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Preface

In many practical applications we deal with a wide class of dynamical systems that
are comprised of a family of continuous-time or discrete-time subsystems and a
rule orchestrating the switching between the subsystems. This class of systems is
frequently called switched system. Switched linear systems provide a framework
that bridges the linear systems and the complex and/or uncertain systems. The moti-
vation for investigating this class of systems is twofold: first, it has an inherent
multi-modal behavior in the sense that several dynamical subsystems are required
to describe their behavior, which might depend on various environmental factors.
Second, the methods of intelligent control systems are based on the idea of switch-
ing between different controllers. Looked at in this light, switched systems provide
an integral framework to deal with complex system behaviors such as chaos and
multiple limit cycles and gain more insights into powerful tools such as intelligent
control, adaptive control, and robust control. Switched systems have been investi-
gated for a long time in the control and systems literature and have increasingly
attracted more attention for the past three decades. The number of journal articles,
books, and conference papers have grown exponentially and a number of fundamen-
tal concepts and powerful tools have been developed. It has been pointed out that
switched systems have been studied from various viewpoints. One viewpoint is that
the switching signal is an exogenous variable, and then the problem is to investigate
whether there exists a switching signal such that the switched system has the desired
performance including stability, certain disturbance attenuation level, and the like.
Another viewpoint is that the switching signal is available to system designers and
thus it may be used for control purposes. This books aims at integrating the main
issues of switched systems in a systematic way.

On the contrary, the existence of transfer phenomena, including material, energy,
and information, is an integral part of several physical and man-made systems. In
turn, this gives rise to delay element and, consequently, the overall system repre-
sentation would be the delay differential equations (DDEs) as opposed to the con-
ventional ordinary differential equations (ODEs). Over the years, it is recorded that
DDE:s are used in modeling other phenomena arising in different fields, including
biosciences (heredity in population dynamics), chemistry (behaviors in chemical
kinetics), economics (dynamics of business cycles), engineering (water quality, hot
and cold mills, vibration in cutting machines), to name a few. Time-delay systems
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(TDs) have a long-standing history, and early treatment of DDEs dates back to the
work of Bernoulli and Condorcet. The development of mathematical theory for TDs
however started in the second half of the 20th century by the pioneering work of
Myshkis, Krasovakii, Halanay, and Pinney in the frequency domain and Bellman,
Cooke, and Hale in the time domain. From a control systems standpoint, delays give
rise to stabilizing/destabilizing effects depending on the situation under considera-
tion. By now it is fair to say the fundamental results of the theory of functional dif-
ferential equations (FDEs), as equivalent to DDEs), are well known and well under-
stood. However, there are increasing number of applications involving large-scale
systems that exhibit the delay (transport, propagation, communication, decision) as
a crucial parameter in the control analysis and design methods. Recent approaches
in robust control opened interesting perspectives and issues in dealing with delays
in dynamical systems, where delays are eventually treated as uncertainty.

Since most of the time delays have a crucial impact on the plant performance, the
employment of FDEs rather than ODEs in the modeling effort becomes the rule, not
the exception. Putting them together, a new class of system configuration readily
emerges, which, from now onward, we call switched time-delay systems (STDS).
This class possesses the main ingredients of multi-modes of operation, nominally
inherent time-delay model and parametric uncertainties and external disturbances.
Indeed, this class reflects several important features on the performance analysis and
control design and emphasizes the existence of a hybrid system: state-space delay
dynamics and switching dynamics.

There are numerous applications that can be cast in the framework of such STDS.
Examples include, but not limited to, water quality control, electric power systems,
productive manufacturing systems, and cold steel rolling mills. For obvious reasons,
STDS can be best represented in the time domain by a hybrid state-space formalism
the major part of which is a state-space hereditary model and a switching model
forming the remaining part.

Recently, there has been considerable research interest in stability analysis and
control design of STDS and satisfactory results have been obtained in the literature.
While most of these excellent publications are for specialists and researchers in the
field, so far there is no single book in the literature that presents a systematic and
structured approach to the modeling, stability, and control of STDS. With this in
mind, this book is about stability analysis and control design methodologies for
such a new class of systems, STDs. Thus, the primary objective of the book is to
present an introductory, yet comprehensive, treatment of STD systems by jointly
combining the two fundamental attributes: the system dynamics possesses an inher-
ent time delay and the system operational mode undergoes switching among differ-
ent modes. Although each attribute has been examined individually in several texts,
the integration of both attributes is quite unique and deserves special consideration.

Dhahran, Saudi Arabia Magdi S. Mahmoud
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Notations

Throughout this book, the following terminologies, conventions, and notations have
been adopted. All of them are quite standard in the scientific media and only vary in
form or character.

P>0
P <0
P <0

e 1 [ e e | T | e e | L | [ [ | | T | T [ L [ [ I T [ 1

the set of positive integers

the set of real numbers

the set of nonnegative real numbers

the set of all n-dimensional real vectors

the set of n x m-dimensional real matrices

the transpose of matrix A

the inverse of matrix A

an identity matrix

the identity matrix of dimension s x s

the jth column of matrix /

the transpose of vector x or matrix A

the set of eigenvalues of matrix A (spectrum)

the spectral radius of matrix A

the jth eigenvalue of matrix A

the minimum eigenvalue of matrix A where A(A) are real
the maximum eigenvalue of matrix A where A(A) are real
the inverse of matrix A

the Moore—Penrose inverse of matrix A

matrix P is real symmetric and positive definite
matrix P is real symmetric and positive semidefinite
matrix P is real symmetric and negative definite

matrix P is real symmetric and negative semidefinite

xiii
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A(, J), Aij
det(A)
trace(A)
rank(A)

lal

arg max D

arg min D

0()
diag(...)A

L 1 e | L | L | L [ | 1 [ [ | [ [ [ 1

(1>

1 e o | L | 1 o S S T [

Notations

the ij-th element of matrix A
the determinant of matrix A

the trace of matrix A

the rank of matrix A

the absolute value of scalar a

the Euclidean norm of vector x
the induced Euclidean norm of matrix A
the £, norm of vector x

the induced £, norm of matrix A
the image of operator/matrix A
the kernel of operator/matrix A
the maximum element of set D
the minimum element of set D

the smallest number that is larger than or equal to
each element of set D

the largest number that is smaller than or equal to
each element of set D

the index of maximum element of ordered set S
the index of minimum element of ordered set S
the ball centered at the origin with radius r

the sphere centered at the origin with radius r
the fixed index set {1, 2, ..., N}

the real number set {r e W :a <t < b}

the real number set {r e R :a <t < b}

the set of modes {1, 2, ..., s}

if and only if

order of (.)

diagonal matrix with given diagonal elements

Matrices, if their dimensions are not explicitly stated, are assumed to be com-
patible for algebraic operations. In symmetric block matrices or complex matrix
expressions, we use the symbol e to represent a term that is induced by symmetry.



Contents

PartI Mathematical Tools

1 Introduction ............. .. .. ... . .. .. 3
1.1 Introduction ........ ... ... . ... . . . 3
1.2 Functional Differential Equations ........................ ... 4
1.3 Piecewise Linear Dynamical Systems ....................... 5
1.4 Fundamental Stability Theorems . ........................... 7

1.4.1 Lyapunov—Razumikhin Theorem.................. 7
1.4.2 Lyapunov—Krasovskii Theorem ................... 9
143 Halanay Theorem ................... .. ........ 11
1.5 Outline ofthe Book . ........ ... .. ... ... . ... 12
1.5.1 Methodology .........cciiiiiiiii i 12
1.5.2 Chapter Organization ................cooveenn .. 13

2 Mathematical Foundations ..................................... 17
2.1 Introduction .......... ... . ... . . . . 17
2.2 Basic Mathematical Concepts ............ccooiiiiiinnnn.... 18

2.2.1 Euclidean Space......... ... ..o, 19
2.2.2 Normsof Vectors . ..........coviiieienenn.... 19
223 ConveX SetS . ..ot 20
224 Continuous Functions .. ......................... 21
2.2.5 FunctionNorms .. ............. ... ... ... ... 22
2.3 Calculus and Algebra of Matrices ................ ..., 22
2.3.1 Fundamental Subspaces ......................... 23
232 Calculus of Vector—Matrix Functions of a Scalar .... 24
233 Derivatives of Vector—-Matrix Products ............. 25
234 The Dini Theorem . ............................. 27
2.3.5 Positive Definite and Positive Semidefinite Matrices.. 27
2.3.6 Trace Properties . . .......covveiineiniin e 27
2.3.7 Partitioned Matrices .............. ..., 29
2.3.8 The Matrix Inversion Lemma..................... 30
2.3.9 The Singular Value Decomposition................ 31
2.4 Notesand References .............. ... ... .. ... ... ......... 32

XV



XVi Contents
PartII System Stability

3 Time-Delay Systems: Recent Progress ........................... 35

3.1 Time Delays: OVErview . .........ouuiiiineinneninennnnn. 35

3.2 Literature SUrvey . .. ...t 36

321 Stability Methods..................... . ........ 37

322 Delay-Independent Stability Tests ................. 37

323 Delay-Dependent Stability Tests .................. 38

324 Stability Results. . ........... .o i 38

325 Stabilization Results ............................ 39

33 Stability Approaches: Continuous Time ...................... 39

3.3.1 BasicModels .......... ... o i 40

332 LMI Stability Conditions ........................ 40

333 Newton—Leibniz Formula........................ 41

334 Cross-Product Terms . .. ................ooun... 44

3.35 Bounding Inequalities . .......................... 44

336 Descriptor System Approach ..................... 49

337 Free-Weighting Matrices Method ................. 51

3338 Interval Time Delays . ................ .. ........ 53

339 Improved Stability Method . ...................... 54

3.3.10 Delay-Partitioning Projection Method.............. 57

33.11 Numerical Examples . ........................... 59

34 Stability Approaches: Discrete Time......................... 61

34.1 A Discrete-Time Model ......................... 61

342 Lyapunov Theorem .................. . ... .... 62

343 Delay-Independent Stability . ..................... 63

344 Delay-Dependent Stability ....................... 63

345 Descriptor Model Transformation ................. 66

34.6 Improved Stability Methods .. .................... 69

34.7 Simulation Examples ................ .. ... ..., 72

3.5 Notesand References ........... ..., 73

4 Switched Systems ............ ... 75

4.1 Introduction . ........ ... 75

4.2 Switched Systems: OVerview . . . .........c.iieiiiuninnean. 75

4.2.1 DynamicModel ............. ... ... ... ... 76

422 Model and Definitions. . ............... . ........ Tl

423 Arbitrary Switching . . ......... .. ... . L. 80

424 Average Dwell Time . ........................... 83

425 Lyapunov Functions ............................ 85

4.2.6 Converse Lyapunov Theorem..................... 85

4.3 Some Representative Examples . ............................ 86

4.3.1 Car Transmission System . ..............c.cooven... 87

432 Autonomous Switched System.................... 88



Contents

4.4

4.5

5.1
5.2

53

433 Another Switched System. .......................
434 Simplified Longitudinal Dynamics of an Aircraft . ...
L> Gain Analysis and Synthesis ............................
4.4.1 Switched Gain Analysis ............ ... ...
442 Switched State Feedback ........................
443 Switched Static Output Feedback .................
444 Switched Dynamic Output Feedback ..............
4.4.5 Numerical Examples ............................
Notes and References ............ . ... o ..

5 Switched Time-Delay Systems ..................................
Introduction ........ ... o i
Switched Time-Delay Systems .............................
5.2.1 Multiple Lyapunov Functions ....................
5.2.2 Switched-Stability Analysis ......................
523 Mlustrative Example A ........ ... ... ... .. .....
Piecewise-Affine Systems .......... ... ... . oo
5.3.1 Continuous-Time Systems .......................
532 Solution of PWATD Continuous Systems . ..........
5.33 Mlustrative Example B. . ............... ... ...,
5.3.4 Discrete-Time Systems . ...........c.ovviineinn ..

54

5.35 Stability of PWA Discrete Systems ................
5.3.6 Stability of PWATD Discrete Systems .............
5.3.7 Synthesis of a Stabilizing State Feedback...........
5.3.8 Mlustrative Example C................. ... ...
Notes and References ...,

Part III Switched Stabilization and Control

6.1

6.2

6 Three-Term Stabilization Schemes ..............................
Continuous-Time Systems . ...........cooviiiiiiinennnen...
6.1.1 Problem Statement .............................
6.1.2 Model Transformation ..........................
6.1.3 Ho Stabilization: Unknown Continuous Delay. . . . ..
6.1.4 Hoo Stabilization: Time-Varying Delays............
6.1.5 Simulation Examples ...........................
Discrete-Time Systems . .. ...t
6.2.1 Introduction ............ ... i
6.2.2 Problem Statement ............... ... .. ... ...,
6.2.3 State-Feedback H o Stabilization .................
6.24 Proportional-Summation-Difference (PSD)

Stabilization........... ... ... o i

6.3

Notesand References . ......... .. ...



Xviii Contents

7 Delay-Dependent Switched Control .............................. 169

7.1 Continuous-Time Systems .. ..., 169

7.1.1 Introduction ........ ... ... i 169

7.1.2 Problem Statement ........... ... ... . ... ..., 170

7.1.3 Delay-Dependent Stability ....................... 172

7.1.4 State-Feedback Design .......................... 177

7.1.5 Hoo Feedback Design ................ ... ... 178

7.1.6 Ho Feedback Design.............coovviinenn... 179

7.1.7 Simultaneous H>/Heo Design .. ...t 183

7.2 Discrete-Time Systems . .. ..., 185

7.2.1 Introduction ........ ... ... . 185

7.2.2 Problem Statement .................. .. ........ 186

7.2.3 Delay-Dependent £, Gain Analysis ............... 189

7.2.4 Switched Feedback Design....................... 195

7.3 Multi-Controller Structure ............ . ..., 208

7.3.1 Problem Statement .............. . ... ... ... 209

7.3.2 Robust Delay-Dependent Switching Control . .. ... .. 210

7.3.3 Delay-Dependent Switching Control Design . ....... 213

7.3.4 AppendiX . ... 216

7.4  Notesand References ............... . ... i i 219
Part IV Switched Filtering

8 Delay-Dependent Switched Filtering ............................. 223

8.1 Hoo Filter Design . ... 223

8.1.1 Introduction ........ ... ... L i 223

8.1.2 Problem Formulation ........................... 224

8.1.3 Stability and Performance Analysis................ 226

8.14 Filter Design........... ... . o i i it 229

8.1.5 Mlustrative Example A .......................... 231

8.2  Filter Design for Piecewise Systems . ........................ 234

8.2.1 Problem Statement and Definitions ................ 236

8.2.2 Error Dynamics ............. . ... o ... 238

823 Delay-Dependent Stability ....................... 239

824 Piecewise Lyapunov Functional . . . ................ 239

8.2.5 Robust Stability ............ ... 241

8.2.6 Common Lyapunov Functional ................... 242

8.2.7 Hoo Performance . .............................. 243

8.2.8 €y —loo Performance ........................... 244

8.2.9 Hoo Filter Design ... oo it 246

8.2.10 €y — L FilterDesign .. ... oL 247

8.2.11 Mlustrative Example B. . .......... ... ... ... ... 251

8.2.12 Mlustrative Example C......... ... ... ... oo ... 254

8.3 Notes and References .......... ... ... o i it 257



Contents

xix

9 Switched Kalman Filtering ................... ... .............. 259

9.1 Discrete Switched Delay System .. ............... .. ........ 259

9.1.1 Problem Formulation ........................... 260

9.12 Switched State Estimation ....................... 262

9.13 Robust Linear Filtering . . . ....................... 263

9.14 A Design Approach........... ... ... oL 265

9.1.5 Steady-State Robust Filter ....................... 270

9.1.6 Simulation Example ............................ 273

9.2 Continuous Switched Delay System ......................... 274

9.2.1 Problem Formulation ........................... 277

9.2.2 Robust Linear Filtering . .. .......... ... ... .. .. 278

9.2.3 A Design Approach . ........... ... .. ... 280

9.2.4 Steady-State Robust Filter ....................... 284

9.2.5 Numerical Simulation . .......................... 289

9.3 Notesand References ................. ... ... 293
Part V Switched Decentralized Control

10 Switched Decentralized Control ................................. 297

10.1 Interconnected Discrete-Time Systems . ...................... 298

10.1.1 Problem Statement and Preliminaries .............. 299

10.1.2 Decentralized £5 Gain Analysis ................... 302

10.1.3 Switched State-Feedback Control ................. 312

10.1.4 Switched Dynamic Output Feedback .............. 316

10.1.5 Simulation Example A ............. ... . ... .... 321

10.2  Interconnected Continuous-Time Systems .................... 326

10.2.1 Introduction . ........ ... ... 327

10.2.2 Problem Statement and Preliminaries .............. 332

10.2.3 Delay-Dependent £, Gain Analysis ............... 336

10.2.4 Switched State-Feedback Design.................. 342

10.2.5 Simulation Example B ................ ... ... ... 344

10.2.6 Simulation Example C .......................... 346

10.3 Notes and References ............ ..., 349

Part VI Applications

11 Applications to Water-Quality Control ........................... 353

11.1  Application I: Water-Quality Control ........................ 353

11.1.1 Motivating Example ............................ 354

11.1.2 Delay-Dependent £, Gain Analysis ............... 356

11.1.3 Switched Feedback Control ...................... 357

11.1.4 Switched State Feedback ........................ 358



Contents

XX
11.1.5 Switched Static Output Feedback ................. 359
11.2 0 Appendix . ...t 364
11.2.1 Proof of Theorem 11.1 .......................... 364
11.2.2 Proof of Theorem 11.4 .......................... 367
11.2.3 Proof of Theorem 11.5 .......................... 367
11.3 Notesand References ............ ... ... ... .. ... ... ........ 368
12 Applications to Mutli-Rate Control .............................. 369
12,1 Introduction .............. .ot 369
12.2  Problem Statement ................ ... .. ... ... 371
12.2.1 Dual-Rate Network Control Model ................ 372
12.2.2 Hybrid Control Model........................... 373
12.3  Dissipativity Analysis .........ouuiiinin .. 374
12.3.1 Dissipative Stability of the Nominal System ........ 376
12.3.2 Dissipative Synthesis of the Nominal System ....... 379
12.3.3 Dissipativity Stability of the Uncertain System . . . . .. 381
12.3.4 Dissipative Synthesis of the Uncertain System ... ... 382
12,4 Special Cases .. ..ottt e 383
12.5 Numerical Simulation ............... ... ... .. i, 385
12.6 Conclusions . ........c.uiuirii e e 387
APPendiX . .. ... 389
A.1  BasicInequalities ............... i, 389
Al Inequality 1 ......... .. . . 389
A.l1.2 Inequality 2 ........ . 389
A.1.3 Inequality 3 ... ... .. 390
A.l4 Inequality 4 (Schur Complements) ................ 391
A.l15 Inequality S ... .. i 392
A.16 Inequality 6 ........ ... i 393
A2 Lemmas .......... i 393
A.3  Linear Matrix Inequalities ............. ..., 398
A3.1 Basics . ... . 398
A.3.2 Some Standard Problems ........................ 399
A33 The S-Procedure ............. ... ... .. ........ 401
A.4  Some Continuous Lyapunov—Krasovskii Functionals ........... 402
A.5 Some Formulas on Matrix Inverses . ......................... 402
AS.1 Inverse of Block Matrices........................ 402
AS5.2 Matrix Inversion Lemma ........................ 403
A.6  Some Discrete Lyapunov—Krasovskii Functionals.............. 404
A.7  Additional Inequalities ................oiiiiiiiiiinaaan. 406
References. . ......... ...ttt 411
Index .. ... 431



Part I
Mathematical Tools



Chapter 1
Introduction

Recent years have witnessed an enormous growth of interest in dynamic systems
that are characterized by a mixture of both continuous and discrete dynamics. Such
systems are commonly found in engineering practice and are referred to as hybrid
or switching systems. The widespread application of such systems is motivated by
ever-increasing performance requirements, and by the fact that high-performance
control systems can be realized by switching between relatively simple LTI sys-
tems. However, the potential gain of switched systems is offset by the fact that the
switching action introduces behavior in the overall system that is not present in any
of the composite subsystems. For example, it can be easily shown that switching
between stable subsystems may lead to instability or chaotic behavior of the overall
system, or that switching between unstable subsystems may result in a stable overall
system. In this book, we closely examine two classes of systems: switched systems
(SS) and time-delay systems (TDS), which will eventually pave the way toward
studying a new class of systems, switched time-delay systems (STDS).

1.1 Introduction

Motivated by the desire for a high degree of automation and excellent performance
capabilities, control system design has been the focal point of extensive research
work during the past several decades. Increasingly sophisticated tools from modern
control theories have been developed for improved and better tracking performance.
Concurrent advances in microprocessor technology have made the implementation
of complex nonlinear control algorithms practically feasible. To meet the explo-
sive social demands, contemporary engineering applications and real-life systems
are becoming more complex, interconnected, and spatially distributed. By careful
consideration of such systems and phenomena, it turns out that they have a dis-
tinct property that the future evolution of the systems states is affected by their
previous values, this is frequently called the time-delay effect or simply time delay.
This effect can be produced from different sources and in some cases it may affect
the system behavior and performance and complicate the system analysis. By and
large, the delays are perhaps the main causes of instability and poor performance in

M.S. Mahmoud, Switched Time-Delay Systems, 3
DOI 10.1007/978-1-4419-6394-9_1, © Springer Science+Business Media, LLC 2010



4 1 Introduction

dynamical systems and frequently encountered in various engineering and physical
systems [24, 108, 216]. Formally, a system with time delay can be defined as the
system in which the future states depend not only on the present but also on the
past history of the system [304] and there are many names used in literature for
these phenomena, such as system with aftereffect, system with time lag, and here-
ditary system. In general, such systems are often described by functional differential
equation; a functional equation is an equation involving an unknown function for
different argument values [304]. When this is a differential equation we have a func-
tional differential equation (FDE) or delay differential equation (DDE), where the
rate of change of the state in a system model is determined not only by the present
state but also by past values. The wide appearance of DDE as a model for several
physical and man-made systems is especially important for control systems where
actuators, sensors, and transmission lines introduce time delays.

On the contrary, a switched system is a wide class of dynamical systems that
are comprised of a family of continuous-time or discrete-time subsystems and a
rule orchestrating the switching between the subsystems. This class of systems has
an inherent multi-modal behavior in the sense that several dynamical subsystems
are required to describe their behavior that might depend on various environmen-
tal factors. Switched systems provide an integral framework to deal with complex
system behaviors such as chaos and multiple limit cycles and gain more insights
into powerful tools such as intelligent control, adaptive control, and robust control.
Switched systems have been investigated for a long time in the control and systems
literature and have increasingly attracted more attention for the past three decades.

In the remainder of this chapter, we will review some basic notions of dynamical
system representation before providing an organization chart of the book.

1.2 Functional Differential Equations

Let C, ; = C([—7, 0], ") denotes the Banach space of continuous vector functions
mapping the interval [—t, 0] into i" with the topology of uniform convergence and
designate the norm of an element ¢ € C, ; by

el = SuPO]||<1>(9)||2 (1.1)

oel—t,

faeN d=>0andx € C([ — 7, a+d], R") then for any ¢ € [, « +d], we let
x; € Cbedefined by x,(0) :==x(t+6), -1 <0 <0.IDCRxC, f:D—->N"
is a given function, the relation x () = f (¢, x;) is a retarded functional differential
equation (RFDE) [109] on D where x;(¢),t > t, denotes the restriction of x(-) to
the interval [t — 7, ¢] translated to [—7, O]. Here, t > 0 is termed the delay factor.
In the sequel, if « € N, d > 0 and x € C(le — 7, + d], W") then for any

t € [a,x + d], we let x;, € C be defined by x;(6) 4 x(t+6), —t<6<=<0.In
addition, if D C N x C, f : D — N”" is given function, then the relation
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X(t) = f(t, x) (1.2)

is a retarded functional differential equation (RFDE) on D where x;, t > #y denotes
the restriction of x(.) on the interval [t — 7, ¢] translated to [—7, 0]. A function x is
said to be a solution of (1.2) on [ — 7, o + d] if there @ € N and d > 0 such that

xeCla—1,a+dl,RY, (t,x)eD, tela,a+d] (1.3)

and x(¢) satisfies (1.2) for ¢ € [o,« +d]. Foragivena € R, ¢ € C, x(«a, ¢, f)is
said to be a solution of (1.2) with initial value ¢ at c.
In the linear case, the RFDE (1.2) assume the form

X(t) = Aox(t) + Agx(t — 1), x(0)=¢©®), —-1 =60 =0 (1.4)

We note from [108] that when ¢ (.) is continuous then there exists a unique solution
x(¢) defined on [—7, c0) that coincides with ¢ on [—, 0] and satisfies (1.4) for all
t > 0. By the Lagrange’s formula, this solution is given by

t
x(t) = exp? x(0) + / exp= Ayx(t — ) do
0

t
= exp™’ x(0) + / expU =979 A, x(0) do (1.5)

—T

In the case where T = 0, system (1.4) reduces to
x(t) = (Ao + Ag)x(t) (1.6)

which is asymptotically stable when all the eigenvalues of (A, + A4) have negative
real parts.

1.3 Piecewise Linear Dynamical Systems

Piecewise linear (PL) systems are naturally due to the presence of a range of sys-
tem nonlinearities, such as dead zones, saturation, relays, and hysteresis. Indeed,
stability properties of system components, especially actuators which are piece-
wise linear, have been studied for decades. However, in recent times engineers
have started to employ control laws that are piecewise linear in nature. Important
examples are rule-based control, gain scheduling, and programmable logic control
[334]. There has also been a recent interest in what has been termed hybrid systems
[99]. Indeed, this term has been used for a wide range of systems, from timed finite
state automation to complete integrated factory control and scheduling problems to
the extent that some definitions used would encompass the piecewise linear sys-
tems. In [334], a computational tool for the analysis of PL dynamical systems was
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developed. An example of such a system is the ABS (anti-skid braking) system in a
car, where the controller is rule-based and designed using the engineer’s knowledge
of the system. The only current viable approach to testing such a system is by using
extensive simulation and prototype testing, which must be repeated for each of the
different car models on which it is installed. The work reported in [334] provides
useful insight into the logic and dynamic interaction of such a system. Similarly,
systems with programmable logic controllers and gain schedulers also fall into the
class of piecewise linear systems.

By taking ideas and known results from linear systems, convex set theory, and
computational geometry, the work of [334] aims to synthesize an analysis tool for
studying a class of systems that mix logic and dynamics.

The attractions of piecewise linear (PL) systems in control can be recognized by
representing a PL system as a set of convex polytopes I7; 3", each containing some
linear system of the form

X =Aux +b,, xell, (1.7
where the IT; form a partition of iW" such that
UIT; =R", TNy =0, j#k (1.8)

In a geometric setting, the problem has a complex picture of boxes stacked
together in state space with each box containing a different linear dynamic system.
Any global analysis must somehow identify the behaviors in each box and then
link them together to form a global picture of the dynamics. Loosely speaking, the
associated state space will comprise of n x p linear regions, where n and p repre-
sent the number of states and number of PL functions, respectively. Note that the
PL functions of the system would eventually result in switching surfaces in the state
space. These surfaces act as the boundaries of the convex polytopes that contain each
linear dynamic region. The difficulties presented in analyzing this setup are bound
up in the need to manipulate high-dimensional convex polytopes and the dynamic
systems within them. One analysis technique, using the phase portrait, fulfills many
of the analysis aims. In the phase portrait, PL functions can be represented as lines in
the plane and trajectories or isoclines plotted to represent the dynamics. The result
is a graphical plot of the system dynamics that gives global stability information and
shows how the dynamic patterns change due to the switching lines and hence the PL
functions. The major drawback is the limitation of the phase portrait to two states.

In [334], the idea of mapping a piecewise linear system into a connected graph
was developed, the idea being based on the phase portrait. Each convex polytope or
region in the state space will have dynamics entering and exiting that region. If the
boundaries of every region were partitioned into sections containing only dynamics
entering a region (termed an Nface) and only dynamics exiting a region (termed
an Xface) then the boundaries can be characterized into sections of homogeneous
dynamic behavior. Each section thus identified is then represented as a node of a
graph. The connections between nodes are then characterized by tracking the set of
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trajectories (or trajectory bundle) entering via some Nface and identifying which (if
any) Xface the trajectory bundle leaves that region.

Piecing together the nodes and connections for each region results in a directed
graph that captures the global dynamic patterns of the system. The nodes of the
graph represent the PL functions and the directed connections represent the inter-
action of the PL functions with the system’s dynamics. As will be explained in the
subsequent sections, the realization of this apparently simple idea is not easy.

Piecing together the nodes and connections for each region yields a directed
graph that captures the global dynamic patterns of the system. The nodes of the
graph represent the PL functions and the directed connections represent the interac-
tion of the PL functions with the system’s dynamics.

More about piecewise linear (PL) systems with time delays will be provided later
in the book.

1.4 Fundamental Stability Theorems

In this section, we present the fundamental stability theorems that can be used in
studying the stability behavior of switched systems and time-delay systems. Further
details of these theorems can be found in the classical books [96, 108, 109, 171].

1.4.1 Lyapunov-Razumikhin Theorem

Here the idea is based on the following argument: because the future states of the
system depend on the current and past states’ values, the Lyapunov function should
become functional — more details in Lyapunov—Krasovskii method — which may
complicate the condition formulation and the analysis. To avoid using functional,
Razumakhin made his theorem, which is based on formulating Lyapunov functions,
not functionals. First, one should build a Lyapunov function V (x(¢)), which is zero
when x (1) = 0 and positive otherwise, then the theorem does not require V < 0
always but only when the V (x(¢)) for the current state becomes equal to V, which
is given by

V = maxge[—c,01V (x(t +0)) (1.9)

The theorem statement is given by [105]:

suppose f is a functional that takes time ¢ and initial values x; and gives a vector of
n states x and u, v, w are class K functions, u#(s) and v(s) are positive for s > 0 and
u(0) = v(0) = 0, v is strictly increasing. If there exists a continuously differentiable
function V : i x M" — R such that

u(llxl) =V, x) < v(llxI) (1.10)
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and the time derivative of V along the solution x(¢) satisfies V(t, x) < —w(||x])
whenever V(¢ 40, x(t+60)) < V(¢, x(1))0 € [—1, 0], then the system is uniformly
stable.

If, in addition, w(s) > O for s > 0 and there exists a continuous nondecreasing
function p(s) > s for s > 0 such that

V(t, x) < —w(||x]|) whenever V(7 + 6, x(t + 0)) < p(V(t, x(1)))

for & € [—7,0], then the system is uniformly asymptotically stable. If in addition
lim u(s)s— o = 00 then the system is globally asymptotically stable.

The argument behind the theorem is like this: V is serving as a measure for the
V in the interval ¢t — 7 to ¢ then if V (x(¢)) is less than V then it is not necessary that
V < 0, but if V(x(¢)) becomes equal to V then V should be < 0 such that V will
not grow.

The procedure can be explained by the following discussion: consider a system
and a selected Lyapunov function V (x), which is positive semidefinite. By taking
the time derivative of this Lyapunov function we get V. According to the Razu-
mikhin theorem this term does not always need to be negative, but if we add the
following term a(V (x) — V(x;)) a > 0to V, then the term

V+a(Vx) —V(x)) (1.11)

should always be negative. Then by looking at this term we find that this condition
is satisfied if V < 0 and V(x) < V(x;), meaning that the system states are not
growing in magnitude and it is approaching the origin (stable system) or a(V (x) <
V) and V > 0Obut V < |a(V(x) — V(x;))| then although V is positive and
the states increasing, the Lyapunov function is limited by an upper bound and it
will not grow without limit. The third case is that both of them are negative and it
is clear that it is stable. This condition insures uniform stability, meaning that the
states may not reach the origin but it is contained in a domain, say ¢ which obeys
the primary definition of stability. To extend this theorem for asymptotic stability,
we can consider adding the term p(V (x(¢))) — V (x;), where p(.) is a function that
has the following characteristics:

p(s) >s
and then the condition becomes
V+a(p(V(x(@) — V() <0, a>0 (1.12)
By this, when the system reaches some value, which makes p(V (x(¢))) = V(x;),
requires V to be negative but at this instant V (x(#) < V(x;) then in the coming
T interval the V (x) will never reach V (x;) and the maximum value in this interval

is the new V (x;), which is less than the previous value, and with time the function
keeps decreasing until the states reach the origin.
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1.4.2 Lyapunov-Krasovskii Theorem

The Razumikhin theorem attempts to construct the Lyapunov function while the
Lyapunov—Krasovskii theorem uses functionals because V', which can be considered
as an indicator for the internal power in the system, is function of x;, then it is logical
to consider V, which is a function of function and hence a functional. The terms of
V (x;) should contain terms for the x in the interval (z — 7) to z and V should be
< 0 to ensure asymptotic stability. This method will be covered in more detail in
the next section.

In many cases, the Lyapunov—Razumikhin theorem can be found as a spe-
cial case of Lyapunov—Krasovskii, theorem which makes the former more con-
servative. The Lyapunov—Krasovskii method tries to build a Lyapunov functional,
which is function in x;, and the time derivative of this Lyapunov function should
be negative for the system to be stable. Previously there were criticism on the
Lyapunov—Krasovskii method that it can be used for systems with the third category
of delay mentioned in Section 2.2.2 only when 7 < p < 1 [338], but the recent
results resolve this problem as we see in the next chapter. Another criticism is that
the Krasovskii methods cannot deal with delay in the second category and also the
recent results in this method succeed to include this case [153, 155, 168—-170]. The
remaining advantage of the Razumikhin method is its simplicity, but the Krasovskii
method proved to give less conservative results, the object of interest of most of the
researchers in the recent years. Before going to the theorem we have to define the
following notations

¢ =x
¢l = maxpe[—z,01 x(£ + 6) (1.13)

Lyapunov—Krasovskii theorem statement [105]:

Suppose f is a functional that takes time ¢ and initial values x; and gives a vector of
n states X and u, v, w are class /C functions u(s) and v(s) are positive for s > 0 and
u(0) = v(0) = 0, v is strictly increasing. If there exists a continuously differentiable
function V : R x R, — R such that

u(lloll) = Ve, x) = v(iol,) (1.14)

and the time derivative of V along the solution x (¢) satisfies
V(t,x) < —w(|@|) for 6 € [, 0]

then the system is uniformly stable. If in addition w(s) > 0 for s > 0O then the
system is uniformly asymptotically stable. If in addition lim u(s)s— 0o = 00 then
the system is globally asymptotically stable.

It is clear that V is a functional and V should always be negative.
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When considering a special class of systems that considers the case of linear time
invariant system with multiple discrete time delay, which is given by [167]
m
(1) = Apx(t) + ) Ajx(t —hj) (1.15)
j=I
where h; j =1, 2, ..., m are constants then this case is a simplified case, and in spite

of that the Lyapunov—Krasovskii functional that gives a necessary and sufficient
condition for the system stability is given by

V(x) = x"(OU0)x(1)

m m _hk
+sz/(r+92)A;x/ U1 + 62+ hy — h))
0

k=1 k=1
x Ajx(t +61)d61do,
k=1 —hy
+Z/ X't +)[(hy + 0) Ry + Wilx(t + 0)do (1.16)
0
m
where Wo; Wi; ...; Wiy Ri, Ro; ...; Ry, are positive definite matrices and U is given
by
d m
—U((t) =U(1)Ay + Z U(t —hp)Ar 1 € [0, maxy(hy)] (1.17)
dr —

This theorem were found by trying to imitate the situation of delay-free systems by
finding the state transition matrix and then using it to find P that makes

X (PA+AP)x(t)=-0, 0>0, P>0

This Lyapunov functional gives a necessary and sufficient condition for the sys-
tem stability, but finding the U for this equation is very difficult “and involves solv-
ing algebraic ordinary and partial differential equations with appropriate boundary
conditions which is obviously unpromising” [105]. Even if we can find this U, the
resulting functional leads to a complicated system of partial differential equations
yielding infinite dimension LMI. Thus, many authors considered special forms of it
and thus derived simpler but more conservative, sufficient conditions, which can be
represented by an appropriate set of LMIs.

This is the case for LTI system with a fixed time delay, then considering time
varying delay or a generally nonlinear system makes it more difficult. But looking
at these terms one can have an idea about the possible terms that can be used in the
simplified functional.
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1.4.3 Halanay Theorem

The following fundamental result plays an important role in the stability analysis of
time-delay systems. Suppose the constant scalars k; and kj satisfy k1 > k» > 0 and
y(t) is a nonnegative continuous function on [¢, — T, #,] satisfying

% < — kv 4k 50 (118)

fort > t,, where v > 0 and

y()= sup {y(s)}

t—T<s<t

Then, fort > t,, we have
y() = y(to) exp(—o(t —1,))
where o > 0 is the unique solution of the following equation
o =k —kyexp(o1)

It must be emphasized that the Lyapunov—Krasovskii theorem,
Lyapunov—Razumikhin theorem, and Halanay theorem can be effectively used to
derive stability conditions when the time delay is time varying and continuous,
but not necessarily differentiable. Experience and the available literature show that
the Lyapunov—Krasovskii theorem is more usable particularly for obtaining delay-
dependent stability and stabilization conditions.

In this book we are going to adopt the use of a simplified sufficient condition
Lyapunov—Krasovskii method for continuous-time as well as discrete-time nomi-
nally linear system, with single time-varying delay. Of course, the general case is to
consider

e nonlinear system
e distributed delay.

When one looks at the real application, it is found that dealing with a nonlinear
system cannot give a general result because every family of nonlinear systems has its
own characteristics, so trying to build a method of a nonlinear system is not useful,
in addition to the difficulties of dealing with a nonlinear system even in delay-free
systems. The general practice is to linearize around some operating point and to
use the linearized model and treat the nonlinearities as perturbations. In spite of
this, the proposed method in Chapter 5 can be used for some families of nonlinear
system, which are and not necessarily coming from a linearized mode. Regarding
the distributed delay, again the difficulties in obtaining a good result in this field
prevent one from selecting this direction in addition to the fact that many systems
not only have discrete delay but also there are techniques to approximate [338] or
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even transform [140] the distributed delay into discrete delays, and the problem
becomes of multiple discrete time-delay types, but as we will see in Chapter 3 if
the Lyapunov functional is selected properly then a theorem made for single delay
can be easily extended to multiple delays. The reason behind selecting time-varying
delay is that it can cover a large class of systems and it can also be modified to cover
fixed delay.

1.5 Outline of the Book

Toward our goal, this book has been carefully tailored to

(1) give a comprehensive study of STD modeling and dynamics,
(ii) present theoretical explorations on several fundamental problems for switched
time-delay systems, and
(iii) provide systematic approaches for switching design and feedback control by
integrating fresh concepts and the state-of-the-art results to the distinct theories
on switched systems and time-delay systems.

Essentially, a basic theoretical framework is formed toward a switched time-
delay theory, which not only extends the theory of time-delay systems, but also
applies to more realistic problems.

In dealing with STDS, we follow a systematic modeling approach in that a conve-
nient representation of the system state would be by observing a finite-dimensional
vector at a particular instant of time and then examining the subsequent behavior to
arrive at the dynamical relations. Looked at in this light, the primary objective of
this book is to present an introductory, yet comprehensive, treatment of STDS by
jointly combining the two fundamental attributes: the system dynamics possesses
an inherent time delay and the system behavior is managed by a switching sig-
nal. Although each attribute has been examined individually in several texts, the
integration of both attributes is quite unique and deserves special consideration.
Additionally, STDS are nowadays receiving increasing attention by numerous inves-
tigators as evidenced by the number of articles appearing in journals and conference
proceedings.

1.5.1 Methodology

Throughout the monograph, our methodology in each Chapter/section is composed
of five steps:

e Mathematical Modeling
in which we discuss the main ingredients of the state-space model under
consideration.
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e Definitions and/or Assumptions
here we state the definitions and/or constraints on the model variables to pave the
way for subsequent analysis.

e Analysis and Examples
this signifies the core of the respective sections and subsections, which contains
some solved examples for illustration.

e Results
which are provided most of the time in the form of theorems, lemmas, and
corollaries.

e Remarks
which are given to shed some light of the relevance of the developed results
vis-a-vis published work.

In the sequel, theorems (lemmas, corollaries) are keyed to chapters and stated in
italic font with bold titles, for example, Theorem 3.4 means Theorem 4 in Chapter
3 and so on. For convenience, we have grouped the reference in one major bibli-
ography cited toward the end of the book. Relevant notes and research issues are
offered at the end of each chapter for the purpose of stimulating the reader.

We hope that this way of articulating the information will attract the attention of
a wide spectrum of readership.

1.5.2 Chapter Organization

Switched linear systems have been investigated for a long time in the control lit-
erature and have attracted increasingly more attention for more than two decades.
The literature grew progressively and quite a number of fundamental concepts and
powerful tools have been developed from various disciplines. Despite the rapid
progress made so far, many fundamental problems are still either unexplored or
less well understood. In particular, there still lacks a unified framework that can
cope with the core issues in a systematic way. This motivated us to write the cur-
rent monograph. The book presents theoretical explorations on several fundamental
problems for switched linear systems. By integrating fresh concepts and the state-of
the-art results to form a systematic approach for the switching design and feedback
control, a basic theoretical framework is formed toward a switched system theory,
which not only extends the theory of linear systems, but also applies to more realistic
problems.

The book is primarily intended for researchers and engineers in the system and
control community. It can also serve as complementary reading for linear/nonlinear
system theory at the postgraduate level.

The book is divided into six parts:

Part I covers the mathematical ingredients needed for switching systems and
time-delay systems and comprised of two chapters: Chapter 1 introduces the system
description and motivation of the study and presents several analytical tools and
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stability theories that serve as the main vehicle throughout the book. Chapter 2
reviews some basic elements of mathematical analysis, calculus and algebra of
matrices to build up the foundations for the remaining topics of stability, stabiliza-
tion, control, and filtering of switched time-delay systems.

Part II treats switched stability and consists of three chapters: Chapter 3 estab-
lishes an overview of the recent progress of time-delay systems and presents a com-
prehensive picture about the contemporary results and methods. Chapter 4 gives a
general framework of switched systems and addresses the main concepts and ideas.
Chapter 5 draws the picture of switched time-delay systems with emphasis on the
major properties.

Part Il deals with switching stabilization and feedback control and contains
two chapters: Chapter 6 includes delay-dependent switched stabilization techniques
using different switching strategies and Chapter 7 gives different delay-dependent
switched feedback techniques and compares among their merits, features, and com-
putational requirements.

Part 1V focuses on switched filtering and summarizes the results in two chap-
ters: Chapter 8 is devoted to switched systems and the corresponding methods for
switched time-delay systems are presented in Chapter 9. In both chapters, the design
of Kalman, H,, and H; filters are presented.

Part V treats switched interconnected systems by concentrating on switching
decentralized control in Chapter 10. In this chapter, pertinent materials are selected
and presented in a unified way.

Part VI provides applications of switched time-delay systems in terms of water-
quality studies and control policies in streams as the subject of Chapter 11. Multi-
rate control is presented in Chapter 13.

An appendix containing some relevant mathematical lemmas and basic algebraic
inequalities is provided at the end of the book.

We selected the arrangement of references to be in alphabetical order for the
purpose of convenience and easy tracking.

Throughout the book and seeking computational convenience, all the developed
results are cast in the format of a family of LMIs. In writing up the different topics,
emphasis is primarily placed on the major developments attained thus far and then
reference is made to other related work.

In summary, this book covers the analysis and design for switched time-delay
systems supplemented with rigorous proofs of closed-loop stability properties and
simulation studies. The material contained in this book is not only organized to focus
on the new developments in the analysis and control methodologies for such STD
systems, but it also integrates the impact of the delay factor on important issues
such as delay-dependent stability and control design. After an introductory chap-
ter, it is intended to split the book into self-contained chapters with each chapter
being equipped with illustrative examples, problems, and questions. The book will
be supplemented by an extended bibliography, appropriate appendices, and indexes.
It is planned while organizing the material that this book would be appropriate for
use either as a graduate-level textbook in applied mathematics as well as different
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engineering disciplines (electrical, mechanical, civil, chemical, systems), a good
volume for independent study, or a suitable reference for graduate students, prac-
ticing engineers, interested readers, and researchers from a wide spectrum of engi-
neering disciplines, science, and mathematics.



Chapter 2
Mathematical Foundations

This chapter contains a collection of useful mathematical concepts and tools, which
are useful, directly or indirectly, for the subsequent development to be covered in
the main portion of the book. While much of the material is standard and can be
found in classical textbooks, we also present a number of useful items that are not
commonly found elsewhere. Essentially, this chapter serves as a brief overview and
as a convenient reference when necessary.

2.1 Introduction

Hybrid systems are certainly pervasive today. Recently, we have witnessed a resur-
gence in examining quantization effects and a heightened interest in analog com-
putation. There has also been recent progress in analyzing switched, hierarchical,
and discretely controlled continuous-variable systems. It is time to focus on devel-
oping formal modeling, analysis, and control methodologies for hybrid systems.
Therefore, hybrid systems research [357-359] is devoted to modeling, design, and
validation of interacting systems of continuous process and computer programs.
Therefore, the identifying characteristic of hybrid systems is that they incorporate
both continuous components, usually called plants, which are governed by ordi-
nary or functional differential equations, and also digital components such as digital
computers, sensors, and actuators controlled by programs. Moreover, the growing
demands for control systems that are capable of controlling complex nonlinear con-
tinuous plants with discrete intelligent controllers can be addressed by the method
of hybrid systems.

Throughout this book, by a switched system we mean a class of hybrid dynamical
systems consisting of a family of continuous-time subsystems and a rule that orches-
trates the switching between them. An integral part of this book surveys recent
developments in three basic problems regarding stability and design of switched
systems. These problems are:

e stability for arbitrary switching sequences,
e stability for certain useful classes of switching sequences, and
e construction of stabilizing switching sequences.

M.S. Mahmoud, Switched Time-Delay Systems, 17
DOI 10.1007/978-1-4419-6394-9_2, © Springer Science+Business Media, LLC 2010
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We also provide motivation for studying these problems within the framework
of time-delay systems. In practice, many systems encountered exhibit switching
between several subsystems (are inherently multimodal) that is dependent on var-
ious environmental factors. Another source of motivation for studying switched
systems comes from the rapidly developing area of switching control. Control tech-
niques based on switching between different controllers have been applied exten-
sively in recent years, particularly in the adaptive context, where they have been
shown to achieve stability and improve transient response. The importance of such
control methods also stems in part from the existence of systems that cannot be
asymptotically stabilized by a single continuous feedback control law. Additionally,
the fact that some of intelligent control methods are based on the idea of switching
between different controllers. The existence of systems that cannot be asymptoti-
cally stabilized by a single static continuous feedback controller [47] also motivates
the study. A survey of basic problems in stability and design of switched systems is
given in [193].

In this book, we treat switched systems as a class of hybrid systems consist-
ing of a family of subsystems and a switching law that specifies which subsys-
tem will be activated along the system trajectory at each instant of time. Switched
systems deserve investigation for theoretical development as well as for practical
applications. To switch between different system structures is an essential feature
of many control systems, for example, in power systems and power electronics
[47]. There have been many studies for switched systems without uncertainties,
primarily on stability analysis and design [358]. But for robust stability analysis
of uncertain switched systems, there has been comparatively little work. A notable
exception is the study of quadratic stability and stabilization by state-based feedback
for both continuous-time and discrete-time switched linear systems composed of
polytopic uncertain systems in [357]. For performance analysis of switched sys-
tems, authors of [357] investigated the disturbance attenuation properties of time-
controlled switched systems consisting of several linear time invariant subsystems
by using an average dwell-time approach incorporated with a piecewise Lyapunov
function. Reference [133] computed the £;-induced norm of a switched linear sys-
tem when the interval between consecutive switching is large. However, uncertainty
is not considered in these two papers although it is ubiquitous in the system model
due to the complexity of the system itself, exogenous disturbance, measurement
errors, and so on. During the past decade, there have also been many papers concern-
ing robust (or quadratic) stability, stabilization, and robust H, control of uncertain
systems without switchings [331, 441].

2.2 Basic Mathematical Concepts

Letx;, yj, j=1,2,...,n € R(or C). Then the n-dimensional vectors x, y are
defined by x = [x1 x2 ... x,0", y=1[y1 y2 ... yu)" € N", respectively.
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A nonempty set X' of elements x, y,... is called the real (or complex) vector
space (or real (complex) linear space) by defining two algebraic operations, vector
additions and scalar multiplication, in x = [x1, x2, ..., x,]" [46]

2.2.1 Euclidean Space

The n-dimensional Euclidean space, denoted in the sequel by h"” is the linear vector
space " equipped by the inner product

n
oy)=x'y=>Y"xjy;

j=1

Let X be a linear space over the field F (typically F is the field of real numbers ) or
complex numbers C). Then a function

Il X — %

that maps X into the real numbers N is a norm on & iff

1. ||x|| = 0, Vx € X (nonnegativity)
2. ||x]] =0, <= x = 0 (positive definiteness)
3. |l x|| = |a]||x]|Vx € X (homogeneity with respect to |«])

4. |lx + yl| < llxll + lIyll, Vx,y € X (triangle inequality)

Given a linear space X, there are many possible norms on it. For a given norm
[I.]] on X, the pair (X, ||.]]) is used to indicate X endowed with the norm ||.||.

