
Chapter 16
Optimization Models of Production
Planning Problems

Hubert Missbauer and Reha Uzsoy

16.1 Introduction

Mathematical programming formulations have been proposed for a wide range of
production-related problems since the 1950s, addressing problems of long-term ag-
gregate production planning, medium-term allocation of capacity to different prod-
ucts, lot sizing and product cycling, and detailed short-term production scheduling.
The range of problems addressed by these methods spans a variety of managerial
levels, problem environments, and time scales, often confusing even experienced
practitioners and researchers as to what exactly is meant by the term “production
planning.” Hence, it is necessary to begin a chapter of this nature by specifying ex-
actly what type of problems we plan to address, especially since an overview of all
related areas is clearly beyond the scope of any single chapter. Indeed, we note in
passing that there appears to have been no effort to collect all the production-related
operations research literature in a single volume since the book by Johnson and
Montgomery (1974), which remains an excellent reference for the basic concepts in
the field.

In this chapter, we shall focus on manufacturing planning and control (MPC)
systems for discrete parts manufacturing, where products are assembled from a va-
riety of components, each of which in turn is produced by a multistage process.
Manufacturing structures of this type occur in many industries, such as mechanical
products, electrical appliances, electronics, and automotive manufacturing. Most fa-
cilities are not dedicated to specific products, and thus may require time-consuming
changeovers when switching from one product type to another. Many insights in
this chapter are also relevant for industries that only partly show these character-
istics (e.g., semiconductor manufacturing). Process industries (e.g., steelmaking,
continuous chemical processing or paper industry) often have substantially different
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characteristics, so we will not address these cases. For a discussion of MPC systems
in process industries, see Gunther and Van Beek (2003); for steel plants as a special
case, see Tang et al. (2001) and Missbauer et al. (forthcoming).

For the types of manufacturing systems under consideration, a planning logic has
evolved over the last 45 years starting from bill-of-material explosion and leading
to the Material Requirements Planning (MRP) (Orlicky 1975) and Manufacturing
Resource Planning (MRPII) systems (Wight 1983), which form the basis for most
of the MPC and supply chain planning systems in industrial use today (Vollmann
et al. 2005). Today’s Advanced Planning and Scheduling (APS) Systems (Stadtler
and Kilger 2008) aim at complementing MPC systems by concentrating on planning
and coordinating the material flow between companies or manufacturing plants,
leveraging the data collection and organization capabilities of the Enterprise Re-
source Planning (ERP) and Manufacturing Execution Systems (MES) used by many
companies today. The chapter by Fordyce et al. in this volume gives an excellent
view of such a system.

The basic problem of production planning in these environments is essentially
one of matching supply to demand. This involves viewing the production system as
a network of resource groups, which we shall refer to as work centers, and allocating
the capacity of production resources at these work centers among different products
over time, coordinating the associated inventories and raw material inputs so that
known or predicted customer demand is met in the best possible manner. The “best
possible manner,” of course, requires more precise definition in order to form the
basis of an optimization model, and can vary widely based on the specific produc-
tion environment being considered. However, the objective functions are generally
aimed at minimizing the total expected costs of production and inventories over the
time horizon considered. There are also a number of models where demand is influ-
enced by management decisions such as pricing, in which case the objective takes
the form of profit maximization.

The decision variables emerging from the production planning activity depend
on the decision structure of the MPC system, mainly on the extent to which detailed
(mainly scheduling) decisions are made at the planning level. In the following, we
assume that detailed scheduling decisions are made on the shop-floor level. This is
the usual MPC structure and is described below in more detail. Given this struc-
ture of the MPC system, the basic decision variables emerging from the production
planning activity are the amount of material (work orders) for each type of prod-
uct that is to be released to each production resource over time, together with the
required due dates. We shall focus on these decisions throughout this chapter since
ultimately these decisions are the only actionable ones resulting from the produc-
tion planning process. Estimates of a number of other quantities, such as production
quantities at each production work center over time and inventory levels over time,
are also obtained from production planning models, but we will take the position
that all these ancillary quantities result from applying the work release decisions
to the constraints defining the operation of the production resources (capacity con-
straints) and the material flows through the production system. We will assume that
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capacity determination over the long term, the domain of the classical literature
on capacity expansion (represented by, e.g., Luss 1982) is not part of this problem
domain.

Due to the complexity of the supply chain, the manufacturing process and the
organization responsible for managing and coordinating them, the MPC task is usu-
ally structured hierarchically (Anthony 1966; Bitran et al. 1981, 1982; Bitran and
Tirupati 1993; Hax and Candea 1984). Essentially two planning levels can be dis-
tinguished as follows:

� Upper level (central MPC): The complexity of the supply chain or manufactur-
ing process is generally addressed by aggregating segments of the production
process into departments or production units (Bertrand et al. 1990). This level
then involves planning of the material flow over the entire logistic chain at an
appropriate level of aggregation, without determining detailed schedules (pro-
duction sequences) within the production units.

� Lower level: Detailed scheduling of the work orders within the production units,
which involves determining the start and finish dates of the operations and their
production sequence at the facilities.

Our specification of these levels follows the use of the terms “goods flow control”
and “production unit control” in (Bertrand et al. 1990). Note that the upper level fre-
quently is hierarchical in itself; see Vollmann, Berry et al. (2005), for its structure in
today’s MPC systems, and Bertrand et al. (1990) and de Kok and Fransoo (2003),
for advanced planning architectures. Many of these concepts date back at least
to the book by Anthony (1966), and an extensive literature has been developed
around these issues (for conceptual issues of hierarchical production planning, see
Schneeweiß 2003). When a hierarchical MPC system is designed, the data and
the decision variables are aggregated with respect to products (aggregating prod-
ucts into product groups or families), capacity (aggregating resources to resource
groups), and time (Stadtler 1996). Decisions taking place at a similar level of detail –
hence often over similar time intervals or frequencies – are considered together in
the same level of the hierarchy, and a mechanism is devised to propagate the im-
plications of these decisions up and down the hierarchy. However, the two levels
outlined above will be sufficient to motivate the work we wish to accomplish in this
chapter.

The essential interface between the two planning levels is order release.
The central MPC system coordinating the production units issues work orders
that specify the particular product or component type to be produced, the amount to
produce, and the due dates of the orders. Control over the work order then passes to
the lower, detailed scheduling level within the production unit concerned. Clearly
this approach requires coordination norms between the planning levels, which is
most commonly implemented using planned lead times. The upper level creates its
plans based on some assumptions as to the lead time, the time between the order
being released into production and its being completed. The production unit must
behave in a manner consistent with this assumption. The most common approach is
for the upper level to assume a constant lead time for the released orders, which the
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production unit commits to meeting, at least as long as capacity utilization remains
within reasonable limits. Thus the management of lead times by the production
unit, and of the norms defining the upper level’s view of the defined lead times, are
of utmost importance.

In any hierarchical planning system, the upper level can evaluate its decision
alternatives accurately only if it has access to a model that predicts the behavior of
the system controlled by the lower level. Thus this anticipation function of the upper
level (Schneeweiß 2003, p. 33 ff.) is a crucial element, allowing the upper level to
anticipate the consequences of its decisions for the lower level(s). In our case, the
central MPC system at the upper level needs a model that predicts the performance
indicators of the manufacturing system (work in process inventory, flow time, due-
date performance, etc.) resulting from an order release plan. The formulation of
mathematical programming models for the upper level of the MPC system described
above that use a variety of different anticipation functions is the central topic of this
chapter.

Perhaps the most obvious consequence of shortcomings in the design of the upper
level of the MPC system with respect to the anticipation of the dynamic behavior
of the manufacturing system is insufficient management of lead times and work-
in-process (WIP). In both Europe and the USA, a considerable body of work has
approached these issues using the terminology of workload control. This type of
approach usually implements the hierarchy discussed above, with the upper level
(central MPC) performing order acceptance and deciding what demand will be
served and which demand will be delayed in order to balance load and capacity
in the medium term. The tradeoff between low flow times and high throughput is
managed by the release of work into the production units over the short term based
on some statistics reflecting the state of the production system.

In the following, we describe the workload control concept that provides the
basis for Order Review and Release (ORR) systems that usually do not incorporate
optimization models. In the subsequent sections we concentrate on optimization
models for planning the aggregate material flow and order release in MPC systems.

16.2 Nonoptimization Workload Control

Since most of the MPC systems in industrial use today have largely evolved in
practice (see McKay chapter in this volume) and have not been designed from an
underlying theoretical basis, it is not surprising that their approaches to lead time
management are often problematic. A well-known example is the lead time syn-
drome (Wight 1983, p. 108 ff.) that in extreme cases can inflate lead times beyond
any arguable level. This can occur when lead time is considered to be a forecast
variable, which is the usual practice in MRP systems: Lead times are estimated
from realized values from the past, rather than being determined by the state of the
production system. It is a crucial insight that lead times are workload-dependent and
thus should be regarded as control variables (for this comparison, see Tatsiopoulos
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and Kingsman 1983): Lead times are determined mainly by the waiting times at
the work centers which are determined by the utilization level of the resources,
which are determined by the amount of released work. This insight, supported by
a very extensive literature on queuing models of manufacturing systems (Hopp and
Spearman 2001; Buzacott and Shanthikumar 1993), motivates the workload control
(WLC) concept as a way to improve lead time management.

The workload control (WLC) concept considers flow times as output vari-
ables that can be controlled by the manner in which work is released into the shop
over time. If the amount of work released (measured, e.g., in standard hours) is
large, this leads to longer queues at the work centers and hence to longer waiting
times and flow times. Reliable flow times can only be maintained if the amount of
work released into the system and its output (determined by the available capacity)
are balanced such that the queues of work in process inventory (WIP) at the work
centers, usually measured in hours of work, are kept at a predefined level. This
makes order release an essential decision function and a core component of WLC.
Implementing any form of WLC thus requires the solution of two subproblems:
(1) determining the target WIP level and (2) determining the release dates of orders,
i.e., how work will be released into the shop over time.

The target WIP level must be a compromise between the goals of maintaining
low WIP level and short flow times on the one hand and high output on the other.
A high output requires an average level of WIP (queues at the work centers) that
prevents idleness of the work centers, buffering against variability in the material
flow between stations (see Hopp and Spearman 2001, p. 287 ff., for the “corrupt-
ing influence of variability”). This can be formalized as a functional relationship:
Once the average WIP level is determined, the average flow time and the output
(capacity utilization) are also determined, given the order and shop characteristics.
The functional relationships between average WIP and other important performance
indicators are usually expressed as characteristic curves that are often determined
by simulation. Figure 16.1 shows an example. For this figure the manufacturing sys-
tem has been simulated several times with different average levels of WIP in the
shop. The average WIP levels were obtained by simulating the load-oriented order
release approach of Wiendahl (1995) with different target WIP levels. The realized
mean WIP values are shown on the x-axis, and the mean flow time and output on
the y-axis.

It is important to note that the characteristic curves in Figure 16.1 are not
completely determined by the technical properties of products and manufacturing
system. They also depend on sequencing rules, lot sizes, capacity flexibility, order
release frequency, etc., that is, they are a result of the long-term characteristics of
the planning system. Thus WLC can be considered as a means of complexity re-
duction: the specification of long-term decision rules in the MPC system leads to
stable operational characteristics of the manufacturing system it controls (expressed
as characteristic curves), which, in turn, provide the basis for order release deci-
sions that maintain the desired flow times. Consequently, WLC is an architecture
for the entire MPC system (for conceptual issues, see Bertrand et al. 1990; Zäpfel
and Missbauer 1993b; Missbauer 1998).
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Fig. 16.1 Curves for output and mean flow time per operation with change in the work-in-process
Wiendahl (1995, p. 246)

The decision problem of determining how to release work over time to maintain
a predetermined target WIP level has been a research topic since the 1970s. Two
main approaches can be distinguished as follows:

(a) WLC order release mechanisms that determine the work orders to release for a
short planning horizon. We use the term “traditional WLC order release mecha-
nisms” since this has been an essential part of WLC research in the last 20 years
(Land 2004; Stevenson and Hendry 2006). We describe this general approach
and its limitations in the following subsection.

(b) Order release planning procedures based on an explicit model of the material
flow and the time-dependent WIP level over a longer planning horizon, usually
divided into periods. This approach, its present state, and research topics are
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described in Sects. 16.3 and 16.4. The focus of this chapter is very much on
order release methods that are explicitly based on the WLC concept and that are
applicable for complex product/process characteristics.

16.2.1 Traditional Order Release Methods Based
on Workload Control

Based on the insights described above, a number of short-term order release
mechanisms have been designed, mainly in the 1980s and 1990s. Examples
are CONWIP (Spearman et al. 1990), load-oriented order release (Wien-
dahl 1995), and the order release stage of the LUMS approach (Hendry and
Kingsman 1991; Stevenson and Hendry 2006) and the method of Bertrand and
Wortmann (1981). In the following, we describe the general concept of these
methods. Overviews can be found in Bergamaschi et al. (1997), Land (2004)
and Fredendall et al. (2010). Kanban, which can also be considered as a Work-
load Control technique, is based on more restrictive assumptions and is not
included here. Drum-Buffer-Rope is based on a more detailed schedule of the
bottlenecks (“drum beat”) and thus is different from the hierarchical MPC
concept that provides the basis for this chapter (for a discussion of MPC con-
cepts, see Zäpfel and Missbauer 1993a; for Drum-Buffer-Rope, see Cohen 1988;
Gupta 2005).

The order release mechanisms described in this section usually are based on the
following situation: The work orders in the MPC-system are generated from cus-
tomer orders or from the MRP system from net requirements, lot sizing, and infinite
capacity loading. Since in WLC order release is a decision function, the work orders
are initially held in an order pool of unreleased orders. These orders are specified
by product or component type, lot size, and required due date. A planned start date,
derived from the required due date and a planned flow time that is consistent with
the WIP norm, is usually available. Orders from the pool are released according to
their planned start dates and the load situation in the shop. All orders should be fin-
ished on time, and the WIP norms should be maintained. When an order is released,
control over the order is transferred to the scheduling level of the production unit,
which has to meet the required due date.

We define a traditional WLC order release mechanism as follows (see also the
basic release procedure described in Land (2004, p. 36 ff.)); we roughly follow the
classification framework in (Bergamaschi et al. 1997). Order release is load limited,
that is, a load limit is determined for each work center or for the shop as a whole,
based on the characteristic curves of Fig. 16.1, and the order release mechanism pre-
vents the load limits from being exceeded (in some cases with minor tolerance). The
planning horizon is one period (in practice, usually 1 day to 1 week), and there is
usually no order release plan for multiple periods. The capacities of the work cen-
ters are usually fixed, although some mechanisms consider capacity adjustments.
The timing of order release may be event-driven in continuous time, or periodic at



444 H. Missbauer and R. Uzsoy

the beginning of each planning period; both options can be used simultaneously.
An order is released if its release does not violate these workload norms, defined as
upper and/or lower bounds. The subset of orders to be released within these con-
straints is usually selected heuristically (e.g., according to a priority following the
urgency of the order), but integer programming can also be used, as in, for example,
Irastorza and Deane (1974). When order release is performed, the feasibility of re-
leasing the selected orders is checked against the load limits. This feasibility check
requires the definition of how WIP is to be measured (e.g., in number of orders or
in hours of work) and what WIP is to be considered in the decision (WIP for the
entire shop, for each work center separately or just for the bottleneck work centers).
Many of these issues of how to aggregate and measure WIP will also arise in our
discussion of clearing functions in Sect. 16.5.

If a target WIP level is defined for individual work centers, then controlling the
load at the work centers (direct load) is the most detailed technique. The future value
of this direct load has to be estimated because the work input to the WIP level at a
work center is controlled by sequencing decisions at the upstream work centers and
is not known at the time of order release. Alternatively, only the aggregate load of
the work centers, defined as the released work in the shop that has to be processed
by a work center irrespective of its current position, is controlled, which avoids
estimation of the order arrival patterns at the work centers.

When an order release mechanism is designed, the design options mentioned
above must be specified. Figure 16.2 summarizes a well-known classification of
these design options.

Once the order release mechanism has been designed by specifying the design
options discussed above, its realized performance is determined by the parameter
settings. The most important parameters are as follows:

� Target WIP (WIP norms) at the work centers. This parameter, which is closely
related to the target value of the average flow time, can be expressed in different
ways depending on the order release mechanism (e.g., load limit or load percent-
age in load-oriented order release) and specifies the compromise between output
and WIP-flow time.

