
Chapter 13
SwinDeW-C: A Peer-to-Peer Based Cloud
Workflow System

Xiao Liu, Dong Yuan, Gaofeng Zhang, Jinjun Chen, and Yun Yang

13.1 Introduction

Workflow systems are designed to support the process automation of large scale
business and scientific applications. In recent years, many workflow systems have
been deployed on high performance computing infrastructures such as cluster,
peer-to-peer (p2p), and grid computing (Moore, 2004; Wang, Jie, & Chen, 2009;
Yang, Liu, Chen, Lignier, & Jin, 2007). One of the driving forces is the increasing
demand of large scale instance and data/computation intensive workflow appli-
cations (large scale workflow applications for short) which are common in both
eBusiness and eScience application areas. Typical examples (will be detailed in
Section 13.2.1) include such as the transaction intensive nation-wide insurance
claim application process; the data and computation intensive pulsar searching pro-
cess in Astrophysics. Generally speaking, instance intensive applications are those
processes which need to be executed for a large number of times sequentially within
a very short period or concurrently with a large number of instances (Liu, Chen,
Yang, & Jin, 2008; Liu et al., 2010; Yang et al., 2008). Therefore, large scale
workflow applications normally require the support of high performance comput-
ing infrastructures (e.g. advanced CPU units, large memory space and high speed
network), especially when workflow activities are of data and computation intensive
themselves. In the real world, to accommodate such a request, expensive comput-
ing infrastructures including such as supercomputers and data servers are bought,
installed, integrated and maintained with huge cost by system users. However, since
most of these resources are self-contained and organised in a heterogeneous way,
resource scalability, i.e. how easily a system can expand and contract its resource
pool to accommodate heavier or lighter work loads, is very poor. Due to such a
problem, on one hand, it requires great cost, if not impossible, to recruit external
resources to address “resource insufficiency” during peak periods; on the other hand,

X. Liu (B), D. Yuan, G. Zhang, J. Chen, and Y. Yang
Faculty of Information and Communication Technologies, Swinburne University of Technology,
Hawthorn, Melbourne, Australia 3122
e-mails: {xliu@groupwise.swin.edu.au; dyuan@groupwise.swin.edu.au;
gzhang@groupwise.swin.edu.au; jchen@swin.edu.au; yyang@groupwise.swin.edu.au}

309B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_13, C© Springer Science+Business Media, LLC 2010

310 X. Liu et al.

it cannot provide services to others during off-peak periods to make full advantage
of the investment. In current computing paradigms, workflow systems have to main-
tain their own high performance computing infrastructures rather than employ them
as services from a third party according to their real needs. Meanwhile, most of the
resources are idled except for bursting resource requirements of large scale work-
flow applications at peak periods. In fact, many workflow systems also need to deal
with a large number of conventional less demanding workflow applications for large
proportion of the time. Therefore, resource scalability is becoming a critical problem
for current workflow systems. However, such an issue has not been well addressed
by current computing paradigms such as cluster and grid computing.

In recent years, cloud computing is emerging as the latest distributed computing
paradigm and attracts increasing interests of researchers in the area of Distributed
and Parallel Computing (Raghavan, Ramabhadran, Yocum, & Snoeren, 2007),
Service Oriented Computing (Ardagna & Pernici, 2007) and Software Engineering
(SECES, 2008). As proposed by Ian Foster in (Foster, Zhao, Raicu, & Lu, 2008) and
shared by many researchers and practitioners, compared with conventional com-
puting paradigms, cloud computing can provide “a pool of abstracted, virtualised,
dynamically-scalable, managed computing power, storage, platforms, and services
are delivered on demand to external customers over the Internet”. Therefore,
cloud computing can provide scalable resources on demand to system requirement.
Meanwhile, cloud computing adopts market-oriented business model where users
are charged according to the usage of cloud services such as computing, storage and
network services like conventional utilities in everyday life (e.g. water, electricity,
gas and telephony) (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). Evidently,
it is possible to utilise cloud computing to address the problem of resource scala-
bility for managing large scale workflow applications. Therefore, the investigation
of workflow systems based on cloud computing, i.e. cloud workflow systems, is a
timely issue and worthwhile for increasing efforts.

Besides scalable resources, another principal issue for large scale workflow appli-
cations is decentralised management. In order to achieve successful execution,
effective coordination of system participants (e.g. service providers, service con-
sumers and service brokers) is required for many management tasks such as resource
management (load management, workflow scheduling), QoS (Quality of Service)
management, data management, security management and others. One of the con-
ventional ways to solve the coordination problem is centralised management where
coordination services are set up on a centralised machine. All the communications
such as data and control messages are transmitted only between the central node
and other resource nodes but not among them. However, centralised management
depends heavily on the central node and thus can easily result in the performance
bottleneck. Some others common disadvantages also include: single point of failure,
lack of scalability and the advanced computation power required for the coordina-
tion services. To overcome the problems of centralised management, decentralised
management where the centralised data repository and control engine are aban-
doned, and both data and control messages are transmitted between all the nodes
through general broadcast or limited broadcast communication mechanisms. Thus

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 311

the performance bottlenecks are likely eliminated and the system scalability can be
greatly enhanced. Peer to Peer (p2p) is a typical decentralised architecture. However,
without any centralised coordination, pure p2p (unstructured decentralised) where
all the peer nodes are communicating with each other through complete broadcast-
ing suffers from low efficiency and high network load. Evidently, neither centralised
nor unstructured decentralised management is suitable for managing large scale
workflow applications since massive communication and coordination services are
required. Therefore, in practice, structured p2p architecture is often applied where a
super node acts as the coordinator peers for a group of peers. Through those super
nodes which maintain all the necessary information about the neighbouring nodes,
workflow management tasks can be effectively executed where data and control
messages are transmitted in a limited broadcasting manner. Therefore, structured
decentralised management is more effectively than other for managing workflow
applications.

Based on the above analysis, it is evident that cloud computing is a promising
solution to address the requirement of scalable resource, and structured decen-
tralised architecture such as structured p2p is an effective solution to address the
requirement of decentralised management. Therefore, in this chapter, we present
SwinDeW-C (Swinburne Decentralised Workflow for Cloud), a peer to peer based
Cloud workflow system for managing large scale workflow applications. SwinDeW-
C is not built from the scratch but based on our existing SwinDeW-G (Yang
et al., 2007) (a peer-to-peer based grid workflow system) which will be intro-
duced later in Section 13.3. As agreed among many researchers and practitioners,
the general cloud architecture includes four basic layers from top to bottom:
application layer (user applications), platform layer (middleware cloud services to
facilitate the development/deployment of user applications), unified resource layer
(abstracted/encapsulated resources by virtualisation) and fabric layer (physical hard-
ware resources) (Foster et al., 2008). In order to support large scale workflow
applications, a novel SwinDeW-C architecture is presented where the original fab-
ric layer of SwinDeW-G is inherited with the extension of external commercial
cloud service providers. Meanwhile, significant modifications are made to the other
three layers: the underlying resources are virtualised at the unified resource layer;
functional components are added or enhanced at the platform layer to support the
management of large scale workflow applications; the user interface is modified to
support Internet (Web browser) based access.

