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Preface

In many practical applications we deal with a wide class of dynamical systems that
are comprised of a family of continuous-time or discrete-time subsystems and a
rule orchestrating the switching between the subsystems. This class of systems is
frequently called switched system. Switched linear systems provide a framework
that bridges the linear systems and the complex and/or uncertain systems. The moti-
vation for investigating this class of systems is twofold: first, it has an inherent
multi-modal behavior in the sense that several dynamical subsystems are required
to describe their behavior, which might depend on various environmental factors.
Second, the methods of intelligent control systems are based on the idea of switch-
ing between different controllers. Looked at in this light, switched systems provide
an integral framework to deal with complex system behaviors such as chaos and
multiple limit cycles and gain more insights into powerful tools such as intelligent
control, adaptive control, and robust control. Switched systems have been investi-
gated for a long time in the control and systems literature and have increasingly
attracted more attention for the past three decades. The number of journal articles,
books, and conference papers have grown exponentially and a number of fundamen-
tal concepts and powerful tools have been developed. It has been pointed out that
switched systems have been studied from various viewpoints. One viewpoint is that
the switching signal is an exogenous variable, and then the problem is to investigate
whether there exists a switching signal such that the switched system has the desired
performance including stability, certain disturbance attenuation level, and the like.
Another viewpoint is that the switching signal is available to system designers and
thus it may be used for control purposes. This books aims at integrating the main
issues of switched systems in a systematic way.

On the contrary, the existence of transfer phenomena, including material, energy,
and information, is an integral part of several physical and man-made systems. In
turn, this gives rise to delay element and, consequently, the overall system repre-
sentation would be the delay differential equations (DDEs) as opposed to the con-
ventional ordinary differential equations (ODEs). Over the years, it is recorded that
DDEs are used in modeling other phenomena arising in different fields, including
biosciences (heredity in population dynamics), chemistry (behaviors in chemical
kinetics), economics (dynamics of business cycles), engineering (water quality, hot
and cold mills, vibration in cutting machines), to name a few. Time-delay systems
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(TDs) have a long-standing history, and early treatment of DDEs dates back to the
work of Bernoulli and Condorcet. The development of mathematical theory for TDs
however started in the second half of the 20th century by the pioneering work of
Myshkis, Krasovakii, Halanay, and Pinney in the frequency domain and Bellman,
Cooke, and Hale in the time domain. From a control systems standpoint, delays give
rise to stabilizing/destabilizing effects depending on the situation under considera-
tion. By now it is fair to say the fundamental results of the theory of functional dif-
ferential equations (FDEs), as equivalent to DDEs), are well known and well under-
stood. However, there are increasing number of applications involving large-scale
systems that exhibit the delay (transport, propagation, communication, decision) as
a crucial parameter in the control analysis and design methods. Recent approaches
in robust control opened interesting perspectives and issues in dealing with delays
in dynamical systems, where delays are eventually treated as uncertainty.

Since most of the time delays have a crucial impact on the plant performance, the
employment of FDEs rather than ODEs in the modeling effort becomes the rule, not
the exception. Putting them together, a new class of system configuration readily
emerges, which, from now onward, we call switched time-delay systems (STDS).
This class possesses the main ingredients of multi-modes of operation, nominally
inherent time-delay model and parametric uncertainties and external disturbances.
Indeed, this class reflects several important features on the performance analysis and
control design and emphasizes the existence of a hybrid system: state-space delay
dynamics and switching dynamics.

There are numerous applications that can be cast in the framework of such STDS.
Examples include, but not limited to, water quality control, electric power systems,
productive manufacturing systems, and cold steel rolling mills. For obvious reasons,
STDS can be best represented in the time domain by a hybrid state-space formalism
the major part of which is a state-space hereditary model and a switching model
forming the remaining part.

Recently, there has been considerable research interest in stability analysis and
control design of STDS and satisfactory results have been obtained in the literature.
While most of these excellent publications are for specialists and researchers in the
field, so far there is no single book in the literature that presents a systematic and
structured approach to the modeling, stability, and control of STDS. With this in
mind, this book is about stability analysis and control design methodologies for
such a new class of systems, STDs. Thus, the primary objective of the book is to
present an introductory, yet comprehensive, treatment of STD systems by jointly
combining the two fundamental attributes: the system dynamics possesses an inher-
ent time delay and the system operational mode undergoes switching among differ-
ent modes. Although each attribute has been examined individually in several texts,
the integration of both attributes is quite unique and deserves special consideration.
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Notations

Throughout this book, the following terminologies, conventions, and notations have
been adopted. All of them are quite standard in the scientific media and only vary in
form or character.

I+ Δ= the set of positive integers

� Δ= the set of real numbers

�+ Δ= the set of nonnegative real numbers

�n Δ= the set of all n-dimensional real vectors

�n×m Δ= the set of n × m-dimensional real matrices

At Δ= the transpose of matrix A

A−1 Δ= the inverse of matrix A

I
Δ= an identity matrix

Is
Δ= the identity matrix of dimension s × s

e j
Δ= the j th column of matrix I

xt or At Δ= the transpose of vector x or matrix A

λ(A)
Δ= the set of eigenvalues of matrix A (spectrum)

�(A)
Δ= the spectral radius of matrix A

λ j (A)
Δ= the j th eigenvalue of matrix A

λm(A)
Δ= the minimum eigenvalue of matrix A where λ(A) are real

λM (A)
Δ= the maximum eigenvalue of matrix A where λ(A) are real

A−1 Δ= the inverse of matrix A

A−† Δ= the Moore–Penrose inverse of matrix A

P > 0
Δ= matrix P is real symmetric and positive definite

P ≥ 0
Δ= matrix P is real symmetric and positive semidefinite

P < 0
Δ= matrix P is real symmetric and negative definite

P ≤ 0
Δ= matrix P is real symmetric and negative semidefinite
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A(i, j), Ai j
Δ= the i j-th element of matrix A

det(A)
Δ= the determinant of matrix A

trace(A)
Δ= the trace of matrix A

rank(A)
Δ= the rank of matrix A

|a| Δ= the absolute value of scalar a

||x || Δ= the Euclidean norm of vector x

||A|| Δ= the induced Euclidean norm of matrix A

||x ||p Δ= the �p norm of vector x

||A||p Δ= the induced �p norm of matrix A

I m(A)
Δ= the image of operator/matrix A

K er(A)
Δ= the kernel of operator/matrix A

max D Δ= the maximum element of set D

min D Δ= the minimum element of set D

sup D Δ= the smallest number that is larger than or equal to
each element of set D

inf D Δ= the largest number that is smaller than or equal to
each element of set D

arg max D Δ= the index of maximum element of ordered set S

arg min D Δ= the index of minimum element of ordered set S

Br
Δ= the ball centered at the origin with radius r

Rr
Δ= the sphere centered at the origin with radius r

N Δ= the fixed index set {1, 2, ..., N }
[a, b)

Δ= the real number set {t ∈ � : a ≤ t < b}
[a, b] Δ= the real number set {t ∈ � : a ≤ t ≤ b}

S Δ= the set of modes {1, 2, ..., s}
i f f

Δ= if and only if

O(.)
Δ= order of (.)

diag(. . .)A
Δ= diagonal matrix with given diagonal elements

Matrices, if their dimensions are not explicitly stated, are assumed to be com-
patible for algebraic operations. In symmetric block matrices or complex matrix
expressions, we use the symbol • to represent a term that is induced by symmetry.
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Chapter 1
Introduction

Recent years have witnessed an enormous growth of interest in dynamic systems
that are characterized by a mixture of both continuous and discrete dynamics. Such
systems are commonly found in engineering practice and are referred to as hybrid
or switching systems. The widespread application of such systems is motivated by
ever-increasing performance requirements, and by the fact that high-performance
control systems can be realized by switching between relatively simple LTI sys-
tems. However, the potential gain of switched systems is offset by the fact that the
switching action introduces behavior in the overall system that is not present in any
of the composite subsystems. For example, it can be easily shown that switching
between stable subsystems may lead to instability or chaotic behavior of the overall
system, or that switching between unstable subsystems may result in a stable overall
system. In this book, we closely examine two classes of systems: switched systems
(SS) and time-delay systems (TDS), which will eventually pave the way toward
studying a new class of systems, switched time-delay systems (STDS).

1.1 Introduction

Motivated by the desire for a high degree of automation and excellent performance
capabilities, control system design has been the focal point of extensive research
work during the past several decades. Increasingly sophisticated tools from modern
control theories have been developed for improved and better tracking performance.
Concurrent advances in microprocessor technology have made the implementation
of complex nonlinear control algorithms practically feasible. To meet the explo-
sive social demands, contemporary engineering applications and real-life systems
are becoming more complex, interconnected, and spatially distributed. By careful
consideration of such systems and phenomena, it turns out that they have a dis-
tinct property that the future evolution of the systems states is affected by their
previous values, this is frequently called the time-delay effect or simply time delay.
This effect can be produced from different sources and in some cases it may affect
the system behavior and performance and complicate the system analysis. By and
large, the delays are perhaps the main causes of instability and poor performance in
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dynamical systems and frequently encountered in various engineering and physical
systems [24, 108, 216]. Formally, a system with time delay can be defined as the
system in which the future states depend not only on the present but also on the
past history of the system [304] and there are many names used in literature for
these phenomena, such as system with aftereffect, system with time lag, and here-
ditary system. In general, such systems are often described by functional differential
equation; a functional equation is an equation involving an unknown function for
different argument values [304]. When this is a differential equation we have a func-
tional differential equation (FDE) or delay differential equation (DDE), where the
rate of change of the state in a system model is determined not only by the present
state but also by past values. The wide appearance of DDE as a model for several
physical and man-made systems is especially important for control systems where
actuators, sensors, and transmission lines introduce time delays.

On the contrary, a switched system is a wide class of dynamical systems that
are comprised of a family of continuous-time or discrete-time subsystems and a
rule orchestrating the switching between the subsystems. This class of systems has
an inherent multi-modal behavior in the sense that several dynamical subsystems
are required to describe their behavior that might depend on various environmen-
tal factors. Switched systems provide an integral framework to deal with complex
system behaviors such as chaos and multiple limit cycles and gain more insights
into powerful tools such as intelligent control, adaptive control, and robust control.
Switched systems have been investigated for a long time in the control and systems
literature and have increasingly attracted more attention for the past three decades.

In the remainder of this chapter, we will review some basic notions of dynamical
system representation before providing an organization chart of the book.

1.2 Functional Differential Equations

Let Cn,τ = C([−τ, 0],�n) denotes the Banach space of continuous vector functions
mapping the interval [−τ, 0] into �n with the topology of uniform convergence and
designate the norm of an element φ ∈ Cn,τ by

||φ||∗ Δ= sup
θ∈[−τ,0]

||φ(θ)||2 (1.1)

If α ∈ �, d ≥ 0 and x ∈ C([α−τ, α+d],�n) then for any t ∈ [α, α+d], we let
xt ∈ C be defined by xt (θ) := x(t + θ), −τ ≤ θ ≤ 0. If D ⊂ �×C, f : D → �n

is a given function, the relation ẋ(t) = f (t, xt ) is a retarded functional differential
equation (RFDE) [109] on D where xt (t), t ≥ to denotes the restriction of x(·) to
the interval [t − τ, t] translated to [−τ, 0]. Here, τ ≥ 0 is termed the delay factor.
In the sequel, if α ∈ �, d ≥ 0 and x ∈ C([α − τ, α + d],�n) then for any

t ∈ [α, α + d], we let xt ∈ C be defined by xt (θ)
Δ= x(t + θ), −τ ≤ θ ≤ 0. In

addition, if D ⊂ �× C, f : ID → �n is given function, then the relation
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ẋ(t) = f (t, xt ) (1.2)

is a retarded functional differential equation (RFDE) on D where xt , t ≥ t0 denotes
the restriction of x(.) on the interval [t − τ, t] translated to [−τ, 0]. A function x is
said to be a solution of (1.2) on [α − τ, α + d] if there α ∈ � and d > 0 such that

x ∈ C([α − τ, α + d],�n), (t, xt ) ∈ D, t ∈ [α, α + d] (1.3)

and x(t) satisfies (1.2) for t ∈ [α, α + d]. For a given α ∈ �, φ ∈ C, x(α, φ, f ) is
said to be a solution of (1.2) with initial value φ at α.

In the linear case, the RFDE (1.2) assume the form

ẋ(t) = Aox(t)+ Ad x(t − τ), x(θ) = φ(θ), −τ ≤ θ ≤ 0 (1.4)

We note from [108] that when φ(.) is continuous then there exists a unique solution
x(φ) defined on [−τ,∞) that coincides with φ on [−τ, 0] and satisfies (1.4) for all
t ≥ 0. By the Lagrange’s formula, this solution is given by

x(t) = expAot x(0)+
∫ t

0
expAo(t−θ) Ad x(t − θ) dθ

= expAot x(0)+
∫ t−τ

−τ
expAo(t−θ−τ) Ad x(θ) dθ (1.5)

In the case where τ ≡ 0, system (1.4) reduces to

ẋ(t) = (Ao + Ad)x(t) (1.6)

which is asymptotically stable when all the eigenvalues of (Ao + Ad) have negative
real parts.

1.3 Piecewise Linear Dynamical Systems

Piecewise linear (PL) systems are naturally due to the presence of a range of sys-
tem nonlinearities, such as dead zones, saturation, relays, and hysteresis. Indeed,
stability properties of system components, especially actuators which are piece-
wise linear, have been studied for decades. However, in recent times engineers
have started to employ control laws that are piecewise linear in nature. Important
examples are rule-based control, gain scheduling, and programmable logic control
[334]. There has also been a recent interest in what has been termed hybrid systems
[99]. Indeed, this term has been used for a wide range of systems, from timed finite
state automation to complete integrated factory control and scheduling problems to
the extent that some definitions used would encompass the piecewise linear sys-
tems. In [334], a computational tool for the analysis of PL dynamical systems was
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developed. An example of such a system is the ABS (anti-skid braking) system in a
car, where the controller is rule-based and designed using the engineer’s knowledge
of the system. The only current viable approach to testing such a system is by using
extensive simulation and prototype testing, which must be repeated for each of the
different car models on which it is installed. The work reported in [334] provides
useful insight into the logic and dynamic interaction of such a system. Similarly,
systems with programmable logic controllers and gain schedulers also fall into the
class of piecewise linear systems.

By taking ideas and known results from linear systems, convex set theory, and
computational geometry, the work of [334] aims to synthesize an analysis tool for
studying a class of systems that mix logic and dynamics.

The attractions of piecewise linear (PL) systems in control can be recognized by
representing a PL system as a set of convex polytopes Π j �n , each containing some
linear system of the form

ẋ = Am x + bm, x ∈ Πm (1.7)

where the Π j form a partition of �n such that

∪ Π j = �n, Π j ∩Πk = �, j �= k (1.8)

In a geometric setting, the problem has a complex picture of boxes stacked
together in state space with each box containing a different linear dynamic system.
Any global analysis must somehow identify the behaviors in each box and then
link them together to form a global picture of the dynamics. Loosely speaking, the
associated state space will comprise of n × p linear regions, where n and p repre-
sent the number of states and number of PL functions, respectively. Note that the
PL functions of the system would eventually result in switching surfaces in the state
space. These surfaces act as the boundaries of the convex polytopes that contain each
linear dynamic region. The difficulties presented in analyzing this setup are bound
up in the need to manipulate high-dimensional convex polytopes and the dynamic
systems within them. One analysis technique, using the phase portrait, fulfills many
of the analysis aims. In the phase portrait, PL functions can be represented as lines in
the plane and trajectories or isoclines plotted to represent the dynamics. The result
is a graphical plot of the system dynamics that gives global stability information and
shows how the dynamic patterns change due to the switching lines and hence the PL
functions. The major drawback is the limitation of the phase portrait to two states.

In [334], the idea of mapping a piecewise linear system into a connected graph
was developed, the idea being based on the phase portrait. Each convex polytope or
region in the state space will have dynamics entering and exiting that region. If the
boundaries of every region were partitioned into sections containing only dynamics
entering a region (termed an Nface) and only dynamics exiting a region (termed
an Xface) then the boundaries can be characterized into sections of homogeneous
dynamic behavior. Each section thus identified is then represented as a node of a
graph. The connections between nodes are then characterized by tracking the set of
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trajectories (or trajectory bundle) entering via some Nface and identifying which (if
any) Xface the trajectory bundle leaves that region.

Piecing together the nodes and connections for each region results in a directed
graph that captures the global dynamic patterns of the system. The nodes of the
graph represent the PL functions and the directed connections represent the inter-
action of the PL functions with the system’s dynamics. As will be explained in the
subsequent sections, the realization of this apparently simple idea is not easy.

Piecing together the nodes and connections for each region yields a directed
graph that captures the global dynamic patterns of the system. The nodes of the
graph represent the PL functions and the directed connections represent the interac-
tion of the PL functions with the system’s dynamics.

More about piecewise linear (PL) systems with time delays will be provided later
in the book.

1.4 Fundamental Stability Theorems

In this section, we present the fundamental stability theorems that can be used in
studying the stability behavior of switched systems and time-delay systems. Further
details of these theorems can be found in the classical books [96, 108, 109, 171].

1.4.1 Lyapunov–Razumikhin Theorem

Here the idea is based on the following argument: because the future states of the
system depend on the current and past states’ values, the Lyapunov function should
become functional – more details in Lyapunov–Krasovskii method – which may
complicate the condition formulation and the analysis. To avoid using functional,
Razumakhin made his theorem, which is based on formulating Lyapunov functions,
not functionals. First, one should build a Lyapunov function V (x(t)), which is zero
when x(t) = 0 and positive otherwise, then the theorem does not require V̇ < 0
always but only when the V (x(t)) for the current state becomes equal to V̄ , which
is given by

V̄ = maxθ∈[−τ,0]V (x(t + θ)) (1.9)

The theorem statement is given by [105]:

suppose f is a functional that takes time t and initial values xt and gives a vector of
n states ẋ and u, v, w are class K functions, u(s) and v(s) are positive for s > 0 and
u(0) = v(0) = 0, v is strictly increasing. If there exists a continuously differentiable
function V : � × �n → R such that

u(‖x‖) ≤ V (t, x) ≤ v(‖x‖) (1.10)
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and the time derivative of V along the solution x(t) satisfies V̇ (t, x) ≤ −w(‖x‖)
whenever V (t+θ, x(t+θ)) ≤ V (t, x(t))θ ∈ [−τ, 0], then the system is uniformly
stable.

If, in addition, w(s) > 0 for s > 0 and there exists a continuous nondecreasing
function p(s) > s for s > 0 such that

V̇ (t, x) ≤ −w(‖x‖) whenever V (t + θ, x(t + θ)) ≤ p(V (t, x(t)))

for θ ∈ [−τ, 0], then the system is uniformly asymptotically stable. If in addition
lim u(s)s→∞ = ∞ then the system is globally asymptotically stable.

The argument behind the theorem is like this: V̄ is serving as a measure for the
V in the interval t − τ to t then if V (x(t)) is less than V̄ then it is not necessary that
V̇ < 0, but if V (x(t)) becomes equal to V̄ then V̇ should be < 0 such that V will
not grow.

The procedure can be explained by the following discussion: consider a system
and a selected Lyapunov function V (x), which is positive semidefinite. By taking
the time derivative of this Lyapunov function we get V̇ . According to the Razu-
mikhin theorem this term does not always need to be negative, but if we add the
following term a(V (x)− V (xt )) a > 0 to V̇ , then the term

V̇ + a(V (x)− V (xt )) (1.11)

should always be negative. Then by looking at this term we find that this condition
is satisfied if V̇ < 0 and V (x) ≤ V (xt ), meaning that the system states are not
growing in magnitude and it is approaching the origin (stable system) or a(V (x) <
V (xt )) and V̇ > 0 but V̇ < |a(V (x)− V (xt ))| then although V̇ is positive and
the states increasing, the Lyapunov function is limited by an upper bound and it
will not grow without limit. The third case is that both of them are negative and it
is clear that it is stable. This condition insures uniform stability, meaning that the
states may not reach the origin but it is contained in a domain, say ε which obeys
the primary definition of stability. To extend this theorem for asymptotic stability,
we can consider adding the term p(V (x(t)))− V (xt ), where p(.) is a function that
has the following characteristics:

p(s) > s

and then the condition becomes

V̇ + a(p(V (x(t)))− V (xt )) < 0, a > 0 (1.12)

By this, when the system reaches some value, which makes p(V (x(t))) = V (xt ),
requires V̇ to be negative but at this instant V (x(t) < V (xt ) then in the coming
τ interval the V (x) will never reach V (xt ) and the maximum value in this interval
is the new V (xt ), which is less than the previous value, and with time the function
keeps decreasing until the states reach the origin.
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1.4.2 Lyapunov–Krasovskii Theorem

The Razumikhin theorem attempts to construct the Lyapunov function while the
Lyapunov–Krasovskii theorem uses functionals because V , which can be considered
as an indicator for the internal power in the system, is function of xt , then it is logical
to consider V , which is a function of function and hence a functional. The terms of
V (xt ) should contain terms for the x in the interval (t − τ) to t and V̇ should be
< 0 to ensure asymptotic stability. This method will be covered in more detail in
the next section.

In many cases, the Lyapunov–Razumikhin theorem can be found as a spe-
cial case of Lyapunov–Krasovskii, theorem which makes the former more con-
servative. The Lyapunov–Krasovskii method tries to build a Lyapunov functional,
which is function in xt , and the time derivative of this Lyapunov function should
be negative for the system to be stable. Previously there were criticism on the
Lyapunov–Krasovskii method that it can be used for systems with the third category
of delay mentioned in Section 2.2.2 only when τ̇ ≤ μ ≤ 1 [338], but the recent
results resolve this problem as we see in the next chapter. Another criticism is that
the Krasovskii methods cannot deal with delay in the second category and also the
recent results in this method succeed to include this case [153, 155, 168–170]. The
remaining advantage of the Razumikhin method is its simplicity, but the Krasovskii
method proved to give less conservative results, the object of interest of most of the
researchers in the recent years. Before going to the theorem we have to define the
following notations

φ = xt

‖φ‖c = maxθ∈[−τ,0] x(t + θ) (1.13)

Lyapunov–Krasovskii theorem statement [105]:

Suppose f is a functional that takes time t and initial values xt and gives a vector of
n states ẋ and u, v, w are class K functions u(s) and v(s) are positive for s > 0 and
u(0) = v(0) = 0, v is strictly increasing. If there exists a continuously differentiable
function V : R × Rn → R such that

u(‖φ‖) ≤ V (t, x) ≤ v(‖φ‖c) (1.14)

and the time derivative of V along the solution x(t) satisfies

V̇ (t, x) ≤ −w(‖φ‖) for θ ∈ [−τ, 0]

then the system is uniformly stable. If in addition w(s) > 0 for s > 0 then the
system is uniformly asymptotically stable. If in addition lim u(s)s→∞ = ∞ then
the system is globally asymptotically stable.

It is clear that V is a functional and V̇ should always be negative.
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When considering a special class of systems that considers the case of linear time
invariant system with multiple discrete time delay, which is given by [167]

ẋ(t) = Aox(t)+
m∑

j=1

A j x(t − h j ) (1.15)

where h j j = 1, 2, ...,m are constants then this case is a simplified case, and in spite
of that the Lyapunov–Krasovskii functional that gives a necessary and sufficient
condition for the system stability is given by

V (xt ) = x ′(t)U (0)x(t)

+
m∑

k=1

m∑
k=1

x ′(t + θ2)A′k ×
∫ −hk

0
U (θ1 + θ2 + hk − h j )

× A j x(t + θ1)dθ1dθ2

+
k=1∑

m

∫ −hk

0
x ′(t + θ)[(hk + θ)Rk +Wk]x(t + θ)dθ (1.16)

where W0;W1; ...;Wm; R1, R2; ...; Rm are positive definite matrices and U is given
by

d

dτ
U (τ ) = U (τ )A0 +

m∑
k=1

U (τ − hk)Ak τ ∈ [0,maxk(hk)] (1.17)

This theorem were found by trying to imitate the situation of delay-free systems by
finding the state transition matrix and then using it to find P that makes

x ′(t)(P A + A′P)x(t) = −Q, Q > 0, P > 0

This Lyapunov functional gives a necessary and sufficient condition for the sys-
tem stability, but finding the U for this equation is very difficult “and involves solv-
ing algebraic ordinary and partial differential equations with appropriate boundary
conditions which is obviously unpromising” [105]. Even if we can find this U , the
resulting functional leads to a complicated system of partial differential equations
yielding infinite dimension LMI. Thus, many authors considered special forms of it
and thus derived simpler but more conservative, sufficient conditions, which can be
represented by an appropriate set of LMIs.

This is the case for LTI system with a fixed time delay, then considering time
varying delay or a generally nonlinear system makes it more difficult. But looking
at these terms one can have an idea about the possible terms that can be used in the
simplified functional.
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1.4.3 Halanay Theorem

The following fundamental result plays an important role in the stability analysis of
time-delay systems. Suppose the constant scalars k1 and k2 satisfy k1 > k2 > 0 and
y(t) is a nonnegative continuous function on [to − τ, to] satisfying

dy(t)

dt
≤ − k1 y(t)+ k2 ȳ(t) (1.18)

for t ≥ to, where τ ≥ 0 and

ȳ(t) = sup
t−τ≤s≤t

{y(s)}

Then, for t ≥ to, we have

y(t) ≤ ȳ(to) exp(−σ(t − to))

where σ > 0 is the unique solution of the following equation

σ = k1 − k2 exp(στ)

It must be emphasized that the Lyapunov–Krasovskii theorem,
Lyapunov–Razumikhin theorem, and Halanay theorem can be effectively used to
derive stability conditions when the time delay is time varying and continuous,
but not necessarily differentiable. Experience and the available literature show that
the Lyapunov–Krasovskii theorem is more usable particularly for obtaining delay-
dependent stability and stabilization conditions.

In this book we are going to adopt the use of a simplified sufficient condition
Lyapunov–Krasovskii method for continuous-time as well as discrete-time nomi-
nally linear system, with single time-varying delay. Of course, the general case is to
consider

• nonlinear system
• distributed delay.

When one looks at the real application, it is found that dealing with a nonlinear
system cannot give a general result because every family of nonlinear systems has its
own characteristics, so trying to build a method of a nonlinear system is not useful,
in addition to the difficulties of dealing with a nonlinear system even in delay-free
systems. The general practice is to linearize around some operating point and to
use the linearized model and treat the nonlinearities as perturbations. In spite of
this, the proposed method in Chapter 5 can be used for some families of nonlinear
system, which are and not necessarily coming from a linearized mode. Regarding
the distributed delay, again the difficulties in obtaining a good result in this field
prevent one from selecting this direction in addition to the fact that many systems
not only have discrete delay but also there are techniques to approximate [338] or
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even transform [140] the distributed delay into discrete delays, and the problem
becomes of multiple discrete time-delay types, but as we will see in Chapter 3 if
the Lyapunov functional is selected properly then a theorem made for single delay
can be easily extended to multiple delays. The reason behind selecting time-varying
delay is that it can cover a large class of systems and it can also be modified to cover
fixed delay.

1.5 Outline of the Book

Toward our goal, this book has been carefully tailored to

(i) give a comprehensive study of STD modeling and dynamics,
(ii) present theoretical explorations on several fundamental problems for switched

time-delay systems, and
(iii) provide systematic approaches for switching design and feedback control by

integrating fresh concepts and the state-of-the-art results to the distinct theories
on switched systems and time-delay systems.

Essentially, a basic theoretical framework is formed toward a switched time-
delay theory, which not only extends the theory of time-delay systems, but also
applies to more realistic problems.

In dealing with STDS, we follow a systematic modeling approach in that a conve-
nient representation of the system state would be by observing a finite-dimensional
vector at a particular instant of time and then examining the subsequent behavior to
arrive at the dynamical relations. Looked at in this light, the primary objective of
this book is to present an introductory, yet comprehensive, treatment of STDS by
jointly combining the two fundamental attributes: the system dynamics possesses
an inherent time delay and the system behavior is managed by a switching sig-
nal. Although each attribute has been examined individually in several texts, the
integration of both attributes is quite unique and deserves special consideration.
Additionally, STDS are nowadays receiving increasing attention by numerous inves-
tigators as evidenced by the number of articles appearing in journals and conference
proceedings.

1.5.1 Methodology

Throughout the monograph, our methodology in each Chapter/section is composed
of five steps:

• Mathematical Modeling
in which we discuss the main ingredients of the state-space model under
consideration.
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• Definitions and/or Assumptions
here we state the definitions and/or constraints on the model variables to pave the
way for subsequent analysis.

• Analysis and Examples
this signifies the core of the respective sections and subsections, which contains
some solved examples for illustration.

• Results
which are provided most of the time in the form of theorems, lemmas, and
corollaries.

• Remarks
which are given to shed some light of the relevance of the developed results
vis-a-vis published work.

In the sequel, theorems (lemmas, corollaries) are keyed to chapters and stated in
italic font with bold titles, for example, Theorem 3.4 means Theorem 4 in Chapter
3 and so on. For convenience, we have grouped the reference in one major bibli-
ography cited toward the end of the book. Relevant notes and research issues are
offered at the end of each chapter for the purpose of stimulating the reader.

We hope that this way of articulating the information will attract the attention of
a wide spectrum of readership.

1.5.2 Chapter Organization

Switched linear systems have been investigated for a long time in the control lit-
erature and have attracted increasingly more attention for more than two decades.
The literature grew progressively and quite a number of fundamental concepts and
powerful tools have been developed from various disciplines. Despite the rapid
progress made so far, many fundamental problems are still either unexplored or
less well understood. In particular, there still lacks a unified framework that can
cope with the core issues in a systematic way. This motivated us to write the cur-
rent monograph. The book presents theoretical explorations on several fundamental
problems for switched linear systems. By integrating fresh concepts and the state-of
the-art results to form a systematic approach for the switching design and feedback
control, a basic theoretical framework is formed toward a switched system theory,
which not only extends the theory of linear systems, but also applies to more realistic
problems.

The book is primarily intended for researchers and engineers in the system and
control community. It can also serve as complementary reading for linear/nonlinear
system theory at the postgraduate level.

The book is divided into six parts:
Part I covers the mathematical ingredients needed for switching systems and

time-delay systems and comprised of two chapters: Chapter 1 introduces the system
description and motivation of the study and presents several analytical tools and
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stability theories that serve as the main vehicle throughout the book. Chapter 2
reviews some basic elements of mathematical analysis, calculus and algebra of
matrices to build up the foundations for the remaining topics of stability, stabiliza-
tion, control, and filtering of switched time-delay systems.

Part II treats switched stability and consists of three chapters: Chapter 3 estab-
lishes an overview of the recent progress of time-delay systems and presents a com-
prehensive picture about the contemporary results and methods. Chapter 4 gives a
general framework of switched systems and addresses the main concepts and ideas.
Chapter 5 draws the picture of switched time-delay systems with emphasis on the
major properties.

Part III deals with switching stabilization and feedback control and contains
two chapters: Chapter 6 includes delay-dependent switched stabilization techniques
using different switching strategies and Chapter 7 gives different delay-dependent
switched feedback techniques and compares among their merits, features, and com-
putational requirements.

Part IV focuses on switched filtering and summarizes the results in two chap-
ters: Chapter 8 is devoted to switched systems and the corresponding methods for
switched time-delay systems are presented in Chapter 9. In both chapters, the design
of Kalman, H∞, and H2 filters are presented.

Part V treats switched interconnected systems by concentrating on switching
decentralized control in Chapter 10. In this chapter, pertinent materials are selected
and presented in a unified way.

Part VI provides applications of switched time-delay systems in terms of water-
quality studies and control policies in streams as the subject of Chapter 11. Multi-
rate control is presented in Chapter 13.

An appendix containing some relevant mathematical lemmas and basic algebraic
inequalities is provided at the end of the book.

We selected the arrangement of references to be in alphabetical order for the
purpose of convenience and easy tracking.

Throughout the book and seeking computational convenience, all the developed
results are cast in the format of a family of LMIs. In writing up the different topics,
emphasis is primarily placed on the major developments attained thus far and then
reference is made to other related work.

In summary, this book covers the analysis and design for switched time-delay
systems supplemented with rigorous proofs of closed-loop stability properties and
simulation studies. The material contained in this book is not only organized to focus
on the new developments in the analysis and control methodologies for such STD
systems, but it also integrates the impact of the delay factor on important issues
such as delay-dependent stability and control design. After an introductory chap-
ter, it is intended to split the book into self-contained chapters with each chapter
being equipped with illustrative examples, problems, and questions. The book will
be supplemented by an extended bibliography, appropriate appendices, and indexes.
It is planned while organizing the material that this book would be appropriate for
use either as a graduate-level textbook in applied mathematics as well as different
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engineering disciplines (electrical, mechanical, civil, chemical, systems), a good
volume for independent study, or a suitable reference for graduate students, prac-
ticing engineers, interested readers, and researchers from a wide spectrum of engi-
neering disciplines, science, and mathematics.



Chapter 2
Mathematical Foundations

This chapter contains a collection of useful mathematical concepts and tools, which
are useful, directly or indirectly, for the subsequent development to be covered in
the main portion of the book. While much of the material is standard and can be
found in classical textbooks, we also present a number of useful items that are not
commonly found elsewhere. Essentially, this chapter serves as a brief overview and
as a convenient reference when necessary.

2.1 Introduction

Hybrid systems are certainly pervasive today. Recently, we have witnessed a resur-
gence in examining quantization effects and a heightened interest in analog com-
putation. There has also been recent progress in analyzing switched, hierarchical,
and discretely controlled continuous-variable systems. It is time to focus on devel-
oping formal modeling, analysis, and control methodologies for hybrid systems.
Therefore, hybrid systems research [357–359] is devoted to modeling, design, and
validation of interacting systems of continuous process and computer programs.
Therefore, the identifying characteristic of hybrid systems is that they incorporate
both continuous components, usually called plants, which are governed by ordi-
nary or functional differential equations, and also digital components such as digital
computers, sensors, and actuators controlled by programs. Moreover, the growing
demands for control systems that are capable of controlling complex nonlinear con-
tinuous plants with discrete intelligent controllers can be addressed by the method
of hybrid systems.

Throughout this book, by a switched system we mean a class of hybrid dynamical
systems consisting of a family of continuous-time subsystems and a rule that orches-
trates the switching between them. An integral part of this book surveys recent
developments in three basic problems regarding stability and design of switched
systems. These problems are:

• stability for arbitrary switching sequences,
• stability for certain useful classes of switching sequences, and
• construction of stabilizing switching sequences.

M.S. Mahmoud, Switched Time-Delay Systems,
DOI 10.1007/978-1-4419-6394-9_2, C© Springer Science+Business Media, LLC 2010
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We also provide motivation for studying these problems within the framework
of time-delay systems. In practice, many systems encountered exhibit switching
between several subsystems (are inherently multimodal) that is dependent on var-
ious environmental factors. Another source of motivation for studying switched
systems comes from the rapidly developing area of switching control. Control tech-
niques based on switching between different controllers have been applied exten-
sively in recent years, particularly in the adaptive context, where they have been
shown to achieve stability and improve transient response. The importance of such
control methods also stems in part from the existence of systems that cannot be
asymptotically stabilized by a single continuous feedback control law. Additionally,
the fact that some of intelligent control methods are based on the idea of switching
between different controllers. The existence of systems that cannot be asymptoti-
cally stabilized by a single static continuous feedback controller [47] also motivates
the study. A survey of basic problems in stability and design of switched systems is
given in [193].

In this book, we treat switched systems as a class of hybrid systems consist-
ing of a family of subsystems and a switching law that specifies which subsys-
tem will be activated along the system trajectory at each instant of time. Switched
systems deserve investigation for theoretical development as well as for practical
applications. To switch between different system structures is an essential feature
of many control systems, for example, in power systems and power electronics
[47]. There have been many studies for switched systems without uncertainties,
primarily on stability analysis and design [358]. But for robust stability analysis
of uncertain switched systems, there has been comparatively little work. A notable
exception is the study of quadratic stability and stabilization by state-based feedback
for both continuous-time and discrete-time switched linear systems composed of
polytopic uncertain systems in [357]. For performance analysis of switched sys-
tems, authors of [357] investigated the disturbance attenuation properties of time-
controlled switched systems consisting of several linear time invariant subsystems
by using an average dwell-time approach incorporated with a piecewise Lyapunov
function. Reference [133] computed the L2-induced norm of a switched linear sys-
tem when the interval between consecutive switching is large. However, uncertainty
is not considered in these two papers although it is ubiquitous in the system model
due to the complexity of the system itself, exogenous disturbance, measurement
errors, and so on. During the past decade, there have also been many papers concern-
ing robust (or quadratic) stability, stabilization, and robust H∞ control of uncertain
systems without switchings [331, 441].

2.2 Basic Mathematical Concepts

Let x j , y j , j = 1, 2, . . . , n ∈ �(or C). Then the n-dimensional vectors x, y are
defined by x = [x1 x2 . . . xn]t , y = [y1 y2 . . . yn]t ∈ �n, respectively.
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A nonempty set X of elements x, y, . . . is called the real (or complex) vector
space (or real (complex) linear space) by defining two algebraic operations, vector
additions and scalar multiplication, in x = [x1, x2, . . . , xn]t [46]

2.2.1 Euclidean Space

The n-dimensional Euclidean space, denoted in the sequel by �n is the linear vector
space �n equipped by the inner product

〈x, y〉 = xt y =
n∑

j=1

x j y j

Let X be a linear space over the field F (typically F is the field of real numbers � or
complex numbers C). Then a function

||.|| : X → �

that maps X into the real numbers � is a norm on X iff

1. ||x || ≥ 0, ∀x ∈ X (nonnegativity)

2. ||x || = 0, ⇐⇒ x = 0 (positive definiteness)

3. ||α x || = |α|||x ||∀x ∈ X (homogeneity with respect to |α|)

4. ||x + y|| ≤ ||x || + ||y||, ∀x, y ∈ X (triangle inequality)

Given a linear space X , there are many possible norms on it. For a given norm
||.|| on X , the pair (X , ||.||) is used to indicate X endowed with the norm ||.||.

2.2.2 Norms of Vectors

The class of L p-norms is defined by

||x ||p =
( n∑

j=1

|x j |p
)1/p

, f or 1 ≤ p <∞

||x ||∞ = max 1 ≤ j ≤ n |x j |
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The three most commonly used norms are ||x ||1, ||x ||2, and ||x ||∞. All p-norms
are equivalent in the sense that if ||x ||p1 and ||x ||p2 are two different p-norms, then
there exist positive constants c1 and cs such that

c1 ||x ||p1 ≤ ||x ||p2 c2 ||x ||p1, ∀x ∈ �n

2.2.2.1 Induced Norms of Matrices

For a matrix A ∈ �n×n, the induced p-norm of A is defined by

||A||p Δ= sup
x �=0

||Ax ||p
||x ||p = sup

||x ||p=1
||Ax ||p

Obviously, for matrices A ∈ �m×n and A ∈ �n×r , we have the triangle inequal-
ity:

||A + B||p ≤ ||A|||p + ||B||p
It is easy to show that the induced norms are also equivalent in the same sense as

for the vector norms, and satisfying

||AB||p ≤ ||Ax ||p ||B||p, ∀A ∈ �n×m, B ∈ �m×r

which is known as the submultiplicative property. For p = 1, 2, . . .∞, we have
the corresponding induced norms as follows:

||A||1 = max
j

n∑
s=1

|as j |, (column sum)

||A||2 = max
j

√
λ j (At A)

||A||∞ = max
s

n∑
j=1

|as j |, (row sum)

2.2.3 Convex Sets

A set S ⊂ �n is said to be open if every vector x ∈ S, there is an ε-neighborhood
of x

N (x, ε) = {z ∈ �n|||z − x || < ε}

such that N (x, ε) ⊂ S.
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A set is closed iff its complement in �n is open; bounded if there is r > 0 such
that ||x || < r, ∀x ∈ S; and compact if it is closed and bounded; convex if for
every x, y ∈ S, and every real number α, 0 < α < 1, the point α x + (1 − α)

x ∈ S.
A set K ⊂ �n is said to be convex if for any two vectors x and y in K any

vector of the form (1 − λ)x + λy is also in K, where 0 ≤ λ ≤ 1. This simply
means that given two points in a convex set, the line segment between them is also
in the set. Note, in particular, that subspaces and linear varieties (a linear variety is a
translation of linear subspaces) are convex. Also the empty set is considered convex.
The following facts provide important properties for convex sets .

1. Let C j , j = 1, . . . ,m be a family of m convex sets in �n . Then the intersection
C1 ∩ C2 ∩ ... ∩ Cm .

2. Let C be a convex set in�n and xo ∈ �n . Then the set {xo+x : x ∈ C} is convex.
3. A set K ⊂ �n is said to be convex cone with vertex xo if K is convex, and x ∈ K

implies that xo + λx ∈ K for any λ ≥ 0.

An important class of convex cones is the one defined by the positive semidefinite
ordering of matrices, that is, A1 ≥ A2 ≥ A3. Let P ∈ �n×n be a positive
semidefinite matrix. The set of matrices X ∈ �n×n , such that X ≥ P is a convex
cone in �n×n .

2.2.4 Continuous Functions

A function f : �n −→ �m is said to be continuous at a point x if f (x + δx) −→
f (x) whenever δx −→ 0. Equivalently, f is continuous at x if, given ε > 0,
there is δ > 0 such that

||x − y|| < ε �⇒ || f (x)− f (y)|| < ε

A function f is continuous on a set of S if it is continuous at every point of S,
and it is uniformly continuous on S if given ε > 0, there is δ(ε) > 0 (dependent
only on ε), such that the inequality holds for all x, y ∈ S

A function f : � −→ � is said to be differentiable at a point x if the limit

ḟ (x) = lim
δx→0

f (x + δx)− f (x)

δx

exists. A function f : �n −→ �m is continuously differentiable at a point x (a set
S) if the partial derivatives ∂ f j/∂xs exist and continuous at x (at every point of S)
for 1 ≤ j ≤ m, 1 ≤ s ≤ n and the Jacobian matrix is defined as

J =
[∂ f

∂x

]
=

⎡
⎢⎣
∂ f1/∂x1 · · · ∂ f1/∂xn

...
. . .

