parameters and, most impor-
tantly, to be able to have a close match to clinical observations [2]. The ability to repro-
duce a specific AF dynamics corresponding to a single patient makes this modeling 
framework attractive for dedicated experiments. Hopefully, such an approach will 
make a better translation of research results into therapeutic options possible. An 
improved understanding of the initiating and perpetuating factors of AF in individual 
patients will enhance the development of mechanism-based therapies.
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5.1 � Introduction

Decision-making in critical care occurs on a time scale of hours, minutes, or even 
seconds and requires synthesizing large amounts of patient-specific (PS) data. It is 
therefore sensible to make use of PS modeling applications in critical care since 
they offer tools for integrating disparate data into a single system view and leverage 
computing power to provide decision support information in a timely manner. PS 
modeling can be used to aid diagnosis, to estimate occult physiological variables, 
and to test potential therapies in silico before administering them to a patient. They 
can therefore help clinicians determine what happened to the patient in the past, 
what is happening in the present, and what will happen in the future.

PS models are computational representations of human anatomy, physiology, or 
pathology that are tuned to match data from one individual as opposed to data from 
a population. These models supply clinicians with decision support information that 
is applicable to a single patient rather than a patient group. Generally, PS modeling 
systems developed for critical care scenarios must be computationally tractable 
enough to provide this decision support information in real or near-real time. This is 
an important distinction between critical care PS models and those developed for 
less time-sensitive scenarios (such as predicting a patient’s response to cardiac 
resynchronization therapy, for example (Chap. 10, [18, 19])). Because computa-
tional timeliness is an issue, critical care PS models are usually limited to algebraic 
or ordinary differential equations (ODEs) and are optimized to simulate only those 
PS features that are essential for providing accurate decision support information. 
Hence, researchers in critical care PS modeling often adopt a “simple first” approach 
to model development. The goal of this approach is to identify effective, “minimal 
models” that keep computational burdens small but still provide accurate decision 
support information. Minimal models also have the advantage of being easier to 
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understand and use once deployed. This advantage is crucial because in time-sensitive 
scenarios, it is essential to optimize not only the computational overhead of the 
modeling system being used but also the user’s interaction with the system.

Critical care environments are often data-rich, since clinicians must monitor 
unstable patients thoroughly and continuously. Therefore, critical care PS modelers 
have the advantage of access to large amounts of detailed physiological data. 
Modelers can leverage this abundance to create PS simulations that are accurate on 
a high-resolution time scale, a luxury often unavailable outside the critical care 
setting. By representing a patient systemically, rather than in a reductionist manner, 
PS models can coalesce these large critical care datasets into a single, coherent 
picture of a patient’s status. For example, given a PS hemodynamic model, ECG 
signals can be used to drive the simulated heart, from which the blood flow can be 
obtained. The latter can be constrained by afterload data derived from the patient’s 
arterial catheter.

Despite over a century of quantitative biological modeling, only recently has 
the  store of biological knowledge and computational power become sufficient 
to  achieve the long-sought goal of applying PS quantitative modeling to real- 
time clinical decision-making. The first section of this chapter describes several 
examples of recent PS modeling applications in critical care, some of which are 
based on models created decades earlier. Working from these examples, the second 
section describes the major challenges currently faced by researchers in critical 
care PS modeling.

5.2 � Examples of Patient-Specific Modeling in Critical Care

Although the field of applied PS modeling is relatively young, some important 
examples of applications in critical care exist. Many involve simulating cardiovas-
cular or blood glucose dynamics, as these systems must be managed closely in the 
critical care environment.

5.2.1 � Hemodynamic Models

Maintaining a patient’s hemodynamic homeostasis is a primary task in critical care, 
and it is not surprising that many critical care PS models simulate cardiovascular 
dynamics. Figure 5.1a shows a basic example of a hemodynamic model used for 
estimating a patient’s systemic vascular resistance (SVR). Given its simplicity, one 
may not think of this as a PS model in the modern sense, but it is nonetheless a 
computational representation of a patient’s physiology, which is parameterized to 
match PS pressure and flow data. This particular model is based on the fluid analog of 
Ohm’s Law. As Ohm’s Law relates voltage and current to electrical resistance, the fluid 
analog relates a pressure difference and fluid flow to fluid resistance. This model, 
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which has been in use for decades, treats the systemic vasculature as a single resis-
tive element. It is computationally simple and provides an estimate of an important 
physiological variable that helps medical decision-making.

Figure 5.1b illustrates a more complicated hemodynamic model based on fluid 
analogs of electrical transmission laws. The model uses a collection of Windkessel 
(“wind-chamber,” see below) compartments [10, 32] to simulate segments in the 
circulation that not only provide energy loss via resistive pathways but also energy 

a

b

Fig.  5.1  Lumped-parameter, hemodynamic models. (a) A simple electrical analog model of 
blood flow through the systemic vasculature for estimating systemic vascular resistance. 
(b) A more complex electrical analog model that simulates blood pressures, flows, and volumes 
throughout the cardiovascular system
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storage via vessel compliance. This kind of formulation allows the modeler to 
account for blood volumes (analogous to electrical charge) throughout circulatory 
compartments along with blood pressures and flows. Although this model does not 
directly correspond to any published PS modeling application, it is used here to 
illustrate a common modeling technique used in hemodynamic simulations. The 
code for the model in Fig. 5.1b includes a set of algebraic equations and ODEs that 
are solved using numerical, as opposed to analytical, methods. In the interest of 
model sharing and reproducibility, this code is presented in the appendix. It is written 
in the Mathematical Modeling Language (MML) used for simulations within the 
free JSim environment [17]. A digital copy of the original model file is also available 
from the author upon request.

The hemodynamic modeling techniques used to create the models in Fig. 5.1 are 
by no means new (see, for example, [30]). These so-called “lumped parameter” 
models (they lump groups of resistive and/or capacitive elements together) have 
been used in the past to estimate cardiac output (CO) [8, 25, 38], to study the effects 
of orthostatic stress on the cardiovascular system [15], to analyze the Valsalva and 
Forced Vital Capacity maneuvers [23], to predict hemodynamics in traumatic brain 
injury patients [37] (see below), and to create educational tools in physiology [7, 34]. 
However, it is only within the last 10–20 years that computing power has increased 
to the point where models of this complexity can be solved within a time frame that 
is realistic for critical care decision-making.

5.2.1.1 � Cardiac Output Estimation

The gold-standard measurement of CO is thermodilution, a procedure that requires an 
indwelling catheter. Therefore, less-invasive means of obtaining accurate CO would 
substantially reduce patient health risks. Emphasizing this fact, Kouchoukos et al. [20] 
referred to the creation of a reliable, noninvasive continuous CO measurement tech-
nique as an “El Dorado.” Several researchers have explored the use of models like those 
in Fig. 5.1 for estimating cardiac output (CO) from more readily available, less risky 
continuous measurements like arterial blood pressure (ABP) and heart rate (HR).

The origins of the hemodynamic models applied to the problem of CO estima-
tion can be traced to work done by Otto Frank over 100 years ago [10, 32]. In 1899, 
Frank published the first major quantitative study that related systemic arterial 
system properties to arterial pressures and flows. His widely used Windkessel 
model, which simulates a compliant, fluid-filled chamber, laid the foundation for 
much of the hemodynamic modeling work that has followed, including model-
based CO estimation studies.

One of the first PS model-based CO estimation methods to emerge was that of 
Wesseling et al. [38]. Their “Model Flow” method relies on a simple three-element 
Windkessel model of blood flow out of the left ventricle and into the systemic circula-
tion. In order to compute a continuous CO estimate, this method relies on PS age, ABP, 
and HR data along with an initial CO measurement used to calibrate the model.

A recent study by De Wilde et  al. [8] also describes the development of a 
model-based CO estimation technique called Hemac that is similar to the Wesseling 
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Model Flow method. Whereas the Model Flow method uses an aortic pressure–
volume relationship (compliance) based on population-averaged in vitro data, the 
Hemac method bases the relationship on PS data obtained from in vivo measure-
ments on the aorta. In a recent clinical study, authors showed that the Model Flow 
and Hemac CO estimation methods were more accurate than three other methods 
not based on models, including the commercially available LiDCO CO estimation 
system [22]. However, this particular study was limited to 24 surgical patients 
without congestive heart failure, with normal heart rhythm and reasonable periph-
eral circulation. Indeed, one of the current challenges in the field of CO estimation 
is to demonstrate a method’s utility across a broad spectrum of patient conditions.

Neal and Bassingthwaighte [25] have also recently published a model-based 
CO and total blood volume estimation method using a hemodynamic model similar 
to the one in Fig.  5.1b. Based on the work of Lu et  al. [23], their model was 
constructed using a network of Windkessel compartments that simulate blood 
pressures, flows, and volumes in a 21-segment representation of the cardiovascular 
system. The authors created an algorithm that tuned this hemodynamic model to 
match a baseline set of hemodynamics from a given subject. The tuned parameters 
were then used in an open-loop version of the model to estimate CO from mean 
ABP and HR data obtained from single subjects. Unlike other CO estimation tech-
niques, this method does not require an invasively obtained ABP curve, but uses 
mean ABP instead, which can be estimated noninvasively. Although the Neal and 
Bassingthwaighte CO estimation method provided good estimates of CO in preclinical 
studies, the tuning procedure used to match baseline PS data took hours to com-
pute using commercially available desktop processing power. This bottleneck 
must be removed either through an increase in computational power or a simplifi-
cation of the tuning process and/or model design before such a method becomes 
viable in a critical care setting.

Exemplified by the Neal and Bassingthwaighte model, one of the major chal-
lenges in PS modeling lies in creating computationally efficient tuning methods for 
matching model output to PS data. These methods can be time-intensive, since 
multiple model runs are often required to complete the tuning process. Researchers 
have addressed this issue recently and created methods for reducing the burden of 
parameter tuning in detailed hemodynamic models [14, 29]. These methods are 
discussed below in Sect. 5.3, “Current challenges.”

5.2.1.2 � Simulating Response to Traumatic Brain Injury

Hemodynamic PS modeling has also been applied to the treatment of traumatic 
brain injury in pediatric patients. Wakeland et al. [37] developed a six-compartment 
ODE-based model that simulates blood pressures, volumes, and flows in intracranial 
arteries, capillaries, and volumes. The model also simulates the aggregated CSF 
volume, brain tissue volume, and (if applicable) intra- and extracranial hematoma 
volumes. In a clinical study, researchers used this model to anticipate individual 
patients’ responses to head of bed tilt and respiratory rate change therapies. They 
first tuned the model to PS hemodynamic data obtained from an initial instance of 
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one of these physiological challenges. Then, using the newly parameterized model, 
they simulated the effects of future challenges, and compared the model’s predic-
tions of intracranial pressure with data from actual challenges performed during 
the same therapy session (within 2–3 h) and in subsequent sessions performed on 
other days. The researchers demonstrated that their PS modeling system could be 
implemented in a critical care environment and used to make predictions about indi-
vidual patient’s responses to traumatic brain injury therapy. However, they obtained 
only modest success when they validated model predictions against data from nine 
pediatric ICU patients. Model predictions made within a single therapy session were 
favorable in 27% of these cases, and those made between sessions were favorable in 
10% of cases. Wakeland et al. propose that their system may be improved by adding 
more physiological detail to their model and by incorporating higher resolution clinical 
data. Additionally, as in the Neal and Bassingthwaighte model, the Wakeland et al. PS 
modeling application requires a significant amount of time for model tuning (in excess 
of 20 min) and stands to benefit from more efficient tuning methods and increases 
in computing power.

5.2.2 � Models of Glucose and Insulin Dynamics

The management of blood glucose levels in ICU patients is also a major challenge 
in critical care. Even nondiabetic patients can suffer from hyperglycemia in the 
ICU, a condition that worsens hospital outcomes due to increased susceptibility to 
infection, myocardial infarction, and other illnesses. At the same time, improper 
treatment of hyperglycemia can result in hypoglycemia, which is also associated 
with impaired outcomes.

5.2.2.1 � Controlling Blood Glucose Levels

PS models have recently been applied to predict and control blood glucose levels in 
ICU patients at risk for hyper- and hypoglycemia. Van Herpe et al. [36] developed a 
system for predicting blood glucose levels in ICU patients based on system identifica-
tion techniques. In this method, the underlying physiological system responsible for 
glucose dynamics is treated as a black box, and optimization methods are used to 
find an empirically-based, single-equation model that accurately relates a set of input 
data (initial blood glucose levels, body temperature, flow of carbohydrate calories, etc.) 
to output data (predicted blood glucose levels). They demonstrated that an adaptive 
modeling system that alters their model to account for PS features was more accurate 
in predicting future blood glucose values in the ICU.

In 2008, Chase and colleagues [5] published a clinical validation study assessing 
the impact on patient mortality of a PS model-based glucose control system imple-
mented in an ICU. They showed that their “Specialised Relative Insulin Nutrition 
Tables” (SPRINT) system reduced the hospital mortality of ICU patients by 26% 
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for those staying 3 days or more. Mortality was reduced by 32% for patients staying 
4 days or more and 35% for patients staying 5 days or more. This study provides 
an important example of a PS modeling application that has passed through the 
processes of design, development, preclinical testing and clinical testing and 
emerged as a valuable tool for the ICU. Time will tell whether SPRINT is widely 
adopted as a standard of care.

There are several important features of the SPRINT system that contribute to its 
success. First, the system is based on a time-tested model of insulin and glucose 
dynamics called the Bergman minimal model [2, 3]. This ODE-based model simulates 
time courses of insulin and glucose following injection of insulin into a patient’s blood-
stream. By tuning the model parameters to match PS data obtained from intravenous 
glucose tolerance tests, the model provides indexes of a patient’s insulin sensitivity, 
glucose effectiveness, and first-phase insulin response. These three model parameters 
provide the ICU clinician with a thorough view of a patient’s glucose homeostasis, and 
can help guide the administration of insulin for controlling blood glucose levels.

The Bergman model’s simplicity has likely contributed to its viability and adop-
tion as a clinical and educational tool. SPRINT is based on an extended Bergman 
model but is still simple enough to be translated into a paper-based protocol in an 
ICU. Thus, no interaction with a computer is required to employ the SPRINT system 
and model results can be retrieved immediately. As shown by the reductions in 
mortality of the large patient population studied by Chase et  al., this minimal 
approach to PS modeling can prove effective despite its simplicity.

To further illustrate the value of blood glucose modeling, researchers have recently 
found that the insulin sensitivity variable computed by the SPRINT model can be 
used as a negative predictor of sepsis in ICU patients [28]. This provides an example 
of how PS modeling can help clinicians with challenging diagnostic tasks and also 
demonstrates an important, perhaps overlooked value in model-based estimation of 
physiological variables. As surrogates for unavailable or overly risky in vivo measure-
ments, these variables can be used as additional biomarkers to aid clinical diagnoses 
and prognoses. To provide a second example, Neal and Bassingthwaighte found that 
their model-derived total blood volume loss estimates predicted survival/nonsurvival 
following severe hemorrhage in pigs [25]. Obtaining an actual total blood volume 
measurement on a person (or a pig) in a critical care scenario is not feasible; therefore, 
clinicians have no way of knowing the predictive value of this variable for survival, 
time to death, etc. However, a model-based estimate of total blood volume can be 
used as a surrogate measurement and can be tested for its predictive value, as can any 
other physiological variable computed by a PS model.

5.3 � Current Challenges

Although much progress has been made in applying computational PS modeling 
systems to challenges in critical care, these applications have yet to become widely 
adopted standards. Considering the computational power presently available to 
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clinicians and the fact that PS models used in critical care must often rely on time-
tested, minimal models, it is somewhat surprising that more success stories of 
applied PS modeling in critical care do not exist. The field of PS modeling as a 
whole is young, and researchers face many challenges in translating modeling work 
performed in the biomedical research realm into useful, clinically validated tools.

5.3.1 � Clinical Validation

Many current efforts in PS modeling for critical care are at the stage where compu-
tationally timely models have been built and can be parameterized to match indi-
vidual patient data, but have yet to be validated against large-n clinical data sets [27]. 
These kinds of validation studies can be financially and temporally expensive since 
they require IRB approval, patient recruitment, and data collection. It is only after 
data have been collected from human subjects that the iterative cycle of refining the 
PS modeling application under development begins.

During the validation process researchers often find that their models need to 
be revised to generate accurate simulations. This process can involve increasing the 
model’s detail, replacing/editing components of the model, or testing out an 
entirely new model design. Such revisions can be cumbersome and difficult, espe-
cially with models of higher complexity. Currently, researchers have access to few 
tools that would make the revision of more complex models less cumbersome and 
error-prone. The potential utility of a modular modeling approach that addresses 
these issues is discussed below in the “Model interoperability” section.

As discussed by Neal and Kerckhoffs [27], even when researchers are able to 
successfully test and validate their PS models against a significant number of patients, 
the question remains whether their system, once deployed, will actually effect clinical 
decision-making and improve patient outcomes. Whereas large-n validation studies 
have been the traditional endpoint of biosimulation modeling research, PS modelers 
will be faced with the additional task of deploying PS modeling systems into a clinical 
setting and demonstrating their effectiveness as decision support tools. The process 
does not end there, however. In order for a PS modeling system to become a standard 
of care it will require approval by the FDA, or similar regulatory agencies in other 
countries as a medical device.

5.3.2 � Timely Tuning Methods

One of the challenges in using more modern, detailed physiological models to 
simulate PS phenomena lies in tuning the models to match PS data. Whereas a 
simple fluid dynamics model like that of Wesseling et al. [38] has a minimum number 
of free parameters to adjust, a more sophisticated, multicompartment model like 
that of Neal and Bassingthwaighte requires tuning scores of parameter values. In 
lieu of this computational hurdle, researchers have created more streamlined tuning 
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procedures for multicompartment hemodynamic models. For example, Pope et al. 
[29] employed parameter sensitivity and subset selection methods to reduce the 
complexity of a multicompartment cardiovascular model used to identify biomarkers 
that distinguish between healthy young and elderly populations. Additionally, Hann 
et al. [14] developed an “integral-based parameter identification method” that can 
be used to quickly and accurately tune a minimal cardiovascular model to match PS 
data. This integral-based approach was also applied in creating the successful SPRINT 
system discussed above. Models that employ adaptation rules also seem promising 
in reducing the number of parameters (Chap. 2).

5.3.3 � Variability in Patient Anatomy, Physiology  
and Clinical Scenario

Each patient in a critical care scenario is unique, and the importance of developing 
accurate, automated tuning algorithms that account for differences between patients 
cannot be overstated. However, if a patient presents with a feature that violates 
the underlying assumptions of a model, often the only way to account for this abnor-
mality is to change the equations of the model itself. For example, suppose a clinician 
would like to use a cardiovascular model such as that in Fig. 5.1b to simulate the 
hemodynamics of an infant undergoing surgery to repair Tetralogy of Fallot. In this 
case, the patient’s anatomy is different from the anatomy assumed in the computa-
tional model, due to a ventricular septal defect and overriding aorta. The clinician 
will require a new model that includes an abnormal arrangement of blood flow 
before and possibly after the surgical procedure (because the end goal of some heart 
defect surgeries is a noncanonical arrangement of blood flow). Furthermore, if a cardio-
pulmonary bypass (CPB) machine is employed during the surgical procedure, the 
simulation must account for its use as well. None of these conditions would be present 
in a model that assumes canonical cardiovascular anatomy. Therefore, given the 
anatomical and physiological variation present in humans and the variation in clinical 
scenarios between patients, there is a general challenge to devise a modeling approach 
that can readily account for this diversity. This challenge must be addressed if PS 
modeling is to realize its full potential in critical care.

There are two solutions to this challenge: precoordination and postcoordination of 
models. Pre-coordinating models to account for the variations in blood flow described 
above would require modeling each possible noncanonical blood flow arrangement 
ahead of time, either using separate models for each arrangement, or model “switches” 
that toggle between flow arrangements in a single model. This solution requires 
model developers to anticipate every possible noncanonical arrangement of blood 
flow whether due to patient anatomy or the application of artificial shunting mecha-
nisms (such as a CPB machine). The approach presents a potentially intractable 
combinatorial problem, given the number of separate models or switchable model 
subcomponents that must be created to account for all blood flow arrangements.

A more scalable, manageable, and flexible approach to this complex problem is 
to postcoordinate the models. In this approach, users have access to a repository of 
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smaller, interoperable, modular models that can be recombined “on the fly” to 
simulate a wide variety of PS conditions. For example, if a patient goes on CPB, a 
CPB module can be retrieved from the repository, and then merged with a PS 
systemic circulation model (perhaps extracted from the system in Fig.  5.1b) to 
simulate the rerouting of the patient’s blood flow through the bypass machine. As 
a design principle, modularity is a time-tested method of dealing with complexity [1], 
and it has been leveraged in a myriad of industrial fields to organize and optimize 
the creation of complex products [33]. A modular approach to PS modeling would theo-
retically provide a means for clinicians to create PS models across a wide spectrum 
of clinical cases. In the next section, I provide more details on biosimulation model 
interoperability and its applicability in creating PS models for critical care.

5.3.4 � Model Interoperability

Because modelers usually choose to code in whatever simulation language is most 
comfortable for them, published physiological models that may have applicability in 
critical care are coded in a variety of languages for a variety of simulation platforms. 
Consequently, these models are not readily shareable or reproducible between research 
groups. Model code often languishes on laboratory hard drives when it could be built 
upon and/or repurposed to address clinically relevant problems. Some researchers have 
tackled this issue and developed methods that facilitate the reuse of published biosimu-
lation models. For example, systems biologists, who focus on modeling chemical 
networks, have created a number of standards for model reproduction among their 
research community. The Systems Biology Markup Language (SBML [16]), an XML-
based model description format, is one such standard that acts as a lingua franca for 
encoding chemical network models. Using a common set of SBML parsing and simula-
tion tools, systems biologists can readily reuse models coded by independent research 
groups. The systems biology community has also created other standards for curating 
published models in a centralized database [21] and for describing the tasks required 
for the reproduction of published model results [24].

This work within the systems biology community is an example of a success story 
in addressing the larger issue of biosimulation model interoperability. However, a 
standard like SBML does not scale beyond the chemical network domain. Furthermore, 
most of the modeling applications described above simulate phenomena at the tissue 
or organ level. Therefore, as discussed by Neal and Kerckhoffs [27], to encourage 
model interoperability, the PS modeling community needs standards for describing, 
curating, and reproducing models that scale beyond chemical networks to include 
higher levels of biological organization. These standards can be applied not only as 
part of the modular, postcoordination PS modeling approach described above but also 
to encourage model reuse and development among the greater modeling community.

Currently, the most ambitious attempt to create a model description standard that 
applies across physical modeling scales and modeling languages is the Semantic 
Simulation (SemSim) approach [26]. In this approach, the codewords and mathematical 
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dependencies of existing biosimulation models are annotated against concepts in 
standardized reference sources like the Foundational Model of Anatomy (FMA, [31]), 
the Gene Ontology (GO, [13]), the Chemical Entities of Biological Interest (ChEBI) 
ontology [9], and the Ontology of Physics for Biology (OPB, [6]). Once annotated 
within the SemSim format, physiological models become semantically interoperable, 
allowing for more automation of common modeling tasks. When a user combines mul-
tiple SemSim models, the merged model not only compiles, but also is biologically 
meaningful. For example, a user may want to combine a heart model with a systemic 
circulatory model. Suppose both models include a codeword that gives values for left 
ventricular (LV) outflow but in the heart model this codeword is a variable output, 
whereas LV outflow is a static parameter in the systemic circulatory model. Semantic 
interoperability helps automate the merging of these models into a biologically mean-
ingful result. Cast in the SemSim format, a computer can recognize that both models 
simulate LV outflow, and thus, the user may want to couple the models at that point so 
that LV outflow from the heart model replaces the static LV outflow codeword in the 
systemic circulatory model. Without semantic composability, there is no way to auto-
mate this merging process beyond simply copying blocks of code from one model into 
another, and in doing so, there is no guarantee that the result will be biologically con-
sistent. With semantic interoperability, a computer can recognize that having two different 
codewords that simulate the same physical property is contradictory, and can prompt the 
user to resolve the contradiction, thus retaining biological meaning in the merged model.

Semantic interoperability is just one level of model interoperability and is an impor-
tant step in reaching even higher, more powerful levels of interoperability. The US 
military, specifically the Simulation Interoperability Standards Organization (SISO), 
has been researching this issue to optimize the creation of defense-related simulations. 
Tolk et al. [35] define six levels of interoperability for simulation systems: technical, 
syntactic, semantic, pragmatic, dynamic, and conceptual.

•	 Technical interoperability. A protocol exists for exchanging data (bits) between 
participating model components.

•	 Syntactic interoperability. A common data format is applied to share informa-
tion between model components.

•	 Semantic interoperability. The meaning of the data is shared between model 
components.

•	 Pragmatic interoperability. The use of the data (i.e., the context of its applica-
tion) is shared between model components.

•	 Dynamic interoperability. Components react to time-dependent changes in their 
internal assumptions and constraints. The effect of the system’s operation is 
shared between model components.

•	 Conceptual interoperability. Model components share a common understanding 
of the assumptions and constraints of a simulation’s abstraction of reality.

Presently, most interoperability solutions in software engineering and simulation 
only provide the technical and syntactic levels. However, researchers are now 
exploring how Semantic Web technologies can help realize semantic and pragmatic 
interoperability for simulations [4, 11, 12, 26].
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The issue of model interoperability has been stressed here because to fully tap 
the potential of PS modeling in critical care, modeling applications must be able to 
account for unforeseen patient conditions, must be designed for use by nonengineers, 
and must be optimized for efficiency. A modular approach using minimal, opti-
mized, interoperable models is the most logical design paradigm that addresses all 
of these issues. Although a challenging area of research, model interoperability is 
a potentially powerful catalyst for the development of PS modeling in critical care. 
A modular modeling approach will also help streamline the cumbersome, iterative 
model design cycle discussed above by eliminating common hand-coding tasks and 
coding-related errors.

This being said, modular PS modeling has its own limitations to consider as well. 
While researchers can validate single standalone models against empirical data, there 
is no way to do this for all the possible recombinations of model components from a 
repository of modular models. Therefore, while the individual component models 
that comprise a composite PS model may be validated individually, the composite 
model may not. Validating all the possible model recombinations from a repository 
of model components is not tractable. Therefore, clinicians composing novel PS 
models “on the fly” must realize that such models may not have been tested against 
empirical data prior to use. Instead of attempting to validate all possible recombina-
tions of the model repository components, a modular modeling system will have to 
be validated by analyzing whether the composite models as a group successfully 
matched empirical data, improved patient outcomes, etc. Furthermore, because 
modular modeling allows the user to create novel models, flexible, adaptable parameter 
tuning programs will also be required to match model output to patient data.

5.4 � Vision for the Future

Much work remains before more PS modeling systems become standards of care in 
critical care environments. With access to sophisticated modeling tools and scores 
of published models, many modelers have begun testing their work in preclinical 
and/or clinical settings. Thus, many PS modeling efforts are at the validation stage, 
one of the main challenges that researchers currently face in PS modeling in general. 
However, PS modeling researchers must ultimately go beyond the traditional end-
points of modeling research so they not only demonstrate that their models are valid 
but also that their modeling systems actually improve medical decisions and patient 
outcomes when implemented in a critical care environment.

Another research area that must be explored before PS modeling becomes a stan-
dard of care involves identifying the optimal means of deploying and using a PS 
modeling system in the clinical environment. If a modeling system requires in-depth 
quantitative knowledge of the model(s) involved in simulating patient dynamics, 
specialized technicians will be required to manipulate the system. In this case it may 
be most logical for clinical centers to develop modeling cores with members special-
izing in PS modeling applications. Alternatively, if a modeling system does not 
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require in-depth, technical knowledge to tune and execute, specialization may not be 
required. In this case, critical care physicians and nurses will be able to use the 
modeling systems themselves (as is the case with the SPRINT protocol). Initially, 
PS modeling systems will focus on delivering accurate PS information to the clini-
cian, and usability improvements will occur later, as the utility of such systems is 
demonstrated. Once demonstrated, we will likely see interface improvements that 
make PS modeling accessible to a broad spectrum of users.
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6.1 � Abdominal Aortic Aneurysm

The aorta is the largest artery in the human body, transporting oxygenized blood 
directly from the left ventricle of the heart to the rest of the body. An aortic aneurysm 
is a local dilation in the aorta of more than 1.5 times the original diameter [27]. 
Although aneurysms can be present in every part of the aorta, the majority of the 
aortic aneurysms are situated in the abdominal aorta (AAA, Fig. 6.1), below the level 
of the renal arteries and above the aortic bifurcation to the common iliac arteries [7]. 
A diameter of 3 cm or more is generally used as indication for an AAA (abdominal 
aortic aneurysm). In most AAAs, thrombus is found between the perfused flow 
lumen and the aortic wall. Thrombus is a fibrin structure with mainly blood cells, 
platelets, and blood proteins, which is deposited onto the vessel wall [21].

AAAs occur mostly in the elderly population. In the Western world, the preva-
lence of AAA in people over 65 years of age is 4–8% in men and 1–2% in women 
[13, 38]. Risk factors for AAA include advanced age, male gender, smoking, hyper-
tension, positive family history, and atherosclerosis [31, 38].

AAAs are generally asymptomatic, until rupture of the AAA wall occurs. This 
can lead to a large abdominal bleeding and death within a short period of time. A 
ruptured AAA typically presents itself with acute abdominal pain and is, in most 
cases, combined with hemodynamic shock. The overall mortality rate for ruptured 
AAAs is around 90%, as a large group of patients with a ruptured AAA does not 
reach the hospital in time [3]. For those who reach the hospital in time, the mortality 
rates are as high as 50% [5, 26]. The overall mortality of AAA remains very high 
due to the fact that most AAAs are asymptomatic and therefore unknown. Screening 
programs have been proposed previously for men between 65 and 75 years old, who 
have ever smoked [28, 47]. Although screening can indeed reduce the AAA-related 
mortality by 50%, the costs per life year remain considerable [28].