This chapter describes the novel system architecture and the new features of
SwinDeW-C. Specifically, based on a brief introduction about SwinDeW-G, the
architecture of SwinDeW-C as well as the architecture of SwinDeW-C peers (includ-
ing both ordinary peers and coordinator peers) is proposed. Meanwhile, besides
common features for cloud computing and workflow systems, additional new func-
tional components are enhanced or designed in SwinDeW-C to facilitate large
scale workflow applications. In this chapter, three new functional components
including QoS Management, Data Management and Security Management are pre-
sented as the key components for managing large scale workflow applications.
The SwinDeW-C prototype system is demonstrated to verify the effectiveness of

312 X. Liu et al.

SwinDeW-C architecture and the feasibility of building cloud workflow system
based on existing grid computing platform.

The remainder of the paper is organised as follows. Section 13.2 presents the
motivation and system requirements. Section 13.3 introduces our SwinDeW-G grid
computing environment. Section 13.4 proposes the architecture for SwinDeW-C as
well as SwinDeW-C peers. Section 13.5 presents the new components in SwinDeW-
C for managing large scale workflow applications. Section 13.6 presents SwinDeW-
C system prototype. Section 13.7 introduces the related work. Finally, Section 13.8
addresses the conclusion and feature work.

13.2 Motivation and System Requirement

In this section, we first present some examples to illustrate the motivation for util-
ising cloud computing to facilitate large scale workflow applications. Afterwards,
based on the introduction of our existing SwinDeW-G grid computing environment,
system requirements for cloud workflow systems are presented.

13.2.1 Large Scale Workflow Applications

Here, we present two examples, one is from the business application area (insurance
claim) and the other one is from the scientific application area (pulsar searching).

Insurance claim: Insurance claim process is a common business workflow which
provides services for processes of such as insurance under employee benefits includ-
ing, for example, medical expenses, pension, and unemployment benefits. Due to
the distributed geographic locations of a large number of applicants, the insurance
offices are usually deployed at many locations across a wide area serving for a
vast population. Despite the differences among specific applications, the following
requirements are often seen in large/medium sized insurance companies: (1) sup-
porting a large number of processes invoked from anywhere securely on the Internet,
the privacy of applicants and confidential data must be protected; (2) avoiding man-
agement of the system at many different locations due to the high cost for the setting
and ongoing maintenance; (3) being able to serve for a vast population involving
processes at the minimum scale of tens of thousands per day, i.e. instance inten-
sive; and (4) for better quality of service, needing to handle workflow exceptions
appropriately, particularly in the case of instance-intensive processes.

Pulsar searching: The pulsar searching process is a typical scientific workflow
which involves a large number of data intensive and computation intensive activi-
ties. For a single searching process, the average data volume (not including the raw
stream data from the telescope) can be over terabytes and the average execution
time can be about one day. In a single searching process, many parallel execution
paths need to be executed for the data collected from different beams of the tele-
scope, and each execution path includes four major segments: data collection, data

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 313

pre-processing, candidate searching and decision making. Take the operation of de-
dispersion in the data pre-processing segment as an example. De-dispersion is to
generate a large number of de-dispersion files to correct the pulsar signals which
are dispersed by the interstellar medium. A large number of de-dispersion files need
to be generated according to different choices of trial dispersion and normally take
many hours on high performance computing resources. After the generation of large
volume of de-dispersion files, different pulsar candidate seeking algorithms such as
FFT seek, FFA seek, and single pulse seek will be further implemented. Finally, the
results will be visualised to support the decision of human experts on whether a pul-
sar has been found or not. Generally speaking, the pulsar searching process often has
the following requirements: (1) easy to scale up and down the employed computing
resources for data processing at different stages; (2) for better QoS, especially effi-
cient scheduling of parallel computing tasks so that every pulsar searching process
can be finished on time; (3) decreasing the cost on data storage and data transfer,
specific strategies are required to determine the allocation of generated data along
workflow execution; (4) selecting trustworthy service nodes, ensuring the security
of data storage, especially for those need to be stored for long term.

13.2.2 System Requirements

Based on the introduction about the above two examples, here, we present the
system requirements for managing large scale workflow applications. Besides the
two fundamental requirements, namely scalable resource and decentralised man-
agement, which have been discussed in the introduction section, there are three
important system requirements, including: QoS Management, Data Management,
and Security Management.

13.2.2.1 QoS Management

It is critical to deliver services with user satisfied quality of service (QoS) in cloud
computing environment, otherwise, the reputation of the service providers will be
deteriorated and finally eliminated from the cloud market. Generally speaking, there
are 5 major dimensions of QoS constraints including time, cost, fidelity, reliability
and security (Yu & Buyya, 2005). Among them, time, as the basic measurement
for system performance, is probably the most general QoS constraint in all appli-
cation systems. Especially for large scale workflow applications, temporal QoS is
very important since any large delays may result in poor efficiency or even system
bottlenecks. Therefore, in this paper, we mainly focus on temporal constraints as the
example for QoS management.

For a general cloud workflow application, both global and local temporal con-
straints are assigned at workflow build time through service level agreement (SLA)
(Erl, 2008). Then, at workflow run time, due to the highly dynamic system perfor-
mance (activity durations with large deviations (Liu, Chen, Liu, & Yang, 2008)),
workflow execution is under constant monitoring against the violations of these

314 X. Liu et al.

temporal constraints (Chen & Yang, 2008a, 2010, 2008b). If a temporal violation is
detected (i.e. the workflow execution time exceeds the temporal constraint), excep-
tion handling strategies will be triggered to compensate the occurring time delays.
Therefore, to deliver satisfactory temporal QoS (as well as other QoS constraints),
a set of strategies should be adopted or designed to facilitate at least the following
three tasks: the setting of QoS constraints, the monitoring of workflow execution
against QoS constraint violations, and the handling of QoS constraint violations.

13.2.2.2 Data Management

Large scale workflow applications often come along with data intensive comput-
ing (Deelman, Gannon, Shields, & Taylor, 2008), where workflow tasks will access
large datasets for query or retrieving data, and during the workflow execution similar
amounts or even larger datasets will be generated as intermediate or final products
(Deelman & Chervenak, 2008). Data management in cloud workflow systems has
some new requirements, which becomes an important issue. Firstly, new data stor-
age strategy is required in cloud workflow systems (Yuan, Yang, Liu, & Chen, in
press). In a cloud computing, theoretically, the system can offer unlimited storage
resources. All the application data can be stored, including the intermediate data, if
we are willing to pay for the required resources. Hence, we need a strategy to cost-
effectively store the large application data. Secondly, new data placement strategy is
also required (Yuan, Yang, Liu, & Chen, 2010). Cloud computing platform contains
different cloud service providers with different pricing models, where data transfers
between service providers also carry a cost. The cloud workflows are usually dis-
tributed, and the data placement strategy will decide where to store the application
data, in order to reduce the total system cost. Last but not least, new data replica-
tion strategy should also be designed for cloud workflow systems (Chervenak et al.,
2007). A good replication strategy can not only guarantee the security of application
data, but also further reduce the system cost by replicating frequently used data in
different locations. Replication strategy in the cloud should be dynamic based on
the application data’s usage rate.

