
Chapter 2
Temporal Modeling and Temporal Reasoning

Overview

In this chapter, the reader is guided through the basic notions of time and temporal
information and is presented with some important, general approaches to represent
and reason about temporal information. Simple medical examples are used to help
the reader to understand the advantages and limitations of the different approaches.

Structure of the Chapter

After a brief introduction, the basic concepts related to the representation of tempo-
ral information are presented. The main features of time domains, time primitives,
and temporal entities are introduced in Section 2.2. Section 2.3 continues the dis-
cussion by presenting some widely acknowledged, general approaches to temporal
reasoning and outlining the requirements for temporal reasoning in medicine, point-
ing out the limitations of some of the considered general approaches. Section 2.4
introduces temporal constraints, a relevant topic both for temporal reasoning and
for temporal knowledge-bases and databases.
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2.1 Introduction

A common focus of temporal reasoning, temporal abstraction of clinical data, and
modeling and managing clinical data, is the definition or the adoption of a set of ba-
sic concepts that enable a description of a time-oriented clinical world in a sound and
unambiguous way. Several suggestions have emerged from generic fields of com-
puter science, such as artificial intelligence, or the knowledge and data management
areas [10, 8, 381, 399, 387, 289]. Within medical informatics, this effort has pro-
gressed from an ad-hoc definition of concepts supporting a particular application
to the adoption and the proposal of more generic definitions, supporting different
clinical applications [140, 212, 197, 196, 235, 111, 86, 359, 214]. For example, the
emphasis in the pioneering work of Fagan on the interpretation of real-time quan-
titative data in the intensive-care domain is on the application-dependent problems,
related to the support of a module that suggests the optimal ventilator therapy at a
given time [140], while the work described in [214] uses a generic temporal ontol-
ogy and a general, comprehensive, model of diagnostic reasoning.

2.2 Modeling Temporal Concepts

Time-related representation requirements for medical applications are many and
varied because time manifests in different ways in expressions of medical knowl-
edge and patient information. There are two issues here: how to model time per se
and how to model time-varying situations or occurrences. In other words, we have
here to consider both how to model the concept of time and how to model entities
having a temporal dimension [270, 289].

2.2.1 Modeling Time

In general we could say that modeling time as a dense or discrete number line may
not provide the appropriate abstraction for medical applications. The modeling of
time for the management of, or the reasoning about time-oriented clinical data, re-
quires several basic choices to be made, depending on the needs of the domain.

2.2.1.1 Time Domain

The time domain consists of the set of primitive time entities used to represent the
concept of time. It allows one to define and interpret all the other time-related con-
cepts. According to [184], a time domain is a pair (T ;≤), where T is a non-empty set
of time instants and ≤ is a total order on T . It has been extensively debated whether
the real time is both either bounded or unbounded and either dense (e.g., isomorphic
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to real or rational numbers) or discrete (e.g., isomorphic to natural numbers). A time
domain is bounded if it contains upper and/or lower bounds with respect to its or-
der relationship. A time domain is dense if it is an infinite set and for all t′, t′′ ∈ T
with t′ < t′′, there exists t′′′ ∈ T such that t′ < t′′′ < t′′. On the opposite, a time
(unbounded) domain is discrete if every element has both an immediate succes-
sor and an immediate predecessor. For example, a widely used approach in tempo-
ral databases is the use of a basic timeline, i.e. a point structure with precedence
relation, which is a total order without right and left endpoints. The basic time-
line is (partially) partitioned in non decomposable consecutive time intervals, called
chronons [387, 78]. On the other hand, Allen’s intervals are defined on a continuous
timeline [10].

2.2.1.2 Instants and Intervals

Usually both the (primitive) concepts of time point (or instant) and time interval
have been used to represent time [235, 359, 86, 214, 387]. These concepts are usu-
ally related to instantaneous events (e.g. myocardial infarction), or to situations last-
ing for a span of time (e.g. drug therapy). In defining basic time entities, time points
(i.e., instants) are often adopted. Intervals are then represented by their upper and
lower temporal bounds (start and end time points). In practice, most systems em-
ployed in medical informatics applications have used a time point based approach,
similar to McDermott’s points [259], rather than use time intervals as the basic time
primitives, as proposed by Allen [8]. Several variations exist. Nonconvex intervals
are intervals formed from a union of convex intervals, and might contain gaps (see
Figure 2.1). Such intervals are first-class objects that seem natural for representing
processes or tasks that occur repeatedly over time. Ladkin defined a taxonomy of
relations between nonconvex intervals [232] and a set of operators over such inter-
vals [231], as well as a set of standard and extended time units that can exploit the
nonconvex representation in an elegant manner to denote intervals such as “Mon-
days.” [231]. Additional work on models and languages for nonconvex intervals has
been done by Morris and Al Khatib [273], who call such intervals N-intervals. In the
temporal database community non-convex intervals are usually named temporal el-
ements [184]. It is interesting to point out that in the database community, complex
time structures are sometimes introduced to model in a compact way all the time
dimensions related to a fact. For example, in [184] a temporal element is defined as
a finite union of n-dimensional time intervals, assuming that a model is able to rep-
resent n different (and orthogonal) time dimensions (the main temporal dimensions
for temporal databases are introduced and discussed in the next section).

2.2.1.3 Linear, Branching, and Circular Times

Different properties can be associated with a time axis composed by instants. Usu-
ally, both in general and clinically-oriented databases, time is linear, since the set
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Fig. 2.1 A nonconvex interval. The nonconvex interval comprises several convex intervals.

of time points is completely ordered [111, 86, 214]. However, for the tasks of di-
agnosis, projection, or forecasting (such as prediction of a clinical evolution over
time), a branching time might be necessary. In this case, only a partial ordering is
defined for times. Such a representation has been found to be useful for pharma-
coeconomics, and has been implemented using an object-oriented temporal model,
as demonstrated in [158]. Circular (or periodic) time is needed when we have to
describe times related to recurrent events, such as “administration of regular insulin
every morning”. In this case no ordering relations are defined for times.

2.2.1.4 Relative and Absolute Times

The position on the time axis of an interval or of an instant can be given as an
absolute position, such as the calendric time, when mapped to the time axis used
(e.g.: “on November, 3 1996”) [426, 197, 105, 85, 111, 359]. This is a common
approach adopted by data models underlying temporal databases. However, it is
also common to reason with relative time references: “the day after” or “sometimes
before that moment”.

Relevant to the topic of relative times are several proposals that employ implicit
[212, 214, 170] or explicit [348] temporal contexts, which support the represen-
tation of relative or context-sensitive temporal clinical information or knowledge.
Another concept relevant to this topic is that of time metrics: absolute times are
generally associated to a metric, being its position given as a distance from a given
time origin. When a metric is defined for the time domain, relative times can be
given quantitatively: “three days after birth”.
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2.2.1.5 Modeling Temporal Relationships

In modeling temporal relationships, Allen’s interval algebra [8] has been widely
used in medical informatics [235, 111, 348, 347]. Section 2.3.2.4 describes in some
detail Allen’s interval algebra. Extensions to Allen’s basic thirteen interval relation-
ships have also been proposed [86]. Temporal relationships include two main types:
qualitative (interval I1 before interval I2) and quantitative (interval I1 two hours be-
fore interval I2). Several general formalisms and approaches [8, 119, 253, 270] have
been effectively adopted for satisfying the various needs encountered while model-
ing temporal relationships. Moreover, temporal relationships can also be classified
according to the entities involved: interval/interval, interval/point, point/interval and
point/point [270].

2.2.1.6 Modeling Granularities

The granularity of a given temporal information is the level of abstraction at which
information is expressed. Different units of measure allow one to represent differ-
ent granularities. One of the first proposals formally dealing with time granularity
was made by Clifford [78], in which he provides a particularly clean view of a
structure for temporal domains. Using a set-theoretic construction, Clifford defines
a simple but powerful structure of time units. He assumes for every temporal do-
main a chronon. By the repeated operation of constructed intervallic partitioning -
intuitively equivalent to segmentation of the time line into mutually exclusive and
exhaustive intervals (say, constructing 12 months from 365 days) - Clifford defines
a temporal universe, which is a hierarchy of time levels and units. He also defines
clearly the semantics of the operations possible on time domains in the temporal
universe. It is interesting to note that, unlike Ladkin’s construction of discrete time
units [231], Clifford’s construction does not leave room for the concept of weeks
as a time unit, since weeks can overlap months and years, violating the constructed
intervallic partition properties. A widely accepted definition of temporal granularity,
proposed by Bettini et al [28], has been used both for knowledge representation and
for temporal data modelling [28, 184, 240, 282, 241]. According to their framework,
a granularity is a mapping G from an index set (e.g., integers) to the powerset of the
time domain such that:

1. if i < j and G(i) and G( j) are non-empty, then all elements of G(i) are less than
all elements of G( j), and

2. if i < k < j and G(i) and G( j) are non-empty, then G(k) is non-empty.

Any G(i) is called a granule. The first condition states that granules in a granularity
do not overlap and that their index order is the same as their time domain order.
The second condition states that the subset of the index set that maps to non-empty
subsets of the time domain is contiguous. It is worth noting that the set of granules
is always discrete, no matter whether the time domain is discrete or dense. Besides
an index, there may be a textual representation of a granule, as in the case, for
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example, of “June 1999”, which refers to the granule composed by the time points
contained in that month. Several relationships have been introduced for granularities
[27, 160]; for example, according to Bettini et al [27] a granularity G1 is finer than
another granularity G2 if for each i, there exists j such that G1(i) ⊆G2( j).