L. Speelman (*) 
Biomechanics Laboratory, Department of Biomedical Engineering, Erasmus Medical Center 
Rotterdam, PO Box 2040, Ee2322, 3000 CA Rotterdam, The Netherlands 
e-mail: l.speelman@erasmusmc.nl

Chapter 6
Biomechanical Analysis of Abdominal  
Aortic Aneurysms

Lambert Speelman, Mariëlle Bosboom, Geert W.H. Schurink,  
and Frans N.v.d. Vosse 



96 L. Speelman et al.

The main treatment option is to exclude the aneurysm wall from the systemic 
pressure, using a vascular graft. In open repair, a regular graft is sutured to healthy 
parts of the aorta by means of transabdominal surgery. This major surgical proce-
dure has a 30-day mortality rate of about 5% [18]. Endovascular repair is an estab-
lished alternative to open repair and is performed by placement of a stent graft in 
the AAA, via a small incision in the groin. It is associated with a lower periopera-
tive mortality and a shorter recovery period than open repair [18]. Also in the long 
term, aneurysm-related mortality is lower for endovascular repair [33]. However, 
complications such as incomplete sealing, migration, kinking, or material failure of 
the stent graft may occur during the procedure or sometime afterward [41]. This 
leads to an elevated pressure inside the aneurysm and, in the worst case, rupture of 
the AAA wall [64]. Therefore, patients who underwent endovascular repair remain 
under surveillance, to evaluate the status of the stent graft on a regular basis [41].

6.2 � AAA Risk Stratification

To determine when an AAA requires surgical intervention, the risk of AAA rupture 
should carefully be weighed against the risk of the operative procedure. In current 
clinical practice, the risk of rupture is based on the maximum anterior–posterior 

Fig. 6.1  Graphical representation of an abdominal aortic aneurysm
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diameter, and an elective repair procedure is initiated when the diameter reaches 
5.5 cm or when the diameter grows more than 1 cm per year [19]. In 1977, 24,000 
nonspecific autopsy reports were studied, and 473 nonresected AAAs were found, 
of which 118 were ruptured [8]. Of the 265 aneurysms smaller than 5.0 cm, 12.8% 
were ruptured, indicating that for a significant number of small AAAs, the elective 
repair threshold of 5.5 cm in diameter is too high. Previously, rupture rate of large 
AAAs with medical contraindication or patient refusal for elective repair was 
studied [30]. The 1-year incidence of probable rupture was 9% for AAAs with 
diameters 5.5–5.9 cm. This increased to 33% for AAAs more than 7 cm in diam-
eter. Although the 1-year incidence is substantially for AAAs over 5.5  cm in 
diameter, the majority of patients with large aneurysms will not (yet) experience 
rupture. These patients would be subjected to unnecessary surgical risks in case of 
elective AAA repair. For more accurate rupture risk stratification, patient-specific 
parameters, other than the diameter, have to be considered.

Besides maximum diameter, it is advised to include the growth in diameter in 
the decision for AAA repair [19, 63]. When a patient is known to have an AAA, 
follow-up is, in most cases, done by the ultrasound examination to evaluate the 
maximum diameter and the diameter growth. The AAA growth is believed to 
increase with the initial diameter of the AAA [46, 57]. However, a large variation 
in growth rate is found between AAAs. While some AAAs remain stable for a 
considerable period of time, others show a strong increase in diameter in a short 
period or grow discontinuously, with alternating periods of growth and shrinkage 
[29, 58]. Prediction of the future expansion rate of an AAA in an early stage can be 
used to optimize the follow-up schedule and intervention plans for each patient.

So far, both aneurysm rupture and growth are unpredictable by the diameter 
alone. Better predictors for rupture and growth are required and may be found in a 
more extended patient-specific analysis, based on biomechanical information.

6.3 � AAA Biomechanical Analysis

From a biomedical engineering point of view, mechanical forces play an imminent 
role in rupture of the AAA wall. When the stress on the AAA wall, caused by the 
blood pressure, locally exceeds the strength of the wall, rupture of the wall occurs. 
The law of Laplace states that the wall stress (s) in a thin-walled cylinder linearly 
increases with increasing radius (r) and transmural pressure (P), and decreases for 
increasing wall thickness (h):

	 •P r

h
s = 	 (6.1)

Due to the complex geometry of most AAAs, the wall stress is determined by 
the local AAA geometry and wall thickness, and can therefore not be predicted 
by the law of Laplace, or based on simplified geometrical models [25]. The 3D 
wall stress distribution of the AAA wall can be computed using the finite 
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element method. A 3D model of the AAA first has to be created, based on 3D 
imaging. The derivation of this model is called segmentation and meshing of the 
AAA. The finite element model of the AAA comprises small subsections, the 
so-called finite elements. The wall stress computations are based on conservation 
of mass and momentum (second law of Newton) for all finite elements in the 
model. Boundary conditions are required to solve the complex system of conser-
vation laws. These comprehend, in addition to the applied pressure on the inner 
surface of the AAA model, complete fixation of the most proximal and distal 
planes of the model. Also, a choice of material models for the components in the 
model is required to solve the computational system.

Several research groups have previously focused on AAA wall stress, computed 
with a finite element model, as a clinical measure for aneurysm rupture risk [15, 37, 
49, 59]. Early patient-specific wall stress computations have shown that peak wall 
stress for ruptured and symptomatic AAAs was significantly higher than that of 
electively repaired or asymptomatic AAAs [15, 49]. In most cases, the segmenta-
tion of the AAA is performed manually, and labor-intensive procedures are 
followed to generate the finite element model. Also, as in every model, simplifica-
tions and assumptions are made concerning factors that are difficult or impossible 
to determine, like local wall thickness and initial wall stress. The incorporation of 
thrombus and calcifications is also ignored in most cases, as the correct implemen-
tation in the analysis is not known. It is unclear to what extent these simplifications 
or assumptions influence the resulting wall stress on a patient-specific basis. This, 
and the fact that the derivation of the 3D model is complex and labor-intensive, 
dissuades an easy translation to a clinical environment. The focus of the remainder 
of this chapter is on optimization and standardization of AAA wall stress analyses 
for future diagnostic purposes.

For the purpose of a future introduction of wall stress analyses as a clinical 
diagnostic tool, Philips Healthcare (Best, the Netherlands) developed a software 
package HemoDyn, in collaboration with the University Medical Center Utrecht 
(the Netherlands), Philips Research (Paris, France), Eindhoven University of 
Technology, and Maastricht University Medical Center [6, 10, 11, 16, 36, 42, 43]. 
This package is developed within the Philips ViewForum environment, which is 
widely used for visualization and analysis of medical images within clinical 
centers. HemoDyn uses automatic segmentation and meshing procedures and is 
used in the majority of the research presented here. Other comparable initiatives to 
create automatic procedures for AAA wall stress computations are currently being 
developed.

6.3.1 � Wall Stress Reproducibility

HemoDyn uses automatic segmentation and meshing procedures to minimize the 
user input in the wall stress analysis [6]. Based on the selection of only three points 
in the lumen of the AAA in the Computed Tomography Angiography (CTA) data 
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of the patient (one starting point at the level of the lowest renal branch and two end 
points in the iliac arteries, proximal to the aortic bifurcation), automatic centerline 
tracking and subsequent 3D segmentation of the lumen and the thrombus is 
performed. This highly automated process should increase the stability and repro-
ducibility of the wall stress analyses. Inter- and intraoperator reliability of peak wall 
stress was previously evaluated, using a manual segmentation procedure with ten 
AAAs [23]. Interoperator variation was found over 100% between the lowest and 
highest stress value for the same patient. A double analysis on ten patients by one 
operator resulted in differences up to 40%.

Reproducibility of the AAA wall stress was determined using HemoDyn, by 
evaluating CTA data of 20 patients by three different operators [43]. Two operators 
performed the analyses five times. The intraoperator intraclass correlation coeffi-
cient (ICC) of the peak wall stress was 0.73 and 0.79, while the interoperator ICC 
was 0.71. This approached the findings of the aforementioned study [23]. The 
99-percentile wall stress proved to be a more reproducible wall stress parameter 
than peak wall stress (intraoperator ICC 0.94, 0.94 and interoperator ICC 0.95). 
The 99-percentile wall stress is computed as the highest wall stress in the AAA wall 
after exclusion of 1% of the wall, containing the highest stresses [43]. This is illus-
trated in Fig. 6.2, in a typical histogram of the wall stress of an AAA. The number 
of nodes between the 99-percentile wall stress and the peak wall stress occupies 
only 1% of the total wall surface. Small subtle shape changes induced by the 
segmentation of different operators, strongly influences this part of the histogram, 
while this effect was significantly lower for the 99-percentile wall stress.

A strong linear relation between the 99-percentile wall stress and the maximum 
AAA diameter for the 20 patients analyzed indicates that the 99-percentile wall 

Fig. 6.2  Typical AAA wall stress histogram indicating the 99-percentile and peak wall stress



100 L. Speelman et al.

stress can still discriminate between AAAs of different sizes. It is, therefore, a more 
robust and reproducible stress parameter than the peak wall stress.

6.3.2 � Initial Stress

During CTA imaging, the AAA is subjected to a time-averaged blood pressure and 
is therefore not stress free. However, until recently, all patient-specific wall stress 
studies ignored this fact and applied a systolic blood pressure directly to the geom-
etry derived from the CTA data (conventional method). The Backward Incremental 
(BI) method was introduced by de Putter et  al. (2007), to account for the initial 
stress in AAAs [10]. The BI method was validated by showing a strong correspon-
dence between the computed systolic and diastolic AAA geometries and the sys-
tolic and diastolic geometries from gated MRI measurements in three AAAs. It was 
also shown that, when using the BI method, the wall motion as computed with AAA 
wall stress analyses, significantly better corresponded to the gated MRI wall 
motion for ten patients [34].

For a complete description of the BI method, the reader is referred to [42]. In the 
same study, the effect of neglecting the initial stress on the AAA wall stress of 
patient-specific AAA models using the BI method was investigated [42]. The 
99-percentile wall stress was computed with and without initial stress, using both a 
linear and nonlinear material model for the AAA wall. The results clearly showed 
that ignoring initial stress, as is the case in the conventional method, leads to an 
overestimation of the systolic aneurysm volume and a change in surface curvature 
(Fig. 6.3). This leads to a change in wall stress for each AAA, although this change 
was different for each patient. This indicates that no general correction factor can 
be used to estimate the effect on the wall stress. Therefore, initial stress cannot be 
omitted in patient-specific wall stress studies.

6.3.3 � Intraluminal Thrombus

As previously indicated, the majority of the AAAs contain thrombus, defined as an 
accumulation of blood cells, platelets, and blood proteins, which is deposited on the 
inside of the aneurysm wall. The volume and thickness of thrombus have previously 
been indicated to influence the growth rate and rupture risk of AAAs [20, 63]. Recently, 
mechanical tests have resulted in a lower stiffness of the thrombus than was previously 
assumed [2, 52]. Van Dam et al. (2008) found thrombus shear moduli around 2 kPa [52], 
while Wang et al. (2001) presented up to 180 kPa for thrombus [61]. In the light of these 
recent results, the mechanical role of thrombus was evaluated by computing wall stress 
with and without thrombus in idealized axisymmetric AAA models with various throm-
bus stiffnesses and volumes, and in 30 patient-specific AAA models [45]. Additionally, 
the growth rate of these AAAs was prospectively monitored and a comparison was 
made between the growth rate of AAAs with relative small and large thrombi.
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The results from the idealized AAA model showed that the decrease in wall stress 
due to the presence of thrombus strongly depends on the shear modulus and volume 
of the thrombus. The relation between the decrease in wall stress and the shear modulus 
was found to be nonlinear; the decrease in wall stress is less influenced by a change 
in shear modulus at higher shear moduli. The recently reported shear moduli based 
on shear and compression experiments were found to be in the order of 10 kPa [24], 
or even lower [2, 52]. However, the same studies also reported considerable variations 
in shear modulus, indicating that between and within different thrombi, the shear 
modulus may vary markedly. Considering that the resulting wall stress is strongly 
influenced by the shear modulus, the choice of using an average shear modulus for 
each thrombus in AAA wall stress analyses may therefore not be valid.

A considerable variation in effect was found in the patient data. Likely, not only 
the amount of thrombus influences the wall stress but also the geometry of the AAA 
and the thrombus. Therefore, to estimate the effect of thrombus on the patient-specific 

Fig. 6.3  The AAA wall stress distributions for one AAA at mean arterial pressure (MAP) and 
peak systolic pressure (SP) with the conventional method (top) and with the BI method (bottom). 
Also the CTA-derived geometry and the backward computed load-free geometry are displayed. 
The volume of each geometry is displayed in milliliters
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wall stress, idealized models are inadequate, and patient-specific models are required 
(Fig. 6.4). The diameter growth rate was significantly higher in the group with a 
large thrombus (p < 0.01). This supports findings from previous research on the rela-
tion between thrombus and AAA growth [63]. The wall stress was significantly 
lower for the large thrombus group when thrombus was incorporated (p < 0.01). This 
suggests that diameter growth of AAAs is not instigated by the stress in the wall. In 
earlier research, thrombus thickness was identified as one of the parameters that 
lowers the strength of the AAA wall [55, 60]. If this wall weakening is the basis for 
AAA growth, this may explain the increased growth for AAAs with a relative large 
thrombus. Future research may evaluate the relation between the amount of throm-
bus, wall weakening and the growth in diameter of AAAs.

6.3.4 � Material Properties

The choice of material model that is used for the aneurysm wall in the finite 
element models can have a strong impact on the resulting wall stress. Extensive 
mechanical testing on a large data set has resulted in a commonly used hyper-elastic, 

Fig. 6.4  AAA wall stress distribution with and without thrombus
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nonlinear material model for the AAA wall in general [40]. It was shown that the 
wall stresses only changed by 4% or less when the parameters of the material model 
were changed within the 95% confidence intervals for the studied patient 
population.

However, a considerable variation was shown in parameters on a patient-specific 
scale. A first step in determining patient-specific material parameters was done 
recently [53]. Distensibility and compliance of AAAs were determined in vivo for 
ten patients by simultaneously measuring pressure and volume changes of the 
AAA, based on dynamic MRI measurements. A strong linear relation between 
pressure and volume was found. This enables a direct computation of the compli-
ance, being the slope of the pressure–volume relation. The stiffness or Young’s 
modulus of the AAA wall can then be estimated, under the assumptions of a 
uniform 2 mm wall thickness and incompressibility. Accurate measurements were 
obtained in eight patients, resulting in Young’s moduli between 5.5 and 12.9 MPa 
[53]. Due to the linear relation between pressure and volume, it suffices to know 
the diastolic and systolic blood pressure and volumes, by means of dynamic imag-
ing, to estimate the patient-specific AAA stiffness. Future developments of this 
noninvasive method may result in local nonlinear and even anisotropic material 
properties, by evaluating the local wall deformation patterns instead of the total 
AAA volume.

6.3.5 � Future Directions

The previous sections have described the current status of several important param-
eters in patient-specific AAA wall stress analyses. However, further evaluation of 
these parameters may increase sensitivity and specificity of wall stress as a clinical 
parameter in diagnosis of AAA.

The 99-percentile wall stress showed to be more robust and less sensitive to the 
variations introduced by different operators. However, a patient study is required to 
establish the clinical relevance of the 99-percentile wall stress in the rupture risk 
stratification, by comparing the 99-percentile wall stress for ruptured and nonrup-
tured AAAs.

Also, further evaluation of the mechanical material models for the AAA wall 
and the thrombus is required. It is extremely difficult to evaluate the properties of 
the constituents separately. Local nonlinear and nonisotropic material behavior may 
be determined by evaluating the local wall deformation patterns. However, higher 
resolution 3D imaging is an important requisite for this analysis. Developments in 
dynamic MRI and CT may facilitate these patient-specific analyses. Furthermore, 
advances in (3D) ultrasound may attribute to determining local mechanical proper-
ties in a patient-specific manner.

In the discussed AAA wall stress studies, thrombus in the AAAs has been mod-
eled as a solid structure. Modeling thrombus as a porous material may be more 
appropriate, considering the poroelastic character of thrombus [1, 4]. In that case, 
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the pressure can be transferred through the pores of the material. The effect that a 
poroelastic material model for the thrombus has on the wall stress cannot be 
predicted on forehand. Parameters like porosity and viscous permeability first need 
to be determined by experimental testing before wall stress computations can be 
extended with a porous material model for thrombus. Evaluation of the thrombus 
deformations over the cardiac cycle using dynamic imaging, in combination with 
finite element modeling may contribute to this development [48].

6.4 � Clinical Application

More insight in the pathogenic pathways of aneurysm formation and progression 
may be gathered by evaluating circulating biomarker concentrations [17, 50]. 
Circulation matrix metalloproteinase-9 (MMP-9) concentrations have been investi-
gated most frequently in association with AAA. MMP-9 is involved in the break-
down of the extracellular matrix and, in most studies, was found to be elevated in 
AAAs compared to healthy subjects [17]. Also, the tissue inhibitor of MMP-1 
(TIMP1) was found to be increased in AAA patients compared to healthy controls 
[35]. The markers of inflammation interleukin-6 (IL-6) and C-reactive protein 
(CRP) are frequently studied in cardiovascular disease and were found to be elevated 
in the presence of AAA in most studies [17]. Besides, serum CRP concentration was 
also associated with the size of AAA [51].

Also, AAA growth was investigated in relation to biomarkers. Again, MMP-9 
was correlated with AAA expansion rate [32]. In the same study, it was found that 
alpha 1-antitrypsin (a1-AT) was weakly correlated with AAA expansion rate [32]. 
a1-AT is an inhibitor of alpha 1-trypsin that inhibits elastase. Elastase, on its turn, 
actively breaks down elastic fibers in the aortic wall.

Biomarkers as predictor for AAA rupture have been relatively little investi-
gated. Engström et  al. (2004) concluded that the incidence of fatal or repaired 
AAA was associated with a higher number and levels of inflammation-sensitive 
plasma proteins [14]. CRP levels in patients with symptomatic or ruptured AAAs 
were significantly higher than that in patients with an asymptomatic AAA [12]. 
Also, MMP-1 and MMP-9 were elevated in the plasma of ruptured AAA versus 
nonruptured AAA and elevation of MMP-9 was associated with ruptured AAA 
related 30-day mortality [62].

Numerous studies have focused on measuring biomarker concentrations in order 
to predict AAA presence, growth or rupture, but most studies have not assessed the 
value of these markers as diagnostic tests for AAA [17, 50, 51, 56]. Biomarkers 
may play a role in the identification of small AAAs. Additionally, when biomarkers 
associated with AAA are identified, targeted medical treatment may be developed 
to slow down AAA progression. For now, sensitivity and specificity appear inade-
quate for the use of single biomarkers alone in diagnosis [17]. Using multiple 
biomarkers in combination with other AAA related factors might prove to be of 
value in the diagnostics of AAA.
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A first step to clinical applicability of AAA wall stress analysis was made, by 
comparing AAA wall stress, growth rate, and biomarker concentrations in the 
blood of patients [44]. It was hypothesized that AAAs with a high wall stress, rela-
tive to the average wall stress at the corresponding diameter, have increased damage 
and degeneration of the AAA wall. This could reflect on AAA growth and the up- 
or down-regulation of specific circulating biomarkers. The 99-percentile wall stress 
was determined with incorporation of the initial stress and a nonlinear material 
model for the AAA wall, but without thrombus and calcifications. A relative 
medium or high wall stress was indeed found to be associated with a higher AAA 
growth rate compared to AAAs with a relatively low wall stress. Also, the MMP-9 
concentration, which is involved in the breakdown of the extra cellular matrix, was 
positively related to AAA growth rate. Although the average concentrations of 
MMP-9 and CRP (a marker for inflammation) showed an increase for higher rela-
tive wall stress, no significant correlation was found between wall stress and biomarkers 
levels analyzed in this study. Further analysis is warranted to verify the relation 
between AAA wall stress, growth rate and biomarker concentrations.

6.5 � Scope and Limitations

Future diagnostic purposes for AAA wall stress analyses may include an estimation 
parameter for AAA rupture risk, in addition to the currently used decision param-
eters, but also the prediction of the AAA growth rate. A dynamic follow-up plan 
can then be developed based on the computed wall stress. Some patients may 
require more frequent hospital visits, while others, as their AAA remains stable 
over a longer period, can suffice with long interval follow-up.

The first step to clinical applicability of wall stress is made. A robust and repro-
ducible stress measure is proposed and important factors influencing the wall stress 
have been identified. Several limitations and assumptions remain that may improve 
the stress analysis. One of the major assumptions that is inevitable is that of a 
constant wall thickness over the whole aneurysm model. It is known that a strong 
variation in wall thickness exists between, but also within patients [22, 39]. Including 
the local variation in wall thickness can have a strong effect on the resulting wall 
stress. Currently, no non-invasive methods are available that can reliably determine 
the local wall thickness. CTA cannot provide information on the location of the 
thrombus–wall transition and therefore no wall thickness can be determined. Most 
MRI protocols can also not be used due to chemical shift artifacts, caused by the 
transition between water-rich and fat-rich tissues, and due to the large voxel size, 
relative to the expected wall thickness. Black-blood MRI sequences may reach suf-
ficient resolution, but no discrimination between wall and thrombus can yet be made 
with this protocol, and thus no wall thickness can be measured in the presence of 
thrombus. Although ultrasound evaluation can be used to determine the local AAA 
wall thickness, the wall thickness cannot be determined over the whole AAA. Using 
intravascular ultrasound (IVUS), a complete wall thickness map can be made, but 
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this medical imaging technique is expensive, time-consuming and is considered as 
an intervention. This makes IVUS unsuitable for follow-up of AAA patients. 
Developments in (3D) ultrasound imaging and advanced MRI sequences may in the 
future facilitate non-invasive local wall thickness measurements of AAAs.

Another limitation is the mechanical material model that is used for the AAA 
wall and the thrombus. Extensive mechanical testing has resulted in a commonly 
used hyper-elastic, nonlinear material model for the average AAA wall [40]. 
However, considerable variation in AAA wall stiffness was observed. In studies 
evaluating thrombus material properties, a wide spread in mechanical behavior was 
found between and within the tested thrombi [52, 61]. This hampers the use of a 
single shear modulus for both wall and thrombus in patient-specific wall stress 
analyses. By using dynamic MRI measurements to determine the distensibility of 
the AAA in combination with simultaneous pressure recordings, van’t Veer et al.  
(2008) determined patient-specific Young’s moduli for the AAA wall noninvasively 
[53]. Future developments of this method may result in local nonlinear and even 
anisotropic material properties, by evaluating the local wall deformation patterns 
instead of the total AAA volume. Also patient-specific material properties of throm-
bus may be determined by evaluating the thrombus deformations over the cardiac 
cycle in dynamic MRI measurements [48].

In most AAAs, calcifications are present in the wall of the aneurysm. Research 
on these calcifications using high-resolution micro-CT revealed that what appears 
as a solid, uniform calcification in normal resolution CTA images, may in fact be a 
complex arrangement of smaller calcified areas [9]. This means that it is of little 
use to accurately model the shape and the material interface of the calcification, 
based on the normal CTA image data. The resolution is too low to capture the 
required details. Future research should therefore focus on accurately establishing 
the material properties of calcified regions and on experimentally assessing the 
rupture potential of the calcifications, the material interface and the surrounding 
non-calcified tissue.

Most biomechanical considerations of AAAs have focused on computing 
stresses acting on the aneurysm wall, and not on the wall strength. This is, how-
ever, an equally important part in rupture risk prediction, since rupture occurs 
when the stresses exceed the strength of the wall. If only the wall stress is consid-
ered and a certain stress threshold is determined that indicates a high risk of rup-
ture, this corresponds with the choice of a uniform failure strength throughout the 
AAA. Vande Geest et al. (2006) proposed a Rupture Potential Index (RPI), which 
combines the wall stress computed with finite element analysis and the wall 
strength, estimated with a seven parameter statistical model (age, gender, family 
history of AAA, smoking status, AAA size, local diameter, and local thrombus 
thickness) [54, 55]. The results suggested that the peak RPI may be better able to 
identify those AAAs at high risk of rupture than maximum diameter or peak wall 
stress alone. Future developments in medical imaging quality to obtain local wall 
thickness may also add to this strength estimation. The clinical relevance of this 
method for rupture assessment has yet to be validated; however, its success could 
aid clinicians in decision-making and AAA patient management [54].
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6.6 � Clinical Perspectives

Although future research is required to further increase the accuracy of the wall stress 
analyses, the currently available model is close to be clinically applicable. However, 
the clinical relevance, which is much more important, has only been touched swiftly. 
A significant positive stress–diameter relation was identified, and it was shown that a 
relative high wall stress was associated with a higher growth rate. The ultimate ques-
tion whether AAA rupture risk can be predicted based on wall stress cannot (yet) be 
answered. However, tools have been created, and important factors have been identi-
fied in the process of wall stress computations. The road is now free to investigate the 
clinical relevance of wall stress with respect to AAA rupture risk and growth. As more 
and more AAA patients in follow-up are followed using CTA instead of ultrasound, 
the basis of this study is already present. Continuous follow-up with CTA of a large 
group of patients can give insight in the relation of AAA wall stress and growth rate. 
As AAA rupture is a relatively rare phenomenon, especially in the combination with 
recent prerupture CTA imaging, a large prospective patient study is required. The 
@neurist program can therefore be taken as an example (see http://www.aneurist.org). 
This program integrates biomedical information for the management of cerebral aneu-
rysms. A large collaboration between multiple health organizations in several countries 
created an infrastructure for combining data of cerebral aneurysms with the goal to 
provide individualized aneurysm rupture predictions. Such an infrastructure may also 
be of high value in the rupture risk estimation of AAAs.

6.7 � Conclusion

Although the basis for AAA wall stress to be incorporated in clinical diagnostics has 
been created, the clinical relevance of AAA wall stress is still unknown. Based on the 
research discussed here, one can conclude that a standardized AAA wall stress analysis 
using automatic segmentation is required. Additionally, initial stress and material non-
linearity are undisputable elements in the finite element simulations. To be able to 
conclude on the role of thrombus, future research on the material properties and inter-
face with the surroundings is required. Patient-specific cardiac gated imaging may play 
an important role in the determination of the material properties. Also, developments in 
the wall strength estimation are essential for accurate risk estimation. With the founda-
tion that has been laid, the road is open for profound patient studies to evaluate the clinical 
relevance of AAA wall stress in relation to the AAA rupture risk and growth rate.
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7.1 � Introduction

Although much is known about the pathophysiological cellular processes underlying 
heart disease, little is known about how the heart remodels structurally and 
functionally during the development of disease, and how particular presentations of 
disease fit into the spectrum of functional manifestations across patient groups. 
If clinicians were able to map the structure and function of the heart in a standard 
way, they would be able to characterize a particular patient’s function with the 
range of functional characteristics derived from large populations of patients. This 
would enable more precise quantification of the type and severity of disease, as well 
as more robust measures of evaluation of the effects of treatment.

A major goal of computational biology is the development of mathematical and 
computer models that integrate observations from many studies into quantitative, self-
consistent, and comprehensive descriptions [1, 32]. Many groups have begun to construct 
physiological databases, linked with anatomical, functional, and clinical data gleaned 
from a variety of sources. This information must be integrated across many scales, 
from molecular interactions to organ system function. Several initiatives have begun in 
this vein, centering on different organ systems and pathology targets. Projects include 
the Integrative Biology Project [14], the ECG signal database [20], the Cardiac Gene 
Expression database [6], the Medical Image File Archive Project [18], anatomical 
ontology databases such as the Foundational Model of Anatomy [11], Informatics for 
Integrating Biology and the Bedside [12], and the Physiome Project [1].

The establishment of large imaging databases is essential for the development 
and validation of these physiological models. Multidimensional image data provide 
the ability to customize biomechanical and physiological parameters to a particular 
patient’s anatomy and cardiac performance. Large population based databases also 
enable statistical models of normal and pathological function to be developed, 
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which, in turn, facilitates better tools for construction of computational models 
from image data. Computational atlases refer to a set of maps that relate scientific 
information to spatial coordinates at a series of scales, from genotype to phenotype. 
These rely on computational and informatics infrastructure which facilitates 
patient-specific analysis as well as population-based statistical analysis.

In the brain, methods are well advanced to provide a detailed statistical map of 
brain morphology, and the infrastructure for building atlases and computational 
anatomy tools are well developed. For example, the Center for Computational Biology 
at UCLA [8] provides “middleware” applications and software required to provide 
secure, Web-based access to the underlying computational and network resources, 
including the International Consortium for Brain Mapping [15]. The Biomedical 
Informatics Research Network (BIRN) [3] provides a number of tools to facilitate 
collaborative research among neuroscientists and medical scientists, making use of 
computational and networking technologies and addressing issues of user authenti-
cation, data integrity, security, and data ownership. These tools, and those of the 
Cancer Biomedical Informatics Grid (CaBIG) [5], are being exploited by the 
Cardiovascular Research Grid [7] to create an infrastructure for sharing cardiovascular 
data and data analysis tools.

The Cardiac Atlas Project (CAP) is a worldwide collaborative project to establish 
a standardized database of cardiovascular imaging examinations together with derived 
analyses, for the purposes of statistical characterization of global and regional heart 
function abnormalities. By merging data from many different sources in a standardized 
manner, the CAP aims to provide the research community with a valuable resource 
for the study of heart disease. This chapter describes the infrastructure and analysis 
methodologies employed in the design and construction of the CAP database and 
client software. We also outline the standard procedures for data upload and access.

