
Chapter 4
Temporal Clinical Databases

Overview

This chapter introduces the reader to some important issues and topics of temporal
clinical databases. More specifically the chapter focuses on modeling and querying
issues related to the management of temporal clinical data collected into medical
records. The reader, then, learns how some temporal relational and object-oriented
models have been suitably defined to deal with the specific temporal aspects of
clinical data. The presentation then focuses on some main data models explicitly
proposed for managing clinical data with multiple temporal dimensions and with
clinical temporal data given at different and mixed granularities/indeterminacies.
The reader learns how to design and query a temporal clinical database both by the
temporal relational model and by temporal object-oriented data models with the re-
lated query languages, respectively. Finally, the reader is guided through some spe-
cific aspects of a real temporal clinical database system allowing the management
of follow-up patients who underwent cardiac angioplasty.

Structure of the Chapter

This chapter deals with the task of management of time-oriented clinical data. The
relevant literature has progressed from the early systems, which were mostly ap-
plication dependent, to more general approaches, that, even when applied to the
solution of real problems in the management of time-oriented clinical data, have a
more generalizable value and inherent soundness. An important role in this direc-
tion is that of research efforts in the general field of temporal databases, as detailed
in the previous chapter. According to this perspective, in this chapter we first give
a brief historical overview of the field; we then deal with two different aspects,
which have been considered in the design of temporal clinical database systems,
namely that of multiple temporal dimensions of clinical data and that of different

C. Combi et al., Temporal Information Systems in Medicine, 89
DOI 10.1007/978-1-4419-6543-1 4, c© Springer Science+Business Media, LLC 2010



90 4 Temporal Clinical Databases

temporal granularities in clinical data. Relational and object-oriented methodolo-
gies and technologies are discussed and suitably extended and adopted to deal with
the above mentioned topics: both theoretical, methodological, and technical issues
will be faced, underlining the general aspects and discussing the possible related so-
lutions. The presence of several multiple temporal dimensions of clinical data is an
important issue which has been considered both in the temporal database commu-
nity and in the medical informatics one. This chapter introduces the main temporal
dimensions proposed in the literature, by highlighting through clinical examples
their importance when dealing with clinical information. The handling of variable
temporal granularity (i.e., time units) is a recurring task in managing clinical data.
The approaches we describe consider temporal data at different granularities and
with indeterminacy.

The management of data of some specific clinical domains is also considered;
in particular, this chapter considers several examples taken from a generic patient
record and discusses the design and implementation of a web-based object-oriented
system managing data from follow-up patients, who underwent angioplasty.

Keywords

Temporal clinical information, granularity, indeterminacy, temporal data models,
temporal query languages, relational model, object-oriented data model, multiple
temporal dimensions, angioplasty, medical records, web-based clinical applications.

4.1 Introduction

Researchers in the medical informatics field investigated temporal data mainte-
nance, mainly to support electronic medical records. Indeed, a wide variety of ap-
plications need to deal with temporal aspects of clinical data for the management of
time-oriented data stored in medical records of ambulatory or hospitalized patients
[429, 197, 196, 426, 248, 307, 309, 84, 86, 125, 126, 341, 120, 111, 112, 389, 405,
44].

Studies of time-oriented data-centric applications have been performed in multi-
ple clinical areas: cardiology [194, 309, 86], oncology [111, 197], psychiatry [29],
internal medicine [120, 335], intensive care [74, 70] urology [120], infectious dis-
eases [111], anesthesiology [70, 80]. Various clinical tasks are supported by the
systems proposed in the literature: diagnosis [29], therapy administration and mon-
itoring [112, 200, 405], protocol- and guideline-based therapy [111], and patient
management [426, 123, 124, 120, 307, 86, 44].

Moving on to the task of management of time-oriented clinical data, we observe
that from the early systems, which were mostly application dependent, the proposals
progressed to more general approaches, that, even when applied to the solution of



4.1 Introduction 91

real problems for the management of time-oriented clinical data, have a more gener-
alizable value and inherent soundness [426, 31, 197, 309, 51, 227, 111, 123, 86, 83,
124, 82, 158, 81, 113, 389, 405, 44]. Initially, systems that were designed to man-
age temporal clinical data were based on the flat relational model [426, 31]. These
systems, such as Wiederhold’s TOD and Blum’s Rx, were based on timestamping
database tuples: the date of the visit was added to the specific attribute values.

One of the first applications of databases to clinical domains, explicitly address-
ing the time representation problem, is the Time Oriented Database (TOD) model
[426], originally developed at Stanford University during the 1970s. This model
has been adopted, for example, by the American Rheumatism Association Medi-
cal Information System (ARAMIS), to manage data related to the long-term clin-
ical course of patients suffering from arthritis or, more generally, from rheumatic
pathologies [379]. TOD uses a “cubic” vision of clinical data: values of data re-
lated to a particular patient visit are indexed by patient identification number, time
(visit date), and clinical parameter type. Specialized time-oriented queries enable
researchers to extract, for particular patients, data values that follow certain simple
temporal patterns (e.g., increase at some rate). Assignment of a temporal dimension
at the tuple level is a method common to many applications of clinical databases
[37, 125, 309].

Kahn et al. [197, 196] proposed a specific query language, TQuery, for data that
is structured by a specific data model, named TNET. Even though TQuery was
patient oriented and was not based on a generic data model, it was one of the first
proposals for an extension of query languages so as to enable the system to retrieve
complex temporal properties of stored data. Most query languages and data models
used for clinical data management were application-dependent; thus, developers had
to provide ad-hoc facilities for querying and manipulating specific temporal aspects
of data [196].

The following proposals on temporal clinical databases present a more general
approach. Extensions of common data models, and in particular of the relational
model, are based also on the general database-field literature, in which temporal
databases have been attracting special attention since several years [399, 79, 387,
289, 139].

Another distinction useful for the characterization of much of the research in
maintenance of temporal data is whether the main topic is the definition of temporal
data models [197, 307, 86, 88] or the definition and design of temporally-oriented
query languages [111, 112, 83, 80, 127, 94]. Both topics are discussed in the medical
informatics literature, although with a more focused interest in data modeling. In
medical informatics, attention had been paid mostly to historical databases (which
emphasize valid time), extending relational or object-oriented models [111, 83, 80,
82, 158, 127, 389].

The management of temporal clinical data has some specific features which, even
though shared with other application areas, make important the specific study of
temporal databases for medical data. Quite surprisingly, in our experience these
specific features are neither directly related to the specific medical content of clin-
ical records to manage, nor do they depend on the specific clinical environment to



92 4 Temporal Clinical Databases

consider: they are general features, which, however, are so important for the medical
field that it is mandatory to consider them in designing temporal database systems
for medical data [17, 5, 389, 364, 437]. In the following, we briefly introduce some
relevant specific issues, we have to face when dealing with temporal clinical infor-
mation.

A first set of issues is when we need to model temporal clinical data.

• Often temporal dimensions of clinical data are multiple and cannot be modeled
only through valid and transaction times. For example, we could need to asso-
ciate to the fact “the patient suffered from asthma” both the time when the fact
happened, e.g., “in Summer, 1998” (i.e., the valid time), the time when the fact
has been inserted into the database, e.g., “August, 17, 2002, 16:23:00” (i.e., the
transaction time), and the time when the fact has been notified by the patient to
his physician e.g., “July, 10, 2002, 10:00”. It is worth noting that this last tempo-
ral dimension cannot be captured neither by the valid nor the transaction times.

• The temporal dimension is expressed sometimes by using intervals, for facts hav-
ing a span of time, and sometimes by using instants, for events occurring at a time
point. Moreover, this temporal dimension can be expressed in different and het-
erogeneous ways: the used time axis, for example, has different time units (“in
1998 the patient had a stroke”, “at 4:00 p.m. on June 2000, the patient had an
episode of amnesia: it lasted 15 minutes”); in other cases the temporal location is
expressed with some vagueness (“between 18:45 and 19:13 of May 25, 2007 the
patient had for 150 seconds atrial fibrillation”). We say that the temporal dimen-
sion of clinical information is given at different granularities, i.e. with different
units of measure, and with temporal indeterminacy, i.e. with some vagueness
in defining its temporal location [88]. Furthermore, different granularities and/or
indeterminacy may be used in several different ways to define temporal inter-
vals (“on October 23, 2006 at 18:21 for 35 seconds”, “for 5 hours until 13:20
of November 23, 2005”, “it started between 14:25 and 14:38 and ended between
18:21 and 18:36 of December 23, 2005”). We also have to consider that this
heterogeneity may be present even for the same kind of clinical information: an
episode of ventricular fibrillation, for example, can be identified, in a context-
varying way, both by the definition of its starting and ending instants, and by the
day of its occurrence and by its duration, expressed with the time unit of seconds.

• Clinical information may consist both of natural language, “qualitative” sen-
tences (“the patient suffered from asthma in Summer, 1998”, “the patient fin-
ished on 11/09/99 a therapy with anticoagulants, lasting from two months”), and
of quantitative parameter values (“on May 28, 2001, at 17:25 the physician got
a heart rate of 78 bpm from the patient”, “blood sample of September 19, 2001:
cholesterol in serum is 212 mg/dl”).

• In dealing with information having different granularities or indeterminacy, it is
possible that in some cases temporal relations cannot be asserted for sure. It is
not possible, for example, establish whether “cerebral stroke on November 21,
2003” is before or after “an episode of painless vision loss in November 2003”.



4.1 Introduction 93

A second set of issues is related to the needs arising when physicians have to
query the clinical database to support, for example, clinical decisions they have to
take.

• It happens that several different temporal dimensions could be involved in the
definition of a query on temporal clinical data. For example, when it is necessary
to evaluate the quality of care provided by a hospital ward, it is important to con-
sider both when patients’ therapy, symptoms, visits and so on occurred and when
temporal clinical data describing these facts were at disposal for clinical decision
making: these temporal dimensions, as well as other possible temporal dimen-
sions like the transaction time, have to be considered together as they provide
different, orthogonal, and complementary information.

• The evaluation of clinical information is often performed according to criteria
involving indeterminacy and granularities. For example, in the definition of un-
stable angina [40], different granularities are involved: “angina at rest, for more
than 20 minutes”, or “new onset, within two months, exertional angina, involving
marked limitations of ordinary physical activity”, or “increasing angina within
two months from the initial presentation”, or “post-myocardial infarction angina,
at least 24 hours after”. Finally, therapy prescriptions involve different time units
and/or indeterminacy: e.g., nitroglycerin is recommended “for the first 24 to 48
hours in patients with acute myocardial infarction and CHF (Congestive Heart
Failure), large anterior infarction, persistent ischemia, or hypertension”, but in
intensive medical management of unstable angina, “the heparin infusion should
be continued for 2 to 5 days”, and morphine prescriptions are given by using
minutes as time unit.

• In querying the system about the stored clinical information we usually use gran-
ularities which are different from and not related to the ones used when stor-
ing data. In the same query different granularities and/or indeterminacy may be
used. Queries can consider conditions both explicitly related to absolute time,
and about qualitative or qualitative temporal relations between facts. It must be
possible, in other words, to define queries on the database that would be ex-
pressed in natural language by sentences as: “We want to identify those patients
that suffered from chest pain in 2007 and who, in the ten months after that event,
had episodes of ventricular fibrillation lasting no more than 3 seconds” or “We
want to know the patients that in the years between 1990 and 1995 had an ocular
stroke followed by another stroke in the following seven months, and who were
treated with blood thinners after the second intervention for at least 45 days”.

• The examples provided in the previous item introduce another issue that needs to
be faced: that of absolute and relative time windowing. Indeed, when querying
clinical data it is often necessary to consider only clinical data belonging to a
specified temporal window. Temporal windows could be either absolute (e.g.,
“.. in the years between 1990 and 1995 ..”) and, thus, holding for all the query
results, or relative (e.g., “.. had an ocular stroke followed by another stroke in
the following seven months ..”) and, thus, referring to (multiple) time periods
depending on the clinical events considered for the query results (as, in the above
example, the first ocular stroke of each considered patient.)



94 4 Temporal Clinical Databases

4.2 Multiple Temporal Dimensions in Clinical Databases

Even though valid time (VT) and transaction time (TT) suffice for many database
applications, they are often inadequate to cope with the temporal requirements of
complex organizations such as hospitals and healthcare institutions. In these con-
texts, one often needs to model both the time at which someone/the health informa-
tion system becomes aware of a fact (availability time) and the time at which the
fact is stored into the database. The latter is captured by TT, while the availability
time, AT, has been introduced and dealt with in [93].

Definition 4.1. The availability time (AT) of a fact is the time interval during which
the fact is known and believed correct by the information system.

As in several other domains, medical decisions are taken on the basis of the avail-
able information, no matter whether it is stored in the database or not. ATcaptures
this temporal dimension. Since there can be facts which are erroneously considered
true by the health information system, ATmust be an interval: the starting point of
ATis the time at which the fact becomes available to the information system, while
its ending point is the time at which the health information system1 realizes that the
fact is not correct.

In [215, 216], Kim and Chakravarthy introduce a fourth temporal dimension,
called event time, to distinguish between retroactive and delayed updates. In [93],
Combi and Montanari refine it by showing that two event times are needed to suit-
ably model relevant phenomena. The choice of adding the event time as a separate
temporal dimension has been extensively debated in the literature [289] and is dis-
cussed in detail in [93].

Definition 4.2. The event time (ET) of a fact is the occurrence time of a real-world
event that either initiates or terminates the validity interval of the fact.

The event times are the occurrence times of events, e.g., decisions and actions,
that respectively initiate and terminate relevant facts.

The concepts of availability time and of event time are useful to clarify the re-
lationships between Kim and Chakravarthy’s (initiating) event time and the related
notion of decision time, which has been originally proposed by Etzion and his col-
leagues in [137, 148] and later refined in subsequent work, e.g., in [138]. The deci-
sion time of a fact is the time at which the fact is decided in the application domain
of discourse. More precisely, it can be defined as the occurrence time of a real-
world event (i.e., decision), whose happening induces the decision of inserting a
fact into the database. Decision time has been considered in medical informatics in
[362, 363]; moreover, it is worth noting that the concept of decision time is consid-
ered also in the medical literature with a sligthly different meaning: indeed, decision
time has been defined as the time span between the onset of some symptom and the

1 It is worth noting that an information system of an organization is composed of all the informa-
tion, software and hardware tools, and human resources devoted to the management and processing
of data and information needed by the organization for reaching its goals.



