
Chapter 12
Vertical Load Distribution for Cloud Computing
via Multiple Implementation Options

Thomas Phan and Wen-Syan Li

Abstract Cloud computing looks to deliver software as a provisioned service to
end users, but the underlying infrastructure must be sufficiently scalable and robust.
In our work, we focus on large-scale enterprise cloud systems and examine how
enterprises may use a service-oriented architecture (SOA) to provide a streamlined
interface to their business processes. To scale up the business processes, each SOA
tier usually deploys multiple servers for load distribution and fault tolerance, a sce-
nario which we term horizontal load distribution. One limitation of this approach is
that load cannot be distributed further when all servers in the same tier are loaded.
In complex multi-tiered SOA systems, a single business process may actually be
implemented by multiple different computation pathways among the tiers, each with
different components, in order to provide resilience and scalability. Such multiple
implementation options gives opportunities for vertical load distribution across tiers.
In this chapter, we look at a novel request routing framework for SOA-based enter-
prise computing with multiple implementation options that takes into account the
options of both horizontal and vertical load distribution.

12.1 Introduction

Cloud computing looks to have computation and data storage moved away from
the end user and onto servers located in data centers, thereby relieving users of the
burdens of application provisioning and management (Dikaiakos, Pallis, Katsaros,
Mehra, & Vakali, 2009; Cloud Computing, 2009). Software can then be thought of
as purely a service that is delivered and consumed over the Internet, offering users
the flexibility to choose applications on-demand and allowing providers to scale out
their capacity accordingly.

T. Phan (B)
Microsoft Corporation, Washington, DC, USA
e-mail: thomas.phan@acm.org

W.-S. Li
SAP Technology Lab, Shanghai, China
e-mail: wen-syan.li@sap.com

277B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_12, C© Springer Science+Business Media, LLC 2010

278 T. Phan and W.-S. Li

As rosy as this picture seems, the underlying server-side infrastructure must be
sufficiently robust, feature-rich, and scalable to facilitate cloud computing. In this
chapter we focus on large-scale enterprise cloud systems and examine how issues
of scalable provisioning can be met using a novel load distribution system.

In enterprise cloud systems, a service-oriented architecture (SOA) can be used to
provide a streamlined interface to the underlying business processes being offered
through the cloud. Such an SOA may act as a programmatic front-end to a variety of
building-block components distinguished as individual services and their supporting
servers (e.g. (DeCandia et al., 2007)). Incoming requests to the service provided by
this composite SOA must be routed to the correct components and their respective
servers, and such routing must be scalable to support a large number of requests.

In order to scale up the business processes, each tier in the system usually deploys
multiple servers for load distribution and fault tolerance. Such load distribution
across multiple servers within the same tier can be viewed as horizontal load distri-
bution, as shown in Fig. 12.1. One limitation of horizontal load distribution is that

Fig. 12.1 Horizontal load distribution: load is distributed across a server pool within the same tier

12 Vertical Load Distribution for Cloud Computing 279

load cannot be further distributed when all servers in the given tier are loaded as a
result of mis-configured infrastructures – where too many servers are deployed at
one tier while too few servers are deployed at another tier.

An important observation is that in complex multi-tiered SOA systems, a sin-
gle business process can actually be implemented by multiple different computation
pathways through the tiers (where each pathway may have different components)
in order to provide resiliency and scalability. Such SOA-based enterprise com-
puting with multiple implementation options gives opportunities for vertical load
distribution across tiers.

Although there exists a large body of research and industry work focused on
request provisioning by balancing load across the servers of one service (Cisco; F5
Networks), there has been little work on balancing load across multiple implementa-
tions of a composite service, where each service can be implemented via pathways
through different service types.

A composite service can be represented as multiple tiers of component invo-
cations in an SOA-based IT infrastructure. In such a system, we differentiate
horizontal load distribution, where load can be spread across multiple servers for
one service component, from vertical load distribution, where load can be spread
across multiple implementations of a given service. The example in Fig. 12.2 illus-
trates these terms. Here a composite online analytic task can be represented as a
call to a Web and Application Server (WAS) to perform certain pre-processing, fol-
lowed by a call from the WAS to a database server (DB) to fetch required data set,
after which the WAS forwards the data set to a dedicated analytic server (AS) for
computationally-expensive data mining tasks.

This composite task can have multiple implementations in a modern IT data cen-
ter. An alternative implementation may invoke a stored procedure on the database
to perform data mining instead of having the dedicated analytic server perform this
task. This alternative implementation provides vertical load distribution by allow-
ing the job scheduler to select the WAS-and-DB implementation when the analytic
server is not available or heavily loaded. Multiple implementations are desirable for
the purpose of fault tolerance and high flexibility for load balancing. Furthermore,
it is also desirable for a server to be capable of carrying out multiple instances of
the same task for the same reasons.

Reusability is one of the key goals of the SOA approach. Due to the high
reusability of application components, it is possible to define a complex workflow in
multiple ways. However, it is hard to judge in advance which one is the best imple-
mentation, since in reality the results depend on the runtime environment (e.g. what
other service requests are being processed at the same time). We believe that hav-
ing multiple implementations provides fault tolerance and scalability, in particular
when dealing with diverse runtime conditions and missed configured infrastruc-
tures. In this respect, an SOA plays an important role in enabling the feasibility
and applicability of multiple implementations.

In this chapter we propose a framework for request-routing and load bal-
ancing horizontally and vertically in SOA-based enterprise cloud computing

280 T. Phan and W.-S. Li

Fig. 12.2 Vertical load distribution: load can be spread across multiple implementations of the
same composite service. This figure illustrates three different implementations of the same service
that was shown in Fig. 12.1

infrastructures. We show that a stochastic search algorithm is appropriate to explore
a very large solution space.

In our experiments, we show that our algorithm and methodology scale well up
to a large scale system configuration comprising up to 1000 workflow requests to a
complex composite web services with multiple implementations. We also show that
our approach that considers both horizontal and vertical load distribution is effective
in dealing with a misconfigured infrastructure (i.e. where there are too many servers
in one tier and too few servers in another tier).

The key contributions of this paper are the following:

• We identify the need for QoS-aware scheduling in workloads that consist of
composite web services. Our problem space lies in the relationship between
consumers, service types, implementation options, and service providers.

12 Vertical Load Distribution for Cloud Computing 281

• We provide a framework for handling both horizontal and vertical load distribu-
tion.