2.2.2 Norms of Vectors

The class of L ,-norms is defined by

- 1/p
Ikl = (32 Wil7) 7. forl=p<oo
j=1

[[Xlloo =max 1 < j <n |xj]
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The three most commonly used norms are ||x||;, ||x||2, and ||x]|co. All p-norms
are equivalent in the sense that if ||x|[,; and ||x|| 2 are two different p-norms, then
there exist positive constants ¢j and ¢ such that
cr llxllpr < llxllp2 e2 llxllp1,  ¥Yx € R"
2.2.2.1 Induced Norms of Matrices

For a matrix A € W"*", the induced p-norm of A is defined by

A [|Ax||
|All, = sup ——F = sup [|Ax]|,
x20 xlp  jxg,=1

Obviously, for matrices A € R"*" and A € R"*", we have the triangle inequal-

ity:
1A+ Bllp = [lAlllp +1IBllp

It is easy to show that the induced norms are also equivalent in the same sense as
for the vector norms, and satisfying

IABIl, < [1Axll, [IBllp. YA € %™, B € R

which is known as the submultiplicative property. For p = 1,2, ...00, we have
the corresponding induced norms as follows:

n
[|All1 = maxz lasjl, (column sum)

s=1
l1A[l2 =m?X\/kj(A’A)

[Alloo = maxz lagj|, (row sum)
N J:1
2.2.3 Convex Sets

Aset S C M" is said to be open if every vector x € S, there is an e-neighborhood
of x

N(x,e) ={ze Wz —x|| < €}

such that N'(x, €) C S.
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A set is closed iff its complement in R" is open; bounded if there is r > 0 such
that ||x]| < r, Vx € S; and compact if it is closed and bounded; convex if for
every x,y € S, and every real number o, 0 < o < 1, the point o x + (1 — &)
x €S.

A set K C %" is said to be convex if for any two vectors x and y in K any
vector of the form (1 — X)x + Ay is also in K, where 0 < A < 1. This simply
means that given two points in a convex set, the line segment between them is also
in the set. Note, in particular, that subspaces and linear varieties (a linear variety is a
translation of linear subspaces) are convex. Also the empty set is considered convex.
The following facts provide important properties for convex sets .

1. LetC j» j=1,...,mbe afamily of m convex sets in 9%". Then the intersection
CiNnC N NCy.

2. Let C be a convex setin " and x, € N". Then the set {x, +x : x € C}is convex.

3. Aset K C R issaid to be convex cone with vertex x, if K is convex, and x € K
implies that x, + Ax € K for any A > 0.

An important class of convex cones is the one defined by the positive semidefinite
ordering of matrices, that is, Ay > Ay > As. Let P € R"*" be a positive
semidefinite matrix. The set of matrices X € R"*" such that X > P is a convex
cone in K>,

2.2.4 Continuous Functions

A function f : N" — N is said to be continuous at a point x if f(x +8x) —
f(x) whenever 6x — 0. Equivalently, f is continuous at x if, given € > 0,
there is § > O such that

llx =yl < e = [If() = fOIl < ¢

A function f is continuous on a set of S if it is continuous at every point of S,
and it is uniformly continuous on S if given € > 0, thereisé(¢) > 0 (dependent
only on €), such that the inequality holds for all x, y € S

A function f : Rt — N is said to be differentiable at a point x if the limit

S +6x)— f(x)
ox

f) = 5?210

exists. A function f : " — N is continuously differentiable at a point x (a set
S) if the partial derivatives df;/dx,; exist and continuous at x (at every point of S)
forl < j < m, 1 < s < nand the Jacobian matrix is defined as

af1/oxy -+ 3f1/0xy
J= v — . .. : c mmxn

Bfm)8x1 Bfm'/an
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2.2.5 Function Norms

Let f(¢) : 4 —> N be a continuous function or piecewise continuous function.
The p-norm of f is defined by

00 I/p
fllp = </ FAGI dt) . forp € [1,00)
0
[|flloo =sup t € [0,00)[f ()], forp =00
By letting p = 1, 2, 0o, the corresponding normed spaces are called Ly, Lz, Loo,

respectively. More precisely, let f(¢) be a function on [0, co) of the signal spaces,
they are defined as

o

Llé f@ Ny — R flh :/ |f()| dt < oo, convolution kernel}
0

A o0

Ly=1f@): Ry — E)‘L|||f||2=/ |f(t)|2 dr < oo, ﬁniteenergy}
0

Looé @ : Ry — N flloo= sup |f()|] < oo, bounded signal}
t€[0,00)

From a signal point of view, the 1-norm, ||x||; of the signal x(¢) is the integral
of its absolute value, the square ||x||% of the 2-norm is often called the energy of
the signal x(#), and the co-norm is its absolute maximum amplitude or peak value.
It must be emphasized that the definitions of the norms for vector functions are not
unique.

In the case of f(t) : Ry — R, f@) = [f1@) f2()... f(t)]" which
denote a continuous function or piecewise continuous vector function, the corre-
sponding p-norm spaces are defined as

Lgé{f(;):im — m"|||f||,,=/0 LfOIPdt < oo, forp e[l,oo)}

L';Oé{f(t)iﬂbr — Wl fllo = sup [IfOI < OO}

te[0,00)

2.3 Calculus and Algebra of Matrices

In this section, we solicit some basic facts and useful relations from linear algebra
and calculus of matrices. The materials are stated along with some hints whenever
needed but without proofs unless we see the benefit of providing a proof. Reference
is made to matrix M or matrix function M (t) in the form
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My - My, My(t) --- My (1)
: . , or M(t) = : ..
M, - My, My1(t) -+ My, (t)

2.3.1 Fundamental Subspaces

A nonempty subset G C " is called a linear subspace of W" if x+y and ax are in G
whenever x and y are in G for any scalar . A set of elements X = {x1, x2, ..., X}
is said to be a spanning set for a linear subspace G of 0" if every element g € G can
be written as a linear combination of the {x;}. That is, we have

G={geN: g=ax;+axa+ ... apxy

for some scalars oy, o3, ..., ay.
A spanning set X is said to be a basis for G if no element x; of the span-
ning set X of G can written as a linear combination of the remaining elements

X1, X2,..., Xj_1, Xjil,..., Xp, thatis, x;, 1 < i < n form a linearly
independent set. It is frequent touse x; = [00 ... 010 ... 0]’ the kth unit
vector.

The geometric ideas of linear vector spaces had led to the concepts of spanning
a space and a basis for a space. The idea now is to introduce four important sub-
spaces which are useful. The entire linear vector space of a specific problem can be
decomposed into the sum of these subspaces.

The column space of a matrix A € Re"*™ is the space spanned by the columns
of A, also called the range space of A, denoted by R[A]. Similarly, the row space
of A is the space spanned by the rows of A. Since the column rank of a matrix is the
dimension of the space spanned by the columns and the row rank is the dimension
of the space spanned by the rows, it is clear that the spaces R[A] and R[A’] have
the same dimension r = rank(A).

The right null space of A € Re™ ™ is the space spanned by all vectors x that
satisfy A x = 0, and is denoted by N[A]. The right null space of A is also called
the kernel of A. The left null space of A is the space spanned by all vectors y that
satisfy y’ A = 0. This space is denoted by A'[A’], since it is also characterized by
all vectors y such that A" y = 0.

The dimensions of the four spaces R[A], R[A’], N[A], and N[A’] are to be
determined in the sequel. Since A € R"*™, we have the following

r 4 rank(A) = dimension of column space R[A]
dim NTA] 2 dimension of right null space N'[A]
n E total number of columns of A
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Hence the dimension of the null space dim A'TA] = n — r. Using the fact that
rank(A) = rank(A"), we have

r 4 rank(A") = dimension of row space R[A’]
dim NTA’] 2 dimension of left null space ATA’]
m 2 total number of rows of A

Hence the dimension of the null space dim N[A’] = m — r. These facts are
summarized below.

Note from these facts that the entire n-dimensional space can be decomposed
into the sum of the two subspaces R[A’] and N[A]. Alternatively, the entire
m-dimensional space can be decomposed into the sum of the two subspaces R[A]
and NVTA’].

An important property is that N'[A] and R[A’] are orthogonal subspaces, that
is, R[A’]+ = NTA]. This has the meaning that every vector in N[A] is orthogonal
to every vector in R[A’]. In the same manner, R[A] and N[A’] are orthogonal
subspaces, that is, R[A]+ = NM[A']. The construction of the fundamental subspaces
is appropriately attained by the singular value decomposition.

RIA!] el row space of A: dimension r

NTA] = right null space of A: dimensionn — r
RI[A] E column space of A : dimension r
NTAN 4 left null space of A: dimensionn — r

2.3.2 Calculus of Vector—Matrix Functions of a Scalar

The differentiation and integration of time functions involving vectors and matrices
arise in solving state equations, optimal control, and so on. This section summa-
rizes the basic definitions of differentiation and integration on vectors and matri-
ces . A number of formulas for the derivative of vector —matrix products are also
included.

The derivative of a matrix function M (¢) of a scalar is the matrix of the deriva-
tives of each element in the matrix

dMy (1) . dMiu(0)
dM(r) o dr
ds WMy () dM ()
dt dr

The integral of a matrix function M (¢) of a scalar is the matrix of the integral of
each element in the matrix
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b
/ M(t)dt =

The Laplace transform of a matrix function M (¢) of a scalar is the matrix of the
Laplace transform of each element in the matrix

i My@de - fa” M, (1)ds

I Mml(t)dt . f My (1)dt

i [P My@eide - [P My (e de
/ M(@t)e *'dt = :

’ P Myr (e Stdt - [P My (0)e"dt
a a

The scalar derivative of the product of two matrix time functions is

d(A(;)tBa)) A(t) B4 AG) L)

This result is analogous to the derivative of a product of two scalar functions of
a scalar, except caution must be used in reserving the order of the product. An
important special case follows:

The scalar derivative of the inverse of a matrix time function is

dA~ 1(z) e 1A(z)

dt dr A

2.3.3 Derivatives of Vector—Matrix Products

The derivative of a real scalar-valued function f(x) of a real vector x =
[x1,...,x,]" € Re"is defined by

8 )
o)
oreo | e

0x

o ()

0xp

where the partial derivative is defined by

) a o fO+AD) - fO)

0x; N Axj—0 Axj

Ax=10...Ax;...0

An important application arises in the Taylor’s series expansion of f (x) about x,

. A
in terms of §x = x — x,. The first three terms are
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! 2
o= s+ (22) sxs Sow [210]

ox 2 dx2
where
[ af(x)
3)(]
af(x)
dax
af (x)
L 0x,
3 f . A
ax2 dx10xy
2f(x) 8 (afm\ | ‘
ax2 ax \ oax - : o
fw) P )
| dxp0x) ax2

The derivative of a real scalar-valued function f(A) with respect to a matrix

A e A
A= Do | R
Anl ' Ann
is given by

go .y
3f(A) _ .Il 1n
04 OfA) | f(A)
8Anl 8Ann

A vector function of a vector is given by
vi(u)
v(u) =

vn&u)

where v;(u) is a function of the vector u. The derivative of a vector function of a
vector (the Jacobian) is defined as follows:

dvi(w) . du(w)
3 EIT
ww | !
du an'(u) vy, (1)

duy Y TBu
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Note that the Jacobian is sometimes defined as the transpose of the foregoing
matrix. A special case is given by

(S u) g d(u'Ru)

, 2u'R
u ou

for arbitrary matrix S and symmetric matrix R.
The following section includes useful relations and results from linear algebra.

2.3.4 The Dini Theorem

2.3.5 Positive Definite and Positive Semidefinite Matrices

A matrix P is positive definite if P is real, symmetric, and x’ Px > 0, Vx # 0.
Equivalently, all the eigenvalues of P have positive real parts. A matrix S is positive
semidefinite if S is real, symmetric, and x’ Px > 0, Vx # 0.

Since the definiteness of the scalar x” Px is a property only of the matrix P, we
need a test for determining definiteness of a constant matrix P. Define a principal
submatrix of a square matrix P as any square submatrix sharing some diagonal
elements of P. Thus the constant, real, symmetric matrix P € R"*" is positive
definite (P > 0) if either of these equivalent conditions holds:

e All eigenvalues of P are positive

e The determinant of P is positive

e All successive principal submatrices of P (minors of successively increasing
size) have positive determinants

2.3.6 Trace Properties

The trace of a square matrix P, trace (P), equals the sum of its diagonal elements
or equivalently the sum of its eigenvalues. A basic property of the trace is invariant
under cyclic perturbations, that is,

trace(AB) = trace(BA)
where AB is square. Successive applications of the above results yield
trace(ABC) = trace(BCA) = trace(CAB)
where ABC is square. In general,

trace(AB) = trace(B'A")
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Another result is that

trace(A' BA)

where A € R'"*P,

2 Mathematical Foundations

14
= Z a,’cBak
k=1

B € W, and {ay} are the columns of A. The following

identities on trace derivatives are noted:

d(trace(AB)) d(trace(A’B"))  d(trace(B'A"))
A IA - IA
_ d(trace(BA)) _ g
A
d(trace(AB)) d(trace(A’B"))  d(trace(B'A"))
B - 9B - 9B
_ d(trace(BA)) _a
0B
d(trace(BAC))  d(trace(B'C'A"))  d(trace(C' A’ B"))
IA - 9A - 9A
_ d(trace(ACB)) _ d(trace(CBA))
N DA N dA
_ d(trace(A' B'C")) _ B
0A
d(trace(A’BA))  d(trace(BAA'))  d(trace(AA’B))
9A - 9A - IA
= (B+ B"HA

Using these basic ideas, a list of matrix calculus results are given below:

d(trace(AX")) B

X

d(trace(AX'B))

0X

d(trace(AX"))

axX!

d(trace(AX'B))

X!

d(trace(X X))

X

0 (trace(AX”))

d(trace(AX B))

=A'B'
’ 0X
ad AX
_BA (trace(A X)) _ 4
oX!
_ A d(trace(AX B)) _BA
X!
_ A" B d(trace(X X)) o x!
0X
=2X

ZXJAX"/1
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d(trace(AXBX)) _ A'X'B' + B X' A!
0X
t
d(trace(AXBX")) _ A'XB' + AXB
X
d(trace(X 1)) _ —(X_z)t
X B
d(trace(AX "' B)) — _(x'pax—! '
X B
t AB
o r—acae; D _ B4 B diag(B)

2.3.7 Partitioned Matrices

Given a partitioned matrix (matrix of matrices) of the form

where A, B, C, and D are of compatible dimensions. Then

(1) if A~ exists, a Schur complement of M is defined as D — CA-!B, and
(2) if D! exists, a Schur complement of M is defined as A — BD!C.

When A, B, C,and D are all n x n matrices, then

A B
a) det — det(A) det(D — CA™'B), det(A) # 0
- C -
-4 B
b)  det = det(D) det(A — BD™'C), det(D) #0
C D

In the special case, we have

det = det(A) det(C)
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where A and C are square. Since the determinant is invariant under row, it follows

A B B A B
det = det
C D | C—CA™'A D—CA™'B
A B
= det = det(A) det(D — CA™'B)
|0 D—CA™'B

which justifies the forgoing result.
Given matrices A € R™*" and B € W™, then

det(l,, — AB) = det(I, — BA)

In case that A is invertible, then det(A~') = det(A) .

2.3.8 The Matrix Inversion Lemma

Suppose that A € R"*", B € WP, C € MP*P, and D € RP*". Assume that

A~ and C~! both exist, then

(A+BCD) ' =A""'—A'B(DA"'B+C ) 'DA™!

In the case of partitioned matrices, we have the following result

=1

A B! Al + A'BE-ICA™! —A-1BE

—1

Q|

C D —g-1ca-!
E=(D-CA™'B)

provided that A~! exists. Alternatively,

A B! o

1 _:—IBD—I
C D —-Dlce-! p'+p-lce-'BD!
E=(D-CA'B)

provided that D! exists.
For a square matrix Y, the matrices ¥ and (/ +Y)~! commute, that is, given that

the inverse exists

YU+ '=d+v) Yy
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Two additional inversion formulas are given below:

YU+XY) ' = d+yx)"'y
T+YX) ' =1-vyxU+vx)!

The following result provides conditions for the positive definiteness of a parti-
tioned matrix in terms of its submatrices. The following three statements are equiv-
alent:

1) > 0

2)Ac >0, A, —AAZNAL > 0
3)A, >0, A.—AAS'A, > 0

2.3.9 The Singular Value Decomposition

The singular value decomposition (SVD) is a matrix factorization that has
found a number of applications to engineering problems. The SVD of a matrix
M € Re" ™ is

p

;

M=USVi=Y o;U;V,
j=I

where U € Re®*® and V € ReP*P are unitary matrices (UT U = U Ut =1
and VI V =V VTI); § € Re®*F is a real, diagonal (but not necessarily square);
and pmin(c, B). The singular values {c1, 02, ..., 0} of M are defined as the pos-
itive square roots of the diagonal elements of S'S, and are ordered from largest to
smallest.

To proceed further, we recall a result on unitary matrices. If U is a unitary matrix
w Tu=1 ), then the transformation U preserves length, that is,

VWUx)T(Ux) =Vxt U U x
Vatx = |lx|]

U x||

As a consequence, we have

M x|| = Vxt MT M x =/xt VvSIUT USVT x

=/xT VSISVT x



32 2 Mathematical Foundations

To evaluate the maximum gain of matrix M, we calculate the maximum norm of the
above equation to yield

m"‘ax [|M x|| = ||mflx1 VxT VSISV x = max VX7 VSIS &
X||=

[lx]=1 l1x11=1

Note that maximization over X = Vx is equivalent to maximizing over x since
V is invertible and preserves the norm (equals 1 in this case). Expanding the norm
yields

max Vit VSIS x

max ||[M x|| =
[lxl|=1 [1X]|=1
= max /o2|%12 4+ oF|F22 + -+ odlFs)
igi=1 V! : P
The foregoing expression is maximized, given the constraint ||X|| = 1, when X is
concentrated at the largest singular value; that is, |¥| = [1 0 ... 0]’. The maximum

gain is then

max 1M x| = \/012|1|2 + 02007 + -+ 02001 = 01 = oy
x||=

In words, this reads the maximum gain of a matrix is given by the maximum
singular value o). Following similar lines of development, it is easy to show that

min ||M x|| = og =op
[lx[|=1
op a>p
0 a<p

A property of the singular values is expressed by

1
om (M)

oM™y =

2.4 Notes and References

The topics covered in this chapter is meant to provide the reader with a general
platform containing the basic mathematical information needed for further exam-
ination of switched time-delay systems. These topics are properly selected from
standard books and monographs on mathematical analysis. For further details, the
reader is referred to the standard texts [29, 46, 157, 160, 443] where fundamentals
are provided.
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Chapter 3
Time-Delay Systems: Recent Progress

In preparation for the several chapters on stability and stabilization methods for
time-delay systems, it is considered beneficial to provide in this chapter a precise
and concise appraisal of the existing results. The appraisal will be conducted in a
quantitative manner in addition to numerical simulation on a representative example.

3.1 Time Delays: Overview

Time delay occurs for different reasons and from different sources; one of these
sources is the nature of the system or the way it works, for example, in a internal
combustion engine a period of time is required to mix the air and the fuel and a
time delay appears in the system dynamics. Another source for time delay is the
transport delay for some material to travel through the system in heat or mass trans-
fer. Delay also might occur due to the communication among the system parts, for
example, time is needed for the signals to travel among the controllers, the sensors,
and the actuators in any typical closed-loop system. Some controllers may con-
tribute in producing time delay, for example, consider the standard PID controller,
by closing the loop, some time delay may be introduced in the system dynamics
due to the I part in the PID controller since this part accumulates the error from
past values which is a function of delayed states. Finally in some cases the delay
is deliberately introduced in the system to attain some goals like quenching the
overshoot.

In the sequel, the types of delay sources will be discussed in more detail with an
example

1. Nature of the process:
This arises in chemical reactors (finite reaction time), diesel engines (ignition
delay), and recycled processes (recycle delay) where in all of these cases time
for build up or decay down occurs due to the internal functioning of the system.
2. Transport delay:
This occurs in systems containing materials transfer like in rolling mills in which
the controller takes finite time to affect the process and in a heating system where
the delay appears because of transport of the heated air.

M.S. Mahmoud, Switched Time-Delay Systems, 35
DOI 10.1007/978-1-4419-6394-9_3, © Springer Science+Business Media, LLC 2010
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3. Communication delay
Communication delay can generally occur due to:

1) propagation time delay of signals among the actuators, controllers, and sen-
sors, particularly in networked control systems and fault-tolerant systems.
This is crucial in remote control systems like in teleportation over the Internet
and in guided rocket operations, and

2) access time delay arising in finite time required to gain access to a shared
media. One example can be found again in the networked control systems
where many nodes are sharing the same communication media and there is
access time delay, which can be considerably large, since the sensor, actuator,
and the controllers are all connected through the network. The data at the
controller are a delayed version of the current state and when the controller
sends the control action (e.g., state feedback) it again suffers time delay.

There is a typical example including network congestion control where the
amount of this traffic depends on the previous load in the buffer for preselected
protocols. Another interesting example occurs in biology of the evolution of a single
species consuming a common self-renewing food where time delay takes place due
to finite production time for the food.

One should realize that in some cases the delay may be intentionally introduced
into the system with a hope to improve the cost function. This delay should be
introduced carefully in order to obtain the required target. This delay can be used
also to reduce the overshoot and yield a smooth and fast transient response. For
further details, the reader is referred to [304].

3.2 Literature Survey

An integral ingredient of research investigations into systems engineering is that
of ‘Mathematical Modeling’ or ‘Modeling’ in short. Simply stated, the process of
exploring any aspect or examining any problem needs a ‘Mathematical Model’,
which would provide a reasonably accurate representation of the system behavior.
In standard books, it is sometimes said that a mathematical model is an abstraction
of reality to the extent that a ‘good choice’ of a mathematical model would reflect
on the quality of the results. Thus it has been our firm belief that mathematical
modeling is the corner stone of systems engineering disciplines. With focus on
lumped-parameter systems, it has been recently recognized that the best mathe-
matical model would be developed by deploying functional differential equations
(FDEs) [109, 171] as the main vehicle of system representation in the time domain.
Thus state-space formulation with delay patterns (time-delay systems) has been con-
sidered [54, 96] as the backbone in the analysis, synthesis, and design of problems in
systems engineering areas. In this regard, we look at control problems of time-delay
systems with the objective of developing improved stabilization and control design
methods. Broadly speaking, there are three directions of research:
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(1) Development of new bounding techniques for the Lyapunov—Krasovskii func-
tionals (LKFs),

(2) Transformation to an appropriate system with distributed delay, and

(3) Construction of new LKFs with a proper distribution of the time delay.
In this chapter, we address equally on all of these directions, although we focus
on the third direction when presenting contemporary results.

3.2.1 Stability Methods

System and control problems associated with time-delay systems have been
the subject matter of numerous publications, the most relevant of which are
[26, 30—448]. Stability analysis and control design of time-delay systems have
attracted the attention of numerous investigators, see [221, 338] for a modest
coverage. In this regard, stability criteria for linear state-delay systems can be
broadly classified into two categories:

e Delay-independent, which are applicable to delays of arbitrary size, and
e Delay-dependent, which include information on the size of the delay.

3.2.2 Delay-Independent Stability Tests

When considering delay-independent stability (DIS) tests, one wants to check for
a given system whether it can preserve its stability in spite of the presence of a
delay of any size. It is hoped that the magnitude of the delay term is very small
relative to the current state and the value of the delayed state can take any value.
The DIS test tries to check if the delayed term’s value is significant/insignificant
to change the original system stability. No information about the delay is needed
and only the values of the matrices of the current state and the delayed states are
considered. Clearly, this direction does not require any information about the nature
of the delay and when it yields positive results, meaning that a system is found to be
stable independent of the delay value, then it can be used regardless of what is the
magnitude of the delay or how fast it changes.

From the published results in this area, it was found that generally this type of
test is relatively easier to be derived and some system can satisfy its condition. On
the other hand, it was concluded that it suffers from some degree of conservatism
due to the following:

e Not all systems have delayed states with small magnitude and, in these cases,
systems will not satisfy the test conditions,

e In many cases, the delay is fixed and the system is time-invariant, and applying
delay-independent stability test yields unnecessary conditions on the system,

e When the delay is not fixed but bounded by some relatively small values, then
the delay-independent test is unsuitable, and
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e It is based on the assumption that the system is stable and it therefore cannot
be used for unstable systems. It can however be used in feedback stabilization.
In addition, it cannot work well in this case, the system can be suffering from a
delay in the input.

For these reasons many researchers shift their interest to the delay dependent
stability tests.

3.2.3 Delay-Dependent Stability Tests

In contrast to the DIS test, in the delay-dependent stability (DDS) tests some a priori
information about the delay is needed to check the system stability. Depending on
the delay pattern and related information required, appropriate stability results can
be readily obtained. This information can be used in either one of the following
scenarios:

Given a dynamical system with some delay information, check whether the system
is stable or not, or

Given a dynamical system, check for at what delay limit the system still remains
stable

Generally, the second scenario is used in qualifying the stability theorems,
because as we will see later, in some cases, we have to make a test of sufficient
(not necessary) conditions type to check for the system stability. This means that it
is for a stable system to satisfy these conditions. If a system succeed in satisfying
them, then the system is stable. All the methods attempt to reduce the conservatism
as much as possible and produce measures or criteria to judge with how much delay
the system remains stable.

3.2.4 Stability Results

When dealing with time-varying delays, a fundamental problem arises when esti-
mating the upper bound of cross-product terms. Algebraic inequalities [301, 322]
and majorization procedures [24] have been used. This introduces a source of
overdesign conservatism. There have been different approaches to reduce the level
of conservatism, including full-size quadratic functionals [167], discretized LKF
[100], and free-weighting matrices techniques [121, 123, 124, 127, 128] and [391].
In particular, in [124] it was pointed out that the significance of bypassing extra
conservatism introduced after enlarged integration time span in some LKF terms.
From the published results, it appears that further reduction of design conservatism
can be achieved with

e Appropriate LKF with moderate number of terms,
e Avoiding bounding methods, and
e Effective use of parametrized relations and variables to avoid redundancy.
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Initial results on deriving delay-dependent stability and stabilization criteria
have been reported in [188, 265] based on the Leibniz—Newton formula and cast
into the Riccati-inequality format. Some recent views and improved methods per-
taining to the problems of determining robust stability criteria and robust con-
trol design of uncertain time-delay systems have been reported, see, for example,
[124, 181, 188, 238, 324] and their references. With the availability of efficient
interior-point minimization methods, all the recent results have been cast in linear-
matrix inequalities (LMIs) format [27].

Two distinct features of the contemporary research activities are identified, the
first feature of which concerns the choice of an appropriate Lyapunov—Krasovskii
functional (LKF) for stability and performance analysis within the framework of
LMIs [27]. General LKF forms might lead to a complicated system of inequali-
ties [124] and the selection of new and effective LKF forms is becoming crucial
for deriving less-conservative stability criteria. The second feature is the introduc-
tion of additional parameters for developing improved sufficient stability conditions
by importing some basic system identities [65—181]. Parallel to this effort is that
several fixed-model transformation methods and parameterization schemes have
been derived in the literature to derive delay-dependent stability conditions, see
[65-100, 198-325, 338-448] and their references.

3.2.5 Stabilization Results

Increasing attention is being paid to the delay-dependent stability, stabilization, and
Hoo control of linear systems with state delays (see for example [66, 80, 105, 114,
127,128, 152, 155, 156, 198, 338, 392, 440]. For continuous-time systems with time
delay, the main methods so far reported are based on four fixed-model transforma-
tion models (see [66]). Among them, the descriptor systems approach combined
with Park’s [322] and Moon’s inequalities [301] are the most effective way to deal
with delay-dependent problems, see [66, 301, 322]. In [127] however, it is pointed
out that [1, 11, 358] do not consider the relationships between the terms of the
Leibniz—Newton formula in the derivative of the Lyapunov functional. In order to
overcome the conservativeness of methods based on a fixed-model transformation
between those terms (see [114, 124, 127, 440]). Jiang and Han [152, 155] applied
this method to systems with an interval time-varying delay. However, as mentioned
in [124], they ignored some useful terms in the derivative of the Lyapunov func-
tional, which may lead to conservativeness.

3.3 Stability Approaches: Continuous Time

In the following section, a review and evaluation will be made on the time-delay
research in different directions along with few comments on each one. These com-
ments are the points that are to be considered in further development.
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3.3.1 Basic Models

In the sequel, we closely treat the stability problems for the single-delay case and
aim at deriving LMI-based stability conditions. Extension to the multiple-delay case
is a straightforward job and is therefore omitted. We look at two distinct classes of
time-delay systems:

Yo x()=Ax(@)+ Agx(t —1), x(@t)=¢t), YVt €[-7,0] (3.1)
and
Dyt X(1) = Apx () + Agx(t — (1)), x() =¢(@), YVt €[-0.0] 32)
where x(t) € R is the state; ¢ (¢) is the continuous initial condition. In (3.1), the
scalar 7 is the constant delay for system X, and in (3.2), t(¢) is the time-varying
delay of system X, which is assumed to be continuous, and satisfies

0 <t <o 3.3)

In both models of time-delay systems X, and X, A, € RN"*" and Ay € RN"*" are
known real constant matrices.

3.3.2 LMI Stability Conditions

For system X, by selecting the Lyapunov—Krasovskii functional

t
Vt, x) =x"(t)Px(t) + / x'(s)Ox(s) ds (3.4)
-t

and invoking the Lyapunov—Krasovskii theorem, the following stability condition
can be derived [206]:

Theorem 3.1 The time-delay system X is asymptotically stable if there exist matri-
ces P > 0and Q > 0 such that

[PA0+A§,P+ Q PAd:| 0 (35

. -Q
On the other hand, for system X, by selecting the Lyapunov functional
V(x() = x"()Px(1) (3.6)

and invoking the Lyapunov—Razumikhin theorem and setting p(s) = §s, w(s) =
es? such that § > 1, € > 0, the following stability condition can be obtained [206]:
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Theorem 3.2 (Mahmoud [206]) The time-delay system X. is asymptotically stable
if there exists a matrix P > 0 such that
t
|:77Ao + 1:‘077 + P 7iz;\;g:| 0 3.7)

Remark 3.3 Based on the foregoing theorems, we are now in a position to make
three key observations.

1. The LMI (3.7) is a special case of the LMI (3.5). Therefore, Theorem 3.1 is less
conservative than Theorem 3.2.

2. Both LMIs are delay-independent since they are satisfied regardless of the size
of delay t.

3. Theorem 3.2 can be applied to the case when the delay 7 is time varying and
continuous, which may not be differentiable. Alternatively, Theorem 3.1 usually
requires the time-varying delay 7 to be differentiable.

These simple observations have motivated numerous researchers to adopt the
Lyapunov—Krasovskii theorem in conducting research seeking improved delay-
dependent stability and stabilization conditions. We follow this trend throughout the
book unless otherwise considered beneficial to apply the Lyapunov—Razumikhin
theorem.

3.3.3 Newton—Leibniz Formula

Initial efforts made to get a delay-dependent criteria were using model transforma-
tion for the time-delay systems X, or X,. On applying the fundamental Newton—
Leibniz formula

t
x(t—1)=x() — / x(s)ds
t—7
t
=x() — / [Aox(s) + Agx(s — T)]ds
-7

to get around the delayed state, then system (3.1) becomes

t
Yo x(t)=A,x(t)+ Ay |:x(t) — / X(s)ds]
1—T
t
= (Ay + AD)x() — Ag f #(s)ds
1—T

t
= (Ao +Ap)x(1) — Ad/ [Aox(s) + Agx(s —1)]ds  (3.8)
-1
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It should be observed that the asymptotic stability of the time-delay system (3.8)
implies that of the system (3.1) or (3.2). For this reason, we focus on studying the
stability of (3.8). To this end, we choose a Lyapunov—Krasovskii functional of the
form

V=V, 4V, +V.

t
V, =x')Px(), V, =/ x'(s)Qx(s)ds
. -t
V. =/ / )&’(s)AZZAd)'c(s)dsdG (3.9
—7 Jt+46

where P >0, @ >0, Z> 0.

Remark 3.4 In terms of dynamic models with generalized coordinates, one can
interpret the first component V,, of the LKF V as a measure of the internal energy
of system (3.1), the second term V, is intuitively seen to provide a measure of the
signal energy during the delay period [z, 0], and the third term V, gives a measure
of the energy corresponding to the difference between the state x(¢), the signal
sought for feedback stabilization, and the delayed state x (¢t — 7), the one that might
be available for feedback processing, that is given by the Newton—Leibniz formula

x(t) —x(t —v) = ['__x(s)ds.
On the other hand, by selecting a Lyapunov—Krasovskii functional of the form

=VotVa+ Ve

1%
0 t

V, =x'OP 'x), V, =f / x'(s)AL Q7 Ayx(s)do
—h Jt+0

0 t
V. = / / s ALZT A R (s)ds
-1 Jt—1+60

the following stability condition can be derived:

Theorem 3.5 The time-delay system X, is asymptotically stable for any constant
delay t satisfying

0<t<T1
if there exist matrices P > 0 and Q > 0 such that
n tPAl TPA)
e —0Q 0 < 0 (3.10)
° ° —Z

where

IT="P(A,+Ag) + (Ap + Ad)'P + Ag(Q + 2) A,
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Had we considered the case of continuous delay 7 (¢) in the system

t

X x(t) = Apx(t) + Ay |:x(t) — / )'c(s)ds:|
!

—1(1)
t

= (A, + Apx(t) — Ad/ x(s)ds
t—1(t)
t

= (Ap + AQ)x(t) — Ad/ [Apx(s) + Agx(s — T()]ds (3.11)

t—1(t)

we would have arrived at the following result:

Theorem 3.6 The time-delay system X is asymptotically stable for any constant
delay t(t) satisfying

0 <t <p

if there exist matrices R > 0, M > 0, and N' > 0 such that

(Ao + ADR+ (Ao + Ad)' R+ 0Aa(M + N)AL +20R < 0
R RA,| _
e —M | —
R RA,
[. —N] >0 (3.12)

Remark 3.7 It should be emphasized that the LMIs (3.12) are not strict and, in
general, suffer from computational difficulties. The Newton-Leibniz formula has
been adopted by many researchers to change the time-delay systems X, and X, to
(3.8) and (3.11), respectively, in studying various types of time-delay systems to
derive delay-dependent stability conditions. The results are reported in [146, 164,
173, 200, 312, 375, 442], and the references therein.

An alternative way to utilize the Newton—Leibniz formula is to change system
Y. into

t

T i) = (Ao + Ag)x(t) — Ad/ %(s)ds (3.13)

t—1(t)
or

t
X, i|:)c(t) + Ad/ )'c(s)dsi| = (A, + A)x(®) (3.14)
dr t—1(1)

Study of systems (3.13) and (3.14) has commanded the attention of various
groups through appropriate construction of the Lyapunov—Krasovskii functionals
to arrive at delay-dependent stability conditions.
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Remark 3.8 We note that all the time-delay systems in (3.8), (3.13), and (3.14) are
transformed from the time-delay system X, using the Newton—Leibniz formula.
A crucial point to address here is that the transformations carried out on system
Y. to yield either system X, X, ¥\ or system X, are not unique and, more
importantly, these systems are not equivalent to system X.. Compared with sys-
tem X, additional dynamics are introduced in systems X,, — ¥,, which might
cause conservatisms as the delay-dependent conditions are derived based on them
[103, 104, 162—-165], and the references therein.

3.3.4 Cross-Product Terms

One of the main purposes in the study of delay-dependent stability for time-delay
systems is to develop methods to reduce conservatism of existing delay-dependent
stability conditions. On taking the time derivative of V or V, the following cross-
product term

t
—2x’(t)73Adf x(s)ds (3.15)
-t

appears, and since it is neither positive nor negative definite, it may lead to a compli-

cation in establishing the negative definiteness of V or V. It is known that the finding
of better bounds on some weighted cross products arising in the analysis of the
delay-dependent stability problem plays a key role in reducing conservatism. There
was a common practice to resolve this complication by majorizing the term and
replacing it by upper-bound terms which are of either positive or negative definite
nature. In some effort, they used the following algebraic inequality

—~2a'b <d'Xa+b'X'h X>0 (3.16)
for some vectors a, b, and matrix X. This solves the problem; h0wev§:r, it makes
the result more conservative because we are adding positive terms in V and it has
smaller chance to become negative. To get the smallest possible upper bound, matrix
X should be selected such that the term —2a’b is replaced by M, given by

M= )}nfo (a'Xa+b' X" 'b) (3.17)

which means that select a X > 0 that gives the minimum M.

3.3.5 Bounding Inequalities

By focusing on the case of constant but unknown delay and seeking an alternative
way, it is suggested to employ the following inequality
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—2a'b < (a+Mb'X(a+Mb)+b' X 'b+26'Mb X >0 (3.18)

Here M can take any value and if one puts M = 0, equation (3.16) is obtained.
Therefore, (3.16) is a special case of (3.18) and at the worst case one is able to find
the same result as in (3.16) by setting M = 0. The following result stands out:

Theorem 3.9 The time-delay system X. is asymptotically stable for any constant
delay t(t) satisfying

0<t<T1
if there exist matrices R > 0, S > 0, M > 0and N > 0 such that
-S A;AZM 0

° -M 0
° ° —-M

I —NA, ALALM 23S+ NY)
° <0 (3.19)
[ ]
[ ]

where
0= (Ay+ADR+ (A + A) R+ N'"Ag + ALN + S

A summary of the features of the method developed as follows:

Employs first-order transformation given in (3.8),

Incorporates the bounding technique (3.18),

Deals with unknown fixed delay pattern,

Introduces LKF with three terms,

Manipulates three Lyapunov matrices and two free-weighting matrices, and
Considers nominal time-delay models only.

Further improvement over the inequality in (3.16) to reduce the conservatism can
be attained by replacing the cross-product term mentioned in (3.15) with its upper
bound by using the following inequality

a®) ' [XY—=NT[als)
—2fa’(s)Nb(S)ds = [b(s)] [. z Hb(s)]ds

such that |:}f §i| >0 (3.20)

It is not difficult to show that with suitable substitution for matrices Z and Y, one
can show that inequalities (3.16) and (3.18) are special cases of (3.20). Therefore, so
it is expected to give less conservative stability results. The corresponding stability
condition is established belowbased on the LKF (3.9):
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Theorem 3.10 The time-delay system X is asymptotically stable for any constant
delay t(t) satisfying

0<t <71

if there exist matrices P > 0, Q > 0, X, Y and Z such that

T PAg—Y tALZ

e —Q tAYZ| <0 (3.21)
° ° —1Z

XY
[. Z} >0 (3.22)

where
T=AP+AP+iX+Y+Y +0Q

When dealing with state feedback stabilization, it turns out that the foregoing
method determines the feedback gain matrices using iterative computational proce-
dure. By and large, the method is capable of accommodating norm-bounded uncer-
tainties. It is important to note that the iterative method should start with stable
system for some delay factor T > 0, which means this method is not applicable for
unstable systems. In addition, for relatively large systems the iterative method takes
quite a long time to yield the desired results.

Remark 3.11 The use of inequality (3.20) has been extensively used in dealing with
various issues related to time-delay systems to derive delay-dependent results; see
[190, 301, 319, 320, 323, 373, 419]. However, it has been analytically established
in [402, 407] that the results of Theorem 3.10 is more conservative, and less con-
servative results could be obtained by introducing some slack matrices.

Along another direction by using the Jensen’s integral inequality (see the
Appendix) and choosing the LKF

V=V, +V,+ V.
t
Vo =x"OPx (@), V, = / x"(s)Ox(s)ds
1—T

0 t
Ve=r1 f / 1" () Zx(s)dsdo (3.23)
—t Jt+0

the following results can be obtained.

Theorem 3.12 The time-delay system X. is asymptotically stable for any constant
delay t©(t) satisfying

0<t<T1
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if there exist matrices P > 0, Q > 0, and Z > 0 such that

E PA—Z tAZ
e —QO-—-2Z fA’dZ <0 3.24)
° ° —Z

where

o

=AP+AP+Q—-Z
Alternatively, on using the Jensen’s integral inequality and choosing the LKF

:V0+Ve

1%
0 t

V, =x"()Px(@), V. =0 / / X' () Zx(s)dsdo (3.25)
—o J1+6

the following results can be obtained.

Theorem 3.13 The time-delay system X, is asymptotically stable for any constant
delay t(t) satisfying

0 <zt <o
if there exist matrices P > 0, Q > 0 and Z > 0 such that

AP+ AZP —Z PAs+Z QAZZ
° -Z QA;,Z < 0 (3.26)
° ° —Z

We note that Theorem 3.12 establishes that the time-delay system X, is asymp-
totically stable for any constant delay 7(z) satisfying 0 < 7(f) < 7 when
the LMI (3.24) has a feasible solution, which implies that for t(¢) satisfying
0 < 1(r) < 1t/2, the time-delay system X, is asymptotically stable too. A
way to reduce the conservatism is by introducing the half-delay into system X, to
gain more information. Consequently, we consider the augmented system

Xyt x(t) = Apx () + Agx(t — 1)
X({t+1/2) = Apx(t+1/2) + Agx(t — 1/2) (3.27)

In terms of

Yo =[x't+1/2) 2]
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system X, can be cast into the form

ﬂn=[%§jym+[?;ﬂya—ﬂ
— Aoy(0) £ Agy(t — 1) (3.28)

Choosing the LKF

V(yt) =V, + Va + Vc

1=(jt/2)

2t
Vo =Y OPy(1), Vo= Zf Y (5)Q;y(s)ds
=1

0

2
o=y |
j=1""

t
/ V' ($)Z;y(s)dsdo (3.29)
(jz/2) J1+6

the following result can be obtained

Theorem 3.14 The time-delay system X is asymptotically stable for any constant
delay t(t) satisfying

0<t <71
if there exist matrices P > 0, Q1 >0, O, >0, Z| > 0, and 2, > 0 such that
BHWB < 0

where Bt is an orthogonal complement of B given by

I A, 0 A;OO
s_|0 -1 1 010
“lo-10 1 01
|0 I Iy I, 00
(2221 +1%2, P 0 0
_ P A+ 0 0
W= 0 0 0 0 (3.30)
i 0 0 0 —Z2

where
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Remark 3.15 Theorem 3.14 is attributed to [97, 98]. It can be shown that this theo-
rem can be further improved by discretizing » > 2 times of the interval [—7, O].
It is fair to state that Jensen’s integral inequality HAS been used to deal with
different kinds of time-delay systems in order to derive delay-dependent results
[105, 112, 115, 152, 393].

3.3.6 Descriptor System Approach

We have observed in the foregoing sections that delay-dependent stability results
obtained via a transformed model, which is not equivalent to the original time-delay
system, may lead to conservatism. In an effort to reduce such potential conservatism,
a method based on descriptor system model has been introduced in the literature
to derive delay-dependent stability conditions, which is equivalent to the original
time-delay system.

To introduce the descriptor system approach, we first consider the time-delay
system X and represent (3.1) in the following form:

x(1) = y(1)

0=—y(®)+ (Ao + Aa)x(t) — A4 /tt y(s)ds (3.31)
-7
which can be rewritten in the compact form
E x(t) = A,%(t) + Agi(t — 1)
<[] o-[5] 2 [1]

- 0 1
Ay = [A0+Ad —1] (332)

where the time delay has the pattern

O0<t<h ©=<ux<lIl (3.33)
and the system is subjected to either norm bounded or polytopic uncertainty. Given
that the descriptor model (3.31) is equivalent to system (3.1), it was concluded that
improved stability results can be obtained by choosing the LKF

‘7()?:[) = ‘70 + va + ‘76‘
t
V, =X'(t)E Px(t), V, = f x'(s)Qx(s)ds
t—T

0 t
V. = / / Y () Zy(s)dsdo (3.34)
—t Jt+6
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and deploying the bounding inequality (3.20), the following result can be
obtained:

Theorem 3.16 The time-delay system X, is asymptotically stable for any constant
delay T (t) satisfying

0<t<T1

if there exist matrices P1 > 0, P2, P3, Q@ >0, Z2 >0, Y11, Y12, S11, Si2, and
S13, ; such that

m+%S P'Ag—Y!

[ . ‘0 0 (3.35)
Z Y

[. Sl} > 0 (3.36)

where

Y Y !
5]
P10 S11 Si2
73=|:7;2P3i|, Y1=[Y11 Y12], 51=|: . 513} (3.38)

An equivalent form of Theorem 3.16 is stated below

Theorem 3.17 The time-delay system X, is asymptotically stable for any constant
delay t(t) satisfying

A

0<t<T

if there exist matrices Py > 0, P2, P3, @ >0, Z>0, Y1, Y12 such that

o PAg—Yl —tY!
o -Q 0 < 0 (3.39)
[ ] [ ] —fZ

where IT, P, and Y1 are given in (3.37) and (3.38).

Theorem 3.18 The time-delay system X. is asymptotically stable for any constant
delay t©(t) satisfying

0<t<T1
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if there exist matrices Py > 0, P2, P3, @ >0, Z>0, Y1, Y2 such that

I P'As—Yl —tY]
e -0 0 <0 (3.40)
° ° —fZ

where [T, P, and Y1 are given in (3.37) and (3.38).

The following is a summary of the features of the descriptor model transforma-
tion method

Incorporates the bounding inequality (3.20),

Deals with unknown fixed delay,

Introduces an LKF with three terms,

Manipulates five free-weighting matrices, and
Considers norm-bounded and polytopic uncertainties.

Remark 3.19 Since its introduction to the control literature through [65, 68], the
descriptor system approach has been widely used to deal with various problems of
time-delay systems in order to provide delay-dependent results; see [66, 80, 114,
145, 368], and the references therein.

At the end of this chapter, we provide an overview of the research efforts and identify
some of the merits and demerits of the developed methods.

3.3.7 Free-Weighting Matrices Method

Subsequent research studies focused on further reduction of conservatism. It
becomes clear that new methods should be developed which do not arise from
model transformation nor upper-bounding. A new approach was developed through
the introduction free-weighting matrices (slack matrix variables) method, which is
based on adding zero-valued equations to the linear matrix inequality (LMI) under
consideration plus incorporating the Newton—-Leibniz formula. Candidate examples
of this type are

1
26" (1) Y [x(t) —x(t — 1) —/ x(s)ds] (3.41)
-7
t
't =) W [x(@) —x(t — 1) — / x(s)ds] (3.42)
-1

Here Y and T are free matrices to be manipulated to reach a feasible solution. Fur-
thermore, it can be seen that

T[ x (1) }t [Xn Xl2i||: x (1) }
x(t —1) o Xy x(t—r1)

t x0) | [Xn X x(1) B
_/t—‘r |:X(l‘—1’)i| |: o X22:| |:x([_l—)i| ds =0 (3.43)
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Now by using the LKF (3.23) in addition to ( 3.41), (3.42), and ( 3.43), the following
theorem summarizes the main delay-dependent stability result:

Theorem 3.20 The time-delay system X is asymptotically stable for any constant
delay t(t) satisfying

0<1t<T1

if there exist matrices P > 0, Q@ >0, Z >0, X1, X2, X2, Y and W such
that

(v, v TALZ

o Y, fAZZ < 0 (3.44)
° o —1Z

X1 X Y

e X W > 0 (3.45)
° o Z

where

U, =PA+AP+Y +Y + Q+ 11Xy,
U, =PA;—Y + W +1Xys,
We=Q+W+W —1Xn. (3.46)

In the case that equation (3.43) was not utilized, then simple manipulations can show
that Theorem 3.20 reduces to

Theorem 3.21 The time-delay system X is asymptotically stable for any constant
delay t©(t) satisfying

0<1t<T1
if there exist matrices P >0, Q@ >0, Z >0, Y and W such that

o, ®. —tY tAZ

_ _=z A AL
: f’e —ZZ ’A(SJZ <0 (3.47)
[ [ ] [ ] _fZ

where

&, =PA,+AP+Y +Y' +Q
O, =PA;— Y+ W'
D, =0+W+W (3.48)
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Admittedly, the method based on introducing slack variables has been exten-
sively used in the derivation of delay-dependent results for time-delay systems,
which is also effective in reducing conservatism in the existing delay-dependent
results.

Till date, there are no quantitative methods that yield analytical comparisons
among different existing techniques. Rather, a common numerical example is usu-
ally implemented and an evaluation is made with respect to the ensuing numerical
results. The following is a summary of the features of the slack variables method:

e It does not employ any model transformation;
e It does not incorporate any bounding method;
e [t deals with unknown differentiable time-varying delay.

When the differentiable time-varying delay pattern
0<t(t) =0 () =

is considered, a slack variables method can be developed by selecting a three-term
LKEF in the type (3.9) and achieve the delay-dependent stability conditions by using
additional six free-weighting matrices.

Subsequent research activities examined the following distinct types of delay

(AD) 0 = (1) =0, () <
(A2) 0 =t =¢o

The reason for differentiating between the two types of the delay stems from the
application under consideration with regard to the delay rate of change. The argu-
ment is that type (A1) puts some upper bound on both the delay and its derivative
while type (A2) does not. Then a stability method that adopts type (A2) becomes
applicable for any system regardless of its delay rate of change. The supporters of
this research direction considers it as a method for fast dynamics in comparison to
a stability method uses type (A1), was considered with u© < 1 to be only appli-
cable for slow dynamics. Even with this limitation, a time-delay system has slow
dynamics can more easily satisfy the conditions based on (A1). The elimination of
the condition i < 1 is a great contribution in its own.