4.2 Multiple Temporal Dimensions in Clinical Databases 95

beginning of the decided action/therapy [180]. Even with the second meaning, it is
straightforward to observe that the introduction of four temporal dimensions allows
the representation of this time span, as it could be derived from the start of VTof
the considered symptom and from the initiating event time of the considered ac-
tion/therapy. Some studies have been done in medical informatics to analyse in a
deep way the decision time and its more appropriate values, i.e. the most suitable
moments for taking an action on a given patient [252]. In this direction, storing both
event and availability times has relevant effects when trying to evaluate the qual-
ity of the care provided by the health organization, as they allow one to estimate
different decision times involved with the health care processes on a patient and to
correctly consider the information available when deciding an action for a patient,
as this information could not correspond to that stored into the database when the
decision was taken.

Focusing on a real-world example, let us consider the following scenario, we
have to represent into a clinical temporal database.

Example 4.1. Patient Hubbard, identified by the attribute PatId having value p2,
was visited on June 30, 2008 and high systolic and diastolic blood pressures were
revealed (an SBP of 170 mm Hg and a DBP of 120 mm Hg were measured several
times that day), due to a strong emotional stress when he was driving on June 28.
Even though the physician was aware of the patient’s situation since June 30, data
were inserted into the database only some days after, on July 2. On June 30, the
physician prescribed atenolol (50 mg/day) to the patient since that moment. Due to
insertion mistakes, data represent a wrong dosage (5 mg/day) and a wrong start time
of the therapy (June 30, 2007). These (wrong) data were inserted on July 2 into the
database. On July 4, patient Hubbard was visited again and his blood pressure had
normal values. The physician stored immediately this information into the database.
On July 12, patient Hubbard calls the physician and says him that he stopped the
therapy on July 11, due to an increasing chest pain since the day before: the physi-
cian prescribed to the patient a therapy with lisinopril, 10 mg/day until July 15, when
the patient will need a further therapy redefinition. On July 13, the physician enters
data about the new lisinopril-based therapy and about the end of the atenolol-based
therapy. On July 17, the physician discovers that data about the atenolol therapy
were wrong and corrects them.

The example highlights several and different temporal dimensions. For example,
it is quite straightforward to identify both availability and transaction times as dif-
ferent temporal dimensions: indeed, the moment when the physician becomes aware
of the patient’s situation (e.g., hypertension) is different from the moment the corre-
sponding data are inserted into the database. Moreover, it is possible, for example,
to store the moment when the physician decides for a therapy or when the patient
decides for the therapy interruption: in the considered case, the physician decides
on June 30 for an immediate start of an atenolol-based therapy, while on July 10 the
patient had chest pain that motivates a delayed stop of the therapy (the delay is of
one day: the therapy ends on July 11). Initiating and terminating event times for the
therapy allow one to represent these two different decisions and events, respectively.



96 4 Temporal Clinical Databases

Finally, the valid time models the period when the patient has to assume the pre-
scribed drug; valid time also models when the patient had hypertension.

4.2.1 Modeling Temporal Data with Multiple Dimensions

The temporal data model, we will discuss here, considering all the four temporal di-
mensions is a straightforward extension of the relational model: a similar approach
and considerations could be adopted even when we have to consider an object-
oriented or an object-relational model.

In this temporal relational model, any relation, besides the user-defined attributes,
is equipped with the four temporal dimensions. VT, TT, and AT are represented as
intervals, while ET is represented by a pair of attributes, that respectively record the
occurrence time of the initiating event and of the terminating one.

The temporal data model encompasses a single type of key constraints, namely,
the snapshot key constraint (key for short). Given a temporal relation R, defined on
a set of (atemporal) attributes X and on the special attributes VT, TT, AT, ETi, and
ETt, and a set K ⊆ X of its atemporal attributes, K is a snapshot key for R if the
following conditions hold:

• ∀a ∈ K(t[a] , null)
• ∀t1, t2 (t1[VT,TT,AT ] ∩ t2[VT,TT,AT ] , ∅

⇒ t1[K] , t2[K])

where t[VT,TT,AT ] denotes the temporal region (a cube) associated with the tuple
t. ET is not involved in the definition of the snapshot key, because ETi and ETt
denote two independent time instants (possibly related to different events), which
do not identify any meaningful interval.

The model imposes some basic constraints on the relationships between the val-
ues of the various temporal dimensions: we cannot assign a value to ET if there
exists no value for the corresponding VT and we cannot assign a value to AT if there
exists no value for the corresponding TT.

The scenario reported in Example 4.1 is represented into the database composed
of the two relations depicted in Tables 4.2.1 and 4.2.1. The relation PatTherapy
stores information about patients (attribute PatId) and prescribed therapies (at-
tributes Drug, DailyDose, and Unit), while the relation PatVisit stores informa-
tion about patients and vital signs (attributes SBP and DBP). Both relations feature
the four temporal dimensions VT, ETi, ETt, AT, TT. (PatId, Drug) and (PatId)
are snapshot keys for the two relations, respectively. The special values uc and now
denote current/available and still valid tuples, respectively.

As a final comment, let us consider some relevant information we are allowed to
derive from these data in a decision making/decision evaluation perspective: at the
current moment (surely after November 17, 2008), with regard to the content of the
database, we are able to understand that, for example, patient p2 assumed atenolol
from June 30, 2008 to July 11, 2008. The event initiating this therapy happened



4.2 Multiple Temporal Dimensions in Clinical Databases 97

Table 4.1 Database instance for patient visits and related therapies: the relation PatTherapy.

PatId Drug DailyDose Unit VT
p2 Atenolol 5 mg [2007Jun30, now] ....
p2 Lisinopril 10 mg [2008Jul12, 2008Jul15] ....
p2 Atenolol 5 mg [2007Jun30, 2008July11] ....
p2 Atenolol 50 mg/ [2008Jun30, 2008July11] ....

ETi ETt AT TT
.... 2008Jun30 [2008Jun30, 2008Jul12] [2008Jul02, 2008Jul12]
.... 2008July12 2008Jul12 [2008Jul12, uc] [2008Jul13, uc]
.... 2008Jun30 2008Jul10 [2008Jul12, uc] [2008Jul13, 2008Jul16]
.... 2008Jun30 2008Jul10 [2008Jul12, uc] [2008Jul17, uc]

Table 4.2 Database instance for patient visits and related therapies: the relation PatVisit.

PatId SBP DBP VT
p1 120 80 [2008May01, 2008May01] ..
p2 170 120 [2008Jun30, 2008Jun30] ....
p2 115 70 [2008July04, 2008Jul04] ....

ETi ETt AT TT
.... 2008May01 2008May01 [2008Nov17, uc] [2008Nov17 uc]
.... 2008Jun28 2008Jun30 [2008Jun30, uc] [2008Jul02, uc]
.... 2008Jun30 2008Jul04 [2008July04, uc] [2008Jul04, uc]

on June 30, while the event finishing the therapy happened on July 10, one day
before the end of the therapy. All this information was available to the information
system since July 12, and was inserted into the database on July, 17. From relation
PatVisit we are able to understand that the high blood pressure of the patient on
June 30 was initiated by an event happened on June 28, while the event terminating
the high blood pressure episode happened on June 30: as a matter of fact, in this
case the terminating event is the start of the therapy with atenolol, represented in
relation PatTherapy.

Let us now consider how the availability time may become relevant when evalu-
ating the quality of clinical decision making. If we consider the information known
by the information system about the event terminating the atenolol prescription, we
are able through the availability time to say that on July 12 the information system
was aware that the patient’s atenolol prescription ended the day before, i.e. on July
11. So, the decision of interrupting the therapy cannot be from the physician, who
is part of the information system, as it corresponds to the terminating event time
on July 10. On the other hand, we may assume that the prescription of atenolol for
patient p2 was decided and administered immediately on June 30 as the physician
(i.e., the information system) was aware of the high blood pressure of the patient.



98 4 Temporal Clinical Databases

It is worth noting that the same conclusion could not be reached if we did not con-
sider the availability time: indeed, without availability time, we are allowed to use
only transaction time, to try to estimate the moment at which data are known by the
information system. In this case, transaction time for high blood pressure starts on
July 02, 2008: using in a rough way this time value, we could think that the start of
the therapy was decided without knowing anything about the patient’s high blood
pressure. It is clear that this second (wrong) interpretation could lead to a wrong
evaluation of the decision making process, which seems in this case not to be based
on any clinical evidence related to the patient’s vital signs.

4.2.2 Querying Data with Multiple Temporal Dimensions

Let us now move to the main aspects of query languages supporting multiple tem-
poral dimensions. In the following we will consider the temporal query language
T4SQL [94], supporting all the four introduced temporal dimensions. This proposal
takes into account and extends the expressiveness of well-known temporal query
languages such as TSQL2 and the temporal part of SQL3 [133]. The main features
of T4SQL include the following semantics: current, which considers only current
tuples; sequenced, which corresponds to the homonymous SQL3 semantics; atem-
poral, which is equivalent to the SQL3 non-sequenced one; and the original next,
which allows one to link consecutive states when evaluating a query. As a matter of
fact, both current, sequenced, and next are special cases of the atemporal seman-
tics; nevertheless, they allow one to express meaningful classes of queries in a much
more compact way.

T4SQL queries receive input relations (via the FROM clause of a statement) with
the four temporal dimensions: queries return relations with at most the four temporal
dimensions. Relations without all the four temporal dimensions are prior converted
to complete2 relations according to either some default rules or other alternative
rules, suitably defined according to the given application domain. T4SQL has both
the constants and the standard temporal data types as in SQL92 and the PERIOD
data type as in SQL3.

In the following, the only data type used to describe an instant is DATE; the
PERIOD data type is defined by instants of type DATE, only; interval data types (i.e.,
representing durations) are day and year-month. These assumptions do not limit the
expressiveness of the query language, which can be easily extended to manage the
TIME and TIMESTAMP data types.

The values associated to a specific temporal dimension can be referenced by the
following functions, only:
VALID(T) returns the VT of a tuple of the relation R;
TRANSACTION(T) returns the TT of a tuple of R;
AVAILABLE(T) returns the AT of a tuple of R;

2 A temporal relation is complete if it has all the four temporal dimensions VT, TT, AT, and ET(i.e.,
ETi and ETt).



4.2 Multiple Temporal Dimensions in Clinical Databases 99

INITIATING ET(T) returns ETi for a tuple of R;
TERMINATING ET(T) returns ETt for a tuple of R.
The syntax of T4SQL is very close to that of TSQL, with some extensions. The

(incomplete) BNF (Backus Naur Form) grammar is:

[SEMANTICS <sem> [ON] <dim> [[TIMESLICE] <ts_exp>]

{, <sem> [ON] <dim> [[TIMESLICE] <ts_exp>]}]

SELECT <sel_element_list>

[WITH <w_exp> [AS] <dim> {, <w_exp> [AS] <dim>}]

[TGROUPING] [WEIGHTED]

FROM <tables>

[WHERE <cond>]

[WHEN <t_cond>]

[GROUP BY <group_element_list>]

[HAVING <g_cond>]

<group_element_list> ::= <group_element>

{, <group_element>}

<group_element> ::= <attribute> |

<temp_attribute> USING <part_size>

<sem>:= ATEMPORAL | CURRENT | SEQUENCED |

NEXT[(<duration>)] [THROUGH <att_list>]

<dim>:=VALID | TRANSACTION | AVAILABILITY |

INITIATING_ET | TERMINATING_ET

4.2.2.1 The Clause SEMANTICS

T4SQL enables the user to specify different semantics for every temporal dimen-
sion, delegating the management of the temporal dimensions to the underlying
DBMS as follows:

SEMANTICS <sem> [ON] <dim> [[TIMESLICE] <ts_exp>]

{, <sem> [ON] <dim> [[TIMESLICE] <ts_exp>]}

where <sem> is the type of the required semantics and <dim> is the temporal dimen-
sion where the semantics is applied to. The tokens ON and TIMESLICE are optional
and aim at increasing the readability of the query. The item <ts exp> is a constant
(p) either of type PERIOD (for dimensions VT, AT, and TT) or of type DATE (for
dimensions ETiand ETt): focusing on the more important case of a period timeslice,
the constant p is such that, if d is the considered temporal dimension, a generic tu-
ple t, belonging to the relation r, is considered in the query only if t(d) ∩ p , ∅.
Additionally, the value assumed by t over the temporal dimension d is changed to
t(d) ∩ p.

A temporal dimension can be only once inside the SEMANTICS clause: one unique
interpretation can be associated to every single temporal dimension.



100 4 Temporal Clinical Databases

As an example, consider the relation PatTherapy and the need of extracting
data about all the patients that had a therapy with atenolol and the respective period
during which the fact happened. In a relational DBMS where temporal dimensions
are managed explicitly by the user, the query considering all the temporalities may
look like the following:

SELECT PatId, VT

FROM PatTherapy

WHERE Drug = ‘Atenolol’ AND

END(TT) = DATE ‘uc’ AND

END(AT) = DATE ‘uc’

After having defined the suitable semantics, T4SQL manages all the temporal
dimensions on behalf of the user, who does not have to explicitly consider all these
temporal dimensions. The obtained code is more readable, less complex, and possi-
bly, with a reduced number of errors. The previous query is expressed in T4SQL as
follows:

SEMANTICS SEQUENCED ON VALID

SELECT PatId

FROM PatTherapy

WHERE Drug = ‘Atenolol’

The temporal dimension of VT is interpreted according to the use of the keyword
SEQUENCED, while the temporal dimensions of TTand ATare automatically managed
to consider only current and available tuples, respectively.

If instead we want to consider all the patients that assumed atenolol during June
2008, the TIMESLICE semantics helps us and the T4SQL query is the following:

SEMANTICS SEQUENCED ON VALID TIMESLICE

PERIOD ‘[2008-06-01 - 2008-06-30]’

SELECT PatId

FROM PatTherapy

WHERE Drug = ‘Atenolol’

where the upper and lower bounds of a constant of type PERIOD are depicted by the
symbols ‘[’ and ‘]’.

When processing a T4SQL statement, the SEMANTICS token is processed first,
well before the FROM clause, because all the statement needs to be interpreted ac-
cording to the specified semantics. We now consider in detail the four types of avail-
able semantics: ATEMPORAL, CURRENT, SEQUENCED, and NEXT.