13.2.2.3 Security Management

Security always plays an important role in distributed computing systems (Lin,
Varadharajan, Wang, & Pruthi, 2004). To ensure high QoS of these systems, we
focus on the security problems brought by different types of components, large
volume of heterogeneous data, and unpredictable execution processes. Since some
general aspects of system security such as service quality and data security are par-
tially included in the previous QoS and data management components, this chapter
emphasises the trust management which plays an important role in the management
of SwinDeW-C peers. In the large scale workflow applications, to meet the high
requirements of quality and scalability, an efficient and adaptive trust management is
an indispensable part of the SwinDeW-C platform (Bhargav-spantzel, Squicciarini,
& Bertino, 2007; Winsborough & Li, 2006). Besides, User management is essential

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 315

to guarantee system security and avoid illegal usage. Facing the complex network
structures in the cloud environment, we also need encryption technology to protect
privacy, integrity, authenticity and undeniableness.

Given these basic system requirements, cloud computing is a suitable solution
to address the issue of resource scalability and p2p is an effective candidate for
decentralised management. Meanwhile, to adapt the system requirements of large
scale workflow applications, functional components for Data Management, QoS
Management and Security Management are required to be designed or enhanced
to guarantee satisfactory system performance.

13.3 Overview of SwinDeW-G Environment

Before we present SwinDeW-C, some background knowledge about SwinDeW-G
needs to be introduced. SwinDeW-G (Swinburne Decentralised Workflow for Grid)
is a peer-to-peer based scientific grid workflow system running on the SwinGrid
(Swinburne service Grid) platform (Yang et al., 2007).

An overall picture of SwinGrid is depicted in Fig. 13.1 (bottom plane). SwinGrid
contains many grid nodes distributed in different places. Each grid node contains
many computers including high performance PCs and/or supercomputers composed
of significant numbers of computing units. The primary hosting nodes include the

Fig. 13.1 SwinDeW-G environment

316 X. Liu et al.

Swinburne CS3 (Centre for Complex Software Systems and Services) Node, the
Swinburne ESR (Enterprise Systems Research laboratory) Node, the Swinburne
Astrophysics Supercomputer Node, and the Beihang CROWN (China R&D envi-
ronment Over Wide-area Network) Node in China. They are running either Linux,
GT4 (Globus Toolkit) or CROWN grid toolkit 2.5 where CROWN is an extension
of GT4 with more middleware, and thus is compatible with GT4. The CROWN
Node is also connected to some other nodes such as those at the Hong Kong
University of Science and Technology, and at the University of Leeds in the UK. The
Swinburne Astrophysics Supercomputer Node is cooperating with the Australian
PfC (Platforms for Collaboration) and VPAC (Victorian Partnership for Advanced
Computing). Currently, SwinDeW-G is deployed at all primary hosting nodes as
exemplified in the top plane of Fig. 13.1. In SwinDeW-G, a scientific workflow
is executed by different peers that may be distributed at different grid nodes. As
shown in Fig. 13.1, each grid node can have a number of peers, and each peer
can be simply viewed as a grid service. In the top plane of Fig. 13.1, we show
a sample of how a scientific workflow can be executed in the grid computing
environment.

The basic service unit in SwinDeW-G is a SwinDeW-G peer which runs as a grid
service along with other grid services. However, it communicates with other peers
via JXTA (http://www.sun.com/software/jxta/), a platform for p2p communication.
As Fig. 13.2 shows, a SwinDeW-G peer consists of the following components:

The Task Component manages the workflow tasks. It has two main functions.
First, it provides necessary information to the Flow Component for scheduling and
stores received tasks to Task Repository. Second, it determines the appropriate time
to start, execute and terminate a particular task. The resources that a workflow task
instance may require are stored in the Resource Repository.

The Flow Component interacts with all other modules. First, it receives the work-
flows definition and then creates the instance definition. Second, it receives tasks
from other peers or redistributes them. Third, it decides whether to pass a task to

Fig. 13.2 Architecture of a SwinDeW-G Peer

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 317

the Task Component to execute locally or distribute it to other peers. The decision
is made according to the capabilities and load of itself and other neighbours. And
finally, it makes sure that all executions conform to the data dependency and control
dependency of the process definitions which are stored in the Process Repository
and the Task Repository.

The Group Manager is the interface between the peer and JXTA. In JXTA, all
communications are conducted in terms of peer group, and the Group Manager
maintains the peer groups the peer has joined. The information of the peer groups
and the peers in them is stored in the Peer Repository. While a SwinDeW-G peer
is implemented as a grid service, all direct communications between peers are con-
ducted via p2p. Peers communicate to distribute information of their current state
and messages for process control such as heartbeat, process distribution, process
enactment etc.

The User component is the interface between the corresponding workflow users
and the workflow environment. In SwinDeW-G, its primary function is to allow
users to interfere with the workflow instances when exceptions occur.

Globus Toolkit serves as the grid service container of SwinDeW-G. Not only a
SwinDeW-G peer itself is a grid service located inside Globus Toolkit, the capabili-
ties which are needed to execute certain tasks are also in forms of grid services that
the system can access. That means when a task is assigned to a peer, Globus Toolkit
will be used to provide the required capability as grid service for that task.

13.4 SwinDeW-C System Architecture

In this section, the system architecture of SwinDeW-C is introduced. SwinDeW-C
(Swinburne Decentralised Workflow for Cloud) is built on SwinCloud cloud com-
puting infrastructure. SwinDeW-C inherits many features of its ancestor SwinDeW-
G but with significant modifications to accommodate the novel cloud computing
paradigm for managing large scale workflow applications.

13.4.1 SwinCloud Infrastructure

SwinCloud is a cloud computing simulation environment, on which SwinDeW-C
is currently running. It is built on the computing facilities in Swinburne University
of Technology and takes advantage of the existing SwinGrid systems. We install
VMWare (VMware, 2009) on SwinGrid, so that it can offer unified computing and
storage resources. Utilising the unified resources, we set up data centres that can host
applications. In the data centres, Hadoop (2009) is installed that can facilitate Map-
Reduce computing paradigm and distributed data management. The architecture of
SwinCloud is depicted in Fig. 13.3.

318 X. Liu et al.

Swinburne Computing Facilities

Astrophysics
Supercomputer

VMware

Cloud Simulation Environment

Data Centres with Hadoop

GT4
SuSE Linux

Swinburne
CS3

…...

…...

GT4
CentOS Linux

Swinburne
ESR

…...

…...

GT4
CentOS Linux

Fig. 13.3 SwinCloud Infrastructure

13.4.2 Architecture of SwinDeW-C

The architecture of SwinDeW-C is depicted in Fig. 13.4. As discussed earlier,
the general cloud architecture includes four basic layers from top to bottom:
application layer (user applications), platform layer (middleware cloud services to
facilitate the development/deployment of user applications), unified resource layer
(abstracted/encapsulated resources by virtualisation) and fabric layer (physical hard-
ware resources). Accordingly, the architecture of SwinDeW-C can also be mapped
to the four basic layers. Here, we present the lifecycle of an abstract workflow
application to illustrate the system architecture. Note that here we focus on the
system architecture, the introduction on the cloud management services (e.g. bro-
kering, pricing, accounting, and virtual machine management) and other functional
components are omitted here and will be introduced in the subsequent sections.

