
Chapter 2
Mathematical Foundations

This chapter contains a collection of useful mathematical concepts and tools, which
are useful, directly or indirectly, for the subsequent development to be covered in
the main portion of the book. While much of the material is standard and can be
found in classical textbooks, we also present a number of useful items that are not
commonly found elsewhere. Essentially, this chapter serves as a brief overview and
as a convenient reference when necessary.

2.1 Introduction

Hybrid systems are certainly pervasive today. Recently, we have witnessed a resur-
gence in examining quantization effects and a heightened interest in analog com-
putation. There has also been recent progress in analyzing switched, hierarchical,
and discretely controlled continuous-variable systems. It is time to focus on devel-
oping formal modeling, analysis, and control methodologies for hybrid systems.
Therefore, hybrid systems research [357–359] is devoted to modeling, design, and
validation of interacting systems of continuous process and computer programs.
Therefore, the identifying characteristic of hybrid systems is that they incorporate
both continuous components, usually called plants, which are governed by ordi-
nary or functional differential equations, and also digital components such as digital
computers, sensors, and actuators controlled by programs. Moreover, the growing
demands for control systems that are capable of controlling complex nonlinear con-
tinuous plants with discrete intelligent controllers can be addressed by the method
of hybrid systems.

Throughout this book, by a switched system we mean a class of hybrid dynamical
systems consisting of a family of continuous-time subsystems and a rule that orches-
trates the switching between them. An integral part of this book surveys recent
developments in three basic problems regarding stability and design of switched
systems. These problems are:

• stability for arbitrary switching sequences,
• stability for certain useful classes of switching sequences, and
• construction of stabilizing switching sequences.
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We also provide motivation for studying these problems within the framework
of time-delay systems. In practice, many systems encountered exhibit switching
between several subsystems (are inherently multimodal) that is dependent on var-
ious environmental factors. Another source of motivation for studying switched
systems comes from the rapidly developing area of switching control. Control tech-
niques based on switching between different controllers have been applied exten-
sively in recent years, particularly in the adaptive context, where they have been
shown to achieve stability and improve transient response. The importance of such
control methods also stems in part from the existence of systems that cannot be
asymptotically stabilized by a single continuous feedback control law. Additionally,
the fact that some of intelligent control methods are based on the idea of switching
between different controllers. The existence of systems that cannot be asymptoti-
cally stabilized by a single static continuous feedback controller [47] also motivates
the study. A survey of basic problems in stability and design of switched systems is
given in [193].

In this book, we treat switched systems as a class of hybrid systems consist-
ing of a family of subsystems and a switching law that specifies which subsys-
tem will be activated along the system trajectory at each instant of time. Switched
systems deserve investigation for theoretical development as well as for practical
applications. To switch between different system structures is an essential feature
of many control systems, for example, in power systems and power electronics
[47]. There have been many studies for switched systems without uncertainties,
primarily on stability analysis and design [358]. But for robust stability analysis
of uncertain switched systems, there has been comparatively little work. A notable
exception is the study of quadratic stability and stabilization by state-based feedback
for both continuous-time and discrete-time switched linear systems composed of
polytopic uncertain systems in [357]. For performance analysis of switched sys-
tems, authors of [357] investigated the disturbance attenuation properties of time-
controlled switched systems consisting of several linear time invariant subsystems
by using an average dwell-time approach incorporated with a piecewise Lyapunov
function. Reference [133] computed the L2-induced norm of a switched linear sys-
tem when the interval between consecutive switching is large. However, uncertainty
is not considered in these two papers although it is ubiquitous in the system model
due to the complexity of the system itself, exogenous disturbance, measurement
errors, and so on. During the past decade, there have also been many papers concern-
ing robust (or quadratic) stability, stabilization, and robust H∞ control of uncertain
systems without switchings [331, 441].