ATEMPORAL Semantics

If the ATEMPORAL semantics is adopted, the corresponding attribute(s) is dealt with
as atemporal (timeless), providing the user with the highest level of freedom in man-
aging temporal dimensions, even though any support by the system is disabled. The



4.2 Multiple Temporal Dimensions in Clinical Databases 101

ATEMPORAL semantics is exactly the same as the non-sequenced semantics discussed
in Section 3.5 of Chapter 3.

If we want to retrieve all the patients where the therapy “Atenolol” has never
been observed, the query does not require any temporal dimension, but requires to
span over the entire temporal axis. The resulting T4SQL query is the following:

SEMANTICS ATEMPORAL ON VALID

SELECT PatId

FROM PatTherapy

WHERE PatId NOT IN (

SEMANTICS ATEMPORAL ON VALID

SELECT PatId

FROM PatTherapy

WHERE Drug = ‘Atenolol’)

By default, duplicates are removed, as by the DISTINCT clause of SQL.
The result of a T4SQL query is a relation with at most four temporal dimensions:

one result relation may also have no temporal dimension at all. The above result
relation has no VT: this comes from the assumption that, if not explicitly mentioned,
the temporal dimension related to an ATEMPORAL semantics is not included in the
result relation. In the considered example, the query does not suggest any function
that can suitably evaluate a VT to be returned, unless explicitly defined by the user.
In this latter case, a temporal dimension will be included in the result relation. Thus,
the freedom of expression empowered by an ATEMPORAL query enables the user to
obtain the same result as it could be obtained by using some other semantics, even
though the ATEMPORAL query is a much more complex one.

CURRENT Semantics

The CURRENT semantics, applied to a temporal dimension d, considers only the tu-
ples where the value associated to d includes the current date.

The CURRENT semantics may assume a different meaning according to the tem-
poral data type associated to the considered temporal dimension:

• if the specified data type is a period, as for VT, TT or AT, the query considers
only the tuples satisfying the condition t(d) CONTAINS DATE ‘now’ or t(d)
CONTAINS DATE ‘uc’ ;

• if the specified data type is a date, as for ET, the query considers all the tuples
satisfying the condition t(d) = DATE ‘now’.

As an example, we want to retrieve all the patients from PatVisit, as currently
stored. The T4SQL query is:

SEMANTICS CURRENT ON TRANSACTION, ATEMPORAL ON VALID

SELECT PatId

FROM PatVisit



102 4 Temporal Clinical Databases

By the above query, considered tuples are only those whose TT contains the cur-
rent date (timestamp). The result relation does not contain neither VT (it should
have contained it if the semantics were not ATEMPORAL) nor TT. TT is not included
because the semantics CURRENT does not save the temporal dimension, too. This
behavior is due to the following considerations: i) compatibility of T4SQL with
SQL92, as described next; ii) a query with a CURRENT semantics considers the cur-
rent state of the database for a given temporal dimension (i.e., at the current date),
and in such a situation there is no reason to associate a temporal dimension because
the information is related to a specific date (DATE ‘now’ or DATE ‘uc’ depending
on the considered temporal dimension).

The above query can be expressed by an ATEMPORAL semantics (the complexity
of the query increases if the user has to explicitly manage all the temporal dimen-
sions) as:

SEMANTICS ATEMPORAL ON TRANSACTION,

ATEMPORAL ON VALID

SELECT PatId

FROM PatVisit AS pv

WHERE TRANSACTION(pv) CONTAINS DATE ‘uc’

The CURRENT semantics is the only case where TIMESLICE cannot be used, as
CURRENT can be seen as a TIMESLICE containing the current date, only. The above
query can be rewritten as:

SEMANTICS ATEMPORAL ON TRANSACTION

TIMESLICE PERIOD ‘[uc - uc]’, ATEMPORAL ON VALID

SELECT PatId

FROM PatVisit

Thus, a query including the statement CURRENT ON VALID TIMESLICE DATE
‘2008-07-01’ will raise an error.

SEQUENCED Semantics

The SEQUENCED semantics forces a time point by time point evaluation of the state-
ment, with exactly the same semantics as in [384] . This evaluation on a given tem-
poral dimension d considers all the tuples of relations in the FROM clause where there
exists a date i belonging to all the periods of the dimension d.

As an example, we consider the semantics SEQUENCED over VT. For every date
over the time axis, we select all and only those tuples where VT contains the con-
sidered date. This semantics is very useful when we want to perform a historical
analysis, considering only the information valid at a given date (while changing that
date).

As a difference from the ATEMPORAL and CURRENT semantics, the SEQUENCED
semantics returns in the result relation the temporal dimension specified in the query.
By default, the returned value is evaluated for every tuple as follows:



4.2 Multiple Temporal Dimensions in Clinical Databases 103

let T1, · · · ,Tn be the relations used to evaluate the result, d be the temporal dimension
to which the SEQUENCED semantics is applied, and Tr be the result relation. For every
tuple tr ∈ Tr and for every ti ∈ Ti, where i ∈ [1..n], where any ti participates in the
evaluation of the result tuple tr, we have that tr(d) =

⋂n
i=1 ti(d).

In order to understand this choice, let us consider VT. Every tuple tr, belonging
to the result relation, is valid when all the tuples involved in its definition are valid.
The VT of every result tuple is the intersection of the VT of the involved tuples. If,
according to the current state of the database, we want to retrieve for every patient
the visits whose VT overlaps the VT of the prescribed therapies, the query is:

SEMANTICS SEQUENCED ON VALID, CURRENT ON TRANSACTION

SELECT SBP, DBP, PatId

FROM PatVisit AS pv, PatTherapy AS pt

WHERE pv.PatId = pt.PatId

When the query involves one relation only, the SEQUENCED semantics considers
all the tuples of that relation and associates to the result tuples the value of the
considered temporal dimension. If we want to retrieve the patients who had high
blood pressure, considering the information that the database in its current state
believed correct on July 8, 2008, the query is:

SEMANTICS SEQUENCED ON VALID,

CURRENT ON TRANSACTION, ATEMPORAL ON AVAILABLE

TIMESLICE PERIOD ‘[2008-07-08 - 2008-07-08]’

SELECT PatId

FROM PatVisit

WHERE SBP > 150 AND DBP > 100

The result is a temporal relation with one explicit attribute (PatId) and one im-
plicit attribute (VT) managed by the system. In this case, too, the query can be
translated to a different one with the ATEMPORAL semantics, as follows:

SEMANTICS ATEMPORAL ON VALID,

ATEMPORAL ON TRANSACTION, ATEMPORAL ON AVAILABLE

SELECT PatId WITH VALID(pv) AS VALID

FROM PatVisit AS pv

WHERE SBP > 150 AND DBP > 100 AND

TRANSACTION(pv) CONTAINS DATE ‘uc’ AND

AVAILABLE(pv) CONTAINS DATE ‘2008-07-08’

The particular form of the SELECT clause will be described in Section 4.2.2.2.
Generally, any query with a SEQUENCED semantics can be transformed to a different
query defined by an ATEMPORAL semantics.



104 4 Temporal Clinical Databases

NEXT Semantics

The NEXT semantics enables the user to retrieve information about the same object
as observed in two subsequent dates over the order of the temporal dimension. If
we consider the example of patients and therapies, one may want to identify for
every patient the time elapsed between two subsequent administrations of the same
therapy or between two subsequent administrations of different therapies.

As main feature, the NEXT semantics considers two tuples related to the same
entity and the two tuples must be subsequent in the order of the selected temporal
dimension. Thus, the query in its basic form has to consider together two tuples with
the same snapshot key (see Section 4.2.2).

The logical operation performed by the NEXT semantics is equivalent to a join
between two instances of the same relation in the FROM clause: in its simpler form,
this operation removes the couples of tuples that are not related to the same snap-
shot key. Next, the query selects the tuples where the data from the second tuple are
subsequent to the data from the first tuple, according to the order of the selected tem-
poral dimension. Due to the constraint over the snapshot key, we have a total order
and, in the cases of VT, TT, and AT, the successor (if any) is unique, if we exclude
the adoption of the ATEMPORAL semantics for some among the other dimensions.
Moreover, in the case of ETi and ETt, we deal with temporal values of DATE type
(instantaneous), while for the other dimensions we deal with values of type PERIOD.

By default, the NEXT semantics refers to the entire temporal axis. The query starts
looking for the successor from the final date of the interval of the considered tuple
till the very last instant representable by the system. Sometimes one may want to
limit the upper bound of the interval considered by the query: to do that, a suitable
integer parameter of the NEXT semantics identifies the duration of the period within
which the successor of the tuple must be found. The complete syntax for the NEXT
semantics is defined as:

NEXT[(<duration>)] [THROUGH <att_list] [ON]

<dimension> [[TIMESLICE] <ts_exp>]

where <duration> is the width of the temporal interval where the successor must
be found. The integer value refers to the smallest granularity of the considered tem-
poral data type: for instance, for the VT of type PERIOD, the integer parameter has
the day granularity. <dimension> is the dimension where the semantics must be
applied to.

The interval over which the query evaluation looks for the successor tuple is [e,
e+dur+1], where e is the final instant of the period associated to the considered
temporal dimension for PERIOD data types (or the instant associated to the consid-
ered temporal dimension for DATE data types) and dur is the given duration.

Sometimes, it could be a strong limitation to consider next tuples only by consid-
ering the snapshot key: in the considered scenario, for example, it could be interest-
ing to query the database not only on successive administrations of the same drug to
patients but also on successive therapies to patients, no matter what the administered



4.2 Multiple Temporal Dimensions in Clinical Databases 105

drug is. The clause THROUGH allows the user to explicitly set the attributes to con-
sider when joining subsequent tuples in the evaluation of the query.

Example 4.2. Starting from the PatTherapy relation, we want to retrieve for every
patient the period elapsed between two subsequent administrations disregarding the
fact that therapies were related to a single drug. The corresponding T4SQL query
is:

SEMANTICS NEXT THROUGH PatId ON VALID

SELECT PatId, (BEGIN(VALID(NEXT(t)))-END(VALID(t))) DAY

FROM PatTherapy AS t

In the SELECT clause of the example, the function NEXT has the parameter defined
by a tuple variable (t), to reference the successor tuple of t, as obtained by the NEXT
semantics. Thus, the BEGIN(VALID(NEXT(t))) refers to the lower bound of the VT
for the successor tuple.

Example 4.3. We want to retrieve all the patients who had a therapy with ‘Atenolol’
moving from a dosage of 50 mg/day to a dosage of 70mg/day. The query in the
T4SQL query language is the following:

SEMANTICS NEXT(0) ON VALID

SELECT PatId

FROM PatTherapy AS t

WHERE t. Drug = ‘Atenolol’ AND

t.DailyDose = 50 AND t.Unit = ‘mg’ AND

NEXT(t).DailyDose = 70 AND

NEXT(t).Unit = ‘mg’

Temporal relations obtained by applying the NEXT semantics to the temporal di-
mension d, do not include that temporal dimension d. In fact T4SQL does not want
to associate any temporal dimension to an object obtained starting from two tuples
with disjoint values. The user can always specify by the WITH clause, described
below, how to evaluate the temporal dimension to be included in the result relation.

Default Values

If no information or no temporal dimension is specified for the SEMANTICS clause,
default values apply. Compatibility of T4SQL towards SQL92 drives the choices
for default values.

In T4SQL any atemporal query3, performed over the temporal relation corre-
sponding to the atemporal query, produces an identical result as a query performed
over the atemporal relation by a non-temporal DBMS. This definition is equivalent

3 A query is named atemporal or snapshot if no construct is defined to manage any temporal
dimension.



106 4 Temporal Clinical Databases

to the definition of upward compatibility as in [384]. Obviously, a query compatible
with SQL92 cannot include the SEMANTICS clause.

In T4SQL, a SQL92-like query over a temporal relation evaluates only the in-
formation known to the DBMS and valid at query execution time: the query returns
an atemporal relation evaluated according to the semantics of SQL92. This requires
that the default semantics for VT and TT is CURRENT: in fact, the query considers
only the information associated to the current state of the database with the same
semantics as in SQL92. Additionally, no temporal dimension is returned. Due to
similar reasons, the default semantics for AT is CURRENT.

A more accurate analysis is needed for ET. T4SQL cannot assume as default
values a semantics CURRENT, or T4SQL will consider only the tuples where starting
date, final date, and the current date coincide. As an example, we consider a tuple
whose VT is [2009-01-01, 2009-12-31], and the current date is June 1, 2009:
we also assume to have a co-active relation. In this case, a tuple valid at the current
date will not be considered as both boundaries of ET differ from the current date
2009-06-01. Due to these reasons, the default semantics for ET is ATEMPORAL, as
this does not influence the selection of the tuple and does not return the temporal
dimension in the result relation.

Example 4.4. From the PatTherapy relation, we want to retrieve patients who are
taking ‘Lisinopril’. The SQL92 query has no condition over temporal aspects
and it is:

SELECT PatId

FROM PatTherapy

WHERE Drug = ‘Lisinopril’

The result is an atemporal relation considering only information in the database
and valid at the current time. The equivalent T4SQL code is:

SEMANTICS CURRENT ON VALID,

CURRENT ON TRANSACTION,

CURRENT ON AVAILABLE,

ATEMPORAL ON INITIATING_ET,

ATEMPORAL ON TERMINATING_ET

SELECT PatId

FROM PatTherapy

WHERE Drug = ‘Lisinopril’

4.2.2.2 The Clause SELECT

The SELECT clause of SQL92 performs a projection operation over the attributes to
be included into the result relation. T4SQL manages both temporal and atemporal
relations and thus it has to manage explicit attributes (i.e., those included in the
SELECT clause), as well as temporal dimensions.



4.2 Multiple Temporal Dimensions in Clinical Databases 107

T4SQL introduces the token WITH in the SELECT clause, to separate the specifi-
cation of explicit attributes from that of implicit attributes. Any statement before the
token WITH is evaluated according to the SQL92 semantics for projection: any state-
ment following the token WITH computes the temporal dimension(s) to be included
in the result relation. The syntax for the SELECT clause in T4SQL is:

SELECT <sel_element_list>

[WITH <w_exp> [AS] <dim> {, <w_exp> [AS] <dim>}]

where <w exp> computes a period (if the temporal dimension is associated to a
PERIOD data type) or a date (if the temporal dimension is associated to a DATE
data type), and <dim> is a temporal dimension. The optional token AS increases the
readability of the code.