� A time limit that prevents the premature release of orders whose planned start
date is far in the future. This parameter plays an important role in determining
the extent of production smoothing (see below).

Other parameters are the length of the planning period and the order release
frequency if order release is performed periodically (Perona and Portioli 1998).

Most of the order release mechanisms developed since 1980 follow this logic
and can be obtained by specifying the design options above. We call these methods
traditional because they share a common structure and have formed the main-
stream of the research on WLC-based order release mechanisms in the last 25
years. They have also been tested extensively and are partly available in standard
software. A stream of such methods and their interactions with shop-floor dispatch-
ing has been explored by a body of work focusing on the semiconductor industry,
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Dimensions Options

Order release mechanism Load limited
Time phased

Timing convention Continuous
Discrete

Workload measure Number of Jobs
Work quantity

Aggregation of workload measure Total shop load
Bottleneck load
Load by each workcentre

Workload accounting over time Atemporal
Probabilistic
Time bucketing

Workload Control Upper bound only
Lower bound only
Upper and lower bounds
Workload balancing

Capacity planning Active
Passive

Schedule visibility Limited 
Extended

Fig. 16.2 Design options in traditional order release mechanisms (Bergamaschi et al. 1997)

as discussed in Uzsoy et al. (1994). For a comprehensive description of order re-
view/release methods, which is beyond the scope of this chapter, see Land (2004),
Bergamaschi et al. (1997) and Philipoom and Fry (1992).

Order release mechanisms of this type have a short planning horizon, but the
release decisions determine the order arrivals at the work centers for a period that
equals the flow times of the orders and also influence the options available to future
release. Thus it is important to gain insight in how order release mechanisms work
and how the goal of maintaining a stable WIP level can be achieved over a longer
time horizon. Three topics are relevant here as follows:

� Order release determines the start dates of the orders and thus the extent of
workload smoothing if (e.g., seasonal) demand variations occur.

� The workload norms must be consistent with the desired output, which in turn
can depend on the extent of workload smoothing.

� Especially in the case of multiple products with different routings and resource
requirements, the order release mechanisms should be able to perform load
balancing among work centers. That is, the sequence of order releases should
avoid temporary over- or underloading of certain routes or work centers. This is
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essential for achieving high throughput and low WIP at the same time without
just shifting the waiting time to the job pool.1

These tasks require the capability to look ahead beyond the short planning hori-
zon of the release mechanisms. There are two ways to accomplish this as follows:

� Short-term release mechanisms can be complemented by a medium-term plan-
ning level that balances load and capacity and thus determines the required output
over time. The release mechanisms perform short-term control that keeps WIP
and shop flow times under control. This shifts much of the planning task to the
medium-term level, and especially if flow times are long (e.g., semiconductor
manufacturing with hundreds of operations per order), integration of medium-
term planning and short-term order release can be difficult.

� The dynamic behavior of order release mechanisms and the material flow that
results from release decisions can be controlled by the design of the release mech-
anisms and by the parameter setting (especially WIP norms and time limit). For
instance, if load leveling over a longer horizon is desired, the time limit should be
long, which allows early release of orders in periods with low demand. If utiliza-
tion is low, the time limit should be short, because this prevents early release and
completion of orders, etc. (see Zäpfel et al. 1992). Research, mainly by simula-
tion, has accumulated a body of knowledge on decision rules that provide support
for design and parameter setting of release mechanisms for specified material
flow structure, demand pattern, etc. (for reviews, see Land 2004; Stevenson and
Hendry 2006). Hence the traditional order release mechanisms can be regarded
as a rule-based approach to optimize the material flow through a production unit
as discussed in Missbauer (2009).

In the following sections we focus on optimization models that determine the
optimal aggregate material flow through a production unit, assuming that demand
forecasts are available at least at an aggregate level (groups of products). This op-
timized aggregate material flow forms the basis for order release that leads to this
planned material flow. It can be expected that the potential of optimization mod-
els that determine order release is higher than the potential of release mechanisms
that are controlled by appropriate parameter setting. If no reliable demand forecasts
are available (especially in the case of customer order-driven production), order
release planning might be difficult. In this case, the essential problem is to coor-
dinate customer enquiry/order acceptance and order release/WIP control (for this
topic, see Hendry and Kingsman 1991; Stevenson and Hendry 2006). The planning
models described in the remainder of the chapter perform many of the functions of

1 Simulation results indicate that traditional order release mechanisms can in fact reduce average
total throughput time of orders (pool waiting time plus shop flow time) and do not just shift the
waiting time from the shop to the pool, possibly increasing total flow time due to reduced shop
capacity (for this critique, see Kanet 1988). A possible reason is the load balancing effect. A good
order release mechanism limits the shop load, but it also aims at keeping the level of WIP at the tar-
get level for each work center, thus balancing the load among the work centers by releasing orders
with different routing. (For simulation results on total throughput time reduction, see Land 2004.)
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order release mechanisms (WIP control, load leveling, load balancing) and thus can
potentially replace the release mechanisms to a large extent. However, depending on
the level of detail of the models, implementation of the order release plans by means
of a traditional release mechanism may still be necessary or useful. In this case, the
traditional order review and release mechanisms discussed in this section will oper-
ate in the very short term as part of the lower, detailed scheduling level of the MPC
hierarchy described in Sect. 16.1. When applied in this way, the release mechanisms
take as input the quantity of work that is required to be released over some planning
period, say a week or a month, and control releases to the shop floor based on the
state of the system in close to real time. Applying multiperiod optimization mod-
els to determine optimal time-varying parameter settings for release mechanisms
(Zäpfel and Missbauer 1993a) might be a serious alternative but remains largely a
topic for future research.

In the following section, we give a brief historical review of the development of
optimization models for aggregate material flow planning in MPC systems.

16.3 Historical Review

While production planning has obviously been executed in some form since the
beginning of even craft production, the development of quantitative methods for
these problems has surprisingly of recent origins. The chapter by McKay in this
volume gives an overview of the historical development of production planning
since the beginning of the Industrial Revolution. While the well-known work of
Harris (1915) launched the area of inventory modeling, it was not until the 1950s
that this became a major research area. Similarly, the use of optimization mod-
els for planning production over time has its origins in the work of Modigliani
and Hohn (1955), although the roots of this work reach back to the activity-based
economic models developed by economists such as Leontief and Koopmans (e.g.,
Koopmans et al. 1951). The area of sequencing and scheduling also had its pio-
neering papers in this period, notably those of Jackson (1955) on single machine
scheduling problems and Manne (1960) on job shop scheduling. However, we will
focus the discussion here on production planning, leaving detailed discussion of the
extensive field of sequencing and scheduling to specialized volumes in that area
(Pinedo 1995; Pinedo and Chao 2005; Parker 1995).

It is interesting to note that the basic formulations of most classical production
planning-related problems were essentially in place by 1960, when the book by Holt
et al. (1960) collecting their previous work appeared. Hence, it is worthwhile exam-
ining these early papers in some detail to gain insight into why these formulations
developed the way they did, and what the implications of these are relative to the
current situation.

The work of Modigliani and Hohn (1955) views the problem of production plan-
ning over time as that of trading off production costs against inventory holding costs.
Production costs are assumed to be convex, with increasing marginal production
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costs, while inventory holding costs are approximated by the time average of the
ending period inventories, leading to a linear cost function. The problem is for-
mulated on discrete time periods, the cost function is assumed to be stationary over
time, demand in each period is known with certainty, and no backlogging is allowed.
The monotone increasing marginal production cost makes it more economical to
meet periods of high demand by producing in prior periods of low demand and
holding inventory, giving the basic tradeoff in the problem. The authors develop
an optimal solution based on calculus that essentially identifies planning horizons,
allowing the problem to be decomposed along the time horizon into subproblems
consisting of a certain number of consecutive periods that can be solved indepen-
dently. This approach forms the basis for the later work of Holt et al. (1955, 1956),
which subsequently led to the HMMS book (Holt et al. 1960). It is also inter-
esting that in Chap. 6 of their book they explicitly address the extension of their
decision rules to an environment with uncertain demand, and show that under a
quadratic objective function of the type they assume, the deterministic equivalent
of the stochastic problem is achieved by using expected demand values in their de-
terministic rule, which is equivalent to assuming an unbiased demand forecasting
procedure. This insight appears to have motivated the heavy focus on determin-
istic models, although the proof they provide is valid for the specific case of a
quadratic objective function. An interesting discussion of this body of work is given
by Singhal and Singhal (2007).

A number of interesting points emerge from this work. It is interesting that capac-
ity constraints are not modeled; the implicit assumption appears to be that capacity
can be varied in the short run, and the costs of doing this contribute to the increasing
marginal cost of production. This discussion is made more explicit in the context of
labor costs by Charnes et al. (1955). It is also interesting that while the cost func-
tion is explicitly built up from holding production and fixed costs independent of
production volume there is no discussion of how one might actually estimate these
costs from existing business records. Finally, the basic paradigm is that of modeling
the physical flows in the problem – production and inventories – and assigning costs
to these, rather than modeling the cash flows explicitly as a means of capturing the
financial impact. This paper also seems to have motivated the idea that in problems
over time, perfect information of the entire planning horizon is not necessary, but
rather just the first few periods on a rolling horizon basis is quite close to optimality.
This has led to a long stream of papers using these and related ideas, including the
well-known dynamic lot sizing model of Wagner and Whitin (1958).

In the mid-1950s, it began to be realized that the emerging linear programming
technology could be applied to production planning problems quite directly. In par-
ticular, researchers realized that models of the type addressed by Modigliani and
Hohn (1955) and Holt et al. (1956) could be formulated as linear programs. The two
principal papers that appear to have accomplished this independently of each other
are Hanssmann and Hess (1960), whose title very much resonates with the HMMS
work, and Manne (1957). Another notable early paper is that of Bowman (1956),
which appears to be one of the earliest to identify the extensive presence of network
structure in production planning models.
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At this point, the principal characteristics of the mathematical programming
models used for production planning problems were now in place. The decisions
cover a planning horizon that is divided into a number of discrete time periods, each
of which has an associated set of decision variables reflecting the decisions made in
that period. The decision variables represent the physical flows of material through
the different production resources; the objective function is generally that of mini-
mizing the variable costs of production, inventories and backlogs over the planning
horizon, and capacity constraints on the production resources in each period are sat-
isfied at an aggregate level. In the following section we shall investigate the basic
assumptions of these models in more detail, focusing on the manner in which they
model the dynamics of capacitated production resources.

16.4 Optimization, Planning, and Work Release

It is interesting to note that although the decisions made in well-known optimization
models are referred to almost uniformly as “production” decisions, in reality these
models usually are work release models; in hierarchical manufacturing planning and
control systems as described in Sect. 16.1, the only way they can be implemented
is through the release of work orders with specified due dates into the production
facility being modeled. As such, these models are closely related to the extensive
stream of work on work release, order review/release (ORR), and workload control
discussed in the previous section. They also address the basic problem of planning
time-phased work releases addressed by the well-known and extensively imple-
mented Material Requirements Planning (MRP) procedure (Vollmann et al. 1988;
Baker 1993) and related techniques. Finally, it is worth noting that these problems
have also been addressed in several research streams out of the artificial intelligence
community (e.g., Smith 1993; Zweben and Fox 1994).

The vast majority of the mathematical programming models of interest to this
chapter approach the problem in the same manner. The time horizon being consid-
ered is divided into discrete time periods, usually but not necessarily of the same
length. Decision variables are associated with each period, and the objective is
to minimize the total cost, which may be defined in different ways depending on
the specific environment being considered, over the planning horizon. Following
Hackman and Leachman (1989), we can view these models as containing three ba-
sic sets of constraints:

1. Inventory or material balance equations, which capture the flows of material
through both space and time. These will also enforce the satisfaction of demand,
which is viewed as a flow of material from the production system to an external
demand source.

2. Capacity constraints, which model how the production activities capture and
consume production resources.

3. Domain-specific constraints reflecting the special structure and requirements of
the particular production environment being modeled.
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The first two sets of constraints are critical to the accurate reflection of the actual
behavior of the production system, which in turn is essential to the optimality and
feasibility of the production plans obtained from the model. Following the discus-
sion in Sect. 16.1, their aggregate nature requires these models to use some type
of anticipation function that predicts the effect of their decisions on the detailed
scheduling level of shop operation. As discussed in Sect. 16.1, the manner in which
production lead times (also referred to as cycle times or flow times)2 are treated is
a crucial aspect of this anticipation function, affecting both the capacity and flow
balance constraints above. We now examine several different models of lead times
used in production planning models, starting from the simplest, and discuss their
advantages and disadvantages.

16.4.1 Fixed Delays Independent of Workload

The simplest model of lead times that is encountered quite commonly in inventory
models is one of instantaneous replenishment where the quantity ordered at a given
point in time becomes available immediately upon ordering. The closest equiva-
lent to this in the domain of mathematical programming models is to assume that
lead times are approximately equal to one period, i.e., that the quantity of material
Rt that is released into the system at the start of period t is available to meet de-
mand at the end of that period. In order to ensure continuity of the solution between
periods, we need to model the flows of material in and out of the finished goods
inventory, which yields the system dynamics equations

It D It�1 C Rt � Dt (16.1)

where It denotes the finished goods available on hand at the end of period t and Dt

the demand at the end of that period.
However, this is clearly often not realistic, and a more commonly encountered

model in both inventory and the mathematical programming literature is a fixed,
deterministic replenishment lead time that is independent of the quantity ordered or
released. The stochastic equivalent of this model is a random lead time with a time-
stationary probability distribution that is independent of the order quantities, such
as the case treated by Eppen and Martin (1988), or the class of models discussed in
Chap. 7 of Zipkin (1997). In this case, the amount Qt ordered at the start of period t

becomes available at the beginning of period t C � , where the integer � denotes the
fixed lead time. In a production system, the amount Rt released into the system at the
start of period t becomes available for use at the start of period t C � . If we denote

2 In general, we use the term flow time when we consider this time span from a manufacturing
perspective, and the term lead time when it is considered from a planning perspective; see Hopp
and Spearman (2001, p. 321). The terms are not always clearly distinguished in the literature.
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the output of the production system in period t by Xt , we have the relationship
Xt D Rt�� . The system dynamics are now described by the relationship

It D It�1 C Xt � Dt D It�1 C Rt�� � Dt : (16.2)

We note in passing that this is exactly the model of lead times used in MRP in
its backward scheduling phase. It is common both in the literature and in practice
to assume that the fixed lead time � corresponds to an integer number of planning
periods; Hackman and Leachman (1989) present a straightforward method for man-
aging lead times that correspond to a fractional number of planning periods, which
we will discuss later.

The difficulty with this model in the context of production systems is that it
assumes that there is no limit on the amount of material the system can produce
in the given lead time. Hence, most optimization models of capacitated production
systems will limit the total output of the system in a given period by imposing a con-
straint of the form Xt � Ct , where Ct denotes the maximum possible output of the
production system in a given period. For exposition, let us assume that each unit pro-
duced requires one time unit of the resource, and the resource capacity is expressed
in terms of time units available per planning period. There is now the question of
reconciling the capacity constraint with the system dynamics constraint, which in-
volves determining at what point in time releases into the system in period t occupy
the capacity of the resource. Three logical constructions can be distinguished here:
(1) “lag before” models that assume that the resource capacity is occupied at the end
of the lead time of this operation, (2) “lag after” models where the resource capacity
is occupied at the beginning of the lead time, and (3) models that allocate the pro-
duction date (and the resource requirements) within the lead time and hence allow
production smoothing within the lead time. For “lag before” and “lag after” models
we refer to Hackman and Leachman (1989); models of type (3) are formulated in de
Kok and Fransoo (2003). For the discussion of the treatment of WIP, in the follow-
ing we describe the “lag before” models that assume that the releases Rt in period
t occupy the resource capacity in the period that the output is produced, implying
Xt D minfRt�� ; Ctg. This corresponds to the “lag before” models in Hackman and
Leachman (1989).