3.3.8 Interval Time Delays

Generalizing both delay types (A1) and (A2) lead to consideration of interval time-
varying delay of the type

(A3) ¢ = (1) =
Ad) ¢ =T =0

where 0 < ¢ < o are known constants. Obviously, types (A3) and (A4)
generalize (A1) and (A2), respectively.

o, T < pu

IAIA
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Basically, the combined use of the free-weighting matrices method for systems
with interval time delays opens a new systematic approach to look at the stability-
stabilization problem and develops a delay-dependent stability result that is appli-
cable to wider classes of time delay systems. Note that the condition & < 1 is no
longer applicable, and the criticism of fast dynamic is resolved by this because u
may take any value. It was shown that this system formulation serves as a general
setup to the extent that previously published methods can be considered as special
cases.

To provide a numerical evaluation, the following example is implemented by
several methods

—2.0 0.0 —1.0 0.0

Ao = [ 0.0 —0.9] Aa = [—1.0 —1.0} (349)

For every method, the bound p was fixed at some value and from the LMI

feasibility testing, the largest t is recorded. Typical values of u were selected as

0, 0.5, 0.9, and 3. In Table 3.1 the values of the maximum allowable value of T are
presented.

Table 3.1 Comparison between different methods: largest t

Method uw=0 n=0.5 n=09 nw=3
[65] 4.47 2.0 1.180 X
[392] 4.472 2.008 1.180 X
[128] 4.472 2.008 1.180 0.999
[155] 4.472 2.008 1.180 0.999
[198] 4.472 2.008 1.180 X
[124] 4.472 2.0430 1.3780 1.3450

We first notice that there is a negligible difference between selected methods
since they are using the same Lyapunov functional. The effect of free-weighting
matrices is small except for the method of [124] because the Lyapunov function
there has an additional term, which gives the cited method some advantage over the
others.

From the table it is clear that the method of [124] is computationally superior
and, therefore in the subsequent work, we will take it as a reference to compare
our results with. Another point to notice is that the recent method of [124] was not
extended to deal with stabilization through state or observer feedback and investi-
gate the introduction of polytopic type or norm-bounded uncertainties.

3.3.9 Improved Stability Method

Consider the class of linear time-delay systems

X() = Apx(t) + Agox(t — (1)) (3.50)
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where x(r) € M" is the state vector, A, € R and Az, € R are real and
known constant matrices. The delay t(¢) is a differentiable time-varying function
satisfying

O<t(®) <o, () = (3.51)

where the bounds o and p are known constant scalars. The following theorem
summarizes an improved stability method based on the free-weighting matrices
approach.

Theorem 3.22 Given ¢ > 0 and i > 0. System (3.50) is delay-dependent asymp-
totically stable if there exist weighting matrices P >0, @ >0, R >0, W >0
and parameter matrices N, N, satisfying the following LMI

E, oN &,
E=| ¢ —oW 0 <0 (3.52)
e o —OW
where
Eal Eo2 Na Na QAf;W
Ey=| o 8 Ne |, N=|Nc |, Ec=|0AW (3.53)
e o —R 0 0

Ep1 =PA,+AP'+Q+ R+ N,+ N,

502 = PAda - 2Na + NCI

Ep3 = —(1 —p)Q—2N. — 2N/ (3.54)

Proof Consider the Lyapunov—Krasovskii functional (LKF):

V(1) = Vo) + Vin (1) + Ve(t) + Va(1)
t

V,(t) = x"t)Px(), V,(t) = / x'(s)Qx(s) ds

t—1(t)

t
Ve(t) :/ x'()Rx(s)ds
t_
OQ t
Vi (1) 2/ / ' ()Wix (a)dads (3.55)
—0 Jit+s

where 0 < P, 0 < W, 0 < Q, 0 < R are weighting matrices of appropriate
dimensions. The first term in (3.55) is standard to the delay-less nominal system
while the second and fourth terms correspond to the delay-dependent conditions
and the third term is introduced to compensate for the enlarged time interval from
t—o — ttot —t — t. A straightforward computation gives the time derivative of
V (x) along the solutions of (3.50) as
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V(1) = 2x"P[Apx(t) + Agox(t — 7)] (3.56)
Va(t) = x"(1)Qx(1) = (1 — 1) x'(t — 1(1)) Qx(t — T(1))
< x'(0)Qx(1) — (1 — p) X' (t — ©(1)) Qx(r — T(1)) (3.57)
Ve(t) = x' ()Rx(t) — x' (1 — Q)Rx(t — 0) (3.58)

0
V(1) = 0 X (OHW3(t) — / # (s)Wi (s)ds (3.59)
-0

In terms of
En) =[x x'(t — () x'(t —0) |

and using the classical Leibniz rule x(t — 0) = x(¢) — ftl_g X (s)ds for any matri-
ces N,, N. of appropriate dimensions and using A/ from (3.53), the following
equations hold:

t
2&’(t)(2/\/')|:—/ )'c(s)ds—i-x(t)—x(t—t)] =0
t—1(t)

t
2g’(x)(—N)[—/ X(s)ds + x(£) — x(t —9)} =0 (3.60)
t—o

From (3.55), (3.56), (3.57), (3.58), and (3.59) and using (3.60), we have

V(350 < x' (1) [PA,+ AP + Q+ R+ Ny + Ni x (1)
—x'(t —0)Rx(t — 0)
+ 2x'(1) [PAdo — 2N4 + N/ ] x(t — 1)
+ 2x" (1) Nyx(t — ) + 2x'(t — T)Nex(t — 0)
—x'(t =) [(1 = W) Q+ 2N, + 2N/ x(t — (1))
—2&'(H2N) /t x(s)ds — ft X (s)Wi(s)ds
-7 t—

e
t
+ 28 (ON X(s)ds
-0
+0 & (1) [ Ao Ado 0] W[ A, Ago 0] (3.61)

where V(x)|(3.50) defines the Lyapunov derivative along the solutions of system
(3.50). Regrouping the terms of (3.61) leads to
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V(D)3.50) = &' (1) EoE (1)

'
—/ X ($)Wa(s)ds
t—o
oA}, oAl '

+&'(t) | 0AL, | W | 0AL, | £@)

0 0

t t—1(t)

2" (ON xX(s)ds — 2ET(1)(—=N) x(s)ds

t—t(t) t—o

04, oA, '
<EOEEO+E O | oA, | W] oAl | €0 G62)
0 0

where matrices 5,, N are given in (3.53). From (3.52) and Schur complements, it
follows from (3.62) that V' (¢)[(3.50) < O, which establishes the desired asymptotic
stability.

Remark 3.23 It is significant to recognize that the foregoing method, based on
the implementation requirements of the stability conditions, provides a substantial
improvement over the recently developed free-weighting matrices method of [124].
Hence it is expected to yield less-conservative delay-dependent stability results in
terms of two aspects. One aspect would be due to reduced computational load as
evidenced by a simple comparison with less number of manipulated variables and
faster processing. Another aspect arises by noting that LMIs (3.52), (3.53), and
(3.54) theoretically cover the results of [155, 181, 188] as special cases. Further-
more, in the absence of delay (A = 0, Q = 0, W = 0), it is easy to infer that
LMIs (3.52) and (3.54) will eventually reduce to a parametrized delay-independent
criteria.

3.3.10 Delay-Partitioning Projection Method

To shed light on the delay-partitioning projection approach, we consider the time-
delay model

p
£(1) = Apx(t) + Agox [t = 7 (3.63)
j=1
x®)=¢, Vit e [-1,0] (3.64)
where the scalars 7; > 0, j = 1,...,p and Zﬁ.’:l 7; < 7. Thus, the factors

tj, j = 1,..,p represents a partition of the lumped delay 7. We proceed by
letting
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k
o, =0, ap = Z T;
j=1

By choosing the Lyapunov—Krasovskii functional (LKF):

V(t) = Vo(t) + Vm(t) + Vc(t) + Va(t)

t
V,(t) = x"()Px(t), V,(t) = / x"($)Rx(s) ds
t—1(1)
r t—oj| ,
V.(t) = ; d
() ; /_ x'(5)Qjx(s)ds

0 t
V() = f f ' (@)Wi (a)da ds (3.65)
—0 Jit+s

where 0 <P, 0 < W, 0 < Q;, 0 < R. The following result can be obtained

Theorem 3.24 System (3.63) and (3.64) is delay-dependent asymptotically stable if
there exist weighting matrices P > 0, Q; >0, R >0, W>0, j=1,..,p
satisfying the following LMI

BJ_[ [uv'i‘E

0 } Bt <0 (3.66)

,[!] o

S
where B+ € WCrTOnx(+Dn g the orthogonal complement of

I-10...0-10...0

07 —1...0 —-10...0
B=|. . . . . ... . (3.67)

00 ...1 —-10¢0...-

and
PA, +A77+Q1 0 ...0PA,;
N QD —9;...0 0
° .0 =0,

L0 AdW[A, 0 ... 0 Ay]

&3]
S
I
/\
\

— 2! (3.68)

[I]
|I
I_I
|
>
S
Iil
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3.3.11 Numerical Examples

To complete the picture, the following examples provide numerical evaluations

Illustrative Example A

—0.5 -2 -0.5 -1
A"Z[ 1 —1]’Ad=[ 0 —0.6]

In terms of the number of system variables N,, the number of LMI iterations to
reach a feasible solution NV;, the total elapsed time 7, to reach at a desirable o and
the maximum g, a sequence of numerical experiments is performed on a standard
computing facility." Table 3.2 contains a summary of the computational results of
our methods as compared to the other existing method.

Table 3.2 Computational summary with ; = 2 : example 1

Method Ny N; T, 0
[124] 54 100 14.27s 0.9
Theorem 3.22 20 100 3.77s 1.1

Ilustrative Example B

An open-loop stable time-delay system for chemical reactor is considered here as a
state-feedback design [177]. In the reactor, raw materials A and B take part in three
chemical reactions that produce a product P along with some other by products.
By linearization and time scaling, the state variables are the deviations from their
nominal values in the weight composition of reactant A, in the weight composition
of reactant B, in the weight composition of intermediate product C and in the weight
composition of reactant P. The control variables are relative deviations in the feed
rates. Using typical values [177], the model matrices are

—4.93-101 0 0 192 0 0 0
A | 32 =53 -128 0 | 0120 o
°T| 64 0347 —325-1.04 |7 0 0 187 0
0 0833 11.0 —3.96 0 0 0 0724

The open-loop system response is plotted in Fig. 3.1. In Table 3.3, a summary of
the computational results of our method as compared to the other existing method.

! This is comprised of Intel Core Duo- 2.66 GHz both processors with 980MB RAM employing
Matlab 7.
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Fig. 3.1 Open-loop state trajectories: example 2

Table 3.3 Computational summary with © = 2 : example 3.2

Method Ny N;i T. 0
[121, 123, 124, 128] 204 10 14.66's 0.652
Theorem 3.22 72 10 2.295s 0.874

It is evidently clear that the improved method is quite superior to [121, 123,
124, 128] since the computational time is much less and, in addition, their storage
requirement is almost three times that of our method which is quite excessive. More
importantly

Ilustrative Example C

The example is used [418] and has the following matrices

-2 0 -1 0
Ao:[o —.9]’ Ad:[—l—l]

In this example every time a set of values is put for x and /;. Then the maximum
h, above which the system fails to satisfy the theorem condition is used in Table
3.3 to compare their results, and the result obtained by the method developed in this
book (Table 3.4):
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Table 3.4 Comparison between different methods

1% Method n=0.5 n=0.9
=0 [152] 1.01 1.01
=0 [418] 2.04 1.37
=0 Proposed 2.33 1.87
p=2 [152] 2.39 2.39
p=2 [418] 2.43 2.43
p=2 Proposed 4.472 2.6
p=4 [152] 4.06 4.06
p=4 [418] 4.07 4.07
p=4 Proposed 4.09 4.09

3.4 Stability Approaches: Discrete Time

Less attention has been paid to discrete-time systems with a time-delay because a
linear discrete-time system with a constant time-delay can be transformed into a
delay-free system by means of a state-augmentation approach [207]. However this
approach is not suitable for systems with either unknown or time-varying delays.
Over the past decade, several articles have appeared on this topic. There are two
types of time delays discussed in the literature. For small time-varying delays [34],
the descriptor model transformation approach was employed to study the delay-
dependent guaranteed-cost control of uncertain discrete-time delay systems, and
in [12, 34, 168, 354]. In later chapters, we present switched time-delay models of
continuous-time and discrete-time dynamical systems. The purpose is to lay down
the mathematical formulations needed in the subsequent study on stability and feed-
back stabilization of linear time delay (LTD) and nonlinear time-delay (NTD) sys-
tems. Specifically, we will seek to generalize the formulations in order to encompass
the widespread analytical results.

3.4.1 A Discrete-Time Model

A class of discrete-time systems with state delay is represented by

x(k+1) = Agx(k) + Dox(k — d(k)) (3.69)

where for k € Z, 4 {0, 1, ...} and x(k) € N" is the state, control, and A, €
R D, € R are constant matrices. The delay factor d (k) is unknown but
bounded in the form

0 < dy < dik) < dy, dy=dy —dp-+1 (3.70)

where the scalars d,,, and dy; represent the lower and upper bounds, respectively, and
d, denotes the number of samples within the delay interval. By setting d(k) = =0
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in (3.69), it is readily seen that |L(A, + Ag)| < 1 1is a necessary condition for
stability of system (3.69). From now onwards, we assume that this is the case.

Remark 3.25 The class of systems (3.69) represents a nominally linear model
emerges in many areas dealing with the applications functional difference equations
or delay-difference equations [216]. These applications include cold rolling mills,
decision-making processes, and manufacturing systems. Related results for a class
of discrete-time systems with time-varying delays can be found in [24] where delay-
dependent stability and stabilization conditions are derived. It should be stressed
that although we consider only the case of single time delay, extension to multiple
time-delay systems can be easily attained using an augmentation procedure.

3.4.2 Lyapunov Theorem

Intuitively if we associate with system (3.69) a positive-definite Lyapunov—
Krasovskii functional V (k, x(k)) > 0 and we find its first difference AV (k, x(k)) =
V(k+1, x(k+1))—V (k, x(k)) is negative definite along the solutions of (3.69), then
the origin of system (3.69) is globally asymptotically stable. Formally, we present
the following theorem for discrete-time systems of the type (3.69):

Theorem 3.26 The equilibrium 0 of the discrete-time system
x(k+1) = h(x(k)) (3.71)

is globally asymptotically stable if there is a function V : {0, 1,2, ...} x K" — N
such that

e V(k,x(k)) is a positive-definite function, decrescent, and radially unbounded,
o AV(k,x(k)) = Vk+ 1,x(k+ 1)) — V(k,x(k)) is negative definite along the
solutions of system (3.69)

For arbitrary value of d(k), denote

x(k)
z(k) = :
x(k —dk))
We have
A, O . 0 D,
I 0 ...0 O
z2k+1) = . oo z(k) (3.72)
0 0 .10

It is obvious that system (3.69) is globally asymptotically stable if and only if system
(3.71) is globally asymptotically stable. For system (3.71), we define



3.4 Stability Approaches: Discrete Time 63

PO ...0

. 0 Q...0

V(k, z(k)) = 7' (k) N RG] (3.73)
00..0

where P > 0, Q > 0. Itis easy to see that \7(k, z(k)) > 0, decrescent, and radially
unbounded and hence system (3.71) thereby system (3.69) is globally asymptoti-
cally stable.

There are two main classes of stability analysis that have been investigated in
the literature, namely delay-dependent and delay-independent conditions. For a
discrete-time delay system whose stability does not depend on the time-delay value,
the analysis performed through delay-dependent conditions can be very conserva-
tive. Also, delay-independent conditions cannot be obtained as a limit case of delay-
dependent ones just by imposing the maximum delay value dj; — oo, leading to a
gap between these two types of delay-stability conditions.

3.4.3 Delay-Independent Stability

Given weighting matrices 0 < P’ = P, 0 < Q" = Q of appropriate dimensions.
By selecting the Lyapunov—Krasovskii functional

k—1
V) =x'()Pxjk)+ Y x'(m)Qx;(m) (3.74)
m=k—d (k)

and invoking the Lyapunov—Krasovskii theorem, the following stability condition
can be derived [206]:

Theorem 3.27 The discrete-delay system (3.69) is asymptotically stable if there
exist matrices P > 0 and Q > 0 such that

~P-Q 0 AP
° -9 Df,P < 0 (3.75)
° ° —P

We stress that LMI (3.75) is virtually delay independent since it is satisfied,
regardless of the size of delay d (k).

3.4.4 Delay-Dependent Stability

In the sequel, sufficient delay-dependent LMI-based stability conditions are
given. The approach used here does not introduce any dynamics and leads to
a product separation between the matrices of the system and those from the
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Lyapunov—Krasovskii functional. The following theorem provides some LMI con-
ditions depending on the values d,,, and dj;.

Theorem 3.28 Given the delay sample number ds. System (3.69) subject to (3.70) is
delay-dependent asymptotically stable if one of the following equivalent conditions
is satisfied

(A) there exist matrices 0 < P € X", 0 < Q € N"*" such that

)

(3.76)

_[APA,+d,Q—P  APD! 0
a= . D!PD,- Q| =

(B) there exist matrices 0 < P € X" 0 < Q e W, X e W' Y €
RPN and Z € X" such that
P+X+XY—XA, Z—- XD,
E. = ° I, —ALZ'—-YD, | <0 (3.77)
° ° Iy

where

Iy=-AZ' —YA,+d,Q—P
ry,=-Q-2D,—D.Z' (3.78)

In this case, the Lyapunov—Krasovskii functional (LKF):

V (k) = Vo(k) + Va(k) 4+ Ve(k) > 0

k—1
Vo = x"(k)Px(k), Vy(k) = Z x" (m)Qx (m)
m=k—d (k)
1—dy k—1
V, = Z Z X' (m)Qx(m) (3.79)
s=2—dpy m=k+s—1
is such that
AV(k) < 0, V [x'(k)x'(k—d(k)] # 0 (3.80)

Proof The positivity of the LKF (3.79) is guaranteed by the requirement that
0 <P € RN 0 < @ € WX, Next, it is necessary to verify (3.80). A
straightforward computation gives the first-difference of AV(k) = V(k +1)— V(k)
along the solutions of (3.69) as

AV, (k) = [Apx (k) + Dox(k — d(k))]' P[Aox (k) + Dox(k — d(k))]
—x' (k)Px (k) (3.81)
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AVa(k) = x" (k) Qx (k) — x" (k — d; (k) Qx (k — d; (k)

k—1 k—1
+ > dmQxm — Y x(m)Qx(m) (3.82)
m=k+1—d(k+1) m=k+1—d (k)
k—d,
AVe(k) = (dm — d)x" (k) Qx (k) — Z x' (m) Qx (m) (3.83)
m=k+1—dy)

Observe from (3.82) that

k—1 k—1
> XmQxm = Y x'(m)Qx(m)
m=k+1—d(k+1) m=k+1—dy,

k—dp,
+ ) X mQxm)
m=k+1—d(k+1)

k—1
< ) xmQx(m)
m=k+1-d (k)

k—dp
+ Y x'(m)Qx(m) (3.84)

m=k+1—dy
Then using (3.84) into (3.82) and manipulating, we reach

AV (k) < x"(k)Qx (k) — x'(k — d(k))Ox (k — d(k))
k—dpy,
+ Z x'(m)Qx(m) (3.85)

m=k+1—dy

Talfing into consideration (3.81), (3.83), and (3.85), the following upper bound for
AV (k) can be obtained:

AV (k) < [Apx (k) + Dox (k — d(D I PlAox (k) + Dox(k — d (k)]
+ x'(k)[ds Q — Plx(k) — x"(k — d(k))Qx(k —d(k)) < 0 (3.86)

By Schur complement, one gets LMI (3.76). Next, the equivalence between
(3.76) and (3.77) can be established as follows. First, we note that (3.76) can be
expressed as

AP [AP] [P—dQ O
ot [P e -7 o] <0 87
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which by Schur complement is equivalent to

—-P PASP PD,
o dQ—P O < 0 (3.88)
° ° —-Q

Obviously, the equivalence between (3.76) and (3.77) is the same as that between

(3.77) and (3.88). Hence, if (3.88) is verified, then (3.77) is true for X = X' =
—P, Y = Z = 0. On the other hand, if (3.77) is verified, then &, = T? 5, T with

A, D,

T = 0| <o (3.89)
I

1
0
completes the proof. |

The result of Theorem 3.28 has been developed in [23, 185, 208, 222] using
alternative analytical directions.

3.4.5 Descriptor Model Transformation

Let y(k) denote the state increment, that is
yk) =x(k+1) — x(k) (3.90)

then in line with the continuous-time case, system (3.69) can be represented by the
following descriptor form

xk+1D7] V(&) + x (k)
0 | —y(k) + Ay x(k) — x(k) + Dyox(k — d(k))

} (3.91)
Recall by successive iterations on (3.90) that
k—1
x(k—dk) =xk)— > y())
Jj=k—d(k)

and letting

A | x(k) r |1 ~
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it follows that

k—1

1 1
peaen = [0, Lew-|p ] X 0
? O j=k—aw
_ _ k—1
= A Ek)=D, Y y()) (3.92)
j=k—d (k)

where the initial conditions are characterized by

CTx07 (0)
§0) = [y(m} = [(Aa — DY) - Dovf_d(o)] (3.93)

In short, if x (k) is a solution of system (3.69), then £ (k) = {x(k), y(k)} is a solution
of the free descriptor system (3.92) subject to (3.93) and the reverse is true. This is
the essence of descriptor transformation.

Now we have the following result:

Theorem 3.29 Consider system (3.69). If there exists continuous functional

V (k) 2 Vixtk —dm), ..., xk), y(k —dm), ..., y(k = 1)) (3.94)

such that

0 < Vk) < wmax{ max  |x(j)|%, .

k—dt<j<k

max |y(j)|2}

—dt<j<k—

Vik+1)— V) < —« |x(k)? (3.95)

IA

for xi and yy satisfying (3.92), then system (3.69) is asymptotically stable

Proof Summing up (3.95), it follows that

k k
YVEhHD=VE) = VE+D=VO) < -k Y x(®)P

j=0 j=0

Since x (k) and y(k) are satisfying (3.92), then (3.95) implies that

k
P < Y Ix(HIF < «'V(O)
j=0

A
=
S
B
o
>
e,

N2 N2
max |[x(j)|7, max  [x(j)]
—d+t<j<0 —dt<j<-1

Vk > 0 (3.96)



68 3 Time-Delay Systems: Recent Progress

If x(k) is a solution of (3.69) and x(k) is defined by (3.90), then {x(k), y(k)}
satisfies (3.91), (3.92), and (3.93) and hence (3.96) holds.

Note that (3.96) implies that if max je(_q,,.01 1% (—j) 12 is sufficiently small, then
|x(k)|? is sufficiently small and subsequently Z?’:O Ix(j))I> < oo. Therefore
Ix(j)I* = 0as j — oo.

To derive tractable conditions for stability, we introduce the Lyapunov—
Krasovskii functional

Vk) = Va(k) + V(k)e + V(k)e
Va(k) = x"(k)Pox(k) = &' (k) E"PEE (k)

P, 0
= g'(k)E' [Pe PL} E&kk), P, >0 (3.97)

—1 k—1
Vek) = D0 >0 y((HA(), >0
p=—du j=k+p
k—1
Velk) = > x'(oWx(k), W>0 (3.98)
j=k—d

We observe that V (k) is constructed from three terms: V, (k) signifies necessary
and sufficient conditions for the stability of discrete descriptor system without delay
[221], V.(k) corresponds to delay-dependent criteria [216], and V, (k) is common
for delay-independent stability conditions.

For simplicity in exposition, we introduce the following matrix expressions:

_ w 0 VAN m2nx2n 2nxn
Wq—|:. dMQ:|’ [. Q]zO,ZeJi , Yed (3.99)
The following theorem establishes LMI-based sufficient conditions for asymptotic
stability of system (3.69):

Theorem 3.30 Consider system (3.69) and the delay factor dr = d being an
unknown constant satisfying 0 < dk) < dy. Given matrices 0 < Q =
Q e WM 0 < W =W € R this system is asymptotically stable if there
exist matrices 0 < P = Pl € W2 Y e K21 and Z € W2 satisfying
(3.99) and the LMI

At N
Té[TO Y —A,PD, } <0 (3.100)

o —W+ Dé'PDO
where

T, = ALPA, — E'PE+ W, +dyZ + YE + E')'
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The proof of this theorem can be found in [221] and alternative forms can be
found in [22, 67, 71, 267]. We record that the developed results have been obtained
by using the bounding inequality (3.20).

3.4.6 Improved Stability Methods

Much like the continuous time-delay systems, improved delay-dependent stability
criteria can be developed by constructing more appropriate Lyapunov—Krasovskii
functionals. In these criteria, trade-off arises between the extra added components
and the use of bounding inequalities. One such criterion is developed in [82, 85, 284]
based on the LKF

V (k) = Vo (k) + Va(k) + Ve(k) + Vg
k—1

Vo =x'()Px(k), Vatky= > x'(m)Qx(m)
m=k—d (k)

1—dp

k—1
Ve= Y D x'm)Qx(m)

s=2—dy m=k+s—1
-1 k—1
Vi= > ) sx'(m)Zsx(m), sx =x(k+1)—x(k) (3.101)

s=—dy m=k+s

and invoking the inequality (3.20). It is summarized by the following theorem

Theorem 3.31 The discrete-delay system (3.69) subject to (3.70) is asymptotically
stable if there exist matrices P > 0, Q > 0, Z, Y, and W satisfying the following

2 —(Ao+Dy)'PDy—Y+W' —APD,—-Y dy(A,—1)'Z

° —-Q-W-W —-D!PD, — W duD!Z
° ° —Z 0
° ° ° —Z
< 0 (3.102)

where

2 =AP(As+ Dy) + (Ap + D)) PA,+ Y+ V' — P +d,Q
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A further improvement is attained by choosing the following LKF:

Vi = Vok + Var + Ver + Vi + Vik

k—1
Vok = x'()Px(k), Vae= Y x'(j)Qx(j)
j=k=d(k)
k—1
Vo = Y X' (HRx(j)
k—dy
-1 k—1

V=Y D S (DOWVa+We)dx()j)

m=—dy j=k+m

—d, k—
Ve =YY x()HOx() (3.103)

m=—dy+1 j=k+m

together with the free-weighting matrix method, where 0 < P, 0 < Q, 0 <
R, 0 < W,, 0 < W, are weighting matrices of appropriate dimensions. The first
term in (3.103) is standard to the delayless nominal system while the second and
fifth correspond to the delay-dependent conditions. The third and fourth terms are
added to compensate for the enlargement in the time interval from (k— 1 — d —dy)
to (k — 1 — d — dy). Introduce

k—1
Sx(k) = x(k+ 1) — x(k), x(k —d(k)) = x(k) = Y 8x())
J=k—dy
8x(k) = (Ap — Dx(k) + Dy x(k —d(k)), d = (dpy — dp + 1) (3.104)

The following theorem provides the desired result:

Theorem 3.32 Given the bounds dy > 0 and d,, > 0. System (3.69) subject to
(3.70) is delay-dependent asymptotically stable if there exist weighting matrices
0<P, 0<9, 0<R, 0 < W, 0< W, and slack variable matrices
M, S, Z satisfying the following LMI
Q=[9+Qa+9;+gc Q, }<0 (3.105)
° — 2y

where

20 Qm

[ ]
o= APA, —P+dQ+TR, 2, =APD,, 2 =D.PD,—Q
[M+Z S-M —-S§—Z]
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Qc:dMgéc (Wa+Wc) -Qcm Qcc:[Ao_I Du I]

2, = [VAduM JVdy —dnS VAuZ ], 2, = diag[ Wa W W, |
(3.106)

Along same direction of thought, another improvement is achieved by choosing
the following LKF:

‘7]( = ng + Vak + Vck + mG + Vnk + Vsk

k—1
Vo = x'()Px(k), Vae = Y x'(j)Qx(j)
j=k—d(k)
k—1 k—1
Ve = Y X' (DRax() + Y &' (DRex())
k—dy, k—dy

—dp—1 k-1

V= Y. Y sx'()Ssx())

m=—dy j=k+m

—dp k—1
Ve = Yy x()HOx()

m=—dy+1 j=k+m

Vsk

- k—1
Z Z Sx! (HWsx(j) (3.107)

m=—dy j=k+m

where 0 < P, 0 < Q, 0 < W, 0 < Ry, 0 < R, are weighting matrices of
appropriate dimensions. The following result is due to [435]:

Theorem 3.33 Given the bounds dy; > 0 and d,, > 0. System (3.69) subject to
(3.70) is delay-dependent asymptotically stable if there exist weighting matrices
0<P, 0<Q, 0<3S8, 0< Ry, 0 < Re, W and slack variable matrices
L., My, Ng, Lo, M, N¢ satisfying the following LMI

Q= [djo Pa } <0 (3.108)
s
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where

DPo1 Do Ma _La
o Dy Mc - Lc
° e —R, O
° ° ° —R.

_\/dM _dml-a \/dM _dea \/dM _dmNa
1) \/dM _dml—c \/dM _dec VdM _dmNc
“ 0

0 0
i 0 0 0
[-S—-W 0 0
&y = ° -5 0
° o —W

Do) = AlPAy —P+dQ+Ra+Re+ (dy — du) (Ao — 1)'S(A, — 1)
+dy(Ap — D'W(A, — I) + N, + N,
Py = ALPDy + (dy — dw) (Ao — 1)'SDy + dpy (A — D'WD,
+Ls + Mg — N, + NL
®,3 = D\PD, — Q + (dy — d) DL SD, + +dy DYWD,
+L. — M. — M. =N, — N (3.109)

Remark 3.34 Consideration of Theorem 3.33 emphasizes the effective use of the
LKF (3.107) and the free-weighting matrix technique thereby yielding an improved
delay-dependent stability condition for the discrete time-delay system in (3.69). We
note that, due to the introduction of the following two terms

k—1 _dm_l k—1
SO DRax(G) D Y 8 (HSx())
k—d,, m=—dp j=k+m

the result in Theorem 3.33 is less conservative than those in [67, 82, 85, 125, 153].

3.4.7 Simulation Examples

Ilustrative Example D

The example is used [185] and has the following matrices

0.6 0 0.1 0
Ao = [0.35 0.7] Do = [0.2 0.1}
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The results of simulation by different methods are summarized in Table 3.5.

Table 3.5 Computational summary: example 4

Method dy, dy
[67] 2 11
[185] 2 10
[202] 2 13

Ilustrative Example E

The example is used [125] and has the following data

0.8 0 0.1 0
Ao = [0.05 0.9]’ Do = [—0.2 —0.1}

The values of the upper bound on dy, for various d,, are given in Table 3.6.

Table 3.6 Computational summary: example 5

d 2 4 6 10 12
(85] 7 8 9 12 13
[82] 13 13 14 15 17
[125] 17 17 18 20 21
[435] 18 18 20 21 23

Remark 3.35 As a closing point, one has to look for a measure of the computa-
tional complexity of the LMI-based stability conditions in order to better evaluate
the various methods. A proposed measure would be in terms of

1. the number of scalar variables Ny, and
2. the number of rows in the main LMI matrix N,.

For a symmetric n x n matrix, the number of scalar variables Ny = %n(n + 1) while
for arbitrary n x n matrix, the number of rows N, = Rn, where R corresponds
to the number of row blocks. In the case of using MATLAB LMI solver [74], the
computational complexity is O (Nf N,) and, alternatively, on using the LMI solver
SeDuMi [362] the computational complexity is O (N2 N2> + N3-).

3.5 Notes and References

Indeed, there is voluminous literature on time-delay systems in terms of numer-
ous papers and articles, particularly on delay-dependent analysis. It is hoped that
this introductory chapter has succeeded in motivating the readers to the upcoming
topics. We have reviewed some existing methods and provided new ones for delay-
dependent stability for a class of nominally linear continuous-time systems with
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time-varying delays. Appropriate Lyapunov functionals have been constructed to
exhibit the delay-dependent dynamics. Delay-dependent stability analysis has been
presented in terms of theorems and we have provided some remarks and comments
whenever deemed appropriate. To further follow up on the subject, the interested
readers are referred to [32, 54, 65-67, 69, 71, 114, 121, 123, 124, 127, 128, 152,
155, 171, 214, 265, 373, 391, 392, 404, 418], and their references.



Chapter 4
Switched Systems

4.1 Introduction

This chapter is concerned with the main ingredients and basic notions of switched
systems. For simplicity in exposition, we present the relevant topics and materials
in general perspective.

4.2 Switched Systems: Overview

The past two decades have witnessed a great deal of activity in the study of switched
dynamical systems. Such systems, which behave in continuous time at some levels
and in discrete time at others, are at present ubiquitous. Apart from the more tra-
ditional application areas of control engineering such as aerospace and automotive
engineering, they are also appearing with increasing frequency in biological sys-
tems, computer science, and computer communication networks. We record that
continuous dynamical systems have been studied extensively in control theory and
mathematics and discrete distributed systems have been investigated in computer
science. However, the problems arising at the confluence of the two subject areas
have raised a wide spectrum of questions, many of which are still not well under-
stood. During the past 15 years, the work accomplished has been well documented
in a number of monographs [192, 366], survey articles [19, 41, 47], and special
issues [357-359].

Loosely speaking, switched time-delay systems are hybrid in the sense that the
state trajectory evolution is governed by different functional dynamical equations
over different polyhedral partitions {X ;} of the state-space X. That is, the STD sys-
tem modeled as an ensemble of subsystems, each of which is a valid representation
of the system over a set of each partitions.

In this section, we present a summary of the basic concepts of related issues of
switched systems and switched time-delay systems.

M.S. Mahmoud, Switched Time-Delay Systems, 75
DOI 10.1007/978-1-4419-6394-9_4, © Springer Science+Business Media, LLC 2010



76 4 Switched Systems
4.2.1 Dynamic Model

In general, a switched system is composed of a family of subsystems and a rule that
governs the switching among them, and is mathematically described by

Sx(t) = fo (x(@),u(), v()), x(t) =Xo
y(1) = go (x(1), w(t)) (4.1)

where x(¢) is the state, u(t) is the controlled input, y(¢) is the measured output,
v(t) and w(r) stand for the external signals such as perturbations, o is the piecewise

constant signal taking values from an index set M e {1,...,m}, fx, k € M are
vector fields, and gx, k € M are vector functions, while the symbol § denotes the
derivative operator in the continuous time (that is, §x(t) = x(¢t)) and the shift
forward operator in discrete time (that is, éx(t) = x(t + 1)). By requesting a
switching signal to be piecewise constant, we mean that the switching signal o (¢)
has finite number of discontinuities on any finite interval of ™, the set of nonneg-
ative real numbers. This actually corresponds to no-chattering requirement for the
continuous-time switched systems; note that this is not an issue in the discrete-time
case. Figure 4.1 is a schematic diagram of the switched system architecture.

Supervisor *

d
. v d
—»{ Demultiplexer

Fig. 4.1 Schematic of switched system

It is easy to recognize that a switched system is basically multimodel in nature.
Each individual component model

Sx(r) = fj(x(0), u@®), V(0), x(t) =X,
y() =gj(x@),w(), jeM (4.2)

is said to be a subsystem or mode of the switched system. Besides the subsys-
tems, the switched system also consists of a switching device, usually called the
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supervisor. The supervisor produces the switching rule o, denoting the switching
signal or switching law, which orchestrates the switching among the subsystems.

4.2.2 Model and Definitions

Let C = C([—t, 0], ") be a Banach space of continuous functions with the norm

I1¥lle = sup [[& (O]

T<0=<0

Given an initial time 7,, an initial function ¢ € C and a switching sequence
{Go, 1), (1, t1), ..., (ij,tj),...} whereiy € S={1,2,...,5},0 <5 < o0.

Likewise, a switched time-delay system is composed of a family of time-delay
subsystems and a rule that governs the switching among them, and is mathematically
described by

Sx(t) = fo(x (), u(®), ©(r),d(t)), x(to) = xo
y(1) = go (x(1), T(1), w(t)) (4.3)

where 7(¢) is the time delay and the remaining quantities are as above. Each indi-
vidual time-delay component model

Sx (1) = fix (@), u(®), T(1),d(®)), x(to) =xo
y(@) = ge(x(0), t(t), w()), k € 8 (4.4)

is said to be a time-delay subsystem or time-delay mode of the switched system. In
the sequel, it is assumed that the delay t(¢) is a differentiable time-varying function
satisfying

O<t(®) <o, () < (4.5)

where the bounds o and p are known constant scalars. Sometimes the bounding
relation u© < 1 [181, 216, 301] is used. Alternatively, depending on the problem
formulation, the delay t(¢) is considered as a time-varying function satisfying

O<t(®) <o (4.6)

where the bounds o is a known constant scalar.

From information processing standpoint, the time-delay subsystems represent
the low-level local dynamics governed by FDEs, whereas the supervisor is the high-
level coordinator producing the switches among local dynamics. Thus, the dynamics
of the STD system is determined by both the time-delay subsystems and the switch-
ing signal (Fig. 4.2).
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Supervisor

Controller 1 =

Controller m

Fig. 4.2 Schematic of multiple-controller system

A switching signal may depend on the time, its own past value, the state/output,
and/or an external signal as well

o(t+) =, o), x(t)/y),rt)) Vi (4.7)

where r(t) is an external signal produced by other devices, o (1+) = limg; o (s) in
continuous time and o (t+) = o (¢ + 1) in discrete time.

In the case o () = j, then we say that the jth subsystem is active at time t. It is
quite evident that at any instant there is one (and only one) active subsystem.

Over the time interval [7,, 1), define x : [t,, ;) — R" as the state segment
and 8 : [t,, t1) — S as a typical switching signal. Obviously, x is absolutely con-
tinuous and o is piecewise constant. The pair (x(.), B(.)) gives a characterization
of the solution of system (4.4) subject to (4.5) via switching signal (4.7) at x,, for
almost all ¢ € [#,, t1). This means that the solution is specified for all ¢t € [z,, 1)
except for possibly a set of isolated instants in continuous time and for all integers
in [#,, t1) in discrete time. Accordingly, we had, in fact, excluded any impulse in
the state and input variables.

Throughout the book, we focus most of the time on a special but very impor-
tant class of switched time-delay systems where all the subsystems are linear time-
invariant and the switching signals are governed by deterministic processes. Added
cone-bounded nonlinear perturbations will be considered in some instants.

Without delays, these systems are termed as linear switched systems and are
described by

6x(t) = Aix(t) + Biu(t) + L;w(t)
y() = Cix(t) + Piw(t), i €S (4.8)

where A;, B;, C;, I;, and @; are linear mappings (matrices) in appropriate spaces.
The nominal system is the system free of disturbances, that is

8x(t) = Aix(t) + Biu(t)
y(t) = Cix(t), i €8S (4.9)
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If no control input is imposed on the system, then the system is said to be
a switched autonomous system, or an unforced switched system. The unforced
switched linear system is described by

Sx(t) = Aix(1)
y(@) =Cix(t), i €8 (4.10)

As a short-hand notation, we denote system (4.9) by X (A;, B;, Ci)s. Simi-
larly, we denote by X' (A;, Bj)s, X(C;, A;)s, and X'(A;)s the switched system
without output and/or input, respectively. In the case that we need to distinguish
between continuous time and discrete time, we simply denote X.(A;, B;, C;)s for
continuous-time systems and X;(A;, B;, C;)s for discrete-time systems.

Incorporating the delays, these systems are termed as linear switched time-delay
(STD) systems and are described by

dx(t) = Ajx(t) + Dix(t — 7) + Biu(t) + I;w(t)
y(t) = Cix(t) + d;w(t), i €8S “4.11)

where A;, B;, C;, I, and @; are linear mappings (matrices) in appropriate spaces.
The nominal STD system is the system free of disturbances, that is

Sx(t) = Aix(t) + Dix(t — 1) 4+ Biju(t)
y(@) =Cix(1), i €8S 4.12)

If no control input is imposed on the system, then the system is said to be an
autonomous STD system, or an unforced STD system. The unforced linear STD
system is described by

Sx(t) = Aix(t) + Dix(t — 1)
y(@) =Cix(r), i €8 (4.13)

In a similar way, as a short-hand notation, we denote system (4.12) by
Y (A;, Bi, C;, D;)s. Similarly, we denote by X (A;, B;, D;)s, X (C;, A;, D;)s, and
Y (A;, D;)y the STD system without output and/or input, respectively. In the case
that we need to distinguish between continuous time and discrete time, we simply
denote X¥.(A;, B;, Ci, D;)s for continuous-time systems and
X4(A;, Bi, C;, D;)s for discrete-time systems.

In later parts of the book, we focus on model (4.11) subject to time-delay pattern
(4.5) or (4.6) and the switching signal (4.7). In the remainder of this chapter, we
review the properties and features of model (4.10).
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4.2.3 Arbitrary Switching

A survey of basic problems in stability and design of switched systems has been
proposed recently in [193]. Among the large variety of problems encountered in
practice, one can study the existence of a switching rule that ensures stability of the
switched system. One can also assume that the switching sequence is not known
a priori and look for stability results under arbitrary switching sequences. One can
also consider some useful class of switching sequences, see [192, 193, 196], and the
references therein. By studying stability analysis and control synthesis of switched
systems under arbitrary switching sequences amounts to looking at the existence of a
switched quadratic Lyapunov function to check asymptotic stability of the switched
system under consideration. To evaluate the interest of this approach for control
design problems, usually one concentrates on the state or output feedback design
problem. By feedback design, we mean the design of state or output feedback gains
for each subsystem such that the closed-loop switched system is asymptotically
stable.
For internal stability, we focus on the model

X(@) = Aix(t), i €S (4.14)
describing a family of continuous-time linear time-invariant (LTI) systems or
x(k+1)=A;xk), i €S, kel" (4.15)

describing a family of discrete-time linear time-invariant (LTI) systems, where the
state x € R and A; € X", Vi eS.

It is obvious that the origin x, = 0 is an equilibrium (may be unstable) for the
systems described in (4.14) and (4.15). The main concern in dealing with switched
systems is to understand the conditions that can guarantee the stability of the sys-
tem. It is interesting to know that even when all the subsystems are exponentially
stable, the switched systems may have divergent trajectories for certain switching
signals. Another remarkable fact is that one may carefully switch between unstable
subsystems to make the switched system exponentially stable [47].

Briefly stated, it is suggested that the stability of switched systems depends not
only on the dynamics of each subsystem but also on the properties of switching
signals. Therefore, the stability study of switched systems can be roughly divided
into two kinds of problems:

1. One is the stability analysis of switched systems under given switching signals
(may be arbitrary, slow switching, etc.);

2. The other is the synthesis of stabilizing switching signals for a given collection
of dynamical systems.

Both problems will be addressed in the subsequent sections and chapters. For
the stability analysis problem of switched systems, the crucial question is whether
the switched system is stable when there is no restriction on the switching signals.



4.2 Switched Systems: Overview 81

This problem is usually called stability analysis under arbitrary switching. For this
problem, all the subsystems are required to be asymptotically stable. On the one
hand, even when all the subsystems of a switched system are exponentially stable,
it is still possible to construct a divergent trajectory from any initial state for such a
switched system. It therefore concluded, in general, that the foregoing subsystems
stability assumption is not sufficient to assure stability for the switched systems
under arbitrary switching, except for some special cases, such as all the subsystems
are pairwise commutative A;A; = Aj;A;, Vi, j € N [426], A;-symmetric A; =
AL, Vi, j €S, [422,424] or normal A; A} = AlA;, Vi, j € S) [306].

On the other hand, if there exists a common Lyapunov function for all the sub-
systems, then the stability of the switched system is guaranteed under arbitrary
switching. This paves a possible way to solve this problem, and much efforts have
been focused on the common quadratic Lyapunov functions (CQLFs). Obviously,
the existence of a CQLF for all its subsystems assures the quadratic stability of the
switched system. Quadratic stability is a special class of exponential stability, which
implies asymptotic stability, and therefore, has attracted much research efforts due
to its importance in practice. It is known that the conditions for the existence of
a CQLF can be expressed as linear matrix inequalities (LMIs) [27]. Namely there
exists a positive definite symmetric matrix P € R"**", such that

PA;+A;P <0, ieS (4.16)
for the continuous-time case, or
AlPAj—P <0, i €S (4.17)

for the discrete-time case, hold simultaneously.

It is worth pointing out that the existence of a CQLF is only sufficient for the
stability of arbitrary switching systems. In [192], there are examples of systems
that do not have a CQLF, but are exponentially stable under arbitrary switching.
Some necessary and sufficient conditions for the asymptotic stability of switched
linear systems under arbitrary switching signals are developed in [196]. This result
shows that the asymptotic stability problem for switched linear systems with arbi-
trary switching is equivalent to the robust asymptotic stability problem for polytopic
uncertain linear time-variant systems, for which several strong stability conditions
exist.

To illustrate this result, we recall a robust stability result for linear time-variant
systems with polytopic uncertainty

x(k4+ 1) = Agx(k), k€ A= conv{A;, As,..., Ay} (4.18)

where conv{.} stands for convex combinations. In other words, the state matrix Ay of
the above linear time-variant system (4.18) is constructed by a convex combinations
(with time-variant coefficients) of all the subsystems’ state matrices of the switched
linear system (4.15). The following preliminary result is recalled [19]:
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Lemma 4.1 The linear time-variant system (4.18) is robustly asymptotically stable
if and only if there exists a finite integer n such that

[|Ai Ay Ailloo < 1

for all n-tuple A,-j € {A1, Ay, AN}, where j =1,...,n

Based on the above lemma, a necessary and sufficient condition for the asymp-
totic stability of switched linear systems (2) can be expressed by the following the-
orem [196].

Theorem 4.2 A switched linear system
x(k+1)=Asp x(k), Asw) € {A1, A2, An}

is asymptotically stable under arbitrary switching if and only if there exists a finite
integer n such that

[|Ai, Ay Ailloo < 1

for all n-tuple Aij € {A1, Ay, AN}, Where j=1,..,n

The sufficiency of the above condition is implied by Lemma 4.1, and the necessity
can be shown by contradiction. It is interesting to notice that this condition coin-
cides with the necessary and sufficient condition for the robust asymptotic stability
for polytopic uncertain linear time-variant systems (4.18). In turn, the following
equivalence relationship between these two problems is established.

Lemma 4.3 The following statements are equivalent:

1. The switched linear system
xtk+1) = Aoy x(k), Asw) € {A1, A2, Ay}

is asymptotically stable under arbitrary switching;
2. The linear time-variant system

x(k4+1) = Agx(k), ke A2 conviA|, Ay, ..., Ax)

is robustly asymptotically stable;
3. there exists a finite integer n such that

||Ai1 Aiz--‘Ai,,HOO <1

for all n-tuple Aij e {A1, Ay, AN}, where j=1,...,n

It is quite interesting that the study of robust stability of a polytopic uncertain lin-
ear time-variant system, which has infinite number of possible dynamics (modes), is
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equivalent to considering only a finite number of its vertex dynamics in an arbitrary
switching system. Note that this is not a surprising result since this fact has already
been implied by the finite vertex stability criteria for robust stability in the literature
[296].

4.2.4 Average Dwell Time

The motivation for studying switched systems comes partly from the fact that
switched systems and switched multicontroller systems have numerous applications
in control of mechanical systems, process control, automotive industry, power sys-
tems, aircraft and traffic control, and many other fields. The problems encountered
in switched systems can be classified into three categories [357]. The first one is to
find conditions that guarantee that the switched systems are asymptotically stable
under any switching signal. The second one, which is of interest in this section, is
to identify certain useful classes of switching signals for which the switched system
is asymptotically stable. The third one is to construct a switching signal that makes
the switched systems asymptotically stable.

We have learned earlier that there are classes of switched systems, including
closed-loop multiple controller systems, that may fail to preserve stability under
arbitrary switching, but may be stable under some sort of restricted switching
signals. Restricted switching may arise naturally from the physical constraints
of the system, that is, in the automobile gear switching, particular switching
sequence/order (from first gear to the second gear, etc.) must be followed [47].

There are cases when one may have some knowledge about possible switching
logic in a switched system, that is, partitions of the state space and their induced
switching rules. This knowledge may imply restrictions on the switching signals.
For example, there must exist certain bound on the time interval between two suc-
cessive switchings, which may be due to the fact that the state trajectories have to
spend some finite length of time in traveling from the initial set to certain guard
sets, if these two sets are separated. With such kind of a priori knowledge about
the switching signals, we can derive stronger stability results for a given hybrid
system than in the arbitrary switching case, where we use, by necessity, worst-case
arguments.

In the sequel, we look at the case when the switching signals are restricted,
and our problem is to study the stability of the switched systems under these
restricted switching signals. We seek to evaluate what restrictions should be put
on the switching signals in order to guarantee the stability of switched sys-
tems. The restrictions on switching signals may be either time-domain restric-
tions (that is, dwell-time, average dwell-time switching signals that will be
defined below) or state-space restrictions (that is, abstractions from partitions of
the state space). In this regard, the distinction between time-controlled switch-
ing signals (trajectory independent) and trajectory-dependent switching signals is
significant.
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Careful consideration of typical systems [47] where divergent trajectories are
generated through switching between two stable systems, one may notice that the
unboundedness is caused by the failure to absorb the energy increase caused by
the switching. In addition, when there is an unstable subsystem (that is, controller
failure or sensor fault), if one either stays too long at or switches too frequently
to the unstable subsystem, the stability may be lost. Therefore, a natural issue to
address concerns the restriction on the switching signal to some constrained sub-
classes. Intuitively, if one stays at stable subsystems long enough and switches less
frequently, that is, slow switching, one may trade off the energy increase caused by
switching or unstable modes, and maintain stability.