If no temporal dimension is specified for the result relation, the following default
temporal dimensions are applied:

• ATEMPORAL Semantics: the temporal dimension is not included in the result rela-
tion;

• CURRENT Semantics: the temporal dimension is not included in the result relation;
• SEQUENCED Semantics: the temporal dimension is included in the result relation

and included values are the intersection of the temporal attributes of the tuples
involved in determining the result;

• NEXT Semantics: the temporal dimension is not included in the result relation.

Example 4.5. We want to retrieve the patients who had high diastolic blood pressure
(i.e., more than 100 mmHg), received the drug ‘Lisinopril’, and had a measure of
normal diastolic blood pressure within 5 days from the beginning of the therapy.
Every element in the result relation must come with the VT, which is included within
the beginning of the high diastolic blood pressure and the end of the therapy. The
resulting T4SQL query is:

SEMANTICS SEQUENCED ON VALID

SELECT PatId WITH PERIOD (BEGIN(VALID(pv1)),

END(VALID(pt))) AS VALID

FROM PatVisit AS pv1, PatVisit AS pv2, PatTherapy AS pt

WHERE pv1.DBP > 100 AND pv2 < 100 AND

pt. Drug = ‘Lisinopril’ AND

pp.PatId = pt.PatId AND

VALID(pv1) BEFORE VALID(pv2) AND

(END(VALID(pt2)) - BEGIN(VALID(pt))) DAY

< INTERVAL ‘5’ DAY

Here, the result relation has the VT attribute. The value of this temporal dimen-
sion, however, does not come from the intersection of the VT of the tuples included
into the result, as the token WITH modifies the included temporal dimension.



108 4 Temporal Clinical Databases

Coalescing

In a temporal relation, all the tuples have to satisfy the snapshot key constraint.
As the projection of the clause SELECT may produce a temporal relation violating
the above constraint, we may thus have two tuples which have the same values for
atemporal attributes and intersecting temporal dimensions (if any). To cope with this
situation, the coalescing operator fuses the tuples with overlapping values of tem-
poral dimensions and with the atemporal attributes having the same corresponding
values [35, 132].

4.2.2.3 The Clause FROM

The FROM clause of SQL92 identifies the relations used to find the attributes and/or
to perform join operations. In SQL92 several JOIN criteria can be defined: INNER
join, which is the default value, LEFT OUTER, RIGHT OUTER and FULL OUTER
joins. The token ON specifies the selection conditions of the FROM clause. T4SQL
adopts the same FROM clause as SQL92. Additionally, the token JOIN of SQL92
has been replaced by the token TJOIN (temporal join), when some join conditions
are temporal.

Relations in T4SQL are filtered to consider only the information needed for
the specified interpretations. Thus, user-defined conditions are augmented by those
coming from the semantics applied to every temporal dimension. According to the
considered semantics, T4SQL behaves as follows:

• if the CURRENT semantics is specified, T4SQL considers only the tuples whose
temporal dimension includes the current date;

• if the SEQUENCED semantics is specified, T4SQL considers only the tuples from
the relations specified by the clause FROMwith overlapping temporal dimensions;

• if the NEXT semantics is specified, T4SQL considers the tuples having a successor
and the successor itself, only.

Example 4.6. We want to select, according to the current state of the database, all
the patients, reporting also their vital signs, who had a visit during the assumption
of a therapy that ended more than 10 days after the visit. The T4SQL query is:

SEMANTICS SEQUENCED ON VALID

SELECT PatId, Drug, DBP, SBP

FROM PatTherapy AS pt TJOIN

PatVisit AS pv ON

(pt.PatId = pv.PatId AND

(END(VALID(pt)) - BEGIN(VALID(pv))) DAY >

INTERVAL ‘10’ DAY )



4.2 Multiple Temporal Dimensions in Clinical Databases 109

4.2.2.4 The Clauses WHERE and WHEN

In SQL92, the WHERE clause evaluates selection predicates over tuples from the re-
lations in the FROM clause. The WHERE clause of T4SQL extends the SQL92 clause
possibly including some temporal conditions. As temporal conditions may turn out
to be very complex, the user can optionally separate temporal conditions from atem-
poral conditions by using the WHEN clause. The semantics of WHEN is very similar
to that of WHERE, but WHEN includes temporal conditions only. Consider again the
query of Example 4.6. It can be defined by using the clause WHEN as follows:

SEMANTICS SEQUENCED ON VALID

SELECT PatId, Drug, DBP, SBP

FROM PatTherapy AS pt, PatVisit AS pv

WHERE pt.PatId = pv.PatId

WHEN (END(VALID(pt)) - BEGIN(VALID(pv))) DAY >

INTERVAL ‘10’ DAY

The WHEN clause can be replaced with an equivalent statement in the WHERE
clause, with a reduced readability.

4.2.2.5 The Clauses GROUP BY and HAVING

In a temporal query language, the GROUP BY clause can be used to implement a
temporal grouping, rather than a punctual grouping over atemporal attributes. The
selection of the tuples to be grouped together (we have one group for every par-
titioning element) is performed according to the value of the considered temporal
attribute(s) of the tuple, according to the periods associated with the partition, and
according to the temporal comparison operator used in the temporal grouping.

Let P be a period associated with a particular element of the partition, Pt be
the value (that is, time period) assumed by the tuple t on the considered temporal
attribute and Op be the temporal comparison operator. The tuple will belong to
the group associated with the considered element of the partition if the condition
P Op Pt holds. To limit the number of new terms specifying the comparison operator
for the temporal grouping, the default value is the INTERSECT operator. Let Op be
the INTERSECT operator. For every tuple t and every element of the partition, if
Pt INTERSECT P = true, then t belongs to the group associated with the element of
the partition and the value of its temporal attribute (with respect to the considered
group) is P∩Pt.

The result of temporal grouping can be explained as follows. The time period
Pt associated with the temporal attribute of the tuple can be viewed as a set of
dates. Whenever Pt and the time period P of the element of the partition satisfy the
requested condition, e.g., whenever they intersect, the tuple belongs to the group
induced by the element of the partition and the time period associated with the
temporal attribute is restricted to the set of dates that belong to P.



110 4 Temporal Clinical Databases

The token USING distinguishes between a classic (atemporal) grouping and a
temporal grouping. Implemented temporal partitions are SECOND, MINUTE, HOUR,
DAY, MONTH and YEAR. For instance, a temporal grouping can be represented by
“GROUP BY <temp> USING MONTH”, where <temp> refers to a temporal dimen-
sion of a table in the FROM clause.

In case of temporal grouping, it is only possible to use a constant value of type
PERIOD, representing a specific partition, to identify a group. For homogeneity with
SQL92, in T4SQL the grouping attributes could be included in the clause SELECT,
while the temporal grouping is performed by the token TGROUPING(...). This to-
ken returns as many attributes as the parameters, possibly renamed as specified by
the user.

T4SQL adopts the same semantics as SQL92 for grouping. For the functions
MAX, MIN, AVG and SUM the token WEIGHTED is introduced by T4SQL. The token
WEIGHTEDmust precede the aggregation function it is applied to: the token computes
the weighted function over the dimension of the temporal period of every tuple. Let
us assume that t1 . . . tn are the tuples belonging to the group G, t1(d) . . . tn(d) are the
values of the tuple over the temporal attribute d according to which we performed
the temporal grouping, and d(G) is the duration of the considered grouping partition.
Moreover, let t1(a) . . . tn(a) be the values of the tuples for attribute a which is the
parameter for the weighted aggregate function. The resulting function is computed
as follows:

• WEIGHTED MAX(a) = maxn
i=1{ti(a)∗ duration(ti(d))

d(G) };

• WEIGHTED MIN(a) = minn
i=1{ti(a)∗ duration(ti(d))

d(G) };

• WEIGHTED SUM(a) =
∑n

i=1(ti(a)∗ duration(ti(d))
d(G) );

• WEIGHTED AVG(a) =

∑n
i=1(ti(a)∗ duration(ti(d)))

d(G)
n .

The HAVING clause of T4SQL is exactly the same as that of SQL92, enhanced
by the possibility of using weighted functions.

Example 4.7. Let us assume that we want to retrieve for every year the average du-
ration of prescribed therapies. The corresponding T4SQL query is the following:

SELECT TGROUPING(VALID(t) AS YearPeriod),

AVG(CAST(INTERVAL(VALID(t) DAY))

AS INTEGER)

FROM PatTherapy AS t

GROUP BY VALID(t) USING YEAR

Example 4.8. We want to compute from the table PatVisit the average level per
month of DBP for each patient, returning only data for patients having assumed a
(weighted) average quantity of atenolol per month more than 2 mg per day. The
T4SQL query is:

SEMANTICS SEQUENCED ON VALID

SELECT PatId, AVG(DBP),



4.3 Granularity and Indeterminacy in Clinical Databases 111

TGROUPING(VALID(v) AS VALID)

FROM PatVisit AS v, PatTherapy AS t

WHERE Drug = ‘Atenolol’

GROUP BY PatId, VALID(v) USING MONTH

HAVING WEIGHTED AVG(DailyDose) > 2

It is worth noting in this case that the weighted average allows us to consider
the real average assumption of atenolol per day (without the weighted average any
daily quantity of atenolol is considered in the temporal grouping and in the average
operation, without considering how many days the patient assumed the drug).

4.3 Granularity and Indeterminacy in Clinical Databases

Since the beginning of 1990s, results from research in temporal relational databases
have been applied and extended for the management of temporal clinical data
[111, 112, 123, 124, 80, 82, 113]: particularly, several work in the medical informat-
ics field focused on the issue of temporal granularity and indeterminacy in modeling
and querying clinical data. The proposed research considered suitable (and general)
extensions both to the relational model and query languages and to object-oriented
models and query languages. In the following we will describe two well known
methodologies adopting the relational model and the object-oriented one, respec-
tively. In particular, the object-oriented approach will be treated as a complete case
study, considering modeling issues, querying issues, some technological aspects,
the real world clinical domain considered for the application, and the web-based
architecture of the designed and implemented system.

4.3.1 A Temporally Extended Clinical Relational System

One of the main problems faced for temporal relational clinical databases is the
seamless management of instant- and interval- valid times with different granular-
ities; in several temporal database systems, valid times are homogeneous both in
granularity and in instant/interval reference for all the tuples of a given relation.
This is a limitation in the clinical domain: in a relation containing descriptions of
pathologies, for example, instantaneous tuples (e.g. “cerebral stroke at 21:23 of May
16th, 1997”) and interval-based tuples (e.g. “vision loss on February 13th 1997 from
18:35:15 to 18:45:28”) must co-exist.

A widely known and general temporal data model proposed for the management
of temporal clinical data is Chronus, proposed by Das and Musen in [111], and suc-
cessively used in several projects dealing with the integrated management of data
and knowledge in the clinical context [113, 327]. The main problem faced here is
that clinical information can come with heterogeneous temporal data and with inde-
terminacy. Chronus distinguishes two kinds of medical temporal data: instantaneous



112 4 Temporal Clinical Databases

data represent events, while interval-based data represent states. Instantaneous data
and interval data are stored into history tables. For managing the indeterminacy of
events and states, Das and Musen [111] define four different types of relational tu-
ples: event, start, body, and stop tuples. Moreover, an extension is proposed for the
relational algebra, to manage temporal information and temporal relational opera-
tions. As an example, let us consider the Chronus database depicted in Figure 4.1,
which represents a simple clinical database containing some basic demographic data
for the patients, some information about their blood pressures and heart rate during
some visits, and some information on their therapies.

As shown in the figure, any Chronus relational table contains three extra-attributes,
which have a predefined meaning: the attributes Start time and Stop time contain
the starting timestamp and the ending timestamp for the fact represented into the
tuple; moreover, tuples are typed according to the attribute Type, which distinguish
instantaneous facts and interval-based facts.

As an example, the first tuple of table Visit in Figure 4.1b refers to the fact that
patient Smith had values 130 and 90 for systolic blood pressure (SBP) and diastolic
blood pressure (DBP), respectively, at a time point between 11 a.m. and noon of
June 6, 1998: more precisely, the value event for the attribute Type says that the
tuple represents an instantaneous fact, while the different values for Start time and
Stop time indicate that the temporal location of the represented fact is not given at a
precise timepoint, but is within the two given upper and lower bounds. As for states,
three tuples of a Chronus table are needed: two tuple, having the values start event
and stop event, respectively, for the attribute Type represent the indeterminacy of
starting and ending points of the interval of validity of the considered state; a fur-
ther tuple, with value body for the attribute Type, is needed to represent when the
state is valid for sure. It is worth noting that in Chronus the tuple interval expressed
through the attributes Start time and Stop time assumes different meanings accord-
ing to the value of the attribute Type. For event, start, and stop tuples, the tuple
interval represents an interval of uncertainty (IOU), i.e., the interval within which
the represented instantaneous event occurs: such indeterminacy could derive, for
example, from the need to represent data given at different granularities. For body
tuples, the tuple interval represents the interval of certainty (IOC), i.e. the interval
over which the represented state holds. As a special case, when clinical information
is provided without indeterminacy, a state is represented through a single body tuple
(as for the tuples of relation Patient and for the first tuple of relation Therapy in
Figure 4.1c), while an event is represented through an event tuple having the same
values for both attributes Start time and Stop time.

The Chronus data model is also completed by an algebra, called historical alge-
bra, which allows one to compare intervals and instants, to perform operations on
time intervals and instants, and on the related tuple [111]. Among the operations
supported by the proposed algebra, we mention here temporal selection and projec-
tion, catenation (i.e, coalescing), and different kinds of temporal joins. Further work
on Chronus has been done to improve the representation of temporal uncertainty of
clinical information by associating a probability distribution function to each IOU
describing the possible temporal location of a time point [284].