7.2 � Cardiovascular Magnetic Resonance Imaging

Cardiovascular magnetic resonance (CMR) imaging provides an abundant source 
of detailed, quantitative data on heart structure and function. Advantages of CMR 
include its noninvasive nature, well-tolerated and safe (nonionizing) procedures, 
ability to modulate contrast in response to several mechanisms, and ability to pro-
vide high-quality functional information in any plane and any direction. Its three-
dimensional (3D) tomographic nature allows excellent views of the entire heart, 
irrespective of cardiac orientation and cardiac chamber shape (Fig.  7.1). CMR 
imaging has provided detailed information on 3D ventricular shape and geometry 
[42, 45], regional systolic [55] and diastolic [30] strain, material microstructure 
[33, 47], blood flow [36], perfusion [41], and viability [37, 48]. It is considered 
the most accurate method to measure ventricular volumes and systolic function 
[42]. The high precision and accuracy of CMR [27, 39] has led to its increasing 
application worldwide in cardiovascular research trials and clinical practice.

The Society for Cardiovascular Magnetic Resonance teaching atlas [2], created 
in 1999 and updated in 2007, comprises a comprehensive range of CMR images of 
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a single healthy volunteer, including SSFP cine function images, myocardial tagging 
images, T1 anatomical images, and phase-contrast flow images (Fig. 7.1). This can 
be viewed as one end of a variety of “atlas” tools. At the other end lie population 
-based atlases comprising many thousands of patient studies. But before these population-
based atlases can be used in clinical practice, we must formulate a standard coordinate 
system for the heart, which enables the registration of many cases to a common 
anatomically based target.

7.3 � Mapping Shape and Motion

Analysis of the ~500 images that result from a typical imaging study has generally 
been limited to global estimates of mass and volume, which are very useful in the 
clinic. However, these images also provide detailed information on shape and function 
during diastole and systole, which can be combined with other imaging or clinical 
data to yield greater understanding of the underlying disease processes.

Model-based analysis tools allow the calculation of standard cardiac performance 
indices such as left ventricular mass and volume, as well as detailed assessment of regional 
wall motion in a standard coordinate system, by efficient customization of a 

Fig. 7.1  Black blood anatomical images from the SCMR atlas. (a) Long-axis slice; (b) short-axis 
slice; (c) annotated long-axis slice with applet navigation and viewing tools [26]
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mathematical model to patient images using guide-point modeling [52]. The main 
advantage of the modeling approach is that this enables quantitative parameteriza-
tion of regional heart wall motion, in a way that facilitates statistical comparison of 
cases drawn from different patient populations [25]. The mathematical model also 
provides a mechanism for the integration and comparison of information from 
different imaging protocols, such as late gadolinium enhancement [40, 44] and 
displacement encoding [51, 54].

In addition to the traditional mass and volume analysis, the mathematical model 
allows detailed evaluation of regional wall motion and shape characteristics. 
Figure  7.2 shows a bull’s-eye map of regional wall thickness at end systole, 

Fig.  7.2  Wall thickness in all regions of the heart can be determined from the mathematical 
model. (a) Bull’s-eye plot of wall thickness in each region of the LV, with user defined regions 
(arrows) allowing interactive calculation of wall thickness within a nonstandard region. (b) Wall 
thickness vs. time in a patient at 1 week and 3 months after a first time myocardial infarction, 
showing wall thinning in the infarct zone due to remodeling, together with functional augmenta-
tion in the remote zone [33] (data courtesy Professor Lou Dell’Italia, University of Alabama, 
Birmingham, Alabama, USA)
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together with plots of wall thickness against time. Figure 7.2b shows an example 
of remodeling in infarcted and remote zones in a patient at 1 week and 3 months 
after myocardial infarction.

7.4 � Population Models

Model-based image analysis procedures provide a powerful mechanism for the fast, 
accurate assessment of CMR data, and facilitate biophysical analyses and standardized 
functional mapping procedures. Since the mathematical models employed for motion 
analysis are registered to the anatomy of the heart, they can be used to derive statistical 
descriptions of characteristic patterns of regional heart wall motion in health and 
disease. This leads to the identification of differences in the characteristic pattern of 
regional wall motion between disease or treatment groups.

However, the differences in regional wall motion parameters between groups are 
difficult to characterize succinctly due to their multidimensional nature. Many parame-
ters are required to describe regional performance (including regional myocardial 
strain, rotation, and displacement). One powerful technique is principal component 
analysis (PCA), which describes the major sources of variation within a multidimen-
sional dataset, by decomposing the variability into a set of orthogonal components 
(known as “modes”) [29]. Thus, a database of models of heart shape and motion can 
be characterized by a set of orthogonal modes and their associated variance. The 
modes are ranked in order of highest to lowest variability, thereby showing which 
variations are most strongly present in the data and which variations can be neglected. 
This reduces the number of significant parameters by distinguishing the modes that 
truly differentiate the groups and eliminating modes that are insignificant. Given two 
such database distributions, describing different patient groups, statistical compari-
sons can then be made to determine the differences in shape and motion between the 
two groups. Similarly, given a new case, a comparison could be made with the data-
base distributions to see which database best describes the patient’s cardiac 
performance.

7.4.1 � Parametric Distribution Models

By customizing mathematical models of the anatomy and function of the heart to 
individual cases, it is possible to construct parameter variation models describing 
the distribution of regional cardiac shape and function across patient subgroups. 
Cootes et al. [29] pioneered the application of Point Distribution Models in computer 
vision problems. Homologous landmarks (i.e., the points which are aligned to 
match corresponding features in the shape) were used to characterize shape and 
shape variations with the aid of a PCA. Since mathematical models, represented by 
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the model parameters, are a complete and efficient characterization of cardiac shape 
and motion, parameters of the model form homologous landmarks that can then be 
analyzed using PCA (Fig. 7.3).

7.4.2 � Clinical Functional Modes

Although the PCA provides orthogonal (i.e., mathematically uncoupled) modes of 
deformation, the modes may not correspond to any intuitive or simple deformation. 
In an attempt to provide more clinically understandable modes of deformation, Remme 
et al. [46] described a set of “clinical” modes of variation. The deformation modes were 
chosen to decompose the motion into clinically meaningful components, including 
apex-base shortening, wall thickening, and ventricular torsion [46]. Figure  7.4a 
shows the definition of the modes of ventricular deformation, and Fig. 7.4b shows 
the distribution of the amount of each mode in a group of 15 healthy volunteers rela-
tive to a group of 30 patients with type II diabetes with clinical evidence of diastolic 
dysfunction but normal systolic chamber function [46]. The results show clear difference 

Fig. 7.3  Principal components of shape and motion showing mean (top) and first three modes 
plus and minus two standard deviations [28]
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in systolic modes of function, when there was no clinical evidence of systolic 
dysfunction (as measured by ejection fraction).

7.5 � Data Fusion

The mathematical model of the heart enables registration and fusion of data from 
different imaging modalities and protocols. In one study, model-based methods for 
mapping regional strain and wall motion in relation to tissue characterization maps 
were developed and applied to a mouse model of reperfused myocardial infarction 
[53]. MRI tissue tagging was analyzed in each short and long-axis image using a 
semiautomated active contour process, and the 3D motion reconstructed with the aid 
of the finite element model [54] (Fig. 7.5, iii–iv), resulting in a dynamic model of 
the LV deformation. The Lagrangian Green strain components between end diastole 
and each subsequent time were calculated at specific finite element material points 
using standard methods of continuum mechanics [31]. Previous validation experiments 
using a deformable silicone gel phantom have shown that this procedure produces 
accurate, unbiased estimates of displacement and shortening [54].

Infarcted regions, as defined by regions of late gadolinium enhancement [37], 
were outlined on each image in the short-axis stack (Fig.  7.5, v–vi). The image 
coordinates of the contours were then transformed into 3D magnet coordinates 
using the 3D location of the image planes. The magnet coordinates were then trans-
formed into a bull’s-eye plot of the left ventricle (Fig. 7.5, vii). A convex perimeter 

Fig. 7.4  (a) Definition of nine clinical modes of heart deformation. (b) Distribution of amount of 
motion in each clinical mode in patients with type II diabetes (numbers) compared with normal 
volunteers (mean and SD shown as cross hairs) [35]
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was manually drawn on the bull’s-eye map so as to enclose the hyperenhancement 
contours (Fig. 7.5, vii). The bull’s-eye coordinates of the perimeter were then converted 
to 3D cardiac coordinates and projected in the transmural direction onto the midwall 
surface of the LV finite element model. This allowed the calculation of the 3D 
infarct geometry in finite element material coordinates. The 3D infarct geometry 
was fixed onto the dynamic finite element model at end diastole, and allowed to 
deform with the beating model during systole and diastole (Fig. 7.5, viii).

Material points within the finite element model were assigned to regions relative 
to the 3D infarct geometry as follows. Points within the 3D infarct geometry were 
denoted infarct, points within 1.0 mm of the 3D infarct geometry (but outside it) were 
denoted adjacent, and all other points were denoted remote. This procedure also 
allowed calculation of the percentage myocardium in the infarct, adjacent, and remote 
zones, respectively. Since the models were defined in a coordinate system aligned 
with each heart, a material point could be mapped onto the corresponding material 
point at each time point during remodeling. The material points of the 3D infarct 
geometry at day 1 could thus be mapped into the baseline, days 7 and 28 models to 
give an approximate corresponding region for comparison purposes (Fig. 7.6).

Fig. 7.5  Flow chart of the modeling and data fusion process
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7.6 � The CAP Databases

CMR images used by the CAP are stored in a production and a research database. 
The design and application of these databases are described in the following two 
sections. The CAP research database is hosted at the Diagnostic Cardiovascular 
Imaging section of UCLA Radiology (USA) and the Bioengineering Institute of the 
University of Auckland (NZ). It is based on the open source DICOM Clinical 
Manager system dcm4chee [10] and is used for implementation of research tasks, 
e.g., data mining, 3D modeling and metadata management.

7.6.1 � Production Database (CCB)

The CAP production database is hosted by the UCLA Laboratory for NeuroImaging 
(LONI) and is an extension of existing brain mapping infrastructure, which has 
been modified for use with cardiac images. The purpose of this database is to provide 
a mechanism by which approved third-party users can access the deidentified data 
and derived information. The LONI Image Data Archive (IDA) is a server farm 
consisting of Linux computers running the MySQL database engine and Tomcat 
web application servers with a built-in load balancer that manages the requests to 
the web servers. The database schema is composed of a standard core plus a set of 
modules that can be customized to meet the needs of a particular project. Core 
components include project-, subject-, and study-related elements. Extensions are 
used to store visit-, protocol-, assessment-, and additional subject-related metadata. 
The IDA database has been extended to enable the storage and browsing of time-
resolved cardiovascular MRI data.

Through a WEB interface, users can upload, query, and visualize CAP imaging 
data (Fig. 7.7a, b).

Fig. 7.6  Green strain components (no units) in infarcted, adjacent and remote zones over time 
after myocardial infarction. *p < 0.05 vs. baseline, Scheffé test. (a) Circumferential shortening 
strain; (b) longitudinal shortening strain [36]
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7.6.2 � Research Database

The CAP research database is developed as a branch to the DICOM archive and 
image manager dcm4chee. It is implemented as a JEE and JMX system, which is 
deployed within the JBoss Application Server [16] to provide a number of clinical 
services (DICOM, WADO, RID, HL7, etc.).

Fig. 7.7  (a) Query form in IDA for CAP Database. (b) Image Viewer in IDA for the Production 
CAP Database
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To allow the user to search for specific MR image values (e.g., timing, spacing, 
and sampling values), we have extended dcm4chee to facilitate storage of DICOM 
Image Model Attributes as defined in the DICOM Base Standard. While the 
DICOM Standard covers all public (even-numbered) attributes, vendors of MRI 
scanners often use additional private (odd-numbered) attributes to capture vendor-
specific values. Private attributes differ between vendors and depend on the scanner 
model and software version used to capture the images. To provide the ability to 
search on private attributes, we have implemented the storage of image attributes in 
an XML format and a search function utilizing XPath queries.

3D models generated with the CAP Client software can be uploaded and stored in the 
research database. The models are linked to CMR images and contours in a relational 
database schema, allowing for searching results in the web application, listing images 
used by model, models using a given image, and models available for a patient.

In managing the hosting of the database-, application- and web-server, several 
IT issues had to be considered. The system has been set up as a multitier architecture 
hosted in a cluster of virtual machines, providing a secure, fast and scalable service 
oriented architecture [50]. 2TB of CMR images are stored on a redundant network 
file system, while incremental backups to an off-site location provide full disaster 
recovery. The servers are monitored for availability of services and file systems. 
User access is controlled through firewall rules filtering IP addresses and ports, as 
well as secure authentication using X.509 server certificates and Transport Layer 
Security (TLS) encryption for the web application.

7.7 � The CAP Client

The CAP includes the development of a client-side software tool that can be used to 
visualize the MRI data stored in the CAP database and to generate patient-specific 
mathematical models from those data (Fig. 7.8). The client software is currently still 
under development, but a functional version (0.2, as of February 2010) of the software 
can be freely downloaded from the project website. The CAP client is open source 
under the Mozilla tri-license, and its source code is being hosted at SourceForge.net.

The main features of the CAP Client are as follows:

Database access. The Client can retrieve CMR data from the database located 
across the network. The CAP Client is also capable of uploading models 
generated from such data to the database.

Visualization. The Client offers various visualization capabilities that can be 
used for the visualization of 2D CMR images, 3D Visualization of the mathe-
matical model constructed from the CMR images, and 4D Visualization 
(3D Visualization with time as the fourth dimension).

Model fitting. The Client can be used to fit a mathematical model to a series 
of CMR images with minimal human intervention, thus enabling a large set 
of data to be automatically fitted to appropriate models and parameters. The 
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Client software must also provide a means for the human user to be able to 
interactively and graphically modify the relevant model parameters.

Statistical analysis. The Client must provide the necessary tools to allow statistical 
analysis of the data. This will be used for the generation of the parametric 
distribution models.

Cross-platform. The Client must be able to run on the Windows, Mac OS X, and 
Linux platforms.

The CAP Client is being developed using the C++ programming language on top 
of the CMGUI visualization library [9] and wxWidgets GUI Toolkit. These design 
choices were made for the following design criteria – performance, portability, and 
extensibility. First, the decision to use the C++ programming language was made 
mainly because of performance requirements, as the CAP Client performs a fair 
amount of numerical computation in real time and also requires real-time rendering 
of graphics. The use of cross-platform libraries helped the development of a por-
table software package, thus enabling the CAP client to run on all of the major 
operating systems. The development of the CAP Client has been greatly aided by 
the powerful features the CMGUI library offers, such as 3D visualization of finite 
element models and mathematical field visualization and manipulation. Also, as the 

Fig. 7.8  Screenshot of the CAP Client showing fitted model in relation to long-axis and short-axis 
images
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extensibility of the software is of great importance, the software was written using 
software engineering techniques such as Object Oriented Design, Design Patterns, 
and Unit Testing.

7.8 � CAP Data Access

7.8.1 � Upload and Deidentification

All data are deidentified before upload into the CAP database using HIPAA 
compliant tools developed by the CCB [17]. All images and associated information 
is stripped of any identifying information, including names, addresses, and all identi-
fiers using the following algorithm:

	1.	 Split by tag: DICOM tags that have allowed tag numbers are left unchanged. 
These include tags that contain unique identifiers that are not to be encrypted, 
dates, trusted binaries, and trusted strings.

	2.	 Split by VR: DICOM tags not selected in step (1) are included in the dataset if 
they have an allowed Value Representation (VR). Numbers, times, and small 
code strings are typically left unchanged. Strings and binaries are not.

	3.	 Encrypt: DICOM tags not selected in step (1) or (2) are either encrypted or 
discarded.

	4.	 Replace: Out of all the DICOM tags in steps (1) and (2) the values of specified 
tags are replaced. Physician names as well as patient names are replaced with 
empty strings, and the patient identifier is replaced with a user-specified code. 
Default values for missing tags are also set.

Each study is assigned a CAP code before upload into the CAP database. The CAP 
does not have access to the keys which can associate CAP codes with the contributing 
study identifiers. These are held by the contributing studies. The deidentifying process 
has been validated with studies acquired from a variety of MR scanners, including 
GE, Siemens, and Philips. The deidentification algorithm has also been enhanced 
to handle derived (segmented) images with contours information embedded in the 
DICOM header.

7.8.2 � Ownership and Control of Data Use

Cardiovascular imaging data and derived results have been contributed to CAP by 
several Contributing Studies, including MESA [26] and DETERMINE [35]. Each 
Contributing Study has supported collection of data from participants in a well-
controlled manner, which provides a valuable scientific resource. The Contributing 
Studies have made a substantial long-term contribution in collecting the data. This 
contribution includes the design of recruitment, inclusion and exclusion criteria, 
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ensuring high quality of data, ensuring the participants are well-characterized, as well 
as significant resources spent on acquisition of the data. All data contributed to CAP 
are therefore considered the property of the Contributing Study. The data can only 
be used for purposes approved explicitly by the Contributing Study, on a case-by-
case basis. All Research Projects which propose to make use of the data arising 
from the Contributing Study must be approved by the Contributing Study steering 
committee or nominee. Only those participants with informed consent compatible 
with the data use will be made available to CAP Users. No data can be distributed 
to any other entity or any individual in a manner not previously approved by the 
Contributing Study.

7.8.3 � Protocols for Users

All Users who wish to use data from CAP are required to submit a Research Project 
to the CAP Steering Committee. The committee will review the proposal and assess 
its eligibility with respect to the goals of the CAP project. If approved, CAP will 
liaise with each of the Contributing Studies whose data are required for the 
Research Project. Each Contributing Study (or nominee) will then review the 
proposal and assess its eligibility with respect to the goals of the Contributing 
Study. If the proposal is approved by the Contributing Study, the User will be 
required to sign and abide by a Data Distribution (DDA) agreement for each of the 
Contributing Studies involved. A separate DDA is required for each Contributing 
Study because the terms and conditions which govern the use of the data are 
specific to the goals and rationale of each Contributing Study. Further details of 
CAP policies and procedures can be found at www.cardiacatlas.org.

7.8.4 � Informed Consent and Institutional Review  
Board Approval

The CAP seeks to promote the development of valuable discoveries and inventions 
beneficial to the public health based upon use of the CAP repository of valuable data. 
All Contributing Studies must have local Institutional Review Board approval for the 
contribution of deidentified data into databases, for the purpose of cardiac research at 
this time and in the future. Only data from those participants who have provided 
informed consent will be included in the CAP database. All data are deidentified in a 
manner compliant with the HIPAA privacy rule. The deidentification of data occurs 
before inclusion in CAP data servers, so CAP never has access to original identifiers for 
the Contributing Study. This means there is no way CAP personnel or Users can identify 
individual participants. All CAP personnel and Users will not attempt at any time to 
identify participants.
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7.9 � Conclusions and Future Work

7.9.1 � Grid Enabling

The CAP seeks to federate cardiovascular modeling software and data resources to 
make them available to the cardiovascular research community via the Cardiovascular 
Research Grid (CVRG) [7]. CVRG provides infrastructure tools in the cardiovas-
cular domain to enable researchers to easily access distributed resources through 
standardized interfaces, based on tools developed in the BIRN [43] and caBIG [34] 
projects. The CAP database will be interfaced with the CVRG-Core, and modified 
to implement interfaces and mechanisms compatible with CVRG enabled analysis 
tools. The CAP client software will also be grid-enabled, in order to be used in 
standard CVRG workflows, including a portal component to enable interaction 
with other resources on the grid. The parametric modeling tools and associated 
ontological schema that are being developed by CAP will be designed to facilitate 
data fusion between different imaging protocols and modalities as well as other 
data sources.

7.9.2 � Ontologies

The data provided in the CAP database (CV images and derived morphological 
information including contours and parametric geometry descriptions) will be 
classified and described in a standardized way. This will occur through registra-
tion of an information model and associated semantic annotations, expressed in 
the Web Ontology Language (OWL) [19], at the National Center for Biomedical 
Ontologies (NCBO) [4]. This provides a formalized description of the informa-
tion provided, so that grid-enabled tools can query and access data of the correct 
type, and databases can declare what type of data are available. A top-level ontology 
[28] will provide axiomatic theories for the integration of existing domain ontologies, 
such as the Foundational Model of Anatomy (FMA) for anatomical data [11], 
RadLex ontology for radiological data [21], Annotation and Image Markup (AIM) 
for tagging of image regions using RadLex terms [38], Systems Biology Ontology 
(SBO) for the modeling framework [22], Information Artifact Ontology (IAO) for 
image attributes [13], Phenotypic Quality Ontology (PATO) for phenotype anno-
tation [49], and Systematized Nomenclature of Medicine – Clinical Terms 
(SNOMED CT) for clinical terms [24]. The use of these ontologies will allow 
data and derived results from several studies to be collated in a standardized manner 
to achieve meta- or subgroup analyses. Where gaps occur, suggested terms will 
be proposed based on feedback from the radiological and cardiological communities. 
This feedback will be obtained using online resources such as the NCBO BioPortal 
[4] and WebProtégé [23].
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8.1 � Introduction

A noninvasive method for estimating myocardial material properties in  vivo 
would be of great value in the design and evaluation of new surgical and medical 
strategies to treat and/or prevent heart failure. Once the material properties for the 
myocardium are established, the effect of therapeutic changes on regional geom-
etry (i.e., surgical remodeling) and/or material properties (i.e., medicine, gene 
therapy, and cell therapy) can be evaluated and the success or failure of a pro-
posed therapy predicted. With clinical experience, such a method could be used 
as a diagnostic modality to risk stratify patients early after a myocardial infarction 
(MI) who are at risk for adverse remodeling and the development of heart 
failure.

The distributions of three-dimensional (3D) stress (and strain) are determined by: 
(1) the 3D geometry and fibrous architecture of the ventricular walls; (2) the boundary 
conditions imposed by the ventricular cavity and pericardial pressures and struc-
tures like the fibrous valve ring skeleton at the base of the ventricles; and (3) the 3D 
mechanical properties of the myofibers and their collagen interconnections in the 
relaxed end-diastolic and actively contracting end-systolic states [10, 21]. Formulating 
a mathematical model for interpreting these distributions in such a complex and 
constantly changing mechanical system is clearly very difficult. Solution of the 
governing equations of equilibrium for a body with such a complex geometry, 
boundary conditions, and material properties requires computational techniques. 
The most versatile of these techniques is the finite element (FE) method, in which 
the dependent variables are discretized by piecewise polynomial approximations 
over finite subdomains (elements) and expressed in terms of parameter values at 
inter-element connection points (nodes). In the analysis of geometrically complex 
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3D domains, the FE method operates on discrete, geometrically approximate models 
(meshes) that can be refined both locally and globally to insure a high degree of 
accuracy in the numerical results.

Previous FE studies of the left ventricle (LV) have validated stress calculations 
by showing good agreement with myocardial deformations (strains) measured with 
implanted markers [3, 11, 30, 39, 41]. However, this is invasive and is limited to 
few simultaneous LV locations (usually only two). In a pioneering study, Moulton 
et  al. [24] used tagged magnetic resonance (MR) images to determine isotropic, 
diastolic material properties in a two-dimensional (2D) FE analysis of beating 
canine hearts. Using a more realistic material law, Okamoto et al. [29] determined 
anisotropic myocardial material properties in a 3D FE model using tagged MR 
images. However, the experimental preparation and loading conditions were 
unphysiological to create significant transverse shear strain. Since then, Guccione 
et al. [12] successfully modeled end-isovolumic systole in an ovine model of MI 
and determined material parameters that reproduced circumferential stretching (as 
measured with 2D-tagged MRI) in the infarct borderzone (BZ). This FE study suc-
cessfully revealed that the mechanism of circumferential stretching in the infarct 
BZ during isovolumic systole related to impaired contractile function in that region. 
However, the FE model was validated against only two measurements of strain in 
the anterior and posterior BZ and lacked measurements of ovine material properties 
and fiber architecture. More recently, our laboratory used cardiac catheterization, 
MR imaging with myocardial tissue tagging [13], MR diffusion tensor imaging 
[42], and a finite element (FE) method [6] to measure regional systolic myocardial 
material properties in the beating hearts of four sheep with LV aneurysm [43] and 
six sheep with LV aneurysm repaired surgically [44]. With knowledge of these 
myocardial material properties, we were able to quantify the effect of aneurysm 
plication on regional myocardial stress distributions. Although our previous studies 
[43, 44] represented significant advancements in FE modeling of hearts with MI, 
because of long computation times, they both employed a manually directed 
pseudo-optimization.

In a recent study [38], we performed an explicit FE model-based formal optimi-
zation of regional myocardial contractility in a sheep with LV aneurysm using 
tagged MR images and cardiac catheterization pressures. From the tagged MR 
images, 3D myocardial strains, LV volumes, and geometry for the animal-specific 
3D FE model of the LV were calculated, while the LV pressures provided physio-
logical loading conditions. Active material parameters (T

max_B
 and T

max_R
) in the 

noninfarcted myocardium adjacent to the aneurysm (BZ) and the myocardium 
remote from the aneurysm were estimated by minimizing the errors between FE 
model-predicted and measured systolic strains and LV volumes using the success 
response surface method for optimization. The significant depression in optimized 
T

max_B
 relative to T

max_R
 was confirmed by direct ex vivo force measurements from 

skinned fiber preparations. The objective of the study in this chapter is to apply our 
method to the noninvasive study of myocardial material properties in a normal 
human subject and a patient with diastolic heart failure.
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8.2 � Left Ventricular Diastolic Function

The increasing recognition of the importance of diastolic dysfunction has led to a 
need for new methods not only to evaluate diastolic function, but also to provide 
insight into the underlying causes of this abnormality. Although some investigators 
have gone as far as to dismiss the existence of altered stiffness in patients with 
diastolic heart failure [5], a recent study demonstrated significant abnormalities in 
passive stiffness in patients with heart failure and a normal ejection fraction [49]. 
Specifically, the diastolic pressure–volume relation (assessed by means of cardiac 
catheterization and echocardiography) was shifted up and to the left in the patients 
with diastolic heart failure when compared with controls. This study, and others, 
confirms the central role that the material properties of the heart have in the patho-
genesis of diastolic dysfunction.

Echocardiography is currently the most widely used diagnostic modality for 
assessing diastolic function. Echo-Doppler measurement of transmitral blood flow 
patterns are now supplemented by tissue Doppler echocardiography (TDE) and pul-
monary venous inflow patterns, to measure LV diastolic function. Normally, early 
flow (E wave) is higher than that associated with atrial contraction (A wave) with a 
systolic dominant pulmonary inflow pattern. Mild diastolic dysfunction is typically 
associated with a reversal of the E/A ratio [45]. However, the E/A ratio in dilated 
cardiomyopathy may range between complete A wave dominance that suggests 
decreased ventricular compliance and a “pseudonormalized” (E wave dominance) or 
restrictive pattern in more severe cases of diastolic dysfunction [35]. Mitral flow pat-
terns can also be difficult to interpret because of confounding factors including atrial 
pressure, ventricular relaxation time, and mitral regurgitation [40]. In addition, aging 
is associated with a decrease in the E/A ratio possibly related to increasing myocar-
dial fibrosis with age [4]. TDE may provide useful quantitative measures of diastolic 
material properties. For instance, TDE may be superior in the measurement of dia-
stolic filling pressure [32] and diastolic stiffness associated with myocardial stunning 
and reperfused MI [36]. However, echocardiographic measures have significant limi-
tations as well. Another study of patients with diastolic heart failure concluded that 
standard echo-Doppler indices of diastolic function correlate poorly with LV dia-
stolic pressure transients. Thus, the diagnosis of diastolic heart failure cannot be 
made on the basis of a single echo-Doppler parameter but, rather, all parameters must 
be examined in concert and used in combination with clinical observations [1].

8.2.1 � Methodology for Model Generation and Strain  
Calculation in the Left Ventricle

Tagged MRI [2, 48] is a valuable technique for noninvasively assessing the 
regional mechanical function of the LV wall. Analysis of wall motion abnormalities 
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with dobutamine stress echocardiography and cine-MRI are established methods 
of detecting myocardial ischemia, but are either semiquantitative or subjective 
[27, 34]. In tagged MR images, the myocardium appears with a spatially encoded 
pattern that moves with the tissue (Fig.  8.1) and can be analyzed to compute 
quantitative measures of regional myocardial contractile performance, such as 
3D strain. Quantitative 3D analysis of tagged MRI has shown promise for 
detecting ischemia and differentiating between viable and nonviable myocar-
dium [7, 19]. Several methods have been developed to quantitatively analyze 
tagged images [8, 15, 18, 25, 28, 33, 47]. Most techniques first use a tag detec-
tion algorithm to extract the positions of taglines in each image in a study. 
Myocardial motion is then reconstructed by fitting a deformation model to the 
tagline positions.

A customized version of the MR image tagging postprocessing software, 
FindTags (Laboratory of Cardiac Energetics, National Institutes of Health, 
Bethesda, MD), was used to contour the endocardial and epicardial LV sur-
faces and also to segment the systolic tags for each image slice [14]. Systolic 
myocardial strains (six Lagrangian Green’s strain tensor components in cylin-
drical coordinates, circumferential, longitudinal, and radial) at midwall and 
around the circumference in each short-axis slice were calculated from 
tagline deformation using the four dimensional B-spline-based motion 
tracking technique [33].