These ideas are proved to be reasonable and are captured by concepts like dwell
time and average dwell time switching proposed by Morse and Hespanha; see for
example [133, 134, 426].

A positive constant Ty € R is called the dwell time of a switching signal if the
time interval between any two consecutive switchings is no smaller than T,.

In principle, it is always possible to maintain stability when all the subsystems are
stable and switching is slow enough, in the sense that is sufficiently large [302]. It
really does not matter if one occasionally has a smaller dwell time between switch-
ing, provided this does not occur too frequently.

This concept is captured by the notion of average dwell time in [133]: A positive
constant Tq is called the average dwell time for a switching signal o (t) if

I—n

NO' ’ _NO
#&m < + T,

holds for allt > n > 0 and some scalar N, > 0, where N, (¢, 1) denotes the number
of mode switches of a given switching signal o over the interval (n, t).

Here the constant T, is called the average dwell time and N,, the chatter bound.
The reason for a switching signal that satisfies the foregoing inequality is considered
as having an average dwell time no less than T, because

t—n t—n
NJ . No —— N .~ N1 _Ta
@m = Not == = =N, =

which means that, on average, the dwell time between any two consecutive switch-
ings is no smaller than T,. It was shown in [133] that if all the subsystems are expo-
nentially stable then the switched system remains exponentially stable, provided that
the average dwell time is sufficiently large.

It is clear that switching signals with bounded (fixed) dwell time also have
bounded average dwell time by definition. Therefore, the average dwell time scheme
characterizes a larger class of stable switching signals than (fixed) dwell time
scheme. Interested readers may refer to [134] for further details and a recent review
on this topic.

The stability results for slow switching can be extended to the discrete-time
switched systems, where the dwell time T, or average dwell time T, is counted as
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the number of sampling periods, and similar results can be developed. In addition,
it is possible to extend the discrete-time results to the case where both stable and
unstable subsystems coexist. When one considers unstable dynamics, slow switch-
ing (that is, long enough dwell or average dwell time) is not sufficient for stability; it
is also required to make sure that the switched system does not spend too much time
in the unstable subsystems. The reason to consider unstable subsystems in switched
systems is because there are cases where switching to unstable subsystems becomes
unavoidable; such is the case, that is, when a failure occurs or therefore a packet
drops outs in communication.

4.2.5 Lyapunov Functions

Construction of Lyapunov functions is a fundamental problem in system theory;
internal stability of the system under consideration is concluded if an appropriate
(continuous and differentiable) Lyapunov function is shown to exist. Conceptually,
when looking at an STD system, perhaps the simplest solution would be a common
quadratic Lyapunov function, that is, a quadratic function which is a global Lya-
punov function for the subsystems comprising the hybrid system. It turns out that
the construction of such a Lyapunov function is an NP-hard problem even when the
subsystems are linear time-invariant [20].

It should be emphasized that intrinsic discontinuous nature of a switched
system strongly suggests using multiple Lyapunov-like functions concatenated
together to produce a nontraditional (piecewise continuous and piecewise dif-
ferentiable) Lyapunov function. Using multiple Lyapunov functions (MLF’s) to
form a single nontraditional Lyapunov function offers much greater freedom and
infinitely more possibilities for demonstrating stability, for constructing a nontra-
ditional Lyapunov function, and for achieving the stabilization of the switched
system (4.3).

It has been demonstrated in [28] that the conservatism introduced by a global
Lyapunov function V can be reduced by searching for a set {V;} of local Lyapunov
functions and by ensuring that the Lyapunov functions match in the sense that the
values of the Lyapunov functions {V;} and {V,,} are equal when the state trajectory
leaves a cell {X;} and enters a cell {X,,}, where {V;} is a local Lyapunov function
in the cell {X;} and {V},} is a local Lyapunov function in the cell {X,,} .

4.2.6 Converse Lyapunov Theorem

When dealing with globally uniformly asymptotically stable and locally uniformly
exponentially stable continuous-time switched systems with arbitrary switching sig-
nals, a converse Lyapunov theorem was derived in [43]. The result was that such
arbitrary switching system admits a common Lyapunov function, as summarized by
the following theorem:
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Theorem 4.4 If the switched system is globally uniformly asymptotically stable and,
in addition, uniformly exponentially stable, the family has a common Lyapunov
function.

The converse Lyapunov theorem was extended in [288] to switched nonlinear
systems that are globally uniformly asymptotically stable with respect to a com-
pact forward invariant set. Although these converse Lyapunov theorems justify the
common Lyapunov function method being pursued, they also suggest that the com-
mon Lyapunov function may not necessarily be quadratic. Based on the equivalence
between the asymptotic stability of arbitrary switching linear systems and the robust
stability of polytopic uncertain linear time-variant systems, some well-established
converse Lyapunov theorems can be introduced for arbitrary switching linear sys-
tems [296] as follows:

Theorem 4.5 If the switched linear system x(k + 1) = A; x(k), k € I",i €
M is exponentially stable under arbitrary switching, then it has a strictly convex,
homogeneous (of second order) common Lyapunov function of a quasi-quadratic
form V(x) = x"L(x)x, where L(x) = L'(x) = L(vx) for all nonzero x € W" and
nu € N.

Restricting attention to include only polyhedral Lyapunov functions (also known
as piecewise linear Lyapunov function) [18] as the following result was pointed out.

Theorem 4.6 If a switched linear system is asymptotically stable under arbitrary
switching signals, then there exists a polyhedral Lyapunov function, which is mono-
tonically decreasing along the switched system’s trajectories.

Theorems 4.5 and 4.6 have the following advantages. First, it shows that one may
focus on polyhedral Lyapunov functions without loss of generality. Second, there
exist automated computational methods to calculate polyhedral Lyapunov functions.

Finding conditions to guarantee stability under all possible switching signals is
also of practical importance. For example, multiple-controller schemes are often
employed to satisfy different performance requirements. When one designs mul-
tiple controllers for a plant, a desirable property is that switching between these
controllers does not cause instability. The benefit of this property is that there is no
need to worry about stability when switching among controllers and one can focus
on gaining better performance. In this regard, it was shown in [135] that it is possible
to guarantee such a good property for multiple controller design in certain cases.

4.3 Some Representative Examples

In this section, we give some representative examples of switched systems along
with simulation studies to demonstrate some pertinent features.
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4.3.1 Car Transmission System

The simplified dynamics of a car (mass m) with an automatic transmission having
velocity v on a road inclined at angle « is

k G
b= —— 2 sign(v) — g sin(o) + Zo® 7
m m
w = Go'(t) v (4.19)

where the discrete state G5y € {G1, G2, G3, G4}, G1 > G2 > G3 > G4 are
the transmission gear ratios normalized by the wheel radius R, k is an appropriate
constant, w is the angular velocity of the motor, and T is the torque generated by
the engine, an input to the model. The discrete state transition function is

i+1, ifo(t):i;«é4andv=‘g—’lf

i ifa(z‘)=1'~|—1ZZandv:%ﬁ1

ot 2

where w;, and w, are preset angular velocities of the engine.
A PI cruise controller (of the torque) that must also compensate for the nonlinear
load forces is given by

v? sign(v)

k
T=T T
- p+ T+

o(t)

for a reference velocity vrer and a proportional control T, = Ky (1) (vt — v).
This leads to combined/reduced vehicle cruise controller dynamics:

. Gop .
v=— Ko (1) (Vref —v) + T7 | — g sin(w)
. K
Tr = =22 (vyer — v) (4.20)
Tr

The constant T is chosen to balance fast convergence with small overshoot; the
discrete gains Ky € {Kj, K2, K3, GK4} are chosen to insure a smooth ride
and satisfy: Gi Ki =Git1, Kit1

The initial condition is

(a) reset to zero for new v,.ef inputs and
(b) for any change in the discrete state o(¢) at t; say , the state 7 (t,:' ) is
reset discontinuously (a so-called state jump) so that: Ga(zk‘i Ty (tk_ ) =

Gouri T (t7) also to ensure a smooth ride.

Let M = 1500, Tg =40, Go(y € {50, 32, 20, 14}, G Ko() = 187.5,
Ko € {375, 35.86, 9.37, 13.39}, Gy (1Ko = 187.5 and v,er = 30m/s
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The S-function was used in simulink to simulate this system, see Fig. 4.3. Among
the advantages of using the S-function for simulating hybrid system are as follows:
(1) Only one block in simulink is needed to simulate both continuous and discrete
dynamics along with all decision rules and constraints. (2) Both continuous and
discrete functions are separately treated and called in the simulation process. These
functions express the differential and difference equations, along with the logic asso-
ciated for each in normal Matlab language format. (3) All Matlab functions can be
used as part of the model. Hence, a variety of models can be found: linear switched
system, nonlinear, mixed linear and nonlinear systems, etc. (4) The S-function is
treated as a block in simulink, hence feedback can be used to stabilize the system.

< S
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»
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Systemn
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Fig. 4.3 A simulink diagram

The system was simulated and was found to operate as desired. The S-function
works as follows:

(a) The number of inputs, outputs, continuous states, and discrete states. (b) Call-
ing the continuous differential equation functions and updating the results. (c) Call-
ing the discrete difference equation functions and updating the results. (d) Finding
the states after integration of continuous differential equations and recursive calcu-
lations of discrete difference equations. (¢) Populating the results and continuing the
cycle of reading and writing.

The step response for vef = 30m/s is plotted in Fig. 4.4. The closed-loop
response clearly shows stability despite the undamped cycles.

4.3.2 Autonomous Switched System

Consider the autonomous state dynamics x(t) = Ay ;) x(t), where

X = [x1 xz]t SRZ, o € {1, 2}

~1 100 -1 10
A = [10 —1]’ A2=|:_100 _1] 4.21)
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Plot of velocity vs. time
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Fig. 4.4 Velocity response due to step input
Both A; and A are stable, having identical eigenvalues A1, = —1 % j+/1000.

Define the switching function o (¢) as follows:

@ A 1, ifo(t) =2and x2(t) = 7 x1(2)
TV =0 2, ifo@) =1and x2(1) = k x1(¢)

State flow machine was used simulate this example in simulink as shown in Fig. 4.5.
In the state-flow machine, states corresponding to o (¢) = 1 and o (#) = 2 need to be
defined. As shown in Fig. 4.6, each state box can have entry actions. Moving from
one state to another is called a transition and is blocked by a condition. Transitions
require input information; namely the states of the plant. The simulink state-space
model is reassigned the A matrix after every transition, and hence the dynamic
hybrid model is simulated.

For any given initialization, the switching function o () specifies a rule with
memory for switching the dynamic motion of the system between A; and A,. For
k = —0.2 and arbitrary nonzero initial condition, state trajectories diverge. This is
depicted in Fig. 4.7, which is consistent with the results reported in [47]. This illu-
minates the observation that switching between two asymptotically stable systems
can produce an unstable trajectory.
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Fig. 4.5 A simulink diagram

abs(x[1]-5*x[0]) <=0.01

rh
entry:p=1
entry: A = 44
count = count + 1

abs(x[1]+0.2*x[0]) <=0.01

Fig. 4.6 A state flow chart

Plat of x1 ve. x2

Fig. 4.7 State plot xj vs. x2
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4.3.3 Another Switched System

Consider the autonomous state dynamics x(¢) = Ay ;) x(f), where

x=[x1 x2] W o e {1, 2)
010 15 2
Al = [o 0]’ Az:[—z —0.5] 4.22)

Both Aj and A; are unstable as A has zero eigenvalues and A(A;) = 0.5 &+ j\/§.
Define the switching function o (¢) as follows:

N 1, ifo(t7) =2 and x3(t) = —0.25 x1(¢)
T =00 o) =1 and x2(6) = 0.5 x1 (1)

In Fig. 4.8, the state responses using S-function are plotted and shown that the

system is unstable.

x1, X2, p vs. time
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Fig. 4.8 State trajectories

4.3.4 Simplified Longitudinal Dynamics of an Aircraft

A highly simplified longitudinal dynamics of an aircraft can take the form:
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. _ |4
x=|.|=f(xuo
[a] fx.u.0)

1 10 1
= [ 1 —ld:| [Z} + [0.1&] o (1) (4.23)

where « < )y is the constrained angle of attack and g is the pitch rate. The

output is
a | 0 1 q 0
|:nz:| - |:0 —300di| |:ai| + |:30d:| Uo (1) (4.24)

where o (1) € {1, 2}, N, is the normal acceleration, and the control variable 1 ;) is
the angle of the elevator measured down from the horizontal with the aircraft. The
control objective is twofold:

track the pilot’s reference normal acceleration while maintaining the safety con-
straint that the angle of attack must be less than o, . To simultaneously achieve both
objectives (to the extent possible), we define a switched ‘max control law’:

o(t™) = (), u@t), o)) = argmax; (u;))
where
uy=—-Fx+kioy, u=-—-Gx+kr()

Here, u; is the output of a controller designed to stabilize the aircraft about o,
and u; is a control designed to make n, track r(¢). Roughly, the max control law
acts to track the pilot’s reference using the elevator except when to do so would
cause the safety constraint to be violated.

Let

r(t) =0, u=max(—F x+ ki oy, —G x+ ko r(t))
The closed-loop equations with the maximum control law are as follows:

XxX=Ax+ B max(—F x + k| oy, G x)
=(A—BG)x+ B max((G — F) x + k1 oy, 0) (4.25)

The analysis presupposes that the feedback gain matrices F, G are designed so
that (A — BG), (A — BF) are stable and provide the necessary performance. This
is possible because the controllability is equivalent to the ability to reassign the
eigenvalues of A by state feedback.

To simulate this problem, we need to locate the poles of the closed-loop systems
(A— BG), (A— BF). This can be done using place function in Matlab. We choose
the closed-loop eigenvalues to be at —1, —4.1623 for both systems. This gives F' =
G [—4.6248 — 14.6248].
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We will simulate the case for r(r). Next, we simulate the system using S-function
technique as depicted in Fig. 4.9, which yields the output and input responses of the
system shown in Fig. 4.10.
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Fig. 4.9 A simulink diagram
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Fig. 4.10 State variable trajectories

Remark 4.7 The results of the foregoing examples brought up a crucial issue. That
switching between two asymptotically stable systems as above can occur in the
control of several dynamic systems. In this regard, two questions arise:

(a) What classes of stable systems admit a stable-state trajectory for all switching
sequences and
(b) What switching sequences always result in stable trajectories?
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If there exists a common Lyapunov function for a set of stable A-matrices,
the resulting system is stable for all switching sequences [193], which answers
question a).

A partial answer to question b) is intuitive: If switching among asymptotically
stable systems is slow enough, one would expect a stable response. Stability here is
characterized by a traditional Lyapunov function that measures the system energy.
Mathematically, V(.) is continuous and differentiable, V(0) = 0 and V (x) > 0O if
x # 0. Further, if V < 0, x # 0, then the state will converge to zero, implying
local stability (global stability if is radially unbounded) [116].

4.4 £, Gain Analysis and Synthesis

Many physical systems can be represented by hybrid models containing contin-
uous and discrete states that affect their dynamic behavior. For example, a vari-
ety of power systems [389], chemical processes [41], and mechanical systems
[47], and many others can be modeled as hybrid systems. A particular class of
hybrid systems, which is of interest in this work, is the one composed of many
discrete subsystems and a rule that governs the switching between these sub-
systems. This class of switched systems has received great attention in the past
decade because of the fast development in computing technologies, which helped
improve the efficiency of switching between systems or controllers. For example, in
[30, 42,47, 174, 193, 292] and the references cited therein, the stability and control
synthesis of switched hybrid systems have been investigated. In [47], the authors
present an introduction of the concept of switched systems, the challenges associ-
ated with the stability of switches systems, and an overview of the major results in
the Lyapunov stability of finite-dimensional hybrid systems. In [42], the stability
of switched discrete systems is studied by checking for the existence of switched
Lyapunov function for the system under consideration. In [28], multiple Lyapunov
functions for the stability analysis of continuous hybrid systems is investigated, and
the use of iterated function systems (IFS) as a tool for Lagrange stability is exam-
ined. Also, a survey of switched systems’ problems has been proposed in [193].

In this section, the results of [292, 333, 424] are extended further to the discrete-
time case using the result of [217] is provided. Specifically, the paper presents
a criterion for uniform quadratic stability and H stabilization of a class of
uncertain switched systems. In this class, the parametric uncertainties are repre-
sented by a real convex-bounded polytopic model. The problems of £, gain anal-
ysis and control synthesis for a class of linear discrete-time switched systems
with convex bounded parameter uncertainties in all system matrices are investi-
gated. The main thrust is based on the constructive use of an appropriate switched
Lyapunov functions. The £, gain analysis is utilized to characterize conditions
under which the linear switched system with polytopic uncertainties is uniformly
quadratically stable with an £, gain smaller that a prescribed constant level. Then,
control synthesis is used to design switched feedback schemes, based on state-,
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output-measurements, or by using dynamic output feedback, to guarantee that the
corresponding closed-loop system enjoys the uniform quadratic stability with an
L> gain smaller that a prescribed constant level. All the developed results are
expressed in terms of convex optimization over LMIs and tested on representative
examples.

4.4.1 Switched Gain Analysis

We consider a class of discrete-time linear switched systems described by

(X)) xXk+1 = Agxk + Boup + Iowi, 0 € N (4.26)
2k = CoXp + Doup + @5 wyi 4.27)
Yk = Loxi (4.28)

where x; € N" is the state; ux € N is the control input; wi € N9 is the exogenous
disturbance; yy € NP is the measured output; z; € N” is the controlled output.
Following [174], model (4.26) represents the continuous (state) portion of linear
hybrid systems. The particular mode o at any given time instant may be a selective
procedure characterized by a switching rule of the form

okl = 8(0k, 1), 8 : N x %" - N (4.29)

The function §(.) is usually defined using a partition of the continuous state space
[333]. Let S denote the set of all selective rules. Therefore, the linear hybrid system
under consideration is composed of N subsystems, each of which is activated at
particular switching instant. For a switching mode j € N, the associated matrices

Aj, ..., ®; contain uncertainties represented by a real convex-bounded polytopic
model of the type
Aj B; T o Ajp Bjp T
ibptjla Aj |: ir JP in| . }
= , jJeN (4.30)
[Cj Dj ¢ji| { =l ir Pip

where A; = (Aj1, 42, ..., )\ij) € A; belongs to the unit simplex of M vertices

~

Ajé{kj: Ajpzl,)»ijO} (4.31)
p=1

where Ajp, ..., @jp, p =1, ..., M are known real constant matrices of appropriate
dimensions, which describe the jth nominal subsystem. Distinct from (4.26—4.28)
is the free switched system
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(Xjo) i Xkr1 = Aoxp + Towy (4.32)
2k = Coxp + @y wy (4.33)

we have the following definitions:

Definition 4.8 Switched system (X,) is said to be uniformly quadratically stable
(UQS) if there exist a Lyapunov functional V (x, k) > 0, a constant ¢ > 0 such that
for all admissible uncertainties satisfying (4.30 and 4.31) and arbitrary switching
rule o (.) activating subsystem j € N at instant k + 1 and subsystem i at instant
k, the Lyapunov functional difference AV (xk, k) satisfies AV (xy, k) 4 V(Xk+1,
k4+1) = V(x, k) < —& xpx , Vxp # 0.

Definition 4.9 Given a scalar y > 0, the L, gain G of switched system (X;,) over
Sis

A . .
G =infly > 0:||zll2 < y? [lwkll, Yo € S,Y A € A, j € N}

Definition 4.10 Switched system (X, is said to be uniformly quadratically stable
(UQS) with an £, gain G < y if for all switching signal vector o € S and for
all admissible uncertainties satisfying (4.30 and 4.31) it is UQS and Ywy # O,
llzkll2 < ¥ lwkll2.

Our purpose in this section is to develop criteria for uniform quadratic stability and
stabilization of system (X ;) and examine their robustness, then design appropriate
L, feedback controllers that guarantee stability with a prescribed performance.

Lemma 4.11 Switched system (X;,) is UQS with an L, gain G < y there exist
a scalar y > 0 and a quadratic Lyapunov functional V5 (x, k) > O such that for
all switching rules o € S, the Lyapunov functional difference AV (xi, k) along the
solutions of (4.32 and 4.34) satisfies

AV (xp, k) + zhzi — y* whwg <0 (4.34)

Proof That switched system (X;,) is UQS follows directly from (4.34). Now by
summing up (4.34) over the range 0 — ¢, Vg € N, it follows that

q
V(T(x(1+15 qg+1)—=V(0,x,)+ Z (Z;,Zp - Vz w;wp> <0
p=0

Since Vi (xg+1, g+1) =0, x, =0, itfollows that -7 _ 20,2, < y> 37 _ whw, <

0 and by Definition 4.10, switched system (X';,) is UQS with an lf[; gain smaller
than y.

In the sequel, we consider the following quadratic Lyapunov functional

Vo(xi k) & x! Poxy, 0< P =Py, 0€S (4.35)
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Remark 4.12 We note from Definition 4.9 that the £, gain G under arbitrary
switching can be looked as the worst-case energy amplitude gain for switched sys-
tem (4.30 and 4.31) over all possible inputs, switching signals, and all admissible
uncertainties. The functional (4.35) is called a switched Lyapunov function (SLF)
since it has the same switching signals as system (4.32 and 4.33), which is known
to yield less conservative results than the constant Lyapunov functional x; Pux;.

The following theorem summarizes the first result.

Theorem 4.13 The following statements are equivalent:

(A) There exists an SLF of the type (4.35) with o € S and a scalar y > 0 such that
switched system (4.32 and 4.33) is UQS with an L, gain G < y.
(B) There exist matrices 0 < P! = P;, 0 < X3 =Xj,i €N, jeN anda

scalar y > 0 satisfying the LMIs

—p 0 A, C

2 T
o VI Ly Pl 0 G j))eNxN, pell, .. M) (436)
° e —X; 0

° ° o —/

Proof (A) = (B) Suppose that there exist a constant y > 0 and a switched Lya-
punov function of the type (4.35) satisfying (4.34). Let the switching rule o (.) acti-
vates subsystem j € N at instant k + 1 and subsystem i at instant k. Thus

AVo (i k) + Zhzx — y* wpwg = xi o Pixip1 — xpPix + zgzx — v> wiwg
_ [x,gAg + w,gr;} P, [A,-xk + Fiwk] + [x,gc; + w,gcpg] I:Cixk + o wki|

—x; Pixy — y? Wi wk
<0 4.37)

Since (4.37) holds for arbitrary switching, it follows on using (4.31) that for any
vectors xx # 0, wi # Othatforall (i, j) e N x N

—Pi—i-A;Pin-l-C;Ci AﬁPj]—','—i-Ci[@i
[ . —y I+ TPl + ®ld; |~ 0 (4.38)
By Schur complements operations, inequality (4.38) can be put into the form
—-P 0 AlP; C!
27 P Bt
o VILPE P 6 G j)eNxN (4.39)

° e —P; O

° ° o —/
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Applying the congruent transformation @ = diag[/, I, X;, I], X; = Pj*], we
readily obtain

—P 0 A§ Cit
o —yI I @!
° e —X; 0
° ° o —J

<0,(,j)e Nx N (4.40)

Upon using vertex representation (4.30) and (4.31), we get (4.36) from (4.40).
(B) = (A) Follows by reversing the steps in the proof and applying (Lemma 2,
[210]) to system (4.32) and (4.33) for all modes (i, j) € N x N and using (4.31).

Remark 4.14 It should be observed that in LMI (4.36) the system matrices are read-
ily separated from the Lyapunov matrices. The optimal £, gain of switched system
(4.32 and 4.33) can be determined by solving the following convex minimization
problem over LMIs:

Minimize y
s.t. LMlIs (4.36),(, j) e Nx N, pefl,.. M}
Pi >O,Yj >O,)/>O,

which can be conveniently solved by existing software [74].
Remark 4.15 A special case of Theorem 4.13 is now provided.

Corollary 4.16 The following statements are equivalent:

(A) There exists an SLF of the type (4.35) with o € S such that switched system
(4.32 and 4.33) with polytopic representation (4.30 and 4.31) is UQS.

(B) There exist matrices 0 < P/ = P;, 0 < Xj =X, i € N, j € Nand a scalar
y > 0 satisfying the LMIs

—P; Afp Cl.tp
e —X; 0 <0,(,j)e NxN,pe{l,.., M} 4.41)
° o —/

In the nominal case (M; = 1, Vi) LMI (4.41) provides an alternative stability test
that requires fewer matrix variables to manipulate than the result in [42].

Extending on the last section, we examine here the problem of switched control
synthesis using either switched state-feedback or output-feedback design schemes.

4.4.2 Switched State Feedback

With reference to system (4.26 and 4.27), we consider that the arbitrary switch-
ing rule o (.) activate subsystem i at instant k. Our objective herein is to design
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a switched state feedback uy = K; xx at i € N mode such that the closed-loop
system

(Xys): xkg1 =[A;i + BiKilxp + Iwg

= A,'xk + Ijwy (4.42)
2k = [Ci + D K;lxix + @ wy
= Cixy + Diwy (4.43)

is UQS with an £, gain G < y. The following theorem summarizes the main result.

Theorem 4.17 Switched system (4.42) and (4.43) is UQS with an L gain G < y if
there exist matrices 0 < X! = X;, Z;, 0 < X; = Xj, (i, j) € Nx N and a scalar
y > 0 satisfying the LMIs

~X; 0 X;Al+Z!B! X;C! + Z!D!

2 t t
o —y°I T D, ..
. . X, 0 < 0,3, j)) e Nx N (4.44)
° ° ° —1

Moreover, the gain matrix is given by K; = Z,-Xi_l.

Proof It follows from Theorem 4.13 that switched system (4.42) and (4.43) is UQS

if V(i, j) € N x N there exist matrices 0 < P, = P!/, 0 < X; = X§ such that

[—-p 0 Al C!
o —yI T &
° e —X; 0

| ® ° o —/
TR0 AL+ KIBCl4KID!
2 ! !
o —y°I I D,
. . X, 0 < 0. (4.45)
° ° ° -1

Applying the congruent transformation [X;, I, I, I] to LMIs (4.45) with X; =
Pl._l, Z; = K;X;, we immediately obtain (4.44). [ ]

Remark 4.18 The optimal switched state feedback with £, gain for system (4.42
and 4.43) can be determined by solving the following convex minimization problem
over LMIs:

Minimize y
s.t. LMlIs (444), (i,j) e NxN
Zi, X;i>0, X;>0, >0
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In the case of polytopic representation (4.30) and (4.31), the corresponding convex
minimization problem takes the form

Minimize y
wrt Z;, X; >0, X;>0, y>0

—X; X;Al +Z!Bl, I} 0

.2 t t
. il Ty P | 0. ) eNxN, pefl,.. M)
° ° -X; 0
° ° o —J

4.4.3 Switched Static Output Feedback

The objective now is to design a switched output feedback uy = G; yr at mode
i € N such that the closed-loop system

(Xys) 1 xxp1 =[Ai + BiG;Lilxi + Iwy

= AAixk =+ Ewk (446)
2k = [Ci + DiG; Lilxx + D jwi
= Cixi + P;wy (4.47)

is UQS with an £, gain G < y. To facilitate further development, we consider
initially the case where the set of output matrices L;, i € N, p € {1,..., M;}
are assumed to be of full row rank. This case can be fullfilled by deleting redun-
dant measurement components of the output variable yy. Therefore, it follows from
Theorem 4.13 that switched system (4.46) and (4.47) is UQS if V(7, j) € N x N
there exist matrices 0 < P, = P/, 0 < X; =X ’1 such that

[P 0 Al (!
o —y2I I} @!
° e —X; 0

| e ° o —/
[—P 0 Al+ LIG!B! C! + LiGiD!
2 t t
o —y°I I P;
. . X, 0 <0 (4.48)
° ° ° —1

Using the congruent transformation [X;, I, I, I] to LMIs (4.48) with X; =
Pl._l, L;X; = E;L;, R; = G;E;, then there exist matrices 0 < X; = Xl’ 0 <
X;= X;, 0 < E; = E}, R; such that
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~X; 0  X;A'+L!R!B! X;C! + L!R!D!
t

2 t
o —y2I Iy P!
. X, 0 <0 (4.49)
° ° ° —1
LiX; =E;L; (4.50)

We note that the presence of matrix equality in (4.50) renders the computations of
(4.49) and (4.50) using MATLAB-LMI Toolbox [74] rather costly. Therefore, one is
encouraged to convert (4.49) and (4.50) into true LMIs. With this in mind, we recall
that the use of singular value decomposition (SVD) can express the output matrix
L; in the form

Li = U [Api, 01V} 4.51)

where U; € RP*P,V; € R™*" are unitary matrices and A ,; € RP*? is a diagonal
matrix with positive diagonal elements in decreasing order. The conversion to LMIs
can now be accomplished by the following theorem:

Theorem 4.19 Given a matrix L; € RP*", rank[L;] = p and let 0 < X; = le €
R"*"_ Then there exists a matrix 0 < E; € RP*P such that

L;X; =FE;L; (4.52)
if and only if

Xiu O

Xi=Vi [ o X;
v

] VI, Xiy € RP*P, X;, € RV-P*0=P) (453)

Proof When p = n, it readily evident with L; being nonsingular that (4.52) is
solvable for X;. Now, consider that p < n. It follows from (4.51) and (4.52) and the
properties of V; that

E;i Ui [Api, 01 V! = Ui [Api, 0] VIX; =
[E; Ui Api, O = [U; Api, 0] VIX;V; (4.54)

On letting

oy | Xiu Xia |
Xl —Vl [ ° Xiv:| Vi

X, € R*P, X;, e R=PX0=p) x,, ¢ RP*(=P) (4.55)
it follows that (4.54) is equivalent to

[Eilli Api, O] = [Ui Api Xiu, U A pi Xid] (4.56)
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The solvability of (4.56) with respect to X; holds if and only if
Z/IiAp,»X,-d =0=—= X;y=0and EiuiAp,’ = L{iApiX,-M
which completes the proof. |

It is significant to observe that Theorem 4.19 substitutes the matrix equation
(4.50) by structural selection of the matrix variable X;. Incorporating this result into
Theorem 4.19, we have thus established the following result:

Theorem 4.20 Consider switched system (4.42) and (4.43) with w = 0 subject to
the output feedback control uy = G; y, with output matrix L; having the SVD
form L; =U; [Ap;, 0] Vl.’, Api € RP*P_The resulting closed-loop system is UQS if
there exist matrices 0 < X;, = Xfu eERPXP 0 < X;p = va e Rn—p)x(n=p) () <
X;= X;, 0 < E; = E], R; such that for all (i, j) € N x N the LMIs

~X; 0 X;A'+L!R!B! X;C! + LR D!
t

2 t
o —y°I I; D;
. . X, 0 <0 4.57)
° ° ° —1

have a feasible solution. Moreover, the feedback gain is given by
Gi = Ril/{,-Ap,-Xi;]A;iIL[f], ieN
Remark 4.21 The optimal switched static output feedback with £, gain for system

(4.46 and 4.47) can be determined by solving the following convex minimization
problem over LMIs:

Minimize y
Subject to LMIs (4.57), (i,j) e NxN
Xius Xiv, Riy X;>0, y>0

which can be conveniently solved by the existing software [74].

4.4.4 Switched Dynamic Output Feedback

Now we direct attention to the more general case and employ at every mode i € N
a switched dynamic output-feedback scheme of the form:

(X))t Cky1 = Acilk + Beiyk
up = Ceilk (4.58)
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Augmenting controller (4.58) to switched system (4.26), (4.27), and (4.28) and
defining the composite vector &/ =[x  ¢{]. we get the closed-loop system

(Zye):  Exw1 = Ak + Twg
2k = Ci&x + Diwy (4.59)

where the respective matrices are given by

[ A Bicul A [ I o
Al_|:BCiLi Agi i|’ n_[BCi@j]’ Ci=I[Ci DiCg] (460)

Application of Theorem 4.13 shows that switched system (4.60) is UQS with an £,
gain G < y if there exist matrices 0 < Pi’ =P, 0< y;. =)}, j € Nand ascalar
y > 0 satisfying the LMIs

P 0 .Af Cf
2 -t t
o —yI I & ..
. « Y 0 <0, (G,j)e NxN 4.61)
° ° o —/

Introducing the shorthand

o Psi 0 A 51 Xsi 0 o \ysjo

we have the following result:

Theorem 4.22 Consider switched system (4.59) and (4.60) with output matrix L;
having the SVD form L; = U; [Ap;, 0] Vl.t, Api € RPXP_ This system is UQS with
an Ly gain G < y if there exist matrices 0 < X!, = Xy, 0 < X = Xy, 0 <

Xc{i =X,0 < y;, =V, 0 < yél = Y., .Qci,AHCj, Yei, Yei, (i, j) € N x N and
a scalar y > 0 satisfying the systems LMIs

—Xi O 0 XS,-Aﬁ Lﬁ!?éj Xsin
—Ai 0 AtciBit Tctj Héin
—y?I Fit lpcti <pif
o 0 0
° o 0

° ° ° —1

<0, ({,j)e NxN (4.63)

Moreover, the gain matrices are given by

A =Ya X7, Bej= QU AN X Apilh, Co =TT X' (4.64)

i “vsiu

Proof Follows from Theorems 4.13-4.19 by applying the congruent transforma-
tion [X;, I, I, I] to LMIs (4.61) with X; = Pi_l and expanding the result using
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(4.62) along with the matrix substitutions A.; X = V¢, LiXsi = EiLi, 20 =
B.iEei, Ej :uiApiXsiuA;ilui_la CeiXei = cj-

Remark 4.23 The optimal switched dynamic output feedback with £, gain for
system (4.59 and 4.60) subject to the polytopic representation (4.30 and 4.31)
can be determined by solving the following convex minimization problem over
LMIs:

Minimize y
wrt Xy > 0, Xsjp > 0, ch >0, ysj >0, ycj >0, ¢, Tej, ej, v >0

—Xi 0 0 XA}, L QL XiC], ]
e —X; O mOyBj, Y., A,D
2

-y I i ¢1?p
° —ysj 0 0
° [ _yvj 0

° ° ° —1

< 0,

[ ]
[ ]
[ ]
L [ ]

V@, j)eNxN, pefl,.. M}

4.4.5 Numerical Examples
Two examples will be given in the sequel:

Ilustrative Example A

In this example, we consider a discrete model of water pollution described by
dynamical system of the type (4.42) and (4.43) with multiple modes. In terms of
our terminology, each mode represents a particular equilibrium operating point.
We wish to design a switched-state feedback control for this system based on
Theorem 4.17. Switching occurs between three modes described by the following
coefficients:

Mode 1:

03 0.1 02 21
Ar= [—0.4 0.2] = [0.3]’ b= [0.6 1}

€1 =[0103], &, =[0.6], D; =[0.104], L, = [0(.)5 005]
Mode 2:
0.10.2 0.1 14
A2 = [0.3 0.4] 2= [0.5]’ B2 = [3 1}
€, =[0.602], & =[03], D,=[0803], L, = [0(.)4006]
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Mode 3:
0.20.1 0.2 2 09
As = [0.60.3:|’ 3= [0.8]’ Bs = [0.7 2 }

C3=[0.703], #3=[0.1], D3 =[0.903], L3=[ 0 04

06 0 ]
The number of vertices at the respective modes and weightings are taken as M; =
3, Ak = 0.3, Aok = 0.5, 23, = 0.2, k = 1, .., 3. Invoking the software environment
[75], the feasible solution of LMIs (4.44) is given by

58731 0 53925 0 52141 0
Xl_[ 0 5.8731]’X2_[ 0 5.3925}’)(3_[ 0 5.2141}

4 _[-06717 0.1189 7 [—1.7867 0.2830
P= ] 1.8608 —3.9669 | “2 = | —0.9088 —0.0476

4. _ [ 28880 ~0.2209
37 —1.2026 —0.2208

Since K; = Z; X;” ! the control gains become

© [ ~0-1144 0.0202 _ [—-0.3313 0.0525
U= 1 03168 —0.6754 |° ™2~ | —0.1685 —0.0088

o — [ 05539 —0.0424
371 —0.2306 —0.0423

Ilustrative Example B

Similar to illustrative example A, we consider here another discrete model of water
pollution described by dynamical system of the type (4.42) and (4.43) with multiple
modes. Again, each mode represents a particular equilibrium operating point. We
wish to design a switched static-output feedback control law for this water system
based on Theorem 4.20. Switching occurs between three modes described by the
following coefficients:

Mode 1:

0.3 0.1 0.2 21
A= [—0.4 0.2] = [0.3] B = [0.6 1]

€1 =[0103], @ =[06], D =[0.104], L, :[

050
0 05
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Mode 2:

0.102 0.1 14
4z = [0.30.4}’ 2= [0.5]’ B2 = [3 1}

C;=[0602], &, =[03], D, =[0803], Ly = [064006]
Mode 3:
0.20.1 0.2 209
Az = [0.60.3] 3= [0.8]’ By = [07 2 }
C3=[0703], #3=[0.1], D3 =[0903], L3 = [066 004]

Invoking the software environment [74], the feasible solution of LMIs (4.57) is
given by

X 20255 0 v, _[19232 0 vo_ [18327 0
=1 0 202550 27 o0 192320 3T 0 1.8327

Ry _ [ 15708 2.0324 1, [—~0.7030 0.0502
"7 05787 —1.4950 |0 72 T | —0.4344 —0.0523

[ —0.3482 —0.7446i|

Ry =1 _02057 —0.5837

Using the SVD of L;, i =1, ..., 3, the control gains become

G, — [—0-7755 1.0034 7 . _[-0.3655 0.0261
U= 02857 —0.7381 " 72~ | —0.2259 —0.0272

G- — [ ~0-1900 ~0.4063
371 —0.1122 —0.3185

4.5 Notes and References

In addition to the numerous papers and articles on switched systems, there are few
reference books that might have some connection to the topics to be discussed in
this book. This includes the fundamental references [20, 192, 193, 357-359, 366].
The material covered in this chapter draws heavily on the excellent papers [47,
133, 134, 196, 426]. We have examined £, gain analysis and control synthesis for
a class of linear switched systems with convex-bounded parameter uncertainties
in the system matrices using an appropriate switched Lyapunov functional. LMI-
based feasibility conditions have been developed to ensure that the linear switched
system with polytopic uncertainties is uniformly quadratically stable with an £,
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gain smaller that a prescribed constant level. Switched feedback schemes have been
designed using state measurements, output measurements, and by using dynamic
output feedback, to guarantee that the corresponding closed-loop system enjoys the
uniform quadratic stability with an £, gain smaller than a prescribed constant level.
All the developed results have been expressed in terms of convex optimization over
LMIs and have been tested on representative examples.

Together with the foregoing chapter, this introductory chapter is hoped to have
succeeded in motivating the readers to the upcoming topics and in paving the way
to study the interesting topics of stability, stabilization, control design, and filtering
switched time-delay systems.



Chapter S
Switched Time-Delay Systems

5.1 Introduction

This chapter is concerned with the main ingredients and basic notions of switched
time-delay systems. For simplicity of exposition, we present the relevant topics and
materials of both switched systems at large and time-delay systems in particular.
Therefore, the chapter is divided into two major sections: the first section gives an
overview about switched time-delay systems and the second presents an overview
of piecewise-affine systems.

5.2 Switched Time-Delay Systems

In this manner, a switched time-delay system is recognized to be composed of a
family of time-delay subsystems and a rule that governs the switching among them,
and is mathematically described by

Sx(t) = fo(x (@), u(®), T(1), (1), x(t) =X,
y(1) = go (x(1), T(1), w(?)) (5.1)

where 7(¢) is the time-delay factor and the remaining quantities are standard in state
space representation. Each individual time-delay component model

Sx(t) = fi(x(®), u(n), T(0),d(1)), x(tp) =Xo
y(0) = g(x(0), T(@), w@), JjE€S (5.2)

is said to be a time-delay subsystem or time-delay mode of the switched system. In
the sequel, it is assumed that the delay t(¢) is a differentiable time-varying function
satisfying

O<t@®)=o @) = p (5.3)

M.S. Mahmoud, Switched Time-Delay Systems, 109
DOI 10.1007/978-1-4419-6394-9_5, © Springer Science+Business Media, LLC 2010
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where the bounds ¢ and p are known constant scalars. Sometimes the bounding
relation u < 1 [181, 216, 301] is used.

Alternatively, depending on the problem formulation, the delay 7 (¢) is considered
as a time-varying function satisfying

O<t(®) <o (5.4)

where the bounds o is a known constant scalar.

By and large, the time-delay subsystems represent the low-level local dynamics
governed by FDEs, while the supervisor is the high-level coordinator producing
the switches among local dynamics. Thus, the dynamics of the switched time-delay
(STD) system is determined by both the time-delay subsystems and the switching
signal.

A switching signal may depend on the time, its own past value, the state/output,
and/or an external signal as well:

o(t+) =@, o), x(1)/y),rt)) Vi (5.5)

where r (1) is an external signal produced by other devices, o (1+) = limg; o (s) in
continuous time, and o (r4+) = o (¢ + 1) in discrete time.
In the case o () = j, we say that the jth subsystem is active at time t. It is quite
evident that at any instant there is one (and only one) active subsystem.

In the remainder of the book, we focus on model (5.2) subject to time-delay
pattern (5.3) or (5.4) and the switching signal (5.5).

5.2.1 Multiple Lyapunov Functions

Construction of Lyapunov functions is a fundamental problem in system theory;
internal stability of the system under consideration is concluded if an associated
Lyapunov function is shown to exist. Conceptually, when looking at STD system,
perhaps the simplest solution would be a common quadratic Lyapunov function,
that is a quadratic function which is a global Lyapunov function for the subsystems
comprising the hybrid system. It turns out that the construction of such a Lyapunov
function is an NP-hard problem even when the subsystems are linear time invariant
[20]. The conservatism introduced by a global Lyapunov function V can be reduced
by searching for a set {V;} of local Lyapunov functions and by ensuring that the
Lyapunov functions match in the sense that the values of the Lyapunov functions
{V;} and {V,,} are equal when the state trajectory leaves a cell {X ;} and enters a cell
{Xm}, where {V;} is a local Lyapunov function in the cell {X;} and {V},,} is a local
Lyapunov function in the cell {X,,} [28].

5.2.2 Switched-Stability Analysis

Recently, fundamental development of stability analysis of switched systems has
been made in the control community (see, for example, [28, 192, 366]). In the
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literature, switched time-delays (STD) systems appear in applications whenever
switching and time delay coexist in either system modeling or signal transmission.
Due to the interaction between continuous dynamics and discrete dynamics and
because of the impact of time delays, the behavior of STD systems is usually much
more compounded than that of switched systems or delay systems. To date, there
are a few results reported on such systems [169, 370, 397]. We recall from that
there are three basic issues associated with the problems of stability and design of
switched systems without delays [192]; similar problems also exist in the study of
STD systems, namely

¢ finding conditions of stabilizability under arbitrary switching,
e identifying the useful class of stabilizing switching signals, and
e constructing a stabilizing switching signal

In the sequel, we focus on constructing stabilizing switching signal; it is well
known that on the premises of Hurwitz convex combination, a linear switched sys-
tem without delay is asymptotically stable under the switching law designed by
the single Lyapunov function method [192]. It turns out [169] that such result still
holds for linear switched systems with constant delay if the delay is sufficiently
small. Also, a method of quantifying the delay bound was given. Alternatively, it has
simultaneously been pointed out that the delay bound obtained by their method is
comparatively conservative and improving the theoretical result is an open problem.
Thus the first question is how to get a less conservative criterion. In [169], the case
of constant delay is only considered. So, the immediate question is that for the case
of time-varying delay, whether a similar result can be obtained. These questions
motivate the write-up of this part of the book.

Therefore, the stability problem for a class of switched time-delay system with
time-varying delay is considered hereafter. Consider for the time being the class of
STD systems in the form

X() =Asnx(®) + Adoyx(t — (1)), x4, =¥ (), « € [-7,0] (5.6)

where x(z) € N" denotes the state vector; o(t) : [0,00) — S = {1,2,...,s} 18
the switching signal which depends on time ¢ or state x(#), A; and B; are constant
matrices for j € S, ¥ () is a continuously differentiable initial function, t(t) > 0
and x; = x(t + @), ¢ € [—1,0], and the term 7 () denotes the time-varying delay
satisfying either of the following patterns:

Casel: 0 < 7t(t) <po, t(t) <un <1
Case2: 0 <71(t) <o, T(t) < 5.7)

where the bounds o, w are known constants in order to guarantee smooth growth of
the state trajectories. The following switching sequence

{xto; (j()? tO)v sy (Jk’ tk)5 sy |Jk S S7 k = 0’ 19 "'}
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corresponds to the switching signal o (f), meaning that the jth subsystem is acti-
vated whent € [tx, t;41). Observe that when t(¢) = 0, stability of system (5.6) is
equivalent to (A; + Agy;) being Hurwitz. Bearing this in mind, we proceed further
and recall the following condition

Hurwitz convex combination condition: There exists a Hurwitz linear convex
combination A of (Aj + Agj), that is,

A= B (Aj+ Ag)) (5.8)

j=1

where 0 < Bj < lande-Zl B =1
It follows since A is Hurwitz that there exists a matrix P > 0 such that

PA+AP+Q=0, Q>0 (5.9)

Given a pair P, Q satisfying (5.9), let us introduce the following set
;= {x € S)i”|x’[P(Aj + Agj) +(Aj + Adj)’P]x < — xth} (5.10)
foreach j € S. As presented in [169], it is readily seen that
n
w=|J 2
j=1
Based thereon, we construct the following switching regions:
1=, &= 91/<92ﬂf§1>,
j—1
2= :zj/(:zj Ny .(zm), ey 25 = .(2,»/(.% N
m=1
Hence
N
U %i=n 2 2=0
j=1

and the switching law takes the form

o(t) = j, whenx(t) € £; (5.11)
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Since in the case 7(r) = 0, system (5.6) reduces to the delayless system x(¢) =
(Aj + Agj)x(t). Itis well known that the condition of Hurwitz convex combination
can guarantee the asymptotic stability of system x(t) = (A; 4+ Agj)x(t) under
switching law (5.11). The following analysis will show that for a certain delay
bound, the result still holds for system (5.6). The analytical treatment relies on
Lemma 13.5 and leads to the following result:

Lemma 5.1 There exist a constant u > 0 and matrices P > 0, R > 0, Z >
Xl x/
° Xuj
sions such that the following LMIs

0, X/ = , J € S and some matrices );, T; with appropriate dimen-

_17[{ HL{ o(A; +Adj)tZ
Iy =1 e IT) 0 > 0 (5.12)
L o o —0Z
(X XL Y+ PAG+0(Aj + Agp) 24
Oj=| o X 7 >0  (5.13)
o o Z—QzAfijZAdj
PA+ AP < 0 (5.14)

hold for any given o € (0, 0l and any j € S where Aj, Agj are given in (5.6) and
A is a Hurwitz matrix defined in (5.8) and

] = A'P+PA+Y; + VY +R+oX]

M= -Y; + T} + X/

g =-T/+T; — (1 - WR+ 0XJ (5.15)
Proof Initially, given two matrices 0 < R’ =R, 0 < Z' = Z, consider ); = 0,
7; = 0. Since A is Hurwitz matrix, there exists a matrix 0 < P! = P such that

PA+ AP +2 R = 0implying that LMI (5.14) is satisfied. In addition, IT; and
®; reduce to the following form:

[ -Ri+oeX oX/ 0(Aj + Agj)' 2
II; = ° —(l—u)R—i—QXg,j 0
° ° —0Z
X] X! PAG+ oA+ Ag)) ZAg
O,=| o &) 0
[ o o zZ— QZA;jZAdj

Our task now is to show that there exists a constant © > 0 such that for any ¢ €
(0, 21, I1; <0, ®; > 0 hold. By the S-procedure, it is known that there exists a
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small constant 0 < Qi, J €8S, such that for ¢ € (0, 0], Z — QZAZjZAdj > 0. For

some P >0, R >0, Z > 0andforall o € [O, Qi] , there must exist a matrix
Z'j such that

Ej = Bj =[PAgj +0(Aj + Agj) ZA4))

—1
x (Z - QZA;jZAdj) [PAgj +0(A; + Ag)) ZAq;1

More importantly, there exists a matrix

J i
xi=|Mr | Lo s
o X | T 7

such that

—
g
|
o)
<8
R,
[
%
o

Correspondingly, it holds that

By Schur complements, it is readily seen that for all o € [0, Qi, o i = O]. Once
again by the S-procedure [27], it holds that for the matrix

~ -R 0
1y = [ . — —M)R}
[(A,- + Adp) Z(Aj + Agj) + X XC’}
° X,

there exists a constant 0 < Qi, j €8S, such that ﬁj < Oforany o € (0, Qi] By

Schur complements, we know that i j < 0. Define ¢ = min;, _, { Qi, Qi} Then

forall o € (0, @], we have ﬁj <0and ® 7 = Ofor j € S, which yields the desired
result. This completes the proof.
Lemma 5.2 There exist a constant i > 0 and matrices P > 0, Z > 0, X J =
X! X!
o X/
that LMIs (5.12) with R = 0 and LMIs (5.13) and (5.14) hold for any j € S and
any o € (0, 0]

, J € Sandsome matrices Y;, T; with appropriate dimensions such
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Proof Follows directly from Lemma 5.1 by setting V; = 7 = Rand PA+ AP+
3R forany j € Sand R > 0. |

5.2.3 Illustrative Example A

Consider the following piecewise linear time-delay system of the type (5.6) with
o(t) € S={1,2}[372]:

-2 2 -2 10
A= [—20 —2}’ A2 = [—4 —2}

—1-7 4 -5
Ad1=|:2 6 ] Ad2=|:1_8i|

This example was also treated in [169] in the case of constant delay T = 0. Observe
that A; + Agj, j = 1,2, is unstable. Taking g1 = 0.6, B> = 0.4, from (5.8),

we get
1
A= [—0.6 —1.6]

Solving (5.12), (5.13), and (5.14) yields the maximum delay bound © = 0.0202 and

D |: 151.5293 —16.8856:| 0-— |: 282.7959 —84.4853i|
—16.8856 184.9110 |’ —84.4853 625.4863
and the switching law will be given by (5.11). By applying Lemma 5.1, the system
under consideration with © < 0.0202 is asymptotically stable. Notice that the cor-
responding result in [169] was . = 0.001573. When © # 0, it is found by Lemma
5.1 that the system under consideration is asymptotically stable with © < 0.0176.