4.3 Granularity and Indeterminacy in Clinical Databases 113

Start time Stop time Type PatId Name
97/11/10/11/00 99/9/25/11/00 body SM1 Smith
95/3/4/12/00 99/12/6/17/00 body RS1 Rossi
97/6/11/11/00 97/6/15/11/00 body HB3 Hubbard

a) the relation Patient

Start time Stop time Type PatId SBP DBP
98/6/6/11/00 98/6/6/11/59 event SM1 130 90

98/11/10/10/00 98/11/10/10/09 event SM1 120 70
99/7/20/12/45 99/7/20/12/59 event RS1 150 110
97/6/12/00/00 97/6/12/11/59 event HB3 80 60

b) the relation Visit

Start time Stop time Type PatId drug dosage
98/5/12/00/00 98/5/22/23/59 body SM1 thiazide diuretics 30 mg once a day
99/7/20/00/00 99/7/20/23/59 start event RS1 aspirin 120 mg daily
99/7/21/00/00 99/7/31/23/59 body RS1 aspirin 120 mg daily
99/8/1/00/00 99/8/31/23/59 stop event RS1 aspirin 120 mg daily
99/7/21/16/00 99/7/21/16/59 start event RS1 heparin 18 units/kg/hr
99/7/21/17/00 99/7/26/16/59 body RS1 heparin 18 units/kg/hr
99/7/26/17/00 99/7/26/17/59 stop event RS1 heparin 18 units/kg/hr
c) the relation Therapy

Fig. 4.1 Relations of the example clinical database.

In general, several needs have been identified in designing a relational database
system for temporal clinical data:

• compatibility with the flat relational model and with SQL; a large amount of clin-
ical data is stored in conventional relational databases. Temporal queries on these
data have to be performed. Temporal query languages and related data models
have to consider also flat data, containing some user-defined temporal dimen-
sion.

• addition and enhancement of some specific clauses, functions and predicates of
temporal query languages. We often need to identify the clinical state of patients:
to this end it is necessary to query temporal clinical data by specifying complex
conditions on data based on temporal proximity, temporal order, and complex
temporal relationships on collected data. For example, it is important to have the
capability to observe data by a window, having a predefined duration, moving on
the time axis (e.g. “find the patients having had the systolic blood pressure below
110 mmHg for ten days”).

With respect to these needs and to the requirements related to the clinical domain,
there are two main approaches: the first one is based on the proposal of an extended
SQL syntax, which is compatible also for querying standard SQL tables; the second
one is related to the design and implementation of software modules for providing
physicians with a more simple temporal query language, which is in turn based on
SQL.



114 4 Temporal Clinical Databases

According to the first approach, Das and Musen propose an extension of SQL,
based on the algebra proposed for the Chronus data model, called Time Line SQL
(TLSQL) [111]. To give an example of how to express temporal queries by TLSQL,
let us consider the following scenario.

Example 4.9. Considering tables Patient, Visit, and Therapy depicted in Figure 4.1,
we want to retrieve all the patients’ visits that occurred during a therapy lasting
for sure more than 7 days. As result of the query, the system must return, for each
patient’s visit, the surname of the patient and the systolic blood pressure measured
in that visit. The query expressed by TLSQL is:

SELECT Name, SBP

FROM Visit V, Therapy T, Patient P

WHEN [V.Start_time, V.Stop_time] DURING

[T.Start_time, T.Stop_time] AND

DURATION([T.Start_time, T.Stop_time]) > 7 DAYS AND

V.Type = "event" AND T.Type = "body"

WHERE V.PatId = T.PatId AND P.PatId = T.PatId

In the above query we may observe that TLSQL uses the square brackets as inter-
val constructor, to make the comparison between temporal dimensions more com-
pact. On the other side, as the query asks for sure relationships, a suitable condition
is required to deal only with tuples of body type (i.e., representing an IOC).

4.3.2 An Object-Oriented Approach for Temporal Clinical Data

Clinical data is a good example of complex information, that can be suitably
modeled and managed by object-oriented technologies [217, 82]. Indeed, medi-
cal records are complex documents, composed by different kinds of multimedia
data, often involving strong temporal aspects: unstructured and structured text,
coded data, numerical parameters, static images (radiographies, CTs), dynamic im-
ages (angiographic films, echographies), sounds (cardiac phonoscopies), bio-signals
(ECGs, EEGs), graphical and vocal comments from clinical reports [51, 308]. Con-
sidering all this heterogeneous data, a lot of information involves temporal aspects:
to monitor patient conditions, for example, several parameters, e.g., SBP, DBP, HR,
are periodically monitored and historical data, related to past therapies, symptoms
and so on, has to be considered too [387, 82, 292]. Combi et al. [82] extended an
object-oriented data model and the related query language to deal with temporal
clinical data: Granular Clinical History - Object SQL (GCH-OSQL) was proposed
as a query language for temporal clinical databases, taking into account different
and mixed temporal granularities. Goralwalla and colleagues adapted an existent
object database model to the management of time-oriented data, and have applied it
to the modeling of pharmacoeconomic clinical trials [158]. The broad set of types
supported by the adopted object data model enables, for example, a modeling of



4.3 Granularity and Indeterminacy in Clinical Databases 115

branching timelines, corresponding, for instance, to the evaluation of different phar-
macological treatments. In the following, we will consider some details of GCH-
OSQL and of the related object-oriented temporal data model GCH-OODM.

4.3.2.1 The Temporal Data Model GCH-OODM

GCH-OODM is an object-oriented data model, extended to consider and manage the
valid time of information. The model focuses on the capability of managing valid
time expressed by different and mixed granularities and/or with indeterminacy.

GCH-OODM supports the main features of object-oriented data models, as ap-
plied to databases: besides the already mentioned object identity and encapsula-
tion, the data model supports also single inheritance, polymorphism, management of
complex objects, persistence (for further details on these basic concepts, see Chapter
3 and the related bibliography).

GCH-OODM Types

Besides the usual types (string, int, real) GCH-OODM uses some collection
types: set<t>, bag<t>, list<t>, array<t>. Each of these types is a type gener-
ator, in respect with the type t in the angle brackets. GCH-OODM uses, to model the
temporal dimension of information, some predefined data types: the type hierarchy
el time, instant, duration, interval; the collection type t o set, and some
of its specializations, by which set of temporal objects are modeled. GCH-OODM
relies on a three-valued logic, modeled by the type bool3, to manage uncertainty
coming from comparison between temporal dimensions expressed at different gran-
ularities/indeterminacies.

The basic time domain T, called also time axis, is isomorphic to the natural num-
bers with the usual ordering relation ≤. As discussed in Section 2.2 of Chapter 2, a
granularity is defined as a mapping from an index set, i.e. the set of points related
to the given granularity, to the powerset of the time domain. The considered index
sets are isomorphic to integers; different notations for different index sets based on
that for dates and durations, e.g. YY/MM/DD/HH:Mi:SS for seconds, YY/MM/DD for
days, n1 y n2 m for durations expressed using months and years.

The set Gran of granularity mappings is related to granularities of the Grego-
rian calendar (years, months, days, hours, seconds). Granularity mappings consider
granularities for both anchored and unanchored time spans [159, 26, 160]: for ex-
ample, the granularity of months can be used for expressing a certain period in a
year (October, 1999), as well as for expressing a duration (for three months). In this
direction, the mappings Y , M, D . . . represent the usual granularities of the Grego-
rian calendar (they manage leap years, months with 28, 29, 30, or 31 days, and so
on). On the other side, mean Y , mean M, . . . provide regular mappings, that will be
used in modeling duration, i.e. unanchored time spans, based on the (astronomical)



116 4 Temporal Clinical Databases

mean length of a year. To identify the ith granule of a granularity, we will use the
symbols 〈.〉.

The type el time allows one to model time points on the basic time axis, named
elementary instants. Each elementary instant is the basic unit of time supported by
the temporal DBMS. By the type el time properties of integers are extended to
the time axis. This way, both time points and spans between time points are mod-
eled in a homogeneous way: time points are identified on the basic time axis by
their distance from the origin of the axis. The type el time provides, then, func-
tions both to manage the absolute location of time points on the time axis - i.e.,
calendar-related functions able to deal with leap years, months having 28, 29, 30,
or 31 days - and to manage time spans - i.e., functions able to perform operations
on time spans by the adoption of concepts like the mean month - and also to com-
pute sum and difference operations on time points/time spans. For clarity reasons
two different formats are used, to specify time points, i.e. anchored time spans, and
distances between time points, i.e. unanchored time spans. The calendric notation
YY/MM/DD/HH:Mi:SS allows the specification of a time point. The notation Y yy
M mm D dd H hh Mi min S ss is used to identify a distance between time points
(Y, M, D, H, Mi, and S stand for values related to the corresponding time unit). The
time point 98/6/6/0:0:0, for example, identifies the first second of June 6, 1998;
the time span 6 min 32 ss identifies a duration lasting 6 minutes and 32 seconds
(we will omit to specify 0 yy 0 mm 0 dd 0 hh, but only for time units coarser
than the coarsest time unit having a non-zero value).

The presence of different granularities/indeterminacies leads to manage relations
between intervals possibly having, besides the two logical values True or False,
a logical value Undefined. It is not always possible to establish with certainty the
truth or the falsehood of relations existing between intervals. Let us consider the
two sentences “In July 1998 the patient suffered from headache for eight days”, and
“In July 1998 the patient had fever for 17 days”. While we can affirm for sure that
for the patient the fever lasted more than the headache, we cannot answer with True
or False to the question whether the patient suffered from headache before having
fever. Both these answers could be wrong, because we haven’t enough information
(which are the starting and the ending day of the two symptoms).

GCH-OODM uses a three-valued logic, in which the values T: True, F: False,
and U: Undefined are present. The usual logical connectives AND, OR, NOT, IM-
PLIES, ...., and the logical quantifiers EXISTS (∃), and FOR EACH (∀) have been
extended to consider the third truth value Undefined. The adopted three-valued logic
derives from Kleene’s logic, where the third truth value U is related to situations,
about which it is not possible to know the truth or falsehood [295]. In comparison
with the Kleene’s logic, the new logical connectives T(), U() and F() explicitly
manage each of the three truth values. The interpretation of the logical connectives,
depending on the values of the formulas A and B, is described by the following
truth tables. In GCH-OODM formulas may consist in: a) methods returning a logi-
cal value (managed by the type bool3); b) comparison operations between objects
returned by suitable methods and/or suitable typed constants; or c) composition by
the logical connectives of formulas of type a) or b).



4.3 Granularity and Indeterminacy in Clinical Databases 117

Table 4.3 Truth table for the formula A AND B
A B (A AND B)
T T T
F T F
U T U
T F F
F F F
U F F
T U U
F U F
U U U

Table 4.4 Truth table for formulas NOTA and T(A)
A (NOTA) T(A)
T F T
F T F
U U F

The meaning of the other logical connectives can be defined by the above defined
ones: A OR B stands for NOT((NOT A) AND (NOT B)); F(A) stands for T(NOT
A); U(A) stands for NOT (T(A) OR T(NOT A)). This three-valued logic is managed
by the predefined data type bool3.

Instants, durations, and intervals

An interval, expressed in a heterogeneous way like in examples of the previous sec-
tion, is represented by its starting instant, duration and ending instant. Obviously
some constraints exist among the values of starting instant, ending instant and dura-
tion of an interval: if we are specifying instants and duration at different granularities
or with indeterminacy, given the values of two of the three entities characterizing
an interval, the value of the third entity depends on the granularities/indeterminacy
of both the given values. This is the reason for which, only using both starting and
ending instants and duration, it is possible to express an interval with different and
heterogeneous granularities or with indeterminacy.

Instants and duration, expressed at different granularities/indeterminacy, are
based on a discrete time axis, where points, named elementary instants, are rep-
resented by the finest time unit considered by the model. In our data model that of
seconds is the unit of measure of the time axis. It is also possible to define dura-
tion, having values of one or more orders of magnitude lower than seconds (by the
symbol ε), and unknown (by the label unknown).

The type instant allows us to represent a time point, identified either by the gran-
ule, i.e. a set of contiguous chronons, containing it or by the period on the time
axis containing it. This type uses, by the methods inf() and sup(), two objects of
type el time, to represent the lower and upper bound of the granule, in which
the generic time point is located. A granule can be expressed by different time



118 4 Temporal Clinical Databases

units, e.g. by the format YY/MM/DD or YY/MM, while the period may be specified
by two time points, i.e. the upper and the lower bound of the period, by the format
≺YY/MM/DD/HH:Mi:SS, YY/MM/DD/HH:Mi:SS�, if we have to model explicit inde-
terminacy. The instant 98/6/6, for example, may coincide with anyone of the time
points included between the two bounds 98/6/6/0:0:0 and 98/6/6/23:59:59,
represented by two objects of el time type: the notation 98/6/6 will be equiva-
lent to ≺98/6/6/0:0:0, 98/6/6/23:59:59�. The instant ≺98/7/12/12:30:0,
98/7/12/12:36:59� specifies a time point between 12:30 and 12:36 of July 12,
1998.

The type duration allows us to model a generic duration, specified at arbitrary
granularity. This type uses, by the methods inf() and sup(), two objects of type
el time, to represent the lower and upper distances between chronons, between
which the value of the given duration is included. A duration is expressed by an
ordered sequence of elements, composed by an integer followed by a granularity
specifier (from years to seconds, yy, mm, dd, hh, min, ss): e.g., 7 yy, 2 yy 3 mm
23 dd. The duration 13 dd, for example, stands for a time span between 13 dd 0
hh 0 min 0 ss and 13 dd 23 hh 59 min 59 ss. A duration may also be ex-
pressed by specifying the lower and upper distances, e.g. ≺23 dd 14 hh 6 min
23 ss, 24 dd 8 hh 51 min 12 ss�, for explicit indeterminacy. Suitable meth-
ods allow the expression of relations and of operations, like sum or differences, on
instances of the types instant and duration.