An FE model was created using early diastole as the initial unloaded reference 
state since the LV pressure is lowest at this point and therefore stress is at a 
minimum. Surface meshes were then created from the LV contours to replicate the 
in vivo geometry and measure end-diastolic and end-systolic volumes (Rapidform, 

Fig. 8.1  Tagged long-axis (a) and short-axis (b) magnetic resonance images from a normal male 
human subject
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INUS Technology, Inc., Sunnyvale, CA). The spaces between the endocardial and 
epicardial surfaces were filled with eight-noded trilinear brick elements with a 
single integration point for computational efficiency to generate a volumetric mesh 
that is refined into three elements transmurally (Truegrid, XYZ Scientific 
Applications, Inc., Livermore, CA). The inner endocardial surface was lined with a 
layer of soft nonstructural shell elements to form an enclosed volume for LV 
volume measurements.

Cardiac myofiber angles of −37, 23, and 83° were assigned at the epicar-
dium, midwall, and endocardium, respectively [31]. Cross-fiber, in-plane stress 
equivalent to 40% of that along the myocardial fiber direction was added [43]. 
Nodes at the LV base were restricted to displace horizontally, and circumferen-
tial displacements were constrained at the basal epicardial nodes. The inner 
endocardial wall was loaded to the measured in  vivo end-diastolic and end-
systolic LV pressures.

8.2.2 � Left Ventricular Myofiber Stress Distributions in a Normal 
Human Subject and a Patient with Diastolic Heart Failure

The 3D stress distributions in the myocardium are important to regional ventricular 
function because both regional coronary blood flow [17] and myocardial oxygen 
consumption [37] are influenced by ventricular wall stress. Changes in ventricular 
wall stress are believed to be stimuli for hypertrophy and remodeling [9]. There 
have been no successful methods developed to measure stress in the intact heart 
wall – primarily because of its large deformations and the tissue injury caused by 
implanted transducers [16, 46].

Ventricular wall stress has traditionally been estimated from chamber pressure 
and radii of curvature using LaPlace’s law. However, LaPlace’s law is based on a 
global force balance, which ignores myocardial material properties. Thus, LaPlace’s 
law can be used to estimate only average stress across the full wall thickness in the 
circumferential and longitudinal directions [23].

Models, using the methodology outlined in the previous section, of the LV in a 
normal human subject and a patient with diastolic heart failure were generated. 
The material properties were manually adjusted until the simulated end-diastolic 
and end-systolic volumes were within a reasonable range of the experiment. 
Figure 8.2 shows color-coded plots of the 3D distributions of stress in the local 
muscle fiber direction of the LV for a normal human subject at end-diastole 
(Fig.  8.2a) and end-systole (Fig.  8.2b). Additionally, Fig.  8.2 shows the corre-
sponding LV myofiber stress distributions in a patient with diastolic heart failure 
at end-diastole (Fig. 8.2c) and end-systole (Fig. 8.2d). It can be seen that the stress 
at end-diastole is much higher through the thickness of the LV in the diastolic heart 
failure case than the healthy case. Notice that the maximum end-diastolic and end-
systolic myofiber stress values in the case of diastolic heart failure are nearly twice 
the normal case.
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A comparison of the diastolic material properties between healthy and diseased 
hearts, in terms of parameter values in the constitutive equation, can be somewhat 
difficult to interpret. A much clearer comparison is shown in Fig. 8.3. Notice the 
significantly greater myofiber stress at equibiaxial stretches above 1.15 (15% 
stretch in the fiber and cross-fiber directions) in the case of diastolic heart failure. 
This implies that the diseased LV wall is stiffer than the healthy LV, which means 
that it requires a greater load to deform.

The 3D systolic strains for the normal human subject were determined from 
tagged MR images, as described previously. The circumferential component is 
shown in Fig. 8.4. The next step in the analysis of the human data will be to 
use the formal optimization, outlined in the next section, to determine 
both the passive and active material properties for healthy and dysfunctional 
myocardium.

Fig. 8.2  Color-coded myofiber stress distributions in lateral LV wall. (a) Normal human subject, 
end-diastole (max = 6.16  kPa); (b) Normal human subject, end-systole (max = 60.9  kPa); 
(c) Patient with diastolic heart failure, end-diastole (max = 17.9 kPa); (d) Patient with diastolic 
heart failure, end-systole (max = 134.9 kPa)
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Fig.  8.3  Comparison of myofiber stress vs. stretch ratio relationships during a hypothetical 
equibiaxial stretch of diastolic myocardium in a healthy LV (model in Fig. 8.2a) and an LV (model 
in Fig. 8.3a) with diastolic heart failure

Fig. 8.4  Circumferential strain time course from end-diastole (0 s) to end-systole (0.2 s) at 12 
equally spaced midwall points around the circumference in a short-axis slice at mid-ventricle in a 
normal human subject
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8.3 � A Computationally Efficient Formal  
Optimization of Regional Myocardial Contractility

Recently, our laboratory developed a very efficient and fast method to formally 
optimize regional myocardial contractility from tagged MR images and cardiac 
catheterization pressures [38]. Our approach was demonstrated for data from sheep, 
14  weeks after anteroapical MI. The proposed method involves performing FE 
simulations using the customized commercial FE solver (LS-DYNA) that was pro-
grammed with the passive and active myocardial material laws. The forward FE 
solutions are fed into the optimization software (LS-OPT), which was customized 
to determine the systolic myocardial material parameters (T

max
) using the SRSM 

approach by targeting the in  vivo systolic strains and LV volumes. The in  vivo 
systolic strains and LV volumes were determined from tagged MRI, which also 
provided the LV endocardial and epicardial contours that were used to generate the 
FE model. The FE model loading conditions were obtained from cardiac catheter-
ization measurements of LV pressures. Figure  8.5 summarizes the optimization 
methodology.

Data collected from adult sheep [38] were used to demonstrate the methodol-
ogy and accuracy of the FE optimization tool. Briefly, the sheep underwent 
anteroapical myocardial infarct following the procedures described in Markovitz 
et al. [20]. At 14-week post-MI, a series of orthogonal short- and long-axis tagged 
MR images were acquired as described previously [13]. The end-diastolic and 
end-systolic LV pressures were measured with a nonferromagnetic transducer-
tipped pressure catheter (model SPC-320; Millar Instruments, Houston, TX) 
inserted into the LV via sterile neck incisions [13] and used to define the endocar-
dial boundary conditions of the FE model.

A customized version of the MR image tagging postprocessing software, 
FindTags (Laboratory of Cardiac Energetics, National Institutes of Health, 
Bethesda, MD), was used to contour the endocardial and epicardial LV surfaces and 
also to segment the systolic tags for each image slice [14]. Systolic myocardial 
strains at midwall and around the circumference in each short-axis slice were cal-
culated from tagline deformation using the four dimensional B-spline-based motion 
tracking technique [33], as shown in Fig. 8.6.

An FE model was created using early diastole as the initial unloaded reference 
state, since the LV pressure is lowest at this point and therefore stress is at a 
minimum. From the LV contours at early diastole, aneurysm, remote, and BZ 
regions were determined based on the ventricular wall thickness. Specifically, the 
BZ region is defined as the steep transition in wall thickness between remote and 
aneurysm regions [26]. Surface meshes were then created from the LV contours to 
replicate the in vivo geometry and measure end-diastolic and end-systolic volumes 
(Rapidform, INUS Technology, Inc., Sunnyvale, CA). The spaces between the 
endocardium and epicardium surfaces were filled with eight-noded trilinear brick 
elements with a single integration point for computational efficiency to generate a 
volumetric mesh that is refined into three elements transmurally (Truegrid, XYZ 
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Scientific Applications, Inc., Livermore, CA). Each zone, remote, BZ, and infarct 
was assigned to different material properties. The inner endocardial surface was 
lined with a layer of soft nonstructural shell elements to form an enclosed volume 
for LV volume measurements. A mesh convergence study determined that 2,496 
elements are required and further mesh refinement only results in a 1% change in 
strain predictions. An example of the endocardial and epicardial surfaces, as well 
as the 3D mesh, is shown in Fig. 8.7.

Cardiac myofiber angles of −37, 23, and 83° were assigned at the epicardium, 
midwall, and endocardium, respectively, in the remote and BZ regions [31]. Cross-
fiber, in-plane stress equivalent to 40% of that along the myocardial fiber direction 
was added [43]. At the aneurysm region, fiber angles were set to 0° in order to use 
experimentally determined aneurysm material parameters with respect to this direc-
tion [22]. In other words, the constitutive equation for the aneurysm is in terms of 
strain components that are referred to in cardiac (i.e., circumferential and longitudinal) 
coordinates instead of fiber coordinates. Nodes at the LV base were restricted to 

Fig. 8.5  A flowchart illustrating the process involved in determining the optimum myocardial 
material parameters from tagged MR images and LV pressures from cardiac catheterization (from 
Sun et al. [38], with permission from ASME)
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displace horizontally, and circumferential displacements were constrained at the 
basal epicardial nodes. The inner endocardial wall was loaded to the measured 
in vivo end-diastolic and end-systolic LV pressures.

The minimum of the objective function, consisting of 960 strain and two LV 
volume data points, was reached in ten iterations. The optimized T

max_R
 and T

max_B
 

(remote and BZ) for this sheep are 190.1 and 60.3  kPa, respectively, with 90% 

Fig. 8.6  3D cardiac strain analysis from in vivo tagged MR images. Endocardial and epicardial 
contours as well as segmented taglines were traced from (a) short-axis, as well as long-axis, MR 
images to create, (b) a 3D geometry. (c) Each short-axis slice was divided into 12 sectors and a 
4D B-spline-based motion tracking technique was applied to the tagline (dotted lines) deforma-
tions to calculate the Lagrangian Green’s strains in cylindrical coordinates. For each sector of each 
short-axis slice, longitudinal, radial, circumferential, and shear strains throughout systole were 
determined (from Sun et al. [38], with permission from ASME)
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confidence intervals at 14.9 and 16.9%, respectively. This represents a decrease in 
BZ contractility, that is, 3.15 times less than the remote region. V

SD
 was accurately 

predicted at 110.8 ml, only 4.9% higher than the measured value of 105.6 ml. The 
predicted systolic strains, using the optimized material parameters, were generally 
in decent agreement with the in vivo measured strains. The insertion points of the 
right ventricle (RV) to the LV showed the largest difference between the measured 
and predicted strains since the RV was not included in the model. The RMS error 
for the circumferential strain component between the 137 pairs of measured and 
predicted strains in the remote zone was 0.048, and in the BZ the RMS error was 
0.070 with 55 pairs of strain points. Unfortunately, there were no strain measure-
ments in the infarct zone as short-axis MR images were not acquired in that area. 
The significant depression in optimized T

max_B
 relative to T

max_R
 was confirmed by 

direct ex vivo force measurements from skinned fiber preparations. In addition, the 
optimized values of T

max_B
 and T

max_R
 were not overly sensitive to the passive mate-

rial parameters specified. The computation time of less than 5 h associated with our 
proposed method for estimating regional myocardial contractility in vivo makes it 
a potentially very useful clinical tool.

Fig. 8.7  Creation of the FE model of the LV using geometry from in vivo tagged MR images. 
Endocardial and epicardial contours extracted from short- and long-axis MR images were used 
to generate (a) a surface mesh with three distinct LV regions (remote, BZ, and aneurysm). The 
surface meshes provide projection surfaces for (b) the volumetric mesh, which is refined into 
three elements transmurally. A layer of shell elements line the endocardial surface and cap off 
the top of the LV to form a closed volume for LV volume measurements (from Sun et al. [38], 
with permission from ASME)
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9.1 � Introduction

The practice of cardiovascular care has seen significant advances in the past 40 years 
with dramatic reduction of mortality from heart diseases. Nevertheless, cardiac dis-
eases remain the leading cause of morbidity and mortality in the developed world 
and are on the rise in developing countries [37]. It is well recognized that the con-
ventional clinical practice of using population-based metrics to prescribe “one size 
fits all” treatment methods does not provide optimal health care for many patients 
because of the individual variability in pathophysiology. Moreover, in many situa-
tions, physicians do not have a way of predicting patient responses to various thera-
peutic interventions, and therefore have to rely on “trial and error” to identify the 
treatment-response relationship. An emerging paradigm that addresses these chal-
lenges is the so-called personalized medicine, which seeks to develop diagnosis and 
treatment methods that can be tailored by the physician a priori according to the 
specific needs of an individual patient [25, 44, 52]. Application of such personalized 
approach to cardiac care can dramatically improve the treatment of heart diseases. 
To fully utilize the quality and diversity of clinically available data for personalized 
cardiac care, it is necessary to integrate structural and functional data at molecular, 
cellular, tissue, and organ level into a consistent framework which can be used to 
predict the outcomes of therapeutic interventions. Computational modeling provides 
a powerful tool to perform this data integration [29, 32].

Among the different data collection techniques, imaging has attained special 
significance due to the recent advances in acquisition technologies. Ex vivo magnetic 
resonance imaging (MRI) technologies have facilitated the acquisition of geometry 
and tissue architecture of the heart at very high spatial resolution. Modern ex vivo 
anatomical MR scanners can image the cardiac histoanatomy of small experimental 
animals, such as rabbit, with an isotropic resolution in the order of 10−5 m [11]. 
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Advanced ex vivo diffusion tensor (DT) MR equipments can measure the diffusivity 
of water in the tissue with a resolution in the order of 10−4 m [20]. The primary 
eigenvectors of the DTs have been shown to be aligned with the fiber orientations. 
Evidence also suggests that the secondary and tertiary eigenvectors are oriented 
normally to the main cell axes, in the myocardial laminar plane and perpendicular 
to it, respectively. These developments in ex vivo imaging have facilitated the con-
struction of image-based representative models of cardiac structure with unprece-
dented detail [32, 49]. Similarly, advances in in vivo imaging methods have placed 
at physicians’ disposal the structural details of patient hearts in hitherto unavailable 
detail. State-of-the-art MRI and computed tomography (CT) methods can image 
the myocardial geometry of patient hearts at resolutions that are less than a milli-
meter [15, 30]. Furthermore, it is now feasible to use MRI in combination with late 
gadolinium enhancement to acquire the geometry of scar and peri-infarct zones of 
patient hearts with myocardial infarction [39]. These advances have placed image-
based modeling at the threshold of patient-specific applications.

The purpose of this chapter is twofold. First, we briefly explain the methods we 
have developed to construct high-resolution representative models of the whole-
heart electrophysiology and electromechanics from images acquired ex vivo. 
Second, we present a pipeline that we have implemented to estimate patient-specific 
myocardial fiber orientations from in vivo images. The whole-heart electrophysiol-
ogy is modeled using a continuum approximation of tissue properties, which 
accounts for current fluxes in the extracellular and intracellular spaces, transmem-
brane currents through ionic channels, pumps, and exchangers, as well as changes in 
ionic concentrations including intracellular calcium cycling. The electromechanical 
modeling incorporates, in addition to cardiac electrophysiology, representations of 
the myofilament dynamics, ventricular contraction, and blood flow through the cir-
culatory system. These modeling techniques in combination with the proposed 
methodology for estimating patient-specific cardiac fiber orientations constitute a 
step toward personalized simulations of cardiac electrophysiology and mechanics.

In the following, Sect. 9.2 describes our methods for segmenting high-resolution 
ex vivo images of the heart, Sect. 9.3 describes our methods for generating electro-
physiological meshes from segmented images, Sect. 9.4 outlines the generation of 
mechanical meshes, Sect.  9.5 explains our methodology for simulating cardiac 
electrophysiology, Sect. 9.6 presents our methodology for simulating cardiac elec-
tromechanics, Sect. 9.7 outlines the electrophysiological modeling of an infarcted 
canine heart, Sect. 9.8 presents the electromechanical modeling of a normal canine 
heart, and Sect. 9.9 presents our pipeline for generating patient-specific computa-
tional cardiac meshes. Section 9.10 concludes the chapter.

9.2 � Image Segmentation

To generate image-based models of the heart, it is necessary to classify (or segment) 
the voxels in the structural MR image into different groups, such as normal tissue, 
diseased tissue (or infarct), background, etc. We developed a processing pipeline 
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for the segmentation of the structural MR image as illustrated in Fig. 9.1. The figure 
shows the results as an example image slice is processed through the steps 1–4 in 
the pipeline. The original example slice is shown in the leftmost column of the 
figure. The steps of the pipeline are briefly explained in detail below. More details 
of our segmentation methodology can be found elsewhere [48, 49].

9.2.1 � Suspension Medium Removal

In the first step of our segmentation pipeline, the structural MR image is processed 
to label and “remove” the voxels corresponding to the cavity content, and the 
medium in which the heart was suspended during the image acquisition. First, the 
myocardial boundary of the whole heart is extracted using a combination of two-
dimensional (2D) edge detection [24] and three-dimensional (3D) region growing 
[1]. Next, from the image that represents the myocardial boundary, voxels that cor-
respond to the suspension and cavity medium are extracted using the region-growing 
algorithm. Finally, the suspension medium is removed from the original structural 
MR image by assigning the background intensity to all voxels that correspond to 
the medium. Step 1 in Fig. 9.1 shows the myocardial boundary, suspension medium, 
and myocardium for the example slice.

9.2.2 � Level Set Segmentation

In the next step, a level set method is applied to the image of the myocardium to 
separate the larger coronary arteries and interlaminar clefts, as well as to refine the 
myocardial boundary extracted during the previous steps. Level set methods have 

Fig.  9.1  The processing pipeline we have developed to generate computational models of the 
whole heart from high-resolution ex vivo structural MR images
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the inherent capability to implicitly track complex topologies [21]. This characteristic 
makes them highly suitable for the delineation of the complex coronary artery network 
and interlaminar clefts. Step 2 in Fig. 9.1 illustrates the level set segmentation for 
the example slice.

9.2.3 � Segmentation of Ventricles

In the third step of our pipeline, segmentation of the ventricular myocardium is 
performed. In this step, in each slice, the ventricular portion of the tissue is labeled 
by fitting a closed spline curve through landmark points placed around the ventri-
cles and along the atrioventricular border. All voxels that belong to tissue inside the 
curve are marked as ventricular. Step 3 in Fig. 9.1 shows the landmarks, spline, and 
ventricular myocardium for the example slice. The identification of landmark 
points is performed manually for a number of slices that are evenly distributed in 
the image. The landmarks for the remaining slices are obtained by linearly interpo-
lating the manually identified points.

9.2.4 � Infarct Segmentation

Frequently, hearts have undergone structural remodeling, most notable infarction. 
After the delineation of the ventricles, any infarct tissue present is labeled. First, a 
fractional anisotropy (FA) image is generated from the DTMR image by computing 
the FA of the DT at each voxel [8]. FA quantifies the degree of anisotropy – of dif-
fusion of water in the tissue – in a single number. The infarct region is characterized 
by lower anisotropy [12]. On the basis of this difference in FA values, the infarct 
region is separated from the normal myocardium by applying the level set segmen-
tation to the 3D FA image. Step 4 in Fig. 9.1 shows the segmentation of the FA 
image slice that corresponds to the example slice. Next, the infarct region is subdi-
vided into two areas: a core, which is assumed to contain inexcitable scar tissue, 
and a peri-infarct zone, which is assumed to contain excitable but pathologically 
remodeled tissue, by thresholding the structural MR image based on the intensity 
values of the voxels. The core has high or low intensity, while the peri-infarct zone 
has medium intensity [39, 53]. Step 4 in Fig. 9.1 illustrates the final segmentation 
of the example slice. Once any infarct areas present are identified, segmentation of 
the structural MR image is complete.

9.3 � Electrical Mesh Generation

The electrical mesh is a finite element mesh in which each element is assigned a 
unit vector that indicates the orientation of myocardial fibers inside that element. 
We generate the finite element mesh directly from segmented images using commercial 
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software known as Tarantula (http://www.meshing.at/Spiderhome/Tarantula.html). 
For details regarding the mesh generation methodology as well as the examination 
of mesh quality metrics such as aspect ratio, skewness, maximum angle, and mini-
mum angle, the reader is referred to a recent paper [33]. The paper also contains 
performance metrics of benchmark electrophysiological simulations and a com-
parison with other mesh generation techniques. The unique advantage of the soft-
ware is that it can generate unstructured meshes directly from segmented images. 
Figure  9.2a shows a mesh generated for the processed slice shown in Fig.  9.1. 
Figure 9.2b presents a small region of the mesh in detail. As the figure illustrates, 
the interior tissue volume is meshed at low resolution, while the interface between 
tissue and non-tissue is refined by a factor of about two.

The generation of the electrical mesh is completed by mapping the fiber orienta-
tions onto the finite element mesh by interpolating the primary diffusion vectors on 
the centroids of the elements. First, a reference vector field is constructed by com-
puting the primary eigenvector of each tensor in the previously interpolated DTMR 
image. This vector field is in the same coordinate system as the finite element mesh. 
The fiber orientation assigned to an element in the mesh is the direction of that 
vector in the reference field nearest to the centroid of the element. It must be noted 

Fig. 9.2  Electrical mesh generation: (a) mesh corresponding to the slice shown in Fig 9.1; (b) 
enlarged view of the small region enclosed by the box in (a); (c) 2D projection, on the xz plane, 
of orientations assigned to the mesh shown in (a); (d, e) show enlarged views of small regions 
enclosed by the boxes in septum and LV in (c), respectively

http://www.meshing.at/Spiderhome/Tarantula.html
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that the two-step interpolation process correctly handles cases, where two diffusion 
vectors that form an obtuse angle are close together, because the reference field is 
constructed based on the interpolation of original diffusion weighted images, and 
the nearest neighbor interpolation does not involve spatial averaging of multiple 
vectors. Also, the nearest neighbor interpolation performed here does not produce 
any artifacts because the spatial resolution of the reference vector field is greater 
than or equal to that of the mesh in all our data. Figure 9.2c shows the 2D projec-
tion, on the xz plane, of derived fiber orientations that are mapped to the mesh 
shown in Fig. 9.2a. The arrows are colored according to the y component of the 
diffusion vectors. Due to the transmural rotation of the fibers [18–20], the arrows 
are lighter near the epi- and endocardial surfaces, and darker near the midwall. 
Figure 9.2d shows the enlarged view of a small region in the septum. Since the 
original slice shown in Fig. 9.1 intersects the septum nearly at a right angle, the 
rotation of the fibers is evident in Fig. 9.2d: the arrows are longer near the surfaces, 
where the fibers are oriented in the base–apex direction, and shorter near midwall, 
where the fibers aligned with the circumferential direction [18–20]. Figure  9.2e 
shows an enlarged view of a small region in the left ventricular (LV) myocardium. 
The arrows are densely distributed near the surfaces, demonstrating the higher reso-
lution of the mesh in those regions.

9.4 � Mechanical Mesh Generation

In this section, we describe our methods for generating computational meshes for 
the simulation of cardiac mechanics. The structure of the finite element hexahedral 
mesh for our mechanical model consists of two 6 × 6-element layers, as shown in 
Fig. 9.3a. The portion of the mesh where the two layers are attached formed the LV, 
the upper detached layer formed the septum, and the remaining lower layer formed 

Fig. 9.3  (a) Overview of fitting the hexahedral mesh to the geometry obtained from segmenting 
the MRI scans (the red mesh). See text for details. (b) Wireframe of the hexahedral mesh. The LV 
is solid and the RV is transparent. The center node of the blue surface (upper red node) was posi-
tioned to the RV apex. The yellow lines correspond to those in panel (a). (c) Final hexahedral 
mesh. The arrows point to locations where corner elements were removed. Fibers within laminar 
sheets of normal canine ventricles visualized as streamlines. (d, e) Visualization of the laminar 
sheets located near the epicardium and endocardium, respectively. The colors in the sheets trace 
individual fibers
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the right ventricle (RV). Layer surfaces labeled 1–4 in Fig.  9.3a defined the 
endocardium and epicardium of the ventricles, where surface 1 (green) was the LV 
endocardium, surfaces 2 and 3 (blue) formed the RV endocardium, and surface 4 
(red) defined the epicardium.

To reconstruct the geometry of the mechanical mesh, a least-squares fitting 
method is used to define the nodal coordinates and their derivatives of the epicardial 
and endocardial surfaces. This fitting algorithm is described elsewhere [19, 27]. For 
the nodes that reside within the LV midwall, the spatial coordinates and its deriva-
tives are calculated as the averages of the corresponding nodes on the epicardium 
and endocardium. To ensure continuity with respect to the global coordinates, all 
derivatives are defined with respect to arc length, as done by Nielsen et al. [27]. 
After the fitting, corner elements of the mesh are nearly prisms with two nearly 
triangular faces, which result in the degeneration of mesh quality. Therefore, the 
mesh is further refined by decreasing the size of the layers’ corner elements and 
increasing that of the elements adjacent to the corner elements, while retaining the 
overall shape of the mesh. These smaller corner elements are then removed from 
the mesh. The arrows in Fig.  9.3c point to the locations of the corner elements. 
Finally, mesh elements are subdivided to distribute the ventricular volume more 
evenly among elements. As a result, the initial mesh of 72 elements (Fig.  9.3b) 
becomes a final hexahedral mesh of 172 elements and 356 nodes (Fig. 9.3c).

The fiber and laminar sheet structural information for the mechanical mesh is 
obtained from the DTMR image dataset. To this end, tensors and their gradients are 
defined at each node of the finite element mesh and interpolated within the finite 
elements using Hermite interpolation. The values at the nodes are computed using 
a least-squares method, which minimizes the sum of the squared distances between 
the DTs from the DTMR image and the tensors from the interpolated tensor field. 
The minimization is performed in the so-called log-Euclidean metric space, which 
was introduced previously by Arsigny et al. [3]. Since artifacts appear when voxels 
of MR images represent both ventricular tissue and surrounding media, a regular-
ization of the approximated tensor field was employed to smooth the tensor field 
and eliminate the partial volume effect on the DTs at the epicardial and endocardial 
surfaces. The eigenvectors of the tensors in the interpolated tensor field represent 
the fiber and laminar sheet structure of the reconstructed hearts. Figure 9.3d illus-
trates the fiber orientations and laminar structure near the epicardium of the antero-
lateral part of a mechanical mesh that was built using our methods. Figure  9.3e 
illustrates the fiber orientations and laminar sheets near the endocardium.

9.5 � Modeling of Electrophysiology: General Aspects

This section describes the methodology associated with simulating the electro-
physiological behavior of the heart. The simulation of propagation of a wave of 
transmembrane potential is performed by solving a reaction-diffusion partial dif-
ferential equation (PDE) for the transmembrane potential [31] on the electrical 
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finite element mesh. This equation describes current flow through cardiac cells that 
are electrically well connected by means of low-resistance gap junctions, allowing 
for a continuum representation of current flow in the heart. Cardiac tissue has 
orthotropic passive electrical conductivities that arise from the cellular organization 
into fibers and laminar sheets. Global conductivity values are obtained by combin-
ing ventricular fiber and sheet organization with myocyte-specific local conductiv-
ity values [51]. Current flow in the tissue is driven by active processes of ionic 
exchange across myocyte membranes (See also Chaps. 3 and 4). These active elec-
trical processes are represented by the ionic model of myocyte membrane behavior, 
where current flow through ion channels, pumps, and exchangers in the myocyte 
membrane as well as subcellular Ca cycling between cell compartments and buffers 
are governed by a set of ordinary differential (ODE) and algebraic equations. 
Simultaneous solution of the PDE with the set of ionic model equations represents 
the simulation of electrical wave propagation in the heart. Our laboratory has exten-
sive expertise in simulating electrical activity in the heart using this approach [4, 
38, 45], where a biophysical model of myocyte active behavior is combined with a 
model of cardiac structure and geometry; review of all the modeling details can be 
found in [31].

9.6 � Modeling of Electromechanics: General Aspects

To simulate cardiac electromechanics, the electrical component of the model 
(described in the previous section) is coupled to a mechanical component. A sche-
matic of the electromechanical model is shown in Fig. 9.4. Physiologically, when 
an electrical wave propagates through the heart, the depolarization of each myocyte 
initiates a release of Ca from its intracellular Ca stores, followed by binding of Ca 
to Troponin C and cross-bridge cycling. The latter forms the basis for contractile 
protein movement and development of active tension in the cell, ultimately result-
ing in the deformation of the ventricles. Thus, the intracellular Ca released during 
the electrical activation couples the electrical and mechanical components. It serves 
as an input to a biophysical cell myofilament model representing the generation of 

Fig. 9.4  Overall scheme of the image-based electromechanical model
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active tension within each myocyte, where a set of ODEs and algebraic equations 
describe Ca binding to Troponin C, cooperativity between regulatory proteins, and 
cross-bride cycling.

Contraction of the ventricles arises from the active tension generated by the 
cardiac cells. Ventricular deformation is described by the equations of passive car-
diac mechanics [17, 46, 47], with the myocardium being an orthotropic (due to fiber 
and laminar sheet organization), hyperelastic, and nearly incompressible material 
with passive mechanical properties defined by an exponential strain energy func-
tion. Simultaneous solution of the myofilament model equations with those repre-
senting passive cardiac mechanics on the finite element mechanical mesh constitutes 
the simulation of cardiac contraction. During contraction, the stretch ratio (i.e., the 
ratio of myocyte length before and after deformation) and its time derivative affect 
myofilament dynamics, including length-dependent Ca sensitivity, providing a 
feedback loop.

Finally, to simulate the cardiac cycle, conditions on chamber volume and pres-
sure are imposed by a lumped-parameter model of the systemic and pulmonic cir-
culatory systems, as shown in Fig. 9.4. The lumped-parameter model is based on 
the implementation by Kerckhoffs et al. [23], which we modified.