We can thus describe the behavior of this system in a given period t with the set
of constraints

Xt D Rt�� ;

It D It�1 C Xt � Dt ;

Xt � Ct : (16.3)

The first constraint is explicitly included for exposition; clearly in practice we would
make the substitution to eliminate one of the two variables from the formulation.
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Most common LP models for production planning will refer to “production”
variables Xt , but these generally correspond to releases into the production system,
with resource capacity being occupied � periods after the release has taken place.
Note that the amount of production that can take place in a given period is limited
by both the capacity Ct and the amount of work available for processing, given by
past releases Rt�� per the first constraint. Hence the amount of WIP Wt available
for the resource to process in period t is simply Rt�� . However, if we define WIP as
the inventory literature defines on-order inventory, as orders that have been released
but not yet completed, at the end of period t the production system in this model
will have a WIP level of

Wt D
tX

kDt��C1

Rk �
tC�X

kDtC1

Xk (16.4)

units of product. It is interesting to note that this quantity does not generally appear
in the constraints or objective functions of most common LP models of production
planning, although as seen above it is not difficult to model; an exception is the
model of Riaño et al. (2003). It is also interesting to note that only a portion of this
WIP, given by Rt�� , is actually available to the resource for processing in period t .

The deficiency of this model is rooted in its treatment of WIP. Essentially it
assumes that WIP will not accumulate in the system over time; the releases in period
t � � constitute the entire WIP available to the resource for processing in period t .
The releases are implicitly constrained not to exceed the capacity, so the system is
always able to process all its available WIP in a single period. The remainder of the
WIP, given by

tX

kDt��C2

Rk ; (16.5)

has no effect on the cycle time of the resource, which is always equal to the prespeci-
fied parameter � , and, as far as this model of production capacity goes, is completely
unrelated to the capacity Ct of the resource in a given period. All the lead time �

accomplishes is to delay the arrival of work at the resource after its release into the
system; it does not describe the behavior of the resource itself, which is assumed
in the capacity constraint to be able to process any amount of material up to the
capacity limit Ct in a given period. This also explains an interesting anomaly with
this type of model that positive dual prices for capacity constraints result only when
the capacity is fully utilized. However, queuing models repeatedly show that system
performance, especially as related to WIP levels and cycle times, often begins to
degrade at utilizations substantially below 1, implying the existence of situations
where even though a resource is not fully utilized, additional capacity at the re-
source might be beneficial to system performance, although adding that capacity
would not necessarily be economically desirable.
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To summarize this discussion, the conventional view of production capacity used
in MRP and most mathematical programming models results in an LP of the fol-
lowing form:

minimize
tX

tD1

.htIt C ct Rt / (16.6)

subject to

It D It�1 C Rt�� � Dt ; for t D 1; : : : ; T; (16.7)

Rt�� � Ct ; for t D 1; : : : ; T; (16.8)

Rt ; It � 0; for all t D 1; : : : ; T: (16.9)

As pointed out by Hackman and Leachman (1989), most LP models encountered in
practice will involve additional constraints specific to the application domain under
study, but the model above represents the essentials of inventory balance between
periods and aggregate capacity within periods. Note that because all rates are uni-
formly distributed over a planning period, ensuring nonnegative inventory levels
at the boundaries between periods is sufficient to ensure inventory is nonnegative
throughout the period.

Models that involve lot-sizing considerations may involve integer variables, but
the basic view of system capacity and lead times is usually not very different from
this. We have chosen a simple objective function, that of minimizing the sum of
production and inventory holding costs over the planning horizon. Clearly far more
elaborate objective functions are possible, but our emphasis in this chapter is on the
representation of production capacity and system dynamics. Finally, we note that
backlogging of any form is not allowed, again in service of our focus on the ability
of different sets of constraints to accurately represent the actual capabilities of the
production system.

We now examine some other approaches that have extended this basic model
without fundamentally altering its treatment of lead times.

16.4.2 Formulations Based on Lead Time Distributions

The basic assumption of a fixed lead time equal to an integer number of planning
periods has been relaxed by a number of authors. Leachman and his coworkers
(Hackman and Leachman 1989; Hung and Leachman 1996) have proposed mod-
els where the lead time associated with each planning period can be a fractional
number of planning periods. Their approach is essentially equivalent to assuming
a deterministic lead time distribution for the input in period t , which specifies the
fraction wit� of the amount of product i released in period t that will emerge as fin-
ished product in period � i.e., will have a lead time of � � t . An alternative approach
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is to consider the wi t� values as random variables whose probability distribution
depends on the state of the production system. We shall begin our discussion with
the workload-independent approach of Hackman and Leachman (1989), which has
formed the basis for several industrial implementations in the semiconductor in-
dustry (Leachman 1993; Leachman et al. 1996) and a number of other refinements
(Kim and Leachman 1994; Kim et al. 1996; Dessouky and Leachman 1997). A
number of authors have taken related approaches based on the use of planned
lead times (Spitter et al. 2005a, b). We shall then discuss the workload-dependent
model of (Riaño 2003; Riaño et al. 2003), and some related approaches (Voss
and Woodruff 2003; Lautenschläger and Stadtler 1998). The recent review paper
by Pahl et al. (2005) is also a good source for some of this material, in addition
to its discussion of the clearing function related methods presented in the next
section.

16.4.3 Workload-Independent Lead Time Distributions

In order to present the basic approach to modeling workload-independent lead time
distributions, we shall use the work of Hung and Leachman (1996) as the focus
of the discussion, although the approach was originally proposed by Hackman and
Leachman (1989). The basic formulation used is essentially the Step-Separated for-
mulation of Leachman and Carmon (1992), which requires estimated lead times
Lij required for a lot of product i to reach operation j after being released into
the plant. However, instead of fixed lead times that remain constant over the entire
planning horizon, the authors associate values of the lead time parameters with the
start of each planning period. In the following t D 0 is the start of period 1, t D 1

is the start of period 2, etc., that is, a time unit is the period length. The lead time
parameters are defined as follows:

Lijt Lead time required for a lot of product i to reach operation j if the lot reaches
operation j at the end of period t.D at time t/.

These lead times are allowed to take on fractional values. It is interesting to think
how one might estimate these time-dependent lead time parameters in the absence
of a production plan that defines the workload of the production resources over time.
The iterative technique of Hung and Leachman (1996) discussed below addresses
this issue directly.

Given these lead times, the loading of the production resource in period t is de-
fined by releases occurring in the time interval Q D Œ.t � 1/ � Li;j;t�1; t � Lijt�,
assuming planning period t starts at time .t � 1/. There are two cases to consider
here. In the first, simpler case, the time interval Q lies within a single planning
period

˙
.t � 1/ � Li;j;t�1

� D ˙
t � Lijt

�
where the dxe notation denotes the small-

est integer greater than or equal to x. In this case, the proportional share of the
amount released in period

˙
.t � 1/ � Li;j;t�1

�
arrives at operation j in period t .

This is consistent with the basic assumption of linear programming models that



16 Optimization Models of Production Planning Problems 455

activity intensities are uniformly distributed over the planning period, as discussed
by (Hackman and Leachman 1989). Hence the amount Yijt of product i loading
resources at operation j in period t is given by

Yijt D
 

.t � Lijt/ � �
.t � 1/ � Li;j;t�1

�

�

!
eijtRi;d.t�1/�Li;j;t�1e (16.10)

where � denotes the period length (which we set to 1 by definition), eijt denotes the
overall yield of product i from the start of the process to step j in period t . If, on
the other hand, the time interval Q spans multiple planning periods, we allocate the
load due to releases in that period in proportion to the fraction of that period’s total
duration included in the interval Q (again assuming uniform release rates within the
planning periods). This yields

Yijt D
 �d.t � 1/ � Li;j;t�1

�e � ..t � 1/ � Li;j;t � 1/

�

!
eijtRi;d.t�1/�Li;j;t�1e

C
dt�Lijt�1eX

�Dd.t�1/�Li;j;t �1eC1

eij�Ri�

C
�

.t � Lijt/

�
dt � Lijt�1e

�
eijtRi ; dt � Lijte (16.11)

The operation of this approach is illustrated in Fig. 16.3, from Hung and
Leachman (1996). The upper part of the figure shows the uniform release rates
in each planning period, while the lower graph shows the resource loading that
results from these releases arriving at the resource after the specified fixed lead
times. Releases in periods 2 and 3 contribute to the work input in period 3 at the
work center performing operation j corresponding to the first and the third term

Release
Rate

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

Output
Rate

Fig. 16.3 Relationship between releases and loading with time-dependent lead times
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in (16.11); the second term is not relevant here because the release interval Q

only spans the two periods 2 and 3. Note that the lead times are associated with
the boundary points between periods at the work center (not the boundary points
between the release periods), and hence the lead time at the start of a period may not
be the same as that at the end. The coloring indicates the correspondence between
the releases and the arrival of the material at the resource.

Note that with this approach, we can write the output of product i in period t ,
denoted Yit, as

Yit D
TX

�D1

Ri� wi� t (16.12)

where the wi� t values denote the fraction of releases in period � that contribute
to output in period t . This results in a linear constraint. Note that if we were able
to obtain the wi� t values correctly, we would no longer need an explicit capacity
constraint of the form

NX

iD1

aijYit � Ct (16.13)

since the weights wi t� would reflect the ability of the resource to produce output over
time. However, queuing theory tells us that these weights depend on the resource
utilizations, which are determined by both the WIP profile in the system and the
releases that are determined by the planning model in use.

An obvious solution to this dilemma is to embed the LP models using these lead
times in an iterative scheme where the releases obtained from the solution to the pro-
duction planning models are fed into a simulation model of the production facility to
evaluate the realized lead times they would impose on the production system. Such
approaches have been suggested in the literature, which we shall discuss below.

16.4.4 Iterative Approaches

The formulations described above based on workload-independent lead time distri-
butions suggest an iteration scheme where an initial set of lead time estimates is
used to create a plan, and the flow times that will be realized by the execution of
the plan are predicted using a simulation or queuing model. These predictions of the
realized flow times are then used to generate a new set of lead time estimates, with
the procedure continuing until the change in lead time estimates from one iteration
to the next is within some specified tolerance.

Specifically, recall that the output of product i in period t is estimated as

Yit D
TX

�D1

Ri� wi� t (16.14)
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where the wi� t values denote the fraction of releases in period � that contribute
to output in period t and are computed based on the lead time estimates Lit. At
the k’th iteration of the procedure, lead time estimates Lk

it are used to compute
weights wk

i� t : The execution of the resulting plan is then simulated to obtain a new
set of lead time estimates, and the procedure continues until convergence. It is worth
noting in passing that similar iterative techniques have been used in the job shop
scheduling literature to develop dispatching rules that consider the remaining time
until completion of a job at an intermediate stage of processing (Vepsalainen and
Morton 1987, 1988; Lu et al. 1994).

Hung and Leachman (1996) tested this iterative scheme using the workload-
independent lead time distribution described above and a simulation model of a
wafer fabrication facility. They examined the rate of convergence of the flow time es-
timates to the actual flow time values in the simulation, and found that convergence
to the correct expected flow time values can be quite rapid, but that the procedure can
fail to converge in some cases which are not fully understood. Irdem et al. (2008)
present an experimental study of the convergence of the method, which suggests
that for production systems at high utilization levels it can be difficult to confirm
convergence. This approach has the advantage of combining two off-the-shelf mod-
eling techniques, linear programming and simulation, that practitioners are likely to
be familiar with, in an iterative scheme that addresses the complex interdependency
of releases and lead times. However, the need for a simulation model of the facility
being planned requires both large amounts of data to construct and validate, and
also increases run time significantly. The authors discuss several ways to reduce the
computational burden of the simulation by focusing on highly utilized work cen-
ters. Hung and Hou (2001) substitute an analytical flow time prediction model for
the simulation in the iterative scheme, and report results that compare favorably
in convergence performance with those of the scheme using the simulation model.
Byrne and Bakir (1999) use an iterative technique (iterations between the produc-
tion planning model and a simulation model) to determine realistic estimates for
the available capacities, Byrne and Hossain (2005) present an extended production
planning model within this framework. Kim and Kim (2001) simultaneously update
flow times and available capacities using this iteration scheme.

A rather different iterative technique has been proposed by Riaño(Riaño 2003;
Riaño et al. 2003), where the wi� t values are estimated using a model of the transient
behavior of a queuing network. In order to present the basic idea of the approach, we
shall consider its application to a work center consisting of a single server; the exten-
sion of this model to multiple stages and servers is discussed in Riaño et al. (2006).

Riaño’s approach is to consider the system from a queuing perspective. A job
released into the production system at time s will see Q.s/ jobs ahead of it in the
queue or in process. Hence the flow time of that job will be given by

W.s/ D
Q.s/X

kD2

Sk C S1; (16.15)
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where Sk; k D 2; : : : ; Q.s/ denote the processing times of jobs ahead of this job
in the queue, and S1 the residual (remaining) processing time of the job currently
in process. The distribution function of the flow time of the job introduced into the
system at time s is then given by

G.s; t/ D
1X

nD0

F1 � F n�.t/P fQ.s/ D ng; (16.16)

where F1 denotes the distribution function of the residual processing time of the
job currently in process, “�” denotes convolution, and F n� the n-fold convolution
of the processing time distribution F at the server. Note that G.s; t/ describes a
state-dependent flow time distribution that depends on the number of jobs Q.s/ in
the system at the time s the job was released. We wish to develop an approximation
to this function that will allow us to calculate approximate values of the weights
wst that relate the input in the s-th interval with the cumulative output by time t .
These weights can be used to estimate the output of the resource under a particu-
lar release pattern. To develop such an approximation, the author assumes that this
time-dependent lead time distribution will have the same form as the steady-state
distribution function of the waiting time for an M /G/1 queue, which is given by

.1 � �/

1X

nD0

�nF n�
e .t/; (16.17)

where Fe is the equilibrium residual processing time distribution, derived assuming
that the time a new job enters the system is uniformly distributed over the service
time. This suggests an approximation of the form

G.s; t/ D F1 � .1 � ˇ.s//

1X

nD0

ˇ.s/nF n�
e .t/; (16.18)

where ˇ.s/ denotes a time-dependent traffic intensity. Noting that if we assume the
service time distribution to be phase-type, then G.s; t/ will also be phase type, the
author suggests heuristic estimates of ˇ.s/, obtaining an approximation for G.s; t/

that depends only on the expected WIP level at time s, denoted by �.s/ and its
time derivative �0.s/. Hence, to make the approximation to G.s; t/ we now need
a viable technique for estimating �.s/ and �0.s/. This clearly depends on the pat-
tern of releases into the production system, and so a recursive technique is used.
Given a release pattern, we can compute estimates of �.t/ for every planning pe-
riod t in a recursive manner, starting from period t D 1 and moving forward in time.
If the processing time distribution at the server is phase-type (see, e.g., Neuts 1981),
the author shows that these computations can be performed in an efficient manner.
The resulting approximation to G.s; t/ yields approximate values of the wst , which
now correspond to the probability that a job released in period s will complete in
period t . The author suggests a successive approximation method to compute the
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weights, where for a given release pattern the weights are first estimated and then a
planning problem is solved to estimate WIP levels. These new WIP levels are used
to estimate new weights until the estimates of weights converge.

The larger pattern of the iteration is now clear: we begin with an initial release
pattern and calculate initial estimates of the wst . We then calculate a new release
pattern using these weights, and repeat until, hopefully, convergence is achieved.
As with the approach of Hung and Leachman (1996), the convergence behavior of
this procedure is not well understood; when it converges, it converges quite rapidly
but in other cases it can cycle through a limited number of solutions. Further ex-
perimental and theoretical work is necessary to understand this convergence issue,
but the overall approach stands as a very interesting and novel approach to modeling
workload-dependent lead times in production planning, with a strong theoretical un-
derpinning. Interesting discussions in this direction are given by Hackman (2008).

16.4.5 Workload-Dependent Lead Time Models

A major disadvantage of the approaches with fixed lead times or lead time distri-
butions is their failure to consider the relationship between resource utilization and
lead times. The iterative approaches described above attempt to restore this relation-
ship by using a simulation or queuing model of the plant to estimate the effects of
the planned releases on the lead times, but the underlying optimization formulation
retains this basic flaw. A number of authors have developed models that allow lead
times to vary according to the resource utilization, where the models include some
mechanism that selects an appropriate lead time for each planning period based on
the resource loading in that period.

An interesting area that is closely related to production planning but has not been
widely explored in this context is that of dynamic traffic assignment models (Peeta
and Ziliaskopoulos 2001). The objective of these models is to manage the routing
of vehicles through a road network in order to optimize some measure of perfor-
mance. Clearly, individual traffic links (road segments) are subject to congestion,
and hence considerable effort has been devoted to developing formulations that cap-
ture this characteristic, as well as mathematical models of the relationship between
the volume of flow on a traffic link and the velocity of that flow.

