Chapter 6
Survey of Storage and Fault Tolerance Strategies
Used in Cloud Computing

Kathleen Ericson and Shrideep Pallickara

6.1 Introduction

Cloud computing has gained significant traction in recent years. Companies such as
Google, Amazon and Microsoft have been building massive data centers over the
past few years. Spanning geographic and administrative domains, these data centers
tend to be built out of commodity desktops with the total number of computers
managed by these companies being in the order of millions. Additionally, the use
of virtualization allows a physical node to be presented as a set of virtual nodes
resulting in a seemingly inexhaustible set of computational resources. By leveraging
economies of scale, these data centers can provision cpu, networking, and storage at
substantially reduced prices which in turn underpins the move by many institutions
to host their services in the cloud.

In this chapter we will be surveying the most dominant storage and fault toler-
ant strategies that are currently being used in cloud computing settings. There are
several unifying themes that underlie the systems that we survey.

6.1.1 Theme 1: Voluminous Data

The datasets managed by these systems tend to be extremely voluminous. It is not
unusual for these datasets to be several terabytes. The datasets also tend to be gen-
erated by programs, services and devices as opposed to being created by a user one
character at a time. In 2000, the Berkeley “How Much Information?” report (Lyman
& Varian, 2000) reported that there was an estimated 25-50 TB of data on the web.
In 2003 ((Lyman & Varian, 2003), the same group reported that there were approx-
imately 167 TB of information on the web. The Large Hadron Collider (LHC) is

K. Ericson and S. Pallickara (<)
Department of Computer Science, Colorado State University, Fort Collins, CO, USA
e-mails: {ericson; shrideep} @cs.colostate.edu

B. Furht, A. Escalante (eds.), Handbook of Cloud Computing, 137
DOI 10.1007/978-1-4419-6524-0_6, © Springer Science+Business Media, LLC 2010

138 K. Ericson and S. Pallickara

expected to produce 15 PB/year (Synodinos, 2008). The amount of data being gen-
erated has been growing on an exponential scale — there are growing challenges not
only in how to effectively process this data, but also with basic storage.

6.1.2 Theme 2: Commodity Hardware

The storage infrastructure for these datasets tend to rely on commodity hard drives
that have rotating disks. This mechanical nature of the disk drives limits their per-
formance. While processor speeds have grown exponentially disk access times have
not kept pace. The performance disparity between processor and disk access times
is in the order of 14,000,000:1 and continues to grow (Robbins & Robbins).

6.1.3 Theme 3: Distributed Data

A given dataset is seldom stored on a given node, and is typically distributed over a
set of available nodes. This is done because a single commodity hard drive typically
cannot hold the entire dataset. Scattering the dataset on a set of available nodes
is also a precursor for subsequent concurrent processing being performed on the
dataset.

6.1.4 Theme 4: Expect Failures

Since the storage infrastructure relies on commodity components, failures should
be expected. The systems thus need to have a failure model in place that can ensure
continued progress and acceptable response times despite any failures that might
have taken place. Often these datasets are replicated, and individual slices of these
datasets have checksums associated with them to detect bit-flips and the concomitant
data corruptions that often taken place in commodity hardware.

6.1.5 Theme 5: Tune for Access by Applications

Though these storage frameworks are built on top of existing file systems, the
stored datasets are intended to be processed by applications and not humans. Since
the dataset is scattered on a large number of machines, reconstructing the dataset
requires processing the metadata (data describing the data) to identify the precise
location of specific portions of the datasets. Manually accessing any of the nodes to
look for a portion of the dataset is futile since these portions have themselves been
modified to include checksum information.

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 139
6.1.6 Theme 6: Optimize for Dominant Usage

Another important consideration in these storage frameworks is optimizing the most
general access patterns for these datasets. In some cases, this would mean optimiz-
ing for long, sequential reads that puts a premium on conserving bandwidth while
in others it would involve optimizing small, continuous updates to the managed
datasets.

6.1.7 Theme 7: Tradeoff Between Consistency and Availability

Since these datasets are dispersed (and replicated) on a large number of machines
accounting for these failures entails a tradeoff between consistency and availability.
Most of these storage frameworks opt for availability and rely on eventual con-
sistency. This choice has its roots in the CAP theorem. In 2000, Brewer theorized
that it was impossible for a web service to provide full guarantees of Consistency,
Availability, and Partition-tolerance (Brewer, 2000). In 2002, Seth Gilbert and
Nancy Lynch at MIT proved this theorem (Gilbert & Lynch, 2002). While Brewer’s
theorem was geared towards web services, any distributed file system can be viewed
as such. In some cases, such as Amazon’s S3, it is easier to see this connection than
others. Before delving deeper, what do we mean by Consistency, Availability, and
Partition-tolerance?

Having a consistent distributed system means that no matter what node you con-
nect to, you will always find the same exact data. Here, we take availability to mean
that as long as a request is sent to a node that has not failed it will return a result.
This definition has no bound on time limit, it simply states that eventually a client
will get a response. Last, there is partition tolerance. A partition occurs when one
part of your distributed system can no longer communicate with another part, but
can still communicate with clients. The simplest example of this is in a system with
2 nodes, A and B. If A and B can no longer communicate with each other, but
both can and do keep serving clients, then the system is partition tolerant. With a
partition-tolerant system, nothing short of a full system failure keeps the system
from working correctly.

As a quick example, let’s look at a partition-tolerant system with two nodes A
and B. Let’s suppose there is some network error between A and B, and they can
no longer communicate with each other, but both can still connect to clients. If a
client were to write a change a file v hosted on both A and B while connected to B,
the change would go through on B, but if the client later connects to A and reads
v again, the client will not see their changes, so the system is no longer consistent.
You could get around this by instead sacrificing availability — if you ignore writes
during a network partition, you can maintain consistency.

