
Chapter 20
Simulation-Optimization in Support of Tactical
and Strategic Enterprise Decisions

Juan Camilo Zapata, Joesph Pekny, and Gintaras V. Reklaitis

20.1 Introduction

The modern enterprise has developed highly complex supply chains in order to
efficiently satisfy demand while remaining competitive. Supply chains have become
distributed global networks that encompass not only the manufacture and deliv-
ery of goods but also the activities associated with their development. Moreover,
local “here and now” decisions must be made in the presence of future uncertainty
while also considering their global and long-term implications. This coupling of
wide problem scope with multiple sources of internal and external uncertainties,
such as production line breakdowns, raw material availability, market demand, ex-
change rate fluctuations, developmental failures, etc., has resulted in supply chain
decision-making processes that are of high complexity and a very large scale (Zapata
et al. 2008).

The need for techniques capable of determining the optimal set of decisions
for this kind of systems has motivated the development of stochastic program-
ming, stochastic dynamic programming, and simulation optimization. Stochastic
programming and stochastic dynamic programming rely on the ability to articulate
a tractable mathematical formulation of the system, which can be very difficult for
complex supply chain applications. Furthermore, owing to the large size of problem
spaces, nonlinearity of objective functions and constraint, and the discrete nature of
many decisions, the resulting stochastic program may not always be solvable using
state-of-the-art stochastic programming methods. Hence, the focus of this chapter
is on simulation optimization, which couples the flexibility of discrete event simu-
lation to accommodate arbitrary stochastic elements and model the dynamics and
complexities of real-world systems without the need to develop formal mathemat-
ical models, and the ability of optimization schemes to systematically search the
decision space. However, similar to stochastic programming and related techniques,
simulation optimization can easily become computationally very demanding, and
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thus requires that a range of sometimes rather subtle issues be addressed effectively
to obtain a viable trade-off between solution time, modeling effort, and solution
quality.

The chapter is organized as follows. Section 20.2 provides a summary of the
different simulation-optimization methods that are available, aimed at guiding the
reader in the selection of the most adequate technique for his/her particular problem.
Section 20.3 presents two industrial case studies in which simulation optimization
was used to support the decision-making process. Finally, concluding remarks are
presented in Section 20.4.

20.2 Simulation-Optimization Solution Strategies

This section reviews the existing simulation-optimization methods, including their
strengths and weaknesses. The aim of the review is to explain at a conceptual level
the underlying algorithms and provide relevant references. To facilitate the presenta-
tion of the different methods we start by formalizing the problem in a mathematical
sense. The problem to be solved can be expressed as

min.max/
�2‚

J .�/; (20.1)

where � is the decision vector of p parameters, the feasible region ‚ � <p is the
set of possible values of the parameter � , and J.�/ D E ŒL.�; !/� represents the
expected value of a performance measure L.�; !/. Notice that L.�; !/ is a ran-
dom variable that can take different values depending on the specific realizations
of the stochastic effects of the system, !. Therefore, the problem exhibits not only
the typical challenges of finding an optimal solution but also those of estimating the
performance measure.

In general, simulation-optimization methods are classified based on the contin-
uous or discrete nature of the decision space (Fu 1994). In addition, methods for
discrete variables are further cataloged according to the number of feasible solu-
tions (small or large (including infinite)), and the ordered (i.e., represents different
levels or degrees of the underlying characteristic (e.g., safety inventory level)) or
unordered (i.e., represents categories that cannot be quantified (e.g., queue disci-
pline)) nature of the variables. Figure 20.1 shows the classification scheme and the
methods that fall in each class. It is important to highlight though that different
classes of methods are often used in combination within a single computational
scheme. On the continuous side, methods that mix response surface methodologies
(RSM) and stochastic approximation (SA) have been developed (Ho 1992). In the
case of discrete variables, hybrid approaches that combine different methods within
a class, as well as methods in different classes, have been proposed. For exam-
ple, Hall and Bowden (1996) combine metaheuristics with pattern search; Nozari
and Morris (1984) combine ranking and selection (R&S) and pattern search, and
Pichitlamken and Nelson (2003) combine R&S and metaheuristics.
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• Stochastic approximation (SA)
• Response surface methodology (RSM)
• Sample path optimization (SPO)
• Heuristics and metaheuristics
• Model-based methods

• Ranking and selection (R&S) and
  Multiple comparisons (MC)

• Random search
• Heuristics and metaheuristics
• Ordinal Optimization
• Sample path optimization (SPO)

Optimization problem

Discrete decision space

Continuous decision space

Large number of feasible solutionsSmall number of feasible solutions

Fig. 20.1 Classification of simulation-optimization techniques

20.2.1 Small Number of Discrete Feasible Solutions: Ranking
and Selection (R&S) and Multiple Comparisons (MCs)

The techniques available for problems with a small number of feasible solutions
focus on the exhaustive comparison of all feasible solutions rather than on the search
algorithms (Fu 2002). The presence of uncertainties transforms the comparison pro-
cess into an inference exercise that uses the statistical machinery developed for the
calculation of confidence intervals.

The basic concept behind Multiple Comparisons (MC) is very simple. The
differences in performance measure, OJ .�i / � OJ �

�j

�
, for some kind of pairwise

comparison of the possible solutions are estimated from simulations. Then, the cor-
responding confidence intervals are examined in search of an absolute winner (i.e.,
in the case of an all-pairwise comparison, the �i whose confidence intervals in regard
all other possible solutions are strictly negative (strictly positive)). However, it is
not possible to guarantee a solution a priori since the confidence intervals may not
be tight enough. Therefore, all the techniques in this class are aimed at exploiting
the opportunities presented by simulation to reduce variance (e.g., common random
numbers) and hence tighten the confidence intervals using the minimum possible
number of simulations (Fu 1994).

Ranking and selection also uses confidence intervals but within the context of
the correct selection concept. These methods measure in some way how far the
chosen solution is from the optimal one. In general, two approaches have been pro-
posed to measure that “distance.” The first is known as the indifference zone. In this
case, the objective is to obtain a solution that is within a certain range (indifference
zone), ı, of the optimal solution, ��, with a specified probability of correct selection
(PCS), P �, (i.e., P fJ .�i / � J .��/ < ıg � P �). The second approach, referred to
as subset selection, guarantees that with a certain probability, a particular group of
solutions chosen from the original set will contain at least one solution, �s , that is
within a specified indifference zone (i.e., P fJ .�s/ � J .��/ < ıg � P �).
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From an implementation perspective, R&S methods follow two formulations
(Fu et al. 2005), which are as follows:

1. Minimize the number of simulations subject to the PCS exceeding a given level
(a traditional approach that offers little control over computational requirements).

2. Maximize the PCS subject to a given simulation budget constraint.

The latter formulation is also known as optimal computing budget allocation, and
manages the computational effort by sacrificing the predictability of the confi-
dence levels. Swisher et al. (2004) and Kim and Nelson (2006) provide extensive
lists of references for both R&S and MC methods. These two classes of methods
were originally considered to be two different strategies (Fu 1994), but Nelson and
Matejcik (1995) established the connection between the two by showing that most
indifference zone procedures can also provide confidence intervals for a certain type
of multiple comparison method.

20.2.2 Large Number of Discrete Feasible Solutions

20.2.2.1 Random Search

Random search methods move successively from one feasible solution to a neigh-
boring one based on probabilistic arguments. All methods in this class (see the
review by Banks (1998)) follow the same algorithmic structure as follows:

1. Initialization with a feasible solution
2. Probabilistic generation of a new decision vector, obtained from a set of neigh-

boring feasible solutions
3. Estimation of performance measures and comparison with the values from the

previous iteration
4. Evaluation of stopping criteria and return to Step 2 if not satisfied

The methods in this class are characterized by the definition of the neighborhood
(the set in which the algorithm can move from one solution to another in a sin-
gle iteration), the selection strategy of the next decision vector, and the manner in
which the optimum is chosen. A representative example of this class of methods
is simulated annealing, which attempts to achieve a global optimum by allowing
moves leading to nonimproving solutions with a certain probability that depends on
the stage of the procedure. Nonimproving moves leading to a poorer solution are
more likely to be accepted early in the process; as the search progresses towards a
global optimum, the probability of accepting non-improving moves tends to zero.
A step-by-step description of a version of the method for a minimization problem is
as follows (Alrefaei and Andradottir 1999):

Step 1. Initialize the decision variables, �0, the number of iterations, n D 0, the
optimal solution, ��

0 D �0, and A0 .�/ D C0 .�/ D 0 for each � , where
Ai .�/ is the sum of all the estimates of the performance measure J.�/,
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OJ .�n/, obtained from simulations in the i first iterations and Ci .�/ is the
number of replicates in the i first iterations.

Step 2. Generate a neighbor solution, � 0
n, of the current point �n based on the chosen

transition probability matrix, R.�; �/. This means that for all � 2 N.�n/,
where N.�n/ is the neighborhood of �n the probability of being selected in
the next iteration is given by P.� 0

n D �/ D R.�n; �/.
Step 3. Estimate OJ .�n/, and OJ .� 0

n/, using simulation. If OJ .� 0
n/ � OJ .�n/, then let

�nC1 D � 0
n. Otherwise, sample a uniform distribution Un � U Œ0; 1� and an

exponential distribution en � exp
h OJ .�n/ � OJ �

� 0
n

�
= T

i
, and if Un � Pen

then let �nC1 D � 0
n. Otherwise let �nC1 D �n. Notice that T (known as

the temperature) is the iteration-dependent parameter used to decrease the
probability of accepting nonimproving moves as the number of iterations
increase.

