Chapter 5
Data-Intensive Technologies for Cloud
Computing

Anthony M. Middleton

5.1 Introduction

As aresult of the continuing information explosion, many organizations are drown-
ing in data and the resulting “data gap” or inability to process this information
and use it effectively is increasing at an alarming rate. Data-intensive comput-
ing represents a new computing paradigm (Kouzes, Anderson, Elbert, Gorton, &
Gracio, 2009) which can address the data gap using scalable parallel processing
to allow government, commercial organizations, and research environments to pro-
cess massive amounts of data and implement applications previously thought to
be impractical or infeasible. Cloud computing provides the opportunity for orga-
nizations with limited internal resources to implement large-scale data-intensive
computing applications in a cost-effective manner.

The fundamental challenges of data-intensive computing are managing and pro-
cessing exponentially growing data volumes, significantly reducing associated data
analysis cycles to support practical, timely applications, and developing new algo-
rithms which can scale to search and process massive amounts of data. Researchers
at LexisNexis believe that the answer to these challenges is a scalable, inte-
grated computer systems hardware and software architecture designed for parallel
processing of data-intensive computing applications. This chapter explores the
challenges of data-intensive computing and offers an in-depth comparison of com-
mercially available system architectures including the LexisNexis Data Analytics
Supercomputer (DAS) also referred to as the LexisNexis High-Performance
Computing Cluster (HPCC), and Hadoop, an open source implementation based
on Google’s MapReduce architecture.

Cloud computing emphasizes the ability to scale computing resources as needed
without a large upfront investment in infrastructure and associated ongoing opera-
tional costs (Napper & Bientinesi, 2009; Reese, 2009; Velte, Velte, & Elsenpeter,
2009). Cloud computing services are typically categorized in three models:

A.M. Middleton ()
LexisNexis Risk Solutions, Boca Raton, FL, USA
e-mail: tony.middleton @lexisnexis.com

B. Furht, A. Escalante (eds.), Handbook of Cloud Computing, 83
DOI 10.1007/978-1-4419-6524-0_5, © Springer Science+Business Media, LLC 2010

84 A.M. Middleton

(1) Infrastructure as a Service (laaS). Service includes provision of hardware and
software for processing, data storage, networks and any required infrastructure for
deployment of operating systems and applications which would normally be needed
in a data center managed by the user; (2) Platform as a Service (PaaS). Service
includes programming languages and tools and an application delivery platform
hosted by the service provider to support development and delivery of end-user
applications; and (3) Software as a Service (SaaS). Hosted software applications are
provided and managed by the service provider for the end-user replacing locally-run
applications with Web-based applications (Lenk, Klems, Nimis, Tai, & Sandholm,
2009; Levitt, 2009; Mell & Grance, 2009; Vaquero, Rodero-Merino, Caceres, &
Lindner, 2009; Viega, 2009).

Data-intensive computing applications are implemented using either the TaaS
model which allows the provisioning of scalable clusters of processors for data-
parallel computing using various software architectures, or the PaaS model which
provides a complete processing and application development environment including
both infrastructure and platform components such as programming languages and
applications development tools. Data-intensive computing can be implemented in a
public cloud (cloud infrastructure and platform is publicly available from a cloud
services provider) such as Amazon’s Elastic Compute Cloud (EC2) and Elastic
MapReduce or as a private cloud (cloud infrastructure and platform is operated
solely for a specific organization and may exist internally or externally to the orga-
nization) (Mell & Grance, 2009). IaaS and PaaS implementations for data-intensive
computing can be either dynamically provisioned in virtualized processing environ-
ments based on application scheduling and data processing requirements, or can be
implemented as a persistent high-availability configuration. A persistent configura-
tion has a performance advantage since it uses dedicated infrastructure instead of
virtualized servers shared with other users.

5.1.1 Data-Intensive Computing Applications

Parallel processing approaches can be generally classified as either compute-
intensive, or data-intensive (Skillicorn & Talia, 1998; Gorton, Greenfield, Szalay, &
Williams, 2008; Johnston, 1998). Compute-intensive is used to describe application
programs that are compute bound. Such applications devote most of their execu-
tion time to computational requirements as opposed to I/O, and typically require
small volumes of data. Parallel processing of compute-intensive applications typi-
cally involves parallelizing individual algorithms within an application process, and
decomposing the overall application process into separate tasks, which can then
be executed in parallel on an appropriate computing platform to achieve overall
higher performance than serial processing. In compute-intensive applications, mul-
tiple operations are performed simultaneously, with each operation addressing a
particular part of the problem. This is often referred to as functional parallelism
or control parallelism (Abbas, 2004).

5 Data-Intensive Technologies for Cloud Computing 85

Data-intensive is used to describe applications that are I/O bound or with a need
to process large volumes of data (Gorton et al., 2008; Johnston, 1998; Gokhale,
Cohen, Yoo, & Miller, 2008). Such applications devote most of their processing
time to I/O and movement of data. Parallel processing of data-intensive applica-
tions typically involves partitioning or subdividing the data into multiple segments
which can be processed independently using the same executable application pro-
gram in parallel on an appropriate computing platform, then reassembling the results
to produce the completed output data (Nyland, Prins, Goldberg, & Mills, 2000).
The greater the aggregate distribution of the data, the more benefit there is in paral-
lel processing of the data. Gorton et al. (2008) state that data-intensive processing
requirements normally scale linearly according to the size of the data and are very
amenable to straightforward parallelization. The fundamental challenges for data-
intensive computing according to Gorton et al. (2008) are managing and processing
exponentially growing data volumes, significantly reducing associated data analy-
sis cycles to support practical, timely applications, and developing new algorithms
which can scale to search and process massive amounts of data. Cloud comput-
ing can address these challenges with the capability to provision new computing
resources or extend existing resources to provide parallel computing capabilities
which scale to match growing data volumes (Grossman, 2009).

5.1.2 Data-Parallelism

Computer system architectures which can support data-parallel applications are
a potential solution to terabyte and petabyte scale data processing requirements
(Nyland et al., 2000; Ravichandran, Pantel, & Hovy, 2004). According to Agichtein
and Ganti (2004), parallelization is considered to be an attractive alternative for pro-
cessing extremely large collections of data such as the billions of documents on the
Web (Agichtein, 2004). Nyland et al. (2000) define data-parallelism as a compu-
tation applied independently to each data item of a set of data which allows the
degree of parallelism to be scaled with the volume of data. According to Nyland
et al. (2000), the most important reason for developing data-parallel applications is
the potential for scalable performance, and may result in several orders of magni-
tude performance improvement. The key issues with developing applications using
data-parallelism are the choice of the algorithm, the strategy for data decomposition,
load balancing on processing nodes, message passing communications between
nodes, and the overall accuracy of the results (Nyland et al., 2000; Rencuzogullari
& Dwarkadas, 2001). Nyland et al. (2000) also note that the development of a data-
parallel application can involve substantial programming complexity to define the
problem in the context of available programming tools, and to address limitations of
the target architecture. Information extraction from and indexing of Web documents
is typical of data-intensive processing which can derive significant performance ben-
efits from data-parallel implementations since Web and other types of document
collections can typically then be processed in parallel (Agichtein, 2004).

86 A.M. Middleton
5.1.3 The “Data Gap”

The rapid growth of the Internet and World Wide Web has led to vast amounts of
information available online. In addition, business and government organizations
create large amounts of both structured and unstructured information which needs
to be processed, analyzed, and linked. Vinton Cerf of Google has described this as
an “Information Avalanche” and has stated “we must harness the Internet’s energy
before the information it has unleashed buries us” (Cerf, 2007). An IDC white paper
sponsored by EMC estimated the amount of information currently stored in a dig-
ital form in 2007 at 281 exabytes and the overall compound growth rate at 57%
with information in organizations growing at even a faster rate (Gantz et al., 2007).
In another study of the so-called information explosion it was estimated that 95%
of all current information exists in unstructured form with increased data process-
ing requirements compared to structured information (Lyman & Varian, 2003). The
storing, managing, accessing, and processing of this vast amount of data represents
a fundamental need and an immense challenge in order to satisfy needs to search,
analyze, mine, and visualize this data as information (Berman, 2008). In 2003,
LexisNexis defined this issue as the “Data Gap”: the ability to gather information is
far outpacing organizational capacity to use it effectively.

Organizations build the applications to fill the storage they have available, and
build the storage to fit the applications and data they have. But will organizations
be able to do useful things with the information they have to gain full and inno-
vative use of their untapped data resources? As organizational data grows, how
will the “Data Gap” be addressed and bridged? Researchers at LexisNexis believe
that the answer is a scalable computer systems hardware and software architecture
designed for data-intensive computing applications which can scale to processing
billions of records per second (BORPS) (Note: the term BORPS was introduced by
Seisint, Inc. in 2002. Seisint was acquired by LexisNexis in 2004). What are the
characteristics of data-intensive computing systems and what system architectures
are available to organizations to implement data-intensive computing applications?
Can these capabilities be implemented using cloud computing to reduce risk and
upfront investment in infrastructure and to allow a pay-as-you-go model? This
chapter will explore those issues and offer a comparison of commercially available
system architectures.

5.2 Characteristics of Data-Intensive Computing Systems

The National Science Foundation believes that data-intensive computing requires
a “fundamentally different set of principles” than current computing approaches
(NSF, 2009). Through a funding program within the Computer and Information
Science and Engineering area, the NSF is seeking to “increase understanding of
the capabilities and limitations of data-intensive computing.” The key areas of
focus are:

5 Data-Intensive Technologies for Cloud Computing 87

e Approaches to parallel programming to address the parallel processing of data on
data-intensive systems

e Programming abstractions including models, languages, and algorithms which
allow a natural expression of parallel processing of data

e Design of data-intensive computing platforms to provide high levels of reliability,
efficiency, availability, and scalability.

e Identifying applications that can exploit this computing paradigm and determin-
ing how it should evolve to support emerging data-intensive applications.

Pacific Northwest National Labs has defined data-intensive computing as “cap-
turing, managing, analyzing, and understanding data at volumes and rates that push
the frontiers of current technologies” (Kouzes et al., 2009; PNNL, 2008). They
believe that to address the rapidly growing data volumes and complexity requires
“epochal advances in software, hardware, and algorithm development” which can
scale readily with size of the data and provide effective and timely analysis and pro-
cessing results. The HPCC architecture developed by LexisNexis represents such an
advance in capabilities.

5.2.1 Processing Approach

Current data-intensive computing platforms use a “divide and conquer” parallel
processing approach combining multiple processors and disks in large computing
clusters connected using high-speed communications switches and networks which
allows the data to be partitioned among the available computing resources and pro-
cessed independently to achieve performance and scalability based on the amount
of data (Fig. 5.1). Buyya, Yeo, Venugopal, Broberg, and Brandic (2009) define a
cluster as “a type of parallel and distributed system, which consists of a collection

Network Fabric / Interconnect

Y Y Y
Node Node Node
Local Hard Local Hard Local Hard
Memory Drive Memory Drive Memory Drive
~. -~ -~

Fig. 5.1 Shared nothing computing cluster

88 A.M. Middleton

of inter-connected stand-alone computers working together as a single integrated
computing resource.” This approach to parallel processing is often referred to as
a “shared nothing” approach since each node consisting of processor, local mem-
ory, and disk resources shares nothing with other nodes in the cluster. In parallel
computing this approach is considered suitable for data processing problems which
are “embarrassingly parallel” , i.e. where it is relatively easy to separate the prob-
lem into a number of parallel tasks and there is no dependency or communication
required between the tasks other than overall management of the tasks. These types
of data processing problems are inherently adaptable to various forms of distributed
computing including clusters and data grids and cloud computing.

5.2.2 Common Characteristics

There are several important common characteristics of data-intensive computing
systems that distinguish them from other forms of computing. First is the principle
of collocation of the data and programs or algorithms to perform the computa-
tion. To achieve high performance in data-intensive computing, it is important to
minimize the movement of data (Gray, 2008). In direct contrast to other types of
computing and supercomputing which utilize data stored in a separate repository
or servers and transfer the data to the processing system for computation, data-
intensive computing uses distributed data and distributed file systems in which data
is located across a cluster of processing nodes, and instead of moving the data, the
program or algorithm is transferred to the nodes with the data that needs to be pro-
cessed. This principle — “Move the code to the data” — which was designed into the
data-parallel processing architecture implemented by Seisint in 2003, is extremely
effective since program size is usually small in comparison to the large datasets pro-
cessed by data-intensive systems and results in much less network traffic since data
can be read locally instead of across the network. This characteristic allows pro-
cessing algorithms to execute on the nodes where the data resides reducing system
overhead and increasing performance (Gorton et al., 2008).

A second important characteristic of data-intensive computing systems is the
programming model utilized. Data-intensive computing systems utilize a machine-
independent approach in which applications are expressed in terms of high-level
operations on data, and the runtime system transparently controls the scheduling,
execution, load balancing, communications, and movement of programs and data
across the distributed computing cluster (Bryant, 2008). The programming abstrac-
tion and language tools allow the processing to be expressed in terms of data flows
and transformations incorporating new dataflow programming languages and shared
libraries of common data manipulation algorithms such as sorting. Conventional
supercomputing and distributed computing systems typically utilize machine depen-
dent programming models which can require low-level programmer control of
processing and node communications using conventional imperative programming
languages and specialized software packages which adds complexity to the parallel

5 Data-Intensive Technologies for Cloud Computing 89

programming task and reduces programmer productivity. A machine dependent pro-
gramming model also requires significant tuning and is more susceptible to single
points of failure.

A third important characteristic of data-intensive computing systems is the focus
on reliability and availability. Large-scale systems with hundreds or thousands of
processing nodes are inherently more susceptible to hardware failures, communica-
tions errors, and software bugs. Data-intensive computing systems are designed to
be fault resilient. This includes redundant copies of all data files on disk, storage
of intermediate processing results on disk, automatic detection of node or process-
ing failures, and selective re-computation of results. A processing cluster configured
for data-intensive computing is typically able to continue operation with a reduced
number of nodes following a node failure with automatic and transparent recovery
of incomplete processing.

A final important characteristic of data-intensive computing systems is the inher-
ent scalability of the underlying hardware and software architecture. Data-intensive
computing systems can typically be scaled in a linear fashion to accommodate vir-
tually any amount of data, or to meet time-critical performance requirements by
simply adding additional processing nodes to a system configuration in order to
achieve billions of records per second processing rates (BORPS). The number of
nodes and processing tasks assigned for a specific application can be variable or
fixed depending on the hardware, software, communications, and distributed file
system architecture. This scalability allows computing problems once considered
to be intractable due to the amount of data required or amount of processing time
required to now be feasible and affords opportunities for new breakthroughs in data
analysis and information processing.

5.2.3 Grid Computing

A similar computing paradigm known as grid computing has gained popularity
primarily in research environments (Abbas, 2004). A computing grid is typically
heterogeneous in nature (nodes can have different processor, memory, and disk
resources), and consists of multiple disparate computers distributed across organiza-
tions and often geographically using wide-area networking communications usually
with relatively low-bandwidth. Grids are typically used to solve complex computa-
tional problems which are compute-intensive requiring only small amounts of data
for each processing node. A variation known as data grids allow shared repositories
of data to be accessed by a grid and utilized in application processing, however the
low-bandwidth of data grids limit their effectiveness for large-scale data-intensive
applications.

In contrast, data-intensive computing systems are typically homogeneous in
nature (nodes in the computing cluster have identical processor, memory, and
disk resources), use high-bandwidth communications between nodes such as giga-
bit Ethernet switches, and are located in close proximity in a data center using

90 A.M. Middleton

high-density hardware such as rack-mounted blade servers. The logical file system
typically includes all the disks available on the nodes in the cluster and data files
are distributed across the nodes as opposed to a separate shared data repository such
as a storage area network which would require data to be moved to nodes for pro-
cessing. Geographically dispersed grid systems are more difficult to manage, less
reliable, and less secure than data-intensive computing systems which are usually
located in secure data center environments.

5.2.4 Applicability to Cloud Computing

Cloud computing can take many shapes. Most visualize the cloud as the Internet
or Web which is often depicted in this manner, but a more general definition is
that cloud computing shifts the location of the computing resources and infras-
tructure providing computing applications to the network (Vaquero et al., 2009).
Software accessible through the cloud becomes a service, application platforms
accessible through the cloud to develop and deliver new applications become a
service, and hardware and software to create infrastructure and virtual data cen-
ter environments accessible through the cloud becomes a service (Weiss, 2007).
Other characteristics usually associated with cloud computing include a reduction in
the costs associated with management of hardware and software resources (Hayes,
2008), pay-per-use or pay-as-you-go access to software applications and on-demand
computing resources (Vaquero et al., 2009), dynamic provisioning of infrastructure
and scalability of resources to match the size of the data and computing require-
ments which is directly applicable to the characteristics of data-intensive computing
(Grossman & Gu, 2009). Buyya et al. (2009) provide the following comprehensive
definition of a cloud: “A Cloud is a type of parallel and distributed system consisting
of a collection of inter-connected and virtualized computers that are dynamically
provisioned and presented as one or more unified computing resource(s) based
on service-level agreements established through negotiation between the service
provider and consumer.”

The cloud computing models directly applicable to data-intensive computing
characteristics are Infrastructure as a Service (IaaS) and Platform as a Service
(PaaS). IaaS typically includes a large pool of configurable virtualized resources
which can include hardware, operating systems, middleware, and development plat-
forms or other software services which can be scaled to accommodate varying
processing loads (Vaquero et al., 2009). The computing clusters typically used for
data-intensive processing can be provided in this model. Processing environments
such as Hadoop MapReduce and LexisNexis HPCC which include application
development platform capabilities in addition to basic infrastructure implement
the Platform as a Service (PaaS) model. Applications with a high degree of data-
parallelism and a requirement to process very large datasets can take advantage of
cloud computing and IaaS or PaaS using hundreds of computers provisioned for a
short time instead of one or a small number of computers for a long time (Armbrust

5 Data-Intensive Technologies for Cloud Computing 91

et al., 2009). According to Armbrust et al. in a University of California Berkeley
research report (Armbrust et al., 2009), this processing model is particularly well-
suited to data analysis and other applications that can benefit from parallel batch
processing. However, the user cost/benefit analysis should also include the cost of
moving large datasets into the cloud in addition the speedup and lower processing
cost offered by the IaaS and PaaS models.

5.3 Data-Intensive System Architectures

A variety of system architectures have been implemented for data-intensive and
large-scale data analysis applications including parallel and distributed relational
database management systems which have been available to run on shared nothing
clusters of processing nodes for more than two decades (Pavlo et al., 2009). These
include database systems from Teradata, Netezza, Vertica, and Exadata/Oracle and
others which provide high-performance parallel database platforms. Although these
systems have the ability to run parallel applications and queries expressed in the
SQL language, they are typically not general-purpose processing platforms and
usually run as a back-end to a separate front-end application processing system.
Although this approach offers benefits when the data utilized is primarily structured
in nature and fits easily into the constraints of a relational database, and often excels
for transaction processing applications, most data growth is with data in unstruc-
tured form (Gantz et al., 2007) and new processing paradigms with more flexible
data models were needed. Internet companies such as Google, Yahoo, Microsoft,
Facebook, and others required a new processing approach to effectively deal with
the enormous amount of Web data for applications such as search engines and social
networking. In addition, many government and business organizations were over-
whelmed with data that could not be effectively processed, linked, and analyzed
with traditional computing approaches.