5.3 Piecewise-Affine Systems

Thus far, we have learned from the foregoing sections that construction of Lyapunov
functions is a fundamental problem in system theory. Its importance stems from the
fact that the internal stability of a system is concluded if an associated Lyapunov
function is shown to exist. This part of the book is concerned with such a construc-
tion for a class of switched systems in the sense that the state trajectory evolution is
governed by different dynamical equations (or different difference equations) over
different polyhedral partitions {X;} of the state space {X}, that is, the system is
modeled by an ensemble of subsystems, each of which is a valid representation of
the system over a set of such partitions. Motivating applications for the study of such
systems is described in [13]. We knew before that the simplest solution is perhaps a
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common quadratic Lyapunov function, that is, a quadratic function which is a global
Lyapunov function for the subsystems comprising the switched system. However,
the existence of such a function is, in principle, an overly restrictive requirement to
deduce the stability [156]. Moreover, the construction of such a Lyapunov function
is an NP-hard problem even when the subsystems are linear time invariant.

The conservatism introduced by a global Lyapunov function V can be reduced
by searching for a set {V;} of local Lyapunov functions and by ensuring that the
Lyapunov functions match in the sense that the values of Lyapunov functions {V,,}
and {V,,} are equal when the state trajectory leaves a cell {X,,} and enters a cell
{V,.}, where {V,,,} is a local Lyapunov function in the cell {X,,} and {V,,} is a local
Lyapunov function in the cell {V,} (see [28]). In this context, an elegant result has
been recently derived by [156] to construct Lyapunov functions when the subsystem
dynamics are known to be affine time invariant; an independent interpretation of this
result is given in [134]. For some practical applications, however, the piecewise-
affine structure must be modified to address modeling uncertainties and time delays.
For such systems, consequently, the stability conditions laid down by [156] get mod-
ified as we will demonstrate.

5.3.1 Continuous-Time Systems

In this section, we focus attention on piecewise-affine continuous-time systems.
At start, the following definition from [156] introduces piecewise-affine (PWA)
systems.

Definition 5.3 The class S, of switched systems is defined by a family of ordinary
differential equations as

i) = Ajx(t) +a; Yx)X; (5.16)

where A; € W, a; € R, and {X}jc|, C R" is a partition of the state space into
a finite number of closed, and possibly unbounded, polyhedral cells with pairwise
disjoint interior. The set of cells that include the origin is denoted by /o, that is,
aj =0,Yj € Ip, and its compliment is denoted Ig.

Next, we provide a definition for piecewise-affine time-delay (PWATD) systems.

Definition 5.4 The class S, of switched systems is defined by a family of retarded
differential equations as

i) = Ajx(t) + Agjx(t — ) +a; Vx() € X; (5.17)

where A; € W, Agj € W, a; € W, and {X}jel+ C R" is a partition of the
state space into a finite number of closed, and possibly unbounded, polyhedral cells
with pairwise disjoint interior. The set of cells that include the origin is denoted /o,
thatis,a; = 0,Vj € Ip and its complement is denoted I(C). In system (5.7), the time
delay t could be either
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e A constant factor (lag) satisfying 0 < v € i,

e A time-varying differentiable function satisfying 0 < 7(¢) < o, ©(¢) < u,or

e A time-varying interval differentiable function satisfying 0 < ¢ < 7(¢) <
0, T =p

where the lower bound ¢, the upper bound o, and the rate bound p are known con-
stants. The case u < 1 corresponds to slowly varying time delay.

For classes of system S, with alternative delay patterns, our objective hereafter
is to determine a set of computationally tractable analytical conditions under which
S, is stable. In preparation, we introduce the following notations:

i Ajaj oo Ej oo Fj i AdjO
Ul R R A I

e; | 0 .
- v

121,[’“ >0, VxX;, eVj el

where

ﬁj[x :Fm[)l‘] VxX;NXy, €Vjm el (5.18)

The following result is due to [156]:

Theorem 5.5 Consider matrices T = T', U, Ui, w; = W; such that the
elements of Uj, W; are nonnegative. Let P; , FI'T Fi, ¥V j € lp, and

Pe e Flﬁ T F, Vk € 15, satisfy

PjAj+P;jAL +EUE; < 0 (5.19)
Pj - E; WjEj > 0 (5.20)
PeAy + PrAL + ELU, Ey 0 (5.21)
P — ELW, Ex 0 (5.22)

forall j € Io and forallk € Ig. Then, every piecewise continuous trajectory of
S, tends to zero exponentially.

Note that to ensure that the local Lyapunov functions match on the cell boundaries,
the predetermined matrices F ' and Fk were taken as the given variables [156] in
the manner of (5.19). In addition, the elements of the matrix 7 are used as the
free variables. Hence, condition (5.19) allows for a number of choices of F i and
F} which might violate the matching condition, thereby incurring an unnecessarily
high cost of computation. Indeed, this can be avoided by working directly with the
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local Lyapunov functions P; and Py as the unknown variables and by stipulating
that P; — Py = 2 herm(Fjx Kjr), VY j,k, where the elements K ; are known
variables.

Remark 5.6 In general, it is difficult to deduce the cell containing x (r — ) given that
a particular cell contains x (¢) and, therefore, it is difficult to state the correct match-
ing conditions for the local Lyapunov functions. This implies that state aggregation
frequently employed in time-delay system analysis and design cannot be applied
[105].

5.3.2 Solution of PWATD Continuous Systems

A solution to the stability of piecewise-affine continuous-time systems with time
delay is provided by the following theorem:

Theorem 5.7 Consider matrices T = T', U; = U, W; = W; such that the
elements of Uj, W; are nonnegative. Let ®, 7, 0 < Q, 0 < G be parameter
matrices, Pj é, F]t. T Fj,Vj el and Py e F,ﬁ T F, Vik € 1%, satisfy
the following inequalities:

[8oj Enj —nO —pA,G
o o —Ey —uY —pAyG
i = 2
j . o _ug 0 <0 (5.23)
| e ° o —uRI—-G)
Pj — EYWE; > 0 (5.24)
_.’5'0] Epj —10 —r/i’jg
- -5 — _TA!
i=| ¢ “En T ALY | g (5.25)
° e —10G 0
L e o o —u2-0)
P; — ELW,Ex > 0 (5.26)
forall j € Iop andforallk € I where
Boj =PAj+AP+0+6'+Q
._"":Jnj = 751&,1]' -O0+7,
Ep=-7T -7 4+1-wQ (5.27)

Then, every piecewise continuous trajectory of S. tends to zero exponentially
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Proof It is readily seen from (5.24) that there exists a scalar w > 0 such that

B+l B, O AlG
= t
* —En T Ad9 <0 (5.28)
° e —G/u 0
° ° e —(2I-9)/u
Therefore, for all 0 < v € N we have
Bojt+ ol 5y —t0 TALG
_ ° —E, —1Y rA;jg
E, = 0 5.29
© . « -G 0 = (529)
° ° o —1(12I — Q)

Consider the Lyapunov — Krasovskii functional (LKF):

V(1) = Vo(t) + Va(t) + Vi (1)
t

Vo(t) = x"(t)Px(t), Vpu(t) = / x'(s)Qx(s) ds

t—1(t)
0 t
Va(t) :/ / ' (a)Gx (a)da ds (5.30)
—u Ji+s
where 0 < P =P, 0 <G =¢G", 0 < Q = Q" are weighting matrices of
appropriate dimensions. It is significant to observe that the third term accounts for

delay dependency. Additionally, it can be easily verified that V (¢) is continuous in
x and ¢, piecewise continuously differentiable in ¢, and

allxl]] = V(@) = Bllxll, «a>0, >0

Note also that
0 < x'(¢) Ej Uj Ej x(1), Yx(t) € X; (5.31)

A straightforward computation gives the time derivative of V (x) along the solu-
tions of (5.17) as

Vo(t) = 2x'Px (5.32)
On using the equality
t

2[x'O +x'(t —T(1))T] [x(z) —x(t—1(@)) — /
t

)'c(s)ds:| =0 (5.33)
—1(1)

and manipulating, we get
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t

V(1) = A [m’nﬁm + Olx + 2x' [PAyu — O + T'x(t — T)
() Ji—z )

—2'(t — ) Yx(t — 1) — 2x' T (1)@ (s)
—2x'(t — )T TR () + Zx[PFAw(t)i|ds (5.34)

where ® and 7" are appropriate relaxation matrices injected to facilitate the delay-
dependence analysis

0
V(1) = / [ ()Gx (1) — 2" (¢t + 5)Gx (¢ + 5)]ds

—n

t
- / [ (DG5(1) — £ (5)G(5)]ds
t

—u
t
= (OGHD) - / ()G (s)ds
t—t(t)
t
- L [w‘c’(r)gxm _ r(r)x%s)gx(s)] (5.35)
() Ji—r ()

Vi () = x' (1) Qx (1) — (1 — D)x'(t — (1)) Qx(t — (1))
<x'()Ox(t) — (1 — wx'(t — t(1))Qx(t — T(1))

_ 1 ' t
—(1—wx'(t — () Ox(t — I(t))]ds (5.36)

Finally, from (5.30), (5.31), (5.32), (5.33), (5.34), (5.35), and (5.36) with Schur
complements, we have

y 1 ! t ~
V()lsa7) = ) X' (t,8) E x(t,5)ds (5.37)
x(t,s) =[x"@) x'(t — 7(1)) %(5) | (5.38)

fnd

where Z corresponds to &, in (5.29) incorporating the inequality —G~' <
—(2I — G) (see Appendix) and V(x)|(5.17) defines the Lyapunov derivative along
the solutions of system (5.17). If & < 0, there must be a small scalar @ > 0 such
that & + diag[w, 0, 0, 0, 0, 0] < 0. Then it follows from (5.37) that

t

Vx)s.17) < x'(t, s)diag[~w, 0, 0, 0, 0, 0]x(z,s) ds

1
() Ji—r(n)
= —o|lx|]? (5.39)

This establishes the desired internal asymptotic stability. |
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Remark 5.8 It is obvious that Theorem 5.7 is a natural generalization of the results
of [156]. In fact, by setting 7 = 0, Ay; =0, @ =0, G =0, we can reproduce
in Theorem 5.7; we readily obtain the results of [156]. We would like to assert that
by choosing a different LKF, we expect to arrive at a different LMI-based stability
condition. We leave this to the reader to verify this point. For example, a relevant
LMI-based stability condition based on the small-gain theorem can be derived by
setting @ = I. More importantly, a lower bound on the maximum delay t* for
which the system S, is stable can be obtained by checking whether the conditions
laid down by Theorem 5.7 are satisfied as t increases, starting with T = 0: the least
value 7* for which the conditions laid down by Theorem 5.7 are not satisfied is a
conservative estimate of the maximum delay T under which the system S, is stable.
Observe that by setting i = 0, we obtain a solution for the constant-delay case.

5.3.3 Illustrative Example B

Consider the following piecewise linear time-delay system of the type (5.17) with
the cell decomposition expressed by E; x > 0, with

=50 =17
n=[7] =]l 0]
and the system matrices are expressed by
Ar= :_8'1 —8.1}’ Az = [061 0(.)1]
e[ 0] a1 2]
[ 28] o[ %3]
o[ %3] e[ %]

By applying Theorem 5.7, the estimated delay margin t* = 0.0156.

5.3.4 Discrete-Time Systems

In this section, we examine discrete-time piecewise-affine (PWA) systems and pro-
vide a solution method for its stability. Under mild assumptions, discrete-time PWA
systems are equivalent to interconnections of linear systems and finite automata
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[355] to complementarity systems [129] and also hybrid systems in the mixed logic
dynamical (MLD) form [13]. An important feature of a PWA model is that the state-
update map can be discontinuous along the boundary of the regions. For instance,
when considering PWA systems stemming from hybrid systems in the MLD form,
discontinuities can arise from the representation of logic conditions.

Concerning the stability analysis of PWA systems, various algorithms with
different degrees of conservativeness were presented in [293]. Similar to [156],
where a particular class of continuous-time PWA system was considered (see also
[331, 333, 342, 353], such procedures exploit piecewise quadratic (PWQ) Lya-
punov functions that can be computed as the solution of a set of LMIs. For the
sake of completeness, the main stability test of [293] is reported in a suitable
form.

A class of linear discrete-time piecewise-affine (PWA) systems is defined by the
state-space model:

x(k+1) = A;x(k) + Bju(k) +a; V [583] € X; (5.40)

In the same manner, a class of linear discrete-time piecewise-affine time-delay
(PWATD) systems is defined by the state-space model:

x(k+1) = Ajx(k) + Agjx(k —d(k)) + Bju(k) + a;
x(k)
V[uwﬂ e X, (5.41)

Introducing the following notations

i Ajaj .o Bj i AdjO
A-/‘[o 1]31_[0}’“1_[ 00
Then with X (k) = [x'(k) 1]" we rewrite (5.40) in the form

fk+1) = A;x(k) + Bjuk) v [zgm € X; (5.42)

and similarly (5.41) be rewritten into the compact form

F(k+1) = AR (k) + Ag;x(k — d(k)) + Bju(k)

x (k)
v[wm}exj (5.43)

where x (k) € %" is the state and u(k) € R™ is the control input. The set X C R+
of every possible vector [x’(k) u'(k)]" is either W™ or a polyhedron containing
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the original, {X}J-S=1 is a polyhedral partition of X (in the sense that each set X; is
a convex not necessarily closed polyhedron such that X; N X; = @, Vj # m,
U;.zl = X), and a; € " are constant vectors. Much like the continuous case, we
refer to each X; as a cell. The delay factor d (k) satisfies d,, < d(k) < dy where
dy, dyr are known delay bounds.

Moreover, in order to simplify the exposition, we assume that our cells are poly-
hedral defined by matrices F7, F]’f, j?“, and f ]’4 as

X; 4 {[x’(k) W' () : Fix = fF and Flu = f;‘} (5.44)

Additionally, the following notations are introduced

1>

SRIEERE

{j 3x, uwithx e X, [x' (k) u' (k)] x,-} (5.45)

[

X;
S;
Note that S; is the set of all indices j such that X; is a cell containing a vector
[x"(k) u'(k)]" for which the condition x € X; is satisfied. We denote with Z =

{1, ..., s} the set of indices of the cells X; whereas the symbol J = {1, ..., ¢} will
be used to denote the set of indices of the cells X;. It is important to observe that

t
(S =z1 (5.46)
j=1

Furthermore, if cells X; have the structure pointed out in (5.44) then the sets
S; are disjoint whereas if cells X; have a more complicated structure (for instance,
when mixed state-input constraints are used to define each cell X) then the sets S;
could be overlapping. In the latter case the results could become more conservative.

5.3.5 Stability of PWA Discrete Systems

When we focus on the stability of the origin, we consider autonomous PWA systems

Fhk+1)=AEKk) Y [’;Em € X; (5.47)

In [293] the stability of the origin of discrete-time PWA systems was characterized
by using piecewise quadratic (PWQ) Lyapunov functions. In the following theorem
the main result of [293] is presented for the case a; =0, V € I:
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Theorem 5.9 Consider the system (5.47). If there exist matrices 0 < 77;- = Pj,
Vj € Z, such that the positive-definite function V(x(k)) = x'Pjx, x € Xj,
satisfies V(x(k + 1)) — V(x(k)) < 0, then the origin of the PWA system (5.47) is
exponentially stable and limy_, », ||x(k)|| = O for all system trajectories fulfilling
x(k) € X, Vk € N,.

The Lyapunov function appearing in Theorem 5.9 can be computed by solving the
LMIs

APuAj —P; < 0, V(j,m)e$S (5.48)
P =P, >0, Y(m) €L (5.49)

where

é{(] m):jmeZ andIkeN,, Ixk), x(k+1)eX

such that x (k) € X; and x(k + 1) € Xm}

In other words, the set S contains all the ordered pairs of indices denoting the
possible switches from cell j to cell m and it can be computed via reachability
analysis for MLD systems [14]. Then, the inequalities (5.48) take into account all
the admissible switches between different regions and guarantee that the Lyapunov
function is decreasing along all possible state trajectories. When there exist matrices
P such that the LMIs (5.48) and (5.49) are satisfied, the PWA system is termed
PWQ-stable. We refer the interested reader to [293] for further details.

5.3.6 Stability of PWATD Discrete Systems

Extending on the previous section, we consider a class of piecewise-affine systems
with time delay (PWATD):

x (k)

F(k+1) = Aji(k) + AgiX(k — d(k)) + Bjuk) V¥ [u(k)

:| e X; (5.50)
The delay d (k) is unknown but restricted within the bounded range a’}k <d(k) < d;.r
where the limiting scalars d}‘, d;.Ir are known. Let §; = (d]+ - d}’f + 1) represent-

ing the number of samples within the delay range d;‘ <dk) < d;.r. For stability
purposes, we set #(k) = 0 and introduce the following Lyapunov—Krasovskii func-
tional (LKF):
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k—1
V@) = X' 0 Pux®) + Y x'(5)Qjx(s)
s=k—d (k)
1—d* k—1
+ Z Z X'()Qjx(s), x eX; (5.51)

s=2—dt s=k+s—1

where 0 < P; =P;, 0< Q; = Q; are weighting matrices of appropriate dimen-
sions. In the sequel, we consider the switching profile with 0 < 7?;. =P;, 0 <

Q; = Q; at the kth instant and 0 < P}, = Py, at the (k + 1)th instant. We establish
the following stability result:

Theorem 5.10 Given the delay sample number B;, system (5.50) with u = 0 is
delay-dependent asymptotically stable if there exist matrices 0 < 73; =7Pj, 0 <
Qj. =Q;,Vjel0< y; =Y; e Wi, 0 < W; = W; € W such that
the LKF V (x(k)) in (5.51) satisfies

-Pi+B;Q; 0 A;PmAdj

° —-Q; Ailj < 0 (5.52)
° ° —Pum
0 < Pn= 73,"", VY(m) el (5.53)

Then the origin of the PWA system (5.47) is exponentially stable and
limg oo ||x(k)|| = O for all system trajectories fulfilling x (k) € X, Yk € N4

Proof A straightforward computation gives the first difference of AV;(k) =
Vi(k + 1) — V;(k) along the solutions of (5.50) with u ; (k) = 0 as

AV (x(k)) = [A;x(k) + Agjx(k — d(k)]'PulAjx (k) + Agjx(k — d(k))]
—x'(k)P;x(k) + X' (k)Qjx (k) — %" (k — d(k))Qjx(k — d(k))

k—1 k—1
+ Y HOQiEw - ) F(9)QE()
s=k+1—d;(k+1) s=k+1—d; (k)
k=d;

Hdt —dHFR)QEk) — Y F(9)QE(s) (5.54)

s=k+lfd;f)
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Since

k—1 k—1

Yo #@QE = ) F()QE®)
s=k+1—d(k+1) s=k+]fdj

k—d*
+ ) FeQEE)
s=k+1—d(k+1)

k—1 k—d*
< ) FOEO+ Y F(9)QE®) (5.55)
s=k+1—d (k) s=k+1—d+

Then using (5.55) in (5.54) and manipulating, we reach

AV (x(k)) < [Ajx(k) + Agjx(k — d (k) PulAjx (k) + Agjx(k — d (k)]
+ (0T —d* + 1)Qj — Pjli(k) — X' (k — d(k)) Q% (k — d(k))
= &' (k) 8j &(k) (5.56)

where

€3]

= |:Alj73mAj —|—,3ij —'Pj A;-'PmAdj i|

® Aijj,PmAdj - Qj
g (k) = [%(0) Tk —dk) ] (5.57)

The sufficient condition of stability AV;k < 0 implies that Z; < 0. By Schur
complements, Z; can be brought to the LMI (5.52) which concludes the proof. W

Remark 5.11 The conservativeness of the LMI’s conditions for stability analysis
can be reduced by exploiting the so-called S-procedure [409], in order to avoid
imposing x’P;x > 0 for [x' u']" € X,, j # m, see [293]. This modification
was proposed in [156] for continuous-time PWA systems and can be easily general-
ized to the discrete-time case. We point out that similar modifications can be applied
to all the analysis LMIs we derive in the following. It is important to highlight that
with respect to the continuous-time approach of [156] in our discrete-time frame-
work there is no need to guarantee the continuity of the Lyapunov function over
the whole state space. This fact can determine a reduced degree of conservativeness
of the results that we are going to present with respect to those presented in [156].
Finally, following the lead given in [156], discrete-time performance analysis results
with a notably reduced degree of conservativeness could be performed. This will be
demonstrated in the following chapters.
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5.3.7 Synthesis of a Stabilizing State Feedback

In the following, we consider a piecewise linear state feedback with the structure
u(k) = [K; 0] x(k)

=K; i), ¥ [zgm € X; (5.58)

By applying the controller (5.58) to the system (5.42) we achieve the closed-loop
dynamic system

- - k
T+ 1) = A 5(), ¥ [zgkﬂ e X
Aj+ BjK; aj:|

0 | (5.59)

&=&+@@=[

It should be noted that the evolution of closed-loop system (5.59) depends on the
hidden variable u (k) since it influences the index j of the current cell X;.

As customary for constrained systems, we assume that the state trajectories
[x" (k)u' (k)]" generated by the control law (5.58) satisfy [x (k)u’ (k)]' € X, VkI,.
We recall that in [293] the stability of the origin of PWA systems was characterized
by using piecewise quadratic (PWQ) Lyapunov functions.

When designing the unknown controller gain K; appearing in the inequalities
(5.48), the set of all possible switches is generally not known in advance, and it
could be necessary to consider all the pairs of indices in Sy = Z x 7 instead of S.
Moreover, we note that the design of a controller of type (5.58) could be a very hard
task because, at each time instant, the vector u (k) has to be calculated by means of
a control gain K i whose index j is found on the basis of the admissibility condition

07y
[u(k)il € Xj (5.60)

This implies that, in general, it is not possible to calculate u (k) since the index
j for which the condition (5.60) is satisfied is very hard to be known in advance.
Therefore, the problem under consideration is turned into one of designing a con-
troller with the following structure:

u(k) = [Ky 0] x(k)
=Ky ¥(k), x(k) € X; (5.61)

Thus we consider a different control gain not for all the cells X; with j Z but
for all cells X ; with m M. Despite this restricted controller structure, in order to
design a control law of type (5.61) one must exploit a different Lyapunov matrix P;
for each X; with j 7 to reduce the conservativeness.
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In the sequel, we consider the problem of finding a state feedback control law
of type (5.61) for the system (5.42). For this purpose, we start from the analysis
condition (5.48) rewritten for the closed-loop system

x (k)
u(k)

Ajm = Aj + BjKn (5.62)

)E(k—l—l):fljmi(k) V|: i| € Xj, x(k) € )_(j

More precisely, equation (5.48) rewritten for the closed-loop system (5.62) assumes
the form

AL PsAjn —Pj < 0, Vme M, VjeX;, ¥ (s,j) €Sai (5.63)
Pi=P; >0, VjeI (5.64)

Inequalities (5.64) and (5.64) represent a closed-loop stability condition. By defin-
ing W; = P!, we rewrite (5.63) in the form

[—Wj WAL

° W

} <0, VmeM, VjeX;, V(s,j) €Sai (5.65)

Applying a convex analysis procedure, we arrive at the following result:

Theorem 5.12 Consider the discrete PWA system (5.40). There exists a state-
feedback control law of the type (5.58) guaranteeing piecewise quadratic PWQ sta-
bility if there exist matrices 0 < W; =W;, j €I, and matrices Gy, Yy, Ym €
M, such thatVm € M, Vj e X;j, VY (s, j) € Sa

(5.66)

° —W;

|:W/' - gm - g,tn g,lnAt] +y,tnB;j| < 0’
The feedback gains K,, are given by K,;, = YV, g,,;l

5.3.8 Illustrative Example C

Consider the following system [13]

_ cos(o (k)) — sin(o (k)) 0
x(k+1)=0.8 [ sin(o (k) cos(o (k) :|x(k) + [1} u(k),

yky=[10]xk), uk) € [—1,1],

| w/3 [l 0lx(k) > 0
o(k) = {_n/3 if [1 0]x(k) <O
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Using four additional auxiliary variables, the foregoing model was converted to
PWA system with six cells X; and two cells X;. Observe that the output y(k) coin-
cides with the first state x1 (k), which in turn represents the variables used to define
the switching structure of the system. By applying Theorem 5.12, the closed-loop
simulation is displayed in Fig. 5.1 (closed-loop state simulation), Fig. 5.2 (control
input), and Fig. 5.3 (switching history) (Fig. 5.4).

1 T T T T T T T
R N SIS NIRRT NRNTIRNINS SN SRR
i Lt NI SR B IO
04l S S S (o TR A ]
02} .
Qq
x
O r s
0.2 L
S04 |
0B [T Lo
0.8 i i i I i i L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
X1

Fig. 5.1 Closed-loop state simulation
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Fig. 5.2 Control input
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Fig. 5.3 Switching pattern
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Fig. 5.4 Phase plane of example C

5.4 Notes and References

At the end of our initial tour into the fascinating field of switched time-delay sys-
tems, we dwelled on two distinct regions. The first region is concerned with the
characterization of two-level models whereby the first level is subsumed of time-
delay systems and at the second level there is a coordinator sending our switched
signals to harmonize their motion. The second region deals with piecewise-affine
continuous-time and discrete-time systems. For further detailed views and modeling
directions, the reader is advised to consult [26, 40, 41, 47, 95, 131, 176].
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Chapter 6
Three-Term Stabilization Schemes

It becomes increasingly evident that delays are the main causes of instability
and poor performance in dynamical systems and frequently encountered in var-
ious engineering and physical systems. Stability analysis and control design of
time-delay systems have attracted the attention of numerous investigators, see
[24, 221, 237, 338] and their references. Some recent views pertaining to the prob-
lems of robust stability analysis and robust stabilization of uncertain time-delay
systems have been reported, see [65, 181, 188, 238, 257] and their references.

In Chapter 4, it turns out that the choice of an appropriate Lyapunov—Krasovskii
functional (LKF) and the introduction of additional parameters are crucial for devel-
oping sufficient stability conditions based on linear matrix inequalities (LMIs).
General LKF forms might lead to a complicated system of inequalities [265] and
therefore approaches to construct new and effective LKF forms are needed. In this
regard, stability criteria for linear state-delay systems can be broadly classified into
two categories: delay independent, which are applicable to delays of arbitrary size
[214], and delay dependent, which include information on the size of the delay, see
[66] and their references. Several model transformation methods and parameteriza-
tion schemes have been derived in the literature to derive delay-dependent stability
conditions, see [22, 65, 66, 181, 188, 198, 218, 238, 257, 301, 373, 392] and their
references.

From the previous chapters, we learned that switched systems are a class of
dynamical systems formed by several subsystems (continuous or discrete time) and
arule that governs the switching among these subsystems. Recently, the basic prob-
lems of stability and control have received increasing interests [28, 41, 42, 47, 174,
193, 292, 424, 427] and the references cited therein. Among the large variety of
problems investigated in the literature is the stability analysis and feedback control
synthesis of switched systems under arbitrary switching sequences. Recent reported
results are found in [56] using multiple Lyapunov functions for nonlinear systems,
in [42] employing switched Lyapunov functions, and in [426] utilizing dwell-time
properties. Of particular interest in this chapter is the class of STD systems which
have widespread engineering applications, including network control systems [170]
and power systems [291]. We cover both continuous-time and discrete-time systems
with particular emphasis on three-term stabilization schemes. In the continuous-time
case, these schemes correspond to proportional-integral-derivative (PID) structure

M.S. Mahmoud, Switched Time-Delay Systems, 133
DOI 10.1007/978-1-4419-6394-9_6, © Springer Science+Business Media, LLC 2010
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whereas in the discrete-time case these schemes are represented by proportional-
summation-difference (PSD) structure.

6.1 Continuous-Time Systems

Among the feedback design methods, state-derivative feedback methods have been
used to design controllers for several system applications, see [1, 6, 53, 337] and
their references. The interest in these methods stems from the fact that it is easier in
several practical applications to obtain state-derivative signals than the state signals.
These include, but not limited to, mechanical systems [1], car suspension systems
[337], and bridge cable vibration [53]. In these applications, the effect of the delay
elements was not taken into during the modeling process despite the presence of
several physical systems possessing delay phenomena, such as water quality in
streams [179], power systems [386], CSTR with recycling [211], combustion in
motor chambers [442], to name a few.

In this section, we developed a three-term feedback stabilization of linear STD
systems. We focus on the problems of delay-dependent Ho, stabilization using
proportional-integral-derivative (PID) under arbitrary switching and for different
time-delay patterns. Several special cases are derived for nominal and polytopic
models. New parametrized LMI characterization for PID feedback stabilization are
established.

6.1.1 Problem Statement

We consider the following class of linear switched time-delay (STD) systems:

X(t) = Ac(nx(t) + Ado (X (t — T) + Bonhu(@) + Isnhw(t), x(¢) = w(d)
2(t) = Goyx(t) + Ponyw(t), ¢ €[-7,0] (6.1)

where x(r) € N" is the state vector, u(t) € NP is the control input, w(t) € N9

is the disturbance input, which belongs to £,[0, c0), z(t) € N7 is the observed
output, o (f) : [0,00) — S = {1,2,...,s} is the switching signal and 7 > 0
is a time-delay factor. The initial condition w(¢) is a differentiable vector-valued
function on [—7, 0]. The matrices A, € R"**", B, € R"*P, G, € R9*", F, €
RI*P . Aygy € R and I, € R, o, € RY*1 are real and known constant
matrices.

It should be emphasized from the theory of delay differential equations [108,
109] that the existence of the solutions of a nonswitched linear delay system is
guaranteed by a continuous and piecewise differentiable initial condition. This is
carried over to linear switched-delay systems since the state does not experience
any jump at the switching instants.

Define the indication function
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1, o) =i
0, otherwise

D =[&80). .. &0, &)= {

Then, the STD system (6.1) can be written as

£ =Y EOAxO) + )& Aux(t — 1)+ Y &) Bu(t)

i=1 i=1 i=1

+> &M Lw()

i=1
2(0) =Y EWOGix(t) + Y &N Piw() (6.2)
i=1 i=l

Of prime interest in this section is to find constant matrix gains K,; €
NP> K € NP Vi € S such that the following conditions hold:

1. Matrices (1 + Y ;j_; & (1) BiK,;) . Vi € S have full rank.
2. Using the proportional-integral-derivative (PID) feedback control

u(ty = Y &K x(1) — Y &N Kpi £(1)

i=1 i=1
S t
+ > &0 K4 f x(s)ds (6.3)
i=1 I-e

the closed-loop system (6.2) under control (6.3) is delay-dependent asymptotically
stable for possible patterns of the delay t. We recall that condition (1) above is
meant to ensure the solvability of the problem. By similarity to the conventional
control methods, here the role of the proportional gain Ks;, i € N is mainly to
ensure that the system is internally stable whereas the role K,;, K;i, i € Nis to
meet the control objectives.

Applying control (6.3) to system (6.2) yields the closed-loop system

<1 +Y EMB; K) £(1) =Y &A= BiKa)x(0) + ) & () Agix(t — 1)
i=1 i=l1 i=1

+ > & (t)BiKui / x(s)ds + Y & @ Mw()

i=1 I=o i=1

t

=D EOAux() + Y &N Agix(t — )

i=1 i=1

$ t
+ > &) BiKai / x(s)ds
i=1 —o
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S
+Y &OLw@). Ag=A; + BKy

i=1

2(t) =Y EMGix() + Y &N Piw(r) (6.4)

i=1 i=1

When the matrices {(/ + Y_;_, & (1)B; K(,,-)}‘;:] have full rank, then the closed-
loop system (6.4) has a well-defined structure in the form

S -1 A S
(1) = (1 + Zam&m) { D EOAux () + Y &N Agx(E —T)

i=1 i=1 i=1

N t N
+ Y & (0)BiKai / x(s)ds+Zs,-(r)n-w(r>},
i=1 1=e

i=1

2(t) =Y EDOGix(t) + Y &N Piw() (6.5)

i=1 i=1

which describe an integro-delay system. In the sequel, we seek to determine the
gains
Koi, Kpi, K, i €S for the two cases:

Case I: 7 is a continuous function satisfying for all # > 0
0<t@) <o
Case 2: The time-delay t is a differentiable time-varying function satisfying
O<t() <o, () = (6.6)

where the bounds o and u are known.

6.1.2 Model Transformation

To deal with the integro-delay system (6.5), we introduce

S t
00 =36 [ xoas ©7)
i=1 -e
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such that

0ty =Y &D)x(t) = Y &nx(t — o) (6.8)

i=1 i=1

Now, append (6.8) to system (6.5) and define

s —1
t 2 [X0em], Fi= (1 +Zs,-(t)B,-Km~>

i=1

we get the augmented system

L) =Y &0Ap ¢+ Y EMAG £t —0)

i=1 i=1

+Y EDA L=+ Y ED i) 6.9)

i=1 i=1
s t
) = [Ty &G 0] [ggt;]
x(t—r1

+[Xis1&0Gai 0] [G(t _ T;] + Z&(z)@iw(t)
i=1

=Y EOGuc )+ Y &ENCGatt — 1)+ Y &OPw(t) (6.10)
i=1

i=1 i=1

where

y [ F Y E(OA Fi Y &) B Ky
i A i = s
;E 04 L 2im1 &1 0 :|

L o 0 0 - B &AL O
;éz(l)Aa = __Zf:l £ 0i| s ;fz(t)/ldt = |: 10 0]

s o [EXLaon
Y &, w(t) (6.11)
i=1

0

which is essentially now a two-time-delay system.
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6.1.3 H, Stabilization: Unknown Continuous Delay

We consider that the time-delay factor t is an unknown constant, corresponding to
Case 1). The following theorem establishes a delay-independent LMI-based condi-
tion for proportional-integral-derivative (PID) feedback stabilization with H, per-
formance bound:

Theorem 6.1 Consider the time-delay pattern of Case 1. System (6.1) under PID
feedback control

N N s t
w(t) =Y EOKix(t) = Y EOKyii(t) = ) &) BiKai / W
i=1 i=1 i=1

is delay-independent asymptotically stabilizable with H~o performance bound y if
there exist matrices

{(Xuitic, ko o Zx Qoo Wikioy {Rikioys Y@, s) €S

i=1

such that the following LMI

_Hai I I I+ (Xy + Biyi)G:,,' (Xxi + Biyi)étm‘ Hfi ngi ]
o Iy O G, G, 0 0
° o Il 0 0 0 0
o o —y?1 + ! P; 0 0 0
° ° ° ° —1 0 0
° ° ° ° ° Xy O
| o ° ° ° ° o X, |
<0 (6.12)

has a feasible solution, where

- |:Ai/'\,’xi + XAl 4+ A V!Bl + B Vi Al + BW; + W!B! I + B/R; +R§B;}
ar —
—F 421

AgiZys 0 00
)
o=l [51]. (%) <]

Il = [Xyi + Bi Vi Xy + Bi ;]

- t . _ t . N N t
Gy = [Go(i)@] Gy = [Gd(’j(pl]’ Gy :[ ’]» Gy = [G()dl}

G'.
¢

=Top!

]
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Moreover, the feedback gains are given by
1 -1
=ViX xi Ki —WXX, , Kai :RiXx,'

Proof First, we establish the asymptotic stability of the closed-loop system (6.9)
with w(.)) =0

L) =Y &0Ap ¢(1)

i=1

+) EDAG Lt —0) + Y EW A Lt —T) (6.14)

i=1 i=1

Define the selective Lyapunov—Krasovskii functional (LKF):
s t
Vi) = cfm(Zsi (rm-)c(r) + / ¢'()Z7 ¢ (s)ds
i=1 =T

t
+ / ()07 ¢ (s)ds
t—o

P 0 [z 0 o, 07 .
7:,:[0 I],z_[o 1}, Q_[O 1]’ ieS (6.15)

We note that the form of matrices P;, Q, Z is not restrictive since any non-unity
value in the lower rows would not affect the subsequent analysis. Differentiating
V1(¢) along the solutions of (6.14), we get

Vit)l(6.9) = c'(r)(Zsi (P Asi + Agm-)c(r)
i=1
+'OEDZTC0 + ' EDQT' (1)
+2;‘(r><z & (r)PiAdi)w -0+ 2;‘@)(2 & (r)PiAc,»)g(t - 0)
i=1 i=1

't -DEMZ7ct—1) -t - 0&1HQ ¢t —0)  (6.16)

It follows that for any nonzero vector x(¢) and the particular case &;(t) = 1 and
&mi (1) = 0. Therefore, with some algebraic manipulations, we have from (6.16):

Vitl(6.9) = n' (@) 2is n(0),

n =['@0 ¢'t—1) 't-0]
PIAYI + At Pz +Z- ! + Q PYAdl PYACI
5 = —z-1 0 (6.17)
° ° —o!
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That Vl(z)|(6.9) < 0 it implies that £2;; <0, V (i,s) € S.Now, let

I+ B;K,)P=' 0 10
T]Z[( + 1001) xi I]’ T2:|:0 I}

Pl = [%i ﬂ (6.18)

Applying the congruent transformation
diag [ T T» T2]

to £2;s with V; = Ky Xyi, Wi = KiXyi, Ri = K,i Xyxi and making use of the
algebraic inequalities Vi € S

WX Y+ DX W)

i

(RiX; Vi + Vi X' RY)

IA

Wi+ 2) X5 OV + ),
< (Ri+X)X; (Ri+Y)) (6.19)

A

it follows from (6.12) by the Schur complements formula that the asymptotic stabil-
ity of the closed-loop system (6.5) is established.
Consider the performance measure

00 N
/= / (Z sl-(r>[zf<s)z(s) — v ($)w(s) ]) ds
0 \iz

Forany w(t) € £2(0, 00) # 0 and zero initial condition x (0) = 0, hence V (0) = 0,
we have

e’} N B 7
J= /0 (Zs,-(o Z()z(s) = Y w' (wls) +Vi0)l6.9) )ds
i=1 - m

-V "1(6.9)

00 N B X T
< /0 (Zam Z'(®)z(s) =y w(s) + Vi()le.9) )ds
i=1 - .

where V; (t)|(6.9) defines the Lyapunov derivative along the solutions of system
(6.9). Under arbitrary switching, we get
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2 ()2(5) — v (Hwls) + Vi)l(6.9) = 7' () Fisii(s) =

PiAsi + AL P+ Ap A LA
Z—ll_i_SlQ—l _:lél;.éoi PeAai + G .Gai PsAci P Fi_-i- G!,
Bis = . -2 '+GGai O G,
° ° —o! 0
o o o YU+
i(s) = [x'(s) x"(s —7) x'(s —0) wt(S)]t (6.20)

Using (6.18), we apply the congruent transformation

1

diag[T1 T» T» T»], 2 ;:Xiz[)gci (I)]

to ;s with
Vi = KoiXxi, Wi = KiXyi, Ri = Koi Xy

and making use of the algebraic inequalities (6.19), it readily follows from LMI
(6.12) and Schur complement operations that

Z(9)z(5) —y*w' (Owls) + Vi9)l(6.9) <0

for arbitrary s € [¢, 00), which implies for any w(t) € £5(0,00) # 0 that J < 0
leading to [|z(#)]||2 < y |lw(?)|]2 and the proof is completed. |

Remark 6.2 The optimal delay-independent asymptotically stabilizable controller
can be determined by solving the following convex minimization problem over
LMIs:

Minimize y
wrt Xy >0, Vi, Wi, 2, >0, O, >0, y >0, V(i,s) €S
subject to LMI (6.12)

Remark 6.3 A connection to Theorem 6.1 for the no-switching case i = 1 can
be found in [216] (pp. 88-95) when examining linear uncertain systems with input
delays. However, the analytical treatment and the final results here are basically
different.

Remark 6.4 Had we used only a state-feedback stabilization

u(t) =Y &n) Ky x(t)

i=1

we would have obtained the following result:
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Theorem 6.5 Consider the time-delay pattern of Case 1. System (6.1) under state
feedback u(t) = Y i_, & () Ky x(t) is delay-independent asymptotically stabiliz-
able with H~o performance bound y if there exist matrices

{‘)(l'}f:] ’ {yl }lS=1 ’ va {Wi}f:] ’ V(lﬂ S) € S
such that the following LMI

My Mes Mo T+ (X + BiY)Gl, (X + BY)GY,

o —Iy O G, G,
o o 0 0 <0 (6.21)
° ° ° —)/21 + QD;(P,' 0
° ° ° ° —1

has a feasible solution, where

[T Agi2c 0 00
no=[[*70] [06]]
My = diag|: |:ZOX (I)i| , |:%x (I):| :| (6.22)

Moreover, the feedback gain is given by

_ X Al W t gt _
[AIXXZ+XXIAI+BZW1+WIB1 0i|7 A= [Xy Xl

Ky =wWx"!

Proof The proof of this theorem can be readily obtained by parallel development to
Theorem 6.1 with ); =0, R; = 0. |

Remark 6.6 By setting A;; = 0, Vi € S, we obtain the linear controlled switched
delayless system

s -1 N s t
x(1) = (1+ Z&(x)&l@) {Zam(mm(r) + Y &) BiKai / x(s)ds
i=1 i=1 t—o

i=1

+Zs,-(r)nw(r>}

i=1

2t) =) &ENOGix() + Y &) Piw(t) (6.23)

i=1 i=1

for which Theorem 6.1 specializes to the following important result
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Corollary 6.7 Consider the time-delay pattern of Case 1. System (6.23) under PID
feedback control

K K K t
w(t) =Y EWOKix(t) = Y &Kk (1) = Y E(1)BiKai / x(s)ds
i=1 i=1 i=1 =e

is delay-independent asymptotically stabilizable with H, performance bound y if
there exist matrices

{Xviticy, idic Zx. Qv Wikiy, V@, s) €S

such that the following LMI

_Hai I/Y:Es Hei 1_7vi qu)i nfi Hgi ]
e —JII;s O Giﬁ GZH 0 0
° o —Ily 0 0 0 0
° ° ° —)/21 + (Dit@i 0 0 0 <0 (6.24)
° ° ° ° -1 0 0
° ° ° ° e —X O
| e ° ° ° ° o —X, |
has a feasible solution, where
AiXe + X AL+ A VB! + BV AL, t pt
My = +BiW,; + Wi B] BiRi + R B
1 0
= [0 0 1 9x 0
Hcs—|:0 Qxi|’ Hds—|:0 I]
Iy = I;, + (Xy + Biyi)égi
My = (X + BY)GY, (6.25)

and T3, G;i, (_}fii, and Ggl are given in (6.11). Moreover, the feedback gains are
given by
Koi = VX!

xi

Ksi = W,‘X_l K. = R,’Xx_il

xi

Remark 6.8 When the model matrices of system (6.1) are partially known, we
assume that

B ={A;, Aui, B, I;,G;, D;} € A; (6.26)

where A; is a given convex-bounded polyhedral domain described by vertices as
follows:
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M K
A= {Ei(li)lEi(/\i) = Z Xij$§2ij, Z Aij =14 > 0} (6.27)

j=1 j=1

o A

Zij = {Aij, Adij, Bij, Ij, Gij, Gaij, Pij} (6.28)
In this regard, we are in a position to establish the following corollary:

Corollary 6.9 Consider the time-delay of Case 1. System (6.1) with the polytopic
representation (6.26), (6.27), and (6.28) under PID feedback control (6.3) is robustly
delay-independent asymptotically stabilizable with Hs performance bound y if
there exist matrices

{Xxi}f:p {yl ?:17 Zx: Qx’ {Wi}lev V(Z,S) GS, .]:11M

such that the following LMIs

[ Ilij Hesj Il ITyij [Tyij Igij ]
o —IMy 0 Gl Gl 00
° o —IIy 0 0 0 0
° ° ° —yzl—i—@fj@ij 0 0 0
° ° ° ° —1 0 0
° ° ° ° e X, O
| e ° ° ° ° o Xy |
<0 (6.29)
have a feasible solution, where
Myij = I+ (X + Bijyi)éto,'j,
Iyij = (Xyi + Bijyi)étmj,
AijXi + XiiAj; + A Y] Bj;
J JYLTL B R 91
Mgij = | +BijYiAj; + BijW; + W] Bj, iR+ R
I 0
ne =[5 0] [0 o]
1 0 0f 0 9,
o
. Z. 0 0 — H
oo [5 5] [34])
0
Mejj = [Xvi + BijYi Xy + Bijil,
, GoijDij , GaijDij . [ Goij . Guii
1
Goij = ’ Gdij = ) Goij = ) Gdij = |: Oji|
0 0 0
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Bii Wi + i) Bij(Ri + Vi)
Myij = , Mg = (6.30)
0 0
Moreover, the feedback gains are given by

Koi = Vi7", K = WX, Kuj = RiXT!

Grouping Remarks 6.2-6.8 together evidently illuminates the generality and flexi-
bility of the foregoing stabilization approach to linear switched time-delay systems.

6.1.4 M, Stabilization: Time-Varying Delays

In this section, we address Case 2 where the time delay is a continuous time-varying
function and proceed to establish new LMI characterization for delay-dependent
stabilization by proportional-integral-derivative (PID) feedback. Initially, recall the
standard Leibniz—Newton formula

t

tt—T(t) =Y &M =Y &) £ (s)ds (6.31)
i=1 i=1

t—1(t)
We consider the transformed closed-loop system (6.9) and establish the following
theorem:

Theorem 6.10 Consider the time-delay pattern of Case 2. System (6.9), (6.10), and
(6.11) is delay-dependent asymptotically stabilizable with H~ performance bound
y if there exist matrices

{Xxi}f:p {yi}f:]a {Wi}§=17 QX7 Zm {Sjl}lv=17]= 17-'~74
NiiYio, k=1,...,8, VY(@i,s) €S

such that the following LMI

[ I, Il Il IT,; Il My g Iy ]
o —Ilyi 0 G, G, 0 0 0
° o Iy 0 0 0 0 0
e o o —YH+@® 0 0 0 O
° ° ° ° -1 0 0 0
° ° ° ° X O 0
° ° ° ° e X, O
) ° ° ° ° ° _ﬁmi_
<0 (6.32)

has a feasible solution for all T(t) < o, ©(t) < u, where
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My = I + (X + BiY)G,
i = (X + Biyi)éﬁ,,-
_ [ﬁaaiAi BiR; + RﬁB,’]

i

ai = I 0
Magi = AiXui + X AL+ A VB! + BV AL + BOW; + W! B!
+X:iS1i + BiSai + S Xxi 4 Sai B]

~ AgiZy — XyiS3i — BiS3i 0 ~ 00
Hcai=|: di < x X(l) 3i 93§ 0:|’ Hcci=|:OQ :|
xs

M = [ﬁcai ﬁcci]

~ Ssi +SL.+(1 -2, 0 ~ 0
Hdai=|: 4i 4 0( W) Zy Ii|’ Hdci=|:Q6(S 1:|

My = diag[ﬁdai, ﬁdci]
M, =Xy + BY: Xy + Bl

_ [T - Gy @i _ Gy ®i
Ii = ’ Gi)i = ) GZﬁ =
| 0 0 0
F G
~ oi ~ .
Gin'Z g Giuz[Gdjl}
| 0
N [ B;Wi + i) Bi(Ri + Vi)
ITyi = , g =
i 0 0

My = | iy ﬁhiz}

~ [ XiNii + BiNo XeiNai + BiN4i:|

Ihiy = i / 0
o= [ X.iNsi + BiNsi XyiN7i + BilNs;
hi2 =
L 1 0
7 - ~ ~ M, 0
My = diag[Tfei, yai]s Dpai :[ Ox ]} (6.33)
Moreover, the PID feedback gains are given by
Koi = VX' K =wWix,!