Step 4. Let n D n C 1, An.�/ D An�1.�/ C OJ .�/, and Cn.�/ D Cn�1.�/ C 1, for
� D �n or � 0

n, and An.�/ D An�1.�/ and Cn.�/ D Cn�1.�/ for all � that
have been explored but are different from �n and � 0

n

�
� 2 ‚En f�n or � 0

ng� :

Finally, select the � associated with the smallest average value of the per-
formance measure, An.�/ = Cn.�/, from the set of decisions explored, ‚E ,�

min
�2‚E

An.�/ = Cn.�/

�
:

Ideally, the method returns to Step 2 and the algorithm is repeated until conver-
gence is reached. However, resource and time limitations may require the use of a
user-defined stopping criteria, such as number of iterations, a threshold value for the
performance measure, etc.

The advantages of random search methods are their model independence (i.e., no
explicit mathematical model of the system needs to be developed) and the existence
of theoretical convergence proofs under certain conditions. However, in practice,
convergence can be slow and dependent on the selection of the neighborhood struc-
ture (Banks 2005) and does not scale well with the number of variables in the
decision space.

20.2.2.2 Ordinal Optimization

These methods are based on the observation that in most cases it is much easier,
in terms of computation, to directly find the ordering among candidate solutions
than it is to estimate the performance measure of each candidate solution and rank
the solutions based on this measure. This idea can be explained with the following
simple example (Fu et al. 2005). Assume that there are only two possible decision
vectors �1 and �2, and the decision maker wants to know which of the two results in
the smallest expected value of the performance measure .J.�1/ < J.�2/ or J.�1/ >

J.�2//. One approach can be to estimate each of the expected performance measures
independently, OJ .�1/ and OJ .�2/, until the standard error for each estimate is less
than the indifference amount, ", and compare the resulting values. On the other
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hand, an ordinal optimization method would define a variable X D L.�1/ � L.�2/

and determine whether EŒX� is positive or negative. The latter strategy is more
efficient because the estimation of EŒX� requires lesser number of simulations when
compared with the estimation of OJ .�1/ and OJ .�2/. Swisher et al. (2004) provide an
extensive list of references for this technique.

20.2.3 Continuous Decision Variables

20.2.3.1 Stochastic Approximation (SA)

Stochastic approximation refers to a group of methods that attempt to mimic the
gradient search method traditionally used in deterministic optimization. As in its
deterministic counterpart, SA searches for a local optimum to the problem given by
(20.1), that satisfies the first-order condition

OrJ.�/ D 0; (20.2)

where OrJ.�/ represents the estimated gradient of the performance function. The
analogy to the deterministic case also applies to the general structure of SA algo-
rithms which are based on the following iterative form:

�nC1 D
Y

‚

�
�n � an

OrJ.�n/
�
: (20.3)

Here �n is the solution vector at the beginning of iteration n, fang is a positive
sequence of step sizes, and

Q
‚ represents some projection back into the feasi-

ble set ‚ when the iteration leads to a solution outside the set. Similar to that in
the deterministic case, the algorithm determines at each iteration the value of the
decision vector based on the gradient and the step size values calculated for that
iteration and the value of the decision vector in the previous iteration. Algorithms
referred to as Robust SA algorithms differ slightly in that they use the iterative
process based on (20.3), but instead of returning the final value of the decision vec-
tor as the optimum, they return an average (e.g., moving horizon or exponentially
weighted moving average) of a certain number of iterates to reduce the variance
in the estimation (Fu 2002). The set of constraints that determine the feasible re-
gion also exhibit some differences when compared with the deterministic case. In
general, the feasible region is determined by a mix of deterministic and probabilis-
tic constraints. Probabilistic constraints limit the probability of constraint violations
but not the magnitude of the violations. They are expressed as follows:

P .f .�; !/ � 0/ > 1 � ˛; (20.4)

where f is the random vector representing the left hand side of a set of con-
straints whose realizations depend on the set of decisions � , and the presence of
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uncertainties !: P is the vector of probabilities of violating the constraints, and
˛ .˛ 2 .0; 1// are the tolerance levels of the decision maker to these violations.
Notice, however, that only a few algorithms can handle this kind of constraint (see
Andradottir (1998) and Kushner and Yin (2003) and references hereafter).

For all SA algorithms to properly converge it is required that the step size goes
to zero at a rate that is not too fast (to avoid premature convergence to a suboptimal
solution), and not too slow (to ensure eventual convergence). Mathematically, these
conditions are commonly represented as

P1
nD1 an D 1 and

P1
nD1 a2

n < 1. In ad-
dition, it is required that the bias of the objective function gradient estimate, OrJ.�/

in (20.3), goes to zero (Fu 1994). In theory, the appropriate step size rate can be
achieved using a simple harmonic series .an D a=n/, but in practice this choice re-
sults in slow convergence rates. Since the performance of any SA algorithm is quite
sensitive to this sequence, researchers have developed different strategies aimed to
speed up convergence. Heuristic decrements in step size have been proposed (e.g.,
Chapter 9 in Banks (1998) and references therein), as well as the use of a constant
step size in the early stages of the iterative process followed by heuristic decrements
(Fu 2002).

The need to obtain unbiased estimates of the objective function gradient in an
efficient manner has motivated most of the different techniques used in SA. The
remainder of this section provides an introduction to each of these developments
and a summary of their main strengths and limitations.

Finite Differences (FD)

Similar to that in numerical differentiation the idea is to use a secant as an approx-
imation to the gradient (a tangent). Therefore, the value of OrJ.�/ at iteration n is
given by

OrJn D
h Or1Jn : : : OrpJn

i
; (20.5)

where Ori Jn can be calculated using forward differences as follows:

Ori Jn D
OJ .�n C cnei / � OJ .�n/

cn

(20.6)

or central differences as follows:

Ori Jn D
OJ .�n C cnei / � OJ .�n � cnei /

2cn

: (20.7)

Here ej denotes the i th unit vector (e.g., ei D .0; : : : ; 0; 1; 0; : : : 0/) and cn a small
positive number that can take a different value at each iteration. The use of forward
or central differences is driven by the trade-off between estimation bias and compu-
tational burden. The calculation based on central differences requires the simulation
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of 2p sets with �n˙cnei values, while the one based on forward differences requires
only p+1 simulations. However, the estimators obtained using central differences
usually have smaller bias than those obtained using forward differences, which of-
ten leads to a smaller number of iterations, n.

When finite differences are used to obtain the gradients for (20.3), the SA tech-
nique is called the KieferWolfowitz algorithm (Kiefer and Wolfowitz 1952). This
algorithm has the following two important advantages with respect to other SA
techniques: (1) implementation is straightforward due to its simplicity, and (2) it
is not model-dependent (i.e., no explicit mathematical model of the system needs to
be developed, which means that this technique can be applied to systems with any
level of complexity). However, the KieferWolfowitz algorithm converges to the true
local optimum only when very small cn values (i.e., cn ! 0) are used. The problem
of using small cn values is that the estimated gradients, OrJn, exhibit large variances
that often slow down the convergence rate. This limitation has been addressed in
some situations by using common random numbers (Fu 1994).

Simultaneous Perturbation (SP)

This technique as well as the other gradient estimation techniques in the remain-
der of this section was developed in response to the significant computational
requirements of methods based on finite differences. SP uses the same conceptual
framework of finite differences, but reduces the number of simulations required by
perturbing all components of the decision vector simultaneously. Specifically, the
value for any OriJn can be obtained from the results of the simulations for just two
sets of � values, .�n C cn�n/ and .�n � cn�n/, with the following expression:

OrJn D
OJ .�n C cn�n/ � OJ .�n � cn�n/

2cn�n

; (20.8)

where �n D �
�n1; : : : ; �np

�
represents a vector of independent identically dis-

tributed (i.i.d.) random perturbations with zero mean. Though the elements of �n

may be assigned different kinds of distributions according to the specific charac-
teristics of the problem at hand (Spall 1999). Sadegh and Spall (1998) showed that
the optimal distribution for these elements, based on asymptotic distribution results,
is a symmetric Bernoulli (i.e., the probability of success is 0.5). In a more recent
development, deterministic perturbation sequences have been proposed to enhance
the convergence rate of the stochastic approximation method based on simultaneous
perturbation (SPSA) (Bhatnagar 2003).

Spall (1992) found that the SPSA method was superior (i.e., the difference be-
tween the actual minimum value and the estimated one was smaller for the same
amount of computational effort) to the KieferWolfowitz algorithm for a fairly
complicated numerical study. He also proved that both approaches have the same
asymptotic convergence rate in spite of SPSA’s significantly lower computational
requirements at each iteration. In theory, the superiority of the SPSA method grows
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with the dimension p of the decision vector as the computational burden of SPSA
is independent of its dimension. However, this potential for higher efficiency can
only be realized if the number of iterations required to converge to the global op-
timum does not increase to a level that exceeds the savings obtained by reducing
the number of simulations in each iteration. To realize as much of that potential as
possible, not only must the selection of an in (20.3) be carefully made (as in any
other SA technique), but also that of cn and �n in (20.8). Though the selection is
problem-dependent and there are no universal rules, Spall (1998, 1999) provides
some recommendations as a starting point.

