
Chapter 8
Delay-Dependent Switched Filtering

In this chapter, the filtering problem for a class of discrete-time switched systems
with state delays is thoroughly investigated. We will focus on discrete-time sys-
tems. Attention will be equally focused on the design of stable filters guaranteeing
different prescribed performance criteria including the L2 sense and in the L2−L∞
sense. In all cases, switched Lyapunov functionals are employed to derive sufficient
conditions for the solvability of the filtering problem and expressed in terms of linear
matrix inequalities (LMIs).

8.1 H∞ Filter Design

The problem of H∞ filtering for a class of discrete-time switched systems with
state delays is investigated in this section. Attention is focused on the design of a
stable filter guaranteeing a prescribed noise attenuation level in the H∞ sense. By
using switched Lyapunov functionals, sufficient conditions for the solvability of this
problem are obtained in terms of linear matrix inequalities (LMIs), by solving which
a desired H∞ filter can be constructed.

8.1.1 Introduction

It is well known that state estimation has been widely studied and has found many
practical applications during the past decades. When a priori information on the
external noise is not precisely known, the celebrated Kalman filtering scheme is
no longer applicable. In this case, H∞ filter was introduced in [57], where the
noise signal was assumed to be energy bounded and the main objective was to
minimize the H∞ norm of the filtering error system [78, 282, 346, 394, 408].
When time delays are taken into account in a system, linear matrix inequality-based
(LMI-based) results on the H∞ filtering problem have also been reported in the
literature; see, for example, [79, 106, 347, 381, 393] and the references therein.

Recently, the control synthesis of switched systems has been extensively inves-
tigated and many methodologies have been used in the study of switched systems
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224 8 Delay-Dependent Switched Filtering

[42, 52, 56, 86, 170, 191, 441]. For example, multiple Lyapunov functions were
employed to establish certain general Lyapunov-like results for nonlinear switched
systems [56]; dwell-time and average dwell-time approaches were employed to
study the stability and disturbance attenuation of switched systems [377, 426];
piecewise Lyapunov function approach was adopted in [156, 388]; and a switched
Lyapunov function method has been applied in [42] to study the stability problem
of discrete-time switched systems.

On the contrary, time delays are the inherent features of many physical process
and the big sources of instability and poor performances. Switched systems with
time delays have strong engineering background in network control systems [170]
and power systems [291]. More recently, some theoretical studies were conducted
for switched systems with time delays [370, 395, 425]. Till date, to the best of the
authors’ knowledge, the H∞ filtering problem has not been addressed for time-
delayed switched systems. In this paper, an H∞ filtering design is developed using
switched Lyapunov functional approach for discrete-time switched systems with
time delay. The filtering design solution is facilitated by introducing some addi-
tional instrumental matrix variables. These additional matrix variables decouple the
Lyapunov and the system matrices, which makes the filtering design feasible.

8.1.2 Problem Formulation

Consider the following discrete-time switched system with state delay :

Σ0 : xk+1 =
S∑

i=1

αi (k)Ai xk +
S∑

i=1

αi (k)Adi xk−d +
S∑

i=1

αi (k)Biωk (8.1)

yk =
S∑

i=1

αi (k)Ci xk +
S∑

i=1

αi (k)Cdi xk−d +
S∑

i=1

αi (k)Diωk (8.2)

zk =
S∑

i=1

αi (k)Gi xk (8.3)

where xk ∈ Rn is the state, yk ∈ Rr is the measured output, zk ∈ Rq is the signal
to be estimated, ωk ∈ R p is the disturbance input, which is assumed to belong
to l2[0,∞), and the positive integer d denotes the known state delay. αi (k) is the
switching signal:

αi : Z+ −→ {0, 1},
S∑

i=1

αi (k) = 1, k ∈ Z+ = {0, 1, · · · }

which specifies which subsystem will be activated at certain discrete time. Ai , Adi ,
Bi , Ci , Cdi , Di , and Gi are system matrices with compatible dimensions.
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Here we are interested in designing a filter described by

Σ f : x̂k+1 =
S∑

i=1

αi (k)A f i x̂k +
S∑

i=1

αi (k)B f i yk (8.4)

ẑk =
S∑

i=1

αi (k)C f i x̂k (8.5)

where x̂k ∈ Rn and ẑk ∈ Rq , the matrices A f i , B f i , and C f i are to be determined.
Augmenting the model of Σ0 to include the system Σ f , we obtain the following
system (called filtering error system):

Σc : x̃k+1 =
S∑

i=1

αi (k) Ãi x̃k +
S∑

i=1

αi (k) Ãdi x̃k−d +
S∑

i=1

αi (k)B̃iωk (8.6)

z̃k =
S∑

i=1

αi (k)C̃i x̃k (8.7)

where

Ãi =
[

Ai 0
B f i Ci A f i

]
, Ãdi =

[
Adi 0

B f i Cdi 0

]
, B̃i =

[
Bi

B f i Di

]
,

x̃k =
[

xT
k x̂T

k

]T
, z̃k = zk − ẑk, C̃i =

[
Gi −C f i

]
(8.8)

Our objective is to develop a filter in the form of (8.4) and (8.5) such that the
following specifications are met for the filtering error system Σc:

(H1): The filtering error system Σc is globally asymptotically stable when ωk = 0.
(H2): The filtering error system Σc guarantees, under zero-initial condition,

‖z̃k‖2 ≤ γ ‖ωk‖2 for all nonzero ωk ∈ l2[0,∞) and a given positive
constant γ .

In the sequel, we will refer systems satisfying (H1) and (H2) as stable and with
H∞ norm bound γ .

Remark 8.1 The robust filter design problem for switched systems has been inves-
tigated in [86], where the minimax linear filters are developed for discrete-time
systems whose dynamics switches are within a finite set of stochastic behaviors.
In this paper, our attention is focused on the design of delay-independent robust
H∞ filters for the system Σ0 under arbitrary switching signal.



226 8 Delay-Dependent Switched Filtering

8.1.3 Stability and Performance Analysis

This section gives a new characterization involving switched Lyapunov functional
for the filtering error system Σc to be stable and with H∞ norm bound γ .

Theorem 8.2 The filtering error system Σc is stable and with H∞ norm bound γ ,
if there exist matrices {Pi }Ni=1 and {Qi }Ni=1 for all {i, j, l} ∈ S = {1, 2, · · ·, S} such
that

⎡
⎢⎢⎢⎢⎣

−P−1
j Ãi Ãdi B̃i 0

• −Pi + Qi 0 0 C̃ t
i• • −Ql 0 0

• • • −γ 2 I 0
• • • • −I

⎤
⎥⎥⎥⎥⎦ < 0 (8.9)

where ∗ denotes the corresponding transposed block matrix due to symmetry.

Proof First, we establish the stability of system (6). When ωk = 0, (8.6) becomes

x̃k+1 =
S∑

i=1

αi (k) Ãi x̃k +
S∑

i=1

αi (k) Ãdi x̃k−d (8.10)

Define

Vk = x̃ t
k

(
S∑

i=1

αi (k)Pi

)
x̃k +

k−1∑
s=k−d

x̃ t
s

(
S∑

i=1

αi (s)Qi

)
x̃s (8.11)

Then

ΔVk |(8.10) = Vk+1 − Vk

= x̃ t
k+1

(
S∑

i=1

αi (k + 1)Pi

)
x̃k+1 − x̃ t

k

(
S∑

i=1

αi (k)Pi

)
x̃k

+x̃ t
k

(
S∑

i=1

αi (k)Qi

)
x̃k − x̃k−dt T

(
S∑

i=1

αi (k − d)Qi

)
x̃k−d

It follows that for any nonzero vector x̃k and the particular case αi (k) = 1,
αr �=i (k) = 0, α j (k + 1) = 1, αr �= j (k + 1) = 0, αl(k − d) = 1, αr �=l(k − d) = 0.
Then, we have

ΔVk |(8.10) = ηt
k

([
Ãt

i
Ãdt

]
Pj

[
Ãi Ãdi

]+
[−Pi + Qi 0

0 −Ql

])
ηk
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where ηk =
[

x̃ t
k x̃k−dt

]t . By the Schur complement formula, it follows from (8.9)
that ΔVk |(8.10) < 0, which establishes the stability of system (8.10).