Users can easily get access to SwinDeW-C Web portal (as demonstrated in
Section 13.6) via any electronic devices such as PC, laptop, PDA and mobile
phone as long as they are connected to the Internet. Compared with SwinDeW-G
which can only be accessed through a SwinDeW-G peer with pre-installed pro-
grams, the SwinDeW-C Web portal has greatly improved its usability. At workflow
build-time stage, given the cloud workflow modelling tool provided by the Web
portal on the application layer, workflow applications are modelled by users as

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 319

Activity

Workflow Execution

UK
VPAC

Hong
Kong

Swinburne
CS3

SwinDeW-G
GT4
CentOS Linux

Beihang
CROWN

SwinDeW-G
CROWN
Linux

Swinburne
ESR

SwinDeW-G
GT4
CentOS Linux

Astrophysics
Supercomputer

SwinDeW-G
GT4
SuSE Linux

PfC

na 1na

2na

3na 4na

5na 6na Na

ma 1ma

2ma

3ma 4ma

5ma 6ma Ma

Amazon
Data Centre

Google
Data Centre

Microsoft
Data Centre

SwinDeW-G
Grid Computing
Infrastructure

Commercial
Cloud

Infrastructure

VMVMVM VM VMVMVM VMVMVMVMVM

……..

……..

……..
Application

Layer

Platform
Layer

Unified
Resource

Layer

Fabric
Layer

SwinCloud
……..

VM

SwinDeW-C Peer

SwinDeW-C Coordinator Peererr

Fig. 13.4 Architecture of SwinDeW-C

cloud workflow specifications (consist of such as task definitions, process structures
and QoS constraints). After workflow specifications are created (static verification
tools for such as structure errors and QoS constraints may also be provided), they
will be submitted to any one of the coordinator peers on the platform layer. Here,
an ordinary SwinDeW-C peer is a cloud service node which has been equipped
with specific software services similar to a SwinDeW-G peer. However, while a
SwinDeW-G peer is deployed on a standalone physical machine with fixed comput-
ing units and memory space, a SwinDeW-C peer is deployed on a virtual machine of
which the computing power can scale dynamically according to task request. As for
the SwinDeW-C coordinator peers, they are super nodes equipped with additional
workflow management services compared with ordinary SwinDeW-C peers. Details
about SwinDeW-C peers will be introduced in the next section.

At the run-time instantiation stage, the cloud workflow specification can be
submitted to any of the SwinDeW-C coordinator peers. Afterwards, the workflow
tasks will be assigned to suitable peers through peer to peer based communication
between SwinDeW-C peers. Since the peer management such as peer join, peer
leave and peer search, as well as the p2p based workflow execution mechanism,
is the same as in SwinDeW-G system environment. Therefore, the detailed intro-
duction is omitted here but can be found in (Yang et al., 2007). Before workflow

320 X. Liu et al.

execution, a coordinator peer will conduct an evaluation process on the submitted
cloud workflow instances to determine whether they can be accepted or not given
the specified non-functional QoS requirements under the current pricing model. It
is generally assumed that functional requirements can always be satisfied given the
theoretically unlimited scalability of cloud. In the case where users need to run their
own special programs, they can upload them through the Web portal and these pro-
grams will be automatically deployed in the data centre by the resource manager.
Here, a negotiation process between the user and the cloud workflow system may be
conducted if the user submitted workflow instance is not acceptable to the workflow
system due to the unacceptable offer on budgets or deadlines. The final negotiation
result will be either the compromised QoS requirements or a failed submission of the
cloud workflow instance. If all the task instances have been successfully allocated
(i.e. acceptance messages are sent back to the coordinator peer from all the allocated
peers), a cloud workflow instance may be completed with satisfaction of both func-
tional and non-functional QoS requirements (if without exceptions). Hence, a cloud
workflow instance is successfully instantiated.

Finally, at run-time execution stage, each task is executed by a SwinDeW-C peer.
In cloud computing, the underlying heterogeneous resources are virtualised as uni-
fied resources (virtual machines). Each peer utilises the computing power provided
by its virtual machine which can easily scale according to the request of workflow
tasks. As can be seen in the unified resource layer of Fig. 13.4, the SwinCloud is
built on the previous SwinGrid infrastructure at the fabric layer. Meanwhile, some
of the virtual machines can be created with external commercial IaaS (infrastructure
as service) cloud service providers such as Amazon, Google and Microsoft. During
cloud workflow execution, workflow management tasks such as QoS management,
data management and security management are executed by the coordinator peers in
order to achieve satisfactory system performance. Users can get access to the final
results as well as the running information of their submitted workflow instances at
any time through the SwinDeW-C Web portal.

13.4.3 Architecture of SwinDeW-C Peers

In this section we will introduce the architecture of a SwinDeW-C peer. As
we described above, SwinDeW-C is developed based on SwinDeW-G, where a
SwinDeW-C peer has inherited most of the SwinDeW-G peer’s components, includ-
ing the components of task management, flow management, repositories, and the
group management. Hence the SwinDeW-G peer plays as the core of a SwinDeW-C
peer, which provides the basic workflow management components and commu-
nication components between peers. However, some improvements are also made
on SwinDeW-C peers to accommodate the cloud computing environment. The
architecture of the SwinDeW-C peers is depicted in Fig. 13.5.

Firstly, different from a SwinDeW-G peer, a SwinDeW-C peer runs on the cloud
platform. The cloud platform is composed of unified resources, which means the

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 321

JX
T

A

Cloud Platform

SwinDeW-G Peer

Data Management
Components

QoS Management
Components

Security Management
Components

Pricing

Provisioning

Auditing

Provisioning

SwinDeW-G
Peer

SwinDeW-G
Peer

Provisioning

SwinDeW-C Peer

SwinDeW-C Peer
SwinDeW-C Coordinator Peer

…

Cloud Development Tools: VMWare Hadoop, etc.

Fig. 13.5 Architecture of SwinDeW-C peers

computation and storage capabilities a SwinDeW-C peer can dynamically scale up
or down based on the applications’ requirements. Unified resources are offered by
cloud service providers and managed in resource pools, hence every SwinDeW-
C peer has a provisioning component to dynamically apply and release the cloud
resources.

Secondly, in cloud computing environment, different cloud service providers
may have different cost model, hence we have to set up a coordinator peer within
every cloud service provider. The coordinator peer has the pricing and auditing com-
ponents, which can coordinate the resource provisioning of all the peers that reside
in this service provider.

Last but not least, the coordinator peer of SwinDeW-C also has new func-
tional components related to cloud workflow management. As introduced in Section
13.2.2, the system has new requirements for handling the large scale workflow appli-
cations. To meet these new requirements, components of QoS management, data
management and security management are added to the SwinDeW-C coordinator
peer. More detailed descriptions of these components will be given in the following
section.

13.5 New Components in SwinDeW-C

In this section, we introduce the new components in SwinDeW-C. As the three
system requirements presented in Section 13.2.2, the three new functional com-
ponents including QoS Management, Data Management and Security Management
are introduced.

322 X. Liu et al.

13.5.1 QoS Management in SwinDeW-C

The basic requirement for delivering satisfactory temporal QoS (as well as other
QoS constraints) includes three basic tasks: the setting of QoS constraints, the mon-
itoring of workflow execution against QoS constraint violations, and the handling
of QoS constraint violations. Here, take temporal QoS constraints for example, the
new QoS management component in SwinDeW-C is introduced.

Temporal Constraint Setting: In SwinDeW-C QoS management component, a
probabilistic strategy is designed for setting temporal QoS constraints at workflow
build time (Liu, Chen, & Yang, 2008). Specifically, with a probability based tempo-
ral consistency model, the one global or several coarse-grained temporal constraints
are assigned based on the negotiation result between clients and service providers.
Afterwards, fine-grained temporal constraints for individual workflow activities can
be derived automatically based on these coarse-grained ones.