2.2 Basic Mathematical Concepts

Let x j , y j , j = 1, 2, . . . , n ∈ �(or C). Then the n-dimensional vectors x, y are
defined by x = [x1 x2 . . . xn]t , y = [y1 y2 . . . yn]t ∈ �n, respectively.
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A nonempty set X of elements x, y, . . . is called the real (or complex) vector
space (or real (complex) linear space) by defining two algebraic operations, vector
additions and scalar multiplication, in x = [x1, x2, . . . , xn]t [46]

2.2.1 Euclidean Space

The n-dimensional Euclidean space, denoted in the sequel by �n is the linear vector
space �n equipped by the inner product

〈x, y〉 = xt y =
n∑

j=1

x j y j

Let X be a linear space over the field F (typically F is the field of real numbers � or
complex numbers C). Then a function

||.|| : X → �

that maps X into the real numbers � is a norm on X iff

1. ||x || ≥ 0, ∀x ∈ X (nonnegativity)

2. ||x || = 0, ⇐⇒ x = 0 (positive definiteness)

3. ||α x || = |α|||x ||∀x ∈ X (homogeneity with respect to |α|)

4. ||x + y|| ≤ ||x || + ||y||, ∀x, y ∈ X (triangle inequality)

Given a linear space X , there are many possible norms on it. For a given norm
||.|| on X , the pair (X , ||.||) is used to indicate X endowed with the norm ||.||.

2.2.2 Norms of Vectors

The class of L p-norms is defined by

||x ||p =
( n∑

j=1

|x j |p
)1/p

, f or 1 ≤ p <∞

||x ||∞ = max 1 ≤ j ≤ n |x j |
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The three most commonly used norms are ||x ||1, ||x ||2, and ||x ||∞. All p-norms
are equivalent in the sense that if ||x ||p1 and ||x ||p2 are two different p-norms, then
there exist positive constants c1 and cs such that

c1 ||x ||p1 ≤ ||x ||p2 c2 ||x ||p1, ∀x ∈ �n

2.2.2.1 Induced Norms of Matrices

For a matrix A ∈ �n×n, the induced p-norm of A is defined by

||A||p Δ= sup
x �=0

||Ax ||p
||x ||p = sup

||x ||p=1
||Ax ||p

Obviously, for matrices A ∈ �m×n and A ∈ �n×r , we have the triangle inequal-
ity:

||A + B||p ≤ ||A|||p + ||B||p
It is easy to show that the induced norms are also equivalent in the same sense as

for the vector norms, and satisfying

||AB||p ≤ ||Ax ||p ||B||p, ∀A ∈ �n×m, B ∈ �m×r

which is known as the submultiplicative property. For p = 1, 2, . . .∞, we have
the corresponding induced norms as follows:

||A||1 = max
j

n∑
s=1

|as j |, (column sum)

||A||2 = max
j

√
λ j (At A)

||A||∞ = max
s

n∑
j=1

|as j |, (row sum)

2.2.3 Convex Sets

A set S ⊂ �n is said to be open if every vector x ∈ S, there is an ε-neighborhood
of x

N (x, ε) = {z ∈ �n|||z − x || < ε}

such that N (x, ε) ⊂ S.
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A set is closed iff its complement in �n is open; bounded if there is r > 0 such
that ||x || < r, ∀x ∈ S; and compact if it is closed and bounded; convex if for
every x, y ∈ S, and every real number α, 0 < α < 1, the point α x + (1 − α)

x ∈ S.
A set K ⊂ �n is said to be convex if for any two vectors x and y in K any

vector of the form (1 − λ)x + λy is also in K, where 0 ≤ λ ≤ 1. This simply
means that given two points in a convex set, the line segment between them is also
in the set. Note, in particular, that subspaces and linear varieties (a linear variety is a
translation of linear subspaces) are convex. Also the empty set is considered convex.
The following facts provide important properties for convex sets .

1. Let C j , j = 1, . . . ,m be a family of m convex sets in �n . Then the intersection
C1 ∩ C2 ∩ ... ∩ Cm .

2. Let C be a convex set in�n and xo ∈ �n . Then the set {xo+x : x ∈ C} is convex.
3. A set K ⊂ �n is said to be convex cone with vertex xo if K is convex, and x ∈ K

implies that xo + λx ∈ K for any λ ≥ 0.

An important class of convex cones is the one defined by the positive semidefinite
ordering of matrices, that is, A1 ≥ A2 ≥ A3. Let P ∈ �n×n be a positive
semidefinite matrix. The set of matrices X ∈ �n×n , such that X ≥ P is a convex
cone in �n×n .