A generic interval, i.e. a set of contiguous time points, is modeled by the type
interval. The methods start(), end() and dur() allow us to identify, respectively,
the starting instant, the ending instant and the duration of the interval. Suitable meth-
ods of the type interval allow us to establish temporal relations between two in-
tervals, specified by different and not predefined granularity and/or indeterminacy.
Relations between intervals are a superset of the 13 Allen’s relations and they can
be divided in granularity-related relations and granularity-independent relations or
in relations based on the location of intervals on time axis and duration-related re-
lations [82, 88]. Using methods start(), end(), and dur() is not redundant to identify
an interval: e.g., the interval x having the methods x.start() and x.end() returning re-
spectively 98/7/7 and 98/7/9, could have the method x.dur() returning ≺1 dd 0
hh 1 ss, 2 dd 23 hh 59 min 59 ss� (i.e. a duration between one day and one
second and three days less one second) or 48 hh 0 min 0 ss. This last interval,
having the duration (48 hours) specified at a granularity level (seconds) finer than
that used in specifying starting (ending) instant, cannot be expressed, for example,
in TSQL2 [387]. To explicitly specify an interval x, the following notations have
been introduced:

notation 1. 〈YY〉, or 〈YY/MM〉, or 〈YY/MM/DD〉, and so on, when the interval x is a
granule of the Calendar, e.g. 〈1994/10〉; this notation is used to model intervals
given by sentences like “the year 2000”, “January ’03”. By these different no-
tations we refer to intervals given as granules at one of the granularities of the
Gregorian Calendar.
notation 2. 〈x.start(), x.end()〉 when starting and ending instants are given, e.g.
〈98/6/6, 99/3/12/13〉; this notation is used to model intervals given by “from . . . to



4.3 Granularity and Indeterminacy in Clinical Databases 119

. . . ” sentences. This is the usual way to express intervals in temporal databases
(but using the same granularity both for the starting instant and for the ending
one).
notation 3. 〈x.start(), x.dur()〉 when starting instant and duration are given, e.g.
〈98/6/6, 3 h〉; this notation is used to model intervals given by “from . . . for . . . ”
sentences.
notation 4. 〈x.dur(), x.end()〉 when ending instant and duration are given, e.g.
〈33 h, 96/10〉; this notation is used to model intervals given by “for . . . to . . . ”
sentences.
notation 5. 〈in, x.dur()〉, where in is a granule; this notation allows one to express
intervals given by “in ... for ...”, e.g., 〈〈98/6〉,7mi33s〉.
notation 6. 〈x.start(), x.dur(), x.end()〉 when both starting instant, duration, and
ending instant are given, e.g. 〈97/8/9, ≺5 h 5 mi 2 s, 24 h 8 mi 3 s�, 97/8/10〉
or 〈≺96/4/3/12/30/10, 96/4/3/23/30/0�, ≺4 h 6 mi 3 s, 24 h 35 mi 2 s�, 96/4/4〉;
this is the more general notation, allowing one to express also all the intervals
expressible by the previous notations.

Some constraints and relations exist between the starting instant, the ending one,
and the duration of an interval: for example, given an interval by specifying its
starting instant and duration (notation 3.), the ending instant can be computed by
adding the given duration to the starting instant [88].

Temporal and atemporal types

GCH-OODM distinguishes temporal types and atemporal types. Objects instances
of temporal types (hereinafter temporal objects) have an associated valid interval.
By these temporal objects we are able to represent information for which it is impor-
tant to know the time during which the information is true in the modeled world. For
example, the type modeling the concept of pathology (or therapy) has to consider
the interval, during which the pathology was present (or the therapy was adminis-
tered). The method validInterval() returns the interval of validity of an object. By the
valid interval it is possible to verify temporal relations between objects instances of
temporal types. Temporal objects may have many temporal properties; these proper-
ties, defined by suitable methods, are represented in their turn by temporal objects,
having their own valid interval.

Objects instances of atemporal types (hereinafter atemporal objects) model in-
formation, not having an associated temporal dimension. By these objects we are
able to represent information, for which the temporal dimension is not interesting
(let us think of an object modeling demographic data of a patient, about which we
do not want to record the history: address, profession, ...). An atemporal object can,
however, have properties represented by temporal objects. For example, the object
modeling a hospital division, without any valid interval, may have a property related
to the history of the heads of the division, modeled by temporal objects.

Both in temporal and atemporal types we distinguish, then, (a) temporal methods,
modeling temporal features, returning temporal objects, and (b) atemporal methods



120 4 Temporal Clinical Databases

returning atemporal objects. In the following some examples are given both for
temporal and atemporal types and for temporal and atemporal methods.

In GCH-OODM temporal properties are modeled by temporal objects, which
can be composed by a set of temporal objects. Several temporal constraints can be
defined by GCH-OODM. It is possible, for example, to model the constraints on the
valid time of objects and properties: being o.p() an object modeling a temporal
property of a temporal object o, the following relation must hold:

T (o.p().validInterval().IN(o.validInterval()))
In GCH-OODM the temporal properties of a temporal object are not constrained

like the above defined one. GCH-OODM allows us to model many other constraints
existing between the valid interval of an object and the valid interval of a temporal
property. Let us think, for example, of a temporal property o.prev() of a temporal
object o; o.prev() is an object having a valid interval that must precede the valid
interval of the object o. In this case the following condition holds:

T (o.validInterval().AFT ER(o.prev().validInterval()))
For this kind of constraints that may exist between temporal objects, GCH-

OODM allows us to make explicit the existence of constraints, during the design
of the methods of temporal types for the considered database.

The predefined type t o set (temporal object set) allows the construction and
the management of sets of temporal objects. To the instances of the type t o set
it is possible to apply the usual operations on sets: insertion, deletion, intersection,
union, difference, existence of an element, emptiness, contained-in relation. Some
methods are defined to verify the existence, at a given granularity (if needed), of
temporal relations between objects belonging to an instance of the type t o set,
characterized also by some atemporal features. Let us consider for example the fol-
lowing methods, related to an instance I of the type t o set. Let p, q be two logical
expressions, x and y two temporal objects, X an assigned granularity. To explain
the meaning of the following methods, we will use the method subset: I.subset(p)
returns the subset of temporal objects belonging to I and satisfying the expression
p. The method OCCURS(p) allows us to establish if in the set I there is an object
satisfying the condition p.

I.OCCURS (p) ≡ I.subset(p) , ∅
The method CONTEMPORARY(p, q, X) allows us to establish if in the set I there

are two temporal objects, satisfying, respectively, the logical expressions p and q,
and having the valid intervals equal at a predefined granularity X.

I.CONT EMPORARY(p,q,X) ≡ ∃x ∈ I.subset(p),
∃y ∈ I.subset(q)(x.valid time().CONT EMPORARY(y.valid time(),X))

Several specializations of the type t o set can be defined, to manage only some
types of temporal objects. This is the usual way to specialize types defined by type
generators: t o set<c> is a specialization of t o set<c’> iff the temporal type c
is a specialization of the temporal type c. We can specialize in an orthogonal way
the type t o set to consider also temporal constraints among managed temporal
objects. Some specializations of the type t o set allow the management of partic-
ular features of sets of temporal objects. For example, in GCH-OODM it is possible



4.3 Granularity and Indeterminacy in Clinical Databases 121

to model temporal properties in a way similar to what is done by time-varying prop-
erties in [430], by constraining the temporal objects representing properties to com-
pose a temporal sequence of temporally non-intersecting elements.

Further specializations allow us to verify some logical consistency of the stored
information. In a set of diagnoses related to the same patient, for example, there
cannot exist two diagnoses having two overlapping valid intervals, and contradicting
or implying one another.

The example database

To show both the modeling features of GCH-OODM and the query capabilities of
GCH-OSQL, we will consider in the following the database schema represented in
Figure 4.2 and the database instance depicted in Figure 4.3. The database schema,
obviously far from the real clinical data complexity, considers both temporal and
atemporal types. A hierarchy of types is described, using a UML-like graphical
syntax. It refers to a clinical database, where data about patients are stored: data are
related to the therapies prescribed for a patient and to the vital signs (e.g., blood
pressures) collected during follow up visits. The atemporal type patient has two
temporal properties, modeled by the methods therapySet() and visitSet(), returning
instances of the temporal type t o set. These instances are specialized to manage
sets of temporal objects of, respectively, therapy and visit types. Methods drug()
or SBP(), for example, are atemporal.

4.3.2.2 The Temporal Query Language GCH-OSQL

The temporal extension to SQL syntax concerns the part needed for database query-
ing. No specific syntax is provided for update, insert and delete operations, to pre-
serve information hiding [56, 388, 57]. The specific programming language of the
adopted object-oriented DBMS directly manages these operations.

The temporal extension includes the addition of the TIME-SLICE and MOVING
WINDOW clauses in the original SELECT statement; the temporal dimension of
objects may be referred to in the WHERE and SELECT clauses.

A GCH-OSQL query may be expressed as in the following, where, as usually,
square brackets mean that the clause is optional:

SELECT <type methods or path expressions>
FROM <classes>
[WHERE <atemporal and temporal conditions>]
[TIME-SLICE <time interval>]
[MOVING WINDOW <duration>]

The query returns data retrieved through methods listed in the SELECT clause,
from instances in the database of types listed in the FROM clause, satisfying the



122 4 Temporal Clinical Databases

validInterval()

Pathology
Specification
Localization
...........

<<temporal>>
diagnosis

validInterval()

<<temporal>>
therapyHistory

validInterval()
maintains(string,interval)
after(tItemType)
...........

<<temporal>>
t_o_set

tItemType

validInterval()
DBP()
SBP()

<<temporal>>
visit

<<bind>>

<<bind>>

visitSet()
therapySet()

patient

1

1

1

1

name()

person

validInterval()
drug()
dosage()

<<temporal>>
therapy

validInterval()

<<temporal>>
diagnosisHistory

<<bind>>

validInterval()

<<temporal>>
angioVisitHistory

1

1

Fig. 4.2 The schema of the example clinical database.

conditions imposed through the optional clauses WHERE, TIME-SLICE, MOVING
WINDOW. Retrieved objects are those for which the specified conditions result in
TRUE or UNDEFINED logical values. Therefore, objects who might satisfy the speci-
fied conditions are also included in the result. According to the object-oriented ap-
proach we exposed before, object attributes are referred to through methods listed in
the clauses, hiding implementation details from users. When a method is specified
in a clause, the related code is executed. An object can be reached through a path
expression (implicit join): it consists of a sequence of methods separated by a “.”
(see the following examples).



4.3 Granularity and Indeterminacy in Clinical Databases 123

OID name()
p1 Smith
p2 Hubbard
p3 Rossi

a) objects of type person

OID therapySet() visitSet()
p1 tos1 tos2
p2 tos3 tos4
p3 - tos5

b) objects of type patient

OID validInterval() Object type OID set
tos1 〈98/5/11, 98/5/23〉 therapy {t1}
tos2 〈 98/6/6/11, ≺98/11/10/10/15/0, 98/11/11/15:58� 〉 visit {v1, v2}
tos3 〈99/7/20, 99/8〉 therapy {t2, t3}
tos4 〈 ≺99/7/20/12/45/0, 99/7/20/13/0/59�, 99/7/20/13/30 〉 visit {v3}
tos5 〈97/6/12, 97/6/12〉 visit {v4}

c) objects of type t o set

OID validInterval() SBP() DBP()
v1 〈98/6/6/11, 30 min〉 130 90
v2 〈98/11/10/10, 15 min〉 120 70
v3 〈 ≺30 min 0 ss, 45 min 0 ss�, 99/7/20/13/30〉 150 110
v4 〈97/6/12, 97/6/12〉 80 60

d) objects of type visit

OID validInterval() drug() dosage()
t1 〈98/5/11, 98/5/23〉 thiazide diuretics 30 mg once a day
t2 〈99/7/20, 99/8〉 aspirin 120 mg daily
t3 〈99/7/21/16, 5 dd〉 heparin 18 units/kg/hr

e) objects of type therapy

Fig. 4.3 The instance of the example clinical object-oriented database. In showing an instance of
the example database, we use a table for objects of the same type. Each object, corresponding to
a row of the table, is represented by its OID and by the values of its methods. If methods return
complex objects, the OIDs of the returned objects are contained in the corresponding column. The
inheritance of the type patient from the type person is represented by using the same OIDs in
the corresponding parts. The table for the objects of the type t o set has two special columns
containing, respectively, the type name and the OIDs of the managed temporal objects (object type
and OID set). Values of valid intervals are given according to the notations described in Section
4.3.2.1. Values of valid intervals for objects of the type t o set are evaluated as detailed in [82]
and are the minimal intervals obtained by merging all the valid intervals of the contained temporal
objects.

The SELECT FROM WHERE clauses

In the SELECT clause, either object methods or path expressions can be listed, with
a comma between them. In this clause only methods related to data reading are
allowed: it is not possible to use in this clause updating methods, that have side



124 4 Temporal Clinical Databases

effects on the state of the database. In the following, we assume that all the GCH-
OODM types for time-related concepts are suitably represented as strings. For more
complex types, we explicitly use the method display() in the clause, to underline that
a suitable string-based representation of any complex object is explicitly required for
the final result of a GCH-OSQL query.

Example 4.10. The query “Find all the vital signs measured during visits; display
all data about visits and also the name of visited patients” will be expressed in the
following way:

SELECT P.name(), P.visitSet().display()

FROM patient P

Objects in the database containing the data we are interested in are instances of
types listed in the FROM clause. To each listed type an object variable is associated.
An object variable is represented by an alphanumeric string, whose first character
can not be a digit: it is used to refer to object instances of the related type in the
database. In GCH-OSQL object variables have to be specified for each type. In
Example 4.10 the object variable P is declared for the type patient.

In the WHERE clause the logical conditions which express the constraints that
must be satisfied by the selected objects are specified. Complex constraints may
be composed by simpler conditions, using the logical connectives AND, OR, NOT,
and the connectives MUSTBE, MAYBE, MUST NOTBE, translating the T(), U(),
F() GCH-OODM connectives, respectively. Conditions involving temporal relations
are expressed in the WHERE clause through methods of types instant, duration,
interval, and t o set.

Example 4.11. The query “Find all the patients having had systolic blood pressure
below 130 mmHg and display the patient name, the starting instant and the drug of
therapies assigned to these patients” will be expressed in the following way:

SELECT P.name(), T.validInterval().start(), T.drug()

FROM patient P, therapy T, visit V

WHERE P.therapySet().HAS_MEMBER(T) AND

P.VisitSet().HAS_MEMBER(V) AND V.SBP()< 130

Example 4.12. “Find the patients having had a therapy with thiazide diuretics and
with aspirin, while aspirin-based therapy surely occurred before that with diurectis”.
This query can be expressed in the following two ways:

• SELECT P.name()

FROM patient P, therapy T1, therapy T2

WHERE P.therapySet().HAS_MEMBER(T1) AND

P.therapySet().HAS_MEMBER(T2) AND

T1.drug() = ‘‘thiazide diuretics’’ AND

T2.drug() = ‘‘aspirin’’ AND

MUSTBE(T2.validInterval().BEFORE(T1.validInterval())



4.3 Granularity and Indeterminacy in Clinical Databases 125

• SELECT P.name()

FROM patient P

WHERE MUSTBE

P.therapySet().BEFORE(‘‘drug() = ‘aspirin’ ’’,

‘‘drug = ‘thiazide diuretics’ ’’)

The second, more compact, expression of the query is based on the method
BEFORE of type t o set; this method, as OCCURS and others verifying further tem-
poral relationships, is able to parse the passed string and, this way, to verify complex
properties on the temporal objects belonging to the temporal set.