Perturbation Analysis (PA)

Though the name may lead one to think that there is some kind of connection
between PA and SP, these two techniques use completely different conceptual
frameworks. PA does not explore through simulation the region around the decision
vector �n to determine in which direction to move for the next iteration; instead, it
determines such a direction by using only the output of the simulations with the cur-
rent value of �n. Hence PA infers the behavior of the system with �n C ��n, where
��n is a small perturbation, from the information obtained with �n, and uses it to
estimate the gradient for the next iteration. This may seem a little too “magical;”
in the words of the developers of the technique (Ho and Cao 1991): “At first this
may sound counterintuitive, stemming from the philosophical belief that one cannot
get something for nothing. A more concrete and equally intuitive objection is that
sample paths of the simulation under �n and �n C��n will in general sooner or later
become totally different as they evolve in time even for very small ��n”. However,
all the techniques belonging to the PA class accomplish this seemingly impossible
objective by using some kind of sample path analysis. The pioneering technique in
the field is known as infinitesimal perturbation analysis (IPA). The basic idea be-
hind IPA is that it is possible to reconstruct a perturbed path from a nominal one by
keeping track of the changes in the timing of events, if the sequence of events in the
simulation do not change (the critical timing path stays constant). The relevance of
IPA is that it is capable of simultaneously implementing such an accounting exer-
cise for a multitude of perturbations, and when applicable is highly efficient (i.e.,
exhibits fast convergence) (Ho and Cao 1991). However, it is only suitable for con-
tinuous performance measures and requires complete knowledge of the underlying
model, that is, an explicit model that relates inputs and outputs has to be available.
In broad terms, the method can be described in three steps. The first step consists in
developing a recursive (e.g., indexed by the number of customers arriving) explicit
mathematical model that relates the outputs of the simulation that are part of the per-
formance measure (e.g., inventory levels and total time of a customer in the system)
with those random variables (e.g., quantity produced and service time at the teller)
which depend directly on the decision variables (e.g., base stock and mean value of
service time). Next, the model is differentiated with respect to the decision variables
and the results are substituted into the function that represents the expected value
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of the performance measure gradient. Finally, the differentials of the random vari-
ables with respect to the decision variables are substituted based on the perturbation
generation rule and the gradient is calculated using simulation outputs The pertur-
bation generation rule allows one to obtain the changes on the random variable, !,
caused by changes in the decision variables in terms of the information collected
from simulation runs with �n. The perturbation generation rule is given by

d!

d�
D dF �1 .�; �/

d�
; (20.9)

where F.�; !/ is the cumulative distribution function of � with parameter � , and
random variable !; and � is a random variable independent of � (e.g., if ! is
exponentially distributed, with mean � , ! D F �1.�; �/ D � ln.1 � �/�� and
� � U Œ0; 1//. However, from an implementation perspective, it is more convenient
to use an equivalent formula that does not require the form of the inverse function:

d!

d�
D dF.�; !/ d�

dF.�; !/ d!
: (20.10)

To clarify the method let us consider a very simple problem (Fu 1994) (For a more
complex case in the context of inventory management refer to Tayur et al. (1999)).
Find the mean service time � of a first come first serve single server M/M/1 queue,
which minimizes the sum of expected mean time in the system over a given number
of customers served, L:

min
�2‚

E

"
1

N

NX

iD1

Ti

#

; (20.11)

where Ti is the time in the system for the i th customer and N is the number of
customers served. Note that Ti is the only output of the simulation that is part of

the performance measure, L D
h
1=N

PN
iD1 Ti

i
. Under the conditions described,

Ti satisfies the recursive Lindley equation

TiC1 D !iC1 C
(

Ti � AiC1 if Ti � AiC1

0 if Ti < AiC1

; (20.12)

where !i is the service time for the i th customer and Ai is the interarrival time be-
tween the .i � 1/ th and the i th customers. Notice that !i is the random variable that
depends on the decision variable, which implies that (20.12) is the explicit model
referred to in the first step of the method. Continuing with the method, (20.12) is
differentiated to obtain

dTiC1

d�
D d!iC1

d�
C

(
dTi= d� if Ti � AiC1

0 if Ti < AiC1

: (20.13)
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and expression (20.13) is substituted recursively into itself for each customer, and
the resulting expressions in terms of d!i = d� are substituted into the expression for

the expectation of the gradient of L, E ŒdL = d�� D E
h
1 =N

PN
iD1 dTi = d�

i
; to

obtain

E

�
dL

d�

	
D

SX

sD1

2

4 1

ns

nsX

iD1

iX

j D1

d!.j;s/

d�

3

5 (20.14)

where S is the number of simulations, ns the number of customers served in sim-
ulation s, and the .j; s/ subscript denotes the j th customer in the sth simulation.
Alternatively, the expectation can be estimated with the output from a single sim-
ulation. This is possible because the system is regenerative, which means that at
random times 0 D t0 < t1 < t2 < � � � the future of the stochastic process becomes
a probabilistic replica of itself. Therefore, instead of using results from multiple
simulations, it is enough to extend the duration of only one run and split it into
i.i.d. periods (regenerative cycles). In this case, the expression for the expectation is
given by

E

�
dL

d�

	
D 1

N

MX

mD1

nmX

iD1

iX

j D1

d!.j;m/

d�
; (20.15)

where M is the number of regenerative cycles, nm the number of customers served
in the mth regenerative cycle, and the .j; m/ subscript denotes the j th customer in
the mth busy period, i.e., .j; m/ D j C Pm�1

iD1 ni :

The final step of the method requires the substitution of the random variable
differentials. As !i is exponentially distributed, by using (20.10), it can be shown
that d!.j;s/ = d� D !.j;s/ = �n: Therefore, the final expression for the expectation
of the gradient is given by

E

�
dL

d�

	
D

SX

sD1

2

4 1

ns

nsX

iD1

iX

j D1

!.j;s/

�n

3

5: (20.16)

The use of IPA to estimate the performance measure gradients in the SA approach
provides a framework that converges faster than that based on finite differences.
However, it has the following two important drawbacks: (1) it is model-dependent
and (2) it estimates E ŒdL = d�� instead of the desired dEŒL� = d� . Clearly, the
second aspect is not an issue when the expectation (integration) and differentia-
tion operators can be interchanged. However, in most cases this is only possible
when L is almost surely continuous with respect to � (Ho and Cao 1991). From
an implementation perspective this means that it has to be possible to develop a
“transformation” that allows one to represent the system in terms of random vari-
ables whose distributions do not depend on decision variables, and the performance
function based on the transformation has to be continuous in � for almost every !.
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In addition, as mentioned above, if the CPT changes or the performance measure is
discontinuous, IPA is not valid. Though this problem has been addressed for some
conditions using the same conceptual framework (Fu and Hu 1997), such extensions
are not as straightforward as IPA.

Likelihood Ratio (LR)

As in the case of PA, LR methods, which are also known as score function (SF)
methods, use only the output of the simulations with the current value of the decision
vector �n to estimate the gradient of the expected value of the performance measure.
The methods in this class require milder continuity requirements for the perfor-
mance measure L.�; !/; than those stipulated by PA. This is possible as the gradient
is calculated by differentiating the probability distribution function of the perfor-
mance measure instead of the performance measure itself. However, applicability
of this idea is limited to problems whose decision variables � are parameters of the
distributions that represent the uncertainty in the system. This means that decision
variables that are not part of the characterization of the uncertainties, such as re-
ordering points and safety inventory levels, cannot be part of � . To overcome this
limitation, Rubinstein and coworkers (Kleijnen and Rubinstein 1996; Rubinstein
and Shapiro 1993) have proposed transformations for some types of problems that
move the parameters lying outside the characterization of the probability distribu-
tions into them.