Proof Consider the selective Lyapunov—Krasovskii functional (LKF):

Va(t) = Voo (t) + Vo (t) + Vea (2) + Van (1)
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s t
Vaa (1) = ¢' (1) (Z & (r)ﬂ) @), Vi) = / ()27 ¢(s)ds
t—t

i=1

I
Vea(t) = / ()0 ¢ (s)ds
t—o

0 t
Var(t) = / / , FOM g
-7 -+

Pri 0 _Zxo _ Q0
rels i) 2= [50) o= [5]

M:[Ag" ﬂ ieS (6.34)

With (6.31) in mind and setting w(.) = 0, evaluation of the derivative Va(t) along
the solutions of (6.9) yields

Var(0)l(6.9) = 2 £'(0) (Z & (0P, {Am;m + A £t — g)})

i=1

+2¢(0) (Z &P A £t — r))

i=1

=2¢'(0) (Z & ()P [,4,,,- + Ad,-]) ¢ @)

i=1

s t
25 (Z s,-<t>7>,»Adi) / , f@
t—t(t

i=1

+2¢'(1) (Z&(ﬂﬂ«‘bi) ¢t -0

i=1

=2¢'(0) (Z & ()P [A,,i + Adi]) ¢ @)

i=1

§ t
+2¢(0) (Z & (t)[@,- - PiAdiD / £(s)ds
t

i=1 —t(®)

N t
+2¢' 1) (Z &(r)%) / £ (s)ds
!

i=1 —t(®)

+2¢'(1) (Z & (r)PiAci) ¢t - o)

i=1
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S t
—[2;“0) (Zsm@i) / | E@
i=1 r—t(t
5 t
20— 1) (Zsiu)w,-)/
i=1 t—t(t)
1 al
- [2 £ <Z 3 (t)[PiA,,i + 0]) 10
i=1

é(¢)d¢}

() Ji—n

+2¢'(@) (Zéi(f)[PiAdi - 0; + Wf]) ot —1)

i=1

—2¢'(t—1) (Z &(z)w,-) (it —1)

i=1

21 ¢'(0) (Z sia)@,-) £()

i=1

210 ¢'(t 1) (Z & (r)wi) £(s)

i=1

+2¢'(0) (Z Ei(t)PiAci> ¢ = Q)}dd) (6.35)

i=1

where ®;, ¥; are relaxation matrices injected to facilitate the delay-dependent anal-
ysis. Moreover,

Ve (l(6.9) = &' O Z7'¢(0) = (1 = )¢t =& O 275t — 1)
<{'WEMZ7 ¢ -1 =i’ - DENOEZ ¢ - 1)

t

1 N
= [;’(t) (Z & (t)&“) ¢@)
i=1

m t—1(1)
—(1=—wi't—0Z " - r)] (6.36)
Vea(Dl(6.9) = ¢' &N Q'¢(1) = ¢ (1 — p)Q~ "¢t — p)
_ v tino-!
o) t—1(t) |:§ (nQt®

't = pEBOQ ¢ - p)}dtb (6.37)
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and
0
Va2 (Dl(6.9) = / {éfms,-(rw—l&(r) e+ PEOMEG +¢)}d¢

! . . . N .

= / {;’(:)&-(rwﬂ);(r) — c’(¢)(2&(r)Mﬂ)c<¢)}d¢
-t i=1
t 1

=f {[Apié“(t)+Aci§(f—9)+«4di§(t—T)] M
-7

= |:-Api§(t) + At (t — o) + Agi s (t — T)]

—&’(¢>M—1é<¢>}d¢
1 ! t -1
=0 ) {; OT)Ap M AL ()
+¢'(t — )T ALM T At — 0)
+¢'(t — DT AM T Agi gt — 1)
+20 (T AL M ALt — p)
+20 (T () A M Agic (1 — 1)

+2¢'(t — p)T(OALM T Ayt (t — 1)
—é’(¢)r(r)M—1é(¢)}d¢ (6.38)

It follows that for nonzero vectors ¢(¢), ¢(t — t), ¢(t — p), and the particular case
& (1) = 1 and §,,; () = 0. Therefore, with some algebraic manipulations, we get
from (6.34), (6.35), (6.36), (6.37), and (6.38)

) 1 t
Va(®)l6.9) = 0 /t_r x(t, @) Eis x(t,¢) do (6.39)

where

x(t,¢)=[c'0) a—1) 'a—p) @)

— — —
Eais Epis Eeis  —T06);
— —
- o Euis Heis —TY 6.40
s = — ( . )
° ° C’dfix 0

° ° e —tM!
Bais = Pidpi + ALPi+ 0 + 0] + Z7 + Q7 + (AL M T A
Epis = PsAdi -0 + Wi[ + TA;,I'M_IAL{[
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Eris = PsAci + TA;iMilAci

Bais = —Wi — ¥ — (1 — w2 + A M Agi, Beis = A M A,

Epis=—Q "+t A, M A, (6.41)
When Z;y < 0, V(i,s) € S, we infer from (6.39) that Vz(t) < O for any x (t, ¢) #

0 and all T < p. By Schur complement operations, we express (6.40) for all 0 <
T <pasM; > 0and

B éais PsAgi — O; + ‘I/i[ PsAci —10O; ‘L’Atpi T
o Y —vW'-—(1-wz2' 0 -ty A,
o . -9t 0 A | =
° e M1 0
° ° ° -M |
[ éais PsAgi — O; + lI/,'t Py Aci —00; Q'A;i |
o — U —W —(1-wZ' 0 —oW oAl »
° ° -0 ' 0 Q.Ai_i =& <0
° ° ° —,/\/lil 0
| o ° e —M |
(6.42)
where
Buis = PiApi + AP+ 0, + 0/ + 27 + Q7! (6.43)
Using (6.18), we apply the congruent transformation
. 14 X O
diag[T LT 1], P E2X = [ o 1]

to &y with

Vi = KoiXvi, Wi = KsiXxi, Ri = Kai Xxi
and making use of the algebraic inequalities (6.19), it follows by the Schur comple-
ments formula that the asymptotic stability of the closed-loop system (6.9), (6.10),

and (6.11) is established.
Next, consider the performance measure

o /N
4 Z/ (Zfi(t)[z’(S)z(S) — 7w (5)w(s) ]) ds
0 \i=i

For any w(t) € £(0, 00) # 0 and zero initial condition x (0) = 0, we have
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o /N
J =/0 (Zéi(t)[z’(S)z(S) — v (Dwls) + Vz(ﬂl(ﬁg)D ds

i=1
- Vz(t)|(6_9)

o0 N .
< /0 (Z & (r)[z’(s)z(s) — 2wl ($)w(s) + Vz(t)|(6_9)D ds
i=1

where Vz(t)|(6_9) defines the Lyapunov derivative along the solutions of system
(6.9). Proceeding, we get under arbitrary switching and Schur complement opera-
tions

¢ (9)2(s) — Y ©)w(s) +Va®)l(6.9) = T (1. $)Eis77(1. )

£ PiLi+ G, G

(it —1) o :’:4“,'3 th éilz
Twe)=|tt—p) |, Ei= 0 0 (6.44)

¢(9) e o o —y2I + @D 0

w(t) e o o ° —1

Using (6.18), we apply the congruent transformation

. B X
d1ag[T1 W1, T, T, T» Tz], Pi ! Z=.)C}=|: 6” ?]

to B with Y = KoiXyi, Wi = K Xyi, Ri = KaiXyi, and making use of the
algebraic inequalities (6.19), it readily follows from LMI (6.32) and Schur comple-
ment operations that

2 (9)z(s) — y*w (w(s) + Va(9)l6.9) <0
for arbitrary s € [¢, 00), which implies for any w(t) € £5(0,00) # 0 that J < 0

leading to ||z(¢)|l> < y ||lw(?)||]2 and the proof of H, performance bound is
completed. |

6.1.5 Simulation Examples

In this section, we will demonstrate the application of the foregoing analytical
results on some typical systems examples.

Ilustrative Example A

A model of combustion in rocket motor chambers [442] is considered here for feed-
back stabilization. This model represents a liquid monopropellant rocket motor with
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a pressure feeding system. Under the assumption of nonsteady flow and lumped lag
factor, an appropriate linearized model can be in the form (6.1, 6.2, and 6.3) with
the following coefficients:

pi—1 0 1 01 —pi010
0 0 0 — 7 0 000
Ai = _ )4 0 1 _ {1-] ) Adi = 0 000
2J(1-20) JA=¢)  JA=&)
0 ELe _ELE 0 0 000
0 0
L 0
Bi: Zil-] ,I-}: 1 ,G,:[IOOO],II/I=[04]

Subscript i corresponds to mode of operation as in Table 6.1.

Table 6.1 Data of illustrative example A

Mode Pi ¢

1 0.95 0.105
2 1.05 0.100
3 1.15 0.110

With ¢ being the fractional length for pressure supply, J is the line inertia, E, is
the line elasticity parameter, p is the ratio of steady-state pressure and steady-state
injector pressure drop, and p is the pressure exponent of the combustion process. For
simulation purposes, the nominal values taken are p = 1.02, J =2, E, = 0.95.
Implementation of the developed theorems was accomplished using the LMI-solver
Scilab-5.1 and the ensuing results are summarized in Table 6.2. The results show that
the PID feedback strategy provides improved stabilization for the switched model
of combustion in rocket motor chambers under arbitrary switching among operating
modes.

Table 6.2 Computational results of illustrative example A

Method K,(Ky) Matrix gain y
Theorem 6.1 Ko1 0.4936 —1.1205 —0.3986 —0.2135 3.554

K1 1.8172 —0.9677 —0.6329  0.3558

Kai —0.0195 1.0025 —0.2448  0.3558

Ko 0.4825 —1.1195 —0.3877 —0.3014

K 1.7299 —1.1076 —0.6158  0.3702

Ko —0.0538  0.9785 —0.3762  0.3558

K3 0.5104 —1.1306 —0.4115 —0.2985

K3 1.8384 —1.1213 —0.7045  0.4104

Ka3 —0.1004  0.8856 —0.2448  0.2755
Theorem 6.5 K1 2.3456 —1.2333 1.3611 —0.6775  7.045

K> 2.3502 —1.2287 1.4102  0.6548

K3 2.3611 —1.2205 1.4126 —0.6643
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Ilustrative Example B

For all practical purposes, it is crucial to preserve the standards of water quality in
streams. This can be measured by the concentrations of some water biochemical
constituents. Let z(¢), ¢(¢) be the concentrations per unit volume of biological oxy-
gen demand (BOD) and dissolved oxygen (DO), respectively, at time ¢#. Under the
simplifying assumptions [179, 254] that the stream has a constant flow rate and the
water is well mixed and there exists a T > 0 such that the (BOD,DO) concentrations
entering at time ¢ are equal to the corresponding concentrations T time units ago.
Employing a linearization of the mass balance concentrations about an equilibrium
operating point and using representative data on a single reach of the River Nile, the
growth of (BOD,DO) can then be expressed as

p0] _[-1285 0 7 [p@ —0.15 0 Pt — 1)
q | = |-3263-1975| g0 |T| 0 —010] [qu-1)
(1.2 0 T[u,@®] 0.1 0 T[w,@®
o 14] [uZ(t)_ +[ 0 0.1} [w:(t)}

2, (1) 0.0 01 [p0], [-015 0 @)
0| =1 002]|q0 0 —0.10] | q@)
[0.2 0 ([¢p0)]
10 02]] ¢, ]

The feasible solution of Theorem 6.10 with o = 2, p = 1 yields the delay-
dependent PID controller of the form

uz;() | | 0.8837 —0.0307 || p(r) —0.9945 —0.0513 | | p(¥)
ug1(t) | [ —0.1235 0.0315 gt) | | 0.3505 —0.0265 || (1)

N [0.7113 —0.0114} [f,’_z p(s)dsj|

0.0023 —0.0405 ftt—Z q(s)ds

un()] [ 0.9088 —0.1034[p()] [ —1.1306 —0.0661 [ p(1)
ugp(t) | = | —0.1332 0.0023 || q(t) 0.5123 —0.0265 || ¢(1)

+[ 0.3887 —0.0206] [ I, p(s)ds:|

—0.1661 0.1115 || [* g(s)ds

which renders the water quality system asymptotically stable with y = 2.5115.

Ilustrative Example C

A continuous-time model used in resilience control studies [221] is considered here
where the associated matrices are
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T2 1 1 1 —02 0 06 0
3002 , | 0 —-1 007
10 23"~ 0 —080 —13
212 —1 0.1 0 05 0
100
000
100
000
(1)8 10-10 0.1 0 0]
=100l G1=[0000] wi=| 0030
0000 0 002
(01 .
[—30 1 —11 03 0 04 0
4 0-1 1 A, _| 0 —080 -05
—10-3 -1 [>T 0 -07 0 —1.1
| -10 3 -1 03 0 06 0 |
100
000
100
(000
(1)8 0000 030 0
=|g1| G2=|0000| ¥=| 0020
00 10-10 0 0 0.1

In Tables 6.3 and 6.4, a summary of the computational results of applying
Theorem 6.10 is presented.
An overall summary to be recorded from the foregoing examples is that the three-
term stabilization approach provides flexibility and guarantees a lowest performance

bound.
Table 6.3 Computational results of example C
Method K,(Ky) Matrix gain Matrix norm  y
Theorem 6.10 K, —0.4539 —0.6875 —0.4539 —-0.5389  1.6028 1.653
—0.3725 —0.6348 —0.8746 —0.4215
K1 —0.6025 —0.8305 —0.3592 —0.8884  1.6877
—0.5309 —0.9421  0.0523 —0.1375
Kai —0.3515 —0.7204 —0.4082 —-0.7765  0.9875
—0.4367 —0.8436  0.0724 —0.1425
Ko —0.5014 —-0.7511 —0.4818 —0.6355  1.8668
—0.6021 —0.6802 —1.0065 —0.5545
Ky —0.6501 —1.0549 —-0.5092 —-0.6734 1.7971
—0.5911 —0.8881  0.1421 —0.2345
Ko —0.7555 —0.9135 —0.0524 —1.2564 1.3245
—0.4545 —1.0021  0.0624 —0.1566
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Table 6.4 A Summary of results-illustrative example C

Method Mode 1Kol [|Ks|| [|Kqll 14

Theorem 6.10 1 1.6028 1.6877 1.4305 3.247
2 1.8668 1.7971 1.9513

Theorem 6.1 1 2.4377 3.1445 2.3529 8.688
2 2.6658 3.2312 2.5145

[216] 1 4.6028 4.6445 23.766

[221] 1 5.037 15.455

Remark 6.11 In practice, there are two additional stabilization schemes: propor-
tional integral (PI) and proportional derivative (PD). The gains can be readily gen-
erated from the developed setup by setting K,; = 0 and K,; = 0, respectively, in
the foregoing theorems.

6.2 Discrete-Time Systems

This section will address the problem of control design of switched systems in the
discrete-time domain and looks at the existence of a switched quadratic Lyapunov
function to check asymptotic stability of the switched system under consideration
with and without unknown time delay. Two different H, switched controller design
schemes are established based on the state-feedback and proportional-summation-
difference (PSD) feedback designs. In the state feedback, an improved LMI-based
method is provided. By PSD feedback, a three-term feedback controller gains
is designed for each subsystem such that the closed-loop discrete-time switched
system is asymptotically stable. In both cases, appropriate Lyapunov—Krasovskii
functionals (LKFs) are constructed and efficient parametrized characterizations are
established in terms of feasibility testing of linear matrix inequalities (LMIs).

6.2.1 Introduction

We know that switched systems have hybrid features comprising a family of sub-
systems described by continuous-time or discrete-time dynamics, and a rule spec-
ifying the switching among them [28, 42, 47]. The switching rule, determined by
time or system state, or both, or other supervisory logic decision, yields different
switching signals and decides the categories of switched systems; see for example,
[42, 192, 424] and the references therein. A survey of basic problems in stability
and design of switched systems has been proposed recently in [193]. A basic fact
in switched systems theory is that among the large variety of problems encountered
in practice, one can study the existence of a switching rule that ensures stability of
the switched system. One can also assume that the switching sequence is not known
a priori and look for stability results under arbitrary switching sequences. One can
also consider some useful class of switching sequences see, for instance, [192]. The
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applications using switched systems theory and practical examples include model-
ing of networked control systems (NCS) [196], stirred tank reactor [56], and wind
turbine regulation [186].

In this section, we are interested in control synthesis of discrete-time switched
systems under arbitrary switching sequences, which in some sense complement the
foregoing section. The reasons of considering discrete-time switched systems have
been enumerated in [424]. A multimodal dynamical system, for example, may be
composed of several discrete-time dynamical subsystems due to its physical struc-
ture, and even when all subsystems are of continuous time, the case of considering
sampled-data control for the entire system can be dealt with in the framework of
discrete-time switched systems. Furthermore, experience showed that the extension
from continuous-time switched systems to discrete-time ones is not obvious in most
cases, and the results may be quite different, as also pointed out in [196].

The approach followed in this section looks at the existence of a switched
quadratic Lyapunov function to check asymptotic stability of the switched system
under consideration. To evaluate the interest of this approach for control design
problems, we concentrate on the state-feedback and proportional-summation-
difference (PSD) feedback design problems, deferring other possible design meth-
ods to later developments in subsequent chapters.

6.2.2 Problem Statement

We consider the following class of switched discrete-time systems with time-
varying delays:

x(k+1) = Agx (k) + Dyx(k — d(k)) + Bou(k) + Iy (k)
2(k) = Gox(k) + Hyx(k — d(k)) + Py (k) (6.45)

where x (k) € N is the state vector , u(k) € N is the control input, w (k) € RY
is the disturbance input which belongs to £7[0, 00), z(k) € N7 is the observed
output, o : N4 = [0,00) — S = {l,...,s} is the switching signal, which is
assumed to be piecewise constant function available in real time with N being the
number of modes of the switched system and the scalar d (k) is a time-delay factor
satisfying 0 < d,,, < d(k) < dy, where d;, and dy; are known bounding factors.
The initial condition w(¢) is a differentiable vector-valued function on [—d, 0]. At
an arbitrary discrete time k, the switching signal o is dependent on k, x (k) or both,
or other switching rules.

The matrices of eachmode A; € W**", B; e W™, G; € R4*", H; € R,
D; e W and I'; € W4, @; € H9*Y are real and known constant matrices
describing the jth system

x(k+1) = Ajx(k) + Djx(k —d(k)) + Bju(k) + I'jw (k)
z2(k) = Gjx(k) + Hjx(k —d(k)) + @0 (k) (6.46)
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Remark 6.12 It should be noted that system (6.45) designates a class of discrete-
time systems with multimodes and unknown time delay. This means that system
(6.45) is constrained to jump among the N vertices of matrix polytope

{Aic B3 (DY Gimys Hpioy TSy, @5 ]

Stability and stabilization problems of this class systems render several challeng-
ing issues to the control engineers and designers. In the control design literature
with y(k) € 9P being the measured output, most of the developed methods
focused on either state feedback u(k) = K, x(k), which is a proportional con-
trol with single unknown gain matrix K,, dynamic output feedback using observer-
based controllers x(k + 1) = Ay,x (k) + Dox(k — d(k)) + Bou(k) + K;Cp(x(k) —
x(k)),u(k) = K, x(k) where the unknown gain matrices are two: K, and Kj,
dynamic output feedback scheme with strictly proper transfer function §(k + 1) =
Ac&(k) + Bey(k), u(k) = C, &(k) corresponding to three unknown gain matrices
A, B, and C. or dynamic output feedback scheme with proper transfer function
Ek+1) = Ak(k) + B.y(k), utk) = C. &(k) + D, y(k) corresponding to four
unknown gain matrices A., B., C¢, and D.. In all of the foregoing cases, differ-
ent computational techniques were offered [82, 120]. Apart from the state-feedback
case, the developed techniques are computationally demanding and some of them
are iterative in nature. The degree of success of these techniques to systems with
time-varying delays is generally limited.
In this section, we are interested in control-feedback synthesis of discrete delayed
switched systems under arbitrary switching sequences. The approach followed in
this note looks at the existence of a switched quadratic Lyapunov function to check
asymptotic stability of the closed-loop discrete switched system under considera-
tion. To evaluate the interest of this approach for switched control design prob-
lems, we address both single-term (state-feedback) and three-term (proportional-
summation-difference (PSD)) feedback design problems. By feedback control, we
mean the design of single-term or three-terms feedback gains for each system such
that the closed-loop switched system is asymptotically stable. The results proposed
in this work can be considered as a trade off between highly conservative results
(those using a single quadratic Lyapunov function) and less conservative but those
numerically hard to check.

We seek the development of improved stabilization schemes for system (6.45).
These schemes should possess reduced-order computational requirements. Toward
our goal, we first provide an improved LMI-based state-feedback stabilization.

6.2.3 State-Feedback H ., Stabilization

Let the state-feedback control be u(k) = K,; x(k). The closed-loop feedback sys-
tem becomes
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x(k+1) = Agjx(k) + Djx(k — d(k)) + Ijw(k)
2(k) = Gjx(k) + Hix(k — d(k)) + o (k)
Asi = Aj + BjK,; (6.47)

where K; € R is the state-feedback gain matrix to be determined. Our goal
is to establish tractable conditions guaranteeing closed-loop asymptotic stability of
the origin (x = 0) for system (6.47). The underlying notion is that system (6.47) is
globally asymptotically stable if there is a Lyapunov—Krasovskii function V, which
is a positive—definite function, decrescent, and radially unbounded, and its first dif-
ference AV is negative definite along the solutions of (6.47), thereby proving global
asymptotic stability.

In the sequel we let 8 = (d+ —d*+1), which represents the number of samples
within the delay range d* < d(k) < d*. The main result of subsystem stability is
given by the following theorem:

Theorem 6.13 Given the delay sample number . System (6.47) is delay-dependent
asymptotically stable if there exist matrices 0 < X! = X, 0 < X J’ =45, 0<

WL = W;, Yj and a scalar y > 0 such that the following convex optimization
problem is feasible for all (j,s) € S x S

min yz, subject to

X W, Vjs
PWs —X; 0 X;GiP; XA+ VB X;G
_ ° -W; XjH;@j XjD; XJH;
= . o YU+ r! 0 < 0 (6.48)
° ° ° — X 0
° ° ° ° —1

Moreover, the state-feedback gain is given by
Kgj =YX

Proof We start by introducing the Lyapunov—Krasovskii functional at mode j
(LKF):

Vs (k) = so(k) + Vsa(k) + ch(k)

k—1
Violk) = x' ()Pjx(k), Viatk) = > x'(m)Qjx(m)
m=k—d (k)
1—-d,, k—1
Veek) = Y > x'(m)Qjx(m) (6.49)

s=2—dy m=k+s—1
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where 0 < 77;- = Pj, 0 < Q@ = Q are weighting matrices of appropriate
dimensions. A straightforward computation gives the first difference of AV (k) =
V(k + 1) — V (k) along the solutions of (6.2) Y(j, s) € S x S as

AV (k) = x' (k + 1)Pyxj(k + 1) — x' (k)P;xj (k)
= [Agjx(k) + Djx(k — d(k)) + )] P
x[Agjx (k) + Djx(k — d(k)) + Fjo (k)] — x' (k)P;x; (k) (6.50)
AV (k) = x' (k) Qjx (k) — x"(k — dj(k))Qjx(k — d;(k))

k=1 k—1
+ D AmQixm)— Y xm)Qpx(m) (651)
m=k+1—d(k+1) m=k+1—d (k)
k—d*
AVie(k) = (dy — dp)x" () Qjx(k) — Y x'(m)Qjx(m)  (6.52)
m=k+1—dy
Observe from (6.51) that
k-1 k—1
Yoo X mQixmy= ) x'(m)Qxj(m)
m=k+1—d (k+1) m=k+1—dy
k—dy

+ Y X' mQx(m)
m=k+1-d(k+1)
k—1
< Y X mQjxjim)
m=k+1—d (k)
k7d111

+ ) X m)Qx(m) (6.53)

m=k+1—dy
Then using (6.53) into (6.51) and manipulating, we reach

AV (k) < x"(k)Qjx (k) — x'(k — d(k))Qjx(k — d(k))
k—dy,

+ Y x(m)Qjx(m) (6.54)

m=k+1—dy

Taking into consideration (6.50), (6.52), and (6.54), the following upper bound for
AV (k) can be obtained

AVy(k) = [Agjx (k) + Djx(k — d(K)) + Ijw (k)] Ps
x [Agjx(k) + Djx(k — d(k)) + I'jw(k)]
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+ X' (OIBQ) — Pslx (k) — x"(k — d(k) Q;x(k — d(k))
=¢'(k) & ¢(k) (6.55)

where

AngSij +BQ; —P; tAgj'PsDj Ai'tjPVF/
= = ° DszDj — Qj Dj’Pst
° ° F;’PSFJ-

ck) =[x () x' (k — d (k) o (k) | (6.56)

Note that in (6.55), the case when j = s indicates that the discrete switched system
is described by the jth mode, while the case j # s illustrates that the discrete
switched system is at the switching time from mode j to mode s; see [42] for more
details.

The sufficient condition of internal stability implies AVk < 0 with w(k) = 0
implies that & < O when I, = 0.

Next, consider the performance measure

oo

J=3 <z’(j)z(j) — 72 (Do) )

j=0

For any w(k) € £2(0,00) # 0 and zero initial condition x(0) = 0, (hence
Vs(0) = 0), we have

M

(z’(j)z(j) — v (Ho(j) + Avs|(6,47)> — > AVjl(6.47)
j=0

~.
I
(=]

M

(Zt(j)Z(j) — Yo' (Do) + AVs|(6,47)> -

~.
I
(=)

L

~
I
[=]

=

(zfu)z(j) — Y2 (Do) + Avs|(6,47)> (6.57)

where AVS|(6'47 defines the Lyapunov difference along the solutions of system
(6.47). Proceeding like the foregoing section and considering (6.45) and (6.57), it
can easily shown by algebraic manipulation that

2 (N2() = Vo' (Do) + AVilea7)

=[Gjx(j)+ Hjx(j —d(j) + Pjw(DI'[Gjx; + Hix(j —d(j)) + ®jw(j)]
—y?o' (Ho())

— E]t Q¢ (6.58)
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where
2, Aij’PD]—i-G;H] Ai,j’PSFj—I-th(Dj
Q=| e DiPD;—Qj+H;H; DjPIj+Gy,®; (6.59)
. . [Pl —y*l + @10,
2, =A§,j'PSAXj+ﬂQj —Pj—i-thGj (6.60)

By Schur complements, we express §2 into the form

BQ; —P; +thGj G;Hjl Gt]t-@j A;tj

= ° —Qj—i—HjHj Hj¢j Dj
“= . . —y I+ ote; T (661)

° ° ° —p-1

N
To convexify matrix Q , we define
—1 -1 -1 -1

Xy =P, Xj I'Pj R Wj :Pj Qﬂ)j s Kstj :yj

Upon applying the congruence transformation
diag[Xj, Xj, I, 1]
to Q2 , we finally obtain the form (6.48). This leads to
2
Gjzj — v wiw; +AVjl647) <0

for arbitrary j € [0, co), which implies for any w(j) € €>(0, 00) # 0 that J < 0.

This eventually leads to ||zx||2 < ¥ ||lwk||2 and hence the proof is completed. W

Remark 6.14 It should be noted that the derivation of LMI lower bound d,,, and
the upper bound dj; account for extreme cases of delay factors stemming from
physical consideration. Seeking computational convenience and effectiveness, the
solutions to the problems of stability analysis and control synthesis are cast into
convex optimization in terms of linear matrix inequalities (LMIs) that are handled
using interior-point minimization algorithms. These algorithms have been recently
coded into efficient numerical software.

Had we considered the following class of delay-free discrete-time systems with
state feedback:
x(k+ 1) = Agx(k) + oK),
2(k) = Gjx(k) + @;w(k)
ij = Aj + BjKoj (6.62)

Then Theorem 6.13 specializes to
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Corollary 6.15 System (6.62) is delay-dependent asymptotically stable if there exist
matrices 0 < X! = X;, Y and a scalar y > 0 such that the following convex

optimization problem is feasible for all (j,s) € S x S

min yz, subject to

X ALY
. Nell . LAl . pt .
—X; ijjdji X]Aj—i-ty]Bj XJGJ.
7 — e —y I+¢j¢j Fj 0 <0 (6.63)
° ° — X 0
° ° ° —1

Moreover, the state-feedback gain is given by
Koj =YX/

Remark 6.16 It is significant to observe that Corollary 6.15 provides improved
state-feedback control design result, which extends over similar existing methods
[279, 436].

6.2.4 Proportional-Summation-Difference (PSD) Stabilization

Instead of using standard dynamic output feedback schemes, we take in the sequel
a departure from this research direction and proceed to tackle the design problem in
a direct way. The following feedback controller is proposed:

k
u(k) = Koj x(k) + Kqj (x(k) — x(k — 1)) + Kgj Y x(s)
s=0
= Ko x(k) + Kgj 8(k) + Ks; o (k) (6.64)

Observe that controller (6.64) consists of three terms: a proportional term K, x (k),
a difference term K; &(k), and a summation term K; o (k), and henceforth is
labeled PSD controller. Therefore, it resembles a discrete version of the conven-
tional proportional-integral-derivative (PID) controller for continuous-time systems,
see the foregoing section. Applying (6.64) to system (6.45), we get the closed-loop
system:

¥k + 1) = Agx(k) + Bj[Kaj 8(6) + Kyj o ()] + Djx(k — d(k)) + T k)
2(k) = Gjx(k) + Hijx(k —d(k)) + ®jw(k) (6.65)
The main design result is established by the following theorem

Theorem 6.17 Given the delay sample number ;. System (6.65) is delay-dependent
asymptotically stable if there exist matrices 0 < X' = X, 0 < W' = W,
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0<8 =S8, 0<2Z" =2Z2,), Ky, Ky, and a scalars y > 0 such that the
following convex optimization problem is feasible

min yz, subject to

Xe Wi Vjs
. ﬁoj Ijaj Ijvj
I = L] ch Izwj <0 (666)
° ° 2
where
=X+ W, O XAi,j + y;sBj.
HO = Ld _Wc XVDZ
L ° ° Xy —1
[y +@®; 0 0 X,Gi®; 00
ch = ° -S 0 s Haj = X;H;(pj 00
L ° o —Z 0 00
r t t pt t t pt t t pt
I, = XSD]. XSD]. XSDj
L 1 1 1
- t t t
K TJB 1 K TJB 1 K TJBZ
Muj = Ra; By Kai By Ka; Bj
7 7 t pt
_Ksij KSij KSij +1
I, = diag[-X —-2X+S —-2X+ Z] (6.67)

Moreover, the PSD feedback gains are given by
Koj = VX', Kajs Ky
Proof Extending on (6.49), we introduce the augmented LKF :
Ve(k) = Vio(k) + Via (k) + Vie(k) + 8" (k)S8(k) + o' (k) Za (k) (6.68)

where 0 < 8" = S, 0 < Z" = Z are weighting matrices. It is straightforward to
show that

AVio(k) = [Agjx (k) + Bj(Kg;8(k) + Kyjo (k) + Djx(k — d(k)) + I (k)]'P
x[Agjx (k) + Bj(Kqj8(k) + Kgjo (k) + Djx(k — d(k)) + I'jo (k)]
—x' (k)Px (k) (6.69)

Observe that AV (k) and AV, (k) are given by (6.52) and (6.52), respectively. So
that
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AVe(k) = Vio(k) + Vsa (k) + Vse (k) + [x(k + 1) — x ()] S[x (k + 1) — x(k)]
=8 (k)88 (k) + [x(k + 1) + o (k)] Z[x(k + 1) 4+ o (k)]
—o'(k)Zo (k) (6.70)

From (6.65), we have

x(k+1) —x(k) = (As; — Dx(k) + Djx(k —d(k)) + Bj[Kgj §(k) + Kyj o (k)]

+ (k) (6.71)
x(k+1) 4o (k) = Agjx (k) + BjKaj 8(k) + (B Ksj + 1) o (k) + Djx(k — d(k))
+ (k) (6.72)

Substituting (6.71) and (6.72) into (6.70), using (6.52), (6.54), and (6.69), we cast
AV, (k) into the form

AVe(k) < &' (k) I £(k),
k) = [x'(k) x'(k—d(k) o (k) §'K) o' (k)] (6.73)

where

SJ sj sj sj
m, = e QD |, m=|D; D) D
. o 73;1 ! I I

r t t t

S

m,; = | Kj;B; KB, Ki B!

t t t t t t
| K;B. KLBY K B'+1

m,; = diag[-P;'  -8' -z7"] (6.74)

The sufficient condition of stability AV,.(k) < 0 implies that [T < 0. Following
parallel development to the foregoing section and considering the performance mea-
sure

3

o
j=0

(z’(j)z(j) — Y2 (Hw()) )
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we arrive at

2 (N2() = Vo' (N () + AVile a7

=[Gjx(j) + Hix(j —d(j)) + @j0(DI'[Gjx; + Hjx(j —d(j)) + ®jw(j)]
—y2o' (Hw(j)

—¢l i g (6.75)

where AVC(k)|(6.65) defines the Lyapunov difference along with the solutions of
system (6.65) and

_ _ﬁ,,j ﬁaj ij B thq)j 00
I; = o Il Iy |, Iy = H]t-ﬁpj 00
| o e ]I 0 00
[~y [+ i@, 0 0
ch = ° -S 0
B ° o —Z
_ [BQ-P+GiG;  G)H; Al
I, = . -Q+HjH; D, (6.76)
i . . Pl -1

Using the linearizations
X =P, Wy =P QP! KojXs =Y

along with the algebraic inequalities

—xS'x<o2x -8, —xzlx<2x -2z

we first expand I j via Schur complements and then apply the congruence transfor-
mation

(X, &, 1,1, I, I, I, X, X]
Finally we obtain the desired LMI (6.66). This leads to
thZj - yzw;wj + Avj|(6.65) <0

for arbitrary j € [0, co0), which implies for any w(j) € £2(0, 00) # 0 that J < 0.
This eventually leads to ||zx|l2 < ¥ ||wk]||2 and hence the proof is completed. W

Remark 6.18 In the following corollary, an interesting case is derived:

Corollary 6.19 System (6.62) is delay-dependent asymptotically stable if there exist
matrices 0 < X! = X;, 0<S8"' =S8, 0< Z2' = Z, Vjs, Ka, K, and a scalar
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y > 0 such that the following convex optimization problem is feasible

min )/2, subject to

Xssij

o ﬁoj Izaj Ijvj

T=| e M, M, | <0 6.77)
[ ] [ ]

where
X,G'.d; 00
_ — t Lyt gt ~ sY T
7, :[ X, XSA/’JY—i-_yI”BJ]’ Au=| 0 0o
° s 0 00
R -y [+ @@, 0 0
Il = . -S 0 (6.78)

° o« —Z
Moreover, the PSD feedback gains are given by
Ky=Yx"' Ka K,

This can be obtained from Theorem 6.17 by setting D, = 0, Eq =0, Gy, = 0.
Much like the continuous-time case, there are two additional cases corresponding to
proportional-summation (PS) and proportional-difference (PD) controllers. These
can be readily derived by setting K, and K, respectively, in all of the foregoing
results.

Ilustrative Example D

Consider a linear discrete-time delay system in the form (6.45) consisting of two
subsystems with the following coefficients:

p [0.7001 0.0002 b, _ [ 01501 0.0001
1= 10.0799 0.9505 | 7' T | —0.1001 —0.1002
[ 0.6001 0.1005
Br= _—0.5011}’ = [—0.0204}
G =[0.20100.1011], H; =[—0.4989 0.3001], ®; = 0.8005
s [ 0.7001 0.0002 b, _ | 0-1401 00001
> 7 [ =0.0799 0.9001 |* 7 T | —0.0401 —0.0501
[ —0.7001 0.0805
B2=1 04001 } 2= [—0.0104}

G» = [0.4001 —0.1001], H> = [—0.2001 —0.3001], &; = 0.4001
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Using the LMI-solver Scilab-5.1.1, the feasible solution of Theorem 6.13 with
dy = 2 is given by

y =2.8765, dy =8
Ko1 = [—0.0693 —0.0871], K,12 =[—0.3015 0.2415 ]

On the contrary, the feasible solution of Theorem 6.17 is summarized by

y = 11743, dy =8

Ko =[—0.0582 —0.0883 ], K41 = [ —0.0945 0.0688 ]
K1 =[0.2142 —0.1562 |

Ky =[—0.0713 =0.0914], Kgp = [ —0.0905 0.0935 ]
K = [0.2906 —0.0181 |

The closed-loop state trajectories under state feedback are plotted in Fig. 6.1 and
those under PSD feedback control are plotted in Fig. 6.2. It should be observed
that although all the state trajectories settle down to zero level, the state trajectories
under PSD feedback control are more damped with smaller time to settlement. This
emphasizes the effectiveness of the PSD feedback control since it has three degrees
of freedom or feedback gains.

1 ! ! 1
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05 koo ] 04 Foveoio i
- : : o o : :
8 ; ; g ; ;
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Fig. 6.1 State trajectories under state-feedback controller
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Fig. 6.2 State trajectories under PSD feedback controller

6.3 Notes and References

In view of the numerous papers and articles on switched time-delay systems,
we have selected to cover in this chapter the synthesis of three-term stabiliza-
tion methods. This corresponds to proportional-integral-derivative (PID) feed-
back in the continuous-time format and to proportional-summation-difference
(PSD) feedback, respectively. The main vehicle has been the constructive use of
Lyapunov—Krasovskii functional under arbitrary switching. Different stabilization
and feedback control methods are examined in the next chapters.



Chapter 7
Delay-Dependent Switched Control

7.1 Continuous-Time Systems

In this chapter, we continue the discussion about delay-dependent switched feed-
back techniques and compare among their merits, features, and computational
requirements. We pay equal attention to both continuous-time and discrete-time
systems.

7.1.1 Introduction

Among the large variety of problems investigated in the literature is the stability
analysis and feedback control synthesis of switched systems under arbitrary switch-
ing sequences. Recent reported results are found in [56] using multiple Lyapunov
functions for nonlinear systems and in [42] employing switched Lyapunov func-
tions. Of particular interest in this paper is the class of switched time-delay (STD)
systems, which have widespread engineering applications including network control
systems [170] and power systems [47].

Some theoretical studies were recently conducted for STD systems. In [425],
L,-gain properties for a class of symmetric HTD systems are examined under arbi-
trary switching. In [396], the focus was on asymptotic stability conditions for STD
systems. In [26-28, 31], feedback control design results are developed for discrete-
time STD systems. While [23, 25] treated constant delays thereby leading to delay-
independent results, the work of [370] studied the stability and L;-gain prob-
lems of STD systems with time-varying delays. They have not discussed feedback
stabilization.

In this chapter, we focus on the robust problems of delay-dependent stability,
performance analysis, and H>/H stabilization for STD systems under arbitrary
switching as well as average-dwell time. Improved solutions to these problems in
terms of feasibility testing of linear matrix inequalities (LMIs) are developed based
on selective Lyapunov—Krasovskii functionals (LKFs) for linear STD systems. We
consider the time-delay factor as a differentiable time-varying function satisfying
some bounding relations and derive the solution for nominal and polytopic mod-
els as well as identifying several existing results as special cases. Robust control

M.S. Mahmoud, Switched Time-Delay Systems, 169
DOI 10.1007/978-1-4419-6394-9_7, © Springer Science+Business Media, LLC 2010



170 7 Delay-Dependent Switched Control

synthesis is used to design switched feedback schemes, based on state feedback,
to guarantee that the corresponding closed-loop system enjoys the delay-dependent
robust stability with an £, gain smaller that of a prescribed constant level.

7.1.2 Problem Statement
We consider the following class of linear switched time-delay systems:

X(t) = Asyx(t) + Adoyx(t — T) + Boyu(t) + I's(nw(t)

2(t) = Goyx(t) + Doryu(t) + @onyw(r)

y(#) = Conx(t) + Foyu(t) + Yo nyw(r)

x(@) = B(@), ¢e€l[-1,0] (7.1)

where x(¢) € 0" is the state vector, u(t) € N is the control input, w(r) € NY is the
disturbance input which belongs to £,[0, c0), y(t) € NP is the measured output,
and z(t) € M9 is the controlled output. The matrices A, € N"*", B, € R,
Gy, € NI, Dy € R, Fy € NP Aye € WP, @, € M9, Y, €
NP4 T, € R"*4 are real and known constant matrices.

Extending on [177], model (7.1) represents the continuous (state) portion of lin-
ear hybrid systems. o (¢) : [0,00) — S = {1, 2, ..., S} is the switching signal
that excites a particular mode at any given time instant. It may be determined via
selective procedure leading to a partition of the continuous-state space [333]. Let
S denote the set of all selective rules. Therefore, the linear hybrid system under
consideration is composed of S subsystems; each of which is activated at partic-
ular switching instant. For a switching mode i € &, the associated matrices are
{A;, ..., ¥}

Now, define the indication function

1, o@)=i
0, otherwise

En=[&a0, . en0], &0 = {

Then, the hybrid time-delay system (7.1) can be written as

S S S
£(6) =Y &OAXW) + Y &N Aux(E —T)+ Y &) Biu()

i=1 i=1 i=1

S
+Y EOLw@)

i=1

N N N
Y0 =Y &EOCix(t) + Y &ODu(t) + Y &OWw(r)

i=1 i=1 i=1

S S S
20 =Y EOGix(1) + Y EOFu@®) + ) &O)Pw() (7.2)

i=1 i=1 i=1
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We investigate the problems of delay-dependent analysis and control synthesis
for a class of linear continuous-time switched systems with time-varying delays.
Constructive use of switched Lyapunov functional is the main vehicle for deriving
the main results. For a switching mode i € S, the associated matrices {A;, ..., ¥;}
contain uncertainties represented by a real convex-bounded polytopic model of the

type

A Agi B T; M; Aip Agi Bip Tip
Ci 0 Dy | = { Aip | Cip 0 Dip¥ip |, i€ S} (7.3)
Gi 0 F & p=1 Gip 0 D;p @)

where A; = (Ai1, A2, ..., Aipm;) € A; belongs to the unit simplex of M; vertices

M.
4 A {A,. S =1 = o} (7.4)
p=1

where {A;p, ..., Pip, p =1, ..., M;} are known real constant matrices of appropri-
ate dimensions which describe the jth nominal subsystem.

The delay factor 7 (¢) in system (7.2) is time varying and continuously uniformly
bounded, t(¢) € [0, T¥]

Remark 7.1 The state delay t(¢) appearing in the switched system dynamics (7.2)
are frequently encountered in several system applications, including networked
control systems, chemical processes, population dynamics, and economic systems
[237]. It should be emphasized from the theory of delay differential equations that
the existence of the solutions of a nonswitched linear delay system is guaranteed by
a continuous and piecewise differentiable initial condition. This is carried over to
linear switched delay systems since the state does not experience any jump at the
switching instants.

In the absence of control input (#(.) = 0), system (7.2) reduces to a free switched
system

S S S
i) =Y EOAX®) + ) EOAuxE —T) + Y &N W)

i=1 i=1 i=1

S S
Y(t) =Y E®OCix(t) + Y EOWiw ()

i=1 i=1

S S
2(t) =Y EDOGix(t) + Y &NOPw() (7.5)

i=1 i=1

In the sequel, we consider two performance measures:
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(A) The H, performance measure:

s = [ /0 VY ($)y(s) ds} (7.6)

(B) The H oo, performance measure:

Joo(w) = / [/ (9)2(s) — y* w' ()w(s)] ds (7.7)
0

for a prescribed scalar y > 0. The objective of this paper is to develop delay-
dependent methods for asymptotic stability and switched feedback control design
of system (7.2) using the foregoing measures.

7.1.3 Delay-Dependent Stability

In this section, a model transformation will be used to exhibit the delay-dependent
dynamics. We introduce the following state transformation

;S
Bt) = x(1) +/ Zéi(t)Adi x(s)ds (7.8)
|

into (7.2) to yield

S S N
B =) &EMA; x(t)+ Y &M Biu) + Y &N Lw(),

i=1 i=1 i=1

A = A + Agi (7.9)

Define the augmented state vector ¢/ () = [8'(t) x'(¢)] . By combining (7.8) and
(7.9), we obtain the transformed system

s .S s
(0 = Y sacw+ [ Y &OM s+ Y G0 E B
i=1 =7 =1 i=1

S
+Y GO Lw@)

i=1

N N S
Y0y =Y _E&WCit@) + Y ENOCat(t — 1)+ Y &) Diu()

i=1 i=1 i=1

S
+) & OWw()

i=1



7.1 Continuous-Time Systems 173

S S S
) =) &EOGitW) + Y EOGCautt —1)+ Y &) Fu)

i=1 i=1 i=1

S
+ Y EOPw(t)

i=1

c(t) =¢(), t € [-27,0] (7.10)

where fori € S

- [ [1 [0l A~ [01 A~ _[o
F=[5] m=lo] m=[0] o= ]g) u=q]
[0 4 oo = [0 ~ _[o

For convenience, we introduce the matrices

D. _ . _ 10 o Psi Py .
P,—UP,,U—[OO},’P,—[PdiPXi , i €S (7.12)

Two theorems are established in the sequel to show that the stability behavior of
system (7.2) (or equivalently (7.10)) is related to the existence of a positive definite
solution of a family of linear matrix inequalities (LMIs).

Theorem 7.2 Given the delay bound t* > 0. System (7.10) is robustly stable if
there exist matrices {P}ZN, {Q}ﬁv, Pyi > 0, Pyi, Pxi and scalar y > 0 satisfying
the system of LMIsN (i, s) € S

M, My M G
0

e —7*Q; O
. . —7/21 @, <0 (7.13)
° ° o —/
where
M, = —Pyi — PJ; —Pyi + Py + IN’éiAi ’
° Pxi-i-P;i-i-P;iAi-i-A;Pgi-i-TQs
J— T*chsAdi J— Pz;ifi
Hbz - |:T*P)€SAdi ) HCl == 0 (714)

Proof First, we establish the asymptotic stability of system (7.2). Let the selective
Lyapunov functional V (-) of the transformed system X, be selected as

V(&) = Vo(@) + Va()
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S
Vo) = ¢' (1) (Z&(Uﬁ)c(t), Pi>0,i €S

i=1

t t S
Va(¢) = f ¢ () Ex (Zsi(r)g,») E5¢(s) dads
t—1(t) Jt+¢

i=1
Q;>0,i €S (7.15)

Since the weighting matrices P; > 0, Q; > 0, it follows that V(¢) > 0. Now
using (7.10), (7.11), and (7.12), we get

S S
Vo(¢) = 2¢' (1) (Z &P U ) () =2'0) (Z £@) Py ) B()
i=1

i=1
S .
= 200) (Z (1) Pl ) [ﬁff)}
i=1

s s -
ot P Yl & (Aix (1) + Tiw (b))
co (;S © P’) [—ﬂ(t) x4+ [ &0 Ay x(s)ds

S S
=20'(n) (Z & (1) 7>;A,-> () +2¢' (1) (Z & (1) P{r}) w(r)

i=1 i=1

" S
+20'(0) (Z & (1) Pfﬂ) ¢(60) do
=7 \i=1

S
Va(@) =7 ¢'(@0) (Z s,-(r>EzQiE§) ¢

i=1

t S
= f ¢'(0) (Z E()E2Qi E§> ¢(t) do (7.16)
t—T

i=1

Under arbitrary switching [42], it follows for any nonzero vector x (¢) that a particu-
lar caseis & (1) =1, &, (1) =0, &(t —7) =1, and &, £,(t — ) = 0. Therefore,
with some algebraic manipulations, it follows from (7.7) and (7.15), and (7.16) that

V() + 2 (0)z(t) — y*w' (Hw(r)
=201 () ASPig(t) + 2 ()P Lw(r)

t
bt (VE2Qu L (1) + 2/ ¢ (OYPITiC(0) 4
-7
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t
- f ¢"(0)E2Qs ES2(0) dO — y* w' (s)w(s)
t—1
t
+ [Gié(t) + <D,-w(t)i| |:G,-§(t) + @iw(t)] (7.17)

Using the algebraic inequality 2p'7 < p' ¥ p + 7' ¥~ 7 for any real vectors
7, p, and any matrix ¥! = ¥ > 0 with appropriate dimensions, we have

t t
2 / ¢ (OPITE(6) db =2 / ¢ (1P ExAgix(6) d
1—1 [t
t
< (0P ExAgi Q7 AL ELPE (1) + / ¥ () Qyx(s) ds
-1

t
< fit(l)PﬁEzAdiQ;IAZ,»EEPSQ“U)+/ ¢'(NE2QsE5¢(0) do - (7.18)
-t

In terms of &' = [¢!  w!'], it follows from (7.17) and (7.18) on using Schur
complements that

V(©) + 2 (0)z(t) — 2w (w(r)
< 20" AIPic () + 20" (OP! Tiw(t) + 7 ¢ (1) E2 Q5 ESC (1)

t
+ | Gic () + @gw(r)} [G,-;m + qbiw(r)}

+ T ()P EyAgi Q7 Y AL ESPL (1) — y? w! (s)w(s)

e 5 [¢o .

[Ei+GiGi P +Glo;

| ° —y21 + &P

Ei = APy + PLA; + 1 E2QuES + TP Ey Ay Q' Al ES Py (7.19)

0

Thus, it follows that Joo (w) < 0 ([27], pp. 91) if the following LMI holds:

AP+ PIA; + T E2QyEL TPLE2Aq; PIT; G

° —19, 0 0
. R —)/21 ; < 0 (7.20)
° ° 0o -1

By taking w(fr) =0, I = 0, @ = 0, we obtain the following inequality from (7.20)

V() < ;“’(t)[A,’-Pf + P! A; + 1 E2Q,E5 + GiG,;
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+ TP E2A4i QF ‘AQ,»EQPs]c(t) (7.21)

whose right side is always negative under (7.20). Thus we conclude that V(g) <0
for all ¢ # 0. This implies that x — 0 as t — oo. By Schur complements to
LMI (7.20) and using (7.10), (7.11), and (7.12) we obtain LMIs (7.13) and (7.14)
for all T < 7* and hence system (7.10) is asymptotically stable with disturbance
attenuation y > 0. |

Remark 7.3 It is known [237] that the descriptor model addressed here is a slow-
type state-transformation where the dynamics of x is faster than o in the augmented
vector ¢ and the relative dynamics of state components are implicit in the analysis.
This is in contrast of the descriptor approach of [66] which is a fast-type state trans-
formation employed for nonswitching systems. We note that the application of the
algebraic inequality 2p'7r < p' ¥ p 4+ 7' ¥~ 7 has not introduced additional
matrix variables. Alternatively, methods based on the use of modified inequality like
[324, 370] hinges on the incorporation of an extra term in the Lyapunov—Krasovskii
functional plus the introduction of three additional matrix variables and a nonstrict
matrix inequality. In this regard, the computational load utilizing these methods
would generally be costlier.