...

∂ fm/∂x1 · · · ∂ fm/∂xn

⎤
⎥⎦ ∈ �m×n
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2.2.5 Function Norms

Let f (t) : �+ −→ � be a continuous function or piecewise continuous function.
The p-norm of f is defined by

|| f ||p =
(∫ ∞

0
| f (t)|p dt

)1/p

, f or p ∈ [1,∞)

|| f ||∞ = sup t ∈ [0,∞)| f (t)|, f or p = ∞

By letting p = 1, 2,∞, the corresponding normed spaces are called L1, L2, L∞,

respectively. More precisely, let f (t) be a function on [0,∞) of the signal spaces,
they are defined as

L1
Δ=

{
f (t) : �+ −→ �||| f ||1 =

∫ ∞

0
| f (t)| dt < ∞, convolution kernel

}

L2
Δ=

{
f (t) : �+ −→ �||| f ||2 =

∫ ∞

0
| f (t)|2 dt < ∞, finite energy

}

L∞
Δ=

{
f (t) : �+ −→ �||| f ||∞ = sup

t∈[0,∞)

| f (t)| < ∞, bounded signal

}

From a signal point of view, the 1-norm, ||x ||1 of the signal x(t) is the integral
of its absolute value, the square ||x ||22 of the 2-norm is often called the energy of
the signal x(t), and the∞-norm is its absolute maximum amplitude or peak value.
It must be emphasized that the definitions of the norms for vector functions are not
unique.

In the case of f (t) : �+ −→ �n, f (t) = [ f1(t) f2(t) . . . fn(t)]t which
denote a continuous function or piecewise continuous vector function, the corre-
sponding p-norm spaces are defined as

Ln
p

Δ=
{

f (t) : �+ −→ �n||| f ||p =
∫ ∞

0
|| f (t)||p dt < ∞, f or p ∈ [1,∞)

}

Ln∞
Δ=

{
f (t) : �+ −→ �n||| f ||∞ = sup

t∈[0,∞)

|| f (t)|| < ∞
}

2.3 Calculus and Algebra of Matrices

In this section, we solicit some basic facts and useful relations from linear algebra
and calculus of matrices. The materials are stated along with some hints whenever
needed but without proofs unless we see the benefit of providing a proof. Reference
is made to matrix M or matrix function M(t) in the form
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M =
⎡
⎢⎣

M11 · · · M1n
...

. . . · · ·
Mm1 · · · Mmn

⎤
⎥⎦ , or M(t) =

⎡
⎢⎣

M11(t) · · · M1n(t)
...

. . . · · ·
Mm1(t) · · · Mmn(t)

⎤
⎥⎦

2.3.1 Fundamental Subspaces

A nonempty subset G ⊂ �n is called a linear subspace of�n if x+y and αx are in G
whenever x and y are in G for any scalar α. A set of elements X = {x1, x2, . . . , xn}
is said to be a spanning set for a linear subspace G of �n if every element g ∈ G can
be written as a linear combination of the {x j }. That is, we have

G = {g ∈ � : g = α1x1 + α2x2 + . . . αn xn

for some scalars α1, α2, . . . , αn .
A spanning set X is said to be a basis for G if no element x j of the span-

ning set X of G can written as a linear combination of the remaining elements
x1, x2, . . . , x j−1, x j+1, . . . , xn, that is, x j , 1 ≤ i ≤ n form a linearly
independent set. It is frequent to use x j = [0 0 . . . 0 1 0 . . . 0]t the kth unit
vector.

The geometric ideas of linear vector spaces had led to the concepts of spanning
a space and a basis for a space. The idea now is to introduce four important sub-
spaces which are useful. The entire linear vector space of a specific problem can be
decomposed into the sum of these subspaces.

The column space of a matrix A ∈ Ren×m is the space spanned by the columns
of A, also called the range space of A, denoted by R[A]. Similarly, the row space
of A is the space spanned by the rows of A. Since the column rank of a matrix is the
dimension of the space spanned by the columns and the row rank is the dimension
of the space spanned by the rows, it is clear that the spaces R[A] and R[At ] have
the same dimension r = rank(A).

The right null space of A ∈ Ren×m is the space spanned by all vectors x that
satisfy A x = 0, and is denoted by N [A]. The right null space of A is also called
the kernel of A. The left null space of A is the space spanned by all vectors y that
satisfy yt A = 0. This space is denoted by N [At ], since it is also characterized by
all vectors y such that At y = 0.

The dimensions of the four spaces R[A], R[At ], N [A], and N [At ] are to be
determined in the sequel. Since A ∈ �n×m, we have the following

r
Δ= rank(A) = dimension of column space R[A]

dim N [A] Δ= dimension of right null space N [A]
n

Δ= total number of columns of A
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Hence the dimension of the null space dim N [A] = n − r . Using the fact that
rank(A) = rank(At ), we have

r
Δ= rank(At ) = dimension of row space R[At ]

dim N [At ] Δ= dimension of left null space N [At ]
m

Δ= total number of rows of A

Hence the dimension of the null space dim N [At ] = m − r . These facts are
summarized below.

Note from these facts that the entire n-dimensional space can be decomposed
into the sum of the two subspaces R[At ] and N [A]. Alternatively, the entire
m-dimensional space can be decomposed into the sum of the two subspaces R[A]
and N [At ].

An important property is that N [A] and R[At ] are orthogonal subspaces, that
is, R[At ]⊥ = N [A]. This has the meaning that every vector in N [A] is orthogonal
to every vector in R[At ]. In the same manner, R[A] and N [At ] are orthogonal
subspaces, that is, R[A]⊥ = N [At ]. The construction of the fundamental subspaces
is appropriately attained by the singular value decomposition.

R[At ] Δ= row space of A : dimension r

N [A] Δ= right null space of A : dimension n − r

R[A] Δ= column space of A : dimension r

N [At ] Δ= left null space of A : dimension n − r

2.3.2 Calculus of Vector–Matrix Functions of a Scalar

The differentiation and integration of time functions involving vectors and matrices
arise in solving state equations, optimal control, and so on. This section summa-
rizes the basic definitions of differentiation and integration on vectors and matri-
ces . A number of formulas for the derivative of vector –matrix products are also
included.

The derivative of a matrix function M(t) of a scalar is the matrix of the deriva-
tives of each element in the matrix

dM(t)

dt
=

⎡
⎢⎣

dM11(t)
dt · · · dM1n(t)

dt
...

. . . · · ·
dMm1(t)

dt · · · dMmn(t)
dt

⎤
⎥⎦

The integral of a matrix function M(t) of a scalar is the matrix of the integral of
each element in the matrix



2.3 Calculus and Algebra of Matrices 25

∫ b

a
M(t)dt =

⎡
⎢⎣

∫ b
a M11(t)dt · · · ∫ b

a M1n(t)dt
...

. . . · · ·∫ b
a Mm1(t)dt · · · ∫ b

a Mmn(t)dt

⎤
⎥⎦

The Laplace transform of a matrix function M(t) of a scalar is the matrix of the
Laplace transform of each element in the matrix

∫ b

a
M(t)e−st dt =

⎡
⎢⎣

∫ b
a M11(t)e−st dt · · · ∫ b

a M1n(t)e−st dt
...

. . . · · ·∫ b
a Mm1(t)e−st dt · · · ∫ b

a Mmn(t)e−st dt

⎤
⎥⎦

The scalar derivative of the product of two matrix time functions is

d(A(t)B(t))

dt
= A(t)

dt
B(t)+ A(t)

B(t)

dt

This result is analogous to the derivative of a product of two scalar functions of
a scalar, except caution must be used in reserving the order of the product. An
important special case follows:

The scalar derivative of the inverse of a matrix time function is

dA−1(t)

dt
= −A−1 A(t)

dt
A(t)

2.3.3 Derivatives of Vector–Matrix Products

The derivative of a real scalar-valued function f (x) of a real vector x =
[x1, . . . , xn]t ∈ Ren is defined by

∂ f (x)

∂x
=

⎡
⎢⎢⎢⎢⎣

∂ f (x)
∂x1
∂ f (x)
∂x2
...

∂ f (x)
∂xn

⎤
⎥⎥⎥⎥⎦

where the partial derivative is defined by

∂ f (x)

∂x j

Δ= lim
Δx j→0

f (x +Δx)− f (x)

Δx j
, Δx = [0 . . . Δx j . . . 0]t

An important application arises in the Taylor’s series expansion of f (x) about xo

in terms of δx
Δ= x − xo. The first three terms are
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f (x) = f (xo)+
(
∂ f (x)

∂x

)t

δx + 1

2
δxt

[
∂2 f (x)

∂x2

]
δx

where

∂ f (x)

∂x
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂ f (x)
∂x1

...

∂ f (x)
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎦

∂2 f (x)

∂x2
= ∂

∂x

(
∂ f (x)

∂x

)t

=

⎡
⎢⎢⎢⎣

∂2 f (x)
∂x2

1
· · · ∂2 f (x)

∂x1∂xn

...
. . . · · ·

∂2 f (x)
∂xn∂x1

· · · ∂2 f (x)
∂x2

n

⎤
⎥⎥⎥⎦

The derivative of a real scalar-valued function f (A) with respect to a matrix

A =
⎡
⎢⎣

A11 · · · A1n
...

. . . · · ·
An1 · · · Ann

⎤
⎥⎦ ∈ Ren×n

is given by

∂ f (A)

∂A
=

⎡
⎢⎢⎣

∂ f (A)
∂A11

· · · ∂ f (A)
∂A1n

...
. . . · · ·

∂ f (A)
∂An1

· · · ∂ f (A)
∂Ann

⎤
⎥⎥⎦

A vector function of a vector is given by

v(u) =

⎡
⎢⎢⎢⎢⎣

v1(u)
...
...

vn(u)

⎤
⎥⎥⎥⎥⎦

where v j (u) is a function of the vector u. The derivative of a vector function of a
vector (the Jacobian) is defined as follows:

∂v(u)

∂u
=

⎡
⎢⎢⎣

∂v1(u)
∂u1

· · · ∂v1(u)
∂um

...
. . . · · ·

∂vn(u)
∂u1

· · · ∂vn(u)
∂um

⎤
⎥⎥⎦
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Note that the Jacobian is sometimes defined as the transpose of the foregoing
matrix. A special case is given by

∂(S u)

∂u
= S,

∂(ut Ru)

∂u
= 2 ut R

for arbitrary matrix S and symmetric matrix R.
The following section includes useful relations and results from linear algebra.

2.3.4 The Dini Theorem

2.3.5 Positive Definite and Positive Semidefinite Matrices

A matrix P is positive definite if P is real, symmetric, and xt Px > 0, ∀x �= 0.
Equivalently, all the eigenvalues of P have positive real parts. A matrix S is positive
semidefinite if S is real, symmetric, and xt Px ≥ 0, ∀x �= 0.

Since the definiteness of the scalar xt Px is a property only of the matrix P , we
need a test for determining definiteness of a constant matrix P . Define a principal
submatrix of a square matrix P as any square submatrix sharing some diagonal
elements of P . Thus the constant, real, symmetric matrix P ∈ �n×n is positive
definite (P > 0) if either of these equivalent conditions holds:

• All eigenvalues of P are positive
• The determinant of P is positive
• All successive principal submatrices of P (minors of successively increasing

size) have positive determinants

2.3.6 Trace Properties

The trace of a square matrix P , trace (P), equals the sum of its diagonal elements
or equivalently the sum of its eigenvalues. A basic property of the trace is invariant
under cyclic perturbations, that is,

trace(AB) = trace(B A)

where AB is square. Successive applications of the above results yield

trace(ABC) = trace(BC A) = trace(C AB)

where ABC is square. In general,

trace(AB) = trace(Bt At )
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Another result is that

trace(At B A) =
p∑

k=1

at
k Bak

where A ∈ �n×p, B ∈ �n×n , and {ak} are the columns of A. The following
identities on trace derivatives are noted:

∂(trace(AB))

∂A
= ∂(trace(At Bt ))

∂A
= ∂(trace(Bt At ))

∂A

= ∂(trace(B A))

∂A
= Bt

∂(trace(AB))

∂B
= ∂(trace(At Bt ))

∂B
= ∂(trace(Bt At ))

∂B

= ∂(trace(B A))

∂B
= At

∂(trace(B AC))

∂A
= ∂(trace(Bt Ct At ))

∂A
= ∂(trace(Ct At Bt ))

∂A

= ∂(trace(AC B))

∂A
= ∂(trace(C B A))

∂A

= ∂(trace(At Bt Ct ))

∂A
= Bt Ct

∂(trace(At B A))

∂A
= ∂(trace(B AAt ))

∂A
= ∂(trace(AAt B))

∂A
= (B + Bt )A

Using these basic ideas, a list of matrix calculus results are given below:

∂(trace(AXt ))

∂X
= A,

∂(trace(AX B))

∂X
= At Bt

∂(trace(AXt B))

∂X
= B A,

∂(trace(AX))

∂Xt
= A

∂(trace(AXt ))

∂Xt
= At ,

∂(trace(AX B))

∂Xt
= B A

∂(trace(AXt B))

∂Xt
= At Bt ,

∂(trace(X X))

∂X
= 2 Xt

∂(trace(X Xt ))

∂X
= 2 X

∂(trace(AXn))

∂X
=

⎛
⎝n−1∑

j=0

X j A Xn− j−1

⎞
⎠

t
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∂(trace(AX B X))

∂X
= At Xt Bt + Bt Xt At

∂(trace(AX B Xt ))

∂X
= At X Bt + AX B

∂(trace(X−1))

∂X
= −(

X−2)t

∂(trace(AX−1 B))

∂X
= −

(
X−1 B AX−1

)t

∂(trace(AB))

∂A
= Bt + B − diag(B)

2.3.7 Partitioned Matrices

Given a partitioned matrix (matrix of matrices) of the form

M =
⎡
⎣ A B

C D

⎤
⎦

where A, B, C , and D are of compatible dimensions. Then

(1) if A−1 exists, a Schur complement of M is defined as D − C A−1 B, and
(2) if D−1 exists, a Schur complement of M is defined as A − B D−1C .

When A, B, C , and D are all n × n matrices, then

a) det

⎡
⎣ A B

C D

⎤
⎦ = det(A) det(D − C A−1 B), det(A) �= 0

b) det

⎡
⎣ A B

C D

⎤
⎦ = det(D) det(A − B D−1C), det(D) �= 0

In the special case, we have

det

⎡
⎣ A B

C 0

⎤
⎦ = det(A) det(C)
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where A and C are square. Since the determinant is invariant under row, it follows

det

⎡
⎣ A B

C D

⎤
⎦ = det

⎡
⎣ A B

C − C A−1 A D − C A−1 B

⎤
⎦

= det

⎡
⎣ A B

0 D − C A−1 B

⎤
⎦ = det(A) det(D − C A−1 B)

which justifies the forgoing result.
Given matrices A ∈ �m×n and B ∈ �n×m , then

det(Im − AB) = det(In − B A)

In case that A is invertible, then det(A−1) = det(A)−1.

2.3.8 The Matrix Inversion Lemma

Suppose that A ∈ �n×n, B ∈ �n×p, C ∈ �p×p, and D ∈ �p×n . Assume that
A−1 and C−1 both exist, then

(A + BC D)−1 = A−1 − A−1 B(D A−1 B + C−1)−1 D A−1

In the case of partitioned matrices, we have the following result

⎡
⎣ A B

C D

⎤
⎦
−1

=
⎡
⎣ A−1 + A−1 BΞ−1C A−1 −A−1 BΞ−1

−Ξ−1C A−1 Ξ−1

⎤
⎦

Ξ = (D − C A−1 B)

provided that A−1 exists. Alternatively,

⎡
⎣ A B

C D

⎤
⎦
−1

=
⎡
⎣ Ξ−1 −Ξ−1 B D−1

−D−1CΞ−1 D−1 + D−1CΞ−1 B D−1

⎤
⎦

Ξ = (D − C A−1 B)

provided that D−1 exists.
For a square matrix Y , the matrices Y and (I +Y )−1 commute, that is, given that

the inverse exists

Y (I + Y )−1 = (I + Y )−1 Y
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Two additional inversion formulas are given below:

Y (I + XY )−1 = (I + Y X)−1 Y

(I + Y X)−1 = I − Y X (I + Y X)−1

The following result provides conditions for the positive definiteness of a parti-
tioned matrix in terms of its submatrices. The following three statements are equiv-
alent:

1)

⎡
⎣ Ao Aa

At
a Ac

⎤
⎦ > 0

2) Ac > 0, Ao − Aa A−1
c At

a > 0

3) Aa > 0, Ac − At
a A−1

o Aa > 0

2.3.9 The Singular Value Decomposition

The singular value decomposition (SVD) is a matrix factorization that has
found a number of applications to engineering problems. The SVD of a matrix
M ∈ Ren×m is

M = U S V † =
p∑

j=1

σ j U j V †
j

where U ∈ Reα×α and V ∈ Reβ×β are unitary matrices (U † U = U U † = I
and V † V = V V † I ); S ∈ Reα×β is a real, diagonal (but not necessarily square);
and pmin(α, β). The singular values {σ1, σ2, . . . , σβ} of M are defined as the pos-
itive square roots of the diagonal elements of St S, and are ordered from largest to
smallest.

To proceed further, we recall a result on unitary matrices. If U is a unitary matrix
(U † U = I ), then the transformation U preserves length, that is,

||U x || =
√
(U x)†(U x) =

√
x† U † U x

=
√

x† x = ||x ||

As a consequence, we have

||M x || =
√

x† M† M x =
√

x† V StU † U SV † x

=
√

x† V St SV † x
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To evaluate the maximum gain of matrix M , we calculate the maximum norm of the
above equation to yield

max||x ||=1
||M x || = max||x ||=1

√
x† V St SV † x = max

||x̃ ||=1

√
x̃† V St S x̃

Note that maximization over x̃ = V x is equivalent to maximizing over x since
V is invertible and preserves the norm (equals 1 in this case). Expanding the norm
yields

max||x ||=1
||M x || = max

||x̃ ||=1

√
x̃† V St S x̃

= max
||x̃ ||=1

√
σ 2

1 |x̃1|2 + σ 2
2 |x̃2|2 + · · · + σ 2

β |x̃β |2

The foregoing expression is maximized, given the constraint ||x̃ || = 1, when x̃ is
concentrated at the largest singular value; that is, |x̃ | = [1 0 . . . 0]t . The maximum
gain is then

max||x ||=1
||M x || =

√
σ 2

1 |1|2 + σ 2
2 |0|2 + · · · + σ 2

β |0|2 = σ1 = σM

In words, this reads the maximum gain of a matrix is given by the maximum
singular value σM . Following similar lines of development, it is easy to show that

min||x ||=1
||M x || = σβ = σm

=
{
σp α ≥ β

0 α < β

A property of the singular values is expressed by

σM (M−1) = 1

σm(M)

2.4 Notes and References

The topics covered in this chapter is meant to provide the reader with a general
platform containing the basic mathematical information needed for further exam-
ination of switched time-delay systems. These topics are properly selected from
standard books and monographs on mathematical analysis. For further details, the
reader is referred to the standard texts [29, 46, 157, 160, 443] where fundamentals
are provided.
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Chapter 3
Time-Delay Systems: Recent Progress

In preparation for the several chapters on stability and stabilization methods for
time-delay systems, it is considered beneficial to provide in this chapter a precise
and concise appraisal of the existing results. The appraisal will be conducted in a
quantitative manner in addition to numerical simulation on a representative example.

3.1 Time Delays: Overview

Time delay occurs for different reasons and from different sources; one of these
sources is the nature of the system or the way it works, for example, in a internal
combustion engine a period of time is required to mix the air and the fuel and a
time delay appears in the system dynamics. Another source for time delay is the
transport delay for some material to travel through the system in heat or mass trans-
fer. Delay also might occur due to the communication among the system parts, for
example, time is needed for the signals to travel among the controllers, the sensors,
and the actuators in any typical closed-loop system. Some controllers may con-
tribute in producing time delay, for example, consider the standard PID controller,
by closing the loop, some time delay may be introduced in the system dynamics
due to the I part in the PID controller since this part accumulates the error from
past values which is a function of delayed states. Finally in some cases the delay
is deliberately introduced in the system to attain some goals like quenching the
overshoot.

In the sequel, the types of delay sources will be discussed in more detail with an
example

1. Nature of the process:
This arises in chemical reactors (finite reaction time), diesel engines (ignition
delay), and recycled processes (recycle delay) where in all of these cases time
for build up or decay down occurs due to the internal functioning of the system.

2. Transport delay:
This occurs in systems containing materials transfer like in rolling mills in which
the controller takes finite time to affect the process and in a heating system where
the delay appears because of transport of the heated air.

M.S. Mahmoud, Switched Time-Delay Systems,
DOI 10.1007/978-1-4419-6394-9_3, C© Springer Science+Business Media, LLC 2010
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3. Communication delay
Communication delay can generally occur due to:

1) propagation time delay of signals among the actuators, controllers, and sen-
sors, particularly in networked control systems and fault-tolerant systems.
This is crucial in remote control systems like in teleportation over the Internet
and in guided rocket operations, and

2) access time delay arising in finite time required to gain access to a shared
media. One example can be found again in the networked control systems
where many nodes are sharing the same communication media and there is
access time delay, which can be considerably large, since the sensor, actuator,
and the controllers are all connected through the network. The data at the
controller are a delayed version of the current state and when the controller
sends the control action (e.g., state feedback) it again suffers time delay.

There is a typical example including network congestion control where the
amount of this traffic depends on the previous load in the buffer for preselected
protocols. Another interesting example occurs in biology of the evolution of a single
species consuming a common self-renewing food where time delay takes place due
to finite production time for the food.

One should realize that in some cases the delay may be intentionally introduced
into the system with a hope to improve the cost function. This delay should be
introduced carefully in order to obtain the required target. This delay can be used
also to reduce the overshoot and yield a smooth and fast transient response. For
further details, the reader is referred to [304].

3.2 Literature Survey

An integral ingredient of research investigations into systems engineering is that
of ‘Mathematical Modeling’ or ‘Modeling’ in short. Simply stated, the process of
exploring any aspect or examining any problem needs a ‘Mathematical Model’,
which would provide a reasonably accurate representation of the system behavior.
In standard books, it is sometimes said that a mathematical model is an abstraction
of reality to the extent that a ‘good choice’ of a mathematical model would reflect
on the quality of the results. Thus it has been our firm belief that mathematical
modeling is the corner stone of systems engineering disciplines. With focus on
lumped-parameter systems, it has been recently recognized that the best mathe-
matical model would be developed by deploying functional differential equations
(FDEs) [109, 171] as the main vehicle of system representation in the time domain.
Thus state-space formulation with delay patterns (time-delay systems) has been con-
sidered [54, 96] as the backbone in the analysis, synthesis, and design of problems in
systems engineering areas. In this regard, we look at control problems of time-delay
systems with the objective of developing improved stabilization and control design
methods. Broadly speaking, there are three directions of research:
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(1) Development of new bounding techniques for the Lyapunov–Krasovskii func-
tionals (LKFs),

(2) Transformation to an appropriate system with distributed delay, and
(3) Construction of new LKFs with a proper distribution of the time delay.

In this chapter, we address equally on all of these directions, although we focus
on the third direction when presenting contemporary results.

3.2.1 Stability Methods

System and control problems associated with time-delay systems have been
the subject matter of numerous publications, the most relevant of which are
[26, 30–448]. Stability analysis and control design of time-delay systems have
attracted the attention of numerous investigators, see [221, 338] for a modest
coverage. In this regard, stability criteria for linear state-delay systems can be
broadly classified into two categories:

• Delay-independent, which are applicable to delays of arbitrary size, and
• Delay-dependent, which include information on the size of the delay.

3.2.2 Delay-Independent Stability Tests

When considering delay-independent stability (DIS) tests, one wants to check for
a given system whether it can preserve its stability in spite of the presence of a
delay of any size. It is hoped that the magnitude of the delay term is very small
relative to the current state and the value of the delayed state can take any value.
The DIS test tries to check if the delayed term’s value is significant/insignificant
to change the original system stability. No information about the delay is needed
and only the values of the matrices of the current state and the delayed states are
considered. Clearly, this direction does not require any information about the nature
of the delay and when it yields positive results, meaning that a system is found to be
stable independent of the delay value, then it can be used regardless of what is the
magnitude of the delay or how fast it changes.

From the published results in this area, it was found that generally this type of
test is relatively easier to be derived and some system can satisfy its condition. On
the other hand, it was concluded that it suffers from some degree of conservatism
due to the following:

• Not all systems have delayed states with small magnitude and, in these cases,
systems will not satisfy the test conditions,

• In many cases, the delay is fixed and the system is time-invariant, and applying
delay-independent stability test yields unnecessary conditions on the system,

• When the delay is not fixed but bounded by some relatively small values, then
the delay-independent test is unsuitable, and
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• It is based on the assumption that the system is stable and it therefore cannot
be used for unstable systems. It can however be used in feedback stabilization.
In addition, it cannot work well in this case, the system can be suffering from a
delay in the input.

For these reasons many researchers shift their interest to the delay dependent
stability tests.

3.2.3 Delay-Dependent Stability Tests

In contrast to the DIS test, in the delay-dependent stability (DDS) tests some a priori
information about the delay is needed to check the system stability. Depending on
the delay pattern and related information required, appropriate stability results can
be readily obtained. This information can be used in either one of the following
scenarios:

Given a dynamical system with some delay information, check whether the system
is stable or not, or

Given a dynamical system, check for at what delay limit the system still remains
stable

Generally, the second scenario is used in qualifying the stability theorems,
because as we will see later, in some cases, we have to make a test of sufficient
(not necessary) conditions type to check for the system stability. This means that it
is for a stable system to satisfy these conditions. If a system succeed in satisfying
them, then the system is stable. All the methods attempt to reduce the conservatism
as much as possible and produce measures or criteria to judge with how much delay
the system remains stable.

3.2.4 Stability Results

When dealing with time-varying delays, a fundamental problem arises when esti-
mating the upper bound of cross-product terms. Algebraic inequalities [301, 322]
and majorization procedures [24] have been used. This introduces a source of
overdesign conservatism. There have been different approaches to reduce the level
of conservatism, including full-size quadratic functionals [167], discretized LKF
[100], and free-weighting matrices techniques [121, 123, 124, 127, 128] and [391].
In particular, in [124] it was pointed out that the significance of bypassing extra
conservatism introduced after enlarged integration time span in some LKF terms.
From the published results, it appears that further reduction of design conservatism
can be achieved with

• Appropriate LKF with moderate number of terms,
• Avoiding bounding methods, and
• Effective use of parametrized relations and variables to avoid redundancy.
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Initial results on deriving delay-dependent stability and stabilization criteria
have been reported in [188, 265] based on the Leibniz–Newton formula and cast
into the Riccati-inequality format. Some recent views and improved methods per-
taining to the problems of determining robust stability criteria and robust con-
trol design of uncertain time-delay systems have been reported, see, for example,
[124, 181, 188, 238, 324] and their references. With the availability of efficient
interior-point minimization methods, all the recent results have been cast in linear-
matrix inequalities (LMIs) format [27].

Two distinct features of the contemporary research activities are identified, the
first feature of which concerns the choice of an appropriate Lyapunov–Krasovskii
functional (LKF) for stability and performance analysis within the framework of
LMIs [27]. General LKF forms might lead to a complicated system of inequali-
ties [124] and the selection of new and effective LKF forms is becoming crucial
for deriving less-conservative stability criteria. The second feature is the introduc-
tion of additional parameters for developing improved sufficient stability conditions
by importing some basic system identities [65–181]. Parallel to this effort is that
several fixed-model transformation methods and parameterization schemes have
been derived in the literature to derive delay-dependent stability conditions, see
[65–100, 198–325, 338–448] and their references.

3.2.5 Stabilization Results

Increasing attention is being paid to the delay-dependent stability, stabilization, and
H∞ control of linear systems with state delays (see for example [66, 80, 105, 114,
127, 128, 152, 155, 156, 198, 338, 392, 440]. For continuous-time systems with time
delay, the main methods so far reported are based on four fixed-model transforma-
tion models (see [66]). Among them, the descriptor systems approach combined
with Park’s [322] and Moon’s inequalities [301] are the most effective way to deal
with delay-dependent problems, see [66, 301, 322]. In [127] however, it is pointed
out that [1, 11, 358] do not consider the relationships between the terms of the
Leibniz–Newton formula in the derivative of the Lyapunov functional. In order to
overcome the conservativeness of methods based on a fixed-model transformation
between those terms (see [114, 124, 127, 440]). Jiang and Han [152, 155] applied
this method to systems with an interval time-varying delay. However, as mentioned
in [124], they ignored some useful terms in the derivative of the Lyapunov func-
tional, which may lead to conservativeness.

3.3 Stability Approaches: Continuous Time

In the following section, a review and evaluation will be made on the time-delay
research in different directions along with few comments on each one. These com-
ments are the points that are to be considered in further development.
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3.3.1 Basic Models

In the sequel, we closely treat the stability problems for the single-delay case and
aim at deriving LMI-based stability conditions. Extension to the multiple-delay case
is a straightforward job and is therefore omitted. We look at two distinct classes of
time-delay systems:

Σc : ẋ(t) = Aox(t)+ Ad x(t − τ), x(t) = φ(t), ∀ t ∈ [−τ, 0] (3.1)

and

Σv : ẋ(t) = Aox(t)+ Ad x(t − τ(t)), x(t) = φ(t), ∀ t ∈ [−�, 0] (3.2)

where x(t) ∈ �n is the state; φ(t) is the continuous initial condition. In (3.1), the
scalar τ is the constant delay for system Σc and in (3.2), τ(t) is the time-varying
delay of system Σv, which is assumed to be continuous, and satisfies

0 < τ(t) ≤ � (3.3)

In both models of time-delay systems Σc and Σv, Ao ∈ �n×n and Ad ∈ �n×n are
known real constant matrices.

3.3.2 LMI Stability Conditions

For system Σc, by selecting the Lyapunov–Krasovskii functional

V (t, xt ) = xt (t)Px(t)+
∫ t

t−τ
xt (s)Qx(s) ds (3.4)

and invoking the Lyapunov–Krasovskii theorem, the following stability condition
can be derived [206]:

Theorem 3.1 The time-delay system Σc is asymptotically stable if there exist matri-
ces P > 0 and Q > 0 such that

[
PAo + At

oP +Q PAd

• −Q
]

< 0 (3.5)

On the other hand, for system Σv, by selecting the Lyapunov functional

V (x(t)) = xt (t)Px(t) (3.6)

and invoking the Lyapunov–Razumikhin theorem and setting p(s) = δs, w(s) =
εs2 such that δ > 1, ε > 0, the following stability condition can be obtained [206]:
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Theorem 3.2 (Mahmoud [206]) The time-delay system Σc is asymptotically stable
if there exists a matrix P > 0 such that

[
PAo + At

oP + P PAd

• −P
]

< 0 (3.7)

Remark 3.3 Based on the foregoing theorems, we are now in a position to make
three key observations.

1. The LMI (3.7) is a special case of the LMI (3.5). Therefore, Theorem 3.1 is less
conservative than Theorem 3.2.

2. Both LMIs are delay-independent since they are satisfied regardless of the size
of delay τ .

3. Theorem 3.2 can be applied to the case when the delay τ is time varying and
continuous, which may not be differentiable. Alternatively, Theorem 3.1 usually
requires the time-varying delay τ to be differentiable.

These simple observations have motivated numerous researchers to adopt the
Lyapunov–Krasovskii theorem in conducting research seeking improved delay-
dependent stability and stabilization conditions. We follow this trend throughout the
book unless otherwise considered beneficial to apply the Lyapunov–Razumikhin
theorem.

3.3.3 Newton–Leibniz Formula

Initial efforts made to get a delay-dependent criteria were using model transforma-
tion for the time-delay systems Σc or Σv . On applying the fundamental Newton–
Leibniz formula

x(t − τ) = x(t)−
∫ t

t−τ
ẋ(s)ds

= x(t)−
∫ t

t−τ
[Aox(s)+ Ad x(s − τ)]ds

to get around the delayed state, then system (3.1) becomes

Σw : ẋ(t) = Aox(t)+ Ad

[
x(t)−

∫ t

t−τ
ẋ(s)ds

]

= (Ao + Ad)x(t)− Ad

∫ t

t−τ
ẋ(s)ds

= (Ao + Ad)x(t)− Ad

∫ t

t−τ
[Aox(s)+ Ad x(s − τ)]ds (3.8)
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It should be observed that the asymptotic stability of the time-delay system (3.8)
implies that of the system (3.1) or (3.2). For this reason, we focus on studying the
stability of (3.8). To this end, we choose a Lyapunov–Krasovskii functional of the
form

V = Vo + Va + Vc

Vo = xt (t)Px(t), Va =
∫ t

t−τ
xt (s)Qx(s)ds

Vc =
∫ 0

−τ

∫ t

t+θ
ẋ t (s)At

dZAd ẋ(s)dsdθ (3.9)

where P > 0, Q > 0, Z > 0.

Remark 3.4 In terms of dynamic models with generalized coordinates, one can
interpret the first component Vo of the LKF V as a measure of the internal energy
of system (3.1), the second term Va is intuitively seen to provide a measure of the
signal energy during the delay period [τ, 0], and the third term Vc gives a measure
of the energy corresponding to the difference between the state x(t), the signal
sought for feedback stabilization, and the delayed state x(t − τ), the one that might
be available for feedback processing, that is given by the Newton–Leibniz formula
x(t)− x(t − τ) = ∫ t

t−τ ẋ(s)ds.

On the other hand, by selecting a Lyapunov–Krasovskii functional of the form

V̂ = Vo + Va + Vc

Vo = xt (t)P−1x(t), Va =
∫ 0

−h

∫ t

t+θ
xt (s)At

dQ−1 Ad x(s)dθ

Vc =
∫ 0

−τ

∫ t

t−τ+θ
ẋ t s At

dZ−1 Ad ẋ(s)ds

the following stability condition can be derived:

Theorem 3.5 The time-delay system Σw is asymptotically stable for any constant
delay τ satisfying

0 < τ ≤ τ̄

if there exist matrices P > 0 and Q > 0 such that

⎡
⎣Π τ̄PAt

o τ̄PAt
d• −Q 0

• • −Z

⎤
⎦ < 0 (3.10)

where

Π = P(Ao + Ad)+ (Ao + Ad)
tP + Ad(Q+ Z)At

d
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Had we considered the case of continuous delay τ(t) in the system

Σs : ẋ(t) = Aox(t)+ Ad

[
x(t)−

∫ t

t−τ(t)
ẋ(s)ds

]

= (Ao + Ad)x(t)− Ad

∫ t

t−τ(t)
ẋ(s)ds

= (Ao + Ad)x(t)− Ad

∫ t

t−τ(t)
[Aox(s)+ Ad x(s − τ(t))]ds (3.11)

we would have arrived at the following result:

Theorem 3.6 The time-delay system Σs is asymptotically stable for any constant
delay τ(t) satisfying

0 < τ ≤ �

if there exist matrices R > 0, M > 0, and N > 0 such that

(Ao + Ad)R+ (Ao + Ad)
tR+ �Ad(M+N )At

d + 2�R < 0[
R RAt

o
• −M

]
≥ 0

[
R RAt

d• −N
]
≥ 0 (3.12)

Remark 3.7 It should be emphasized that the LMIs (3.12) are not strict and, in
general, suffer from computational difficulties. The Newton–Leibniz formula has
been adopted by many researchers to change the time-delay systems Σc and Σv to
(3.8) and (3.11), respectively, in studying various types of time-delay systems to
derive delay-dependent stability conditions. The results are reported in [146, 164,
173, 200, 312, 375, 442], and the references therein.

An alternative way to utilize the Newton–Leibniz formula is to change system
Σc into

Σx : ẋ(t) = (Ao + Ad)x(t)− Ad

∫ t

t−τ(t)
ẋ(s)ds (3.13)

or

Σz : d

dt

[
x(t)+ Ad

∫ t

t−τ(t)
ẋ(s)ds

]
= (Ao + Ad)x(t) (3.14)

Study of systems (3.13) and (3.14) has commanded the attention of various
groups through appropriate construction of the Lyapunov–Krasovskii functionals
to arrive at delay-dependent stability conditions.
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Remark 3.8 We note that all the time-delay systems in (3.8), (3.13), and (3.14) are
transformed from the time-delay system Σc using the Newton–Leibniz formula.
A crucial point to address here is that the transformations carried out on system
Σc to yield either system Σw,Σs,Σx or system Σz are not unique and, more
importantly, these systems are not equivalent to system Σc. Compared with sys-
tem Σc, additional dynamics are introduced in systems Σw − Σz, which might
cause conservatisms as the delay-dependent conditions are derived based on them
[103, 104, 162–165], and the references therein.

3.3.4 Cross-Product Terms

One of the main purposes in the study of delay-dependent stability for time-delay
systems is to develop methods to reduce conservatism of existing delay-dependent
stability conditions. On taking the time derivative of V or V̂ , the following cross-
product term

−2xt (t)PAd

∫ t

t−τ
ẋ(s)ds (3.15)

appears, and since it is neither positive nor negative definite, it may lead to a compli-

cation in establishing the negative definiteness of V̇ or ˙̂V . It is known that the finding
of better bounds on some weighted cross products arising in the analysis of the
delay-dependent stability problem plays a key role in reducing conservatism. There
was a common practice to resolve this complication by majorizing the term and
replacing it by upper-bound terms which are of either positive or negative definite
nature. In some effort, they used the following algebraic inequality

−2at b < at Xa + bt X−1b X > 0 (3.16)

for some vectors a, b, and matrix X . This solves the problem; however, it makes
the result more conservative because we are adding positive terms in V̇ and it has
smaller chance to become negative. To get the smallest possible upper bound, matrix
X should be selected such that the term −2at b is replaced by M , given by

M = inf
X>0

(at Xa + bt X−1b) (3.17)

which means that select a X > 0 that gives the minimum M .

3.3.5 Bounding Inequalities

By focusing on the case of constant but unknown delay and seeking an alternative
way, it is suggested to employ the following inequality
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−2at b < (a + Mb)t X (a + Mb)+ bt X−1b + 2bt Mb X > 0 (3.18)

Here M can take any value and if one puts M = 0, equation (3.16) is obtained.
Therefore, (3.16) is a special case of (3.18) and at the worst case one is able to find
the same result as in (3.16) by setting M = 0. The following result stands out:

Theorem 3.9 The time-delay system Σc is asymptotically stable for any constant
delay τ(t) satisfying

0 < τ ≤ τ̂

if there exist matrices R > 0, S > 0, M > 0 and N > 0 such that

⎡
⎢⎢⎣
Π̂ −N At

d At
o At

dM τ̂ (S +N t )

• −S At
d At

dM 0
• • −M 0
• • • −M

⎤
⎥⎥⎦ < 0 (3.19)

where

Π̂ = (Ao + Ad)R+ (Ao + Ad)
tR+N t Ad + At

dN + S

A summary of the features of the method developed as follows:

• Employs first-order transformation given in (3.8),
• Incorporates the bounding technique (3.18),
• Deals with unknown fixed delay pattern,
• Introduces LKF with three terms,
• Manipulates three Lyapunov matrices and two free-weighting matrices, and
• Considers nominal time-delay models only.

Further improvement over the inequality in (3.16) to reduce the conservatism can
be attained by replacing the cross-product term mentioned in (3.15) with its upper
bound by using the following inequality

−2
∫

at (s)Nb(s)ds ≤
[

a(s)
b(s)

]t [ X Y − N t

• Z

] [
a(s)
b(s)

]
ds

such that

[
X Y
• Z

]
≥ 0 (3.20)

It is not difficult to show that with suitable substitution for matrices Z and Y , one
can show that inequalities (3.16) and (3.18) are special cases of (3.20). Therefore, so
it is expected to give less conservative stability results. The corresponding stability
condition is established belowbased on the LKF (3.9):
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Theorem 3.10 The time-delay system Σc is asymptotically stable for any constant
delay τ(t) satisfying

0 < τ ≤ τ̂

if there exist matrices P > 0, Q > 0, X, Y and Z such that

⎡
⎣ Π̃ PAd − Y τ̂ At

o Z
• −Q τ̂ At

d Z
• • −τ̂ Z

⎤
⎦ < 0 (3.21)

[
X Y
• Z

]
≥ 0 (3.22)

where

Π̃ = AoP + At
oP + τ̂ X + Y + Y t +Q

When dealing with state feedback stabilization, it turns out that the foregoing
method determines the feedback gain matrices using iterative computational proce-
dure. By and large, the method is capable of accommodating norm-bounded uncer-
tainties. It is important to note that the iterative method should start with stable
system for some delay factor τ > 0, which means this method is not applicable for
unstable systems. In addition, for relatively large systems the iterative method takes
quite a long time to yield the desired results.

Remark 3.11 The use of inequality (3.20) has been extensively used in dealing with
various issues related to time-delay systems to derive delay-dependent results; see
[190, 301, 319, 320, 323, 373, 419]. However, it has been analytically established
in [402, 407] that the results of Theorem 3.10 is more conservative, and less con-
servative results could be obtained by introducing some slack matrices.

Along another direction by using the Jensen’s integral inequality (see the
Appendix) and choosing the LKF

V = Vo + Va + Vc

Vo = xt (t)Px(t), Va =
∫ t

t−τ
xt (s)Qx(s)ds

Vc = τ

∫ 0

−τ

∫ t

t+θ
ẋ t (s)Z ẋ(s)dsdθ (3.23)

the following results can be obtained.

Theorem 3.12 The time-delay system Σc is asymptotically stable for any constant
delay τ(t) satisfying

0 < τ ≤ τ̂



3.3 Stability Approaches: Continuous Time 47

if there exist matrices P > 0, Q > 0, and Z > 0 such that

⎡
⎣ Ξ̃ PAd − Z τ̂ At

oZ
• −Q− Z τ̂ At

dZ• • −Z

⎤
⎦ < 0 (3.24)

where

Ξ̃ = AoP + At
oP +Q− Z

Alternatively, on using the Jensen’s integral inequality and choosing the LKF

Ṽ = Vo + Ve

Vo = xt (t)Px(t), Ve = �

∫ 0

−�

∫ t

t+θ
ẋ t (s)Z ẋ(s)dsdθ (3.25)

the following results can be obtained.