In this chapter we will be reviewing storage frameworks from the three dominant
cloud computing providers — Google, Amazon and Microsoft. We profile each stor-
age framework along dimensions that include inter alia replication, failure model,
replication and security. Our description of each framework is self-contained,

140 K. Ericson and S. Pallickara

and the reader can peruse these frameworks in any order. For completeness we
have included a description of the xFS system (developed in the mid-90s), which
explored ideas that have now found its way into several of the systems that we
discuss.

6.2 xFS

Unlike the other systems mentioned here, XFS never made it to a production envi-
ronment. XFS is the original “Serverless File System”, and several systems in
production today build upon ideas originally brought up in (Anderson et al., 1996).
xFS was designed to run on commodity hardware, and expected to handle large
loads and multiple users. Based on tracking usage patterns in an NFS system for
several days, one assumption XFS makes is that users other than the creator of the
file rarely modify files.

6.2.1 Failure Model

In xFS, when a machine fails it is not expected to come back online. Upon failure of
a machine, data is automatically shuffled around to compensate for the loss. While
failures are assumed to be permanent, the system was designed to be able to come
back up from a full loss of functionality.

6.2.2 Replication

xFS does not support replication of files. Instead, it supports a RAID approach for
storing data, as outlined in Fig. 6.1. In xFS, servers are organized into stripe groups.
Each stripe group is a subset of the set of data servers. When a client writes to a
file, it is gathered into a write block that is held in the client’s cache. In Fig. 6.1,
there are two clients, each building their own write block. Once the write block is
full, the data is sent to the server group to be written to file. For a server group with
N servers, the file is split into N-1 pieces, and striped in a RAID pattern across all
the servers. The Nth stripe is a parity block that contains the XOR of all the other
pieces, and is shown as a striped block in Fig. 6.1. This parity block will go to the
parity server for the group. This way, if a server is lost, or a piece becomes corrupted
it can be restored. One downside to this approach is that if multiple servers from
a group go down, the data may be permanently lost, and xFS will stop working. In
general, the replication level of a file can never be greater than the number of servers
in the server group.

6.2.3 Data Access

In xFS a client will connect to a system manager, which will look up the appropri-
ate server group, and have the client connect to the server group leader. In general,

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 141

Fig. 6.1 xFS RAID approach vientl, woNent 2,
to storing data

ENENEN
ENN N | B | 7777 R N | N |

\
-]
_

O 3 (=2 @

Stripe Group

this takes about 3 hops (not including the actual transmission of data). Generally,
the system will attempt to move data to be as close to the user as possible (in
many cases, the design expects the client to be running on a machine that is also
acting as a data server), incurring the short term penalty in network traffic of mov-
ing a file for the long term bonus of not needing further interaction with a system
manager.

6.2.4 Integrity

Because of the RAID backend of xFS, data corruption can be detected and repaired
using the parity block computed when data is written. xES also uses this information
to recover missing stripe blocks when a server in a stripe group fails.

6.2.5 Consistency and Guarantees

xFS guarantees read-what-you-wrote consistency, but it also allows users to read
stale data — meaning that the best overall consistency guarantee that it can achieve is
eventual. It is also not clear that the system can effectively handle concurrent writes.
xFS never made it to a production environment, so there was never a strong need to
establish any guarantees governing access times. Additionally, XFS was designed to
handle flux in the number of available servers.

142 K. Ericson and S. Pallickara
6.2.6 Metadata

The main advantage of xFS is its fully dynamic structure. The idea is to be able to
move data around to handle load fluctuations and to increase locality. The system
uses metadata information to help locate all files and put them back together in
order.

6.2.7 Data placement

Managers in xFS try to ensure that data is being held as close to the client access-
ing it as possible—in some cases even shifting the location of data as a client starts
writing to it. While this seems unwieldy, XFS uses a log-based storage method, so
there is not too much of a network hit as data is shifted with a new write closer to
the current client.

6.2.8 Security

xFS was designed to be run in a trusted environment, and it is expected that clients
are running on machines that are also acting as storage servers. It is, however, possi-
ble for XFS to be mounted and accessed from an unsafe environment. Unfortunately,
this is more inefficient and results in much more network traffic. It is also possible
for a rogue manager to start indiscriminately overwriting data that can cause the
entire system to fail.

6.3 Amazon S3

The Simple Storage Service (S3) from Amazon is used by home users, small
businesses, academic institutions, and large enterprises. With S3 (Simple Storage
Service), data can be spread across multiple servers around the US and
Europe (S3-Europe). S3 offers low latency, infinite data durability, and 99.99%
availability.

6.3.1 Data Access and Management

S3 stores data in 2 levels: a top level of buckets and data objects. Buckets are similar
to folders, and can hold an unlimited number of data objects. Each Amazon Web
Services (AWS) account can have up to 100 buckets. Charging for S3 is computed
at the bucket level. All costs levels are tiered, but the basic costs as of January 2010
are as follows: storage costs $0.15/GB/month in the US, $0.165 in N California,
and $0.15/GB/month in Europe; $0.10/GB for uploads (free until July 2010) and

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 143

$0.17/GB for downloads; and $0.01/1,000 PUT, COPY, POST, or LIST operations,
$0.001/10,000 GET and all other operations. Each data object has a name, a blob
of data (up to 5 GB), and metadata. S3 imposes a small set of predefined metadata
entries, and allows for up to 4 KB of user generated {name, value} pairs to be added
to this metadata.