2.2.1.7 Modeling indeterminacy

Indeterminacy is often present in temporal information and is related to incomplete
knowledge of when the considered fact happened. A frequent need, especially in
clinical domains, is the explicit expression of uncertainty regarding how long a
proposition was true. In particular, we might not know precisely when the propo-
sition became true and when it ceased to be true, although we might know that it
was true during a particular time interval. Sometimes, the problem arises because
the time units involved have different granularities: the Hb level may sometimes
be dated with an accuracy level of hours (e.g., “Wednesday at 5 P.M., October 23,
2002”), but may sometimes be given for only a certain day (“Wednesday, October
23, 2002”). Sometimes, the problem arises due to the naturally occurring incom-
plete information in clinical settings: The patient complains of a backache starting
“sometime during 2001”. There is often a need to represent such vagueness. As an
example, Console and Torasso [102, 103, 104] present a model of time intervals
that represents such partial knowledge explicitly. The model was proposed in order
to represent causal models for diagnostic reasoning. The authors define a variable
interval as a time interval I composed of three consecutive convex intervals. The
first interval is begin(I), the second is called body(I), and the third is called end(I).
Operations on convex intervals can be extended to variable intervals. We can now
model uncertainty about the time of the start or end of the actual interval, when
these times are defined vaguely, since the begin and end intervals of a variable inter-
val represent uncertainty about the start and stop times of the real interval; the body
is the only interval during which the proposition represented by the variable interval
was certainly true.

2.2.2 Modeling Temporal Entities

Let us now consider the more abstract task of modeling temporal entities, i.e., those
concepts/things of the real world which must be represented also for their temporal
aspects. A rich model providing a number of interrelated basic temporal entities,
given at different abstraction levels and with multiple granularities, is often required
when dealing with medical temporal information. Many representation issues arise
with respect to temporal entities, as detailed below.
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2.2.2.1 Defining Temporal Entities

A question that has been investigated in some depth in the literature is: What are
the basic (medical) concepts that have temporal dimension? How are they interre-
lated? In general, we distinguish two different approaches in modeling temporal en-
tities in medical applications: addition of a temporal dimension to existing objects,
or creation of model-specific, time-oriented entities. The first approach, originat-
ing from research into databases, uses simple, “atomic” temporal entities [111, 86].
This approach is similar to the one underlying the temporal extensions proposed for
relational and object-oriented data models: a temporal dimension is added at the tu-
ple/object level or at the attribute/method level [111, 83], as we will see in detail in
Chapter 3. The second approach, originating mostly from the area of artificial intel-
ligence, focuses on modeling different temporal features of complex, task-specific
entities.

For example, Allen introduces events, properties and processes, to represent
different kinds of proposition holding on some intervals (as discussed in Section
2.3.2.4), while McDermott distinguishes between facts and events, as discussed in
Section 2.3.2.3.

Let us now consider some proposals coming from medical applications. Here,
several types of compound (abstract) entities are introduced, based on temporal en-
tities that are stored at the database level. For example, in the HyperLipid system
[335], patient visits were modeled as instant-based objects called events, while ad-
ministration of drugs was modeled as therapy objects whose attributes included a
time interval. Phases of therapy (inspired by the clinical algorithm modeled by the
system) were then introduced to model groups of heterogeneous data, related to
both visits and therapies. Events, therapies and phases were connected through a
network.

Kahn and colleagues in [197] introduced formally the concept of a Temporal Net-
work (TNET) and later extended it by the Extended TNET, or ETNET model [196].
In both models, a T-node (or an ET-node) models task-specific temporal data, such
as a chemotherapy cycle, at different levels of abstraction. Each T-node is associated
with a time interval during which the information represented by the T-node’s data
is true for a given patient.

In the M-HTP system for monitoring heart-transplant patients [235], clinical facts
related to a patient are structured in a temporal network (TN) inspired by Kahn’s
TNET model [196]. Through this network, a physician can obtain different temporal
views of the patient’s clinical history. Each node of the TN represents an event (a
visit) or a significant episode in the patient’s clinical record. An event is time-point
based; its temporal location can be specified by an absolute date or by the temporal
distance relative to the transplantation event. An episode holds during an interval,
during which a predefined property (evaluated by reasoning about several events)
holds.

Keravnou and Washbrook introduce findings, features, and events to distinguish
various types of instantaneous and interval-based information (patient-specific or
general) [212].
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2.2.2.2 Associating Entities to Instants and Intervals

We observe two main approaches in defining occurrences of temporal entities, i.e.,
in associating time with temporal entities. The first approach deals both with instant-
related entities and with interval-related entities [235]. The second approach asso-
ciates clinical entities only with a certain type of time concept, usually an interval,
dealing in a homogeneous way also with intervals degenerating to be a single instant
[359, 86, 111]. A further distinction exists between the basic time primitives, usu-
ally instants (time points), and the time entities that can be associated with clinical
concepts [359, 86, 111].

Shoham’s approach, for example, is based on the adoption of a set of time points
as primitives; predicates, however, such as values of clinical parameters, can only
be interpreted over time intervals, which are defined as ordered pairs of time stamps
(including instants, which are zero-length intervals).

Depending on the underlying properties for time, the actual occurrences of tem-
poral entities can be specified in several different ways:

• Absolute and relative temporal occurrences: the existence of some occurrence
can be expressed in absolute terms, relative to some fixed time point, by spec-
ifying its initiation and termination (e.g.: “Tachycardia on November 3, 1996
from 6:30 to 6:45 p.m.”). This is a common approach adopted by data mod-
els underlying temporal databases. Similarly, it can be expressed relative to
other occurrences, either by qualitative relationships (“angina after a long walk”
or “several episodes of headache during puberty”) or by quantitative relation-
ships (angina two hours before headache). Incorporation of purely relative time-
oriented, interval-based information (especially disjunctions, such as “the patient
had vomited before or during the diarrhea episode”) within a standard temporal
database is still a difficult task.

• Absolute and relative vagueness, duration, and incompleteness: an occurrence is
associated with absolute vagueness if its initiation and/or termination cannot be
precisely specified in a given temporal context; precision is relative to the par-
ticular temporal context. Absolute vagueness (called also indeterminacy) may be
expressed in terms of quantitative constraints on the initiation, termination, or
extent of the occurrence, e.g. the earliest possible and latest possible time for
its initiation or termination, or the minimum and maximum for its duration: “an
atrial fibrillation episode occurred on December 14th, 1995 between 14:30 and
14:45 and lasted for three-four minutes”. An occurrence is associated with rel-
ative vagueness if its temporal relation with other occurrences is not precisely
known but can only be expressed as a disjunction of primitive relations. Incom-
pleteness in the specification of occurrences is thus a common phenomenon.

• Point and interval occurrences: An occurrence may be considered a point occur-
rence in some temporal context if its duration is less than the time unit, if any, as-
sociated with the particular temporal context. A point occurrence may be treated
as an instantaneous and hence as a non-decomposable occurrence in the given
temporal context. Thus an occurrence may be considered an interval occurrence
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in some temporal context if its duration is at least equal to the time unit associ-
ated with the particular temporal context. Care needs to be taken in associating
these concepts to clinical entities, such as symptoms, therapies, and pathologies:
a myocardial infarction, for example, could be considered an instantaneous event,
within the overall clinical history of the patient, or an interval-based occurrence,
if observed during an ICU staying.

2.2.2.3 Semantic Relations between Temporal Entities

Other, more complex, features of temporal entities and of their occurrences need to
be suitably considered.

• Compound occurrences: repeated instantiations of some type of occurrence, usu-
ally, but not necessarily, in a regular fashion, may need to be collectively repre-
sented as a periodic occurrence. An abstract periodic occurrence consists of the
basic temporal entity and of the “algorithm” governing the repetition. A specific
periodic occurrence is the collation of the relevant, individual, occurrences. A
temporal trend, or simply trend, is an important kind of interval occurrence. A
trend describes a change, the direction of change, and the rate of change that takes
place in the given interval of time. An example of a trend could be “increasing
blood pressure”. A trend is usually derived from a collection of occurrences at
a lower level. A temporal pattern, or simply pattern, is a compound occurrence,
consisting of a number of simpler occurrences (and their relations). There are
different kinds of patterns. A sequence of meeting trends is a commonly used
kind of pattern. A periodic occurrence is another example of pattern. A set of rel-
ative occurrences, or a set of causally related occurrences, could form patterns.
A compound occurrence can in fact be expressed at multiple levels of abstrac-
tion. Abstraction and refinement are therefore important structural relations be-
tween occurrences. Through refinement an occurrence can be decomposed into
component occurrences and through abstraction component occurrences can be
contained into a compound occurrence.

• Contexts, causality and other temporal constraints: a context represents a state
of affairs that, when interpreted (logically) over a time interval, can change the
meaning of one or more facts which hold within the context time interval. Causal-
ity is a central relation between occurrences. Changes are explained through
causal relations. Time is intrinsically related to causality. The temporal principle
underlying causality is that an effect cannot precede its cause. Causally unrelated
occurrences can also be temporally constrained, as already mentioned. For exam-
ple, a periodic occurrence could be governed by the constraint that the distance
between successive occurrences should be 4 hours.
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2.3 Temporal Reasoning

The ability to reason about time and temporal relations is fundamental to almost
any intelligent entity that needs to make decisions. The real world includes not only
static descriptions, but also dynamic processes. It is difficult to represent the concept
of taking an action, let alone a series of actions, and the concept of the consequences
of taking a series of actions, without explicitly or implicitly introducing the notion
of time. This inherent requirement also applies to computer programs that attempt to
reason about the world. In the area of natural-language processing, it is impossible
to understand stories without the concept of time and its various nuances (e.g., “by
the time you get home, I would be gone for 3 hours”). Planning actions for robots
requires reasoning about the temporal order of the actions and about the length of
time it will take to perform the actions. Determining the cause of a certain state of
affairs implies considering temporal precedence, or, at least, temporal equivalence.
Scheduling tasks in a production line, that aim to minimize total production time,
require reasoning about serial and concurrent actions and about time intervals. De-
scribing typical patterns in a baby’s psychomotor development requires using no-
tions of absolute and relative time, such as “walking typically starts when the baby
is about 12 months old, and is preceded by standing.” Thus, clinical domains pose
no exception to the fundamental necessity of reasoning about time.