Several solutions have emerged including the MapReduce architecture pioneered
by Google and now available in an open-source implementation called Hadoop
used by Yahoo, Facebook, and others. LexisNexis, an acknowledged industry leader
in information services, also developed and implemented a scalable platform for
data-intensive computing which is used by LexisNexis and other commercial and
government organizations to process large volumes of structured and unstructured
data. These approaches will be explained and contrasted in terms of their overall
structure, programming model, file systems, and applicability to cloud computing
in the following sections. Similar approaches using commodity computing clusters
including Sector/Sphere (Grossman & Gu, 2008; Grossman, Gu, Sabala, & Zhang,
2009; Gu & Grossman, 2009), SCOPE/Cosmos (Chaiken et al., 2008), DryadLINQ
(Yu, Gunda, & Isard, 2009), Meandre (Llor et al., 2008), and GridBatch (Liu &
Orban, 2008) recently described in the literature are also suitable for data-intensive
cloud computing applications and represent additional alternatives.

92 A.M. Middleton
5.3.1 Google MapReduce

The MapReduce architecture and programming model pioneered by Google is an
example of a modern systems architecture designed for processing and analyzing
large datasets and is being used successfully by Google in many applications to pro-
cess massive amounts of raw Web data (Dean & Ghemawat, 2004). The MapReduce
architecture allows programmers to use a functional programming style to create a
map function that processes a key-value pair associated with the input data to gen-
erate a set of intermediate key-value pairs, and a reduce function that merges all
intermediate values associated with the same intermediate key (Dean & Ghemawat,
2004). According to Dean and Ghemawat (2004), the MapReduce programs can be
used to compute derived data from documents such as inverted indexes and the pro-
cessing is automatically parallelized by the system which executes on large clusters
of commodity type machines, highly scalable to thousands of machines. Since the
system automatically takes care of details like partitioning the input data, scheduling
and executing tasks across a processing cluster, and managing the communications
between nodes, programmers with no experience in parallel programming can easily
use a large distributed processing environment.

The programming model for MapReduce architecture is a simple abstraction
where the computation takes a set of input key-value pairs associated with the input
data and produces a set of output key-value pairs. The overall model for this process
is shown in Fig. 5.2. In the Map phase, the input data is partitioned into input splits

Shuffle

& Sort Reduce : Qutput

Input - Map

Output
Data

Input
Data

Fig. 5.2 MapReduce processing architecture (O’Malley, 2008)

5 Data-Intensive Technologies for Cloud Computing 93

and assigned to Map tasks associated with processing nodes in the cluster. The Map
task typically executes on the same node containing its assigned partition of data
in the cluster. These Map tasks perform user-specified computations on each input
key-value pair from the partition of input data assigned to the task, and generates
a set of intermediate results for each key. The shuffle and sort phase then takes the
intermediate data generated by each Map task, sorts this data with intermediate data
from other nodes, divides this data into regions to be processed by the reduce tasks,
and distributes this data as needed to nodes where the Reduce tasks will execute. All
Map tasks must complete prior to the shuffle and sort and reduce phases. The num-
ber of Reduce tasks does not need to be the same as the number of Map tasks. The
Reduce tasks perform additional user-specified operations on the intermediate data
possibly merging values associated with a key to a smaller set of values to produce
the output data. For more complex data processing procedures, multiple MapReduce
calls may be linked together in sequence.

Figure 5.3 shows the MapReduce architecture and key-value processing in more
detail. The input data can consist of multiple input files. Each Map task will pro-
duce an intermediate output file for each key region assigned based on the number
of Reduce tasks R assigned to the process (hash(key) modulus R). The reduce func-
tion then “pulls” the intermediate files, sorting and merging the files for a specific
region from all the Map tasks. To minimize the amount of data transferred across the
network, an optional Combiner function can be specified which is executed on the
same node that performs a Map task. The combiner code is usually the same as

Input file 1 Input file 2 Input file 3
(Key, Value)* (Key, Value)* (Key, Value)*

(Key, Value)* [(Key, Value)] (Key, Value)* | (Key, Value)® [(Key, Value)*[(Key, Value)* [(Key, Value)*[(Key, Value)*| (Key, Value)* [(Key, Value)*
m1 forr1 m1forr2 m2 forr1 m2forr2 m3forr1 ma3 for r2 m4 for r1 m4 forr2 m5 forr1 m5 forr2

(Key, Value*)* (Key, Value*)*

Output File 1 Output File 2
(Key, Value)* (Key, Value)*

Fig. 5.3 MapReduce key-value processing (Nicosia, 2009)

94 A.M. Middleton

the reducer function code which does partial merging and reducing of data for
the local partition, then writes the intermediate files to be distributed to the
Reduce tasks. The output of the Reduce function is written as the final output
file. In the Google implementation of MapReduce, functions are coded in the C++
programming language.

Underlying and overlayed with the MapReduce architecture is the Google File
System (GFS). GFS was designed to be a high-performance, scalable distributed
file system for very large data files and data-intensive applications providing fault
tolerance and running on clusters of commodity hardware (Ghemawat, Gobioff, &
Leung, 2003). GFS is oriented to very large files dividing and storing them in fixed-
size chunks of 64 Mb by default which are managed by nodes in the cluster called
chunkservers. Each GFS consists of a single master node acting as a nameserver
and multiple nodes in the cluster acting as chunkservers using a commodity Linux-
based machine (node in a cluster) running a user-level server process. Chunks are
stored in plain Linux files which are extended only as needed and replicated on
multiple nodes to provide high-availability and improve performance. Secondary
nameservers provide backup for the master node. The large chunk size reduces
the need for MapReduce clients programs to interact with the master node, allows
filesystem metadata to be kept in memory in the master node improving perfor-
mance, and allows many operations to be performed with a single read on a chunk
of data by the MapReduce client. Ideally, input splits for MapReduce operations are
the size of a GFS chunk. GFS has proven to be highly effective for data-intensive
computing on very large files, but is less effective for small files which can cause
hot spots if many MapReduce tasks are accessing the same file.

Google has implemented additional tools using the MapReduce and GFS archi-
tecture to improve programmer productivity and to enhance data analysis and
processing of structured and unstructured data. Since the GFS filesystem is primarily
oriented to sequential processing of large files, Google has also implemented a scal-
able, high-availability distributed storage system for structured data with dynamic
control over data format with keyed random access capabilities (Chang et al., 2006).
Data is stored in Bigtable as a sparse, distributed, persistent multi-dimensional
sorted map structured which is indexed by a row key, column key, and a timestamp.
Rows in a Bigtable are maintained in order by row key, and row ranges become
the unit of distribution and load balancing called a tablet. Each cell of data in a
Bigtable can contain multiple instances indexed by the timestamp. Bigtable uses
GEFS to store both data and log files. The API for Bigtable is flexible providing
data management functions like creating and deleting tables, and data manipulation
functions by row key including operations to read, write, and modify data. Index
information for Bigtables utilize tablet information stored in structures similar to a
B+Tree. MapReduce applications can be used with Bigtable to process and trans-
form data, and Google has implemented many large-scale applications which utilize
Bigtable for storage including Google Earth.

Google has also implemented a high-level language for performing parallel data
analysis and data mining using the MapReduce and GFS architecture called Sawzall
and a workflow management and scheduling infrastructure for Sawzall jobs called

5 Data-Intensive Technologies for Cloud Computing 95

Workqueue (Pike, Dorward, Griesemer, & Quinlan, 2004). According to Pike et al.
(2004), although C++ in standard MapReduce jobs is capable of handling data
analysis tasks, it is more difficult to use and requires considerable effort by program-
mers. For most applications implemented using Sawzall, the code is much simpler
and smaller than the equivalent C++ by a factor of 10 or more. A Sawzall program
defines operations on a single record of the data, the language does not allow exam-
ining multiple input records simultaneously and one input record cannot influence
the processing of another. An emit statement allows processed data to be output
to an external aggregator which provides the capability for entire files of records
and data to be processed using a Sawzall program. The system operates in a batch
mode in which a user submits a job which executes a Sawzall program on a fixed
set of files and data and collects the output at the end of a run. Sawzall jobs can be
chained to support more complex procedures. Sawzall programs are compiled into
an intermediate code which is interpreted during runtime execution. Several reasons
are cited by Pike et al. (2004) why a new language is beneficial for data analysis
and data mining applications: (1) a programming language customized for a spe-
cific problem domain makes resulting programs “clearer, more compact, and more
expressive”; (2) aggregations are specified in the Sawzall language so that the pro-
grammer does not have to provide one in the Reduce task of a standard MapReduce
program; (3) a programming language oriented to data analysis provides a more
natural way to think about data processing problems for large distributed datasets;
and (4) Sawzall programs are significantly smaller that equivalent C++ MapReduce
programs and significantly easier to program.

Google does not currently make available its MapReduce architecture in a pub-
lic cloud computing IaaS or PaaS environment. Google however does provide the
Google Apps Engine as a public cloud computing PaaS environment (Lenk et al.,
2009; Vaquero et al., 2009).

5.3.2 Hadoop

Hadoop is an open source software project sponsored by The Apache Software
Foundation (http://www.apache.org). Following the publication in 2004 of the
research paper describing Google MapReduce (Dean & Ghemawat, 2004), an
effort was begun in conjunction with the existing Nutch project to create an
open source implementation of the MapReduce architecture (White, 2009). It later
became an independent subproject of Lucene, was embraced by Yahoo! after the
lead developer for Hadoop became an employee, and became an official Apache
top-level project in February of 2006. Hadoop now encompasses multiple subpro-
jects in addition to the base core, MapReduce, and HDFS distributed filesystem.
These additional subprojects provide enhanced application processing capabili-
ties to the base Hadoop implementation and currently include Avro, Pig, HBase,
ZooKeeper, Hive, and Chukwa. More information can be found at the Apache
Web site.

96 A.M. Middleton

The Hadoop MapReduce architecture is functionally similar to the Google imple-
mentation except that the base programming language for Hadoop is Java instead of
C++. The implementation is intended to execute on clusters of commodity pro-
cessors (Fig. 5.4) utilizing Linux as the operating system environment, but can
also be run on a single system as a learning environment. Hadoop clusters also
utilize the “shared nothing” distributed processing paradigm linking individual
systems with local processor, memory, and disk resources using high-speed com-
munications switching capabilities typically in rack-mounted configurations. The
flexibility of Hadoop configurations allows small clusters to be created for testing
and development using desktop systems or any system running Unix/Linux provid-
ing a JVM environment, however production clusters typically use homogeneous
rack-mounted processors in a data center environment.

N

< Master
< Switch
Slave Slave
Switch \ Switch
oe g % e

Node Node Node Node Node Node

Fig. 5.4 Commodity hardware cluster (O’Malley, 2008)

0
Ok
4
\

@
0

The Hadoop MapReduce architecture is similar to the Google implementation
creating fixed-size input splits from the input data and assigning the splits to Map
tasks. The local output from the Map tasks is copied to Reduce nodes where it is
sorted and merged for processing by Reduce tasks which produce the final output as
shown in Fig. 5.5.

Hadoop implements a distributed data processing scheduling and execution envi-
ronment and framework for MapReduce jobs. A MapReduce job is a unit of work
that consists of the input data, the associated Map and Reduce programs, and user-
specified configuration information (White, 2009). The Hadoop framework utilizes
a master/slave architecture with a single master server called a jobtracker and slave
servers called tasktrackers, one per node in the cluster. The jobtracker is the commu-
nications interface between users and the framework and coordinates the execution
of MapReduce jobs. Users submit jobs to the jobtracker, which puts them in a job
queue and executes them on a first-come/first-served basis. The jobtracker manages
the assignment of Map and Reduce tasks to the tasktracker nodes which then exe-
cute these tasks. The tasktrackers also handle data movement between the Map and
Reduce phases of job execution. The Hadoop framework assigns the Map tasks to

5 Data-Intensive Technologies for Cloud Computing 97

Part 1

Fig. 5.5 Hadoop MapReduce (White, 2008)

every node where the input data splits are located through a process called data
locality optimization. The number of Reduce tasks is determined independently and
can be user-specified and can be zero if all of the work can be accomplished by
the Map tasks. As with the Google MapReduce implementation, all Map tasks must
complete before the shuffle and sort phase can occur and Reduce tasks initiated. The
Hadoop framework also supports Combiner functions which can reduce the amount
of data movement in a job.

The Hadoop framework also provides an API called Streaming to allow Map
and Reduce functions to be written in languages other than Java such as Ruby and
Python and provides an interface called Pipes for C++.

Hadoop includes a distributed file system called HDFS which is analogous to
GFS in the Google MapReduce implementation. A block in HDFS is equivalent
to a chunk in GFS and is also very large, 64 Mb by default but 128 Mb is used
in some installations. The large block size is intended to reduce the number of
seeks and improve data transfer times. Each block is an independent unit stored
as a dynamically allocated file in the Linux local filesystem in a datanode directory.
If the node has multiple disk drives, multiple datanode directories can be specified.
An additional local file per block stores metadata for the block. HDFS also follows
a master/slave architecture which consists of a single master server that manages
the distributed filesystem namespace and regulates access to files by clients called
the Namenode. In addition, there are multiple Datanodes, one per node in the clus-
ter, which manage the disk storage attached to the nodes and assigned to Hadoop.
The Namenode determines the mapping of blocks to Datanodes. The Datanodes
are responsible for serving read and write requests from filesystem clients such as

98 A.M. Middleton

MapReduce tasks, and they also perform block creation, deletion, and replication
based on commands from the Namenode. An HDFS system can include additional
secondary Namenodes which replicate the filesystem metadata, however there are
no hot failover services. Each datanode block also has replicas on other nodes based
on system configuration parameters (by default there are 3 replicas for each datan-
ode block). In the Hadoop MapReduce execution environment it is common for a
node in a physical cluster to function as both a Tasktracker and a datanode (Venner,
2009). The HDEFS system architecture is shown in Fig. 5.6.

Metadata (Name, replicas, ...);
/home/foo/data, 3, ...

PP Namenode
2 =V
Bt
Dortd
4””’
Read
Datanodes \7 Datanodes

] % % [}l Replcation [] q:g

Rack 1 / Rack 2

Write

Blocks

Client

Fig. 5.6 HDEFS architecture (Borthakur, 2008)

The Hadoop execution environment supports additional distributed data pro-
cessing capabilities which are designed to run using the Hadoop MapReduce
architecture. Several of these have become official Hadoop subprojects within the
Apache Software Foundation. These include HBase, a distributed column-oriented
database which provides similar random access read/write capabilities as and is
modeled after Bigtable implemented by Google. HBase is not relational, and does
not support SQL, but provides a Java API and a command-line shell for table man-
agement. Hive is a data warehouse system built on top of Hadoop that provides
SQL-like query capabilities for data summarization, ad-hoc queries, and analysis
of large datasets. Other Apache sanctioned projects for Hadoop include Avro —
A data serialization system that provides dynamic integration with scripting lan-
guages, Chukwa — a data collection system for managing large distributed systems,
ZooKeeper — a high-performance coordination service for distributed applications,

5 Data-Intensive Technologies for Cloud Computing 99

and Pig — a high-level data-flow language and execution framework for parallel
computation.

Pig is high-level dataflow-oriented language and execution environment origi-
nally developed at Yahoo! ostensibly for the same reasons that Google developed
the Sawzall language for its MapReduce implementation — to provide a specific
language notation for data analysis applications and to improve programmer pro-
ductivity and reduce development cycles when using the Hadoop MapReduce
environment. Working out how to fit many data analysis and processing applica-
tions into the MapReduce paradigm can be a challenge, and often requires multiple
MapReduce jobs (White, 2009). Pig programs are automatically translated into
sequences of MapReduce programs if needed in the execution environment. In addi-
tion Pig supports a much richer data model which supports multi-valued, nested data
structures with tuples, bags, and maps. Pig supports a high-level of user customiza-
tion including user-defined special purpose functions and provides capabilities in the
language for loading, storing, filtering, grouping, de-duplication, ordering, sorting,
aggregation, and joining operations on the data (Olston, Reed, Srivastava, Kumar,
& Tomkins, 2008a). Pig is an imperative dataflow-oriented language (language
statements define a dataflow for processing). An example program is shown in
Fig. 5.7. Pig runs as a client-side application which translates Pig programs into
MapReduce jobs and then runs them on an Hadoop cluster. Figure 5.8 shows how
the program listed in Fig. 5.7 is translated into a sequence of MapReduce jobs. Pig
compilation and execution stages include a parser, logical optimizer, MapReduce
compiler, MapReduce optimizer, and the Hadoop Job Manager (Gates et al.,
2009).

According to Yahoo! where more than 40% of Hadoop production jobs and 60%
of ad-hoc queries are now implemented using Pig, Pig programs are 1/20th the size
of the equivalent MapReduce program and take 1/16th the time to develop (Olston,
2009). Yahoo! uses 12 standard benchmarks (called the PigMix) to test Pig perfor-
mance versus equivalent MapReduce performance from release to release. With the

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count{urlVisits);
urlinfo =load ‘/data/urlinfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlinfo by url;
gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Fig. 5.7 Sample pig latin program (Olston et al., 2008a)

100 A.M. Middleton

Map, Every group or join operation

forms a map-reduce boundary

Load visits

Reduce, |

: “Foreach url f
L Load Urlinfo

generate count

'

. ——— Map,
Other operations
pipelined into map :

Reduce,
and reduce phases

| Reduce,

SO0y

generate top10{urls)
Fig. 5.8 Pig program translation to MapReduce (Olston et al., 2008a)

current release, Pig programs take approximately 1.5 times longer than the equiva-
lent MapReduce (http://wiki.apache.org/pig/PigMix). Additional optimizations are
being implemented that should reduce this performance gap further.

Hadoop is available in both public and private cloud computing environ-
ments. Amazon’s EC2 cloud computing platform now includes Amazon Elastic
MapReduce (http://aws.amazon.com/elasticmapreduce/) which allows users to pro-
vision as much capacity as needed for data-intensive computing applications. Data
for MapReduce applications can be loaded to the HDFS directly from Amazon’s S3
(Simple Storage Service).