Let

JK =
K−1∑
k=0

(
z̃T

k z̃k − γ 2ωt
kωk

)

where K is an arbitrary positive integer. For any nonzero ωk ∈ l2[0,∞) and zero
initial condition x̃0 = 0, one has

JK =
K−1∑
k=0

(
z̃t

k z̃k − γ 2ωt
kωk +ΔVk |(8.6)

)
− VK

≤
K−1∑
k=0

(
z̃t

k z̃k − γ 2ωt
kωk +ΔVk |(8.6)

)

where ΔVk |(8.6) defines the increment of Vk along the solution of system (8.6). It is
noted that

z̃t
k z̃k − γ 2ωt

kωk +ΔVk |(8.6)

= η̃t
k

⎡
⎣ Ãt

i
Ãt

di
B̃t

i

⎤
⎦ Pj

[
Ãi Ãdi B̃i

]
η̃k

+ η̃t
k

⎡
⎣−Pi + Qi + C̃T

i C̃i 0 0
0 −Ql 0
0 0 −γ 2 I

⎤
⎦ η̃k (8.12)

where

η̃k =
[

x̃ t
k x̃k−dt ωt

k

]t

It follows from (8.9) and Schur complement that

z̃T
k z̃k − γ 2ωt

kωk +ΔVk |(8.6) < 0

which implies, for any K , JK < 0. Then one has that for any nonzero ωk ∈ l2[0,∞),
‖z̃k‖2 < γ ‖ωk‖2 �.

Motivated by the idea in [44], we present the following theorem.

Theorem 8.3 The filtering error system Σc is stable and with H∞ norm bound γ ,
if there exist matrices {Ri }Ni=1, {Ψi }Ni=1, and Ω for all {i, j, l} ∈ S = {1, 2, · · ·, S}
such that
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⎡
⎢⎢⎢⎢⎢⎢⎣

−R j ÃiΩ ÃdiΩ B̃i 0 0
• Ri − (Ω +ΩT ) 0 0 ΩT C̃T

i ΩT

• • Ψl − (Ω +ΩT ) 0 0 0
• • • −γ 2 I 0 0
• • • • −I 0
• • • • • −Ψi

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (8.13)

Proof Suppose that (8.13) holds, then it is easy to see from (8.13) that

(Ri −Ω)t R−1
i (Ri −Ω) ≥ 0

which implies

−Ω t R−1
i Ω ≤ Ri − (Ω +Ω t )

Similarly, we can get −Ω tΨ−1
i Ω ≤ Ψi − (Ω +ΩT ). Then, (8.13) is transformed

into

⎡
⎢⎢⎢⎢⎢⎢⎣

−R j ÃiΩ ÃdiΩ B̃i 0 0
• −ΩT R−1

i Ω 0 0 ΩT C̃T
i ΩT

• • −ΩTΨ−1
l Ω 0 0 0

• • • −γ 2 I 0 0
• • • • −I 0
• • • • • −Ψi

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (8.14)

Pre-multiplying (8.14) by

diag{I,Ω−t ,Ω−t , I, I, I }

and post-multiplying by

diag{I,Ω−1,Ω−1, I, I, I }

then (8.13) is transformed into

⎡
⎢⎢⎢⎢⎢⎢⎣

−R j Ãi Ãdi B̃i 0 0
• −R−1

i 0 0 C̃T
i I

• • −Ψ−1
l 0 0 0

• • • −γ 2 I 0 0
• • • • −I 0
• • • • • −Ψi

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (8.15)

Notice that Ri = P−1
i , Ψi = Q−1

i . Then, by using the Schur complement formula
we can see that (8.15) is equivalent to (8.9). The proof is completed. �
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Remark 8.4 With the introduction of a new additional matrix Ω , we obtain a suf-
ficient condition in which the matrices Ri and Ψi are not involved in any product
with matrices Ãi , Ãdi , B̃i , and C̃i . This makes a filter design feasible.

8.1.4 Filter Design

In this section, we will present a sufficient condition for the existence of H∞ filter in
the form of (8.4) and (8.5), and show how to construct a filter based on Theorem 8.2.

Theorem 8.5 Consider system Σ0 and given a constant γ > 0. If there exist matri-
ces 0 < R1 j = Rt

1 j , 0 < R3 j = Rt
3 j , 0 < X1m = Xt

1m, 0 < X3m = Xt
3m and

R2 j , X2m, Zi , Yi , Hi , Li , Mi , Si such that the following inequality holds:

⎡
⎢⎢⎢⎢⎢⎢⎣

Θ11 Θ12 Θ13 Θ14 0 0
• Θ̂22 0 0 Θ25 Θ t

26• • Θ̂33 0 0 0
• • • −γ 2 I 0 0
• • • • −I 0
• • • • • −Θ66

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (8.16)

where

Θ11 =
[

R1 j R2 j

• R3 j

]
, Θ12 =

[
Zi Ai Zi Ai

Yi Ai + Hi Ci + Li Yi Ai + Hi Ci

]

Θ13 =
[

Zi Adi Zi Adi

Yi Adi + Hi Cdi Yi Adi + Hi Cdi

]
, Θ14 =

[
Zi Bi

Yi Bi + Hi Di

]

Θ22 =
[

R1i R2i

• R3i

]
, Θ25 =

[
Gt

i − St
i

Gt
i

]
, Θ26 =

[
Zi Zi

Yi + Mi Yi

]

Θ33 =
[

X1m X2m

• X3m

]
, Θ66 =

[
X1i X2i

• X3i

]

Θ̂22 = Θ22 −Θ26 −Θ t
26, Θ̂33 = Θ33 −Θ26 −Θ t

26

then, there exists a filter in the form of (8.4) and (8.5) such that the filtering error
system Σc is asymptotically stable with H∞ norm bound γ . Moreover, if LMI (8.16)
has a feasible solution, then the filter matrix

F :=
[

Afi Bfi

Cfi 0

]
(8.17)
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can be constructed by

F :=
[

V−1
i Li M−1

i Vi V−1
i Hi

Si M−1
i Vi 0

]
(8.18)

Proof Suppose the inequality (8.16) holds. It can be obtained that

[
Zi + Zt

i Zi + Y t
i + Mt

i

• Yi + Y t
i

]
>

[
R1i Rt

2i• R3i

]
> 0 (8.19)

which implies that matrices Zi and Yi are nonsingular. Pre-multiplying (8.19) by[
I −I

]
and post-multiplying the result by

[
I −I

]t , one obtains

− Mi − Mt
i > 0 (8.20)

which implies that Mi is also nonsingular. Hence there exist nonsingular matrices
Ui and Vi satisfying Mi = ViUi such that (8.16) holds.

Let

Π t
i =

[
Zi 0
Yi Vi

]
, ΩΠi =

[
I I

Ui 0

]

Hi = Vi B f i , Li = Vi A f iUi , Si = C f iUi , Mi = ViUi

R j = Π−t
i Ψ11Π

−1
i , Ri = Π−t

i Ψ22Π
−1
i

Φm = Π−t
i Ψ33Π

−1
i , Φi = Π−t

i Ψ66Π
−1
i (8.21)

By (8.8) and (8.21), one has

Π t
i ÃiΩΠi = Ψ12, Π t

i ÃdiΩΠi = Ψ13, Π t
i B̃i = Ψ14

C̃iΩΠi = Ψ t
25, Π t

i ÃiΩΠi = Ψ26 (8.22)

Pre-multiplying (8.13) by

diag
[
Π t

i Π t
i Π t

i I I Π t
i

]

and post-multiplying the result by

diag
[
Πi Πi Πi I I Πi

]

and using (8.21) and (8.22), we readily obtain (8.16). Finally, it is not difficult to
verify from (8.21) that the filter matrices are given by (8.18), which completes the
proof.
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Remark 8.6 The filter expressed in the form of (8.4) and (8.5) not only guaran-
tees analytical properties, such as stability and guaranteed H∞ performance of the
filtering error system Σc, but is itself a switched system.

Remark 8.7 By using the techniques in [30] and [444], the result of Theorem 8.3
can be readily extended to the discrete-time switched systems with state delay,
which contain norm-bounded parameter uncertainties or linear fractional form
parameter uncertainties.