One way to model congestion in traffic links is time–space links (Carey and
Subrahmanian 2000). If two nodes i and j of a traffic network are connected by
a spatial link (e.g., a road segment), this two-node-network can be expanded over
time, which yields a network of time–space nodes (see Fig. 16.4). A time–space link
is a connection between time–space nodes. The flow through a time–space link rep-
resents the numbers of vehicles that pass the nodes at the respective times and hence
require the respective traversal time.

If congestion is modeled as a link traversal time that increases with flow through
the link, this can be represented as capacities of the time–space links leaving node
i at time t (maximum flow on time–space link (i; t)) that depend on the flow
through node i at time t , i.e., the inflow to the time–space links leaving node (i; t).
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Fig. 16.4 Conservation of flows xjt� on a time expanded network (Carey and Subrahmanian 2000)

In the model of Carey and Subrahmanian (2000) the capacities of two time–space
links leaving node (i; t) are usually greater than zero and the other time–space links
are closed for the given inflow. As the inflow increases, the time–space links with
positive capacities move to higher traversal times, implying a flow-dependent traver-
sal time distribution that is stationary over time for a given inflow. The traversal time
through a spatial link can be considered analogous to the flow time at a work center,
and models with similar structure have been developed for order release planning in
manufacturing.

A similar approach is described in Lautenschläger (1999). In order to consider
load-dependent lead times for master production scheduling, the model determines
the fraction of the planned production in a period t that has to be started one period
ahead, in period .t � 1/. This fraction is a function of the planned utilization. Thus
production on a resource can be performed in two modes, one with lead time of
zero periods and the other with lead time of one period. The maximum production
volumes that can take place in each mode are limited, which leads to a utilization-
dependent lead time distribution.

Another related model has been proposed by Voss and Woodruff (2003). These
authors assume a steady-state relationship between the utilization of a resource and
the expected lead time at that resource. The basic idea is to discretize this curve and
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use integer variables to construct constraints that ensure that only one segment of
the discretized curve is active in a given time period.

In order to implement this formulation, the relationship between utilization and
expected lead time is evaluated at discrete utilization levels BPr , r D 1; : : :, R. Let
Lr denote the expected lead time value associated with the r’th utilization level BPr ,
i.e., the expected lead time of the resource is assumed to be Lr while the utilization
level is between BPr and BPr�1. The authors suggest setting the breakpoints BPr

such that each lead time Lr corresponds to an integer number of periods. If we now
define the fraction of the available capacity of the resource required for one unit of
product j , j D 1; : : : , P , as aj , and Rjt to be the amount of product j released in
period t , the workload (utilization) of the resource in period t is given by

�t D
PX

j D1

aj Rjt: (16.19)

We now define binary variables ytr that select a particular lead time value Lr to be
active in a given period t as follows:

Lt D
RX

rD1

ytrLr ; for all t; (16.20)

RX

rD1

ytr D 1; for all t: (16.21)

Additional constraints of the form

RX

rD1

BPrytr �
PX

j D1

aj Rjt; for all t (16.22)

are required to ensure that the lead time selected is consistent with workload. In
addition, for any given period t , we require Lt –LtC1 � 1, giving

RX

rD1

yt;rLr �
RX

rD1

ytC1;rLr � 1; for all t: (16.23)

This latter constraint is interesting in that it restricts the decrease in lead time from
one period to the next to at most one period to avoid overtaking, i.e., material re-
leased into the system at a later time emerging before material released earlier.
Similar difficulties arise in dynamic traffic assignment problems (e.g., Carey and
Subrahmanian 2000).

To complete the formulation, the authors present an objective function that in-
cludes an explicit holding cost for WIP, based on Little’s Law (see, e.g., Hopp and
Spearman 2001), leading to the term

TX

tD1

PX

jD1

hjt

RX

rD1

ytrLrRjt: (16.24)
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This objective function is now nonlinear due to the product of the ytr and Rjt ,
leading to a formulation that is computationally hard to solve.

16.4.6 Discussion of Models Based on Lead Time Distributions

While these models address the load-dependent nature of lead times directly, there
are several shortcomings of these models:

� All the models described above assume the existence of a well-defined relation-
ship between the workload or utilization of a resource and the expected lead time
of that resource in that period. However, given that the planning models assume
discrete planning periods of a fixed length and that the releases of work into the
resource are varying over time, it is quite possible that the lead time incurred
by work released in a given period may deviate quite substantially from that sug-
gested by a long-run steady-state average relationship. The work of Riaño (2003)
is a significant exception, explicitly addressing the transient nature of the queues
involved, and thus merits further study.

� If the amount of work released decreases sharply from period t to period t C 1,
the estimated lead time for the orders can decrease by more than one period from
t to t C 1, implying overtaking (Voss and Woodruff 2003, p. 165; Carey and
Subrahmanian 2000). This is unlikely to occur in practice and indicates that the
models can lead to unrealistic results. Voss and Woodruff (2003) add a constraint
that keeps the lead time from decreasing by more than one time bucket from t

to t C 1, but this excludes decision alternatives and is not satisfactory from a
theoretical point of view.

A number of researchers have proposed alternative approaches to these problems
by developing formulations that do not consider the relationship between lead times
and resource utilization explicitly, but instead use a relationship between the ex-
pected WIP level of a resource and its expected output in a given planning period.
These clearing function based models will be discussed in the next section.

16.5 WIP-Based Models

The models discussed in the previous section all approach the problem of model-
ing the behavior of the production resource by computing a distribution of the lead
times, a relationship between the time the work is released into the facility and the
time it becomes available for consumption by the next stage. The distinguishing
feature of this approach is the presence of a set of constraints implementing a lead
time distribution used across different time periods, specifically in the material bal-
ance constraints. We now turn our attention to models where the lead time behavior
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of the production resources is not represented in the balance constraints, but by
introducing nonlinear terms in the constraints or the objective function. The former
class of models introduce nonlinear constraints (that may be linearized for com-
putational purposes) representing the relationship between some measure of the
expected WIP level (including jobs in queue and in process) in front of the pro-
duction resource in question over a planning period and the expected output of the
resource over the planning period. These formulations, which we shall term Clear-
ing Function models, are discussed extensively in the next section, and generally
result in models with linear objective functions and convex nonlinear constraint
sets. The latter, which we shall term WIP Cost formulations, use queuing analy-
sis to develop an expression for the expected WIP holding cost which is then added
to the objective function of the model. These formulations, by contrast, tend to yield
models with convex nonlinear objective functions.

A fundamental difference between these models and those discussed up to this
point is their explicit representation of WIP. In the LP formulations discussed until
this point, although it is possible to recapture planned WIP levels as the difference
between cumulative releases and cumulative output, the WIP level has no effect
on the behavior of the production resource. The exception to this is the transient
queuing-based approach of Riaño (Riaño 2003; Riaño et al. 2003) and the respective
simulation-based approaches, but even in this case the WIP enters the formulation
only through its role in determining the lead time distribution. The WIP-based mod-
els, on the other hand, explicitly represent the WIP level in front of the resource in
a planning period with distinct material balance equations, in addition to the bal-
ance equations for finished goods inventory (FGI) included in the conventional LP
formulations.

We believe that this explicit distinction between WIP and FGI leads to substan-
tially richer models, since the two types of inventory serve different purposes and
are controlled in different ways. If we anticipate a seasonal surge in demand in the
future, our production planning model must ensure that we have sufficient FGI in
place in time to meet the demand. Thus, FGI levels can be planned, and are an out-
put of the planning process. On the other hand, the WIP levels are a consequence
of our release decisions, and determine to a great extent the flow time and through-
put performance of the production resource. WIP levels must be managed to ensure
timely production at minimum cost, while FGI must be planned to ensure effective
satisfaction of demand at minimum cost. Thus the explicit separation and model-
ing of these two different types of inventory offers the potential for significantly
richer production planning models. The separation of WIP and FGI also has impli-
cations for developing production planning models that consider uncertainties, since
in practice some of the functions of safety stocks can be assumed by WIP; we shall
discuss this aspect in more detail in Sect. 16.8.

The models described in this section explicitly represent the flow of WIP through
a production unit. They differ from the previous models in that they relate the out-
put from a resource in a given planning period to some measure of the WIP level
at the resource during the period. Thus the nonlinear relationships between decision
variables arising from the presence of congestion are represented in the constraints
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rather than in the objective function. We first describe the generic structure common
to most models of this type and then concentrate on the technique used to incorpo-
rate the relationship between WIP, flow time, and output.

In models of this type, work centers are represented explicitly, and the material
flow from order release through the required work centers and to the inventory of
the final products or SKU’s is represented by inventory balance equations. As in all
models considered until now, material is modeled as a continuous medium, com-
parable to a fluid. Thus the approach is similar to fluid approximation in queuing
theory (Kleinrock 1976, p. 60; Chen and Mandelbaum 1991) and to fluid relaxation
in job-shop scheduling (Bertsimas and Sethuraman 2002; note that these fluid re-
laxation models are in continuous time and are usually deterministic). The planning
horizon is again divided into discrete planning periods.

A variety of authors have discussed the relationship between system through-
put and WIP levels. This is usually in the context of queuing analysis, where the
quantities being studied are the long-run steady-state expected throughput rate and
WIP levels. An example of this work is that of Agnew (1976), who studies this type
of behavior in the context of optimal control policies. Spearman (1991) presents
an analytic congestion model that describes a clearing function for closed pro-
duction systems with processing time distributions with increasing failure rates.
Standard texts on queuing models of manufacturing systems, such as Buzacott and
Shanthikumar (1993), can be used to derive the clearing function – if not analyt-
ically, then at least numerically. Hopp and Spearman (2001) provide a number of
illustrations of clearing functions for a variety of systems; for example, the rela-
tionship between WIP and throughput given in their practical worst case analysis
represents a particular type of clearing function. Srinivasan et al. (1988) derive the
clearing function for a closed queuing network with a product form solution. It is in-
teresting to note that the concept of the clearing function has much in common with
concepts developed in the dynamic traffic assignment literature. One such concept
is that of the exit function, which defines the output of a traffic link in a time period
as a function of the amount of traffic on the link at the start of the period (Merchant
and Nemhauser 1978a, b; Carey 1987).

While the basic concept of a clearing function is quite intuitive, defining and im-
plementing this concept in a rigorous and theoretically consistent manner is subject
to some quite subtle difficulties that are not straightforward to resolve. Hence we
will first discuss how optimization models of production planning problems may be
formulated using clearing functions, assuming a valid clearing function can be gen-
erated. We shall then discuss the issues involved in estimating the clearing functions
themselves.

16.5.1 Clearing Function Formulations

In its usual form the clearing function yields the expected aggregate output of a work
center (e.g., hours of work, aggregated over the products) as a function of a suitable
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measure of WIP, aggregated over the products. This WIP measure can be the average
WIP of the period, the average WIP over a longer time (e.g., two periods), or the
total available work of the period (termed load, defined as initial WIP plus input
during the period). It is commonly assumed, based on both theoretical and empiri-
cal arguments discussed in the next section, that the clearing function is a concave
nondecreasing function of the WIP measure used to define it. Our discussion in this
section will closely follow the development by Asmundsson et al. (2009).

To illustrate this approach, we begin by extending the single-product single-stage
formulation of Karmarkar (1989) to multiple products, which can be stated using the
following notation:

Xi t D number of units of item i produced in period t ,
Ri t D number of units of item i released into the stage at the beginning of period t ,
Wi t D number of units of item i in WIP inventory at the end of period t ,
OWi t D WIP measure used for the clearing function and defined in separate constraint

(e.g., OWi t D Wi;t�1 C Ri t ),
Ii t D number of units of item i in finished goods inventory (FGI) at the end of

period t ,
�i t D time required to produce one unit of item i at the resource.

Let ft . OW / denote the clearing function that represents the resource in period t ,
with W denoting the WIP measured in units of time (i.e., Wt D P

i �it OWit),
and Dit the demand for item i (in units) in period t . Then a naive extension of
Karmarkar (1989)’s single-product formulation to multiple products is

min
X

t

.�i tXi t C !i tWi t C �i tIi t C �i t Ri t /; (16.25)

subject to

Wi t D Wi;t�1 � Xi t C Ri t ; for all i; t; (16.26)

Ii t D Ii;t�1 C Xi t � Di t ; for all i; t; (16.27)

X

i

�i tXi t � ft

 
X

i

�i t
OWi t

!
; for all t; (16.28)

Xi t ; Wi t ; Ii t ; Ri t � 0; for all i; t; (16.29)

where �i t ; !i t ; �i t , and �i t denote the unit cost coefficients of production, WIP
holding, finished goods inventory holding, and releases (raw materials) respectively,
and �i t the amount of the resource (machine time) required to produce one unit of
product i in period t . Note that the argument of the clearing function in constraint
(16.28) is the total WIP level over all products i expressed in units of time (or,
equivalently, workload). The first two sets of constraints enforce flow conserva-
tion for WIP and FGI separately. Since the formulation distinguishes between WIP
and FGI, flow conservation constraints are required for both. Constraints (16.28)
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represent the capacity constraint. Another interesting characteristic is that lead times
do not appear in the formulation; they are represented implicitly by the nonlinear ca-
pacity constraints (16.28).

While this formulation appears intuitive, it can create significant modeling prob-
lems when applied in multiple product environments. Consider a situation where
the system produces two products A and B, which consume capacity at the pro-
duction resource in different amounts. The capacity constraint can be expressed as
XA C XB � f . OWA C OWB/.

A solution with
XA > 0; XB D 0; OWA D 0; OWB > 0

may exist, despite the fact there is no WIP in the system that can be converted into
finished product A. Hence the optimal solution to this formulation can maintain
high WIP levels of the product for which it is cheapest to do so, using the capacity
generated by this device (i.e., the high value of the clearing function attained by
holding high WIP of the cheap product) to hold very low or no WIP of all other
products. An alternative way of expressing this difficulty is that there is no link
between the mix of WIP available in the period and the output mix during the period.

Asmundsson and his coauthors (Asmundsson et al. 2006, 2009) propose an ap-
proach in which the no-passing requirement is enforced on average rather than at the
level of individual jobs. To do this, they assume that the mix of output will reflect
the mix of WIP. This is equivalent to assuming a service discipline at the queue rep-
resenting the production resource where no product is given priority over another.
After some analysis described in detail in Asmundsson et al. (2009) this yields the
following formulation:

min
X

t

.�i tXi t C !i tWi t C �i tIi t C �i t Ri t /; (16.30)

subject to

Wi t D Wi;t�1 � Xi t C Ri t ; for all i; t; (16.31)

Ii t D Ii;t�1 C Xi t � Di t ; for all i; t; (16.32)

�i tXi t � Zi tft

 
�i t

OWi t

Zi t

!
; for all i and t; (16.33)

X

i

Zi t D 1; for all t; (16.34)

Xi t ; Wit; Ii t ; Ri t ; Zi t � 0; for all i; t: (16.35)

This formulation will be referred to as the Allocated Clearing Function (ACF)
model. The Zi t variables denote the fraction of the maximum possible output de-
fined by the clearing function allocated to product i in period t . The intuition is that
we wish to obtain a constraint that links the production of a given product to the
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WIP level of that product alone, but the clearing function is defined in terms of the
total WIP at the resource. This is, of course, what causes the difficulty described
above: a high total WIP may result in a high maximum output level for the resource
in a period, and the model may allocate this output in a manner that violates con-
tinuity of material flow. Assuming that all products at a resource will see the same
expected lead time allows us to estimate the total WIP at the resource by the expres-
sion given as the argument of the clearing function in (16.33). The Zi t variables thus
serve the dual purposes of scaling up the WIP for product i inside the parentheses
of (16.33) to obtain a surrogate for total WIP on which the clearing function can
operate, and then computing a fractional capacity for product i by multiplying the
results. Asmundsson et al. (2009) prove that the total production of individual prod-
ucts will not exceed that suggested by the aggregate clearing function as suggested
by (16.28).