While users are allowed to create, modify, and delete objects in a bucket, S3
does not support renaming data objects or moving them between buckets—these
operations require the user to first download the entire object and then write the
whole object back to S3. The search functions are also severely limited in the cur-
rent implementation. Users are only allowed to search for objects by the name of
the bucket-the metadata and data blob itself cannot be searched.

Amazon S3 supports three protocols for accessing data: SOAP, REST, and
BitTorrent. While REST is most popularly used for large data transfers, BitTorrent
has the potential to be very useful for the transfer of large objects.

6.3.2 Security

While clients use a Public Key Infrastructure (PKI) based scheme to authenticate
when performing operations with S3, the user’s public and private keys are gener-
ated by Amazon and the private key is available through the user’s AWS site. This
means that the effective security is down to the user’s AWS password, which can be
reset through email. Since S3 accounts are linked directly to a credit card, this can
potentially cause the user a lot of problems.

Access control is specified using access control lists (ACL) at both the bucket
and data object level. Each ACL can specify access permissions for up to 100 iden-
tities, and only a limited number of access control attributes are supported: read for
buckets or data objects, write for buckets, and, finally, reading and writing the ACL
itself. The user can configure a bucket to store access log records. These logs contain
request type, object accessed, and the time the request was processed.

6.3.3 Integrity

The inner workings of Amazon S3 have not been published. It is hard to deter-
mine their approach to error detection and recovery. Based on the reported usage
(Palankar, Tamnitchi, Ripeanu, & Garfinkel, 2008), there was no permanent data
loss.

6.4 Dynamo

Dynamo is the back end for most of the services provided by Amazon. Like S3 it is
a distributed storage system. Dynamo stores data in key-value pairs, and sacrifices

144 K. Ericson and S. Pallickara

consistency for availability. Dynamo has been designed to store relatively small files
(~1 MB) and to retrieve them very quickly. A web page may have several services
which each have their own Dynamo instance running in the background — this is
what leads to the necessity of making sure latency is low when retrieving data.

Dynamo uses consistent hashing to make a scalable system. Every file in the
system identified by a key is hashed, and this hash value is used to determine which
node in the system it is assigned to. This hash space is treated as a ring, which is
divided into Q equally sized partitions. Each node (server) in the system is assigned
an equal number of partitions. An example of this can be seen in Fig. 6.2. In this
figure, there are a total of 8 partitions. Nodes A, B, and C are responsible for keeping
copies of all files where the hashed key falls into the striped partition that they
manage.

Fig. 6.2 Dynamo hash ring @

6.4.1 Checkpointing

Dynamo nodes share information via a gossip based protocol. There are no regular
heartbeats sent between the nodes. All communication is pushed by client requests.
If there is no request for data, the nodes do not communicate and do not care if
another node is down. Periodic tests to see if a node is available occur only if a node
is found to be unreachable during a client request.

6.4.2 Replication

With Dynamo, a quorum-like system is used to determine if a read or write was
successful. If enough nodes reply that a write/read was successful, the whole opera-
tion is considered successful — even if not all N replicas are written to or read from.
Dynamo allows the service writer to specify not only N, but R and W as well. R is
the number of successful reads necessary for the whole operation to be successful,
and W is the number of writes. Dynamo will report a successful write if W-1 nodes

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 145

report success, so to make a system that is always up, and will never reject a write,
W can be set to 1. Generally, W and R are both less than N, so that the system can
make progress in the presence of failures. A suggested configuration for Dynamo is
to have R + W > N. A general configuration of (N,R,W) is (3,2,2).

6.4.3 Failures

Dynamo operates under the assumption that hardware failures are expected, and
trades data consistency guarantees for availability. It uses a gossip-based system to
detect failures of nodes. Once a node stops responding, other nodes will eventually
propagate knowledge of the failure. As a design feature, nodes are not considered
removed unless an administrator issues an explicit removal command — this means
the system will gracefully handle transient downtimes. If a coordinator cannot reach
a node for a write, it will simply pass the data on to the next available node in the
hash ring. This will contain an extra bit of metadata that marks it as belonging
elsewhere. Once a node comes back online, this information can be passed back
to it.

If a node is not available, the data presumed to be on that node is not immediately
replicated on another node — this only happens when an administrator explicitly
removes the node via a command. Dynamo is built under the expectation that there
will be many transient failures, so there is no scramble to ensure replication levels
are met when a node stops responding to requests. Because of this, some reads may
fail if R is set equal to N. Once a node has been explicitly removed, all key ranges
previously held by that node are reassigned to other nodes while ensuring that a
given node is not overloaded as a result of this redistribution.

6.4.4 Accessing Data

Dynamo’s gossip-based protocol for node discovery ensures that all nodes know
in one step the exact node to send a read or write request to. There are two main
methods of accessing data: (1) using a dedicated node to handle client requests or
(2) having several dedicated nodes, or coordinators, that process client requests and
forward them to the appropriate nodes. The former approach can lead to unbalanced
network nodes while the latter approach results in a more balanced network and a
lower latency can be assured.

6.4.5 Data Integrity

There is no specific mention of detecting corruptions in data, or how any corre-
sponding error recovery may occur. Since data is stored as a binary object, it may be
left up to the application developers to detect data corruption, and handle any sort

146 K. Ericson and S. Pallickara

of recovery. Reported results in live settings (DeCandia et al., 2007), do not indicate
permanent data loss. Amazon requires regular archival of every system — there is a
chance that this archival data is used for recovery if errors in data are found

6.4.6 Consistency and Guarantees

Dynamo guarantees eventual consistency — there is a chance that not all replications
contain the same data. Due to transient network failures and concurrent writes, some
changes may not be fully propagated. To solve this problem, each object also con-
tains a context. This context contains a version vector, giving the ability to track
back through changes and figure out which version of an object should carry the
most precedence. There are several different schemes for handling this. Dynamo
itself supports several simple schemes, including a last-write-wins method. There
is also an interface that allows developers to implement more complex and data
specific merging techniques. Merging of different object versions is handled on
reads. If a coordinator retrieves multiple versions of an object on a read, it can
attempt to merge differences before sending it to the client. Anything that cannot
be resolved by the coordinator is passed onto the client. Any subsequent write from
that client is assumed to have resolved any remaining conflicts. The coordinator
makes sure to write back the resolved object to all nodes that responded to the object
query.