8.1.5 Illustrative Example A

Consider the system Σ0 with N = 2 and

A1 =
[

0.4 0.05
0 −0.35

]
, Ad1 =

[
0.025 0
−0.1 −0.35

]
, B1 =

[
0.34
−0.3

]

Cd1 =
[

0.02 0
]
, D1 = 0.02, G1 =

[
0.24 0.23

]
, C1 =

[
0.29 0.15

]

A2 =
[−0.2 0

0.1 0.1

]
, Ad2 =

[
0.05 −0.1

0 0.15

]
, B2 =

[
0.1
−1

]

Cd2 =
[

0 0.017
]
, D2 = 0.015, G2 =

[
0.2 0.1

]
, C2 =

[−0.19 0.17
]

The purpose here is to design a filter such that the filtering error system is sta-
ble and with a given H∞ norm bound γ . Here the performance level is chosen as
γ = 0.6. By using the Matlab LMI Control Toolbox to solve LMI (8.16), we can
get a feasible set of solutions. By Theorem 8.3, a filter in the form of (8.4) and (8.5)
as follows:

A f 1 =
[

0.3497 −0.5481
0.1094 −0.1653

]
, B f 1 =

[−8.3430
4.3427

]
, C f 1 =

[−0.0030 −0.0758
]

A f 2 =
[−0.1385 −0.0975

0.0049 0.0157

]
, B f 2 =

[−4.9351
−1.4790

]
,C f 2 =

[−0.0059 −0.0282
]

The simulation results of the state responses of the plant and filter are, respectively,
given in Figs. 8.1 and 8.2, where the initial conditions x0 =

[
1.0 −0.8

]t and x̂0 =[
0 0

]t , respectively, and the noise signal is chosen as ωk = 1/(k+1), which belongs
to l2[0,∞). The simulation results of signal zk and ẑk are shown in Figs. 8.3 and 8.4.
Figure 8.5 shows the simulation result of the filtering error z̃k = zk − ẑk . It is
observed that the designed H∞ filter meets the specified requirements, and works
well.
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Fig. 8.1 Step response of plant states

Fig. 8.2 Step response of plant states
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Fig. 8.3 Step response of plant states

Fig. 8.4 Step response of plant states
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Fig. 8.5 Step response of plant states

8.2 Filter Design for Piecewise Systems

Broadly speaking, hybrid systems have proved to be an effective tool for multi-
modeling, analysis, and design of a large number of evolving technological systems,
in which digital devices interact with an analog environment. Systems of this type
are common in embedded computation, robotics, mechatronics, avionics, and pro-
cess control. Owing to the rapid advances in computer technology, hybrid systems
are becoming increasingly relevant and important and consequently have attracted
considerable research interests. A wide class of hybrid systems is piecewise dynam-
ical systems for which some of the research results relevant to this study have been
reported in [2, 63, 144, 293, 334] and their references. Common to these activities
is the development of piecewise Lyapunov function approaches for stability anal-
ysis [156, 176, 313] and linear control design [118, 336, 431, 447] of piecewise
continuous-time systems. In a parallel development, similar results are obtained
for piecewise discrete-time linear systems [184, 293, 334, 376, 428]. For a class
of piecewise discrete-time linear systems, the output feedback control problem has
been investigated in [61] and the design of H∞ and generalized H2 filters are per-
formed in [62] using observer-type filters (without parametric uncertainties or time
delays). The solution is attained via the solution of a set of LMIs.

On another research front, the filtering problem has been the focal point of
numerous research activities in the past four decades due to its central role in
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systems, control, and signal processing. The celebrated Kalman filter [3, 158, 352,
356] provides a recursive algorithm to minimize the variance of the state estima-
tion error when the power spectral density of the process and measurement noise
is known. During the past four decades, Kalman filtering techniques have found
widespread applications in aerospace guidance, navigation, and control problems
[213–221, 235, 250, 256, 257, 262, 263, 266, 267, 269, 287, 352, 356]. When
a priori information on the external noise is not precisely known, Kalman fil-
tering approach is no longer applicable. In such cases, H∞ filtering was intro-
duced [87, 305], in which the input signal is assumed to be energy bounded
and the main objective is to minimize the energy of the estimation error for the
worst possible bounded energy disturbance. The solution to this problem guaran-
tees that the L2-induced norm from the noise signals to the filtering error will be
less than a prescribed performance bound, where the noise are arbitrary energy-
bounded signals. In the literature, there have been different approaches to solve
H∞ filtering problem [16, 67, 69, 71–216, 244, 245, 249, 250, 253, 254, 262–
265, 269, 276, 277, 287, 305, 373, 438, 439]. When the systems are subjected
to norm-bonded parametric uncertainties, robust H∞ filtering were developed in
[72] based on a Riccati equation approach and in [189] using a convex opti-
mization approach. For systems with polytopic parameter uncertainties, linear
matrix inequalities-based sufficient conditions were derived for robust H∞ filters
in [87, 317].

By contrast, the objective of L2 − L∞ filtering problem is to minimize the
peak value of the estimation error for all possible bounded energy disturbances.
Hence, the L2 −L∞ (energy-to-peak) filtering can be considered as a deterministic
formulation of the Kalman filter [223, 318]. The class of robust filtering arose out
of the desire to determine estimates of nonmeasurable state variables for dynamical
systems with uncertain parameters. The past decade has witnessed major develop-
ments in robust filtering problem using various approaches [16, 305].

In recent years, research investigations into dynamical systems with time delays
have been intensified and spread to several domains, including neural networks [35,
37, 194] and nonlinear systems [385, 390, 420]. In addition, the development of
H∞ filters and robust H∞ filters were accomplished, leading to delay-independent
and delay-dependent sufficient conditions [69, 217–223, 235–237, 250, 255–258,
266, 267, 278, 282]. By considering the developed conditions of H∞ filters, it turns
out that the results are generally conservative due to two sources: one introduced
after using finite filters for infinite-dimensional systems like time-delay systems and
the other source arose from uncertainties. To reduce overdesign conservatism, a
new approach to H∞ filtering was introduced using a bounded-real lemma (BRL)
derived for the corresponding adjoint system. This approach was further refined in
[69] using overbounding inequalities. In spite of the considerable advantages of the
H∞ filtering design results, it still entails some appreciable amount of conservatism
due to the majorization procedure in filter design.

The design of robust H∞ piecewise filters based on piecewise Lyapunov func-
tional method for a class of piecewise discrete-time linear systems with time-varying
delays has not been fully addressed before, which is very challenging. In this paper,
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we attend to this problem and consider the design of novel filters for a class of
linear piecewise discrete-time systems with polytopic parametric uncertainties and
time-varying delays. The time delays appear in the state as well as the output and
measurement channels. We consider a general full-order filter that guarantees the
desired estimation accuracy over the entire uncertainty polytope and accordingly
develop two new types of filters by deploying piecewise Lyapunov–Krasovskii
functional. The first filter is based on H∞ criteria and the design incorporates new
parametrization coupled with Finsler’s Lemma to establish sufficient conditions for
delay-dependent filter feasibility. The other one utilizes the L2 − L∞ criteria and
accomplishes the design via elegant use of Schur complement operations. In both
cases, the filter gains are determined by solving linear matrix inequalities (LMIs).

8.2.1 Problem Statement and Definitions

We consider the following class of piecewise discrete-time linear (PDTL) systems:

xk+1 = A j xk + Ad j xk−dk + Γ jωk (8.23)

yk = C j xk + Cd j xk−dk

yk ∈ Ω j , j = 1, 2, ..., r (8.24)

zk = G j xk + Gd j xk−dk +Φ jωk (8.25)

x j = ψ j , j = −dM ,−dM + 1, ..., 0 (8.26)

where {Ω j } j∈S ⊆ �p denotes a partition of the output space into a num-
ber of closed polyhedral regions, with S being the index set of regions, xk ∈
�n is the state vector, ωk ∈ �q is the disturbance input, which belongs to
�2[0,∞), yk ∈ �p is the measured output and zk ∈ �m is the signal to be
estimated, {ψk, k = −dM ,−dM + 1, ..., 0} is a real-valued initial condition and
{A j , Ad j , Γ j ,C j ,Cd j , Ψ j ,G j ,Gd j , Φ j } is the sth local model of the discrete sys-
tem. In the sequel, we define the set

Π
Δ= { j, s|yk ∈ Ω j , yk+1 ∈ Ωs}

to represent all possible transitions from one region to itself or another region. In
the sequel, it is assumed that the delay dk is a time-varying function satisfying

dm ≤ dk ≤ dM (8.27)

where the lower bound dm > 0 and the upper bound dM > 0 are known constant
scalars. For well-posedness of the problem and the subsequent results [144, 156,
336], we invoke the following assumptions:

Assumption 8.8 The solution of the PDTL system (8.23), (8.24), (8.25), and (8.26)
starting from any initial condition ψk is unique for all k > 0.
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Assumption 8.9 When the state of the PDTL system (8.23), (8.24), (8.25), and
(8.26) propagates from region Ω j to Ωs at time k, then the local model Ω j governs
the system dynamics at that time.