9.7 � Cardiac Electrophysiology Modeling Example: Ventricular 
Tachycardia in the Infarcted Canine Heart

This section presents an example of the image-based electrophysiological model 
approach described above. It examines ventricular tachycardia (VT) in an image-
based 3D model that incorporates accurate infarct geometry and composition. 
Complex myocardial remodeling that occurs in postinfarcted hearts has been shown 
to give rise to substrates that could initiate or anchor VT reentrant activity. The 
degree of myocardial injury in the infarcted region is dependent on tissue proximity 
from the site of occlusion. Tissue that experiences zero perfusion undergoes cellular 
necrosis and formation of scar tissue. Infarct-shape analysis has demonstrated that 
strands of viable tissue within electrically passive scar tissue could provide alternate 
pathways for propagation. In addition, partial perfusion in the adjacent peri-infarct 
zone tissue results in ion channel and gap junction remodeling that have been shown 
to result in slowed conduction and altered action potential morphology. The com-
plexity of tissue remodeling within the infarct has made it difficult to elucidate the 
specific mechanisms that give rise to postinfarction VT and its morphology.

The model was built using previously described methods from an infarcted 
canine heart, which was scanned 4-week postinfarction using structural MR and 
DTMR at a resolution of 350 × 350 × 800 mm3 and interpolated using cubic splines 
to a resolution of 200 × 200 × 200 mm3. The top row in Fig. 9.5 shows the geometry 
of the model. The ionic kinetics in the normal myocardium and peri-infarct zone 
were represented by the Luo–Rudy dynamic model [26]. Membrane kinetics in the 
peri-infarct zone was modified based on data from literature. Previous studies of 
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peri-infarct zone in infarcted canine hearts have reported a reduction in peak 
sodium current to 38% of the normal value [35], in peak L-type calcium current to 
31% of normal [13], and in peak potassium currents I

Kr
 and I

Ks
 to 30 and 20% of 

the maximum [22], respectively. These modifications result in longer action poten-
tial duration (APD) and decreased excitability compared to the normal myocar-
dium. To examine the arrhythmogenic propensity of the infarct substrate, an 
aggressive pacing protocol was delivered from the apex, similar to protocols used 
for clinical evaluation of patients with myocardial infarction. Pacing commenced 
at a basic cycle length of 250 ms for five beats (S1); 450 ms after the last S1, six 
stimuli were delivered at progressively shorter coupling intervals, starting at 
190 ms and decreasing in steps of 10 ms. The induced activity was monitored for 
additional 2.5 s.

The bottom row in Fig. 9.5 illustrates the events that lead to VT induction. It 
depicts isochrones of activation times for time periods during the fourth stimulus of 
the aggressive pacing protocol (panel c) and during the resulting VT (panel d). For 
each activation map, the image on the right presents the intramural activation pat-
tern on a slice through the heart, the location of which is indicated by the white 

Fig. 9.5  The geometry of the infarcted canine heart model and activation times during VT induc-
tion. (a) Anterior view of geometry, where the ventricles are colored in red, atria in chocolate 
brown, infarct core in yellow, and peri-infarct zone in blue; (b) the geometry split in half along a 
horizontal view axis plane; (c) epicardial and transmural activation times during the fourth pacing 
stimulus; (d) activation map showing the VT circuit
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dotted line on the epicardium in panel c. When the propagating wavefront from the 
pacing site reaches the peri-infarct zone, conduction significantly slows as com-
pared to the surrounding normal tissue. Faster wavefronts from the normal myocar-
dium converge into the peri-infarct zone laterally (white arrows) activating the 
entire peri-infarct zone. The transmural view show late activation of the peri-infarct 
zone due to the wavefront propagating from the normal myocardium. Since the 
peri-infarct zone has a longer APD, it remains refractory, while the surrounding 
myocardium is fully recovered. As the pacing rate is increased, the wavefront 
encounters refractory tissue, resulting in conduction block. This region of block 
later becomes the conduit for wavefront propagation from the intramural PZ toward 
the surface. When pacing is completed, the activation from within the peri-infarct 
tissue develops into an epicardial quatrefoil reentry. The reentry core remains 
within the peri-infarct and is sustained throughout the simulation with a rotation 
frequency of 5 Hz.

Previous experimental studies of infarcted canine hearts have reported the induc-
tion of VT with epicardial reentry morphology [5]. The simulations revealed that 
decreased excitability, longer APD, and reduced conduction velocity throughout 
the peri-infarct zone promoted conduction block and wave break that develops into 
epicardial reentry. Furthermore, the simulation showed that the site of wave break 
and reentry formation occurred in both the epicardial and intramural portions of the 
peri-infarct zone. Thus, this study showcased the utility of image-based computa-
tional modeling in predicting sites of reentry formation and maintenance.

9.8 � Cardiac Electromechanics Modeling Example: 
Electromechanical Delay in the Normal Canine Heart

Despite recent advancements in the understanding of the electromechanical activa-
tion sequence during normal sinus rhythm, characterization of the spatiotemporal 
interactions between electrical activation and mechanical contraction throughout 
the ventricular volume remains incomplete. This stems from the fact that current 
experimental techniques are limited by their inability to simultaneously evaluate 
the 3D electrical and mechanical activity of the heart at a high spatiotemporal reso-
lution; therefore, alternative approaches must be undertaken. In this section, the 
image-based electromechanical model of the normal canine ventricles was 
employed to obtain insight into the 3D electromechanical activation sequence dur-
ing the normal sinus rhythm. To do so, we examined the distribution of the electro-
mechanical delay (EMD), the time interval between the onset of myocyte 
depolarization and that of myofiber shortening, throughout the ventricular volume 
during the normal sinus rhythm.

Sinus rhythm was simulated by stimulating the endocardial surface at specific 
locations as if activation originated from the Purkinje network. The timings and 
locations were adjusted until the activation pattern matched experimental data [14, 
43]. We employed the canine ionic model in [16], in which we incorporated an 
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equation to represent Ca buffering by Troponin C [42]. Myofilament dynamics 
were governed by the biophysical model [36].

To determine the 3D distribution of EMD, the local time difference between 
myocyte depolarization and onset of myofiber shortening was calculated through-
out the ventricles. Myocyte depolarization is defined as the instant at which the 
transmembrane potential exceeds 0  mV. Onset of shortening was defined as the 
instant when local myofiber shortening reaches 10% of its maximal value [41].

Transmural, short-axis maps of the electrical and mechanical activation (i.e., 
onset of myofiber shortening) times are shown in Fig.  9.6a and b, respectively. 
Electrical activation generally began from the endocardium and propagated to the 
epicardium and from the apex to the base; mechanical activation also followed this 
pattern. Transmural maps of EMD at the same short-axis views are shown in 
Fig. 9.6c and reveal that there are transmural differences in EMD throughout the 
LV free wall. EMD at the late-activated epicardium was longer than that at the early 
activated endocardium. To understand how these transmural differences in EMD 
arise, temporal traces of transmural myofiber strain at the mid-base of the anterior 
left ventricle are presented in Fig. 9.6d, and they demonstrate that the late-activated 
epicardium is prestretched, as indicated by the positive myofiber strain. This pre-
stretch delays the onset of myofiber shortening and results in a prolonged EMD.

Previous experimental studies have shown that during normal sinus rhythm, 
there are differences in EMD on the epicardium between the apex and base [34, 41]. 
In addition, a local transmural difference in EMD has been reported at one single 
location at the anterior wall [6]. Our simulation results further these experimental 
findings and demonstrate that the 3D distribution of EMD is heterogeneous 
throughout the ventricular volume in the normal canine heart.

Understanding how this 3D distribution of EMD is altered under diseased condi-
tions, such as dyssynchronous heart failure, and under different loading conditions 
could be particularly important to improving pacing therapies that aim to recoordi-
nate mechanical contraction, such cardiac resynchronization therapy (CRT). Although 
CRT has been shown to improve quality of life and reduce hospitalizations [7], a 

Fig. 9.6  Transmural, short-axis maps of electrical activation (a), mechanical activation (b), and 
electromechanical delay (c) during sinus rhythm in the normal canine heart. (d) Temporal traces 
of myofiber strain at the LV anterior wall
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substantial number of patients do not respond to CRT, making it difficult to justify the 
expense of its broader application (Chap. 10). Thus, further advancements in optimi
zing CRT delivery and improving the selection criteria of potential CRT responders 
will necessitate mechanistic insights into the 3D interaction between electrical 
activation and mechanical activation under healthy and diseased conditions.

9.9 � On the Road to Patient-Specific Modeling

In the preceding sections, we described the methodologies that we have developed 
to construct representative models of cardiac structure and to study electrophysio-
logical and electromechanical phenomena of the heart by simulating with numeri-
cal models. In this section, we present the techniques that we have developed to 
build models that are based on the specific architecture and electromechanical 
properties of the patient’s diseased heart. Such personalized cardiac models in 
combination with high-performance computing can provide clinical researchers 
with quick and noninvasive access to critical information about electrophysiologi-
cal and electromechanical phenomena and events in the hearts of individual patients. 
Ultimately, such patient-specific information will aid physicians to arrive at highly 
personalized decisions for electrophysiological interventions as well as prophy-
laxis, thereby dramatically improving cardiac healthcare. To illustrate, current 
radiofrequency ablation approaches to treating ventricular arrhythmia rely solely on 
the physician’s experience in identifying and destroying the arrhythmogenic sub-
strate, a task that is complicated by the variations in the morphology of structural 
remodeling (infarct) across different patients (Chap. 1). With the aid of realistic 
patient-specific computational models, physicians will be able to simulate different 
ablation scenarios, predict the results, and select the optimal intervention.

Despite the potential impact, the application of electrophysiological simulations 
in personalized treatment is hampered by a significant barrier, namely the lack of 
technology to acquire the fiber structure of a given patient heart. While advanced 
MR and CT technologies can acquire the geometry of a patient heart in vivo up to 
submillimeter resolution [15, 28, 30], there is no practical method that physicians 
can use for noninvasively acquiring the fiber structure of a living patient heart. This 
limitation constitutes one of the major obstacles to the application of computational 
cardiac simulations in the clinical setting. To address this need, we have developed 
a methodology to predict fiber orientations of a patient heart from geometry 
acquired in vivo [50].

We hypothesize that fiber orientations of a patient heart can be accurately pre-
dicted given the geometry of the patient heart and an atlas human heart. If this 
hypothesis was proven, it will be possible to estimate fiber orientations of patient 
hearts from geometries acquired using modern in vivo MRI and CT technologies. 
We have tested this hypothesis, and developed, using state-of-the-art techniques, a 
processing pipeline for the estimation of patient-specific fiber orientations. The 
pipeline involves the use of tools of computational anatomy [9] to morph fiber 
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orientations of an atlas to match patient geometries (see, e.g., Chap. 7), thereby 
obtaining patient-specific fiber orientations.

The atlas is a normal human heart whose geometry and fiber orientations are 
acquired ex vivo using high-resolution (0.4297 × 0.4297 × 1 mm3) structural MRI 
and DTMR image, respectively. The reconstruction of the atlas geometry from the 
structural data was performed using methods described in the previous section on 
image segmentation. Figure  9.7 shows the atlas geometry. The reconstruction is 
highly detailed, retaining finer structures such as trabeculations and papillary 
muscles. A visualization of the atlas fiber orientations is shown in Fig.  9.8. As 
expected, the fibers form a counterclockwise helix on the epicardial surface.

9.9.1 � Processing Pipeline for Estimating Patient- 
Specific Fiber Orientations

Figure  9.9a shows the processing pipeline that we have developed to estimate 
patient-specific fiber orientations of the heart. The pipeline involves three main 
steps, as shown in the gray blocks in the figure. The following subsections describe 
these steps and illustrate our methodology by showing how the estimation is per-
formed for an example patient who was scanned using in vivo CT.

9.9.2 � Reconstruction of Patient Heart Geometry

In the first step, the patient heart structural MR or CT image is segmented to reconstruct 
the ventricular myocardium. In this segmentation, the voxels that correspond to the 
ventricular myocardium of the patient heart are labeled. The labeling is performed 

Fig. 9.7  The geometry of the normal human atlas heart. The left panel shows the anterior view, 
and the right panel shows the atlas split in half along a horizontal view axis plane. The ventricles 
appear in dark gray, and the atria in light gray
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by fitting closed splines through a set of landmark points that are semiautomatically 
placed along the epicardial and endocardial boundaries of the ventricles in the 
image. All voxels that lie inside the epicardial spline, but outside the endocardial 
splines are marked as myocardial. Similar to the extraction of ventricles from a 
high-resolution ex vivo image described previously, the placement of landmark 
points is performed manually for a number of slices that are evenly distributed in 
the image. The landmark points for the remaining slices are obtained automatically 
by linearly interpolating the manually identified points. Figures 9.9b and c illustrate 
the reconstruction of the ventricular geometry from the in vivo CT image of the exam-
ple patient. Incidentally, our experiments indicate that the number of image slices 
for which landmark points need to be placed manually is about 10% of the total 
number of slices, and the amount of time required for segmenting the myocardium 
from a typical in vivo image is less than 1 h.

9.9.3 � Deformation of Atlas Heart Geometry

In the next step of the pipeline, the ventricular myocardium of the atlas heart is 
deformed to match the patient heart geometry. This deformation is performed in 
two phases. The first phase involves an affine transformation based on a set of 
landmarks points. Five manually identified landmarks, including the LV apex, the 
right ventriculoseptal junctions located at the base, and the right ventriculoseptal 

Fig. 9.8  A visualization of 
the fiber orientations in the 
normal human heart atlas
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junctions located midway between base and apex are used. Figure 9.9d shows the 
ventricular myocardium of the atlas heart, which is shown in Fig. 9.7. Figure 9.9e 
shows the patient geometry from Fig.  9.9c, together with the atlas ventricular 
myocardium. Figure 9.9f shows the patient geometry and the affine transformed 
atlas geometry.

The second phase of deformation of atlas geometry involves a high-dimensional 
nonlinear deformation using an algorithm known as large deformation diffeomorphic 
metric mapping (LDDMM) [10]. The advantage of the LDDMM algorithm is two-
fold. First, it computes transformations that are smooth and invertible (diffeomor-
phic), thereby preserving the integrity of anatomical structures during deformation. 
In particular, connected sets remain connected and disjoint sets remain disjoint, 
smoothness of anatomical structures such as curves and surfaces is preserved, and 
coordinates are transformed consistently. Secondly the algorithm computes a geodesic, 
which is the shortest length path in the space of transformations that match the 
template and target, thereby quantifying the deformation via a scalar metric distance, 

Fig. 9.9  Our methodology for estimating patient-specific myocardial fiber orientations. (a) The 
processing pipeline for the estimation; (b) segmentation of an example patient heart image, where 
splines are shown in gray and landmarks in white; (c) ventricular geometry of the example patient 
heart; (d) the ventricular myocardium of the atlas; (e) patient and atlas ventricular geometries 
superimposed; (f) patient geometry and affine transformed atlas geometry; (g) patient geometry 
and atlas geometry after large deformation diffeomorphic metric mapping (LDDMM)



1619  Modeling of Whole-Heart Electrophysiology and Mechanics

and providing a superior registration quality. The deformation of the atlas geometry, 
using the affine transformation and LDDMM, matches the atlas geometry with the 
patient geometry. Figure 9.9g shows the patient geometry together with the atlas 
geometry after LDDMM deformation. The deformed atlas closely matches the 
patient geometry.

9.9.4 � Deformation of Atlas Fiber Orientations

In the final step of the pipeline, the fiber orientations of the patient heart are esti-
mated. This step involves the application of the affine transformation matrix and the 
deformation field of LDDMM in sequence to deform the DTMR image of the atlas. 
The deformation of the DTMR image consists of spatial repositioning of the image 
voxels in accordance with the spatial transformation of geometry images and reori-
entation of the DTs. The reorientation of the DTs is performed by using the so-
called preservation of principal directions method [2]. This method preserves the 
principal direction of the DT as well as the plane spanned by the largest two eigen-
vectors, and therefore is well suited for the higher-order transformations that are 
involved in registering cardiac images. The deformation of the template DTMR 
image, by repositioning the image voxels and reorienting the DTs, gives an estimate 
of the patient heart DTs, the primary eigenvectors of which provide an estimate of 
the patient-specific fiber orientations. Figure 9.10 shows the estimated myocardial 
fiber orientations of the example patient. As expected, the fiber orientations appear 
clockwise helically near the endocardium, circumferentially near midwall, and 
anticlockwise helically near the epicardium.

Fig. 9.10  A visualization of the estimated myocardial fiber orientations of the example patient
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9.9.5 � Pipeline Validation

The pipeline for estimating patient-specific fiber orientations was validated using 
six normal, one failing, and one infarcted canine hearts, all of which were scanned 
ex vivo with high-resolution DTMR to obtain ground truth fiber orientations. One 
normal canine heart was chosen as the “atlas” and the fiber orientations of all other 
hearts were estimated. The error in estimated fiber orientations was computed as 
the absolute difference between the inclination angles [40] of estimated orientations 
and ground truth orientations. It was found that the mean error in the normal, fail-
ing, and infarcted cases were 14, 14.3, and 18°, respectively. The overall mean error 
was 14.8°, which is comparable to the error of 12° in fiber orientations derived from 
DTMR images [40].

In addition to the above, we conducted simulations of paced propagation with 
ventricular models built using estimated and ground truth fiber orientations and 
compared the resulting activation time values. In normal canine hearts, simulations 
showed a difference of 7.8% in activation timing values between models built using 
ground truth fiber orientations and those using estimated fiber orientations. In fail-
ing and infarcted cases, the differences were 7.7 and 6.2%, respectively. These 
results show that the estimated fiber orientations can be reliably used in electro-
physiological simulations.

9.10 � Conclusion

In conclusion, we have developed methods to construct high-resolution representa-
tive models of the whole-heart electrophysiology and electromechanics from 
images acquired ex vivo. Simulations with these models can provide new insights 
into cardiac function, in health and disease. Building upon our research in con-
structing representative models of the heart, we have developed a pipeline to create 
patient-specific computational meshes of the heart from in vivo images. The pipe-
line involves a method to accurately predict fiber orientations of patient hearts and 
constitutes a step toward patient-specific models of cardiac electrophysiology.
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10.1 � Introduction

Cardiovascular diseases (CVD) are the major cause of morbidity and mortality in 
the western world. Within CVD, the increasing prevalence of congestive heart failure 
(CHF) is mainly caused by the steadily increasing number of heart attack survivors. 
They suffer an important scar burden on their cardiac function due to the infarction. 
Moreover, CHF has a terrible prognosis with 50% mortality in the first 3 years after 
diagnosis. Of all CHF patients, those with an additional dyssynchronous contraction 
have the worst prognosis. Cardiac resynchronization therapy (CRT) involves placing 
a pacemaker to improve the synchronicity of cardiac contraction. It has recently 
been shown to be an effective method of treating patients with dyssynchronous 
CHF, inducing significant reductions in morbidity and mortality in large clinical 
trials. However, clinical trials have also demonstrated that up to 30% of patients 
may be classified as nonresponders. There remains major controversy surrounding 
patient selection and optimization of this expensive treatment (e.g., lead positioning, 
pacemaker setting). For instance, recent studies showed that patients with heart 
failure and narrow QRS intervals do not currently benefit from CRT (RethinQ, [3]) 
and that no single echocardiographic measure of dyssynchrony may be recom-
mended to improve patient selection (PROSPECT, [10]). Therefore, new approaches 
are needed in order to provide a better diagnosis and characterization of patients 
while achieving a better planning and delivery of the therapy.

In parallel, the last decades have seen major progress in medical imaging, cardiac 
modeling, and computational power that make personalized simulations (i.e., using 
models with patient-specific parameters) achievable. While the scientific importance 
and enormous clinical potential of this approach have been acknowledged [12, 23], 
its translation into clinical applications remains largely to be done. We aim to build 
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on the major scientific progress that has already been made in cardiac modeling, in 
order to proceed to the next level and personalize such models to each specific patient 
using state-of-the-art multimodal imaging. This personalization of models has the 
potential to have a major impact on clinical practice. Indeed, patient management 
would be improved by a more accurate diagnosis and characterization, and personalized 
and predictive therapy planning for that specific patient could be achieved.

In this chapter, we demonstrate a proof of concept on a first case study of how 
the personalization of an electromechanical model of the heart can predict the 
changes in cardiac function due to changes in pacing (Fig. 10.1). Such predictions 
can be used to quantify the improvement in cardiac function that can be expected 
from CRT and also to optimize the location and delays of the pacemaker leads 
(stimulation electrodes). In this work we only focus on the acute effects of resyn-
chronization. There is also an important part of the therapy process due to the 
reverse remodeling of the heart under the new pacing conditions [58], but this is out 
of the scope of the presented work.

There is a growing body of literature on the functional imaging of the heart, for 
instance with the measurement of electrical activity, deformation, flows, fiber orienta-
tion [15, 28, 31, 32], and on the modeling of the electrical and mechanical activity of 
the heart [24, 33, 39, 42, 63]. Many of these models are direct computational models, 
designed to reproduce the cardiac activity in a realistic manner, often requiring high 
computational costs and the manual tuning of a very large set of parameters.

Recently, computational models have been used to simulate CRT on a generic 
anatomy and compared with animal experiments [26, 27], which provide important 
insights on the pathophysiology of dyssynchrony. However, in order to translate to 
the clinics and impact the patient management and the therapy planning, such models 

Fig.  10.1  Global scheme of the clinical data used for the personalized models, the generated 
output maps and parameters, and the resulting predictions [54]
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need to be personalized (i.e., with adjusted parameters) to the specificity of each 
patient, which is still a very challenging task.

The proposed approach involves models whose complexity is directly related to the 
phenomena observed in clinical data. This is the reason why these models are often 
simplified compared to the very detailed models available in the literature. The observ-
ability of their parameters is crucial in the personalization step. Involving a limited 
number of parameters can allow their identification from clinical measurements on a 
specific patient by the resolution of a tractable inverse problem (Fig. 10.1).

We illustrate in this chapter the personalization of several components. A prelimi-
nary section details the clinical context, the data acquisition, and the data fusion 
into the same spatio-temporal coordinates. We then present the four sections 
concerning the personalization of the model anatomy, electrophysiology, kinematics, 
and mechanics. Finally, we demonstrate this first proof of concept on the prediction 
of the cardiac function and its agreement to interventional measurements for five 
different pacing conditions on each of the two clinical cases presented.

10.2 � Clinical Context, Data Acquisition, and Fusion

The construction, testing, and personalization of biophysical models rely on the 
ability to fuse data from an array of sources. For cardiac modeling, the fusion of 
anatomical, mechanical, and electrical data is of primary importance. This fusion 
must be both in the spatial and temporal domains. High-quality cardiac anatomical 
and functional data can be obtained from both computerized tomography and magnetic 
resonance imaging (MRI). MRI can also be used to obtain functional data such as 
myocardial wall motion and blood flow. Electrical data can be obtained from 
catheter-based measurements that are guided using X-ray fluoroscopy.

Spatial fusion of these different data requires an effective image registration 
strategy. Our solution has focused on the use of the X-ray/MR (XMR) hybrid imaging 
system that allows the seamless collection of both MRI and X-ray-based data 
(Fig. 10.2). We have developed a real-time registration solution [48] that allows the 
spatial integration of MRI-based anatomical and functional data with X-ray-based 
catheter data, such as intracardial electrical and pressure signals. For the temporal 
integration, the electrocardiogram (ECG) gives information on the heart rhythm 
that enables the synchronization of the different datasets.

The first patient of this study is a 60-year-old woman with NYHA class III 
symptoms. The etiology of heart failure is thought to be dilated cardiomyopathy 
although cardiac MRI did show two nonviable areas of a moderate size corresponding 
to the drainage area of the left anterior descending (in the apical and mid-inferoseptal 
segments) and of the left circumflex coronary artery [mid-inferolateral segment of 
the left ventricle (LV)], which are consistent with a previous subendocardial infarc-
tion. However, there was no flow-limiting disease on coronary angiography. Ejection 
fraction of the LV was around 30% on maximal tolerated medication. The patient 
suffers from a left bundle branch block as revealed in the ECG, with in particular a 
QRS duration of 144 ms (while a normal QRS is less than 100 ms). Echocardiography, 
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including tissue Doppler, confirmed significant mechanical dyssynchrony in keeping 
with the ECG findings.

The MR examination sequences involve SSFP Cine MR imaging for the 
estimation of ventricular function and volumes, late enhancement images with 
gadolinium for scar anatomy, and whole heart 3D navigated free breathing sequences 
for coronary venous anatomy. The noncontact mapping is performed using the ESI 
3000 multielectrode array catheter system (St Jude, Sylmar, CA). This consists of a 
64 laser-etched wire braid mounted on an 8 mm balloon. The array records intracavity 
far-field potentials. The resulting signals are allowing a reconstruction of over 3,000 

Fig. 10.2  (a) XMR suite with the MR scanner and the X-ray C-arm. (b) Overlay of MRI-derived 
left ventricular (LV) surface model onto live X-ray fluoroscopy image. This real-time overlay was 
used to guide the placement of catheters prior to the start of pacing. The catheters are as follows: 
(1) St. Jude ESI balloon; (2) LV roving; (3) coronary sinus sheath; (4) coronary venous/epicardial; 
(5) pressure; (6) high right atrium; (7) His bundle; and (8) right ventricle

Fig.  10.3  Fusion of late enhancement derived scars (red surfaces), anatomical MR (volume 
rendering) and Ensite isochronal map (colored surface)
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virtual unipolar electrograms superimposed on a computerized model of the LV, 
creating both isopotential and isochronal maps. The scar anatomy was manually 
delineated in late enhancement images. The XMR fusion provides the location of 
the ESI mapping with respect to the MR-derived information (Fig. 10.3).

10.3 � Personalized Anatomy

In this work, the anatomy model we use is limited to the compact biventricular myocar-
dium. As we do not model the valves, we do not simulate the papillary muscles and 
we only integrate the blood flows in the atria and arteries as preload and afterload 
boundary conditions. There is an important literature on the segmentation of the heart 
from medical images, see for instance [14] and references therein. However, to cope 
with extreme and variable anatomies due to pathologies, we developed a simple yet 
efficient method, which combines specific image processing tools to extract the 
biventricular myocardium from Cine-MRI. We segment in the mid-diastolic volume 
of the cardiac sequence the LV endocardium, the right ventricle (RV) endocardium 
and the epicardium. To this aim, we developed an interactive tool based on variational 
implicit functions [62]. This tool allows the user to intuitively model any 3D surface 
in the 3D scene by placing, moving, or deleting control points inside, on and outside 
the desired surface [61].

We then extract the surface mesh from the volumetric binary mask and build the 
volumetric tetrahedral anatomical model from the surface mesh. For personalization 
of the simulation, each tetrahedron is automatically labeled according to the anatomical 
region it belongs to (LV, RV, and scar tissue, see Fig. 10.4). The scar label is based 
on the expert manual delineation on late enhancement MRI. Also, for regional 
parameter estimation, the mesh was subdivided according to the 17-segment model 
proposed by the American Heart Association.

The complex cardiac fiber architecture has an important role in the electrical and 
mechanical functions of the heart. The introduction of the fiber orientation in cardiac 
electromechanical modeling is essential for simulating properly the cardiac functions. 

Fig. 10.4  Labeled volumetric mesh. Three main areas are defined. Left panel: left ventricle, right 
ventricle, and scar (in white). Mid panel: Additional AHA segments subdivision is also performed 
for regional personalization. Right panel: Fiber orientations assigned to the mesh
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The lack of accurate in vivo measurement of these orientations at high resolution [13] 
yields to using prior knowledge. Synthetic models were built with analytical laws 
describing general trends of fiber orientations observed in different studies [57]. The 
complete 3D reconstruction of fiber orientations from histological slices [40] and, 
more recently, its direct 3D acquisition on ex vivo hearts with diffusion tensor magnetic 
resonance imaging (DT-MRI) [21] have been used for a more realistic description of 
the myofiber architecture. However, it still comes from a single subject and thus do not 
take into account any inter-subject variability. We preferred to use here a statistical 
atlas of the cardiac fiber architecture [45]. This atlas was computed from a population 
of ex vivo canine hearts but was showed to be consistent with human hearts [46]. 
We use this atlas to generate cardiac fiber orientations, by setting the parameters of an 
analytical model of these fibers according to the angles observed in the atlas (Fig. 10.4, 
see also Chaps. 7 and 9). The personalized anatomy encompassing a computational 
mesh of the compact biventricular myocardium and the local fiber orientations is used 
for the electrophysiology model personalization described in the next section.

10.4 � Personalized Electrophysiology

Clinical electrophysiological data currently available only reliably describe the 
depolarization times, and not the extracellular or transmembrane potentials. So we 
chose our electrophysiology model accordingly. Modeling the cell electrophysiology 
(EP) has been an active research area since the seminal work of Hodgkin and 
Huxley [18]. At the organ level, it involves a cell membrane model embedded into 
a set of partial differential equations (PDEs) representing a continuum. There are 
three main categories, in decreasing order of computational complexity.

Biophysical: Semi-linear reaction-diffusion dynamic PDEs with ionic models •	
(over 50 equations for ions and channels) [2, 30, 41, 43, 59].
Phenomenological: Semi-linear reaction-diffusion dynamic PDEs with mathematical •	
simplifications of the biophysical models (bidomain, monodomain) [1, 16, 47].
Eikonal: One static nonlinear PDE for the depolarization time derived from the •	
previous models (Eikonal-Curvature, Eikonal-Diffusion) [11, 25].

Solving the dynamic PDEs is computationally very demanding, due to the space scale 
of the electrical propagation front being much smaller than the size of the ventricles, 
and the stability issues of the dynamic aspect. The Eikonal equation is static, and the 
front can be observed at a larger scale, resulting in much faster computations. An aniso-
tropic multifront fast marching method was developed in order to solve the Eikonal 
model equations very efficiently [52]. We base our model on the Eikonal diffusion (ED) 
equation (see [60] for more details on the ED equation and its parameters).