The only other base guarantee provided by Dynamo is performance geared
towards the 99.99th percentile of users — millisecond latencies are assured. Aside
from this, service developers are allowed to tweak the system to fit the guarantees
necessary for their application through the N, R and W settings.

6.4.7 Metadata

In Dynamo, the object metadata is referred to as context. Every time data is written,
a context is included. The context contains system metadata and other information
specific to the object such as versioning information. There may also be an extra
binary field which allows developers to add any additional information needed to
help their application run. The metadata is not searchable, and only seems to interact
with Dynamo when resolving version conflicts as mentioned above.

6.4.8 Data Placement

According to DeCandia et al. (2007), there are guarantees in place to ensure that
replicas are spread across different data centers. It is likely that Amazon has a par-
ticular scheme that allows Dynamo to efficiently determine the locations of nodes.
An object key is first hashed to find its location on the network ring. Moving around

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 147

the ring clockwise from that point, the first encountered node is where the first copy
of the data is placed. The next N-1 nodes (still moving clockwise) will contain
replicas of the data.

There are no current methods of data segregation in Dynamo — there is simply
a get () and put () interface for developers, and no support for a hierarchical
structure. Each service using Dynamo has its individual instance of it running. For
example, your shopping cart will not be able to access the best seller’s list. On the
other hand, Dynamo has no guarantees that the different instances are not running
on the same machine.

6.4.9 Security

Dynamo has been designed to run in a trusted environment, so there is no structure
in place to handle security concerns. By design, each service that uses Dynamo
has its own separate instance running. Because of this, users do have some sense
of security, as there is some natural separation of data, and one application cannot
access the data of another.

6.5 Google File System

The Google File System (GFS) is designed by Google to function as a backend for
all of Google’s systems. The basic assumption underlying its design is that com-
ponents are expected to fail. A robust system is needed to detect and work around
these failures without disrupting the serving of files. GFS is optimized for the most
common operations — long, sequential and short, random reads, as well as large,
appending and small, arbitrary writes. Additionally, a major goal in designing GFS
was to efficiently allow concurrent appends to the same file. As a design goal,
high sustained bandwidth was deemed more important than low latency in order
to accommodate large datasets.

A GFS instance contains a master server and many chunk servers. The master
server is responsible for maintaining all file system metadata and managing chunks
(stored file pieces). There are usually also several master replicas, as well as shadow
masters which can handle client reads to help reduce load on a master server. The
chunk servers hold data in 64 MB-sized chunks.

6.5.1 Checkpointing

In GFS, the master server will keep logs tracking all chunk mutation. Once a log file
starts to become too big, the master server will create a checkpoint. These check-
points can be used to recover a master server, and are used by the master replicas to
bring a new master process up.

148 K. Ericson and S. Pallickara
6.5.2 Replication

By default, all GFS maintains a replication level of 3. This is, however, a config-
urable trait: “.. .users can designate different replication levels for different regions
of the file namespace” (Ghemawat, Gobioff, & Leung, 2003). For example, a temp
directory generally has a replication level of 1, and is used as a scratch space. The
master server is responsible for ensuring that the replication level is met. This not
only involves copying over chunks if a chunk server goes down, but also removing
replicas once a server comes back up. As a general rule, the master server will try
to place replicas on different racks. With Google’s network setup, the master is able
to deduce the network topology from IP addresses.

6.5.3 Failures

When it comes to failures, GFS always expects the worst. The master server reg-
ularly exchanges heartbeats with the chunk servers. If the master server does not
receive a heartbeat from a chunk server in time, it will assume the server has died,
and will immediately start to spread the chunks located on that server to other
servers to restore replication levels. Should a chunk server recover, it will start to
send heartbeats again and notify the master that it is back up. At this point the mas-
ter server will need to delete chunks in order to drop back down to replication level
and not waste space. Because of this approach, it would be possible to wreak havoc
with a GFS instance by repeatedly turning on and off a chunk server. Master server
failure is detected by an external management system. Once this happens, one of the
master server replicas is promoted, and the master server process is started up on it.
A full restart usually takes about 2 minutes — most of this time is spent polling the
chunk servers to find out what chunks they contain

6.5.4 Data Access

Clients initially contact the master server to gain access to a file, after which the
client interacts directly with the necessary chunk server(s). For a multi terabyte file,
a client can keep track of all chunk servers in its cache. The chunk server directly
interacting with clients is granted a chunk lease by the master server, and is now
known as the primary. The primary is then responsible for ordering any operations
on the data serially. It is then responsible for propagating these changes to the other
chunk servers that hold the chunk. If a client is only looking to read data, it is possi-
ble for the client to go through the shadow master as opposed to the master server. It
is possible for concurrent writes to get interleaved in unexpected ways, or for failed
write attempts to show themselves as repeated data in chunks. GFS assumes that
any application using it is able to handle these possible problems though redundant
data may hurt the efficiency of reads.

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 149
6.5.5 Data Integrity

Each chunk in GFS keeps track of its own checksum information this informa-
tion is unique for each chunk — it is not guaranteed to be the same even across
replicas. Chunk servers are responsible for checking the checksums of the chunks
they are holding. With this, it is possible for the system to detect corrupted files.
If a corrupted chunk is detected, the chunk is deleted, and copied from another
replica.