• We provide a reference implementation of a search algorithm that is able to pro-
duce optimal (or near-optimal) schedules based on a genetic search heuristic
(Holland, 1992).

The rest of this chapter is organized as follows. In Section 12.2, we describe
the system architecture and terminology used in this paper. In Section 12.3, we
describe how we model the problem and our algorithms for scheduling load
distribution for composite web services. In Section 12.4 we show experimental
results, and in Section 12.5 we discuss related work. We conclude the paper in
Section 12.6.

12.2 Overview

In this section we give a system architecture overview and discuss the terms that
will be used in this paper. Consider a simplified cloud computing example (shown
in Fig. 12.3) in which an analytic process runs on a Web and Application Server
(WAS), a Database Server (DB), and a specialized Analytic Server (AS). The

SLA for S1, S3, S5 by M1

Composite Service (CS)

S1

S7

S2

S4 S3

S5 S6 S7

WAS service type provider DB service type provider Analytic Server service
type provider

S5

S1

S5

S3

S1

S5

S3

S1

S6

S4

S6

S4

S2

M1 M2 M3

Scheduler

Deriv
ed

M5M4 M6

Implementations for CS

Option 2

Option 1

Option 3

SLA for S1, S5 by M2

SLA for S7 by M6

SLA for S1, S3, S5 by M3

SLA for S4, S6 by M4

SLA for S2, S4, S6 by M5

SLA published by providers

M3

S5

M4

S6

M6

S7

SLA for CS by Scheduler

WAS service instances DB service instances

Analytic Server
service instances

Request Routing Logic

Fig. 12.3 Request routing for SOA-based enterprise computing with multiple implementation
options

282 T. Phan and W.-S. Li

analytic process can be implemented by one of three options (as shown in the
upper-right of the figure):

• Executing some lightweight pre-processing at WAS (S1) and then having the DB
to complete most of expensive analytic calculation (S2); or

• Fetching data from the DB (S4) to the WAS and then completing most of the
expensive analytic calculation at the WAS (S3); or

• Executing some lightweight pre-processing at the WAS (S5), then having the
DB fetch necessary data (S6), and finally having the AS perform the remaining
expensive analytic calculation (S7).

The analytic process requires three different service types; namely, the WAS ser-
vice type, the DB service type, and the AS service type. S1, S3, and S5 are instances
of the WAS service type since they are the services provided by the WAS. Similarly,
S2, S4, and S6 are instances of the DB service type, and S7 is an instance of the AS
service type.

Furthermore, there are three kinds of servers: WAS servers (M1, M2, and M3);
DB servers (M4 and M5); and AS servers (M6). Although a server can typically
support any instance of its assigned service type, in general this is not always the
case. Our example reflects this notion: each server is able to support all instances
of its service type, except M2 and M4 are less powerful servers so that they cannot
support computationally expensive service instances, S3 and S2.

Each server has a service level agreement (SLA) for each service instance it
supports, and these SLAs are published and available for the scheduler. The SLA
includes information such as a profile of the load versus response time and an upper
bound on the request load size for which a server can provide a guarantee of its
response time.

The scheduler is responsible for routing and coordinating execution of compos-
ite services comprising one or more implementations. A derived SLA can only
be deployed with its corresponding routing logic. Note that the scheduler can
derive SLA and routing logic as well as handle the task of routing the requests.
Alternatively, the scheduler can be used solely for the purpose of deriving SLA and
routing logic while configuring a content aware routers, such as (Cisco System Inc),
for high performance and hardware-based routing.

The scheduler can also be enhanced to perform the task of monitoring actual
QoS achieved by workflow execution and by individual service providers. If the
scheduler observes failure of certain service providers to their QoS published, it
can re-compute feasible SLA and routing logic on demand to adapt to the runtime
environment.

In this paper, we focus on the problem of automatically deriving the routing
logic of a composite service with consideration of both horizontaland vertical load
distribution options. The scheduler is required to find an optimal combination of
a set of variables illustrated in Fig. 12.3 for a number of concurrent requests. We
discuss our scheduling approach next.

12 Vertical Load Distribution for Cloud Computing 283

12.3 Scheduling Composite Services

12.3.1 Solution Space

In this section, we formally define the problem and describe how we model its
complexity. We assume the following scenario elements:

• Requests for a workflow execution are submitted to a scheduling agent.
• The workflow can be embodied by one of several implementations, so each

request is assigned to one of these implementations by the scheduling agent.
• Each implementation invokes several service types, such as a web application

server, a DBMS, or a computational analytics server.
• Each service type can be embodied by one of several instances of the service

type, where each instance can have different computing requirements. For exam-
ple, one implementation may require heavy DBMS computation (such as through
a stored procedure) and light computational analytics, whereas another imple-
mentation may require light DBMS querying and heavy computational analytics.
We assume that these implementations are set up by administrators or engineers.

• Each service type is executed on a server within a pool of servers dedicated to
that service type.

Each service type can be served by a pool of servers. We assume that the servers
make agreements to guarantee a level of performance defined by the completion
time for completing a web service invocation. Although these SLAs can be com-
plex, in this paper we assume for simplicity that the guarantees can take the form of
a linear performance degradation under load, an approach similar to other published
work on service SLAs (e.g. (DeCandia et al., 2007)). This guarantee is defined by
several parameters: α is the expected completion time (for example, on the order of
seconds) if the assigned workload of web service requests is less than or equal to β,
the maximum concurrency, and if the workload is higher than β, the expected com-
pletion for a workload of size ω is α+ γ (ω− β) where γ is a fractional coefficient.
In our experiments we vary α, β, and γ with different distributions.

We would like to ideally perform optimal scheduling to simultaneously distribute
the load both vertically (across different implementation options) and horizontally
(across different servers supporting a particular service type). There are thus two
stages of scheduling, as shown in Fig. 12.4.

In the first stage, the requests are assigned to the implementations. In the sec-
ond stage each implementation has a known set of instances of a service type, and
each instance is assigned to servers within the pool of servers for the instance’s
service type. The solution space of possible scheduling assignments can be found
by looking at the possible combinations of these assignments. Suppose there are R
requests and M possible implementations. There are then MR possible assignments
in the first stage. Suppose further there are on average T service type invocations per

284 T. Phan and W.-S. Li

Fig. 12.4 The scheduling and assignment spans two stages. In the first stage, requests are assigned
to implementations, and in the second stage, service type instances are assigned to servers

implementation, and each of these service types can be handled by one of S on aver-
age possible servers. Across all the implementations, there are then ST combinations
of assignments in the second stage. It total, there are MR · ST combinations.