To personalize the electrophysiology model, there are two important adjustments to 
perform: the onset of the electrical propagation and the local conduction velocity, 
which corresponds to an apparent conductivity (AC). The idea is to estimate the AC 
by matching the simulated propagation times of the model to the clinically measured 
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propagation times of the patient. The automatic adjustment method of the AC was 
designed for surfaces [8, 9, 37].

Such approaches were extended to volumetric models, by using a coupled error 
criterion both on endocardial depolarization times and QRS duration. When applying 
this method to the baseline data, we obtain a very good fit to the data with a final 
mean error that drops to 3.8 ms. The resulting AC map (Fig. 10.5) provides information 
on some potential Purkinje network (high values) and does seem to correlate with 
the scars locations (low values).

10.5 � Personalized Electromechanical Models

The myocardium constitutive law has to model the active, nonlinear, anisotropic, 
incompressible, and visco-elastic properties of the cardiac tissue. Numerous ones 
were proposed in the literature, see, e.g., [6, 19–22, 38, 49, 55] and references 
therein. The particularity of the models used here is that they were designed to 
have a complexity compatible with the clinical data used for the personalization. 
As apparent motion and left ventricular pressure are the main components of the 
observations, we rely on models with limited parameters representing the passive 
and active parts of the constitutive law.

We use two different electromechanical models for the muscle contraction, 
depending on the application. We first introduce a simplified model as a deformable 
model in order to extract the motion and contours from the dynamic images 
(Sect. 10.5.1). We then use this information with additional pressure data in order 
to personalize a more complex model of the myocardium mechanics, which allows 
to adjust contractility and estimate pressures (Sect. 10.5.2). The cardiac mechanical 
models that we use here were presented in detail in [51] and [50]. They rely on the 
following key ingredients.

Fig. 10.5  Simulated isochrones on the volumetric mesh, adjusted using the endocardial mapping 
as reference. Color encodes the depolarization time (red: 0 ms, blue: 130 ms)
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An electrically activated constitutive equation based on a multiscale approach •	
accounting for the behavior of myosin molecular motors, as originally presented 
in [4].
A 3D continuum mechanics formulation integrating this active behavior (acting •	
along the muscle fibers) with 3D passive visco-elastic components (based on 
hyper-elastic potentials and viscous pseudo-potentials) using a rheological model 
of Hill–Maxwell type [17].

To carry out simulations, additional needs are Windkessel models and valve laws 
to represent the blood flows, and adequate finite element and energy-preserving 
time discretization strategies.

We present in the two following subsections how a simplified model is used to 
estimate the cardiac motion, and then how a more complex model is used to simulate 
the cardiac mechanics.

10.5.1 � Personalized Kinematics

In this subsection, we show a deformable model approach to estimate the motion 
of the heart using Cine-MRI data and an electromechanical model. The model used 
here is a simplified electromechanical model designed for cardiac image analysis 
and simulation [51]. We want the complexity of the model to match the relatively 
sparse measurements. Thus, we use here a simplified electromechanical model 
derived from a multiscale modeling of the myocardium described in [4]. It is com-
posed of two elements. The first one is a parallel element which is anisotropic linear 
visco-elastic and which represents the passive properties of the tissue. The second 
one is an active contractile element controlled by the electrophysiological com-
mand. Furthermore, we simulate the four cardiac phases (filling, isovolumetric 
contraction, ejection, and isovolumetric relaxation) as detailed in [51]. Finally, the 
arterial pressures were computed using a three-element Windkessel model 
described in [56].

We estimate the motion of the heart by coupling an electromechanical model 
and Cine-MRI data, based on the proactive deformable model described in [51]. 
We have shown in [5] that this method is related to the data assimilation approach 
described in [35]. Numerous works on the adjustment of a geometrical model of 
the heart to time series of medical images are based on the concept of deformable 
models [34, 36, 44]. In this framework, a surface is fitted to the apparent bound-
aries of the myocardium by minimizing the sum of two energies: a data attach-
ment term and a regularization term. In our case, this regularization term consists 
in the energy of the dynamical system of the simplified electromechanical model 
of the heart.

We want to minimize the difference between the simulated motion of the myo-
cardium and the apparent motion in the images. As Cine-MRI only provides the 
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apparent (radial) motion of the endocardium (we do not have information on the 
tangential motion), we use the distance from the contours detected in the images to 
the mesh. To compute it, we seek for each surface vertex the closest boundary 
voxel (based on criteria on the image gradient) along the normal direction of the 
mesh. We then apply a force in that direction, proportional to the distance to this 
boundary voxel.

Figure 10.6 shows the MR images at end-diastole and at end-systole of the car-
diac cycle. The superimposed lines represent the endocardium and epicardium sur-
faces of the estimated mesh. Colors correspond to the intensity of the image forces.

We can observe that despite the limited quality of clinical routine images, the 
estimation of the myocardium contours is good, especially for the LV. Due to the 
lack of contrast on the epicardium and the small thickness of the RV, achieving a 
good dynamic segmentation of the RV is still very challenging. This approach 
allows estimating a complete motion, including the twisting of the heart, while only 
using the data where it is reliable, which is in the normal direction for Cine-MRI. 
This estimated motion is then used to guide the adjustment of a more complex 
model in order to simulate the pressure variation in the ventricles.

Fig. 10.6  Results of the motion tracking: delineation of the estimated mesh superimposed with 
Cine-MRI at (a) end-diastole and (b) end-systole. Color encodes the intensity of the image forces 
(blue: small, red: large) [54]
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10.5.2 � Personalized Mechanics

We now utilize the estimated motion to personalize the mechanical parameters, in 
a more complex model in order to ensure a realistic simulation of the stress. Most 
of the components of the mechanical model discussed in this section (detailed in 
[50]) are quite classically used in heart models. Nevertheless, the emphasis and 
originality of our approach lies in the careful choice of modeling ingredients that 
are relevant from a physiological point of view and consistent with essential 
thermo-mechanical requirements and in their global integration in ways that preserve 
these requirements at all steps, from the continuous dynamical equations to the 
discrete versions with which actual simulations are performed.

This active constitutive law was used within a rheological model of Hill–
Maxwell type [7]. This rheological model is compatible with large displacements 
and strains and led to a continuum mechanics description of the cardiac tissue [50]. 
In the parallel branch of the Hill–Maxwell model we considered a visco-elastic 
behavior, with a hyper-elastic potential given by the Ciarlet–Geymonat volumic 
energy [29]. The pressure within the ventricles is then an output of the model 
simulation.

Adjusting the material parameters is made difficult by the fact that we are concerned 
with patients whose parameter values differ from nominal ones in pathological 
regions, e.g., decreased contractility and increased stiffness in infarcted parts. Some 
valuable information on the spatial distribution of these pathological regions may 
be obtained from clinical measurements such as late enhancement MRI, but the 
actual values of the perturbed parameters cannot be directly measured. Therefore, 
the objective of (automatically) estimating the parameter values – using some 
appropriate data assimilation procedures – is of utmost clinical interest. Such a 
complete automated estimation – still a major scientific challenge – is out of the 
scope of the present chapter, but we demonstrate that a proper calibration of the 
parameters based on global physiological indicators and using the personalization 
steps presented above can provide satisfactory predictability in the direct simula-
tion of the cardiac function.

For this simulation where image information is no longer used, boundary 
conditions are especially important. As can be seen, e.g., in MRI sequences, 
there is an epicardium area near the apex on the inferior wall with small 
displacements, probably in relation with the attachment of the pericardium to 
the diaphragm. We modeled this physiological feature by prescribing some stiff 
visco-elastic support as boundary conditions in this area. Furthermore, we used 
similar visco-elastic support conditions on the base to model the truncated 
anatomy. The corresponding visco-elastic coefficients also require proper cali-
bration with respect to the kinematics observed in image sequences.

The other anatomical and electrophysiological parameters have been set as in the 
previous sections. The mechanical parameters have been calibrated using the 
pressure–volume medical indicators, and also the MRI sequence as explained 
above for the boundary conditions. In order to take into account the infarct, the 
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contractility parameters were decreased in the scar tissue. We then obtained a simulated 
motion relatively close to the one from the personalized kinematics. While there are 
still discrepancies, the general behavior is very similar. However, the automatic 
adjustment of local parameters is needed in order to be able to improve the fitting. 
The work in progress on this automatic identification is very promising [35, 53].

This personalized mechanical model produces simulated pressure in very good 
agreement with the catheter measurement (Fig. 10.7).

10.6 � Prediction of the Acute Effects of Pacing on Left 
Ventricular Pressure

During the electrophysiology study, different pacing conditions are tested to evaluate 
the effect of different pacing lead locations and delays. This also gives the oppor-
tunity to estimate what could be the expected benefit from the pacemaker implanta-
tion. There is still a lot of research on what is the optimal number of electrodes, 
where are the optimal locations, and what are the optimal delays. This creates a 
large number of degrees of freedom that are difficult to optimize during the intervention 
itself. Being able to perform this optimization a priori and using an in silico model 
would be very useful.

In this section, we test the ability of our personalized electromechanical model 
of the myocardium to predict the changes in the heart due to a new pacing condition. 
The pacing protocol tested is biventricular pacing with simultaneous endocardial 
left ventricular pacing (we will call here this pacing sequence P1TRIV).

For the mechanical simulation, we use here the model personalized in Sect. 10.5.2 
on baseline in sinus rhythm without changing any parameter. We then input the new 

Fig.  10.7  (a) Measured (solid) and simulated (dashed) pressure curves in sinus rhythm. 
(b) Measured (solid) and simulated (dashed) dP/dt curves during systole in sinus rhythm
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electrical command corresponding to the pacing. The volumetric isochrones were 
derived as described in Sect. 10.4. We then observe the resulting simulated pressure 
curve allowing to test in particular predictions on the slope of this pressure during 
isovolumetric contraction. As this is the major cardiac phase that is sought to be 
optimized by CRT, we mainly focus on the model predictive power during this 
phase, and early ejection.

When simulating this P1TRIV pacing with the model personalized from baseline 
measurements, we observe a very good agreement of the pressure curve with the 
recorded data from the pressure catheter, and the dP/dt curve is also very similar. 
From the data, we can see that dP/dt

max
 goes from 890  mmHg/s at baseline to 

1,450 mmHg/s for P1TRIV pacing. In the simulations we obtain 910 mmHg/s at 
baseline and 1,440 mmHg/s with pacing. So we can see that the improvement of 
the cardiac function brought by the pacing is well predicted by the in silico simula-
tions. We used this methodology on four different pacing modes, with very promising 
results on the model predictions (Table 10.1).

10.7 � Conclusion

We presented the personalization of a complete electromechanical model of the 
myocardium using XMR interventional data and how this personalized model 
could be used to predict therapy effects. The behavior of the model in sinus 
rhythm as well as the predictions of the model under pacing compare well with 
the measured data, which make such an approach very promising. This is the first 
case study demonstrating how models of the heart can be adjusted to be patient-
specific and a first proof of concept of how this approach can be useful for therapy 
planning. While several steps still require interactive adjustment, the methodology 
for automatic parameter estimation is becoming available [8, 35, 53]. By integrating 
information about the anatomy, the electrophysiology, the kinematics, and the 
mechanics, we can explore the correlation between these different aspects for a 
given patient in order to provide an integrated view of the patient cardiac function 
and simulate and evaluate different therapies before their actual application. 
In the case of CRT, such predictions could help optimize in silico the pacemaker 
settings, which include the pacing lead locations and the delays between the elec-
trodes. This will be the purpose of a future work.

Table  10.1  Measured and simulated values for (dP/dt
max

) in mmHg/s for five different 
conditions

Sinus rhythm Atrial Right ventricle
LV 
endocardium P1TRIV

Measurement 890 960 1,020 1,410 1,450
Simulation 910 970 1,000 1,480 1,440
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11.1 � Introduction

Human life evolved in the presence of oxygen, and even small alterations to this 
essential element can trigger a cascade of biological events. Conditions affecting 
how we metabolize oxygen and respond to hypoxia determine whether we thrive or 
succumb to disease. Physiological processes such as exercise, aging, hormonal 
cycle, and wound healing depend on genetic, epigenetic, and protein level changes 
in hypoxic response. Furthermore, all leading causes of death in the USA involve 
hypoxia and alter the microvasculature, through increases or decreases in the 
degree of angiogenesis (i.e., the growth capillaries from preexisting blood vessels). 
Patient variability – both in physiological and pathological conditions – determines 
how a given individual will respond to hypoxic exposure, and therapies targeting 
hypoxic pathways. The degree and breadth of patient variability is so wide regarding 
oxygen sensing and response, that computational modeling has become necessary 
to capture its complexity.

In this chapter, we focus on patient-specific computational modeling of hypoxic 
response through the hypoxia-inducible factor 1 pathway, and related changes in 
the microvasculature. In order to add context to the modeling, we first provide a 
brief overview of hypoxic response on multiple biological levels.

At the intracellular level, oxygen is required for aerobic respiration, production 
of reactive oxygen species (to some extent), and for the hydroxylation of a key 
transcription factor hypoxia-inducible 1 (HIF1). One protein subunit of HIF1, 
HIF1a, is ubiquitously expressed in cells with a nucleus. However, because of HIF1a’s 
rapid degradation in the presence of oxygen, through a process that depends on 
HIF1a hydroxylation, it is rarely detected in cells. When oxygen is limited, HIF1a 
escapes hydroxylation and degradation, and instead enters the nucleus where it 
binds to its dimer, HIF1b. The pair can then activate genes at hypoxic response 
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elements. While initially HIF1 was thought to activate hundreds of genes, the 
current estimate is HIF1 activates thousands of hypoxic-dependant genes, including 
those involved in cell cycle, metabolism, and angiogenesis [36, 77].

HIF1-induced angiogenesis leads to further changes in oxygen and hypoxic 
response. Angiogenesis is the growth of capillaries from preexisting microvessels. 
It is a process that in theory provides a new source of oxygen (from hemoglobin 
carrying red blood cells in the blood stream) to a hypoxic region. In practice, the 
degree to which angiogenesis alleviates hypoxia varies based on tissue type and 
local microenvironment. Some new vessels can be tortuous, narrow, or leaky; some 
are not capable of carrying blood.

To better understand how angiogenesis contributes to variability in hypoxic 
states, it is useful to break down the process into events (Fig.  11.1). Following 
transcriptional activation of genes, growth factors like vascular endothelial growth 
factor (VEGF) and fibroblast growth factor (FGF) are secreted by hypoxic cells 
and start to diffuse through the extracellular matrix. The growth factors are sensed 
by adjacent endothelial cells on quiescent vessels, and if enough growth factor is 

Fig.  11.1  Hypoxic response in capillaries involve intracellular signaling through the HIF 
pathway, and angiogenic sprouting from existing vessels. HIF1 hypoxia-inducible factor 1, VHL 
von Hippel–Lindau protein, HRE hypoxic response element, VEGF vascular endothelial growth 
factor, VEGFR VEGF receptor, Ub ubiquitin, PHD2 prolyl hydroxylase domain enzyme 2, EB & 
EC elongins B & C, TfR transferrin receptor
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present, the cells can become activated. An activated endothelial cell, called a tip 
cell, starts to migrate through the local extracellular matrix toward the source of 
secreted growth factors, i.e., the hypoxic region. This migration involves proteins 
called MMPs, matrix metalloproteinases, which serve to degrade the matrix, and 
pave the way for the cell to move forward. As the tip cell crawls forward, it elon-
gates the stalk cell attached behind it on the capillary sprout. The stalk cell in turn 
is stimulated to grow and divide, pushing the tip cell ahead. This process repeats, 
leading to a capillary sprout that can range in length from a few microns to over 
400 mm. Capillaries anastomose or attach together; eventually a lumen may form 
within the sprout and blood can flow in the new vessel. Angiogenesis then can be 
thought of as a consequence of hypoxic response at the cell or tissue level.

New capillary growth is not the only means the body has to adapt to hypoxia at 
the cell or tissue level. Changes in cell metabolism can alter the demand for oxygen. 
Signaling through vasodilators like nitric oxide (NO) and vasoconstricting com-
pounds like angiotensin II can change both the HIF1 response and the amount of 
blood that flows through large vessels. The production of red blood cells, through 
hypoxia- and HIF1-dependant increases in erythropoietin (EPO) can increase oxygen 
availability. At the organ and organ system level, the endocrine system may play a 
role in regulating hypoxic response through hormones like estrogen – known to 
influence HIF1 levels. The nervous system too can alter ventilation, heart rate, and 
brain metabolism, causing an increase or decrease in the lungs’ demand for oxygen 
from air, and other organs’ demand for oxygenated blood.

These changes can all occur in normal physiological responses to a decrease in 
oxygen. Examples could be a brisk walk, an intensive mental exercise, or exposure 
to high altitude. In disease, the mechanisms underlying hypoxic response and adap-
tation become even more complex, and yet all the more critical to understand.

11.2 � Hypoxic Response in Disease

A disruption in oxygen and changes to the hypoxic response pathways are associ-
ated with multiple diseases and disorders, including heart disease, cerebrovascular 
disease, pulmonary hypertension, and cancer (Fig. 11.2).

Each of these diseases involves the HIF1 pathway and downstream angiogenic 
proteins. Atherosclerosis leads to the impaired perfusion of downstream tissues, 
resulting in myocardial ischemia. Ischemia deprives the myocardium of oxygen and 
glucose which in severe cases can lead to infarction. HIF1 signaling helps prevent 
cardiac cell death through promoting angiogenesis. Similarly, in cerebral ischemia, 
HIF1 activity is increased in the viable tissue around the occlusion, resulting in 
increased glycolytic metabolism and VEGF expression –offering a degree of neu-
roprotection. The extent of ischemia-induced VEGF expression is age-dependent. 
The impairment of VEGF production in aged patients is caused partly by decreased 
hypoxia-induced HIF1 activity. Therefore, the increased angiogenic activity is 
often inadequate to prevent infarction.
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Hypoxia affects many other diseases independent of ischemia. In some patients 
with chronic obstructive lung disease, alveolar hypoxia induces vascular remodeling, 
resulting in pulmonary hypertension. This is characterized by increased pulmonary 
resistance and decreased vessel lumen diameter, leading to progressive right heart 
failure and potentially, death. Several HIF1 target genes are involved in this process, 
including endothelin-1, insulin-like growth factor, and VEGF. Here, unlike its 
preventive role in the case of ischemic cardiovascular diseases, HIF1 is involved in 
the pathogenesis of pulmonary hypertension. HIF1 plays a similar malignant role 
in cancer. HIF1 overexpression is associated with a worse tumor grade and tumor 
progression. HIF1a overexpression may propagate tumor growth by providing 
these cancerous cells with an adequate supply of oxygen through angiogenesis. 
Furthermore, hypoxic tumor cells are resistant to radiation and chemotherapy, and 
studies have correlated this resistance to higher HIF1 levels [76]. Complicating 
the picture even more, macrophage response, and specifically a protein called 

Fig.  11.2  Physiological and pathological conditions associated with hypoxia, at multiple 
biological levels
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macrophage migration inhibitory factor, has recently been shown to stabilize HIF1, 
and itself has been correlated to neovascularization in inflammatory and hypoxic 
conditions both in cancer and in atherosclerosis [59, 72, 81, 82].

11.3 � Hypoxic Response and Oxygen Sensing Models

Given the power of hypoxic response to alter the course of disease, the pharmaceutical 
industry’s interest in targeting related pathways, and the complexity of the interwoven 
mechanisms of oxygen sensing and response, the development of computational 
modeling in hypoxic research is been watched with growing fascination. 
Computational techniques that have been used to study hypoxia include gene net-
works, circuit analysis, ordinary differential equation-based chemical-kinetics, 
rule-based cell-level algorithms, compartmental modeling, and computational fluid 
dynamics (Fig. 11.3). Existing models can be divided broadly into five biological 
categories: blood flow and oxygen transport; NO and vasodilation; hypoxic 
response regulation through transcription factors; growth factor signaling; and 
angiogenesis.

Fig.  11.3  Types of computational techniques used to model patient-specific hypoxic response 
and microvascular dynamics include the following: (a) probabilistic gene networks; (b) biocir-
cuits; (c) chemical-kinetic models; (d) logic-based spatial models; (e) compartmental models; and 
(f) computational fluid dynamics
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11.3.1 � Blood Flow and Oxygen Transport

Insufficient blood flow to meet a tissue’s metabolic demand for oxygen is a main 
cause of local hypoxia, and stimulation of angiogenesis. Blood flow and oxygen 
transport models in the microvasculature date back a century or more, with initial 
publications that included August Krogh’s work on capillary circulation [40]. 
A review on the subject describes the field today [27].

Briefly, we offer an example of how these computational models of blood flow 
and oxygen transport work. A 3D geometrical model of a capillary network in a 
specified tissue volume can be constructed from estimated vessel dimensions and 
spacing published in the literature (e.g., [35]), or from coupling noninvasive MR 
imaging of the vasculature using contrast agents, with increasingly sophisticated 
image analysis algorithms (e.g., [61]). Given appropriate boundary conditions 
(pressure or flow), blood flow and hematocrit distribution can be calculated 
throughout the network. This is achieved through a set of nonlinear algebraic equa-
tions for pressure at the network nodes (bifurcations) and blood flow rate and 
hematocrit in the vascular segments [87]. Once blood flow and local hematocrit in 
the network is determined, convection–diffusion–reaction partial differential equa-
tions governing oxygen transport are solved numerically, resulting in 3D distribu-
tion of oxygen in the microvascular network and surrounding tissue [35]. 
Sophisticated experimental and computational advances in studying blood flow in 
capillaries, have led to research into flow effects in blind-ended capillary sprouts 
[29], as well as numerous studies looking at the effects of microvascular flow on 
blood cell shape and leukocyte rolling, and vice versa. Future work in this area will 
couple high-resolution imaging of capillary blood flow within hypoxic tissue 
regions with models of oxygen diffusion and detailed hematology. Imaging coupled 
with analysis of blood hematocrit will provide the models with patient-specific 
parameters of initial capillary network structure and blood oxygen content. Results 
from the oxygen diffusion models, in turn, can be coupled with models detailing 
molecular and cellular details, described below, to provide predictions that are 
tailored to individuals.

11.3.2 � NO and Vasodilation

Nitrites, and specifically nitric oxide (NO), can alter the degree of local hypoxia 
through its vasodilatory effects on the microcirculation. It has been purposed that 
red blood cells sense local tissue requirements as they travel through capillaries, 
and may release NO to enhance local blood flow in hypoxic regions [33]. 
Endogenous nitrite has also been credited with modulating mitochondrial respira-
tion and cellular protection from ischemic insult [88]. NO additionally has been 
shown to regulate HIF1 levels by signaling with ROS or through the HIF1 hydroxy-
lation pathway – whether the observed regulation is up or down has depended on 
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the amount of NO present [1, 12, 14, 31, 90]. A number of computational models 
have been developed to help quantify the amount of NO present in the microvascu-
lature in healthy and diseased conditions, and to represent NO’s signaling pathways 
[16–18, 21, 55]. The calculated distribution of NO and oxygen, and the NO signaling 
cascade predicted from the above models provide a basis for modeling cellular 
response to hypoxia via transcription factors.

11.3.3 � Hypoxia-Inducible Factor 1: The Hypoxia Transcription 
Factor

A number of transcription factors play a role in hypoxic response including the 
erythroblastosis virus E26 oncogene homolog (ETS) family transcription factors 
[73], the family of hypoxia-inducible factor proteins (HIF1, HIF2, HIF3) [83]; the 
PI3K-Akt-mTOR pathway molecules; NF-kB; and p53, among others. One of the 
most influential transcription factors during hypoxia is hypoxia-inducible factor 
HIF1. During hypoxia, HIF1a rapidly accumulates within a cell, enters into the cell 
nucleus, binds to its dimer HIF1b, and triggers gene expression [64, 77]. Thousands 
of genes can be activated by HIF1 on their hypoxic response elements. These hypoxic 
response genes are broad in scope and associated with numerous pathways – ranging 
from angiogenesis in cancer, exercise, and ischemia; energy metabolism; nutrient 
transport; cell cycle; and cell migration [77, 89]. In turn, the number of human 
diseases and physiological conditions affected by HIF1 is extensive, as discussed 
above. Because of the complexity of the HIF1 pathway, systems biology models 
have emerged to analyze its effects, with a particular focus on pathway changes in 
response to disease conditions, and on ways the pathway can be therapeutically 
modulated.

11.3.3.1 � Therapeutic Modulation of Cofactors in the HIF1 Pathway

Targeting the HIF1 pathway presents an attractive way to regulate angiogenesis 
[2, 3, 10, 25, 78]. While targeting HIF1 in cancer has arguably been the focus of 
most HIF1 therapeutic studies, recent reviews have specifically looked at manipu-
lating the HIF1 for potential treatments related to central nervous system ischemia 
[22] and cardiovascular disease [32].

There are many ways to alter HIF1 expression and transcriptional activity. 
Computational models can be used to help guide the appropriate targets in the path-
way, and modify the therapy on an individual patient level. Cofactors in HIF1a 
hydroxylation and degradation are prime molecular level targets to regulate the 
protein’s expression levels. These molecules include prolyl hydroxylases, iron, ascor-
bate, hydrogen peroxide, 2-oxoglutarate, succinate, and von Hippel–Lindau protein. 
Computational modeling tested two possible molecular therapies in conditions of 
transient cellular hypoxia – that of supplementing with ascorbate alone, and the 
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combination therapy of supplementing with iron and ascorbate [68]. The model 
predicted the degree to which HIF1a was hydroxylated, as a function of the relative 
initial concentrations of cofactors in the microenvironment (conditions that would 
change depending on the patient, tissue type, and cell type undergoing hypoxia). Both 
therapies decreased HIF1a expression during hypoxia. Where iron was in limited 
supply, the model showed ascorbate had a significant effect in modulating oxygen 
response and HIF1a expression. The utility of ascorbate supplementation, through its 
HIF1 hydroxylation role, has now been validated experimentally and shown to inhibit 
tumor growth in vivo [24] and inhibit physiological angiogenic growth in rat aortic 
ring and Matrigel plug mouse models [56]. Interestingly, iron supplementation has 
recently been shown to attenuate hypoxic pulmonary hypertension in humans, 
while the relationship to HIF1 in this situation is yet to be proven [84].

11.3.3.2 � Effects of Chronic Hypoxia at the Molecular Level

In cancer, prolonged exercise, and some cases of ischemia, a patient could have 
tissue hypoxia that lasts for several hours, days, or months. During these chronic 
conditions, hypoxic response adapts. This adaptation can be seen by a cell’s higher 
hypoxia tolerance threshold before increasing HIF1a, or by an attenuated increase 
in HIF1a levels in response to hypoxia, compared to the level found after exposure 
to the same low oxygen but in transient conditions [38]. Preexposure to hypoxia 
(called hypoxic preconditioning) also contributes to a limited hypoxic response in 
reoxygenated cells [19]. Preconditioning shows protective effects in mammals 
exposed to ischemia, as well [80]. HIF1a’s hydroxylation enzymes contribute to 
this setpoint adjustment [19, 37, 38, 85]. Furthermore, a computational model 
showed how three feedback loops (HIF1a synthesis, prolyl hydroxylase synthesis, 
and succinate (SC) production inhibition) combine to tightly regulate the effects of 
chronic hypoxia via control of HIF1a degradation [69]. The model demonstrated 
that prolyl hydroxylase domains, succinate, and HIF1a feedback determine intrac-
ellular HIF1a levels over the course of hours to days. This chronic hypoxia model 
was then applied to specific cases of ischemia reperfusion and cancer, where 
another molecular species in the microenvironment greatly influences HIF1 
levels – reactive oxygen species.

11.3.3.3 � Reactive Oxygen Species Effect in the Hypoxic  
Response Signaling Pathway

Several hypotheses exist as to how reactive oxygen species (ROS) interact with 
HIF1 and its pathway (related reviews include [7, 23, 30, 63, 86]). Studies have 
suggested that one ROS, hydrogen peroxide, oxidizes ferrous iron (Fe2+) to its ferric 
form (Fe3+), preventing the necessary binding of ferrous iron to the HIF1a hydroxy-
lation enzymes prolyl hydroxylases (PHDs) [60]. A complementary process could 
be that ascorbate is recruited as a free radical scavenger during hypoxia, limiting its 
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access to the HIF1 hydroxylation pathway. This would prevent ascorbate from 
reducing ferric iron, and/or prevent ascorbate from binding directly to the PHDs. 
In contrast, some studies have suggested that ROS increase rather than decrease 
free Fe2+, and HIF1a hydroxylation instead increases in the presence of ROS [39]. 
2-oxoglutarate (2OG) and succinate are compounds involved in HIF1a hydroxyla-
tion whose concentrations could also be altered by free radicals and mitochondrial 
dysfunction [28, 39, 60]. Furthermore, ROS could influence the HIF1 pathway by 
changing the location and availability of cellular oxygen, limiting its ability to bind 
directly to the PHDs, or ROS could be changing PHD phosphorylation [86]. A 
computational model, based initially on the chronic hypoxia model described 
above, was developed to characterize these alternate mechanisms of ROS [66, 69]. 
The model helped distinguish competing factors involved in pro- and antioxidant 
therapy in two diseases: cancer and ischemia (Fig. 11.4a). Model results justified 

Fig. 11.4  Example of model predictions of hypoxic response, from the intracellular (a) to the 
tissue level (b, c), where patient-specific properties (e.g., initial vasculature network structure; 
ischemic duration; genetic mutations in Dll4) can be given as initial parameters. (a) Relative 
hydroxylated HIF1 as a function of hypoxic duration in conditions of endothelial cells undergoing 
ischemia reperfusion injury (dotted line) and in hypoxic glioma cells (solid line). (b) Predicted 
overall vessel growth depends on relative rates of endothelial cell migration and proliferation. 
(c) Model results showing vessel growth after 200 h for control conditions (left panel) and haplo-
insufficiency of the Notch ligand Dll4 (right panel)
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the hypothesis that reactive oxygen species work by two opposite ways on the HIF1 
system, both up- and downregulating HIF1, through modulation of PHD2 levels. 
The model also predicted the degree to which ROS intracellular levels differ 
in tumor cells compared to endothelial cells in ischemic conditions, leading to 
different apoptotic rates of the two cell types.