Checkpoint Selection and Temporal Verification: At workflow run time, a check-
point selection strategy and a temporal verification strategy are provided to monitor
the workflow execution against the violation of temporal constraints. Temporal veri-
fication is to check the temporal correctness of workflow execution states (detecting
temporal violations) given a temporal consistency model. Meanwhile, in order to
save the overall QoS management cost, temporal verification should be conducted
only on selected activity points. In SwinDeW-C, a minimum time redundancy based
checkpoint selection strategy (Chen & Yang, 2010, 2007b) is employed which can
select only necessary and sufficient checkpoints (those where temporal violations
take place).

Exception Handling: After a temporal violation is detected, exception handling
strategies are required to recover the error states. Unlike functional errors which
are normally prevented by duplicated instances or handled by roll back and re-
execution, non-functional QoS errors such as temporal violations can only be
recovered by compensation, i.e. to reduce or ideally remove the current time delays
by decreasing the durations of the subsequent workflow activities. Since the pre-
vious activities have already been finished, there is no way in the real world that
any action can reduce their running time. In SwinDeW-C, for minor temporal viola-
tions, the TDA (time deficit allocation) strategy (Chen & Yang, 2007a) is employed
which can remove the current time deficits by borrowing the time redundancy of the
subsequent activities. As for major temporal violations, the ACOWR (ant colony
optimisation based two stage workflow local rescheduling) strategy (Liu et al., 2010)
is employed which can decrease the duration of the subsequent workflow segments
through ant colony optimisation based workflow rescheduling.

In SwinDeW-C, by constant monitoring of the workflow instance and effective
handling of temporal violations along workflow execution, satisfactory temporal
QoS can be delivered with low violation rates of both global and local temporal con-
straints. Similar to temporal QoS management, the management tasks for other QoS
constraints are being investigated. Meanwhile, since some of them such as cost and
security are partially addressed in the data management and security management
components, some functions will be shared among these components.

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 323

13.5.2 Data Management in SwinDeW-C

Data management component in SwinDeW-C consists of three basic tasks: data
storage, data placement and data replication.

Data Storage: In this component, a dependency based cost-effective data storage
strategy is facilitated to store the application data (Yuan et al., 2010). The strategy
utilises the data provenance information of the workflow instances. Data provenance
in workflows is a kind of important metadata, in which the dependencies between
datasets are recorded (Simmhan, Plale, & Gannon, 2005). The dependency depicts
the derivation relationship between the application datasets. In cloud workflow sys-
tems, after the execution of tasks, some intermediate datasets may be deleted to
save the storage cost, but sometimes they have to be regenerated for either reuse
or reanalysis (Bose & Frew, 2005). Data provenance records the information of
how the datasets have been generated. Furthermore, regeneration of the intermedi-
ate datasets from the input data may be very time consuming, and therefore carry
a high computation cost. With data provenance information, the regeneration of
the demanding dataset may start from some stored intermediated datasets instead.
In a cloud workflow system, data provenance is recorded during workflow exe-
cution. Taking advantage of data provenance, we can build an Intermediate data
Dependency Graph (IDG) based on data provenance (Yuan et al., 2010). All the
intermediate datasets once generated in the system, whether stored or deleted, their
references are recorded in the IDG. Based on the IDG, we can calculate the genera-
tion cost of every dataset in the cloud workflows. By comparing the generation cost
and storage cost, the storage strategy can automatically decide whether a dataset
should be stored or deleted in the cloud system to reduce the system cost, no matter
this dataset is a new dataset, regenerated dataset or stored dataset in the system.

Data Placement: In this component, a data placement strategy is facilitated to
place the application data that can reduce the data movement during the work-
flows’ execution. In cloud computing systems, the infrastructure is hidden from
users (Weiss, 2007). Hence, for application data, the system will decide where to
store them. In the strategy, we initially adapt the k-means clustering algorithm for
data placement in cloud workflow systems based on data dependency (Yuan et al.,
in press). Cloud workflows can be complex, one task might require many datasets
for execution; furthermore, one dataset might also be required by many tasks. If
some datasets are always used together by many tasks, we say that these datasets
are dependant on each other. In our strategy, we try to keep these datasets in one
data centre, so that when tasks were scheduled to this data centre, most, if not all, of
the data needed are stored locally. Our data placement strategy has two algorithms,
one for the build-time stage and one for the run time stage of scientific workflows. In
the build-time stage algorithm, we construct a dependency matrix for all the applica-
tion data, which represents the dependencies between all the datasets. Then we use
the BEA algorithm (McCormick, Sehweitzer, & White, 1972) to cluster the matrix
and partition it that datasets in every partition are highly dependent upon each other.
We distribute the partitions into k data centres, which are initially as the partitions
of the k-means algorithm at run time stage. At run time, our clustering algorithm

324 X. Liu et al.

deals with the newly generated data that will be needed by other tasks. For every
newly generated dataset, we calculate its dependencies with all k data centres, and
move the data to the data centre that has the highest dependency with it.

Data Replication: In this component, a dynamic data replication strategy is facil-
itated to guarantee data security and the fast data access of the cloud workflow
systems. Keeping some replicas of the application data is essential for data security
in cloud storage. Static replication can guarantee the data reliability by keeping a
fixed number of replicas of the application data, but in a cloud environment, differ-
ent application data have different usage rates, where the strategy has to be dynamic
to replicate the application data based on their usage rates. In large scale workflow
applications, many parallel tasks will simultaneously access the same dataset on
one data centre. The limitation of computing capacity and bandwidth in that data
centre would be a bottleneck for the whole cloud workflow system. If we have sev-
eral replicas in different data centres, this bottleneck will be eliminated. Hence the
data replication will always keep a fix number of copies of all the datasets in differ-
ent data centres to guarantee reliability and dynamically add new replicas for each
dataset to guarantee data availability. Furthermore, the placement of the replicas is
based on data dependency, which is the same as the data placement component, and
how many replicas a dataset should have is based on the usage rate of this dataset.

13.5.3 Security Management in SwinDeW-C

To address the security issues for the safe running of SwinDeW-C, the security
management component is designed. As a type of typical distributed computing
system, trust management for SwinDeW-C peers is very important and plays the
most important role in security management. Besides, there are some other security
issues that we should consider from such as user and data perspective. Specifically,
there are three modules in the security management component: trust management,
user management and encryption management system.

Trust management: The goal of the trust management module is to manage the
relations between one SwinDeW-C peer and its neighbouring peers. For example,
to process a workflow instance, a SwinDeW-C peer must cooperate with its neigh-
bouring peers to run this instance. Due to the high level QoS requirements of large
scale workflow applications, peer management in SwinDeW-C should be supported
by the trust management during workflow run time. The trust management module
acts like a consultant. This module can evaluate some tasks and give some advices
about the cooperated relation between one peer and other peers for each instance of
a specific task. Firstly, peer evaluation makes trust assessment of other neighbouring
peers. Secondly, task evaluation makes assessment of re-assignment of the task to
other peers. Then the two evaluation scores will be combined by the trust evaluation
to reach the conclusion whether this neighbouring peer has adequate trust to take
this task. Besides, we design a rule base. For instance, a specific task must not be
assigned to one specific neighbouring peer, and this is a simple rule. The rule base

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 325

is a complement to the previous value-based trust evaluation to fit the real situation
(Hess, Holt, Jacobson, & Seamons, 2004).