The above formulation is a convex nonlinear program, due to the concave nature
of the clearing function on the right hand side of constraints (16.33). However, an
interesting and useful consequence of the partitioned formulation above arises when
the concave clearing function is approximated using outer linearization. Since we
assume the clearing functions are concave, they can be approximated by the convex
hull of a set of affine functions of the form

˛c
X

i

�i t
OWi t C ˇc (16.36)

as
f . OWt / D min

c
f˛c OWt C ˇcg: (16.37)

The c D 1; : : :; C index represents the individual line segments used in the approx-
imation. In order to represent the concave clearing functions appropriately, we shall
assume that the slopes of the line segments are monotonically decreasing, i.e.,

˛1 > ˛2 > : : : > ˛c D 0: (16.38)

The slope of the last segment is set to zero to indicate that the maximum throughput
capacity of the node has been reached, and adding WIP cannot increase throughput
any further. To ensure that production cannot take place without some WIP being
present, we impose the condition ˇ1 D 0 to ensure that the first line segment will
pass through the origin. The capacity constraint in the CF formulation can now be
replaced by the set of linear inequalities

X

i

�i tXi t � ˛c OWt C ˇc ; for all c and t: (16.39)

Using this outer linearization to approximate the PCF model yields the following LP:

min
X

t

X

i

.�itXit C !itWit C hitIi t C �itRit/; (16.40)
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subject to

Wit D Wi;t�1 � Xit C Rit; for all i and t; (16.41)

Iit D Ii;t�1 C Xit � Dit; for all i and t; (16.42)

�itXit � ˛c�it OWit C Zitˇ
c ; for all i; t; and ; c; (16.43)

X

i

Zit D 1; for all t; (16.44)

Zit; Xit; Wit; Iit � 0; for all i and t: (16.45)

Notice that summing the set of constraints (16.43) over all i gives constraint (16.39),
guaranteeing that the original constraint is satisfied. A consequence of the partition-
ing of the clearing function is that the clearing function constraint becomes linear,
even with the Z-variables that were originally in the denominator since

Zitf

 
�it OWit

Zit

!
D Zit min

c

(
˛c �it OWit

Zit
C ˇc

)
D min

c
f˛c�it OWit C ˇcZitg: (16.46)

In their experimental implementation, Asmundsson et al. (2006) assume the clear-
ing function depends on the average WIP level over the time period, which they
approximate as

OWit D 1

2
.Wi;t�1 C Wit/:

16.5.2 Extensions to Multistage Systems

So far the clearing function formulations have been presented for a single-stage
production system. In order to extend this to a multistage system, a number of ex-
tensions must be included. Since the model requires explicit modeling of WIP at
each stage in order to compute the clearing function at each stage, we must repre-
sent the movement of material between stages; the output of one stage flows into
the WIP of another. Another worthwhile enhancement is to distinguish between
work centers that are potential bottlenecks and those that are unlikely to encounter
significant congestion phenomena. The former can be represented explicitly using
clearing functions, while the latter can be modeled using some form of workload
independent delay, such as a fixed lead time, or a higher order delay as suggested by
(Missbauer 2002a). While we assume in this model that groups of similar products
are aggregated into product groups of families, the basic structure of the formulation
remains the same if products are modeled individually, although, of course, a much
larger formulation may result. We use the following notation:
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Variables:

Wjmt – Work of product group j waiting at work center m at the end of period t .
Ijt – Finished goods inventory of product group j at the end of period t .
Rjt – Released work of product group j in period t .
Xjmt – Output of product group j from work center m in period t .

Note that for exposition we avoid the constants � of the above formulation and
measure the variables in units of time (e.g., hours of work). Hence Ijt and Rjt are
measured in hours of work, and Wjmt and Xjmt are measured in hours of work at
work center m.
Parameters:

Djt – Demand for product group j in period t (measured in hours of work).
Cmt – Capacity of work center m in period t .
Qpjim� Average amount of work arriving at work center m when one unit of product

group j is finished at work center i .
zjim� – Proportion of the output of product group j from work center i to work

center m that arrives at m in � periods after completion at i . These are not in-
cluded to capture congestion-related lead times, but rather to represent delays
such as shipping or flow through non-bottleneck work centers that are not sub-
ject to significant congestion effects, similar to those modeled by Hackman and
Leachman (1989).

As for the single stage models, this formulation requires separate flow balance
equations for WIP and FGI at each stage

Wjmt D Wj;m;t�1 C
MX

iD1

1X

�D0

Xj;i;t�� Qpjimzjim�

C
1X

�D0

Rj;t�� Qpj0mzj0m� � Xjmt; for all j; m; t: (16.47)

These constraints model the flow of WIP at the bottleneck work centers. The sources
of input are the output of the other work centers and the release of orders. The
work input can be delayed by transportation, non-bottlenecks (see below), etc. Work
center i D 0 denotes the beginning of the line where order release takes place. The
finished goods inventory is then represented as

Ijt D Ij;t�1 C
MX

mD1

1X

�D0

Xj;m;t�� Qpjm0zjm0� � Djt; for all j and t: (16.48)

Note that inflows into FGI can also be delayed after completing their last production
operation. Work center index 0 in p and z denotes the completion of the product.

Constraints (16.47) and (16.48), together with an appropriate objective function,
the clearing function-based capacity constraints (16.43) for the bottleneck work
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centers and the partitioning constraints (16.44), constitute a complete clearing
function-based formulation for a multiproduct, multistage production system.
Asmundsson et al. (2006, 2009) give a slightly different formulation that is based
on Hackman and Leachman (1989), where an additional set of decision variables
is added to represent material transfer between stages; note the formulation above
assumes that material transfer to the next stage begins directly upon completion of
processing at the current stage.

The computational results obtained using the clearing function formulations are
quite promising, although more experimentation is clearly needed to be able to draw
strong conclusions. Probably the most complete studies of these formulations at
present are those of Asmundsson et al. (2006, 2009). The later study examines the
performance of clearing function formulations in simple serial production systems,
and concludes that when the clearing function is correctly estimated the clearing
function formulations produce production plans that are much more aligned with the
ability of the plant to execute them compared to models with fixed lead times. This
study describes a systematic procedure for estimating the clearing functions from
simulation data and fitting to the functional form (16.58) below using a nonlinear
optimization algorithm. Asmundsson et al. (2006) compare the performance of the
clearing function formulations to that of a conventional LP model in a reentrant line
derived from a semiconductor wafer fabrication facility, and find that even when
a simple visual technique is used to fit the clearing functions to the data, the CF
models yield significantly better on time delivery than the LP models with fixed
lead times.

16.5.3 Estimation of Clearing Functions

The reader will have noted that until now we have described formulations that make
use of the clearing function concept but have not discussed how the clearing func-
tions are estimated. In this section we provide a more formal definition of clearing
functions and discuss this very important issue.

A clearing function, introduced by Graves (1986), can be defined as either the
expected or maximum output of a work center (a relatively homogeneous group of
production resources scheduled as a unit) in period t as a function of some measure
of WIP (e.g., average WIP or planned available work) in period t and the maximum
capacity of the work center Cit. In the following discussion we shall use as the WIP
measure the load of work center i in period t , denoted by Ai t , defined as the WIP at
the beginning of period t plus the planned work release Rit in period t3. Thus, the
load (total available work) at work center i in period t is given by

3 This assumes a production unit consisting of a single work center, which we assume for exposi-
tion. For a multistage system as in Sect. 16.5.2, the work release Rit is replaced by the work input
from release and from the other work centers as in (16.47).
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	it D Wi;t�1 C Rit: (16.49)

The clearing function for work center i is then a functional relationship of the form

Xit D fi .Wi;t�1 C RitI Cit/ (16.50)

Note that in conventional LP models, only the maximum capacity Cit would be
considered in a capacity constraint.

This approach has been followed by the majority of researchers proposing mod-
els of this type (e.g., Karmarkar 1989; Missbauer 2002a; Selçuk et al. 2007). The
clearing function models the impact of the fact that the actual load (available work)
is a random variable at the time of planning and thus can be lower than the planned
value, and work arriving during the period can arrive later than expected and thus
cannot be processed during the period. Uzsoy and his coworkers (Asmundsson
et al. 2006; Hwang and Uzsoy 2005) have adopted a slightly different approach
where the clearing function is defined as a function of the expected, time–average
WIP level during the planning period (see Sect. 16.5.1). While this difference in
approaches requires some modifications to the details of the formulations and the
procedures used to estimate the clearing functions, the basic structure of the ap-
proach remains the same.

Figure 16.5, derived from Karmarkar (1989), depicts several examples of clear-
ing functions considered in the literature to date, where X denotes the expected
throughput in a planning period. The “constant proportion” linear clearing function
of Graves (1986) and Parrish (1987) allows unlimited output in a planning period,
but ensures fixed lead time. This type of clearing function is not generally applica-
ble to order release models, because it can yield capacity-infeasible output levels
at high levels of WIP. Alternatively, it requires an assumption that the production
rate of resources can be managed such that the fixed lead time is always maintained.

WIP

X

X = W/LX =W/p

X=C
CF

Fig. 16.5 Examples of clearing functions (from Karmarkar 1989)
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However, by linking production rate to WIP level, it differs from the fixed delays
used in most LP models, where the output of a production process is simply the
input shifted forward in time by the fixed lead time. Orcun et al. (2006) illustrate the
differences in the transient behavior of the production system under this and several
other clearing function models.

The horizontal line XD C corresponds to a fixed upper bound on output over
the period, but without a lead-time constraint it implies that production can oc-
cur without any WIP in the system if work input and production are synchronized.
This is reflected in the independence of output from the WIP level, which may
constrain throughput to a level below the upper bound by starving the resource.
This approach is implemented in, for example, the MRP-C approach of Tardif
and Spearman (1997) and most LP approaches such as that of Hackman and
Leachman (1989), but is supplemented with a fixed lead time as described in
Sect. 16.3. The linear clearing function of Graves (1986) is represented by the
X D W=L line, which implies a lead time of L periods that is maintained in-
dependently of the WIP level. Note that if WIP and output are measured in the
same time units (e.g., hours of work), the slope of the proportional part of the func-
tion is 1=L, where L is the average lead time. However, as seen in the figure, this
model may suggest infeasible output levels when WIP levels are high. If a fixed
lead time is maintained up to a certain maximum output, we have the relationship
X D minfW=L; C g. When the parameters of the Graves clearing function are set
such that the lead time is equal to the average processing time, with no queuing
delays at all, we obtain the line X D W=p; where p denotes the average process-
ing time. Assuming that lead time is equal to the average processing time up to a
maximum output level gives the “Best Case” model X D minfW=p; C g described
in Chap. 7 of Hopp and Spearman (2001). It is important to note that the workload-
independent fixed lead time discussed in Sect. 16.4 differs from the linear model of
Graves in that the former does not link output to WIP, while the latter does. Orcun
et al. (2006) illustrate the differences between these models using system dynamics
simulations.

It is apparent from the figure that the clearing function always lies below the
X D W=p and X D C lines. For most capacitated production resources subject
to congestion, limited capacity leads to a saturating (concave) shape of the clearing
function. It is important to note that the nonlinear shape of the clearing function is
not purely due to the presence of random variability in arrival and service processes
at the production resource but can arise even in completely deterministic capacitated
production systems, as shown in Karmarkar (1993). A number of recent papers (e.g.,
Asmundsson et al. 2009; Selçuk 2007) provide analytical support for the concave
shape of the clearing function (see Sect. 16.5.3.1).

We now discuss techniques for estimating the clearing function associated with
a set of production resources.
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16.5.3.1 Analytical Approaches

A common approach to estimating clearing functions is to derive them using
steady-state queuing analysis. It can be shown that for the M=G=1 model in steady
state, the average throughput E.X/ is related to the expected WIP level E.W / as
follows:

E.X/ D C � E.W /

E .W / C k
(16.51)

where

k D 
�2

2
C 1

2

(16.52)

Here 1=
; �2 denote the mean and variance of the processing time distribution and
C the maximum capacity per period of the resource in hours of work. This is the
same functional form as in Karmarkar (1989) (16.57 below), but (16.57) relates the
output of the resource in period t to its load in period t , and the functional form of
(16.57) is not supported by queuing models. (Missbauer 2002a) shows that for the
M=G=1 model in equilibrium, the expected output EŒXt � and expected load EŒ	t �

of a work center are related as follows:

EŒXt � D 1

2
.C C k C EŒ	t �

�
p

C 2 C 2C k C k2 � 2 C EŒ	t � C 2k EŒ	t � C EŒ	t �2: (16.53)

The parameter k can be calculated analytically using (16.52) for the M=G=1 model,
but can also be determined from empirical data or from simulation results.

For single-server work centers it seems reasonable to use (16.53) as a regression
function with k and possibly also C as parameters. This need not be the case for
multiple-server work centers, because in this case the first derivative of the aver-
age flow time with respect to the average WIP level is very low for low levels of
WIP, where servers can be expected to be idle and the average waiting time is close
to zero; this shape can be seen in Fig. 16.1). In this region the clearing function is
nearly linear; the average flow time being insensitive to WIP implies a linear clear-
ing function according to Little’s Law (see Graves 1986 for the proof for the case
of a discrete-time clearing function), which is not covered by (16.53). If the clear-
ing function is approximated by piecewise linearization as discussed in the previous
section, this is not a big problem.

The clearing function formulation (16.53) is derived from a steady-state model,
which is a severe limitation. Selçuk (2007) derive a clearing function for a pro-
duction resource with exponentially distributed service times, assuming the work
available for the period is available at the time it is required for processing, without
requiring steady state. They prove that this clearing function, which they refer to
as a short-term nonlinear clearing function, is concave in the resource load defined
above. Asmundsson et al. (2009) generalize this result. The general problem of de-
termining a theoretically consistent clearing function for a single period without
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steady-state assumption for stochastic arrival and departure processes is largely
unsolved and an important research topic, which we discuss further in Sect. 16.5.4.

Based on this discussion, we will be interested in clearing functions of the form
Xit � fi .	it) with the following properties:

fi .	it/ � 	it for 	it � 0 (16.54)

dfi .	it/

d	it
� 0; for	it � 0; (16.55)

lim
�it!1 fi .	it/ D Cit: (16.56)

The use of nonlinear clearing functions requires consideration of the optimization
technique used to obtain solutions to the resulting formulations. Piecewise lin-
earization is frequently used (Missbauer 1998, 2002; Asmundsson et al. 2006). If
the clearing function is nonlinear and concave, models of a reasonable size can
be solved by nonlinear programming since they generally result in formulations
with convex constraints and objective functions. Hwang and Uzsoy (2005) dis-
cuss a clearing function model of this type including lot sizing, while Srinivasan
et al. (1988) discuss possible solution techniques for their model that involves non-
linear clearing functions. Continuous-time models that assume a deterministic flow
at the work centers (fluid relaxation) can be solved either by exact methods (e.g., for
the makespan objective, see Bertsimas and Sethuraman (2002) or heuristically (e.g.,
for the holding cost objective; see Bertsimas et al. (2003). Continuous-time models
are not considered because the integration of clearing functions into these models
has not yet been studied and remains a topic for future research.

Empirical work to date (e.g., Asmundsson et al. 2009) suggests that optimiza-
tion models of aggregate material flow can be quite sensitive to the properties of
the clearing function, especially when at high WIP levels the maximum output de-
creases. This is often encountered in modeling traffic flows, where it takes the form
of a flow-density relation as seen in Fig. 16.6 that relates the density of the traffic on
the link to the flow velocity of traffic through the link. In our production planning
context, density corresponds to WIP and flow velocity to output rate. The chapter in
this handbook by Armbruster and Lefeber presents a number of models where this
type of approach is used to develop continuum models of flow through a manufac-
turing system in a manner analogous to that used to study traffic flows.

In manufacturing systems a decrease in output at high WIP levels can occur in
two cases: (1) when workers work less efficiently under high pressure or (2) when
long queues, and hence long average flow times, threaten due-date performance
and require preemptive sequencing rules in order to pull ahead urgent orders re-
ducing capacity due to additional setups. This can lead to solutions that must be
considered infeasible if an appropriate arrival rate control policy is not applied. Van
Ooijen (1996, p. 139 ff., especially pp. 144–146) describe the effect on system be-
havior, while Van Ooijen and Bertrand (2003) present an arrival rate control policy
for this case. Haxholdt et al. (2003) demonstrate the possibility of oscillating be-
havior and chaos under more sophisticated assumptions on the arrival and departure
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Fig. 16.6 Flow-density-relation (Cassidy 2003, p. 183)

process of queuing systems. The chapter by Elmaghraby in this volume also dis-
cusses possible shapes of clearing functions that may apply in this type of situation.
Therefore, the shape of the clearing function has to be considered carefully in every
case. In particular, a service rate that decreases if the level of WIP exceeds a cer-
tain threshold value can have extreme consequences on the system behavior, so this
possibility has to be excluded or considered carefully when the clearing function
is estimated. A literature review on the relationship between worker behavior and
inventory level, especially in flow lines, can be found in Powell and Schultz (2004).