LR methods are strongly connected to the importance sampling concept, com-
monly used to derive estimators with a reduced variance. The basic idea behind LR
methods can be illustrated by deriving the gradient of the performance measure for
static systems (i.e., a system that does not evolve in time, such as reliability prob-
lems) with probability density functions that only depend on a single parameter.
In this case, the expected value of the performance measure has the form

EŒL� D
Z

L.!/dF.�; !/ D
Z

L.!/f .�; !/d!; (20.17)

where F.�; !/ represents the cumulative distribution of ! and f .�; !/ the density
function. Differentiating (20.17) with respect to � , interchanging integration and
differentiation, and multiplying and dividing by f .�; !/ we obtain
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D E
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i
(20.18)
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where S .1/ is called the efficient score function. Notice that multiplication and
division by f .�; !/ are necessary to obtain an expression that has the mathemat-
ical form of an expectation. The expectation form is convenient because it allows
the estimation of the desired quantity from simulated data by averaging it over a
given set of realizations. Therefore, (20.18) can be expressed as

dEŒL�

d�
D 1

N

NX

iD1

L.!i /S
.1/.�; !i / (20.19)

where N is the total number of simulations, and L.!i / and S .1/.�; !i / are particular
realizations of L.!/ and S .1/.�; !/; respectively. Though (20.19) is readily imple-
mentable, it usually does not result in the fastest possible convergence. Equation
(20.18) can be improved from a variance reduction perspective by exploiting the
ideas behind importance sampling. Specifically, by multiplying and dividing the in-
tegrand in (20.17) by g.!/; where g.!/ is a probability distribution whose support
(set of values of ! for which g.!/ is strictly greater than zero) is included in the
support of f .�; !/ for every � , the gradient of EŒL� can be expressed as

dEŒL�

d�
D

Z
L.!/

@W.�; !/

@�
dG.!/ D E

�
L.Z/

@W.�; Z/

@�

	
(20.20)

where G.!/ is the cumulative probability distribution of g.!/, W.�; !/ D
f .�; !/ = g.!/, Z is a random variable with density g.!/, and @W.�; Z/ = @� D
W.�; Z/S .1/.�; Z/. Notice that the change in the random variable is not more that a
change in notation to emphasize that the expectation is with respect to g.!/; instead
of f .�; !/: The estimator of the gradient in this case is given by

dEŒL�

d�
D 1

N

NX

iD1

L.Zi /W.�; Zi /S
.1/.�; Zi /: (20.21)

Though it is a common strategy to select g.!/ D f .�0; !/ for some fixed value �0,
the accuracy of the estimator is determined by its variance, which depends on g.!/.
Therefore, the selection of g.!/ and the calculation of the estimator’s variance are
integral parts of this technique. Rubinstein and Shapiro (1993) provide a complete
presentation of this methodology in the context of static as well as for dynamic
systems (e.g., queuing networks).

In terms of strengths and weaknesses, the use of gradients estimated with LR
for SA can result in very rapidly converging algorithms because LR exploits the
structure of the performance measure. However, it requires complete knowledge of
the density function of the uncertainties, careful selection of g.!/; and the satis-
faction of certain regularity conditions which guarantee the interchangeability of
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the differentiation and integration operators in (20.18). Specifically, a function h.!/

with finite Lebesgue integral that satisfies

jL.!/@f .�; !/ = @.!/j � h.!/ (20.22)

has to exist.
Finally, it is important to note that LR often works in systems where IPA fails

and can be more easily extended to higher derivative estimates for higher order
Newton-like methods than (20.3). However, when IPA works, the gradients usually
have much lower variances than those obtained with LR methods (Fu 1994).

Frequency Domain Analysis

Frequency domain analysis (FDA) estimates the gradient of the expected value
of the performance measure by using harmonic analysis. The method is based on
the idea that the change in the magnitude of the performance measure, caused by
perturbing the vector of decision variables � , with sinusoidal functions allows the
determination of the sensitivity of the system to each of those variables in a single
simulation. In theory, the use of distinct frequencies for �i makes possible the esti-
mation of each variable’s contribution to the performance measure. In this method,
� is perturbed according to

�.t/ D � C ˛ sin.wt/; (20.23)

where � is a vector of nominal values for the decision variables, ˛ is the vector of
oscillation amplitudes, w is the vector of oscillation frequencies, called the driving
frequencies, and t D 1; 2; : : : ; T is a “time” index. Notice that t is rarely the sim-
ulation time, instead it is a problem specific discrete label for the transient entities
processed through the simulation (e.g., number of customers).

Conceptually, the method exploits the orthogonality (i.e., if g and f are two func-
tions, they are orthogonal if

R b

a
f .x/g.x/dx D 0/ of the harmonic basis (i.e., sine

and cosine), to isolate the impact of each decision variable on the performance mea-
sure gradient. Specifically, the method assumes that the performance measure can be
approximated by a polynomial meta-model that can be transformed into a trigono-
metric (harmonic) one using (20.23). The polynomial meta-model is obtained by
assuming that the relationship between L and �.t/ can be locally approximated
around � by a second-order Taylor expansion:
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where p is the number of decision variables; k � k1 the infinity norm, O.�/, the
order of magnitude of the error generated by the truncation of the Taylor series,
" .t j� .t// represents the stochastic part of the model, and g are the so called memory
filters that weight past values of �.t/. The Taylor expansion is advantageous as the
summations of filters in each term of (20.24) can be obtained through regression
analysis from simulation results, and can be associated with the gradient and higher
order differentials of the expected value of the performance measure, J.�/: The
relationship can be derived by setting �.t/ D � in (20.24) and differentiating it with
respect to the decision variables:
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(20.25)

It is important to note that the following three assumptions are behind this deriva-
tion: (1) ".t j� .t// has a stationary covariance (i.e., it is fixed for all t) with
mean 0, 2. The summation of covariances from all the time periods is bounded,
and (3) J.�/ is relatively smooth (i.e., twice continuously differentiable) (Ho and
Cao 1991).

By substituting (20.23) into (20.24), the following form of the meta-model is
obtained:
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where Q�.t/ � � D �
a1 sin .w1t/; a2 sin .w2t/; : : : ; ap sin .wpt /

�
: Equation (20.26)

can be further manipulated using trigonometric identities and some algebra to derive
the following more convenient form:
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where the coefficients A.w j /; A.2w j /; A.w j ˙ w m/; B.0/; B.w j /; B.2w j /;

and B.w j ˙ w m/ are in terms of the memory filters and sinusoidal functions; for

instance, A.w j / D a j

1P
�D�1

gj .�/ cos .w j �/: Therefore, by taking the limit as

w j ! 0 and using the results in (20.25) it can be proved that the gradient and higher
order derivatives of the performance measure can be obtained from the estimates of
these coefficients (Jacobson and Schruben 1999). Specifically, the estimate of the
ith component of the gradient has the following form:
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t j Q� .t/

��
sin .w i t/; (20.28)

where i D 1; : : : ; p, and t j Q� .t/ denotes that L.�/ is sampled at each “time” t from
a simulation in which the input for the decision vector is given by (20.23). From a
theoretical perspective, the main advantage of the FDA method is the combination
of model independence (excluding the indexing issue) and minimum simulation re-
quirements. However, the determination of the specific values of the frequencies
wi is not a trivial task as they have to be selected in such a way that aliasing (i.e.,
the effect that causes different signals to become indistinguishable) is prevented,
and the need to make them tend to 0 (w ! 0) translates into very long simu-
lation horizons. In addition, the method is limited to systems in steady-state and
exhibits an unavoidable trade-off between the variance of the gradient estimator (the
larger ˛ the better) and its bias (the smaller ˛ the better) (Jacobson and Schruben
1999).

Finally, regarding the indexing issue, it is important to note that although simple
indices based on the concept of transient entities processed are limited to very simple
systems (Fu 1994), Hazra et al. (1997) have suggested a strategy to discretize the
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global simulation clock of the simulation and used it as a “time” index that can fit
any kind of system. However, this approach can be difficult, if not impossible, to
implement in some commercially available discrete event simulation software.

20.2.3.2 Response Surface Methodology (RSM)

RSM encompasses two types of strategies. The first consists of the use of regres-
sion techniques to construct an approximate functional relationship (meta-model)
between the decision variables and the performance measure that fits the entire de-
cision space, ‚; or a subset of ‚, and the subsequent use of optimization methods
on the meta-model to analytically estimate an optimum (Wan and coworkers (2006)
provide an example of this technique in the context of the pharmaceutical industry).
The second strategy, known as sequential RSM, follows a philosophy similar to SA,
consisting of three steps that are repeated iteratively until a convergence criterion is
satisfied. First, a meta-model in the region surrounding the decision vector obtained
in the previous iteration is constructed. Next, the meta-model is differentiated to
obtain a functional form of the gradient, and substituted into

�nC1 D �n � an
OrJ.�n/: (20.29)

Finally, the next iterate for the decision vector is computed from (20.29) through a
line search. In spite of the similarities between sequential RSM and the SA meth-
ods discussed above, RSM differs due to its inability to mathematically show an
asymptotical convergence, and the use of functional forms for the gradient instead
of numerical values.

In the literature, the most commonly found RSM algorithm is a mix of the two
philosophies described above, which uses a two-phase design of experiments based
polynomial regression strategy (Fu 1994). In Phase I, first-order experimental de-
signs (i.e., consider only linear (main) effects) are used iteratively until the linear
response surface becomes inadequate (i.e., the interaction effects become larger
than the main effects), while in Phase II, a quadratic response surface (fitted us-
ing second-order experimental designs) of the area identified in Phase I is used to
analytically determine the optimum.

The most important considerations in the implementation of any RSM method
are the inclusion of variance reduction techniques (e.g., common random variables,
control random variables, etc.) and the selection of the experimental designs. Every
type of design provides a different trade-off between variance (due to sample vari-
ation) and bias (due to poor model fit), which results in a particular performance
of the algorithm. Jacobson and Schruben (1989), Safizadeh (1990) and Kleijnen in
Banks (1998) provide an exhaustive set of references for RSM strategies, including
algorithms that allow the inclusion of deterministic constraints.