2.2.4 Continuous Functions

A function f : �n −→ �m is said to be continuous at a point x if f (x + δx) −→
f (x) whenever δx −→ 0. Equivalently, f is continuous at x if, given ε > 0,
there is δ > 0 such that

||x − y|| < ε �⇒ || f (x)− f (y)|| < ε

A function f is continuous on a set of S if it is continuous at every point of S,
and it is uniformly continuous on S if given ε > 0, there is δ(ε) > 0 (dependent
only on ε), such that the inequality holds for all x, y ∈ S

A function f : � −→ � is said to be differentiable at a point x if the limit

ḟ (x) = lim
δx→0

f (x + δx)− f (x)

δx

exists. A function f : �n −→ �m is continuously differentiable at a point x (a set
S) if the partial derivatives ∂ f j/∂xs exist and continuous at x (at every point of S)
for 1 ≤ j ≤ m, 1 ≤ s ≤ n and the Jacobian matrix is defined as

J =
[∂ f

∂x

]
=

⎡
⎢⎣
∂ f1/∂x1 · · · ∂ f1/∂xn

...
. . .

...

∂ fm/∂x1 · · · ∂ fm/∂xn

⎤
⎥⎦ ∈ �m×n
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2.2.5 Function Norms

Let f (t) : �+ −→ � be a continuous function or piecewise continuous function.
The p-norm of f is defined by

|| f ||p =
(∫ ∞

0
| f (t)|p dt

)1/p

, f or p ∈ [1,∞)

|| f ||∞ = sup t ∈ [0,∞)| f (t)|, f or p = ∞

By letting p = 1, 2,∞, the corresponding normed spaces are called L1, L2, L∞,

respectively. More precisely, let f (t) be a function on [0,∞) of the signal spaces,
they are defined as

L1
Δ=

{
f (t) : �+ −→ �||| f ||1 =

∫ ∞

0
| f (t)| dt < ∞, convolution kernel

}

L2
Δ=

{
f (t) : �+ −→ �||| f ||2 =

∫ ∞

0
| f (t)|2 dt < ∞, finite energy

}

L∞
Δ=

{
f (t) : �+ −→ �||| f ||∞ = sup

t∈[0,∞)

| f (t)| < ∞, bounded signal

}

From a signal point of view, the 1-norm, ||x ||1 of the signal x(t) is the integral
of its absolute value, the square ||x ||22 of the 2-norm is often called the energy of
the signal x(t), and the∞-norm is its absolute maximum amplitude or peak value.
It must be emphasized that the definitions of the norms for vector functions are not
unique.

In the case of f (t) : �+ −→ �n, f (t) = [ f1(t) f2(t) . . . fn(t)]t which
denote a continuous function or piecewise continuous vector function, the corre-
sponding p-norm spaces are defined as

Ln
p

Δ=
{

f (t) : �+ −→ �n||| f ||p =
∫ ∞

0
|| f (t)||p dt < ∞, f or p ∈ [1,∞)

}

Ln∞
Δ=

{
f (t) : �+ −→ �n||| f ||∞ = sup

t∈[0,∞)

|| f (t)|| < ∞
}

2.3 Calculus and Algebra of Matrices

In this section, we solicit some basic facts and useful relations from linear algebra
and calculus of matrices. The materials are stated along with some hints whenever
needed but without proofs unless we see the benefit of providing a proof. Reference
is made to matrix M or matrix function M(t) in the form
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M =
⎡
⎢⎣

M11 · · · M1n
...

. . . · · ·
Mm1 · · · Mmn

⎤
⎥⎦ , or M(t) =

⎡
⎢⎣

M11(t) · · · M1n(t)
...

. . . · · ·
Mm1(t) · · · Mmn(t)

⎤
⎥⎦

2.3.1 Fundamental Subspaces

A nonempty subset G ⊂ �n is called a linear subspace of�n if x+y and αx are in G
whenever x and y are in G for any scalar α. A set of elements X = {x1, x2, . . . , xn}
is said to be a spanning set for a linear subspace G of �n if every element g ∈ G can
be written as a linear combination of the {x j }. That is, we have

G = {g ∈ � : g = α1x1 + α2x2 + . . . αn xn

for some scalars α1, α2, . . . , αn .
A spanning set X is said to be a basis for G if no element x j of the span-

ning set X of G can written as a linear combination of the remaining elements
x1, x2, . . . , x j−1, x j+1, . . . , xn, that is, x j , 1 ≤ i ≤ n form a linearly
independent set. It is frequent to use x j = [0 0 . . . 0 1 0 . . . 0]t the kth unit
vector.