16.5.3.2 Empirical Estimation Techniques

A number of authors have suggested an empirical approach to estimating clearing
functions, where a functional form with the desired properties is postulated, and
then fit to data obtained either from an industrial facility or a simulation model using
some form of regression analysis. Karmarkar (1989) uses the following functional
form for the clearing function:

Xt D min

�
Ct

	t

	t C k
I 	t

�
; (16.57)

where Xt denotes the output in period t; 	t the load of the resource at the start
of period t , and Ct the maximum capacity of the resource available in period t .
The shape parameter k is estimated by the user. The functional form of (16.53)
above is an adaptation to models in discrete time. Srinivasan et al. (1988) suggest
an alternative functional form

f .	t / D Ct .1 � e�k�t / (16.58)
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where k is again a user-estimated shape parameter. Asmundsson et al. (2009) use
this latter functional form, and give an extensive discussion of various issues in
collecting simulation data for the purpose of fitting this type of clearing function.
Asmundsson et al. (2006) use a visual fit of linear segments to simulation data to
develop a clearing function formulation for a scaled-down semiconductor wafer fab-
rication facility with unreliable equipment and reentrant flows. There appears to be
very little published literature using industrial data to fit clearing functions: the only
paper we are aware of is Fine and Graves (1989), which motivated Graves’ work on
linear clearing functions.

If a saturating clearing function can be assumed, the estimation of the clear-
ing function from empirical or simulated data (combinations of WIP or load and
output for several periods) is essentially a curve-fitting procedure. The problem
can be formulated as estimating the parameter values of a nonlinear function such
as (16.58). If the clearing function is approximated by a set of N tangents, the
parameters of the tangents can be derived from a nonlinear regression function
(Missbauer 1998, p. 410 ff.), obtained directly from the observed data by numer-
ical methods (Missbauer 1998, p. 407 f.) or by visual methods of curve fitting
(Asmundsson et al. 2006). Estimating the clearing function can be difficult if the
data include effects of machine downtimes. In this case, for some periods the av-
erage WIP is high and the output is low (because the work center has been down
and the WIP could not be processed), and a simple curve fitting procedure would be
misleading. Some sample data generated by simulation is shown in Fig. 16.7, which
plots total throughput in a period against the average WIP in the period.

Asmundsson et al. (2006) describe a way to correctly estimate the clearing func-
tion in this case using multiple replications of simulation experiments. However,
even in this case intuitive approaches can give poor results.

Fig. 16.7 Curve fitting in the case of machine downtimes – throughout vs. average WIP
(Asmundsson et al. 2006)
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Fig. 16.8 Ideal clearing function for a paced flow line with four work centers (following Hopp
and Spearman 2001, p. 221ff.)

An alternative way to determine the clearing function is the following: It is
reasonable to assume that for very low WIP levels the clearing function is linear,
and beyond a certain WIP level (that acts as buffer against variability) the work
center can operate at full capacity. In an idealized situation, such as a determinis-
tic paced flow line with equal processing times at each work center, the clearing
function consists of these two parts (see Fig. 16.8).

In most practical cases the output will be lower for a certain range of WIP levels,
and the problem of estimating the clearing function can be viewed as that of esti-
mating the deviation of the clearing function from the ideal shape. Methods for this
estimation are described in Nyhuis and Wiendahl (2003, p. 61 ff). Selçuk (2007)
follows a similar approach and controls the shape of the clearing function by a pa-
rameter that reflects whether a more optimistic (overestimating throughput for a
given WIP level) or conservative approach is applied (p. 115 f.).

The clearing function models described so far can become quite large if the
number of work centers and product groups are large. If piecewise linearization of
the clearing function is used, the number of linear constraints can be very high.
If a reduction in model size is necessary, the non-bottleneck work centers can
be eliminated from the model if a linear clearing function can be assumed for
these work centers. In this case the non-bottlenecks can be represented as load-
independent delay distributions (for the mathematical proof, see Missbauer 1998,
p. 267 ff). This technique is similar to the delay functions in system dynamics mod-
els (Forrester 1962, p. 86 ff.).

16.5.4 Limitations of Clearing Function Models

It is evident from the last section that if the model of a clearing function as defined
above is accepted, there are a number of open questions for future research. In this
section, we examine the limitations of a clearing function that relates the expected
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or maximum output of period t to the planned WIP or load in period t . As discussed
above two different approaches have been used to estimate these functions. Em-
pirical methods postulate a particular functional form having the “right” properties
and fitting a curve of this form to data obtained from historical observations of
the production system or from simulation. Other researchers have used steady-state
queuing models to derive closed-form expressions for clearing functions. Both these
approaches implicitly assume that the form of the clearing function can be treated
as invariant over at least a range of system operating conditions; in empirical meth-
ods, over the range of environmental conditions represented in the data set used to
fit the clearing function, while in steady-state queuing methods, over the entire life
of the system. Another way of phrasing this problem is that both these approaches
to estimating clearing functions produce a clearing function that maps the expected
value of one random variable describing the WIP level (at the start of the period,
or the expected WIP level over the period) to the expected value of another, the to-
tal output of the resource in a given period, and this relationship is assumed to be
time-invariant.

The two different approaches suffer from different difficulties under this
paradigm. When empirical methods are used, it is assumed that the clearing func-
tion that is obtained from empirical or simulated data as the estimated functional
relationship between the actual WIP and output is a valid estimation of the func-
tional relationship between the planned WIP and expected or maximum output in
the context of the planning model (Missbauer, forthcoming). The possible problems
resulting from this are still not well understood today.

Next, there is a classical sampling issue – we assume that the fitted clearing
function will be able to represent the behavior of the system under conditions not
encountered in the data sets from which the function was generated. In addition,
experimental work to date has shown that fitting clearing functions to empirical
data is by no means a straightforward exercise. Asmundsson et al. (2009) present
a detailed procedure for estimating clearing functions from simulation output, and
apply their procedure to a production system with significant machine failures. Their
approach consists of three basic stages: collect the simulation data, fit a functional
form to this data using least-squares regression, and then piecewise linearize the
resulting concave function using a nonlinear optimization model to minimize the
deviation of the linearized model from the original concave function. An example
of the data obtained in this experiment is shown in Fig. 16.9 below.

The profusion of points on the WIP axis, denoting periods in which WIP was
present but the machine was unable to produce output due to being down, results
in a least-squares approach giving a poor fit. (Note that the least-squares approach
yields the mean value of the output conditional on the WIP level; see Davidson and
MacKinnon 1993, p. 41.) Inspection of this figure, specifically the point at which
the fitted line reaches its maximum, suggests that the fitted function significantly
underestimates the amount of WIP required for the resource to achieve its maxi-
mum output as approximately 50 units as opposed to a reality of about 400 units.
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Fig. 16.9 CF data (WIP vs. TH) for a Work center from a Simulation Study

The effect of this error on the planning model is disastrous: it consistently releases
too little material into the line too late, resulting in significant backlogs and missed
demand.

In order to remedy this situation, the authors adopted an alternative fitting ap-
proach where they sought a curve such that a specified percentage of the data points
fell above the curve, i.e., the fitted curve represents a percentile of the data, which
corresponds to a quantile regression. The results of this approach for different per-
centile values are shown in Fig. 16.10. As the percentage of data points required
to lie above the fitted curve increases, the fitted curve shifts to the right, providing
a more realistic representation of how much WIP is required at this work center
to achieve maximum output, based on the simulation results, and resulting in a
planning model that yields better backlog results than an LP model. This heuris-
tic approach proposed clearly needs a better theoretical justification, even though it
works quite well in these experiments. These results highlight how a poorly fitted
clearing function can result in poor performance of the planning models derived
from it.

It is important to remember that the clearing function as defined in this paper is
defined with relation to a planning period of a specific duration. When steady-state
queuing models are used to derive an expression for the clearing function, we are
assuming that the planning period is long enough that the behavior of the production
resource being modeled is represented by a steady-state model to an acceptable de-
gree of accuracy. However, in the production planning environment we are changing
the releases, and therefore the workload, of the system in each planning period,
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Fig. 16.10 Alternative percentile-based CF curves

calling into question whether the production resources ever attain the steady state
required by conventional queuing analysis. We examine this question by comparing
clearing functions derived for an M=M=1 queuing system in transient and steady
state.

We consider an M=M=1 queuing system and define as a time unit the average
operation time of an order, hence the service rate 
 D 1 without loss of generality.
Hence the arrival rate � is equal to the traffic intensity �. The length of a planning
period is ! D 5 time units. The clearing function for an arbitrary period t can be
derived by recalling that the utilization ut of the server in period t is the fraction of
the period in which there is at least one order in the system and is given by

ut D 1 � 1

!

!�tZ

!.t�1/

p0.�/d� (16.59)

where pn.�/ denotes the probability of n customers in the system at time � , while
!.t � 1/ and ! � t denote the beginning and the end of period t . The expected output
EŒXt � in period t is then

E ŒXt � D ut � ! (16.60)



16 Optimization Models of Production Planning Problems 481

and the expected number of orders in the system at time � , denoted E ŒLs.�/�, is4;5

E ŒLs.�/� D
1X

nD0

n pn.�/: (16.61)

This is also the average WIP, measured in units of time, at time � , because the
average service time of the orders in the queue is 1, and the expected remaining
service time of the order at the server is also 1 due to the exponentially distributed
service time. The expected load in period t , denoted by EŒ	t �, is the average WIP
at the beginning of period t plus the average input during period t :

E.	t / D E ŒLs.!.t � 1//� C �! (16.62)

The time-dependent state probabilities pn.�/ for an M=M=1 system starting at the
origin can then be calculated as (Stange 1964):

po.�/ D 1 �
�Z

o

e�.�C1/y

y
� p

� Bessel I1.2
p

�y/ dy (16.63)

pn.�/ D
Z �

0

e�.�C1/y

y

h
n�

n
2 Bessel In � .n C 1/�

nC1
2 Bessel InC1

i
dy; for

n > 0: (16.64)

The expressions for the conditional probability of j customers in the system at
time t given i customers in the system at time 0 can be found in Cohen (1969,
p. 82 ff., p. 178).

The clearing function in period t can be calculated as a parametric curve with the
average load in period t , EŒ	t � (16.61–16.64) on the x-axis and the expected output
in period tEŒXt � (16.59, 16.60, 16.63) on the y-axis. The arrival rate � D � is the
control variable that yields the values for EŒ	t � and EŒXt �. The arrival rate is as-
sumed to be the same from time � D 0 to the end of the period under consideration.
Figure 16.11 shows the clearing functions for periods 1 and 2 and for a period after
steady state has been reached. Note that in Fig. 16.11 the arrival process is stochastic
for all work available. If work definitely will be available (e.g., at the beginning of
the first planning period, where the actual WIP is known), the shape of the clearing
function will be more extreme because the expected output cannot be lower than the
minimum of the available work at the start of the period Wt�1 (which we assume
to be known) and available capacity. It can be shown (Missbauer, forthcoming) that

4 Due to the computational complexity, the summation in (16.61) has been performed for n D
0,. . . , 80 in the numerical examples below. This ignores at most 1.5% of the cases (for � D 0:95

in steady state), in most cases the error is close to zero.
5 The index for the periods (discrete time) is denoted as subscript, the continuous time is denoted
in parenthesis.
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Fig. 16.11 Clearing functions for periods 1 and 2 and for a steady-state period of an M/M/1 sys-
tem starting at the origin. 
 =1, length of a period ! D 5. Note that identical values for EŒ	t �

correspond to different values for the arrival rate � for different periods

the shape of the clearing function (i.e., the functional relationship between expected
load and expected output, with the expectation defined at the time of planning)
depends on the variance of the initial WIP and of the planned input.

Figure 16.11 shows that if the system is not in steady state or in a specified
transient phase there is no fixed functional relationship between expected load and
expected output. The relationship changes with the phase of the transient state. This
leads to a planning circularity that must be considered as a substantial problem of
clearing function models. The estimated clearing function is based on assumptions
about the dynamic behavior of the system. Hence, any order release plan derived us-
ing the clearing function can affect the dynamic behavior of the system, and hence
the shape of the clearing function it is based on. This implies that order release
determines the validity of the assumption it is based on. There is no evidence that
the assumed shape of the clearing function is consistent with the observed shape(s)
of the clearing function since the shape can change over time as seen in Fig. 16.11.
We do not even know whether a consistent solution is possible, but it can be ex-
pected that this is not the case, because clearing function models assume that the
clearing function is the same for each period, which need not be the case if tran-
sient/stationary phases occur during the planning horizon. Therefore the clearing
function model can lead to systematic errors, and it is an empirical question whether
or not the level of accuracy provided by the models is acceptable in practice. The ex-
perimental results of (Asmundsson et al. 2009) suggest that under some conditions
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Fig. 16.12 Results of an optimization model for one work center and idealized underutilization

the performance of a planning model based on clearing functions can be very sensi-
tive to how well the clearing function represents the actual system, which suggests
caution in using these models until these issues are better understood.

Another limitation of clearing function models is that due to their use of discrete
planning periods, they ignore any transient effects that arise at the boundaries be-
tween periods. While this limitation is shared with all planning models based on
discrete time periods, it is worthy of note, and as far as we are aware has not been
the subject of extensive research, as will be discussed further below.

Some characteristics of clearing function models can be seen from Fig. 16.12
which is an optimization result for one work center. The demand oscillates between
3,000 and 4,000 min of capacity per period, which is below the capacity (4,500
units/period). The variations in the planned output are much lower because of the
nonlinear increase in the amount of WIP that is required. But the amount of released
work exaggerates the demand variation. Figure 16.12 exhibits nervous behavior that
has been reported as a property of optimization models if steady-state properties are
assumed to hold for short periods (Lautenschläger 1999). Karmarkar (1993, p. 317),
also states that “what happens in the transition between periods is not clear.” In
Fig. 16.12 it is difficult to decide whether this behavior is truly optimal, because
this would require a model that incorporates the actual characteristics of the tran-
sient state.

Figure 16.13 exhibits the due-date deviations achieved by the clearing function
model of Missbauer (2002a) for a highly utilized production unit with five bot-
tleneck work centers. The average due-date deviation is quite low – lower than
for load-oriented order release (Wiendahl 1995), which is used as reference, but
the earliness/lateness of a small number of orders is high. A number of fac-
tors may contribute to this – only the aggregate clearing function is used (no
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Fig. 16.13 Distribution of the due-date deviations (l.o.o.r.: load oriented order release)

partitioning; see Sect. 16.5.1), and non-bottlenecks are represented as delay func-
tions (Missbauer 1998, p. 267 ff). However, since the clearing function only partly
reflects the dynamic characteristics of the system and leads to counter-intuitive op-
timization results, it can be assumed that the due-date deviations in Fig. 16.13 are
at least partly due to the shortcomings of the clearing function and the resulting
nervousness. Future research must clarify to what extent this conclusion holds.

It is reasonable to assume that the performance of clearing function models can
be improved if the history of the arrival and departure of orders at the work centers
is analyzed in more detail – the clearing function aggregates the history to one di-
mension. Andersson et al. (1981) decompose the expected load into two parts: the
expected WIP at the beginning of period t and the expected input in period t . A
two-dimensional clearing function is formulated as:

Xt D  Wt�1 C ˇRt ; (16.65)

if production does not exceed available capacity. Production, WIP and released work
are measured in units of value. It can be argued that the expected WIP at the be-
ginning of the period is actually available in period t with higher probability than
the expected input during the period, which seems to be the reasoning behind this
formulation. Numerical experiments based on analytical expressions for the tran-
sient M=M=1 queue confirm this (Missbauer, forthcoming) but the linear function
in (16.65) is not derived explicitly from theory.

Conceptually, a clearing function expresses the expected WIP level that is re-
quired to obtain a certain output rate given the system variability and the production
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control policies that are applied. (Anli et al. in press) present a model for order re-
lease planning that takes into account load-dependent lead times that result from the
stochastic material flow, and also considers lower bounds on the finished goods in-
ventory that are required to maintain a desired service level in the face of stochastic
demand process. The lower bound on the finished goods inventory (FGI) for each
SKU is a nonlinear function of the planned production volumes (production targets)
of the facilities that produce and require this SKU, and of parameters representing
system variability and control policies. Likewise, the expected WIP level for each
unfinished SKU, facility, and period is a nonlinear function of the planned produc-
tion volumes (of all SKU’s) of the facility and the variables representing system
variability and control policies. Both nonlinear functions can be estimated either
by simulation or by queuing models. Anli et al. (in press) present their paper as a
proof-of-concept study and use queuing models, namely mean value analysis. The
Queuing Network Analyzer is used in Caramanis et al. (2001). Optimization is per-
formed iteratively. In each iteration the linear constraint set of the planning model is
augmented using hyperplanes tangent to the nonlinear functions. These tangents are
obtained from the tentative production targets (from the previous iteration) and from
the required WIP and FGI levels and their sensitivities with respect to the production
targets. The authors state that this iterative refinement of the local approximations
leads to convergence under mild convexity or quasi-convexity conditions.