Temporal reasoning has been used in medical domains as part of a wide variety
of generic tasks [60], such as diagnosis (or, in general, abstraction and interpreta-
tion), monitoring, projection, forecasting, and planning (as discussed in chapters 6
and 7). These tasks are often interdependent. Projection is the task of computing the
likely consequences of a set of conditions or actions, usually given as a set of cause-
effect relations. Projection is particularly relevant to the planning task (e.g., when
we need to decide how the patient’s state will be after we administer to the patient a
certain drug with known side effects). Forecasting involves predicting particular fu-
ture values for various parameters given a vector of time-stamped past and present
measured values, such as anticipating changes in future hemoglobin-level values,
given the values up to and including the present. Planning consists of producing a
sequence of actions for a care provider, given an initial state of the patient and a
goal state, or set of states, such that that sequence achieves one of the goal patient
states. Possible actions are usually operators with predefined certain or probabilistic
effects on the environment. The actions might require a set of enabling precondi-
tions to be possible or effective. Achieving the goal state, as well as achieving some
of the preconditions, might depend on the correct projection of the actions up to
a point, to determine whether preconditions hold when required. Interpretation in-
volves abstraction of a set of time-oriented patient data, either to an intermediate
level of meaningful temporal patterns, as is common in the temporal-abstraction
task or in the monitoring task, or to the level of a definite diagnosis or set of diag-
noses that explain a set of findings and symptoms, as is common in the diagnosis
task. Interpretation, unlike forecasting and projection, involves reasoning about only
past and present data and not about the future.
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From the methodological point of view, one general criterion that can be used
when classifying temporal-reasoning research is whether it uses a deterministic or a
probabilistic approach [206].

2.3.1 Temporal Reasoning Requirements

Before introducing some relevant generic models for temporal reasoning, let us con-
sider some important (generic) functionalities, a medical temporal reasoning system
should include:

• Mapping the existence of occurrences across temporal contexts, if multiple tem-
poral contexts are supported and more than one such context is meaningful to
some occurrence.

• Determining bounds for entity occurrences. The initiation and termination points
of absolute existences are usually expressed in (qualitative) terms which need to
be translated into upper and lower bounds for the actual points within the relevant
temporal context.

• Consistency detection and clipping of uncertainty. If the inferences drawn from
a collection of occurrences are to be valid the occurrences must be mutually con-
sistent. Inconsistency arises when there are overlapping occurrences that assert
mutually exclusive propositions. The inconsistency can be resolved if the bound-
aries of the implicated occurrences can be moved so that the overlapping is elim-
inated. In fact the identification of such clashes usually results in narrowing the
bounds for the initiation/termination of the relevant occurrences. More generally,
inconsistency arises when the (disjunctive) temporal constraints relating a given
set of occurrences cannot be mutually satisfied. A conflict is detected when all
the possible temporal relationships between a pair of temporal entities are re-
futed. Temporal constraint propagation, minimization of disjunctive constraints
(i.e. reducing the uncertainty), detection and resolution of conflicts are necessary
functionalities, as in many other non-medical applications.

• Deriving new occurrences from other occurrences. There are different types of
derivation. A predominant type is temporal-data abstraction, which is described
separately in Chapter 5. Other types include decomposition derivations (the po-
tential components of compound occurrences are inferred), causal derivations
(potential antecedent occurrences, consequent occurrences, or causal links be-
tween occurrences are derived), etc.

• Deriving temporal relations between occurrences. Often the temporal relations
that hold between occurrences are significant for the given problem solving. Thus
if the temporal relation between a pair of occurrences is not explicitly given, it
would need to be inferred.

• Deriving the truth status of queried occurrences. This functionality brings to-
gether many of the other functionalities. A (hypothesized) occurrence, of any
degree of complexity, e.g. periodic, trend, compound, etc, is queried against a set
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of occurrences (and temporal contexts) that are assumed to be true. The queried
occurrence is derived as true (it can be logically deduced from the assumed occur-
rences), false (it is counter-indicated by the assumed occurrences), or unknown
(possibly true or possibly false).

• Deriving the state of the world at a particular time. The previous function-
ality starts with a specific set of assumed occurrences and a specific queried
occurrence. It is considered a necessary functionality because often problem
solvers seek to establish specific information. Alternatively though, in an inves-
tigative/explorative mode, the problem solver may need to be informed about
what is considered to be true at some specific time. The query may be expressed
relative to another specific point in time which defaults to now, e.g. at time point
t, what was/is/will be believed to be true during some specified period p? This
functionality may be used to compose the set of assumed occurrences for queries
of the previous type.

2.3.2 Ontologies and Models for Temporal Reasoning

In this section, we present briefly major approaches to temporal reasoning in phi-
losophy and in computer science (in particular, in the AI area). We have organized
these approaches roughly chronologically.

2.3.2.1 Tense Logics

It is useful to look at the basis for some of the early work in temporal reasoning.
We know that Aristotle was interested in the meaning of the truth value of future
propositions [330]. The stoic logician Diodorus Chronus, who lived circa 300 B.C.,
extended Aristotle’s inquiries by constructing what is known as the master argu-
ment. It can be reconstructed in modern terms as follows [330]:

1. Everything that is past and true is necessary (i.e., what is past and true is neces-
sarily true thereafter).

2. The impossible does not follow the possible (i.e., what was once possible does
not become impossible).

From these two assumptions, Diodorus concluded that nothing is possible that
neither is true nor will be true, and that therefore every (present) possibility must be
realized at a present or future time. The master argument leads to logical determin-
ism, the central tenet of which is that what is necessary at any time must be necessary
at all earlier times. This conclusion fits well indeed within the stoic paradigm.

The representation of the master argument in temporal terms inspired modern
work in temporal reasoning. In particular, in a landmark paper [321] and in subse-
quent work [322, 323], Prior attempted to reconstruct the master argument using a
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modern approach. This attempt led to what is known as tense logic - a logic of past
and future. In Prior’s terms,

Fp: it will be the case that p.
Pp: it was the case that p.

Gp: it will always be the case that p (i.e., ¬F¬p).
Hp: it was always the case that p (i.e., ¬P¬p).

Prior’s tense logic is thus in essence a modal-logic approach (an extension of the
first-order logic (FOL) with special operators on logical formulae [136]) to reason-
ing about time. This modal-logic approach has been called a tenser approach [149],
as opposed to a detenser, or an FOL, approach. As an example, in the tenser view,
the sentence F(∃x) f (x) is not equivalent to the sentence (∃x)F f (x); in other words,
if in the future there will be some x that will have a property f , it does not follow
that there is such an x now that will have that property in the future. In the detenser
view, this distinction does not make sense, since both expressions are equivalent
when translated into FOL formulae. This difference occurs because, in FOL, objects
exist timelessly, time being just another dimension; in tenser approaches, NOW is a
point of time in a separate class. However, FOL can serve as a model theory for the
modal approach [149]. Thus, we can assign precise meanings to sentences such as
Fp by a FOL formalism.

An interesting point in the use of time and tenses in natural language was brought
out by Anscombe’s investigation into the meanings of before and after [14]. An
example is the following: from “The infection was present after the fever ended,” it
does not follow that the fever ended before the infection was present. Thus, before
and after are not strict converses. Note that, however, from “The infection started
after the fever started,” we can indeed conclude that the fever started before the
infection started. Thus, before and after are converses when they link instantaneous
events.

2.3.2.2 Kahn and Gorry’s Time Specialist

Kahn and Gorry [195] built a general temporal-utilities system, the time specialist,
which was intended not for temporal reasoning, but rather for temporal maintenance
of relations between time-stamped propositions. However, the various methods they
used to represent relations between temporal entities are instructive, and the ap-
proach is useful for understanding some of the work in medical domains. The time
specialist is a domain-independent module that is knowledgeable specifically about
maintaining temporal relations. This module isolates the temporal-reasoning ele-
ment of a computer system in any domain, but is not a temporal logic. Its specialty
lies in organizing time-stamped bits of knowledge. A novel aspect of Kahn and
Gorry’s approach was the use of three different organization schemes; the decision
of which one to use was controlled by the user:

1. Organizing by dates on a date line (e.g., “January 17 1972”)
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2. Organizing by special reference events, such as birth and now (e.g., “2 years after
birth”)

3. Organizing by before and after chains, for an event sequence (e.g., “the fever
appeared after the rash”).

By using a fetcher module, the time specialist was able to answer questions about
the data that it maintained. The time specialist also maintained the consistency of
the database as data were entered, asking the user for additional input if it detected
an inconsistency. Kahn and Gorry made no claims about understanding temporally
oriented sentences; the input was translated by the user to a Lisp expression. Nei-
ther did they claim any particular semantic classification of the type of propositions
maintained by the time specialist. Rather, the time specialist presents an example of
an early attempt to extract the time element from natural-language propositions, and
to deal with that time element using a special, task-specific module.

2.3.2.3 Approaches Based on States, Events, and Changes

Some of the approaches taken in AI and general computer science involve a round-
about way of representing time: Time is represented implicitly by the fact that there
was some change in the world (i.e., a transition from one state to another), or that
there was some mediator of that change.