The geometric ideas of linear vector spaces had led to the concepts of spanning
a space and a basis for a space. The idea now is to introduce four important sub-
spaces which are useful. The entire linear vector space of a specific problem can be
decomposed into the sum of these subspaces.

The column space of a matrix A ∈ Ren×m is the space spanned by the columns
of A, also called the range space of A, denoted by R[A]. Similarly, the row space
of A is the space spanned by the rows of A. Since the column rank of a matrix is the
dimension of the space spanned by the columns and the row rank is the dimension
of the space spanned by the rows, it is clear that the spaces R[A] and R[At ] have
the same dimension r = rank(A).

The right null space of A ∈ Ren×m is the space spanned by all vectors x that
satisfy A x = 0, and is denoted by N [A]. The right null space of A is also called
the kernel of A. The left null space of A is the space spanned by all vectors y that
satisfy yt A = 0. This space is denoted by N [At ], since it is also characterized by
all vectors y such that At y = 0.

The dimensions of the four spaces R[A], R[At ], N [A], and N [At ] are to be
determined in the sequel. Since A ∈ �n×m, we have the following

r
Δ= rank(A) = dimension of column space R[A]

dim N [A] Δ= dimension of right null space N [A]
n

Δ= total number of columns of A



24 2 Mathematical Foundations

Hence the dimension of the null space dim N [A] = n − r . Using the fact that
rank(A) = rank(At ), we have

r
Δ= rank(At ) = dimension of row space R[At ]

dim N [At ] Δ= dimension of left null space N [At ]
m

Δ= total number of rows of A

Hence the dimension of the null space dim N [At ] = m − r . These facts are
summarized below.

Note from these facts that the entire n-dimensional space can be decomposed
into the sum of the two subspaces R[At ] and N [A]. Alternatively, the entire
m-dimensional space can be decomposed into the sum of the two subspaces R[A]
and N [At ].

An important property is that N [A] and R[At ] are orthogonal subspaces, that
is, R[At ]⊥ = N [A]. This has the meaning that every vector in N [A] is orthogonal
to every vector in R[At ]. In the same manner, R[A] and N [At ] are orthogonal
subspaces, that is, R[A]⊥ = N [At ]. The construction of the fundamental subspaces
is appropriately attained by the singular value decomposition.

R[At ] Δ= row space of A : dimension r

N [A] Δ= right null space of A : dimension n − r

R[A] Δ= column space of A : dimension r

N [At ] Δ= left null space of A : dimension n − r

2.3.2 Calculus of Vector–Matrix Functions of a Scalar

The differentiation and integration of time functions involving vectors and matrices
arise in solving state equations, optimal control, and so on. This section summa-
rizes the basic definitions of differentiation and integration on vectors and matri-
ces . A number of formulas for the derivative of vector –matrix products are also
included.

The derivative of a matrix function M(t) of a scalar is the matrix of the deriva-
tives of each element in the matrix

dM(t)

dt
=

⎡
⎢⎣

dM11(t)
dt · · · dM1n(t)

dt
...

. . . · · ·
dMm1(t)

dt · · · dMmn(t)
dt

⎤
⎥⎦

The integral of a matrix function M(t) of a scalar is the matrix of the integral of
each element in the matrix
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∫ b

a
M(t)dt =

⎡
⎢⎣

∫ b
a M11(t)dt · · · ∫ b

a M1n(t)dt
...

. . . · · ·∫ b
a Mm1(t)dt · · · ∫ b

a Mmn(t)dt

⎤
⎥⎦

The Laplace transform of a matrix function M(t) of a scalar is the matrix of the
Laplace transform of each element in the matrix

∫ b

a
M(t)e−st dt =

⎡
⎢⎣

∫ b
a M11(t)e−st dt · · · ∫ b

a M1n(t)e−st dt
...