11.3.3.4 � HIF1 Intracellular Signaling Leading  
to VEGF Expression Changes

Understanding the molecular interactions involved in hypoxic response is critical, 
but so too is understanding how transcriptional signaling affects hypoxia-induced 
angiogenesis. Some of the key genes induced by HIF1 are VEGF, VEGFR1, and 
GLUT1. VEGF is one of the most potent angiogenic growth factors, and studying 
its activity in hypoxia has been the focus of a number of computational models.

The interactions between HIF1 and VEGF during hypoxia involve several feed-
forward and feedback mechanisms, and many different receptor–ligand interac-
tions. There are five VEGF genes, multiple isoforms of each gene, and five VEGF 
cell-surface receptors – each with different responsiveness to hypoxia and different 
roles in angiogenesis [51]. A series of computational models have been dedicated 
to characterizing the binding of different VEGF isoforms with their respective 
receptors, and used to predict the effect of therapies that modulate the VEGF family, 
with applications in cancer and in peripheral artery disease [46–50, 52]. The molecular-
based models of VEGF have been coupled with the blood flow and oxygen 
transport models described earlier to simulate VEGF distribution and signaling in 
hypoxic skeletal muscle, based on experimentally observed relationships between 
local oxygen levels, HIF1 and HIF1-induced VEGF [34, 45].

New observations add complexity to the regulation of VEGF in hypoxia. 
Independent of HIF1, hypoxia can upregulate VEGFR2, and other protein PGC1, 
recently has been shown to be key regulator of VEGF and angiogenesis in skeletal 
muscle during exercise in parallel or independent of HIF1 [5, 6, 26, 58]. Additionally, 
the ERK1/2 pathway has been shown to upregulate VEGF–VEGFR1 binding and 
signaling, which leads to a positive feedback, upregulating ERK1/2 and HIF1 [20]. 
Glucose metabolism and GLUT1, both regulated by HIF1, can alter the expression 
levels and signaling of VEGF and its receptors at least in some cell types [62]. To 
fully characterize the regulation of VEGF, both autocrine signaling (e.g., in a cancer 
cell, in specific skeletal muscle cells during exercise or even in endothelial cells 
during angiogenesis) and paracrine signaling (e.g., where VEGF levels secreted 
from an adjacent tissue upregulate the expression of HIF1 within endothelial cells) 
need to be considered.

As the HIF1-VEGF connectivity is being explored experimentally, in silico net-
work modeling and biocircuit representations can help highlight which signaling 
pathways dominate under different physiological conditions and predict dynamics 
of the interactions during neovascularization. Beyond transcriptional regulation and 



19311  Patient-Specific Modeling of Hypoxic Response and Microvasculature Dynamics

signaling pathways, the subsequent cellular and tissue response to hypoxia is an 
active, growing area for patient-specific modeling.

11.3.4 � Cell-Level and Integrated, Multiscale  
Angiogenesis Models

Aside from VEGF, many other proangiogenic factors change during hypoxia, 
including fibroblast growth factor, angiopoietins, tumor necrosis factor, and trans-
forming growth factor. Microvascular growth is determined by a balance of these 
proangiogenic factors with antiangiogenic factors, e.g., endostatin, thrombospondin-1, 
and angiostatin. The angiogenic events of endothelial cell activation, migration, and 
proliferation are a function of local growth factor concentrations and gradients. They 
also are a function of the local matrix, which cells respond to through a synergy of 
chemical and mechanical changes. Enzymes like matrix metalloproteinases, MMPs, 
allow an activated cell to proteolyze its surrounding basement membrane and extra-
cellular matrix (ECM). The moving tip cell releases ECM-bound growth factors as 
it moves. The fate of a growing capillary sprout is determined by the surrounding 
microenvironment. It can attach to adjacent vessel, retract, split, or branch. As 
sprouts form and connect, a new capillary network arises, potentially capable of 
carrying blood and bringing oxygen to hypoxic regions.

This angiogenic process has been modeled computationally in many forms 
since the 1970s; for a review of the methods and characteristics of these models, 
see [65]. Cellular level and multiscale modeling has become increasingly popular 
as a means to tie intracellular signaling to phenotypical changes in the capillary 
network [15, 67]. A paradigm, which seems well-suited to expanding models 
modularly and developing them in a patient-specific manner, is agent-based or 
hybrid models of vascular growth. These models have varied in their applications – 
including a study assessing the effect of circulating monocytes on angiogenesis in 
mouse spinotrapezius muscle [8]; a experimentally-coupled model of the forma-
tion and inactivation of tip cells [9]; and a simulation studying the effect of regu-
lating the coupled processes of endothelial migration, elongation, and proliferation 
[70]. The commonality of the models lies in their ability to model cellular and 
molecular events in angiogenesis through the use of logical rules. These rules are 
hypotheses based on published data in literature or experiments. They can be 
articulated as equations, statements, or values guiding the behavior of agents. 
Results from these agent-based or hybrid models are frequently emergent proper-
ties of a capillary network that would not have been easily predicted from behavior 
that is governed at the cell or molecular level (e.g., see Fig. 11.4b, c). The cell-
based models are also increasingly coupled to experiments that can test out some 
of their predictions or offer an initial set of parameters specific to the in vitro or 
in vivo assay of interest. A recent modeling advance has been the integration of a 
cell-level agent-based model with detailed blood flow, oxygen transport, HIF1, 
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and VEGF molecular interactions models [65, 67]. This integrated, multiscale 
model allowed predictions of new vasculature formation in a skeletal muscle tissue 
from changes at the intracellular and molecular levels. While the described models 
have captured variability at multiple biological levels and in several different 
disease applications, so far these models have yet to be applied to humans.

11.4 � Modeling Individual Variability

Patient-specific hypoxic response involves a phenomenal degree of complexity and 
sources for variability across biological levels (Fig. 11.5). Genetic variations – from 
deletions to mutations to epigenetic effects – can alter how hypoxic responsive genes 
respond. Key examples of this include mutations in p53 and VHL, both genes whose 
proteins interact with HIF1. VHL is known as a tumor suppressor gene, while p53 
is involved in cell death. Mutations in either gene alter a patient’s susceptibility to 
cancer, and have been tied to changes in HIF1 levels [42, 53, 54, 92].

Genetic variability in hypoxic response has been studied in a number of condi-
tions affecting humans, outside of diseases. An effort to understand why some people 
succumb to mountain sickness and others do not, has led to conclusions about genetic 
variations in humans living in high altitude. Adaptation to altitude has been observed 
in inhabitants of the Andes and Himalayan mountain ranges, and high planes in 
Ethiopia. Himalayan and Ethiopian mountain inhabitants lack the strong hypoxic 
response, such as changes in ventilation and cerebral circulation, shown in Andeans 
and control (non-high altitude dwellers) when exposed to hypoxia. Concomitantly, 
genetic markers for hypoxia have been correlated to this response [91].

At the molecular level, individuals can vary based on the various degrees and 
durations of hypoxia they are exposed to, as well as their baselines values for 
hypoxia-responsive proteins. Different durations or levels of hypoxia yield different 
activity of HIF degradation enzymes, HIF synthesis and reactive oxygen species, 

Fig. 11.5  Main sources of patient variability in hypoxic response spanning all biological levels
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and hence oxygen sensitivity. There are three known isoforms of HIF, three main 
isoforms of HIF prolyl hydroxylases; seven isoforms of one VEGF gene, five 
VEGF genes, five VEGF cell-surface receptors; three isoforms of MMP2, 1 of the 
26 MMPs [4], and hundreds of peptides endogenous to the local matrix capable of 
altering cell migration or proliferation. Furthermore, ROS can affect the HIF1 pathway 
through changes in at least five compounds (H

2
O

2
, Fe2+, Asc, 2OG or SC levels), 

based on experiments [43, 60]; and the interactions between HIF1, VEGF, and 
MMPs expand to include dozens if not hundreds of other proteins and molecules 
through regulatory loops.

There is substantial experimental evidence suggesting that levels of these 
proteins and biochemicals can vary among healthy individuals, and certainly in 
disease. Interindividual variability in the ability to produce VEGF in response to 
hypoxia has been shown in a study on coronary artery collateral circulation [75]. 
A more recent study demonstrated that between normal, healthy individuals, 
there is a statistically significant variation in HIF1 regulated transcript expression in 
response to hypoxia [11].

Modeling has predicted that cell apoptosis and H
2
O

2
 steady-state levels are 

highly dependent on extracellular H
2
O

2
 levels, and largely independent of initial 

intracellular H
2
O

2
 levels, during hypoxia; in turn, intracellular H

2
O

2
 levels can be 

used to help predict HIF1a expression levels in time [66]. Should it hold true in 
humans that extracellular ROS determines intracellular HIF1a activity, this pin-
points another source of hypoxic response variability in healthy individuals – 
depending on age, diet, exercise, level of local inflammation, and potentially stress 
levels [44, 57].

A meta-analysis of published data on cancer patients and healthy individuals has 
helped to provide a quantitative value for the variability in VEGF levels found in 
human plasma [41]. Patient meta-analyses combined with techniques to locally 
measure HIF1, VEGF, and VEGFR expression levels in  vitro and in  vivo will 
provide essential cell- and tissue-specific input parameters for the hypoxia-induced 
angiogenesis models (recent measurement examples include RT-PCR measure-
ments of VEGF164, VEGF188 and VEGF120 mRNA levels in embryonic and 
adult skeletal muscle [13]; and flow cytometry studies of VEGF121 and VEGF189 
levels as well as VEGF receptors expression in brain-derived and retinal endothelial 
cells [71]). VEGF effects on 3-D microvascular density has also recently been 
quantified by microcomputed tomography [74]

At a more macroscopic level, variability is also an important factor. In healthy 
patients, interindividual variations in ventilatory response have been reported in a 
number of studies, as have variations with respect to erythropoietin levels in 
response to hypoxia. Variability in organ size (e.g., heart and lung) can alter the 
metabolic rate and transport of oxygen throughout the body.

Certain conditions that decrease oxygen can alter the hypoxic state of an entire 
organ or the whole body: these include altitude, sleep apnea, stroke, hemorrhage, 
or clot, obesity, inflammation, degree of exercise, pulmonary disease, aging, cardio-
vascular disease, and cancer. Aging, for instance, is associated with an increased 
incidence of hypoxia–ischemia-related diseases, such as stroke and myocardial 
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infarction. Reduced protein expression of HIF1a is correlated with aging, which 
may in part explain the increased incidence of hypoxia-related conditions in the 
elderly and their reduced ability to cope with it [79]. Increased incidence of inflam-
mation and inflammatory diseases is also associated with age and variations in 
hypoxic response. For example, rheumatoid arthritis is characterized by an inflamed, 
thickened synovium, which results in an increasing gap between proliferating cells 
of the tissue and the nearest blood vessels, leading to hypoxia. Several forms of 
vasculitis (inflammatory destruction of blood vessels) can occur in rheumatoid 
arthritis; due to a decrease in the number of functioning blood vessels, vasculitis 
escalates the level of hypoxia.

All of these sources of variability – from the gene to the whole body level – should 
be taken into consideration when extrapolating hypoxic response models from their 
idealized applications in in vitro or in animal models to the human body.

11.5 � Discussion and Conclusions: Integrating and Validating 
Inter- and Intra-patient Variation on Multiple Scales

As the models of hypoxic response at the microvasculature become increasingly 
patient specific, they will incorporate genetic, temporal, and spatial variation. Genetic 
variation will need to go beyond the presence or absence of a gene or chromosome, 
to look at gradients, haploinsufficiencies and epigenetic effects. Temporal variation –  
everything from variations attributed to circadian rhythms to cell cycle to duration of 
hypoxia – will become more tightly coupled to spatial variation. In turn, spatial varia-
tion in three dimensions, which current hypoxic response models address at the cell 
and tissue level, will reach down to intracellular levels and up to whole body differ-
ences. The current state-of-the-art in hypoxic response modeling is integration of 
models representing multiple levels of biology, from intracellular molecular interac-
tions to cell-level behavior to capillary network formation to oxygen levels in the 
tissue to whole body distribution of growth factors. Coupling all of these models to 
patient-specific parameters through the use of experimental techniques such as func-
tional MRI and flow cytometry to assess angiogenic growth and cell-specific protein 
expression in vivo will bring us a step closer to using hypoxic response and micro-
vascular models in conjunction with, and as a precursor to, clinical trials.
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12.1 � Introduction

Systems biology has introduced new paradigms in science by switching from a 
reductionist point of view to a more integrative approach toward the study of 
systems. As researchers over the past years have produced an extraordinary wealth 
of knowledge on human physiology, we now aim at integrating this knowledge to 
decipher the intimate relationships between the different components and scales that 
form the delicate balance in physiological systems. Our aim is to study the heart.

The heart has always produced great interest to scientists since ancient times. 
Aristotle was one of the first philosophers to acknowledge that “the heart is the 
beginning and origin of life, and without it, no part can live” [29]. Ever since, 
anatomists, physiologist, mathematicians, physicists, biologists, biochemists, and 
geneticists have studied the cardiovascular system, reducing it to its smallest com-
ponents. Integrative physiology aims to put all these parts together, and the tool 
employed is computational modeling. The aim of Cardiac Computational Modeling 
is to create a multi-scale framework to understand the heart physiology, from genes 
to the whole cardiovascular function. The task is not an easy one. The heart physiol-
ogy is widely complex, and different tools and algorithms have to be created to 
intertwine the different systems acting at different levels.

Mathematics is the quantitative tool to represent reality and analyze the physical 
and biological world around us. One of the best examples of a mathematical model 
is the one created by Hodgkin and Huxley, which earned them the Nobel Prize in 
Medicine in 1963, in which they describe the action potential generation quantita-
tively using voltage–current–capacitance relationships and voltage-dependent 
conductances of distinct ions. This pivotal work that implements mathematical models 
to describe ionic flow across excitable membranes is still integrated conceptually in 
various cellular models of electrophysiology (Chap. 3). By the estimation of the 
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conductance and the capacitance, this model is able to capture the kinetics of 
sodium and potassium ion channels of neurons [10]. Mathematical descriptions of 
the myocytes have followed so that generic models of propagation have been 
modified and used to simulate the electrical propagation in the heart [26]. Highly 
detailed models have now been used successfully, like the one published by 
Greenstein [13] and modified by Flaim [11] to include myocyte heterogeneities. 
High-performance computing is a major determinant for the implementation of 
computational costly models, Graphic Processing Units (GPUs) can be used to 
accelerate processing times of parallel problems [17], while existing software and 
technologies can serve as plug-in applications to a flexible architecture that can 
integrate these tools to solve multi-scale problems.

Data richness drives biomedicine. Data sharing and collaborations are of utmost 
importance in our globalized world. Improvements in technology on biology, engi
neering, physics, biochemistry, mathematics, and computing impact the production 
and accessibility of data. Particularly, developments in imaging and their extended 
use in the clinical setting provide large amounts of data at fine resolution. Computed 
Tomography (CT) and Magnetic Resonance Imaging (MRI) are now common tools 
used to improve the diagnoses in patients; however, their full potential has not yet 
been exploited.

We have approached a new era in which medicine can be personalized, and the 
existent knowledge on mathematical models of physiology can be put into use for 
the benefit of patients using flexible, easy-to-use, fast, modular computational tools 
for bedside predictions in the cardiology units.

12.2 � Multi-Scale Framework of Cardiac Modeling

Various tools for authoring computational models have been created; namely, 
Continuity (http://www.continuity.ucsd.edu), OpenCell (http://www.opencellproject.
org), Open CMISS and CMGUI (http://www.cmiss.org), GIMIAS (http://www.
gimias.org/), OpenSIM (http://www.simtk.org/home/opensim), JSim (http://www.
nsr.bioeng.washington.edu/jsim), SOFA (http://www.sofa-framework.org/home), 
SBML (http://www.sbml.org/Main_Page), etc. These tools use different structures, 
languages, and architectures to create multi-scale models. We will base herein on the 
general experience gathered by developing the tool named Continuity. The basic 
structure for a software program to create patient-specific multi-scale models requires 
ease of use; it needs to be computationally efficient, reliable, and mathematically 
correct, so that modelers and nonmodelers can use it to its full extent in the clinical 
setting. Environments for problem-solving multi-scale physics need to be modular, 
user-friendly and with an architecture that enables data and model sharing, so that 
databases are publicly accessible and models are reused and collaboration for further 
scientific advancement is ensured. Accessibility, compatibility to various operating 
systems (OSs), and ease of model generation are a must. Various of the multi-scale 
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modeling tools use Extensible Markup Language (XML) for standardizing the ways 
of encoding the mathematical models; however, this makes it complicated for non-
programmers to easily generate their own authored models and integrate them into 
their multi-scale simulations because the markup specification language can become 
lengthy, and it is not easily readable to nonexperts. Therefore, the use of simple, 
straightforward, symbolic, mathematical, authorable model editors is preferred, so 
that the generation of the procedural code is automatic, optimal, and efficient.

Multi-scale modeling tools require an ease of data handling throughout the 
whole work pipeline to create a model. Imaging technologies in the clinic and 
multi-scale physics environments require flexible and compatible data handling 
tools for pre-and post-processing information.

12.3 � Input Data Pipeline for Patient-Specific Multi-Scale 
Cardiac Modeling

In order to generate a patient-specific model of the heart, a series of measure-
ments should be performed by the physicians [16, 21] (Fig.  12.1), see also 
Chaps. 2, 8–10. One of the first main steps toward a patient-specific model is to 
acquire a detailed, patient-specific geometrical description of the anatomy using 
CT or MRI imaging. Boundary conditions to a cardiac model relate to all of the 
adjacent structures or systems interacting with the organ of study. Therefore, 
measures of hemodynamics and electrophysiology are also important to set up a 
personalized model, but they require to be selected appropriately according to the 
nature of the simulation.

12.3.1 � Ventricular Anatomy and Fiber Architecture

The anatomy can be obtained using CT and contrast MRI. The images require pro-
cessing for segmentation and registration to generate a mesh (see Sect. 12.9). Data 
such as fiber architecture cannot generally be obtained in a patient-specific manner; 
however, studies have shown that fiber architecture is highly conserved among 
individuals and species after accounting for the geometric variations between the 
anatomies [14].

It is also possible to locate scarred or ischemic tissue using measures from 
gadolinium-enhanced MRI, to determine as detailed as possible the patient’s physio-
logy, as part of the mesh generation and parameter estimation for baseline 
simulations.
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12.3.2 � Hemodynamics

The use of hemodynamic data allows the estimation of patient-specific material 
properties of the myocardium and parameters for the circulatory system model. 
Cardiac ultrasound techniques provide approximations to volumes and pressures 
[19]. Measures of aortic pressure, left and right ventricular pressure and volumes 
during both systole and diastole, stroke volume, and ejection fraction help the 
user to define the appropriate circulatory boundary conditions. Pericardial pres-
sure, for example, can be selected and included in the model from existing data 
and would not require to be measured since it is not easily obtained in a patient-
specific manner. Ventricular pressure and volume can be used to obtain an 
elastance model for the myocardium using the end-diastolic pressure–volume 
relationship (EDPVR) and end-systolic pressure–volume relationship (ESPVR) if 
measures of a couple of beats are obtained at different preload conditions. This is 
generally achieved clinically by inducing a premature ventricular contraction in 
patients with a pacemaker. With both EDPVR and ESPVR, the passive and active 
material properties of the myocardium can be estimated (Chap. 8) [32, 33]. The 
3D geometrical reconstruction of the ventricles is then inflated to its passive 
(EDPVR) and active (ESPVR) levels. This will yield the model properties, by 
estimating the passive stress-scaling factor, passive exponential shape coefficient, 

Fig. 12.1  Data pipeline for patient-specific, multi-scale computational cardiac models
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and the active stress-scaling factor through minimizing the difference between the 
model and the measured patient-specific pressure–volume relations.

12.3.3 � Electrophysiology

Electrophysiological data are also necessary to replicate as closely as possible the 
patient’s heart electrical activity for the baseline simulation. The acquisition of the 
ECG is simple, and it is used to obtain the total ventricular activation time using the 
QRS complex, and it can be used to roughly estimate the myocardial conductivity. 
However, the best measure of electrical endocardial activity is obtained with elec-
troanatomic mapping tools, to set up the stimulation pattern endocardially and 
estimate the electrical properties of the tissue [34] (Chap. 10). The conductivity and 
the stimuli can be adjusted in the model to approximate the measurements taken 
from the patient. The earliest activated regions will provide the stimuli information, 
while matching the activation patterns will provide the conductivity. Unfortunately, 
this measurement is quite invasive, and sometimes, it is not convenient to 
perform.

It is also possible to solve the inverse problem by measuring the epicardial 
activation from body surface potentials [24], but a model of the torso is necessary 
to solve the inverse problem.

12.4 � Software Architecture

The structure suggested for a multi-scale physics environment is shown in Fig. 12.2. 
An adequate architecture can comprise three major components: a Database Server, 
a Solver Client, and a Solver Server and any number of Plug-in applications. The 
Client serves as a graphical user interface (GUI), and the Server carries out all the 
numerical calculations for solving the problem. This architecture allows the user to 
launch the program as a client or a server or both. In this way, the user can locally 
run a client session, while a remote server or host does all the calculations; other-
wise, it can also be used as a whole application together on the local machine. 
There should be no need for client and server to run in the same OS.

12.5 � Database Server

The aim for technology development and collaborative research in cardiac model-
ing is to have access to services, web services, training, and dissemination to enable, 
catalyze, and conduct medical research by combining technologies and focusing 
them on targeted translational and multi-scale challenges in the biomedical arena. 
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The National Biomedical Computation Resource (NBCR) (http://www.nbcr.net) 
provides the support and infrastructure to the developers of Continuity to achieve 
that goal. The objective for the development of computational cardiac modeling 
is to improve treatment planning for heart disease through individual patient 
modeling, by providing the framework to incorporate personalized data into 
new or existing models to aid in an accurate, personalized diagnosis and predict 
outcomes of existent therapies (i.e., cardiac resynchronization therapy). In order 
to achieve this aim, a multi-scale framework requires access to a database or 
library.

The Database is designed to facilitate model sharing, reusing, and classification, 
by making the models fully annotatable (Fig. 12.3). The owner of the model can 
choose to share a model with the public or the public can own the model or the 
owner can lock its contents for personal use only. The database models should be 
anonymized appropriately and backed up frequently for security. The database is 
configured to maximize its functionality, rather than just becoming a storage space. 
The library can be used to store only the small changes on an already existing 
model. For example, if the user changes a small part of a model, like the initial 
conditions, then the library will only store and organize the objects changed instead 
of duplicating the rest of the model content. It also contains all the information 
related to the model like date of production, description, basis functions, node 
labels, electrophysiology model, circulatory model, etc. Therefore, all the objects in 
the library are easily accessible since the user can search on the database by title, 
a description of the model, the metadata, or any biological attributes defined 

Fig. 12.2  Software architecture for computational multi-scale cardiac modeling

http://www.nbcr.net
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(i.e., species, organ-related labels). The user can also retrieve whole models or 
only specific objects from different models. Attributes can be added to any model, 
class, object, or subobject, as well as any other file or script necessary to pre- or 
postprocess data.

The database is a place where users can share complete models, for example, a 
full model that has been published, so that the scientific audience can reproduce the 
author’s results. The users should be registered to use the Database for a better 
control over its contents.

The design of the database described mimics the structure of a Continuity file 
(*.cont6). The hierarchic structure of the database is shown in Fig. 12.3. At the 
top end, there are owners, who can have any number of models that are publicly 
available, or private. Each model has a title, description, date and time of cre-
ation, version, variation, and any number of classes. The classes are any loadable 
modules from the Solver Server. Below the classes are Objects, which contain 
the data from the Editors’ forms including coordinate system, basis function, 
elements, material coordinate equations, ionic model, fitting constraints, images, 
scripts, etc. (Fig. 12.4). Objects like the nodes, initial conditions in biomechan-
ics, and fitting constraints have subobjects. These subobjects provide a different 
attribute to their parent object (i.e., nodes of a human model with fitted fibers 
from a different species). Every model, class, object, and subobject can have 
either the same or different attributes (i.e., species, organ system, organ, tissues, 
reference author, reference title, reference date, reference publication). Every 
hierarchy of the classification is useful for retrieving data in the whole database 
structure.

Fig. 12.3  Database structure
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A user can deposit a model and different versions of it. As a rule, a new version 
of the model saves only the changes to the model and references back to the original 
model for the unchanged information. To create a new model, a new unique title 
has to be used. Only the owner of a confidential model can delete its files and all 
its contents, while the public cannot erase public models for safety.

12.6 � Solver Client

The client serves as a graphic user interface and includes a viewer framework 
with dynamically loadable menus, commands and data file editing for Input and 
Output files, viewers, including 3D visualization and animation, rendering con-
trols, graphical plotting and image analysis, a scripting shell, and message area. 
It also provides the interface to web services, compiling, and registration of users 
to access the software and the database. Toolbars are commonly used and create 
an easy, straightforward interaction to the solver. Menus should also contain com-
mands for setting and adjusting visualization parameters and for saving images, 

Fig. 12.4  Database search using a GUI interface
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animations, or simulations. Important components of the Solver Client are the 
model editors that form part of each module. The graphic user interface also 
provides the framework to support external plug-in applications or libraries. For 
example, the imaging module in Continuity includes a heart-wall marker, some 
tracking methods, image registration, and segmentation methods; it can also 
access a library from an Imaging ToolKit (ITK Snap library) for image registra-
tion, segmentation, and automatic mesh-building (http://www.itksnap.org/
pmwiki/pmwiki.php). A framework that provides access to plug-in applications 
makes it compatible with other solution methods or pre-/postprocessing 
applications.

12.7 � Model Editors

Any software platform that uses symbolic, mathematical, authorable model editors 
makes the generation of procedural code automatic and efficient. They are built to 
facilitate modelers and nonprogrammers the implementation of new mathematical 
models, or reuse existing ones. One language used for the implementation of the 
mathematical models is a symbolic mathematics library for python called “SymPy” 
(http://www.docs.sympy.org/index.html). This python library works as a computer 
algebra system to make coding as simple as possible and comprehensible. The use 
of symbolic mathematics makes it easier for the users to directly read and under-
stand the model, and they are not required to learn a programming language to 
create new models. Online tutorials make it easy to understand and use SymPy. 
Therefore, each model editor provides the framework to compile the mathematical 
model using a web service, or if compilers are available in the host computer, then 
the user can compile his own models. Therefore, the output generated can actually 
be obtained in any format necessary, that is, C, Python, Fortran, CUDA, or even 
XML. An XML input can also be translated into readable python, C, or SymPy 
code.

12.8 � Solver Server

The server carries out the numerical calculations for simulation and problem 
solving. It has dynamically compilable and loadable numerical analysis functions 
for finite element modeling, nonlinear elasticity and biomechanics, reaction–
diffusion systems and electrophysiology, and transport processes and biophysics 
for cell systems modeling.

The common methods used for cardiac multi-scale modeling are finite element 
methods (FEMs) for nonlinear mechanics. FEMs are numerical analysis tools 
to solve partial differential equations (PDEs) in a complex domain (see “Preface” 
to the book). It is convenient to employ a modular software that includes the 
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anatomy for fitting and creating a mesh; the biomechanics where material properties 
and circulatory boundaries can be set; the electrophysiology where membrane 
kinetics are modeled; biotransport to model reaction–diffusion problems; and 
finally, but most importantly, a method for specifying the interaction and feedback 
between modules.

More specifically, we can set a system of ordinary differential equations (ODEs) 
at a particular point in a physical domain called node, defined in a nodes form 
(Fig. 12.5a). The mathematical model introduced at this level is the smallest scale 
to be used in our simulation, and it represents a network of biochemical or 
biophysical interactions at the subcellular and cellular scale. To spatially couple this 
pointwise network, we include constitutive laws that represent the physical proper-
ties of the system. The solution in the mesh is approximated by linear or higher 
order functions defined element-wise (Fig. 12.5b). By doing so, we construct the 
substrate with all the properties of the next scale; this is a detailed arrangement at 
the tissue level that includes the tissue anisotropy/orthotropy, result of the fibrous 
and laminar construct of the myocardium. The tissue structure is a major determi-
nant of both the contraction and propagation of the action potential. PDEs are used 

Fig. 12.5  Nodes (a) and elements (b) forms
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to establish the space and time overall behavior and the conservation laws governing 
the physics over the whole geometry or anatomy of the system. It is also important 
to establish the adequate boundary conditions that represent the interactions of the 
heart with neighboring structures. Hemodynamic models are necessary to establish 
an adequate arterioventricular coupling. Lumped parameter models of the circula-
tion are generally used for this purpose. The modeler can also author the tight 
relationships between the mathematical models for excitation–contraction coupling 
(ECC) and their interactions. Information between modules can be passed in a 
coordinated and efficient manner by scripting the different time steps at which each 
system requires feedback.

In this way, we can create highly detailed, fully-coupled, patient-specific ana-
tomic models of electromechanics of the heart, setting up boundary conditions in a 
patient-specific manner.