The attractiveness of conventional RSM methods is rooted in their applicability
to any kind of system. However, its “black box” nature that does not allow rigorous
convergence analysis, its typical blind search of the solution space (which usually
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leads to the excessive use of simulation runs in unimportant areas), and the limited
ability of low-degree polynomials to fit complex functions (which can provide poor
results when the performance measure is represented by functions with sharp ridges
and flat valleys (Azadivar 1999)) has limited its use to simple problems. Though
the last two shortcomings have been addressed with the use of better model fitting
methods (e.g., Wan et al. (2005) show that RSM may perform considerably better
than SPA when support vector machines are used for model regression), these tech-
niques are considerably more involved from a statistical perspective than traditional
regression techniques.

20.2.3.3 Sample Path Optimization (SPO)

Conceptually, the methods in this class use an approach similar to the first type of
RSM strategy described above. Specifically, the system is sampled multiple times,
and the information collected is used to generate a functional approximation of the
performance measure that is optimized using deterministic optimization tools. The
main difference between SPO and RSM is that the latter uses regression techniques
to obtain the functional approximation, whereas the first uses an explicit model ob-
tained from first principles (like IPA and LR), or completely avoids the need for an
explicit model by exploiting the structure of the problem. Though there are no spe-
cific rules to derive the explicit model (the key step in SPO), the basic idea is to be
able to generate expressions in which the expected value of the performance mea-
sure is explicitly represented in terms of decision variables and random variables
independent of the decision variables:

OJ .�/ D 1

N

NX

iD1

h.�; �i /; (20.30)

where N is the number of simulations and �i the i th realization of the � independent
random variables. In some cases, a model with this kind of structure can be directly
derived, but in most of real-world problems that is not possible. Therefore, similar
to that in IPA, transformations have to be implemented to obtain objective functions
with underlying random variables independent of � . This means that any model
suitable for IPA can be solved with SPO. Alternatively, for some problems in which
the effect of the decision variables only enters the problem through the distribution
of the underlying random variables, approximations based on likelihood ratios and
importance sampling have been developed to obtain the required functional form
of the performance measure (e.g., Banks (1998), Rubinstein and Shapiro (1993),
and Shapiro (1996) and references therein). Finally, in some cases it is possible to
develop routines that do not require the derivation of an explicit model. A very sim-
ple example of this subgroup of problems is the allocation of a fixed amount of
buffer space among a group of servers such that the time to overflow the system
is maximized. The SPO strategy is to run the simulation multiple times with the
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buffers between the servers unconstrained until the total availability of buffer space
is exhausted and then to chose the most frequent allocation. Healy and Fu (1992,
1997) and Healy and Schruben (1991) provide a complete presentation of this ex-
ample and more involved problems, including cases with discrete decision spaces.

In general, SPO has several important advantages, which are as follows: (1) the
strategy that uses explicit models can deal with problems in which the decision
variables are subject to constraints of the type E Œk.�/� < 0, where k.�/ can be
derived in the same way as the performance measure, (2) it can be easily imple-
mented in commercial simulators, due to its modularity (i.e., first simulation and
second optimization), and (3) it can be applied to some problems with discrete de-
cision spaces. However, it also has considerable limitations such as the following:
(1) it is restricted to systems that have reached a steady state, (2) it usually requires
a lot more evaluations than SA (Azadivar 1999; Fu and Healy 1992), (3) similar to
IPA and LR, it is problem-specific (due to the need explicit models), (4) its effec-
tiveness is highly dependent on the ability to develop explicit models that allow the
calculation of first- and second-order derivatives (usually required by deterministic
nonlinear optimization techniques), and (5) The solutions provided by SPO methods
may not be optimal as this technique solves the problem: EŒmin

�2‚
L.�; !/� instead of

the desired problem: min
�2‚

E ŒL.�; !/�.

20.2.4 Metaheuristics

A metaheuristic is a general framework consisting of black-box procedures that can
be applied to different kinds of problems without significant changes. The applica-
bility of these techniques to problems with continuous or discrete decision spaces is
dictated by the particular structure of the method and the way in which it is adapted
to the problem at hand. Metaheuristics are the dominant strategies used in commer-
cial optimization software for simulation optimization (Fu 2002), as well as in the
solution of large-scale problems. This is due to the fact that many of the methods
mentioned above are model-dependent and/or require a high level of expertise for
their implementation. In this section, we provide a short description of the meta-
heuristics available for simulation optimization and a set of relevant references.
Special attention is given to the most commonly used methods, genetic algorithms
(GA), tabu search (TS), and scatter search (SS).

20.2.4.1 Pattern Search

Pattern search methods are sequential algorithms that move from iteration to itera-
tion based on some characteristic or pattern in the observations, instead of relying
on gradients or randomization. Conceptually, these techniques try to use some form
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of memory but at a very basic level and are mentioned here mostly for historical
purposes. The most important techniques in this class are:

1. The Hooke and Jeeves method (1961), which is based on the idea that if a direc-
tion has produced an improvement in the estimated performance measure, then
one should continue moving in that direction,

2. The simplex method (Jacobson and Schruben 1989) and references therein),
not to be confused with the classical algorithm for linear programming, which
compares the estimated performance measures from an initial set of possible so-
lutions, eliminates the worst performer, and replaces it by a new one determined
by the centroid of the remaining solutions, and

3. The complex method (Azadivar (1999) and references therein), which is the sim-
plex method modified to handle constrained problems.

20.2.4.2 Genetic Algorithms (GA)

The set of GA is one of a class of algorithms inspired by the biological principles of
evolution known as evolutionary algorithms. This technique searches for the optimal
decision vector, � , based on a performance measure (fitness function, in GA termi-
nology), by iteratively updating a population of good decision vectors. The decision
vector associated with each member of the population is encoded as a string of sym-
bols (genes) that form a chromosome, and is generated from the members of the
population in the previous iteration through random genetic operators (Sect. 20.3.2
provides a specific example). In general, the algorithm can be described as follows:

Step 1. Initialize the population with a set of members generated using previous
knowledge of the problem and/or a random process, and estimate their
performance according to the chosen fitness function. The number of simu-
lations required for the estimation of the performance measure is determined
by a stopping criterion such as confidence intervals, convergence efficiency,
or computational budget.

Step 2. Create new chromosomes (reproduction) by using genetic operators. The
best known operators are crossover and mutation. Crossover consists in the
random exchange between two members (parents) of part of their chromo-
somes, and mutation is a random alteration of some of the genes in a given
member.

Step 3. Estimate the fitness function of the newly created chromosomes and select
from this group and the population in the previous iteration (generation) the
members of the next generation based on the superiority of their estimated
performance measures.

Step 4. Check for “convergence”: stop or go to Step 2. Genetic algorithms are not
guaranteed to converge; therefore, the definite termination condition is usu-
ally specified as a maximal number of generations or an acceptable fitness
level for the best individual.
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It is important to note that though the general structure of the algorithm always
follows these steps, specific procedures for encoding, initialization, reproduction,
and selection can be chosen based on the problem at hand to enhance the perfor-
mance of the algorithm. Reeves and Rowe (2003) provide an excellent guide to the
GA technique.

20.2.4.3 Scatter Search (SS)

Similar to GA, scatter search is a population-based evolutionary algorithm. How-
ever, it uses a completely different approach for the generation of new population
members (decision vectors). Specifically, the members of the population (called the
reference set) are combined in a systematic way, instead of randomly. The combi-
nation strategies are generalized forms of linear combinations that consider at least
all pairs of members in the reference set. SS also differs from GA in the size of the
population; reference sets tend to be small compared with the populations used in
GA. In general, SS algorithms can be described as follows (Laguna 2003):

Step 1. Generate a starting set of decision vectors as diverse as possible and apply
heuristics to these vectors in an attempt to improve their performance. From
the resulting population, choose the vectors with the best estimated perfor-
mance to be part of the initial reference set. Notice that the notion of “best”
is not only limited to the value of the performance measure; a solution may
be added to the reference set if it improves the diversity of the set, regardless
of the performance measure.

Step 2. Create new members consisting of systematic generalized linear combina-
tions of two or more members of the current reference set.

Step 3. Apply the heuristic process used in Step 1 to improve the members created
in Step 2.

Step 4. Extract a collection of the “best” improved solutions from Step 3 and use
them to replace the worst performing members in the reference set. If the
reference set does not change, stop. Otherwise go to step 2.

Laguna (2003) provides a complete presentation of this methodology, including
the different member combination strategies available and their suitability according
to the type of problem at hand.

20.2.4.4 Tabu Search (TS)

As in random search (Sect. 20.2.2.1), TS explores the solution space by moving suc-
cessively from one feasible solution to a neighboring one. However, instead of using
probabilistic arguments to guide the search, it uses a strategy based on the ideas of
adaptive memory and responsive exploration. This means that TS redefines the solu-
tion neighborhood at each iteration based on the information previously collected to
avoid visiting already explored areas or areas characterize by poor performance.
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The method accomplishes this by selecting certain attributes or combination of
attributes that cannot be part of the new solutions (are tabu). The memory structure
used in TS uses two types of information, namely, explicit and attributive. The ex-
plicit part is captured by recording good solutions or highly attractive but unexplored
neighborhoods of those good solutions; while the attributive part records informa-
tion about solution attributes that change in going from one solution to another (e.g.,
increase in the risk level of a portfolio of projects). Glover and Laguna (1997) pro-
vide an exhaustive presentation of the concepts and applications of TS.