. . . · · ·∫ b
a Mm1(t)e−st dt · · · ∫ b

a Mmn(t)e−st dt

⎤
⎥⎦

The scalar derivative of the product of two matrix time functions is

d(A(t)B(t))

dt
= A(t)

dt
B(t)+ A(t)

B(t)

dt

This result is analogous to the derivative of a product of two scalar functions of
a scalar, except caution must be used in reserving the order of the product. An
important special case follows:

The scalar derivative of the inverse of a matrix time function is

dA−1(t)

dt
= −A−1 A(t)

dt
A(t)

2.3.3 Derivatives of Vector–Matrix Products

The derivative of a real scalar-valued function f (x) of a real vector x =
[x1, . . . , xn]t ∈ Ren is defined by

∂ f (x)

∂x
=

⎡
⎢⎢⎢⎢⎣

∂ f (x)
∂x1
∂ f (x)
∂x2
...

∂ f (x)
∂xn

⎤
⎥⎥⎥⎥⎦

where the partial derivative is defined by

∂ f (x)

∂x j

Δ= lim
Δx j→0

f (x +Δx)− f (x)

Δx j
, Δx = [0 . . . Δx j . . . 0]t

An important application arises in the Taylor’s series expansion of f (x) about xo

in terms of δx
Δ= x − xo. The first three terms are
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f (x) = f (xo)+
(
∂ f (x)

∂x

)t

δx + 1

2
δxt

[
∂2 f (x)

∂x2

]
δx

where

∂ f (x)

∂x
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂ f (x)
∂x1

...

∂ f (x)
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎦

∂2 f (x)

∂x2
= ∂

∂x

(
∂ f (x)

∂x

)t

=

⎡
⎢⎢⎢⎣

∂2 f (x)
∂x2

1
· · · ∂2 f (x)

∂x1∂xn

...
. . . · · ·

∂2 f (x)
∂xn∂x1

· · · ∂2 f (x)
∂x2

n

⎤
⎥⎥⎥⎦

The derivative of a real scalar-valued function f (A) with respect to a matrix

A =
⎡
⎢⎣

A11 · · · A1n
...

. . . · · ·
An1 · · · Ann

⎤
⎥⎦ ∈ Ren×n

is given by

∂ f (A)

∂A
=

⎡
⎢⎢⎣

∂ f (A)
∂A11

· · · ∂ f (A)
∂A1n

...
. . . · · ·

∂ f (A)
∂An1

· · · ∂ f (A)
∂Ann

⎤
⎥⎥⎦

A vector function of a vector is given by

v(u) =

⎡
⎢⎢⎢⎢⎣

v1(u)
...
...

vn(u)

⎤
⎥⎥⎥⎥⎦

where v j (u) is a function of the vector u. The derivative of a vector function of a
vector (the Jacobian) is defined as follows:

∂v(u)

∂u
=

⎡
⎢⎢⎣

∂v1(u)
∂u1

· · · ∂v1(u)
∂um

...
. . . · · ·

∂vn(u)
∂u1

· · · ∂vn(u)
∂um

⎤
⎥⎥⎦
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Note that the Jacobian is sometimes defined as the transpose of the foregoing
matrix. A special case is given by

∂(S u)

∂u
= S,

∂(ut Ru)

∂u
= 2 ut R

for arbitrary matrix S and symmetric matrix R.
The following section includes useful relations and results from linear algebra.

2.3.4 The Dini Theorem

2.3.5 Positive Definite and Positive Semidefinite Matrices

A matrix P is positive definite if P is real, symmetric, and xt Px > 0, ∀x �= 0.
Equivalently, all the eigenvalues of P have positive real parts. A matrix S is positive
semidefinite if S is real, symmetric, and xt Px ≥ 0, ∀x �= 0.