5.3.3 LexisNexis HPCC

LexisNexis, an industry leader in data content, data aggregation, and information
services independently developed and implemented a solution for data-intensive
computing called the HPCC (High-Performance Computing Cluster) which is also
referred to as the Data Analytics Supercomputer (DAS). The LexisNexis vision for
this computing platform is depicted in Fig. 5.9. The development of this computing
platform by the Seisint subsidiary of LexisNexis began in 1999 and applications
were in production by late 2000. The LexisNexis approach also utilizes commod-
ity clusters of hardware running the Linux operating system as shown in Figs. 5.1
and 5.4. Custom system software and middleware components were developed and
layered on the base Linux operating system to provide the execution environment
and distributed filesystem support required for data-intensive computing. Because
LexisNexis recognized the need for a new computing paradigm to address its
growing volumes of data, the design approach included the definition of a new high-
level language for parallel data processing called ECL (Enterprise Data Control

5 Data-Intensive Technologies for Cloud Computing 101

Language). The power, flexibility, advanced capabilities, speed of development, and
ease of use of the ECL programming language is the primary distinguishing factor
between the LexisNexis HPCC and other data-intensive computing solutions. The
following provides an overview of the HPCC systems architecture and the ECL
language and a general comparison to the Hadoop MapReduce architecture and
platform.

f
PUsLe (=)
mecoros |8 * 3 "'Eas;#gy
' Y. Dfumowc
: . ONtey
PROPRIETARY A — (1))
(& : D DEG
) () i)l
NEWS a
i :
weie (5] : ay &)@ \ =
- Fusi L it
: i)6 sy o,
UNSTRUCTURED [‘ ; .
st (12 . i) Lo CLUSTERING ANALYSIS
a8
o ‘ et
. @ 3\'\“0‘ w .
STRUCTURED ; oo
RECORDS @ v Fefinery 2008

COMPLEX ANALYSIS

ANALYSIS APPLICATIONS

UNSTRUCTURED AND
STRUCTURED CONTENT

Data Analytics Supercomputer

» Ingest disparate Cata Source » Parallel Processing Architecture » Service Orienled
» Marage hundreds of terabytes » Discover non-obwious links and delect hidden palierns :rdmrdurajsﬂ.ﬂ
of data ik i Sicati + Flexibility to organize and
» Language oplimizad for data-inlensive application isoss dis

Fig. 5.9 LexisNexis vision for a data analytics supercomputer

LexisNexis developers recognized that to meet all the requirements of data-
intensive computing applications in an optimum manner required the design and
implementation of two distinct processing environments, each of which could be
optimized independently for its parallel data processing purpose. The first of these
platforms is called a Data Refinery whose overall purpose is the general process-
ing of massive volumes of raw data of any type for any purpose but typically used
for data cleansing and hygiene, ETL processing of the raw data (extract, transform,
load), record linking and entity resolution, large-scale ad-hoc analysis of data, and
creation of keyed data and indexes to support high-performance structured queries
and data warehouse applications. The Data Refinery is also referred to as Thor, a
reference to the mythical Norse god of thunder with the large hammer symbolic
of crushing large amounts of raw data into useful information. A Thor system is
similar in its hardware configuration, function, execution environment, filesystem,
and capabilities to the Hadoop MapReduce platform, but offers significantly higher
performance in equivalent configurations.

The second of the parallel data processing platforms designed and implemented
by LexisNexis is called the Data Delivery Engine. This platform is designed as an

102 A.M. Middleton

online high-performance structured query and analysis platform or data warehouse
delivering the parallel data access processing requirements of online applications
through Web services interfaces supporting thousands of simultaneous queries and
users with sub-second response times. High-profile online applications developed
by LexisNexis such as Accurint utilize this platform. The Data Delivery Engine
is also referred to as Roxie, which is an acronym for Rapid Online XML Inquiry
Engine. Roxie uses a special distributed indexed filesystem to provide parallel pro-
cessing of queries. A Roxie system is similar in its function and capabilities to
Hadoop with HBase and Hive capabilities added, but provides significantly higher
throughput since it uses a more optimized execution environment and filesystem for
high-performance online processing. Most importantly, both Thor and Roxie sys-
tems utilize the same ECL programming language for implementing applications,
increasing continuity and programmer productivity.

The Thor system cluster is implemented using a master/slave approach with a
single master node and multiple slave nodes for data parallel processing. Each of
the slave nodes is also a data node within the distributed file system for the cluster.
This is similar to the Jobtracker, Tasktracker, and Datanode concepts in an Hadoop
configuration. Multiple Thor clusters can exist in an HPCC environment, and job
queues can span multiple clusters in an environment if needed. Jobs executing on a
Thor cluster in a multi-cluster environment can also read files from the distributed
file system on foreign clusters if needed. The middleware layer provides additional
server processes to support the execution environment including ECL Agents and
ECL Servers. A client process submits an ECL job to the ECL Agent which coor-
dinates the overall job execution on behalf of the client process. An ECL Job is
compiled by the ECL server which interacts with an additional server called the
ECL Repository which is a source code repository and contains shared ECL code.
ECL programs are compiled into optimized C++ source code, which is subsequently
compiled into executable code and distributed to the slave nodes of a Thor cluster
by the Thor master node. The Thor master monitors and coordinates the processing
activities of the slave nodes and communicates status information monitored by the
ECL Agent processes. When the job completes, the ECL Agent and client process
are notified, and the output of the process is available for viewing or subsequent pro-
cessing. Output can be stored in the distributed filesystem for the cluster or returned
to the client process. ECL is analogous to the Pig language which can be used in the
Hadoop environment.

The distributed filesystem used in a Thor cluster is record-oriented which is dif-
ferent from the block format used by Hadoop clusters. Records can be fixed or
variable length, and support a variety of standard (fixed record size, CSV, XML)
and custom formats including nested child datasets. Record I/O is buffered in large
blocks to reduce latency and improve data transfer rates to and from disk Files to be
loaded to a Thor cluster are typically first transferred to a landing zone from some
external location, then a process called “spraying” is used to partition the file and
load it to the nodes of a Thor cluster. The initial spraying process divides the file
on user-specified record boundaries and distributes the data as evenly as possible in
order across the available nodes in the cluster. Files can also be “desprayed” when

5 Data-Intensive Technologies for Cloud Computing 103

needed to transfer output files to another system or can be directly copied between
Thor clusters in the same environment.

Nameservices and storage of metadata about files including record format infor-
mation in the Thor DFS are maintained in a special server called the Dali server
(named for the developer’s pet Chinchilla), which is analogous to the Namenode in
HDFS. Thor users have complete control over distribution of data in a Thor cluster,
and can re-distribute the data as needed in an ECL job by specific keys, fields, or
combinations of fields to facilitate the locality characteristics of parallel processing.
The Dali nameserver uses a dynamic datastore for filesystem metadata organized in
a hierarchical structure corresponding to the scope of files in the system. The Thor
DFS utilizes the local Linux filesystem for physical file storage, and file scopes are
created using file directory structures of the local file system. Parts of a distributed
file are named according to the node number in a cluster, such that a file in a 400-
node cluster will always have 400 parts regardless of the file size. The Hadoop fixed
block size can end up splitting logical records between nodes which means a node
may need to read some data from another node during Map task processing. With
the Thor DFS, logical record integrity is maintained, and processing I/O is com-
pletely localized to the processing node for local processing operations. In addition,
if the file size in Hadoop is less than some multiple of the block size times the num-
ber of nodes in the cluster, Hadoop processing will be less evenly distributed and
node to node disk accesses will be needed. If input splits assigned to Map tasks
in Hadoop are not allocated in whole block sizes, additional node to node I/O will
result. The ability to easily redistribute the data evenly to nodes based on process-
ing requirements and the characteristics of the data during a Thor job can provide
a significant performance improvement over the Hadoop approach. The Thor DFS
also supports the concept of “superfiles” which are processed as a single logical file
when accessed, but consist of multiple Thor DFS files. Each file which makes up a
superfile must have the same record structure. New files can be added and old files
deleted from a superfile dynamically facilitating update processes without the need
to rewrite a new file. Thor clusters are fault resilient and a minimum of one replica
of each file part in a Thor DFS file is stored on a different node within the cluster.

Roxie clusters consist of a configurable number of peer-coupled nodes function-
ing as a high-performance, high availability parallel processing query platform. ECL
source code for structured queries is pre-compiled and deployed to the cluster. The
Roxie distributed filesystem is a distributed indexed-based filesystem which uses a
custom B+Tree structure for data storage. Indexes and data supporting queries are
pre-built on Thor clusters and deployed to the Roxie DFS with portions of the index
and data stored on each node. Typically the data associated with index logical keys
is embedded in the index structure as a payload. Index keys can be multi-field and
multivariate, and payloads can contain any type of structured or unstructured data
supported by the ECL language. Queries can use as many indexes as required for
a query and contain joins and other complex transformations on the data with the
full expression and processing capabilities of the ECL language. For example, the
LexisNexis Accurint comprehensive person report which produces many pages of
output is generated by a single Roxie query.

104 A.M. Middleton

A Roxie cluster uses the concept of Servers and Agents. Each node in a Roxie
cluster runs Server and Agent processes which are configurable by a System
Administrator depending on the processing requirements for the cluster. A Server
process waits for a query request from a Web services interface then determines the
nodes and associated Agent processes that have the data locally that is needed for a
query, or portion of the query. Roxie query requests can be submitted from a client
application as a SOAP call, HTTP or HTTPS protocol request from a Web applica-
tion, or through a direct socket connection. Each Roxie query request is associated
with a specific deployed ECL query program. Roxie queries can also be executed
from programs running on Thor clusters. The Roxie Server process that receives the
request owns the processing of the ECL program for the query until it is completed.
The Server sends portions of the query job to the nodes in the cluster and Agent
processes which have data needed for the query stored locally as needed, and waits
for results. When a Server receives all the results needed from all nodes, it collates
them, performs any additional processing, and then returns the result set to the client
requestor.

The performance of query processing varies depending on factors such as
machine speed, data complexity, number of nodes, and the nature of the query, but
production results have shown throughput of a thousand results a second or more.
Roxie clusters have flexible data storage options with indexes and data stored locally
on the cluster, as well as being able to use indexes stored remotely in the same envi-
ronment on a Thor cluster. Nameservices for Roxie clusters are also provided by the
Dali server. Roxie clusters are fault-resilient and data redundancy is built-in using a
peer system where replicas of data are stored on two or more nodes, all data includ-
ing replicas are available to be used in the processing of queries by Agent processes.
The Roxie cluster provides automatic failover in case of node failure, and the cluster
will continue to perform even if one or more nodes are down. Additional redundancy
can be provided by including multiple Roxie clusters in an environment.

Load balancing of query requests across Roxie clusters is typically implemented
using external load balancing communications devices. Roxie clusters can be sized
as needed to meet query processing throughput and response time requirements, but
are typically smaller that Thor clusters.

The implementation of two types of parallel data processing platforms (Thor
and Roxie) in the HPCC processing environment serving different data processing
needs allows these platforms to be optimized and tuned for their specific purposes to
provide the highest level of system performance possible to users. This is a distinct
advantage when compared to the Hadoop MapReduce platform and architecture
which must be overlayed with different systems such as HBase, Hive, and Pig which
have different processing goals and requirements, and don’t always map readily into
the MapReduce paradigm. In addition, the LexisNexis HPCC approach incorporates
the notion of a processing environment which can integrate Thor and Roxie clusters
as needed to meet the complete processing needs of an organization. As a result,
scalability can be defined not only in terms of the number of nodes in a cluster,
but in terms of how many clusters and of what type are needed to meet system

5 Data-Intensive Technologies for Cloud Computing 105

performance goals and user requirements. This provides a distinct advantage when
compared to Hadoop clusters which tend to be independent islands of processing.

LexisNexis HPCC is commercially available to implement private cloud com-
puting environments (http://risk.lexisnexis.com/Article.aspx?id=51). In addition,
LexisNexis provides hosted persistent HPCC environments to external customers.
Public cloud computing PaaS utilizing the HPCC platform is planned as a future
offering.

5.3.4 ECL

The ECL programming language is a key factor in the flexibility and capabilities
of the HPCC processing environment. ECL was designed to be a transparent and
implicitly parallel programming language for data-intensive applications. It is a
high-level, declarative, non-procedural dataflow-oriented language that allows the
programmer to define what the data processing result should be and the dataflows
and transformations that are necessary to achieve the result. Execution is not deter-
mined by the order of the language statements, but from the sequence of dataflows
and transformations represented by the language statements. It combines data repre-
sentation with algorithm implementation, and is the fusion of both a query language
and a parallel data processing language. ECL uses an intuitive syntax which has
taken cues from other familiar languages, supports modular code organization
with a high degree of reusability and extensibility, and supports high-productivity
for programmers in terms of the amount of code required for typical applica-
tions compared to traditional languages like Java and C++. Similar to the benefits
Sawzall provides in the Google environment, and Pig provides to Hadoop users, a
20 times increase in programmer productivity is typical significantly reducing devel-
opment cycles. ECL is compiled into optimized C++ code for execution on the
HPCC system platforms, and can be used for complex data processing and anal-
ysis jobs on a Thor cluster or for comprehensive query and report processing on
a Roxie cluster. ECL allows inline C++ functions to be incorporated into ECL
programs, and external programs in other languages can be incorporated and paral-
lelized through a PIPE facility. External services written in C++ and other languages
which generate DLLs can also be incorporated in the ECL system library, and
ECL programs can access external Web services through a standard SOAPCALL
interface.

The basic unit of code for ECL is called an attribute. An attribute can contain a
complete executable query or program, or a shareable and reusable code fragment
such as a function, record definition, dataset definition, macro, filter definition, etc.
Attributes can reference other attributes which in turn can reference other attributes
so that ECL code can be nested and combined as needed in a reusable manner.
Attributes are stored in ECL code repository which is subdivided into modules typi-
cally associated with a project or process. Each ECL attribute added to the repository
effectively extends the ECL language like adding a new word to a dictionary, and

106 A.M. Middleton

attributes can be reused as part of multiple ECL queries and programs. With ECL
a rich set of programming tools is provided including an interactive IDE similar to
Visual C++, Eclipse and other code development environments.

The ECL language includes extensive capabilities for data definition, filtering,
data management, and data transformation, and provides an extensive set of built-in
functions to operate on records in datasets which can include user-defined trans-
formation functions. Transform functions operate on a single record or a pair of
records at a time depending on the operation. Built-in transform operations in the
ECL language which process through entire datasets include PROJECT, ITERATE,
ROLLUP, JOIN, COMBINE, FETCH, NORMALIZE, DENORMALIZE, and
PROCESS. The transform function defined for a JOIN operation for example
receives two records, one from each dataset being joined, and can perform any
operations on the fields in the pair of records, and returns an output record which
can be completely different from either of the input records. Example syntax
for the JOIN operation from the ECL Language Reference Manual is shown in
Fig. 5.10. Other important data operations included in ECL which operate across
datasets and indexes include TABLE, SORT, MERGE, MERGEJOIN, DEDUP,
GROUP, APPLY, ASSERT, AVE, BUILD, BUILDINDEX, CHOOSESETS,
CORRELATION, COUNT, COVARIANCE, DISTRIBUTE, DISTRIBUTION,
ENTH, EXISTS, GRAPH, HAVING, KEYDIFF, KEYPATCH, LIMIT, LOOP,
MAX, MIN, NONEMPTY, OUTPUT, PARSE, PIPE, PRELOAD, PULL, RANGE,
REGROUP, SAMPLE, SET, SOAPCALL, STEPPED, SUM, TOPN, UNGROUP,
and VARIANCE.

The Thor system allows data transformation operations to be performed either
locally on each node independently in the cluster, or globally across all the nodes in
a cluster, which can be user-specified in the ECL language. Some operations such
as PROJECT for example are inherently local operations on the part of a distributed
file stored locally on a node. Others such as SORT can be performed either locally or
globally if needed. This is a significant difference from the MapReduce architecture
in which Map and Reduce operations are only performed locally on the input split
assigned to the task. A local SORT operation in an HPCC cluster would sort the
records by the specified key in the file part on the local node, resulting in the records
being in sorted order on the local node, but not in full file order spanning all nodes.
In contrast, a global SORT operation would result in the full distributed file being in
sorted order by the specified key spanning all nodes. This requires node to node data
movement during the SORT operation. Figure 5.11 shows a sample ECL program
using the LOCAL mode of operation which is the equivalent of the sample PIG
program for Hadoop shown in Fig. 5.7. Note the explicit programmer control over
distribution of data across nodes. The colon-equals “:="operator in an ECL program
is read as “is defined as”. The only action in this program is the OUTPUT statement,
the other statements are definitions.

An additional important capability provided in the ECL programming language
is support for natural language processing (NLP) with PATTERN statements and
the built-in PARSE function. The PARSE function cam accept an unambiguous
grammar defined by PATTERN, TOKEN, and RULE statements with penalties

5 Data-Intensive Technologies for Cloud Computing

107

JOIN(leftrecset, rightrecsst, joincondition [, transform] [, jointype] [, joinflags])

JOIN(setofdatasets, joincondition, transform, SORTED(fields) [, jointype])
kftrecset The left set of records to process.
rightrecset The right set of records to process. This may be an INDEX.

Joincondition Anapwsumspocn&tnghwmmﬂdarwdsm&ebﬁmﬂmdw
f fs (see g Logic discussions below). In the expression,
thclncyvmdI.E.Fristhcdamctq:ahﬁctfotﬂeidsmdaclghmrmdthe

keyword RIGHT is the dataset qualifier for fields in the rightrecser.

transform Optional. The TRANSFORM function to call for each pair of records to
process. If omitted, JOIN returns all fields from both the kfirecses and
rightrecset, with the second of any duplicate named fields removed.

Jointype Optional. An inner join if omitted, else one of the listed types in the JOIN
Types section below

Joinflags Optional. Any option (see the JOIN Options section below) to specify
exacty how the JOIN operation executes.

setofdatasets The SET of recordsets to process ([idx1,idx2,idx3]), typically INDE Xes,

which all must have the same format.

SORTED Specifies the sort order of records in the input setoflatasets and also the output
sort order of the result set.

Sfrelds A comma-delimited list of fields in the sefoffatasess, which must be a subset of

the input sort order. These fieds must all be used in the jaincondition as they
define the order in which the fields are STEPPED.

Return: JOIN returns a record set.

The JOIN function produces a result set based on the intersection of two or more datasets or
indexes (as determined by the joincondstion).