Assumption 8.10 The state variables of the PDTL system (8.23), (8.24), (8.25), and
(8.26) are bounded for every initial condition and all admissible disturbances.

Definition 8.11 The energy-to-peak gain of system (8.23), (8.24), (8.25), and (8.26)
is defined as

sup
0 �=w∈�2

{||zk ||�∞/||wk ||�2}

Remark 8.12 It should be noted that Assumption 8.8 and 8.9 give a rule that char-
acterize the piecewise state trajectories of the PDTL system (8.23), (8.24), (8.25),
and (8.26). The partition is performed in the output space to ensure measurement
consideration. Further details are presented in [144, 156, 336].

In case the PDTL system undergoes parametric uncertainties, we consider the
following class of uncertain piecewise discrete-time linear (UPDTL) systems

xk+1 = A jΔxk + Ad jΔxk−dk + Γ jΔωk (8.28)

yk = C jΔxk + Cd jΔxk−dk

yk ∈ Ω j , j = 1, 2, ..., r (8.29)

zk = G jΔxk + Gd jΔxk−dk +Φ jΔωk (8.30)

whose matrices contain uncertainties that belong to a real convex-bounded polytopic
model of the type

⎡
⎣ A jΔ Ad jΔ Γ jΔ

C jΔ Cd jΔ

G jΔ Gd jΔ Φ jΔ

⎤
⎦ Δ=

{⎡
⎣ A jλ Ad jλ Γ jλ

C jλ Cd jλ

G jλ Gd jλ Φ jλ

⎤
⎦ =

N∑
m=1

λm

⎡
⎣ A jm Ad jm Γ jm

C jm Cd jm

G jm Gd jm Φ jm

⎤
⎦, λ ∈ Λ

}
(8.31)

where Λ is the unit simplex

Λ
Δ=

{
(λ1, · · · , λN ) :

N∑
m=1

λm = 1 , λm ≥ 0

}
(8.32)

Define the vertex set N = {1, ..., N }. We use {A j , ..., Φ j } to imply generic system
matrices and {A jm, ..., Φ jm, m ∈ N } to represent the respective values at the
vertices.

The objective of this paper is to develop delay-dependent methods for piecewise
filtering of the class of PDTL systems of the type (8.23), (8.24), (8.25), and (8.26)
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and subsequently generalize them to the UPDTL systems (8.28), (8.29), and (8.30).
We investigate this problem by recourse to linear filter structure. Specifically, we
seek to design an estimate ẑk of zk given by the linear state-space realization:

x̂k+1 = A f j x̂k + B f j yk, x̂(0) = 0, yk ∈ Ω j

ẑk = G f j x̂k (8.33)

In (8.33), x̂(t) ∈ �n is the state vector of the filter, ẑ(t) ∈ �q is the estimate of z(t)
and A f s ∈ �n×n, B f s ∈ �n×m, G f s ∈ �q×n are unknown filter matrices to be
determined in the sequel based on prescribed performance criteria.

8.2.2 Error Dynamics

In terms of the filtering error z̃k := zk− ẑk and the augmented state x̃k :=
[
xt

k x̂ t
k

]t ,
we get from the PDTL system (8.23) and the piecewise filter (8.33) the error
dynamic model described by

x̃k+1 = Ã j x̃k + Ãd j x̃k−dk + Γ̃ jωk

ỹk = C̃ j x̃k + C̃d j x̃k−dk

z̃k = G̃ j x̃k + G̃d j x̃k−dk + Φ̃ jωk, yk ∈ Ω j (8.34)

where the associated matrices are given by

Ã j =
[

A j 0
B f j C j A f j

]
, Γ̃ j =

[
Γ j

B f jΦ j

]

G̃ j =
[

G j −G f j
]
, Ãd j =

[
Ad j 0

B f j Cd j 0

]

C̃ j =
[

C j 0
]
, C̃d j =

[
Cd j 0

]
G̃d j =

[
Gd j 0

]
, Φ̃ j = Φ j (8.35)

In this regard, the piecewise filtering problem of the PDTL system under con-
sideration can be phrased as follows: Given the PDTL system (8.23), (8.24), (8.25),
and (8.26) and the piecewise filter (8.33), it is desired to determine the unknown
piecewise matrices {A f j , B f j , G f j } such that the filtered system (8.34) is asymp-
totically stable and a prescribed performance criterion is achieved for all admis-
sible uncertainties satisfying (8.31) and (8.32). Two performance criteria will be
considered in the sequel:

(1) H∞-performance meaning that for a given prescribed performance bound
γ∞ > 0, ||̃zk ||2 < γ∞||ωk ||2, ∀ω ∈ �2[0,∞),

This means that the γ∞−suboptimal H∞-piecewise filtering problem is to find a
piecewise filter such that energy-to-peak value gain of the filtered system from the
disturbance ωk to the filtering error z̃k is less than γ∞.
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(2) L2 − L∞-performance meaning that for a given prescribed performance
bound γ2 > 0 ||̃yk ||∞ < γ2||ωk ||2, ∀ω ∈ �2[0,∞), and

This means that the γ2−suboptimal generalized H2-piecewise filtering problem
is to find a piecewise filter such that energy-to-peak value gain of the filtered system
from the disturbance ωk to the output filtering error ỹk is less than γ2.

8.2.3 Delay-Dependent Stability

In this section, we develop new criteria for LMI-based characterization of delay-
dependent asymptotic stability and �2 gain analysis of the singular filtered. The
criteria include some parameter matrices aiming at expanding the range of appli-
cability of the developed conditions. The major thrust is based on the fundamental
stability theory of Lyapunov, which states that for asymptotic stability, it suffices to
find a Lyapunov function candidate Vσ (xk, k) > 0, ∀xk �= 0, k ∈ IN satisfying
ΔVσ (xk, k) = Vσ (xk+1, k + 1) − Vσ (xk, k) < 0. We apply this theorem hereafter
for arbitrary switching.

8.2.4 Piecewise Lyapunov Functional

For convenience, we define d̂ = (dM − dm + 1) as the number of delay samples.
The following theorem summarizes the main result.

Theorem 8.13 Given dM > 0 and dm > 0 subject to (8.27). Switched filtered system
(8.34) is delay-dependent asymptotically stable if there exist matrices 0 < Pt

j =
Pj , 0 < Pt

s = Ps, X̂ j , 0 < Qt = Q, 0 < W t = W, {M}31 satisfying the LMIs
for ( j, s) ∈ Π

X̂ j A j + A
t
j X̂ t

j + P̃js < 0 (8.36)

P̃js =

⎡
⎢⎢⎢⎣

−Ξ1s Ξ2 −M1 −d̄M1

• −Ξ3 j Ξ4 −d̄M2

• • −Ξ5 −d̄M3

• • • −d̄W

⎤
⎥⎥⎥⎦ (8.37)

Ξ1s = Ps − dMW, Ξ2 =M1 − dMW
Ξ3 j = Pj − d̂Q− d̄W −M2 −Mt

2

Ξ4 = −M2 −Mt
2, Ξ5 =M3 +Mt

3 +Q

A j =
[−I Ã j Ãd j 0

]
(8.38)

Proof Let the switching rule σ(.) have an activated subsystem j ∈ Π at instant k
then an activated subsystem s ∈ Π at instant k + 1 . In the sequel, we use ξm =
x̃m+1 − x̃m and consider the following switched Lyapunov–Krasovskii functional
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Vσ (̃xk, k)
Δ= Vaσ (̃xk, k)+ Vbσ (̃xk, k)+ Vcσ (̃xk, k)+ Vdσ (̃xk, k)

Vaσ (̃xk, k) = x̃ t
k Pσ x̃k, Vbσ (̃xk, k) =

k−1∑
j=k−dk

x̃ t
j Qx̃ j

Vcσ (̃xk, k) =
−dm+1∑

m=−dM+2

k−1∑
j=k+m−1

x̃ t
j Qx̃ j

Vdσ (̃xk, k) =
−1∑

m=−dM

k−1∑
j=k+m

ξ t
j Wξ j

0 < Pt
σ = Pσ , 0 < Qt = Q, 0 < W t = W, σ ∈ S (8.39)

Define ΔVσ (̃xk, k) = Vσ (̃xk+1, k+ 1)−Vσ (̃xk, k), along the solution of (8.23) we
obtain

ΔVaσ (̃xk, k) = x̃ t
k+1 Ps x̃k+1 − x̃ t

k Pj x̃k (8.40)