Theorem 3.13 The time-delay system Σv is asymptotically stable for any constant
delay τ(t) satisfying

0 < τ(t) ≤ �

if there exist matrices P > 0, Q > 0 and Z > 0 such that

⎡
⎣ AoP + At

oP − Z PAd + Z �At
oZ

• −Z �At
dZ• • −Z

⎤
⎦ < 0 (3.26)

We note that Theorem 3.12 establishes that the time-delay system Σc is asymp-
totically stable for any constant delay τ(t) satisfying 0 < τ(t) ≤ τ̂ when
the LMI (3.24) has a feasible solution, which implies that for τ(t) satisfying
0 < τ(t) ≤ τ̂ /2, the time-delay system Σc is asymptotically stable too. A
way to reduce the conservatism is by introducing the half-delay into system Σc to
gain more information. Consequently, we consider the augmented system

Σy : ẋ(t) = Aox(t)+ Ad x(t − τ)

ẋ(t + τ/2) = Aox(t + τ/2)+ Ad x(t − τ/2) (3.27)

In terms of

y(t) = [
xt (t + τ/2) xt (t)

]t
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system Σy can be cast into the form

ẏ(t) =
[

Ao 0
0 Ao

]
y(t)+

[
Ad 0
0 Ad

]
y(t − τ)

= Ao y(t)+ Ad y(t − τ) (3.28)

Choosing the LKF

V̄ (yt ) = V̄o + V̄a + V̄c

V̄o = yt (t)P y(t), V̄a =
2∑

j=1

∫ t

t−( jτ/2)
yt (s)Q j y(s)ds

V̄c = τ

2∑
j=1

∫ 0

−( jτ/2)

∫ t

t+θ
ẏt (s)Z j ẏ(s)dsdθ (3.29)

the following result can be obtained

Theorem 3.14 The time-delay system Σc is asymptotically stable for any constant
delay τ(t) satisfying

0 < τ ≤ τ̂

if there exist matrices P > 0, Q1 > 0, Q2 > 0, Z1 > 0, and Z2 > 0 such that

B⊥tWBt < 0

where B⊥ is an orthogonal complement of B given by

B =

⎡
⎢⎢⎣

I Ao 0 Ad 0 0
0 −I I 0 I 0
0 −I 0 I 0 I
0 Ir I f Is 0 0

⎤
⎥⎥⎦

W =

⎡
⎢⎢⎣
τ 2/2Z1 + τ 2Z2 P 0 0

P Q1 +Q2 0 0
0 0 −Q 0
0 0 0 −Z

⎤
⎥⎥⎦ (3.30)

where

Ir =
[

0 I
0 0

]
, I f =

[−I 0
0 I

]
, Is =

[
0 0
−I 0

]

Q =
[
Q1 0
0 Q2

]
, Z =

[
Z1 0
0 Z2

]
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Remark 3.15 Theorem 3.14 is attributed to [97, 98]. It can be shown that this theo-
rem can be further improved by discretizing r > 2 times of the interval [−τ, 0].
It is fair to state that Jensen’s integral inequality HAS been used to deal with
different kinds of time-delay systems in order to derive delay-dependent results
[105, 112, 115, 152, 393].

3.3.6 Descriptor System Approach

We have observed in the foregoing sections that delay-dependent stability results
obtained via a transformed model, which is not equivalent to the original time-delay
system, may lead to conservatism. In an effort to reduce such potential conservatism,
a method based on descriptor system model has been introduced in the literature
to derive delay-dependent stability conditions, which is equivalent to the original
time-delay system.

To introduce the descriptor system approach, we first consider the time-delay
system Σc and represent (3.1) in the following form:

ẋ(t) = y(t)

0 = −y(t)+ (Ao + Ad)x(t)− Ad

∫ t

t−τ
y(s)ds (3.31)

which can be rewritten in the compact form

E ˙̃x(t) = Āo x̃(t)+ Ād x̃(t − τ)

E =
[

I 0
0 0

]
, x̃(t) =

[
x(t)
y(t)

]
, Ād =

[
0

Ad

]

Āo =
[

0 I
Ao + Ad −I

]
(3.32)

where the time delay has the pattern

0 ≤ τ ≤ h, τ̇ ≤ μ < 1 (3.33)

and the system is subjected to either norm bounded or polytopic uncertainty. Given
that the descriptor model (3.31) is equivalent to system (3.1), it was concluded that
improved stability results can be obtained by choosing the LKF

V̂ (x̃t ) = V̂o + V̂a + V̂c

V̂o = x̃ t (t)E P x̃(t), V̂a =
∫ t

t−τ
xt (s)Qx(s)ds

V̂c =
∫ 0

−τ

∫ t

t+θ
ẏt (s)Z ẏ(s)dsdθ (3.34)
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and deploying the bounding inequality (3.20), the following result can be
obtained:

Theorem 3.16 The time-delay system Σc is asymptotically stable for any constant
delay τ(t) satisfying

0 < τ ≤ τ̂

if there exist matrices P1 > 0, P2, P3, Q > 0, Z > 0, Y11, Y12, S11, S12, and
S13, ; such that

[
Π̃ + τ̂ S1 P t Ād − Y t

1• −Q

]
< 0 (3.35)

[
Z Y1
• S1

]
≥ 0 (3.36)

where

Π̃ = P t
[

0 I
Ao −I

]
+

[
0 I
Ao −I

]t

P +
[
Q 0
0 τ̂Z

]

+
[

Y1
0

]
+

[
Y1
0

]t

(3.37)

P =
[
P1 0
P2 P3

]
, Y1 =

[
Y11 Y12

]
, S1 =

[
S11 S12
• S13

]
(3.38)

An equivalent form of Theorem 3.16 is stated below

Theorem 3.17 The time-delay system Σc is asymptotically stable for any constant
delay τ(t) satisfying

0 < τ ≤ τ̂

if there exist matrices P1 > 0, P2, P3, Q > 0, Z > 0, Y11, Y12 such that

⎡
⎣ Π̃ P t Ād − Y t

1 −τ̂Y t
1• −Q 0

• • −τ̂Z

⎤
⎦ < 0 (3.39)

where Π̃, P , and Y1 are given in (3.37) and (3.38).

Theorem 3.18 The time-delay system Σc is asymptotically stable for any constant
delay τ(t) satisfying

0 < τ ≤ τ̂



3.3 Stability Approaches: Continuous Time 51

if there exist matrices P1 > 0, P2, P3, Q > 0, Z > 0, Y11, Y12 such that

⎡
⎣ Π̃ P t Ād − Y t

1 −τ̂Y t
1• −Q 0

• • −τ̂Z

⎤
⎦ < 0 (3.40)

where Π̃, P , and Y1 are given in (3.37) and (3.38).

The following is a summary of the features of the descriptor model transforma-
tion method

• Incorporates the bounding inequality (3.20),
• Deals with unknown fixed delay,
• Introduces an LKF with three terms,
• Manipulates five free-weighting matrices, and
• Considers norm-bounded and polytopic uncertainties.

Remark 3.19 Since its introduction to the control literature through [65, 68], the
descriptor system approach has been widely used to deal with various problems of
time-delay systems in order to provide delay-dependent results; see [66, 80, 114,
145, 368], and the references therein.

At the end of this chapter, we provide an overview of the research efforts and identify
some of the merits and demerits of the developed methods.

3.3.7 Free-Weighting Matrices Method

Subsequent research studies focused on further reduction of conservatism. It
becomes clear that new methods should be developed which do not arise from
model transformation nor upper-bounding. A new approach was developed through
the introduction free-weighting matrices (slack matrix variables) method, which is
based on adding zero-valued equations to the linear matrix inequality (LMI) under
consideration plus incorporating the Newton–Leibniz formula. Candidate examples
of this type are

2xt (t) Y
[
x(t)− x(t − τ)−

∫ t

t−τ
x(s)ds

]
(3.41)

2xt (t − τ) W
[
x(t)− x(t − τ)−

∫ t

t−τ
x(s)ds

]
(3.42)

Here Y and T are free matrices to be manipulated to reach a feasible solution. Fur-
thermore, it can be seen that

τ

[
x(t)

x(t − τ)

]t [
X11 X12
• X22

] [
x(t)

x(t − τ)

]

−
∫ t

t−τ

[
x(t)

x(t − τ)

]t [
X11 X12
• X22

] [
x(t)

x(t − τ)

]
ds = 0 (3.43)
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Now by using the LKF (3.23) in addition to ( 3.41), (3.42), and ( 3.43), the following
theorem summarizes the main delay-dependent stability result:

Theorem 3.20 The time-delay system Σc is asymptotically stable for any constant
delay τ(t) satisfying

0 < τ ≤ τ̂

if there exist matrices P > 0, Q > 0, Z > 0, X11, X12, X22, Y and W such
that

⎡
⎣Ψa Ψc τ̂ At

oZ
• −Ψe τ̂ At

dZ• • −τ̂Z

⎤
⎦ < 0 (3.44)

⎡
⎣ X11 X12 Y
• X22 W
• • Z

⎤
⎦ ≥ 0 (3.45)

where

Ψa = PAo + At
oP + Y + Y t +Q+ τ X11,

Ψc = PAd − Y +W t + τ X12,

Ψe = Q+W +W t − τ X22. (3.46)

In the case that equation (3.43) was not utilized, then simple manipulations can show
that Theorem 3.20 reduces to

Theorem 3.21 The time-delay system Σc is asymptotically stable for any constant
delay τ(t) satisfying

0 < τ ≤ τ̂

if there exist matrices P > 0, Q > 0, Z > 0, Y and W such that

⎡
⎢⎢⎣
Φa Φc −τ̂Y τ̂ At

oZ
• −Ψe −τ̂W τ̂ At

dZ• • −τ̂Z 0
• • • −τ̂Z

⎤
⎥⎥⎦ < 0 (3.47)

where

Φa = PAo + At
oP + Y + Y t +Q

Φc = PAd − Y +W t

Φe = Q+W +W t (3.48)
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Admittedly, the method based on introducing slack variables has been exten-
sively used in the derivation of delay-dependent results for time-delay systems,
which is also effective in reducing conservatism in the existing delay-dependent
results.

Till date, there are no quantitative methods that yield analytical comparisons
among different existing techniques. Rather, a common numerical example is usu-
ally implemented and an evaluation is made with respect to the ensuing numerical
results. The following is a summary of the features of the slack variables method:

• It does not employ any model transformation;
• It does not incorporate any bounding method;
• It deals with unknown differentiable time-varying delay.

When the differentiable time-varying delay pattern

0 ≤ τ(t) ≤ �, τ̇ (t) ≤ μ

is considered, a slack variables method can be developed by selecting a three-term
LKF in the type (3.9) and achieve the delay-dependent stability conditions by using
additional six free-weighting matrices.

Subsequent research activities examined the following distinct types of delay

(A1) 0 ≤ τ(t) ≤ �, τ̇ (t) < μ

(A2) 0 ≤ τ ≤ �

The reason for differentiating between the two types of the delay stems from the
application under consideration with regard to the delay rate of change. The argu-
ment is that type (A1) puts some upper bound on both the delay and its derivative
while type (A2) does not. Then a stability method that adopts type (A2) becomes
applicable for any system regardless of its delay rate of change. The supporters of
this research direction considers it as a method for fast dynamics in comparison to
a stability method uses type (A1), was considered with μ < 1 to be only appli-
cable for slow dynamics. Even with this limitation, a time-delay system has slow
dynamics can more easily satisfy the conditions based on (A1). The elimination of
the condition μ < 1 is a great contribution in its own.

3.3.8 Interval Time Delays

Generalizing both delay types (A1) and (A2) lead to consideration of interval time-
varying delay of the type

(A3) ϕ ≤ τ(t) ≤ �, τ̇ (t) < μ

(A4) ϕ ≤ τ ≤ �

where 0 < ϕ < � are known constants. Obviously, types (A3) and (A4)
generalize (A1) and (A2), respectively.
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Basically, the combined use of the free-weighting matrices method for systems
with interval time delays opens a new systematic approach to look at the stability-
stabilization problem and develops a delay-dependent stability result that is appli-
cable to wider classes of time delay systems. Note that the condition μ < 1 is no
longer applicable, and the criticism of fast dynamic is resolved by this because μ

may take any value. It was shown that this system formulation serves as a general
setup to the extent that previously published methods can be considered as special
cases.

To provide a numerical evaluation, the following example is implemented by
several methods

Ao =
[−2.0 0.0

0.0 −0.9

]
Ad =

[−1.0 0.0
−1.0 −1.0

]
(3.49)

For every method, the bound μ was fixed at some value and from the LMI
feasibility testing, the largest τ is recorded. Typical values of μ were selected as
0, 0.5, 0.9, and 3. In Table 3.1 the values of the maximum allowable value of τ are
presented.

Table 3.1 Comparison between different methods: largest τ

Method μ = 0 μ = 0.5 μ = 0.9 μ = 3

[65] 4.47 2.0 1.180 X
[392] 4.472 2.008 1.180 X
[128] 4.472 2.008 1.180 0.999
[155] 4.472 2.008 1.180 0.999
[198] 4.472 2.008 1.180 X
[124] 4.472 2.0430 1.3780 1.3450

We first notice that there is a negligible difference between selected methods
since they are using the same Lyapunov functional. The effect of free-weighting
matrices is small except for the method of [124] because the Lyapunov function
there has an additional term, which gives the cited method some advantage over the
others.

From the table it is clear that the method of [124] is computationally superior
and, therefore in the subsequent work, we will take it as a reference to compare
our results with. Another point to notice is that the recent method of [124] was not
extended to deal with stabilization through state or observer feedback and investi-
gate the introduction of polytopic type or norm-bounded uncertainties.

3.3.9 Improved Stability Method

Consider the class of linear time-delay systems

ẋ(t) = Aox(t)+ Adox(t − τ(t)) (3.50)
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where x(t) ∈ �n is the state vector, Ao ∈ �n×n and Ado ∈ �n×n are real and
known constant matrices. The delay τ(t) is a differentiable time-varying function
satisfying

0 < τ(t) ≤ �, τ̇ (t) ≤ μ (3.51)

where the bounds � and μ are known constant scalars. The following theorem
summarizes an improved stability method based on the free-weighting matrices
approach.

Theorem 3.22 Given � > 0 and μ > 0. System (3.50) is delay-dependent asymp-
totically stable if there exist weighting matrices P > 0, Q > 0, R > 0, W > 0
and parameter matrices Na Nc satisfying the following LMI

Ξ =
⎡
⎣Ξo �N Ξc

• −�W 0
• • −�W

⎤
⎦ < 0 (3.52)

where

Ξo =
⎡
⎣Ξo1 Ξo2 Na

• Ξo3 Nc

• • −R

⎤
⎦ , N =

⎡
⎣ Na

Nc

0

⎤
⎦ , Ξc =

⎡
⎣ �At

oW
�At

dW
0

⎤
⎦ (3.53)

Ξo1 = PAo + At
oP t +Q+R+ Na + N t

a

Ξo2 = PAdo − 2Na + N t
c

Ξo3 = −(1− μ)Q− 2Nc − 2N t
c (3.54)

Proof Consider the Lyapunov–Krasovskii functional (LKF):

V (t) = Vo(t)+ Vm(t)+ Vc(t)+ Va(t)

Vo(t) = xt (t)Px(t), Va(t) =
∫ t

t−τ(t)
xt (s)Qx(s) ds

Vc(t) =
∫ t

t−�
xt (s)Rx(s)ds

Vm(t) =
∫ 0

−�

∫ t

t+s
ẋ t (α)W ẋ(α)dαds (3.55)

where 0 < P, 0 < W, 0 < Q, 0 < R are weighting matrices of appropriate
dimensions. The first term in (3.55) is standard to the delay-less nominal system
while the second and fourth terms correspond to the delay-dependent conditions
and the third term is introduced to compensate for the enlarged time interval from
t − �→ t to t − τ → t . A straightforward computation gives the time derivative of
V (x) along the solutions of (3.50) as
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V̇o(t) = 2xtP[Aox(t)+ Adox(t − τ)] (3.56)

V̇a(t) = xt (t)Qx(t)− (1− τ̇ ) xt (t − τ(t))Qx(t − τ(t))

≤ xt (t)Qx(t)− (1− μ) xt (t − τ(t))Qx(t − τ(t)) (3.57)

V̇c(t) = xt (t)Rx(t)− xt (t − �)Rx(t − �) (3.58)

V̇m(t) = � ẋ t (t)W ẋ(t)−
∫ 0

t−�
ẋ t (s)W ẋ(s)ds (3.59)

In terms of

ξ(t) = [
xt (t) xt (t − τ(t)) xt (t − �)

]t

and using the classical Leibniz rule x(t − θ) = x(t) − ∫ t
t−θ ẋ(s)ds for any matri-

ces Na, Nc of appropriate dimensions and using N from (3.53), the following
equations hold:

2 ξ t (t)(2N )

[
−

∫ t

t−τ(t)
ẋ(s)ds + x(t)− x(t − τ)

]
= 0

2 ξ t (t)(−N )

[
−

∫ t

t−�
ẋ(s)ds + x(t)− x(t − �)

]
= 0 (3.60)

From (3.55), (3.56), (3.57), (3.58), and (3.59) and using (3.60), we have

V̇ (t)|(3.50) ≤ xt (t)
[
PAo + At

oP +Q+R+ Na + N t
a

]
x(t)

− xt (t − �)Rx(t − �)

+ 2xt (t)
[
PAdo − 2Na + N t

c

]
x(t − τ)

+ 2xt (t)Na x(t − �)+ 2xt (t − τ)Ncx(t − �)

− xt (t − τ)
[
(1− μ)Q+ 2Nc + 2N t

c

]
x(t − τ(t))

− 2 ξ t (t)(2N )

∫ t

t−τ
ẋ(s)ds −

∫ t

t−�
ẋ t (s)W ẋ(s)ds

+ 2 ξ t (t)N
∫ t

t−�
ẋ(s)ds

+ � ξ t (t)
[

Ao Ado 0
]t W

[
Ao Ado 0

]
(3.61)

where V̇ (x)|(3.50) defines the Lyapunov derivative along the solutions of system
(3.50). Regrouping the terms of (3.61) leads to
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V̇ (t)|(3.50) = ξ t (t)Ξoξ(t)

−
∫ t

t−�
ẋ t (s)W ẋ(s)ds

+ξ t (t)

⎡
⎣ �At

o
�At

do
0

⎤
⎦W

⎡
⎣ �At

o
�At

do
0

⎤
⎦

t

ξ(t)

−2ξ t (t)N
∫ t

t−τ(t)
ẋ(s)ds − 2ξ t (t)(−N )

∫ t−τ(t)

t−�
ẋ(s)ds

≤ ξ t (t)Ξoξ(t)+ ξ t (t)

⎡
⎣ �At

o
�At

do
0

⎤
⎦W

⎡
⎣ �At

o
�At

do
0

⎤
⎦

t

ξ(t) (3.62)

where matrices Ξo, N are given in (3.53). From (3.52) and Schur complements, it
follows from (3.62) that V̇ (t)|(3.50) < 0, which establishes the desired asymptotic
stability.

Remark 3.23 It is significant to recognize that the foregoing method, based on
the implementation requirements of the stability conditions, provides a substantial
improvement over the recently developed free-weighting matrices method of [124].
Hence it is expected to yield less-conservative delay-dependent stability results in
terms of two aspects. One aspect would be due to reduced computational load as
evidenced by a simple comparison with less number of manipulated variables and
faster processing. Another aspect arises by noting that LMIs (3.52), (3.53), and
(3.54) theoretically cover the results of [155, 181, 188] as special cases. Further-
more, in the absence of delay (Ad ≡ 0, Q ≡ 0, W ≡ 0), it is easy to infer that
LMIs (3.52) and (3.54) will eventually reduce to a parametrized delay-independent
criteria.

3.3.10 Delay-Partitioning Projection Method

To shed light on the delay-partitioning projection approach, we consider the time-
delay model

ẋ(t) = Aox(t)+ Adox

⎛
⎝t −

p∑
j=1

τ j

⎞
⎠ (3.63)

x(t) = φ, ∀ t ∈ [−τ̂ , 0] (3.64)

where the scalars τ j > 0, j = 1, ..., p and
∑p

j=1 τ j ≤ τ̂ . Thus, the factors
τ j , j = 1, ..., p represents a partition of the lumped delay τ̂ . We proceed by
letting
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αo = 0, αk =
k∑

j=1

τ j

By choosing the Lyapunov–Krasovskii functional (LKF):

V (t) = Vo(t)+ Vm(t)+ Vc(t)+ Va(t)

Vo(t) = xt (t)Px(t), Va(t) =
∫ t

t−τ(t)
xt (s)Rx(s) ds

Vc(t) =
p∑

j=1

∫ t−α j−1

t−α j

x t (s)Q j x(s)ds

Vm(t) =
∫ 0

−�

∫ t

t+s
ẋ t (α)W ẋ(α)dα ds (3.65)

where 0 < P, 0 < W, 0 < Q j , 0 < R. The following result can be obtained

Theorem 3.24 System (3.63) and (3.64) is delay-dependent asymptotically stable if
there exist weighting matrices P > 0, Q j > 0, R > 0, W > 0, j = 1, ..., p
satisfying the following LMI

B⊥t
[
Ξv +Ξw 0

0 Ξs

]
B⊥ < 0 (3.66)

where B⊥ ∈ �(2p+1)n×(p+1)n is the orthogonal complement of

B =

⎡
⎢⎢⎢⎣

I −I 0 . . . 0 −I 0 . . . 0
0 I −I . . . 0 −I 0 . . . 0
...

...
. . .

. . .
...

...
...
. . .

...

0 0 . . . I −I 0 0 . . . −I

⎤
⎥⎥⎥⎦ (3.67)

and

Ξv =

⎡
⎢⎢⎢⎣

PAo + At
oP +Q1 0 . . . 0 PAd

• Q2 −Q1 . . . 0 0
...

...
. . .

...
...

• • . . . • −Qp

⎤
⎥⎥⎥⎦

Ξw =
( p∑

j=1

τ̂ j

)[
Ao 0 . . . 0 Ad

]tW
[
Ao 0 . . . 0 Ad

]

Ξs = diag

[
− τ̂−1

1 W, . . . , −τ̂−1
p W

]
. (3.68)
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3.3.11 Numerical Examples

To complete the picture, the following examples provide numerical evaluations

Illustrative Example A

Ao =
[−0.5 −2

1 −1

]
, Ad =

[−0.5 −1
0 −0.6

]

In terms of the number of system variables Nv , the number of LMI iterations to
reach a feasible solution Ni , the total elapsed time Te to reach at a desirable � and
the maximum �, a sequence of numerical experiments is performed on a standard
computing facility.1 Table 3.2 contains a summary of the computational results of
our methods as compared to the other existing method.

Table 3.2 Computational summary with μ = 2 : example 1

Method Nv Ni Te �

[124] 54 100 14.27 s 0.9
Theorem 3.22 20 100 3.77 s 1.1

Illustrative Example B

An open-loop stable time-delay system for chemical reactor is considered here as a
state-feedback design [177]. In the reactor, raw materials A and B take part in three
chemical reactions that produce a product P along with some other by products.
By linearization and time scaling, the state variables are the deviations from their
nominal values in the weight composition of reactant A, in the weight composition
of reactant B, in the weight composition of intermediate product C and in the weight
composition of reactant P . The control variables are relative deviations in the feed
rates. Using typical values [177], the model matrices are

Ao =

⎡
⎢⎢⎣
−4.93 −1.01 0 0
−3.2 −5.3 −12.8 0
6.4 0.347 −32.5 −1.04
0 0.833 11.0 −3.96

⎤
⎥⎥⎦ , Ad =

⎡
⎢⎢⎣

1.92 0 0 0
0 1.92 0 0
0 0 1.87 0
0 0 0 0.724

⎤
⎥⎥⎦

The open-loop system response is plotted in Fig. 3.1. In Table 3.3, a summary of
the computational results of our method as compared to the other existing method.

1 This is comprised of Intel Core Duo- 2.66 GHz both processors with 980MB RAM employing
Matlab 7.
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Fig. 3.1 Open-loop state trajectories: example 2

Table 3.3 Computational summary with μ = 2 : example 3.2

Method Nv Ni Te �

[121, 123, 124, 128] 204 10 14.66 s 0.652
Theorem 3.22 72 10 2.295 s 0.874

It is evidently clear that the improved method is quite superior to [121, 123,
124, 128] since the computational time is much less and, in addition, their storage
requirement is almost three times that of our method which is quite excessive. More
importantly

Illustrative Example C

The example is used [418] and has the following matrices

Ao =
[−2 0

0 −.9
]
, Ad =

[−1 0
−1 −1

]

In this example every time a set of values is put for μ and hl . Then the maximum
hu above which the system fails to satisfy the theorem condition is used in Table
3.3 to compare their results, and the result obtained by the method developed in this
book (Table 3.4):
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Table 3.4 Comparison between different methods

ϕ Method μ = 0.5 μ = 0.9

ϕ = 0 [152] 1.01 1.01
ϕ = 0 [418] 2.04 1.37
ϕ = 0 Proposed 2.33 1.87
ϕ = 2 [152] 2.39 2.39
ϕ = 2 [418] 2.43 2.43
ϕ = 2 Proposed 4.472 2.6
ϕ = 4 [152] 4.06 4.06
ϕ = 4 [418] 4.07 4.07
ϕ = 4 Proposed 4.09 4.09

3.4 Stability Approaches: Discrete Time

Less attention has been paid to discrete-time systems with a time-delay because a
linear discrete-time system with a constant time-delay can be transformed into a
delay-free system by means of a state-augmentation approach [207]. However this
approach is not suitable for systems with either unknown or time-varying delays.
Over the past decade, several articles have appeared on this topic. There are two
types of time delays discussed in the literature. For small time-varying delays [34],
the descriptor model transformation approach was employed to study the delay-
dependent guaranteed-cost control of uncertain discrete-time delay systems, and
in [12, 34, 168, 354]. In later chapters, we present switched time-delay models of
continuous-time and discrete-time dynamical systems. The purpose is to lay down
the mathematical formulations needed in the subsequent study on stability and feed-
back stabilization of linear time delay (LTD) and nonlinear time-delay (NTD) sys-
tems. Specifically, we will seek to generalize the formulations in order to encompass
the widespread analytical results.

3.4.1 A Discrete-Time Model

A class of discrete-time systems with state delay is represented by

x(k + 1) = Aox(k)+ Dox(k − d(k)) (3.69)

where for k ∈ Z+
Δ= {0, 1, ...} and x(k) ∈ �n is the state, control, and Ao ∈

�n×n, Do ∈ �n×n are constant matrices. The delay factor d(k) is unknown but
bounded in the form

0 < dm ≤ d(k) ≤ dM , ds = dM − dm + 1 (3.70)

where the scalars dm and dM represent the lower and upper bounds, respectively, and
ds denotes the number of samples within the delay interval. By setting d(k) = ≡ 0
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in (3.69), it is readily seen that |λ(Ao + Ad)| < 1 is a necessary condition for
stability of system (3.69). From now onwards, we assume that this is the case.

Remark 3.25 The class of systems (3.69) represents a nominally linear model
emerges in many areas dealing with the applications functional difference equations
or delay-difference equations [216]. These applications include cold rolling mills,
decision-making processes, and manufacturing systems. Related results for a class
of discrete-time systems with time-varying delays can be found in [24] where delay-
dependent stability and stabilization conditions are derived. It should be stressed
that although we consider only the case of single time delay, extension to multiple
time-delay systems can be easily attained using an augmentation procedure.

3.4.2 Lyapunov Theorem

Intuitively if we associate with system (3.69) a positive-definite Lyapunov–
Krasovskii functional V (k, x(k)) > 0 and we find its first difference ΔV (k, x(k)) =
V (k+1, x(k+1))−V (k, x(k)) is negative definite along the solutions of (3.69), then
the origin of system (3.69) is globally asymptotically stable. Formally, we present
the following theorem for discrete-time systems of the type (3.69):

Theorem 3.26 The equilibrium 0 of the discrete-time system

x(k + 1) = h(x(k)) (3.71)

is globally asymptotically stable if there is a function V : {0, 1, 2, ....} × �n → �
such that

• V (k, x(k)) is a positive-definite function, decrescent, and radially unbounded,
• ΔV (k, x(k)) = V (k + 1, x(k + 1)) − V (k, x(k)) is negative definite along the

solutions of system (3.69)

For arbitrary value of d(k), denote

z(k) =
⎡
⎢⎣

x(k)
...

x(k − d(k))

⎤
⎥⎦

We have

z(k + 1) =

⎡
⎢⎢⎢⎣

Ao 0 . . . 0 Do

I 0 . . . 0 0
...

. . . . . .
...

...

0 0 . . . I 0

⎤
⎥⎥⎥⎦ z(k) (3.72)

It is obvious that system (3.69) is globally asymptotically stable if and only if system
(3.71) is globally asymptotically stable. For system (3.71), we define
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V̂ (k, z(k)) = zt (k)

⎡
⎢⎢⎢⎣

P 0 . . . 0
0 Q . . . 0
...

...
. . .

...

0 0 . . . Q

⎤
⎥⎥⎥⎦ z(k) (3.73)

where P > 0, Q > 0. It is easy to see that V̂ (k, z(k)) > 0, decrescent, and radially
unbounded and hence system (3.71) thereby system (3.69) is globally asymptoti-
cally stable.

There are two main classes of stability analysis that have been investigated in
the literature, namely delay-dependent and delay-independent conditions. For a
discrete-time delay system whose stability does not depend on the time-delay value,
the analysis performed through delay-dependent conditions can be very conserva-
tive. Also, delay-independent conditions cannot be obtained as a limit case of delay-
dependent ones just by imposing the maximum delay value dM →∞, leading to a
gap between these two types of delay-stability conditions.

3.4.3 Delay-Independent Stability

Given weighting matrices 0 < P t = P, 0 < Qt = Q of appropriate dimensions.
By selecting the Lyapunov–Krasovskii functional

V (k) = xt (k)Px j (k)+
k−1∑

m=k−d(k)

xt (m)Qx j (m) (3.74)

and invoking the Lyapunov–Krasovskii theorem, the following stability condition
can be derived [206]:

Theorem 3.27 The discrete-delay system (3.69) is asymptotically stable if there
exist matrices P > 0 and Q > 0 such that

⎡
⎣−(P −Q) 0 At

oP
• −Q Dt

oP
• • −P

⎤
⎦ < 0 (3.75)

We stress that LMI (3.75) is virtually delay independent since it is satisfied,
regardless of the size of delay d(k).

3.4.4 Delay-Dependent Stability

In the sequel, sufficient delay-dependent LMI-based stability conditions are
given. The approach used here does not introduce any dynamics and leads to
a product separation between the matrices of the system and those from the
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Lyapunov–Krasovskii functional. The following theorem provides some LMI con-
ditions depending on the values dm and dM .

Theorem 3.28 Given the delay sample number ds . System (3.69) subject to (3.70) is
delay-dependent asymptotically stable if one of the following equivalent conditions
is satisfied

(A) there exist matrices 0 < P ∈ �n×n, 0 < Q ∈ �n×n such that

Ξa =
[

At
oPAo + dsQ− P At

oPDt
o

• Dt
oPDo −Q

]
< 0 (3.76)

(B) there exist matrices 0 < P ∈ �n×n, 0 < Q ∈ �n×n, X ∈ �n×n, Y ∈
�n×n, and Z ∈ �n×n such that

Ξc =
⎡
⎣P + X + X t Y − X Ao Z − X Do

• Γv −At
oZ t − YDo

• • Γw

⎤
⎦ < 0 (3.77)

where

Γv = −At
oZ t − YAo + dsQ− P

Γv = −Q− ZDo − Dt
oZ t (3.78)

In this case, the Lyapunov–Krasovskii functional (LKF):

Ṽ (k) = Vo(k)+ Va(k)+ Vc(k) > 0

Vo = xt (k)Px(k), Va(k) =
k−1∑

m=k−d(k)

xt (m)Qx(m)

Vc =
1−dm∑

s=2−dM

k−1∑
m=k+s−1

xt (m)Qx(m) (3.79)

is such that

ΔṼ (k) < 0, ∀ [
xt (k) xt (k − d(k))

]t �= 0 (3.80)

Proof The positivity of the LKF (3.79) is guaranteed by the requirement that
0 < P ∈ �n×n, 0 < Q ∈ �n×n . Next, it is necessary to verify (3.80). A
straightforward computation gives the first-difference of ΔṼ (k) = Ṽ (k+1)− Ṽ (k)
along the solutions of (3.69) as

ΔVo(k) = [Aox(k)+ Dox(k − d(k))]tP[Aox(k)+ Dox(k − d(k))]
−xt (k)Px(k) (3.81)
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ΔVa(k) = xt (k)Qx(k)− xt (k − d j (k))Qx(k − d j (k))

+
k−1∑

m=k+1−d(k+1)

xt (m)Qx(m)−
k−1∑

m=k+1−d(k)

xt (m)Qx(m) (3.82)

ΔVc(k) = (dM − dm)x
t (k)Qx(k)−

k−dm∑
m=k+1−dM )

xt (m)Qx(m) (3.83)

Observe from (3.82) that

k−1∑
m=k+1−d(k+1)

xt (m)Qx(m) =
k−1∑

m=k+1−dm

xt (m)Qx(m)

+
k−dm∑

m=k+1−d(k+1)

xt (m)Qx(m)

≤
k−1∑

m=k+1−d(k)

xt (m)Qx(m)

+
k−dm∑

m=k+1−dM

xt (m)Qx(m) (3.84)

Then using (3.84) into (3.82) and manipulating, we reach

ΔVa(k) ≤ xt (k)Qx(k)− xt (k − d(k))Qx(k − d(k))

+
k−dm∑

m=k+1−dM

xt (m)Qx(m) (3.85)

Taking into consideration (3.81), (3.83), and (3.85), the following upper bound for
ΔṼ (k) can be obtained:

ΔṼ (k) ≤ [Aox(k)+ Dox(k − d(k))]tP[Aox(k)+ Dox(k − d(k))]
+ xt (k)[dsQ− P]x(k)− xt (k − d(k))Qx(k − d(k)) < 0 (3.86)

By Schur complement, one gets LMI (3.76). Next, the equivalence between
(3.76) and (3.77) can be established as follows. First, we note that (3.76) can be
expressed as

[
At

oP
Dt

oP

]
P−1

[
At

oP
Dt

oP

]t

−
[
P − dsQ 0

• Q

]
< 0 (3.87)
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which by Schur complement is equivalent to

⎡
⎣−P PAoP PDo

• dsQ− P 0
• • −Q

⎤
⎦ < 0 (3.88)

Obviously, the equivalence between (3.76) and (3.77) is the same as that between
(3.77) and (3.88). Hence, if (3.88) is verified, then (3.77) is true for X = X t =
−P, Y = Z ≡ 0. On the other hand, if (3.77) is verified, then Ξa = T t Ξc T with

T =
⎡
⎣ Ao Do

I 0
0 I

⎤
⎦ < 0 (3.89)

completes the proof. �

The result of Theorem 3.28 has been developed in [23, 185, 208, 222] using
alternative analytical directions.

3.4.5 Descriptor Model Transformation

Let y(k) denote the state increment, that is

y(k) = x(k + 1) − x(k) (3.90)

then in line with the continuous-time case, system (3.69) can be represented by the
following descriptor form

[
x(k + 1)

0

]
=

[
y(k)+ x(k)

−y(k)+ Ao x(k)− x(k)+ Dox(k − d(k))

]
(3.91)

Recall by successive iterations on (3.90) that

x(k − d(k)) = x(k)−
k−1∑

j=k−d(k)

y( j)

and letting

ξ(k)
Δ=

[
x(k)
y(k)

]
, Et =

[
I
0

]
, Ão = Ao + Do
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it follows that

E ξ(k + 1) =
[

I I
Ão − I −I

]
ξ(k)−

[
0

Do

] k−1∑
j=k−d(k)

y( j)

= Āo ξ(k)− D̄o

k−1∑
j=k−d(k)

y( j) (3.92)

where the initial conditions are characterized by

ξ(0) =
[

x(0)
y(0)

]
=

[
ψ(0)

(Ao − I )ψ(0)− Doψ−d(0)

]
(3.93)

In short, if x(k) is a solution of system (3.69), then ξ(k) = {x(k), y(k)} is a solution
of the free descriptor system (3.92) subject to (3.93) and the reverse is true. This is
the essence of descriptor transformation.

Now we have the following result:

Theorem 3.29 Consider system (3.69). If there exists continuous functional

V (k)
Δ= V (x(k − dM ), . . . , x(k), y(k − dM ), . . . , y(k − 1)) (3.94)

such that

0 ≤ V (k) ≤ ωmax

{
max

k−d+≤ j≤k
|x( j)|2, max

k−d+≤ j≤k−1
|y( j)|2

}

V (k + 1)− V (k) ≤ −κ |x(k)|2 (3.95)

for xk and yk satisfying (3.92), then system (3.69) is asymptotically stable

Proof Summing up (3.95), it follows that

k∑
j=0

V (k + 1)− V (k) = V (k + 1)− V (0) ≤ −κ
k∑

j=0

|x(k)|2

Since x(k) and y(k) are satisfying (3.92), then (3.95) implies that

|x(k)|2 ≤
k∑

j=0

|x( j)|2 ≤ κ−1V (0)

≤ κ−1ω max

{
max

−d+≤ j≤0
|x( j)|2 , max

−d+≤ j≤−1
|x( j)|2

}

∀k ≥ 0 (3.96)
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If x(k) is a solution of (3.69) and x(k) is defined by (3.90), then {x(k), y(k)}
satisfies (3.91), (3.92), and (3.93) and hence (3.96) holds.

Note that (3.96) implies that if max j∈[−dM ,0] |ψ(− j)|2 is sufficiently small, then
|x(k)|2 is sufficiently small and subsequently

∑∞
j=0 |x( j)|2 < ∞. Therefore

|x( j)|2 → 0 as j →∞.
To derive tractable conditions for stability, we introduce the Lyapunov–

Krasovskii functional

V (k) = Va(k)+ V (k)c + V (k)e

Va(k) = xt (k)Pox(k) = ξ t (k)EtPEξ(k)

= ξ t (k)Et
[
Po 0
Pe Pc

]
Eξ(k), Po > 0 (3.97)

Vc(k) =
−1∑

p=−dM

k−1∑
j=k+p

yt ( j)Qy( j), Q > 0

Ve(k) =
k−1∑

j=k−d

xt (k)Wx(k), W > 0 (3.98)

We observe that V (k) is constructed from three terms: Va(k) signifies necessary
and sufficient conditions for the stability of discrete descriptor system without delay
[221], Vc(k) corresponds to delay-dependent criteria [216], and Ve(k) is common
for delay-independent stability conditions.

For simplicity in exposition, we introduce the following matrix expressions:

Wq =
[
W 0
• dMQ

]
,

[
Z Y
• Q

]
≥ 0 , Z ∈ �2n×2n, Y ∈ �2n×n (3.99)

The following theorem establishes LMI-based sufficient conditions for asymptotic
stability of system (3.69):

Theorem 3.30 Consider system (3.69) and the delay factor dk = d being an
unknown constant satisfying 0 ≤ d(k) ≤ dM . Given matrices 0 < Q =
Qt ∈ �n×n, 0 < W = W t ∈ �n×n, this system is asymptotically stable if there
exist matrices 0 < P = P t ∈ �2n×2n, Y ∈ �2n×n, and Z ∈ �2n×2n satisfying
(3.99) and the LMI

Υ
Δ=

[
Υo Y − Āt

oP D̄o

• −W + D̄t
oP D̄o

]
< 0 (3.100)

where

Υo = Āt
oP Āo − EtPE +Wq + dMZ + YE + EtY t
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The proof of this theorem can be found in [221] and alternative forms can be
found in [22, 67, 71, 267]. We record that the developed results have been obtained
by using the bounding inequality (3.20).