Clearly, an exhaustive search through this solution space is prohibitively costly
for all but the smallest configurations. In the next section we describe how we use a
genetic search algorithm to look for the optimal scheduling assignments.

12.3.2 Genetic algorithm

Given the solution space of MR · ST , the goal is to find the best assignments
of requests to implementations and service type instances to servers in order to

12 Vertical Load Distribution for Cloud Computing 285

minimize the running time of the workload, thereby providing our desired ver-
tical and horizontal balancing. To search through the solution space, we use a
genetic algorithm (GA) global search heuristic that allows us to explore por-
tions of the space in a guided manner that converges towards the optimal solutions
(Holland, 1992; Goldberg, 1989). We note that a GA is only one of many possible
approaches for a search heuristic; others include tabu search, simulated annealing,
and steepest-ascent hill climbing. We use a GA only as a tool.

A GA is a computer simulation of Darwinian natural selection that iterates
through various generations to converge toward the best solution in the problem
space. A potential solution to the problem exists as a chromosome, and in our case,
a chromosome is a specific mapping of requests-to-implementations and instances-
to-servers along with its associated workload execution time. Genetic algorithms
are commonly used to find optimal exact solutions or near-optimal approximations
in combinatorial search problems such as the one we address. It is known that a
GA provides a very good tradeoff between exploration of the solution space and
exploitation of discovered maxima (Goldberg, 1989). Furthermore, a genetic algo-
rithm does have an advantage of progressive optimization such that a solution is
available at any time, and the result continues to improve as more time is given for
optimization.

Note that the GA is not guaranteed to find the optimal solution since the
recombination and mutation steps are stochastic.

Our choice of a genetic algorithm stemmed from our belief that other search
heuristics (for example, simulated annealing) are already along the same lines as
a GA. These are randomized global search heuristics, and genetic algorithms are a
good representative of these approaches. Prior research has shown there is no clear
winner among these heuristics, with each heuristic providing better performance
and more accurate results under different scenarios (Lima, Francois, Srinivasan, &
Salcedo, 2004; Costa & Oliveira, 2001; Oliveira & Salcedo, 2005). Furthermore,
from our own prior work, we are familiar with its operations and the factors that
affect its performance and optimality convergence. Additionally, the mappings in
our problem context are ideally suited to array and matrix representations, allow-
ing us to use prior GA research that aid in chromosome recombination (Davis,
1985). There are other algorithms that we could have considered, but scheduling
and assignment algorithms are a research topic unto themselves, and there is a very
wide of range of approaches that we would have been forced to omit.

Pseudo-code for a genetic algorithm is shown in Algorithm 1. The GA executes
as follows. The GA produces an initial random population of chromosomes. The
chromosomes then recombine (simulating sexual reproduction) to produce children
using portions of both parents. Mutations in the children are produced with small
probability to introduce traits that were not in either parent. The children with the
best scores (in our case, the lowest workload execution times) are chosen for the
next generation. The steps repeat for a fixed number of iterations, allowing the GA
to converge toward the best chromosome. In the end it is hoped that the GA explores
a large portion of the solution space. With each recombination, the most beneficial
portion of a parent chromosome is ideally retained and passed from parent to child,

286 T. Phan and W.-S. Li

so the best child in the last generation has the best mappings. To improve the GA’s
convergence, we implemented elitism, where the best chromosome found so far is
guaranteed to exist in each generation.

12.3.2.1 Chromosome Representation of a Solution

We used two data structures in a chromosome to represent each of the two schedul-
ing stages. In the first stage, R requests are assigned to M implementations, so its
representative structure is simply an array of size R, where each element of the array
is in the range of [1, M], as shown in Fig. 12.5.

Fig. 12.5 An example
chromosome representing the
assignment of R requests to M
implementations

The second stage where instances are assigned to servers is more complex. In
Fig. 12.6 we show an example chromosome that encodes one scheduling assign-
ment. The representation is a 2-dimensional matrix that maps {implementation,

Fig. 12.6 An example chromosome representing a scheduling assignment of (implementa-
tion,service type instance)→ service provider. Each row represents an implementation, and each
column represents a service type instance. Here there are M workflows and T service types
instances. In workflow 1, any request for service type 3 goes to server 9

12 Vertical Load Distribution for Cloud Computing 287

service type instance} to a service provider. For an implementation i utilizing ser-
vice type instance j, the (i, j)th entry in the table is the identifier for the server to
which the business process is assigned.

12.3.2.2 Chromosome Recombination

Two parent chromosomes recombine to produce a new child chromosome. The hope
is that the child contains the best contiguous chromosome regions from its parents.

Recombining the chromosome from the first scheduling stage is simple since the
chromsomes are simple 1-dimensional arrays. Two cut points are chosen randomly
and applied to both the parents. The array elements between the cut points in the
first parent are given to the child, and the array elements outside the cut points from
the second parent are appended to the array elements in the child. This is known as
a 2-point crossover and is shown in Fig. 12.7.

Fig. 12.7 An example recombination between two parents to produce a child for the first stage
assignments. This recombination uses a 2-point crossover recombination of two one-dimensional
arrays. Contiguous subsections of both parents are used to create the new child

For the 2-dimensional matrix, chromosome recombination was implemented by
performing a one-point crossover scheme twice (once along each dimension). The
crossover is best explained by analogy to Cartesian space as follows. A random
location is chosen in the matrix to be coordinate (0, 0). Matrix elements from quad-
rants II and IV from the first parent and elements from quadrants I and III from the
second parent are used to create the new child. This approach follows GA best prac-
tices by keeping contiguous chromosome segments together as they are transmitted
from parent to child, as shown in Fig. 12.8.

The uni-chromosome mutation scheme randomly changes one of the service
provider assignments to another provider within the available range. Other recom-
bination and mutation schemes are an area of research in the GA community, and
we look to explore new operators in future work.

288 T. Phan and W.-S. Li

Fig. 12.8 An example recombination between two parents to produce a child for the second stage
assignments. Elements from quadrants II and IV from the first parent and elements from quadrants
I and III from the second parent are used to create the new child

12.3.2.3 GA Evaluation Function

The evaluation function returns the resulting workload execution time given a chro-
mosome. Note the function can be implemented to evaluate the workload in any way
so long as it is consistently applied to all chromosomes across all generations.