The Situation Calculus and Hayes’ Histories

The situation calculus was proposed by McCarthy [257, 258] to describe actions and
their effects on the world. The idea is that the world is a set of states, or situations.
Actions and events are functions that map states to states. Thus, that the result of
performing the CARE PROVIDING action in a situation with a suffering patient is
a situation where the patient is treated is represented as

∀sTrue(s,S UFFERING PAT IENT ) =⇒

True(Result(CARE PROVIDING, s),TREAT ED PAT IENT )

Although the situation calculus has been used explicitly or implicitly for many
tasks, especially in planning, it is not adequate for many reasons. For instance, con-
current actions are impossible to describe, as are actions with duration (note that
CARE PROVIDING brings about an immediate result) or continuous processes.
There are also other problems that are more general, and are not specific to the
situation calculus [377].

Hayes, aware of these limitations, introduced the notion of histories in his “Sec-
ond Naive Physics Manifesto” [174]. A history is an ontological entity that incor-
porates both space and time. An object in a situation, or O@S, is that situation’s
intersection with that object’s history [174]. Permanent places are unbounded tem-
porally but restricted spatially. Situations are unbounded spatially and are bounded
in time by the events surrounding them. Most objects are in between these two
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extremes. Events are instantaneous; episodes usually have duration. Thus, we can
describe the history of an object over time. Forbus [143] has extended the notion of
histories within his qualitative process theory.

Kowalski and Sergot’s Event Calculus

Kowalski and Sergot proposed in [228] the Event Calculus (EC), a theory of time
and change. EC is an interesting framework, because it is general, well founded
and deeply formally studied, and it has also been applied to temporal reasoning in
medical domains [212, 235, 206].

From a description of events that occur in the real world and properties they ini-
tiate or terminate, EC derives the validity intervals over which properties hold. The
notions of event, property, time point, and time interval are the primitives of the
formalism: events happen at time points and initiate and/or terminate time intervals
over which properties hold. Initiated properties are assumed to persist until the oc-
currence of an event that interrupts them (default persistence). An event occurrence,
associating the event to the time point at which it occurred, is represented by the
happens(event, timePoint) clause. The relations between events and properties are
defined by means of initiates and terminates clauses, such as:

initiates(ev1, prop, t)⇐= happens(ev1, t)∧holds(prop1, t)∧ ...∧holds(propN, t)

terminates(ev2, prop, t)⇐= happens(ev2, t)∧holds(prop1, t)∧ ...∧holds(propN, t)

The above initiates (terminates) clause states that each event of type ev1 (ev2)
initiates (terminates) a period of time during which the property prop holds, pro-
vided that N (possibly zero) given preconditions hold at instant t. The EC model of
time and change is concerned with deriving the maximal validity intervals (MVIs)
over which properties hold: a validity interval must not contain any interrupting
event for the property; a maximal validity interval (MVI) is a validity interval
which is not a subset of any other validity interval for the property. The clause
mholds f or(p, [S ,E]) returns the MVIs for a given property p: each MVI is given
by a pair [S ,E], where S (Start) and E (End) are the lower and upper endpoints of
the interval.

Chittaro and Montanari distinguished two alternative ways of interpreting initi-
ates clauses in the derivation of MVIs [73, 72]. In the first one (weak interpretation),
only terminating events are considered as interrupting events, and an initiating event
e for property p initiates an MVI, provided that p has not been already initiated
by a previous event in such a way that p already holds at the occurrence time of
e [73, 72]. For example, both Fig. 2.2b and 2.2d contain two consecutive weakly
initiating events (denoted as wI) for the same property, and thus the derived MVI is
initiated by the first of the two events. The alternative interpretation (strong interpre-
tation) considers also initiating events as interrupting events: therefore, an initiating
event e for property p initiates an MVI, provided that there is no subsequent initiat-
ing event for p such that p is not terminated between the two events. For example,



24 2 Temporal Modeling and Temporal Reasoning

(a)
0 1 2 3 4

sI sI sT sT

(b)
0 1 2 3 4

wI wI sT sT

(c)
0 1 2 3 4

sI sI wT wT

(d)
0 1 2 3 4

wI wI wT wT

Fig. 2.2 Examples of weakly and strongly initiating and terminating events.

both Fig. 2.2a and 2.2c contain two consecutive strongly initiating events (denoted
as sI) for the same property, and thus the derived MVI is initiated by the second
of the two events. The weak and strong interpretation for terminating events give
symmetrical results: Figures 2.2a and 2.2b show two consecutive strongly terminat-
ing events (denoted as sT), and the derived MVI terminated by the first of the two
events; while Fig. 2.2c and 2.2d show two consecutive weakly terminating events
(denoted as wT), and the derived MVI terminated by the second of the two events.

As clearly shown by Fig. 2.2, different choices of interpretation for initiating and
terminating events may change the derived MVIs. In general, this choice depends
on the specific property that needs to be

modeled, as we will also see in the following examples. In particular, weak and
strong initiates relations can be used to support the so-called temporal aggregation
and omission [73], respectively. For example, consider the problem of monitoring
patients who receive a partial mechanical respiratory assistance [235]. A basic re-
quirement of the patient monitoring task is the ability of aggregating similar ob-
served situations. It indeed often happens that data acquired with consecutive sam-
plings do not cause a transition in the classification of the patient ventilatory state. In
this case, temporal aggregation requires that the subsequent samples do not clip the
validity interval for the patient state. Such a functionality can be easily supported by
the EC, provided that a weak interpretation of initiates is assumed. Temporal omis-
sion is useful when dealing with incomplete sequences of events [73]. As a simple
example, consider a patient in a ICU receiving a continuous ECG monitoring, which
can be interrupted by patient movements, specific treatments and examinations, and
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so on; the patient can be connected or disconnected to the device. The situation
can be described by means of the property ECGmonitor(Connection), where the
value of Connection can be connected or disconnected, and two events: connect
(resp. disconnect), that changes the status of the connection from disconnected to
connected (resp. from connected to disconnected). While two connect (resp. dis-
connect) events cannot occur consecutively in the real world without a disconnect
(resp. connect) event in between, it might happen that an incomplete sequence con-
sisting of two consecutive connect events e1, e2, followed by a disconnect event e3,
is recorded in the database. In such a case, a strong interpretation of initiates allows
the EC to recognize that a missing disconnect event must have occurred between
e1 and e2. However, since it is not possible to temporally locate such an event, the
validity of the property ECGmonitor(connected) is derived

only between e2 and e3, and e1 is considered as a pending initiating event.

2.3.2.4 Allen’s Interval-Based Temporal Logic and Related Extensions

Allen [8] has proposed a framework for temporal reasoning, the interval-based tem-
poral logic. The only ontological temporal primitives in Allen’s logic are intervals.
Intervals are also the temporal unit over which we can interpret propositions. There
are no instantaneous events-events are degenerate intervals. Allen’s motivation was
to express natural-language sentences and to represent plans. Allen has defined 13
basic binary relations between time intervals, six of which are inverses of the other
six: BEFORE, AFTER, OVERLAPS, OVERLAPPED, STARTS, STARTED BY,
FINISHES, FINISHED BY, DURING, CONTAINS, MEETS, MET BY, EQUAL
TO (see Figure 2.3).

It turns out that all of the thirteen relations can be expressed using only a single
one, MEETS; for example, A BEFORE B can be expressed as
∃C(A MEETS C ∧ C MEETS B) [9].

Incomplete temporal information common in natural-language is captured intu-
itively enough by a disjunction of several of these relations (e.g., T1 <starts, finishes,
during> T2 denotes the fact that interval T1 is contained somewhere in interval T2,
but is not equal to it). In this respect, Allen’s logic resembles the event calculus.

Allen defined three types of propositions that might hold over an interval:

1. Properties hold over every subinterval of an interval. Thus, the meaning of
Holds(p, T) is that property p holds over interval T. For instance, “John had fever
during last night.”

2. Events hold only over a whole interval and not over any subinterval of it. Thus,
Occur(e, T) denotes that event e occurred at time T. For instance, “John broke
his leg on Saturday at 6 P.M.”

3. Processes hold over some subintervals of the interval in which they occur. Thus,
Occurring(p, T) denotes that the process p is occurring during time T. For in-
stance, “John had atrial fibrillation during the last month.”
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Fig. 2.3 The 13 possible relations, defined by Allen [8], between temporal intervals. Note that six
of the relations have inverses, and that the EQUAL relation is its own inverse.
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Allen’s logic does not allow branching time into the past or the future (unlike,
for instance, McDermott’s logic).

Allen also constructed a transitivity table that defines the conjunction of any two
relations, and proposed a sound (i.e., produces only correct conclusions) but in-
complete (i.e., does not produce all correct conclusions) algorithm that propagates
efficiently (O(n3)) and correctly the results of applying the transitivity relations [10].

Unfortunately, the complexity of answering either the question of completeness
for a set of Allen’s relations (finding all feasible relations between all given pairs of
events), or the question of consistency (determining whether a given set of relations
is consistent) is NP-complete [416, 417]. Thus, in our current state of knowledge,
for practical purposes, settling such issues is intractable. However, more work [413]
has suggested that limited versions of Allen’s relations - in particular, simple in-
terval algebra (SIA) networks - can capture most of the required representations
in medical and other areas, while maintaining computational tractability. SIA net-
works are based on a subset of Allen’s relations that can be defined by conjunctions
of equalities and inequalities between endpoints of the two intervals participating in
the relation, but disallowing the , (NOT EQUAL TO) relation [413].

Additional extensions to Allen’s interval-based logic include Ladkin’s inclusion
of nonconvex intervals [231, 232].

2.3.2.5 McDermott’s Point-Based Temporal Logic

McDermott [259] suggested a point-based temporal logic. The main goal of
McDermott’s logic was to model causality and continuous change, and to support
planning.