Fig. 5.10 ECL Sample syntax for JOIN operation

Queve: | dev_edberver s v Custer: | thord00_88 de v | [tore |

/{ Sample ECL Code
layout_visits := RECORD string user; string url: scring time; END;
wioita 1= DATASET('-thor_dacaldl::data: :visits', layout_vioito, FLAT)

layout_urlInfo := RECORD string url: string category; string pRank; END:
urllnfo := DATASET(' -thor_datad00::date::urlinfc’, layout_urllnfo, FLAT):

// Distribute Visits by URL, Count vists by URL
layout_visitCounts := RECORD visits.url; visits_cnt := COUNT(GROUP); END;
visitCounts := TABLE(DISTRIBUTE (visita, HASH(url)), layout_visicCounts,url, LOCAL):

// Distribute Category by URL, Join category to URLs
visitCountsCat := JOIN(visitCounts, DISTRIBUTE (urlInfo,HASH{url)),LEFT.URL=RIGHT.URL,LOCAL) :

/{ Distribuce and Group by Category, Output top 10 URLs for each category

coplicls := TOPN [GROUP:DISTRIBUTE lvlsitCuunt,aCat HASH ([category)) ,category, ALL, LOCAL) , 10, -visits_cnt]:

OUTRUT (toplcls,, ' ~thor datad00::data::topurls’ , OVERWRITE) 3|

Fig. 5.11 ECL code example

108 A.M. Middleton

or preferences to provide deterministic path selection, a capability which can sig-
nificantly reduce the difficulty of NLP applications. PATTERN statements allow
matching patterns including regular expressions to be defined and used to parse
information from unstructured data such as raw text. PATTERN statements can be
combined to implement complex parsing operations or complete grammars from
BNF definitions. The PARSE operation function across a dataset of records on a
specific field within a record, this field could be an entire line in a text file for exam-
ple. Using this capability of the ECL language it is possible to implement parallel
processing for information extraction applications across document files including
XML-based documents or Web pages. The key benefits of ECL can be summarized
as follows:

e ECL incorporates transparent and implicit data parallelism regardless of the size
of the computing cluster and reduces the complexity of parallel programming
increasing the productivity of application developers.

e ECL enables implementation of data-intensive applications with huge volumes
of data previously thought to be intractable or infeasible. ECL was specifically

1]|
Projected 14 B
Disk Read
*..u:visits’
Disk Read
Spill
\
Hash Distribute Y
Hash Distribute
8 |
Y
Local Sort Disk Read \
‘...zurlinfo’
Local Sort
\/
\
Local Group Disk Read Y
Hash Distribute Spil
Local Group
A \RIGH/_EFT
Grouped Aggregate Y
Local Join Grouped Top N
Y Y
Disk Write Disk Write Disk Write
Spill File Spill File ‘~thor_date400: :date: :topurls’

o @)

Fig. 5.12 ECL code example execution graph

5 Data-Intensive Technologies for Cloud Computing 109

designed for manipulation of data and query processing. Order of magnitude
performance increases over other approaches are possible.

e ECL provides a comprehensive IDE and programming tools that provide a
highly-interactive environment for rapid development and implementation of
ECL applications.

e ECL is a powerful, high-level, parallel programming language ideal for imple-
mentation of ETL, Information Retrieval, Information Extraction, and other
data-intensive applications.

e ECL is a mature and proven language but still evolving as new advancements in
parallel processing and data-intensive computing occur.

5.4 Hadoop vs. HPCC Comparison

Hadoop and HPCC can be compared directly since it is possible for both systems to
be executed on identical cluster hardware configurations. This permits head-to-head
system performance benchmarking using a standard workload or set of application
programs designed to test the parallel data processing capabilities of each system. A
standard benchmark available for data-intensive computing platforms is the Terasort
benchmark managed by an industry group led by Microsoft and HP. The Terabyte
sort has evolved to be the GraySort which measures the number of terabytes per
minute that can be sorted on a platform which allows clusters with any number
of nodes to be utilized. However, in comparing the effectiveness and equivalent
cost/performance of systems, it is useful to run benchmarks on identical system
hardware configurations. A head-to-head comparison of the original Terabyte sort
on a 400-node cluster will be presented here. An additional method of comparing
system platforms is a feature and functionality comparison, which is a subjective
evaluation based on factors determined by the evaluator. Although such a compar-
ison contains inherent bias, it is useful in determining strengths and weaknesses of
systems.

5.4.1 Terabyte Sort Benchmark

The Terabyte sort benchmark has its roots in benchmark tests sorting conducted
on computer systems since the 1980s. More recently, a Web site originally spon-
sored by Microsoft and one of its research scientists Jim Gray has conducted formal
competitions each year with the results presented at the SIGMOD (Special Interest
Group for Management of Data) conference sponsored by the ACM each year
(http://sortbenchmark.org). Several categories for sorting on systems exist including
the Terabyte sort which was to measure how fast a file of 1 Terabyte of data format-
ted in 100 byte records (10,000,000 total records) could be sorted. Two categories
were allowed called Daytona (a standard commercial computer system and software

110 A.M. Middleton

with no modifications) and Indy (a custom computer system with any type of modi-
fication). No restrictions existed on the size of the system so the sorting benchmark
could be conducted on as large a system as desired. The current 2009 record holder
for the Daytona category is Yahoo! using a Hadoop configuration with 1460 nodes
with 8 GB Ram per node, 8000 Map tasks, and 2700 Reduce tasks which sorted
1 TB in 62 seconds (O’Malley & Murthy, 2009). In 2008 using 910 nodes, Yahoo!
performed the benchmark in 3 minutes 29 seconds. In 2008, LexisNexis using the
HPCC architecture on only a 400-node system performed the Terabyte sort bench-
mark in 3 minutes 6 seconds. In 2009, LexisNexis again using only a 400-node
configuration performed the Terabyte sort benchmark in 102 seconds.

However, a fair and more logical comparison of the capability of data-intensive
computer system and software architectures using computing clusters would be to
conduct this benchmark on the same hardware configuration. Other factors should
also be evaluated such as the amount of code required to perform the bench-
mark which is a strong indication of programmer productivity, which in itself is
a significant performance factor in the implementation of data-intensive computing
applications.

On August 8, 2009 a Terabyte Sort benchmark test was conducted on a devel-
opment configuration located at LexisNexis Risk Solutions offices in Boca Raton,
FL in conjunction with and verified by Lawrence Livermore National Labs (LLNL).
The test cluster included 400 processing nodes each with two local 300 MB SCSI
disk drives, Dual Intel Xeon single core processors running at 3.00 GHz, 4 GB mem-
ory per node, all connected to a single Gigabit ethernet switch with 1.4 Terabytes/sec
throughput. Hadoop Release 0.19 was deployed to the cluster and the standard
Terasort benchmark written in Java included with the release was used for the bench-
mark. Hadoop required 6 minutes 45 seconds to create the test data, and the Terasort
benchmark required a total of 25 minutes 28 seconds to complete the sorting test
as shown in Fig. 5.13. The HPCC system software deployed to the same platform
and using standard ECL required 2 minutes and 35 seconds to create the test data,
and a total of 6 minutes and 27 seconds to complete the sorting test as shown in

Hadoop Job job_200908081628_0001 on History Viewer

User: hadoop
JobName: TeraGen

JobConf: hafs: node088001:342 10 5 hadocp hadoop-datastore hadoop-hadoop mapred svstem job 200008081628 0001 ob xoml

Finished Ar: $-Aug-
Stams: SUCCESS
Analvse This Job

Kind Total Tasks(; feded-kll=d) dtasks | Faled tasks | Killed tasks | Start Tome Firgsh Tane

Semp 1] 1] 8-Aug-2009 164910 8-Aug-2009 16:49:12 (1sec)

Map 403 400 [} 3 8-Aug-2009 164912 $-Aug-2009 16.55:56 (Guins, 43sec)
Reduce O (1] L] (1]

Cleamp | 1 i [] S Aug-2009 16:55-96 §-Aug-2009 16:54:48 (1se0)

Fig. 5.13 Hadoop terabyte sort benchmark results

5 Data-Intensive Technologies for Cloud Computing 111

4 AT) buicerea b x
[Total thor time € 25892

WorkUnit lockRemeote 0003

SOS nitialize 0004

Emdronment Initislize 0001

Process 6:27.102

WorkUnit unlockRemate 0.005

EJ Query: (1)
[¢7 Bezza

b20090905.1206.35 50
log. /110 173 85 212/cS/thor_logs_st 03_08_2009_12_01_01THORMASTER log
gclagent log
-
[ECLWakeh | Resuk 1 | Graphs ar

Bulder [+ W20020606-120635

Fig. 5.14 HPCC terabyte sort benchmark results

Fig. 5.14. Thus the Hadoop implementation using Java running on the same hard-
ware configuration took 3.95 times longer than the HPCC implementation using
ECL.

The Hadoop version of the benchmark used hand-tuned Java code including
custom TeraSort, TeralnputFormat and TeraOutputFormat classes with a total of
562 lines of code required for the sort. The HPCC system required only 10 lines of
ECL code for the sort, a 50-times reduction in the amount of code required.

5.4.2 Pigvs. ECL

Although many Hadoop installations implement applications directly in Java, the
Pig Latin language is now being used to increase programmer productivity and fur-
ther simplify the programming of data-intensive applications at Yahoo! and other
major users of Hadoop (Gates et al., 2009). Google also added a high-level lan-
guage for similar reasons called Sawzall to its implementation of MapReduce to
facilitate data analysis and data mining (Pike et al., 2004). The HPCC platform
includes a high-level language discussed previously which is analogous to Pig and
Sawzall called ECL. ECL is the base programming language used for applications
on the HPCC platform even though it is compiled into C++ for execution. When
comparing the Hadoop and HPCC platforms, it is useful to compare the features
and functionality of these high-level languages.

Both Pig and ECL are intrinsically parallel, supporting transparent data-
parallelism on the underlying platform. Pig and ECL are translated into programs

112 A.M. Middleton

that automatically process input data for a process in parallel with data dis-
tributed across a cluster of nodes. Programmers of both languages do not need
to know the underlying cluster size or use this to accomplish data-parallel exe-
cution of jobs. Both Pig and ECL are dataflow-oriented, but Pig is an impera-
tive programming language and ECL is a declarative programming language. A
declarative language allows programmers to focus on the data transformations
required to solve an application problem and hides the complexity of the under-
lying platform and implementation details, reduces side effects, and facilitates
compiler optimization of the code and execution plan. An imperative program-
ming language dictates the control flow of the program which may not result
in an ideal execution plan in a parallel environment. Declarative programming
languages allow the programmer to specify “what” a program should accom-
plish, instead of “how” to accomplish it. For more information, refer to the
discussions of declarative (http://en.wikipedia.org/wiki/Declarative_programming)
and imperative (http://en.wikipedia.org/wiki/Imperative_programming) program-
ming languages on Wikipedia.

The source code for both Pig and ECL is compiled or translated into another
language — Pig source programs are translated into Java language MapReduce jobs
for execution and ECL programs are translated into C++ source code which is then
compiled into a DLL for execution. Pig programs are restricted to the MapReduce
architecture and HDFS of Hadoop, but ECL has no fixed framework other than the
DFS (Distributed File System) used for HPCC and therefore can be more flexible in
implementation of data operations. This is evident in two key areas: (1) ECL allows
operations to be either global or local, where standard MapReduce is restricted to
local operations only in both the Map and Reduce phases. Global operations process
the records in a dataset in order across all nodes and associated file parts in sequence
maintaining the records in sorted order as opposed to only the records contained in
each local node which may be important to the data processing procedure; (2) ECL
has the flexibility to implement operations which can process more than one record
at a time such as its ITERATE operation which uses a sliding window and passes two
records at a time to an associated transform function. This allows inter-record field-
by-field dependencies and decisions which are not available in Pig. For example the
DISTINCT operation in Pig which is used to remove duplicates does not allow this
on a subset of fields. ECL provides both DEDUP and ROLLUP operations which
are usually preceded by a SORT and operate on adjacent records in a sliding window
mode and any condition relating to the field contents of the left and right record of
adjacent records can be used to determine if the record is removed. ROLLUP allows
a custom transformation to be applied to the de-duplication process.

An important consideration of any software architecture for data is the under-
lying data model. Pig incorporates a very flexible nested data model which allows
non-atomic data types (atomic data types include numbers and strings) such as set,
map, and tuple to occur as fields of a table (Olston, Reed, Srivastava, Kumar, &
Tomkins, 2008b). Tuples are sequences of fields, bags are collections of tuples, and
maps are a collection of data items where each data item has a key with which it can
be looked up. A data record within Pig is called a relation which is an outer bag,

5 Data-Intensive Technologies for Cloud Computing 113

the bag is a collection of tuples, each tuple is an ordered set of fields, and a field is
a piece of data. Relations are referenced by a name assigned by a user. Types can
be assigned by the user to each field, but if not assigned will default to a bytearray
and conversions are applied depending on the context in which the field is used.
The ECL data model also offers a nested data structure using child datasets. A user-
specified RECORD definition defines the content of each record in a dataset which
can contain fixed or variable length fields or child datasets which in turn contain
fields or child datasets etc. With this format any type of data structure can be rep-
resented. ECL offers specific support for CSV and XML formats in addition to flat
file formats. Each field in a record has a user-specified identifier and data type and
an optional default value and optional field modifiers such as MAXLENGTH that
enhance type and use checking during compilation. ECL will perform implicit cast-
ing and conversion depending on the context in which a field is used, and explicit
user casting is also supported. ECL also allows in-line datasets allowing sample data
to be easily defined and included in the code for testing rather than separately in a
file.

The Pig environment offers several programmer tools for development, execu-
tion, and debugging of Pig Latin programs (Pig Latin is the formal name for the
language, and the execution environment is called Pig, although both are commonly
referred to as Pig). Pig provides command line execution of scripts and an interactive
shell called Grunt that allows you to execute individual Pig commands or execute
a Pig script. Pig programs can also be embedded in Java programs. Although Pig
does not provide a specific IDE for developing and executing PIG programs, add-ins
are available for several program editing environments including Eclipse, Vim, and
Textmate to perform syntax checking and highlighting (White, 2009). PigPen is an
Eclipse plug-in that provides program editing, an example data generator, and the
capability to run a Pig script on a Hadoop cluster.

The HPCC platform provides an extensive set of tools for ECL development
including a comprehensive IDE called QueryBuilder which allows program editing,
execution, and interactive graph visualization for debugging and profiling ECL pro-
grams. The common code repository tree is displayed in QueryBuilder and tools
are provided for source control, accessing and searching the repository. ECL jobs
can be launched to an HPCC environment or specific cluster, and execution can
be monitored directly from QueryBuilder. External tools are also provided includ-
ing ECLWatch which provides complete access to current and historical workunits
(jobs executed in the HPCC environment are packaged into workunits), queue man-
agement and monitoring, execution graph visualization, distributed filesystem utility
functions, and system performance monitoring and analysis.

Although Pig Latin and the Pig execution environment provide a basic high-
level language environment for data-intensive processing and analysis and increases
the productivity of developers and users of the Hadoop MapReduce environment,
ECL is a significantly more comprehensive and mature language that generates
highly optimized code, offers more advanced capabilities in a robust, proven, inte-
grated data-intensive processing architecture. Table 5.1 provides a feature to feature
comparison between the Pig and ECL languages and their execution environments.

A.M. Middleton

114

‘saniiqeded uoneIauasd

9pod TeuonIpuod pue 3urwreu anbrun sopraoid soroeuwr ur

asn 103 a3en3ue e[dwe) [eUONIPPY "seInpadoid uowrwod
Jo asnax 9pod daoxdwir 03 soroew THH Joj oddns aaIsuaIxyg

a3en3ue[Aue ur UNLIM SALIRIQI] T 0T PI[IdWod $901AIS
[eUIRXd puk suonouny ur ++) aurjui smoddns 1HH 1DH

ur uePLIM aIe suonouny NYOASNVY UL Jo suonouny Surssaooid
‘uoneordde 1oA10s © se
suny “19ISn[o DDJH UE UO UOINOAXA J0J T oul pafrdwod

SIUOIYM SP0d 301n0S ++7) ojul paziwndo pue pajidwo)
‘werdoxd TDH ay) Aq pauyep Insal ay) 2onpoid o) smoperep
) JO UONNOAX? AsNed [, NJLNO Se yons suonose JHg
1onidwos oy Aq pazrumdo Ay3iy oq 0y uejd uonnoaxe Yy
SMO[[B UOIYM J[NSAI PAIISAP) JO SUONIUYIP I SJUIUIAL)S
TDH 150N “Sunndwods aAIsud)uI-BIep I10j 93enIur|

[o[[ered ‘[eINpad0Id-uou ‘OAIRIR[OP ‘PAIUALIO MO[-BIR(

poyoddns joN
"pasn oq
ued S Jey) 08 o[y YV[€ 1ISI52I 0) pasn ST YHLSTOHY
‘sjuow)e)s a3ensue| S U PIPISU Se SUONRULIOJSURI)

pue 3urssoooxd wosnod wiojrad 0) BAB[UT UNTIA

‘uonjeordde Juaro € se suny 19)sn[) doopeH e uo uonndIXd

1oy swei3oid eaef sonpaydey Jo oouanbas e ojur paje[suel],

"eJep Ay} Uo suonode Jo souanbas
' ouyop sweadoid 314 sdeys paropio A[fenuonbas ur suonoe
uojrad sjuowalels Sid [V Sunnduwiod oArsudjuI-eiep

10y 23en3ue] [o[rered ‘aanerodwr ‘pojusrio mop-eleq

SOIORIN

suonouny
pauyep-19s)

Jodwo)

ad£y o3en3ue|

104

Sid

Ayiqedes 1o
QInjeay o3endue

uostredwod arnyes) 1D SA S1d T°S dqeL

115

5 Data-Intensive Technologies for Cloud Computing

NIHLIM ‘NAIIMILAG ‘NI storerado [eroads t1ojerado
Surpuaose pue SuIpuISAP 110s L10jerodo UonLUALOUOD FULNS
¢s10je10dO J98 P10daI puk Jos ‘siojerado ugts snid pue snurw
<101e10d0 1582 31011dX0 “YO ‘ANV ‘LON slojerado ueajoog
¢s10je10do uostredwros prepuels SYOX pue YO ‘ANV
10§ s101e12d0 9SIMIIQ ‘UOISIAIP SNNPOW PUE ‘UOISIAIP Jo)ul
‘uors1AIp [ewiou Jurpnjout siojerado onowrpire syoddng
‘sapou (sopou
ssoxoe pautiojred suonerado) [eqo[3 pue (9pou 03 [8d0]
e1ep uo pawioyrad are suonerado) [eoof yioq suoddns 1O
"MaYs ejep proae sdjoy ‘uonounj 4,0 Gr¥.LSIA Suisn 193sn[o
SSOIO® BIEP JO UONNQLISIP J9A0 [0Nu0d Jouwrwessold jordxg
"JOSPI0931
© pa[[ed S 1aseiep [ed1sAyd paray[y e JDH Ul ‘UoONIpuod
I9)[Q) J99W YOIYM SPI0II A[UO dpn[oul 0 ssardxo
I9)[J PAJBIDOSSE UB dABY UBD S)aselep [[y “paroddns osfe st
sad &) usamjaq 19ysuen odA7, * 3xe3u0d oy uo Surpuadep DO
Aq suorssaidxa jo uonen[ead JuLnp Iodo Aew 3unsed 2dAy
jrordur pue ojqerreae st Sunsed ad£3 yo1dxy (woneIoWNUL)
INQNAH pue (Jaserep) jo p10oa1 pue (uorssaidxa) jo ad£y
‘(ad4y) jo 108 Surpnpour siojerado paje[aI pue ‘OpodTUNILA
‘uinsiea ‘eyep ‘opooru) ‘Juinsb ‘Surns ‘qewrrodp
‘[ea1 ‘1939)ul ‘ueS[OOY APN[OUI PUB SUONIUYIP PIOIAI
ur Sp[oy J1oj payroads 2q ued sadA) Ble("eIep 0) SSA00' PILIY
Sunzoddns sjaseep [eroads are saxopuy "sjosejep pyo pue
$19SBIRP UL SP[AY A} AQLIISIP SUONIULYIP PIOIY "SIOSeIep
PIIYD [EUONIPPE 1O SP[OY JUIUILIUOD S)OseIep P[Iyd Jo
SP[AY UILIUOD SIAsBIR(] SIOSBILP PIYd FUISn [9pOw BIep PAISIN

‘10je10dO seyojewr ‘siojerado
ugdrs sn[d pue snurw ‘1ojerado Iseo Jordxa sdew pue sopdny
107 s107e10do 90ULIeFRIoP {(J[NU JOU SI ‘[[nu SI) s1ojerado [nu