6.5.6 Consistency and Guarantees

GEFS is built to handle multiple concurrent appends on a single file. It is up to a pri-
mary chunk server to order incoming permutation requests from multiple clients into
a sequential order, and then pass these changes on to all other replicas. Because of
this, it is possible that a client will not see exactly what they wrote on a sequential
read — there is a possibility that permutations from other clients have been inter-
leaved with their own. Google describes this state as consistent but undefined — all
clients will see the same data, regardless of which replica is primary, but mutations
may be interspersed. When there is a write failure, a chunk may become inconsis-
tent. This is a case where there may be redundant lines of data in some but not all
replicas.

As GFS was built to maintain bandwidth, as opposed to meet a targeted latency
goal there are no guarantees that pertain to latency. GFS does guarantee maintenance
of the specified replication level which is achieved using system heartbeats. GFS
also cannot guarantee full consistency in the face of write failures. A slightly looser
definition of consistency — at least a single copy of all data is fully stored in each
replica — is what GFS supplies. Any application built on top of GFS that can handle
these possible inconsistencies should be able to guarantee a stronger consistency.

6.5.7 Metadata

In GFS, the master server contains metadata about all chunks contained in the sys-
tem. This is how the master server keeps track of where the chunks are located. Each
chunk has its own set of metadata as well. A chunk has a version number, as well as
its own checksum information.

6.5.8 Data Placement
The master server attempts to place replicas on separate racks, a feat made possible

by Google’s network scheme. The master server also attempts to balance network
load, so it will try to evenly disperse all chunks.

150 K. Ericson and S. Pallickara
6.5.9 Security Scheme

GFS expects to be run in a trusted environment, and has no major security
approaches. If a user could bring down a chunk server, modify the chunk versions
held on it, and reconnect it to the system, GFS would slowly grind to a halt as it
believes that that server has the most up-to-date chunks and begins deleting and
rewriting all these chunks. This would create a lot of network traffic, and theoreti-
cally bring down not only any service that relies on GFS, but also anything else that
requires network bandwidth to work.

6.6 Bigtable

As the name suggests, Bigtable stores large amounts of data in a table. While it is
not a full relational model, it is essentially a multi-dimensional database. Tables are
indexed by row and column keys (strings), as well as a timestamp (int64).
Values inside cells are an uninterpreted array of bytes, and tables can be easily used
as either inputs to or outputs of MapReduce (Dean & Ghemawat, 2004). Each table
is broken up by row into tablets. Each tablet will contain a section of sequential
rows, generally about 100-200 MB in size.

Bigtable has been designed by Google to handle very large files generally mea-
suring in the petabyte range. It is in use in several products, including Google
Analytics and Google Earth. Bigtable is designed to run on top of the Google
File System (GFS), and inherits its features and limitations. Bottlenecks with GFS
directly affect Bigtable’s performance, and measures have been taken to avoid
adding too much to network traffic. Additionally, Bigtable relies on Chubby for
basic functionality. Chubby is a locking service which implements Lamport’s Paxos
theorem (Lamport, 2001) in use at Google to help clients share information about the
state of their environment (Burrows, 2006). Different systems make use of Chubby
to keep separate components synchronized. If Chubby goes down, then so does
Bigtable. Given that, Chubby has been responsible for less than .001% of Bigtable’s
downtime as reported in Chang et al. (2006). Bigtable processes usually run on top
of GFS servers, and have other Google processes running side-by-side. Ensuring a
low latency in this environment is challenging.

There are 3 pieces to an implementation of Bigtable: First, a library is linked to
every client — helping clients find the correct server when looking up data. Second,
there is a single master server. This master server will generally have no interactions
with clients, and as a result is usually only lightly loaded. Finally, there are many
tablet servers. The tablet servers are responsible for communicating with clients,
and do not necessarily serve consecutive tablets; simply what is needed. Each tablet
is only served on one tablet server at a time. It is also not necessary for all tablets
to be served — the master keeps a list of tablets not currently served, and will assign
these tablets to a server if a client requests access to it.

Tablets are stored in GFS as in the SSTable format, and there are generally several
SSTables to a tablet. An SSTable contains a set of key/value pairs, where both key

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 151

Fig. 6.3 Bigtable storage -
scheme . Mifﬂsf,r; o Memtable

GFS
S5Table S5Table S55Table S5Table
LN

and value are arbitrary strings. Updates to tablets are kept in a commit log. Recently
committed changes are stored in memory, and older tablet update records are stored
as SSTable. Figure 6.3 helps to show the division of what is maintained in GFS and
what is kept in tablet server memory. Both the commit logs and SSTable files are
held in GFS. Storing commit files in GFS means that all commits can be recovered
if a tablet server dies. These commit logs are as close as Bigtable comes to actual
checkpointing — more thorough checkpointing is carried out by GFS.

6.6.1 Replication

As mentioned above, the Bigtable master server makes sure that only one server is
actually modifying a tablet at a time. While this looks like Bigtable is ignoring repli-
cation entirely, every tablet’s SSTables are actually being stored in GFS. Bigtable
neatly bypasses the problem of replication and lets GFS handle it. Bigtable will
inherit the replication level of the folders where the SSTables are stored.