Since the definiteness of the scalar xt Px is a property only of the matrix P , we
need a test for determining definiteness of a constant matrix P . Define a principal
submatrix of a square matrix P as any square submatrix sharing some diagonal
elements of P . Thus the constant, real, symmetric matrix P ∈ �n×n is positive
definite (P > 0) if either of these equivalent conditions holds:

• All eigenvalues of P are positive
• The determinant of P is positive
• All successive principal submatrices of P (minors of successively increasing

size) have positive determinants

2.3.6 Trace Properties

The trace of a square matrix P , trace (P), equals the sum of its diagonal elements
or equivalently the sum of its eigenvalues. A basic property of the trace is invariant
under cyclic perturbations, that is,

trace(AB) = trace(B A)

where AB is square. Successive applications of the above results yield

trace(ABC) = trace(BC A) = trace(C AB)

where ABC is square. In general,

trace(AB) = trace(Bt At )
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Another result is that

trace(At B A) =
p∑

k=1

at
k Bak

where A ∈ �n×p, B ∈ �n×n , and {ak} are the columns of A. The following
identities on trace derivatives are noted:

∂(trace(AB))

∂A
= ∂(trace(At Bt ))

∂A
= ∂(trace(Bt At ))

∂A

= ∂(trace(B A))

∂A
= Bt

∂(trace(AB))

∂B
= ∂(trace(At Bt ))

∂B
= ∂(trace(Bt At ))

∂B

= ∂(trace(B A))

∂B
= At

∂(trace(B AC))

∂A
= ∂(trace(Bt Ct At ))

∂A
= ∂(trace(Ct At Bt ))

∂A

= ∂(trace(AC B))

∂A
= ∂(trace(C B A))

∂A

= ∂(trace(At Bt Ct ))

∂A
= Bt Ct

∂(trace(At B A))

∂A
= ∂(trace(B AAt ))

∂A
= ∂(trace(AAt B))

∂A
= (B + Bt )A

Using these basic ideas, a list of matrix calculus results are given below:

∂(trace(AXt ))

∂X
= A,

∂(trace(AX B))

∂X
= At Bt

∂(trace(AXt B))

∂X
= B A,

∂(trace(AX))

∂Xt
= A

∂(trace(AXt ))

∂Xt
= At ,

∂(trace(AX B))

∂Xt
= B A

∂(trace(AXt B))

∂Xt
= At Bt ,

∂(trace(X X))

∂X
= 2 Xt

∂(trace(X Xt ))

∂X
= 2 X

∂(trace(AXn))

∂X
=

⎛
⎝n−1∑

j=0

X j A Xn− j−1

⎞
⎠

t
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∂(trace(AX B X))

∂X
= At Xt Bt + Bt Xt At

∂(trace(AX B Xt ))

∂X
= At X Bt + AX B

∂(trace(X−1))

∂X
= −(

X−2)t

∂(trace(AX−1 B))

∂X
= −

(
X−1 B AX−1

)t

∂(trace(AB))

∂A
= Bt + B − diag(B)

2.3.7 Partitioned Matrices

Given a partitioned matrix (matrix of matrices) of the form

M =
⎡
⎣ A B

C D

⎤
⎦

where A, B, C , and D are of compatible dimensions. Then

(1) if A−1 exists, a Schur complement of M is defined as D − C A−1 B, and
(2) if D−1 exists, a Schur complement of M is defined as A − B D−1C .

When A, B, C , and D are all n × n matrices, then

a) det

⎡
⎣ A B

C D

⎤
⎦ = det(A) det(D − C A−1 B), det(A) �= 0

b) det

⎡
⎣ A B

C D

⎤
⎦ = det(D) det(A − B D−1C), det(D) �= 0

In the special case, we have

det

⎡
⎣ A B

C 0

⎤
⎦ = det(A) det(C)
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where A and C are square. Since the determinant is invariant under row, it follows

det

⎡
⎣ A B

C D

⎤
⎦ = det

⎡
⎣ A B

C − C A−1 A D − C A−1 B

⎤
⎦

= det

⎡
⎣ A B

0 D − C A−1 B

⎤
⎦ = det(A) det(D − C A−1 B)

which justifies the forgoing result.
Given matrices A ∈ �m×n and B ∈ �n×m , then

det(Im − AB) = det(In − B A)

In case that A is invertible, then det(A−1) = det(A)−1.