SLON MO ‘ANV si0je1ado ues[oog ‘UOISIAIP SN[NpPOW pue
s10jerodo onowyjire prepuess ‘siojerodo uostredwos prepuels

‘sweidord sonpaydey

eAR[woIsnd axnbar suonerado [eqors ‘parroddns are A[uo

suonerado (800 "payroads 9q 03 $)SB) 2ONPIY JO Joquinu

SMO[Te THTIVIVd ‘Pop1aoid jonuod rowrweiiord jrordxe
ou ‘SI H pue a1modydIe onpaydey doopeH £q pajjonuo))

sioyeradQ

BJEp JO UONNQIISI]

"Papaau SE Jx2Ju0d Y} uo Jurpuadap uoneneAd suorssardxo
SuLnp pajIoAu0d uay) Aelred)Aq o3 Jnejap ‘payroads

jou sad£y j1 “dewr pue ‘Seq ‘ojdn ‘Aeires)fq ‘Keirereyo
‘o[qnop ‘yeoy ‘3uo ‘yur apnour sadA} BIep OIWOIY ‘SP[AY pue
‘so1dn) ‘sSeq JO SUOTIBUIQUIOD PA)SAU IPN[OUT UBD SUONR[IY

*SPI0JAI BIEP QULYAP O} SUONE[I PAWEU [JIM [9POU BJEDP PAISAN [opow ereq

104

31 Aypiqedes 1o
Qe a8endue

(ponunuod) 'S 9qeL,

A.M. Middleton

116

“JUSWUOIAUS DD JH
ay ur uni o3 paydepe ued sijowered pue o[y Indur ue 9AII1
yorym swerSoxd ISOJA I9ISn]d YY) SS0IoE sapou uo [o[jered
ur swesdoxd Lired- ¢ [euI)X0 2IN59X3 03 UONOUN HdId
e pue [1d1NO PUE LHSVIVA uo uondo gdId sepnpout TOH
'$59001d © JOJ $I[NSI puE SMOpeIep) SUIQLIOSIP SUONIUYIP
IDH PoyI1oads U0 paseq UONNIAXS UT J[NST SJUSWAIEL)S
uonoy ‘JANS Se Yyons suonduny uone3or3se pue ‘spIodal vjep
uo drerodo yorym NIO(Se yons suorouny wLIojsuesy apnjout
suonoun,j "UoNNIAXI 1933N YOIYM SUOT)OR pue ‘Juauogeuel
MmOopYIom pue smopgerep pue urssadoid suyep 0] suonouny
ur-)[Inq ‘SUONIUYAP PIOJI PUL XOpul Jaserep ojul padnoin
‘suoneodrdde A1onb 10J ouISua AIQAI[Op BIRP AIXOY Y}
uo 9sn 10j pue douewiojrad Furssooord eyep aaoidwr o) vjep
0] 529098 Pakay oddns 03 $1osBIRP UO PAJBAID 9q ULD SIXIPU]
‘paysnes
s1Junoadoof ® 1o 1o SI uonIpuod 1)ydooy € [run joserep
& U0 ssed01d payroads e Jo uonesa)r Jo suonerado jeseiep
Jo Surdoo] mo[e yomym syuawels HIvIO pue JOOT
sopraoid TDH ‘suonounj WLIOJSULI) BJEp UI-})[INg 0) UONIPPE U]
"ONJBA PI[eA B SUTBIUOD P[OY B JI SOUIULIAJOP
AI'TVASI 19SEIEp B U JSTXd UONIPUOd Payroads oy
Suneaw SpPI0SAI JI QUIULIAJOP O} PIsn 9q ued STSIXH 1eselep
© SSOIO® UOTIPUOD B J$9) 0} Psn 9 UBD JUSWEIS TIISSY
oy, ‘uonenyead uorssardxa ordnnw 1oy LAY

PU® ‘HOIHM ‘HSOOHD ‘ASVD dVIA Pue ‘uonen|ead
[eUOnIPUOd UOISSaIdXa S[SUIS IO JUSWILIS] UB SOpNoul THT

‘swerdord [BUI9)X $S008

01 INVARLLS UM PIJBIOOSSE 9q 0) SPUBLLILOD PUB SUOTOUNY

MO[[e $3sTe FHOVD PUB dIHS ‘LNdLNO ‘LOdNI

s quowels ANIId QYL ‘sopou dandwod 10)sn[o

doopeq ay) 031 viep 10 ‘s9[y 1ef ‘sorreurq weidoid diys oy

pasn 2q ued juawels JIHS Y, “weidord 1o 1dios [euIa)x9
Ue 0] BJep PUas 0} JUAWAILIS INVHILS oY} Sopnjour DId

‘SPUBIWIOD [QANORIAUI
[eUONIPPE SIOJJO [[AYS JUNID) I T, "SUOTIOUN] JI0)S/PEO]
puE ‘suonounj [BAq ‘sjudWoleL]s (UOIoUNy PaUYp-Iasn)
Adn ‘s1oyerado onsouserp ‘siojerado [euorie[ar ojur padnoin
*314 Ul SUONOUN PAUYIP-IASN WOISND YINOIY) I[QISSIOIR
are yorym onpaydey doopey 1oy Ajfiqeded eiep paxopur
op1aoid oATH pue asegH "31d £q Apoaxip payoddns Jo0N

‘suonjerado uomnear oyroads ourquiod 0y Aiiqeded pajsau

sopraoid FIVYANAD *** HOVHIOA 19SeIep ssoloe
suorjerodo uone[aI prepue)s ay) UBY) I9YJ0 SISIX? Ajiqedes oN

(oneAa™asyey
: anfeATonn /, uonIpuod) papraoid st rojerodo puodulq ayJ,

s[Teo
weidoxd [eura)xyg

sad£y
juowae)s o3en3ue

soxopuy

sdooy weiSoig

uonen[eAd
uorssaxdxe
[euonipuo)

104

Sid

Aniqedes 1o
QInjey o3endue

(ponunuoo) T°s AqEL

117

5 Data-Intensive Technologies for Cloud Computing

(SAN 19-821) SANHSVH ‘DIDHSVH (AN 114-+9)

Y9HSVH ‘(AN 119-2€) TEHSVH ‘HSVH 9pn[oul Juswolels
HLNGTILSIA 9Y) (IM dsn 10§ S[qE[IeAL suonouny Surysey

"HNVL ‘NVL ‘T40S ‘HNIS ‘NIS dNANNOd

‘ANNOYA “DOT ‘NT dXd ‘HSOD ‘SOD TNVIV ‘NVIV
‘NISV ‘SODV ‘SgV 10§ suonouny ur-jjingq sapraoxd 1oH

‘BIep TINX J0J A[[eoyroads

papnyout st xejuks Jursied [e10adg "sIeWUIRIT QATSINOAI pUL

Aynpiqedes Sursred eyrwoy, 10 Sursied odA) uorssardxa ren3ax

yloq sapraoid Juawalels gSYVd YL, 'suonounj uonepifea

pauyep-19sn pue suonmuyap uorssardxe Je[ngor opnyour ued

suraneq "siewwess pue ‘so[nl ‘suroyed Jursred Suruyop Joj
sjuowalels NIAAA Pue ‘NANOL ‘ATNY ‘NIYALLVd sopnjouf

‘HONVIIVA ‘NNS ‘NIN XVIN

‘AONVIIVAOD ‘LNNOD ‘NOILLY TAII0D ‘HAV 2pnjout
sdnoi3 10 s}oseIep SSOIO’ NIOM UOIym suonounj uonesai3se

ur-)ing ‘dnoi3 payroads oy ssoroe pawrogiad suonouny
uone3ai33e Yym suorssardxa Jursn sp[oy paynduwiod sapnpout
jey) uonuyep prodar indino ue pue payroads sprey Aq

dnoi3 yym Juowalels g1 V.L 9Yi Sursn 1D ur pajuswoduy
‘werdoxd TOF ue ur TTVIJVOS Q[3urs €
£q passeo01d 9q UBD JOSLIEP QINUD UY "SIOIAIIS GIAN [BUINXD

$5900¢ 0 S[[Ed dVOS 10F TTVIJVOS uonounj TOF uring

"pay10ads 2q 0 SySk) 20NPay Jo Joquinu
oy} smofre suonerado euonerar uo uondo THTIVIVA
"uorINqLISIp Jasejep J0j [onuod owwersord J1odxe oN

"uonouUNj pAuYIP-Iasn € JO SN pue uoniuyp
ay) saxmbay oSen3ue] 31 ay) Aq Appoaxrp payroddns JoN

‘paxmbar are

suonjouny pauyap-19s() ‘3urssedold oFenJue| eInjeu 1910

pue Jursied 10J 110ddns o3en3ue] 1091Ip OU ASIMIYIQ "SPIOM
Jjo Seq e syndino pue Jurns e s)1[ds JuowaleIs FZINTOL UL

HZINFYOL

NS AZIS ‘NIN XVIN ‘ALJNESIT ‘A41d ‘LNNOD

‘LVONOD ‘DAV 2pnjout suonounj TyAH uk-ing ‘sp[oy

uo suonounj TyAH Sururojrad sjuswore)s IV IANTD
" HOVAIOA pue ‘dNO¥D 2y Suisn Sig ut pajuswa[duy

“Kpiqedes siy) opraold ued BAB[U US)ILIM SUOTOUN
pauyep-19s) -o3en3ue 314 o) £q Apoarip peyroddns JoN

uonnqLosip
joseyep 10§
suonouny Sulysey

11oddns
uonoduny dYNUIIOG

Surssaooxd
a3en3ue] [ermeN

uone3aI33e ere(q

$S90JB SIDIAIDS
qom TeuIaxyg

104

Sid

Aniqedes 10
Q1njey a3endue|

(panunuoo) I°s qEL

A.M. Middleton

118

‘LNHANHdIANI pue TVHOTO

‘$1U2Ad Sutssad01d 10§ NHHM ‘SSHOONS ‘AAYOLS
‘AYAAODT Y ‘ALIIOTAd ‘seam(ie) uonen[ead uoissaidxd
den 01 TYNTIV PNIOUT SJUSWIAJEIS MOPYIOM IOYIQ
‘paSueyo sey eyep JuIA[Iopun Aue Jo ‘pasueyd Sey 9pod A}
J1 pare[noresar Afuo are sdays poysisiad ‘pejyeadar st qof e 1
w)sAsa[y oy ul Apuauewriod paiols are so[y 1.SISYAd UL
‘uonerdwod 193ye PAJI[ep ST YOIy Jurodyoay)) Ise[Je awnsal
1114 31 “QIN[Ie] J9)SN[O B JO asNEd9q Unal q jsnwi wersord

e J1 "weidoxd THF ue Jo uonnoaxa oy ut sjutod ogroads

je parmdes aq 0) moperep ay) Mo[[e sjuwAes SISYAd

pue INTOdOTHD 24 3pnjour TOF UI SI0TAIIS MOFIOM

‘uoIssaidxo 19)[y pajeroosse

© ARy UuBd STHSOOHD PU® ‘NASOOHD ‘A T1dINVS

‘H.LNA 24 JO yoea 10j Josejep aseq oy, ‘pay1oads suonipuod
9} JO SUOU 323 Jey) SpI0daI Jo Toquinu e Areuondo Jo
UOTIPUOD) JO9UI JeY[} SPI0JAI JO Joquinu oY) pue payroads
9q 0} suonIpuod ddnnu smoffe YoIYM SIHSHSOOHD

PUE JOSEIEP B JO SPIOIAI U ISIY A} $1[S YOIym

NASOOHD ‘TeAlaut pagroads e uo sojdures Surddejraao-uou
109195 0} Ajfiqeded ay) sopraoid yormym gIJINVS Ioserep

€ JO PI0OAI Y3u A19A $109]0s Yorym HINH sopraoxd TDH

"uorndAX? ofeuew o) suondo

Surnpayos pue UOTEWLIOFUT MOPSIOM JPT0ads 0] SSa008

swe3old aonpoydely eae[mo[[e saop 19)sn[o doopeH
AU, "MOPIOAM 109JFe AoaIrp S1q Ul syuswaje)s agen3ue] ON

-9z1s o[dwres pagroads
e i ofdures ejep wopuelr e sjoo[es uonerado FIJINVS UL

JuswaSeurw
MOPHIOM

sjosejep
qrdures Sunear)

104

Sid

Anqiqedes 10
QInjey a3endue|

(ponunuod) ' dIqeL

119

5 Data-Intensive Technologies for Cloud Computing

‘woperd DDdH
Q) UI JOAISS JUSWIASRUBW B UO PIAIYOIE 98 SITUNSIOA
"qof U} YIIM PAJBIDOSSE JIUNNIOAN Q) UI PAIO)S I pue
poureu oq ued so[y Aeydsi(q ‘Ae[dsip 103 10 W)SASI[Y oY) 0)
SO ALIM IOUIIR UeD Jer]) Juawes NJ1NO0 e sopraoid 1DF
'Sp[oY JO Josqns Aue asn
ued JNAA "SP10da1 Juddelpe JYSILI pue 1Jo Ay} WOI) san[eA
Q0UQIoJaI UBd pue UoIssaIdxa Aue asn ued suonipuo)) ‘uondo
TIV ay Sursn ssafun JN@dd © 03 Jotid paxmbar st 1NOS V
‘uonierado JONILSIA S1d 23 uey) Ayiqededs uoneordnpap
9[qQIXaP 2IOW yonw & sapraoid sIy], “Jouuew mopuim
SuIpIys € UI pI09a1 JXaU Y} 0) paredwod ST p10oar Sururewal
oy} pue paddoip s1 p1odar aesrdnp oy 98I YoIYM
Ur ‘Joul ST U0Issa1dXa [eUOnIPU0d payroads e J1 ouruIolop
0} spJ0o31 Judse(pe saredwos Juowes JNAAd TOH UL
anx sAempe st jey) uonipuod urof e Sursn
sjonpouid sso1d 9)ea1d 03 pasn 2q ued uonerado NIOf oY TDH Ul

"UQIP[IYD Jo Joquinu Aue pue judred e jo

JNO PIOJDI PAUIQUIOD € ULIO 0} Pasn ST pue NJO[& 03 Je[IIs

stuonouny HZI'TVINJONHA YL 914 PIIYS Ydeo 10j 1oseIep

PITYO & YIIM JEULIOJ PIOJI MU & 0} Koy urof oy Suryojewr

Sp10dal [[e SuIppe pue jaselep yoed o) sururol uonouny
HZITVINSONHA oW Sutsn paysiidwodde st iy “TIH uf

"UOTE[AI B JO SIU21u00 aY) sAefdsiq

*aseo sty ur uonerado JONLLSIA & 03 Jord

Sp[oy 9y} JeI1ouaS 0 pasn aq IS JUAWeIe)S g IV IANTD

* HOVANMOA V 'SPIRY JO 19sqns B UO pasn oq Jouue))

‘uonerado sty 03 Jo11d pajIos are safdny oy, ‘yorewr Jsnwr
91dny oy ur spfay [y ‘uone[al e ur sojdny ayesrdnp soaoway

*(s)9sBIRP) SUONIR[AI 2IOW JO 0M] JO 1onpoid $S0Id) $31BAID
‘Ayrenba prey uey) 1oyjo Surssaooid euonIpuod
10J s3s1%0 110ddns oN "A9y urof oy se payroads a1e uone[al
yoea woij splar] “partoddns are surof YAIL.NO Pue YANNI
*so[dny Indino Jo 39s Jep © $938aI0 NJOI 2[1ysm sodn) ndino
JO 138 PaIsal & $918a10 JNOYDOD "SeN[eA P[oy UOWWIOD
Uo paseq ($)9seIep) SUOIIR[AI AIOWI JO 0M) UT elep o) sdnoid

pue uonerodo NIO[9y 03 Jefruirs st uonerddo JNOYOHOD UL

duing

Jounsiq

$S0ID)

dnoi3o)
:suonerado
uone[al DI

104

Sid

Anqiqedes 10
aInjeay a3en3ue|

(ponunuod) ' dIqeL

A.M. Middleton

120

"KI[enPIAIPUT JOSQNS OB UO SOINIIX
J1 S€ BJEP 9} JO $J9SQNS PIULYIP UMM INII0 0) SIAYI0
pue dN'TI0Y dNAId TIOS ‘HLVIHLI St yons suoneredo
uojsuen) pue suone3aI3de smoje sty 'skoy £q dnoi3 oy
Se uorouny Yorym pIodal 3y} Ul SP[oy U0 paseq suorssardxo
1O SP[oY JO ISI] B SI YOIyM BLISILIO YBAIq 9Y) UO PIseq $1as
Jo 39s © ojur Jaseep e sjuawiSesj TOH ur uonerado JNOYD YL
‘pI0oa1 ndur ay) 03
[BONUAPI 2q 0] QABY JOU S0P PUB PIPAAU SB A[IA1II[IS SP[AY
pandwoo pue Jndur oY) WoIJ SP[oYy 9PN[OUT UED WLIOJSUET)
ay Jo pIovar ndino 2y ‘uonouny ayy uo Surpuado ‘uonouny
INJOASNV UL 2y} Aq passadoid are sp10oar se uonerado
HILVIANAD * - HOVHIOA oy sepraoxd Aprordur
yorym uonounj WJO4SNV YL © 9pn[out 019 dNTI0Y
‘NIOf ‘LDALO¥d se yons uonerodo wojsuen JHH Yoeq
*suo1ssaIdxo JULIS)Y JO UOTJBUIQUIOD
9y} UO paseq UONNOAXA FuLmp ejep Ay Jo Sunry sezundo
1o11dwod THH Y, ‘(uorssardxa 1oy)owreu joseiep
Se ouIeu 1osejep 2y Suimoj[oy sisayjuared
ur uorssaxdxo 19y oY) YIim Juswalels D Aue ur paduarojor

ST J3SPIOJAI 10 Jasejep e awin) Aue pasn 2q ued mﬁoﬂmwv.m&xo REING

‘sp[ey Aoy dnoi3 owres
Ay 2AeY Jeyy uonerar 9[3urs e ur sajdm oy 10y3e503 sdnoin

012 ‘dNOYD ‘LONILSIA “YALTIA S yons asne[o uonerouad
oy ur suonerodo 910 9pN{oUl UBD PUB ‘UONRULIOJSURT)
pue ‘uone3ar3de ‘uonoafoid 10j pasn 9q ued uonor

SIUL, "BJep JO SUWIN[OD UO PASeq SUOIBULIOJSURI) BIEP SIJRIJUID)

‘JueM), UOp NOK BIRp)
QAOWIAI JNO I 0) A[OSIOAUOD IO JuBM NOA BIEP YY) 109[9S
0) Pas() "UONIPUOD © UO PIseq uone[al & woij sofdny s109[0§

dnoin

QJBIQUAD) * * * YOBAIO]

L]

104

Sid

Aipiqedes 1o
QInjeay o3endue

(panupnuod) 'S 9qeL

121

*QOUQIQNIP STY} AJeNSUOWP [[°G “S1f

pue /"¢ sS1] ur umoys sojdwrexs oy, ‘uonmuyep QYOI

© SOpNJoul Os[e YoIym uoniuyap [4SV.IVA e st uonerado
AVOT Sid 9y Jo Juaeamba oy ‘eAneIR[o9p ST TDH UL "w)SKSAY Y} WOIJ Blep Speo] peoT