3.4.6 Improved Stability Methods

Much like the continuous time-delay systems, improved delay-dependent stability
criteria can be developed by constructing more appropriate Lyapunov–Krasovskii
functionals. In these criteria, trade-off arises between the extra added components
and the use of bounding inequalities. One such criterion is developed in [82, 85, 284]
based on the LKF

Ṽ (k) = Vo(k)+ Va(k)+ Vc(k)+ Vs

Vo = xt (k)Px(k), Va(k) =
k−1∑

m=k−d(k)

xt (m)Qx(m)

Vc =
1−dm∑

s=2−dM

k−1∑
m=k+s−1

xt (m)Qx(m)

Vs =
−1∑

s=−dM

k−1∑
m=k+s

δxt (m)Zδx(m), δx = x(k + 1)− x(k) (3.101)

and invoking the inequality (3.20). It is summarized by the following theorem

Theorem 3.31 The discrete-delay system (3.69) subject to (3.70) is asymptotically
stable if there exist matrices P > 0, Q > 0, Z, Y , and W satisfying the following

⎡
⎢⎢⎣
Ω −(Ao + Do)

tPDo − Y +W t −At
oPDo − Y dM (Ao − I )tZ

• −Q−W −W t −Dt
oPDo −W dM Dt

oZ
• • −Z 0
• • • −Z

⎤
⎥⎥⎦

< 0 (3.102)

where

Ω = At
oP(Ao + Do)+ (Ao + Do)

tPAo + Y + Y t − P + dsQ
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A further improvement is attained by choosing the following LKF:

V̂k = Vok + Vak + Vck + Vmk + Vnk

Vok = xt (k)Px(k), Vak =
k−1∑

j=k−d(k)

xt ( j)Qx( j)

Vck =
k−1∑

k−dM

xt ( j)Rx( j)

Vnk =
−1∑

m=−dM

k−1∑
j=k+m

δxt ( j)(Wa +Wc)δx( j)

Vmk =
−dm∑

m=−dM+1

k−1∑
j=k+m

xt ( j)Qx( j) (3.103)

together with the free-weighting matrix method, where 0 < P, 0 < Q, 0 <

R, 0 < Wa, 0 < Wc are weighting matrices of appropriate dimensions. The first
term in (3.103) is standard to the delayless nominal system while the second and
fifth correspond to the delay-dependent conditions. The third and fourth terms are
added to compensate for the enlargement in the time interval from (k−1 → d−dk)

to (k − 1 → d − dM ). Introduce

δx(k) = x(k + 1)− x(k), x(k − d(k)) = x(k)−
k−1∑

j=k−dk

δx( j)

δx(k) = (Ao − I )x(k)+ Do x(k − d(k)), d = (dM − dm + 1) (3.104)

The following theorem provides the desired result:

Theorem 3.32 Given the bounds dM > 0 and dm > 0. System (3.69) subject to
(3.70) is delay-dependent asymptotically stable if there exist weighting matrices
0 < P, 0 < Q, 0 < R, 0 < Wa, 0 < Wc, and slack variable matrices
M, S, Z satisfying the following LMI

Ω =
[
Ω̄ +Ωa +Ω t

a +Ωc Ωz

• −Ωw

]
< 0 (3.105)

where

Ω̄ =
⎡
⎣Ωo Ωm 0
• Ωs 0
• • −R

⎤
⎦

Ωo = At
oPAo − P + dQ+R, Ωm = At

oPDo, Ωs = Dt
oPDo −Q

Ωa =
[
M+ Z S −M −S − Z

]
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Ωc = dMΩ t
cc (Wa +Wc) Ωcc, Ωcc =

[
Ao − I Do I

]
Ωz =

[√
dMM

√
dM − dmS

√
dMZ

]
, Ωw = diag

[
Wa Wa Wc

]
(3.106)

Along same direction of thought, another improvement is achieved by choosing
the following LKF:

V̂k = Vok + Vak + Vck + Vmk + Vnk + Vsk

Vok = xt (k)Px(k), Vak =
k−1∑

j=k−d(k)

xt ( j)Qx( j)

Vck =
k−1∑

k−dm

xt ( j)Ra x( j)+
k−1∑

k−dM

xt ( j)Rcx( j)

Vnk =
−dm−1∑
m=−dM

k−1∑
j=k+m

δxt ( j)Sδx( j)

Vmk =
−dm∑

m=−dM+1

k−1∑
j=k+m

xt ( j)Qx( j)

Vsk =
−1∑

m=−dM

k−1∑
j=k+m

δxt ( j)Wδx( j) (3.107)

where 0 < P, 0 < Q, 0 < W, 0 < Ra, 0 < Rc are weighting matrices of
appropriate dimensions. The following result is due to [435]:

Theorem 3.33 Given the bounds dM > 0 and dm > 0. System (3.69) subject to
(3.70) is delay-dependent asymptotically stable if there exist weighting matrices
0 < P, 0 < Q, 0 < S, 0 < Ra, 0 < Rc, W and slack variable matrices
La, Ma, Na, Lc, Mc, Nc satisfying the following LMI

Ω =
[
Φo Φa

• −Φs

]
< 0 (3.108)
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where

Φo =

⎡
⎢⎢⎣
Φo1 Φo2 Ma −La

• Φo3 Mc −Lc

• • −Ra 0
• • • −Rc

⎤
⎥⎥⎦

Φa =

⎡
⎢⎢⎣

√
dM − dmLa

√
dM − dmMa

√
dM − dmNa√

dM − dmLc
√

dM − dmMc
√

dM − dmNc

0 0 0
0 0 0

⎤
⎥⎥⎦

Φs =
⎡
⎣−S −W 0 0

• −S 0
• • −W

⎤
⎦

Φo1 = At
oPAo − P + dQ+Ra +Rc + (dM − dm)(Ao − I )tS(Ao − I )

+dM (Ao − I )tW(Ao − I )+ Na + Nt
a

Φo2 = At
oPDo + (dM − dm)(Ao − I )tSDo + dM (Ao − I )tWDo

+La +Ma − Na + Nt
c

Φo3 = Dt
oPDo −Q+ (dM − dm)Dt

oSDo ++dM Dt
oWDo

+Lt
c −Mc −Mt

c − Nc − Nt
c (3.109)

Remark 3.34 Consideration of Theorem 3.33 emphasizes the effective use of the
LKF (3.107) and the free-weighting matrix technique thereby yielding an improved
delay-dependent stability condition for the discrete time-delay system in (3.69). We
note that, due to the introduction of the following two terms

k−1∑
k−dm

xt ( j)Ra x( j),
−dm−1∑
m=−dM

k−1∑
j=k+m

δxt ( j)Sδx( j)

the result in Theorem 3.33 is less conservative than those in [67, 82, 85, 125, 153].

3.4.7 Simulation Examples

Illustrative Example D

The example is used [185] and has the following matrices

Ao =
[

0.6 0
0.35 0.7

]
, Do =

[
0.1 0
0.2 0.1

]
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The results of simulation by different methods are summarized in Table 3.5.

Table 3.5 Computational summary: example 4

Method dm dM

[67] 2 11
[185] 2 10
[202] 2 13

Illustrative Example E

The example is used [125] and has the following data

Ao =
[

0.8 0
0.05 0.9

]
, Do =

[−0.1 0
−0.2 −0.1

]

The values of the upper bound on dM for various dm are given in Table 3.6.

Table 3.6 Computational summary: example 5

dm 2 4 6 10 12

[85] 7 8 9 12 13
[82] 13 13 14 15 17
[125] 17 17 18 20 21
[435] 18 18 20 21 23

Remark 3.35 As a closing point, one has to look for a measure of the computa-
tional complexity of the LMI-based stability conditions in order to better evaluate
the various methods. A proposed measure would be in terms of

1. the number of scalar variables Ns , and
2. the number of rows in the main LMI matrix Nr .

For a symmetric n×n matrix, the number of scalar variables Ns = 1
2 n(n+1) while

for arbitrary n × n matrix, the number of rows Nr = Rn, where R corresponds
to the number of row blocks. In the case of using MATLAB LMI solver [74], the
computational complexity is O

(
N3

s Nr
)

and, alternatively, on using the LMI solver
SeDuMi [362] the computational complexity is O

(
N2

s N2.5
r + N3.5

r

)
.

3.5 Notes and References

Indeed, there is voluminous literature on time-delay systems in terms of numer-
ous papers and articles, particularly on delay-dependent analysis. It is hoped that
this introductory chapter has succeeded in motivating the readers to the upcoming
topics. We have reviewed some existing methods and provided new ones for delay-
dependent stability for a class of nominally linear continuous-time systems with
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time-varying delays. Appropriate Lyapunov functionals have been constructed to
exhibit the delay-dependent dynamics. Delay-dependent stability analysis has been
presented in terms of theorems and we have provided some remarks and comments
whenever deemed appropriate. To further follow up on the subject, the interested
readers are referred to [32, 54, 65–67, 69, 71, 114, 121, 123, 124, 127, 128, 152,
155, 171, 214, 265, 373, 391, 392, 404, 418], and their references.



Chapter 4
Switched Systems

4.1 Introduction

This chapter is concerned with the main ingredients and basic notions of switched
systems. For simplicity in exposition, we present the relevant topics and materials
in general perspective.

4.2 Switched Systems: Overview

The past two decades have witnessed a great deal of activity in the study of switched
dynamical systems. Such systems, which behave in continuous time at some levels
and in discrete time at others, are at present ubiquitous. Apart from the more tra-
ditional application areas of control engineering such as aerospace and automotive
engineering, they are also appearing with increasing frequency in biological sys-
tems, computer science, and computer communication networks. We record that
continuous dynamical systems have been studied extensively in control theory and
mathematics and discrete distributed systems have been investigated in computer
science. However, the problems arising at the confluence of the two subject areas
have raised a wide spectrum of questions, many of which are still not well under-
stood. During the past 15 years, the work accomplished has been well documented
in a number of monographs [192, 366], survey articles [19, 41, 47], and special
issues [357–359].

Loosely speaking, switched time-delay systems are hybrid in the sense that the
state trajectory evolution is governed by different functional dynamical equations
over different polyhedral partitions {X j } of the state-space X . That is, the STD sys-
tem modeled as an ensemble of subsystems, each of which is a valid representation
of the system over a set of each partitions.

In this section, we present a summary of the basic concepts of related issues of
switched systems and switched time-delay systems.

M.S. Mahmoud, Switched Time-Delay Systems,
DOI 10.1007/978-1-4419-6394-9_4, C© Springer Science+Business Media, LLC 2010

75



76 4 Switched Systems

4.2.1 Dynamic Model

In general, a switched system is composed of a family of subsystems and a rule that
governs the switching among them, and is mathematically described by

δx(t) = fσ (x(t), u(t), v(t)), x(to) = xo

y(t) = gσ (x(t), w(t)) (4.1)

where x(t) is the state, u(t) is the controlled input, y(t) is the measured output,
v(t) and w(t) stand for the external signals such as perturbations, σ is the piecewise

constant signal taking values from an index set M
Δ= {1, ...,m}, fk, k ∈ M are

vector fields, and gk, k ∈ M are vector functions, while the symbol δ denotes the
derivative operator in the continuous time (that is, δx(t) = ẋ(t)) and the shift
forward operator in discrete time (that is, δx(t) = x(t + 1)). By requesting a
switching signal to be piecewise constant, we mean that the switching signal σ(t)
has finite number of discontinuities on any finite interval of �+, the set of nonneg-
ative real numbers. This actually corresponds to no-chattering requirement for the
continuous-time switched systems; note that this is not an issue in the discrete-time
case. Figure 4.1 is a schematic diagram of the switched system architecture.

Fig. 4.1 Schematic of switched system

It is easy to recognize that a switched system is basically multimodel in nature.
Each individual component model

δx(t) = f j (x(t), u(t), V (t)), x(to) = xo

y(t) = g j (x(t), w(t)), j ∈ M (4.2)

is said to be a subsystem or mode of the switched system. Besides the subsys-
tems, the switched system also consists of a switching device, usually called the
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supervisor. The supervisor produces the switching rule σ , denoting the switching
signal or switching law, which orchestrates the switching among the subsystems.

4.2.2 Model and Definitions

Let C = C([−τ, 0],�n) be a Banach space of continuous functions with the norm

||ψ ||τ = sup
τ≤θ≤0

||ψ(θ)||

Given an initial time to, an initial function ψ ∈ C and a switching sequence
{(io, to), (i1, t1), ..., (i j , t j ), ...} where ik ∈ S = {1, 2, ..., s}, 0 < s <∞.

Likewise, a switched time-delay system is composed of a family of time-delay
subsystems and a rule that governs the switching among them, and is mathematically
described by

δx(t) = fσ (x(t), u(t), τ (t), d(t)), x(to) = xo

y(t) = gσ (x(t), τ (t), w(t)) (4.3)

where τ(t) is the time delay and the remaining quantities are as above. Each indi-
vidual time-delay component model

δx(t) = fk(x(t), u(t), τ (t), d(t)), x(to) = xo

y(t) = gk(x(t), τ (t), w(t)), k ∈ S (4.4)

is said to be a time-delay subsystem or time-delay mode of the switched system. In
the sequel, it is assumed that the delay τ(t) is a differentiable time-varying function
satisfying

0 < τ(t) ≤ �, τ̇ (t) ≤ μ (4.5)

where the bounds � and μ are known constant scalars. Sometimes the bounding
relation μ < 1 [181, 216, 301] is used. Alternatively, depending on the problem
formulation, the delay τ(t) is considered as a time-varying function satisfying

0 < τ(t) ≤ � (4.6)

where the bounds � is a known constant scalar.
From information processing standpoint, the time-delay subsystems represent

the low-level local dynamics governed by FDEs, whereas the supervisor is the high-
level coordinator producing the switches among local dynamics. Thus, the dynamics
of the STD system is determined by both the time-delay subsystems and the switch-
ing signal (Fig. 4.2).
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Fig. 4.2 Schematic of multiple-controller system

A switching signal may depend on the time, its own past value, the state/output,
and/or an external signal as well

σ(t+) = ϕ(t, σ (t), x(t)/y(t), r(t)) ∀t (4.7)

where r(t) is an external signal produced by other devices, σ(t+) = lims↓t σ(s) in
continuous time and σ(t+) = σ(t + 1) in discrete time.

In the case σ(t) = j, then we say that the j th subsystem is active at time t. It is
quite evident that at any instant there is one (and only one) active subsystem.

Over the time interval [to, t1), define x : [to, t1) → �n as the state segment
and β : [to, t1)→ S as a typical switching signal. Obviously, x is absolutely con-
tinuous and σ is piecewise constant. The pair (x(.), β(.)) gives a characterization
of the solution of system (4.4) subject to (4.5) via switching signal (4.7) at xo, for
almost all t ∈ [to, t1). This means that the solution is specified for all t ∈ [to, t1)
except for possibly a set of isolated instants in continuous time and for all integers
in [to, t1) in discrete time. Accordingly, we had, in fact, excluded any impulse in
the state and input variables.

Throughout the book, we focus most of the time on a special but very impor-
tant class of switched time-delay systems where all the subsystems are linear time-
invariant and the switching signals are governed by deterministic processes. Added
cone-bounded nonlinear perturbations will be considered in some instants.

Without delays, these systems are termed as linear switched systems and are
described by

δx(t) = Ai x(t)+ Bi u(t)+ Γiw(t)

y(t) = Ci x(t)+Φiw(t), i ∈ S (4.8)

where Ai , Bi ,Ci , Γi , and Φi are linear mappings (matrices) in appropriate spaces.
The nominal system is the system free of disturbances, that is

δx(t) = Ai x(t)+ Bi u(t)

y(t) = Ci x(t), i ∈ S (4.9)
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If no control input is imposed on the system, then the system is said to be
a switched autonomous system, or an unforced switched system. The unforced
switched linear system is described by

δx(t) = Ai x(t)

y(t) = Ci x(t), i ∈ S (4.10)

As a short-hand notation, we denote system (4.9) by Σ(Ai , Bi ,Ci )S. Simi-
larly, we denote by Σ(Ai , Bi )S, Σ(Ci , Ai )S, and Σ(Ai )S the switched system
without output and/or input, respectively. In the case that we need to distinguish
between continuous time and discrete time, we simply denote Σc(Ai , Bi ,Ci )S for
continuous-time systems and Σd(Ai , Bi ,Ci )S for discrete-time systems.

Incorporating the delays, these systems are termed as linear switched time-delay
(STD) systems and are described by

δx(t) = Ai x(t)+ Di x(t − τ)+ Bi u(t)+ Γiw(t)

y(t) = Ci x(t)+Φiw(t), i ∈ S (4.11)

where Ai , Bi ,Ci , Γi , and Φi are linear mappings (matrices) in appropriate spaces.
The nominal STD system is the system free of disturbances, that is

δx(t) = Ai x(t)+ Di x(t − τ)+ Bi u(t)

y(t) = Ci x(t), i ∈ S (4.12)

If no control input is imposed on the system, then the system is said to be an
autonomous STD system, or an unforced STD system. The unforced linear STD
system is described by

δx(t) = Ai x(t)+ Di x(t − τ)

y(t) = Ci x(t), i ∈ S (4.13)

In a similar way, as a short-hand notation, we denote system (4.12) by
Σ(Ai , Bi ,Ci , Di )S. Similarly, we denote by Σ(Ai , Bi , Di )S, Σ(Ci , Ai , Di )S, and
Σ(Ai , Di )M the STD system without output and/or input, respectively. In the case
that we need to distinguish between continuous time and discrete time, we simply
denote Σc(Ai , Bi ,Ci , Di )S for continuous-time systems and
Σd(Ai , Bi ,Ci , Di )S for discrete-time systems.

In later parts of the book, we focus on model (4.11) subject to time-delay pattern
(4.5) or (4.6) and the switching signal (4.7). In the remainder of this chapter, we
review the properties and features of model (4.10).
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4.2.3 Arbitrary Switching

A survey of basic problems in stability and design of switched systems has been
proposed recently in [193]. Among the large variety of problems encountered in
practice, one can study the existence of a switching rule that ensures stability of the
switched system. One can also assume that the switching sequence is not known
a priori and look for stability results under arbitrary switching sequences. One can
also consider some useful class of switching sequences, see [192, 193, 196], and the
references therein. By studying stability analysis and control synthesis of switched
systems under arbitrary switching sequences amounts to looking at the existence of a
switched quadratic Lyapunov function to check asymptotic stability of the switched
system under consideration. To evaluate the interest of this approach for control
design problems, usually one concentrates on the state or output feedback design
problem. By feedback design, we mean the design of state or output feedback gains
for each subsystem such that the closed-loop switched system is asymptotically
stable.

For internal stability, we focus on the model

ẋ(t) = Ai x(t), i ∈ S (4.14)

describing a family of continuous-time linear time-invariant (LTI) systems or

x(k + 1) = Ai x(k), i ∈ S, k ∈ I+ (4.15)

describing a family of discrete-time linear time-invariant (LTI) systems, where the
state x ∈ �n and Ai ∈ �n×n,∀ i ∈ S.

It is obvious that the origin xe ≡ 0 is an equilibrium (may be unstable) for the
systems described in (4.14) and (4.15). The main concern in dealing with switched
systems is to understand the conditions that can guarantee the stability of the sys-
tem. It is interesting to know that even when all the subsystems are exponentially
stable, the switched systems may have divergent trajectories for certain switching
signals. Another remarkable fact is that one may carefully switch between unstable
subsystems to make the switched system exponentially stable [47].

Briefly stated, it is suggested that the stability of switched systems depends not
only on the dynamics of each subsystem but also on the properties of switching
signals. Therefore, the stability study of switched systems can be roughly divided
into two kinds of problems:

1. One is the stability analysis of switched systems under given switching signals
(may be arbitrary, slow switching, etc.);

2. The other is the synthesis of stabilizing switching signals for a given collection
of dynamical systems.

Both problems will be addressed in the subsequent sections and chapters. For
the stability analysis problem of switched systems, the crucial question is whether
the switched system is stable when there is no restriction on the switching signals.
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This problem is usually called stability analysis under arbitrary switching. For this
problem, all the subsystems are required to be asymptotically stable. On the one
hand, even when all the subsystems of a switched system are exponentially stable,
it is still possible to construct a divergent trajectory from any initial state for such a
switched system. It therefore concluded, in general, that the foregoing subsystems
stability assumption is not sufficient to assure stability for the switched systems
under arbitrary switching, except for some special cases, such as all the subsystems
are pairwise commutative Ai A j = A j Ai , ∀i, j ∈ N [426], Ai -symmetric Ai =
At

i , ∀i, j ∈ S, [422, 424] or normal Ai At
i = At

i Ai , ∀i, j ∈ S) [306].
On the other hand, if there exists a common Lyapunov function for all the sub-

systems, then the stability of the switched system is guaranteed under arbitrary
switching. This paves a possible way to solve this problem, and much efforts have
been focused on the common quadratic Lyapunov functions (CQLFs). Obviously,
the existence of a CQLF for all its subsystems assures the quadratic stability of the
switched system. Quadratic stability is a special class of exponential stability, which
implies asymptotic stability, and therefore, has attracted much research efforts due
to its importance in practice. It is known that the conditions for the existence of
a CQLF can be expressed as linear matrix inequalities (LMIs) [27]. Namely there
exists a positive definite symmetric matrix P ∈ �n×n , such that

P Ai + Ai P < 0, i ∈ S (4.16)

for the continuous-time case, or

At
i P Ai − P < 0, i ∈ S (4.17)

for the discrete-time case, hold simultaneously.
It is worth pointing out that the existence of a CQLF is only sufficient for the

stability of arbitrary switching systems. In [192], there are examples of systems
that do not have a CQLF, but are exponentially stable under arbitrary switching.
Some necessary and sufficient conditions for the asymptotic stability of switched
linear systems under arbitrary switching signals are developed in [196]. This result
shows that the asymptotic stability problem for switched linear systems with arbi-
trary switching is equivalent to the robust asymptotic stability problem for polytopic
uncertain linear time-variant systems, for which several strong stability conditions
exist.

To illustrate this result, we recall a robust stability result for linear time-variant
systems with polytopic uncertainty

x(k + 1) = Ak x(k), k ∈ A
Δ= conv{A1, A2, ..., AN } (4.18)

where conv{.} stands for convex combinations. In other words, the state matrix Ak of
the above linear time-variant system (4.18) is constructed by a convex combinations
(with time-variant coefficients) of all the subsystems’ state matrices of the switched
linear system (4.15). The following preliminary result is recalled [19]:
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Lemma 4.1 The linear time-variant system (4.18) is robustly asymptotically stable
if and only if there exists a finite integer n such that

||Ai1 Ai2 ...Ain ||∞ < 1

for all n-tuple Ai j ∈ {A1, A2, AN }, where j = 1, ...,n

Based on the above lemma, a necessary and sufficient condition for the asymp-
totic stability of switched linear systems (2) can be expressed by the following the-
orem [196].

Theorem 4.2 A switched linear system

x(k + 1) = Aσ(k) x(k), Aσ(k) ∈ {A1, A2, AN }

is asymptotically stable under arbitrary switching if and only if there exists a finite
integer n such that

||Ai1 Ai2 ...Ain ||∞ < 1

for all n-tuple Ai j ∈ {A1, A2, AN }, where j = 1, ...,n

The sufficiency of the above condition is implied by Lemma 4.1, and the necessity
can be shown by contradiction. It is interesting to notice that this condition coin-
cides with the necessary and sufficient condition for the robust asymptotic stability
for polytopic uncertain linear time-variant systems (4.18). In turn, the following
equivalence relationship between these two problems is established.

Lemma 4.3 The following statements are equivalent:

1. The switched linear system

x(k + 1) = Aσ(k) x(k), Aσ(k) ∈ {A1, A2, AN }

is asymptotically stable under arbitrary switching;
2. The linear time-variant system

x(k + 1) = Ak x(k), k ∈ A
Δ= conv{A1, A2, ..., AN }

is robustly asymptotically stable;
3. there exists a finite integer n such that

||Ai1 Ai2 ...Ain ||∞ < 1

for all n-tuple Ai j ∈ {A1, A2, AN }, where j = 1, ...,n

It is quite interesting that the study of robust stability of a polytopic uncertain lin-
ear time-variant system, which has infinite number of possible dynamics (modes), is
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equivalent to considering only a finite number of its vertex dynamics in an arbitrary
switching system. Note that this is not a surprising result since this fact has already
been implied by the finite vertex stability criteria for robust stability in the literature
[296].

4.2.4 Average Dwell Time

The motivation for studying switched systems comes partly from the fact that
switched systems and switched multicontroller systems have numerous applications
in control of mechanical systems, process control, automotive industry, power sys-
tems, aircraft and traffic control, and many other fields. The problems encountered
in switched systems can be classified into three categories [357]. The first one is to
find conditions that guarantee that the switched systems are asymptotically stable
under any switching signal. The second one, which is of interest in this section, is
to identify certain useful classes of switching signals for which the switched system
is asymptotically stable. The third one is to construct a switching signal that makes
the switched systems asymptotically stable.

We have learned earlier that there are classes of switched systems, including
closed-loop multiple controller systems, that may fail to preserve stability under
arbitrary switching, but may be stable under some sort of restricted switching
signals. Restricted switching may arise naturally from the physical constraints
of the system, that is, in the automobile gear switching, particular switching
sequence/order (from first gear to the second gear, etc.) must be followed [47].

There are cases when one may have some knowledge about possible switching
logic in a switched system, that is, partitions of the state space and their induced
switching rules. This knowledge may imply restrictions on the switching signals.
For example, there must exist certain bound on the time interval between two suc-
cessive switchings, which may be due to the fact that the state trajectories have to
spend some finite length of time in traveling from the initial set to certain guard
sets, if these two sets are separated. With such kind of a priori knowledge about
the switching signals, we can derive stronger stability results for a given hybrid
system than in the arbitrary switching case, where we use, by necessity, worst-case
arguments.

In the sequel, we look at the case when the switching signals are restricted,
and our problem is to study the stability of the switched systems under these
restricted switching signals. We seek to evaluate what restrictions should be put
on the switching signals in order to guarantee the stability of switched sys-
tems. The restrictions on switching signals may be either time-domain restric-
tions (that is, dwell-time, average dwell-time switching signals that will be
defined below) or state-space restrictions (that is, abstractions from partitions of
the state space). In this regard, the distinction between time-controlled switch-
ing signals (trajectory independent) and trajectory-dependent switching signals is
significant.
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Careful consideration of typical systems [47] where divergent trajectories are
generated through switching between two stable systems, one may notice that the
unboundedness is caused by the failure to absorb the energy increase caused by
the switching. In addition, when there is an unstable subsystem (that is, controller
failure or sensor fault), if one either stays too long at or switches too frequently
to the unstable subsystem, the stability may be lost. Therefore, a natural issue to
address concerns the restriction on the switching signal to some constrained sub-
classes. Intuitively, if one stays at stable subsystems long enough and switches less
frequently, that is, slow switching, one may trade off the energy increase caused by
switching or unstable modes, and maintain stability.

These ideas are proved to be reasonable and are captured by concepts like dwell
time and average dwell time switching proposed by Morse and Hespanha; see for
example [133, 134, 426].

A positive constant Td ∈ � is called the dwell time of a switching signal if the
time interval between any two consecutive switchings is no smaller than Td .

In principle, it is always possible to maintain stability when all the subsystems are
stable and switching is slow enough, in the sense that is sufficiently large [302]. It
really does not matter if one occasionally has a smaller dwell time between switch-
ing, provided this does not occur too frequently.

This concept is captured by the notion of average dwell time in [133]: A positive
constant Td is called the average dwell time for a switching signal σ(t) if

Nσ (t, η) ≤ No + t − η

Ta

holds for all t ≥ η ≥ 0 and some scalar No ≥ 0, where Nσ (t, η) denotes the number
of mode switches of a given switching signal σ over the interval (η, t).

Here the constant Ta is called the average dwell time and No the chatter bound.
The reason for a switching signal that satisfies the foregoing inequality is considered
as having an average dwell time no less than Ta because

Nσ (t, η) ≤ No + t − η

Ta
⇐⇒ t − η

Nσ (t, η)− No
≥ Ta

which means that, on average, the dwell time between any two consecutive switch-
ings is no smaller than Ta . It was shown in [133] that if all the subsystems are expo-
nentially stable then the switched system remains exponentially stable, provided that
the average dwell time is sufficiently large.

It is clear that switching signals with bounded (fixed) dwell time also have
bounded average dwell time by definition. Therefore, the average dwell time scheme
characterizes a larger class of stable switching signals than (fixed) dwell time
scheme. Interested readers may refer to [134] for further details and a recent review
on this topic.

The stability results for slow switching can be extended to the discrete-time
switched systems, where the dwell time Td or average dwell time Ta is counted as
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the number of sampling periods, and similar results can be developed. In addition,
it is possible to extend the discrete-time results to the case where both stable and
unstable subsystems coexist. When one considers unstable dynamics, slow switch-
ing (that is, long enough dwell or average dwell time) is not sufficient for stability; it
is also required to make sure that the switched system does not spend too much time
in the unstable subsystems. The reason to consider unstable subsystems in switched
systems is because there are cases where switching to unstable subsystems becomes
unavoidable; such is the case, that is, when a failure occurs or therefore a packet
drops outs in communication.

4.2.5 Lyapunov Functions

Construction of Lyapunov functions is a fundamental problem in system theory;
internal stability of the system under consideration is concluded if an appropriate
(continuous and differentiable) Lyapunov function is shown to exist. Conceptually,
when looking at an STD system, perhaps the simplest solution would be a common
quadratic Lyapunov function, that is, a quadratic function which is a global Lya-
punov function for the subsystems comprising the hybrid system. It turns out that
the construction of such a Lyapunov function is an NP-hard problem even when the
subsystems are linear time-invariant [20].

It should be emphasized that intrinsic discontinuous nature of a switched
system strongly suggests using multiple Lyapunov-like functions concatenated
together to produce a nontraditional (piecewise continuous and piecewise dif-
ferentiable) Lyapunov function. Using multiple Lyapunov functions (MLF’s) to
form a single nontraditional Lyapunov function offers much greater freedom and
infinitely more possibilities for demonstrating stability, for constructing a nontra-
ditional Lyapunov function, and for achieving the stabilization of the switched
system (4.3).

It has been demonstrated in [28] that the conservatism introduced by a global
Lyapunov function V can be reduced by searching for a set {Vj } of local Lyapunov
functions and by ensuring that the Lyapunov functions match in the sense that the
values of the Lyapunov functions {Vj } and {Vm} are equal when the state trajectory
leaves a cell {X j } and enters a cell {Xm}, where {Vj } is a local Lyapunov function
in the cell {X j } and {Vm} is a local Lyapunov function in the cell {Xm} .

4.2.6 Converse Lyapunov Theorem

When dealing with globally uniformly asymptotically stable and locally uniformly
exponentially stable continuous-time switched systems with arbitrary switching sig-
nals, a converse Lyapunov theorem was derived in [43]. The result was that such
arbitrary switching system admits a common Lyapunov function, as summarized by
the following theorem:
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Theorem 4.4 If the switched system is globally uniformly asymptotically stable and,
in addition, uniformly exponentially stable, the family has a common Lyapunov
function.

The converse Lyapunov theorem was extended in [288] to switched nonlinear
systems that are globally uniformly asymptotically stable with respect to a com-
pact forward invariant set. Although these converse Lyapunov theorems justify the
common Lyapunov function method being pursued, they also suggest that the com-
mon Lyapunov function may not necessarily be quadratic. Based on the equivalence
between the asymptotic stability of arbitrary switching linear systems and the robust
stability of polytopic uncertain linear time-variant systems, some well-established
converse Lyapunov theorems can be introduced for arbitrary switching linear sys-
tems [296] as follows:

Theorem 4.5 If the switched linear system x(k + 1) = Ai x(k), k ∈ I+, i ∈
M is exponentially stable under arbitrary switching, then it has a strictly convex,
homogeneous (of second order) common Lyapunov function of a quasi-quadratic
form V (x) = xt L(x)x, where L(x) = Lt (x) = L(νx) for all nonzero x ∈ �n and
nu ∈ �.

Restricting attention to include only polyhedral Lyapunov functions (also known
as piecewise linear Lyapunov function) [18] as the following result was pointed out.

Theorem 4.6 If a switched linear system is asymptotically stable under arbitrary
switching signals, then there exists a polyhedral Lyapunov function, which is mono-
tonically decreasing along the switched system’s trajectories.

Theorems 4.5 and 4.6 have the following advantages. First, it shows that one may
focus on polyhedral Lyapunov functions without loss of generality. Second, there
exist automated computational methods to calculate polyhedral Lyapunov functions.

Finding conditions to guarantee stability under all possible switching signals is
also of practical importance. For example, multiple-controller schemes are often
employed to satisfy different performance requirements. When one designs mul-
tiple controllers for a plant, a desirable property is that switching between these
controllers does not cause instability. The benefit of this property is that there is no
need to worry about stability when switching among controllers and one can focus
on gaining better performance. In this regard, it was shown in [135] that it is possible
to guarantee such a good property for multiple controller design in certain cases.

4.3 Some Representative Examples

In this section, we give some representative examples of switched systems along
with simulation studies to demonstrate some pertinent features.
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4.3.1 Car Transmission System

The simplified dynamics of a car (mass m) with an automatic transmission having
velocity v on a road inclined at angle α is

v̇ = − k

m
v2 sign(v)− g sin(α)+ Gσ(t)

m
T

ω = Gσ(t) v (4.19)

where the discrete state Gσ(t) ∈ {G1, G2, G3, G4},G1 > G2 > G3 > G4 are
the transmission gear ratios normalized by the wheel radius R, k is an appropriate
constant, ω is the angular velocity of the motor, and T is the torque generated by
the engine, an input to the model. The discrete state transition function is

σ(t+) Δ=
{

i + 1, i f σ(t) = i �= 4 and v = ωh
Gi

i, i f σ(t) = i + 1 ≥ 2 and v = ω�

Gi+1

where ωh and ω� are preset angular velocities of the engine.
A PI cruise controller (of the torque) that must also compensate for the nonlinear

load forces is given by

T = Tp + TI + k

Gσ(t)
v2 sign(v)

for a reference velocity vref and a proportional control Tp = Kσ(t) (vref − v).
This leads to combined/reduced vehicle cruise controller dynamics:

v̇ = Gσ(t)

m

(
Kσ(t) (vref − v)+ TI

)
− g sin(α)

ṪI = Kσ(t)

TR
(vref − v) (4.20)

The constant TR is chosen to balance fast convergence with small overshoot; the
discrete gains Kσ(t) ∈ {K1, K2, K3, G K4} are chosen to insure a smooth ride
and satisfy: Gi Ki = Gi+1, Ki+1

The initial condition is

(a) reset to zero for new vr e f inputs and
(b) for any change in the discrete state σ(t) at tk say , the state TI

(
t+k

)
is

reset discontinuously (a so-called state jump) so that: Gσ(t−k
i TI

(
t−k

) =
Gσ(t+k

i TI
(
t+k

)
also to ensure a smooth ride.

Let M = 1500, TR = 40, Gσ(t) ∈ {50, 32, 20, 14}, Gσ(t)Kσ(t) = 187.5,
Kσ(t) ∈ {3.75, 35.86, 9.37, 13.39}, Gσ(t)Kσ(t) = 187.5 and vre f = 30 m/s



88 4 Switched Systems

The S-function was used in simulink to simulate this system, see Fig. 4.3. Among
the advantages of using the S-function for simulating hybrid system are as follows:
(1) Only one block in simulink is needed to simulate both continuous and discrete
dynamics along with all decision rules and constraints. (2) Both continuous and
discrete functions are separately treated and called in the simulation process. These
functions express the differential and difference equations, along with the logic asso-
ciated for each in normal Matlab language format. (3) All Matlab functions can be
used as part of the model. Hence, a variety of models can be found: linear switched
system, nonlinear, mixed linear and nonlinear systems, etc. (4) The S-function is
treated as a block in simulink, hence feedback can be used to stabilize the system.

Fig. 4.3 A simulink diagram

The system was simulated and was found to operate as desired. The S-function
works as follows:

(a) The number of inputs, outputs, continuous states, and discrete states. (b) Call-
ing the continuous differential equation functions and updating the results. (c) Call-
ing the discrete difference equation functions and updating the results. (d) Finding
the states after integration of continuous differential equations and recursive calcu-
lations of discrete difference equations. (e) Populating the results and continuing the
cycle of reading and writing.

The step response for vref = 30 m/s is plotted in Fig. 4.4. The closed-loop
response clearly shows stability despite the undamped cycles.

4.3.2 Autonomous Switched System

Consider the autonomous state dynamics ẋ(t) = Aσ(t) x(t), where

x = [
x1 x2

]t �2, σ ∈ {1, 2}
A1 =

[−1 100
10 −1

]
, A2 =

[ −1 10
−100 −1

]
(4.21)
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Fig. 4.4 Velocity response due to step input

Both A1 and A2 are stable, having identical eigenvalues λ1,2 = −1 ± j
√

1000.
Define the switching function σ(t) as follows:

σ(t+) Δ=
{

1, if σ(t) = 2 and x2(t) = −1
k x1(t)

2, if σ(t) = 1 and x2(t) = k x1(t)

State flow machine was used simulate this example in simulink as shown in Fig. 4.5.
In the state-flow machine, states corresponding to σ(t) = 1 and σ(t) = 2 need to be
defined. As shown in Fig. 4.6, each state box can have entry actions. Moving from
one state to another is called a transition and is blocked by a condition. Transitions
require input information; namely the states of the plant. The simulink state-space
model is reassigned the A matrix after every transition, and hence the dynamic
hybrid model is simulated.

For any given initialization, the switching function σ(t) specifies a rule with
memory for switching the dynamic motion of the system between A1 and A2. For
k = −0.2 and arbitrary nonzero initial condition, state trajectories diverge. This is
depicted in Fig. 4.7, which is consistent with the results reported in [47]. This illu-
minates the observation that switching between two asymptotically stable systems
can produce an unstable trajectory.
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Fig. 4.5 A simulink diagram

Fig. 4.6 A state flow chart

Fig. 4.7 State plot x1 vs. x2
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4.3.3 Another Switched System

Consider the autonomous state dynamics ẋ(t) = Aσ(t) x(t), where

x = [
x1 x2

]t �2, σ ∈ {1, 2}
A1 =

[
0 10
0 0

]
, A2 =

[
1.5 2
−2 −0.5

]
(4.22)

Both A1 and A2 are unstable as A1 has zero eigenvalues and λ(A2) = 0.5 ± j
√

3.
Define the switching function σ(t) as follows:

σ(t+) Δ=
{

1, if σ(t−) = 2 and x2(t) = −0.25 x1(t)
2, if σ(t−) = 1 and x2(t) = 0.5 x1(t)

In Fig. 4.8, the state responses using S-function are plotted and shown that the
system is unstable.

Fig. 4.8 State trajectories

4.3.4 Simplified Longitudinal Dynamics of an Aircraft

A highly simplified longitudinal dynamics of an aircraft can take the form:



92 4 Switched Systems

ẋ =
[

q̇
α̇

]
= f (x, u, σ )

=
[−1 10

1 −1α̇

] [
q
α

]
+

[ −1
0.1α̇

]
uσ(t) (4.23)

where α ≤ αM is the constrained angle of attack and q is the pitch rate. The
output is

[
α

nz

]
=

[
0 1
0 −300α̇

] [
q
α

]
+

[
0

30α̇

]
uσ(t) (4.24)

where σ(t) ∈ {1, 2}, Nz is the normal acceleration, and the control variable uσ(t) is
the angle of the elevator measured down from the horizontal with the aircraft. The
control objective is twofold:

track the pilot’s reference normal acceleration while maintaining the safety con-
straint that the angle of attack must be less than αm . To simultaneously achieve both
objectives (to the extent possible), we define a switched ‘max control law’:

σ(t+) = ϕ(x(t), u(t), σ (t)) = argmaxi (ui ))

where

u1 = −F x + k1 αm, u2 = −G x + k2 r(t)

Here, u1 is the output of a controller designed to stabilize the aircraft about αm,

and u2 is a control designed to make nz track r(t). Roughly, the max control law
acts to track the pilot’s reference using the elevator except when to do so would
cause the safety constraint to be violated.

Let

r(t) = 0, u = max(−F x + k1 αm, −G x + k2 r(t))

The closed-loop equations with the maximum control law are as follows:

ẋ = A x + B max(−F x + k1 αm, G x)

= (A − BG)x + B max((G − F) x + k1 αm, 0) (4.25)

The analysis presupposes that the feedback gain matrices F,G are designed so
that (A − BG), (A − B F) are stable and provide the necessary performance. This
is possible because the controllability is equivalent to the ability to reassign the
eigenvalues of A by state feedback.

To simulate this problem, we need to locate the poles of the closed-loop systems
(A− BG), (A− B F). This can be done using place function in Matlab. We choose
the closed-loop eigenvalues to be at −1,−4.1623 for both systems. This gives F =
G [−4.6248− 14.6248].
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We will simulate the case for r(t). Next, we simulate the system using S-function
technique as depicted in Fig. 4.9, which yields the output and input responses of the
system shown in Fig. 4.10.

Fig. 4.9 A simulink diagram

Fig. 4.10 State variable trajectories

Remark 4.7 The results of the foregoing examples brought up a crucial issue. That
switching between two asymptotically stable systems as above can occur in the
control of several dynamic systems. In this regard, two questions arise:

(a) What classes of stable systems admit a stable-state trajectory for all switching
sequences and

(b) What switching sequences always result in stable trajectories?
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If there exists a common Lyapunov function for a set of stable A-matrices,
the resulting system is stable for all switching sequences [193], which answers
question a).

A partial answer to question b) is intuitive: If switching among asymptotically
stable systems is slow enough, one would expect a stable response. Stability here is
characterized by a traditional Lyapunov function that measures the system energy.
Mathematically, V (.) is continuous and differentiable, V (0) = 0 and V (x) > 0 if
x �= 0. Further, if V̇ < 0, x �= 0, then the state will converge to zero, implying
local stability (global stability if is radially unbounded) [116].

4.4 L2 Gain Analysis and Synthesis

Many physical systems can be represented by hybrid models containing contin-
uous and discrete states that affect their dynamic behavior. For example, a vari-
ety of power systems [389], chemical processes [41], and mechanical systems
[47], and many others can be modeled as hybrid systems. A particular class of
hybrid systems, which is of interest in this work, is the one composed of many
discrete subsystems and a rule that governs the switching between these sub-
systems. This class of switched systems has received great attention in the past
decade because of the fast development in computing technologies, which helped
improve the efficiency of switching between systems or controllers. For example, in
[30, 42, 47, 174, 193, 292] and the references cited therein, the stability and control
synthesis of switched hybrid systems have been investigated. In [47], the authors
present an introduction of the concept of switched systems, the challenges associ-
ated with the stability of switches systems, and an overview of the major results in
the Lyapunov stability of finite-dimensional hybrid systems. In [42], the stability
of switched discrete systems is studied by checking for the existence of switched
Lyapunov function for the system under consideration. In [28], multiple Lyapunov
functions for the stability analysis of continuous hybrid systems is investigated, and
the use of iterated function systems (IFS) as a tool for Lagrange stability is exam-
ined. Also, a survey of switched systems’ problems has been proposed in [193].

In this section, the results of [292, 333, 424] are extended further to the discrete-
time case using the result of [217] is provided. Specifically, the paper presents
a criterion for uniform quadratic stability and H∞ stabilization of a class of
uncertain switched systems. In this class, the parametric uncertainties are repre-
sented by a real convex-bounded polytopic model. The problems of L2 gain anal-
ysis and control synthesis for a class of linear discrete-time switched systems
with convex bounded parameter uncertainties in all system matrices are investi-
gated. The main thrust is based on the constructive use of an appropriate switched
Lyapunov functions. The L2 gain analysis is utilized to characterize conditions
under which the linear switched system with polytopic uncertainties is uniformly
quadratically stable with an L2 gain smaller that a prescribed constant level. Then,
control synthesis is used to design switched feedback schemes, based on state-,
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output-measurements, or by using dynamic output feedback, to guarantee that the
corresponding closed-loop system enjoys the uniform quadratic stability with an
L2 gain smaller that a prescribed constant level. All the developed results are
expressed in terms of convex optimization over LMIs and tested on representative
examples.