ΔVbσ (̃xk, k) =
k∑

m=k−dk+1+1

x̃ t
m Qx̃m −

k−1∑
j=k−dk

x̃ t
j Qx̃ j

= x̃ t
k Qx̃k − x̃ t

k−dk
Qx̃k−dk +

k−1∑
m=k−dk+1+1

x̃ t
m Qx̃m

−
k−1∑

m=k−dk+1

x̃ t
m Qx̃m

≤ x̃ t
k Qx̃k − x̃ t

k−dk
Qx̃k−dk +

k−d∑
m=k−d̄+1

x̃ t
m Qx̃m (8.41)

ΔVcσ (̃xk, k) = (dM − dm) x̃ t
k Qx̃k −

k−dm∑
m=k−dM+1

x̃ t
m Qx̃m (8.42)

ΔVdσ (̃xk, k) ≤ d̄ (̃xk+1 − x̃k)
t W (̃xk+1 − x̃k)

− dM

k−1∑
m=k−dM

ξ t
m Wξm (8.43)

Since x̃k−dk = x̃k −∑k−1
m=k−dk

ξm, then for arbitrary parameter matrices (a set of
free-weighting matrices) Mp, p = 1, . . . , 5, we have

x̂(k,m) = [
x̃ t

k+1 x̃ t
k x̃ t

k−dk
ξ t

m
]t

M̂ = [
Mt

1 Mt
2 Mt

3 0
]t

Ŝ = [
0 I −I −dk I

]
(8.44)
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such that the following equation holds

2
k−1∑

j=k−dk

x̂ t (k,m) M̂Ŝ x̂(k,m) = 0 (8.45)

On considering (8.40), (8.41), (8.42), and (8.43) in the light of (8.39) for dk ≤ d̄,
wk ≡ 0, it is not difficult to show that ΔV (xk, k) < 0 is equivalent to the following
set of inequalities:

k−1∑
m=k−dk

x̂ t (k,m) P̃s j x̂(k,m) < 0, (s, j) ∈ IN× IN (8.46)

More importantly, in view of (10.45) with uk ≡ 0, wk ≡ 0, we have

A j x̂(k,m) = 0 (8.47)

where P̃s j , Ã j are given by (8.37) and (8.38), respectively. Application of Finsler’s
Lemma A.12 (from the Appendix) to (8.46) and (8.47) with x̂(k, j) ≡ x, P̃s j ≡
P, Ãs ≡ Z t , X̂s ≡ B, we readily obtain LMI (8.37) as desired, which establishes
the asymptotic stability. �

8.2.5 Robust Stability

Corollary 8.14 Given dM > 0 and dm > 0 subject to (8.27). Switched filtered
system (8.34) and vertex representation (8.31) and (8.32) is delay-dependent asymp-
totically stable if there exist matrices 0 < Pt

j = Pj , 0 < Pt
s = Ps, X̂ j , 0 < Qt =

Q, 0 < W t = W, {M}31 satisfying the LMIs for ∀( j, s) ∈ Π

X̂ j A jp + A
t
jp X̂ t

j + P̃ j ps < 0 (8.48)

P̃ j ps =

⎡
⎢⎢⎣
−Ξ1 Ξ2 −M1 −d̄M1

• −Ξ3 Ξ4 −d̄M2

• • −Ξ5 −d̄M3

• • • −d̄W

⎤
⎥⎥⎦ (8.49)

A jp =
[−I Ã jp Ãd jp 0

]
(8.50)

Proof Obtained from Theorem (8.13) by using the polytopic representation (8.31)
and (8.32) to get (8.49) from (8.36).
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8.2.6 Common Lyapunov Functional

In the special case of using a common Lyapunov functional, the ensuing delay-
dependent stability results are summarized by the following corollaries:

Corollary 8.15 Given dM > 0 and dm > 0 subject to (8.27). Switched filtered
system (8.34) is delay-dependent asymptotically stable if there exist matrices 0 <

Pt
j = Pj , X̂ j , 0 < Qt = Q, 0 < W t = W, {M}31 satisfying the LMIs for
∀( j, s) ∈ Π

X̂ j A j + A
t
j X̂ t

j + P̃j < 0 (8.51)

P̃j =

⎡
⎢⎢⎣
−Ξ1 j Ξ2 −M1 −d̄M1

• −Ξ3 j Ξ4 −d̄M2

• • −Ξ5 −d̄M3

• • • −d̄W

⎤
⎥⎥⎦ (8.52)

Ξ1 j = Pj − d̄W, Ξ2 =M1 − d̄W
Ξ3 j = Pj − d̂Q− d̄W −M2 −Mt

2

Ξ4 = −M2 −Mt
2, Ξ5 =M3 +Mt

3 +Q
A j =

[−I Ã j Ãd j 0
]

(8.53)

Corollary 8.16 Given dM > 0 and dm > 0 subject to (8.27). Switched filtered sys-
tem (8.34) and vertex representation (8.31) and (8.32) are delay-dependent asymp-
totically stable if there exist matrices 0 < Pt

j = Pj , X̂ j , 0 < Qt = Q, 0 < W t =
W, {M}31, ∀( j) ∈ Π satisfying the LMIs for ∀( j) ∈ Π

X̂ j A jp + A
t
jp X̂ t

j + P̃ j p < 0 (8.54)

P̃jp =

⎡
⎢⎢⎣
−Ξ1 j Ξ2 −M1 −d̄M1

• −Ξ3 j Ξ4 −d̄M2

• • −Ξ5 −d̄M3

• • • −d̄W

⎤
⎥⎥⎦ (8.55)

A jp =
[−I Ã jp Ãd jp 0

]
(8.56)

Remark 8.17 The main stability results are derived from feasibility testing in the
enlarged state space in contrast with existing similar techniques [184, 368, 372,
438]. The novelty of our approach relies on the deployment of Finsler’s Lemma
in conjunction with a set of free-weighting matrices without using bounding tech-
niques to ensure that the system matrices are readily separated from the Lyapunov
matrices. This decoupling feature simplifies numerical implementation and, as will
be shown in the subsequent sections, paves the way to flexible feedback stabilization
synthesis. A simple comparison would support our intuition that the LMI results
are less conservative and in the nonswitching case are superior than the existing
methods [345, 354].
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8.2.7 H∞ Performance

Here, we consider the performance measure

J1K =
K∑

j=0

(
zt

j z j − γ 2wt
jw j

)

The following theorem states the main result

Theorem 8.18 Given dM > 0 and dm > 0 subject to (8.27). Switched system (8.23),
(8.24), and (8.25) with uk ≡ 0 is delay-dependent asymptotically stable with an
L2 − gain < γ∞ if there exist matrices 0 < Pt

j = Pj , 0 < Pt
s = Ps, X̂ j , 0 <

Qt = Q, 0 < W t = W, {M}51 and a scalar γ∞ > 0 satisfying the LMIs for
∀( j, s) ∈ Π

X̂ jA j +At
j X̂ t

j + P̂js < 0 (8.57)

P̂js =

⎡
⎢⎢⎢⎢⎢⎣

−Ξ1 Ξ2 −M1 −d̄M1 0
• −Ξ3 Ξ4 −d̄M2 G̃t

j
• • −Ξ5 −d̄M3 G̃t

d j
• • • −d̄W Φ̃ t

j
• • • • −γ 2∞ I

⎤
⎥⎥⎥⎥⎥⎦

(8.58)

A j =
[−I Ã j Ãd j 0 Γ̃ j

]
(8.59)

where Ξ1, ..., Ξ5 are given in (8.38).