"JOSE)Ep B UI SPIOJAI JO Joquinu

pagroads & 30919 03 asn 9q ued uonouny NISOOH)D UL

*PAP99Xa ST 31| Ay} J1 uonerado ay) [1eJ 03 JO ‘SPI0IAI JO Juowale)s YAJYO ue £q papadaid ssoun jndino
JoquINu WNWIXew € 0} Surssaoold woiy Sunnsal jospIooax 9q [rm s9[dn) YoryMm JO d9jueIens ou ST 913y} ‘IOAIMOH
® Jo Jndino ayy 1o11sa1 03 ST TDHF Ul uonouny IIIATT QUL ‘uone[al & ul sojdm Jndino jo Joquunu dy) W[0) Pas) Iy

‘suonerado urof-a3xowyurof Are-u Jurop jo poyiow € sopraoid
yorym qadddLs Sursn Suiddeys arews pue ‘uonerado o[3urs
® ul saS1ow pue sutol yorym NIOFOYAN 2Pn[dul TOH Aq
pop1aoid suonerado ad£j-urof [euonippy pajoddns st (Josi
0] Jasejep awes ay) sururol) surol-Jjos pue osoueuriojrad
oao1dwil 0} SOXApUT PAASY asn OS[e Ued SUIof ‘J1J JO INed)
urof pajeorjdal,, 9y) 0] Je[IWIS SI PUB SAPOU [[B 0] [[BWS JI
jaserep auo sa1dod Yorym JNYOOT pue ‘sAoy urol poyroads
oy Aq s1eseIEP A SANQLISIP YIIYM HSYH Sulpnfout
uonnquusip 10j suondo [euonippe sopraoid osfe sopow

[890] pue [2qO[S © Y10q Ul Pasn aq Ued NJOf "UonIpuods uiof e
se pasn 2q ued paurof 9q 0) sjoseIep Ay} Ul SP[oY SuroudISjoI
uorssaxdxa [euonipuod jo 2dAy Auy -paprured are

surof (xew ‘urur) NAOW pue ‘X INO LJAT “YHLNO 1491

“YANNI ‘NIOT S19581ep JO 195 343 10, paniuwied are sutof “soueuriograd oao1dwr 01 pasn aq ued

XINO LHOTY Put XINO LAF'T 49100 LHOMY “¥YILNO uondo _ payeorda,, oy ‘K1owaw Ul p[ay 9q ULd pue [[eus St

14971 “4ALNO0 TINd “TANNI S1eseiep om) 10, 'sjasejep uone[a1 ouo J1 ‘urof 1ouur ue suoyrad sKemie 0jerodo NIOf
JO 198 © 10 SJOSBIEp 0M) U0 sy1om uonerddo NJOf TOH YL~ OUL "SON[eA P[OY UOWWIOD UO PISE] SUOIIB[OI QIOW 10 OM]) SUIOf urof
104 Sid Aiiqedes 10

QInjey a3endue|

5 Data-Intensive Technologies for Cloud Computing

(ponunuod) 'S 9qeL,

A.M. Middleton

122

"Josejep o[3urs ©
0Jul paSIoW 2q 0} Sp[Y dwes Y} Jursn padnoi3 uaaq AABY YoIyM
sjaseyep odnnw smoye uonouny JNOYOTY YL ‘Pepnour 9q

0] sAay anbrun yjim sproodar Afuo sasned uondo JN@AQ Vv 1epio ‘so[dm
110s o) seyroads Jey) 11| P[oY & 0} SUIPIOOOE PAISPIO 9q 0} dTIoW jeoridnp eyeurure jou seo(“sojdny jo Seq paropioun ue
oy) smoffe uondo QEINOS V ‘1eULIO] PIOJAT duIes) ALY SN se pajaxdiayur are suonerar indino pue ndur ypoq ‘paaresard
Syoseje(J "S}oselep Jo ISI| & Ul payroads soxopur o sjoselep ay [[e jou s1 so[dmy Jo IopIQ) "UOIIE[I A[SUIS B OJUT SUOIIE[I AIOW
Surureluod xopur Jo jasejep J3uls B suImal uonouny gOYHIN YL IO 0M] JO SJUUO0D A} 9310w 0) pasn st Jojerado NOINN UL uorun
JuowruoIiAud urssedoxd DDOJH
AU} ur WA)SASIY 1)sN[d AUk 03 Inq “INSN[D [I0] A} UO WISASA[Y
) ATuo jou yum ued ndinQ ‘uonerado gJ[d oy} 10J pegroads
puewwod ay) 0} Indur prepuels oY) se gdId & 0} UMNLIM 3q OS[e
ued JndinQ ‘syeurIoy TNX Pue ‘ASD ‘Ory jey 1oddns 1NJdLNO
Jo suonerreA ‘uolssaidwod p7T Suisn passaiduwod oq ued
so[y ndinQ “Aedsip 103 JIUNSIOM) UT JT 2I03S O} JO WIAISASIY
"W)SAS o[) 0} BIEp $AI0IS 101§

AU} 0] 19SBIEP B LM 0) Pasn SI TDH ul uonouny 1NdLNO YL
030 ‘(7 uorssardxa 1Y) 1S =: ¢SA
‘(1 uorssaxdxa™1a)[y) [SA =: S 2UYap P[nod noA ‘]S 19seIep
10§ opdurexy "jasejep aseq oy} uo suorssaidxa 19y Surkyroads
Ardurs Aq pajeard a1e suonnied ‘OANBIR[OAP ST TDH 90Ul *SUOTIB[I QIOW IO OM) OJUI UOTJB[AI B SUONITLIE] nds
‘sajeordnp 10j
J[qeIsun 10 9[qeIs 2q ued pue 10sdeay Jo ‘1I0SUONIASUI 1I0SYIINb
e Sursn paurtojrad oq ued suonerado Juniog “A[enprarpur dnoig "S14 UT paIopIoun 2q 0) PAISPISUOD I8 SUOTIB[Y
yoea 0) saridde 1OS oy ‘s1oserep padnoi3 10, "A[[enpialpul payroads IopIo 9y Ul passaooid aq [[Im SI[NsaI Ay o9juerens
I9JSN[O 9Y) Ul 9POU YOBD UO PAIOPIO 9q [[IM JSLIEp) YoIym ou st 219y} ‘uonerado uonerar 1yjoue £q passaood

Ul [BOO[10 “I9ISN[D B Ul SOPOU 1) SSOIOB PAIIPIO 9 [[IM 1dseIep Rouungy s YFA YO ue Jo Insaxay) Jj1ing JINOJ ®© 1oJ Jopio
AU} YOIyM UT [8QO[3 2q UBd YOS YL "SP[eY A9 Jo suorssardxa ur oq [[Im suone[ay ‘paytoddns are s110s JUIpuadSIp pue
JO IST] © 0] SUIPIODDE JaseIep B S1I0S uonouny 1¥OS 1T UL Surpudose yjog "Sp[eY 210U IO U0 UO PIseq UONB[AI B SH0S 1pI0
104 Sid Aiiqedes 1o

Qe a8endue

(ponunuod) 'S 9qeL,

123

5 Data-Intensive Technologies for Cloud Computing

‘Jndur 9y se Qwes) 9q 0) dALY JOU S0P JeWI0J pI0dal Indino
puE WLIOJSULI) PAJBIOOSSE AT, Jaseiep Aeredas © ojut Joseiep
€ JOJNO SPI033I PIYo sazifeuriou uonouny JZI'TVINION 9UL parmbar st IVIANAD “
*PAIAPISUOD 3q 0} Sarouapuadop pI0daI-TUT
SMOI[e J1 90UIS S[e}0) SUIUUNI Se Yons UOIBULIOJUT MAU Sune[no[eds
pue uonewrojur Sunesedoxd ur [njesn st uonouny FIVIALI
ayJ, ‘A[renpiarpur dnoi3 yoeo sosseoo1d IV YH.LI oYl ‘pednoid st
josejep oY) J1 wan ut Jred yoead uo p1odoar wirojsuen oy) Jururioyrod
poylowr mopuim JUIpI[s & Suisn aw € je spIodar jo rred auo
J9sBIRP B UI SPI0J3I [[& ySnoay) sass2001d uonouny IV YH.LI YL
"JOSEJEP MAU B 918AI0 0) UONOUNJ WIOJSULT) payroads e
y3noxy 31 Surssed pue joseiep aseq Y} Wolj p10oar Jurpuodsariod
A 3uryoIaf xopurt Yy Aq payroads IopIo Yy Ul Joserep
XOpul Ue Ul SPI0931 A} [[Y3noay) sassavoid uonouny HOIA] YL
‘papasu
Se Sp[oy [euonippe pue sjasejep Indul (3oq Woly sp[oy Pajoas
urejuod ued joselep ndino oy Jo JeWI0J PI0JAI AY) PUL ‘UONOUNJ
uLojsuer) payroads ayy 01 passed are [ord WOIJ SPIOIAY ord
ur 1eadde A9y} yoTym UT JOPIO Y} UT SISBqQ PI0IAI-AQ-PIOJAI B UO
JaseIep 9[SUIS B OJUI S)ASBIEP 0M) SAUIqUIOd uonouny gNIFINOD UL
*3urssaoo1d pauyop-1osn wojsno
Sunuowordwr Jnoyyim S1d Ul S[qe[IBAR JOU QI Jel[) SUOIIBULIOJSURT)
eyep jueprodwr Jurpraoid suonoungy [euonippe Auew sapnjour TOH

HOVHYOd Jo 9501

J[qeTeA. JON

J[qe[TeAR JON

J[qe[TeAR JON

JZI[BWION

RIAGI |

LER

QuIqUIOD)
suonouny
uoneuLIojSuLs)

1Od [euonIppy

104

Sid

Aniqedes 10
Q1njey a3endue|

(panunuoo) I°s qEL

A.M. Middleton

124

"TI°G 314 ur umoys st 11°¢ 314
ur umoys 2pod TDH 2yi 03 Surpuodsariod ydeis oy jo ojdwexa
Uy "UONJEWLIOJUT [EUOT}IPPE J0F UmOp [[1Ip 03 ydess oy uo o1

9[qnop ued s1as) “deys Suissaoold Yora Jo s)NsaI oY) PuUB INIO0
Ko se smopejep ‘uefd uonnoaxe Y smoys yorym (Oy(q) ydeid
O1[9Aok PIJIAIIP B SB PamalA q ued T £q passardxa smopyejep
o “‘qof ® Jo wonnoaxe ay) Jurn(‘sqofl THH Jo uonnoaxa Juryoid
pue ‘3ur33nqap ‘FurzA[eue 10j (003 uonLZI[ENSIA A2[dWOd

& op1aoi1d s700) JuswruoaAu? juawdorasep weisord yorep\ 1D
pue Jop[imgAiong) 9y [, ‘SMYS PIOAE 0 JOPIO Ul UONNQLNSIP

elep Jo SISA[eue o) Ul pre 0} Joselep oy} Ul P[oy [oed Ur anfea

[OB3 JOJ JOSeIRp © Ul QI8 1Y) SPI0JI AUBW MOy SUnesIpur JeuLioy

1duos

QY ur Juawele)s Yoea jo jndino oy Jurdwnp A[enuasse
sjuowd)e)s une] Sid Jo oouanbas v ySnosyy pawtojsuen

SI BJEP MOY] 99S 0} NOA MO[[E SJUAWIAL)S JO douanbas e

Jo uonnoaxa days-Aq-days e sAerdsip Jorerado FIvILSNTTI
qyJ, 1duos 314 e ur uonerado ue 9yndwod 03 pasn are

ey sue[d uonnoaxa aonpaydey pue ‘TearsAyd ‘[esr3of ayp
MATARI 0) NOA smof[e J0jerado NTVTdXH QYL ‘Uone[aI & Jo
BWAYDS Ay suImal Jojerado gEIYDSHA QYL 'SoInonys ejep

TINX ur 11odar gelssord e saonpoid uonoe NOLLNGIMLSIA UL JO uonezifensia 9y ut pre o) siojerodo onsouderp sapnpout Sig

‘30q Wolj elep

JO aIm)XTW AUE JO ‘pauTeIal 9q ULd WLIOJSuL) Ay} 0} passed p1ooal
JYSLI 0 3] oY) IO ‘pauyap s JNTTOY Ay moy uo Surpuadeq
‘Kesme umoIy) SI J1 210Joq PI0J2I dJed1dnp oY) WOIJ UOTJeULIOFUT
9[qen[eA 2SN PuB 9ALNAI 0} NOA SMOJ[E SIY L, “SpI0dal Aeoridnp

Jo ared yoea sseoo1d 03 uonouny wIojsuer) payroads e sapnjour

nq uonouny JNAHAQ A4 0} Fe[IIS ST uonouny JNTI0Y YL

"uIng ul pI0d2I Yord uo wiojsues) payroads oyy Sururogrod

JosBIRp © UI SPI0JAI Y} [[& YSnoay) sossa001d 1D)AIOUd UL

‘uostredwos 1xau 9y} J0J PI0d2I JYSI
AU S1oNNSU0D Jey) payIoads os[e sI uonouny ULIJSuULI) puods y
"uIn) ur spI0oax jo Ied yoes uo uonounj UII0JSuLI) pAJeIdosse ay)
Suruogrod poyjowr mopuim JuIpi[s B 3uisn (P01 JYSLI pI0T
339[) SW) © Je SPI0daI Jo Jred QUO JaseIep B U SPIOJAI [[¢ YSnoIy)

59552001 puP FLVYALI 0} Je[IIS ST uonouny SSAOOU YL

d[qe[reAr JoN

parmbar s HIVIANAD *** HOVAIOA JO s

d[qe[reAr JoN

s1oyerado onsouSerq

dnjjoy

109fo1g

$59001

104

Sid

Aypiqedes 1o
Qe a8endue

(ponunuod) 'S 9qeL,

5 Data-Intensive Technologies for Cloud Computing 125
5.4.3 Architecture Comparison

Hadoop MapReduce and the LexisNexis HPCC platform are both scalable archi-
tectures directed towards data-intensive computing solutions. Each of these system
platforms has strengths and weaknesses and their overall effectiveness for any appli-
cation problem or domain is subjective in nature and can only be determined through
careful evaluation of application requirements versus the capabilities of the solution.
Hadoop is an open source platform which increases its flexibility and adaptability to
many problem domains since new capabilities can be readily added by users adopt-
ing this technology. However, as with other open source platforms, reliability and
support can become issues when many different users are contributing new code
and changes to the system. Hadoop has found favor with many large Web-oriented
companies including Yahoo!, Facebook, and others where data-intensive computing
capabilities are critical to the success of their business. Amazon has implemented
new cloud computing services using Hadoop as part of its EC2 called Amazon
Elastic MapReduce. A company called Cloudera was recently formed to provide
training, support and consulting services to the Hadoop user community and to pro-
vide packaged and tested releases which can be used in the Amazon environment.
Although many different application tools have been built on top of the Hadoop
platform like Pig, HBase, Hive, etc., these tools tend not to be well-integrated offer-
ing different command shells, languages, and operating characteristics that make it
more difficult to combine capabilities in an effective manner.

However, Hadoop offers many advantages to potential users of open source soft-
ware including readily available online software distributions and documentation,
easy installation, flexible configurations based on commodity hardware, an execu-
tion environment based on a proven MapReduce computing paradigm, ability to
schedule jobs using a configurable number of Map and Reduce tasks, availability of
add-on capabilities such as Pig, HBase, and Hive to extend the capabilities of the
base platform and improve programmer productivity, and a rapidly expanding user
community committed to open source. This has resulted in dramatic growth and
acceptance of the Hadoop platform and its implementation to support data-intensive
computing applications.

The LexisNexis HPCC platform is an integrated set of systems, software, and
other architectural components designed to provide data-intensive computing capa-
bilities from raw data processing and ETL applications, to high-performance query
processing and data mining. The ECL language was specifically implemented to
provide a high-level dataflow parallel processing language that is consistent across
all system components and has extensive capabilities developed and optimized over
a period of almost 10 years. The LexisNexis HPCC is a mature, reliable, well-
proven, commercially supported system platform used in government installations,
research labs, and commercial enterprises. The comparison of the Pig Latin lan-
guage and execution system available on the Hadoop MapReduce platform to the
ECL language used on the HPCC platform presented here reveals that ECL pro-
vides significantly more advanced capabilities and functionality without the need

126 A.M. Middleton

for extensive user-defined functions written in another language or resorting to a
native MapReduce application coded in Java.

The following comparison of overall features provided by the Hadoop and HPCC
system architectures reveals that the HPCC architecture offers a higher level of inte-
gration of system components, an execution environment not limited by a specific
computing paradigm such as MapReduce, flexible configurations and optimized
processing environments which can provide data-intensive applications from data
analysis to data warehousing and high-performance online query processing, and
high programmer productivity utilizing the ECL programming language and tools.
Table 5.2 provides a summary comparison of the key features of the hardware
and software architectures of both system platforms based on the analysis of each
architecture presented in this chapter.

5.5 Conclusions

As aresult of the continuing information explosion, many organizations are drown-
ing in data and the data gap or inability to process this information and use it
effectively is increasing at an alarming rate. Data-intensive computing represents a
new computing paradigm which can address the data gap and allow government and
commercial organizations and research environments to process massive amounts of
data and implement applications previously thought to be impractical or infeasible.
Some organizations with foresight recognized early that new parallel-processing
architectures were needed including Google who initially developed the MapReduce
architecture and LexisNexis who developed the HPCC architecture. More recently
the Hadoop platform has emerged as an open source alternative for the MapReduce
approach. Hadoop has gained momentum quickly, and additional add-on capabili-
ties to enhance the platform have been developed including a dataflow programming
language and execution environment called Pig. These architectures, their relative
strengths and weaknesses, and their applicability to cloud computing are described
in this chapter, and a direct comparison of the Pig language of Hadoop to the ECL
language used with the LexisNexis HPCC platform was presented. Availability of
a high-level parallel dataflow-oriented programming language has proven to be a
critical success factor in data-intensive computing.