User management: the user management module is an essential piece in every
system. In SwinDeW-C, a user base is a database which stores all user identity
and log information that submit service requests. In addition, an authority manager
controls the permissions for users to submit some special service requests.

Encryption management System: Given SwinDeW-C peers are located within
different geographical local networks, it is important to ensure the data security in
the process of data transfer by encryption. In SwinDeW-C, we choose the PGP tool
GnuPG (http://www.gnupg.org) to ensure secure commutation.

To conclude, besides the above three new functional components, SwinDeW-C
also includes the common cloud functional components such as brokering, pricing,
auditing and virtual machine management. Detailed description can be found in
(Calheiros, Ranjan, De Rose, & Buyya, 2009) and hence omitted in this paper.

13.6 SwinDeW-C System Prototype

Based on the design discussed above, we have built a primitive prototype of
SwinDeW-C. The prototype is developed in Java and currently running on the
SwinCloud simulation environment. In SwinDeW-C prototype, we have inherited
most of SwinDeW-G functions, and further implemented the new components of
SwinDeW-C, so that it can adapt to the cloud computing environment. Furthermore,
we have built a Web portal for SwinDeW-C, by which users and system admin-
ister can access the cloud resources and manage the applications of SwinDeW-C.
The Web portal provides many interfaces to support both system users and
administrators with the following tasks, specifically for the system user:

(a) browse the existing datasets that reside in different cloud service providers’ data
centres;

(b) upload their application data to and download the result data from the cloud
storage;

(c) create and deploy workflows to SwinDeW-C system using the modelling tools;
(d) monitor the workflows’ execution.

For system administers:

(a) coordinate the workflows’ execution by triggering the scheduling strategies;
(b) manage the application datasets by triggering the data placement strategies;
(c) handle the execution exceptions by triggering the workflow adjustment

strategies.

Some interfaces of the Web portal are shown in Fig. 13.6.

326 X. Liu et al.

Fig. 13.6 SwinDeW-C web portal

13.7 Related Work

Since the research on cloud workflow management systems is at its initial stage, it is
difficult to conduct direct comparison between SwinDeW-C with others at present.
Most of the current projects are either on the general implementation of cloud com-
puting or focus on some specific aspects such as data management in the cloud.
There exists some research into data-intensive applications on the cloud (Moretti,
Bulosan, Thain, & Flynn, 2008), such as early experiences like Nimbus (Keahey,
Figueiredo, Fortes, Freeman, & Tsugawa, 2008) and Cumulus (Wang, Kunze, &
Tao, 2008) projects. Comparing to the distributed computing systems like cluster
and grid, a cloud computing system has a cost benefit (Armbrust et al., 2009).
Assunção et al. (2009) demonstrate that cloud computing can extend the capac-
ity of clusters with a cost benefit. Using Amazon clouds’ cost model and BOINC
volunteer computing middleware, the work in (Kondo, Javadi, Malecot, Cappello,
& Anderson, 2009) analyses the cost benefit of cloud computing versus grid com-
puting. In terms of the cost benefit, the work by Deelman, Singh, Livny, Berriman,
& Good (2008) shows that cloud computing offers a cost-effective solution for data-
intensive applications, such as scientific workflows (Hoffa et al., 2008). The work
in (Hoffa et al., 2008) explores the use of cloud computing for scientific workflows,
focusing on a widely used astronomy application-Montage. The Cloudbus project
(http://www.gridbus.org/cloudbus/) being conducted in the CLOUDS Laboratory
at the University of Melbourne are working on a new generalised and extensible
cloud simulation framework named CloudSim (Calheiros et al., 2009) which can
enable seamless modelling, simulation, and experimentation of cloud computing
infrastructures and management services.

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 327

With the existing projects for many grid workflow systems developed in recent
years, it is agreed by many researchers and practitioners that cloud workflow sys-
tems might be built on grid computing environments rather than from scratch. For
example, the CloudSim toolkit used in the Cloudbus project is implemented by pro-
grammatically extending the core functionalities exposed by the GridSim used in
the Gridbus project (2010). Therefore, in this chapter, we review some represen-
tative grid workflow system and focus on the related features discussed in this
paper such as workflow scheduling architecture, QoS, data and security manage-
ment. Specifically, we investigate Gridbus (2010), Pegasus (2010), Taverna (2010),
GrADS (2010), ASKALON (2010), GridAnt (2010), Triana (2010), GridFlow
(2010) and Kepler (2010). For the architecture of the workflow scheduling, Pegasus,
Taverna, GrADS, and Kepler use a centralised architecture; Gridbus and GridFlow
use a hierarchical architecture; ASKALON and Triana use a decentralised architec-
ture. It is believed that centralised schemes produce more efficient schedules and
decentralised schemes have better scalabilities, while hierarchical schemes are their
compromises. Similar to SwinDeW-G, SwinDeW-C uses a structured decentralised
scheme for workflow scheduling. SwinDeW-G aims at using a performance-driven
strategy to achieve an overall load balance of the whole system via distributing tasks
to least loaded neighbours.

As far as QoS (quality of service) constraints are concerned, most grid work-
flow systems mentioned above do not support this feature. Gridbus supports QoS
constraints including task deadline and cost minimisation, GrADS and GridFlow
mainly use estimated application execution time, and ASKALON supports con-
strains and properties specified by users or predefined. Right now, SwinDeW-C
supports QoS constraints based on task deadlines. When it comes to fault toler-
ance, at the task level, Gridbus, Taverna, ASKALON, Karajan, GridFlow and Kepler
use alternate resource; Taverna, ASKALON and Karajan use retry; GrADS uses
rescheduling. At the workflow level, rescue workflow is used by ASKALON and
Kepler; user-defined exception handling is used by Karajan and Kepler. Pegasus,
GridAnt and Triana use their particular strategies respectively. As a compari-
son, SwinDeW-C uses effective temporal constraint verification for detecting and
handling temporal violations.

As for data management, Kepler has its own actor-oriented data modelling
method that for large data in the grid environment. It has two Grid actors, called
FileFetcher and FileStager, respectively. These actors make use of GridFTP to
retrieve files from, or move files to, remote locations on the Grid. Pegasus has
developed some data placement algorithms in the grid environment and uses the
RLS (Replica Location Service) system as data management at runtime. In Pegasus,
data are asynchronously moved to the tasks on demand to reduce the waiting time
of the execution and dynamically delete the data that the task no longer needs to
reduce the use of storage. In Gridbus, the workflow system has several scheduling
algorithms for the data-intensive applications in the grid environment based on a
Grid Resource Broker. The algorithms are designed based on different theories (GA,
MDP, SCP, Heuristic), to adapt to different use cases. Taverna proposed a new pro-
cess definition language, Sculf, which could model application data in a dataflow. It

328 X. Liu et al.

considers workflow as a graph of processors, each of which transfers a set of data
inputs into a set of data outputs. ASKALON is a workflow system designed for
scheduling. It puts the computing overhead and data transfer overhead together to
get a value “weight”. It dose not discriminate the computing resource and data host.
ASKALON also has its own process definition language called AGWL. Triana is a
workflow system which is based on a problem-solving environment that enables the
data-intensive scientific application to execute. For the grid, it has an independent
abstraction middleware layer, called the Grid Application Prototype (GAP), enables
users to advertise, discover and communicate with Web and peer-to-peer (p2p) ser-
vices. Triana also uses the RLS to manage data at runtime. GridFlow is a workflow
system which uses an agent-based system for grid resource management. It consid-
ers data transfer to computing resources and archive to storage resources as kinds of
workflow tasks.