4.4.1 Switched Gain Analysis

We consider a class of discrete-time linear switched systems described by

(ΣJ ) : xk+1 = Aσ xk + Bσuk + Γσwk, σ ∈ IN (4.26)

zk = Cσ xk + Dσuk +Φσwk (4.27)

yk = Lσ xk (4.28)

where xk ∈ �n is the state; uk ∈ �m is the control input; wk ∈ �q is the exogenous
disturbance; yk ∈ �p is the measured output; zk ∈ �r is the controlled output.
Following [174], model (4.26) represents the continuous (state) portion of linear
hybrid systems. The particular mode σ at any given time instant may be a selective
procedure characterized by a switching rule of the form

σk+1 = δ(σk, xk), δ : IN×�n → IN (4.29)

The function δ(.) is usually defined using a partition of the continuous state space
[333]. Let S denote the set of all selective rules. Therefore, the linear hybrid system
under consideration is composed of N subsystems, each of which is activated at
particular switching instant. For a switching mode j ∈ IN, the associated matrices
A j , ..., Φ j contain uncertainties represented by a real convex-bounded polytopic
model of the type

[
A j B j Γ j

C j D j Φ j

]
Δ=

{
=

M j∑
p=1

λ j p

[
A jp B jp Γ j p

C jp D jp Φ j p

]
, j ∈ IN

}
(4.30)

where λ j = (λ j1, λ j2, ..., λ j M j ) ∈ Λ j belongs to the unit simplex of M j vertices

Λ j
Δ=

{
λ j :

M j∑
p=1

λ j p = 1 , λ jk ≥ 0

}
(4.31)

where A jp, ..., Φ j p, p = 1, ..., M j are known real constant matrices of appropriate
dimensions, which describe the j th nominal subsystem. Distinct from (4.26–4.28)
is the free switched system
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(ΣJo) : xk+1 = Aσ xk + Γσwk (4.32)

zk = Cσ xk +Φσwk (4.33)

we have the following definitions:

Definition 4.8 Switched system (ΣJo) is said to be uniformly quadratically stable
(UQS) if there exist a Lyapunov functional V (x, k) > 0, a constant ε > 0 such that
for all admissible uncertainties satisfying (4.30 and 4.31) and arbitrary switching
rule σ(.) activating subsystem j ∈ IN at instant k + 1 and subsystem i at instant

k, the Lyapunov functional difference ΔV (xk, k) satisfies ΔV (xk, k)
Δ= V (xk+1,

k + 1)− V (xk, k) ≤ −ε xt
k xk , ∀xk �= 0.

Definition 4.9 Given a scalar γ ≥ 0, the L2 gain G of switched system (ΣJo) over
S is

G Δ= inf{γ ≥ 0 : ||zk ||2 < γ 2 ||wk ||2, ∀σ ∈ S,∀ λ j ∈ Λ j , j ∈ IN}

Definition 4.10 Switched system (ΣJo is said to be uniformly quadratically stable
(UQS) with an L2 gain G < γ if for all switching signal vector σ ∈ S and for
all admissible uncertainties satisfying (4.30 and 4.31) it is UQS and ∀wk �= 0,
||zk ||2 < γ 2 ||wk ||2.

Our purpose in this section is to develop criteria for uniform quadratic stability and
stabilization of system (ΣJ ) and examine their robustness, then design appropriate
L2 feedback controllers that guarantee stability with a prescribed performance.

Lemma 4.11 Switched system (ΣJo) is UQS with an L2 gain G < γ there exist
a scalar γ > 0 and a quadratic Lyapunov functional Vσ (x, k) > 0 such that for
all switching rules σ ∈ S, the Lyapunov functional difference ΔV (xk, k) along the
solutions of (4.32 and 4.34) satisfies

ΔVσ (xk, k)+ zt
k zk − γ 2 wt

kwk < 0 (4.34)

Proof That switched system (ΣJo) is UQS follows directly from (4.34). Now by
summing up (4.34) over the range 0 −→ q, ∀q ∈ IN, it follows that

Vσ (xq+1, q + 1)− V (0, xo)+
q∑

p=0

(
zt

pz p − γ 2 wt
pwp

)
< 0

Since Vσ (xq+1, q+1)≥0, xo=0, it follows that
∑q

p=0 zt
pz p < γ 2 ∑q

p=0 wt
pwp <

0 and by Definition 4.10, switched system (ΣJo) is UQS with an L2 gain smaller
than γ .

In the sequel, we consider the following quadratic Lyapunov functional

Vσ (xk, k)
Δ= xt

k Pσ xk, 0 < Pt
σ = Pσ , σ ∈ S (4.35)
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Remark 4.12 We note from Definition 4.9 that the L2 gain G under arbitrary
switching can be looked as the worst-case energy amplitude gain for switched sys-
tem (4.30 and 4.31) over all possible inputs, switching signals, and all admissible
uncertainties. The functional (4.35) is called a switched Lyapunov function (SLF)
since it has the same switching signals as system (4.32 and 4.33), which is known
to yield less conservative results than the constant Lyapunov functional xt

k Pxk .

The following theorem summarizes the first result.

Theorem 4.13 The following statements are equivalent:

(A) There exists an SLF of the type (4.35) with σ ∈ S and a scalar γ > 0 such that
switched system (4.32 and 4.33) is UQS with an L2 gain G < γ .

(B) There exist matrices 0 < Pt
i = Pi , 0 < Xt

j = X j , i ∈ IN, j ∈ IN, and a
scalar γ > 0 satisfying the LMIs

⎡
⎢⎢⎣
−Pi 0 At

ip Ct
ip

• −γ 2 I Γ t
i p Φ t

i p
• • −X j 0
• • • −I

⎤
⎥⎥⎦ < 0, (i, j) ∈ IN× IN, p ∈ {1, ..., Mi } (4.36)

Proof (A) ⇒ (B) Suppose that there exist a constant γ > 0 and a switched Lya-
punov function of the type (4.35) satisfying (4.34). Let the switching rule σ(.) acti-
vates subsystem j ∈ IN at instant k + 1 and subsystem i at instant k. Thus

ΔVσ (xk, k)+ zt
k zk − γ 2 wt

kwk = xt
k+1 Pj xk+1 − xt

k Pi xk + zt
k zk − γ 2 wt

kwk

=
[

xt
k At

i + wt
kΓ

t
i

]
Pj

[
Ai xk + Γiwk

]
+

[
xt

kCt
i + wt

kΦ
t
i

][
Ci xk +Φiwk

]

−xt
k Pi xk − γ 2 wt

kwk

< 0 (4.37)

Since (4.37) holds for arbitrary switching, it follows on using (4.31) that for any
vectors xk �= 0, wk �= 0 that for all (i, j) ∈ IN× IN

[−Pi + At
i Pj Ai + Ct

i Ci At
i PjΓi + Ct

i Φi

• −γ 2 I + Γ t
i PjΓi +Φ t

i Φi

]
< 0 (4.38)

By Schur complements operations, inequality (4.38) can be put into the form

⎡
⎢⎢⎣
−Pi 0 At

i Pj Ct
i• −γ 2 I Γ t

i Pj Φ t
i• • −Pj 0

• • • −I

⎤
⎥⎥⎦ < 0, (i, j) ∈ IN× IN (4.39)
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Applying the congruent transformation IC = diag[I, I, X j , I ], X j = P−1
j , we

readily obtain

⎡
⎢⎢⎣
−Pi 0 At

i Ct
i• −γ 2 I Γ t

i Φ t
i• • −X j 0

• • • −I

⎤
⎥⎥⎦ < 0, (i, j) ∈ IN× IN (4.40)

Upon using vertex representation (4.30) and (4.31), we get (4.36) from (4.40).
(B) ⇒ (A) Follows by reversing the steps in the proof and applying (Lemma 2,
[210]) to system (4.32) and (4.33) for all modes (i, j) ∈ IN× IN and using (4.31).

Remark 4.14 It should be observed that in LMI (4.36) the system matrices are read-
ily separated from the Lyapunov matrices. The optimal L2 gain of switched system
(4.32 and 4.33) can be determined by solving the following convex minimization
problem over LMIs:

Minimize γ

s.t. L M I s (4.36), (i, j) ∈ IN× IN, p ∈ {1, ..., Mi }
Pi > 0,Y j > 0, γ > 0,

which can be conveniently solved by existing software [74].

Remark 4.15 A special case of Theorem 4.13 is now provided.

Corollary 4.16 The following statements are equivalent:

(A) There exists an SLF of the type (4.35) with σ ∈ S such that switched system
(4.32 and 4.33) with polytopic representation (4.30 and 4.31) is UQS.

(B) There exist matrices 0 < Pt
i = Pi , 0 < Xt

j = X j , i ∈ IN, j ∈ IN and a scalar
γ > 0 satisfying the LMIs

⎡
⎣−Pi At

ip Ct
ip

• −X j 0
• • −I

⎤
⎦ < 0, (i, j) ∈ IN× IN, p ∈ {1, ..., Mi } (4.41)

In the nominal case (Mi = 1, ∀i) LMI (4.41) provides an alternative stability test
that requires fewer matrix variables to manipulate than the result in [42].

Extending on the last section, we examine here the problem of switched control
synthesis using either switched state-feedback or output-feedback design schemes.

4.4.2 Switched State Feedback

With reference to system (4.26 and 4.27), we consider that the arbitrary switch-
ing rule σ(.) activate subsystem i at instant k. Our objective herein is to design
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a switched state feedback uk = Ki xk at i ∈ IN mode such that the closed-loop
system

(ΣJs) : xk+1 = [Ai + Bi Ki ]xk + Γiwk

= Āi xk + Γiwk (4.42)

zk = [Ci + Di Ki ]xk +Φiwk

= C̄i xk +Φiwk (4.43)

is UQS with an L2 gain G < γ . The following theorem summarizes the main result.

Theorem 4.17 Switched system (4.42) and (4.43) is UQS with an L2 gain G < γ if
there exist matrices 0 < Xt

i = Xi , Zi , 0 < Xt
j = X j , (i, j) ∈ IN× IN and a scalar

γ > 0 satisfying the LMIs

⎡
⎢⎢⎣
−Xi 0 Xi At

i + Zt
i Bt

i Xi Ct
i + Zt

i Dt
i• −γ 2 I Γ t

i Φ t
i• • −X j 0

• • • −I

⎤
⎥⎥⎦ < 0, (i, j) ∈ IN× IN (4.44)

Moreover, the gain matrix is given by Ki = Zi X−1
i .

Proof It follows from Theorem 4.13 that switched system (4.42) and (4.43) is UQS
if ∀(i, j) ∈ IN× IN there exist matrices 0 < Pi = Pt

i , 0 < X j = Xt
j such that

⎡
⎢⎢⎣
−Pi 0 Āt

i C̄ t
i• −γ 2 I Γ t

i Φ t
i• • −X j 0

• • • −I

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−Pi 0 At

i + K t
i Bt

i Ct
i + K t

i Dt
i• −γ 2 I Γ t

i Φ t
i• • −X j 0

• • • −I

⎤
⎥⎥⎦ < 0. (4.45)

Applying the congruent transformation [Xi , I, I, I ] to LMIs (4.45) with Xi =
P−1

i , Zi = Ki Xi , we immediately obtain (4.44). �

Remark 4.18 The optimal switched state feedback with L2 gain for system (4.42
and 4.43) can be determined by solving the following convex minimization problem
over LMIs:

Minimize γ

s.t. L M I s (4.44), (i, j) ∈ IN× IN

Zi , Xi > 0, X j > 0, γ > 0
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In the case of polytopic representation (4.30) and (4.31), the corresponding convex
minimization problem takes the form

Minimize γ

wr t Zi , Xi > 0, X j > 0, γ > 0

⎡
⎢⎢⎣
−Xi Xi At

ip + Zt
i Bt

ip Γi 0
• −γ 2 I Γ t

i p Φ t
i p

• • −X j 0
• • • −I

⎤
⎥⎥⎦ < 0, (i, j) ∈ IN× IN, p ∈ {1, ..., Mi }

4.4.3 Switched Static Output Feedback

The objective now is to design a switched output feedback uk = Gi yk at mode
i ∈ IN such that the closed-loop system

(ΣJs) : xk+1 = [Ai + Bi Gi Li ]xk + Γiwk

= Âi xk + Γiwk (4.46)

zk = [Ci + Di Gi Li ]xk +Φ jwk

= Ĉi xk +Φiwk (4.47)

is UQS with an L2 gain G < γ . To facilitate further development, we consider
initially the case where the set of output matrices Li , i ∈ IN, p ∈ {1, ..., M j }
are assumed to be of full row rank. This case can be fullfilled by deleting redun-
dant measurement components of the output variable yk . Therefore, it follows from
Theorem 4.13 that switched system (4.46) and (4.47) is UQS if ∀(i, j) ∈ IN × IN
there exist matrices 0 < Pi = Pt

i , 0 < X j = Xt
j such that

⎡
⎢⎢⎣
−Pi 0 Ât

i Ĉ t
i• −γ 2 I Γ t

i Φ t
i• • −X j 0

• • • −I

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−Pi 0 At

i + Lt
i G

t
i Bt

i Ct
i + Lt

i G
t
i Dt

i• −γ 2 I Γ t
i Φ t

i• • −X j 0
• • • −I

⎤
⎥⎥⎦ < 0 (4.48)

Using the congruent transformation [Xi , I, I, I ] to LMIs (4.48) with Xi =
P−1

i , Li Xi = Ei Li , Ri = Gi Ei , then there exist matrices 0 < Xi = Xt
i , 0 <

X j = Xt
j , 0 < Ei = Et

i , Ri such that
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⎡
⎢⎢⎣
−Xi 0 Xi At

i + Lt
i Rt

i Bt
i Xi Ct

i + Lt
i Rt

i Dt
i• −γ 2 I Γ t

i Φ t
i• • −X j 0

• • • −I

⎤
⎥⎥⎦ < 0 (4.49)

Li Xi = Ei Li (4.50)

We note that the presence of matrix equality in (4.50) renders the computations of
(4.49) and (4.50) using MATLAB-LMI Toolbox [74] rather costly. Therefore, one is
encouraged to convert (4.49) and (4.50) into true LMIs. With this in mind, we recall
that the use of singular value decomposition (SVD) can express the output matrix
Li in the form

Li = Ui [Λpi , 0] V t
i (4.51)

where Ui ∈ IRp×p,Vi ∈ IRn×n are unitary matrices and Λpi ∈ IRp×p is a diagonal
matrix with positive diagonal elements in decreasing order. The conversion to LMIs
can now be accomplished by the following theorem:

Theorem 4.19 Given a matrix Li ∈ IRp×n, rank[Li ] = p and let 0 < Xi = Xt
i ∈

IRn×n. Then there exists a matrix 0 < Ei ∈ IRp×p such that

Li Xi = Ei Li (4.52)

if and only if

Xi = Vi

[
Xiu 0
• Xiv

]
V t

i , Xiu ∈ IRp×p, Xiv ∈ IR(n−p)×(n−p) (4.53)

Proof When p = n, it readily evident with Li being nonsingular that (4.52) is
solvable for Xi . Now, consider that p < n. It follows from (4.51) and (4.52) and the
properties of Vi that

Ei Ui [Λpi , 0] V t
i = Ui [Λpi , 0] V t

i Xi �⇒
[Ei UiΛpi , 0] = [UiΛpi , 0] V t

i XiVi (4.54)

On letting

Xi = Vi

[
Xiu Xid

• Xiv

]
V t

i

Xiu ∈ IR×p, Xiv ∈ IR(n−p)×(n−p), Xid ∈ IRp×(n−p) (4.55)

it follows that (4.54) is equivalent to

[EiUiΛpi , 0] = [UiΛpi Xiu,UiΛpi Xid ] (4.56)



102 4 Switched Systems

The solvability of (4.56) with respect to Xi holds if and only if

UiΛpi Xid ≡ 0 �⇒ Xid ≡ 0 and EiUiΛpi = UiΛpi Xiu

which completes the proof. �

It is significant to observe that Theorem 4.19 substitutes the matrix equation
(4.50) by structural selection of the matrix variable Xi . Incorporating this result into
Theorem 4.19, we have thus established the following result:

Theorem 4.20 Consider switched system (4.42) and (4.43) with w ≡ 0 subject to
the output feedback control uk = Gi yk with output matrix Li having the SVD
form Li = Ui [Λpi , 0] V t

i ,Λpi ∈ IRp×p. The resulting closed-loop system is UQS if
there exist matrices 0 < Xiu = Xt

iu ∈ �p×p, 0 < Xiv = Xt
iv ∈ IR(n−p)×(n−p), 0 <

X j = Xt
j , 0 < Ei = Et

i , Ri such that for all (i, j) ∈ IN× IN the LMIs

⎡
⎢⎢⎣
−Xi 0 Xi At

i + Lt
i Rt

i Bt
i Xi Ct

i + Lt
i Rt

i Dt
i• −γ 2 I Γ t

i Φ t
i• • −X j 0

• • • −I

⎤
⎥⎥⎦ < 0 (4.57)

have a feasible solution. Moreover, the feedback gain is given by

Gi = RiUiΛpi X−1
iu Λ−1

pi U
−1
i , i ∈ IN

Remark 4.21 The optimal switched static output feedback with L2 gain for system
(4.46 and 4.47) can be determined by solving the following convex minimization
problem over LMIs:

Minimize γ

Subject to L M I s (4.57), (i, j) ∈ IN× IN

Xiu, Xiv, Ri , X j > 0, γ > 0

which can be conveniently solved by the existing software [74].

4.4.4 Switched Dynamic Output Feedback

Now we direct attention to the more general case and employ at every mode i ∈ IN
a switched dynamic output-feedback scheme of the form:

(ΣC ) : ζk+1 = Aciζk + Bci yk

uk = Cciζk (4.58)
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Augmenting controller (4.58) to switched system (4.26), (4.27), and (4.28) and
defining the composite vector ξ t

k =
[
xt

k ζ t
k

]
, we get the closed-loop system

(ΣJC ) : ξk+1 = Aiξk + Γ̄iwk

zk = Ciξk +Φiwk (4.59)

where the respective matrices are given by

Ai =
[

Ai B j Cci

Bci Li Aci

]
, Γ̄i =

[
Γ j

BciΦ j

]
, Ci = [Ci Di Cci ] (4.60)

Application of Theorem 4.13 shows that switched system (4.60) is UQS with an L2
gain G < γ if there exist matrices 0 < P t

i = Pi , 0 < Y t
j = Y j , j ∈ IN and a scalar

γ > 0 satisfying the LMIs

⎡
⎢⎢⎣
−Pi 0 At

i Ct
i• −γ 2 I Γ̄ t

i Φ t
i• • −Y j 0

• • • −I

⎤
⎥⎥⎦ < 0, (i, j) ∈ IN× IN (4.61)

Introducing the shorthand

Pi =
[
Psi 0
0 Pci

]
, Xi

Δ= P−1
i =

[
Xsi 0
0 Xci

]
, Y j =

[
Ys j 0
0 Ycj

]
(4.62)

we have the following result:

Theorem 4.22 Consider switched system (4.59) and (4.60) with output matrix Li

having the SVD form Li = Ui [Λpi , 0] V t
i , Λpi ∈ IRp×p. This system is UQS with

an L2 gain G < γ if there exist matrices 0 < X t
siu = Xsiu, 0 < X t

siv = Xsiv, 0 <

X t
ci = Xci , 0 < Y t

si = Ysi , 0 < Y t
ci = Yci ,Ωci ,Πcj , Υci , Ψci , (i, j) ∈ IN × IN and

a scalar γ > 0 satisfying the systems LMIs

⎡
⎢⎢⎢⎢⎢⎢⎣

−Xsi 0 0 Xsi At
i Lt

iΩ
t
cj Xsi Ct

i
• −Xci 0 Λt

ci Bt
i Υ t

cj Π t
ci Dt

i
• • −γ 2 I Γ t

i Ψ t
ci Φ t

i• • • −Ys j 0 0
• • • • −Ys j 0
• • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (i, j) ∈ IN× IN (4.63)

Moreover, the gain matrices are given by

Aci = Υci X−1
ci , Bcj = Ωcj U−1

i Λ−1
pi X

−1
siuΛpiUi , Cci = Πci X−1

ci (4.64)

Proof Follows from Theorems 4.13–4.19 by applying the congruent transforma-
tion [Xi , I, I, I ] to LMIs (4.61) with Xi = P−1

i and expanding the result using
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(4.62) along with the matrix substitutions Aci Xci = Υci , LiXsi = Ξsi Li , Ωci =
BciΞci , Ξi = UiΛpiXsiuΛ

−1
pi U

−1
i , CciXci = Πcj .

Remark 4.23 The optimal switched dynamic output feedback with L2 gain for
system (4.59 and 4.60) subject to the polytopic representation (4.30 and 4.31)
can be determined by solving the following convex minimization problem over
LMIs:

Minimize γ

wr t Xsiu > 0, Xsiv > 0, Xcj > 0, Ys j > 0, Ycj > 0, Ωcj , Υcj , Πcj , γ > 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Xsi 0 0 Xsi At
ip Lt

ipΩ
t
cj Xsi Ct

ip

• −Xci 0 Π t
ci Bt

ip Υ t
cj Λt

ci Dt
ip

• • −γ 2 I Γ t
i Ψ t

ci Φ t
i p

• • • −Ys j 0 0
• • • • −Ys j 0
• • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

∀ (i, j) ∈ IN× IN, p ∈ {1, ..., Mi }

4.4.5 Numerical Examples

Two examples will be given in the sequel:

Illustrative Example A

In this example, we consider a discrete model of water pollution described by
dynamical system of the type (4.42) and (4.43) with multiple modes. In terms of
our terminology, each mode represents a particular equilibrium operating point.
We wish to design a switched-state feedback control for this system based on
Theorem 4.17. Switching occurs between three modes described by the following
coefficients:

Mode 1:

A1 =
[

0.3 0.1
−0.4 0.2

]
, Γ1 =

[
0.2
0.3

]
, B1 =

[
2 1

0.6 1

]

C1 =
[

0.1 0.3
]
, Φ1 =

[
0.6

]
, D1 =

[
0.1 0.4

]
, L1 =

[
0.5 0
0 0.5

]

Mode 2:

A2 =
[

0.1 0.2
0.3 0.4

]
, Γ2 =

[
0.1
0.5

]
, B2 =

[
1 4
3 1

]

C2 =
[

0.6 0.2
]
, Φ2 =

[
0.3

]
, D2 =

[
0.8 0.3

]
, L2 =

[
0.4 0
0 0.6

]
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Mode 3:

A3 =
[

0.2 0.1
0.6 0.3

]
, Γ3 =

[
0.2
0.8

]
, B3 =

[
2 0.9

0.7 2

]

C3 =
[

0.7 0.3
]
, Φ3 =

[
0.1

]
, D3 =

[
0.9 0.3

]
, L3 =

[
0.6 0
0 0.4

]

The number of vertices at the respective modes and weightings are taken as M j =
3, λ1k = 0.3, λ2k = 0.5, λ3k = 0.2, k = 1, .., 3. Invoking the software environment
[75], the feasible solution of LMIs (4.44) is given by

X1 =
[

5.8731 0
0 5.8731

]
, X2 =

[
5.3925 0

0 5.3925

]
, X3 =

[
5.2141 0

0 5.2141

]

Z1 =
[−0.6717 0.1189

1.8608 −3.9669

]
, Z2 =

[−1.7867 0.2830
−0.9088 −0.0476

]

Z3 =
[−2.8880 −0.2209
−1.2026 −0.2208

]

Since Ki = Zi X−1
i , the control gains become

K1 =
[−0.1144 0.0202

0.3168 −0.6754

]
, K2 =

[−0.3313 0.0525
−0.1685 −0.0088

]

K3 =
[−0.5539 −0.0424
−0.2306 −0.0423

]

Illustrative Example B

Similar to illustrative example A, we consider here another discrete model of water
pollution described by dynamical system of the type (4.42) and (4.43) with multiple
modes. Again, each mode represents a particular equilibrium operating point. We
wish to design a switched static-output feedback control law for this water system
based on Theorem 4.20. Switching occurs between three modes described by the
following coefficients:

Mode 1:

A1 =
[

0.3 0.1
−0.4 0.2

]
, Γ1 =

[
0.2
0.3

]
, B1 =

[
2 1

0.6 1

]

C1 =
[

0.1 0.3
]
, Φ1 =

[
0.6

]
, D1 =

[
0.1 0.4

]
, L1 =

[
0.5 0
0 0.5

]
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Mode 2:

A2 =
[

0.1 0.2
0.3 0.4

]
, Γ2 =

[
0.1
0.5

]
, B2 =

[
1 4
3 1

]

C2 =
[

0.6 0.2
]
, Φ2 =

[
0.3

]
, D2 =

[
0.8 0.3

]
, L2 =

[
0.4 0
0 0.6

]

Mode 3:

A3 =
[

0.2 0.1
0.6 0.3

]
, Γ3 =

[
0.2
0.8

]
, B3 =

[
2 0.9

0.7 2

]

C3 =
[

0.7 0.3
]
, Φ3 =

[
0.1

]
, D3 =

[
0.9 0.3

]
, L3 =

[
0.6 0
0 0.4

]

Invoking the software environment [74], the feasible solution of LMIs (4.57) is
given by

X1 =
[

2.0255 0
0 2.0255

]
, X2 =

[
1.9232 0

0 1.9232

]
, X3 =

[
1.8327 0

0 1.8327

]

R1 =
[−1.5708 2.0324

0.5787 −1.4950

]
, R2 =

[−0.7030 0.0502
−0.4344 −0.0523

]

R3 =
[−0.3482 −0.7446
−0.2057 −0.5837

]

Using the SVD of Li , i = 1, . . . , 3, the control gains become

G1 =
[−0.7755 1.0034

0.2857 −0.7381

]
, G2 =

[−0.3655 0.0261
−0.2259 −0.0272

]

G3 =
[−0.1900 −0.4063
−0.1122 −0.3185

]

4.5 Notes and References

In addition to the numerous papers and articles on switched systems, there are few
reference books that might have some connection to the topics to be discussed in
this book. This includes the fundamental references [20, 192, 193, 357–359, 366].
The material covered in this chapter draws heavily on the excellent papers [47,
133, 134, 196, 426]. We have examined L2 gain analysis and control synthesis for
a class of linear switched systems with convex-bounded parameter uncertainties
in the system matrices using an appropriate switched Lyapunov functional. LMI-
based feasibility conditions have been developed to ensure that the linear switched
system with polytopic uncertainties is uniformly quadratically stable with an L2
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gain smaller that a prescribed constant level. Switched feedback schemes have been
designed using state measurements, output measurements, and by using dynamic
output feedback, to guarantee that the corresponding closed-loop system enjoys the
uniform quadratic stability with an L2 gain smaller than a prescribed constant level.
All the developed results have been expressed in terms of convex optimization over
LMIs and have been tested on representative examples.

Together with the foregoing chapter, this introductory chapter is hoped to have
succeeded in motivating the readers to the upcoming topics and in paving the way
to study the interesting topics of stability, stabilization, control design, and filtering
switched time-delay systems.



Chapter 5
Switched Time-Delay Systems

5.1 Introduction

This chapter is concerned with the main ingredients and basic notions of switched
time-delay systems. For simplicity of exposition, we present the relevant topics and
materials of both switched systems at large and time-delay systems in particular.
Therefore, the chapter is divided into two major sections: the first section gives an
overview about switched time-delay systems and the second presents an overview
of piecewise-affine systems.

5.2 Switched Time-Delay Systems

In this manner, a switched time-delay system is recognized to be composed of a
family of time-delay subsystems and a rule that governs the switching among them,
and is mathematically described by

δx(t) = fσ (x(t), u(t), τ (t), v(t)), x(to) = xo

y(t) = gσ (x(t), τ (t), w(t)) (5.1)

where τ(t) is the time-delay factor and the remaining quantities are standard in state
space representation. Each individual time-delay component model

δx(t) = f j (x(t), u(t), τ (t), d(t)), x(to) = xo

y(t) = gk(x(t), τ (t), w(t)), j ∈ S (5.2)

is said to be a time-delay subsystem or time-delay mode of the switched system. In
the sequel, it is assumed that the delay τ(t) is a differentiable time-varying function
satisfying

0 < τ(t) ≤ �, τ̇ (t) ≤ μ (5.3)

M.S. Mahmoud, Switched Time-Delay Systems,
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where the bounds � and μ are known constant scalars. Sometimes the bounding
relation μ < 1 [181, 216, 301] is used.

Alternatively, depending on the problem formulation, the delay τ(t) is considered
as a time-varying function satisfying

0 < τ(t) ≤ � (5.4)

where the bounds � is a known constant scalar.
By and large, the time-delay subsystems represent the low-level local dynamics

governed by FDEs, while the supervisor is the high-level coordinator producing
the switches among local dynamics. Thus, the dynamics of the switched time-delay
(STD) system is determined by both the time-delay subsystems and the switching
signal.

A switching signal may depend on the time, its own past value, the state/output,
and/or an external signal as well:

σ(t+) = ϕ(t, σ (t), x(t)/y(t), r(t)) ∀t (5.5)

where r(t) is an external signal produced by other devices, σ(t+) = lims↓t σ(s) in
continuous time, and σ(t+) = σ(t + 1) in discrete time.
In the case σ(t) = j, we say that the j th subsystem is active at time t. It is quite
evident that at any instant there is one (and only one) active subsystem.

In the remainder of the book, we focus on model (5.2) subject to time-delay
pattern (5.3) or (5.4) and the switching signal (5.5).

5.2.1 Multiple Lyapunov Functions

Construction of Lyapunov functions is a fundamental problem in system theory;
internal stability of the system under consideration is concluded if an associated
Lyapunov function is shown to exist. Conceptually, when looking at STD system,
perhaps the simplest solution would be a common quadratic Lyapunov function,
that is a quadratic function which is a global Lyapunov function for the subsystems
comprising the hybrid system. It turns out that the construction of such a Lyapunov
function is an NP-hard problem even when the subsystems are linear time invariant
[20]. The conservatism introduced by a global Lyapunov function V can be reduced
by searching for a set {Vj } of local Lyapunov functions and by ensuring that the
Lyapunov functions match in the sense that the values of the Lyapunov functions
{Vj } and {Vm} are equal when the state trajectory leaves a cell {X j } and enters a cell
{Xm}, where {Vj } is a local Lyapunov function in the cell {X j } and {Vm} is a local
Lyapunov function in the cell {Xm} [28].

5.2.2 Switched-Stability Analysis

Recently, fundamental development of stability analysis of switched systems has
been made in the control community (see, for example, [28, 192, 366]). In the
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literature, switched time-delays (STD) systems appear in applications whenever
switching and time delay coexist in either system modeling or signal transmission.
Due to the interaction between continuous dynamics and discrete dynamics and
because of the impact of time delays, the behavior of STD systems is usually much
more compounded than that of switched systems or delay systems. To date, there
are a few results reported on such systems [169, 370, 397]. We recall from that
there are three basic issues associated with the problems of stability and design of
switched systems without delays [192]; similar problems also exist in the study of
STD systems, namely

• finding conditions of stabilizability under arbitrary switching,
• identifying the useful class of stabilizing switching signals, and
• constructing a stabilizing switching signal

In the sequel, we focus on constructing stabilizing switching signal; it is well
known that on the premises of Hurwitz convex combination, a linear switched sys-
tem without delay is asymptotically stable under the switching law designed by
the single Lyapunov function method [192]. It turns out [169] that such result still
holds for linear switched systems with constant delay if the delay is sufficiently
small. Also, a method of quantifying the delay bound was given. Alternatively, it has
simultaneously been pointed out that the delay bound obtained by their method is
comparatively conservative and improving the theoretical result is an open problem.
Thus the first question is how to get a less conservative criterion. In [169], the case
of constant delay is only considered. So, the immediate question is that for the case
of time-varying delay, whether a similar result can be obtained. These questions
motivate the write-up of this part of the book.

Therefore, the stability problem for a class of switched time-delay system with
time-varying delay is considered hereafter. Consider for the time being the class of
STD systems in the form

ẋ(t) = Aσ(t)x(t)+ Adσ(t)x(t − τ(t)), xto = ψ(α), α ∈ [−τ, 0] (5.6)

where x(t) ∈ �n denotes the state vector; σ(t) : [0,∞) → S = {1, 2, ..., s} is
the switching signal which depends on time t or state x(t), A j and B j are constant
matrices for j ∈ S, ψ(α) is a continuously differentiable initial function, τ(t) > 0
and xt = x(t + α), α ∈ [−τ, 0], and the term τ(t) denotes the time-varying delay
satisfying either of the following patterns:

Case 1 : 0 ≤ τ(t) ≤ �, τ̇ (t) ≤ μ < 1

Case 2 : 0 ≤ τ(t) ≤ �, τ̇ (t) ≤ μ (5.7)

where the bounds �, μ are known constants in order to guarantee smooth growth of
the state trajectories. The following switching sequence

{
xto; ( jo, to), ..., ( jk, tk), ..., | jk ∈ S, k = 0, 1, ...

}
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corresponds to the switching signal σ(t), meaning that the j th subsystem is acti-
vated when t ∈ [tk, tk+1). Observe that when τ(t) ≡ 0, stability of system (5.6) is
equivalent to (A j + Ad j ) being Hurwitz. Bearing this in mind, we proceed further
and recall the following condition

Hurwitz convex combination condition: There exists a Hurwitz linear convex
combination Λ of (A j + Ad j ), that is,

Λ =
s∑

j=1

β j (A j + Ad j ) (5.8)

where 0 < β j < 1 and
∑s

j=1 β j = 1.
It follows since Λ is Hurwitz that there exists a matrix P > 0 such that

PΛ+ΛtP +Q = 0, Q > 0 (5.9)

Given a pair P, Q satisfying (5.9), let us introduce the following set

Ω j =
{

x ∈ �n|xt [P(A j + Ad j )+ (A j + Ad j )
tP]x ≤ − xtQx

}
(5.10)

for each j ∈ S. As presented in [169], it is readily seen that

�n =
n⋃

j=1

Ω j

Based thereon, we construct the following switching regions:

Ω̂1 = Ω1, Ω̂2 = Ω1/

(
Ω2

⋂
Ω̂1

)
, ....,

Ω̂ j = Ω j/

(
Ω j

⋂ j−1⋃
m=1

Ω̂m

)
, ...., Ω̂s = Ω j/

(
Ωs

⋂ s−1⋃
m=1

Ω̂m

)

Hence

s⋃
j=1

Ω̂ j = �n, Ω̂ j

⋂
Ω̂r = �

and the switching law takes the form

σ(t) = j, when x(t) ∈ Ω̂ j (5.11)
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Since in the case τ(t) ≡ 0, system (5.6) reduces to the delayless system ẋ(t) =
(A j + Ad j )x(t). It is well known that the condition of Hurwitz convex combination
can guarantee the asymptotic stability of system ẋ(t) = (A j + Ad j )x(t) under
switching law (5.11). The following analysis will show that for a certain delay
bound, the result still holds for system (5.6). The analytical treatment relies on
Lemma 13.5 and leads to the following result:

Lemma 5.1 There exist a constant μ > 0 and matrices P > 0, R > 0, Z >

0, X j =
[
X j

a X j
c

• X j
o

]
, j ∈ S and some matrices Y j , T j with appropriate dimen-

sions such that the following LMIs

Π j =
⎡
⎣Π

j
a Π

j
c �(A j + Ad j )

tZ
• Π

j
o 0

• • −�Z

⎤
⎦ > 0 (5.12)

Θ j =
⎡
⎢⎣
X j

a X j
c Y j + PAd j + �(A j + Ad j )

tZAd j

• X j
o T j

• • Z − �2 At
d jZAd j

⎤
⎥⎦ ≥ 0 (5.13)

PΛ+ΛtP < 0 (5.14)

hold for any given � ∈ (0, �̂] and any j ∈ S where A j , Ad j are given in (5.6) and
Λ is a Hurwitz matrix defined in (5.8) and

Π
j

a = ΛtP + PΛ+ Y j + Y t
j +R+ �X j

a

Π
j

c = −Y j + T t
j + �X j

c

Π
j

o = −T t
j + T j − (1− μ)R+ �X j

o (5.15)

Proof Initially, given two matrices 0 < Rt = R, 0 < Z t = Z , consider Y j ≡ 0,
T j ≡ 0. Since Λ is Hurwitz matrix, there exists a matrix 0 < P t = P such that
PΛ + ΛtP + 2 R = 0 implying that LMI (5.14) is satisfied. In addition, Π j and
Θ j reduce to the following form:

Π̂ j =
⎡
⎣−R j + �X j

a �X j
c �(A j + Ad j )

tZ
• −(1− μ)R+ �X j

o 0
• • −�Z

⎤
⎦

Θ̂ j =
⎡
⎢⎣
X j

a X j
c PAd j + �(A j + Ad j )

tZAd j

• X j
o 0

• • Z − �2 At
d jZAd j

⎤
⎥⎦

Our task now is to show that there exists a constant �̂ > 0 such that for any � ∈
(0, �̂], Π̂ j < 0, Θ̂ j ≥ 0 hold. By the S-procedure, it is known that there exists a
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small constant 0 < �
j∗, j ∈ S, such that for � ∈ (0, �̂], Z − �2 At

d jZAd j > 0. For

some P > 0, R > 0, Z > 0 and for all � ∈
[
0, �

j∗
]
, there must exist a matrix

Ξ j such that

Ξ j ≥ Ξ̂ j = [PAd j + �(A j + Ad j )
tZAd j ]

×
(
Z − �2 At

d jZAd j

)−1 [PAd j + �(A j + Ad j )
tZAd j ]t

More importantly, there exists a matrix

X j =
[
X j

a X j
c

• X j
o

]
≥ 0, j ∈ S

such that
[
X j

a −Ξ j X j
c

• X j
o

]
≥ 0

Correspondingly, it holds that

[
X j

a − Ξ̂ j X j
c

• X j
o

]
≥ 0

By Schur complements, it is readily seen that for all � ∈
[
0, �

j∗, Θ̂ j ≥ 0
]
. Once

again by the S-procedure [27], it holds that for the matrix

Π̃ j =
[−R 0
• −(1− μ)R

]

+�
[
(A j + Ad j )

tZ(A j + Ad j )+ X j
a X j

c

• X j
o

]

there exists a constant 0 < �
j
+, j ∈ S, such that Π̃ j < 0 for any � ∈

(
0, �

j
+
]
. By

Schur complements, we know that Π̂ j < 0. Define �̄ = mins
m=1

{
�

j∗, �
j
+
}

. Then

for all � ∈ (0, �̂], we have Π̂ j < 0 and Θ̂ j ≥ 0 for j ∈ S, which yields the desired
result. This completes the proof. �
Lemma 5.2 There exist a constant μ > 0 and matrices P > 0, Z > 0, X j =[
X j

a X j
c

• X j
o

]
, j ∈ S and some matrices Y j , T j with appropriate dimensions such

that LMIs (5.12) with R ≡ 0 and LMIs (5.13) and (5.14) hold for any j ∈ S and
any � ∈ (0, �̂].
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Proof Follows directly from Lemma 5.1 by setting Y j = T j = R̂ and PΛ+ΛtP+
3R̂ for any j ∈ S and R̂ > 0. �

5.2.3 Illustrative Example A

Consider the following piecewise linear time-delay system of the type (5.6) with
σ(t) ∈ S = {1, 2} [372]:

A1 =
[ −2 2
−20 −2

]
, A2 =

[−2 10
−4 −2

]

Ad1 =
[−1 −7

23 6

]
, Ad2 =

[
4 −5
1 −8

]

This example was also treated in [169] in the case of constant delay τ̇ ≡ 0. Observe
that A j + Ad j , j = 1, 2, is unstable. Taking β1 = 0.6, β2 = 0.4, from (5.8),
we get

Λ =
[ −1 1
−0.6 −1.6

]

Solving (5.12), (5.13), and (5.14) yields the maximum delay bound μ = 0.0202 and

P =
[

151.5293 −16.8856
−16.8856 184.9110

]
, Q =

[
282.7959 −84.4853
−84.4853 625.4863

]

and the switching law will be given by (5.11). By applying Lemma 5.1, the system
under consideration with μ ≤ 0.0202 is asymptotically stable. Notice that the cor-
responding result in [169] was μ = 0.001573. When τ̇ �= 0, it is found by Lemma
5.1 that the system under consideration is asymptotically stable with μ ≤ 0.0176.

5.3 Piecewise-Affine Systems

Thus far, we have learned from the foregoing sections that construction of Lyapunov
functions is a fundamental problem in system theory. Its importance stems from the
fact that the internal stability of a system is concluded if an associated Lyapunov
function is shown to exist. This part of the book is concerned with such a construc-
tion for a class of switched systems in the sense that the state trajectory evolution is
governed by different dynamical equations (or different difference equations) over
different polyhedral partitions {X j } of the state space {X}, that is, the system is
modeled by an ensemble of subsystems, each of which is a valid representation of
the system over a set of such partitions. Motivating applications for the study of such
systems is described in [13]. We knew before that the simplest solution is perhaps a
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common quadratic Lyapunov function, that is, a quadratic function which is a global
Lyapunov function for the subsystems comprising the switched system. However,
the existence of such a function is, in principle, an overly restrictive requirement to
deduce the stability [156]. Moreover, the construction of such a Lyapunov function
is an NP-hard problem even when the subsystems are linear time invariant.

The conservatism introduced by a global Lyapunov function V can be reduced
by searching for a set {Vj } of local Lyapunov functions and by ensuring that the
Lyapunov functions match in the sense that the values of Lyapunov functions {Vm}
and {Vn} are equal when the state trajectory leaves a cell {Xm} and enters a cell
{Vn}, where {Vm} is a local Lyapunov function in the cell {Xm} and {Vn} is a local
Lyapunov function in the cell {Vn} (see [28]). In this context, an elegant result has
been recently derived by [156] to construct Lyapunov functions when the subsystem
dynamics are known to be affine time invariant; an independent interpretation of this
result is given in [134]. For some practical applications, however, the piecewise-
affine structure must be modified to address modeling uncertainties and time delays.
For such systems, consequently, the stability conditions laid down by [156] get mod-
ified as we will demonstrate.