McDermott’s temporal primitives are points, unlike Allen’s intervals. Time is
continuous: The time line is the set of real numbers. Instantaneous snapshots of
the universe are called states. States have an order-preserving date function to time
instants. Propositions can be interpreted either over states or over intervals (ordered
pairs of states), depending on their type. There are two types of propositions, facts
and events. Facts are interpreted over points, and their semantics borrow from the
situation calculus. The proposition (On Patient1 Bed2) represents the set of states
where Patient1 is on Bed2. Facts are of the form (T s p), in McDermott’s Lisp-like
notation, meaning that p is true in s, where s is a state and p is a proposition, and
s ∈ p. An event e is the set of intervals over which the event exactly happens: (Occ
s1 s2 e) means that event e occurred between the states s1 and s2 - that is, over the
interval [s1 s2] - where [s1 s2]∈ e. McDermott’s external characterization of events
by actually identifying events as sets of intervals has been criticized (e.g., [149]).
Such a characterization seems to define events in a rather superficial way (i.e., by
temporal spans) that might even be computationally intractable for certain types of
events, instead of relying on their internal characterization.

McDermott’s states are partially ordered and branching into the future, but are to-
tally ordered for the past (unlike Allen’s intervals, which are not allowed to branch
into either the past or the future). This branching intends to capture the notion of
a known past, but an indeterminate future. Each maximal linear path in such a
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branching tree of states is a chronicle. A chronicle is thus a complete possible history
of the universe, extending to the indefinite past and future; it is a totally ordered set
of states extending infinitely in time [259].

2.3.2.6 Shoham’s Temporal Logic

Shoham [376], in an influential paper, attempted to clean up the semantics of both
Allen’s and McDermott’s temporal logics by presenting a third temporal logic.
Shoham pointed out that the predicate-calculus semantics of McDermott’s logic,
like those of Allen’s, are not clear. Furthermore, both Allen’s “properties, seem at
times either too restrictive or too general. Finally, Allen’s avoidance of time points
as primitives leads to unnecessary complications [376].

Shoham therefore presented a temporal logic in which the time primitives are
points, and propositions are interpreted over time intervals. Time points are repre-
sented as zero-length intervals, < t, t >. Shoham used reified first-order-logic propo-
sitions, namely propositions that are represented as individual concepts that can
have, for instance, a temporal duration. Thus, TRUE(t1, t2, p) denotes that proposi-
tion p was true during the interval < t1, t2 >. Therefore, the temporal and proposi-
tional elements are explicit. Shoham notes that the simple first-order-logic approach
of using time as just another argument (e.g., ON(Patient1, Bed2, t1, t2)), does not
grant time any special status. He notes also that the modal-logic approach of not
mentioning time at all, but of, rather, changing the interpretation of the world’s
model at different times (rather like the tense logics discussed in Section 2.3.2.1),
is subsumed by reified first-order logic [376, 377, 172]. Shoham provided clear se-
mantics for both the propositional and the first-order-logic cases, using his reified
first-order temporal logic. Furthermore, he pointed out that there is no need to distin-
guish among particular types of propositions, such as by distinguishing facts from
events: Instead, he defined several relations that can exist between the truth value
of a proposition over an interval and the truth value of the proposition over other
intervals. For instance, a proposition type is downward-hereditary if, whenever it
holds over an interval, it holds over all that interval’s subintervals, possibly exclud-
ing its end points [376] (e.g., “Sam stayed in the hospital for less than 1 week”). A
proposition is upward-hereditary if, whenever it holds for all proper subintervals of
some nonpoint interval, except possibly at that interval’s end points, it holds over
the nonpoint interval itself (e.g., “John received an infusion of insulin at the rate of 2
units per hour”). A proposition type is gestalt if it never holds over two intervals, one
of which properly contains the other (e.g., the interval over which the proposition
“the patient was in a coma for exactly 2 weeks” is true cannot contain any subinter-
val over which that proposition is also true). A proposition type is concatenable if,
whenever it holds over two consecutive intervals, it holds also over their union (e.g.,
when the proposition “the patient had high blood pressure” is true over some inter-
val as well as over another interval that the first interval meets, then that proposition
is true over the interval representing the union of the two intervals). A proposition
is solid if it never holds over two properly overlapping intervals (e.g., “the patient
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received a full course of the current chemotherapy protocol, from start to end,” can-
not hold over two different, but overlapping intervals). Other proposition types exist,
and can be refined to the level of interval-point relations.

Shoham observed that Allen’s and McDermott’s events correspond to gestalt
propositions, to solid ones, or to both, whereas Allen’s properties are both upward-
hereditary and downward-hereditary [376]. This observation immediately explains
various theories that can be proved about Allen’s properties, and suggests a more
expressive, flexible categorization of proposition types for particular needs.

2.3.2.7 Projection, Forecasting, and Modeling the Persistence Uncertainty

The probabilistic approach is typically associated with the tasks of interpretation
or forecasting of time-stamped clinical data whose values are affected by different
sources of uncertainty [331, 247].

Dean and Kanazawa [118] proposed a model of probabilistic temporal reasoning
about propositions that decay over time. The main idea in their theory is to model
explicitly the probability of a proposition P being true at time t, P(< P, t >), given
the probability of < P, t-∆ >. The assumption is that there are events of type Ep that
can cause proposition p to be true, and events of type E¬p that can cause it to be
false. Thus, we can define a survivor function for P(< P, t >) given < P, t-∆ >, such
as an exponential decay function.

Dean and Kanazawa’s main intention was to solve the projection problem, in
particular in the context of the planning task. They therefore provide a method for
computing a belief function (denoting a belief in the consequences) for the projec-
tion problem, given a set of causal rules, a set of survivor functions, enabling events,
and disabling events [118]. In a later work, Kanazawa [201] presented a logic of time
and probability, Lcp. The logic allows three types of entities: domain objects, time,
and probability. Kanazawa stored the propositions asserted in this logic over inter-
vals in what he called a time network, which maintained probabilistic dependencies
among various facts, such as the time of arrival of a person at a place, or the range of
time over which it is true that the person stayed in one place [201]. The time network
was used to answer queries about probabilities of facts and events over time.

Dagum, Galper, and Horvitz [110, 109] present a method intended specifically
for the forecasting task. They combine the methodology of static belief networks
[299] with that of classical probabilistic time-series analysis [424]. Thus, they cre-
ate a dynamic network model (DNM) that represents not only probabilistic depen-
dencies between parameter x and parameter y at the same time t, but also P(xt |yt−k),
namely the probability distribution for the values of x given the value of y at an ear-
lier time. Given a series of time-stamped values, the conditional probabilities in the
DNM are modified continuously to fit the data. The DNM model was tried success-
fully on a test database of sleep-apnea cases to predict several patient parameters,
such as heart rate and blood pressure [107].
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2.4 Three Well-Known General Theories of Time
and the Medical Domain

As already discussed, three well-known general theories of time, that are justifiably
credited for the sparking of widespread interest in time representation and tempo-
ral reasoning in the AI community are Allen’s interval-based temporal logic [8],
Kowalski and Sergot’s Event Calculus (EC) [228] and Dean and McDermott’s Time
Map Manager (TMM) [117]. None of these general theories of time was developed
with the purpose of supporting knowledge-based problem solving, let alone medi-
cal problem solving. Hence it comes as no surprise that in their basic form, none
of these adequately supports the identified requirements for medical temporal rea-
soning discussed above (see Table 2.1). As a matter of fact various extensions of
Allen’s logic and the event calculus have been applied to medical problems with
lesser or greater success; some of these approaches are mentioned in the sequel.
Such attempts resulted in revealing the rather limited expressivity of these theories
with respect to medical problems. Their widespread adoption is in fact attributed
to their relative simplicity. However, their lack of structuredness both with respect
to a model of time as well as a model of occurrences, but more importantly their
very limited support for the critical process of temporal data abstraction, renders
their applicability in the context of medical problems at large, non viable. Below
we quote some of the criticisms of the EC that was expressed by Chittaro and Do-
jat [70] in their attempt to apply this general theory of time to patient monitoring.
In the EC a change in a property is the effect of an event. In real-life a symptom
may be self-limiting where no event is required to terminate its existence. The de-
signers went around this problem by introducing so-called “ghost” events. Another
limitation encountered was that only instantaneous causality could be expressed. So
delayed effects or effects of a limited persistence could not be expressed. The lim-
ited support for temporal data abstraction, the lack of multiple granularities as well
as the lack of any vagueness in the expression of event occurrences, are also pointed
out as issues of concern regarding the expressivity of the EC with respect to the
realities of medical problems.

To illustrate further the points of criticism raised, we try to represent some med-
ical knowledge in terms of these general theories. The medical knowledge in ques-
tion describes (in a simplified form) the skeletal dysplasia (SpondyloEpiphyseal
Dysplasia Congenital: SEDC), where a skeletal dysplasia is a generalized abnor-
mality of the skeleton. This knowledge is given below:

“SEDC presents from birth and can be lethal. It persists throughout the lifetime of the pa-
tient. People suffering from SEDC exhibit the following: short stature, due to short limbs,
from birth; mild platyspondyly from birth; absence of the ossification of knee epiphyses at
birth; bilateral severe coxa-vara from birth, worsening with age; scoliosis, worsening with
age; wide triradiate cartilage up to about the age of 11 years; pear-shaped vertebral-bodies
under the age of 15 years; variable-size vertebral-bodies up to the age of 1 year; and re-
tarded ossification of the cervical spine, epiphyses, and pubic bones.”