6.6.2 Failures

All failure detection for Bigtable eventually comes down to Chubby. When a tablet
server first starts up, it contacts Chubby and makes a server-specific file, and obtains
an exclusive lock on it. This lock is kept active as long as the tablet has a connection
to Chubby, and will immediately stop serving tablets if it loses that lock. If a tablet
server ever contacts Chubby and finds the file gone, it will kill itself. The master
server is responsible for periodically polling the tablet servers and checking to see if
they are still up. If the master cannot contact a tablet server, it first checks to see if the
tablet server can still communicate with Chubby. It does so by attempting to obtain
an exclusive lock on the tablet server file. If the master obtains the lock, Chubby
is alive and the tablet can’t communicate with Chubby. The master then deletes the
server file, ensuring that the server will not attempt to serve again. If the master’s
Chubby session expires, the master immediately kills itself without effecting tablet
serving. A cluster management system running alongside Bigtable is responsible
for starting up a new master server if this happens. While (Chang et al., 2006) does

152 K. Ericson and S. Pallickara

not explicitly state what happens if Chubby goes down, it is likely that the current
master server will kill itself and the cluster manager will repeatedly try to kick start
a new master until Chubby starts responding again.

6.6.3 Accessing Data

Every client is initially sent a library of tablet locations, so they should initially be
able to directly contact the correct tablet server. Over time, tablet servers die, some
may be added, or tablets may be deleted or split. Bigtable has a 3-tier hierarchy for
tablet location. First, there is a file stored in Chubby that contains the location of
the root tablet. Every Bigtable instance has its own root tablet. A root tablet speci-
fies the location of all tablets in a METADATA table. This METADATA table holds
the locations of all user tables as well as some tablet-specific information useful for
debugging purposes. The root tablet is simply the first tablet of the METADATA
table. The root tablet is treated specially — it is never split so that the tablet location
hierarchy doesn’t grow. With this scheme, 234 tablet locations can be addressed.
The client library caches the tablet locations from the METADATA table, and will
recursively trace through the hierarchy if it doesn’t have a tablet, or the tablet loca-
tion is scale. With an empty cache, it will take 3 round trips but may take up to 6
with a stale cache. None of these operations need to read from GFS, so the time is
negligible. The tablet servers have access to sorted SSTables, so they can usually
locate required data (if not already in memory) with a single disk access.

6.6.4 Data Integrity

Bigtable is not directly involved with maintaining data integrity. All Bigtable data is
stored in GFS, and that is what is responsible for actually detecting and fixing any
errors that occur in data. When a tablet server goes down there is a chance that a
table modification was not committed, or a tablet split was not properly propagated
back to Chubby. Keeping all tablet operation logs in GFS as well solves the first
problem: a new tablet server can read through the logs, and ensure all tablets are up
to date. Tablet splits are even less of a problem, as a tablet server will report any
tablets it has that are not referenced by Chubby.

6.6.5 Consistency and Guarantees

Bigtable guarantees eventual consistency — all replicas are eventually in sync. Tablet
servers store any tablet modifications in memory, and will write permutations to a
log, but will not necessarily wait for GFS to confirm that a write has succeeded
before confirming it with users. This helps to improve latency, and give users a
more interactive experience, such as when using Google Earth. Bigtable inherits
all of the GFS guarantees pertaining to data replication, error recovery, and data
placement.

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 153
6.6.6 Metadata

The METADATA table contains the metadata for all tablets held within an instance
of Dynamo. This metadata includes lists of the SSTables which make up a tablet, and
a set of pointers to commit logs for the tablet. When a tablet server starts serving a
file, it first reads the tablet metadata to learn which SSTable files need to be loaded.
After loading the SSTables into memory, it works through the commit logs, and
brings the version in memory up to the point it was at when the tablet was last
accessed.

6.6.7 Data Placement

All of Bigtable’s data placement is handled by GFS — it has no direct concern
for data placement. As far as Bigtable is concerned, there are only single copies
of files — it uses GFS handles to access any files needed. While Bigtable is not
directly aware of multiple versions of files, it can still take advantage of replicas
through GFS.

6.6.8 Security

Bigtable is designed to run in a trusted environment, and does not really have much
in the way of security measures. Theoretically, a user may be able to have encrypted
row and column names, as well as the data in the fields. This would be possible
since these are all arbitrary strings. While encrypting row names means you could
potentially use some of the grouping abilities, there is no reason a user would not be
able to gain some security with this method.

6.7 Microsoft Azure

Azure is Microsoft’s cloud computing solution. It consists of three parts: storage,
scalable computing, and the base fabric to hold everything together across a het-
erogeneous network. Figure 6.4 shows a high level overview of Azure’s structure.

Compute m‘

Fabric

DDD---0

Fig. 6.4 Azure overview

154 K. Ericson and S. Pallickara

Both the compute and storage levels rely on the fabric layer, which is running across
many machines. Azure’s scalable computing component is out of the scope of this
article, but for the sake of completeness it is mentioned here. Microsoft’s computing
solution is designed to make sure that it worked well with the storage, but it is not
necessary to use the one to use the other. Microsoft has not published very many
details about Azure.

Azure’s storage service allows the user to choose between three storage formats:
BLOBs, tables, and queues. The BLOBs are essentially containers that can hold
up to 5 GB of binary data. Azure’s BLOB format is very similar to S3 — there are
containers to hold the BLOBs, and there is no hierarchical support (you cannot put
a container inside a container). The BLOB names have no restrictions, however, so
there is nothing to keep a user from putting in “/”” in a BLOB’s name to help orga-
nize data. Tables in Azure are not true relational tables, but more like Bigtable —
tables hold entities, and an entity is a list of named values. While you lose the
ability to query Azure tables like a true relational database, it is able to scale effec-
tively across many machines. Azures queues are primarily designed for use with the
computing service. Queues are what allow different applications a user is running
to communicate with each other. For example, a user may have designed a web
front-end application that can communicate with several worker applications to per-
form back-end processing. This application suite would use queues to exchange
information between the web front-end and the various workers.