Our evaluation function is shown in Algorithm 2. In lines 6–8, it initialises the
execution times for all the servers in the chromosome. In lines 11–17, it assigns
requests to implementations and service type instances to servers using the two
mappings in the chromosome. The end result of this phase is that the instances are
accordingly enqueued the servers. In lines 19–21 the running times of the servers
are calculated. In lines 24–26, the results of the servers are used to compute the
results of the implementations. The function returns the maximum execution time
among the implementations.

12.3.3 Handling Online Arriving Requests

As mentioned earlier, the problem domain we consider is that of batch-arrival
request routing. We take full advantage of such a scenario through the use of the
GA, which has knowledge of the request population. We can further extend this
approach to online arriving requests, a lengthy discussion which we omit here due
to space limits. A typical approach is to aggregate the incoming requests into a

12 Vertical Load Distribution for Cloud Computing 289

queue, and when a designated timer expires, all requests in the queue at that time
are scheduled. There may still be uncompleted requests from the previous execution,
so the requests may be mingled together to produce a larger schedule. An alterna-
tive approach is to use online stochastic optimization techniques commonly found
in online decision-making systems (Van Hentenryck & Bent, 2006).

First, we can continue to use the GA, but instead of having the complete collec-
tion of requests available to us, we can allow requests to aggregate into a queue first.
When a periodic timer expires, we can run the GA on those requests while aggregat-
ing any more incoming requests into another queue. Once the GA is finished with the
first queue, it will process the next queue when the periodic timer expires again. If
the request arrival rate is faster than the GA’s processing rate, we can take advantage
of the fact that the GA can be run as an incomplete, near-optimal search heuristic:
we can go ahead and let the timer interrupt the GA, and the GA will have ∗some∗

290 T. Phan and W.-S. Li

solutions that, although sub-optimal, is probabilistically better than a greedy solu-
tion. This typical methodology is also shown in (Dewri, Ray, Ray, & Whitley, 2008),
where requests for broadcast messages are queued, and the messages are optimally
distributed through the use of an evolutionary strategies algorithm (a close cousin
of a genetic algorithm).

Second (and unrelated to genetic algorithms), we can use online stochastic opti-
mization techniques to serve online arrivals. This approach approximates the offline
problem by sampling historical arrival data in order to make the best online decision.
A good overview is provided in (Bent & Van Hentenryck, 2004). In this technique,
the online optimizer receives an incoming sequence of requests, gets historical data
over some period of time from a sampling function that creates a statistical distri-
bution model, and then calculates and returns an optimized allocation of requests
to available resources. This optimization can be done on a periodic or continuous
basis.

12.4 Experiments and Results

We ran experiments to show how our system compared to other well-known algo-
rithms with respect to our goal of providing request routing with horizontal and
vertical distribution. Since one of our intentions was to demonstrate how our sys-
tem scales well up to 1000 requests, we used a synthetic workload that allowed
us to precisely control experimental parameters, including the number of available
implementations, the number of published service types, the number of service type
instances per implementation, and the number of servers per service type instance.
The scheduling and execution of this workload was simulated using a program we
implemented in standard C++. The simulation ran on an off-the-shelf Red Hat Linux
desktop with a 3.0 GHz Pentinum IV and 2 GB of RAM.

In these experiments we compared our algorithm against the following alterna-
tives:

• A round-robin algorithm that assigns requests to an implementation and service
type instances to a server in circular fashion. This well-known approach provides
a fast and simple scheme for load-balancing.

• A random-proportional algorithm that proportionally assigns instances to the
servers. For a given service type, the servers are ranked by their guaranteed com-
pletion time, and instances are assigned proportionally to the servers based on the
servers’ completion time. (We also tried a proportionality scheme based on both
the completion times and maximum concurrency but attained the same results, so
only the former scheme’s results are shown here.) To isolate the behavior of this
proportionality scheme in the second phase of the scheduling, we always assigned
the requests to the implementations in the first phase using a round-robin scheme.

• A purely random algorithm that randomly assigns requests to an implementation
and service type instances to a server in random fashion. Each choice was made
with a uniform random distribution.

12 Vertical Load Distribution for Cloud Computing 291

• A greedy algorithm that always assigns business processes to the service provider
that has the fastest guaranteed completion time. This algorithm represents a naive
approach based on greedy, local observations of each workflow without taking
into consideration all workflows.

In the experiments that follow, all results were averaged across 20 trials, and to
help normalize the effects of any randomization used during any of the algorithms,
each trial started by reading in pre-initialized data from disk. In Table 12.1 we list
our experimental parameters for our baseline experiments. We vary these parameters
in other experiments, as we discuss later.

Table 21.1 Experiment parameters

Experimental parameter Comment

Requests 1 to 1000
Implementations 5, 10, 20
Service types used per implementation uniform random: 1 – 10
Instances per service type uniform random: 1 – 10
Servers per service type uniform random: 1 – 10
Server completion time (α) uniform random: 1 – 12 seconds
Server maximum concurrency (β) uniform random: 1 – 12
Server degradation coefficient (γ) uniform random: 0.1 – 0.9
GA: population size 100
GA: number of generations 200

12.4.1 Baseline Configuration Results

In Figs. 12.9, 12.10, and 12.11 we show the behavior of the algorithms as they
schedule requests against 5, 10, and 20 implementations, respectively. In each graph,
the x-axis shows the number of requests (up to 1000), and the y-axis is average
response time upon completing the workload. This response time is the makespan,
the metric commonly used in the scheduling community and calculated as the max-
imum completion time across all requests in the workload. As the total number
of implementations increases across the three graphs, the total number of service
types, instances, and servers scaled as well in accordance to the distributions of
these variables from Table 12.1. In each of the figures, it can be see that the GA is
able to produce a better assignment of requests to implementations and service type
instances to servers than the other algorithms. The GA shows a 45% improvement
over its nearest competitor (typically the round-robin algorithm) with a configura-
tion of 5 implementations and 1000 requests and a 36% improvement in the largest
configuration with 20 implementations and 1000 requests.

The relative behavior of the other algorithms was consistent. The greedy algo-
rithm performed the worst while the random-proportional and random algorithms
were close together. The round-robin came the closest to the GA.