The suitability of a processing platform and architecture for an organization and
its application requirements can only be determined after careful evaluation of avail-
able alternatives. Many organizations have embraced open source platforms while
others prefer a commercially developed and supported platform by an established
industry leader. The Hadoop MapReduce platform is now being used successfully at
many so-called Web companies whose data encompasses massive amounts of Web
information as its data source. The LexisNexis HPCC platform is at the heart of a
premier information services provider and industry leader, and has been adopted by
government agencies, commercial organizations, and research laboratories because
of its high-performance cost-effective implementation. Existing HPCC applications

127

5 Data-Intensive Technologies for Cloud Computing

‘Surrayjo 201nos uado armyng & opnoaid jou s0(] ‘suoneIn3yuod

wasAs Jo odA) pue 9z1s uo puadop APUIIND SO 9SUAII]

“JUSWUOIIAUD

QuIES Ay} UT I9JSN[O JOYI0 AUE UO WAISASI[Y) SO[SS900E UBd
19)sn[o © Quapuadapul aIe I9)Sn]d Yo U0 SWISASA[Y ySnoyly
*sad A} uoneIn3yuod yyoq Jo s1isnpo apdnnu Jo ISISu0d
A[reord£ syjuowuoaiaud DHJH eoueuriofrad aaoxdwr 03 asn
PapuUUI 9y} UO PIseq APJUAIIYIP pajusworduir oI Jng Sw)sKs
9y paINQLISIP Se UonouNj os[e suoneInsyuod ylog ‘senijiqededs
asnoyarem ejep pue 3urssadoxd Aronb ourfuo souewrojrad-ySiy
areredas sopraoid (arxoy) auiug A1AI[RJ BIR(I9ISN[D
Qonpaydey doopeH ay) 03 snoFofeue st (10y],) A1oUyay

ele(q :suoneinSyuod om} ut payuswa[dwr oq ued s193sn[DDJH
*SMOPUIA\ /XNUT']

Jwes

*pasn pue papeo[uMop

A70913 2q ued pue wrojye[d 901nos uado ue st doopeH ‘oUON

'010 “OAIH ‘osegH Surpnjour

QIBM)JOS WIRAISAS SH pue 2onpaydejy doopey oy jo

doy uo paraAer are sanijiqedes 1oUyIQ "SJJH Sutuunt wa)sAs [y
PAINQIISIP € Sk suonouny osye 10)sno oy, ‘wSipered Surssaoord

onpaydeN yam 193sn[o sjuswadwir aremijos waisAs doopey

1S00 SUISUAIT

suonem3yuod
wISAS

(u1mSAD) Jo uone[RISUT 9} SAINDAT) SMOPUIAN PUR XNUI/XTU) WRISAs SuneradQ

Juowa1nbar e jou st

STy Inq “(A[[eonuapt pangyuod are s10ss001d [[8) snouagowoy
Arensn aIe s19)Sn[D) “IAISN[D Y} JO IZIS [£10) oY) uo Surpuadop
SOUOIIMS SUOTBOTUNIWOD JO AYOTLIATY JO (SUOIIOUUOD
JouIayly 11qe3ID) A[[ensn) YoIIms suonedunwwod paads-y3iy

€ 0] POJOAUUOD YSIP pue AIOWW [800] ‘s10ss3001d QY

10 [JU] PIM SIQAIRS dpe[q pajunow-yoel A[[eordA, -orempirey

(SIOD) Jeys-oyl-}Jo Ay powrtuod uIsn s19)snfo SuIssa001d

adK) aremprey

J0dH

doopeyy

o1SLIORIRYD
QIMOANYOTY

uostredwos a1yedy DDOJH s doopeH 'S 9dqel,

A.M. Middleton

-goueunioyrad aaoxdwr pue Kouepunpal apraoid Ued SIQAISS
359 Jo sa1dod o[dnnIAl *SOpOU [BI9AS 0) JUO UO sjuauodwod
QIeMI[PPIW oY) SuTUUNI IO SISTXd ANIQIXA[,] "SWISAS[Y
PANQINSIpP Y} JOJ $AJ1AISS Futweu sapraoid pue uonewIojur
JunsjIom qol 103 2103 Blep WISAS oy} St SUONouny Yorgm

JOAISS T[e(] Y} PUE ‘JUSWUOIIAUD SIITAIOS JOA\ PUE UONNIOXD
qof 9y J0J S9OTAISS 130 pue ‘AIlIndas ‘Jurdso[‘uoneonuayIne
Surpraoid (wiojie[d SOOIAIRS 9s1dINUT) JOATOSJSH UB ‘1aIsn[d
IoyJ, & uo qol ® Jo uonnoaxa ay) oeuew o) werdoid juaro ©

JO Jreyaq uo 3unoe Jualy1DH ue ‘sorrenb pue sweioxd 1HH jo
Surrdwos 10J 19AISS TDH Pue ‘19AI1as TOSAIA © uo pajuswardurr

K10y1s0da1 ap0od THF ue apnjoul sjuauoduiod AIBMI[PPIJA U0 IOeNqO[Ay} 0) APO2IIp sqof JIWqNS UBD IBMIJOS JUSI[D) “QUON

eI p)

a1x0y pue J0yJ, jo uonerado 10j paxnbar are sjuouodwod
QIeMI[PPIW [BUONIPPY "BIEP AU} 0} $S200B PIAJY sopiaoid pue
BIEP PUB XOpUI 910)S 0} 9A1] +¢g PAINGLNSIP B SISN I9)SN[I AIXO0Y
U} U0 WIAISASI[Y Ay], "3urssao0id 9[pue A3y pue uonnoaxa
K1onb 10] SysB) JUOTY puB JOAIIS SUNI IPOU OB dIYM IISN[d
pardnoo-1aad e SI 1)sN]0 AIX0Y Y "SApou dae[s o[dn[nw pue apou
Io)Sew & [IIM paInSyuod os[e ST I9ISN[O JOY], V “JUSWUOIIAUD
DDdH 2y ul sqol 10J SHIUNYIOAN SOSeURW PUB SIJIAIS

QuIeUu W)SASIY sopIA0Id IOAISS T[e(] Ay} Po[[ed IoAIas djeredos
V 'S$S00B WRISAS I PAINGLISIP pue uonnodaxa qof apraoid oy
I9)SNJO 9Y) JO SPOU [OBd UO PI[[EISUI SOJTAIOS SNOLILA PUB WAISAS

‘soouonbas

Qonpaydey o[dnnw axmbax yorym sqol oSeuew 03 Juowdojoadp
Jopun AJJULIND ST JOAIDS B SB UNI [[IM Yorym (SAMH)

19[npayds MOPYI0A, dOOpeH W "I91SN[D JY JO 9POU I2ISL

opou djeredss € 10 SIPOU IAB[S

9} JO SUO UO UNI 3q UBD PUE SIIIAIIS dweu apraoid o) parnbar
OS[E ST 9OTAIIS IPOUSUIBN] JOISLUW B ‘S J(JH JOJ “OSIMIYI] *SOpou
QIempIey JAE[S AU} JO SUO UO UNI JO dpou drempiey eredos

© Se paIn3yuod 9q Ued YOIYM ITAISS JOYIRIIQO[B SOPN[OUI dpOU
I0)SBW Y "9OTAIIS dPOUBIE(] PUE IITAISS IONORIPSE], B SOPN[OUL
OpOU JAR[S YOBY 2IeMIJOS S I(TH PUe I9Isnyo sonpaygdey

sjuauodwod

IeMIPPI

128

Sunerodo oy) sopn[our 9IeM}JOS 910D ‘UONBINSHUOD JOY], B 10, doopey pue waysAs Sunerado ay) sapN[OUT 2IBMIJOS 910D QIEM)JOS 10D

doopey J1SLIvORIBYD

QAINJOANIYIIY

J0dH

(ponunuoo) 7's AqEL

129

"OpOU [oBd UO SO[Y [2I0] UI PAIO)S BIep
pue uoneuLIojul A3y SUIUILIUOD SI[Y XOPUI 1L +¢ PANQLISIP
SazZIMN (T 910y YL, "sqof yoyeq ojur pajerodioour pue eyep

SAQ PIm pARISAUI 2q 0} BIBP [BUONORSURI) SUIMO[[R ‘PISSIOIE
9q 03 TOSAIA Se yons soseqejep [eUI0)Xd WOIJ SAY SMO[[e
s1oydepe [eroads uIZin JUSWUOIIAUD JWES Y} Ul paIn3yuod
S10)SN[O Udam)aq parroddns st $S000€ ALIM/PEIY [P PAINGINSIP
& Juasaxdar 0) parnbar apou 1od o[y [BO0] QUO A[UQ “TOAIIS
Jreredos e uo paroys uonewojul Jurddewr o[y pue SAOTAISS oweU
()M QINOANIYDIE QAB[S/IQISRIA 1SN Ay} Aq payroads sarrepunoq
JUSWINOOP/PIOIDI UIAD UO PAPTAID AIE ST o[PAINqLISIP

yoe 1oy A)dwo 2q ued yorym 1red o[y 9[3UIs € SBY 9pou [ord pue

sapou sso1oe (pake1ds) papeoy A[[enur a1e so[1 ‘sited o[910JS UI SI[YJ [BOO[/SITUN Juapuadapur Se PaIols aIe SO0 "SUOIR[[EISUl waysAs
0) WOISASIY XNUIT [BOO] SASN “PAJUILIO-PI0IAI ST S JOY], YL, Jsow Ul $Y00[q GIN 8¢ 10 GIA +9 9SIe[Sosn ‘PAUSLIO-}00[g 9[Y paINquIsIq
uoneINIYuod € Ur SOpoU Pajooq-1au [[& 0) SSLIeUIq
PUR ‘SIOIAIIS ‘STUINAS [9A] SO ANQLISIP 03 A10)1s0dar [enuad Juowkodop NJY [enuew & saImbay] juowkordop
© $op1A0Id IOAISS SISOUALD) Y [00) UONRINSYUOD JUSWUOIIAUY “SPIRZIA\ SUIzZi[nn e1opnof) £q papraoid s[oo) auIfuo £q pajsissy Jo aseq

"SOORJIUI SAJTAIIS QI YSnoayy papraoid a1e s[ooy [euonippy
*s7003 Surrojruow douewIograd weysAs pue ‘Surrojruow

qof yuowoSeurw WISAS A PAINQLISIP JuUoWdFBUB

anonb sopn[oul pue JUSWUOIIAUL D)D) JH Y} SuLrojruow

1oy wei3oxd Ann paseq qopn B ST YoJBA\TDH O[qB[IBAR OS[E
Qe SUOISIOA QUI| puBWIWO)) "AN[N() uoneInSyuo)) arxoy Aimn
uonensyuo)) juswuonAug ue ‘(NJq) Ann [pAInqusiq
‘[00T, UOTIRISTIA] 9INGLIIIY U ‘JUSUIUOIIAUD JUWdOAD
weidold ay) IopringAion) apnour asay], ‘S)USWUOIIAUI

pue suoneInsyuod DHJH Sunojiuow pue ‘Sururejurew

*9[y poINGINSIp © Judsardar

01 pa1nbai a1e 9pou & U0 PaIoIs YI0[q [130] YIBD J0J (BjepeIow
Sururejuod | “o0[q oy} Surureuod 1) sy [eoof aidnm

*19)SN[O) UI SOPOU $S0Idok pealds pue sY00[q OJUl PIPIAIP I
So[1 “sepourje(] o[dnnuw pue Surddew yoo0[q pue SOOIAISS owreU
op1aoid 0) opoudweN J[SUIS B YIM INJOANIYIIR JAR[S/IASEIA
")[00[q Yoea 10J o[9jeredas & ur paIols SI SO0[q IO UOTJRULIOFUT
BJEPRIQIA "OPOU) J0J WISASI[Y XNUITT/XIU[) [BI0] oY)

'SY[SE) 20NPAY
pue dejq noqe ojur sAefdsip jey) a3ed syse], € ose s1 a1y, ‘qol
JY) Jnoqe uoTjeULIOJUT PITeIp sAe[dsip qof oyroads e uo umop
Surrup ‘sqol pajerdwod pue Juruuni Jnoqe uorewIojur sAedsip
Yoty oed JoYoRILqO[Y} SOPNIOUT [() AN 2onpYdeA YL
"POPAU S SOPOUEBIEP PAZI[NNIIPUN O) SOPOUEBIEP PIZI[NN-IAO
WOIJ $[00[q SAINQLISIP-2I JOOUL[Eq ‘9POULIEP € U0 PAIO)S SYO0[q
oy} [Te seyLoA A[[eorporiad Jouueos yoo[q apouelep ‘SAIJdH

ur so[y Jo yITeay ay) Suryoayo J0J ANNN € ST YOs] {WISASa[y

5 Data-Intensive Technologies for Cloud Computing

‘SurSeuew 1oy sjoo} suonerado pue JULI[O JO AINS B sapnpour DDJH) JO AJEIS 9Y) JnOqe uoneuLIouI SapIAoid [00) UTWpPESIP Y], $[00) W)SKS

JJ0dH doopey J1SLIg)ORIRYD

QAINJOANIYOIY

(ponunuod) 7S 9qeL,

A.M. Middleton

‘A1onb oy 10J €1Rp S$9001d pPUB 9AJLIAI 0) PIPIAU SB SYSB) JUATY
Sidnnuw pue A19nb yoes 10J 105eURW € SB SUNOR SYSB) JOAIS
Sursn souonb £q pessadoe sweidord THF ssedo0id 03 armoydIe
JUaSy/10AIaS S[dnnu € SIZINN AIX0Y JUNNIOA € se pageyoed
ST UOIYM qof oY) JO uonnooxo oSeuewl PUL 9JBJIOIUT JUIID
Ay op1aoid 1oAleSIe(PUR IOAISTDH ueSyTDH ue Surpnjour
syuouoduIod AIeMI[PPIJA *IPOU OB UO J[QE[TBAE QIE SIOINOSAI
Kiowow pue NdD 23enbape J1 Aousje] Suronpar APuaLINOu0d sqol
9[dnnuw unx 0} paI3yuod 9q ULd 19)SN[d I0y], A[3uIs y ‘werdord
mopgerep TOH poridwos e 10y ydeis uonnooxs pozrundo
ue uo paseq qol o[3urs e jo Jred se A[[eonewolne paynodxad
are aInpadoid e 103 sdays Surssaoold ordnnpy ‘uonerado (sepou
[T sso1de passadoid st eiep) [8qo[3 1o (spou yoea uo Aajeredos
passaooid ejep) [eoof Aj1oads ues qol T7HH ue ur pauyap sdays
3u1SS9001g "2IM309)IydIe 3Ulssa001d OABR[S/IOISBIA B SOZI[TIN IOy],
*SOPOU JO IqUINU PAdNPAI B YIIM AIN[IBJ 9POU B SUIMO[[OF
SuTuuNI SANUIIUOD W)SAS TXOY "OpOoU Mau 2y} 0) eyep Jurkdoo
JIym pasn A[[eonewolne are seorjdoy Isisiad 1o jurodyooyo
JSB[WOIJ PAILISaI a1 sqol ‘aInjrej opou & SUIMO[[0] }Ie)S ULTem
pue dems opou [enuew 0 OIBUWIOINE JAYIA SIQJJO W)SAS 10y],
"9In[Tey 9pou pue YSIp jsureSe 109301d 03 (9[qeINSYuU0d) SOpou
10410 uo syred 9y Jo seorpdar sa10)s A0y pue Joy [, 10} S YL

“191sn7o Teo1sAyd e ungm
SI9ISN[O [eniaiA Suneard 10y (QOH) puewdq uo doopey se [[om
se ‘syuawrarnbai Surreys qol uo Surpuadap Lroede) pue ‘e
‘()neyop) OAIA opnyoul sI2[NPayds qof "S1d st yons a3enIue|
10 13sn 3y} Aq A[areredas paureyd pue paouanbas oq jsnw
pue sarnpadsoid jsowr J0j parnbar Ajeord£) are sdoys Jurssaooid
Qonpayde o[dnnA “sysel 2onpay awes Aq passeooid are say
[eonuaprt Y sired Jey) os SUOIZAT A UO PAseq SYSe) ONPAY
0) sared onfeA-A9y 110s pue 9nqrusip 0} aseyd dejy Surmorjoy
Quop st uonerado 110s pue dPINYs y ‘9pou pauIsse 0] [BIO] SI
Surssoooi1d dey Iosn oY) Aq pouSIsse SI sSe) 20Npay JO Joquinu
Y, "yooiq Jod 1 Aqrensn ‘ory ndur oy jo sytfds indur o) pougisse
are syse} depy 'seoInosar Arowow [qe[reae uo urpuadop
Sy[se) 2onpay pue dejA 10J S1O[S JO Joqunu paxy B YIIm
PaINSYu0d 9q UBD ISNIRIL YSB], YOBH "SOPOU JAR[S 3] JO OB
UO SUNI ORI YSE], B PUE ‘OpOU J9)SBW dY) UO SUNI JaNoenqof
V "eImodyore urssaoold aae[S/101sel “sired anfea-£oy

urt eyep Jndur Pim wdrpered Sursseoord sonpaydey sosn

SsaIn[Iey opou
WOIJ JOA0DI 0} PalIe)s aIe syse) dejA [euonIppe ‘pajodlap st
3se) dejAl Po[IE) JO MO[S B USUM ‘UOTINOIXS ANR[NOAdS sopnjour
AIMOANIYIIE oNPIYdeA *AI0A003T dIBIIOINE YIIM dIN[TE]
opou pue YsIp 1sureSe 109101d 01 (S[qeINSYU0d) SOPOU ISYI0

uo $y00[q Byep Jo (payroads-1asn) seorjdar opdnnw se10)s SIAH

JUSUITIOITAUD
uonndXa qof

QOUDI[ISAI [Nk

J0dH

doopeH

J1SLIdIORIBYD
QAINJOANIYIIY

(ponunuoo) 7's AqEL

130

131

5 Data-Intensive Technologies for Cloud Computing

104 ut £poa1ip

payroddns ST BIEp 0 SS90 Pakay SWIA)SAS o1X0Y 01 pakordop
sarranb jo juowdoroaap 110ddns 03 pasn 2q J0 ‘WAISAS J0Y], B UO
sqof yojeq 10§ $s00e pakay opraoid pue souewrrojrad aaoxdur
0) Pasn 29 UBD SAXAPUI 3sAY], "SI[Y S UO SIXPUI ABLIBAT[NW

‘Koy-nnw pring o3 Aypiqedes oy sepnjout wope[d DDJH YL, PoAey Aue opraoid jou seop wysAs sonpaydejy doopey orseq ayf,

'$9[945 Juawdo[aaap SuLnp

Jxau Ay 01 qol ouo woig synsar aredwod AIsed 0 s1adojeaap
SMO[[E SIUMIOAN qOf [BOLI0ISIY PUE JULIND 0] SSAIOY "TUNNIOXd
are Ao se syderd qol yoyem 03 sxadojeasp Surmoqre ‘ur-)ying

SI [00) Yo1eM\ TDH) 0} 85900V “sweiSord mopeiep TDH 10J
juawuoIIAUL 3umse) pue Juswdoreaap 9)o[dwod € sepiaoid pue
$1103150da1 9p0d 90IN0S Pareys 0) $sa99e sapiroid ropingA1ond)
-a3enSue] TDF oy 10J A[eoyroads g 2AIsuayaIdwod

e ‘sopringArond) yim papraoid st woperd DddH UL

'sqol oyur pajerodroour oq 03 a3enTue| Aue

ur udp UM swerdord [BUI2)XD JO UOTINJAXD SMO[e doejrajul adig
V "IDH WOoIJ 9[qe[[ed Suonouny jo saLeIqr] pareys ojur pardwoo
pue a3en3ue[Aue Ul ULIM 9 UBD SIITAIIS [RUIAIXH "SUOTOUN]
ur paje[nsdeoud opood ++)) dulful apnoul ued O ‘swrojerd
9IX0Y PU. JOY], AU} UO UONNIAXS J0J STTJ 0l po[idwiod uayy
ST yOIYM ++)) paziwundo ojur pa[idwod st THH “JUSWUOIIAUD