5.3.1 Continuous-Time Systems

In this section, we focus attention on piecewise-affine continuous-time systems.
At start, the following definition from [156] introduces piecewise-affine (PWA)
systems.

Definition 5.3 The class Sa of switched systems is defined by a family of ordinary
differential equations as

ẋ(t) = A j x(t)+ a j ∀ x(t) X j (5.16)

where A j ∈ �n×n, a j ∈ �n , and {X}j∈I+ ⊂ �n is a partition of the state space into
a finite number of closed, and possibly unbounded, polyhedral cells with pairwise
disjoint interior. The set of cells that include the origin is denoted by IO , that is,
a j = 0,∀ j ∈ IO , and its compliment is denoted I c

O .
Next, we provide a definition for piecewise-affine time-delay (PWATD) systems.

Definition 5.4 The class Sc of switched systems is defined by a family of retarded
differential equations as

ẋ(t) = A j x(t)+ Ad j x(t − τ)+ a j ∀ x(t) ∈ X j (5.17)

where A j ∈ �n×n, Ad j ∈ �n×n, a j ∈ �n , and {X}j∈I+ ⊂ �n is a partition of the
state space into a finite number of closed, and possibly unbounded, polyhedral cells
with pairwise disjoint interior. The set of cells that include the origin is denoted IO ,
that is, a j = 0,∀ j ∈ IO and its complement is denoted I c

O . In system (5.7), the time
delay τ could be either
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• A constant factor (lag) satisfying 0 < τ ∈ �,
• A time-varying differentiable function satisfying 0 ≤ τ(t) ≤ �, τ̇ (t) ≤ μ, or
• A time-varying interval differentiable function satisfying 0 < ϕ ≤ τ(t) ≤

�, τ̇ (t) ≤ μ

where the lower bound ϕ, the upper bound �, and the rate bound μ are known con-
stants. The case μ < 1 corresponds to slowly varying time delay.

For classes of system Sc with alternative delay patterns, our objective hereafter
is to determine a set of computationally tractable analytical conditions under which
Sc is stable. In preparation, we introduce the following notations:

Ã j =
[

A j a j

0 0

]
, Ẽ j =

[
E j

e j

]
, F̃j =

[
Fj

f j

]
, Ãd j =

[
Ad j 0
0 0

]

where
[

e j

f j

]
=

[
0
0

]
, ∀ j ∈ I+

Ẽ j

[
x
1

]
≥ 0, ∀ x X j , ∈ ∀ j ∈ I+

F̃j

[
x
1

]
= F̃m

[
x
1

]
, ∀ x X j ∩ Xm, ∈ ∀ j,m ∈ I+ (5.18)

The following result is due to [156]:

Theorem 5.5 Consider matrices T = T t ,U j = U t
j , W j = W t

j such that the

elements of U j , W j are nonnegative. Let P j
Δ=, Ft

j T Fj , ∀ j ∈ IO , and

P̃k
Δ= F̃ t

k T F̃k, ∀ k ∈ I c
O , satisfy

P j A j + P j At
j + Et

jU j E j < 0 (5.19)

P j − Et
j W j E j > 0 (5.20)

P̃k Ãk + P̃k Ãt
k + Ẽ t

kU j Ẽk < 0 (5.21)

P̃ j − Ẽ t
k W j Ẽk > 0 (5.22)

for all j ∈ IO and for all k ∈ I c
O . Then, every piecewise continuous trajectory of

Sa tends to zero exponentially.

Note that to ensure that the local Lyapunov functions match on the cell boundaries,
the predetermined matrices F̃j and F̃k were taken as the given variables [156] in
the manner of (5.19). In addition, the elements of the matrix T are used as the
free variables. Hence, condition (5.19) allows for a number of choices of F̃j and
F̃k which might violate the matching condition, thereby incurring an unnecessarily
high cost of computation. Indeed, this can be avoided by working directly with the
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local Lyapunov functions P j and Pk as the unknown variables and by stipulating
that P j − Pk = 2 herm(Fjk K jk), ∀ j, k, where the elements K j,k are known
variables.

Remark 5.6 In general, it is difficult to deduce the cell containing x(t−τ) given that
a particular cell contains x(t) and, therefore, it is difficult to state the correct match-
ing conditions for the local Lyapunov functions. This implies that state aggregation
frequently employed in time-delay system analysis and design cannot be applied
[105].

5.3.2 Solution of PWATD Continuous Systems

A solution to the stability of piecewise-affine continuous-time systems with time
delay is provided by the following theorem:

Theorem 5.7 Consider matrices T = T t , U j = U t
j , W j = W t

j such that the
elements of U j , W j are nonnegative. Let Θ, Υ, 0 < Q, 0 < G be parameter

matrices, P j
Δ=, Ft

j T Fj , ∀ j ∈ IO , and P̃k
Δ= F̃ t

k T F̃k, ∀ k ∈ I c
O , satisfy

the following inequalities:

Ξ j =

⎡
⎢⎢⎣
Ξoj Ξnj −μΘ −μAt

ojG
• −Ξm −μΥ −μAt

d jG
• • −μG 0
• • • −μ(2I − G)

⎤
⎥⎥⎦ < 0 (5.23)

P j − Et
j W j E j > 0 (5.24)

Ξ̃ j =

⎡
⎢⎢⎣
Ξ̃oj Ξ̃nj −τΘ −τ Ãt

jG
• −Ξm −τΥ −τ Ãt

d jG
• • −τG 0
• • • −μ(2I − G)

⎤
⎥⎥⎦ < 0 (5.25)

P̃ j − Ẽ t
k W j Ẽk > 0 (5.26)

for all j ∈ IO and for all k ∈ I c
O where

Ξ̃oj = P̃ Ã j + Ãt
j P̃ +Θ +Θ t +Q

Ξ̃nj = P̃ Ãd j −Θ + Υ t ,

Ξm = −Υ − Υ t + (1− μ)Q (5.27)

Then, every piecewise continuous trajectory of Sc tends to zero exponentially
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Proof It is readily seen from (5.24) that there exists a scalar ω > 0 such that

⎡
⎢⎢⎣
Ξoj + ωI Ξnj Θ Ât

ojG
• −Ξm −Υ Ât

d jG
• • −G/μ 0
• • • −(2I − G)/μ

⎤
⎥⎥⎦ < 0 (5.28)

Therefore, for all 0 < τ ∈ � we have

Ξω =

⎡
⎢⎢⎣
Ξoj + ωI Ξnj −τΘ τ Ât

ojG
• −Ξm −τΥ τ At

d jG
• • −τG 0
• • • −τ(2I − G)

⎤
⎥⎥⎦ < 0 (5.29)

Consider the Lyapunov – Krasovskii functional (LKF):

V (t) = Vo(t)+ Va(t)+ Vm(t)

Vo(t) = xt (t)Px(t), Vm(t) =
∫ t

t−τ(t)
xt (s)Qx(s) ds

Va(t) =
∫ 0

−μ

∫ t

t+s
ẋ t (α)G ẋ(α)dα ds (5.30)

where 0 < P = P t , 0 < G = Gt , 0 < Q = Qt are weighting matrices of
appropriate dimensions. It is significant to observe that the third term accounts for
delay dependency. Additionally, it can be easily verified that V (t) is continuous in
x and t, piecewise continuously differentiable in t, and

α ||x || ≤ V (t) ≤ β ||x ||, α > 0, β > 0

Note also that

0 < xt (t) Et
j U j E j x(t), ∀ x(t) ∈ X j (5.31)

A straightforward computation gives the time derivative of V (x) along the solu-
tions of (5.17) as

V̇o(t) = 2xtP ẋ (5.32)

On using the equality

2[xtΘ + xt (t − τ(t))Υ ]
[

x(t)− x(t − τ(t))−
∫ t

t−τ(t)
ẋ(s)ds

]
= 0 (5.33)

and manipulating, we get
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V̇o(t) = 1

τ(t)

∫ t

t−τ(t)

[
2xt [P ÂΔs +Θ]x + 2xt [P ÂdΔ −Θ + Υ t ]x(t − τ)

−2xt (t − τ)Υ x(t − τ)− 2xtτ(t)Θ ẋ(s)

−2xt (t − τ)τ (t)Υ ẋ(s)+ 2xtPΓΔw(t)

]
ds (5.34)

where Θ and Υ are appropriate relaxation matrices injected to facilitate the delay-
dependence analysis

V̇a(t) =
∫ 0

−μ
[ẋ t (t)G ẋ(t)− ẋ t (t + s)G ẋ(t + s)]ds

=
∫ t

t−μ
[ẋ t (t)G ẋ(t)− ẋ t (s)G ẋ(s)]ds

= μ ẋ t (t)G ẋ(t)−
∫ t

t−τ(t)
ẋ t (s)G ẋ(s)ds

= 1

τ(t)

∫ t

t−τ(t)

[
μẋ t (t)G ẋ(t)− τ(t)ẋ t (s)G ẋ(s)

]
(5.35)

V̇m(t) = xt (t)Qx(t)− (1− τ̇ )xt (t − τ(t))Qx(t − τ(t))

≤ xt (t)Qx(t)− (1− μ)xt (t − τ(t))Qx(t − τ(t))

= 1

τ(t)

∫ t

t−τ(t)

[
xt (t)Qx(t)

−(1− μ)xt (t − τ(t))Qx(t − τ(t))

]
ds (5.36)

Finally, from (5.30), (5.31), (5.32), (5.33), (5.34), (5.35), and (5.36) with Schur
complements, we have

V̇ (x)|(5.17) ≤ 1

τ(t)

∫ t

t−τ(t)
χ t (t, s) Ξ χ(t, s) ds (5.37)

χ(t, s) = [
xt (t) xt (t − τ(t)) ẋ(s)

]
(5.38)

where Ξ corresponds to Ξω in (5.29) incorporating the inequality −G−1 ≤
−(2I − G) (see Appendix) and V̇ (x)|(5.17) defines the Lyapunov derivative along
the solutions of system (5.17). If Ξ < 0, there must be a small scalar ω > 0 such
that Ξ + diag[ω, 0, 0, 0, 0, 0] ≤ 0. Then it follows from (5.37) that

V̇ (x)|(5.17) <
1

τ(t)

∫ t

t−τ(t)
χ t (t, s)diag[−ω, 0, 0, 0, 0, 0]χ(t, s) ds

= −ω ||x ||2 (5.39)

This establishes the desired internal asymptotic stability. �
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Remark 5.8 It is obvious that Theorem 5.7 is a natural generalization of the results
of [156]. In fact, by setting τ ≡ 0, Ad j ≡ 0, Q ≡ 0, G ≡ 0, we can reproduce
in Theorem 5.7; we readily obtain the results of [156]. We would like to assert that
by choosing a different LKF, we expect to arrive at a different LMI-based stability
condition. We leave this to the reader to verify this point. For example, a relevant
LMI-based stability condition based on the small-gain theorem can be derived by
setting Q = I . More importantly, a lower bound on the maximum delay τ ∗ for
which the system Sc is stable can be obtained by checking whether the conditions
laid down by Theorem 5.7 are satisfied as τ increases, starting with τ ≡ 0: the least
value τ ∗ for which the conditions laid down by Theorem 5.7 are not satisfied is a
conservative estimate of the maximum delay τ under which the system Sc is stable.
Observe that by setting μ ≡ 0, we obtain a solution for the constant-delay case.

5.3.3 Illustrative Example B

Consider the following piecewise linear time-delay system of the type (5.17) with
the cell decomposition expressed by E j x ≥ 0, with

E1 =
[−1 1
−1 −1

]
, E3 =

[
1 −1
1 1

]

E2 =
[−1 1

1 1

]
, E4 =

[
1 −1
−1 −1

]

and the system matrices are expressed by

A1 =
[−0.1 0

0 −0.1

]
, A3 =

[
0.1 0
0 0.1

]

A2 =
[−0.1 0

0 −0.1

]
, A4 =

[−0.1 0
0 −0.1

]

Ad1 =
[

0 4
−2 0

]
, Ad3 =

[
0 4
−2 0

]

Ad2 =
[

0 2
−3 0

]
, Ad4 =

[
0 2
−3 0

]

By applying Theorem 5.7, the estimated delay margin τ ∗ = 0.0156.

5.3.4 Discrete-Time Systems

In this section, we examine discrete-time piecewise-affine (PWA) systems and pro-
vide a solution method for its stability. Under mild assumptions, discrete-time PWA
systems are equivalent to interconnections of linear systems and finite automata
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[355] to complementarity systems [129] and also hybrid systems in the mixed logic
dynamical (MLD) form [13]. An important feature of a PWA model is that the state-
update map can be discontinuous along the boundary of the regions. For instance,
when considering PWA systems stemming from hybrid systems in the MLD form,
discontinuities can arise from the representation of logic conditions.

Concerning the stability analysis of PWA systems, various algorithms with
different degrees of conservativeness were presented in [293]. Similar to [156],
where a particular class of continuous-time PWA system was considered (see also
[331, 333, 342, 353], such procedures exploit piecewise quadratic (PWQ) Lya-
punov functions that can be computed as the solution of a set of LMIs. For the
sake of completeness, the main stability test of [293] is reported in a suitable
form.

A class of linear discrete-time piecewise-affine (PWA) systems is defined by the
state-space model:

x(k + 1) = A j x(k)+ B j u(k)+ a j ∀
[

x(k)
u(k)

]
∈ X j (5.40)

In the same manner, a class of linear discrete-time piecewise-affine time-delay
(PWATD) systems is defined by the state-space model:

x(k + 1) = A j x(k)+ Ad j x(k − d(k))+ B j u(k)+ a j

∀
[

x(k)
u(k)

]
∈ X j (5.41)

Introducing the following notations

Ã j =
[

A j a j

0 1

]
, B̃ j =

[
B j

0

]
, Ãd j =

[
Ad j 0
0 0

]

Then with x̃(k) = [xt (k) 1]t we rewrite (5.40) in the form

x̃(k + 1) = Ã j x̃(k)+ B̃ j u(k) ∀
[

x(k)
u(k)

]
∈ X j (5.42)

and similarly (5.41) be rewritten into the compact form

x̃(k + 1) = Ãx̃(k)+ Ãd j x̃(k − d(k))+ B̃ j u(k)

∀
[

x(k)
u(k)

]
∈ X j (5.43)

where x(k) ∈ �n is the state and u(k) ∈ �m is the control input. The set X ⊂ �n+m

of every possible vector [xt (k) ut (k)]t is either �n+m or a polyhedron containing
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the original, {X}sj=1 is a polyhedral partition of X (in the sense that each set X j is
a convex not necessarily closed polyhedron such that X j ∩ X j = �, ∀ j �= m,

∪s
j=1 = X), and a j ∈ �n are constant vectors. Much like the continuous case, we

refer to each X j as a cell. The delay factor d(k) satisfies dm ≤ d(k) ≤ dM where
dm, dM are known delay bounds.

Moreover, in order to simplify the exposition, we assume that our cells are poly-
hedral defined by matrices F x

j , Fu
j , f x

j , and f u
j as

X j
Δ=

{
[xt (k) ut (k)]t : F x

j x ≥ f x
j and Fu

j u ≥ f u
j

}
(5.44)

Additionally, the following notations are introduced

X̄ j
Δ=

{
x : F x

j x ≥ f x
j

}
,

S j
Δ=

{
j : ∃ x, u wi th x ∈ X̄ j , [xt (k) ut (k)]t ∈ X j

}
(5.45)

Note that S j is the set of all indices j such that X j is a cell containing a vector
[xt (k) ut (k)]t for which the condition x ∈ X̄ j is satisfied. We denote with I =
{1, ..., s} the set of indices of the cells X j whereas the symbol J = {1, ..., t} will
be used to denote the set of indices of the cells X j . It is important to observe that

t⋂
j=1

S j = I (5.46)

Furthermore, if cells X j have the structure pointed out in (5.44) then the sets
S j are disjoint whereas if cells X j have a more complicated structure (for instance,
when mixed state-input constraints are used to define each cell X j ) then the sets S j

could be overlapping. In the latter case the results could become more conservative.

5.3.5 Stability of PWA Discrete Systems

When we focus on the stability of the origin, we consider autonomous PWA systems

x̃(k + 1) = Ã j x̃(k) ∀
[

x(k)
u(k)

]
∈ X j (5.47)

In [293] the stability of the origin of discrete-time PWA systems was characterized
by using piecewise quadratic (PWQ) Lyapunov functions. In the following theorem
the main result of [293] is presented for the case a j ≡ 0, ∀ ∈ I:
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Theorem 5.9 Consider the system (5.47). If there exist matrices 0 < P t
j = P j ,

∀ j ∈ I, such that the positive-definite function V (x(k)) = xtP j x, x ∈ X j ,
satisfies V (x(k + 1)) − V (x(k)) < 0, then the origin of the PWA system (5.47) is
exponentially stable and limk→∞ ||x(k)|| = 0 for all system trajectories fulfilling
x(k) ∈ X, ∀k ∈ N+.

The Lyapunov function appearing in Theorem 5.9 can be computed by solving the
LMIs

At
jPm A j − P j < 0, ∀( j,m) ∈ S (5.48)

Pm = P t
m > 0, ∀(m) ∈ I (5.49)

where

S Δ=
{
( j,m) : j,m ∈ I and ∃ k ∈ No, ∃ x(k), x(k + 1) ∈ X

such that x(k) ∈ X j and x(k + 1) ∈ Xm

}

In other words, the set S contains all the ordered pairs of indices denoting the
possible switches from cell j to cell m and it can be computed via reachability
analysis for MLD systems [14]. Then, the inequalities (5.48) take into account all
the admissible switches between different regions and guarantee that the Lyapunov
function is decreasing along all possible state trajectories. When there exist matrices
Pm such that the LMIs (5.48) and (5.49) are satisfied, the PWA system is termed
PWQ-stable. We refer the interested reader to [293] for further details.

5.3.6 Stability of PWATD Discrete Systems

Extending on the previous section, we consider a class of piecewise-affine systems
with time delay (PWATD):

x̃(k + 1) = Ã j x̃(k)+ Ad j x̃(k − d(k))+ B̃ j u(k) ∀
[

x(k)
u(k)

]
∈ X j (5.50)

The delay d(k) is unknown but restricted within the bounded range d∗j ≤ d(k) ≤ d+j
where the limiting scalars d∗j , d+j are known. Let β j =

(
d+j − d∗j + 1

)
represent-

ing the number of samples within the delay range d∗j ≤ d(k) ≤ d+j . For stability
purposes, we set u(k) ≡ 0 and introduce the following Lyapunov–Krasovskii func-
tional (LKF):
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V (x(k)) = xt (k)Pm x(k)+
k−1∑

s=k−d(k)

xt (s)Q j x(s)

+
1−d∗∑

s=2−d+

k−1∑
s=k+s−1

xt (s)Q j x(s), x ∈ X j (5.51)

where 0 < P t
j = P j , 0 < Qt

j = Q j are weighting matrices of appropriate dimen-
sions. In the sequel, we consider the switching profile with 0 < P t

j = P j , 0 <

Qt
j = Q j at the kth instant and 0 < P t

m = Pm at the (k + 1)th instant. We establish
the following stability result:

Theorem 5.10 Given the delay sample number β j , system (5.50) with u ≡ 0 is
delay-dependent asymptotically stable if there exist matrices 0 < P t

j = P j , 0 <

Qt
j = Q j , ∀ j ∈ I 0 < Y t

j = Y j ∈ �n j×n j , 0 < W t
j = W j ∈ �n j×n j such that

the LKF V (x(k)) in (5.51) satisfies

⎡
⎣
−P j + β jQ j 0 At

jPm Ad j

• −Q j At
d j

• • −Pm

⎤
⎦ < 0 (5.52)

0 < Pm = P t
m, ∀(m) ∈ I (5.53)

Then the origin of the PWA system (5.47) is exponentially stable and
limk→∞ ||x(k)|| = 0 for all system trajectories fulfilling x(k) ∈ X, ∀k ∈ N+

Proof A straightforward computation gives the first difference of ΔVj (k) =
Vj (k + 1)− Vj (k) along the solutions of (5.50) with u j (k) ≡ 0 as

ΔV (x(k)) = [A j x̃(k)+ Ad j x̃(k − d(k))]tPm[A j x̃(k)+ Ad j x̃(k − d(k))]
−x̃ t (k)P j x̃(k)+ x̃ t (k)Q j x̃(k)− x̃ t (k − d(k))Q j x̃(k − d(k))

+
k−1∑

s=k+1−d j (k+1)

x̃ t (s)Q j x̃(s)−
k−1∑

s=k+1−d j (k)

x̃ t (s)Q j x̃(s)

+(d+ − d∗)x̃ t (k)Q j x̃(k)−
k−d∗j∑

s=k+1−d+j
) x̃ t (s)Q j x̃(s) (5.54)
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Since

k−1∑
s=k+1−d(k+1)

x̃ t (s)Q j x̃(s) =
k−1∑

s=k+1−d∗j

x̃ t (s)Q j x̃(s)

+
k−d∗∑

s=k+1−d(k+1)

x̃ t (s)Q j x̃(s)

≤
k−1∑

s=k+1−d(k)

x̃ t (s)Q j x̃(s)+
k−d∗∑

s=k+1−d+
x̃ t (s)Q j x̃(s) (5.55)

Then using (5.55) in (5.54) and manipulating, we reach

ΔV (x(k)) ≤ [A j x̃(k)+ Ad j x̃(k − d(k))]tPm[A j x̃(k)+ Ad j x̃(k − d(k))]
+ x̃ t (k)[(d+ − d∗ + 1)Q j − P j ]x̃(k)− x̃ t (k − d(k))Q j x̃(k − d(k))

= ξ t (k) Ξ j ξ(k) (5.56)

where

Ξ j =
[

At
jPm A j + β jQ j − P j At

jPm Ad j

• At
d jPm Ad j −Q j

]

ξ j (k) =
[

x̃ t
j (k) x̃ t

j (k − d(k))
]t

(5.57)

The sufficient condition of stability ΔVj k < 0 implies that Ξ j < 0. By Schur
complements, Ξ j can be brought to the LMI (5.52) which concludes the proof. �

Remark 5.11 The conservativeness of the LMI’s conditions for stability analysis
can be reduced by exploiting the so-called S-procedure [409], in order to avoid
imposing xtP j x > 0 for [xt ut ]t ∈ Xm, j �= m, see [293]. This modification
was proposed in [156] for continuous-time PWA systems and can be easily general-
ized to the discrete-time case. We point out that similar modifications can be applied
to all the analysis LMIs we derive in the following. It is important to highlight that
with respect to the continuous-time approach of [156] in our discrete-time frame-
work there is no need to guarantee the continuity of the Lyapunov function over
the whole state space. This fact can determine a reduced degree of conservativeness
of the results that we are going to present with respect to those presented in [156].
Finally, following the lead given in [156], discrete-time performance analysis results
with a notably reduced degree of conservativeness could be performed. This will be
demonstrated in the following chapters.
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5.3.7 Synthesis of a Stabilizing State Feedback

In the following, we consider a piecewise linear state feedback with the structure

u(k) = [K j 0] x̃(k)

= K̃ j x̃(k), ∀
[

x(k)
u(k)

]
∈ X j (5.58)

By applying the controller (5.58) to the system (5.42) we achieve the closed-loop
dynamic system

x̃(k + 1) = A j x̃(k), ∀
[

x(k)
u(k)

]
∈ X j

A j = Ã j + B̃ j K̃ j =
[

A j + B j K j a j

0 1

]
(5.59)

It should be noted that the evolution of closed-loop system (5.59) depends on the
hidden variable u(k) since it influences the index j of the current cell X j .

As customary for constrained systems, we assume that the state trajectories
[xt (k)ut (k)]t generated by the control law (5.58) satisfy [xt (k)ut (k)]t ∈ X,∀k I+.
We recall that in [293] the stability of the origin of PWA systems was characterized
by using piecewise quadratic (PWQ) Lyapunov functions.

When designing the unknown controller gain K j appearing in the inequalities
(5.48), the set of all possible switches is generally not known in advance, and it
could be necessary to consider all the pairs of indices in Sall = I × I instead of S.
Moreover, we note that the design of a controller of type (5.58) could be a very hard
task because, at each time instant, the vector u(k) has to be calculated by means of
a control gain K j̄ whose index j̄ is found on the basis of the admissibility condition

[
x(k)
u(k)

]
∈ X j̄ (5.60)

This implies that, in general, it is not possible to calculate u(k) since the index
j̄ for which the condition (5.60) is satisfied is very hard to be known in advance.
Therefore, the problem under consideration is turned into one of designing a con-
troller with the following structure:

u(k) = [Km 0] x̃(k)

= K̃m x̃(k), x(k) ∈ X̄ j (5.61)

Thus we consider a different control gain not for all the cells X j with j I but
for all cells X̄ j with m M. Despite this restricted controller structure, in order to
design a control law of type (5.61) one must exploit a different Lyapunov matrix P j

for each X j with j I to reduce the conservativeness.
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In the sequel, we consider the problem of finding a state feedback control law
of type (5.61) for the system (5.42). For this purpose, we start from the analysis
condition (5.48) rewritten for the closed-loop system

x̃(k + 1) = Ã jm x̃(k) ∀
[

x(k)
u(k)

]
∈ X j , x(k) ∈ X̄ j

Ã jm = Ã j + B̃ j K̃m (5.62)

More precisely, equation (5.48) rewritten for the closed-loop system (5.62) assumes
the form

Ãt
jmPsÃ jm − P j < 0, ∀m ∈M, ∀ j ∈ X j , ∀ (s, j) ∈ Sall (5.63)

P j = P t
j > 0, ∀ j ∈ I (5.64)

Inequalities (5.64) and (5.64) represent a closed-loop stability condition. By defin-
ing W j = P−1

j , we rewrite (5.63) in the form

[−W j W j Ãt
jm

• −Ws

]
< 0, ∀m ∈M, ∀ j ∈ X j , ∀ (s, j) ∈ Sall (5.65)

Applying a convex analysis procedure, we arrive at the following result:

Theorem 5.12 Consider the discrete PWA system (5.40). There exists a state-
feedback control law of the type (5.58) guaranteeing piecewise quadratic PWQ sta-
bility if there exist matrices 0 < W t

j = W j , j ∈ I, and matrices Gm, Ym, ∀m ∈
M, such that ∀m ∈M, ∀ j ∈ X j , ∀ (s, j) ∈ Sall

[
W j − Gm − Gt

m Gt
m At

j + Y t
m Bt

j
• −Ws

]
< 0, (5.66)

The feedback gains Km are given by Km = Ym, G−1
m

5.3.8 Illustrative Example C

Consider the following system [13]

x(k + 1) = 0.8

[
cos(σ (k)) − sin(σ (k))
sin(σ (k)) cos(σ (k))

]
x(k)+

[
0
1

]
u(k),

y(k) = [
1 0

]
x(k), u(k) ∈ [−1, 1],

σ (k) =
{

π/3 if [1 0]x(k) ≥ 0
−π/3 if [1 0]x(k) < 0



5.3 Piecewise-Affine Systems 129

Using four additional auxiliary variables, the foregoing model was converted to
PWA system with six cells X j and two cells X̄ j . Observe that the output y(k) coin-
cides with the first state x1(k), which in turn represents the variables used to define
the switching structure of the system. By applying Theorem 5.12, the closed-loop
simulation is displayed in Fig. 5.1 (closed-loop state simulation), Fig. 5.2 (control
input), and Fig. 5.3 (switching history) (Fig. 5.4).
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Fig. 5.3 Switching pattern

Fig. 5.4 Phase plane of example C

5.4 Notes and References

At the end of our initial tour into the fascinating field of switched time-delay sys-
tems, we dwelled on two distinct regions. The first region is concerned with the
characterization of two-level models whereby the first level is subsumed of time-
delay systems and at the second level there is a coordinator sending our switched
signals to harmonize their motion. The second region deals with piecewise-affine
continuous-time and discrete-time systems. For further detailed views and modeling
directions, the reader is advised to consult [26, 40, 41, 47, 95, 131, 176].



Part III
Switched Stabilization and Control



Chapter 6
Three-Term Stabilization Schemes

It becomes increasingly evident that delays are the main causes of instability
and poor performance in dynamical systems and frequently encountered in var-
ious engineering and physical systems. Stability analysis and control design of
time-delay systems have attracted the attention of numerous investigators, see
[24, 221, 237, 338] and their references. Some recent views pertaining to the prob-
lems of robust stability analysis and robust stabilization of uncertain time-delay
systems have been reported, see [65, 181, 188, 238, 257] and their references.

In Chapter 4, it turns out that the choice of an appropriate Lyapunov–Krasovskii
functional (LKF) and the introduction of additional parameters are crucial for devel-
oping sufficient stability conditions based on linear matrix inequalities (LMIs).
General LKF forms might lead to a complicated system of inequalities [265] and
therefore approaches to construct new and effective LKF forms are needed. In this
regard, stability criteria for linear state-delay systems can be broadly classified into
two categories: delay independent, which are applicable to delays of arbitrary size
[214], and delay dependent, which include information on the size of the delay, see
[66] and their references. Several model transformation methods and parameteriza-
tion schemes have been derived in the literature to derive delay-dependent stability
conditions, see [22, 65, 66, 181, 188, 198, 218, 238, 257, 301, 373, 392] and their
references.

From the previous chapters, we learned that switched systems are a class of
dynamical systems formed by several subsystems (continuous or discrete time) and
a rule that governs the switching among these subsystems. Recently, the basic prob-
lems of stability and control have received increasing interests [28, 41, 42, 47, 174,
193, 292, 424, 427] and the references cited therein. Among the large variety of
problems investigated in the literature is the stability analysis and feedback control
synthesis of switched systems under arbitrary switching sequences. Recent reported
results are found in [56] using multiple Lyapunov functions for nonlinear systems,
in [42] employing switched Lyapunov functions, and in [426] utilizing dwell-time
properties. Of particular interest in this chapter is the class of STD systems which
have widespread engineering applications, including network control systems [170]
and power systems [291]. We cover both continuous-time and discrete-time systems
with particular emphasis on three-term stabilization schemes. In the continuous-time
case, these schemes correspond to proportional-integral-derivative (PID) structure

M.S. Mahmoud, Switched Time-Delay Systems,
DOI 10.1007/978-1-4419-6394-9_6, C© Springer Science+Business Media, LLC 2010
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whereas in the discrete-time case these schemes are represented by proportional-
summation-difference (PSD) structure.

6.1 Continuous-Time Systems

Among the feedback design methods, state-derivative feedback methods have been
used to design controllers for several system applications, see [1, 6, 53, 337] and
their references. The interest in these methods stems from the fact that it is easier in
several practical applications to obtain state-derivative signals than the state signals.
These include, but not limited to, mechanical systems [1], car suspension systems
[337], and bridge cable vibration [53]. In these applications, the effect of the delay
elements was not taken into during the modeling process despite the presence of
several physical systems possessing delay phenomena, such as water quality in
streams [179], power systems [386], CSTR with recycling [211], combustion in
motor chambers [442], to name a few.

In this section, we developed a three-term feedback stabilization of linear STD
systems. We focus on the problems of delay-dependent H∞ stabilization using
proportional-integral-derivative (PID) under arbitrary switching and for different
time-delay patterns. Several special cases are derived for nominal and polytopic
models. New parametrized LMI characterization for PID feedback stabilization are
established.

6.1.1 Problem Statement

We consider the following class of linear switched time-delay (STD) systems:

ẋ(t) = Aσ(t)x(t)+ Adσ(t)x(t − τ)+ Bσ(t)u(t)+ Γσ(t)w(t), x(φ) = ω(φ)

z(t) = Gσ(t)x(t)+Φσ(t)w(t), φ ∈ [−τ, 0] (6.1)

where x(t) ∈ �n is the state vector, u(t) ∈ �p is the control input, w(t) ∈ �q

is the disturbance input, which belongs to L2[0,∞), z(t) ∈ �q is the observed
output, σ(t) : [0,∞) −→ S = {1, 2, . . . , s} is the switching signal and τ > 0
is a time-delay factor. The initial condition ω(φ) is a differentiable vector-valued
function on [−τ, 0]. The matrices Aσ ∈ �n×n , Bσ ∈ �n×p, Gσ ∈ �q×n, Fσ ∈
�q×p, Adσ ∈ �n×n, and Γσ ∈ �n×q , Φσ ∈ �q×q are real and known constant
matrices.

It should be emphasized from the theory of delay differential equations [108,
109] that the existence of the solutions of a nonswitched linear delay system is
guaranteed by a continuous and piecewise differentiable initial condition. This is
carried over to linear switched-delay systems since the state does not experience
any jump at the switching instants.

Define the indication function
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ξ(t) = [
ξ1(t), .... ξs(t)

]t
, ξi (t) =

{
1, σ (t) = i
0, otherwise

Then, the STD system (6.1) can be written as

ẋ(t) =
s∑

i=1

ξi (t)Ai x(t)+
s∑

i=1

ξi (t)Adi x(t − τ)+
s∑

i=1

ξi (t)Bi u(t)

+
s∑

i=1

ξi (t)Γiw(t)

z(t) =
s∑

i=1

ξi (t)Gi x(t)+
s∑

i=1

ξi (t)Φiw(t) (6.2)

Of prime interest in this section is to find constant matrix gains Koi ∈
�p×n, Ksi ∈ �p×n, ∀i ∈ S such that the following conditions hold:

1. Matrices
(
I +∑s

i=1 ξi (t)Bi Koi
)
, ∀i ∈ S have full rank.

2. Using the proportional-integral-derivative (PID) feedback control

u(t) =
s∑

i=1

ξi (t)Ksi x(t) −
s∑

i=1

ξi (t)Koi ẋ(t)

+
s∑

i=1

ξi (t)Kai

∫ t

t−�
x(s)ds (6.3)

the closed-loop system (6.2) under control (6.3) is delay-dependent asymptotically
stable for possible patterns of the delay τ . We recall that condition (1) above is
meant to ensure the solvability of the problem. By similarity to the conventional
control methods, here the role of the proportional gain Ksi , i ∈ IN is mainly to
ensure that the system is internally stable whereas the role Koi , Kai , i ∈ IN is to
meet the control objectives.

Applying control (6.3) to system (6.2) yields the closed-loop system

(
I +

s∑
i=1

ξi (t)Bi Koi

)
ẋ(t) =

s∑
i=1

ξi (t)(Ai − Bi Ksi )x(t)+
s∑

i=1

ξi (t)Adi x(t − τ)

+
s∑

i=1

ξi (t)Bi Kai

∫ t

t−�
x(s)ds +

s∑
i=1

ξi (t)Γiw(t)

=
s∑

i=1

ξi (t)(Asi x(t)+
s∑

i=1

ξi (t)Adi x(t − τ)

+
s∑

i=1

ξi (t)Bi Kai

∫ t

t−�
x(s)ds
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+
s∑

i=1

ξi (t)Γiw(t), Asi = Ai + Bi Ksi

z(t) =
s∑

i=1

ξi (t)Gi x(t)+
s∑

i=1

ξi (t)Φiw(t) (6.4)

When the matrices
{(

I +∑s
i=1 ξi (t)Bi Koi

)}s
i=1 have full rank, then the closed-

loop system (6.4) has a well-defined structure in the form

ẋ(t) =
(

I +
s∑

i=1

ξi (t)Bi Koi

)−1 { s∑
i=1

ξi (t)(Asi x(t)+
s∑

i=1

ξi (t)Adi x(t − τ)

+
s∑

i=1

ξi (t)Bi Kai

∫ t

t−�
x(s)ds +

s∑
i=1

ξi (t)Γiw(t)

}
,

z(t) =
s∑

i=1

ξi (t)Gi x(t)+
s∑

i=1

ξi (t)Φiw(t) (6.5)

which describe an integro-delay system. In the sequel, we seek to determine the
gains
Koi , K pi , Ksi , i ∈ S for the two cases:

Case 1: τ is a continuous function satisfying for all t ≥ 0

0 ≤ τ(t) ≤ �

Case 2: The time-delay τ is a differentiable time-varying function satisfying

0 < τ(t) ≤ �, τ̇ (t) ≤ μ (6.6)

where the bounds � and μ are known.

6.1.2 Model Transformation

To deal with the integro-delay system (6.5), we introduce

θ(t) =
s∑

i=1

ξi (t)
∫ t

t−�
x(s)ds (6.7)
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such that

θ̇ (t) =
s∑

i=1

ξi (t)x(t)−
s∑

i=1

ξi (t)x(t − �) (6.8)

Now, append (6.8) to system (6.5) and define

ζ(t)
Δ= [

xt (t) θ t (t)
]t
, Fi =

(
I +

s∑
i=1

ξi (t)Bi Koi

)−1

we get the augmented system

ζ̇ (t) =
s∑

i=1

ξi (t)Api ζ(t)+
s∑

i=1

ξi (t)Aci ζ(t − �)

+
s∑

i=1

ξi (t)Adi ζ(t − τ)+
s∑

i=1

ξi (t)Γ̂piw(t) (6.9)

z(t) = [∑s
i=1 ξi (t)Goi 0

] [ x(t)
θ(t)

]

+ [∑s
i=1 ξi (t)Gdi 0

] [ x(t − τ)

θ(t − τ)

]
+

s∑
i=1

ξi (t)Φiw(t)

=
s∑

i=1

ξi (t)Ĝoiζ(t)+
s∑

i=1

ξi (t)Ĝdiζ(t − τ)+
s∑

i=1

ξi (t)Φiw(t) (6.10)

where

s∑
i=1

ξi (t)Api =
[

Fi
∑s

i=1 ξi (t)Asi Fi
∑s

i=1 ξi (t)Bi Kai∑s
i=1 ξi (t)I 0

]

s∑
i=1

ξi (t)Aci =
[

0 0
−∑s

i=1 ξi (t)I 0

]
,

s∑
i=1

ξi (t)Adi =
[

Fi
∑s

i=1 ξi (t)Adi 0
0 0

]

s∑
i=1

ξi (t)Γ̂pi =
⎡
⎣ Fi

∑s
i=1 ξi (t)Γi

0

⎤
⎦w(t) (6.11)

which is essentially now a two-time-delay system.
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6.1.3 H∞ Stabilization: Unknown Continuous Delay

We consider that the time-delay factor τ is an unknown constant, corresponding to
Case 1). The following theorem establishes a delay-independent LMI-based condi-
tion for proportional-integral-derivative (PID) feedback stabilization with H∞ per-
formance bound:

Theorem 6.1 Consider the time-delay pattern of Case 1. System (6.1) under PID
feedback control

u(t) =
s∑

i=1

ξi (t)Ksi x(t)−
s∑

i=1

ξi (t)Koi ẋ(t)−
s∑

i=1

ξi (t)Bi Kai

∫ t

t−�
x(s)ds

is delay-independent asymptotically stabilizable with H∞ performance bound γ if
there exist matrices

{Xxi }si=1, {Yi }si=1, F , Zx , Qx , {Wi }si=1, {Ri }si=1, ∀(i, s) ∈ S

such that the following LMI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Πai Πcs Πei Γ̄i + (Xxi + BiYi )Ḡt
oi (Xxi + BiYi )Ĝt

oi Π f i Πgi

• −Πds 0 Ḡt
di Ĝt

di 0 0
• • −Πds 0 0 0 0
• • • −γ 2 I +Φ t

i Φi 0 0 0
• • • • −I 0 0
• • • • • −Xxi 0
• • • • • • −Xxi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (6.12)

has a feasible solution, where

Πai =
[

AiXxi +Xxi At
i + AiY t

i Bt
i + BiYi At

i + BiWi +W t
i Bt

i I + BiRi +Rt
i Bt

i

−F + 2I

]

Πcs =
[ [

AdiZxs 0
0 0

]
,

[
0 0
0 Qxs

] ]

Πds = diag

[ [
Zxs 0

0 I

]
,

[
Qxs 0

0 I

] ]
, Γ̄i =

[
Γi
0

]

Πei = [Xxi + BiYi Xxi + BiYi ]
Ḡt

oi =
[

Gt
oiΦi
0

]
, Ḡt

di =
[

Gt
diΦi
0

]
, Ĝt

oi =
[

Gt
oi

0

]
, Ĝt

di =
[

Gt
di

0

]

Π f i =
[

Bi (Wi + Yi )
0

]
, Πgi =

[
Bi (Ri + Yi )

0

]
(6.13)
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Moreover, the feedback gains are given by

Koi = YiX−1
xi , Ksi =WiX−1

xi , Kai = RiX−1
xi

Proof First, we establish the asymptotic stability of the closed-loop system (6.9)
with w(.) ≡ 0

ζ̇ (t) =
s∑

i=1

ξi (t)Api ζ(t)

+
s∑

i=1

ξi (t)Aci ζ(t − �)+
s∑

i=1

ξi (t)Adi ζ(t − τ) (6.14)

Define the selective Lyapunov–Krasovskii functional (LKF):

V1(t) = ζ t (t)

( s∑
i=1

ξi (t)Pi

)
ζ(t)+

∫ t

t−τ
ζ t (s)Z−1ζ(s)ds

+
∫ t

t−�
ζ t (s)Q−1ζ(s)ds

Pi =
[
Pxi 0
0 I

]
, Z =

[
Zx 0
0 I

]
, Q =

[
Qx 0
0 I

]
, i ∈ S (6.15)

We note that the form of matrices Pi , Q, Z is not restrictive since any non-unity
value in the lower rows would not affect the subsequent analysis. Differentiating
V1(t) along the solutions of (6.14), we get

V̇1(t)|(6.9) = ζ t (t)

( s∑
i=1

ξi (t)PiAsi +At
siPi

)
ζ(t)

+ζ t (t)ξi (t)Z−1ζ(t)+ ζ t (t)ξi (t)Q−1ζ(t)

+2ζ t (t)

( s∑
i=1

ξi (t)PiAdi

)
ζ(t − τ)+ 2ζ t (t)

( s∑
i=1

ξi (t)PiAci

)
ζ(t − �)

−ζ t (t − τ)ξi (t)Z−1ζ(t − τ)− ζ t (t − �)ξi (t)Q−1ζ(t − �) (6.16)

It follows that for any nonzero vector x(t) and the particular case ξi (t) = 1 and
ξm �=i (t) = 0. Therefore, with some algebraic manipulations, we have from (6.16):

V̇1(t)|(6.9) = ηt (t) Ωis η(t),

η(t) = [
ζ t (t) ζ t (t − τ) ζ t (t − �)

]t

Ωis =
⎡
⎣PiAsi +At

siPi + Z−1 +Q−1 PsAdi PsAci

• −Z−1 0
• • −Q−1

⎤
⎦ (6.17)
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That V̇1(t)|(6.9) < 0 it implies that Ωis < 0, ∀ (i, s) ∈ S. Now, let

T1 =
[
(I + Bi Koi )P−1

xi 0
0 I

]
, T2 =

[
I 0
0 I

]

P−1
i = Xi =

[
Xxi 0
0 I

]
(6.18)

Applying the congruent transformation

diag
[

T1 T2 T2
]

to Ωis with Yi = KoiXxi , Wi = KsiXxi , Ri = KaiXxi and making use of the
algebraic inequalities ∀ i ∈ S

(
WiX−1

xi Y t
i + YiX−1

xi W t
i

) ≤ (
Wi + Yi

)
X−1

xi

(
W t

i + Y t
i

)
,(

RiX−1
xi Y t

i + YiX−1
xi Rt

i

) ≤ (
Ri + Yi

)
X−1

xi

(
Rt

i + Y t
i

)
(6.19)

it follows from (6.12) by the Schur complements formula that the asymptotic stabil-
ity of the closed-loop system (6.5) is established.