2.3.8 The Matrix Inversion Lemma

Suppose that A ∈ �n×n, B ∈ �n×p, C ∈ �p×p, and D ∈ �p×n . Assume that
A−1 and C−1 both exist, then

(A + BC D)−1 = A−1 − A−1 B(D A−1 B + C−1)−1 D A−1

In the case of partitioned matrices, we have the following result

⎡
⎣ A B

C D

⎤
⎦
−1

=
⎡
⎣ A−1 + A−1 BΞ−1C A−1 −A−1 BΞ−1

−Ξ−1C A−1 Ξ−1

⎤
⎦

Ξ = (D − C A−1 B)

provided that A−1 exists. Alternatively,

⎡
⎣ A B

C D

⎤
⎦
−1

=
⎡
⎣ Ξ−1 −Ξ−1 B D−1

−D−1CΞ−1 D−1 + D−1CΞ−1 B D−1

⎤
⎦

Ξ = (D − C A−1 B)

provided that D−1 exists.
For a square matrix Y , the matrices Y and (I +Y )−1 commute, that is, given that

the inverse exists

Y (I + Y )−1 = (I + Y )−1 Y
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Two additional inversion formulas are given below:

Y (I + XY )−1 = (I + Y X)−1 Y

(I + Y X)−1 = I − Y X (I + Y X)−1

The following result provides conditions for the positive definiteness of a parti-
tioned matrix in terms of its submatrices. The following three statements are equiv-
alent:

1)

⎡
⎣ Ao Aa

At
a Ac

⎤
⎦ > 0

2) Ac > 0, Ao − Aa A−1
c At

a > 0

3) Aa > 0, Ac − At
a A−1

o Aa > 0

2.3.9 The Singular Value Decomposition

The singular value decomposition (SVD) is a matrix factorization that has
found a number of applications to engineering problems. The SVD of a matrix
M ∈ Ren×m is

M = U S V † =
p∑

j=1

σ j U j V †
j

where U ∈ Reα×α and V ∈ Reβ×β are unitary matrices (U † U = U U † = I
and V † V = V V † I ); S ∈ Reα×β is a real, diagonal (but not necessarily square);
and pmin(α, β). The singular values {σ1, σ2, . . . , σβ} of M are defined as the pos-
itive square roots of the diagonal elements of St S, and are ordered from largest to
smallest.

To proceed further, we recall a result on unitary matrices. If U is a unitary matrix
(U † U = I ), then the transformation U preserves length, that is,

||U x || =
√
(U x)†(U x) =

√
x† U † U x

=
√

x† x = ||x ||

As a consequence, we have

||M x || =
√

x† M† M x =
√

x† V StU † U SV † x

=
√

x† V St SV † x
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To evaluate the maximum gain of matrix M , we calculate the maximum norm of the
above equation to yield

max||x ||=1
||M x || = max||x ||=1

√
x† V St SV † x = max

||x̃ ||=1

√
x̃† V St S x̃

Note that maximization over x̃ = V x is equivalent to maximizing over x since
V is invertible and preserves the norm (equals 1 in this case). Expanding the norm
yields

max||x ||=1
||M x || = max

||x̃ ||=1

√
x̃† V St S x̃

= max
||x̃ ||=1

√
σ 2

1 |x̃1|2 + σ 2
2 |x̃2|2 + · · · + σ 2

β |x̃β |2

The foregoing expression is maximized, given the constraint ||x̃ || = 1, when x̃ is
concentrated at the largest singular value; that is, |x̃ | = [1 0 . . . 0]t . The maximum
gain is then

max||x ||=1
||M x || =

√
σ 2

1 |1|2 + σ 2
2 |0|2 + · · · + σ 2

β |0|2 = σ1 = σM

In words, this reads the maximum gain of a matrix is given by the maximum
singular value σM . Following similar lines of development, it is easy to show that

min||x ||=1
||M x || = σβ = σm

=
{
σp α ≥ β

0 α < β

A property of the singular values is expressed by

σM (M−1) = 1

σm(M)

2.4 Notes and References

The topics covered in this chapter is meant to provide the reader with a general
platform containing the basic mathematical information needed for further exam-
ination of switched time-delay systems. These topics are properly selected from
standard books and monographs on mathematical analysis. For further details, the
reader is referred to the standard texts [29, 46, 157, 160, 443] where fundamentals
are provided.
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