The approach can be classified as a WIP-oriented model since it traces the flow
of WIP through the facilities and does not assign flow times to the orders. The
functional relationship between WIP and the production targets (volumes) can be
interpreted as a sophisticated clearing function formulation that addresses the prod-
uct mix problem for which we have already presented the partitioning approach
(see Sect. 16.5.1) However, the model is limited to steady-state relationships and
does not consider transient effects. The paper provides optimization results, but no
simulation experiments. It remains to be seen whether the approach can be applied
efficiently in an environment where analytical models of the manufacturing system
cannot be applied.

Our discussion of the limitations of clearing function models has been limited
so far to single-stage systems. Another set of complications emerges when multiple
stage systems are considered. Let us assume that we wish to derive a clearing func-
tion for a work center that is part of a multistage production system – i.e., the pattern
of arrivals at the workstation over time depends on production and release decisions
at other work centers. Jackson (1957) in his seminal paper showed that in an open
Jackson queuing network in steady state each work center can be treated as an in-
dependent M=M=s queuing system, but real-world manufacturing systems often do
not meet these assumptions. Therefore, in a multistage production system there are
likely to be correlations between the decisions at upstream stages and the pattern
of arrivals at a downstream center, which will influence the shape of the clearing
function. To illustrate the point, consider a single resource that can be modeled as a
G=G=1 queuing system in steady state. The expression (16.66) describes the aver-
age number in system EŒLs� as a measure of the expected WIP for a single server
where the coefficient of variation for interarrival time and service time are denoted
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by ca and cs ; respectively (see Medhi (1991) for the derivation), and � denotes the
utilization of the server.

EŒLs � D c2
a C c2

s

2

�2

1 � �
C � D c2�2

1 � �
C � (16.66)

Solving for � and assuming c D c2
a C c2

s >1, we obtain utilization as a function of
WIP as:

� D
p

.EŒLs � C 1/2 C 4EŒLs �.c2 � 1/ � .EŒLs � C 1/

2.c2 � 1/
(16.67)

If we consider the utilization as a surrogate measure of output, Fig. 16.14 illustrates
the relationship for different c values, where c combines the coefficients of variation
of the arrival and service (production) processes as seen in (16.67).6 For a fixed c

value, utilization, and hence throughput, increases with WIP but at a declining rate.
This is because as WIP increases, the server becomes less likely to starve. Utiliza-
tion decreases as c increases, due to variability in service time and interarrival time,
which causes queues to build up and throughput to slow as customers are trapped
behind a customer with an unduly long service time, or the number of customers ar-
riving in a small time interval is unexpectedly high. Note that in a multistage system,
the coefficient of variation of the arrival stream ca will be determined at least in part
by the production and lot sizing decisions made at the upstream stages (e.g., giving
priority to orders with low WIP at the next work center). Thus the decisions made by
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Fig. 16.14 Utilization (�) as a function of average WIP for different c values

6 We are aware of the similar GI=G=1 approximation by Krämer and Langenbach-Belz (1976) that
distinguishes between c2

a � 1 and c2
a > 1 (Tijms 1994), where ca and cs are not additive.
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the model at one stage of the system affect the shape of the clearing function faced
by the model at another stage. Clearing functions determined by empirical means
are less susceptible to this criticism, as the correlations are captured at least in part
in the data to which the functions are fitted.

16.6 Modeling Capacity with Multiple Products: Extensions
to the Basic Model

In many production environments there are a number of alternative processes by
which a product can be produced. These generally arise from the presence of a num-
ber of alternative machines that are capable of performing a given operation required
by a product. In general, the costs of production may depend on the specific choice
of equipment made for each stage. In addition, not all alternative machines for a
given operation are equally efficient; a typical scenario is that there is newer equip-
ment that can perform a given operation faster than the older equipment. Another
typical scenario in high-technology industries such as semiconductor manufacturing
is that the newer equipment can perform a wider range of operations than the older
equipment, since the older equipment is incapable of meeting the finer tolerances
that the newer equipment can handle.

In this situation, determining the optimal allocation of products to equipment
over time becomes a complex decision. The dependence of costs on the particu-
lar sequence of operations followed means that a model must keep track of how
much work is allocated to each possible sequence of operations, i.e., each possi-
ble path that a product can follow through the plant, as illustrated in Fig. 16.15.
This figure represents a production system with four stages and a number of alter-
native machines, represented by the boxes. The decision variable Rij denotes the
amount of product i released for processing on operation sequence j: These can be

Ri1 Xi2

Xi3

Xi4

Xi1

Ri2

Ri3

Ri4

Fig. 16.15 Path-based formulation of alternative resources
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considered path-based formulations, since we are explicitly specifying the amount
of each product that will be launched on each possible path through the production
system in each period.

These types of models, referred to as process selection models by Johnson and
Montgomery (1974), have been known for quite some time, but have the obvious
drawback that in a production system of any complexity, the number of possible
paths through the system that a product can follow, and hence the number of decision
variables in a time period, grows exponentially in the number of alternatives at each
stage and the number of stages. As pointed out by Leachman and Carmon (1992),
they also give us a great deal of redundant information. In order to implement the
results of this model, all we need to know is the total releases of each product into
the line in each period; we do not need to know the specific allocation of work to
individual machines, since this is likely to change as the shop floor reacts to local
circumstances and reallocates work among alternative machines. Hence a number
of authors have developed models that are more compact in terms of the number of
decision variables. It is not surprising that much of this work has been motivated
by applications in the semiconductor industry, where a product may require several
hundred unit processes, all of which may have a significant number of alternative
machines.

Much of the work in this area takes as its starting point the LP models with fixed
time lags treated by Hackman and Leachman (1989). Leachman and Carmon (1992)
present a series of models that address this issue. We shall focus on this paper in
some detail, and then outline the extensions proposed by other authors. We define
the following notation:
Parameters:

aijk D time to process one unit of product i at step j on machine type k.
Ckt D capacity in time unit of machine type k in period t .
Dit D maximum cumulative demand for product i in period t , made up of the

forecast and confirmed orders.
dit D minimum cumulative demand for product i by time t (firm orders).
pit D estimated net discounted cash flow from selling one unit of product i in

period t .
hit D estimated unit holding cost for product i in period t .
Li D average flow time for product i from beginning to end of its entire process,

i.e., the cycle time for the entire process.
Lij D average lead time for product i from start of production process until start of

step j .

The decision variables, which are common to all the three formulations presented,
are as follows:

Rit D number of units of product i to be released in period t .
Iit D units of product i in inventory in period t .
Bit D shortfall of cumulative production vs. cumulative max demand for product i

in period t .
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The first model, referred to by the authors as the Step-Separated Formulation,
introduces additional decision variables Wijkt that denote the amount of workload
of each product type i in each process step j that is assigned to machine type k in
period t . The model can now be stated as follows:

max
nX

iD1

TX

tD1

ŒpitRi;t�Li
� hitIit�; (16.68)

subject to

Ri;t�Lij
D

X

k2P.i;j /

Wijkt

aijk
; for all i; j; t; (16.69)

X

f.i;j /jk2P.i;j /g
Wijkt � Ckt; for all k; t; (16.70)

tX

�D1

Ri;��Li
� Iit C BitD Dit; for all i I for all t � T � 1; (16.71)

TX

�D1

Ri;��Li
C BiT D DiT ; for all i; (16.72)

Bit � Dit � dit; for all i; t; (16.73)

Rit; Bit; Iit; Wijkt � 0: (16.74)

The critical constraints for the purposes of modeling capacity and workload are the
first two. The first set of constraints converts the releases in period t � Lij into
the current workload on the resources k in period t . The second set of constraints
then ensures that no resource is loaded in excess of its capacity. Note that accu-
mulation of WIP within the production process is not modeled at all; only finished
goods inventory is represented in the decision variables. The objective function is to
maximize the difference between the discounted revenue from sales and inventory
holding costs. Note that a product is credited as producing revenue as soon as it is
produced, even if it may not be sold immediately. Also note that in the last two con-
straint sets, output aimed at meeting forecasts may be delivered late, but firm orders
must be met on time. This effectively creates two hierarchical demand classes, with
the demand from firm orders having absolute priority over forecast demand in terms
of allocating limited output to meet demand. Production costs are not considered, as
they are independent of production routing and the revenue is assumed to be much
greater than unit production cost, as is the case in much of the semiconductor indus-
try. Hence the emphasis of the model is on allocating production capacity to meet
demand, and thus maximize revenue.

This formulation is inefficient in that it gives a detailed allocation of workload to
individual stations (the Wijkt variables), even though all we really need is the total
releases Rit of each product in each period. In order to arrive at a more efficient
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formulation, the authors make the additional assumption of uniform processing
times across machines in a work center, i.e., aijk D a0

ijSk , where a0
ij denotes the

processing time of product i at step j on the standard machine whose speed is
used as a baseline for the others. The available capacity of each set of alternative
machines can then be rescaled in a similar manner, C 0

kt D Ckt=sk . Now since all
workloads are expressed in terms of the baseline machine, we only need to track
the total workload at step j that is assigned to machine type k. In order to do this,
we define unique sets Sm of alternative machine types, and additional variables Zm

kt
that denote the workload on machine set Sm assigned to machine type k in period
t . Defining the set P.i; j / as the set of machines capable of processing step j of
product i , this yields the following formulation:

max
nX

iDl

nX

iDl

Œ�itRi t�li
� hitIit�; (16.75)

subject to

X

f.i;j /jk2P.i;j /g
a0

ijRi;t�Lij D
X

k2Sm

Zm
kt ; for all m; t; (16.76)

MX

mD1

Zm
kt � C 0

kt
; for all k; t (16.77)

tX

�D1

Ri;t�Li
� Iit C Bit D Dit; for all i I for all t � T � 1; (16.78)

TX

�D1

Ri;t�Li
C BiT D DiT ; for all i; (16.79)

Bit � Dit � dit; for all i; t; (16.80)

Rit; Bit; Iit; Zm
kt � 0: (16.81)

Using these assumptions, the authors construct a formulation where all allocation
variables are eliminated, and capacity constraints are written for sets of alterna-
tive machines whose capacity is likely to be binding on the optimal solution. The
structure of these sets depends on the problem data, and hence this formulation is
not always the most compact in terms of the number of variables and constraints,
but in many industrial situations yields substantially smaller formulations. The sets
S of alternative machines for whom capacity constraints will be written are de-
termined based on cut sets in the bipartite graph representing operation-machine
requirements. The authors provide a procedure to identify the dominant cut sets
whose time complexity is linear in the number of operations ij and the cardinal-
ity of the alternative machine sets, but exponential in the number of machines that
occur in the connected component of the bipartite graph. Thus, if there are a very
large number of machines that can process a large number of steps as alternatives,
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the time complexity of generating this formulation may be quite high, but such
instances seldom arise in industrial data sets. Once the dominant cut sets S have
been obtained, we can write capacity constraints for each set and each period of the
form X

ij2S

aijRi;t�Lij �
X

k2S

Ckt: (16.82)

The complete formulation is now as follows:

max
nX

iD1

X

tD1

T
ŒpitRi;t�Li

� hitIit�; (16.83)

subject to

X

ij2S

aijRi;t�Lj
�
X

k2S

Ckt; for all generated sets S and periods t; (16.84)

tX

�D1

Ri;t�Li
� Iit C Bit D Dit; for all i I for all t � T � 1; (16.85)

tX

�D1

Ri;��Li
C BiT D DiT ; for all i; (16.86)

TX

�D1

Ri;��Li
C BiT D DiT ; for all i; (16.87)

Rit; Bit; Iit � 0: (16.88)

The authors analyze the number of decision variables and constraints in their dif-
ferent formulations and show that when alternative machine sets have a nested
property, which occurs frequently in semiconductor manufacturing, this Direct
Product Mix formulation provides a very compact model compared to alternative
formulations. The nested property arises when a work center has machines of several
technological generations, where each newer generation can perform all operations
the previous generations could, as well as some additional new ones.

A drawback of the Direct Product Mix formulation developed above is its
reliance on the assumption of uniform processing times across alternative ma-
chines as described above. Bermon and Hood (1999), in their study of production
planning for IBM’s semiconductor manufacturing operations, noted that this as-
sumption was violated in their environment. Hung and Cheng (2002) extend the
work of Leachman and Carmon (1992) by developing a formulation that does
not require the uniformity assumption. In order to do this, they define a new set
of partitioning variables that allocate the capacity of machines shared between
machine sets to which they belong. Their computational experiments show that
when the uniformity assumption on processing times holds, the Direct Product
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Mix approach of Leachman and Carmon (1992) is preferable. However, when the
uniformity assumption is violated, the Partition formulation developed by the au-
thors remains valid.

Bermon and Hood (1999) present a slightly different model aimed at capacity
planning that also addresses the problem of determining capacity in situations with
alternative machine sets. Hung and Wang (1997) apply an approach similar to that
of Leachman and Carmon (1992) to situations where alternative products can be
used to meet a given demand, as by downgrading in electronics manufacturing.

16.7 Lot Sizing Models

As we have seen, the clearing function reflects the variability of the arrival and
departure process. If a work center produces multiple products in lots, lot sizing
determines the operation times of the orders and thus strongly influences the vari-
ability of the operation times. It also determines the total setup time during a period
and thus influences the maximum output of the work center. Hence the lot sizes
influence the average flow times and the WIP level at the work centers.

Considering the impact of lot sizes on average flow time and WIP means to
anticipate consequences that become visible at the scheduling level. One way to
achieve this is simultaneous lot sizing and scheduling. This economic lot scheduling
problem (ELSP) has been studied extensively (for reviews, see Elmaghraby 1978;
Graves 1981; Drexl and Kimms 1997; Pinedo and Chao 2005). Drum-Buffer-Rope-
OPT, which has been described extensively in the 1980s, also performs simultaneous
lot sizing and scheduling for the bottleneck work centers, distinguishing between
transfer and (often larger) process batches. See Zäpfel and Missbauer (1993b) for
related literature on OPT.

In accordance with the hierarchical structure of the manufacturing planning and
control system that we assume throughout the chapter, detailed scheduling is per-
formed locally within the production units. Thus we do not consider simultaneous
lot sizing and scheduling or cyclic production. We assume that lot sizing passes the
lots (production orders) to the order release function where they are released to the
production units that perform sequencing. In this context, stochastic models of the
manufacturing system are appropriate to anticipate the consequences of lot sizes on
flow times and WIP.

Assuming a stationary state of the system, we can examine the relationship be-
tween the lot sizes and the long-term clearing function of a work center by means of
an M=G=1 model producing products with identical data. We define m as the total
demand rate (sum of the identical demand rates of the products), a the processing
time per unit, r the setup time per lot, � and v the standard deviation and coefficient
of variation of the service times of the orders, x the lot size. a; r; and x are identi-
cal for all products. We assume that a setup is necessary for each lot. Considering
setup time savings obtained by sequence optimization is described in Kekre (1984),
Kekre (1987) and Missbauer (1997).
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For simplicity we assume a given value for the coefficient of variation of
the service times v that is independent of the common lot size x. This is suf-
ficient for showing the structural properties. Missbauer, (2002b) and Karmarkar
et al. (1985a, 1985b) discuss the relationship between lot sizes and the coefficients
of variation of service times in the multi-product case. We also assume a Poisson
arrival process, which is a rather strong assumption in the single-product case (see
Kistner (1999) for a critique), but in the multi-product case with identical products
this assumption is well justified (Missbauer 1999). Based on these assumptions we
compute the arrival rate

� D m

x
(16.89)

and the mean service rate


 D 1

r C ax
: (16.90)

The mean waiting time EŒWq� by the Pollaczek–Khinchine formula is then

E
	
Wq


 D �2 C �2�2

2�.1 � �/
(16.91)

with � D �=
 D m.a C r=x/, and the mean flow time

EŒWs � D EŒWq� C 1=
: (16.92)

Substituting (16.89) for �, (16.90) for 
 and � D v.r C ax/ into (16.91), we get
the average waiting time as

EŒWq� D m.v2 C 1/.ax C r/2

2Œx.1 � am/ � mr�
: (16.93)

Because of the assumption of Poisson input and the PASTA (Poisson arrival see time
averages) property (Buzacott and Shanthikumar 1993, p. 54; Tijms 1994, p. 73 ff.)
the average waiting time of the customers EŒWq� must be identical to the average
WIP at the server, measured in hours of work, given by the average remaining work
EŒLw�/. So we can write

EŒLw� D EŒWq �: (16.94)

The average output in hours of work as a function of the average WIP E.Lw/ can
be calculated from (16.93) and (16.94) as follows:

Output D m � a D 2axEŒLw�

.ax C r/ Œ2EŒLw� C .v2 C 1/.ax C r/�
(16.95)
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Fig. 16.16 Output as a function of WIP (16.95) for different values for the lot size x.a D 5,
r D 15)

From (16.95) we see that a higher variability of the service times decreases the
output for a given average WIP. The clearing function for different lot sizes is shown
in Fig. 16.16.