Consider the performance measure

J =
∫ ∞

0

(
N∑

i=1

ξi (t)

[
zt (s)z(s)− γ 2wt (s)w(s)

])
ds

For any w(t) ∈ L2(0,∞) �= 0 and zero initial condition x(0) = 0, hence V (0) = 0,
we have

J =
∫ ∞

0

(
N∑

i=1

ξi (t)

[
zt (s)z(s)− γ 2wt (s)w(s) + V̇1(t)|(6.9)

])
ds

− V̇1(t)|(6.9)

≤
∫ ∞

0

(
N∑

i=1

ξi (t)

[
zt (s)z(s)− γ 2wt (s)w(s) + V̇1(t)|(6.9)

])
ds

where V̇1(t)|(6.9) defines the Lyapunov derivative along the solutions of system
(6.9). Under arbitrary switching, we get
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zt (s)z(s)− γ 2wt (s)w(s) + V̇1(s)|(6.9) = η̄t (s)Ξis η̄(s) =

Ξis =

⎡
⎢⎢⎢⎢⎣

PiAsi +At
siPi+

Z−1 +Q−1 + Ĝt
oi Ĝoi

PsAdi + Ĝt
oi Ĝdi PsAci Pi Γ̄i + Ḡt

oi

• −Z−1 + Ĝt
di Ĝdi 0 Ḡt

di• • −Q−1 0
• • • −γ 2 I +Φ t

i Φi

⎤
⎥⎥⎥⎥⎦

η̄(s) = [
xt (s) xt (s − τ) xt (s − �) wt (s)

]t (6.20)

Using (6.18), we apply the congruent transformation

diag
[

T1 T2 T2 T2
]
, P−1

i := Xi =
[
Xxi 0
0 I

]

to Ξis with

Yi = KoiXxi , Wi = KsiXxi , Ri = KaiXxi

and making use of the algebraic inequalities (6.19), it readily follows from LMI
(6.12) and Schur complement operations that

zt (s)z(s)− γ 2wt (s)w(s) + V̇1(s)|(6.9) < 0

for arbitrary s ∈ [t,∞), which implies for any w(t) ∈ L2(0,∞) �= 0 that J < 0
leading to ||z(t)||2 < γ ||w(t)||2 and the proof is completed. �
Remark 6.2 The optimal delay-independent asymptotically stabilizable controller
can be determined by solving the following convex minimization problem over
LMIs:

Minimize γ

wr t Xxi > 0, Yi , Wi , Zx > 0, Qx > 0, γ > 0, ∀(i, s) ∈ S

subject to L M I (6.12)

Remark 6.3 A connection to Theorem 6.1 for the no-switching case i = 1 can
be found in [216] (pp. 88–95) when examining linear uncertain systems with input
delays. However, the analytical treatment and the final results here are basically
different.

Remark 6.4 Had we used only a state-feedback stabilization

u(t) =
s∑

i=1

ξi (t)Ksi x(t)

we would have obtained the following result:



142 6 Three-Term Stabilization Schemes

Theorem 6.5 Consider the time-delay pattern of Case 1. System (6.1) under state
feedback u(t) = ∑s

i=1 ξi (t)Ksi x(t) is delay-independent asymptotically stabiliz-
able with H∞ performance bound γ if there exist matrices

{Xi }si=1, {Yi }si=1, Zx , {Wi }si=1, ∀(i, s) ∈ S

such that the following LMI

⎡
⎢⎢⎢⎢⎣

Π̄ai Πcs Π̄ei Γ̄i + (Xxi + BiYi )Ḡt
oi (Xxi + BiYi )Ĝt

oi
• −Πds 0 Ḡt

di Ĝt
di• • −Πds 0 0

• • • −γ 2 I +Φ t
i Φi 0

• • • • −I

⎤
⎥⎥⎥⎥⎦ < 0 (6.21)

has a feasible solution, where

Π̄ai =
[

AiXxi + Xxi At
i + BiWi +W t

i Bt
i 0

I 0

]
, Π̄ei = [Xxi Xxi ]

Πcs =
[ [

AdiZx 0
0 0

]
,

[
0 0
0 Qx

] ]
,

Πds = diag

[ [
Zx 0
0 I

]
,

[
Qx 0
0 I

] ]
(6.22)

Moreover, the feedback gain is given by

Ksi =WiX−1
i

Proof The proof of this theorem can be readily obtained by parallel development to
Theorem 6.1 with Yi ≡ 0, Ri ≡ 0. �

Remark 6.6 By setting Adi ≡ 0, ∀i ∈ S, we obtain the linear controlled switched
delayless system

ẋ(t) =
(

I +
s∑

i=1

ξi (t)Bi Koi

)−1 { s∑
i=1

ξi (t)(Asi x(t)+
s∑

i=1

ξi (t)Bi Kai

∫ t

t−�
x(s)ds

+
s∑

i=1

ξi (t)Γiw(t)

}

z(t) =
s∑

i=1

ξi (t)Gi x(t)+
s∑

i=1

ξi (t)Φiw(t) (6.23)

for which Theorem 6.1 specializes to the following important result
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Corollary 6.7 Consider the time-delay pattern of Case 1. System (6.23) under PID
feedback control

u(t) =
s∑

i=1

ξi (t)Ksi x(t)−
s∑

i=1

ξi (t)Koi ẋ(t)−
s∑

i=1

ξi (t)Bi Kai

∫ t

t−�
x(s)ds

is delay-independent asymptotically stabilizable with H∞ performance bound γ if
there exist matrices

{Xxi }si=1, {Yi }si=1, Zx , Qx , Wi }si=1, ∀(i, s) ∈ S

such that the following LMI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Πai Π̂cs Πei Πvi Πwi Π f i Πgi

• −Π̂ds 0 Ḡt
di Ĝt

di 0 0
• • −Πdi 0 0 0 0
• • • −γ 2 I +Φ t

i Φi 0 0 0
• • • • −I 0 0
• • • • • −Xxi 0
• • • • • • −Xxi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (6.24)

has a feasible solution, where

Πai =
⎡
⎣ AiXxi + Xxi At

i + AiY t
i Bt

i + BiYi At
i+BiWi +W t

i Bt
i

BiRi +Rt
i Bt

i

I 0

⎤
⎦

Π̂cs =
[

0 0
0 Qx

]
, Πds =

[
Qx 0
0 I

]

Πvi = Γ̄i + (Xxi + BiYi )Ḡ
t
oi

Πwi = (Xxi + BiYi )Ĝ
t
oi (6.25)

and Γ̄i , Ḡt
oi , Ḡt

di , and Ĝt
oi are given in (6.11). Moreover, the feedback gains are

given by

Koi = YiX−1
xi , Ksi =WiX−1

xi , Kai = RiX−1
xi

Remark 6.8 When the model matrices of system (6.1) are partially known, we
assume that

Ξi := {Ai , Adi , Bi , Γi ,Gi , Φi } ∈ Λi (6.26)

where Λi is a given convex-bounded polyhedral domain described by vertices as
follows:



144 6 Three-Term Stabilization Schemes

Λi :=
{
Ξi (λi )|Ξi (λi ) =

M∑
j=1

λi jΩi j ,

s∑
j=1

λi j = 1 λi j ≥ 0

}
(6.27)

Ξi j
Δ= {Ai j , Adi j , Bi j , Γi j ,Gi j ,Gdi j , Φi j } (6.28)

In this regard, we are in a position to establish the following corollary:

Corollary 6.9 Consider the time-delay of Case 1. System (6.1) with the polytopic
representation (6.26), (6.27), and (6.28) under PID feedback control (6.3) is robustly
delay-independent asymptotically stabilizable with H∞ performance bound γ if
there exist matrices

{Xxi }si=1, {Yi }si=1, Zx , Qx , {Wi }si=1, ∀(i, s) ∈ S, j = 1 . . . , M

such that the following LMIs

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Πai j Πcs j Πei j Πvi j Πwi j Πgi j

• −Πds 0 Ḡt
di j Ĝt

di j 0 0
• • −Πdi 0 0 0 0
• • • −γ 2 I +Φ t

i jΦi j 0 0 0
• • • • −I 0 0
• • • • • −Xxi 0
• • • • • • −Xxi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (6.29)

have a feasible solution, where

Πvi j = Γ̄i j + (Xxi + Bi jYi )Ḡ
t
oi j ,

Πwi j = (Xxi + Bi jYi )Ĝ
t
oi j ,

Πai j =
⎡
⎣

Ai jXxi + Xxi At
i j + Ai jY t

i Bt
i j

+Bi jYi At
i j + Bi jWi +W t

i Bt
i j

Bi jRi +Rt
i Bt

i j

I 0

⎤
⎦

Πcs j =
[ [

Adi jZx 0
0 0

]
,

[
0 0
0 Qx

] ]

Πds = diag

[ [
Zx 0
0 I

]
,

[
Qxs 0

0 I

] ]
, Γ̄i j =

⎡
⎣Γi j

0

⎤
⎦

Πei j = [Xxi + Bi jYi Xxi + Bi jYi ],

Ḡt
oi j =

⎡
⎣ Goi jΦi j

0

⎤
⎦ , Ḡt

di j =
⎡
⎣ Gdi jΦi j

0

⎤
⎦ , Ĝt

oi j =
⎡
⎣ Goi j

0

⎤
⎦ , Ĝt

di j =
[

Gdi j

0

]
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Π f i j =
⎡
⎣ Bi j (Wi + Yi )

0

⎤
⎦ , Πgi j =

⎡
⎣ Bi j (Ri + Yi )

0

⎤
⎦ (6.30)

Moreover, the feedback gains are given by

Koi = YiX−1
i , Ksi =WiX−1

i , Kai = RiX−1
i

Grouping Remarks 6.2–6.8 together evidently illuminates the generality and flexi-
bility of the foregoing stabilization approach to linear switched time-delay systems.

6.1.4 H∞ Stabilization: Time-Varying Delays

In this section, we address Case 2 where the time delay is a continuous time-varying
function and proceed to establish new LMI characterization for delay-dependent
stabilization by proportional-integral-derivative (PID) feedback. Initially, recall the
standard Leibniz–Newton formula

ζ(t − τ(t)) =
s∑

i=1

ξi (t)ζ(t)−
s∑

i=1

ξi (t)
∫ t

t−τ(t)
ζ̇ (s)ds (6.31)

We consider the transformed closed-loop system (6.9) and establish the following
theorem:

Theorem 6.10 Consider the time-delay pattern of Case 2. System (6.9), (6.10), and
(6.11) is delay-dependent asymptotically stabilizable with H∞ performance bound
γ if there exist matrices

{Xxi }si=1, {Yi }si=1, {Wi }si=1, Qx , Zx , {S j i }si=1, j = 1, . . . , 4

{Nki }si=1, k = 1, . . . , 8, ∀(i, s) ∈ S

such that the following LMI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π̃ai Π̃ci Π̃ei Π̃vi Π̃wi Π̃ f i Π̃gi Π̃hi

• −Π̃di 0 Ḡt
di Ĝt

di 0 0 0
• • −Π̃di 0 0 0 0 0
• • • −γ 2 I +Φ t

i Φi 0 0 0 0
• • • • −I 0 0 0
• • • • • −Xxi 0 0
• • • • • • −Xxi 0
• • • • • • • −Π̃mi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (6.32)

has a feasible solution for all τ(t) ≤ �, τ̇ (t) ≤ μ, where
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Π̃vi = Γ̄i + (Xxi + BiYi )Ḡ
t
oi

Π̃wi = (Xxi + BiYi )Ĝ
t
oi

Π̃ai =
[
Π̃aai Ai BiRi +Rt

i Bt
i

I 0

]

Π̃aai = AiXxi + Xxi At
i + AiY t

i Bt
i + BiYi At

i + BiWi +W t
i Bt

i

+XxiS1i + BiS2i + S t
1iXxi + S2i Bt

i

Π̃cai =
[

AdiZx − XxiS3i − BiS3i 0
0 0

]
, Π̃cci =

[
0 0
0 Qxs

]

Π̃ci =
[
Π̃cai Π̃cci

]

Π̃dai =
[
S4i + S t

4i + (1− μ)Zx 0
0 I

]
, Π̃dci =

[
Qxs 0

0 I

]

Π̃di = diag
[
Π̃dai , Π̃dci

]
Π̃ei = [Xxi + BiYi Xxi + BiYi ],

Γ̄i =
⎡
⎣Γi

0

⎤
⎦ , Ḡt

oi =
⎡
⎣ Gt

oiΦi

0

⎤
⎦ , Ḡt

di =
⎡
⎣ Gt

diΦi

0

⎤
⎦

Ĝt
oi =

⎡
⎣ Gt

oi

0

⎤
⎦ , Ĝt

di =
[

Gt
di

0

]

Π̃ f i =
⎡
⎣ Bi (Wi + Yi )

0

⎤
⎦ , Πgi =

⎡
⎣ Bi (Ri + Yi )

0

⎤
⎦

Π̃hi =
[
Π̃hi1 Π̃hi2

]

Π̃hi1 =
[
XxiN1i + BiN2i XxiN3i + BiN4i

I 0

]

Π̃hi2 =
[
XxiN5i + BiN6i XxiN7i + BiN8i

I 0

]

Π̃ f i = diag
[
Π̃ f ai , Π̃ f ai

]
, Π̃ f ai =

[
Mx 0

0 I

]
(6.33)

Moreover, the PID feedback gains are given by

Koi = YiX−1
xi , Ksi =WiX−1

xi

Proof Consider the selective Lyapunov–Krasovskii functional (LKF):

V2(t) = Va2(t)+ Vb2(t)+ Vc2(t)+ Vd2(t)
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Va2(t) = ζ t (t)

(
s∑

i=1

ξi (t)Pi

)
ζ(t), Vb2(t) =

∫ t

t−τ
ζ t (s)Z−1ζ(s)ds

Vc2(t) =
∫ t

t−�
ζ t (s)Q−1ζ(s)ds

Vd2(t) =
∫ 0

−τ

∫ t

t+φ
ζ̇ t (s)M−1ζ̇ (s)dsdφ

Pi =
[
Pxi 0
0 I

]
Z =

[
Zx 0
0 I

]
, Q =

[
Qx 0
0 I

]

M =
[
Mx 0

0 I

]
, i ∈ S (6.34)

With (6.31) in mind and setting w(.) ≡ 0, evaluation of the derivative V̇2(t) along
the solutions of (6.9) yields

V̇a2(t)|(6.9) = 2 ζ t (t)

(
s∑

i=1

ξi (t)Pi

{
Apiζ(t)+Aci ζ(t − �)

})

+2 ζ t (t)

(
s∑

i=1

ξi (t)PiAdi ζ(t − τ)

)

= 2 ζ t (t)

(
s∑

i=1

ξi (t)Pi

[
Api +Adi

])
ζ(t)

−2 ζ t (t)

(
s∑

i=1

ξi (t)PiAdi

)∫ t

t−τ(t)
ζ̇ (φ)dφ

+2 ζ t (t)

(
s∑

i=1

ξi (t)PiAci

)
ζ(t − �)

= 2 ζ t (t)

(
s∑

i=1

ξi (t)Pi

[
Api +Adi

])
ζ(t)

+2 ζ t (t)

(
s∑

i=1

ξi (t)

[
Θi − PiAdi

]) ∫ t

t−τ(t)
ζ̇ (s)ds

+2 ζ t (t − τ)

(
s∑

i=1

ξi (t)Ψi

)∫ t

t−τ(t)
ζ̇ (s)ds

+2 ζ t (t)

(
s∑

i=1

ξi (t)PiAci

)
ζ(t − �)
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−
[

2 ζ t (t)

(
s∑

i=1

ξi (t)Θi

) ∫ t

t−τ(t)
ζ̇ (φ)dφ

+2 ζ t (t − τ)

(
s∑

i=1

ξi (t)Ψi

) ∫ t

t−τ(t)
ζ̇ (φ)dφ

]

= 1

τ(t)

∫ t

t−τ(t)

[
2 ζ t (t)

(
N∑

i=1

ξi (t)

[
PiApi +Θi

])
ζ(t)

+2 ζ t (t)

(
s∑

i=1

ξi (t)

[
PiAdi −Θi + Ψ t

i

])
ζ(t − τ)

−2 ζ t (t − τ)

(
s∑

i=1

ξi (t)Ψi

)
ζ(t − τ)

−2 τ(t) ζ t (t)

(
s∑

i=1

ξi (t)Θi

)
ζ̇ (φ)

−2 τ(t) ζ t (t − τ)

(
s∑

i=1

ξi (t)Ψi

)
ζ̇ (s)

+2 ζ t (t)

(
s∑

i=1

ξi (t)PiAci

)
ζ(t − �)

]
dφ (6.35)

where Θi , Ψi are relaxation matrices injected to facilitate the delay-dependent anal-
ysis. Moreover,

V̇b2(t)|(6.9) = ζ t (t)Z−1ζ(t)− (1− τ̇ )ζ t (t − τ)ξi (t)Z−1ζ(t − τ)

≤ ζ t (t)ξi (t)Z−1ζ(t)− (1− μ)ζ t (t − τ)ξi (t)Z−1ζ(t − τ)

= 1

τ(t)

∫ t

t−τ(t)

[
ζ t (t)

(
N∑

i=1

ξi (t)Z−1
i

)
ζ(t)

−(1− μ)ζ t (t − τ)Z−1ζ(t − τ)

]
(6.36)

V̇c2(t)|(6.9) = ζ t (t)ξi (t)Q−1ζ(t)− ζ t (t − ρ)Q−1ζ(t − ρ)

= 1

τ(t)

∫ t

t−τ(t)

[
ζ t (t)Q−1ζ(t)

−ζ t (t − ρ)ξi (t)Q−1ζ(t − ρ)

]
dφ (6.37)
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and

V̇d2(t)|(6.9) =
∫ 0

−τ

{
ζ̇ t (t)ξi (t)M−1ζ̇ (t)− ζ̇ t (t + φ)ξi (t)M−1ζ̇ (t + φ)

}
dφ

=
∫ t

t−τ

{
ζ̇ t (t)ξi (t)M−1

i

)
ζ̇ (t)− ζ̇ t (φ)

( N∑
i=1

ξi (t)M−1
i

)
ζ̇ (φ)

}
dφ

=
∫ t

t−τ

{[
Apiζ(t)+Aciζ(t − �)+Adiζ(t − τ)

]t

M−1

=
[
Apiζ(t)+Aciζ(t − �)+Adiζ(t − τ)

]

−ζ̇ t (φ)M−1ζ̇ (φ)

}
dφ

= 1

τ(t)

∫ t

t−τ

{
ζ t (t)τ (t)ApiM−1Apiζ(t)

+ζ t (t − �)τ(t)At
ciM−1Aciζ(t − �)

+ζ t (t − τ)τ (t)At
diM−1Adiζ(t − τ)

+2ζ t (t)τ (t)At
piM−1Aciζ(t − ρ)

+2ζ t (t)τ (t)At
piM−1Adiζ(t − τ)

+2ζ t (t − ρ)τ(t)At
ciM−1Adiζ(t − τ)

−ζ̇ t (φ)τ(t)M−1ζ̇ (φ)

}
dφ (6.38)

It follows that for nonzero vectors ζ(t), ζ(t − τ), ζ(t − ρ), and the particular case
ξi (t) = 1 and ξm �=i (t) = 0. Therefore, with some algebraic manipulations, we get
from (6.34), (6.35), (6.36), (6.37), and (6.38)

V̇2(t)|(6.9) =
1

τ(t)

∫ t

t−τ
χ(t, φ) Ξis χ(t, φ) dφ (6.39)

where

χ(t, φ) = [
ζ t (t) ζ t (t − τ) ζ t (t − ρ) ζ̇ t (φ)

]t

Ξis =

⎡
⎢⎢⎣
Ξais Ξbis Ξcis −τΘi

• Ξdis Ξeis −τΨi

• • Ξ f is 0
• • • −τM−1

⎤
⎥⎥⎦ (6.40)

Ξais = PiApi +At
piPi +Θi +Θ t

i + Z−1 +Q−1 + τ(t)At
piM−1Api

Ξbis = PsAdi −Θi + Ψ t
i + τAt

piM−1Adi
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Ξcis = PsAci + τAt
piM−1Aci

Ξdis = −Ψi − Ψ t
i − (1− μ)Zs + τAt

diM−1Adi , Ξeis = τAt
diM−1

i Aci

Ξ f is = −Q−1 + τAt
ciM−1Aci (6.41)

When Ξis < 0, ∀(i, s) ∈ S, we infer from (6.39) that V̇2(t) < 0 for any χ(t, φ) �=
0 and all τ ≤ �. By Schur complement operations, we express (6.40) for all 0 <

τ < � as Mi > 0 and

⎡
⎢⎢⎢⎢⎣

Ξ̂ais PsAdi −Θi + Ψ t
i PsAci −τΘi τAt

pi
• −Ψi − Ψ t

i − (1− μ)Z−1 0 −τΨi τAt
di• • −Q−1 0 τAt
ci• • • −M−1 0

• • • • −M

⎤
⎥⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎢⎣

Ξ̂ais PsAdi −Θi + Ψ t
i PsAci −�Θi �At

pi
• −Ψi − Ψ t

i − (1− μ)Z−1 0 −�Ψi �At
di• • −Q−1 0 �At
ci• • • −M−1 0

• • • • −M

⎤
⎥⎥⎥⎥⎦ := Ξ̃is < 0

(6.42)

where

Ξ̂ais = PiApi +At
piPi +Θi +Θ t

i + Z−1 +Q−1 (6.43)

Using (6.18), we apply the congruent transformation

diag
[

T1 T2 T2 T2 T2
]
, P−1

i
Δ= Xi =

[
Xxi 0
0 I

]

to Ξ̃is with

Yi = KoiXxi , Wi = KsiXxi , Ri = KaiXxi

and making use of the algebraic inequalities (6.19), it follows by the Schur comple-
ments formula that the asymptotic stability of the closed-loop system (6.9), (6.10),
and (6.11) is established.

Next, consider the performance measure

J =
∫ ∞

0

(
N∑

i=1

ξi (t)

[
zt (s)z(s)− γ 2wt (s)w(s)

])
ds

For any w(t) ∈ L2(0,∞) �= 0 and zero initial condition x(0) = 0, we have
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J =
∫ ∞

0

(
N∑

i=1

ξi (t)

[
zt (s)z(s)− γ 2wt (s)w(s) + V̇2(t)|(6.9)

])
ds

− V̇2(t)|(6.9)

≤
∫ ∞

0

(
N∑

i=1

ξi (t)

[
zt (s)z(s)− γ 2wt (s)w(s) + V̇2(t)|(6.9)

])
ds

where V̇2(t)|(6.9) defines the Lyapunov derivative along the solutions of system
(6.9). Proceeding, we get under arbitrary switching and Schur complement opera-
tions

zt (s)z(s)− γ 2wt (s)w(s) + V̇2(s)|(6.9) = η̃t (t, φ)Ξ is η̃(t, φ)

ηt (t, φ) =

⎡
⎢⎢⎢⎢⎣

ζ(t)
ζ(t − τ)

ζ(t − ρ)

ζ̇ (φ)

w(t)

⎤
⎥⎥⎥⎥⎦ , Ξ is =

⎡
⎢⎢⎢⎢⎣

Pi Γ̄i + Ḡt
oi Ĝt

oi
Ξ̃ais Ḡt

di Ĝt
di

0 0
• • • −γ 2 I +Φ t

i Φi 0
• • • • −I

⎤
⎥⎥⎥⎥⎦ (6.44)

Using (6.18), we apply the congruent transformation

diag
[

T1 T1 T2 T2 T2 T2 T2
]
, P−1

i := Xi =
[
Xxi 0
0 I

]

to Ξ is with Yi = KoiXxi , Wi = KsiXxi , Ri = KaiXxi , and making use of the
algebraic inequalities (6.19), it readily follows from LMI (6.32) and Schur comple-
ment operations that

zt (s)z(s)− γ 2wt (s)w(s) + V̇2(s)|(6.9) < 0

for arbitrary s ∈ [t,∞), which implies for any w(t) ∈ L2(0,∞) �= 0 that J < 0
leading to ||z(t)||2 < γ ||w(t)||2 and the proof of H∞ performance bound is
completed. �

6.1.5 Simulation Examples

In this section, we will demonstrate the application of the foregoing analytical
results on some typical systems examples.

Illustrative Example A

A model of combustion in rocket motor chambers [442] is considered here for feed-
back stabilization. This model represents a liquid monopropellant rocket motor with
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a pressure feeding system. Under the assumption of nonsteady flow and lumped lag
factor, an appropriate linearized model can be in the form (6.1, 6.2, and 6.3) with
the following coefficients:

Ai =

⎡
⎢⎢⎢⎣

ρi − 1 0 1 0
0 0 0 − 1

ζ J

− p
2J (1−ζ ) 0 − 1

J (1−ζi )
− 1

J (1−ζi )

0 1
Ee

− 1
Ee

0

⎤
⎥⎥⎥⎦ , Adi =

⎡
⎢⎢⎣
−ρi 0 1 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

Bi =

⎡
⎢⎢⎣

0
1
ζi J
1
0

⎤
⎥⎥⎦ , Γi =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ , Gi =

[
1 0 0 0

]
, Ψi = [0.4]

Subscript i corresponds to mode of operation as in Table 6.1.

Table 6.1 Data of illustrative example A

Mode ρi ζ

1 0.95 0.105
2 1.05 0.100
3 1.15 0.110

With ζ being the fractional length for pressure supply, J is the line inertia, Ee is
the line elasticity parameter, p is the ratio of steady-state pressure and steady-state
injector pressure drop, and ρ is the pressure exponent of the combustion process. For
simulation purposes, the nominal values taken are p = 1.02, J = 2, Ee = 0.95.
Implementation of the developed theorems was accomplished using the LMI-solver
Scilab-5.1 and the ensuing results are summarized in Table 6.2. The results show that
the PID feedback strategy provides improved stabilization for the switched model
of combustion in rocket motor chambers under arbitrary switching among operating
modes.

Table 6.2 Computational results of illustrative example A

Method Ko(Ks) Matrix gain γ

Theorem 6.1 Ko1 0.4936 −1.1205 −0.3986 −0.2135 3.554
Ks1 1.8172 −0.9677 −0.6329 0.3558
Ka1 −0.0195 1.0025 −0.2448 0.3558
Ko2 0.4825 −1.1195 −0.3877 −0.3014
Ks2 1.7299 −1.1076 −0.6158 0.3702
Ka2 −0.0538 0.9785 −0.3762 0.3558
Ko3 0.5104 −1.1306 −0.4115 −0.2985
Ks3 1.8384 −1.1213 −0.7045 0.4104
Ka3 −0.1004 0.8856 −0.2448 0.2755

Theorem 6.5 Ks1 2.3456 −1.2333 1.3611 −0.6775 7.045
Ks2 2.3502 −1.2287 1.4102 0.6548
Ks3 2.3611 −1.2205 1.4126 −0.6643
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Illustrative Example B

For all practical purposes, it is crucial to preserve the standards of water quality in
streams. This can be measured by the concentrations of some water biochemical
constituents. Let z(t), q(t) be the concentrations per unit volume of biological oxy-
gen demand (BOD) and dissolved oxygen (DO), respectively, at time t . Under the
simplifying assumptions [179, 254] that the stream has a constant flow rate and the
water is well mixed and there exists a τ > 0 such that the (BOD,DO) concentrations
entering at time t are equal to the corresponding concentrations τ time units ago.
Employing a linearization of the mass balance concentrations about an equilibrium
operating point and using representative data on a single reach of the River Nile, the
growth of (BOD,DO) can then be expressed as

[
ṗ(t)
q̇(t)

]
=

[−1.285 0
−3.263 −1.975

] [
p(t)
q(t)

]
+

[−0.15 0
0 −0.10

] [
p(t − τ)

q(t − τ)

]

+
[

1.2 0
0 1.4

] [
u p(t)
uq(t)

]
+

[
0.1 0
0 0.1

] [
wp(t)
wq(t)

]

[
z p(t)
zq(t)

]
=

[
0.1 0
0 0.2

] [
p(t)
q(t)

]
+

[−0.15 0
0 −0.10

] [
p(t)
q(t)

]

+
[

0.2 0
0 0.2

] [
φp(t)
φq(t)

]

The feasible solution of Theorem 6.10 with � = 2, μ = 1 yields the delay-
dependent PID controller of the form

[
uz1(t)
uq1(t)

]
=

[
0.8837 −0.0307
−0.1235 0.0315

] [
p(t)
q(t)

]
−

[−0.9945 −0.0513
0.3505 −0.0265

] [
ṗ(t)
q̇(t)

]

+
[

0.7113 −0.0114
0.0023 −0.0405

][∫ t
t−2 p(s)ds∫ t
t−2 q(s)ds

]

[
uz2(t)
uq2(t)

]
=

[
0.9088 −0.1034
−0.1332 0.0023

] [
p(t)
q(t)

]
−

[−1.1306 −0.0661
0.5123 −0.0265

] [
ṗ(t)
q̇(t)

]

+
[

0.3887 −0.0206
−0.1661 0.1115

][∫ t
t−2 p(s)ds∫ t
t−2 q(s)ds

]

which renders the water quality system asymptotically stable with γ = 2.5115.

Illustrative Example C

A continuous-time model used in resilience control studies [221] is considered here
where the associated matrices are
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A1 =

⎡
⎢⎢⎣
−2 1 1 1
3 0 0 2
−1 0 −2 −3
−2 −1 2 −1

⎤
⎥⎥⎦ , Ad1 =

⎡
⎢⎢⎣
−0.2 0 0.6 0

0 −1 0 −0.7
0 −0.8 0 −1.3

0.1 0 0.5 0

⎤
⎥⎥⎦

Γ1 =

⎡
⎢⎢⎣

1 0 0
0 0 0
1 0 0
0 0 0

⎤
⎥⎥⎦

B1 =

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ , G1 =

⎡
⎣1 0 −1 0

0 0 0 0
0 0 0 0

⎤
⎦ , Ψ1 =

⎡
⎣0.1 0 0

0 0.3 0
0 0 0.2

⎤
⎦

A2 =

⎡
⎢⎢⎣
−3 0 1 −11
4 0 −1 1
−1 0 −3 −1
−1 0 3 −1

⎤
⎥⎥⎦ , Ad2 =

⎡
⎢⎢⎣
−0.3 0 0.4 0

0 −0.8 0 −0.5
0 −0.7 0 −1.1

0.3 0 0.6 0

⎤
⎥⎥⎦

Γ2 =

⎡
⎢⎢⎣

1 0 0
0 0 0
1 0 0
0 0 0

⎤
⎥⎥⎦

B2 =

⎡
⎢⎢⎣

1 0
0 0
0 1
0 0

⎤
⎥⎥⎦ , G2 =

⎡
⎣0 0 0 0

0 0 0 0
1 0 −1 0

⎤
⎦ , Ψ2 =

⎡
⎣0.3 0 0

0 0.2 0
0 0 0.1

⎤
⎦

In Tables 6.3 and 6.4, a summary of the computational results of applying
Theorem 6.10 is presented.

An overall summary to be recorded from the foregoing examples is that the three-
term stabilization approach provides flexibility and guarantees a lowest performance
bound.

Table 6.3 Computational results of example C

Method Ko(Ks) Matrix gain Matrix norm γ

Theorem 6.10 Ko1 −0.4539 −0.6875 −0.4539 −0.5389 1.6028 1.653
−0.3725 −0.6348 −0.8746 −0.4215

Ks1 −0.6025 −0.8305 −0.3592 −0.8884 1.6877
−0.5309 −0.9421 0.0523 −0.1375

Ka1 −0.3515 −0.7204 −0.4082 −0.7765 0.9875
−0.4367 −0.8436 0.0724 −0.1425

Ko2 −0.5014 −0.7511 −0.4818 −0.6355 1.8668
−0.6021 −0.6802 −1.0065 −0.5545

Ks2 −0.6501 −1.0549 −0.5092 −0.6734 1.7971
−0.5911 −0.8881 0.1421 −0.2345

Ka2 −0.7555 −0.9135 −0.0524 −1.2564 1.3245
−0.4545 −1.0021 0.0624 −0.1566
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Table 6.4 A Summary of results-illustrative example C

Method Mode ||Ko|| ||Ks || ||Ka || γ

Theorem 6.10 1 1.6028 1.6877 1.4305 3.247
2 1.8668 1.7971 1.9513

Theorem 6.1 1 2.4377 3.1445 2.3529 8.688
2 2.6658 3.2312 2.5145

[216] 1 4.6028 4.6445 23.766
[221] 1 5.037 15.455

Remark 6.11 In practice, there are two additional stabilization schemes: propor-
tional integral (PI) and proportional derivative (PD). The gains can be readily gen-
erated from the developed setup by setting Koi ≡ 0 and Kai ≡ 0, respectively, in
the foregoing theorems.

6.2 Discrete-Time Systems

This section will address the problem of control design of switched systems in the
discrete-time domain and looks at the existence of a switched quadratic Lyapunov
function to check asymptotic stability of the switched system under consideration
with and without unknown time delay. Two different H∞ switched controller design
schemes are established based on the state-feedback and proportional-summation-
difference (PSD) feedback designs. In the state feedback, an improved LMI-based
method is provided. By PSD feedback, a three-term feedback controller gains
is designed for each subsystem such that the closed-loop discrete-time switched
system is asymptotically stable. In both cases, appropriate Lyapunov–Krasovskii
functionals (LKFs) are constructed and efficient parametrized characterizations are
established in terms of feasibility testing of linear matrix inequalities (LMIs).

6.2.1 Introduction

We know that switched systems have hybrid features comprising a family of sub-
systems described by continuous-time or discrete-time dynamics, and a rule spec-
ifying the switching among them [28, 42, 47]. The switching rule, determined by
time or system state, or both, or other supervisory logic decision, yields different
switching signals and decides the categories of switched systems; see for example,
[42, 192, 424] and the references therein. A survey of basic problems in stability
and design of switched systems has been proposed recently in [193]. A basic fact
in switched systems theory is that among the large variety of problems encountered
in practice, one can study the existence of a switching rule that ensures stability of
the switched system. One can also assume that the switching sequence is not known
a priori and look for stability results under arbitrary switching sequences. One can
also consider some useful class of switching sequences see, for instance, [192]. The
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applications using switched systems theory and practical examples include model-
ing of networked control systems (NCS) [196], stirred tank reactor [56], and wind
turbine regulation [186].

In this section, we are interested in control synthesis of discrete-time switched
systems under arbitrary switching sequences, which in some sense complement the
foregoing section. The reasons of considering discrete-time switched systems have
been enumerated in [424]. A multimodal dynamical system, for example, may be
composed of several discrete-time dynamical subsystems due to its physical struc-
ture, and even when all subsystems are of continuous time, the case of considering
sampled-data control for the entire system can be dealt with in the framework of
discrete-time switched systems. Furthermore, experience showed that the extension
from continuous-time switched systems to discrete-time ones is not obvious in most
cases, and the results may be quite different, as also pointed out in [196].

The approach followed in this section looks at the existence of a switched
quadratic Lyapunov function to check asymptotic stability of the switched system
under consideration. To evaluate the interest of this approach for control design
problems, we concentrate on the state-feedback and proportional-summation-
difference (PSD) feedback design problems, deferring other possible design meth-
ods to later developments in subsequent chapters.

6.2.2 Problem Statement

We consider the following class of switched discrete-time systems with time-
varying delays:

x(k + 1) = Aσ x(k)+ Dσ x(k − d(k))+ Bσu(k)+ Γσω(k)

z(k) = Gσ x(k)+ Hσ x(k − d(k))+Φσω(k) (6.45)

where x(k) ∈ �n is the state vector , u(k) ∈ �m is the control input, ω(k) ∈ �q

is the disturbance input which belongs to �2[0,∞), z(k) ∈ �q is the observed
output, σ : �+ = [0,∞) → S = {1, . . . , s} is the switching signal, which is
assumed to be piecewise constant function available in real time with N being the
number of modes of the switched system and the scalar d(k) is a time-delay factor
satisfying 0 < dm ≤ d(k) ≤ dM , where dm and dM are known bounding factors.
The initial condition ω(φ) is a differentiable vector-valued function on [−d, 0]. At
an arbitrary discrete time k, the switching signal σ is dependent on k, x(k) or both,
or other switching rules.

The matrices of each mode A j ∈ �n×n , B j ∈ �n×m, G j ∈ �q×n, Hj ∈ �q×n,

D j ∈ �n×n, and Γ j ∈ �n×q , Φ j ∈ �q×q are real and known constant matrices
describing the j th system

x(k + 1) = A j x(k)+ D j x(k − d(k))+ B j u(k)+ Γ jω(k)

z(k) = G j x(k)+ Hj x(k − d(k))+Φ jω(k) (6.46)
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Remark 6.12 It should be noted that system (6.45) designates a class of discrete-
time systems with multimodes and unknown time delay. This means that system
(6.45) is constrained to jump among the N vertices of matrix polytope

{
(A j )

s
j=1, (B j )

s
j=1, (D j )

s
j=1, (G j )

s
j=1, (Hj )

s
j=1, (Γ j )

s
j=1, (Φ j )

s
j=1

}

Stability and stabilization problems of this class systems render several challeng-
ing issues to the control engineers and designers. In the control design literature
with y(k) ∈ �p being the measured output, most of the developed methods
focused on either state feedback u(k) = Ko x(k), which is a proportional con-
trol with single unknown gain matrix Ko, dynamic output feedback using observer-
based controllers x̂(k + 1) = Aox(k) + Dox(k − d(k))+ Bou(k)+ KsCo(x(k) −
x̂(k)), u(k) = Ko x(k) where the unknown gain matrices are two: Ko and Ks ,
dynamic output feedback scheme with strictly proper transfer function ξ(k + 1) =
Acξ(k) + Bc y(k), u(k) = Cc ξ(k) corresponding to three unknown gain matrices
Ac, Bc, and Cc or dynamic output feedback scheme with proper transfer function
ξ(k + 1) = Acξ(k) + Bc y(k), u(k) = Cc ξ(k) + Dc y(k) corresponding to four
unknown gain matrices Ac, Bc, Cc, and Dc. In all of the foregoing cases, differ-
ent computational techniques were offered [82, 120]. Apart from the state-feedback
case, the developed techniques are computationally demanding and some of them
are iterative in nature. The degree of success of these techniques to systems with
time-varying delays is generally limited.
In this section, we are interested in control-feedback synthesis of discrete delayed
switched systems under arbitrary switching sequences. The approach followed in
this note looks at the existence of a switched quadratic Lyapunov function to check
asymptotic stability of the closed-loop discrete switched system under considera-
tion. To evaluate the interest of this approach for switched control design prob-
lems, we address both single-term (state-feedback) and three-term (proportional-
summation-difference (PSD)) feedback design problems. By feedback control, we
mean the design of single-term or three-terms feedback gains for each system such
that the closed-loop switched system is asymptotically stable. The results proposed
in this work can be considered as a trade off between highly conservative results
(those using a single quadratic Lyapunov function) and less conservative but those
numerically hard to check.

We seek the development of improved stabilization schemes for system (6.45).
These schemes should possess reduced-order computational requirements. Toward
our goal, we first provide an improved LMI-based state-feedback stabilization.

6.2.3 State-Feedback H∞ Stabilization

Let the state-feedback control be u(k) = Koj x(k). The closed-loop feedback sys-
tem becomes
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x(k + 1) = Asj x(k)+ D j x(k − d(k))+ Γ jω(k)

z(k) = G j x(k)+ Hj x(k − d(k))+Φ jω(k)

Asj = A j + B j Koj (6.47)

where Ksj ∈ �n×n is the state-feedback gain matrix to be determined. Our goal
is to establish tractable conditions guaranteeing closed-loop asymptotic stability of
the origin (x = 0) for system (6.47). The underlying notion is that system (6.47) is
globally asymptotically stable if there is a Lyapunov–Krasovskii function V, which
is a positive–definite function, decrescent, and radially unbounded, and its first dif-
ference ΔV is negative definite along the solutions of (6.47), thereby proving global
asymptotic stability.

In the sequel we let β = (d+−d∗+1), which represents the number of samples
within the delay range d∗ ≤ d(k) ≤ d+. The main result of subsystem stability is
given by the following theorem:

Theorem 6.13 Given the delay sample number β. System (6.47) is delay-dependent
asymptotically stable if there exist matrices 0 < X t

s = Xs, 0 < X t
j = X j , 0 <

W t
j = W j , Y j and a scalar γ > 0 such that the following convex optimization

problem is feasible for all ( j, s) ∈ S× S

min
Xs ,Ws ,Y js

γ 2, subject to

Π̂ =

⎡
⎢⎢⎢⎢⎣

βWs − X j 0 X j Gt
jΦ j X j At

j + Y j Bt
j X j Gt

j
• −W j X j H t

jΦ j X j Dt
j X j H t

j
• • −γ 2 I +Φ t

jΦ j Γ t
j 0

• • • −Xs 0
• • • • −I

⎤
⎥⎥⎥⎥⎦ < 0 (6.48)

Moreover, the state-feedback gain is given by

Ksj = Y jX−1
j .