292 T. Phan and W.-S. Li

100 200 300 400 500 600 700

700

600

500

400

300

200

100

0
800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 5 implementations

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.9 Response time with 5 implementations

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 10 implementations

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.10 Response time with 10 implementations

12 Vertical Load Distribution for Cloud Computing 293

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 20 implementations

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.11 Response time with 20 implementations

To better understand these results, we looked at the individual behavior of the
servers after the instance requests were assigned to them. In Fig. 12.12 we show
the percentage of servers that were saturated among the servers that were actually
assigned instance requests. These results were from the same 10-implementation
experiment from Fig. 12.10. For clarity, we focus on a region with up to 300
requests.

We consider a server to be saturated if it was given more requests than its max-
imum concurrency parameter. From this graph we see the key behavior that the
GA is able to find assignments well enough to delay the onset of saturation until
300 requests. The greedy algorithm, as can be expected, always targets the best
server from the pool available for a given service type and quickly causes these cho-
sen servers to saturate. The round robin is known to be a quick and easy way to
spread load and indeed provides the lowest saturation up through 60 requests. The
random-proportional and random algorithms reach saturation points between that of
the greedy and GA algorithms.

12.4.2 Effect of Service Types

We then varied the number of service types per implementation, modeling a scenario
where there is a heavily skewed number of different web services available to each
of the alternative implementations. Intuitively, in a deployment where there is a large

294 T. Phan and W.-S. Li

 0

 0.2

 0.4

 0.6

 0.8

 1

50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 s

er
ve

rs

Number of requests

Servers saturated

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.12 Percentage of servers that were saturated. A saturated server is one whose workload is
greater than its maximum concurrency

number of services types to be invoked, the running time of the overall workload will
increase.

In Fig. 12.13 we show the results where we chose the numbers of service types
per implementation from a Gaussian distribution with a mean of 2.0 service types;
this distribution is in contrast to the previous experiments where the number was
selected from a uniform distribution in the inclusive range of 1–10. As can be seen,
the algorithms show the same relative performance from prior results in that the GA
is able to find the scheduling assignments resulting in the lowest response times.
The worst performer in this case is the random algorithm. In Fig. 12.14 we skew
the number of service types in the other direction with a Gaussian distribution with
a mean of 8.0. In this case the overall response time increases for all algorithms, as
can be expected. The GA still provides the best response time.

12.4.3 Effect of Service Type Instances

In these experiments we varied the number of instances per service type. We imple-
mented a scheme where each instance incurs a different running time on each
server; that is, a unique combination of instance and server provides a different
response time, which we put into effect by a Gaussian random number generator.
This approach models our target scenario where a given implementation may run

12 Vertical Load Distribution for Cloud Computing 295

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of service types per implementation

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.13 Average response time with a skewed distribution of service types per implementation.
The distribution was Gaussian (λ = 2.0, σ = 2.0 service types)

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of service types per implementation

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.14 Average response time with a skewed distribution of service types per implementation.
The distribution was Gaussian (λ = 8.0, σ = 2.0 service types)

296 T. Phan and W.-S. Li

an instances that performs more or less of the work associated with the instance’s
service type. For example, although two implementations may require the use of a
DBMS, one implementation’s instance of this DBMS task may require less compu-
tation than the other implementation due to the offload of a stored procedure in the
DBMS to a separate analytics server. Our expectation is that having more instances
per service type allows a greater variability in performance per service type.

Figure 12.15 shows the algorithm results when we skewed the number of
instances per service type with a Gaussian distribution with a mean of 2.0 instances.
Again, the relative ordering shows that the GA is able to provide the lowest work-
load response among the algorithms throughout. When we weight the number of
instances with a mean of 8.0 instances per service type, as shown in Fig. 12.16,
we can see that the the GA again provides the lowest response time results. In this
larger configuration, the separation between all the algorithms is more evident with
the greedy algorithm typically performing the worst; its behavior is again due the
fact that it assigns jobs only to the best server among the pool of servers for a service
type.

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of instances per service type

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.15 Average response time with a skewed distribution of instances per service type. The
distribution was Gaussian (λ = 2.0, σ = 2.0 instances)

12.4.4 Effect of Servers (Horizontal Balancing)

Here we explored the impact of having more servers available in the pool of servers
for the service types. This experiment isolates the effect of horizontal balancing.

12 Vertical Load Distribution for Cloud Computing 297

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of instances per service type

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.16 Average response time with a skewed distribution of instances per service type. The
distribution was Gaussian (λ = 8.0, σ = 2.0 instances)

Increasing the size of this pool will allow assigned requests to be spread out and
thus reduce the number of requests per server, resulting in lower response times
for the workload. In Figs. 12.17 and 12.18 we show the results with Gaussian dis-
tributions with means of 2.0 and 8.0, respectively. In both graphs the GA appears
to provide the lowest response times. Furthermore, it is interesting to note that in
the random, random-proportional, and round-robin algorithms, the results did not
change substantially between the two experiments even though the latter experi-
ment contains four times the average number of servers. We believe this result may
be due to the fact that the first-stage scheduling of requests to implementations is not
taking sufficient advantage of the second-stage scheduling of service type instances
to the increased number of servers. Since the GA is able to better explore all com-
binations across both scheduling stages, it is able to produces its better results. We
will explore this aspect in more detail in the future.

12.4.5 Effect of Server Performance

In this section we look at the impact on the servers’ individual performance on the
overall workload running time. In previous sections we described how we modeled
each server with variables for the response time (α) and the concurrency (β). Here
we skewed these variables to show how the algorithms performed as a result.

298 T. Phan and W.-S. Li

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers per service type

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.17 Average response time with a skewed distribution of servers per service type. The
distribution was Gaussian (λ = 2.0, σ = 2.0 instances)

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers per service type

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.18 Average response time with a skewed distribution of servers per service type. The
distribution was Gaussian (λ = 8.0, σ = 2.0 instances)

12 Vertical Load Distribution for Cloud Computing 299

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ completion time

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.19 Average response time with a skewed distribution of servers’ completion time. The
distribution was Gaussian (λ = 2.0, σ = 2.0 s)

In Figs. 12.19 and 12.20 we skewed the completion times with Gaussian dis-
tributions with means of 2.0 and 9.0, respectively. It can be seen that the relative
orderings of the algorithms are roughly the same in each, with the GA providing
best performance, the greedy algorithm giving the worst, and the other algorithms
running in between. Surprisingly, the difference in response time between the two
experiments was much less than we expected, although there is a slight increase in
all the algorithms except for the GA. We believe that the lack of a dramatic rise in
overall response time is due to whatever load balancing is being performed by the
algorithms (except the greedy algorithm).