Ilustrative Example A

To demonstrate the advantages of the new transformation, consider a switched sys-
tems composed of two time-delay models given by

_ -1 0.5 . -2 2 _ 1 . 0.2 B
Al_|:—0.5—lj|’Ad1_|:_2_2i|7 FI—I:O:|, Gl_[0.2:|’ P =04

| —-1.1 04 | -11 |10 ;|03 _
A2—|:_0'4_0.9i|, Ad2—|:_1_1i|, F2—|:1], G —|:O.1i|, ® =0.6

Table 7.1 summarizes the computational results of different pairs (y, t*) from
which it is clear that as 7* is decreased, the minimum value of y rendering feasible
solutions increases.

Table 7.1 Results of illustrative example A

Method y *
Theorem 7.2 1.469 0.325
2.856 0.271

3.473 0.228
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Ilustrative Example B

A switched continuous time-delay model consists of two identical models with the
data coefficient given by

1,2
-1.9 0 -0.9 0 0.2 0.3
[ 0 —1}’ Ad':[ ~1 —1.1}’ Bi:|:1.3] F":[o.z}
(1 0]

0], G;=[0.1 0.1], D; =04, F, =06, & =0.5
Application of Theorem 7.2 shows that this switched system is asymptotically
stable with disturbance level y = 3.247 for all T < 2.642.

i
A;
Ci

7.1.4 State-Feedback Design

We now exploit the results developed in the foregoing section to design a delay-
dependent switched-state feedback controller based on different criteria. Common
to the design methods is the use of the feedback law

S S
w(t)y =Y &) Kix() =10 Y &) Kil(t)
i=1 i=1

N
23 &0 Kig@) (7.22)
i=1

to derive the closed-loop system

N ;S
(Z0: L) = ) &O) Aut() + f D &) T ¢(s)ds
t—1 i=1

i=1

S
+ ) &) Lw)

i=1

S S
Yy =Y &) Cut(),  z2(t) =Y &) Gl

i=1 i=1
S
+ ) &) Piw()

i=1
C(t) = ¢(t), t € [-27,0] (7.23)
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where

Api = |:_OI Ai +]BiKii| = A; + E\BiK;,

Cvi=C; + D;K, Gy =G; + FiK; (7.24)

For convenience, we introduce the block matrix

(7.25)

Yy =pl= |:ym‘ yoii|

Vai Vi

7.1.5 H Feedback Design

By considering the Hoo performance (7.7), the following theorems summarize the
main results:

Theorem 7.4 Given the delay bound t* > 0. The Heo state-feedback controller
(7.22) renders system (Xy) asymptotically stable with a disturbance attenuation
level y for all w(t) € L0, 00) if there exist matrices {Y}Y, {Q}, {2}V, (L}
satisfying the system of LMIs

Qai i i 4 Vi
e -0, 0 0 M,

. ° _y21 ®; 0 <0 (7.26)
e o e -1 0
[ ] [ ] ® ° _QS
subject to
[(/Li +LH/2 (2 +y;,-)/2} -0
° (ydi ‘|’y‘th)/2 -
,Ci—E{ 2 Zi_ vi)/2
[( S ((y,u —33)365-))//2} =0 720
where

0. |:ydiA§ + AiVai + BiZi + ZIBE YL 4+ V. + Ay + Bi£ii|
“ i y)t” + Vi — y{t)l = Voi

R yéin +Z;Fit o 0 - [n
i = |:y;tG§ +‘C§Fi[ o S = TAL Qs |’ e = 0 (7.28)

The switched Hso-controller feedback gain is given by K; = Z; yd—l.l, i €S8

Proof It follows from Theorem 7.2 that system (XY%) is asymptotically stable with
a disturbance attenuation level y if the following LMI
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AP+ Pl A + T E2QuEL TP Es Ay P G,
° —19, 0 0
. . —y21 @;
° ° 0o -1

<0 (7.29)

has a feasible solution. Using (7.24) and (7.25) and applying the congruence trans-
formation

C=diag[P', I, I, I, P, =V, i €S
under arbitrary switching, LMI (7.29) becomes

VIAL + A+t VI, QuENY; tE2Agi T VIGY,

° —79y 0 0
. . —y21 ; < 0 (7.30)
° ° 0 —1

Defining Q, = Q;l allows us to deal with the quadratic terms like Y;i Q;l Y,; via
Schur complements. Then introducing the linearizations K;)y; = £; and K; Yy, =
Z;, which constrain the choice of £; and Z; via the inequality

L Z;
|:yxi ya’ii| z0

to limit the selection of the gain K; to single value. To put the foregoing inequal-
ity in a standard LMI, we express it in the form (7.27). Finally, using (7.11) and
(7.25) with some standard manipulations, we readily obtain LMIs (7.26) — subject
to (7.28). |

Remark 7.5 Indeed, there are other ways to handle the multiple values of the state-
feedback gain through the introduction of relaxation variables, invoking bilinear
matrix inequalities or iterative LMI procedure. It is felt however that the imposed
constraint (7.27) provides less conservative results.

7.1.6 H;, Feedback Design

By considering the H, performance (7.6), the following theorems summarize the
main results:

Theorem 7.6 Given the delay bound t* > 0. In the absence of input disturbance
w(t) = 0, the switched state-feedback controller (7.22) is an H,-optimal controller
for system (X}) if there exist matrices {Y}Y, {Q}N, {2}V, {L}’lv satisfying the
system of LMIs
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Xai Xpi X
e —O9, O <0 (7.31)
° o —J

subject to

[(zi+cg)/2 (zi+y;,.)/2}+[(£i—£§)/2 (Zi_y;i)/2i| =0
. (Vai +Y7;) /2 o YVai =Yy) /2] ~
(7.32)

where

s |:ydiA~lt< + AiYai + BiZi + ZIB! =Y 4+ Y+ Ay + Biﬁi]
“ d }§i+'3&i_'355_')%i

o 0 - [yi.ct+ ZD!
= [eane ] 2= 3081 ES @3

The H;-controller feedback gain is given by K; = Z,-yd_il, i € N. An upper
bound on the H, performance measure is given by

S
Jy < Jt 2 [;’(@Za(r) Pi£(0)

i=1

0 N 12
. / CVE2 Y E (1) QuEL(s) ds} (7.34)
-t s=1

Proof To establish the system stability, we consider the Lyapunov functional (7.14)
for system (X%) with w = 0. As a consequence of Theorem 7.2, it is not difficult
to see that

V@) < Et(l)[/lf{,-?i + P{ Ak + T E2QsE) + TP’EzAdQSIAZ,-EEP}i(I)

(7.35)
For asymptotic stability and since C_',’a- Cri > 0, it is sufficient that
AP+ P A + 1 E2Q EL TP EyAg; C,
d "Qs 0 < 0 (736)

° ° —1

and thus we conclude that V() < O forall ¢ # 0 and V(¢) < 0 for all £. Now, by
applying the congruence transformation @ = diag [Pi_l, I, I, 1 ] , Pi_l =YV
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to (7.36) along with the linearizations K;Yy; = L;, K;Y4; = Z; and using (7.11)
and (7.25), we readily obtain LMI (7.31) subject to (7.28) and (7.33).

Next, we examine the H, performance. By considering (7.35) and (7.36), it fol-
lows that

V() < =y 0y@)
Integrating both sides over the range [0, ], we obtain
tr S ~ S _
- fo Y )y(rdr > & (tp) Y &) Picliy) — ') ) &) Pig(0)
i=1 i=1

/ 4“ (s)EzZES(t) Qs ES¢(s) dsd
tf—1 J— —

+f / C'(S)Ezzés(t) Qs E5¢(s) dsdf (7.37)
—7 J—0 —1

In view of the asymptotic stability of system (X} ) and letting 1y — o0, we have
S -
gt > &) Pig(ty) — 0

Iy 157 N
/ ¢'(s)Er ZS“(I) O, E5¢(s) dsdd —> 0
tp—t J—0

s=1
and therefore (7.37) reduces to
o0 S —
/0 Y (r)y(r)dr < £'(0) Z%‘t () Pi¢(0)
i=1

/ / K (s)EzZam Q,ES¢(s) dsd) =
—T JI+

s=1

S
lyll2 < [c’w)Za(r) Piz (0)

i=1
1/2
+1 / ¢ (S)Ezzés(l) Q ES¢(s) ds}
s=1

=Jt (7.38)

and the proof is completed. |
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Remark 7.7 Had we considered the delayed-state feedback-control law

S
u(t) =Y &(t) Kai x(t — 1)

i=1

we would have used the state transformation as

t S
B(1) = x(1) +/ Z-‘Ei(t) [Agi + BiKai] x(s)ds (7.39)

=T =1

On substituting (7.39) into (7.1), it yields

S S
B) =D &) (A + BiKail x(t) + Y _ &(1) Fiw(®) (7.40)

i=1 i=l1

A little algebra gives the transformed system:

N ;S
(Zar): L) = Y &) Aaut (@) + / D &) Vi t(s)ds
i=1 =T i=1

N
+> & (@) Tiw()

i=1

S S
2(t) =Y &) Gig(t) + Y _ &) Piw(t)
i=1 i=1

¢(s) = k(s), s € [-27,0] (7.41)
where

0 A+ Bini:|

7 ] (7.42)

Agki = [

Taking into account the matrices of (7.24) and (7.25), we could have established a
result parallel to that of Theorems 7.4 and 7.6 by using K; — Ky;, i € S.1Itis
thus not surprising to find that the results on both instantaneous and delayed state
feedback are equivalent. This, in fact, strengthens the state transformations (7.8) or
(7.39) as vehicles to derive pertinent delay-dependent dynamic models.
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7.1.7 Simultaneous H;/H Design

Extending on the foregoing results, we consider below the simultaneous H>/Heo
control design problem [161, 168], which can be formally phrased as

Determine a state-feedback controller that achieves the minimization of H» per-
formance measure (7.5) and satisfying an Ho, norm bound within a scalar y .

Technically, the control objective is to minimize the output energy of y(¢) sat-
isfying the prescribed H~, norm bound of the feedback system from w(¢) to z(z).
A solution to the delay-dependent simultaneous H;/H o control for switched time-
delay systems is established by the following theorem:

Theorem 7.8 Given the delay bound t* > 0 and a prescribed constant vy > 0. The
switched state-feedback controller (7.22) with gain matrix K; = Z; ydj.l, i e S
is a simultaneous Hy/Heo controller satisfying the performance measure (7.7) for
system (Zy) if there exist matrices (Y}, {Q}, {Z}, (), w, &, (R}Y
such that the system of generalized eigenvalue problem

min |:A + Tr(W)i|
subject to LMIs (7.26), (7.27), and (7.28), (7.31), (7.32), and (7.33)

[—W X‘} -0 [—k ¢'(0)E,

o R, o« V. :|<O, V@i,s) € S (7.43)

has a feasible solution

Proof On observing that

S
£ &0 Pic0) £ h=

i=1

S
kA $OEY EW) VI E{p0) < 0 (T.44)

i=1

and in similar way using the cyclic properties of matrix trace

0 s
/ ¢'(5)E2 Y &(1) QuEAL(s)ds

i=1

0 S
:f Tr [x’(s) D &) st(s)}ds

-7 i=1

S
=Tr [XX’ Y EW Qs}

i=1
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S
= Tr[xf ng(t) RS_IX} <TrW) =
i=1
N
~WHX'DY EORT!X <0 (7.45)
i=1

where X X' = fi) r(O)x’(s)x(s)ds. Under arbitrary switching and utilizing the
results of Theorems 7.4 and 7.6 and achieving the objective of simultaneous
'H>/Ho control leads to the minimization of [A + Tr(W)] subject to LMIs (7.26),
(7.27), and (7.28) and (7.31), (7.32), and (7.33). Relations (7.44) and (7.45) are
expressed by LMI (7.43), which completes the proof. |

Ilustrative Example C

The following switched time-delay model is considered for state-feedback design:

00 -1 -1 0 1
A1=|:011|7Ad]=|:0 _0'9], Bl:[l] F1=[1}

Gi=[1 0], D;j=04, F; =02, &1 =04

01 -1 -1 0 1
A2=|:01] Ad2=|:0 _0.9], Bz=|:1], Fz=[1}

Gy=1[1 0], D,=06, F, =04, &, =0.6

In Table 7.2, we provide the results of some methods to compute the state feed-
back gain

It is interesting to see that the computational results of Table 7.2 are in full agree-
ment with those of the foregoing examples.

Table 7.2 Results of Example 4.1

Method y * K;
Theorem 7.4 2.201 1.882 —0.1045 —1.591
—0.2284 —1.824
Theorem 7.4 1.671 2.648 —3.435 —0.764
—1.318 —1.753
Theorem 7.6 1.823 1.963 —3.358 —1.024
—1.273 —1.842
Theorem 7.6 1.588 2.745 —2.667 —1.405
—2.143 —1.426
Theorem 7.8 2.051 1.875 —1.462 —1.981
—1.534 —1.955
Theorem 7.8 1.444 3.125 —1.502 —1.977

—1.604 —1.988
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Remark 7.9 The results developed in this paper can be extended in a straightfor-
ward manner to the case of linear time-delay systems with real convex polytopic
uncertainties of the form:

[Ao As B, C, Go]eaé {[A,,(a) Ad(@) Bo(@) Cola) Go(a)]

v v
= Z Olj[AOj Adj ng Coj Goji| s Z oj = 1, oj = 0}
j=1 j=1

by simply developing the different theorems at each of the v vertices and solving the
resulting system of LMIs. Along similar lines, dynamic output feedback controllers
could be designed. Research results on these topics and others will be reported
shortly.

7.2 Discrete-Time Systems

Switched models containing continuous and discrete states that affect their dynamic
behavior are frequently occurring in many physical systems, including a variety
of power systems [389], chemical processes [41], and mechanical systems [47]. A
wide class of switched systems composed of several discrete subsystems and a rule
that governs the switching between these subsystems has received great attention in
the past decade because of the fast development in computing technologies, which
helped improve the efficiency of switching between systems or controllers [28, 42,
47, 174, 193] and the references cited therein.

Delay-dependent methods are usually developed to take the information about
time delay into consideration in the process of controller design. By and large,
delay-dependent methods are regarded as more practical and yield less conservative
designs. Results pertaining to discrete-time systems with state delay are found in
[25, 159, 213, 273, 345, 393] for nonswitching systems and in [41, 50, 217, 432,
437, 439] for topics on classes of switching systems.

7.2.1 Introduction

In [368], a descriptor-transformation plus a free-weighting equation are employed
to study a class of linear switched discrete-time systems with mode-dependent
bounded delays. Delay-independent LMI-based stability and state-feedback sta-
bilization conditions are derived in [298]. Robust H,, control and stabilization
based on multiple Lyapunov functions is provided in [149] for a class of lin-
ear switched continuous-time systems. The results of [50] extended the method
of [368] to time-varying delays and bypassed the shortcomings of the descriptor
transformation; however, the solution conditions are expressed into nonstrict LMIs.
Later on in [372], the stability analysis was undertaken for a class of differentiable



186 7 Delay-Dependent Switched Control

time-delay functions thereby generalized the results of [50, 368]. However, employ-
ing a bounding inequality paves the way to ample extensions. In [169], the focus was
on formulating a switching rule to stabilize a given switched system with time delay
using a common Lyapunov functional method. By using a suitable discretization,
the work of [138] converted a linear switched continuous-time system into a linear
switched delay-dependent discrete-time system and hence developed a robust con-
trol synthesis. Recent developments can be found in [76, 88, 90, 130, 297], where
delay-dependent stability method was provided in [76] for sufficiently small delay.
In [90], stabilization strategies for a class of switched discrete-time systems based
on trajectory independent and trajectory dependent were developed using the notion
of average dwell time. For a class of continuous-time systems with time-varying
delays, methods for exponential switched stability and stabilization methods were
presented in [130] using Riccati-like equations. In [297], the problem of design-
ing state-feedback controllers for a class of continuous-time systems was addressed
using arbitrary switching rules. It appears from the available results thus far that
stability and stabilization problems of classes of nonlinear switched discrete-time
systems have received little attention.

Therefore, in this section, inspired by the results of [279, 424, 438], we study
a class of nominally linear switched discrete-time systems with time-varying
delays, bounded nonlinearities satisfying some Lipschitz conditions and real convex
bounded parametric uncertainties in all system matrices. Specifically, the problems
of robust delay-dependent £, gain analysis and control synthesis are investigated
for Lipschitz-type nonlinear switched systems under arbitrary switching sequences.
We develop new criteria for delay-dependent stability and feedback stabilization for
such class of switched state-delay systems. The main vehicle is the constructive use
of an appropriate switched Lyapunov functional coupled with Finsler’s Lemma and
a free-weighting parameter matrix. The delay-dependent £, gain analysis is utilized
to characterize linear matrix inequality (LMI)-based conditions under which the
linear switched state-delay system with polytopic uncertainties is robustly asymp-
totically stable with an £, gain smaller than a prescribed constant level. Then, robust
control synthesis is used to design switched-feedback schemes, based on state-,
output-measurements or by using dynamic output feedback, to guarantee that the
corresponding closed-loop system enjoys the delay-dependent robust stability with
an L, gain smaller than a prescribed constant level. Several significant results for
classes of discrete-time switched systems are derived as special cases.

7.2.2 Problem Statement

We consider a class of nonlinear switched discrete-time systems with state-delay
described by

Xkl = AoXp + AdoXik—d, + Boup + Twy
+ fo (xi, k) + ho (x(k — dy), k), 0 €S
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xx=a, k=—-d,—d+1,..0 (7.46)
Yk = Coxi + CaoXk—d, (7.47)
2%k = Goxp + GuoXp—a, + Dot + Pywy (7.48)

where x; € 0" is the state; u; € N is the control input; wi € N? is the disturbance
input which belongs to £,[0, 00), yx € NP is the measured output; zx € N” is the
controlled output. The state delay di appearing in the hybrid system dynamics is
frequently encountered in several system applications, including networked control
systems, chemical processes, population dynamics, and economic systems [216]. In
the sequel, it is assumed that dj is time varying and satisfying d < di < d,
where the bounds d > 0 and d > 0 known are constant scalars. The initial con-
dition sequence {ay, k = —d,—d +1,.., 0} is given. The unknown functions
fo = foGxr, k) € R, he = he(xk, k) € N are vector-valued time-varying non-
linear perturbations with f5(0,¢) = 0, hs(0,¢) = 0 V ¢ and satisfy the following
Lipschitz condition for all (x, k), (X, k) € R" x N:

[ fo ok, k) — fo i, O] < o || F (xr — Z0)]]
ho Xk—dy, k) — ho Ri—q,, O < B |I1H (xk—aq, — Xk—a)|l (7.49)

for some constant 8 > 0 and F € RW"*", H € N"*" are constant matrices. Note as
a consequence of (7.49), we have

I fo G, I < a [IF xill, o (Xk—aq I < B IIH xk—q |l (7.50)

Equivalently stated, condition (7.49) implies that

[fé(Xk, k) fo (xi, k) — Olzxf{FtFXk] <0
[hf,(xk_dk, k)ho (Xk—gy » k) — ﬁ2x,§_dkaka_dk] <0 (7.51)

Extending on [174], model (7.46), (7.47), and (7.48) represents the continuous
(state) portion of a nonlinear hybrid system. The particular mode o at any given
time instant may be a selective procedure characterized by a switching rule of the
form

okr1 =8(0k, xk), 6:SxNR'" —> S8 (7.52)

The function 8(.) is usually defined using a partition of the continuous-state space.
Let S denote the set of all selective rules. Therefore, the linear hybrid system under
consideration is composed of N subsystems; each of which is activated at a par-
ticular switching instant. For a switching mode i € S, the associated matrices
{A;, ..., ®;} contain uncertainties represented by a real convex bounded polytopic
model of the type
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A; B Agi T; £ A M; Aip Bip Aai T
C;i Cy , [hl] = Z)»jp Cip Caip
G; Ggi D; &; ! p=1 Gip Gdip Dip (pip
M;
S iy | 17 eS 753
Lp h ’ (IS ( . )
p=1 r

where A; = (X1, Ai2, ..., Aim;) € A belongs to the unit simplex of M; vertices

M;
ARV Y =1, k20 (7.54)
p=1
where A;p, ..., @ip, p = 1,..., M; are known real constant matrices of appropriate

dimensions, which describe the linear portion of the ith nominal subsystem:

Xkl = Ajxp + AdgjXk—aq, + Bjug + I'jwg + fj(xx, k) + hj(x(k —di), k)

xk=ox, k=-d,—d+1,..,0 (7.55)
vk = Cjxg + Cajxi—q, (7.56)
2k = Gjxx + GyjXk—q, + Djug + D jwi (7.57)

Remark 7.10 As indicated in [438], the polytopic-type uncertainty in (7.53) and
(7.54) can be used to describe the parametric uncertainty more precisely, and cover
wider classes of uncertainties than the norm-bounded uncertainty. In fact, (7.53)
and (7.54) is a generalization of the so-called matching condition. It is important
to note that if the lower and upper delay bounds in the become identical, that is,
d = d = d, then the time delay becomes a constant delay. Also, if d only changes
when the system mode is switched then the time delay becomes a mode-dependent
constant delay; thus the time-varying delay considered here covers the previous two
cases.

Definition 7.11 Systems (7.46), (7.47), and (7.48) with w(.) = 0, u(.) = 0 is said to
be delay-dependent asymptotically stable, if it is asymptotically stable in the sense
of Lyapunov for the prescribed delay range d < di < d. If this occurs for all admis-
sible uncertainties satisfying (7.53) and (7.54), then it is called delay-dependent
robustly asymptotically stable. If in addition it satisfies ||zx|l2 < y||wkll2, then it
achieves a prescribed disturbance attenuation level y .

Definition 7.12 Systems (7.46), (7.47), and (7.48) under the feedback control
u(t) = Ux(t)) with w(.) = 0 is said to be delay-dependent asymptotically sta-
bilizable, if the closed-loop system is asymptotically stable in the sense of Lyapunov
for the prescribed delay range d < dy < d. If this takes place for all admissible
uncertainties satisfying (7.53) and (7.54), then it is called delay-dependent robustly
asymptotically stabilizable. If in addition it satisfies ||zk|l2 < y||wkll2, then it
achieves a prescribed disturbance attenuation level y .
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Our purpose hereafter, in the light of Definitions 7.11 and 7.12, is to develop
robust criteria for delay-dependent asymptotic stability and stabilization of system
(¥y) and then design appropriate £, feedback controllers that guarantee robust
delay-dependent asymptotic stability with a prescribed performance measure.

7.2.3 Delay-Dependent L, Gain Analysis

In this section, we derive robust criteria for delay-dependent asymptotic stability
of system (X ;). The major thrust is based on the fundamental stability theory of
Lyapunov, which states that for asymptotic stability, it suffices to find a Lyapunov
function candidate V, (xx, k) > 0, Vxx # 0, k € Z satisfying AV, (xk, k) =
Vo (Xk+1,k + 1) — Vo (xx, k) < 0. We apply this theorem hereafter under arbitrary
switching. The following theorem summarizes the main result.

Theorem 7.13 Given d > 0 and d > 0. Switched systems (7.46), (7.47), and (7.48)
with uy = 0 is delay-dependent asymptotically stable with an L, — gain < y if
there exist matrices 0 < 79; =P, 0 <Pl =P, fj, 0< O =0, 0<W =
W, {M;, j=1,..,5}, VY(j,s) € Sand scalars y > 0, o > 0, k > 0 satisfying
the LMIs for (j,s) € S

X\jA’Vj—}-AthX\;—i-ﬁjs <0 (7.58)

[Py +dW M —dW  —M, 0 0 —dM; 0
° — &) —Mz—Mtz Mﬁt Mg —dM, G,

_ ° ° — &3 —Mﬁt —./\/lg —d_./\/l3 thj
Pjs = ° ° ° —ol 0 —-dMs4 O
° ° ° ° —xl —cz./\/ls 0
° ° ° ° ° —dW @;-
i ° ° ° ° ° ° —)/21 |
(7.59)

Ey=P;—d—d+1)Q—adW — My - M, —ca*F'F

M+ My +Q—«pH'H, Aj=[~1 Aj Agj 1 10T7;] (7.60)

-
=3

Proof In the sequel, we use &, = x;,+1 — X, and consider the following switched
Lyapunov—Krasovskii functional

V) 2 Va(k) + Vipk) + Ve(k) + Va(k)
k—1
Vak) = x; Pixi, Vip(xk, k) = Z x; Ox;j
J=k—dy
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—d+1 k—1 - k—1
Vel =Y Y xhQx, Valo= ) Y & wg
m:_d_+2 j=k+m—1 m=—d j=k+m
0<Pl=P.0<Q =0 0<W =W (7.61)

Define AV (k) = V(k+ 1) — V(k), along with the solution of (7.55) we obtain for
all (j,s) eS xS

AV (k) = xp g PsXpq1 — x Pjx (7.62)
k k—1
AV (k) = Z xh Qxpy — Z x; Ox;
m=k—dj41+1 j=k—dy
k—1
= xj Oxy — x,tﬁdk OXj—q, + Z xh Qxpm
m=k—dj41+1
k—1
- Z xltn Qxm
m=k—d+1
k—d
<xp Qu—xf_g4 Qg+ D xb Qxn (7.63)
m=k—d+1
k—d
AVe(k) = (d —d) x; Qu — Y xpy Qi (7.64)
m=k—d+1

k—1
AVa(k) < d(iksr —x) Wi —xi) —d Y & W (1.65)

m=k—d

Note that in (7.62), the case when j = s shows that the switched system is described
by the jth mode, whereas the case j # s represents that the switched system is at

the switching times from mode j to mode s [42].
Since xg—q, = Xk — Zﬁ;lk_dk &n, then for free-weighting parameter matrices

M,, p=1,...,5 wehave

Tkom) =[xy, b xl_y fRUEL] M = [ MM MG M, ML 0]
S=[01-100—dI] (7.66)

such that the following equation holds

k—1
2 ) T (k, m) MSx(k,m) =0 (7.67)
J=k—dx
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On considering (7.62), (7.63), (7.64), and (7.65) in the light of (7.61) for dx <
d, wy =0, itis not difficult to show that AV (k) < 0 is equivalent to the following
set of inequalities:

k—1
Y ®(kom) PyRk.m) <0, (s.j) €N x N
m=k—dj,
—Pj+dW My —dW  —M, 0 0 —dM
° — &) —./\/lz—./\/lé ./Vla Mts —cf./\/lz
B ° ° —&3 —Mﬁt —/\/lg —L{M3
s ° ° ° —ol 0 —dMy
° ° ° o —kI —dMs
[ ) [ ] [ ) [ ] [} _d-W
(7.68)
More importantly, in view of (7.46) with u; = 0, w; = 0, we have
Aj R(k,m) =0 (7.69)

where A corresponds to A; j in (7.60) with I'; = 0. Application of the Finsler’s
Lemma to (7.68) and (7.69) with x(k, j) = x, PY/ =P, A =2Z' X, =B, and
and taking into account (7.51) via the S-procedure, we readily obtain LMI (7.58) as
desired, which establishes the asymptotic stability.

Consider the performance measure

K
Jk = Z <Z;~Zj - yzw;wj )
j=0
For any wy € €>(0, 00) # 0 and zero initial condition x, = 0, we have
K
Jk < Z <thZj — yzw;wj + AV(j))
j=0
Standard algebraic manipulation using (7.48) leads to
dizj —yPwhw; + AV(j) =X (k, m) Pis Xk, m)
Xk, m) = [X' (k,m) wt] (7.70)

and 73js is given by (7.59). It follows from [279] for the switched system (7.46),
(7.47), and (7.48) to be asymptotically stable with an £, — gain < y that z;z =

yzw; w; +AV(j) <0, Vj € {0, K} holds for arbitrary switching, which in turn
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implies that Jx < 0. The desired asymptotic stability result is achieved by Finsler’s

Lemma and LMI (7.58) subject to (7.59). |
In the sequel, we provide several robust stability results in terms of the following

corollaries:

Corollary 7.14 Given d > 0 and d > 0. Switched system (7.46), (7.47), and (7.48)
with uy = 0 and vertex representation (7.53) and (7.54) is delay-dependent asymp-
totically stable with an Lo — gain < vy if there exist matrices 0 < 73; =Pj, 0<

Pl=P. X;, 0<Q =Q 0<W =W, (M, j=1..5 (js) e
{1,2,...} and scalars y > 0, o > 0, « > 0 satisfying the following LMIs for
(j,s)es

XjAjp+ AL X+ Pjps <0 (7.71)

[Py +dW My —dW  —M, 0 0 —dM; 0

. —Ep —My— My My M§ —dM;y G,
] c e B -Mi-Mi-dMs G,
Pjps = ° ° —ol 0 —dMy 0
° ° o —«l —d_:/\/ls 0
° ° ° ° —dW @;g
L ) ° ° ° ° o —yl |
(7.72)
By =Pjp—d—d+1)Q—dW — My — M, —ca’F'F,
Ajp=[-1Ajp Ayjp 110T7,] (7.73)

Proof Obtained from Theorem 7.13 by using the vertex representation (7.53) and
(7.54) to get (7.72) from (7.59).

blacksquare

Corollary 7.15 Given d > 0 and d > 0. Switched system (7.46), (7.47), and (7.48)
with ux = 0 is delay-dependent asymptotically stable if there exist matrices 0 <
73;=7>j, 0<Pl=P, Xj, 0<Q =9, 0<W =W, {M;, j=
1,...,5}, Y(J,s) € S and scalars o > 0, k > 0 satisfying the following LMlIs for
(j,s)es

—Py +dW M; —dW  —M, 0 0 —Cle
° -5, —My-M), M, M —dMy
5 — &3 —Mﬁt —./\/lg —CZM3
Pjs = ° —ol O —CZM4 (7.75)

° o —«kI —dMs

° ° o —dW

Aj=[—-1A; Agj 110] (7.76)

° o o o
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Proof Obtained from Theorem 7.13 by substituting wy =0, [; =0,and @ = 0.

Remark 7.16 We note from that the £,— gain under arbitrary switching can be
looked as the worst-case energy amplitude gain for switched system (7.53) and
(7.54) over all possible inputs, switching signals, and all admissible uncertainties.
The functional (7.61) is called a switched Lyapunov functional (SLF) since it has
the same switching signals as system (7.46), (7.47), and (7.48), which is known to
yield less conservative results than the constant Lyapunov functional

k—1 —d+1 k—1 — k—1
t t t
rnt X0t Y Y degt Y Y gws
j=k—dy m=—d42 j=ktm—1 m=—d j=k-+m

Remark 7.17 Among the novel features of the developed approach is the arbitrary
selection of the matrix X j» which helps much in the feedback stabilization later on
as well as in the numerical simulation. Another feature is the strong delay depen-
dence of the stability criteria through the upper bound d and the number of delayed
samples as represented by d — d + 1.

Remark 7.18 The main stability result is derived from feasibility testing in the
enlarged state space in contrast with similar techniques [50, 138, 217, 273, 279,
368, 432]. The novelty of our approach relies on the deployment of Finsler’s Lemma
in conjunction with a set of free-weighting matrices without using bounding tech-
niques to ensure that the system matrices are readily separated from the Lyapunov
matrices. This decoupling feature simplifies numerical implementation and, as will
be shown in the subsequent sections, paves the way to flexible feedback stabilization
synthesis. A simple comparison would support our intuition that the LMI results are
less conservative and in the nonswitching case are superior than the existing meth-
ods [345]. The optimal £, — gain of switched system (7.46), (7.47), and (7.48) can
be determined by solving the following convex minimization problem over LMIs:

Minimize y
s.t. LMIs (7.58) and (7.59), ¥ (j,s) € S x S
Pi, Ps, Xj, O, W, (M, j=1,..,5), ¥(j,5) €S, y>0,0>0, k>0

which can be conveniently solved by the existing software [74].

Stability results for the linear switched system

Xkl = Ajxp + AdjXk—a, + Bjup + Ijwy

xx =0, k=—-d,—d+1,..0 (7.77)
Yk = Cjxg + Cajxp—a, +¥Yjwi (7.78)
2%k = Gjxg + Gyjxp—dq, + Djup + Djwi (7.79)

is provided by the following theorem
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Theorem 7.19 Given d > 0 and d > 0. Switched system (7.46), (7.47), and (7.48)
with uy = 0 is delay-dependent asymptotically stable with an L, — gain < y if
there exist matrices 0 < P, =Pj, 0 < Py =Py, X;,0<Q =0, 0<W =
W, (M, j=1,..,5}, (j,s) €{l,2,..} and a scalar y > 0 satisfying the LMIs
for (j,s) €S

XiA; + A X +Pjs <0 (7.80)
—Ps +dW My —dW =M, —cz/\/ll 0

L4 — &) —Mj — Mlz —dM3 th
Pjs = . . ~8y  —dM; GY (7.81)

° ° ° —dW GD;

° ° ° ° —)/21
Ey=Pj—(d—d+1)Q—dW— M- M,
E3=Ms+Mi+Q Aj=[-14; Ag; 0Ty] (7.82)

Proof Obtained from Theorem 7.13 by substituting f =0, 7 = 0. |

Ilustrative Example D

Consider the following second-order system where the switching occurs between
four modes described by the following coefficients

0.7 0.09 0.1 0 0.3
A=\ 0.35] A‘“Z[ 0 0.1] Fl_[—o.s}

[0.25 —0.1
o1 = _0.15}’ CGar = [—0.01}’ #1=001
A1, DI < arllxll, hiG, I < Billxk—aqll, lar] < 0.1, |Bi] < 0.1

[0.41 0.11 0 0.05 0.2
2= 0.97] Ad3 = [0—0.15]’ 2= [—0.02]
[0.22 0
G2 = _0.13] Gaz = [0.03] P2 =0.02
200, DI < anllxill, h2(xe, DI < Bollxk—all, leal < 0.3, |f2] < 0.3

0.6 0.02 —0.1 0.01 0.01
] e[ 00] e[

| 0 0.49 —0.1 —-0.1 0.1
[0.17 0.05
G3=_0.19:|, Gd3=[ 0 i|, &3 =0.02
30, I < arllxell, [1h3(xe, O < B3llxk—gll, lesl < 0.4, B3] < 0.2

(033 0.22 0 0.5 0.1
A= —0.45]’ Ads = [0 —0.05]’ 2= [—0.02]



7.2 Discrete-Time Systems 195

0.22 0
G4 = [0.13}’ Gas = [0.01} > P4 =002

Il faCx, DI < aallxill, [|haCxe, I < Ballxk—qgll, loaa] < 0.5, [B4] < 0.4

In the implementation of Theorem 7.13, we start by assigning a value for the
lower bound d and seek the maximum allowable value for the upper bound d ren-
dering feasible solution. For each pair (d, d), we record the performance bound .
A summary of the computations of applying Theorem 7.13 such that the above
switched system is asymptotically stable is depicted in Table 7.3.

Table 7.3 Computational summary of illustrative example D

d d y

2 6 2.145
3 8 2.663
4 10 2.874
5 12 3.114
6 13 3219
4 16 2.874
8 18 3.534

7.2.4 Switched Feedback Design

Extending on the last section, we examine here the problem of switched feed-
back stabilization using either switched state-feedback or output-feedback design
schemes.

With reference to system (7.46), (7.47), and (7.48), we consider that the arbitrary
switching rule o (.) activate subsystem j at instant k. Our objective herein is to
design a switched state feedback uy = K; x; ati € S mode such that the closed-
loop system

Xer1 = [Aj + BjKjlxx + Agjxe—a, + Tjwi + fj(xx, k) +hj(x(k —dy), k)

= ijk + AdgjXk—a, + I'jwg (7.83)
2k =[Gj+ DjKjlxi + Ggjxp—g, + Pjwi
= ijk + Gajxi—a, + Pjwi (7.84)

is delay-dependent asymptotically stable with an £, — gain < y. It follows from
Theorem 7.13 that system (7.83) and (7.84) is delay-dependent asymptotically sta-

ble with an £y — gain < y if there exist matrices 0 < 73;. =7P;, 0 < PSt =

P, Xj, 0<Q =0, 0<W =W, (M, j=1,..7), (jos) € {1,2,...)
and scalars y > 0, o > 0, « > 0 satisfying the LMIs for (j,s) € S

fjAj +A’j§§ +Pjs <0 (7.85)
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[ =Py +dW M —dWV M, 0 0 —dM; 0 ]
° —Ey —My — Mtz Mf‘ Mts —d M, th
° ° —E3 —Mz —./\/lt5 —C{M3 Gilj
Pjs = ° ° ° —ol 0 —d_M4 0
° ° ° o —«xI —dMs O
° ° ° ° ° —dw Q);
L ° ° ° ° ° ° —y2] |
(7.86)
Aj=[-1A; Ay 110T;] (7.87)

The following theorem states the main result on switched state feedback

Theorem 7.20 Given d > 0 and d > 0. Switched system (7.83) and (7.84) is delay-
dependent asymptotically stable with an Lo — gain < y if there exist matrices
O<X;:X.,~, 0<X =X,Y;,0<8 =S, 0<R'=R, T, A, {O), j=
1,..,7}, (j,s) € {1,2,..} and scalars y > 0, o > 0, « > 0 satisfying the LMIs
for (j,s) €S

[—A, Ay As; A A —dO; T; 0]
o —Ay4; As @i @g —-de, Ath O
° o —Ag —@i —@g —d_@3 Athj 0
° ° e —ol O —65@4 0 0 < 0 (7.88)
° ° ° o —«I —-dBs; 0 0
° ° ° ° e —dS @;- 0
° ° ° ° ° ° —)/21 0
° ° ° ° ° ° o —J/

A=A+ A"+ X, —dS, Ayj=A;A"+ B;Y; +6, —dS
Agj=X;—(d—d+1DR—dS— 60, — 0}, A3; = Agj A" — O
Ao =03+ O +R — 607, As=—60, — O} (7.89)

Moreover, the switched state-feedback gain is given by K; = Y; T,

Proof Define X; = [Y"00000 O]t , T eR™andletY; = K;T". Applying
the congruence transformation

T =diag[A, A, A, A, A, A, 1], A=7""
to inequality (7.85) using (7.86) and (7.87) and the linearizations

X;=r"'Pr ", S=r"wrl, (e =r" MR X, =1r""P;T ],
O¢=ocaY 'F', @ =«B' Y '"H'HT !

we immediately obtain LMI (7.88) subject to (7.89). |
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Remark 7.21 The optimal switched state feedback with £, — gain for system (7.83
and 7.84) can be determined by solving the following convex minimization problem
over LMIs:

Minimize y
s.t. LMIs (7.88), V(j,s)eS xS
Xj, X, Y;), S, R, 1, A, {®;, j=1,.7}, y>0,0>0, «>0

In the case of polytopic representation (4.30) and (4.31), the corresponding convex
minimization problem takes the form

Minimize y

writ X;, X5, Y;, S, R, T, A, {@}7, y>0,0>0, k>0
the LMIs

__Als Ayj Asz; A A —d:@] r; 0
o —Ay4 As @f‘ @g —c{@z AG;P O
e —Ag —@i —@é —6{@3 Athj

e —ol 0 —-dos O

° 0
° ° 1 0 < 0
° ° ° o —«l —dBs 0 0
3 !
° ° ° ° e —dS (pjf 0
° ° ° ° ° e —y°I 0
° ° ° ° ° ° o —/

YV (j,s) € SxSand p = 1,...,M; where Ayj, = Ajp A" + BjpYj + O —
dsS, A3jp:Adj[,Al—@1

A state-feedback design for the linear switched system (7.77), (7.78), and (7.79)
is established below:

Theorem 7.22 Given d > 0 and d > 0. Linear switched system (7.77), (7.78), and
(7.79) is delay-dependent asymptotically stable with an Lo, — gain < vy if there
exist matrices 0 < X', = Xj, 0 < X! = X, Yj, 0 <S8 =8, 0 <R =
R, T, A, {®;, j=1,...,5}, (j,s) € {1,2,...} and a scalar y > 0 satisfying
the LMIs for (j,s) € S

—Ais Ayj Asj —dO) T
o —Ay4i As —dO; AG;

o o —Ag—dO3 AGy | < 0 (7.90)
° ° e —dS @;
° ° ° ) —)/.21

A=A+ A +X,—dS, Ayj=AjA" +B;Y;+ 6 —dS
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Agj=X;—(d—d+1DR—dS— 0, — 0}, A3; = A4 A" — 6,
Ag = O3 + @é + R, As = —6Or — @é (7.91)

Moreover, the switched state-feedback gain is given by K; = Y; T,

The objective now is to design a switched output feedback uy = G y at mode
J € S such that the closed-loop system

X1 = [Aj + BjGCjlxx +[Agj + B;GjCyjlxg—a, + Tjwy

= ijk + Adjxkfdk + Fjwyg (7.92)
2% =1G; + D;G;Cjlx; +[Guj + D;jG;jCyjlxk—g, + Pjwy
= Gjxx + GajXp—q, + P jwy (7.93)

is delay-dependent asymptotically with an £,— gain < y. To proceed further, we
invoke the following assumption:

Assumption 7.1 The set of output matrices {C;, j =1, ..., N} are of full row rank.

It is worth noting that this case can be fulfilled by deleting redundant measure-
ment components of the output variable y;. Therefore, subject to Assumption 1,
it follows from Theorem 7.13 that switched system (7.92) and (7.93) is delay-
dependent asymptotically stable if there exist matrices 0 < 79; =Pj, 0 <Pl =
Py, X, 0< Q' =Q, 0<W =W, {Mj, j=1,...,5}, V(j,s) € S and
scalars
y >0, 0 >0, « > 0 satisfying the following LMIs for all (j,s) € S

}?jﬁj —i—vzl\;)?; —i—’ﬁjs <0 (7.94)
[Py +dW My —dW  —M, 0 0 —dM; 0 7
. -8 My My My M5 —dMy G

~Ey My ML —dM; G

° °
° ° ° —ol O —cz./\/l4 0
° ° ° ° —«I —dMs 0
° ° ° ° ° —dw q)j.
L ° ° ° ° ° ° —y21_
(7.95)
B =P —d—-d+1)Q—dW — My — M, —ca*F'F
Ey=Ms+Mi+Q—«kp?H'H, A; =[~1 A; A 110T;] (1.96)

The following theorem states the main result on switched static output feedback

Theorem 7.23 Given d > 0 and d > 0. Switched system (7.92) and (7.93) is delay-
dependent asymptotically stable with an Lo — gain < vy it follows that there exist
matrices 0 < X} =X, 0< X =X, )V, 0<8 =8 0<TR =
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R, T, A, Lyj, Lyj, Ev, Ez, {®;, j=1,....7} (j,s) € {1,2,...} and
scalars y > 0, o > 0, « > 0 satisfying the following LMIs for (j,s) € S

[ —Ajs sz 23,' A A —cz@)l ri 07
o —Ay; As @f‘ @g —d®, A7; B

° o —Ag —@Z‘ —@g —(i@3 Ag; 0
° ° e —0ol O —62@4 0 0
° ° ° e —«kI—dOs 0 0 <0 (7.97)
° ° ° ° e —dS Q)j- 0
° ° ° ° ° e —yI 0
| e ° ° ° ° ° o —/ |
CiA=ECj, CyjA=ErCyj (7.98)
sz =AjA+B;jL;Cj+ O — ds, Zgj = Adet + BjLyjCyj — O
A7j = AG', + CiLY D', Agj = AGY; + Ci;Lh D', (7.99)

where Ay, Agj, As, Agare givenin (7.89). Moreover, the switched static output-
feedback gain is given by G ; = LUEfl.

Proof Define X; = [Y'000000], T € %"*". Now let
CiA=E\Cj, L1j=GjE|, C4jA=E)Cyj, Lrj =G;E

where Ey € RP*P. In the spirit of [279], it is easy to show under Assumption 1
that the matrix E is nonsingular.! By applying the congruence transformation

T =diag[A, A, A, A, A, A, 1], A=7""
to inequality (4.48) using (7.95) and (7.96) and the linearizations

X, =17""Pr L, S=r"Wwr L (o =7 MY, & =1'Pr
O =0caY 'F', @ =«B' Y 'TH' HY !

we immediately obtain the LMI (7.97). |

Remark 7.24 The optimal switched static output feedback with £, — gain for sys-
tem (7.83) and (7.84) can be determined by solving the following convex minimiza-
tion problem over LMIs:

Minimize y
s.t. LMIs (7.97)—(7.98), V (j,s)eS xS

! This follows since p = rank[E] > rank[EC;] = rank[C;A] > rank[(CjA)A_l] =
rank[C;] = p
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Xj, X5, Y;, S, R, Y, A, Lyj, Lyj, Er, E2, {®;, j=1,...,7],

y>0,0>0 k>0

In the case of polytopic representation (7.53) and (7.54), the corresponding convex
minimization problem takes the form

Minimize y
wit X;, X, Y;, S, R, T, A, Lij, Laj, Ei, Ez, {O}],

y>0,0>0 k>0

the LMIs V (j,s) e SxSandp=1,...,M;

M —Als sz 23/' A A —(;@1 ry o 7]
o —Ay4 As @j @g —d_@z 4/:7]'11 O
° o —Ag —@i —@g —c{@3 Agjp 0O
° ° e —ol 0 —d®s; O 0
° ° ° o —«li —d_@s 0 0 <0
° ° ° ° e —dS @; 0
° ° ° ° ° e —¥21 0
° ° ° ° ° ° o — |

CiA=ECj, CyjA=ErCyj

Ayjp = AjpA+ BjpL1jCjp + O1 —dS, Asjp = AgjpA' + BjpL2jCajp — O

AL t t oyt ot A t t oyt

Arjp = AGj, + CjpLy; Dy, Asjp = AGyj, + Cajp LoDy
Theorem 7.25 Given d > 0 and d > 0. Switched linear system (7.77), (7.78), and
(7.79) with static output-feedback uy = G; yi is delay-dependent asymptotically
stable with an Ly — gain < y it follows that there exist matrices 0 < X]’- =X;, 0<
Xl=X,Y;,0<8=8 0<R =R, T, A, Lyj, Lyj, E1, E,
N, j=1,...,5}, (j.s) €{l1,2,...,S}and a scalar y > 0 satisfying the LMIs
for (j,s) €S

—Ajg sz 23,‘ —02@1 Ty
o —A4i As —dOy Ayj

. o —As—dO; Ag; < 0 (7.100)
° ° e —dS A@;
° ° ° ° —)/21

CiA=ECj, CyjA=ECyj (7.101)

Moreover, the switched static output-feedback gain is given by G; = L1 E| L

Next, we examine the case of dynamic output feedback using a switched
observer-based controller and employ it at every mode j € S of the form:
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Mir1 = Ajur + Bjug + G jlyk — Cj ]
up = K (7.102)

where the gain matrices G; € W"*” and K; € "> are to be determined. Con-
necting controller (7.102) to switched system (7.77), (7.78), and (7.79) and defining
the composite vector X, = [uf,  xj — u}], we get the closed-loop system

AgjXi—g, + T jwi + f; +h;
Gdjxk —dp +Pjwi (7.103)

++

where the respective matrices are given by

- _ Aj'i‘BjKj GjCj - _ 0 0 = _ 0
A’_[ 0 4-Gic; ] M= oay-6e ) T

_ 0 - 0] —
sz[ } hj=[h}7 Gj=16;+DjK; Gjl
J
Gaj =[Ggj Gajl (7.104)

Application of Theorem 7.13 shows that switched system (7.103) is delay-
dependent asymptotically stable with an £o— gain < y if there exist matrices
O<73; PJ,O<P—P3,X],O<Q’—Q 0<W = W{N,J_

1,...,5}), (j,s) €{l,2,...} andscalars y > 0, o > 0, « > 0 satisfying the LMIs
for (j,s) €S
U4+ A2 4B, <0 (7.105)

TPy +dW N, —dWV -\, 0 0 —dNy 0 7
° —I1 —Nz—]\/zl .NZ ./\/g —62./\/2 Et]

~ ° ° —1I1; —./\q —./V'SI —d_./\/3 Efjj
Pis = ° ° ° —ol 0 —Ci/\/4 0 (7.106)
° ° ° o —«l —d_./\/s 0
° ° ° o —dW CP;
L ° ° ° ° ° ° —y21_

A;j=[-1A; 445 110T,]
M=P;—@d—-d+1)Q—dW - N, — N} —0d®F'F
M3 =N +Nj + QO —«p*H'H (7.107)

where {N }? are a set of free-parameter matrices that play the same role for the
composite system (7.103) as {./\/l}? do for system (7.77), (7.78), and (7.79). Note
that /'/Y\j, @, W have dimensions compatible with system (7.103). To facilitate
further development, define /"?J = [?’ 00000 O]t , T e fnx2n, Now, in order
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to benefit from the foregoing design results, we conveniently express Y and 7' in

the form
Y, O =_1_~_|As 0O o P1j O
[ToTc]T _A_[To c]’P’_[sz%j]
o~ S1 0 =~ Ri O Yir O
S = , R= , U =
[52 33} [Rz RJ k [Wzk ‘I/Bki|

e VA
X;="P; —[ A s, | 0P (7.108)

T

The following design result is established:

Theorem 7.26 Given d > 0 and d > 0. Switched system (7.83) and (7.84) is
delay-dependent asymptotically stable with an Ly — gain <y if there exist matri-
ces0<X;=Xj 0 < X =X, Y;, 0<S8 =8 0<TR =
R, T. A, E;, 21, 2, (¥;, j=1,....7, (,s) € {1,2,...} and scalars
y >0, 0 >0, k > 0satisfying the LMIs for (j,s) € S

(=X 2o X3 A A —d:‘lll Fj 0 7
o —JX4—JX5 lI/i '1/5' —d_W2 X7 W
° e —JX% —lI"{ —lI/SI —dv; Xg; O
° ° e —0ol O —CZ‘I’4 0 0
° ° ° o —«l —cz_lI/5 0 0 <0 (7.109)
° ° ° ° o —dS (pj- 0
° ° ° ° ° ° —)/21 0
) ° ° ° ° ° o —/ |
5. = [ A T A+ X +dS) [ AL
| Ao+ X5 +dSy Ac+ AL+ Az —dS
Ez_z_w11+AjA§+l_9ij—JSl AjAL 4+ 2
] L U —dS; Ain.—Llej
5 [—vn 0 }
3 =
P Y Wi + Agj AL — GEC AL
s = U + Wél 0 t
| Y22 + ¥y, W3 + Wy
5 _-7)15—51\31—R1—W21—W2tl N 0
4 | Pas —dS> — Ro — Wy — W3, P3g —dS3 — Rz — W3 — ¥, |’
5 __11/31+l1/3t1+7?,1—l1/71 0
T | W+ W, + Ry — W Wiz + Wl + Ry — W3 |
AyGL + YD AsG
- SMJ i - $Mdj
27 = [ A,G'+ 2 ] 285 = |:A0G£Ij +ACG;].:| (7.110)
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where d = (d — d + 1). Moreover, the gain matrices are given by
K;=Y;A]', Gj=LyE" (7.111)

Proof Applying the congruence transformation

~ A A A A~

T = diag[A, A, A, A, A, A, ]
to inequality (7.105) using (7.106) and (7.107) and the linearizations

X, =77y ", S=r"Wr L, (0 =7r " MRT !, X; =1""P;T!
W = ocaAF, W7 = kB> AH' HA
2] = BJ'K/'AZ + G./CJ'A[C, 2 = AOG;KJ' + ACth

we immediately obtain LMI (7.109) subject to (7.110). |

Remark 7.27 The optimal switched dynamic output feedback with £, — gain for
system (7.103) and (7.104) subject to the polytopic representation (7.53) and (7.54)
can be determined by solving the following convex minimization problem over
LMIs:

Minimize y
wit X, X, Y, 8, R, A, Ey, 21,22, (W), j=1,...,7,V(j,s) €S, 0,k

(=1 Zajp Z3jp A A —d¥ Tjjp 07
o 3, -3 11/4{ QI/SI —Czll/z X7ip We
° e —Jg —lI/i —lllsf —d¥s Xgjp 0
° ° e —ol 0 —-dy; O 0
° ° ° o —«l —C?WS 0 0 <0
° ° ° ° e —dS qﬁ; 0
° ° ° ° ° ° —yf] 0
) ° ° ° ° ° o — |
Sy = [ W11+ Ajp AL+ BjpY; —dS1 Ajp AL+ £2) }
S 1 —dSs AjpAL —LyiCjp
- ' 1t '
X7jp = Afgﬁ_?g"”], 28jp = [A GrASGdjp t ]
0oGjp + 522 0Gyj +AcGyjp
S [ —wy 0 :|
P T — Wy —Wi3 4 Agjp Al — G jpE AL

Finally, we have the following result:

Theorem 7.28 Given d > 0 and d > 0. Linear switched system (7.77), (7.78), and
(7.79) is delay-dependent asymptotically stable with an Lo — gain < y if there
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exist matrices 0 < X’ =X, 0 < X!
R T A EA’ ‘Q]’ 927 {lp5‘1_1

7 Delay-Dependent Switched Control

=X, Y, 0<8 =8 0<R =
.., 5}, Y(j,s) € Sand a scalar y > 0

satisfying the LMIs for (j,s) € S

— X 22] 23 —czllfl I;
o —JX; 25 —d_l1/2 27;
° o —JXg —d_lI/3 2g; < 0 (7.112)
° ° e —dS @;-
° ° ° ° —)/21
5= l1/11+AjA§+§?,-Yj—c?81 AjAf)
2= ¥ —dS, AJ'AE—LUCJ'
_ A,G. + YD
5 = [ Ot J} (7.113)
J

where d = (d—d+1) and Xy, X3j, X4, Xs, X, Xqj, Xg; are given by
(7.110). Moreover, the gain matrices are given by

Kj=Y;A]"

T Gj=LyE]! (7.114)

In the next section, we consider some examples for numerical implementation
and compare the results with the existing methods.