DDdH 2y} 10y 93en3ue| Surwwesdord Arewad oy st 1DH

'sarnpaooid aonpaydey oreredos

10 SuUOndUNy pauyap-Iasn saInbar pue juswuoliAud S1g ay) £q
pawroddns ApjooIip jou ST 9segH 03 $S900Y “papraoid SI aoefIojur
eAe[pue a3en3ue] 1dLIOS WOISND Y "SSO00B PAAY im Ajifiqeded
9seqelep pajuaLIo-uwnjod e sapiaoid esegH payreo doopey

J10J W)SAs uo-ppe uy ‘senijiqedes aseqejep paxopul ssadoe

‘saniiqedes juswdoeaap [euonIppe

pue swei3oid 31d uni 03 s19)sn[) doopeH 03 ssaode sopraoid
asdrpoq 10§ ur-ppe uad31d V "SUDYOoyd XBIUAS I0J SJUSWUOIIAUD
Sunipa 1oyjo pue osdi[og sesn peajsul Ing ‘G [Umo St

9ARY 10U S0P JUSWUOIIAUS J1g Ay, "s1aisn[d doopey 0} ssa00e
J0J sur-3ngd 193j0 yorym asdi[oq pue SueaqioON Sulpn[oul BAR[JOJ
sjuawuoIIAUR Juawdo[aaap werSoid JUI[[9OXa [BISASS Ik 1)

pue a3en3ue] Surwwesdold eaef oy sozinn donpaydejy doopey

'sqol eonpaydejy eaer ojdnnw ojur paddew uayy

ST YOTYM 3enJue] MOfeIep [9A[-YSTY € SopIA0Id JUSWUOIIAUD
uonnoaxa 314 pue a3en3ue] une| 3id Y[, "odrjIoiul o3en3ue|
UMO JIOU) 9ARY YOTYM JATH PUe asegH St yons aonpaydey
doopeH jo doj uo 9Jndoxa syudWUOIIAUL Furssadold 10y0
-aoejrojur adid 10 Surweans e ySnoyy pajroddns are seSen3ue|

I9YIQO "eAR[UI UAPLIM A[[ensn are sqol aonpaydejy doopey

saniqiqedeo
aseqele(q

JUSWILOIIAUD
juowdo[arap
weidoxd

pojeIdoiu]

sagen3ue[
Surwwesdord

J0dH

doopeH

oNSLIORIBYD
QIMOANYOTY

(ponunuod) 7S 9qeL,

A.M. Middleton

132

"o[qe[reae ose st dojde] 10 DJ 9[SuIs & U0 pasn aq Ued Yorym
JUAWUOIIAUD SuTtured TOH pue DDJH 21e[dwod e yum gD v
"POPAAU SE PA[NPIYDS PUE PAIAJO ST SSB[O UOIBNSIUTIIPE WAISAS
V 'sostwald JowoIsnd Uo IO SUONEIO] [BIIAS UI A[YHUOW PAISJJO

‘dlqe[reAe

0S[e aIe s[er10In) auruQ "Dd 1o doyde| piepuess e uo pasn

9Qq UBD YOIYM JUSWIUOIIAUS SUTUIRI] Paseq QIBpM A A © sopraoxd
os[e exapnop) ‘Sig pue asegy Surpnjour suo-ppe doopey
SOPN[OUI SSB[O PAOUBAPE A [, "POPIA0Id Ie S9SSB[O PaoUBApE

are Surwrerdord THF UO SISSE[O JUTUTET) PAOUBAPE puR JIskqg pue JuruuIideq yjog "e1opno)) y3noiy) paiojjo st Surureny doopey Sururely,
“SIeuryouaq
sty 10] doopeH Uey) 10)se} soW G6'¢ Sem DDJH I8yl pomoys
uoneINIYUuod dIBMPIRY JWES A} UO J[NSAI SIYL, "SPUOIIS §T
sojnur Gg sem douewroyrod doopeH pue spuodes /g sonuiur 9 "SQJNUIW G/ 6 UT SOPOU §G9¢ Sursn
sem douewtofrod DddH “INTT UMM Pajonpuod wa)sAs dd | PUe ‘SoINUIW ¢/] Ul SOPOU gGH€ Suisn g1, 00 ‘SPU0Ias 79
9pou-(0f Joyjoue & uo doopeH SnsIoA YIeWYOUuaq peay-0)-peay Ur SOpou ()94 U0 [, | SUIIos pajer)suowap sey j0oyex
JU902I B U] "SPU0DIS 7] UI WASAS 9pou-()f douewtofrod-ysiy -S10"yIewyouaqios//:dny £q parosuods syrewyouaq 110s
e uo g, | SunJos pajensuowap sey wojje[d DJdH QUL oIe syTewyouaq aoueuriojrod prepuels o[qereae AJuo oyj Apuerin)) QOUBULIONIO]
QUGN
Q[paINGIISIP Ay} J0J sjuawaInbar a5eI10)s [[BIGA0) UO
1ramoy puadop Aewr s19)snyod jo 3urzi§ ‘doopey se aouewioyrad
Jurssaooad aures ay) apraoxd 0) sapou 1omay Appueoyrugs axmnbar *sopou ()00
suoneIn3yuod DDJH @onoeld uf ‘Sopou puesnoy) [BI9AS 0) | Sk oSIe[s sIaisn[o uononpoid sey jooyex ‘SOpou Jo spuesnoy) o} | Aniqeress

‘sarnpaosoid aonpaydey

deredos 1o suonouNny pauyop-Iosn saInbal pue JUSWIUOIIAUD

314 oy £q pajroddns A[30a1rp J0U ST 9ATH 0} $5200Y oSen3ue|

NI[-TOS UL [IIM PISSIIOE PUE SI[QB) OJUI PIPEO] 9q 0} BIep

SJH SsmofTe pue sanifiqedes asnoyarem eyep sapraoid oATH
pa[eo doopeH 10j wa)sAs uo-ppe uy ‘sanijiqedes asnoyarem BIRp

eyep Aue apraoid jou seop walsAs aonpaydejy doopey o1seq ay], pue A1onb auruQ

‘uoneordde

9y uo Surpuadap owm ssuodsar puodss-qns Jurpraoid pue siasn

Jo spuesnoy unoddns jo ojqedes wioperd souewrojrod-ysiy

e ST arxoy "suoneordde sisA[eue ejep pue sorronb painjonns

10J soniiqeded asnoyarem eyep apiaoid 0 paugisop A[eoyroads
st utopie[d DDJH Y} UT uoneINSYUOd WAISAS AIX0Y YT,

sonifiqedes
asnoyorem

doopey J1sLIR)ORIBYD

QIMONYITY

J0dH

(ponunuod) ' dIqeL

5 Data-Intensive Technologies for Cloud Computing 133

include raw data processing, ETL, and linking of enormous amounts of data to
support online information services such as LexisNexis and industry-leading infor-
mation search applications such as Accurint; entity extraction and entity resolution
of unstructured and semi-structured data such as Web documents to support infor-
mation extraction; statistical analysis of Web logs for security applications such
as intrusion detection; online analytical processing to support business intelligence
systems (BIS); and data analysis of massive datasets in educational and research
environments and by state and federal government agencies.

There are many tradeoffs in making the right decision in choosing a new
computer systems architecture, and often the best approach is to conduct a spe-
cific benchmark test with a customer application to determine the overall system
effectiveness and performance. The relative cost-performance characteristics of
the system in additional to suitability, flexibility, scalability, footprint, and power
consumption factors which impact the total cost of ownership (TCO) must be
considered. Cloud computing alternatives which reduce or eliminate up-front
infrastructure investment should also be considered if internal resources are limited.

A comparison of the Hadoop MapReduce architecture to the HPCC architecture
in this chapter reveals many similarities between the platforms including the use
of a high-level dataflow-oriented programming language to implement transparent
data-parallel processing. Both platforms are adaptable to cloud computing to pro-
vide platform as a service (PaaS). A key advantage to using the Hadoop architecture
is its availability in a public cloud computing service offering. However, private
cloud computing which utilizes persistent configurations with dedicated infrastruc-
ture instead of virtualized servers shared with other users common in public cloud
computing can have a significant performance advantage for data-intensive com-
puting applications. Some additional advantages of choosing the LexisNexis HPCC
platform which can be utilized in private cloud computing include: (1) an archi-
tecture which implements a highly integrated system environment with capabilities
from raw data processing to high-performance queries and data analysis using a
common language; (2) an architecture which provides equivalent performance at
a much lower system cost based on the number of processing nodes required as
demonstrated with the Terabyte Sort benchmark where the HPCC platform was
almost 4 times faster than Hadoop running on the same hardware resulting in sig-
nificantly lower total cost of ownership (TCO); (3) an architecture which has been
proven to be stable and reliable on high-performance data processing production
applications for varied organizations over a 10-year period; (4) an architecture that
uses a dataflow programming language (ECL) with extensive built-in capabilities
for data-parallel processing which allows complex operations without the need for
extensive user-defined functions and automatically optimizes execution graphs with
hundreds of processing steps into single efficient workunits; (5) an architecture with
a high-level of fault resilience and language capabilities which reduce the need for
re-processing in case of system failures; and (6) an architecture which is available
from and supported by a well-known leader in information services and risk solu-
tions (LexisNexis) who is part of one of the world’s largest publishers of information
ReedElsevier.

134 A.M. Middleton
References

Abbas, A. (2004). Grid computing: A practical guide to technology and applications. Hingham,
MA: Charles River Media.

Agichtein, E. (2005). Scaling information extraction to large document collections. /EEE Data
Engineering Bulletin, 28, 3-10.

Agichtein, E., & Ganti, V. (2004). Mining reference tables for automatic text segmentation.
Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Seattle, WA, 20-29.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., et al. (2009). Above the
clouds: A Berkeley view of cloud computing (University of California at Berkely, Tech. Rep.
UCB/EECS-2009-28).

Berman, F. (2008). Got data? A guide to data preservation in the information age. Communications
of the ACM, 51(12), 50-56.

Borthakur, D. (2008). Hadoop distributed file system. Available from: http://www.opendocs.net/
apache/hadoop/HDFSDescription.pdf.

Bryant, R. E. (2008). Data intensive scalable computing. Retrieved January 5, 2010, from: http://
www.cs.cmu.edu/~bryant/presentations/DISC-concept.ppt.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, 1. (2009). Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the Sth utility.
Future Generation Computer Systems, 25(6), 599-616.

Cerf, V. G. (2007). An information avalanche. I[EEE Computer, 40(1), 104-105.

Chaiken, R., Jenkins, B., Larson, P.-A., Ramsey, B., Shakib, D., Weaver, S., et al. (2008).
SCOPE: Easy and efficient parallel processing of massive data sets. Proceedings of the VLDB
Endowment, New York, NY.

Chang, F.,, Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., et al. (2006).
Bigtable: A distributed storage system for structured data. Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI’06), Seattle, WA.

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters.
Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI),
Boston, MA.

Gantz, J. F, Reinsel, D., Chute, C., Schlichting, W., McArthur, J., Minton, S., et al. (2007). The
expanding digital universe. IDC, White Paper.

Gates, A. F.,, Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S. M., Olston, C., et al.
(2009). Building a high-level dataflow system on top of map-reduce: The pig experience.
Proceedings of the 35th International Conference on Very Large Databases (VLDB 2009),
Lyon, France.

Gokhale, M., Cohen, J., Yoo, A., & Miller, W. M. (2008). Hardware technologies for high-
performance data-intensive computing. I[EEE Computer, 41(4), 60—-68.

Gorton, 1., Greenfield, P., Szalay, A., & Williams, R. (2008). Data-intensive computing in the 21st
century. I[EEE Computer; 41(4), 30-32.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The google file system. Proceedings of the 19th
ACM Symposium on Operating Systems Principles, New York, NY.

Gray, J. (2008). Distributed computing economics. ACM Queue, 6(3), 63—68.

Grossman, R. L. (2009). The case for cloud computing. IT Professional,11(2), 23-27.

Grossman, R., & Gu, Y. (2008). Data mining using high performance data clouds: Experimental
studies using sector and sphere. Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, NY.

Grossman, R. L., & Gu, Y. (2009). On the varieties of clouds for data intensive computing.
Available from: http://sites.computer.org/debull/AO9mar/grossman.pdf, 2009.

Grossman, R. L., Gu, Y., Sabala, M., & Zhang, W. (2009). Compute and storage clouds
using wide area high performance networks. Future Generation Computer Systems, 25(2),
179-183.

5 Data-Intensive Technologies for Cloud Computing 135

Gu, Y., & Grossman, R. L. (2009). Lessons learned from a year’s worth of benchmarks of
large data clouds. Proceedings of the 2nd Workshop on Many-Task Computing on Grids and
Supercomputers, Portland, OR.

Hayes, B. (2008). Cloud computing. Communications of the ACM, 51(7), 9-11.

Johnston,W. E. (1998). High-speed, wide area, data intensive computing: A ten year retrospec-
tive. Proceedings of the 7th IEEE International Symposium on High-Performance Distributed
Computing. Chicago, Illinois, 280.

Kouzes, R. T., Anderson, G. A., Elbert, S. T., Gorton, 1., & Gracio, D. K. (2009). The changing
paradigm of data-intensive computing. Computer, 42(1), 26-34.

Lenk, A., Klems, M., Nimis, J., Tai, S., & Sandholm, T. (2009). What’s inside the cloud? An
architectural map of the cloud landscape. Proceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing. Vancouver, Canada, 23-31.

Levitt, N. (2009). Is cloud computing really ready for prime time? Computer, 42(1), 15-20.

Liu, H., & Orban, D. (2008). GridBatch: Cloud computing for large-scale data-intensive batch
applications. Proceedings of the 8th IEEE International Symposium on Cluster Computing and
the Grid, Cardiff.

Llor, X., Acs, B., Auvil, L. S., Capitanu, B., Welge, M. E., & Goldberg, D. E. (2008). Meandre:
Semantic-driven data-intensive flows in the clouds. Proceedings of the 4th IEEE International
Conference on eScience, Nottingham.

Lyman, P., & Varian, H. R. (2003). How much information? (School of Information Management
and Systems, University of California at Berkeley, Research Rep.).

Mell, P., & Grance, T. (2009). The NIST definition of cloud computing. Retrieved January 5, 2010,
from: http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc.

Napper, J., & Bientinesi, P. (2009). Can cloud computing reach the Top500?. Conference On
Computing Frontiers. Proceedings of the combined workshops on UnConventional high
performance computing workshop plus memory access workshop, Ischia, Italy.

Nicosia, M. (2009). Hadoop cluster management. Retrieved January 5, 2010, from:
http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/Hadoop-
USENIX09.pdf.

Nyland, L. S., Prins, J. F.,, Goldberg, A., & Mills, P. H. (2000). A design methodology for data-
parallel applications. /[EEE Transactions on Software Engineering, 26(4), 293-314.

NSFE. (2009). Data-intensive computing. Retrieved January 5, 2010, from: http://www.nsf.gov/
funding/pgm_summ.jsp?pims_id=503324&org=IIS.

O’Malley, O. (2008). Introduction to Hadoop. Available from: http://wiki.apache.org/hadoop/
HadoopPresentations/attachments/YahooHadooplIntro-apachecon-us-2008.pdf.

O’Malley, O., & Murthy, A. C. (2009). Winning a 60 second dash with a yellow elephant. Retrieved
January 5, 2010, from: http://sortbenchmark.org/Yah0o2009.pdf.

Olston, C. (2009). Pig overview presentation — Hadoop summit. Retrieved January 5, 2010, from:
http://infolab.stanford.edu/~olston/pig.pdf.

Olston, C., Reed, B., Srivastava, U., Kumar, R., & Tomkins, A. (2008a). Pig Latin: A not-so-
foreign language for data processing (Presentation at SIGMOD 2008). Retrieved January 5,
2010, from: http://i.stanford.edu/~usriv/talks/sigmod08-pig-latin.ppt#283,18,User-Code as a
First-Class Citizen.

Olston, C., Reed, B., Srivastava, U., Kumar, R., & Tomkins, A. (2008b). Pig Latin: A not-
so_foreign language for data processing. Proceedings of the 28th ACM SIGMOD/PODS
International Conference on Management of Data/Principles of Database Systems, Vancouver,
BC.

Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., Dewitt, D. J., Madden, S., et al. (2009). A compari-
son of approaches to large-scale data analysis. Proceedings of the 35th SIGMOD International
Conference on Management of Data, New York, NY.

PNNL. (2008). Data intensive computing. Retrieved January 5, 2010, from: http://www.cs.cmu.
edu/~bryant/presentations/DISC-concept.ppt.

136 A.M. Middleton

Pike, R., Dorward, S., Griesemer, R., & Quinlan, S. (2004). Interpreting the data: Parallel analysis
with Sawzall. Scientific Programming Journal, 13(4), 227-298.

Ravichandran, D., Pantel, P., & Hovy, E. (2004). The terascale challenge. Proceedings of the KDD
Workshop on Mining for and from the Semantic Web, Boston, MA.

Rencuzogullari, U., & Dwarkadas, S. (2001). Dynamic adaptation to available resources for par-
allel computing in an autonomous network of workstations. Proceedings of the 8th ACM
SIGPLAN Symposium on Principles and Practices of Parallel Programming, San Diego, CA,
72-81.

Reese, G. (2009). Cloud application architectures. Sebastopol, CA: O’Reilly.

Skillicorn, D. B., & Talia, D. (1998). Models and languages for parallel computation. ACM
Computing Surveys, 30(2), 123-169.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2009). A break in the clouds:
Towards a cloud definition. SIGCOMM Computer Communication Review, 39(1), 50-55.

Velte, A. T., Velte, T. J., & Elsenpeter, R. (2009). Cloud computing: A practical approach. New
York, NY: McGraw Hill.

Venner, J. (2009). Pro Hadoop. New York, NY: Apress.

Viega, J. (2009). Cloud computing and the common man. Computer, 42(8), 106—108.

Weiss, A. (2007). Computing in the clouds. netWorker, 11(4), 16-25.

White, T. (2008). Understanding map reduce with Hadoop. Available from: http://wiki.apache.org/
hadoop/HadoopPresentations.

White, T. (2009). Hadoop: The definitive guide. Sebastopol, CA: O’Reilly Media.

Yu, Y., Gunda, P. K., & Isard, M. (2009). Distributed aggregation for data-parallel comput-
ing: Interfaces and implementations. Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, Big Sky, MT.

	5 Data-Intensive Technologies for Cloud Computing
	5.1 Introduction
	5.1.1 Data-Intensive Computing Applications
	5.1.2 Data-Parallelism
	5.1.3 The ''Data Gap''

	5.2 Characteristics of Data-Intensive Computing Systems
	5.2.1 Processing Approach
	5.2.2 Common Characteristics
	5.2.3 Grid Computing
	5.2.4 Applicability to Cloud Computing

	5.3 Data-Intensive System Architectures
	5.3.1 Google MapReduce
	5.3.2 Hadoop
	5.3.3 LexisNexis HPCC
	5.3.4 ECL

	5.4 Hadoop vs. HPCC Comparison
	5.4.1 Terabyte Sort Benchmark
	5.4.2 Pig vs. ECL
	5.4.3 Architecture Comparison

	5.5 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