The text given in italic font refers to time, directly or indirectly.
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Table 2.1 Evaluation of General Theories of Time Against Medical Temporal Requirements. key:
X - does not support; (V) - supports partly; V - supports

Allen’s Time-
Interval Algebra

Kowalski & Sergot’s
Event Calculus

Dean & McDer-
mott’s Time-Token
Manager

multiple conceptual temporal
contexts

X X X

multiple granularities X X X
absolute existences X V V
relative existences V X (V)
absolute vagueness X X V
relative vagueness V X X
duration X V V
point existences X V V
interval existences V V V
periodic occurrences X X X
temporal trends X X X
temporal patterns (V) X (V)
structural relations (temporal
composition)

X X X

temporal causality (V) (V) (V)

The temporal primitive of Allen’s interval-based logic is the time interval, and
eight basic relations (plus the inverses for seven of these) are defined between time
intervals. The other primitives of the logic are properties (static entities), processes
and events (dynamic entities), which are respectively associated with predicates
holds, occurring and occur as already discussed:

holds(p, t)⇐⇒ (∀t′in(t′, t) =⇒ holds(p, t′))
occurring(p, t) =⇒∃t′in(t′, t)∧occurring(p, t′)
occur(e, t)∧ in(t′, t) =⇒¬occur(e, t′)

The logic covers two forms of causality, event and agentive causality. Allen’s logic
is a relative theory of time, where time is structured as a dense time line. In order to
represent the SEDC knowledge in terms of Allen’s logic we need to decide which
of the entities correspond to events, which to properties, and which to processes.
The relevant generic events are easily identifiable. These are: birth(P), age1yr(P),
age11yrs(P), age15yrs(P) and death(P) which mark the birth, the becoming of 1
year of age, etc of some patient P. Deciding whether to model SEDC and its man-
ifestations as properties or processes is not immediately apparent. In the following
representation the distinction into processes and properties is decided on a rather ad
hoc basis:

occurring(S EDC(P), I) =⇒ occur(birth(P),B)∧occur(age1yr(P),O)∧
occur(age11yrs(P),E)∧occur(age15yrs(P),F)∧occur(death(P),D)∧
started-by(I,B)∧ f inished-by(I,D)∧holds(stature(P, short), I)∧
holds(ossi f ication(P,knee-epiphyses,absent),B)∧
occurring(coxa-vara(P,bilateral-severe,worsening), I)∧
occurring(scoliosis(P,worsening), I)∧
holds(triradiate-cartilage(P,wide),W)∧ started-by(W,B)∧ f inished-by(W,E)∧
holds(vertebral-bodies(P, pear-shaped),F′)∧ started-by(F′,B)∧be f ore(F′,F)∧
holds(vertebral-bodies(P,variable-size),V)∧ started-by(V,B)∧ f inished-by(V,O)∧



32 2 Temporal Modeling and Temporal Reasoning

occurring(ossi f ication(P,cervical-spine, poor), I)∧
occurring(ossi f ication(P,epiphyses,retarded), I)∧
occurring(ossi f ication(P, pubic-bones,retarded), I)

In this formalization, a relative representation has been “forced” on absolute oc-
currences. The specified events are not consequences of the occurrence of SEDC;
their role is to demarcate the relevant intervals. For this (disorder) representation
to be viable, the implication should either be temporally screened against the par-
ticular patient in order to remove future or non-applicable consequences, or simply
such happenings should be assumed to be true by default. A particular limitation of
any relative theory of time is inability to adequately model the derivation of tempo-
ral trends, or the derivation of delays or prematurity with respect to the unfolding
of some process, since the notion of temporal distance which is inherently relevant
to both types of derivation is foreign to such theories of time. A statement about
a trend, delay, prematurity, etc is a kind of summary statement for a collection of
happenings over a period of time. Another limitation of relative theories of time is
inability to model absolute vagueness. In the above representation the widening of
the triradiate cartilage is expected to hold exactly up to the occurrence of the event
“becoming 11 years of age” and also it is not possible to delineate a margin for the
termination of the property “pear-shaped vertebral bodies”; instead its termination is
expressed in a relative way by saying that this happens before the event “becoming
15 years of age” happens, which does not capture the intuitive meaning of the given
manifestation.

The temporal primitive of Kowalski and Sergot’s EC is the event. Events are
instantaneous happenings which initiate and terminate periods over which properties
hold. A property does not hold at the time of the event that initiates it, but does
hold at the time of the event that terminates it. Default persistence of properties is
modeled through negation-as-failure. Causality is not directly modeled, although a
rather restricted notion of causality is implied, e.g. an event happening at time t
causes the initiation of some property at time (t+1) and/or causes the termination of
some (other) property at time t. The calculus can be applied both under a dense or a
discrete model of time. The EC representation of the SEDC knowledge consists of
a number of clauses like the following:

initiates(birth(P),ossi f ication(P,knee-epiphyses,absent), t)⇐=

happens(birth(P), t)∧holds(S EDC(P), t)

initiates(birth(P), stature(P, short), t)⇐=

happens(birth(P), t)∧holds(S EDC(P), t)

terminates(death(P), stature(P, short), t)⇐=

happens(death(P), t)∧holds(S EDC(P), t)

initiates(birth(P),coxa-vara(P,bilateral-severe,worsening), t)⇐=

happens(birth(P))∧holds(S EDC(P), t)

terminates(age15yrs(P),vertebral-bodies(P, pear-shaped), t)⇐=

happens(age15yrs(P), t)∧holds(S EDC(P), t)

Many of the criticisms discussed above with respect to Allen’s logic apply to
the EC as well. Properties in the EC are analogous to Allen’s properties. They are
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essentially ‘static’ entities. Evolving situations such as temporal trends, or retarda-
tion in the execution of some process, or more generally continuous change, cannot
be adequately modeled within pure EC. For example, the above clause concerning
coxa-vara talks about some worsening being initiated, and also, based on the vari-
ous axioms of the EC, it can be inferred that the worsening holds at every instant
of time. What is initiated is “bilateral severe coxa-vara” while the worsening of this
condition is a kind of meta-level inference on the continuous progression of this
condition. Furthermore, absolute vagueness is not addressed, and as with Allen’s
logic, the SEDC knowledge is not represented as an integral entity but as a sparse
collection of ‘independent’ happenings.

The temporal primitive of Dean and McDermott’s TMM is the point (instant).
The other temporal entity is the time-token that is defined to be an interval together
with a (fact or event) type. A time-token is a static entity. It cannot be structurally an-
alyzed and it cannot be involved in causal interactions. A collection of time-tokens
forms a time map. This is a graph in which nodes denote instants of time associated
with the beginning and ending of events and arcs describe relations between pairs
of instants. This ontology can be applied both under a dense or a discrete model of
time. Below we represent part of the SEDC knowledge as a time map. The gran-
ularity used is years and the reference point (denoted as *ref*) is birth. The first
argument of the time-token predicate is the (fact or event) type and the second is the
interval. Predicate elt expresses margins (bounds) for the beginnings and endings of
intervals, with respect to *ref*.

(time-token(S EDC, present)I)
(time-token(coxa-vara,bilateral-severe)C)
(time-token(coxa-vara,worsening)C′)
(time-token(ossi f ication,epiphyses,retarded)E)
(time-token(triradiate-cartilage,wide)W)
(time-token(vertebral-bodies, pear-shaped)V)
.........
(elt(distance(begin C) *re f *)0,0)
(elt(distance(end C) *re f *), *pos-in f * *pos-in f *)
(elt(distance(begin C′) *re f *)?,?)
(elt(distance(end C′) *re f *)?,?)
(elt(distance(begin W) *re f *)0,0)
(elt(distance(end W) *re f *)10,11)
(elt(distance(begin V) *re f *)0,0)
(elt(distance(end V) *re f *)?,14)
(elt(distance(begin E) *re f *)?,?)
(elt(distance(end E) *re f *)?,?)
.........

Again the SEDC process per se and its manifestations are represented as inde-
pendent occurrences. The expression of absolute temporal vagueness is supported
(see instances of predicate elt above), but no mechanism for translating qualitative
expressions of vagueness into the relevant bounds based on temporal semantics of
properties is provided. In the above representation “up to about the age of 11 years”
is translated, in an ad hoc way, to the margin (10 11) while for “under the age of
15 years” it is not easy to see what the earliest termination ought to be. The points
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raised above regarding the representation of trends, process retardations, etc., ap-
ply here as well. Again this is because the types associated with the tokens capture
either instantaneous events, or static, downward hereditary, properties.

Thus, the important reasoning process of temporal data abstraction is not sup-
ported by any of the three general theories of time considered.

2.5 Temporal Constraints

In the AI community there has been substantial interest in networks of constraints, in
particular in arc and path consistency algorithms, over the past 30 years and many
authors have contributed to the development of the relevant ideas (see for exam-
ple [119, 251, 269, 271]). Generally, the work on consistency algorithms focuses on
computational matters and not so much on the constraints themselves. As such,

the constraints used are often of a relatively simple form, such as ranges for the
temporal distances concerned. In medical tasks such as clinical diagnosis, one needs
to address more complex forms of temporal constraints. For example, simple ranges
capture uncertainty but in a rather categorical or discrete way. A simple range can-
not model the fuzziness that often arise in clinical domains, such as when different
ranges with varying degrees of typicality are required. Furthermore, clinical tem-
poral constraints could be of mixed types and more importantly they could involve
different granularities.

In this section we define an abstract structure for the representation of tempo-
ral constraints. In Chapter 6 we discuss particular instantiations of this structure
of relevance to clinical diagnosis. The abstract structure, referred to as an Abstract
Temporal Graph, or ATG for short, on one hand places the different types of con-
straints within the same, and thus unifying, framework and on the other hand enables
the analysis and differentiation of the various types of constraints. By viewing tem-
poral constraints in an abstract and more holistic way, it is possible to adopt, and
appropriately adapt, well known constraint consistency algorithms from the general
literature. Such algorithms can be further refined for particular instantiations of the
abstract structure.

The problems we wish to address in this section are the following:

1. Checking the consistency of a set of constraints.
2. Deciding the satisfiability of some constraint with respect to a set of constraints

that are assumed to be mutually consistent.