12.9 � Imaging and Fitting Modules

The imaging and fitting modules allow the user to create patient-specific finite 
element meshes of the heart. The imaging module includes segmentation (ITK Snap 
library) and automatic mesh-building tools. The user can import a stack of MR, CT, 
or other types of volumetric imaging data, apply scaling, rotation, or translation to 
position the stack in the model space, and manually or automatically segment dif-
ferent contours of interest. The pixels that define the segmented contours are sam-
pled as the data to which the initial mesh will be fit. A rough initial mesh is first 
built in the imaging module using segmented images as a guide. The data points for 
each contour can be identified with a label to easily distinguish each contour. Once 
contours have been differentiated, an initial mesh can be conveniently built.

Each contour of the heart (typically left ventricular cavity, right ventricular 
cavity, epicardium, septum, etc.) is represented by hollow volumes with nodes as 
vertices. The volumes together form the entire mesh. The user can place these 
nodes directly on to the segmented image data at the desired slices to create 2D 
surfaces of each contour. This allows the user to build an initial mesh that already 
closely approximates the real geometry.

Another rough geometrically approximated mesh created in parallel is built 
using the fitting module. The rough mesh is fitted next to the segmented data for 
a more accurate representation of the geometry. The fitting process minimizes the 
difference between the coordinates of the segmented data and their corresponding 
interpolated coordinates on the mesh. The corresponding interpolated coordinate 
data on the mesh are defined by projecting each data point onto the closest sur-
face of the segmented mesh. The maximum projection and angle with the surface 
can be controlled to filter out noisy data. The user can define fitting constraints 
on the coordinates and derivatives of the nodes to have control of the fit. 
Smoothing weights can also be applied to penalize for large changes in stretching 
and bending of the mesh surface in the process of fitting; they allow the user to 
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fine-tune the smoothness of the fit if data is sparse or noisy. Finally, data points 
from all contours can be fitted to their corresponding mesh surfaces simultane-
ously; this can be done using appropriate labels that distinguish between data 
points of different contours and their matching surface elements. The fitting 
module can also fit fields such as fiber angles to the geometry. Fiber direction is 
generally defined nodewise in the nodes form.

The myofiber architecture is an important component of multi-scale models of 
the heart. The heart has a characteristic arrangement of fibers that is roughly con-
served among individuals [14]. It is possible to obtain accurate measurements of the 
myofiber orientation using diffusion tensor MRI (DTMRI), or histologically in 
postmortem hearts; however, there exist some databases (like the Johns Hopkins 
University public database, http://www.ccbm.jhu.edu/research/dSets.php) where 
cardiac fiber angles can be obtained and morphed into a new ventricular geometry 
for patient-specific applications [3] (Chap. 9). In the human and the dog left 
ventricle, the muscle fiber angle typically varies continuously from about −60° at 
the epicardium to about +70° at the endocardium, with a higher rate of change at 
the epicardium [30].

12.10 � Mesh Module

The mesh is the geometrical representation of the anatomy to be modeled. It is the 
frame that holds together the models of different scales. The mesh is obtained from 
image segmentation from CT or MRI scans and fitted adequately to create a 
structure that will be discretized into a collection of a finite number of points 
(nodes), which conform the vertices to the various subdomains (elements). The 
definition of nodes and elements is a requirement for creating the mesh. The nodes 
are discrete points in the surfaces of the desired anatomy that are specified on a 
coordinate system (Fig.  12.5a). The elements establish the connection pattern 
between the nodes, to dictate the ordered location and connectivity of the elements 
(Fig. 12.5b). The mesh locates the anatomy into a coordinate system. It is advanta-
geous to have the ability to use various coordinate systems: rectangular cartesian, 
cylindrical polar, spherical polar, prolate spheroidal, or oblate spheroidal. This 
variety of coordinate systems allows the user to easily construct a mesh by making 
use of its geometrical features and using the appropriate coordinate references (for 
use in Fitting). The left ventricular geometry can be initially approximated by 
nested ellipses of revolution, that is, two fitted truncated ellipses revolving on the 
major axis, that is, a prolate spheroidal coordinate system [9]. Cylindrical coordi-
nates facilitate the description of tubular objects, while the spherical polar is useful 
to describe sphere-shaped geometries [8].

One characteristic of FEMs is the approximation of the continuum using a 
finite number of functions (finite element interpolation), so the construction of the 
elements is approximated by basis functions, and their parameters are defined at 
the nodes. Continuity supports a variety of basis functions for isoparametric finite 

http://www.ccbm.jhu.edu/research/dSets.php
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element interpolation, generally 1D, 2D, and 3D hexahedral Lagrangian and 
Hermite piecewise polynomial functions as well as Gauss quadrature integration. 
In a Mesh module, the user can define numerical and graphical functions associated 
with nodes; use finite element operations and mathematical functions associated 
with the mesh; use dependent variables including interpolation, global-element 
mapping, coordinate transformations, and computations of metric tensors and 
related quantities such as arc lengths and areas. The Mesh module interfaces prob-
lem definitions and numerical solutions. It includes algorithms for solution of 
nonlinear equations, element and global equation assembly, residual calculations, 
least squares, eigenvalue and time-stepping algorithms, general utility operations, 
basic numerical algorithms. The simplest type of elements are piecewise linear 
Lagrange elements. Basis functions are defined in terms of independent variables, 
that is, spatial coordinates, so that various combinations of interpolation can be 
used to create the desired geometry, that is, by taking tensor products to create 1D, 
2D, or 3D geometries. Both kinds of interpolation can be estimated with two or 
three collocation points. Collocation points are distinct points in the element trajec-
tory for which the solution satisfies the initial condition. These points are then used 
to estimate the solution using their derivatives.

The common structure for a complete mesh for a FEM would include four 
coordinate systems: a rectangular Cartesian global reference coordinate system, an 
orthogonal curvilinear coordinate system to describe the geometry and deforma-
tion, a general curvilinear finite element coordinates (at each element), and a local 
orthonormal body coordinates, defining the material structure or fiber and sheet 
angles.

Every component in the software requires a user-friendly interface editor. The 
nodes and element forms are the mostly used ones to set up a computational model 
(Fig. 12.5). In the nodes form, we can define the coordinates for the nodes, the 
interpolation required for each coordinate, and the fiber angle information; it also 
contains Fields that can be used to define any other parameters required for the 
simulation. These Fields can be assigned and used inside any model editor.

12.11 � Biomechanics

The structural organization of the myocardium is an important determinant of the 
cardiac mechanics and its material properties. The passive mechanical properties of 
tissue have mostly been studied on isolated, arrested whole hearts, or on tissue 
preparations; however, the total stress in the heart is generally considered as the 
sum of passive stress, when the tissue is at rest, and active stress generated by the 
contraction of the myocytes.

Governing equations that relate material properties to continuum tissue behavior 
must be set in the biomechanics module. The myocardial stress and strain distribu-
tions are needed to characterize the regional ventricular function, particularly in 
pathological conditions like ischemia or scarring. The stress is related to the forces 
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exerted at a specific location in the myocardium and is normally calculated with 
respect to an orthogonal system to the fiber orientations. The strain refers to the 
deformation, or local shape change, as a result of the applied forces. The passive 
ventricle can be defined by an exponential strain–energy function, which treats the 
myocardium as nonlinear, anisotropic, and nearly incompressible material. Various 
parameters in the models can be used to describe the scaling factors for the stress 
magnitude, incompressibility, and anisotropy of the tissue. The active stress can be 
described using a time-varying elastic model and can be dependent on time, 
sarcomere length, and intracellular calcium concentration [20]; with Hill-type 
models, where the active fiber stress development is modified by shortening or 
lengthening according to the force–velocity relation, so that fiber tension is reduced 
by increased shortening velocity or fully history-dependent models that are more 
complex, based on cross-bridge theory [6].

In the biomechanics module, the Circulatory model is set as a boundary 
condition to the mechanics. Various types of circulatory models are available in the 
literature to set the conditions necessary for the simulation [1].

12.12 � Electrophysiology Module

The cell electrophysiology is a complex biological system, determined by ion 
movement across membranes, changing ionic concentrations in different cellular 
compartments in a nonlinear fashion. The modification of the function of ion chan-
nels by genetic mutation, infarcts, scars, or remodeling can create blocks, cardiac 
arrhythmias, or even sudden cardiac death. The main aim of computational models 
of electrophysiology is to integrate the vast knowledge on ion channel properties, 
generally studied in a single-channel fashion, into full cellular models with feed-
back interactions to relate the molecular-level dynamics to the whole cell function 
and their clinical phenotype. ECC occurs at the molecular level, particularly involving 
Ca2+ ion movement in various cellular compartments to create a transient rise of 
intracellular Ca2+, which activates contractile proteins of the cell. Consequently, the 
heart mechanics also have feedback effects on ion dynamics [25, 26].

Various models of electrophysiology for various species (human, mouse, 
rabbit, dog, guinea pig, etc.) with different complexity have been published. 
Various reviews have been published on the subject [7, 28]. The biggest source 
of mathematical models of electrophysiology available online is the one provided 
in the CellML repository (http://www.models.cellml.org/electrophysiology). 
Most of the models contained in this repository use the XML and have various 
levels of curation. Models of electrophysiology range from a simple two-equa-
tion model that describes the propagation wave in the tissue [26] to models with 
much higher number of ODEs to be solved and that account for cellular hetero-
geneities in the myocardium, like the model by Flaim et al. [11].

The electrophysiology module in Continuity was created to solve Monodomain 
problems, that is, a unitary reaction–diffusion equation, a single compartment, 

http://www.models.cellml.org/electrophysiology
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instead of two that represent the intracellular and extracellular spaces, called 
Bidomain. Comparisons between both methods have been fully studied, and results 
are highly correlated (0.9971 for an orthotropic conduction), with the advantage 
that the monodomain solution is less computationally demanding [12]. In the 
electrophysiology model editor, all of the parameters can be set in a nodewise 
fashion in a field in the nodes form, so that a stimuli current can be applied at 
defined regions in the mesh. A set of initial values can be assigned to distinct 
elements using labels, so that regions of heterogeneous cell kinetics can be simu-
lated. The purpose is to approximate normal or pathological tissue as close as possible 
to its natural physiology. For example, by labeling elements containing endocardial, 
midmyocardial, and epicardial cells, we can simulate their heterogeneous behavior 
[5]. Furthermore, every model can access a set of Parameters defined in the nodes 
form as fields. These parameters can be used in the model to set up gradients and 
nodewise variations in the tissue (i.e., apex-to-base cell heterogeneity, ischemic 
regions).

Direction of propagation in the myocardium depends on fiber rotation and the 
electrical properties of the tissue determined by its conductivity and capacitance to 
simulate the myocardium as an orthotropic substrate [4]. These myocardium 
propagation properties are determined by a diffusion tensor. All the matrix 
transformations and rotations should be conveniently set in the software, so that the 
user can easily create the required diffusion tensor in the electrophysiology module 
by just adding a diffusion coefficient for each orthogonal direction to the fiber 
orientation.

In general, the electrophysiology model used for each simulation is depen-
dent on the objectives and requirements of the study. Simple models have 
proven to provide good approximations for excitation propagation in the myo-
cardium, like the model of Beeler and Reuter with only eight ODEs [2], with 
the advantage of requiring little computational power. Larger models with a 
greater number of ODEs describe various ion channels and Ca2+ kinetics using 
Markov chain models or including gene mutations [7]. These models are well 
suited for more detailed analysis using meshes with larger number of elements, 
which increases computer-processing time, but it is up to the users to choose 
the electrophysiology model that would provide the best information for their 
simulations.

12.13 � Fully Coupled Electromechanics Models

ECC is a complex mechanism that occurs at the subcellular level, where local 
changes of membrane potential lead to the release of Ca2+ and hence production of 
force by the myofilaments. Cells are tightly coupled and have a well-structured 
arrangement in the myocardium. The ionic currents propagate through gap junc-
tions allowing the activation of the whole myocardium. The mechanical coupling 
of the myocytes is directly linked to cytoskeletal structures, the extracellular matrix, 
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and the contiguous myocytes. The ventricular wall deforms during the cardiac 
cycle; this deformation is influenced by the myocardium architecture, which in 
turn, influences the excitation propagation of the wave.

A fully-coupled, electromechanic model is able to set the interaction between 
the action potential propagation, the contractile force generation, and the myocar-
dial deformation under realistic hemodynamic boundary conditions in an anatomi-
cally accurate finite element mesh of the left ventricle [5]. The degree of coupling 
can be set up through scripting. This means that the algorithms for coupling various 
models are fully authorable by the user [23]. This form of coupling is useful for 
investigating questions related to mechanoelectric feedback [22] at physiological 
and pathological conditions.

Electrophysiology models with various degrees of complexity can be used to 
simulate the action potential, ionic channels, and Ca2+ ion dynamics. The active 
tension model is generally the intermediate model between the biomechanics 
and electrophysiology. The active tension model is able to reproduce the 
dynamic response of cardiac muscle to time-varying inputs of sarcomere length 
and cytosolic Ca2+ [25].

Different schemes for fully coupled electromechanics can be implemented; 
however, the challenge is to create stable numerical algorithms that are able to 
interchange information between the different modules at various time steps. In 
general, electrophysiology contains the smaller scale in the simulations (subcellular 
and cellular), so the time steps to solve the electrophysiology are small. After a few 
small time steps, the larger scales, like mechanics can be updated using the Ca2+ 
transient generated by the cell model. This will update the change of shape of the 
geometry due to the contraction, using the sarcomere length as a parameter, for 
example.

12.14 � Plug-in Applications

The software architecture allows for the implementation and data communication 
with useful plug-in applications for pre- or postprocessing implementations. One of 
the most notable plug-in applications is the implementation of Non-Uniform 
Rational B-Splines (NURBS) methods. NURBS is a convenient tool that is 
frequently used for commercial purposes by industry and entertainment. NURBS is 
a method for parameterizing curved surfaces and volumes through tensor products 
of polynomials (Fig. 12.6a). Finite element modeling, utilizing NURBS, is conve-
nient because these surfaces can be bended and deformed in a user-friendly “point-
and-click” manner. Existent methods are able to convert imaging data to NURBS 
surfaces [35] in a quick, efficient manner and to reparameterize them to finite 
element meshes with a different set of polynomial basis functions. The resulting 
NURBS surface or volumetric object can be used in finite element analysis directly 
(Fig. 12.6b). This implementation makes the process of geometrical reconstruction 
less time consuming.
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12.15 � Computational Requirements

As the complexity of the subcellular and cellular models is increasing, the compu-
tational frameworks used become challenged. Particularly, systems like the cell 
pose a great number of ODEs and states to the numerical calculations, which need 
to be manipulated by processors. Computational power and tools keep increasing 
exponentially, so a patient-specific computational framework should be able to fol-
low and apply the latest improvements on data processing. In 2002, a coupled 
model of 3D cardiac electromechanics in an anatomically detailed canine heart 
with 19,200 degrees of freedom [31] had a total computation time of 78  h and 

Fig. 12.6  Right atrium mesh generation for a patient-specific application from (a) NURBS 
surfaces to (b) tricubic finite element mesh for electrophysiology simulations
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20 min on a single processor, of which the mechanics problem with 1,960 degrees 
of freedom took about 6½ h. Soon after, most of the computationally challenging 
problems were parallelized, so that a similar mechanics problem in 2008 [15] took 
40 min per cardiac cycle on 12 nodes of a cluster. These processing times were still 
long to be used for patient-specific modeling, given that a cluster was available for 
dedicated modeling in the clinic, and the patient-specific mesh was already fitted 
and set to solve the problem. The recent extended usage of GPUs for numerical 
processing purposes is setting new trends for computationally expensive applica-
tions. Nowadays, the use of GPUs has been extended to computational models of 
electromechanics [18], so that using an nVidia GTX-295 GPU (of about US$ 500) 
for a desktop computer can improve the performance and can speed up calculations 
over a cluster by 91 times, and 134 times over standard communication interfaces. 
This work opens up the possibility for real-time simulations for diagnostic pur-
poses in the clinical setting. Furthermore, this kind of application was designed to 
be used by nonexpert programmers and is easily implemented as part of the com-
putational framework.

The GPU usage in Continuity is invisible to the user. The workflow for the simu-
lations begins with a python program that specifies the mathematical model using 
the model editor with the SymPy Python library code input. This input is translated 
into a naïve CUDA C, which is later optimized using source-to-source transforma-
tions [17]. The resultant code is compiled with CUDA C, which manages the reg-
isters and handles the memory in the GPU to introduce all the thread parallelism to 
solve the ODEs. PDE calculation is still handled by the CPU, but the computational 
time required is not as big as the ODEs (before the GPU optimization). However, 
PDE computations in the GPUs are still part of future work to further speed up 
computation times. In general, the use of a GPU significantly reduces the compu-
tational bottleneck in an 87 ODEs electrophysiology model [11], to simulate a 
single heartbeat from 4.5 h on a 48 core Opteron cluster to 12.7 min on a desktop 
workstation without the knowledge of the GPU or CUDA programming.

12.16 � Limitations

A mathematical model is an approximation to reality; therefore, all models are 
inherently wrong. However, mathematical models are still extremely useful to 
understand the knowledge acquired through experimentation and the components 
missing to explain the differences between the theoretical knowledge and the actual 
physiological function. Multi-scale computational models have been thoroughly 
validated in animal models [15] and may prove useful for prediction and under-
standing of CRT responder and nonresponder cases (Chaps. 1 and 10). There is a 
great number of mathematical models for cardiac models of animal physiology, 
mainly mouse, rat, dog, rabbit, etc. However, human physiology is somewhat 
different from animal physiology. Accessibility to human heart tissue is limited due 
to ethical constraints, so new methods and approaches to obtain human cardiac 
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tissue are being implemented to enlarge our knowledge on human cardiac subcel-
lular, cellular, and organ physiology in health and various stages of disease [27]. 
However, all the gaps on our knowledge on human physiology can be comple-
mented with animal models. Studies on cardiac electrophysiology and arrhythmo-
genesis have been extensive in animal tissues and have provided a wealth of 
knowledge, particularly regarding genetic manipulation, mutations, and physio-
pathologies. For patient-specific applications in the clinical setting, it is important 
to take into account the objectives of the simulation, so that reduced or minimal 
models with validated accuracy can be used to minimize the computation times, so 
that real-time simulations are feasible.

An important limitation to real-time simulations is the reconstruction of the 
geometrical data from measurements of patient-specific geometries in the clinic. 
Better tools for automatic segmentation of CT and MRI imaging, and generation of 
geometrical representations of the anatomy (the finite element mesh) are required. 
In general, this process is still lengthy and time consuming and may still pose a 
challenge for the use of computational modeling in the clinical setting.
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Appendix: Mathematical Modeling Language 
Code for the Hemodynamic Model in Fig. 5.1b
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JSim v1.1 
 import nsrunit; 
 unit conversion on; 
 math MyModel { 

realDomain t sec; t.min=0; t.max=60; t.delta=0.01; 

// double slash indicates a comment 

// PARAMETERS (CONSTANTS): 

real PRint = 0.12 sec; 
real HR = 77 1/min; 

// Varying elastance model for ventricles 
real EmaxLV = 5.91908558 mmHg/ml;   // Maximum elastance of left ventricle 
real EminLV = 0.0922898032 mmHg/ml; // Minimum elastance of left ventricle 
real EmaxRV = 0.45938612 mmHg/ml;   // Maximum elastance of right ventricle 
real EminRV = 0.0342539388 mmHg/ml; // Minimum elastance of right ventricle 

real VrestLVs = 23.6993603412 ml;  // Peak-systolic rest volume of left ventricle 
real VrestLVd = 71.816243458 ml;   // Diastolic rest volume of left ventricle 
real VrestRVs = 53.4983766234 ml;  // Peak-systolic rest volume of right ventricle 
real VrestRVd = 102.8814935065 ml; // Diastolic rest volume of right ventricle 

// Varying elastance model for atria 
real EmaxLA = 0.5056326299 mmHg/ml;  // Maximum elastance of left atrium 
real EminLA = 0.404506104 mmHg/ml;   // Minimum elastance of left atrium 
real EmaxRA = 0.3218841186 mmHg/ml;  // Maximum elastance of right atrium 
real EminRA = 0.2575072949 mmHg/ml;  // Minimum elastance of right atrium 

real VrestLAs = 73.9735665827 ml;  // Peak-systolic rest volume of left atrium 
real VrestLAd = 73.9735665827 ml;  // Diastolic rest volume of left atrium 
real VrestRAs = 75.9202393875 ml;  // Peak-systolic rest volume of right atrium 
real VrestRAd = 75.9202393875 ml;  // Diastolic rest volume of right atrium 

// Systemic circulation parameters 
real Rartcap =  
 0.6923076923 mmHg*sec/ml; // Resistance of systemic arteries & capillaries 
real RSysVeins = 0.1384615385 mmHg*sec/ml;    // Resistance of systemic veins 
real RAorticValve = 0.0046153846 mmHg*sec/ml; // Resistance of aortic valve 
real RMitralValve = 0.0046153846 mmHg*sec/ml; // Resistance of mitral valve 
real CSysArtCaps = 
 8.6167741935 ml/mmHg; // Compliance of systemic arteries & capillaries 
real CSysVeins = 70.00951584 ml/mmHg; // Compliance of systemic veins 
real VrestSysArtCaps = 311.64 ml;     // Rest-volume of systemic arteries & capillaries 
real VrestSysVeins = 1829.03 ml;      // Rest-volume of systemic veins 

// Pulmonary circulation parameters  
real RPulArtCaps =  
 0.0775384615 mmHg*sec/ml; // Resistance of pulmonary arteries & capillaries 
real RPulVeins = 0.0092307692 mmHg*sec/ml;   // Resistance of pulmonary veins 
real RPulValve = 0.0046153846 mmHg*sec/ml;   // Resistance of pulmonary valve 
real RTricuspidValve = 0.0046153846 mmHg*sec/ml; // Resistance of tricuspid valve 
real CPulArtCaps = 13.25 ml/mmHg;  // Compliance of pulmonary arteries & capillaries 
real CPulVeins = 20.405 ml/mmHg;   // Compliance of pulmonary veins 
real VrestPulArtCaps = 74.2 ml;   // Rest-volume of pulmonary arteries & capillaries 
real VrestPulVeins = 169.07 ml;   // Rest-volume of pulmonary veins 

// VARIABLES 
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// Varying elastance heart variables 
real ActFuncVentricles(t) dimensionless; // Activation fxn for ventricular elastance 
real ActFuncAtria(t) dimensionless;      // Activation fxn for atrial elastance 
real ELV(t) mmHg/ml;        // Elastance of left ventricle 
real VrestLV(t) ml;         // Rest volume of left ventricle  
real VLV(t) ml;             // Volume of left ventricle 
realState EDVLV(t) ml;      // End-diastolic volume of left ventricle 
real ERV(t) mmHg/ml;        // Elastance of right ventricle 
real VrestRV(t) ml;         // Rest volume of right ventricle  
real VRV(t) ml;             // Volume of right ventricle 
realState EDVRV(t) ml;      // End-diastolic volume of right ventricle 
real VrestLA(t) ml;         // Rest volume of left atrium  
real VLA(t) ml;             // Volume of left atrium 
real ELA(t) mmHg/ml;        // Elastance of left atrium 
real PLV(t)  mmHg;          // Pressure in left ventricle 
real PLA(t)  mmHg;          // Pressure in left atrium 
real PRV(t) mmHg;           // Transmural pressure in right ventricle 
real PRA(t) mmHg;           // Transmural pressure in right atrium 
real VrestRA(t) ml;         // Rest volume of right atium 
real VRA(t) ml;             // Volume of right atrium 
real ERA(t) mmHg/ml;        // Elastance of right atrium 
real FTricuspidValve(t) ml/sec;  // Flow through tricuspid valve 
real FAorticValve(t) ml/sec;     // Flow through aortic valve 
real FMitralValve(t) ml/sec;     // Flow through mitral valve 
real FPulValve(t) ml/sec;        // Flow through pulmonary valve 
real CardiacOutput(t) L/min;     // Cardiac output 

// Systemic circulation varibles 
real Paorta(t)  mmHg;       // Pressure in aorta 
real PSysVeins(t)  mmHg;    // Pressure in systemic veins 
real VSysArtCaps(t) ml;     // Volume of systemic arteries & capillaries 
real VSysVeins(t) ml;       // Volume of systemic veins 
real FSysArtCaps(t) ml/sec; // Flow through systemic arteries & capillaries 
real FSysVeins(t) ml/sec;   // Flow through systemic veins 

// Pulmonary circulation variables 
real PPulArtCaps(t) mmHg;   // Pressure in pulmonary arteries & capillaries 
real PPulVeins(t) mmHg;     // Pressure in pulmonary veins 
real VPulArtCaps(t) ml;     // Volume of pulmonary arteries & capillaries 
real VPulVeins(t) ml;       // Volume of pulmonary veins 
real FPulVeins(t) ml/sec;   // Flow through pulmonary veins 
real FPulArtCaps(t) ml/sec; // Flow through pulmonary arteries & capillaries 

real Vtotal(t) ml;          // Total blood volume 

// ALGEBRAIC EQUATIONS: 

// Custom activation functions 
ActFuncAtria = if (sin(2*PI*t*HR) >= 0 ) sin(2*PI*t*HR) else 0;                             
ActFuncVentricles = if (sin(2*PI*(t-PRint)*HR) >= 0) sin(2*PI*(t-PRint)*HR) else 0;  

event(sin(2*PI*(t-PRint)*HR) >= 0 and sin(2*PI*(t-PRint-t.delta)*HR) < 0) { 
 EDVRV = VRV; 
 EDVLV = VLV; 
} 

// Left ventricle equations 
ELV = (EmaxLV-EminLV)*ActFuncVentricles + EminLV;  // Custom fxn 
VrestLV = (1-ActFuncVentricles)*(VrestLVd-VrestLVs) + VrestLVs; // Custom fxn 
PLV = ELV*(VLV-VrestLV);    // Law of elastance 
CardiacOutput:t = (FAorticValve-CardiacOutput)/(15sec);  // Low-pass filter 

// Right ventricle equations 
ERV = (EmaxRV-EminRV)*ActFuncVentricles + EminRV;  // Custom fxn 
VrestRV = (1-ActFuncVentricles)*(VrestRVd-VrestRVs) + VrestRVs;  // Custom fxn 
PRV = ERV*(VRV-VrestRV);    // Law of elastance 
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// Left atrium equations 
ELA = ActFuncAtria*(EmaxLA-EminLA) + EminLA;  // Custom fxn 
VrestLA = (1-ActFuncAtria)*(VrestLAd-VrestLAs) + VrestLAs;  // Custom fxn 
PLA = ELA*(VLA-VrestLA);  // Law of elastance 

// Right atrium equations 
ERA = ActFuncAtria*(EmaxRA-EminRA) + EminRA;  // Custom fxn 
VrestRA = (1-ActFuncAtria)*(VrestRAd-VrestRAs) + VrestRAs;  // Custom fxn 
PRA = ERA*(VRA-VrestRA);  // Law of elastance 

//Systemic circulation equations 
Paorta = ((VSysArtCaps-VrestSysArtCaps)/CSysArtCaps); // Law of elastance 
PSysVeins = ((VSysVeins-VrestSysVeins)/CSysVeins);    // Law of elastance 
FAorticValve = if (PLV>Paorta) (PLV-Paorta)/RAortic Valve  
 else 0; // Ohm's Law (valve)                 
FMitralValve = if (PLA>PLV) (PLA-PLV)/RMitralValve 
 else 0;  // Ohm's Law (valve) 
FSysVeins = (PSysVeins-PRA)/RSysVeins;     // Ohm's Law 
FSysArtCaps = (Paorta-PSysVeins)/Rartcap;  // Ohm's Law 

// Pulmonary equations 
PPulArtCaps = ((VPulArtCaps-VrestPulArtCaps)/CPulArtCaps);  // Law of elastance 
PPulVeins = ((VPulVeins-VrestPulVeins)/CPulVeins);  // Law of elastance 
FPulValve = if (PRV>PPulArtCaps) (PRV-PPulArtCaps)/RPulValve  
 else 0; // Ohm's Law (valve) 
FTricuspidValve = if (PRA>PRV) (PRA-PRV)/RTricuspid Valve  
 else 0; // Ohm's Law (valve) 
FPulVeins = (PPulVeins-PLA)/RPulVeins;               // Ohm's Law 
FPulArtCaps = (PPulArtCaps-PPulVeins)/RPulArtCaps;   // Ohm's Law 

// Summation of volumes 
Vtotal = VLV+VSysArtCaps+VSysVeins+VRA+VRV+VPulArtCaps+VPulVeins+VLA;   

// ORDINARY DIFFERENTIAL EQUATIONS 

// All based on Kirchoff Current Law analog for fluids 
VLV:t = FMitralValve-FAorticValve;  
VSysArtCaps:t = FAorticValve-FSysArtCaps;  
VSysVeins:t = FSysArtCaps-FSysVeins;  
VRV:t = FTricuspidValve-FPulValve;  
VPulArtCaps:t = FPulValve-FPulArtCaps;  
VPulVeins:t = FPulArtCaps-FPulVeins;  
VLA:t = FPulVeins-FMitralValve;  
VRA:t = FSysVeins-FTricuspidValve;  

// INITIAL CONDITIONS 

when (t=t.min) {                        
     VSysArtCaps = 1113; 
     VSysVeins = 3153.5; 
     VLV = 125.9934095755; 
     VPulArtCaps = 265; 
     VPulVeins = 291.5; 
     VRV = 175.8658008658; 
     VLA = 87.5703947794; 
     VRA = 87.5703947794; 
     CardiacOutput = 6.5; 
     EDVLV = VLV(t.min); 
     EDVRV = VRV(t.min); 
     } 
} 
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