As for security management, Globus uses public key cryptography (also known
as asymmetric cryptography) as the basis for its security management, which repre-
sents the main stream in the grid security area. Globus uses the certificates encoded
in the X.509 certificate format, an established standard data format. These certifi-
cates can be shared among public key based software, including commercial Web
browsers from Microsoft and Netscape. The International Grid Trust Federation
(IGTF) (http://www.igtf.net/) is a third-party grid trust service provider which
aims to establish common policies and guidelines between its Policy Management
Authorities (PMAs) members. The IGTF does not provide identity assertions
but ensures that within the scope of the IGTF charter, the assertions issued by
accredited authorities of any of its PMAs member can meet or exceed an authenti-
cation profile relevant to the accredited authority. The European GridTrust project
(http://www.gridtrust.eu/gridtrust/) is a novel and ambitious project, which provides
new security services at the GRID middleware layer. GridTrust is developing a
Usage Control Service to monitor resource usage in dynamic Virtual Organisations
(VO), enforce usage policies at run-time, and report usage control policy viola-
tions. This service brings dynamic usage control to Grid security in traditional,
rigid authorisation models. Other services of the security framework include a Grid
Security Requirements editor to allow VO owners and users to define security poli-
cies; a Secure-Aware Resource Broker Service to help create VOs based on services
with compatible security policies; and a sophisticated Reputation Manager Service,
to record past behaviour of VO owners and users as reputation credentials.

13.8 Conclusions and Feature Work

Large scale sophisticated workflow applications are commonly seen in both e-
Business and e-Science areas. Workflow systems built on high performance com-
puting infrastructures such as cluster, p2p and grid computing are often applied to
support the process automation of large scale workflow applications. However, two

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 329

fundamental requirements including scalable resources and decentralised manage-
ment have not been well addressed so far. Recently, with the emergence of cloud
computing which is a novel computing paradigm that can provide virtually unlim-
ited, easy-scale computing resources, cloud workflow system is a promising new
solution and thus deserves systematic investigation. In this chapter, SwinDeW-C,
a novel peer-to-peer based cloud workflow system has been presented. SwinDeW-
C is not built from scratch but on its predecessor SwinDeW-G (a p2p based grid
workflow system). In order to accommodate the cloud computing paradigm and
facilitate the management of large scale workflow applications, significant modifica-
tions have been made to the previous SwinDeW-G system. Specifically, the original
fabric layer of SwinDeW-G is inherited with the extension of external commer-
cial cloud service providers. Meanwhile, the underlying resources are virtualised at
the unified resource layer; functional components including QoS management, data
management and security management are added or enhanced at the platform layer
to support the management of large scale workflow applications; the user interface
is modified to support Internet (Web browser) based access.

This chapter has described the system architecture of SwinDeW-C and its new
features for managing instance and data/computation intensive workflow applica-
tions. The SwinDeW-C prototype system has been demonstrated but still under
further development. In the future, more functional components will be designed
and deployed to enhance the capability of SwinDeW-C. Meanwhile, comparison
will also be conducted between SwinDeW-C and other workflow systems based on
the statistics of performance measurements such as success rate, temporal violation
rate, system throughput and others.

Acknowledgment This work is partially supported by Australian Research Council under
Linkage Project LP0990393.

References

Ardagna, D., & Pernici, B. (2007). Adaptive service composition in flexible processes. IEEE
Transactions on Software Engineering, 33(6), 369–384.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., et al. (2009).
Above the clouds: A Berkeley view of cloud computing (Tech. Rep., University of California,
Berkeley).

de Assuncao, M. D., di Costanzo, A., & Buyya, R. (2009). Evaluating the cost-benefit of using
cloud computing to extend the capacity of clusters. Proceedings of the 18th ACM International
Symposium on High Performance Distributed Computing, Garching, Germany, 1–10.

Bhargav-spantzel, A., Squicciarini, A. C., & Bertino, E. (2007). Trust negotiation in identity
management. IEEE Security & Privacy, 5(2), 55–63.

Bose, R., & Frew, J. (2005). Lineage retrieval for scientific data processing: A survey. ACM
Computing Surveys, 37(1), 1–28.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation Computer Systems, 25(6), 599–616.

Calheiros, R. N., Ranjan, R., De Rose, C. A. F., & Buyya, R. (2009). CloudSim: A novel framework
for modeling and simulation of cloud computing infrastructures and services (Tech. Rep., Grid

330 X. Liu et al.

Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer Science
and Software Engineering,The University of Melbourne).

Chen, J., & Yang, Y. (2007). Multiple states based temporal consistency for dynamic verification
of fixed-time constraints in grid workflow systems. Concurrency and Computation: Practice
and Experience (Wiley), 19(7), 965–982.

Chen, J., & Yang, Y. (2008). A taxonomy of grid workflow verification and validation. Concurrency
and Computation: Practice and Experience, 20(4), 347–360.

Chen, J., & Yang, Y. (2010). Temporal dependency based checkpoint selection for dynamic
verification of temporal constraints in scientific workflow systems. ACM Transactions on
Software Engineering and Methodology, to appear. Retrieved 1st February 2010, from
http://www.swinflow.org/papers/TOSEM.pdf.

Chen, J., & Yang, Y. (2007). Adaptive selection of necessary and sufficient checkpoints for
dynamic verification of temporal constraints in grid workflow systems. ACM Transactions on
Autonomous and Adaptive Systems, 2(2), Article 6.

Chen, J., & Yang, Y. (2008). Temporal dependency based checkpoint selection for dynamic verifi-
cation of fixed-time constraints in grid workflow systems. Proceedings of the 30th International
Conference on Software Engineering (ICSE 2008), Leipzig, Germany, 141–150.

Chervenak, A., Deelman, E., Livny, M., Su, M. H., Schuler, R., Bharathi, S., et al. (2007). Data
placement for scientific applications in distributed environments. Proceedings of the 8th Grid
Computing Conference, 267–274.

Deelman, E., Gannon, D., Shields, M., & Taylor, I. (2008). Workflows and e-Science: An overview
of workflow system features and capabilities. Future Generation Computer Systems, 25(6),
528–540.

Deelman, E., & Chervenak, A. (2008). Data management challenges of data-intensive scientific
workflows. Proceedings of the IEEE International Symposium on Cluster Computing and the
Grid, 687–692.

Deelman, E., Singh, G., Livny, M., Berriman, B., & Good, J. (2008). The cost of doing sci-
ence on the cloud: The montage example. Proceedings of the ACM/IEEE Conference on
Supercomputing, Austin, TX, 1–12.

Erl, T. (2008). SOA: Principles of service design. Upper Saddle River, NJ: Prentice Hall.
Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008). Cloud computing and grid computing 360-degree

compared. Proceedings of the Grid Computing Environments Workshop, 2008, GCE ′08, 1–10.
Hadoop (2009). Retrieved 1st September 2009 from http://hadoop.apache.org/.
Hess, A., Holt, J., Jacobson, J., & Seamons, K. E. (2004). Content-triggered trust negotiation. ACM

Transactions on Information and System Security, 7(3), 428–456.
Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., et al. (2008). On the

use of cloud computing for scientific workflows. Proceedings of the 4th IEEE International
Conference on e-Science, 640–645.