The first problem concerns the validation of the temporal consistency of a body
of knowledge (e.g. the knowledge comprising the model of some disorder), or a set
of data (e.g. the data on some patient). The second problem concerns the evaluation
of the temporal consistency of some hypothesis against the evidence.
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Abstract Temporal Graph

An Abstract Temporal Graph (ATG) is a directed graph whose nodes represent tem-
poral entities (events, occurrences, etc.) and its arcs are labeled with the possible
temporal constraints between the given pairs of nodes.

Let C be the domain of binary temporal constraints. The elements of C are mutu-
ally exclusive; only one of these can give the relationship that actually holds between
the existence of one temporal entity and that of another temporal entity. C is either a
finite or an infinite set. At the general level of discussion we consider the elements
of C to be abstract entities processed by the following access functions:

1. id : C×C→ {true, f alse}
Function id returns true only if its arguments are identical.

2. inverse : C→ C
Every element in C has an inverse that is also an element of C; hence the domain
of constraints is considered symmetrical. For example the inverse of before is af-
ter and of 1 day (meaning 1 day before) is −1 day (meaning 1 day after). Function
inverse returns the inverse of its argument. Furthermore, inverse(inverse(c)) = c.

3. transit : C×C→ 2C

The arguments of function transit refer to three (normally distinct) temporal en-
tities, say ni,n j and nk; the first argument, cik, represents the constraint from ni
to nk and the second, ck j, the constraint from nk to n j. The function returns the
disjunctive constraint from ni to n j, i.e. the transitivity of the given (atomic) con-
straints.

In addition, special constant self ref denotes the element of C that gives the
constraint of any temporal entity with itself, e.g. equal or 0 days, etc. Any self-
referencing arc in an ATG would have as its label the set {self ref}. Furthermore,
inverse(self ref) = self ref.

A more formal definition of an ATG is now given.

Definition 1 — An Abstract Temporal Graph (ATG) is a graph consisting of a finite
set of nodes, n1,n2, ....nm, denoting temporal entities (of the same type), and a finite
set of directed arcs. A directed arc from ni to n j is labeled with a set of temporal
constraints, tci j ⊆ C, denoting a disjunctive constraint from ni to n j. An ATG has
access functions match and propagate for processing disjunctive constraints.

1. match : 2C×2C→ 2C

Function match returns the common elements between the two disjunctive con-
straints, in other words their intersection. If the function returns the empty set,
denoting a complete mismatch between the argument constraints (none of the
arguments is the empty set), a conflict is signalled.

match(Ci,C j)
R← {}
for ci ∈Ci do

for c j ∈C j do
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if id(ci,c j) then R← R∪{c j}

return R

2. propagate : 2C×2C→ 2C

Function propagate returns the transitivity of its argument constraints that re-
spectively represent the pairwise (disjunctive) constraints between three (nor-
mally distinct) temporal entities.

propagate(Ci,C j)
R← {}
for ci ∈Ci do

for c j ∈C j do
R← R∪ transit(ci,c j)

return R

If in an ATG, label tci j has only one element, there is no uncertainty (from the
perspective of C) as to the relationship from ni to n j. If however tci j = C, there is
complete ignorance of this relationship. Unconnected nodes in an ATG can always
be connected via arcs with labels set to C.

There are two extreme cases. One is when for every pair of nodes, ni and n j, tci j
is a singleton. This is the case where there is complete temporal knowledge and no
uncertainty whatsoever (always with respect to C). This is what we strive to reach,
as in reality there is only one possible scenario. The other extreme case is when
for every pair of nodes, ni and n j, tci j = C. This is the case of complete ignorance
regarding temporal information, i.e. everything is unknown or not given and hence
everything is completely temporally unconstrained. In this case there is no point
in connecting the nodes and hence the ATG degenerates into a set of unconnected
nodes.

Definition 2 — A fully connected ATG is an ATG for which every pair of nodes ni
and n j such that i , j is connected in both directions and each connection is labeled
(possibly with the

entire set of constraints, C).

Any ATG can be easily converted to a fully connected ATG, simply by adding
the relevant arcs and labeling them with C. However, inverse arcs are redundant
since their labels can be obtained directly from their counterparts. Hence inverse
arcs may be deleted; which arc is actually deleted from each pair of counter arcs
could be decided on the basis of some ordering of the nodes.

Definition 3 — An ordered ATG is an ATG whose nodes n1,n2, ....,nm form a topo-
logical ordering and for every pair of nodes ni and n j such that i < j (i.e. ni precedes
n j in the topological ordering), there is a labeled connection from ni to n j. Pairs of
nodes, ni,n j, such that i ≥ j are not connected. The (m− 1) arcs connecting nodes,
that are consecutive under the topological ordering, i.e. the arcs from ni to ni+1, for
i = 1, ...,m−1, are referred to as basic arcs because each of them represents the sole
path between the given pairs of nodes.
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Fig. 2.4 Abstract Temporal Graphs

If one of the nodes in an ATG denotes now, presumably this node will either be
the first or the last in the chosen topological ordering of the nodes, so that either it
points to all other nodes or it is pointed by all other nodes.

An ATG can be converted to an ordered ATG, by adding any missing connections
in the specified direction and deleting any connections in the opposite direction.
Figure 2.4 shows a general ATG and its fully connected and ordered versions, where
the ordering of the nodes is n1,n2,n3, and n4. The arc labels are omitted in the figure.
When an arc from ni to n j is added, its label is set to tc−1

ji (see below), provided there
is an arc from n j to ni, otherwise the label is set to C. No self-referencing arcs are
included.

A fully connected ATG can be reduced to its ordered version by deleting the
inverse arcs according to the chosen ordering of its nodes. If m is the number of
nodes, the fully connected ATG has m(m− 1) arcs (since self-referencing arcs are
excluded) while the ordered ATG has half this number of nodes. Alternatively we
can say that in the ordered ATG, (m−1) arcs emanate from n1, (m−2) from n2, ...,
and 1 from nm−1, giving a total of m(m− 1)/2 arcs. Hence in the ordered ATG, the
first node, n1, points to n2, ...,nm, and no node points to it, an intermediate node, ni,
is pointed at by n1, ...,ni−1 and points to ni+1, ...,nm for i = 2, ...,m− 1 and the last
node, nm, is pointed at by every other node and points to none.

If in some ATG, a pair of nodes, ni,n j, is connected in both directions, the la-
bels of the opposite arcs, tci j and tc ji, must be consistent. Consistency can be in-
terpreted in a strict sense as match(tci j, tc−1

ji ) = tci j, or in a more liberal sense as
match(tci j, tc−1

ji ) , {}, where tc−1 = {inverse(c) | c ∈ tc} gives the inverse of tc in
C; in particular C−1 = C. The strict interpretation requires complete match, while
the liberal one is satisfied with a match on just one constraint and thus a conflict
is raised only if there is no match. In the following algorithms we use the liberal
interpretation1.

1 An alternative interpretation is to use the union of the labels, i.e., tci j← tci j∪ tc−1
ji . This interpre-

tation extends the possibilities.
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Definition 4 — A minimal ATG is an ordered ATG whose arcs have labels that
cannot be further reduced.

If in a minimal ATG, all the arcs involving some node ni are labeled by the entire
set of constraints, C, ni is temporally unconstrained with respect to all other nodes
and as such it represents an unconnected component. If all nodes are temporally
unconstrained, the ATG degenerates to the extreme case of complete temporal ig-
norance mentioned above. Likewise if some arc in a minimal ATG has label {}, a
conflict should be raised since all possible temporal relations between the given pair
of temporal entities have been refuted.

Starting from a general ATG, the goal is to turn it into its minimal form by prop-
agation and matching of constraints. Below we examine some algorithms for this
task.

The first algorithm, minimize f ull, extends the general ATG to its fully connected
version (including self-referencing arcs as well, the presence of which simplifies
the expression of the algorithm), then performs the propagation and matching of
constraints and finally deletes the inverse and self-referencing arcs to obtain the
ordered ATG, with minimal constraints. The algorithm is an adaptation of the well
known Floyd-Warshall algorithm [119].

minimize full
(* add connections *)
for i = 1 to m do

for j = 1 to m do
if i = j
then add a self-referencing arc at node ni

with label set to {self ref}
else if there is an arc from node ni to node n j

then do nothing
else if there is an arc from node n j to node ni

then add an arc from ni to n j with label set to tc−1
ji

else add an arc from node ni to node n j with label set to C
(* propagate constraints *)
repeat

for k = 1 to m do
for i = 1 to m do

for j = 1 to m do
(* critical step *)
tci j← match(tci j, propagate(tcik, tck j))
if tci j = {} a conflict is raised

until no arc label is reduced (* i.e. nothing changes *)
(* remove self-referencing and inverse arcs *)
for i = 1 to m do

for j = i to m do
if i = j remove self-referencing arc at node ni
else do
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tci j← match(tci j, tc−1
ji )

if tci j = {} a conflict is raised
else delete arc from n j to ni

The critical step of the algorithm is taken to be the combined application of func-
tions propagate and match with respect to triples of nodes, namely match(tci j,
propagate(tcik, tck j)), which is executed m3 times, m being the number of nodes,
at each round of the repeat cycle. The number of executions of the critical step can
be reduced if the minimization of constraints is done, not with respect to the fully
connected ATG, but with respect to the ordered ATG. Performing the minimization
on the fully connected ATG, in some sense defeats the purpose of having the order-
ing which is not just to reduce the space complexity by halving the number of arcs,
but also to reduce the speed of execution of the minimization process.