Proof For any ωk ∈ �2(0,∞) �= 0 and zero initial condition xo = 0, we have

J1K ≤
K∑

j=0

(
zt

j z j − γ 2∞ωt
jω j +ΔVσ (x j , j)

)

Standard algebraic manipulation using (8.25) leads to

zt
j z j − γ 2∞ωt

jω j +ΔVσ (x j , j) =
x̃ t (k,m) P̂ js x̃(k,m), x̃(k,m) = [̂

xt (k,m) ωt
k

]t (8.60)

and P̂ js is given by (8.57). It follows from [279] that for the switched system (8.23),
(8.24), and (8.25) to be asymptotically stable with an L2−gain < γ∞ it suffices that
zt

j z j − γ 2∞ωt
jω j + ΔVσ (x j , j) < 0, ∀ j ∈ {0, K } holds for arbitrary switching,

which in turn implies that J1K < 0. The desired result is achieved by Finsler’s
Lemma and LMI (8.37) subject to (8.36). �
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8.2.8 �2 − �∞ Performance

Here, we consider the performance measure

J2K = Vσ (xK , K )−
K−1∑
j=0

ωt
j ω j

where K is an arbitrary positive integer. The following theorem states the desired
stability result

Theorem 8.19 Given dM > 0 and dm > 0 subject to (8.27). Switched filtered system
(8.34) is delay-dependent asymptotically stable with generalized H2− gain < γ2 if
there exist matrices 0 < Pt

j = Pj , 0 < Pt
s = Ps, X̂ j , 0 < Qt = Q, 0 < W t =

W, {M}51 and scalars γ2 > 0, ε j > 0 satisfying the LMIs for ∀( j, s) ∈ Π

⎡
⎢⎢⎢⎢⎢⎣

−Ps + d̂ Q 0 0 Ãt
j Pj d̄

(
Ãt

j − I
)

W

• −Q 0 Ãt
d j Pj d̄ Ãt

d j W
• • −I Γ̃ t

j Pj d̄Γ̃ t
j W

• • • −Pj 0
• • • • −d̄W

⎤
⎥⎥⎥⎥⎥⎦

< 0 (8.61)

⎡
⎣
−P j 0 C̃ t

j
• −ε j I C̃ t

d j
• • −γ 2

2 I

⎤
⎦ < 0 (8.62)

Proof For any sequence 0 �= ω j ∈ �2[0,∞), j ∈ {1, . . . , K − 1} and zero initial
condition x̃o = 0, one has

J2K =
K−1∑
j=0

[
ΔVK |(8.23) − ωt

j ω j

]
(8.63)

Using (8.40) (8.41), (8.42), and (8.43) and manipulating, we get

J2K =
⎡
⎣ xk

xk−dk

ωk

⎤
⎦

t

Ξs j

⎡
⎣ xk

xk−dk

ωk

⎤
⎦ (8.64)

Ξs j =
⎡
⎣Ξ1s j Ξ2s j Ξ3s j

• Ξ4s j Ξ5s j

• • Ξ6s j

⎤
⎦

Ξ1s j = Ãt
j Ps Ã j − Pj + (d̄ − d + 1)Q + d̄

(
Ãt

j − I
)

W ( Ã j − I )

Ξ2s j = Ãt
j Ps Ãd j + d̄

(
Ãt

j − I
)

W Ãd j
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Ξ3s j = Ãt
j PsΓ j + d̄

(
Ât

j − I
)

W Γ̃ j

Ξ4s j = −Q + Ãt
d j Ps Ãd j + d̄ Ãt

d j W Ãd j

Ξ5s j = Ãt
d j Ps Ãd j + d̄ Ât

d j W Ãd j ,

Ξ6s j = −I + Γ̃ t
j Ps Γ̃ j + d̄Γ̃ t

j W Γ̃ j (8.65)

By virtue of (8.61) and Schur complements, it is easy to see that J2K < 0 for any
K . Subsequently, for any 0 �= ω j ∈ �2[0,∞), it follows that

VK <

K−1∑
j=0

ωt
j ω j (8.66)

In turn, Schur complements on LMI (8.62) and applying the S-procedure, it yields

[
−γ 2

2 P j + C̃ t
j C̃ j C̃ t

j C̃d j

• C̃ t
d j C̃d j

]
< 0 (8.67)

from which it is readily evident that

ỹt
K ỹK − γ 2

2 VK < 0 (8.68)

Finally, by LMIs (8.66) and (8.68), it follows that switched filtered system (8.34)
has a generalized H2 norm bound γ2. �

Remark 8.20 We note from that the L2− gain under arbitrary switching can be
looked as the worst-case energy amplitude gain for the switched system (8.23,
8.24, 8.25, and 8.26) over all possible inputs, switching signals, and all admissible
uncertainties. The functional (8.39) is called a switched Lyapunov function (SLF)
since it has the same switching signals as system (8.23), (8.24), and (8.25), which
is known to yield less conservative results than the constant Lyapunov functional. A
novel feature of the developed approach is the arbitrary selection of the matrix X̃ j ,
which helps much in the feedback stabilization later on as well as in the numerical
simulation.

Remark 8.21 The optimal L2− gain of switched system (8.23, 8.24, and 8.25) can
be determined by solving the following convex minimization problem over LMIs:

Minimize γ

s.t. L M I s (8.36)− (8.37), ∀ ( j, s) ∈ IN× IN

Pj , Ps, X̂ j , Q, W, {M}51, ∀( j, s), γ > 0, σ > 0, κ > 0

which can be conveniently solved by the existing LMI software.
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8.2.9 H∞ Filter Design

To facilitate further development, define

X̂ j =
[
Υ̂ t 0 0 0 0 0 0

]t
, Υ̂ ∈ �2n×2n

Next, we express Υ̂ and Λ̂ = Υ̂ −1 and other relevant matrices into the convenient
form

Υ̂ =
[
Υs 0
Υo Υc

]
, R̂ =

[
R1 0
R2 R3

]
, Λ̂ =

[
Λ1 0
Λ1 Λ2

]

Ŝ =
[
S1 0
S2 S3

]
, Ψk =

[
Ψ1k 0
Ψ2k Ψ3k

]

P j =
[
P1 j 0
P2 j P3 j

]
, X j = P−1

j =
[
X1 j 0
X2 j X3 j

]
(8.69)

The following design result is established:

Theorem 8.22 Given dM > 0 and dm > 0 subject to (8.27) and the matrices in
(8.69). Switched filtered system (8.34) is delay-dependent asymptotically stable with
an L2 − gain < γ∞ if there exist matrices {Xk j }3k=1, {Xks}3k=1, {Sk}31, {Rk}31,
B f j , {Ψk}51, {Yk j }3k=1 and a scalar γ∞ > 0 satisfying the LMIs for ∀( j, s) ∈ Π

⎡
⎢⎢⎢⎢⎣

−Σ1s Σ2 j Σ3 j −d̄Ψ1 Γ̃ j

• −Σ4 −Σ5 −d̄Ψ2 Σ7 j

• • −Σ6 −d̄Ψ3 Σ8 j

• • • −d̄S Φ t
j

• • • • −γ 2∞ I

⎤
⎥⎥⎥⎥⎦ < 0, (8.70)

Σ1s =
[
Λ1 +Λt

1 + X1s + d̄S1 Λt
1

Λ1 + X2s + d̄S2 Λ2 +Λt
2 + X3s − d̄S1

]

Σ2 j =
[
Ψ11 + A jΛ

t
1 − d̄S1 A jΛ

t
1

Ψ21 − d̄S2 + Y1 Y1 + Y t
2 + Ψ31 − d̄S3

]

Σ7 j =
[

Λ1Gt
j

Λ1Gt
j − Y4 j

]
, Σ8 j =

[
Λ1Gt

d j
Λ1Gt

d j

]

Σ3 j =
[−Ψ11 + Ad jΛ

t
1 Ad jΛ

t
1−Ψ12 + Y3 −Ψ13 + Y3

]

Σ5 =
[
Ψ21 + Ψ t

21 0
Ψ22 + Ψ t

22 Ψ23 + Ψ t
23

]
, Σ4 =

[
Σ41 0
Σ42 Σ43

]

Σ6 =
[
Ψ31 + Ψ t

31 +R1 0
Ψ32 + Ψ t

32 +R2 Ψ33 + Ψ t
33 +R3

]

Σ41 = P1s − d̂S1 −R1 − Ψ21 − Ψ t
21,
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Σ42 = P2s − d̂S2 −R2 − Ψ22 − Ψ t
22,

Σ43 = P3s − d̂S3 −R3 − Ψ23 − Ψ t
23 (8.71)

Moreover, the gain matrices are given by

A f j = Λ−1
2 Y j2, B f j , G f j = Y4 jΛ

−t
2 (8.72)

Proof Applying the congruence transformation

diag[Λ̂, Λ̂, Λ̂, Λ̂, I ]

to inequality (8.58) using (8.57), and (8.59), and the linearizations

Xs = Υ −t PsΥ
−1, S = Υ −tWΥ −1, Y j3 = B f j Cd jΛ

t
1

X j = Υ −t PjΥ
−1, Y j1 = B f j C jΛ

t
1, Y j2 = Λ2 A f j

Y4 j = Λ2Gt
f j , {Ψ }51 = Υ −t {M}51Υ −1

we immediately obtain LMI (8.70) subject to (8.71). �

A special design procedure based on the common Lyapunov functional is given
below:

Corollary 8.23 Given dM > 0 and dm > 0 subject to (8.27) and the matrices
in (8.69). Switched filtered system (8.34) is delay-dependent asymptotically stable
with an L2 − gain < γ∞ if there exist matrices {Xk j }3k=1, {Sk}31, {Rk}31, B f j ,