We then varied the maximum concurrency variable for the servers using Gaussian
distributions with means of 2.0 and 9.0, as shown in Figs. 12.21 and 12.22. From
these results it can be observed that the algorithms react well with an increas-
ing degree of maximum concurrency. As more requests are being assigned to the
servers, the servers respond with faster response times when they are given more
headroom to run with these higher concurrency limits.

12.4.6 Effect of Response Variation Control

We additonally evaluated the effect of having the GA minimize the variation in the
requests’ completion time. As mentioned earlier, we have been been calculating the

300 T. Phan and W.-S. Li

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ completion time

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.20 Average response time with a skewed distribution of servers’ completion time. The
distribution was Gaussian (λ = 9.0, σ = 2.0 s)

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ maximum concurrency

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.21 Average response time with a skewed distribution of servers’ maximum concurrency.
The distribution was Gaussian (λ = 4.0, σ = 2.0 jobs)

12 Vertical Load Distribution for Cloud Computing 301

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ maximum concurrency

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.22 Average response time with a skewed distribution of servers’ maximum concurrency.
The distribution was Gaussian (λ = 11.0, σ = 2.0 jobs)

workload completion as the maximum completion time of the requests in that work-
load. While this approach has been effective, it produces wide variation between
the requests’ completion times due to the stochastic packing of requests by the GA.
This variation in response time, known as jitter in the computer networking commu-
nity, may not be desirable, so we further provided an alternative objective function
that minimizes the jitter (rather than minimizing the workload completion time).
In Fig. 12.23 we show the average standard deviations resulting from these differ-
ent objective functions (using the same parameters as in Fig. 12.10). With variation
minimization on, the average standard deviation is always close to 0, and with vari-
ation minimization off, we observe an increasing degree of variation. The results
in Fig. 12.24 show that the reduced variation comes at the cost of longer response
times.

12.4.7 Effect of Routing Against Conservative SLA

We looked at the GA behavior when its input parameters were not the servers’ actual
parameters but rather the parameters provided by a conservative SLA. In some sys-
tems, SLAs may be defined with a safety margin in mind so that clients of the service
do not approach the actual physical limits of the underlying service. In that vein, we
ran an experiment similar to that shown in Fig. 12.10, but in this configuration we

302 T. Phan and W.-S. Li

 0

 5

 10

 15

 20

 25

S
ta

nd
ar

d
de

vi
at

io
n

of
 r

eq
ue

st
 r

es
po

ns
e

tim
e

Number of requests

Request response time standard deviation, with/without variation minimization

GA, variation minimization on
GA, variation minimization off

100 200 300 400 500 600 700 800 900 1000

Fig. 12.23 Average standard deviation from the mean response for two different objective
functions

 0

 100

 200

 300

 400

 500

 600

 700

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time of GA with/without variation minimization

GA, variation minimization on
GA, variation minimization off

100 200 300 400 500 600 700 800 900 1000

Fig. 12.24 Average response time for two different objective functions

12 Vertical Load Distribution for Cloud Computing 303

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 10 implementations, with and without SLA-based routing

Greedy
GA

Fig. 12.25 Response time with 10 implementations with configurations for SLA and without SLA

used parameters for the underlying servers with twice the expected response time
and half the available parallelism, mirroring a possible conservative SLA. As can
be seen in Fig. 12.25, the GA converges towards a scheduling where the extra slack
given by the conservative SLA results in a slower response time.

12.4.8 Summary of Experiments

In this section we evaluated our GA reference implementation of a scheduler that
performs request-routing for horizontal and vertical load distribution. We showed
that the GA consistently produces lower workload response time than its competi-
tors. Furthermore, as can be expected, the scheduler is sensitive to a number of
parameters, including the number of service types in each implementation, the num-
ber of service type instances, the number of servers, the per-server performance, the
desired degree of variation, and the tightness of the SLA parameters.

12.5 Related Work

Shankar, De Miguel, and Liu (2004) described a distributed quality of service (QoS)
management architecture and middleware that accommodates and manages differ-
ent dimensions and measures of QoS. The middleware supports the specification,

304 T. Phan and W.-S. Li

maintenance and adaptation of end-to-end QoS (including temporal requirements)
provided by the individual components in complex real time application systems.
Using QoS negotiation, the middleware determines the quality levels and resource
allocations of the application components. This work focused on analysis tradeoff
between QoS and cost instead of ensuring QoS requirements in our paper.

Yu and Lin (2005) presented two algorithms for finding replacement services
in autonomic distributed business processes when web service providers fail to
response or meet the QoS requirement: following alternative predefined routes
or finding alternative routes on demand. The algorithms give the QoS brokerage
service fault tolerance capability and is complementary to our work.

Yu et al. developed a set of algorithms for Web services selection with end-to-end
QoS constraints (Yu & Lin, 2005b, 2006; Yu, Zhang, & Lin, 2007). A key difference
between our work and theirs is that they simplify and reduce the complexity space
considerably, something which we do not do. They take all incoming workflows,
aggregate them into one singe workflow, and then schedule that one workflow onto
the underlying service providers. We do not do this aggregation, and therefore our
approach provides a higher degree of scheduling flexibility.

Consider the two workflows shown on the left of Fig. 12.26 where each task in
the workflow invokes a particular service type. In their work, they aggregate the
workflows into a single function graph, resulting in a simplified form shown on the
right of Fig. 12.26.

Workflow 1

Workflow 2

S0

S1 S3

S2 S3

S4 S1

S0 S2 S3 S4aggregation

Fig. 12.26 Aggregation of service workflows

Each service type is then mapped onto a service provider chosen from the pool
of service providers for that type. It is important to note that each service type is
assigned to the same chosen provider, even though the instances of that service type
are different. For example, because both workflow 1 and workflow 2 use S3, both
instances are mapped to the same provider.

In our work, we do not do this aggregation to reduce the complexity space. We
consider unique combinations of {workflow, service type} and map these to a ser-
vice provider. Thus, in our work, S3 in workflow 1 may map to a different provider
than S3 in workflow 2. This distinction allows for more flexible scheduling and
potentially better turnaround time than their work.