Alike other proposals, GCH-OSQL has no further clauses (as WHEN or WHILE
[64, 333]), that would allow one to separately express the temporal part of the query.
This choice allows one to express the query constraints in a seamless way, without
forcing the user to divide the select condition. This choice, moreover, avoids some
anomalies, as, for example, expressing some temporal constraints in the WHEN
clause and some others in the WHERE clause [333].

The TIME-SLICE and MOVING WINDOW clauses

The TIME-SLICE clause allows the user to query along the temporal dimension
of objects, considering only those objects in the database whose valid time is con-
tained in the interval specified in the clause. Also objects whose valid time could
be contained in the specified interval are selected. In this clause it is possible to
use the MUST and MAY keywords. Using the MUST keyword, only those objects
whose valid time is certainly contained in the interval specified in the clause are
selected, while using the MAY keyword only those objects are selected for which it
is uncertain that their valid time is contained in the specified interval.

In the TIME-SLICE clause the time interval may be expressed in many different
ways:

• by the FROM..TO keywords, in order to define an interval by its starting and end-
ing instants: e.g., FROM 1994/12/11 TO 1994/12/23/11:00. It is also possi-
ble to specify only the FROM or the TO keywords.

• by the FROM..FOR keywords, in order to define an interval by its starting instant
and its duration: e.g., FROM 1994/12/11 FOR 2 mm.

• by the FOR..TO keywords, to define an interval by its duration and its ending
instant: e.g., FOR 3 dd TO 1995/4.

• by the AT keyword, to define an interval as a single granule: e.g., AT 1996/5.

Example 4.13. The query “Find all therapies administered from October 2, 1994 to
November 12th, 1996 in the afternoon; display the drug and the interval of validity
of the selected therapies” will be expressed in the following way:

SELECT T.validInterval(), T.drug()

FROM therapy T

TIME-SLICE FROM 1994/10/2 TO



126 4 Temporal Clinical Databases

≺1996/11/12/12:0:0, 1996/11/12/17:0:0�

It is worth noting that the capability of defining the TIME-SLICE interval by, re-
spectively, FROM..TO, FROM..FOR, and FOR..TO keywords is not redundant: for ex-
ample, the clause TIME-SLICE FROM 1994/6/23 TO 1994/6/25 will consider,
on the chronon time axis, an interval having a duration between 24 hours plus 1 sec-
ond and 72 hours less 1 second; the clause TIME-SLICE FROM 1994/6/23 FOR
48 hh 0 min 0 ss will consider, on the chronon time axis, an interval having
starting and ending instants expressed exactly like in the previous clause, but having
a duration of exactly 48 hours.

On the other hand, using the MOVING WINDOW clause, objects stored in the
database are examined through a temporal window, of the width specified in the
clause, moving along the temporal axis. The constraints expressed in the other
clauses are checked only on the database objects visible through that window.

Example 4.14. “Show the name of patients having had diastolic blood pressure
greater than 120 and therapies with diuretics in a period of fifteen days”; this query
is expressed as:

SELECT P.name()

FROM patient P

WHERE P.visitSet().OCCURS(‘‘DBP()>120’’) AND

P.therapySet().OCCURS(‘‘drug() LIKE ‘diuretics’ ’’)

MOVING WINDOW 15 dd

In the MOVING WINDOW clause through the MUST or MAY keywords, only, respec-
tively, certain or uncertain situations can be considered.

Some closing queries

To have a comprehensive idea of GCH-OSQL, let us consider some more complex
queries on our example database.

Example 4.15. “Find those patients having had, within a period of four months, a
diastolic blood pressure measure less than 60 mmHg before another one more than
100 and other measurements of vital signs surely before the measure of less than
60. Return their names, the vital signs of visits they had surely before the DBP
measurement of less than 60, and the therapies holding during these visits. Consider
only the period starting from about noon, October 9, 1997, and lasting 25 months”;
this query is expressed as:

SELECT P.name(), V1.SBP(), V1.DBP(), T3.drug(), T3.dosage()

FROM patient P, visit V1, visit V2, visit V3, therapy T

WHERE P. visitSet().HAS MEMBER(V1) AND

P.visitSet().HAS MEMBER(V2) AND

P.visitSet().HAS MEMBER(V3) AND



4.3 Granularity and Indeterminacy in Clinical Databases 127

MUSTBE(V1.validInterval().BEFORE(V2.validInterval())) AND

V2.validInterval().BEFORE(V3.validInterval()) AND

V2.DBP()<60 AND V3.DBP()>100 AND

V1.validInterval().DURING(T.validInterval())

TIME-SLICE FROM ≺1997/10/9/11:30:0, 1997/10/9/12:30:0�

FOR 25 mm

MOVING WINDOW 4 mm

Example 4.16. “Find those patients having had a therapy surely during the period
composed by the second half of July and the first ten days of August, 1998. Return
their names, their therapies, and their previous vital signs of visits having a time
span of less than 15-20 minutes. Consider only therapies and vital signs having a
temporal distance less than 30-40 days”; this query is expressed as:

SELECT P.name(), T.drug(), T.validInterval(),

V.SBP(), V.DBP()

FROM patient P, therapy T, visit V, therapy T

WHERE P.therapySet().HAS MEMBER(T) AND

P.visitSet().HAS MEMBER(V) AND

MUSTBE T.validInterval().DURING(〈1998/7/15, 1998/8/10〉) AND

V.validInterval().BEFORE(T.validInterval()) AND

V.validInterval().duration().

SMALLER(≺15 min 0 ss, 20 min 0 ss�)

MOVING WINDOW ≺30 dd 0 hh 0 min 0 ss, 40 dd 0 hh 0 min 0 ss�

4.3.2.3 Query Processing

Different logical steps can be identified in the evaluation of a GCH-OSQL query.

1. Evaluation of the contents of the FROM clause: for each object variable there is
a corresponding internal variable ranging on OIDs of objects of the related type.
Candidate solutions for the query can be represented as tuples of OIDs, ranging
on the corresponding type, as defined in the FROM clause.

2. Evaluation of the atemporal conditions (i.e. conditions not involving methods of
the types el time, instant, duration, interval, t o set or of types inher-
iting from them) expressed in the WHERE clause: among all the candidate so-
lutions only the solutions for which the corresponding objects satisfy atemporal
conditions are retained.

3. Evaluation of the temporal part of the content of the WHERE clause: methods
related to the time-modeling types are considered. By these methods it is possible
to consider relations between, for example, intervals given at different granular-
ity/indeterminacy in a seamless way. Candidate solutions are those coming from
the previous step, for which the temporal part of the condition returns the truth



128 4 Temporal Clinical Databases

values True or Undefined. By the connectives MUSTBE (MAYBE) only the truth
value True (Undefined) is considered.

4. Evaluation of the content of the TIME-SLICE clause: each valid interval of tem-
poral objects of each candidate solution is compared with the interval specified
in the TIME-SLICE clause. Only candidate solutions are retained, having tem-
poral objects with the valid interval contained in the TIME-SLICE interval (i.e.,
satisfying the relation modeled by the DURING method). The keyword MUST
(MAY) allows us to consider only objects, for which the relation is sure (possi-
ble).

5. Evaluation of the clause MOVING WINDOW: the candidate solutions coming
from the previous steps are finally “viewed” through a window moving along
the time axis. Among the candidate solutions, only those are selected, for which
there is a time window having the duration specified in the clause MOVING
WINDOW containing the valid intervals of all their temporal objects. To do that,
an instance of the type t o set is created for each candidate solution, managing
all its temporal objects. If the valid interval of the t o set instance has a dura-
tion smaller than the duration expressed in the MOVING WINDOW clause (i.e.,
satisfying the relation modeled by the method SMALLER of type duration),
the corresponding candidate solution is considered for the final query result. The
keyword MUST (MAY) allows us to consider only objects, for which the relation
is sure (possible).

6. Application of the methods defined in the clause SELECT to the suitable objects
of the final candidate solutions.

4.3.2.4 The Clinical Database

GCH-OODM and GCH-OSQL have been used in the definition and development
of a clinical database, containing data coming from patients who underwent a
coronary-artery angioplasty [82]. These patients suffer from an insufficient supply
of blood to the coronary arteries due to a partial (or total) obstruction of some coro-
naric vessels. Coronary revascularization is performed by inflations of a balloon,
placed on a suitable catheter: the catheter causes a dilation of the stenotic area of the
vessel and lets more blood through. This operation, also known as PTCA (Percouta-
neous Transluminal Coronary Angioplasty), receives more and more consensus in
the clinical field, and in a lot of cases is a valid alternative to by-pass surgery opera-
tions. Patients who have undergone this kind of operation are periodically followed
up, to prevent sufferance from new stenoses or re-stenoses.

The object-oriented database containing data about this kind of patients is com-
posed of different data categories:

• patient ID data;
• auxiliary demographic data;
• data related to risk factors;
• data related to current and previous therapies;
• data related to current and previous diagnoses;



4.3 Granularity and Indeterminacy in Clinical Databases 129

• data related to follow-up visits.

The clinical database contains some temporal objects, modeled through the tem-
poral types therapy, relative to previous and current therapies, diagnosis, relative
to previous and current pathologies, angio visit, relative to vital signs recorded
in a visit, as heart rate, systolic and diastolic blood pressure, and others. The same
clinical database allows also the integration among alphanumeric data and related
images, to manage relationships between data about observed stenosis and angio-
cardiographic images displaying stenoses, as detailed in [308].

The database is patient-oriented: the type patient allows the access to all pa-
tient data. Every object of the patient type can have multiple object instances of
the temporal types therapy, diagnosis, angio visit, managed through multiple
instances of the t o set type (or its subtypes). Figure 4.4 shows the type diagram
according to a UML-based graphical notation.

To show the GCH-OSQL expressiveness about a situation of clinical relevance,
consider the following query: retrieve the name of all the patients that, after having
had normal values of blood pressure (DBP values between 100 and 60 and SBP
between 150 and 100) for three weeks and more, suffered from angina, followed by
PTCA intervention in 36 months. Only the period starting from Winter, 1988 must
be considered.
SELECT P.surname(), P.name()

FROM patient P, diagnosis A, angio visit B

WHERE P.Dia Set().HAS MEMBER(A) AND

P.visitSet().HAS MEMBER(B) AND

B.angio exam().exam type() = ‘‘PTCA’’

AND A.pathology()=‘‘angina’’ AND

MUSTBE A.validInterval().BEFORE(B.validInterval()) AND

P.visitSet().MAINTAINS(‘‘SBP()>100 AND SBP()<150’’,

〈21 dd, A.validInterval().start()〉) AND

P.visitSet().MAINTAINS(‘‘DBP()>60 AND DBP()<100’’,

〈21 dd, A.validInterval().start()〉)

TIME SLICE FROM ≺87/12/21/0:0:0, 88/3/20/23:59:59�

MOVING WINDOW 36 mm

In this GCH-OSQL query some particular features may be noticed: i) different
time granularities (years, months, days) and indeterminacy (Winter 1988) are ex-
plicitly used; ii) the MUSTBE connective allows us to verify by sure the precedence
condition between angina occurrence and angioplasty intervention; iii) for temporal
relations the query uses both methods of the interval type (BEFORE is a method of
this type) and t o set type (MANTAINS is a method of that type); iv) through meth-
ods of the t o set type it is possible to verify some complex conditions involving
objects contained in a set (in this case that at the end of a time period of at least
21 days of normal blood pressure, an angina episode has happened); v) the condi-
tion expressed through the MANTAINS method includes also the patients for which a
period of 21 days of normal blood pressure has been possible.



130 4 Temporal Clinical Databases

validInterval()

Pathology
Specification
Localization
...........

<<temporal>>
Diagnosis

validInterval()

<<temporal>>
TherapyHistory

validInterval()
maintains(string,interval)
after(TItemType)
...........

<<temporal>>
T_set

TItemType

validInterval()

PhysicianCode
HR
SBP
...........

<<temporal>>
AngioVisit

<<bind>>

<<bind>>

HospID: string
Job: string
...........

Patient

XrayExp
...........

CoronaroExam

ExamCode
Place
...........

AngioExam

1

1

ReportText
Author

Report
1 1

ImgFormat
RawData
...........

Image
*

1

1

1
1

1

Type
Severity
...........

Stenosis

Address
ZipCode
...........

DemoData
SSN
Surname
...........

Person

Risk
...........

RiskFactor

validInterval()

Drug
Quantity
Frequency
...........

<<temporal>>
Therapy

validInterval()

<<temporal>>
DiagnosisHistory

<<bind>>

validInterval()

<<temporal>>
AngioVisitHistory

1

1

*
*

*

1

1 1

Fig. 4.4 The type diagram of the temporal object-oriented database for PTCA patients.

4.3.2.5 System Implementation

GCH-OODM and GCH-OSQL are characterized by the presence of some pro-
totypical implementations, applied to a management system of clinical histories
[83, 415, 82, 317, 318]. Initially, a prototype of GCH-OSQL and a graphical in-
terface have been implemented on a Sun workstation, in the OpenLook graphical
environment; the prototype was based on the ONTOS object-oriented database man-
agement system [229]. ONTOS has been used in the implementation of the clinical
database too, to which GCH-OSQL has been applied, related to the follow-up of



4.4 Further Research Directions 131

patients after a coronary angioplasty intervention, as described in the previous
section [83]. Tests performed on the prototype confirmed the capability of the
system to store, represent, and query the database about complex temporal fea-
tures of data. A second prototype system was designed and implemented using the
OODBMS Ode [15, 243, 242]. Finally, the Ode-based prototype has been extended
to allow a web-based interaction with the system [318]. In this last prototype, named
KHOSPAD (Knocking at the Hospital for PAtient Data) the designed and adopted
data model extends GCH-OODM to deal with views [318]: views allow different
users, e.g., physicians, nurses, technicians, to access the same temporal objects
stored into the database in several different ways, according to the needs and the
authorizations related to the role the user has in the healthcare organization. For ex-
ample, when aiming at improving the quality of the process of patient care concern-
ing general practitioner-patient-hospital relationships for the population of PTCA
follow-up patients, the general practitioner has to deal with complex history data,
to assess the efficacy of current patient therapies. This data is acquired during hos-
pitalization and in the follow-up visits and managed by a DBMS in the cardiology
division. Views allow the general practitioner to access history data in a compact and
ad-hoc way, with respect to the way hospital physicians access the same data [318].