{Ψk}51, {Yk j }3k=1, ∀( j, s) ∈ IN and a scalar γ∞ > 0 satisfying the LMIs for
∀( j) ∈ Π

⎡
⎢⎢⎢⎢⎣

−Σ1 j Σ2 j Σ3 j −d̄Ψ1 Γ̃ j

• −Σ4 −Σ5 −d̄Ψ2 Σ7 j

• • −Σ6 −d̄Ψ3 Σ8 j

• • • −d̄S Φ t
j

• • • • −γ 2∞ I

⎤
⎥⎥⎥⎥⎦ < 0 (8.73)

Σ1 j =
[
Λ1 +Λt

1 + X1 j + d̄S1 Λt
1

Λ1 + X2 j + d̄S2 Λ2 +Λt
2 + X3 j − d̄S1

]
(8.74)

where Σ2 j , ..., Σ43 are given by (8.71). Moreover, the gain matrices are given by

A f j = Λ−1
2 Y j2, B f j , G f j = Y4 jΛ

−t
2 (8.75)

8.2.10 �2 − �∞ Filter Design

Initially, we recall the following result:
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Lemma 8.24 The matrix inequality

−M+N Ω−1 N t < 0 (8.76)

holds for some 0 < Ω = Ω t ∈ �n×n, if and only if
[−M NX
• −X − X t + Z

]
< 0 (8.77)

holds for some matrices X ∈ �n×n and Z ∈ �n×n.

Proof (�⇒) By Schur complements, inequality (8.76) is equivalent to
[−M NΩ−1

• −Ω−1

]
< 0 (8.78)

Setting X = X t = Z = Ω−1, we readily obtain inequality (8.77).
(⇐�) Since the matrix [I N ] is of full rank, we obtain

[
I
N t

]t [−M NX
• −X − X t + Z

] [
I
N t

]
< 0 ⇐⇒

−M+N Z N t < 0 ⇐⇒,

−M+N Ω−1 N t < 0, Z = Ω−1 (8.79)

which completes the proof. �
In preparation for the filter design, we use Lemma 8.24 to introduce relaxation

variables and establish the theorem below:

Theorem 8.25 Given dM > 0 and dm > 0 subject to (8.27). Switched filtered system
(8.34) is delay-dependent asymptotically stable with �2 − �∞ < γ2 if there exist
matrices {X }Ni=1, Y, G, F ∀(i, j, s) ∈ Π and scalars γ2 > 0, ε j > 0 such that
the LMIs

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Xs 0 0 Gt Ãt
j d̄Gt

(
Ãt

j − I
)

d̄F
• −F − F t + Y 0 Gt Ãt

d j d̄Gt Ãt
d j 0

• • −I Γ̃ t
i d̄Γ̃ t

i 0
• • • −X j 0 0
• • • • −G − Gt + d̄Z 0
• • • • • −F − F t + d̂Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (8.80)

⎡
⎣−γ

2
2 I C̃d j C̃ jG
• −ε j I 0
• • −G − Gt + X j

⎤
⎦ < 0 (8.81)

have a feasible solution.
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Proof Applying the congruent transformations

[Xs, I, I, X j , I, I ]

to LMI (8.61) and

[X j , I, I ]

to LMI (8.62), respectively, with Xi = P−1
i , i = j, s and Schur complements, it

yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Xs 0 0 Xs Ãt
j d̄

(
Ãt

j − I
)

d̄XsQ
• −Q 0 Ãt

d j d̄ Ãt
d j 0

• • −I Γ̃ j 0 0
• • • −X j 0 0
• • • • −d̄W−1 0
• • • • • −d̄Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (8.82)

⎡
⎣
−X j 0 X j C̃ t

j
• −ε j I C̃ t

d j
• • −γ 2

2 I

⎤
⎦ < 0 (8.83)

When (8.80) and (8.81) hold, it is not difficult to infer that 0 < X j < G + Gt . The
inequality (X j−G)tX−1

j (X j−G) ≥ 0 implies that−GtX−1
j G ≤ X j−(G+Gt ) and

in the same way, the inequality (Y−F)tY−1(Y−F) ≥ 0 implies that−F tY−1F ≤
Y − (F + F t ). Alternatively, it follows from Lemma A.2 that there exist matrices
G, F , YN

i=1 such that LMIs (8.80) and (8.81) are readily obtained. �

Next, to determine the unknown matrices of the piecewise filter we proceed and
define the following matrices

Xk =
[
X1k 0
X2k X3k

]
, k = s, j, G =

[
G1 0
G1 G2

]

Ψk =
[
Ψ1k 0
Ψ2k Ψ3k

]
, F =

[
F1 0
F1 F2

]
(8.84)

and the linearizations

D1 j = Gt
2 At

f j , D2 j = Gt
1Ct

j Bt
f j + Gt

1 At
f j

The following design results are established.

Theorem 8.26 Given dM > 0 and dm > 0 subject to (8.27) and the matrices in
(8.84). Switched filtered system (8.34) is delay-dependent asymptotically stable with
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an L2−L∞ < γ2 if there exist matrices {Xk j }3k=1, {Xks}3k=1, {Sk}31, {Rk}31, B f j ,

{Ψk}51, {Yk j }3k=1, ∀( j, s) ∈ IN and scalars γ2 > 0, ε j > 0 satisfying the LMIs for
∀( j, s) ∈ Π

⎡
⎢⎢⎢⎢⎢⎢⎣

−Π1s 0 0 Π2 j d̄Π3 j d̄F
• −Π4 0 −Π4 −d̄Π4 0
• • −I Γ̃ t

j −d̄Γ̃ t
j 0

• • • −Π1 j 0 0
• • • • −Π5 0
• • • • • −Π6

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (8.85)

⎡
⎣−γ

2
2 I C̃d j Π7
• −ε j I 0
• • −Π8

⎤
⎦ < 0 (8.86)

Π1s =
[
X1s 0
X2s X3s

]
, Π2 j =

[
Gt

1 At
j D2 j

0 D1 j

]

Π3 j =
[
Gt

1

(
At

j − I
)

D2 j

0 D1 j − Gt
2

]
, Π7 =

[
C jG1

0

]

Π4 =
[
F1 + F t

1 − Y1 0
F2 + F t

2 − Y2 F3 + F t
3 − Y3

]

Π5 =
[
G1 + Gt

1 − d̄Z1 0
G2 + Gt

2 − d̄Z2 G3 + Gt
3 − d̄Z3

]

Π6 =
[
F1 + F t

1 − d̄Y1 0
F2 + F t

2 − d̄Y2 F3 + F t
3 − d̄Y3

]

Π8 =
[
G1 + Gt

1 − X1 j 0
G2 + Gt

2 − X2 j G3 + Gt
3 − G3 j

]
(8.87)

Moreover, the gain matrices are given by

A f j = Λ−1
2 Y j2, B f j , G f j = Y4 jΛ

−t
2 (8.88)

A special design procedure based on a common Lyapunov functional is given
below:

Corollary 8.27 Given dM > 0 and dm > 0 subject to (8.27) and the matrices
in (8.84). Switched filtered system (8.34) is delay-dependent asymptotically stable
with an �2 − �∞ < γ2 if there exist matrices {Xk j }3k=1, {Sk}31, {Rk}31, B f j ,

{Ψk}51, {Yk j }3k=1, ∀( j, s) ∈ IN and scalars γ2 > 0, ε j > 0 satisfying the LMIs for
∀( j, s) ∈ Π
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⎡
⎢⎢⎢⎢⎢⎢⎣

−Π1 j 0 0 Π2 j d̄Π3 j d̄F
• −Π4 0 −Π4 −d̄Π4 0
• • −I Γ̃ t

j −d̄Γ̃ t
j 0

• • • −Π1 j 0 0
• • • • −Π5 0
• • • • • −Π6

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (8.89)

⎡
⎣−γ

2
2 I C̃d j Π7
• −ε j I 0
• • −Π8

⎤
⎦ < 0 (8.90)

Π1 j =
[
X1 j 0
X2 j X3 j

]
(8.91)

where Π2 j , ...,Π8 are given by (8.87). Moreover, the gain matrices are given by

A f j = Λ−1
2 Y j2, B f j , G f j = Y4 jΛ

−t
2 (8.92)

8.2.11 Illustrative Example B

Consider the following system of the type (8.23), (8.24), and (8.25) where the
switching occurs between four modes described by the following coefficients:

A1 =
[

0.7 0.09
0 0.35

]
, Ad1 =

[
0.1 0
0 0.1

]
, Γ1 =

[
0.3
−0.3

]

G1 =
[

0.25
0.15

]
, Gd1 =

[ −0.1
−0.01

]
, Φ1 = 0.01

C1 =
[

0.5 0.5
]
, Cd1 =

[−0.1 0
]

A2 =
[

0.41 0.11
0 0.97

]
, Ad3 =

[
0 0.05
0 −0.15

]
, Φ2 = 0.02

G2 =
[

0.22
0.13

]
, Gd2 =

[
0

0.03

]
, Γ2 =

[
0.2
−0.02

]

C2 =
[

0.7 0.3
]
, Cd2 =

[
0 −0.1

]

A3 =
[

0.6 0.02
0 0.49

]
, Ad2 =

[−0.1 0.01
−0.1 −0.1

]
, Φ3 = 0.02

G3 =
[

0.17
0.19

]
, Gd3 =

[
0.05

0

]
, Γ3 =

[
0.01
0.1

]

C3 =
[

0.4 0.6
]
, Cd3 =

[−0.1 0
]

A4 =
[−0.33 0.22

0 −0.45

]
, Ad4 =

[
0 0.25
0 −0.05

]
, Φ4 = 0.02
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G4 =
[

0.22
0.13

]
, Gd4 =

[
0

0.01

]
, Γ4 =

[
0.1
−0.02

]

C4 =
[

0.3 0.7
]
, Cd4 =

[−0.1 0.1
]

and the corresponding two sets { j = 1 i f yk < 1} and { j = 2 i f yk ≥ 1}
respectively.

A computational summary of applying Theorem 8.22 and Corollary 8.23 and
using the tools of [17], such that the above piecewise system is asymptotically stable
is depicted in Table 8.1. The piecewise filter matrices are given by

A f 1 =
[−0.8118 −0.2795

0.2105 −0.7467

]
, B f 1 =

[−0.7833
−1.2554

]

G f 1 =
[−1.3024 −0.1185

]

A f 2 =
[

0.7767 −0.2665
0.1905 −0.6885

]
, B f 2 =

[−0.8452
−1.3725

]

G f 2 =
[−1.4513 −0.1335

]

A f 3 =
[−0.7467 −0.2835

0.2019 0.7645

]
, B f 3 =

[−1.3675
−0.9008

]

G f 3 =
[−0.2025 −1.4366

]

A f 4 =
[

0.8258 −0.2193
0.2005 −0.7534

]
, B f 4 =

[−1.5364
−0.8111

]

G f 4 =
[−1.4448 −0.2167

]

The state x and filtered state x̂ trajectories using H∞-performance are plotted in
Figs. 8.6 and 8.7.

It is quite evident the developed piecewise H∞ filter gives improved perfor-
mance.

Turning to the implementation of Theorem 8.26 and Corollary 8.27 such that the
piecewise discrete-time system under consideration is asymptotically stable, com-
parison of the feasible results is presented in Table 8.2 and the corresponding state x
and filtered state x̂ trajectories using L2 − L∞-performance are plotted in Figs. 8.8
and 8.9.

The foregoing results come in support with the effectiveness of our filtering
approach.

Table 8.1 A summary of H∞-performance bound: illustrative example B

d d̄ T he.8.22 Coro.8.23

2 6 2.145 2.335
3 9 2.774 3.021
4 11 3.182 3.664
5 13 3.534 4.875
6 13 3.732 6.438
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Fig. 8.6 Plot of x1 and x̂1 versus time: H∞ filter
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Fig. 8.7 Plot of x2 and x̂2 versus time: H∞ filter
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Table 8.2 A summary of �2 − �∞-performance bound: illustrative example B

d d̄ T he.8.26 Coro.8.27

2 6 3.015 3.532
3 9 3.684 4.021
4 11 5.182 6.224
5 13 6.534 7.694
6 13 6.732 9.015
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Fig. 8.8 Plot of x1 and x̂1 versus time: L2 − L∞ filter

8.2.12 Illustrative Example C

Consider a third-order system of the type (8.23), (8.24), and (8.25) where the switch-
ing occurs between two modes described by the following coefficients:

Mode 1 = yk ≥ 0

A1 =
⎡
⎣ 0 0.2 0.3
−0.3 0 0.2
−0.1 0.4 0

⎤
⎦, Gd1 =

⎡
⎣ −0.1

0
−0.01

⎤
⎦

G1 =
⎡
⎣−0.3

0
0.7

⎤
⎦, Ad1 =

⎡
⎣0.1 −0.2 0.4

0 0.2 −0.3
0.5 0.1 0

⎤
⎦
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Fig. 8.9 Plot of x2 and x̂2 versus time: L2 − L∞ filter

C1 =
⎡
⎣0.8

0.2
0.2

⎤
⎦, Cd1 =

⎡
⎣−0.1
−0.2
0.1

⎤
⎦, Γ1 =

⎡
⎣0.1

0.5
0

⎤
⎦

Φ1 = 0.1

Mode 2 = yk ≤ 0

A2 =
⎡
⎣0.3 0.2 0

0.3 0 0.5
0 0.4 −0.1

⎤
⎦, Gd2 =

⎡
⎣−0.1

0.1
0

⎤
⎦

G2 =
⎡
⎣ 0.8
−0.2
0.3

⎤
⎦ , Ad2 =

⎡
⎣0.1 0.2 −0.4

0 0.2 −0.5
0 −0.1 0.3

⎤
⎦

C2 =
⎡
⎣0.7

0.1
0.4

⎤
⎦ , Cd2 =

⎡
⎣ 0.1

0.2
−0.1

⎤
⎦, Γ2 =

⎡
⎣0.1

0
0.4

⎤
⎦

Φ2 = 0.3

and the corresponding two sets { j = 1 i f yk < 0} and { j = 2 i f yk ≥ 0},
respectively.
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The piecewise filter matrices such that the above piecewise system is asymptoti-
cally stable are given by

A f 1 =
⎡
⎣−0.6110 1.5279 −1.4688
−1.6789 3.6755 −3.1187
−1.6333 4.1765 −3.8337

⎤
⎦

B f 1 =
⎡
⎣−0.3753
−0.4955
−0.4675

⎤
⎦

G f 1 =
[−2.8874 −0.8225 2.8795

]

A f 2 =
⎡
⎣−1.6022 2.7952 −2.4268
−3.9458 5.3355 −5.1167
−3.6443 6.1385 −34.9837

⎤
⎦

B f 2 =
⎡
⎣−0.8883
−3.0495
−3.0465

⎤
⎦

G f 2 =
[

1.2098 0.0224 −0.2615
]

In Tables 8.3 and 8.4, computational summaries of applying Theorem 8.22–
Corollary 8.23 for H∞-filter and Theorem 8.26–Corollary 8.27 for �2− �∞-filter
are depicted.

Once again, the foregoing results come in support with the effectiveness of our
filtering approach.

Table 8.3 A summary of H∞-performance bound: illustrative example C

d d̄ T he.8.22 Coro.8.23

2 6 0.889 1.035
3 8 0.924 1.044
4 10 0.965 1.067
5 12 0.977 1.095
6 14 0.989 1.105

Table 8.4 A summary of L2 − L∞-performance bound: illustrative example C

d d̄ T he.8.26 Coro.8.27

2 6 0.975 1.045
3 8 0.986 1.076
4 10 1.015 1.088
5 12 1.117 1.096
6 14 1.229 1.107
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8.3 Notes and References

In this chapter, novel delay-dependent filtering design approaches have been devel-
oped for a class of linear piecewise discrete-time systems with convex-bounded
parametric uncertainties and time-varying delays appearing in the state as well as
the output and measurement channels. The filters have linear full-order structure and
guarantee the desired estimation accuracy over the entire uncertainty polytope. We
have used switched Lyapunov functionals and introduced some additional instru-
mental matrix variables to pave the way toward deriving sufficient conditions for
the asymptotic stability of the filtering error system.

The desired accuracy has been assessed in terms of either H∞-performance or
�2 − �∞ criteria. A new parametrization procedure based on a combined Finsler’s
Lemma and piecewise Lyapunov–Krasovskii functional has been established to
yield sufficient conditions for delay-dependent filter feasibility. The filter gains
have been subsequently determined by solving a convex optimization problem over
LMIs. In comparison to the existing design methods, the developed methodology
has been shown to yield the least conservative measures since all previous overde-
sign limitations are almost eliminated. By means of simulation examples, the advan-
tages of the developed technique have been readily demonstrated.
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