In the work (Phan & Li, 2008b), the GA algorithm was used for load distribu-
tion for database cluster. In this work, the analytic workloads are distributed across
a database cluster. The load distribution algorithm needs to consider collocation
of MQTs (i.e. materialized views) with queries which can utilize them to improve
performance, collocation of MQTs and the base tables which are needed to con-
struct the MQTs, and minimizing the execution time of the whole workload on the
database cluster. This work is a kind of horizontal load distribution. Similarly, the

12 Vertical Load Distribution for Cloud Computing 305

GA algorithm is also used in (Phan & Li, 2008a) to schedule query execution and
view materialization sequence for minimal overall execution time.

Our work is related to prior efforts in web service composition, web service
scheduling, and job scheduling. A web service’s interface is expressed in WSDL,
and given a set of web services, a workflow can be specified in a flow language such
as BPEL4WS (2005) or WSCI (Josephraj, 2007). Several research projects have
looked to provide automated web services composition using high-level rules (e.g.
eFlow (Casati, Ilnicki, & Jin, 2000), SWORD (Ponnekanti & Fox, 2004)). Our work
is complementary to this area, as we schedule business processes within multiple,
already-defined workflows to the underlying service providers.

In the context of service assignment and scheduling, (Zeng, Benatallah, Dumas,
Kalagnanam, & Sheng, 2003) maps web service calls to potential servers but
their work is concerned with mapping only single workflows; our principal focus
is on scalably scheduling multiple workflows (up to one thousand). Urgaonkar,
Shenoy, Chandra, and Goyal (2005) presents a dynamic provisioning approach
that uses both predictive and reactive techniques for multi-tiered Internet applica-
tion delivery. However, the provisioning techniques do not consider the challenges
faced when there are alternative query execution plans and replicated data sources.
Soundararajan, Manassiev, Chen, Goel, and Amza (2005) presents a feedback-based
scheduling mechanism for multi-tiered systems with back-end databases, but unlike
our work, it assumes a tighter coupling between the system components.

The work in (Jin & Nahrstedt, 2004) creates end-to-end paths for services (such
as transcoding) and assigns servers on a hop-by-hop basis by minimising network
latency between hops. Our work is complementary in that service assignment is
based on business value metrics defined by agreed-upon service level agreements.

An SLA can be complex, requiring IT staff to translate from the legal document
level description to system-specific requirement for deployment and enforcement.
Ward et al. (2005) proposed a framework for configuring extensible SLA manage-
ment systems. In this work, an SLA is represented in XML format. In Buco et al.
(2003), an SLA execution manager (SAM) is proposed to manage cross-SLA exe-
cution that may involve an SLA with different terms. The work provides metadata
management functionality for SLA aware scheduling presented in this paper. Thus,
it is complementary to our work.

Tang, Chang, and So (2006) and Gu, Nahrstedt, Chang, and Ward (2003) applied
peer-to-peer technology for support real time services, such as data dissemination
across internet with QoS assurance. In their context, they create an application-layer
network route across multiple service nodes in order to provide some end-to-end
service. This routing occurs in two steps: the user’s high-level request is mapped
to a service template, and then the template is mapped to a route of servers. This
approach is similar to ours in that our business processes request service from the
service types, and the service types must instantiated by assigning the business
processes to an underlying server. The key differences are that: (1) their work is
constrained by the topology of the application-layer network. Their work looks at
pipelines of service nodes in a line. The problem is finding routes through a network
by adapting Dijkstra’s algorithm for finding shortest path whereas our problem is

306 T. Phan and W.-S. Li

assigning business processes to servers; Their work looks at pipelines of service
nodes in a line; whereas our work looks at a more flexible workflow condition that
may involve branches, including AND and OR; (3) their primary metrics are avail-
ability and latency, whereas we use a more flexible and generalizable business value
to evaluate assignments. Furthermore, our work supports an infrastructure where a
server can support multiple service types (c.f. our scenario is that business processes
within a workflow must be scheduled onto web service providers). The salient dif-
ferences are that the machines can process only one job at a time (we assume servers
can multi-task but with degraded performance and a maximum concurrency level),
tasks within a job cannot simultaneously run on different machines (we assume
business processes can be assigned to any available server), and the principal met-
ric of performance is the makespan, which is the time for the last task among all
the jobs to complete. As we showed, optimizing on the makespan is insufficient for
scheduling the business processes, necessitating different metrics.

12.6 Conclusion

Cloud computing aims to do the dirty work for the user: by moving issues of mange-
ment and provisioning away from the end consumer and into the server-side data
centers, users are given more freedom to pick and choose the applications that suit
their needs. However, computing in the clouds depends heavily on the scalablity and
robustness of the underlying cloud architecture.

We discussed enterprise cloud computing where enterprises may use a service-
oriented architecture to publish a streamlined interface to their business processes.
In order to scale up the number of business processes, each tier in the provider’s
architecture usually deploys multiple servers for load distribution and fault tol-
erance. Such load distribution across multiple servers within the same tier can
be viewed as horizontal load distribution. One limitation of this approach is that
load cannot be distributed further when all servers in the same tier are fully
loaded. Another approach for providing resiliency and scalabilty is to have multiple
implementation options that give opportunities for vertical load distribution across
tiers.

We described in detail a request routing framework for SOA-based enterprise
cloud computing that takes into account both these options for horizontal and ver-
tical load distribution. Experiments showed that our algorithm and methodology
can scale well up to a large-scale system configuration comprising up to 1000 work-
flow requests directed to a complex composite service with multiple implementation
options available. The experimental results also demonstrate that our framework is
more agile in the sense that it is effective in dealing with mis-configured infrastruc-
tures in which there are too many or too few servers in one tier. As a result, our
framework can effectively utilize available multiple implementations to distribute
loads across tiers.

12 Vertical Load Distribution for Cloud Computing 307

References

Bent, R., & Van Hentenryck, P. (2004). Regrets Only! Online stochastic optimization under time
constraints. Nineteenth National Conference on Artificial Intelligence, San Jose, CA.

Buco, M. J., Chang, R. N., Luan, L. Z., Ward, C., Wolf, J. L., Yu, P. S., et al. (2003). Managing
ebusiness on demand sla contracts in business terms using the cross-sla execution manager sam.
ISADS, Washington, DC, 157–164.

Business Process Execution Language for Web Services (Version 1.1), (2005). www-128.ibm.com/
developerworks/library/ws-bpel/.

Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., & Shan, M.-C. (2000). Adaptive and Dynamic
Service Composition in eFlow. Proceedings of CAISE, Stockholm, Sweden, 13–31.