20.2.5 Other Methods

In addition to the methods just described, there are simulation-optimization tech-
niques which, in spite of not being widely used at present, could be viable options
for specific problems or could become so as they are further developed. This group
of methods includes neural networks (Glover et al. 1999), branch and bound for dis-
crete systems (Norkin et al. 1998), nested partitions (Shi and Olafsson 2000), and
the collection of algorithms known as model-based methods. Model-based methods,
instead of generating actual solutions, construct probability distributions for the so-
lution space that can be used to estimate where the best solutions are located. The
following techniques belong to this group: swarm intelligence, estimation of dis-
tribution algorithms (EDAs), the cross-entropy (CE) method and model reference
adaptive search (Fu et al. 2005).

20.3 Two Industrial Problems

In this section two case studies based on actual industrial problems are presented
to illustrate the potential of simulation optimization as a decision support tool. The
presentation of each case study includes a short description of the problem, a dis-
cussion supporting the selection of a specific simulation-optimization method, and
a summary of the implementation of the method and the results obtained.

20.3.1 Inventory Management

Any enterprise that manufactures products faces uncertainties in a range of factors
such as demand, prices and availability of raw materials, production lead times, cur-
rency exchange variability, etc. Some of these factors directly affect the profitability
of the enterprise by limiting the operating margins, while others have an indirect
impact such as inability to meet customer needs or the accumulation of excess in-
ventory. The inability to meet customer needs results in both loss of “here and now”
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and long-term profit as poorly served customers may not come back. Therefore, in
any industrial setting, customer satisfaction level (CSL; the expected value of the
ability to meet customer demand) is recognized as an important performance mea-
sure. A high level of customer satisfaction can be achieved by maintaining high
inventories to hedge against uncertainty (e.g., fluctuations in demand or availabil-
ity of raw material). However, additional inventory entails increased holding cost
(including opportunity cost of invested capital and warehouse space). Decision mak-
ers attempt to minimize the impact of this trade-off between customer satisfaction
and inventory holding cost on the profitability of the enterprise by specifying differ-
ent safety stock levels for each product across the supply chain.

A great deal of work has been done to develop analytical strategies that allow
the determination of the optimal allocation of safety stocks (Jung et al. 2004). How-
ever, those strategies fall short when the enterprise manufactures multiple products
that share production facilities with limited capacity and scheduling constraints, ex-
perience significant queue effects and lead times, and faces uncertain demand from
several customers. This kind of environment is common to many industrial and phar-
maceutical manufacturers, including the particular case we were confronted with.

We looked into the operation of the supply chain of a major US polyethylene
producer whose main source of uncertainty is demand and who wanted to reach
specific levels of customer satisfaction. The company uses a decision-making strat-
egy in which CSLs are specified by top management according to certain strategic
considerations and aggregated data, while minimization of the cost of delivering the
products is left to planners and the people in operations. Thus, the problem to be
addressed is the determination of how much, where and when to produce, and the
safety stock levels for each product. The company has two production sites, which
have different layouts and capacities that directly supply the seven sales regions into
which USA is divided. It produces five types of polyethylene (A, B, C, D, and E) in
ten different grades (0–9), in two types of packaging (box or bag) for a total of 100
(5 types � 10 grades � 2 packages) stock keeping units (SKUs). The demand for
each SKU is characterized as a normal distribution, whose mean value changes on
a weekly basis according to internal forecasting models.

The first step in developing a simulation-optimization strategy for a problem is
to determine which group of techniques (continuous or discrete, and small or large
number of feasible solutions) is appropriate according to the characteristics of the
solution space and the limitations of each method. In this case, it is clear that the
inventory levels can take any integer value, which due to the combinatorial nature
of the problem rules out any of the algorithms that fall under the “small number of
discrete feasible solutions” class. The discrete character of the decision space could
be also used to disregard the methods for systems with continuous decision spaces,
but the levels of inventories required by an operation like the one here considered
are high enough that the use of such techniques in conjunction with rounding needs
to be considered as they may provide near optimal solutions. In the remaining class,
“large number of discrete feasible solutions,” ordinal optimization and SPO can
be ignored. The first method is disregarded due to the size of the decision space,
and the second due to our inability to develop an explicit model that characterizes
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the performance measure (customer service level). The lack of an explicit model
is also the reason to disregard the methods for continuous decision spaces SACPA
and SACLR. The SACFDA also has to be disregarded as it requires the system
to reach steady state, a condition that is not achievable in this problem due to the
seasonal demand fluctuations. This leaves us with the following set of potential
solution methods: random search, SACFD, SACRSM, metaheuristics, and any of
these four methods in combination with one of the methods under the “small number
of discrete feasible solutions” class.

Once the options have been narrowed down based on the solution space and the
limitations of the methods, the selection process has to be driven by the strengths
of the remaining options with regard to the problem at hand. For the problem con-
sidered here it is important to understand the connection between CSL, defined as
service level, the production strategy, and the safety stock level of a product under
uncertain demand. Over a given range of demand variance there are three possible
operational regimes. In regime I, production facilities have sufficient spare capac-
ity to cope with any change in demand. Therefore, in this regime, a relatively low
or even zero safety stock level may be sufficient to achieve the desired customer
satisfaction. In regime II, the production capacity maybe quite strained when the
demand for different products spike at some point in time. In this regime, if there
is not enough safety stock, the CSL for some products sharing production facilities
may fail to reach their target values. Finally, in regime III, the capacity available
cannot satisfy the combined expected demands of the different products. In this
regime, the safety stock and production resources must be assigned strategically
to meet the demands of some customers in preference to the others. For the prob-
lem at hand, the sites owned by the company have enough capacity to operate in
regimes I and II. This means that no customer priority has to be used to allocate
production capacity and therefore any desired level of inventory for each product is
realizable. Notice that this condition and the hierarchical decision-making strategy
used by the company (i.e., tactical decisions such as service level dictate opera-
tional goals) allows for the use of a decomposition strategy. The idea is to use a
multilevel optimization approach instead of an integrated approach in which pro-
duction quantities along the time horizon and safety inventory levels are considered
together in a massive stochastic program. The multilevel strategy is composed of a
simulation-optimization strategy that determines the optimal stock levels based on
long-term customer satisfaction, and deterministic (expected values) rolling horizon
planning and scheduling optimizations, embedded in the simulation, which allo-
cate production resources by minimizing cost. Figure 20.2a illustrates the “outer”
optimization on the safety stock levels, and Fig. 20.2b the inner problem in which
the simulation of the system constantly interacts with the planning and schedul-
ing models in a rolling horizon fashion. The planning model is formulated as an
LP for a 3-month horizon that takes into account production, transportation, inven-
tory holding, and shortage costs; whereas the schedule is generated for 40 days
using the VirtECS scheduling software (Advanced Process Combinatorics Inc.,
2004).
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Fig. 20.2 Configuration of simulation and optimization strategies

The outer optimization problem can be mathematically represented as follows:

min
�

J .�/ D
100X

iD1

�i

ˇ
ˇ
ˇL�

i .�/
ˇ
ˇ
ˇ (20.31)

subject to

Li .�/ C L�
i .�/ � L

target
i 8i (20.32)

where �i is the penalty for missing the target CSL for product i, � D .�11; : : : ; �is/

is the decision vector including the safety stock levels of each product i in each
production facility s, Li .�/ is the CSL (expected value of the probability of fully
meeting every demand for product i), and L�

i .�/ is the deviation with respect to
the target CSL, L

target
i : Notice that the CSLs are the only variables in the objective

function (20.31). This condition combined with the fact that the level of customer
satisfaction is a monotonic increasing function of � (the larger the safety stock the
higher the customer satisfaction), implies that the best local adjustment to each
decision variable has to be inversely proportional to the magnitude of the penalty
resulting from deviating from the target CSL, �i

ˇ
ˇL�

i .�/
ˇ
ˇ. Though the adjustment

is local in the sense that it does not consider the effects and constraints associ-
ated with the embedded planning and scheduling problems, the monotonic nature
of CSL(�) guarantees convergence to a global optimal solution if the estimator of
Li .�/ is unbiased. Therefore, an efficient simulation-optimization strategy for this
problem should be capable of exploiting the fact that if the performance measure
improves in a particular direction, then one should continue moving in that direc-
tion. The only method in the shortlisted group capable of doing that is the pattern
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search metaheuristic. This metaheuristic was then selected and implemented in the
recursive algorithm below:

Step 1. Initialize safety stock levels, �n
is , where n D 0 for all i and s

Step 2. Estimate Ji .�n/ and L�
i .�n/ using simulation

Step 3. Check for convergence of the estimated performance measure - ifˇ
ˇ
ˇ OJ .�n/ � OJ .�n�1/

ˇ
ˇ
ˇ � " stop. Otherwise, continue

Step 4. Calculate the new safety stock level

�nC1
is D �n

is C ˛ˇis

�
�i

OL�
i .�/

�

where ˛ is a step size factor that can be adjusted by trial and error, and ˇis

is the distribution factor, which represents the ratio of product supply from
each production site in the previous iteration

Step 5. Check for convergence, if
ˇ
ˇ̌ OJ .�n/ � OJ .�n�1/

ˇ
ˇ̌ � " stop. Otherwise, go to

Step 2.