6.7.1 Replication

Regardless of storage type, all data has a replication level of 3 the maintenance
of which is being coordinated by the storage service itself. According to Chappell
(2009a), the fabric service is not even aware of replication levels, it just sees the
storage service as another application. More about how this happens is in the failure
section.

6.7.2 Failure

Azure’s fabric layer is made up of machines in a Microsoft Data Center. The data
center is divided into fault domains. Microsoft defines a fault domain as a set of
machines which can be brought down by the failure of a single piece of hard-
ware. All machines dedicated to Azure are controlled by 5-7 fabric controllers.
Each machine inside the fabric has a fabric controller process running which reports
the status of all applications running on that machine (this includes user apps in
different VMs as well as the storage service). While we are not exactly clear on
how storage is handled inside the fabric, we do know that the fabric controllers see
the storage service as just another application. If an application dies for any reason,
the controllers are responsible for starting up another instance of the application. It

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 155

stands to reason that if an instance of the storage service running on a machine dies,
or if the machine itself dies, these controllers would start up another instance on
a different machine. By having the fabric layer ensure that applications are spread
across fault domains, it guarantees that replicas are spread out.

6.7.3 Accessing Data

If a user is using a .NET application running on Azure’s compute service, ADO
.NET interfaces can be used. If, on the other hand, a user is trying to access data
in Azure storage through a Java application, you would use standard REST. As an
example of accessing a BLOB from (Chappell, 2009b):

http://<StorageAccount>.blob.core.windows.net/<Container>/<BlobName>

Where <StorageAccount> is an identifier assigned when a new storage
account is created, used to identify ownership of objects. <Container> and
<BlobName> are the names of the container and blob that this request is accessing.

There is no specific mention of any guarantees on latency, but since it is expected
to be part of a web application, it’s likely low.

6.7.4 Consistency and Guarantees

Azure’s storage guarantees read-what-you-write consistency — worker threads and
clients will be able to immediately see changes it just wrote. Unfortunately, there
is no clear picture of what this means for other threads/clients. It also guarantees a
replication level of 3 for all stored data. There have also been no specific guarantees
as to latency or specific mention of SLAs.

6.7.5 Data Placement

The Azure fabric layer is responsible for the placement of data. While it is not
directly aware of replicas, it is able to ensure that instances of the storage service
are running in different fault domains. From the whitepapers Microsoft has made
available, it looks like a fabric controller only operates in one data center. There is
a chance that users are able to choose which data center to use.

6.7.6 Security

All access to Azure’s storage component is handled by a private key generated
by Azure for a specific user. While there are no particular details about how this

156 K. Ericson and S. Pallickara

happens, it is likely that this is susceptible to the same problems as S3 — another
person may be able to hijack this key. In Azure storage, there are no ACLs, only
that single access key — developers are expected to provide their own authentication
program-side.

6.8 Transactional and Analytics Debate

None of the storage systems discussed here are able to handle complex relational
information. As data storage makes a shift to the cloud, where does that leave
databases? Having on-site data management installations can be very difficult to
maintain, requiring administrative and hardware upkeep as well as the initial hard-
ware and software costs (Abadi, 2009). Being able to shift these applications to
the cloud would allow companies to focus more on what they actually produce —
possibly having the same effects that the power grid did 100 years ago (Abadi,
2009).

Transactional data management is what you generally think of first — the back-
bone for banks, airlines, and e-commerce sites. Transactional systems generally
have a lot of writes, and files tend to be in the GB range. They usually need ACID
guarantees, and thus have problems adjusting to the limitations of Brewer’s CAP
theorem. Transactional systems also generally contain data that needs to be secure,
such as credit card numbers and other private information. Because of these rea-
sons, it is hard to move a transactional system to the cloud. While several database
companies, such as Oracle, have versions that can run in a distributed environment
like Amazon’s EC2 cloud, licensing can become an issue (Armbrust et al., 2009).
Instead of only needing one license, the current implementation requires a separate
license for each VM instance: as an application scales, this can become prohibitively
expensive.

Analytical data management is slightly different. In an analytical system, there
are generally more reads than writes, and writes occur in large batches. These types
of systems are used to analyze large datasets, looking for patterns or trends. Files in
an analytical system are also on a completely different scale — a client may need to
sift through petabytes of data. For this type of system, looser eventual consistency
is acceptable — making it a good fit for distributed computing. Additionally, the data
analyzed usually has less need to be secure, so having a third-party such as Amazon
or Google hosting the data is acceptable.

6.9 Conclusions

In this chapter we have surveyed several approaches to data storage in cloud com-
puting settings. Data centers have, and will continue, to be built out of commodity
components. The use of commodity components combined with issues related to the
settings in which these components operate such as heat dissipations and scheduled

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 157

downtimes imply that failures are a common occurrence and should be treated as
such. In these environments, it is no longer a matter of if a system or component
will fail, but simply when. Datasets are dispersed on a set of machines to cope with
their voluminous nature and to enable concurrent processing on them. To cope with
failures, every slice of the dataset is replicated a preset number of times; replica-
tion allows applications to sustain failures to machines that hold certain slices of the
dataset and also to initiate error corrections due to data corruptions.

The European Network and Information Security Agency (ENISA) recently
released a document (Catteddu & Hogben, 2009) outlining the security risks in
cloud computing settings. Among the concerns raised in this document include
data protection, insecure or incomplete data deletion, and the possibility of mali-
cious insiders. Other security related concerns (Brodkin, 2008) that have been raised
include data segregation, control over a data’s location, and investigative support.
Most of the systems that we have described here do not adequately address sev-
eral of these aforementioned security concerns and also exacerbate the problem
by designing systems that are presumed to operate in a trusted environment: this
allows us to construct situations, in some of these systems, where a malicious
entity can wreak havoc. Issues related to security and trust need to be thoroughly
addressed before these settings can be used for mission critical and sensitive
information.