The second algorithm, minimize ordered, first converts the general ATG to its
ordered version and then does the minimization by propagating and matching con-
straints with respect to triples of distinct nodes. In this algorithm the critical step is
executed (m3−3m2 +2m)/6 times, at every round of the repeat cycle. Thus although
both algorithms have the same complexity, namely O(rm3), where r is the number
of times the repeat cycle is executed, in real terms the critical step will be executed
substantially fewer times in the second algorithm, assuming that m is of the order
of tens rather than hundreds.2 However, there is a point of caution. In the fully con-
nected ATG, there are at least two distinct paths between every pair of nodes and
the propagation is bidirectional. In the ordered ATG the propagation is unidirec-
tional and thus the labels of the basic arcs (recall that a basic arc represents the sole
path between the given pair of nodes — see Definition 3) stay invariant under this
propagation. Basic arcs influence (except the last in sequence), but are not influ-
enced by the propagation. Thus if a basic arc has label C prior to the execution of
the minimization process, it will continue to have this label at the end of it. In other
words nothing more is learned about that arc. Thus the results of the two algorithms
are not equivalent,3 since the first does a complete minimization but not necessarily
the second, unless the labels of the basic arcs are given in minimal form to start
with.

minimize ordered
let n1,n2, ...,nm be the specified ordering of the nodes
(* covert to ordered form *)
for i = 1 to (m−1) do

for j = i + 1 to m do
if nodes ni and n j are unconnected

then add an arc from ni to n j with label set to C
else if there is only an arc from ni to n j

2 This assumption is not unrealistic, especially when disorders are modeled separately in terms of
their own temporal graphs.
3 In [119] two constraint networks are equivalent if they give the same solution set, where a solution
set is the set of all feasible scenarios. If the arc labels are minimal, every temporal relationship
included should participate in at least one feasible scenario.
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then do nothing
else if there is only an arc from n j to ni

then add an arc from ni to n j with label set to tc−1
ji

and delete the arc from n j to ni
else do (* there is a bidirectional connection *)

tci j← match(tci j, tc−1
ji )

if tci j = {} a conflict is raised
else delete arc from n j to ni

(* propagate constraints *)
repeat

(* repeat for every intermediate node in the ordering *)
for k = 2 to (m−1) do

(* repeat for every incoming arc to node nk *)
for i = 1 to (k−1) do

(* repeat for every outgoing arc from node nk *)
for j = (k + 1) to m do

(* critical step *)
tci j← match(tci j, propagate(tcik, tck j))

until no arc label is reduced (* i.e. nothing changes *)

Let us now return to the problems given at the beginning of the section.

Checking the Consistency of a Set of Constraints

The solution of the first problem, checking the consistency of a set of constraints
is given by algorithm minimize full or minimize ordered. If during the execution
of these algorithms, function match returns an empty set denoting a complete mis-
match, a conflict is raised. Complete mismatch means that the disjunctive constraint
relating two temporal entities, obtained via some route in the ATG, is in complete
disagreement with the constraint, for the same pair of entities, obtained via another
route in the ATG. In other words all possible temporal relations between the two en-
tities have been refuted. The minimization algorithms detect the presence of some
inconsistency but do not say which of the (original) constraints are responsible for
it.4

We can sketch an algorithm for determining the possible causes of the inconsis-
tency, as follows. Its aim is to identify minimal subsets of arc labels, each of which
when omitted results in the resolution of the conflict. Omission of a label means that
the particular arc label is replaced with C, which says that “If this is an erroneous la-
bel causing a conflict, it should be replaced with the label of complete ignorance.”.
First the algorithm assumes that a single label is the cause. Each label that is not
equal to C is omitted in turn, and every time the minimization algorithm is ran to
see if the omission has erased the conflict. If no single label is responsible for the

4 There could be multiple possibilities as to the cause of the inconsistency; the identification of the
actual cause amongst them may require external means.
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conflict, the next step is to omit pairs of labels (not equal to C) in turn, and so forth.
This is a complex algorithm. If k is the number of labels, originally not equal to C, in
the worst case all these labels will be mutually inconsistent, meaning that the mini-
mization algorithm will be ran 2k −1 times. Obviously the use of minimize ordered
instead of minimize full reduces the speed of execution, not only because this algo-
rithm executes the critical step fewer times, but also because k would be expected to
be half that for the fully connected ATG.

Deciding the Satisfiability of Some Constraint

The solution of the second problem, deciding the satisfiability of some constraint
with respect to a set of constraints that are assumed to be mutually consistent, is
as follows. It is based on the assumption that the queried constraint and the ATG
representing the set of constraints are of the same form, i.e. the temporal entities are
of the same type and the domain of constraints, C, is the same. In most applications
of this problem, the queried constraint would describe a datum about the patient and
the ATG would represent the model of some disorder.

Let ni and n j be the temporal entities implicated in the queried constraint, and
let qc be the (disjunctive) constraint itself (from ni to n j). The temporal entities, ni
and n j, could respectively denote the start and end of some symptom, or the starts
of two distinct symptoms, etc. We distinguish the following cases:

1. Both ni and n j appear as nodes in the ATG.
2. Only one or none of these temporal entities appears as a node in the ATG.

In the first case, the solution is given as follows:

convert the ATG to minimal form
if there is an arc from ni to n j in the ATG
then if match(tci j,qc) , {}

then the queried constraint, qc, is satisfied
else it is not satisfied

else if match(tc ji,qc−1) , {}
then the queried constraint, qc, is satisfied
else it is not satisfied

In the second case, the liberal approach is to say that the queried constraint is
satisfied by default (especially if the sentence denoted by the queried constraint
expresses normality), and the strict approach is to say that it is not satisfied (except
again when the queried constraint expresses normality). Which approach is taken
would depend on whether satisfiability is interpreted as absence of explicit conflict,
or as explicit consistency.
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Summary

In this chapter we have overviewed the fundamental notions of temporal modeling
and temporal reasoning. First, we discussed the modeling of basic temporal con-
cepts, starting with the modeling of time and moving to the modeling of temporal
entities, i.e., objects/facts having some temporal dimension. A model of time should
take into consideration the following aspects: the time domain, the representation of
instants and intervals, the structure of time (linear, branching, or circular), the repre-
sentation of absolute and relative times and the representation of relations. Tempo-
ral granularity and indeterminacy are also important aspects when modeling time.
Analogous considerations apply to the modeling of temporal entities and of their
occurrences; different kinds of temporal entities were discussed as well as their as-
sociation with the time domain and their semantics. Then, we discussed temporal
reasoning starting with listing the required functionalities for medical temporal rea-
soning and moving to the presentation of the most influential ontologies and models
for temporal reasoning (tense logics, time specialist, situation calculus, event cal-
culus, interval-based and point-based temporal logics). In order to demonstrate the
multiple aspects of medical temporal reasoning, a simple medical example was an-
alyzed against three well-known general theories of time. We ended the chapter by
discussing temporal constraints through an abstract representation, i.e. the abstract
temporal graph. The main purpose of this chapter was to acquaint the reader with
the necessary basic background with respect to temporal modeling and temporal
reasoning, to facilitate the coverage of the remaining chapters of this book.

Bibliographic Notes

Apart from the specific references that are mentioned in this chapter, additional
discussion on temporal logic is given in Rescher and Urquhart’s excellent early
work in temporal logic [330]. The AI perspective has been summarized well by
Shoham [376, 377]. An overview of temporal logics in the various areas of computer
science, and of their applications, was compiled by Galton [149]. Van Benthem’s
comprehensive book [414] presents an excellent view of different ontologies of time
and their logical implications.

Problems

2.1. Using Prior’s notation, we can write the two following predicates:
P(∃ patient diagnosis(patient, tuberculosis))
∃ patient P(diagnosis(patient, tuberculosis))
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1. Explain in your own words exactly what each expression means, and why is their
meaning different in Prior’s logic. Create two convincing examples to demon-
strate that there might be two mutually exclusive interpretations.

2. Explain why the distinction between the two expressions is meaningless in stan-
dard First Order Logic (predicate calculus).

3. Write, using Tense Logic notation, an expression that means “Patient Jones will
have had the operation.” Use expressions such as “procedure(Jones, Operation)”.

2.2. Explain how, using only the MEETS relation between temporal intervals, and
one or more interval variables and existential quantifiers, we can define the follow-
ing relations:

1. The relation A DURING B
2. The relation A OVERLAPS B
3. What is the computational advantage of using 13 different temporal relations as

opposed to only one relation? Think about applications such as theorem proving,
planning, temporal queries, storage and retrieval of data.

2.3. Create a set of situation calculus axioms to express the following facts:

1. The effect of the action of entering the hospital room by a patient, when the pa-
tient is at the door, is that the patient is inside the hospital room. Use expressions
such as At(Door, Patient), Enter(Patient, HospitalRoom), Within(HospitalRoom,
Patient).

2. Explain the semantics of the predicates and/or functions you are using in terms
of sets of states.

3. Can we express in the situation calculus the fact that the patient is looking around
while moving from one room to another one? How, or Why?

2.4. What is the representational advantage of a reified logic, in which temporal
arguments are explicitly separated from the rest of the predicate?

2.5. Consider the following 4 propositions:
i) “Mark had a complete removal of the appendix on January 15 1988 between 6 to
9 PM.”
ii) “Joe has earned 3000 Euros during February 1999.”
iii) “Mary had mild anemia during March to May 1997.”
iv) “Peter was occasionally using insulin shots during July and August 1995.”

1. Indicate in a small table what are the temporal-proposition properties of each
proposition with respect to the properties downward-hereditary (dh), upward-
hereditary (uh), gestalt (g), concatenable (c), and solid (s) as defined by Shoham.

2. What is the ontological type of each proposition according to Allen?
3. What is the ontological type of each proposition according to McDermott?

2.6. Study in more detail the classical approaches to temporal reasoning (Allen’s
time-interval logic, Event Calculus, etc.) together with Shoham’s criticism. Analyze
similarities and differences between these approaches and examine their appropri-
ateness with respect to some medical domain and task you are familiar with.
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2.7. Implement the notion of an ATG as an abstract data type, together with the
discussed minimization algorithms. Apply your code to some example temporal
graphs (see also Chapter 6).
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