This adds an important aspect to the lot sizing problem. Lot sizing should not
only consider setup and inventory holding costs but also its impact on the clearing
function, which can be regarded as capacitated lot sizing considering congestion
effects. There are two ways to accomplish this

� Determination of standard lot sizes or lot sizing rules that take into account the
impact of lot sizes on the clearing function (and hence on WIP and flow times that
result from order release). The clearing function that results from the lot sizes is
used for order release. In the extreme case lot sizes can be determined such that
average flow time or WIP is minimized for the required output. (Note that usually
this is in conflict with the traditional goal of minimizing the sum of setup and
holding costs). Starting with (Karmarkar et al. 1985a, b; Karmarkar 1987) the
majority of the literature on this topic is based on this idea (Missbauer 2002b).

� Defining a multi-dimensional clearing function with output as a function of WIP
and lot sizes as independent variables:

Xit � fi .Wit; x1t ; x2t ; : : : ; xNt / : (16.96)

In this case the order release model optimizes the time-varying lot sizes and
the amount of released work for all periods simultaneously. This recent research
direction is presented in (Hwang and Uzsoy 2005). Note that the steady-state
assumption implies that the changes in the characteristics of the arriving orders
affect the clearing function within the same period.

Since lot sizes influence lead times, they also influence the lead time demand
distribution, which in turn influences optimal safety stocks and reorder points. For
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this aspects, see Lambrecht et al. (1996) and Vaughan (2006). Little is known about
multistage lot sizing considering congestion effects. For a model exploring this is-
sue, see Missbauer (1999, 2002b).

16.8 Models Incorporating Uncertainty

Until this point we have treated all parameters of our various optimization formu-
lations as deterministic, although in some cases they represent the expectation of
a performance measure derived from an underlying stochastic system. However,
in any industrial application all parameters of an optimization model, such as the
cost estimates used in the objective function, the technological coefficients defining
resource consumption by products, and especially the forecasts of future demand,
are subject to significant uncertainties. The explicit treatment of uncertainty in opti-
mization formulations of production planning problems is very much in its infancy,
so we will focus on illustrating the issues in one particular area – that of uncertainty
in demand forecasts, which requires the system to hold a certain amount of safety
stock to maintain a given level of customer service.

It is well known that the amount of safety stock that needs to be held in a par-
ticular location to maintain a specified level of customer service is related to the
distribution of the demand forecast over the replenishment lead time. To illustrate
this relationship, consider a simple newsvendor model where the lead time is a ran-
dom variable with mean 
L and variance �2

L, and the demand rate has a mean of

 and a variance of �2. It is well known (e.g., Eppen and Martin 1988) that the
optimal order level can be approximated by


L
 C z˛

q

L�2 C �2

L
2; (16.97)

assuming that the lead time is normally distributed. Note that in the term under the
square root, which denotes the standard deviation of the demand over the lead time,
both the mean and the variability of the lead time interact with the mean and vari-
ability of the demand to influence the amount of safety stock required. However, the
lead times, in turn, are determined by the utilization levels of the resources. While
several approaches described in the previous section address this issue in terms of
planning models, there have been few efforts to address this directly in the planning
literature, although several stochastic models linking queues with inventory models
have been proposed (e.g., Zipkin 1986; Liu et al. 2004).

In most current approaches in industry, many of which have their origin in the
MRP literature, the amount of safety stock to be held in a particular location in a
particular planning period is calculated outside of the planning model using actual
or estimated parameters of the demand or demand forecast distribution. The plan-
ning model is then constrained to maintain this quantity of safety stock. Examples
of such models are described at length by Wijngaard and Wortmann (1985) in the
context of MRP systems, where the amount of safety stock to be maintained results
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in the release of additional orders to the system. Lambrecht et al. (1984a) show
that the problem of determining the amount of safety stock in multistage production
systems can be formulated as a Markov decision process or a dynamic program,
but the size of the state space renders these approaches impractical from a compu-
tational point of view. They propose a number of heuristics, and conduct extensive
computational experiments that examine the amount of safety lead time and safety
stock required. Lambrecht et al. (1984b) perform computational experiments with
the Markov decision process and examine the form of the optimal policies. Yano
and Carlson (1988) propose a heuristic for setting safety stock in an assembly-type
production system and examine its performance using simulation.

Graves (1986, 1988) develops an intriguing model that expressly links safety
stock levels to the ability of the production system to react to changes, using a
model that separates WIP and FGI and uses the proportional clearing function in
Fig. 16.5 to model the production behavior of the facility based on planned lead
times. However, his model assumes a stationary demand distribution, and the pro-
portional clearing function may produce capacity-infeasible solutions at high WIP
levels. He points out that distinguishing between WIP and FGI is significant since in
many production systems WIP can serve some of the function of safety stock. This
indicates the desirability of making safety stock decisions endogeneous in a pro-
duction planning model that combines a realistic aggregate model of the behavior
of congestion-prone capacitated production systems (such as that given by the clear-
ing function formulations) with the explicit modeling of WIP and FGI as separate
entities. We conjecture that such a model might well be capable of maintaining a
given service level with significantly less safety stock in the form of finished goods
between stages, since it would be able to recognize that WIP in the line would be-
come available to meet demands, reducing the need for stocks of finished goods.

Leachman (1993) presents a large-scale linear programming framework for pro-
duction planning in the semiconductor industry where safety stocks are addressed
through the use of demand classes. Production required to replace safety stocks is
modeled as a class of demand that has lower priority than firm customer orders, and
capacity is allocated to these orders only if this will not compromise the ability of the
system to meet firm customer orders. He suggests simulation of the production plan
to obtain estimates of the variability of the resulting lead times this plan will impose
on the system. These estimates of variability can then be used to determine safety
stock levels to protect against variability in lead times. Hung and Chang (1999)
elaborate further on this approach and give computational experiments examining
its performance.

In the domain of production planning models, the chance-constrained (CC)
formulations of Charnes and Cooper (1963) can be used to obtain determinis-
tic equivalents to a number of production planning problems involving random
variables. In the simplest version of this approach, consider demand to be the only
source of uncertainty, and assume that demand in period t has a cumulative distribu-
tion function Ft : Note that It is a random variable due to the demand being random.
Let us define Ut to be a target inventory level such that in each period t we produce
Xt D Ut � It�1 units if Ut > It�1 and otherwise do not produce in that period.
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Then we can write chance constraints of the form P fIt � 0g � 1 � ˛, where ˛ de-
notes the acceptable probability of stockout in a period. The optimization problem
is to determine the Xt . Defining gt D Ut � Ut�1, implying Xt D gt C Dt�1, yields

It D I0 C
tX

�D1

.X� � D� / D I0 C
tX

�D1

g� � Dt : (16.98)

This allows us to write the chance constraint as

P

(
I0 C

tX

�D1

gt � Dt

)
� 1 � ˛ (16.99)

implying

It D I0 C
tX

�D1

g� � F �1.1 � ˛/; (16.100)

where the right-hand side is now a constant. Most existing CC production plan-
ning models are uncapacitated, and do not model WIP in any form. The chance
constraints are thus developed to ensure that the finished goods inventory at the
end of each period is positive with a given probability, corresponding to the ser-
vice level desired. The most common approach to developing an objective function
is to assume that the probabilities of constraint violation are sufficiently small that
backorder costs can be neglected, as suggested by Bookbinder and Tan (1988) and
Johnson and Montgomery (1974). Similar CC formulations of chance-constrained
problems are given by Bookbinder and H’ng (1986), Gupta and Sengupta (1977),
Sengupta (1972), Sengupta and Portillo-Campbell (1973), and Rakes et al. (1984),
among others.

This approach does not appear to have been used much in recent years; stochastic
programming (see, e.g., Birge and Louveaux 1997) has been preferred, for strong
reasons related to the difficulties of the chance-constrained approach in modeling
recourse actions (Blau 1974; Hogan et al. 1981; Charnes and Cooper 1983). The
stochastic programming formulation is mathematically more complete in terms of
its ability to model multiple stage decision problems with recourse actions pos-
sible at each stage. However, the large number of decision stages, corresponding
to the time periods in planning problems encountered in industry, renders the use
of stochastic programming computationally challenging, as suggested by Peters
et al. (1977). The CC formulation has a number of difficulties – the desired probabil-
ities of constraint violation need to be specified a priori, and the degree to which the
constraints are violated is not accounted for in the objective function. From a prac-
tical perspective, the models are infeasible if it is not possible to satisfy all chance
constraints with the desired probabilities, without providing the user any means of
trading off service levels between products. In order to obtain tractable constraint
sets, distributional assumptions must be made about the random variables on the



498 H. Missbauer and R. Uzsoy

right hand sides of the constraints. Extensive discussions of these issues can be
found in, for example, Prekopa (1993) and Lejeune and Prekopa (2005).

However, the CC formulations also offer a number of advantages for practical
implementation relative to stochastic programming, The first of these is that with
varying degrees of approximation, depending on the degree to which the distri-
butional assumptions on the random variables are violated, these models can be
implemented using extensions of the LP formulations with which both practition-
ers and researchers are familiar. While pre-specifying the probabilities of constraint
violation may be problematic in many application domains, in the context of produc-
tion planning that we consider, the probability of constraint violation has a natural
interpretation as the probability of a stockout. The need to pre-specify stockout prob-
abilities may actually be an advantage in practice, as it forces users to think in terms
of service levels, perhaps based on aggregating products into product families or
customers into priority classes.

A specific kind of demand uncertainty can emerge in production planning models
that decide on aggregate sales, production and inventory, usually over the seasonal
cycle (sales and operations planning; see Vollmann, Berry et al. 2005, p. 60 ff.). Typ-
ically the products are aggregated into groups or families of products with similar
demand pattern and resource requirements, and the decision variables are defined at
this aggregate level. Since stockouts are defined at the level of individual products,
nonnegativity of the aggregate inventory is not a sufficient condition for a feasible
production plan. If the aggregate demand is considered as deterministic and the de-
mand of individual products is uncertain with lower and upper bounds, the task is
to find a robust aggregate production plan that allows a feasible solution at the level
of individual products (disaggregation to obtain a feasible master production sched-
ule). For this topic, see Lasserre and Mercé (1990) and Gfrerer and Zäpfel (1995).

16.9 Conclusions and Future Directions

The problems discussed in this chapter, of managing the release of work into a
production system and allocating resource capacity among different products, con-
stitutes one of the earliest applications of operations research to industrial planning
and control problems, with literature dating back more than five decades. When
viewed as part of a production planning and control hierarchy, the workload con-
trol approaches developed over the years focus on maintaining predictable lead
time and throughput behavior in a stable demand environment, where the system
can be expected to produce at a relatively constant rate. Traditional order release
mechanisms, complemented by suitable methods for order acceptance and due date
setting, are also recommended for make-to-order production where demand fore-
casts are difficult to obtain. This implies that the objective of these methods is to
maintain a desirable pattern of aggregate material flow through the facility, which
these techniques try to accomplish mainly by heuristic means with relatively little
unifying theoretical support. The lack of a strong theoretical understanding of this
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area is evidenced by the fact that most of the existing knowledge from this type
of research is in the form of results from simulation studies, which are sometimes
contradictory, and often hard to generalize beyond the specific production system
topology in which they were tested.

Focusing on optimization of aggregate material flows through the production
system motivates the discussion of the second, higher level of the planning hier-
archy, where a more aggregate plan for work release and capacity allocation take
place. These models generally take a more aggregate perspective, with time being
divided into discrete planning periods and material flows being viewed as a contin-
uous medium as opposed to discrete jobs that must be handled as an integral unit.
We have focused in particular on the rich literature on mathematical programming
models of these problems, almost all of which can trace their ancestry to the work of
Holt, Modigliani and their collaborators in the 1950s (Holt et al. 1955, 1956, 1960;
Modigliani and Hohn 1955). It is interesting to note that until very recently, there has
been a hiatus in research on these models; between the late 1970s and the late 1990s
there are relatively few papers on formulation and modeling aspects of these prob-
lems, with the work of Leachman and his coworkers (Hackman and Leachman 1989;
Leachman and Carmon 1992; Hung and Leachman 1996; Dessouky and Leach-
man 1997) being a significant exception. It is also interesting to note that the 1974
book by Johnson and Montgomery is still one of the best available references for
most of the classical work in this area. One is left with the feeling that for many
years this area was perceived as a “solved” problem with no further interesting re-
search issues.

We hope that the discussion in this chapter will stimulate wider interest in both
industry and academia in this area. While widely taught in academia and used in in-
dustry, the classical linear programming models have a number of limitations arising
from their very aggregate, static approach to modeling production capacity. It is
heartening that in recent years a growing number of researchers have begun to
explore these problems anew (Pahl et al. 2005). The new approaches differ sub-
stantially from the classical approaches in their efforts to achieve solutions that are
consistent with the queuing behavior of production systems, which is well stud-
ied (Buzacott and Shanthikumar 1993; Hopp and Spearman 2001), and thus tend
to have nonlinear structure which, in many cases, can be addressed effectively in
computational procedures.

A number of important research directions have been outlined in the chapter,
but are worth summarizing again. The new nonlinear approaches, among which
the clearing function approach appears to be the most studied, show considerable
promise but need to be better understood both empirically and theoretically. The
issues of how to derive clearing functions analytically in multistage systems when
decisions at one stage affect the variability of arrivals, and hence the shape of the
clearing function, at downstream stages needs to be examined. There also needs to
be a better understanding of the implications of using steady-state queuing results to
develop clearing functions for use in a dynamic, nonstationary environment, where
the purpose of the planning process is to change release rates over time. A closely
related and not well-understood issue is that of how changes in decision variable
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values at the boundaries between planning periods affect the implementability and
execution of the plans obtained. To what extent insights on the transient behavior
of queuing systems should be integrated into the models is not known today. In
terms of empirical estimation of clearing functions, we have experimental results
demonstrating that a simple least-squares fit to empirical data may result in very
poor planning models, but there is no theoretically justified alternative approach
available as yet.

The main alternative to clearing function models are lead time-oriented models.
Fixed lead times do not recognize the load-dependence of the lead times in the case
of time-varying capacity load. A fixed relationship between lead time distribution
and capacity load in a period can lead to substantial modeling errors since it does
not capture the dynamic characteristics of lead times. The iterative approaches of
Hung and Leachman (1996) and Riaño et al. (2006) are very interesting, but their
computational performance, especially their convergence characteristics, have not
been tested extensively.

Similar concerns hold for most of the other approaches that have been suggested
as alternatives. While both stochastic programming and chance constraint formula-
tions have been proposed for addressing the issue of uncertainty inherent in most
industrial applications, effective computational procedures are not available, and
the implications of the formulations are not well understood. Most research on
lot-sizing has focused on developing effective solution procedures for the result-
ing fixed-charge integer programming models, but the majority of these models use
the same model of capacity as the classical linear programming models, and there
is clearly much work to be done here.

Finally, from the point of view of industrial applications, it is notable that many of
the proposed new approaches are significantly more complex in both their data and
their computational requirements, and especially load-dependent lead times may
complicate coordination between manufacturing departments. It is by no means ob-
vious that the proposed new models are always superior to the classical models in
all industrial environments. This requires developing a better, theory-based under-
standing of the conditions under which the additional complexity of the new models
is justified over the well-understood classical models that have been the mainstay of
industrial practice for several decades.
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