References

Abadi, D. J. (2009). Data management in the cloud: Limitations and opportunities. /[EE Data
Engineering Bulletin, 32(1), 3—12.

Anderson, T. E., Dahlin, M. D., Neefe, J. M., Patterson, D. A., Roselli, D. S., & Wang, R. Y. (1996).
Serverless network file systems. ACM Transactions on Computer Systems (TOCS), 14(1),
41-79.

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., et al. (2009). Above the
clouds: A Berkeley view of cloud computing (University of California at Berkeley, Tech. Rep.
No. UCB/EECS-2009-28).

Brewer, E. A. (2009). Towards robust distributed systems. Principles of Distributed Computing
(PODC) Keynote, Portland, OR.

Brodkin, J. (2008). Gartner: Seven cloud-computing security risks. Retried Infoworld, July
02 2008 from: http://www.infoworld.com/d/security-central/gartner-seven-cloud-computing-
security-risks-853.

Burrows, M. (2006). The chubby lock service for loosely-coupled distributed systems. Proceedings
of Operating Systems Design and Implementation (OSDI’06), Seattle, WA, 335-350.

Catteddu, D., & Hogben, G. (Eds.). (November 2009). Cloud computing risk assessment. European
Network and Information Security Agency (ENISA).

Chang, F., Dean, J., Ghemawat, S., Hsich, W. C., Wallach, D. A., Burrows, M., et al. (2006).
Bigtable: A distributed storage system for structured data. Proceedings of Operating Systems
Design and Implementation (OSDI’06), Seattle, WA, 205-218.

Chappell, D. (2009a). Introducing windows azure (Tech. Rep., Microsoft Corporation).

Chappell, D. (2009b). Introducing the windows azure platform: An early look at windows azure,
SOL azure and NET services (Tech. Rep., Microsoft Corporation).

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters.
Proceedings of Operating Systems Design and Implementation (OSDI’04), San Francisco, CA,
137-149.

158 K. Ericson and S. Pallickara

DeCandia, G., Hastorun, D., Jampani, M., Kakulapti, G., Lakshman, A., Pilchin, A., et al. (2007).
Dynamo: Amazon’s highly available key-value store. ACM SIGOPS Operating Systems Review,
41(6), 205-220.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The google file system. /9th Symposium on
Operating Systems Principles, New York, NY, 29-43.

Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent, Available,
Partition-tolerant web services. ACM SIGACT News, 33(2), 51-59.

Lamport, L. (2001). Paxos made simple. ACM SIGACT News, 32(4), 18-25.

Lyman, P, & Varian, H. R. (2000). How Much Information? http://www?2.sims.berkeley.edu/
research/projects/how-much-info/, Berkeley.

Lyman, P, & Varian, H. R. (2003). How Much Information? http://www2.sims.berkeley.edu/
research/projects/how-much-info-2003/, Berkeley.

Palankar, M. R., Iamnitchi, A., Ripeanu, M., & Garfinkel, S. (2007). Amazon S3 for science
grids: A viable solution? High performance distributed computing (HPDC). Proceedings of the
2008 International Workshop on Data-Aware Distributed Computing (HPDCO08), Boston, MA,
55-64.

Robbins, K. A., & Robbins, S. (2003). Unix systems programming: Communication, concurrency
and threads. Upper Saddle River, NJ: Prentice Hall.

Synodinos, D. G. (2008). LHC Grid: Data storage and analysis for the largest scientific instrument
on the planet. Retrieved InfoQ, October 01 2008, from http://www.infoq.com/articles/lhc-grid.

	6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing
	6.1 Introduction
	6.1.1 Theme 1: Voluminous Data
	6.1.2 Theme 2: Commodity Hardware
	6.1.3 Theme 3: Distributed Data
	6.1.4 Theme 4: Expect Failures
	6.1.5 Theme 5: Tune for Access by Applications
	6.1.6 Theme 6: Optimize for Dominant Usage
	6.1.7 Theme 7: Tradeoff Between Consistency and Availability

	6.2 xFS
	6.2.1 Failure Model
	6.2.2 Replication
	6.2.3 Data Access
	6.2.4 Integrity
	6.2.5 Consistency and Guarantees
	6.2.6 Metadata
	6.2.7 Data placement
	6.2.8 Security

	6.3 Amazon S3
	6.3.1 Data Access and Management
	6.3.2 Security
	6.3.3 Integrity

	6.4 Dynamo
	6.4.1 Checkpointing
	6.4.2 Replication
	6.4.3 Failures
	6.4.4 Accessing Data
	6.4.5 Data Integrity
	6.4.6 Consistency and Guarantees
	6.4.7 Metadata
	6.4.8 Data Placement
	6.4.9 Security

	6.5 Google File System
	6.5.1 Checkpointing
	6.5.2 Replication
	6.5.3 Failures
	6.5.4 Data Access
	6.5.5 Data Integrity
	6.5.6 Consistency and Guarantees
	6.5.7 Metadata
	6.5.8 Data Placement
	6.5.9 Security Scheme

	6.6 Bigtable
	6.6.1 Replication
	6.6.2 Failures
	6.6.3 Accessing Data
	6.6.4 Data Integrity
	6.6.5 Consistency and Guarantees
	6.6.6 Metadata
	6.6.7 Data Placement
	6.6.8 Security

	6.7 Microsoft Azure
	6.7.1 Replication
	6.7.2 Failure
	6.7.3 Accessing Data
	6.7.4 Consistency and Guarantees
	6.7.5 Data Placement
	6.7.6 Security

	6.8 Transactional and Analytics Debate
	6.9 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