Ilustrative Example E

Here, we consider a discrete model of the type (7.46), (7.47), and (7.48) with mul-
tiple modes. In terms of our terminology, each mode represents a particular equi-
librium operating point. We wish to design a switched feedback control for this
system. Switching taking place between the modes is described by the following
coefficients:

Mode 1

0.20.1 0.4 0 02 2 09

[0603]’ Ad1 Z[ 0 0.4] 11 2[0.8]’ Bi 2[0.7 2 ]

0.6 0

o= [1o]- cao=[l]

=[0.703], Ga1 =[0.10], & =[0.1], D; =[0.90.3]
||f1(xk,k)|| < aillxll, Nhi(e, O = Billxk—all

lai| = 0.15, |1l = 0.15
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Mode 2
03 0.1 0.6 0 02 21
[ 0402]’ Ad?z[o.zos] 2= [03} 32_[061]

e=[oi]- aa=['es

= [0.103], G2 =[00.5], @ =[0.6], Dy =[0.10.4]

||f2(xk,k)|| < aollxill, haCex, B < Ballxk—a,ll
loaa| <0.25, |B2] < 0.25

Mode 3

=

0.10.2 ~0.5 0.1 0.1 14
3T [0.30.4] Ad3_[ 0 —0.4]’ 3= [05] Bs _[3 1}
01 02 0
2[10} C‘”:[o 0.2}
G3 =[0.602], Gg3=[0406], &3 =[0.3], D3 =[0.80.3]

13k, DI < azllxell, Az, O < B3llxk—a,ll
laz| < 0.35, |B3] < 0.35

For simulation purposes, we select d = 2 and implementing the LMI solver
Scilab 5.1.1, a feasible solution of the convex optimization problem given in
Remark 4.18 for the case of state feedback is attained for d = 9, y = 0.9875.
The ensuing results are given by

o _ [ ~0-1144 00202 7 [-0.3313 0.0525
U= 1 03168 —0.6754 |° 72~ | —0.1685 —0.0088

o — [ 05539 —0.0424
371 —0.2306 —0.0423

For the purpose of comparison, we provide in Table 7.4 a computational sum-
mary of applying several published methods. It is quite clear that the developed
switching state-feedback control strategy provides a better performance bound in
contrast to the existing methods.

Table 7.4 Computational summary of state-feedback design: illustrative example E

Method d d y

[50] 6 11 3.4682
[174) 4 13 3.8335
[298] 4 10 2.3650
[368] 3 15 1.9874
Theorem 7.22 2 9 0.9875
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We next consider the convex optimization problem given in Remark 7.24 for the
static output feedback. A feasible solution is reached with d = 4 and d = 12. The
corresponding gains are given by

G, [ 03550013417 . [-047560.2511
1= 1 -0.6522 0.6754 271 —0.0985 0.1235

G [ ~0-0756 ~0.1948
37| —0.4416 0.4512

Finally, we attend to the observer-based output feedback. The results of the fea-
sible computations are summarized as follows:

d=3, d=14
G, [~02453041317 - [-0.46750.1251
P -0.65220.6754 | 71T | —0.1859 0.5114
G, — [ 00756 —0.19487 [ ~031450.1341
27 | —0.4407 0.2856 |2 T | —0.6522 0.6754
G._ [—05226048257  _ [—0.1336 —0.1608
37 [ -0.13850.5008 |* "7 T | —0.4006 0.5217

Ilustrative Example F

Here, we consider a discrete model of the type (7.46), (7.47), and (7.48) with two
modes with the basic linearized data from [50]. We wish to design a switched feed-
back control for this system. Switching occurring between the modes is described
by the following coefficients:

Mode 1

_[0091007 , ©_[-0.03 0O ro_fol

1000 1.2 " 7= 008 005" "7 03
11

=[ ) e= [10}

=[0.10.3], @ =[0.1], D; =[0.90.3]
Cdl = [0.1 0.4] , Gdl = [0.4 0.2]
11 G, N < arllxell, NGk, O < Brllxk—ag

lap| < 0.1, [B1] < 0.2
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Mode 2
12 0 0.03 0.08 0.2
- [0405]’ Af”:[ 0 —0.05] Fl:[o.z}
[ ] 2= [050.5]

—0.1 —0.2], ¥, =[0.3], D, =[0.10.1]
Cdz = [0.3 0.4] , Gap = [0.3 0.1]
120k, I = eallxell, Mha(x, K< ol lxk—q,|]
lez| < 0.2, [f1] < 0.1

By selecting d = 2 and implementing the LMI solver Scilab 4, a feasible solution
of the convex optimization problem given in Remark 4.18 for the case of state
feedback is attained ford = 11, y = 0.9875, o0 = 1, « = 1. The obtained results

are given by

— [0.0905 —1.0896], K2 = [ —0.7154 —0.0375 ]

In Fig. 7.1, the closed-loop state trajectories are plotted.

15

0.51

Amplitude

20 40 60 80 100
Time in samples

Fig. 7.1 State trajectories by state feedback: illustrative example F

Next, we consider the convex optimization problem given in Remark 7.24 for
the static output feedback. A feasible solution is reached with d = 4 and d = 12.

The corresponding gains are given by
G, = [0.6524 —0.6752] , Gy = [—0.4516 —0.0755]. Similarly, the closed-

loop state trajectories under switched output feedback are plotted in Fig. 7.2. It is
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readily evident from the displayed results that the switched feedback controllers
(state and output) are quite effective in stabilizing the nonlinear switched system.

15
------ X2
x1
o)
©
2
a
S
<
-0.51 b
—1f: 4
-1.5 L L L L
0 2 4 6 8 10

Time in sec.

Fig. 7.2 State trajectories by output feedback: illustrative example F

Finally, we attend to the observer-based output feedback. The results of the fea-
sible computations are summarized as follows:

d=3, d=14
G, _[~02453041317  _ [-046750.1251
P -0.65220.6754 |0 T T | —0.1859 0.5114
Gy = [ —0.0756 —0.1948] ,  _ [—0.31450.1341
> 7 | —0.4407 0.2856 |7 T | —0.6522 0.6754
G._ [ 05226048257 [—0.1336 ~0.1608
37 [ ~0.13850.5008 |* 3 T | —0.4006 0.5217

7.3 Multi-Controller Structure

During the past decade, problems of stability and control of switched systems have
received increasing interests [42, 47, 174, 192] and the references cited therein.
Reported results under arbitrary switching are found in [56] using multiple Lya-
punov functions for nonlinear systems and in [42] employing switched Lyapunov
functions. Of particular interest in this chapter is the class of switched time delay
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(STD) systems, which have widespread engineering applications, including net-
work control systems and power systems [47]. More recently, some theoretical
studies were conducted for STD systems including [26, 223-226, 238-241, 252,
270-275, 278-280, 283-285] where different design methods were developed.

In this paper a switched-state feedback control is designed to deal with a class
of continuous-time systems subject to linear fractional parametric uncertainty and
interval time delays. Looked at in this light, the results of [88, 89] are generalized to
cope with switched time-delay systems. An improved Lyapunov—Krasovskii func-
tional is constructed to derive robust delay-dependent switching policies. The prob-
lem is treated as multi-controller configurations and a switched feedback approach
is developed to jointly determine the feedback gains and the switching rule while
minimizing a suitable guaranteed cost. The developed results are tested on repre-
sentative examples.

7.3.1 Problem Statement

We consider hereafter the following switched time-delay system with full parametric
uncertainties

() = Agyx(t) + Denyx (t — Te(r) + Me)q ()

+ T () w(?) (7.115)
p(t) = Eg)x (1) + Heg )X (1 — Te()) + Lenq (1) (7.116)
2(t) = Ceyx (t) + Geyx (t — Te(x))
q(t) = Ap(1), AeA (7.117)

where x(t) € N" is the state vector , u(r) € R is the control input , w(t) €
MY is the exogenous input, z(r) € R’ is the observed output, and the function
E(x): M — N ={1, ..., N} is a switching rule. The vectors p(t) € R*, q(t) € N
are internal variables. For all j € N, the matrices A; € W, D; e W', M; e
R Cpoe W, G e WM, E; e WX, Hj e W, L; e 7, and
I'; € W™V are real and known constants and 7;(¢) denotes an interval time-varying
delay satisfying

0<tm <7 <tmj, 7;(t) <pj, jeN (7.118)

where the bounds 7,,; > 0, 1)7; > 0 are known constants. Observe that whenever
deemed necessary, the variables (p, g) could be easily eliminated when W; # 0.
The initial condition x(s) = «(s), s € [—tum, 0] is a differentiable vector-valued
function. Matrix A represents the parametric uncertainty, which belongs to the set
A defined by

A=1{AecR Al < 1} (7.119)
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Remark 7.29 It should be noted that the model described by (7.115), (7.116), and
(7.117) represents a class of linear continuous-time systems with mode-dependent
interval delays and a linear-fractional transformation (LFT) structure [216]. Under
arbitrary switching and special characterizations of A € A, different methods have
been proposed in the literature to design feedback stabilization such that the closed-
loop system remains asymptotically stable [280] and the references therein. In the
case of free-delay systems, excellent results are recently reported in [88-90, 92] and
[196].

For systems without delays, an approach was proposed in [342] and the
references therein, where given a set of N state-feedback gain matrices K
{Ki, ..., Ky}, aswitching function &(x) : " — K is determined such that the
state feedback switched control

u(t) = Kg(x(,)) x(1) (7.120)

assures the global asymptotic stability of the closed-loop time-varying system. The
matrices K : {Kq, ..., Ky} were supposed to be given by the designer prior to
the determination of the stabilizing switching function £(.). Further improvements
were attained [150] for the stabilizing problem. One of the basic modeling issues of
switched systems [366] is the multi-controller configurations. Following this trend,
a switched feedback approach was addressed in [89, 92] for linear systems with LFT
parametric uncertainties to jointly determine the feedback gains and the switching
rule while minimizing a suitable guaranteed cost. Our approach in this work extends
the results of [89, 92] for the class of linear time-delay systems (7.115), (7.116), and
(7.117).

7.3.2 Robust Delay-Dependent Switching Control

The objective now is to determine a switching rule £(x) that guarantees the global
asymptotic stability at the equilibrium point x = 0 and a suitable minimal value of
the performance criteria J (£) defined by

N 2
J(K 1o Ky §) = max Y z;(r)zj(t)H2 (7.121)

Jj=1

is attained. Toward our goal, we consider the Lyapunov—Krasovskii functional
L(x) = minjen V;(x), where

t
Vi(x) = x"()Pjx (1) —l—/ x'(s)Rjx(s)ds
'

-0
0 t
—i—/ / ' (@)Qjx(a)da ds
—0 Ji+s
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0 t
+@; / / )'c?(a)Wi)'c(a)dads
—pj Jt+s ’
—9j [t y .
+ (0j — ng)/ / 2 (a)S;x (a)do
—0j t+s
t
+/ x’(s)ij(s)ds (7.122)
t

—7;(1)

Since L(x) is not differentiable, we will work with the Dini derivative [160] defined
by

> L(x(t +h) — L(x(0)

DTL(x) = lim su
h—0t h

Observe in case of the switching rule £(x) = j, j € N, we have

DTL(x) = min(L(x) = Vi(x(1)
jeN

where V;(x(¢) is specified in (7.122). The next theorem provides a method to meet
our objective

Theorem 7.30 Given the delay bounds ¢; >,0; > 0, u; > Oforall j € N. If there
exist matrices P; > 0,Q; > 0,R; > 0,S; > 0,Z; > 0, j € N such that the
Sollowing LMI holds for all j € N

$24j $2¢j $2;
2; = o —2., 0 <0 (7.123)
° o —J/
where
_Qaaj Wj Qacj C;
4 = o 82 Sj , 82,5 = 0
| o o — 20 G;.
_Wj Pij + E;-Lj QjAthj (0j — (/)j)A;Wj
Q¢ = 0 0 0 0

i HiLj  ¢;DiW; (ej —¢)D;W;

S
R -Qeaj Qecj - Wj 0
i =1 0 2oy |" P T 0w,
S

[ 0 0
Q. =
V| oMW —(0j — Gﬂj)Mj-Wj]
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Raaj = PjA; +A’ij +Q;+R;+Z; -W, + E;Ej
2, =Q; +W; +S;, 24j=P;D; —i—E;-Hj
Qeaj = (1 = pj)Z; +28; — HiH; (7.124)

then the switching rule & (x) = arg minjeN Vi (x) with V;(x) being givenin (7.122)
renders the equilibrium solution x = 0 of the system (7.115), (7.116), and (7.117)
globally asymptotically stable and

J (&) = max / Oozf(r)z(t)dt
AeA Jo

€

<I]116i'{llxt|:Pj+Qj(Rj+Zj):|K (7.125)

Proof Introduce the set of optimal indices
I(x) ={j e N:V;j(x) =L(x)}

and let the switching rule be &(x(¢)) = j, t > 0 for some j € N. In the appendix,
the Dini derivative D*L(x) with respect to an arbitrary trajectory of (7.115), (7.116),
and (7.117) is computed and is shown to have the form

D*L(x) = minY;(x())
jeN

Yi(x(1) < x'(OE;x (@) + o™ (W5 (1)
+ (0 — 9)*% (1S (1) (7.126)

where &Z;, x(t) are given in the appendix. To complete our effort, we take into
consideration (7.115) subject to A € A or equivalently A’A < [. Together with
(7.117) and B(t) = [x'(#) x'(t — 7) q(1)]', we get

EYEj E'Hj ESL;
B'(r)y| e HiH; HiLj |B(1)=0 (7.127)
° ° L;Lj—]

Next, considering LMI (7.123) and applying the Schur complement for £ (x(¢)) = j
and using inequality (7.127), it follows that D™ L(x) < —z'z. This holds true since
Vin(x) = Vj(x) = L(x) forall m € N and all j € I(x). This emphasizes the
stabilizing feature of the switching rule £ (x), which in turn means that the origin is
globally asymptotically stable equilibrium point. Moreover, since from (7.123) and
(7.124) D*L(x) < —z'z forall A € A, it follows upon integration over the period
[0, 00) and observing that V;(x)|; 00 = 0, x(0) = ¢, we obtain (7.125). |

Remark 7.31 When the conditions of Theorem 7.30 are met, meaning a feasible
solution exists, then the global asymptotic stability is guaranteed by the switching
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rule £ (x) = argminjcN V;(x). A guaranteed cost associated with J (§) is also pro-
vided. It is interesting to observe that when LMI (7.123) is feasible for all j € N,
it consequently implies the validity of the switching signal being kept constant
&) = j € N, Vt > 0. Such a result is pleasing and it is eventually interpreted
as the stability of system (7.115), (7.116), and (7.117) is preserved under constant
switching. In turn, this corresponds to ||z||2/||q||2 < 1, see [216].

Remark 7.32 It is interesting to observe that when LMI (7.123) is feasible for all
J € N, it consequently implies the validity of the switching signal being kept con-
stant £(t) = j, j € N, Vr > 0. Such a result is pleasing and it is eventually
interpreted as the stability of system (7.115), (7.116), and (7.117) is preserved under
constant switching. In turn, this corresponds to ||z||?/||g]|> < 1, see [278].

Remark 7.33 We emphasize that the bound 1 ; might take any value, which, due to
the presence of LMI variable S, allows for slow (i; < 1) and fast (u; > 1) time-
delay patterns. The case of time-delay pattern 0 < 7; < Ty (1) j=nwj, jeN
could be easily derived from Theorem 7.30 by setting ¢; =0, W; =0 Vj € N.

7.3.3 Delay-Dependent Switching Control Design

In this section, we seek to develop robust delay-dependent control strategy for the
system

x() =Ajx()+Djx(t —tj)+ M;q(t)

+Tw(t) 4 Bju(r) (7.128)
p(t) = Ejx(t) + Hjx(t — ;) + Ljq(t) + Tju() (7.129)
2(t) = Cjx(t) + G jx(t — ;) + Fju(t)
q(t) = Ap(t), AeA (7.130)

using the state-feedback switched control (7.120) and associated with the cost
N
J(Ky. ... K S):maXZHZZ-(I)Z'(I)HZ (7.131)
15 -y AN, Ach 4 1 j J 5 .
j=

Where for each j =1, ..., N the trajectory z;(t) is the response of the closed-loop
system associated with the input signal w(z) = ¢;8(¢), with e; being the jth column
of identity matrix. The closed-loop system becomes

X(1) = Ajx(1) + Djx(t — tj) + M;q(1)

+ Fjw(r) (7.132)
p(t) = Ejx(t) + Hjx(t — t;) + Ljq(1) (7.133)
2(t) = Cjx(t) + G jx(t — 1)
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q(t) = Ap(), AeA (7.134)
Aj:Aj+BjKj, Ej:Ej—l—TjKj
Cj=Cj+Fik; (7.135)

for which the asymptotic stability is governed by the feasibility of the LMI
e —2, 0 <0 (7.136)

where fza,»,...,fze,- correspond t0  £24j, ..., §24; with Aj,ﬁj,éj replacing
Aj, Ej, Cj, respectively. The main design result is established by the next
theorem

Theorem 7.34 Given the delay bounds ¢; >, 0j > 0, uj > 0forall j € N. If there
exist matrices X; > 0,Y;,Q; > 0,R; >0,S; >0,Z; >0, j € Nsuch that the
Sfollowing LMI holds for all j € N

Haj Iej I Iy
o —II,; 0 Il

2 = . e —I 0 <0 (7.137)
° ° o —J/
where
Magj W; DX, XiC+ Y5 E ]
L4 _HSJ S] 5 Hz‘ = 0
° o Il XJ'G;- |
Wj Mj 0
ch = [Hclj HC2j]7 I = Q 0 , ij = LL
S, 0 J

0j(X;A" +YLBY) (0j — ¢)) (X/Atj +Y335>
Hc2j = 0 0
0jX; D' (@j — ¢))X; D}
ot t ot
S XjE; +Y;T;
Mgy = | Meai Meci | g, — 0
o I, |’
L eej X]Hjt
W -2x; 0 _[Ri+S;0
Heej_ i ° Wj—Zin|’ Hea]—[ ° 1
. 0
Il,.. =
“ T —oiM]; —(o; _‘P‘/)M;'i|
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My = AJ'X./' + Bij +X1'A; +YZI-B;
+6j +§j +2j —Wj
M =Q; +W; +8;, Mej = (1 —pupZ; +2S; (7.138)
then the switching rule & (x) = arg minjeN V;(x) with Vi (x) being given in (7.122)

and the switched matrix gain K; =Y jX;l render the equilibrium solution x = 0
of the system (7.115), (7.116), and (7.117) globally asymptotically stable and

J(K1, ..., KNE) < min Tr (r;xﬂr,,) (7.139)
jeN J

Proof Consider LMI (7.136) with system (7.132), (7.133), (7.134), and (7.135).
Applying the congruent transformation

TZ[X]’ XJ’ XJ’ XJ’ LI 1, 1, 1], X]:P7]

along with the change of variables Yl = Kij,Wj = XjoXj,aj =
XijXj,Zj = XijXj,ﬁj = XjRij,Sj = XijXj, and Schur complements
convert LMI (7.136) into LMI (7.137) subject to (7.138). Next, the output z; () of
system (7.132), (7.133), (7.134), and (7.135) with zero initial condition and input
w(t) = ¢;8(t) can be determined from the same system with zero input and initial
condition x, = I,ej, j =1,..., N. Thus we have from (7.131) that

J(K1. o KyE) < max HZ'J-(”ZJ(”HE

which by Theorem 7.30 can be put into
N
J(K1, ..., KNE) < Zr%iﬁ(roej)ij(roej)
—J
j=1

By the trace properties, we reach
JKis o KnE) < minTr (13X
jeN J

This in turn completes the proof. |

Ilustrative Example G

A standard water-quality model [179] is described by growth of biological oxygen
demand (BOD) and dissolved oxygen (DO), respectively, at time 7. Under simplify-
ing assumptions, employing a linearization procedure and using representative data
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on a single reach of the River Nile [255] about three different operating points, the
growth of (BOD,DO) can then be cast into the form (7.115), (7.116), and (7.117):

Lo [-L285 0 b _ [ 015005
°T ] -3263-1975|" 7°T | =02 0.10

B, = diag[l.Z 1.4], Ir,= diag[O.l 0.1]

C, = diag[O.l 0.2], G| = diag[—O.lS —0.10]
E| = diag[0.3 0.1], H = diag[—O.lO —0.15]
M; = diag[O.Z 0.1], L= diag[—O.lS —0.12]
C, = diag [0.2 0.1], G, = diag[—0.0S —0.05]
E, = diag[O.l 0.3], H, = diag[—O.lO —0.10]
M, = diag[0.2 O.l], L, = diag[—O.lS —0.12]
C3 = diag [0.2 0.2], G3 = diag[—O.lS —0.10]
E3 = diag [0.2 0.2], H; = diag[—O.lS —0.10]
M3 = diag[O.Z O.l] L3 = diag[—O.lS —0.12]

’

where the subscript o indicates common data and 1, 2, 3 means the corresponding
operating point. With F1 = I, F» = 046, F3 = 0.6, T = 0.8, F, =
0.3, F3 = 0.51,, the feasible solution of Theorem 7.34 yields feedback gains:

—0.1145 0.0415 0.3415 —0.0265

K. [ 09088 —0.1104
371 -0.1222 0.1018

K| = |: 0.9237 —0.0307]’ Ky = [—1.1145 —0.0513i|

which renders the water-quality system asymptotically stable with a guaranteed cost
J(K1, K2, K3,&) < 4.4765. In Figs. 7.3 and 7.4, the ensuing trajectories of the
water-quality states and controls are depicted.

7.3.4 Appendix

Computing the Dini derivative DTL(x) with respect to an arbitrary trajec-
tory of (7.115), (7.116), and (7.117) is computed [160] to yield DTL(x) =
min N Y (x(2)), where

Yi(x(1)) < ZxIPj[ij(t) + Djx(t —1j)
+ Mjq(D)] +x'(0)Q;x(1)
—x'(t - 0)Qjx(t — @) —i—xt(t)ij(t)
+ X' (OZjx (1) — x'(t — 0j)R;x(t — 0))]
—(1—=pw xt(t — ‘L’j)Zijt — ‘L’j)]
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t

+ @3 (Wi (1) — goj/ & (5)W i (s)ds

t—(pj
+ (o) — )1 (1)S;x(1)
1=9;
- (0j — (pj)/ )'c’(s)Sj)'c(s)ds (7.140)
I—Qj

Applying Lemma 13.3, we get

t
- ¢,-f (W, (s)ds < —[x(0) — x(t — 9] W,
13

-y
[x(@) —x( — ;)] (7.141)
1—¢

- |  #@Si@)de
1—0j

l*(pj
=—(0j - w,/)[f ()8 (a)da
t

t—‘[j
+ / )'c;-(ot)Sj)'cj(oz)dai|
I—Q/‘
1—¢
S
t

—T;

I—t;
—(0j — Tj)|:/ X’(Ot)Sj)%(oz)doz:|
t

—0j
1=¢j 1—=¢j
< —(/;_T_ )'c;-(a)da>8j</t_r. )'c;-(oz)dot>
t—Tj [—‘Ej
_ ( f xf(a)da>sj< / )&’(u)dd)
t—o; tfgj
= —[x(t —¢j) —x( — tHI'Sj[x(t — ;) — x(t — ;)]

— [x(t — 7)) —x(t —o)I'Sj[x(t — 7j) —x(t — 0))] (7.142)

On combining (7.140), (7.141), and (7.142), we get

Yi(x(0) < X" (OFjx (1) + @7 (OW ;1)
+ (0j — ))* ¥ (DS, % (1)
x(0) = [x"(@) x'(t — ) X' (t — 7)) x'(t — 0)) q1)]'

(7.143)

S 0 0

—&¢j Sj 0
e —R;-S; 0
0

By
(7.144)

Q|
|

e o o [
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&)

0j =PjA; -i-Atij +Q;+R;+Z; - W,,
aszj—l—Wj—l—Sj, Ech(l—[,Lj)Zj—l—sz (7.145)

@)

7.4 Notes and References

In the chapter, we have investigated the problems of robust delay-dependent £; gain
analysis and feedback-control synthesis for a class of nonlinear switched discrete-
time systems with time-varying delays and real convex-bounded parametric uncer-
tainties in all system matrices under arbitrary switching sequences. Then, we devel-
oped new criteria for such class of nonlinear switched state-delay systems based on
the constructive use of an appropriate switched Lyapunov functionals coupled with
Finsler’s Lemma and a free-weighting parameter matrices. LMI characterization
of delay-dependent conditions are established under which the nonlinear switched
delay system is robustly asymptotically stable with an £, — gain smaller than a
prescribed constant level. Finally, we designed switched-feedback schemes, based
on state-, output-measurements, or by using dynamic-output feedback to guaran-
tee that the corresponding switched closed-loop system enjoys the delay-dependent
asymptotic stability with an £, gain smaller than a prescribed constant level.

All the developed results have been expressed in terms of convex optimization
over LMIs and tested on representative examples.
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Switched Filtering



Chapter 8
Delay-Dependent Switched Filtering

In this chapter, the filtering problem for a class of discrete-time switched systems
with state delays is thoroughly investigated. We will focus on discrete-time sys-
tems. Attention will be equally focused on the design of stable filters guaranteeing
different prescribed performance criteria including the £, sense and in the £ — Lo
sense. In all cases, switched Lyapunov functionals are employed to derive sufficient
conditions for the solvability of the filtering problem and expressed in terms of linear
matrix inequalities (LMIs).

8.1 H  Filter Design

The problem of Hy filtering for a class of discrete-time switched systems with
state delays is investigated in this section. Attention is focused on the design of a
stable filter guaranteeing a prescribed noise attenuation level in the H, sense. By
using switched Lyapunov functionals, sufficient conditions for the solvability of this
problem are obtained in terms of linear matrix inequalities (LMIs), by solving which
a desired H filter can be constructed.

8.1.1 Introduction

It is well known that state estimation has been widely studied and has found many
practical applications during the past decades. When a priori information on the
external noise is not precisely known, the celebrated Kalman filtering scheme is
no longer applicable. In this case, H, filter was introduced in [57], where the
noise signal was assumed to be energy bounded and the main objective was to
minimize the Hy, norm of the filtering error system [78, 282, 346, 394, 408].
When time delays are taken into account in a system, linear matrix inequality-based
(LMI-based) results on the H, filtering problem have also been reported in the
literature; see, for example, [79, 106, 347, 381, 393] and the references therein.
Recently, the control synthesis of switched systems has been extensively inves-
tigated and many methodologies have been used in the study of switched systems

M.S. Mahmoud, Switched Time-Delay Systems, 223
DOI 10.1007/978-1-4419-6394-9_8, © Springer Science+Business Media, LLC 2010
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[42, 52, 56, 86, 170, 191, 441]. For example, multiple Lyapunov functions were
employed to establish certain general Lyapunov-like results for nonlinear switched
systems [56]; dwell-time and average dwell-time approaches were employed to
study the stability and disturbance attenuation of switched systems [377, 426];
piecewise Lyapunov function approach was adopted in [156, 388]; and a switched
Lyapunov function method has been applied in [42] to study the stability problem
of discrete-time switched systems.

On the contrary, time delays are the inherent features of many physical process
and the big sources of instability and poor performances. Switched systems with
time delays have strong engineering background in network control systems [170]
and power systems [291]. More recently, some theoretical studies were conducted
for switched systems with time delays [370, 395, 425]. Till date, to the best of the
authors’ knowledge, the H o filtering problem has not been addressed for time-
delayed switched systems. In this paper, an H, filtering design is developed using
switched Lyapunov functional approach for discrete-time switched systems with
time delay. The filtering design solution is facilitated by introducing some addi-
tional instrumental matrix variables. These additional matrix variables decouple the
Lyapunov and the system matrices, which makes the filtering design feasible.

8.1.2 Problem Formulation

Consider the following discrete-time switched system with state delay :

S N S
o x =y ai)Aixk+ Y ai()Agixi-a+ y_e;i(k)Biox (8.1)
i=1 i=1 i=1

S S S
=Y i()Cixi + Y _aj(k)Caix—a + Y _i(k) Dy (8.2)

i=1 i=1 i=1

N
z= ) ai)Gix (8.3)

i=1

where x; € R" is the state, yy € R” is the measured output, z; € R? is the signal
to be estimated, wy € RP? is the disturbance input, which is assumed to belong
to /[0, 0o), and the positive integer d denotes the known state delay. «; (k) is the
switching signal:

S
@ 2T — {01}, D k) =1, kez'={0,1,--)
i=1

which specifies which subsystem will be activated at certain discrete time. A;, Ag;,
B;, C;, C4i, D;j, and G; are system matrices with compatible dimensions.
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Here we are interested in designing a filter described by

S S
Tpo A=Y ai®Agf+ Y ai()Byiyk (8.4)

i=1 i=1

S
=) ai(k)Crikk (8.5)

i=1

where X; € R" and Z; € R, the matrices A f;, By;, and C; are to be determined.
Augmenting the model of Xy to include the system X, we obtain the following
system (called filtering error system):

S S S
Ter F=) aiAiF+ ) i Asfi-a+ Y ik)Biog (8.6)
i=1 i=1 i=1

N
2= ai)Ciy 8.7)
i=1

where

_ A 0] - Ag 0] = B
P DAy = i Vg =] P
’ [BfiCi Afl} @ [Bficdi 0} ' [BfiDz}

Be=[xf ’EkT]T =z — 2 Ci=[Gi —Cyi] (8.8)

Our objective is to develop a filter in the form of (8.4) and (8.5) such that the
following specifications are met for the filtering error system X:

(H1): The filtering error system X is globally asymptotically stable when w; = 0.
(H2): The filtering error system X, guarantees, under zero-initial condition,
IZkllz2 < yllwkll2 for all nonzero wy € [[0,00) and a given positive

constant y.

In the sequel, we will refer systems satisfying (H1) and (H2) as stable and with
Hoo norm bound y.

Remark 8.1 The robust filter design problem for switched systems has been inves-
tigated in [86], where the minimax linear filters are developed for discrete-time
systems whose dynamics switches are within a finite set of stochastic behaviors.
In this paper, our attention is focused on the design of delay-independent robust
Ho filters for the system Xy under arbitrary switching signal.
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8.1.3 Stability and Performance Analysis

This section gives a new characterization involving switched Lyapunov functional
for the filtering error system X, to be stable and with H, norm bound y.

Theorem 8.2 The filtering error system X, is stable and with Ho norm bound y,

if there exist matrices {Pi}lN:1 and {Q,-}lNzlfor all {i, j,1} € S ={1,2,---, S} such
that

—Pj_l A~,‘ Adi é,’ 0

e —P+0Q; O 0 éll
o . -0, 0 0 | <0 (8.9)
° ° e —y21 0
° ° ° o ]/

where x denotes the corresponding transposed block matrix due to symmetry.

Proof First, we establish the stability of system (6). When wy = 0, (8.6) becomes

N S
B =y ai(0AF + ) ai(k)AgiFr—a (8.10)
i=l1 i=1
Define
N k—1 S
Vi = (Zai(k)P,-) B+ Y ® (Zai(s)Q,) s (8.11)
i=1 s=k—d i=1
Then

AVil8.10) = Vi1 — Vk

S N
=3 (Z o (k + 1)P,»> Byt — X (Z o (k)Pi) A

i=1 i=1
S S

+3 (Z o (k)Qi> T — Fi_arr (Z o (k — d)@) Fi_a
i=1 i=1

It follows that for any nonzero vector x; and the particular case «;(k) = 1,
oz (k) = 0,0k + 1) = 1ok +1) = 0,0y (k —d) = 1,y 21k —d) = 0.
Then, we have

Al S -P,+0Q; 0
AVil(8.10) = g <[A;[]PJ[A1' Adi]+[ 0 ¢ —Ql]) 1k
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where n; = [)Z,t( Xp—gt ][. By the Schur complement formula, it follows from (8.9)
that AVy|s.10) < 0, which establishes the stability of system (8.10).
Let

K—1

k=Y (- yiojer)

k=0

where K is an arbitrary positive integer. For any nonzero wy € I3[0, co) and zero
initial condition xo = 0, one has

K—1
Jg = (Z}C%k — ylolox + AVk|(8.6)> - Vk
k=0
K—1
< (Z;Zk —ylolog + AVkI(s.s))
k=0

where AV |g.6) defines the increment of Vi along the solution of system (8.6). It is
noted that

2ik — yioor + AVils.6)

A
= i | A, Pi[A;i Aai Bi |
B
—P+ Qi +C/C: 0 0
+ 71} 0 -0, 0 | (8.12)
0 0 —y?%I

where
ik = [ % far o ]
It follows from (8.9) and Schur complement that
=T~ 2 ¢
Lk 2k — Y opwr + AVilige) <0

which implies, for any K, Jg < 0. Then one has that for any nonzero wy € I>[0, 00),
Zkll2 < v llwkll2 [}

Motivated by the idea in [44], we present the following theorem.

Theorem 8.3 The filtering error system X is stable and with Hs, norm bound vy,
if there exist matrices (R}, (W}, and 2 for all {i, j,1} € S = {1,2,---, 5}
such that
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—R; A~,'.Q Adiﬂ Bl‘ 0 0
e R — (24027 0 0 efch e’
o o U — (24027 02 0 0 | _p (8.13)
° ° ° -yl 0 0
° ° ° ° -1 0
° ° ° ° o Y

Proof Suppose that (8.13) holds, then it is easy to see from (8.13) that
(Ri — )R (Ri = 2) =0

which implies
~Q'R7'2 <R - (2+2)

Similarly, we can get —Q2'W,"'2 < W — (2 + 7). Then, (8.13) is transformed
into

-R; A2 Agi 2 B 0 0
o —QTR 'R 0 0 efcl e
Ty -1
° ° -T2 02 0 0 <0 (8.14)
° ° ° -yl 0 0
° ° ° ° —1 0
° ° ° ° o Y
Pre-multiplying (8.14) by
diag{l, 27", 27", 1,1,1}
and post-multiplying by
diag{l, 27", 7', 1,1,1}
then (8.13) is transformed into
~R; A; Ay Bi 0 0
e —R7' 0 0 CI' 1
—1
o W 000 (8.15)
° ° e —y°I 0 O
° ° ° e —I O
° ° ° ° o VY

Notice that R; = Pl-_l, Y, = Qi_]. Then, by using the Schur complement formula
we can see that (8.15) is equivalent to (8.9). The proof is completed. |
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Remark 8.4 With the introduction of a new additional matrix §2, we obtain a suf-
ficient condition in which the matrices R; and ¥; are not involved in any product
with matrices A;, Ag;, Bi, and C;. This makes a filter design feasible.

8.1.4 Filter Design

In this section, we will present a sufficient condition for the existence of Hy filter in
the form of (8.4) and (8.5), and show how to construct a filter based on Theorem 8.2.

Theorem 8.5 Consider system X and given a constant y > 0. If there exist matri-
ces0 < Ryj = Rij, 0 < R3; = jo, 0<Xim=2X,, 0< Xz, =X}, and

Ryj, Xom, Zi, Yi, H;, Li, M;, S; such that the following inequality holds:

O11 O O3 0O 0 0
° ®y 0 0 ®)5 @56
©33 0 0 0

[ ] [ ]
° ° ° —y21 0 0 <0 (8.16)
° ° ° ° -1 0
° ° ° ° ° —Bsp
where
[ Rij Ryj ZiA; Z: A
O = Jj j L Op = iAj A
U7 e R3jj| 2 [YiAi+HiCi+Li YiAi+HiCi:|
O3 = [ ZiAgi Z;Agi O = Z;B;
} | YiAgi + HiCqi YiAgi + HiCyi |’ Y;B; + H; D;
_ Ry Ry (G- [ z oz
@22__0 R3ii|’@25_[ G! + O = Yi +M; Y
. _le Xom o X1 Xoi
B33 = . X3m:|’ 066—[ R X3i]

Oy = Oy — O — O, O3 = O33 — O — )

then, there exists a filter in the form of (8.4) and (8.5) such that the filtering error
system X is asymptotically stable with H, norm bound y. Moreover, if LMI (8.16)
has a feasible solution, then the filter matrix

._ | An Bsi
F = [Cﬁ 5 } 8.17)
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can be constructed by

— 1 (8.18)
SiM;V; 0
Proof Suppose the inequality (8.16) holds. It can be obtained that
Zi+ 7! Zi+ Y + M pt
SR A A A N B (8.19)
° Y + Yit ® Rj

which implies that matrices Z; and Y; are nonsingular. Pre-multiplying (8.19) by
[ 1 —1] and post-multiplying the result by [ 7 —1 ]', one obtains

—M; —M! >0 (8.20)

which implies that M; is also nonsingular. Hence there exist nonsingular matrices
U; and V; satisfying M; = V;U; such that (8.16) holds.

Let
¢t | Zi 0 |1
Hi_[Yi‘/i , 21I1; = Ui 0

H; = ViByi, Li = ViAsU;, §; =CyriU;, Mj =V;U;
Ry =I"w 17", Ry = I, "Wl
@y = 17" W31, & =TT, Wee T, (8.21)

By (8.8) and (8.21), one has

MA;QIT; = Wip, M Ay20T; = W3, T} B; = Wis
CiQ2I; = Wis, IT!A;Q2IT; = ¥ (8.22)

Pre-multiplying (8.13) by
diag [ 17} 11} 11/ 1 I IT! ]
and post-multiplying the result by
diag [ IT; IT; IT; 1 1 1T; |
and using (8.21) and (8.22), we readily obtain (8.16). Finally, it is not difficult to

verify from (8.21) that the filter matrices are given by (8.18), which completes the
proof.
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Remark 8.6 The filter expressed in the form of (8.4) and (8.5) not only guaran-
tees analytical properties, such as stability and guaranteed Ho, performance of the
filtering error system X, but is itself a switched system.

Remark 8.7 By using the techniques in [30] and [444], the result of Theorem 8.3
can be readily extended to the discrete-time switched systems with state delay,
which contain norm-bounded parameter uncertainties or linear fractional form
parameter uncertainties.

8.1.5 Illustrative Example A

Consider the system Xy with N = 2 and

(0.4 0.05 0.025 0 0.34
Ar=1 —0.35] Aa = [—0.1 —0.35}’ B = [—0.3]

Cq1 =[0.020], D; =0.02, G; =[0.240.23], C; =[0.290.15]
[—0.2 0 0.05 —0.1 0.1
2= o1 0.1}’ Adz:[ 0 0.15}’ B2 = [—1}

Car =[00.017], D =0.015, G2 =[0.20.1], C; =[~0.19 0.17]

The purpose here is to design a filter such that the filtering error system is sta-
ble and with a given Hs, norm bound y. Here the performance level is chosen as
y = 0.6. By using the Matlab LMI Control Toolbox to solve LMI (8.16), we can
get a feasible set of solutions. By Theorem 8.3, a filter in the form of (8.4) and (8.5)
as follows:

Ao [03497 —05481] o [-8.3430
IT=10.1094 —0.1653 | 7/ = | 4.3427

}, Cr1 = [ ~0.0030 —0.0758 ]

—0.1385 —0.0975i| [—4.9351
, Bpp =

Af2= [ 0.0049 0.0157 —1.4790}’ Cr2=[~0.0059 ~0.0282]

The simulation results of the state responses of the plant and filter are, respectively,
given in Figs. 8.1 and 8.2, where the initial conditions xo = [ 1.0 —O.S]I and %o =

[() 0 ]t, respectively, and the noise signal is chosen as w; = 1/(k+1), which belongs
to [5[0, 00). The simulation results of signal z; and Z; are shown in Figs. 8.3 and 8.4.
Figure 8.5 shows the simulation result of the filtering error 7y = zx — Zx. It is
observed that the designed H filter meets the specified requirements, and works
well.
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Fig. 8.2 Step response of plant states
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Fig. 8.5 Step response of plant states

8.2 Filter Design for Piecewise Systems

Broadly speaking, hybrid systems have proved to be an effective tool for multi-
modeling, analysis, and design of a large number of evolving technological systems,
in which digital devices interact with an analog environment. Systems of this type
are common in embedded computation, robotics, mechatronics, avionics, and pro-
cess control. Owing to the rapid advances in computer technology, hybrid systems
are becoming increasingly relevant and important and consequently have attracted
considerable research interests. A wide class of hybrid systems is piecewise dynam-
ical systems for which some of the research results relevant to this study have been
reported in [2, 63, 144, 293, 334] and their references. Common to these activities
is the development of piecewise Lyapunov function approaches for stability anal-
ysis [156, 176, 313] and linear control design [118, 336, 431, 447] of piecewise
continuous-time systems. In a parallel development, similar results are obtained
for piecewise discrete-time linear systems [184, 293, 334, 376, 428]. For a class
of piecewise discrete-time linear systems, the output feedback control problem has
been investigated in [61] and the design of Ho, and generalized H filters are per-
formed in [62] using observer-type filters (without parametric uncertainties or time
delays). The solution is attained via the solution of a set of LMIs.

On another research front, the filtering problem has been the focal point of
numerous research activities in the past four decades due to its central role in
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systems, control, and signal processing. The celebrated Kalman filter [3, 158, 352,
356] provides a recursive algorithm to minimize the variance of the state estima-
tion error when the power spectral density of the process and measurement noise
is known. During the past four decades, Kalman filtering techniques have found
widespread applications in aerospace guidance, navigation, and control problems
[213-221, 235, 250, 256, 257, 262, 263, 266, 267, 269, 287, 352, 356]. When
a priori information on the external noise is not precisely known, Kalman fil-
tering approach is no longer applicable. In such cases, Hoo filtering was intro-
duced [87, 305], in which the input signal is assumed to be energy bounded
and the main objective is to minimize the energy of the estimation error for the
worst possible bounded energy disturbance. The solution to this problem guaran-
tees that the £-induced norm from the noise signals to the filtering error will be
less than a prescribed performance bound, where the noise are arbitrary energy-
bounded signals. In the literature, there have been different approaches to solve
Ho filtering problem [16, 67, 69, 71-216, 244, 245, 249, 250, 253, 254, 262—
265, 269, 276, 277, 287, 305, 373, 438, 439]. When the systems are subjected
to norm-bonded parametric uncertainties, robust H, filtering were developed in
[72] based on a Riccati equation approach and in [189] using a convex opti-
mization approach. For systems with polytopic parameter uncertainties, linear
matrix inequalities-based sufficient conditions were derived for robust H, filters
in [87, 317].

By contrast, the objective of £, — L filtering problem is to minimize the
peak value of the estimation error for all possible bounded energy disturbances.
Hence, the £, — Lo (energy-to-peak) filtering can be considered as a deterministic
formulation of the Kalman filter [223, 318]. The class of robust filtering arose out
of the desire to determine estimates of nonmeasurable state variables for dynamical
systems with uncertain parameters. The past decade has witnessed major develop-
ments in robust filtering problem using various approaches [16, 305].

In recent years, research investigations into dynamical systems with time delays
have been intensified and spread to several domains, including neural networks [35,
37, 194] and nonlinear systems [385, 390, 420]. In addition, the development of
Ho filters and robust H filters were accomplished, leading to delay-independent
and delay-dependent sufficient conditions [69, 217-223, 235-237, 250, 255-258,
266, 267, 278, 282]. By considering the developed conditions of H, filters, it turns
out that the results are generally conservative due to two sources: one introduced
after using finite filters for infinite-dimensional systems like time-delay systems and
the other source arose from uncertainties. To reduce overdesign conservatism, a
new approach to H filtering was introduced using a bounded-real lemma (BRL)
derived for the corresponding adjoint system. This approach was further refined in
[69] using overbounding inequalities. In spite of the considerable advantages of the
‘Ho filtering design results, it still entails some appreciable amount of conservatism
due to the majorization procedure in filter design.

The design of robust H, piecewise filters based on piecewise Lyapunov func-
tional method for a class of piecewise discrete-time linear systems with time-varying
delays has not been fully addressed before, which is very challenging. In this paper,
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we attend to this problem and consider the design of novel filters for a class of
linear piecewise discrete-time systems with polytopic parametric uncertainties and
time-varying delays. The time delays appear in the state as well as the output and
measurement channels. We consider a general full-order filter that guarantees the
desired estimation accuracy over the entire uncertainty polytope and accordingly
develop two new types of filters by deploying piecewise Lyapunov—Krasovskii
functional. The first filter is based on H criteria and the design incorporates new
parametrization coupled with Finsler’s Lemma to establish sufficient conditions for
delay-dependent filter feasibility. The other one utilizes the £, — L criteria and
accomplishes the design via elegant use of Schur complement operations. In both
cases, the filter gains are determined by solving linear matrix inequalities (LMIs).

8.2.1 Problem Statement and Definitions

We consider the following class of piecewise discrete-time linear (PDTL) systems:

Xkl = Ajxg + Agjxp—a, + oy (8.2