Keahey, K., Figueiredo, R., Fortes, J., Freeman, T., & Tsugawa, M. (2008). Science clouds: Early
experiences in cloud computing for scientific applications. Proceedings of the First Workshop
on Cloud Computing and its Applications (CCA′08), 1–6.

Kondo, D., Javadi, B., Malecot, P., Cappello, F., & Anderson, D. P. (2009). Cost-benefit analysis
of cloud computing versus desktop grids. Proceedings of the IEEE International Symposium
on Parallel & Distributed Processing, IPDPS′09, 1–12.

Lin, C., Varadharajan, V., Wang, Y., & Pruthi, V.t. (2004). Enhancing grid security with trust
management. Proceedings of the 2004 IEEE International Conference on Services Computing
(SCC04), 303–310.

Liu, K., Chen, J. J., Yang, Y., & Jin, H. (2008). A throughput maximization strategy for scheduling
transaction-intensive workflows on SwinDeW-G. Concurrency and Computation: Practice and
Experience, 20(15), 1807–1820.

Liu, K., Jin, H., Chen, J., Liu, X., Yuan, D., & Yang, Y. (2010). A compromised-time-cost schedul-
ing algorithm in SwinDeW-C for instance-intensive cost-constrained workflows on cloud
computing platform. International Journal of High Performance Computing Applications.

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 331

Liu, X., Chen, J., Liu, K., & Yang, Y. (2008). Forecasting duration intervals of scientific workflow
activities based on time-series patterns. Proceedings of the 4th IEEE International Conference
on e-Science (e-Science08), Indianapolis, IN, USA, 23–30.

Liu, X., Chen, J., Wu, Z., Ni, Z., Yuan, D., & Yang, Y. (2010). Handling recoverable temporal vio-
lations in scientific workflow systems: A workflow rescheduling based strategy. Proceedings
of the 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid10), Melbourne, Australia.

Liu, X., Chen, J., & Yang, Y. (September 2008). A probabilistic strategy for setting temporal con-
straints in scientific workflows. Proceedings of the 6th International Conference on Business
Process Management (BPM08), Lecture Notes in Computer Science, Vol. 5240, Milan, Italy,
180–195.

McCormick, W. T., Sehweitzer, P. J., & White, T. W. (1972). Problem decomposition and data
reorganization by a clustering technique. Operations Research, 20, 993–1009.

Moore, M. (2004). An accurate parallel genetic algorithm to schedule tasks on a cluster. Parallel
Computing, 30, 567–583.

Moretti, C., Bulosan, J., Thain, D., & Flynn, P. J. (2008). All-Pairs: An abstraction for data-
intensive cloud computing. Proceedings of the IEEE International Parallel and Distributed
Processing Symposium, IPDPS′08, 1–11.

Askalon Project (2010). Retrieved 1st February 2010, from http://www.dps.uibk.ac.at/projects/
askalon.

GrADS Project (2010). Retrieved 1st February 2010, from http://www.iges.org/grads/.
GridBus Project (2010). Retrieved 1st February 2010, from http://www.gridbus.org.
Kepler Project (2010). Retrieved 1st February 2010, from http://kepler-project.org/.
Pegasus Project (2010). Retrieved 1st February 2010, from http://pegasus.isi.edu/.
Taverna Project (2010). Retrieved 1st February 2010, from http://www.mygrid.org.uk/tools/

taverna/.
Triana Project (2010). Retrieved 1st February 2010, from http://www.trianacode.org/.
Raghavan, B., Ramabhadran, S., Yocum, K., & Snoeren, A. C. (2007). Cloud control with

distributed rate limiting. Proceedings of the 2007 ACM SIGCOMM, Kyoto, Japan, 337–348.
SECES (May 2008). Proceedings of the 1st International Workshop on Software Engineering for

Computational Science and Engineering, in conjuction with the 30th International Conference
on Software Engineering (ICSE2008), Leipzig, Germany.

Simmhan, Y. L., Plale, B., & Gannon, D. (2005). A survey of data provenance in e-Science.
SIGMOD Rec. 34(3), 31–36.

VMware (2009). Retrieved 1st September 2009, from http://www.vmware.com/.
Wang, L. Z., Kunze, M., & Tao, J. (2008). Performance evaluation of virtual machine-based grid

workflow system. http://doi.wiley.com/10.1002/cpe.1328, 1759–1771.
Wang, L. Z., Jie, W., & Chen, J. (2009). Grid computing: Infrastructure, service, and applications.

Boca Raton, FL: CRC Press, Talyor & Francis Group.
Weiss, A. (2007). Computing in the cloud. ACM Networker, 11(4), 18–25.
Winsborough, W. H., & Li, N. H. (2006). Safety in automated trust negotiation. ACM Transactions

on Information and System Security, 9(3), 352–390.
Yang, Y., Liu, K., Chen, J., Lignier, J., & Jin, H. (December 2007). Peer-to-peer based grid work-

flow runtime environment of swinDeW-G. Proceedings of the 3rd International Conference on
e-Science and Grid Computing (e-Science07), Bangalore, India, 51–58.

Yang, Y., Liu, K., Chen, J., Liu, X., Yuan, D., & Jin, H. (December 2008). An algo-
rithm in swinDeW-C for scheduling transaction-intensive cost-constrained cloud work-
flows. Proceedings of the 4th IEEE International Conference on e-Science (e-Science08),
Indianapolis, IN, USA, 374–375.

Yu, J., & Buyya, R. (2005). A taxonomy of workflow management systems for grid computing.
Journal of Grid Computing, (3), 171–200.

Yuan, D., Yang, Y., Liu, X., & Chen, J. (2010). A cost-effective strategy for intermediate data
storage in scientific cloud workflow systems. Proceedings of the 24th IEEE International

332 X. Liu et al.

Parallel & Distributed Processing Symposium, Atlanta, GA, USA, to appear. Retrieved
1st February 2010, from http://www.ict.swin.edu.au/personal/yyang/papers/IPDPS10-
IntermediateData.pdf.

Yuan, D., Yang, Y., Liu, X., & Chen, J. A data placement strategy in cloud scientific work-
flows. Future Generation Computer Systems, in press. http://dx.doi.org/10.1016/j.future.
2010.02.004.

	13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System
	13.1 Introduction
	13.2 Motivation and System Requirement
	13.2.1 Large Scale Workflow Applications
	13.2.2 System Requirements
	13.2.2.1 QoS Management
	13.2.2.2 Data Management
	13.2.2.3 Security Management

	13.3 Overview of SwinDeW-G Environment
	13.4 SwinDeW-C System Architecture
	13.4.1 SwinCloud Infrastructure
	13.4.2 Architecture of SwinDeW-C
	13.4.3 Architecture of SwinDeW-C Peers

	13.5 New Components in SwinDeW-C
	13.5.1 QoS Management in SwinDeW-C
	13.5.2 Data Management in SwinDeW-C
	13.5.3 Security Management in SwinDeW-C

	13.6 SwinDeW-C System Prototype
	13.7 Related Work
	13.8 Conclusions and Feature Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