The algorithm was used to solve a case in which the coefficient of variation of the
different demands was assumed to be 30%. Figure 20.3, where Ai � x denotes the
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final product of type A and grade i packaged in facility x, shows the iterative process
for the safety stocks of the type A products in one of the production facilities when
the starting values are zero. It is important to note that four products, A0-bag, A0-
box, A1-box, and A1-bag, make up 80% of the demand for type A and the rest, from
A2-bag to A9-box, make up the remaining 20% (the same is true for the rest of the
polyethylene types). As expected, the products with a larger demand need higher
safety stocks in order to cope with the 30% variability. Figure 20.4 summarizes the
estimated CSLs without safety stock, OLi .�0/, and after nine iterations of the algo-
rithm OLi .�9/, showing the efficiency of the computational framework in solving
the outer optimization problem. Notice that the change is more pronounced in the
group of major products (the first four type-grade-package triplets that take 80%
of the demand) which go from the 0.6–0.8 range to levels very close to the 0.95
target, and in some of the minor products that show lower CSLs in the presence
of safety stock. The latter counterintuitive result can be attributed to the additional
strain imposed on production by the increase in the safety stock levels of the major
products.

20.3.2 Portfolio Selection of New Compounds to be Developed
in the Pharmaceutical Industry

The hierarchical decision-making strategy mentioned in the previous problem
is not only used when dealing with tactical (e.g., set service level) and opera-
tional decisions (e.g., set safety stock levels), but also when strategic decisions
need to be made. This means that strategic decisions are usually made based on
aggregated data, representing the capacity of the organization at lower levels,
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and those decisions are pushed down as fixed goals. Though such a hierarchical
approach provides solutions close to the optimal one when the system has low levels
of uncertainty; that is rarely the case in highly uncertain and constrained environ-
ments. A good solution at the tactical and operational levels can be obtained for
the specific goals dictated by the strategic decision makers, but the quality of these
goals with respect to the attainable optimum remains unknown. Such a situation
does arise in the context of pharmaceutical products development.

The selection of a portfolio of drugs to be developed is a strategic decision that
has uncertain financial implications on the order of billions of dollars which are
only realized over the long term (decades). This decision-making process is further
complicated by the low probability of success of new compounds (high attrition
rates), unpredictable changes in regulations, technologies and health trends, depen-
dencies between projects (drugs) from a variety of perspectives, uncertainties in
terms of duration and cost in each stage of the development process, and limited
human and capital resources. In addition, as in any other kind of portfolio there
are solutions that have the same exposure to risk, but a different level of rewards.
Therefore, the problem to be addressed consists in choosing a prioritized portfo-
lio on the reward-risk-efficient frontier (i.e., the portfolios with the maximum level
of rewards for a given level of risk) for the level of risk considered acceptable by
the enterprise. Notice that such a selection, in addition to being influenced by all the
uncertainties mentioned above, is constrained by the limited amount of renewable
(e.g., equipment) and nonrenewable resources (e.g., budget for clinical trials), and
the strategies used by decision makers at the tactical and operational levels to allo-
cate them. Therefore, the optimization strategy has to be able to capture the impact
of these constraints on the behavior of the system.

There are three major stages in the lifecycle of a new drug, which are: discovery,
development and commercialization. The discovery stage tends to be highly un-
predictable and case specific, while the other two follow a well-defined path. This
situation, coupled with the limited availability of the renewable and nonrenewable
resources necessary to simultaneously develop all the compounds rated as promising
by discovery (lead molecules), has directed all the attention, from a modeling and
optimization perspective, to the development and commercialization stages. Once a
molecule is promoted to the status of a lead molecule, it goes through a network of
tasks similar to that shown in Fig. 20.5. Though small variations in the drug devel-
opment lifecycle occur from company to company, Fig. 20.5 depicts a fairly realistic
model of what happens in this kind of industry. In the figure, tasks are represented
by rectangles, while decision points are presented as diamonds. In general, these
tasks can be classified into two groups, evaluation and commercialization, and man-
ufacturing. The purpose of the tasks in the first group (upper row in Fig. 20.5) is to
determine the safety and efficacy of the drug and satisfy all requirements to make it
commercially available if these two aspects are favorable. The second group (lower
row in Fig. 20.5) encompasses all the tasks necessary to scale up the laboratory pro-
cedures into commercial size manufacturing facilities. A complete explanation of
the activities covered by each task can be found in Blau et al. (2004). We examined
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the portfolio of a US-based pharmaceutical company that had a total of nine lead
compounds with a 20-year patent protection whose development process can be ap-
proximated by the model in Fig. 20.5.

As in the previous case study, the first step in determining a suitable simulation-
optimization method for the problem is to narrow down the options based on the
characteristics of the solution space. The fact that a group of compounds and
their corresponding priorities need to be selected from a finite set eliminates all
techniques under the “continuous decision space” class. The number of potential
strategies can be further reduced by taking into account the combinatorial nature of
the problem. The nine compounds and their priorities can be mixed and matched
into almost one million different permutations, ruling out any strategy in the “small
number of feasible solutions” class, and ordinal optimization. SPO is also disre-
garded due to our inability to develop a model that characterizes the performance
measure in terms of the decision variables. This leave us with the following set of
potential strategies: random search, metaheuristics, and any of these two in combi-
nation with one of the methods under “small number of discrete feasible solutions.”
The final choice of a method is driven by the strengths of the remaining options
relative to the problem at hand. In portfolio problems, the desired outcome is not
just a single optimal point but a characterization of the efficient reward-risk fron-
tier. Hence, the use of a random search method, though feasible, would be highly
inefficient as it would be necessary to run it multiple times to construct the efficient
frontier. With this point of departure, a trial and error process was implemented to
find a metaheuristic capable of solving the problem. Tabu search was examined, but
was discarded as it was not possible to stop the method from getting stuck in certain
areas of the solution space. In the second iteration, a GA was tested with excellent
results. This method was selected not only because it provided the desired output
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(i.e., an efficient frontier), but also because it allowed a natural representation for
the decision variable, a vector of prioritized projects. There is currently no formal
structured way to select a metaheuristic; it is more an art than a science. Though
some directions are provided in the references provided in this chapter, the black
box nature of these approaches makes their performance unpredictable.

Before describing the GA in detail, it is important to point out the modeling
assumptions and simplifications used in the case study. The model only consid-
ers the uncertainty generated by the probabilities of success/failure at the end of
the clinical trials, which are modeled by Bernoulli distributions. The rest of the
potentially uncertain variables (costs, sales per year, and task durations) are ap-
proximated with their mean values. These model simplifications were necessary not
due to limitations in the optimization framework but due to the lack of reliable in-
formation to characterize those uncertainties. The model also captures four types
of dependencies between projects, which are as follows: (1) resource dependen-
cies, (2) manufacturing cost dependencies, (3) financial return dependencies, and
(4) technical success dependencies. Learning curve effects frequently lead to re-
source dependencies. A common example occurs when the development times are
reduced for the trailing candidate of two functionally similar drug types. Cost de-
pendencies occur when the combined cost of a development activity for two drug
candidates is less than the sum of their individual costs because of resource shar-
ing. For example, it may be possible to use the same production facilities for two
chemically or biologically similar drug candidates. Financial return dependencies
occur when there is synergism or competition in the marketplace. For example,
cannibalization can occur when two drug candidates are aimed at developing prod-
ucts that compete with each other in the marketplace. Technical dependencies occur
when the technical success or failure of a drug candidate affects the probability of
technical success of an as-yet-untested trailing drug candidate. For example, two
drug candidates might be developed to release an active ingredient in a controlled
fashion. If the precedent candidate is successful, the probability of success of the
as-yet-untested second candidate will be increased. The specific realizations of the
dependencies considered in this problem are described by Blau et al. (2004).

The final consideration for the model is the representation of the strategy used to
allocate and reallocate resources after a project failure and at the end of each year.
The resource allocation policies were obtained following the framework conceived
by Varma (2005), which uses a simulation of the task network in Fig. 20.5 and an
observer. The simulation includes an integer program (IP) for short-term resource al-
location that can assign three different levels of resources (associated with specific
durations) to each task, namely, most likely (ML) value, and a certain percentage
below and above of the most likely value. The observer tallies each of the outputs
from the IP and determines the allocation policies by relating the most frequent de-
cisions observed to the corresponding realization of the pipeline state space. This
minimizes the size of the state space (composition of the portfolio and development
stage of each compound) while keeping as much information as possible by break-
ing it into drug states Si D fDSi ; NLEVi ; NHEVi g, where DSi is the development
stage of drug i, NLVEi, the number of drugs having lower expected value than drug
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i in the same development stage, and NHEVi is the number of drugs having a higher
expected value than drug i in the same development stage.

The optimization problem to be solved by the GA can be mathematically ex-
pressed for the specific case in which rewards are measured by the expected
positive net present value (EPNPV) and risk by the probability of losing money
.P .NPV.�/ < 0// as:

min
�

J .�/ D EPNPV .�/ (20.33)

subject to

P.NPV.�/ < 0/ < ˇ (20.34)

where NPV is the net present value, � is the prioritized portfolio of drugs, and ˇ is
the upper bound for the probability of losing money that needs to be varied in the
.0; 1/ interval to obtain the efficient frontier.