Cisco. Ace application-level load balancer. http://www.cisco.com/en/US/products/ps6906/.
Accessed July 29, 2010.

Cisco. Scalable Content Switching. http://www.cisco.com/en/US/products/hw/contnetw/ps792/
products_white_paper09186a0080136856.shtml. Accessed July 29, 2010.

Cloud Computing (2009). Clash of the clouds. The Economist.
Costa, L., & Oliveira, P. (2001). Evolutionary algorithms approach to the solution of mixed integer

nonlinear programming problems. Computers and Chemical Engineering, 25(2–3), 257–266.
Davis, L. (1985). Job shop scheduling with genetic algorithms. Proceedings of the International

Conference on Genetic Algorithms, Pittsburgh, PA.
DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,

Sivasubramanian, S., Vosshall, P., & Vogels, W. (2007). Dynamo: Amazon’s highly available
key-value store. Proceedings of SOSP, Washington D.C., 205–220.

Dewri, R., Ray, I., Ray, I., & Whitley, D. (2008). Optimizing on-demand data broadcast scheduling
in pervasive environments. Proceedings of EDBT, Nantes, France, 559–569.

Dikaiakos, M., Pallis, G., Katsaros, D., Mehra, P., & Vakali, A. (2009). Cloud computing:
Distributed internet computing for it and scientific research. IEEE Internet Computing, 13(5),
10–13.

F5 Networks. Big-ip application-level load balancer. http://www.f5.com/products/big-ip/.
Accessed July 29, 2010.

Goldberg, D. (1989). Genetic algorithms in searth, optimization, and machine learning. Dordrecht:
Kluwer.

Gu, X., Nahrstedt, K., Chang, R. N., & Ward, C. (2003). Qos-assured service composition in
managed service overlay networks. Proceedings of ICDCS, Providence, Rhode Island, USA,
194–203.

Holland, J. (1992). Adaptation in natural and artificial systems. Cambridge, MA: MIT Press.
Jin, J., & Nahrstedt, K. (2004). On exploring performance optimisations in web service composi-

tion. Proceedings of Middleware, Toronto, Canada.
Josephraj, J. (2007). Web services choreography in practice. www-128.ibm.com/developerworks/

library/ws-choreography. Accessed July 29, 2010.
Lima, R., Francois, G., Srinivasan, B., & Salcedo, R. (2004). Dynamic optimization of batch emul-

sion polymerization using MSIMPSA, a simulated-annealing-based algorithm. Industrial and
Engineering Chemistry Research, 43(24), 7796–7806.

Oliveira, R., & Salcedo, R. (2005). Benchmark testing of simulated annealing, adaptive ran-
dom search and genetic algorithms for the global optimization of bioprocesses. International
Conference on Adaptive and Natural Computing Algorithms, Coimbra, Portugal.

Phan, T., & Li, W.-S. (2008a). Dynamic materialization of query views for data warehouse
workloads. Proceedings of the International Conference on Data Engineering, Long Beach,
CA.

Phan, T., & Li, W.-S. (2008b). Load distribution of analytical query workloads for database cluster
architectures. Proceedings of EDBT, Nantes, France, 169–180.

Ponnekanti, S., & Fox, A. (2004). Interoperability among Independently Evolving Web Services.
Proceedings of Middleware, Toronto, Canada.

308 T. Phan and W.-S. Li

Shankar, M., De Miguel, M., & Liu, J. W.-S. (2004). An end-to-end qos management architecture.
Proceedings of the Fifth IEEE Real Time Technology and Applications Symposium, Vancouver,
British Columbia, Canada, p. 176.

Soundararajan, G., Manassiev, K., Chen, J., Goel, A., & Amza, C. (2005). Back-end databases in
shared dynamic content server clusters. Proceedings of ICAC, Dublin, Ireland.

Tang, C., Chang, R. N., & So, E. (2006). A distributed service management infrastructure for
enterprise data centers based on peer-to-peer technology. IEEE SCC, Chicago, IL, 52–59.

Urgaonkar, B., Shenoy, P., Chandra, A., & Goyal, P. (2005). Dynamic provisioning of multi-tier
internet applications. Proceedings of ICAC, Seattle, WA.

Van Hentenryck, P., & Bent, R. (2006). Online stochastic combinatorial optimization. Cambridge,
MA: MIT Press.

Ward, C., Buco, M. J., Chang, R. N., Luan, L. Z., So, E., & Tang, C. (2005). Fresco: A web services
based framework for configuring extensible sla management systems. ICWS, Sunshine Coast,
Australia 237–245.

Yu, T., & Lin, K.-J. (2005a). Adaptive algorithms for finding replacement services in autonomic
distributed business processes. Proceedings of the 7th International Symposium on Autonomous
Decentralized Systems, Chengdu, China.

Yu, T., & Lin, K.-J. (2005b). Service selection algorithms for web services with end-to-end qos
constraints. Information Systems and E-Business Management, 3(2), 103–126.

Yu, T., & Lin, K.-J. (2006). Qcws: An implementation of qos-capable multimedia web services.
Multimedia Tools and Applications, 30(2), 165–187.

Yu, T., Zhang, Y., & Lin, K.-J. (2007). Efficient algorithms for web services selection with end-
to-end qos constraints. ACM Transactions on the Web (TWEB), 1(1). http://portal.acm.org/
citation.cfm?id=1232722.1232728. Accessed July 29, 2010.

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., & Sheng, Q. (2003). quality driven web
services composition. Proceedings of WWW, Helsinki, Finland.

	12 Vertical Load Distribution for Cloud Computing via Multiple Implementation Options
	12.1 Introduction
	12.2 Overview
	12.3 Scheduling Composite Services
	12.3.1 Solution Space
	12.3.2 Genetic algorithm
	12.3.2.1 Chromosome Representation of a Solution
	12.3.2.2 Chromosome Recombination
	12.3.2.3 GA Evaluation Function

	12.3.3 Handling Online Arriving Requests

	12.4 Experiments and Results
	12.4.1 Baseline Configuration Results
	12.4.2 Effect of Service Types
	12.4.3 Effect of Service Type Instances
	12.4.4 Effect of Servers (Horizontal Balancing)
	12.4.5 Effect of Server Performance
	12.4.6 Effect of Response Variation Control
	12.4.7 Effect of Routing Against Conservative SLA
	12.4.8 Summary of Experiments

	12.5 Related Work
	12.6 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