The overall system architecture of KHOSPAD is depicted in Figure 4.5. It is
composed of different modules. The global architecture of the system is a web
based client-server one: HTML pages and applets compose the client; the server
consists of the Ode database management system extended with classes for manag-
ing both the GCH-SQL language, the GCH-OODM model, and the user view based
access to the database. The modules GCH-OSQL query manager and User-oriented
view schemas are accessed by the applets through the web server via suitable CGI
applications and allow the application to access clinical data at a high abstraction
level: indeed, these modules provide a user-oriented temporally-oriented data ac-
cess, based on GCH-OODM, and a fully fledged temporal object-oriented query
language. The module Clinical database schema contains the description of types
of the clinical database (e.g., types patient, therapy); The module GCH-OODM
classes contains the description of types related to the temporal data model (e.g.
types t o set, interval, el time). The module Classes for view definition con-
tains the description of types for the view specification. All these modules are, fi-
nally, based on classes provided by the Ode DBMS: indeed, modules Ode classes
and Support classes allow the above mentioned modules to perform usual database
services (persistency, recovery, concurrency, query, data insertion and deletion, and
so on) on the clinical database stored through the Ode DBMS.

4.4 Further Research Directions

Temporal reasoning systems and temporal data-maintenance systems are often in-
dependent efforts, even though they usually contribute towards the same goal. For
example, time-oriented decision-support systems often do not adopt any kind of a



132 4 Temporal Clinical Databases

Fig. 4.5 The architecture of KHOSPAD.

formal temporal data model or a temporal query language to manage stored time-
oriented clinical data.

We suggest that currently, after several years of research on the topics described
in previous sections, new and more powerful solutions could be derived from a
merging of different approaches.

The temporal-abstraction task and the management of temporal granularity seem
to be a meeting point between research efforts originating in the artificial-intelligence
and in the database communities, at least as these efforts have been applied to med-
ical domains. Furthermore, as previously pointed out, the issue of the appropriate
time model is always a pertinent one. Thus, several research themes, most of which
are relevant to the community of general computer scientists, will be important, in
our opinion, for next-generation time-oriented systems in medicine.

• Adoption of advanced data models. The adoption of advanced data models,
such as the object-oriented data model and the EER data model, will improve
the capability of describing real world clinical entities at high abstraction levels.
Thus, the focus may shift to more domain-specific inference actions.

• Maintenance of clinical raw data and abstractions. Several recent systems al-
low not only the modeling of complex clinical concepts at the database level, but
also the maintenance of certain inference operations at that level. For example,
active databases can store and query also derived data; these data are obtained



4.4 Further Research Directions 133

by the execution of rules that are triggered by external events, such as the inser-
tion of patient related data. Furthermore, integrity constraints based on temporal
reasoning could be evaluated at the database level, for example to validate data
during their acquisition.

• Merging the functions of temporal reasoning and temporal maintenance.
By combining these two functions within one architecture, sometimes called a
temporal mediator, a transparent interface is created to a database, a knowledge
base, or both. An example of ongoing research is the Tzolkin temporal-mediation
module [114], which is being developed within the EON guideline-based-therapy
system [278]. The Tzolkin module merges Shahar’s temporal-abstraction system,
RÉSUMÉ [357], with Das’s temporal-maintenance system, Chronus [111], into
a unified temporal-mediator server. The Tzolkin server answers complex tempo-
ral queries using both the time-oriented patient database and the domain-specific
temporal-abstraction knowledge base, but hides the internal division of computa-
tional tasks from the user (or from the calling process). Many questions will still
have to be answered, such as how does a temporal mediator decide which com-
putational module to use for what temporal queries, and will provide interesting
issues for future research.

• Resolution of conflicts between temporal-reasoning and temporal data-base
systems within hybrid architectures. Currently, it is common to have temporal-
reasoning systems working purely within a short-term, random-access memory,
while the temporal-maintenance system stores and retrieves data and abstractions
using a long-term storage device such as an external database. As a result, mul-
tiple conflicts might arise, especially when systems need to be accessed concur-
rently by multiple users. One problem is the inherent non-monotonicity of tem-
poral abstractions, which might be retracted when additional data arrives (whose
valid time is either the present or the past). This problem is solved, for instance,
in [357], by the use of a logical truth-maintenance system (TMS). However, inte-
grating a temporal-abstraction system with an external database (as might happen
in a temporal-mediator architecture such as mentioned in this section) might cre-
ate inconsistency problems: the temporal-abstraction system might update its old
conclusions as newly-available data arrive; but a standard database system, not
having the benefit of the dependency links and the TMS mechanism, will also
keep the old, incorrect conclusions. In addition, arrival of new data to the pa-
tient database should be reported to the temporal-abstraction module. Thus, we
need to investigate whether the short-term, random-access temporal-reasoning
fact base and the long-term external database should be tightly coupled (each
update is reflected immediately in the other database), loosely coupled (updates
are sent intermittently to the other database) or not coupled at all. Several pro-
tocols for connecting and mutually updating the internal and external databases
are theoretically possible. The choice among these protocols might depend on
the properties of the specific medical domain, and the capabilities of the exter-
nal database (e.g., object-oriented databases handle links among entities better);
adding a transaction time to the patient’s electronic record, while keeping the
valid time (i.e., using a bitemporal database), would obviously be very helpful.



134 4 Temporal Clinical Databases

In addition, the capabilities of active and of deductive databases might provide
several advantages, similar to a TMS [134]. In any case, the problem deserves
further research.

• Providing efficient storage protocols for hybrid architectures. Finally, another
issue, closely related to the conflict-resolution problem, is whether some, all, or
none of the temporal-reasoning conclusions should be saved in the external, long-
term database. Given that many abstractions are only intermediate, and that other
abstractions might be changed by data arriving in the future (possibly even data
with a past valid-time stamp, or data that exert some influence on the interpreta-
tion of the past), it might be advisable not to save any abstractions, due to their
logically defeasible nature. However, it is obviously useful, from an efficiency
point of view, to cache key conclusions for future use, either to respond to a
direct query or to support another temporal-reasoning process. The caching is
especially important for saving high-level abstractions, such as “nephrotic syn-
drome,” that have occurred in the past, are unlikely to change, and are useful
for interpreting the present. Such abstractions might be available for querying
by other users (including medical decision-support programs), who do not nec-
essarily have access to the temporal-abstraction module or to the domain’s full
temporal-abstraction knowledge base. One option that might be worth investigat-
ing is an episodic use of “temporal checkpoints” beyond which past abstractions
are cached, available for querying but not for modification.

• Temporal clinical data warehousing and mining. An interesting issue faced
by the research community is to collect temporal clinical data from different
sources, to clean and merge them, and to analyze and mine highlighting interest-
ing temporal patterns and association rules. Indeed, both temporal patterns and
temporal association rules may provide insights on on clinical data, allowing to
distinguish important relationships between vital signs, therapies, and the clinical
paths/evolutions of patient’s state [338].

• Extraction of temporal information from unstructured clinical data. A com-
mon important source for information about the longitudinal clinical course of
a patient is a text-based narrative, such as discharge summaries and progress
notes. The challenge in this case is to reconstruct the implicit temporal database
underlying the narrative [437]. In some cases, this implicit database can only be
guessed at, judging by the text. In other cases, researchers have validated the
reconstructed temporal predicates by having access to the original quantitative
timestamped patient records [438]. An example of highly useful application is
the detection of adverse drug events from physicians’ clinical notes [422].

Work on each of the new research areas we listed would contribute towards the
important goal of integrating temporal data-maintenance and temporal-reasoning
systems in medical domains, and thus lead to both a better understanding and to
a better solution of important problems in management and reasoning about time-
oriented clinical data.



4.4 Further Research Directions 135

Summary

In this chapter we have overviewed some specific aspects related to the manage-
ment, modeling and querying of temporal clinical data. In particular we considered
two different aspects: first, we considered multiple temporal dimensions of clini-
cal data; then, we considered the issue of multiple granularities and indeterminacy
in modeling and querying clinical data. Both these issues have been recognized as
important for the medical domain by the scientific community, though of general
interest. After having mentioned several clinical domains where the management
of temporal data have been considered, we discussed the multi-dimensionality of
clinical data: besides the well-known concepts of valid and transaction times, we
discussed some other dimensions, namely the event time and the availability time,
which are useful in the medical domain to be able to correctly consider clinical
data. The chapter discussed, using some simple examples, both the modeling and
the querying issues when multiple temporal dimensions are considered. Then, we
discussed how to model and query clinical data given at different granularities or
with indeterminacy. Both the relational approach and the object-oriented one have
been discussed. The object-oriented approach has been described also with respect
to a real clinical application, dealing with data from cardiology follow-up patients,
and with regard to some architectural features, related to a web-based clinical tem-
poral database system prototype. The main purpose of this chapter was to allow the
reader to become aware of some domain specific, yet of general interest, issues when
dealing with temporal clinical data and designing and implementing software tools
for the management of medical data having complex and multi-faceted temporal
features.

Bibliographic Notes

Apart from the specific references that are mentioned in this chapter, several survey
papers covered topics related to the management of temporal clinical data. In partic-
ular, we mention here: the survey by Combi and Shahar [364] where both temporal
reasoning and temporal data maintenance in medicine are considered; the position
paper by Adlassnig et al. [5], where some specific research directions are discussed
for temporal clinical databases, together with other research topics on temporal rea-
soning in medicine; the paper by Dorda et al. [127], where the authors summarize
in 20 issues the most important lessons learnt in 25 years of development and use of
temporal query systems in real and challenging clinical settings.



136 4 Temporal Clinical Databases

Problems

4.1. In Table 4.5 (relation pat sympt), information about the symptoms of two pa-
tients, Mary (P id=1) and Sam (P id=2), are reported.

P id symptom VT ETi ETt TT
1 headache [97Oct1,∞) 97Sept5 null [97Oct7, [97Oct10,

97Oct15) 97Oct15)
2 vertigo [97Aug8, 97Aug15) 97Aug7 97Aug12 [97Sept3, [97Oct15,

97Oct17) 97Oct21)
2 vertigo [97Aug10, 97Aug15) 97Aug7 97Aug12 [97Oct19, [97Oct21,

∞) ∞)
1 headache [97Oct1, 97Oct14) 97Sept5 97Oct9 [97Oct15, [97Oct15,

97Oct20) 97Oct21)
1 headache [97Oct1, 97Oct14) 97Sept15 97Oct9 [97Oct20, [97Oct21,

∞) ∞)

Table 4.5 Database instance of patient symptoms: the relation pat sympt.

1. What would be the result of determining which data is available to the physician
on October 18, 1997, according to the database contents on October 20, 1997?

2. What would be the T4SQL query corresponding to the previous question?
3. Describe and discuss at least two possible scenarios consistent with data collected

into the table.
4. Even on the base of the provided example, discuss the difference between avail-

ability and transaction times.

4.2. What is the difference between granularity and indeterminacy? Provide some
medically-oriented examples of situations where the management of indeterminacy
and granularity is needed.

4.3. Consider both the Chronus data model and GCH-OODM: what are the main
differences with regards to the expression of clinical data involving uncertainty?

4.4. Read the following clinical scenario.

Dr. Jones has examined Ms. Smith in her clinic on May 7, 1997, at noon (Ms. Smith came
since she had symptoms of a urinary-tract infection). Dr. Jones recorded a fever of 102◦

Fahrenheit at that time. About 15 minutes later, she has drawn a blood sample and sent it
to the laboratory, and asked Ms. Smith to provide her with a urine sample. Dr. Jones pro-
ceeded to immediately test the urine for traces of white blood cells (WBC) (result: “highly
positive”). She has also sent the urine sample to the laboratory, asking to culture it. The
day after, Dr. Jones called the laboratory and recorded in her notes that the WBC count in
Ms. Smith’s blood sample was 11, 500/cc. Subsequently, the fever was measured as 98.6◦

on May 8, between 1:00 a.m. and 1:37am. On May 10, 11:33 a.m., Dr. Jones added also
that she just learned that the urine culture had been positive for E. Coli bacteria, and that
the bacteria were sensitive to Sulfisoxazole. Dr. Jones called Ms. Smith two hours later and



4.4 Further Research Directions 137

told her to start taking that drug (dose: 1gr, frequency: four times a day), which she has
previously prescribed for her, but asked that she wait before using it. Afterwards, on May,
Dr. Jones got another call from the laboratory; it seems that there was an error in the first
report; in fact, the bacteria were resistant to Sulfisoxazole but were sensitive to Ampicilin.
Dr. Jones promptly called Ms. Smith and asked her to stop the Sulfisoxazole and to start an
Ampicilin regimen (dose: 500mg, frequency: four times a day). She recorded immediately
the details of the administrations of the two drugs in her notebook on May 17.

1. What are the temporal aspects of this scenario that cannot be captured by a GCH-
OODM temporal database? Please, provide a motivation to your answer.

2. Create a database schema in GCH-OODM and a related temporal database re-
placing Dr. Jones’ notebook, which will describe all the parameters and events
mentioned in the scenario that can be captured by GCH-OODM.

4.5. Provide the results of all the example queries of the chapter, considering the
databases provided for multidimensional temporal clinical data and for temporal
data with different granularities and indeterminacy, respectively.


	4 Temporal Clinical Databases
	4.1 Introduction
	4.2 Multiple Temporal Dimensions in Clinical Databases
	4.2.1 Modeling Temporal Data with Multiple Dimensions
	4.2.2 Querying Data with Multiple Temporal Dimensions
	4.2.2.1 The Clause SEMANTICS
	4.2.2.2 The Clause SELECT
	4.2.2.3 The Clause FROM
	4.2.2.4 The Clauses WHERE and WHEN
	4.2.2.5 The Clauses GROUP BY and HAVING


	4.3 Granularity and Indeterminacy in Clinical Databases
	4.3.1 A Temporally Extended Clinical Relational System
	4.3.2 An Object-Oriented Approach for Temporal Clinical Data
	4.3.2.1 The Temporal Data Model GCH-OODM
	4.3.2.2 The Temporal Query Language GCH-OSQL
	4.3.2.3 Query Processing
	4.3.2.4 The Clinical Database
	4.3.2.5 System Implementation


	4.4 Further Research Directions
	Problems