The GA is encoded such that each gene contains the number of a drug candidate
(with 0 indicating that a project was not selected), and its position in the chromo-
some represents the priority given to the compound. For example, the chromosome
203000400 corresponds to a portfolio that consists of three compounds: 2, 3 and 4,
of which compound 2 has the highest priority. A fitness function Zk of the following
form is used:

Zk D ˛

�
EPNPVk � EPNPVmin

EPNPVmax � EPNPVmin C 	

�
C .1 � ˛/

�
Riskmax � Riskk

Riskmax � Riskmin C 	

�

(20.35)

where EPNPVmin and EPNPVmax are the minimum and maximum expected pos-
itive net present values, respectively, in the current population; Riskmin and Riskmax

are the maximum and minimum risk levels in the current population, measured as
the probability of losing money, 	 is a small positive number that prevents division
by zero, and ˛ weights the present value vs. the level of risk in a convex linear
combination. The GA proceeds to find chromosomes that improve the fitness func-
tion by generating new chromosomes through the use of some genetic operators and
estimating the fitness function values using simulations of the model in Fig. 20.5
(Zapata et al. 2008). Notice that the NPV and PNPV for each simulation can be
calculated from the discounted development costs accumulated as the compounds
move through the pipeline and the returns realized when the drug hits the market.

The GA was run for different percentages of the amount of resources that can
be allocated above or below the ML value, including a base case in which real-
location of resources was implemented based on the original priorities given by
the GA sequence (i.e., no information about realized uncertainties and the state
of the pipeline is used) and no flexibility in the quantity of resources was consid-
ered. Figure 20.6 presents the results for the base case. All the points corresponding
to the maximum EPNPV for a given level of risk are linked to form an approxi-
mate reward-risk-efficient frontier. At first sight, it looks like its shape reflects the
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general form found by Markowitz in financial portfolios (Luenberger 1998), but a
closer look reveals that the direct correlation between rewards and risk is violated
in the middle section; the depression in the efficient frontier implies that there are
efficient portfolios which bear more risk but result in lower rewards). This coun-
terintuitive result was not observed when flexibility in allocating resources was
considered. Figure 20.7 shows the dominating portfolios for the three different dy-
namic resource allocation cases considered. The compositions of the portfolios on
the efficient frontier in the base case and those with dynamic resource allocation
are remarkably different in the region where the depression is found. These re-
sults are significant as they reveal that it is not possible to decouple the strategic
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and tactical decision-making processes without becoming substantially suboptimal.
Therefore simulation-optimization strategies like the one here presented are essen-
tial to be able to accurately model the system and optimize it to improve the quality
of the decisions made.

However, it is important to highlight that the computational burden required to
solve the problem was very high. It took between 3 and 5 days on a 64 bit Sun-Sparc
Ultra-Enterprise with 25, 400 MHz processors, and 8 M CPU cache per processor to
run each case. This burden is bearable if we consider that these kinds of decisions are
commonly made every 6 months, but would be unacceptable in a decision-making
process that has to be repeated with a much greater frequency.

20.4 Conclusions

A summary of the simulation-optimization methods currently available was pro-
vided. Our discussion was organized by classifying methods into those intended
for small discrete, large discrete, and continuous decision spaces. In the first cat-
egory, the number of feasible solutions is small and therefore the focus of the
methods is on the exhaustive comparison of possible solutions through statistical
inference. The size of large discrete and continuous decision spaces shifts the focus
to methods based on search algorithms, with the exception of ordinal optimiza-
tion that uses statistical inference to exhaustively compare possible solutions. The
majority of the methods in these two categories are model-independent and there-
fore can be applied to any problem. However, this very advantage is responsible
for slow convergence rates (random search), unpredictable convergences (RSM and
metaheuristics), and high computational burden (SA with FD and RSM). Though in
principle two methods, SA with SP (for any system) and SA with FDA (for systems
in steady state), are immune to these issues, the difficulty in parameterizing them
results for the most part in slow convergence rates during execution. By contrast,
the three model-dependent methods, SA with PA and LR and some types of SPO,
tend to exhibit a faster convergence but are applicable to a limited number of very
simple problems. At the end, the selection of a method for most problems is more
an art than a science and requires a significant amount of trial and error. This situa-
tion has led practitioners to mainly use metaheuristics (especially GA and SS) and
RSM due to their flexibility to accommodate any type of problem and their relative
simplicity.

The chapter also presented two industrial case studies, in which simulation-
optimization methods were successfully used. The case studies served to illustrate
not only the implementation of a few methods, but also to highlight some of the
considerations that are relevant in the selection of a method. From these case stud-
ies and the initial discussion in this chapter is evident that simulation optimization
is the right tool to support several complex industrial decision-making processes.
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However, in general, simulation optimization requires a significant level of technical
sophistication from the user, especially in the area of statistics, as well as large
amounts of computational resources.

References

Alrefaei MH, Andradottir S (1999) Simulated annealing algorithm with constant temperature for
discrete stochastic optimization. Manage Sci 45:748–764.

Andradottir S (1998) Review of simulation optimization techniques. Presented at 1998 Winter
Simulation Conference, Washington, DC, USA.

Azadivar F (1999) Simulation optimization methodologies. Presented at 1999 Winter Simulation
Conference, Phoenix, AZ, USA.

Banks J (1998) Handbook of simulation:principles, methodology, advances, applications, and
aractice. Wiley, New York.

Banks J (2005) Discrete-event system simulation. 4th edn. Pearson Prentice Hall, Upper Saddle
River, NJ.

Bhatnagar S et al (2003) Two-timescale simultaneous perturbation stochastic approximation using
deterministic perturbation sequences. ACM Trans Model Comput Simul 13:180–209.

Blau GE et al (2004) Managing a portfolio of interdependent new product candidates in the phar-
maceutical industry. J Prod Innov Manage 21:227–245.

Fu MC (1994) Optimization via simulation: a review. Ann Oper Res 53:199–247.
Fu MC (2002) Optimization for simulation: theory vs. practice. INFORMS J Comput 14:192–215.
Fu MC, Healy KJ (1992) Simulation optimization of inventory systems. Presented at 1992 Winter

simulation conference, Arlington, VA, USA.
Fu MC, Healy KJ (1997) Techniques for optimization via simulation: an experimental study on an

(s, S) inventory system. IIE Trans (Institute of Industrial Engineers) 29:191–199.
Fu M, Hu J-Q (1997) Conditional Monte Carlo: gradient estimation and optimization, applications.

Kluwer Academic, Boston.
Fu MC, Glover FW, April J (2005) Simulation optimization: a review, new developments, and

applications. Presented at 2005 winter simulation conference, Orlando, FL, USA.
Glover F, Laguna M (1997) Tabu Search. Boston, MA: Kluwer Academic.
Glover F, Kelly JP, Laguna M (1999) New advances for wedding optimization and simulation.

Presented at 1999 winter simulation conference, Phoenix, AZ, USA.
Hall JD, Bowden RO (1996) Simulation optimization for a manufacturing problem. Presented at

Southeastern simulation conference, Huntsville, AL, USA. Society for Computer Simulation.
Hazra MM, Morrice DJ, Park SK (1997) Simulation clock-based solution to the frequency domain

experiment indexing problem. IIE Trans (Institute of Industrial Engineers), 29, 769–782.
Healy, K. and Schruben, L.W (1991) Retrospective simulation response optimization. Presented at

1991 winter simulation conference, Phoenix, AZ, USA.
Henderson, S.G.and Nelson, B.L (2006) Handbooks in operations research and management

science: simulation. Elsevier, Amsterdam.
Ho Y-C, Cao X-R (1991) Perturbation analysis of discrete event dynamic Systems. Kluwer Aca-

demic, Boston, MA.
Ho YC et al (1992) Optimizing discrete event dynamic systems via the gradient surface method.

Presented at 30th IEEE conference on decision and control part 1 (of 3), Brighton, England.
Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J ACM

8:212.
Jacobson SH, Schruben LW (1989) Techniques for simulation response optimization. Oper Res

Lett 8:1–9.
Jacobson SH, Schruben L (1999) Harmonic analysis approach to simulation sensitivity analysis.

IIE Trans (Institute of Industrial Engineers) 31:231–243.



20 Simulation-Optimization in Support of Tactical and Strategic Enterprise Decisions 627

Jacobson SH, Buss AH, Schruben LW (1991) Driving frequency selection for frequency domain
simulation experiments. Oper Res 39:917.

Jung JY et al (2004) A simulation based optimization approach to supply chain management under
demand uncertainty. Comput Chem Eng 28:2087–2106.

Kiefer JC, Wolfowitz, J (1952) Stochastic estimation of the maximum of a regression function.
Bull Am Math Soc 58:465–465

Kleijnen JPC, Rubinstein RY (1996) Optimization and sensitivity analysis of computer simulation
models by the score function method. Eur J Oper Res 88:413–427.

Kushner HJ, Yin G (2003) Stochastic approximation and recursive algorithms and applications.
2nd edn. Applications of mathematics, vol. 35. Springer, New York xxii, p. 474.
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