Proof We start by introducing the Lyapunov–Krasovskii functional at mode j
(LKF):

Vs(k) = Vso(k)+ Vsa(k)+ Vsc(k)

Vso(k) = xt (k)P j x(k), Vsa(k) =
k−1∑

m=k−d(k)

xt (m)Q j x(m)

Vsc(k) =
1−dm∑

s=2−dM

k−1∑
m=k+s−1

xt (m)Q j x(m) (6.49)
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where 0 < P t
j = P j , 0 < Qt = Q are weighting matrices of appropriate

dimensions. A straightforward computation gives the first difference of ΔV (k) =
V (k + 1)− V (k) along the solutions of (6.2) ∀( j, s) ∈ S× S as

ΔVso(k) = xt (k + 1)Ps x j (k + 1)− xt (k)P j x j (k)

= [Asj x(k)+ D j x(k − d(k))+ Γ jω(k)]tPs

×[Asj x(k)+ D j x(k − d(k))+ Γ jω(k)] − xt (k)P j x j (k) (6.50)

ΔVsa(k) = xt (k)Q j x(k)− xt (k − d j (k))Q j x(k − d j (k))

+
k−1∑

m=k+1−d(k+1)

xt (m)Q j x(m)−
k−1∑

m=k+1−d(k)

xt (m)Q j x(m) (6.51)

ΔVsc(k) = (dM − dm)x
t (k)Q j x(k)−

k−d∗∑
m=k+1−dM

xt (m)Q j x(m) (6.52)

Observe from (6.51) that

k−1∑
m=k+1−d(k+1)

xt (m)Q j x(m) =
k−1∑

m=k+1−dM

xt (m)Q j x j (m)

+
k−dM∑

m=k+1−d(k+1)

xt (m)Q j x(m)

≤
k−1∑

m=k+1−d(k)

xt (m)Q j x j (m)

+
k−dm∑

m=k+1−dM

xt (m)Q j x(m) (6.53)

Then using (6.53) into (6.51) and manipulating, we reach

ΔVsa(k) ≤ xt (k)Q j x(k)− xt (k − d(k))Q j x(k − d(k))

+
k−dm∑

m=k+1−dM

xt (m)Q j x(m) (6.54)

Taking into consideration (6.50), (6.52), and (6.54), the following upper bound for
ΔVs(k) can be obtained

ΔVs(k) ≤ [Asj x(k)+ D j x(k − d(k))+ Γ jω(k)]tPs

× [Asj x(k)+ D j x(k − d(k))+ Γ jω(k)]
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+ xt (k)[βQ j − Ps]x(k)− xt (k − d(k))Q j x(k − d(k))

= ζ t (k) Ξ ζ(k) (6.55)

where

Ξ =
⎡
⎣

At
s jPs As j + βQ j − P j At

s jPs D j At
s jPsΓ j

• Dt
jPs D j −Q j Dt

jPsΓ j

• • Γ t
j PsΓ j

⎤
⎦

ζ(k) = [
xt (k) xt (k − d(k)) ωt (k)

]t (6.56)

Note that in (6.55), the case when j = s indicates that the discrete switched system
is described by the j th mode, while the case j �= s illustrates that the discrete
switched system is at the switching time from mode j to mode s; see [42] for more
details.

The sufficient condition of internal stability implies ΔV k < 0 with ω(k) ≡ 0
implies that Ξ < 0 when Γo ≡ 0.

Next, consider the performance measure

J =
∞∑
j=0

(
zt ( j)z( j)− γ 2ωt ( j)ω( j)

)

For any ω(k) ∈ �2(0,∞) �= 0 and zero initial condition x(0) = 0, (hence
Vs(0) = 0), we have

J =
∞∑
j=0

(
zt ( j)z( j)− γ 2ωt ( j)ω( j) +ΔVs |(6.47)

)
−

∞∑
j=0

ΔVj |(6.47)

=
∞∑
j=0

(
zt ( j)z( j)− γ 2ωt ( j)ω( j) +ΔVs |(6.47)

)
− V∞

≤
∞∑
j=0

(
zt ( j)z( j)− γ 2ωt ( j)ω( j) +ΔVs |(6.47)

)
(6.57)

where ΔVs |(6.47) defines the Lyapunov difference along the solutions of system
(6.47). Proceeding like the foregoing section and considering (6.45) and (6.57), it
can easily shown by algebraic manipulation that

zt ( j)z( j)− γ 2ωt ( j)ω( j) +ΔVs |(6.47)

= [G j x( j)+ Hj x( j − d( j))+Φ jω( j)]t [G j x j + Hj x( j − d( j))+Φ jω( j)]
−γ 2ωt ( j)ω( j)

= ξ t
j Ω ξ j (6.58)
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where

Ω =
⎡
⎣
Ωo At

s jPD j + Gt
j Hj At

s jPsΓ j + Gt
jΦ j

• Dt
jPs D j −Q j + Ht

j Hj Dt
jPsΓ j + Gt

doΦ j

• • Γ t
j PsΓ j − γ 2 I +Φ t

jΦ j

⎤
⎦ (6.59)

Ωo = At
s jPs As j + βQ j − P j + Gt

j G j (6.60)

By Schur complements, we express Ω into the form

Ω̂ =

⎡
⎢⎢⎣
βQ j − P j + Gt

j G j Gt
j Hj Gt

jΦ j At
s j

• −Q j + Ht
j Hj Ht

jΦ j Dt
j

• • −γ 2 I +Φ t
jΦ j Γ t

j
• • • −P−1

s

⎤
⎥⎥⎦ (6.61)

To convexify matrix Ω̂, we define

Xs = P−1
s , X j = P−1

j , W j = P−1
j Q jP−1

j , KsjX j = Y j

Upon applying the congruence transformation

diag[X j , X j , I, I ]

to Ω̂, we finally obtain the form (6.48). This leads to

zt
j z j − γ 2wt

jw j +ΔVj |(6.47) < 0

for arbitrary j ∈ [0,∞), which implies for any w( j) ∈ �2(0,∞) �= 0 that J < 0.
This eventually leads to ||zk ||2 < γ ||wk ||2 and hence the proof is completed. �
Remark 6.14 It should be noted that the derivation of LMI lower bound dm and
the upper bound dM account for extreme cases of delay factors stemming from
physical consideration. Seeking computational convenience and effectiveness, the
solutions to the problems of stability analysis and control synthesis are cast into
convex optimization in terms of linear matrix inequalities (LMIs) that are handled
using interior-point minimization algorithms. These algorithms have been recently
coded into efficient numerical software.

Had we considered the following class of delay-free discrete-time systems with
state feedback:

x(k + 1) = Asj x(k)+ Γ jω(k),

z(k) = G j x(k)+Φ jω(k)

Asj = A j + B j Koj (6.62)

Then Theorem 6.13 specializes to
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Corollary 6.15 System (6.62) is delay-dependent asymptotically stable if there exist
matrices 0 < X t

s = Xs, Y and a scalar γ > 0 such that the following convex
optimization problem is feasible for all ( j, s) ∈ S× S

min
X j ,Xs ,Y j

γ 2, subject to

Π =

⎡
⎢⎢⎣
−X j X j Gt

jΦ j X j At
j + Y j Bt

j X j Gt
j

• −γ 2 I +Φ t
jΦ j Γ t

j 0
• • −Xs 0
• • • −I

⎤
⎥⎥⎦ < 0 (6.63)

Moreover, the state-feedback gain is given by

Koj = Y jX−1
j

Remark 6.16 It is significant to observe that Corollary 6.15 provides improved
state-feedback control design result, which extends over similar existing methods
[279, 436].

6.2.4 Proportional-Summation-Difference (PSD) Stabilization

Instead of using standard dynamic output feedback schemes, we take in the sequel
a departure from this research direction and proceed to tackle the design problem in
a direct way. The following feedback controller is proposed:

u(k) = Koj x(k)+ Kd j (x(k)− x(k − 1))+ Ksj

k∑
s=0

x(s)

= Koj x(k)+ Kd j δ(k)+ Ksj σ(k) (6.64)

Observe that controller (6.64) consists of three terms: a proportional term Ko x(k),
a difference term Kd δ(k), and a summation term Ks σ(k), and henceforth is
labeled PSD controller. Therefore, it resembles a discrete version of the conven-
tional proportional-integral-derivative (PID) controller for continuous-time systems,
see the foregoing section. Applying (6.64) to system (6.45), we get the closed-loop
system:

x(k + 1) = Asj x(k)+ B j [Kd j δ(k)+ Ksj σ(k)] + D j x(k − d(k))+ Γ jω(k)

z(k) = G j x(k)+ Hj x(k − d(k))+Φ jω(k) (6.65)

The main design result is established by the following theorem

Theorem 6.17 Given the delay sample number β j . System (6.65) is delay-dependent
asymptotically stable if there exist matrices 0 < X t = X , 0 < W t = W,
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0 < S t = S, 0 < Z t = Z, Y, Kd , Ks, and a scalars γ > 0 such that the
following convex optimization problem is feasible

min
Xs ,Ws ,Y js

γ 2, subject to

Π̂ =
⎡
⎣ Π̂oj Π̂aj Π̂v j

• Π̂cj Π̂w j

• • Π̂z j

⎤
⎦ < 0 (6.66)

where

Π̂o =
⎡
⎣
−Xs + βWs 0 X At

s j + Y t
js Bt

j
• −Ws Xs Dt

j
• • Xs − I

⎤
⎦

Π̂cj =
⎡
⎣−γ

2 I +Φ t
jΦ j 0 0

• −S 0
• • −Z

⎤
⎦ , Π̂aj =

⎡
⎣
Xs Gt

jΦ j 0 0
Xs H t

jΦ j 0 0
0 0 0

⎤
⎦

Πv j =
⎡
⎣
Xs At

j + Y t
js Bt

j Xs At
j + Y t

js Bt
j − I Xs At

j + Y t
js Bt

j
Xs Dt

j Xs Dt
j Xs Dt

j
I I I

⎤
⎦

Πw j =
⎡
⎣

Γ t
j Γ t

j Γ t
j

K t
d j Bt

j K t
d j Bt

j K t
d j Bt

j
K t

s j Bt
j K t

s j Bt
j K t

s j Bt
j + I

⎤
⎦

Πs = diag[−X − 2X + S − 2X + Z] (6.67)

Moreover, the PSD feedback gains are given by

Koj = Y jX−1
j , Kd j , Ksj

Proof Extending on (6.49), we introduce the augmented LKF :

Vc(k) = Vso(k)+ Vsa(k)+ Vsc(k)+ δt (k)Sδ(k)+ σ t (k)Zσ(k) (6.68)

where 0 < S t = S, 0 < Z t = Z are weighting matrices. It is straightforward to
show that

ΔVso(k) = [Asj x(k)+ B j (Kd jδ(k)+ Ksjσ(k))+ D j x(k − d(k))+ Γ jω(k)]tP
×[Asj x(k)+ B j (Kd jδ(k)+ Ksjσ(k))+ D j x(k − d(k))+ Γ jω(k)]
−xt (k)Px j (k) (6.69)

Observe that ΔVsc(k) and ΔVsa(k) are given by (6.52) and (6.52), respectively. So
that
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ΔVc(k) = Vso(k)+ Vsa(k)+ Vsc(k)+ [x(k + 1)− x(k)]tS[x(k + 1)− x(k)]
−δt (k)Sδ(k)+ [x(k + 1)+ σ(k)]tZ[x(k + 1)+ σ(k)]
−σ t (k)Zσ(k) (6.70)

From (6.65), we have

x(k + 1)− x(k) = (Asj − I )x(k)+ D j x(k − d(k))+ B j [Kd j δ(k)+ Ksj σ(k)]
+Γ jω(k) (6.71)

x(k + 1)+ σ(k) = Asj x(k)+ B j Kd j δ(k)+ (B j Ksj + I ) σ (k)+ D j x(k − d(k))

+Γ jω(k) (6.72)

Substituting (6.71) and (6.72) into (6.70), using (6.52), (6.54), and (6.69), we cast
ΔVc(k) into the form

ΔVc(k) ≤ ξ t (k) Π j ξ(k),

ξ(k) = [
xt (k) xt (k − d(k)) ωt (k) δt (k) σ t (k)

]t (6.73)

where

Π j =
⎡
⎣Πoj Πaj Πv j

• Πcj Πw j

• • Πs j

⎤
⎦

Πaj =
[

0 0
0 0

]
, Πcj =

[−S 0
• −Z

]

Πoj =
⎡
⎢⎣
βQ− Ps 0 At

s j
• −Q Dt

j

• • P−1
j

⎤
⎥⎦ , Πv j =

⎡
⎣

At
s j At

s j − I At
s j

Dt
j Dt

j Dt
j

I I I

⎤
⎦

Πw j =
⎡
⎣

Γ t
j Γ t

j Γ t
j

K t
d j Bt

j K t
d j Bt

j K t
d j Bt

j
K t

s j Bt
j K t

s j Bt
j K t

s j Bt
j + I

⎤
⎦

Πs j = diag[−P−1
j − S−1 − Z−1] (6.74)

The sufficient condition of stability ΔVc(k) < 0 implies that Π < 0. Following
parallel development to the foregoing section and considering the performance mea-
sure

J =
∞∑
j=0

(
zt ( j)z( j)− γ 2ωt ( j)ω( j)

)
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we arrive at

zt ( j)z( j)− γ 2ωt ( j)ω( j) +ΔVs |(6.47)

= [G j x( j)+ Hj x( j − d( j))+Φ jω( j)]t [G j x j + Hj x( j − d( j))+Φ jω( j)]
−γ 2ωt ( j)ω( j)

= ξ t
j Π̃ ξ j (6.75)

where ΔVc(k)|(6.65) defines the Lyapunov difference along with the solutions of
system (6.65) and

Π̃ j =
⎡
⎣ Π̃oj Π̃aj Πv j

• Π̃cj Πw j

• • Πs j

⎤
⎦ , Π̃aj =

⎡
⎣

Gt
jΦ j 0 0

Ht
jΦ j 0 0
0 0 0

⎤
⎦

Π̃cj =
⎡
⎣−γ

2 I +Φ t
jΦ j 0 0

• −S 0
• • −Z

⎤
⎦

Π̃o =
⎡
⎣
βQ− Ps + Gt

j G j Gt
j Hj At

s j
• −Q+ Ht

j Hj Dt
o

• • P−1 − I

⎤
⎦ (6.76)

Using the linearizations

Xs = P−1
s , Ws = P−1

s QP−1
s , KojXs = Y

along with the algebraic inequalities

−XS−1X ≤ 2X − S, −XZ−1X ≤ 2X − Z

we first expand Π̃ j via Schur complements and then apply the congruence transfor-
mation

[X , X , I, I, I, I, I, X , X ]

Finally we obtain the desired LMI (6.66). This leads to

zt
j z j − γ 2wt

jw j +ΔVj |(6.65) < 0

for arbitrary j ∈ [0,∞), which implies for any w( j) ∈ �2(0,∞) �= 0 that J < 0.
This eventually leads to ||zk ||2 < γ ||wk ||2 and hence the proof is completed. �

Remark 6.18 In the following corollary, an interesting case is derived:

Corollary 6.19 System (6.62) is delay-dependent asymptotically stable if there exist
matrices 0 < X t

s = Xs, 0 < S t = S, 0 < Z t = Z, Y js, Kd , Ks, and a scalar
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γ > 0 such that the following convex optimization problem is feasible

min
Xs ,Y js

γ 2, subject to

Π =
⎡
⎣Πoj Π̂aj Π̂v j

• Π̂cj Π̂w j

• • Π̂z

⎤
⎦ < 0 (6.77)

where

Πoj =
[−Xs Xs At

j + Y t
js Bt

j
• Xs − I

]
, Π̂aj =

⎡
⎣Xs Gt

jΦ j 0 0
0 0 0
0 0 0

⎤
⎦

Π̂cj =
⎡
⎣−γ

2 I +Φ t
jΦ j 0 0

• −S 0
• • −Z

⎤
⎦ (6.78)

Moreover, the PSD feedback gains are given by

Ks = YX−1, Kd , Ks

This can be obtained from Theorem 6.17 by setting Do ≡ 0, Ed ≡ 0, Gdo ≡ 0.
Much like the continuous-time case, there are two additional cases corresponding to
proportional-summation (PS) and proportional-difference (PD) controllers. These
can be readily derived by setting Kd and Ks, respectively, in all of the foregoing
results.

Illustrative Example D

Consider a linear discrete-time delay system in the form (6.45) consisting of two
subsystems with the following coefficients:

A1 =
[

0.7001 0.0002
0.0799 0.9505

]
, D1 =

[
0.1501 0.0001
−0.1001 −0.1002

]

B1 =
[

0.6001
−0.5011

]
, Γ1 =

[
0.1005
−0.0204

]

G1 =
[

0.2010 0.1011
]
, H1 =

[−0.4989 0.3001
]
, Φ1 = 0.8005

A2 =
[

0.7001 0.0002
−0.0799 0.9001

]
, D2 =

[
0.1401 0.0001
−0.0401 −0.0501

]

B2 =
[−0.7001

0.4001

]
, Γ2 =

[
0.0805
−0.0104

]

G2 =
[

0.4001 −0.1001
]
, H2 =

[−0.2001 −0.3001
]
, Φ1 = 0.4001
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Using the LMI-solver Scilab-5.1.1, the feasible solution of Theorem 6.13 with
dm = 2 is given by

γ = 2.8765, dM = 8

Ko1 =
[−0.0693 −0.0871

]
, Ko12 =

[−0.3015 0.2415
]

On the contrary, the feasible solution of Theorem 6.17 is summarized by

γ = 1.1743, dM = 8

Ko1 =
[−0.0582 −0.0883

]
, Kd1 =

[−0.0945 0.0688
]

Ks1 =
[

0.2142 −0.1562
]

Ko2 =
[−0.0713 −0.0914

]
, Kd2 =

[−0.0905 0.0935
]

Ks2 =
[

0.2906 −0.0181
]

The closed-loop state trajectories under state feedback are plotted in Fig. 6.1 and
those under PSD feedback control are plotted in Fig. 6.2. It should be observed
that although all the state trajectories settle down to zero level, the state trajectories
under PSD feedback control are more damped with smaller time to settlement. This
emphasizes the effectiveness of the PSD feedback control since it has three degrees
of freedom or feedback gains.
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Fig. 6.1 State trajectories under state-feedback controller
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Fig. 6.2 State trajectories under PSD feedback controller

6.3 Notes and References

In view of the numerous papers and articles on switched time-delay systems,
we have selected to cover in this chapter the synthesis of three-term stabiliza-
tion methods. This corresponds to proportional-integral-derivative (PID) feed-
back in the continuous-time format and to proportional-summation-difference
(PSD) feedback, respectively. The main vehicle has been the constructive use of
Lyapunov–Krasovskii functional under arbitrary switching. Different stabilization
and feedback control methods are examined in the next chapters.



Chapter 7
Delay-Dependent Switched Control

7.1 Continuous-Time Systems

In this chapter, we continue the discussion about delay-dependent switched feed-
back techniques and compare among their merits, features, and computational
requirements. We pay equal attention to both continuous-time and discrete-time
systems.

7.1.1 Introduction

Among the large variety of problems investigated in the literature is the stability
analysis and feedback control synthesis of switched systems under arbitrary switch-
ing sequences. Recent reported results are found in [56] using multiple Lyapunov
functions for nonlinear systems and in [42] employing switched Lyapunov func-
tions. Of particular interest in this paper is the class of switched time-delay (STD)
systems, which have widespread engineering applications including network control
systems [170] and power systems [47].

Some theoretical studies were recently conducted for STD systems. In [425],
L2-gain properties for a class of symmetric HTD systems are examined under arbi-
trary switching. In [396], the focus was on asymptotic stability conditions for STD
systems. In [26–28, 31], feedback control design results are developed for discrete-
time STD systems. While [23, 25] treated constant delays thereby leading to delay-
independent results, the work of [370] studied the stability and L2-gain prob-
lems of STD systems with time-varying delays. They have not discussed feedback
stabilization.

In this chapter, we focus on the robust problems of delay-dependent stability,
performance analysis, and H2/H∞ stabilization for STD systems under arbitrary
switching as well as average-dwell time. Improved solutions to these problems in
terms of feasibility testing of linear matrix inequalities (LMIs) are developed based
on selective Lyapunov–Krasovskii functionals (LKFs) for linear STD systems. We
consider the time-delay factor as a differentiable time-varying function satisfying
some bounding relations and derive the solution for nominal and polytopic mod-
els as well as identifying several existing results as special cases. Robust control

M.S. Mahmoud, Switched Time-Delay Systems,
DOI 10.1007/978-1-4419-6394-9_7, C© Springer Science+Business Media, LLC 2010
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synthesis is used to design switched feedback schemes, based on state feedback,
to guarantee that the corresponding closed-loop system enjoys the delay-dependent
robust stability with an L2 gain smaller that of a prescribed constant level.

7.1.2 Problem Statement

We consider the following class of linear switched time-delay systems:

ẋ(t) = Aσ(t)x(t)+ Adσ(t)x(t − τ)+ Bσ(t)u(t)+ Γσ(t)w(t)

z(t) = Gσ(t)x(t)+ Dσ(t)u(t)+Φσ(t)w(t)

y(t) = Cσ(t)x(t)+ Fσ(t)u(t)+ Ψσ(t)w(t)

x(φ) = β(φ), φ ∈ [−τ, 0] (7.1)

where x(t) ∈ �n is the state vector, u(t) ∈ �m is the control input, w(t) ∈ �q is the
disturbance input which belongs to L2[0,∞), y(t) ∈ �p is the measured output,
and z(t) ∈ �q is the controlled output. The matrices Aσ ∈ �n×n , Bσ ∈ �n×m,

Gσ ∈ �q×n, Dσ ∈ �q×m, Fσ ∈ �p×m, Adσ ∈ �n×n, Φσ ∈ �q×q , Ψσ ∈
�p×q , Γσ ∈ �n×q are real and known constant matrices.

Extending on [177], model (7.1) represents the continuous (state) portion of lin-
ear hybrid systems. σ(t) : [0,∞) −→ S = {1, 2, . . . , S} is the switching signal
that excites a particular mode at any given time instant. It may be determined via
selective procedure leading to a partition of the continuous-state space [333]. Let
S denote the set of all selective rules. Therefore, the linear hybrid system under
consideration is composed of S subsystems; each of which is activated at partic-
ular switching instant. For a switching mode i ∈ S, the associated matrices are
{Ai , ..., Ψi }.

Now, define the indication function

ξ(t) = [
ξ1(t), ... ξN (t)

]t
, ξi (t) =

{
1, σ (t) = i
0, otherwise

Then, the hybrid time-delay system (7.1) can be written as

ẋ(t) =
S∑

i=1

ξi (t)Ai x(t)+
S∑

i=1

ξi (t)Adi x(t − τ)+
S∑

i=1

ξi (t)Bi u(t)

+
S∑

i=1

ξi (t)Γiw(t)

y(t) =
S∑

i=1

ξi (t)Ci x(t)+
S∑

i=1

ξi (t)Di u(t)+
S∑

i=1

ξi (t)Ψiw(t)

z(t) =
S∑

i=1

ξi (t)Gi x(t)+
S∑

i=1

ξi (t)Fi u(t)+
S∑

i=1

ξi (t)Φiw(t) (7.2)
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We investigate the problems of delay-dependent analysis and control synthesis
for a class of linear continuous-time switched systems with time-varying delays.
Constructive use of switched Lyapunov functional is the main vehicle for deriving
the main results. For a switching mode i ∈ S, the associated matrices {Ai , ..., Ψi }
contain uncertainties represented by a real convex-bounded polytopic model of the
type

⎡
⎣ Ai Adi Bi Γi

Ci 0 Di Ψ j

Gi 0 Fi Φi

⎤
⎦ :=

{ Mi∑
p=1

λi p

⎡
⎣ Aip Adi Bip Γi p

Cip 0 Dip Ψi p

Gip 0 Dip Φi p

⎤
⎦ , i ∈ S

}
(7.3)

where λi = (λi1, λi2, ..., λi Mi ) ∈ Λi belongs to the unit simplex of Mi vertices

Λi
Δ=

{
λi :

Mi∑
p=1

λi p = 1 , λik ≥ 0

}
(7.4)

where {Aip, ..., Φi p, p = 1, ..., Mi } are known real constant matrices of appropri-
ate dimensions which describe the j th nominal subsystem.

The delay factor τ(t) in system (7.2) is time varying and continuously uniformly
bounded, τ(t) ∈ [0, τ ∗]
Remark 7.1 The state delay τ(t) appearing in the switched system dynamics (7.2)
are frequently encountered in several system applications, including networked
control systems, chemical processes, population dynamics, and economic systems
[237]. It should be emphasized from the theory of delay differential equations that
the existence of the solutions of a nonswitched linear delay system is guaranteed by
a continuous and piecewise differentiable initial condition. This is carried over to
linear switched delay systems since the state does not experience any jump at the
switching instants.

In the absence of control input (u(.) ≡ 0), system (7.2) reduces to a free switched
system

ẋ(t) =
S∑

i=1

ξi (t)Ai x(t)+
S∑

i=1

ξi (t)Adi x(t − τ)+
S∑

i=1

ξi (t)Γiw(t)

y(t) =
S∑

i=1

ξi (t)Ci x(t)+
S∑

i=1

ξi (t)Ψiw(t)

z(t) =
S∑

i=1

ξi (t)Gi x(t)+
S∑

i=1

ξi (t)Φiw(t) (7.5)

In the sequel, we consider two performance measures:
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(A) The H2 performance measure:

J2 =
[ ∫ ∞

0
yt (s)y(s) ds

]
(7.6)

(B) The H∞ performance measure:

J∞(w) =
∫ ∞

0
[zt (s)z(s)− γ 2 wt (s)w(s)] ds (7.7)

for a prescribed scalar γ > 0. The objective of this paper is to develop delay-
dependent methods for asymptotic stability and switched feedback control design
of system (7.2) using the foregoing measures.

7.1.3 Delay-Dependent Stability

In this section, a model transformation will be used to exhibit the delay-dependent
dynamics. We introduce the following state transformation

β(t) = x(t)+
∫ t

t−τ

S∑
i=1

ξi (t)Adi x(s)ds (7.8)

into (7.2) to yield

β̇(t) =
S∑

i=1

ξi (t) Ãi x(t)+
S∑

i=1

ξi (t)Bi u(t)+
S∑

i=1

ξi (t)Γiw(t),

Ãi = Ai + Adi (7.9)

Define the augmented state vector ζ t (t) = [β t (t) xt (t)] . By combining (7.8) and
(7.9), we obtain the transformed system

ζ̇ (t) =
S∑

i=1

ξi (t)Λiζ(t)+
∫ t

t−τ

S∑
i=1

ξi (t)Υi ζ(s)ds +
S∑

i=1

ξi (t)E1 Bi u(t)

+
S∑

i=1

ξi (t)Γ̄iw(t)

y(t) =
S∑

i=1

ξi (t)C̄iζ(t)+
S∑

i=1

ξi (t)C̄diζ(t − τ)+
S∑

i=1

ξi (t)Di u(t)

+
S∑

i=1

ξi (t)Ψiw(t)
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z(t) =
S∑

i=1

ξi (t)Ḡiζ(t)+
S∑

i=1

ξi (t)Ḡdiζ(t − τ)+
S∑

i=1

ξi (t)Fi u(t)

+
S∑

i=1

ξi (t)Φiw(t)

ζ(t) = φ̄(t), t ∈ [−2τ, 0] (7.10)

where for i ∈ S

Γ̄ =
[
Γi

0

]
, E1 =

[
I
0

]
, E2 =

[
0
I

]
, Ḡt

i =
[

0
Gt

i

]
, Ḡt

di =
[

0
Gt

di

]

Λi =
[

0 Ãi

−I I

]
, Υi =

[
0 0
0 Adi

]
, C̄ t

i =
[

0
Ct

i

]
C̄ t

di =
[

0
Ct

di

]
(7.11)

For convenience, we introduce the matrices

P̄i = UPi , U =
[

I 0
0 0

]
, Pi =

[
Pσ i Poi

Pdi Pxi

]
, i ∈ S (7.12)

Two theorems are established in the sequel to show that the stability behavior of
system (7.2) (or equivalently (7.10)) is related to the existence of a positive definite
solution of a family of linear matrix inequalities (LMIs).

Theorem 7.2 Given the delay bound τ ∗ > 0. System (7.10) is robustly stable if
there exist matrices {P}Ni , {Q}Ns , Pσ i > 0, Pdi , Pxi and scalar γ > 0 satisfying
the system of LMIs ∀(i, s) ∈ S

⎡
⎢⎢⎣
Πai Πbi Πci Ḡt

i• −τ ∗Qs 0 0
• • −γ 2 I Φi

• • • −I

⎤
⎥⎥⎦ < 0 (7.13)

where

Πai =
[−Pdi − Pt

di −Pxi + Pt
di + Pt

σ i Ãi

• Pxi + Pt
xi + Pt

oi Ãi + Ãt
i Poi + τ Qs

]
,

Πbi =
[
τ ∗Pt

ds Adi

τ ∗Pt
xs Adi

]
, Πci =

[
Pt
σ i Γ̄i

0

]
(7.14)

Proof First, we establish the asymptotic stability of system (7.2). Let the selective
Lyapunov functional V (·) of the transformed system Σo be selected as

V (ζ ) = Vo(ζ )+ Vd(ζ )
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Vo(ζ ) = ζ t (t)

(
S∑

i=1

ξi (t)P̄i

)
ζ(t), Pi > 0, i ∈ S

Vd(ζ ) =
∫ t

t−τ(t)

∫ t

t+φ
ζ t (s)E2

(
S∑

i=1

ξi (t)Qi

)
Et

2ζ(s) dαds

Qi > 0, i ∈ S (7.15)

Since the weighting matrices Pi > 0, Qi > 0, it follows that V (ζ ) > 0. Now
using (7.10), (7.11), and (7.12), we get

V̇o(ζ ) = 2ζ t (t)

(
S∑

i=1

ξi (t)P t
i U

)
ζ̇ (t) = 2β t (t)

(
S∑

i=1

ξi (t) P t
σ i

)
β̇(t)

= 2ζ t (t)

(
S∑

i=1

ξi (t) P t
i

)[
β̇(t)

0

]

= 2ζ t (t)

(
S∑

i=1

ξi (t) P t
i

)[ ∑S
i=1 ξi (t)( Ãi x(t)+ Γiw(t))

−β(t)+ x(t)+ ∫ t
t−τ

∑S
i=1 ξi (t)Adi x(s)ds

]

= 2ζ t (t)

(
S∑

i=1

ξi (t) P t
i Λi

)
ζ(t)+ 2ζ t (t)

(
S∑

i=1

ξi (t) P t
i Γ̄i

)
w(t)

+ 2ζ t (t)
∫ t

t−τ

(
S∑

i=1

ξi (t) P t
i Υi

)
ζ(θ) dθ

V̇d(ζ ) = τ ζ t (t)

(
S∑

i=1

ξi (t)E2Qi Et
2

)
ζ t (t)

−
∫ t

t−τ
ζ t (t)

(
S∑

i=1

ξi (t)E2Qi Et
2

)
ζ(t) dθ (7.16)

Under arbitrary switching [42], it follows for any nonzero vector x(t) that a particu-
lar case is ξi (t) = 1, ξm �=i (t) = 0, ξs(t − τ) = 1, and ξm �=s(t − τ) = 0. Therefore,
with some algebraic manipulations, it follows from (7.7) and (7.15), and (7.16) that

V̇ (ζ ) + zt (t)z(t)− γ 2wt (t)w(t)

= 2ζ t (t)Λt
iPiζ(t)+ 2ζ t (t)P t

i Γ̄iw(t)

+ τ ζ t (t)E2Qs Et
2ζ

t (t)+ 2
∫ t

t−τ
ζ t (t)P t

sΥiζ(θ) dθ
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−
∫ t

t−τ
ζ t (θ)E2Qs Et

2ζ(θ) dθ − γ 2 wt (s)w(s)

+
[

Ḡiζ(t)+Φiw(t)

]t[
Ḡiζ(t)+Φiw(t)

]
(7.17)

Using the algebraic inequality 2ρtπ ≤ ρt Ψ ρ + π t Ψ−1 π for any real vectors
π , ρ, and any matrix Ψ t = Ψ > 0 with appropriate dimensions, we have

2
∫ t

t−τ
ζ t (t)P t

sΥsζ(θ) dθ = 2
∫ t

t−τ
ζ t (t)P t

s E2 Adi x(θ) dθ

≤ τζ t (t)P t
s E2 AdiQ−1

s At
di Et

2P t
sζ(t)+

∫ t

t−τ
xt (s)Qs x(s) ds

< τζ t (t)P t
s E2 AdiQ−1

s At
di Et

2Psζ(t)+
∫ t

t−τ
ζ t (t)E2Qs Et

2ζ(θ) dθ (7.18)

In terms of ξ t = [ζ t wt ], it follows from (7.17) and (7.18) on using Schur
complements that

V̇ (ζ ) + zt (t)z(t)− γ 2wt (t)w(t)

< 2ζ t (t)Λt
iPiζ(t)+ 2ζ t (t)P t

i Γ̄iw(t)+ τ ζ t (t)E2Qs Et
2ζ

t (t)

+
[

Ḡiζ(t)+Φiw(t)

]t[
Ḡiζ(t)+Φiw(t)

]

+ τζ t (t)P t
s E2 AdiQ−1

s At
di Et

2Psζ(t)− γ 2 wt (s)w(s)

=
[
ζ(t)
w(t)

]t

Ωi

[
ζ(t)
w(t)

]
ξ t Ωi ξ

Ωi =
[
Ξi + Ḡt

i Ḡi P t
i Γ̄i + Ḡt

iΦi

• −γ 2 I +Φ t
i Φi

]

Ξi = Λt
iPi + P t

i Λi + τ E2Qs Et
2 + τP t

s E2 AdiQ−1
s At

di Et
2Ps (7.19)

Thus, it follows that J∞(w) < 0 ([27], pp. 91) if the following LMI holds:

⎡
⎢⎢⎣
Λt

iPi + P t
i Λi + τ E2Qs Et

2 τP t
s E2 Adi P t

i Γ̄i Ḡt
i• −τQs 0 0

• • −γ 2 I Φi

• • 0 −I

⎤
⎥⎥⎦ < 0 (7.20)

By taking w(t) ≡ 0, Γ ≡ 0, Φ ≡ 0, we obtain the following inequality from (7.20)

V̇ (ζ ) < ζ t (t)

[
Λt

iPi + P t
i Λi + τ E2Qs Et

2 + Ḡt
i Ḡi
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+ τP t
s E2 AdiQ−1

s At
di Et

2Ps

]
ζ(t) (7.21)

whose right side is always negative under (7.20). Thus we conclude that V̇ (ζ ) < 0
for all ζ �= 0. This implies that x → 0 as t → ∞. By Schur complements to
LMI (7.20) and using (7.10), (7.11), and (7.12) we obtain LMIs (7.13) and (7.14)
for all τ ≤ τ ∗ and hence system (7.10) is asymptotically stable with disturbance
attenuation γ > 0. �

Remark 7.3 It is known [237] that the descriptor model addressed here is a slow-
type state-transformation where the dynamics of x is faster than σ in the augmented
vector ζ and the relative dynamics of state components are implicit in the analysis.
This is in contrast of the descriptor approach of [66] which is a fast-type state trans-
formation employed for nonswitching systems. We note that the application of the
algebraic inequality 2ρtπ ≤ ρt Ψ ρ + π t Ψ−1 π has not introduced additional
matrix variables. Alternatively, methods based on the use of modified inequality like
[324, 370] hinges on the incorporation of an extra term in the Lyapunov–Krasovskii
functional plus the introduction of three additional matrix variables and a nonstrict
matrix inequality. In this regard, the computational load utilizing these methods
would generally be costlier.

Illustrative Example A

To demonstrate the advantages of the new transformation, consider a switched sys-
tems composed of two time-delay models given by

A1 =
[ −1 0.5
−0.5 −1

]
, Ad1 =

[−2 2
−2 −2

]
, Γ1 =

[
1
0

]
, Gt

1 =
[

0.2
0.2

]
, Φ1 = 0.4

A2 =
[−1.1 0.4
−0.4 −0.9

]
, Ad2 =

[−1 1
−1 −1

]
, Γ2 =

[
0
1

]
, Gt

2 =
[

0.3
0.1

]
, Φ2 = 0.6

Table 7.1 summarizes the computational results of different pairs (γ, τ ∗) from
which it is clear that as τ ∗ is decreased, the minimum value of γ rendering feasible
solutions increases.

Table 7.1 Results of illustrative example A

Method γ τ ∗

Theorem 7.2 1.469 0.325
2.856 0.271
3.473 0.228
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Illustrative Example B

A switched continuous time-delay model consists of two identical models with the
data coefficient given by

i = 1, 2

Ai =
[−1.9 0

0 −1

]
, Adi =

[−0.9 0
−1 −1.1

]
, Bi =

[
0.2
1.3

]
, Γi =

[
0.3
0.2

]

Ci = [1 0] , Gi = [0.1 0.1] , Di = 0.4 , Fo = 0.6 , Φ = 0.5

Application of Theorem 7.2 shows that this switched system is asymptotically
stable with disturbance level γ = 3.247 for all τ ≤ 2.642.

7.1.4 State-Feedback Design

We now exploit the results developed in the foregoing section to design a delay-
dependent switched-state feedback controller based on different criteria. Common
to the design methods is the use of the feedback law

u(t) =
S∑

i=1

ξi (t) Ki x(t) = [0
S∑

i=1

ξi (t) Ki ]ζ(t)

Δ=
S∑

i=1

ξi (t) K̄iζ(t) (7.22)

to derive the closed-loop system

(Σk) : ζ̇ (t) =
S∑

i=1

ξi (t) Λkiζ(t)+
∫ t

t−τ

S∑
i=1

ξi (t) Υi ζ(s)ds

+
S∑

i=1

ξi (t) Γ̄iw(t)

y(t) =
S∑

i=1

ξi (t) C̄kiζ(t), z(t) =
S∑

i=1

ξi (t) Ḡkiζ(t)

+
S∑

i=1

ξi (t) Φiw(t)

ζ(t) = φ̄(t), t ∈ [−2τ, 0] (7.23)
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where

Λki =
[

0 Ãi + Bi Ki

−I I

]
= Λi + E1 Bi K̄i ,

C̄ki = C̄i + Di K̄ , Ḡk = Ḡi + Fi K̄i (7.24)

For convenience, we introduce the block matrix

Yi = P−1
i =

[
Yσ i Yoi

Ydi Yxi

]
(7.25)

7.1.5 H∞ Feedback Design

By considering the H∞ performance (7.7), the following theorems summarize the
main results:

Theorem 7.4 Given the delay bound τ ∗ > 0. The H∞ state-feedback controller
(7.22) renders system (Σk) asymptotically stable with a disturbance attenuation
level γ for all w(t) ∈ L2[0,∞) if there exist matrices {Y}N1 , {Q̄}N1 , {Z}N1 , {L}N1
satisfying the system of LMIs

⎡
⎢⎢⎢⎢⎣

Ωai Ωbi Ωci Ωdi Y t
di• −Qs 0 0 Y t
xi• • −γ 2 I Φi 0

• • • −I 0
• • • • −Qs

⎤
⎥⎥⎥⎥⎦ < 0 (7.26)

subject to

[
(Li + Lt

i )/2 (Zi + Y t
xi )/2

• (Ydi + Y t
di )/2

]
≥ 0

[
(Li − Lt

i )/2 (Zi − Y t
xi )/2

• (Ydi − Y t
di )/2

]
≥ 0 (7.27)

where

Ωai =
[
Ydi Ãt

i + ÃiYdi + BiZi + Z t
i Bt

i −Y t
σ i + Y t

di + ÃiYxi + BiLi

• Y t
xi + Yxi − Y t

oi − Yoi

]

Ωdi =
[
Y t

di G
t
i + Z t

i Ft
i

Y t
xi G

t
i + Lt

i Ft
i

]
, Ωbi =

[
0

τ AdiQs

]
, Ωci =

[
Γi

0

]
(7.28)

The switched H∞-controller feedback gain is given by Ki = ZiY−1
di , i ∈ S

Proof It follows from Theorem 7.2 that system (Σk) is asymptotically stable with
a disturbance attenuation level γ if the following LMI
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⎡
⎢⎢⎣
Λt

kiPi + P t
i Λki + τ E2Qs Et

2 τP t
s E2 Adi P t

i Γ̄i Ḡt
ki• −τQs 0 0

• • −γ 2 I Φi

• • 0 −I

⎤
⎥⎥⎦ < 0 (7.29)

has a feasible solution. Using (7.24) and (7.25) and applying the congruence trans-
formation

IC = diag[P−1
i , I, I, I ], P−1

i = Yi , i ∈ S

under arbitrary switching, LMI (7.29) becomes

⎡
⎢⎢⎣
Y t

i Λ
t
ki +ΛkiYi + τ Y t

i E2Qs Et
2Yi τ E2 Adi Γ̄i Y t

i Ḡt
ki• −τQs 0 0

• • −γ 2 I Φi

• • 0 −I

⎤
⎥⎥⎦ < 0 (7.30)

Defining Q̄s = Q−1
s allows us to deal with the quadratic terms like Y t

xiQ−1
s Yxi via

Schur complements. Then introducing the linearizations KiYxi = Li and KiYdi =
Zi , which constrain the choice of Li and Zi via the inequality

[
Li Zi

Yxi Ydi

]
≥ 0

to limit the selection of the gain Ki to single value. To put the foregoing inequal-
ity in a standard LMI, we express it in the form (7.27). Finally, using (7.11) and
(7.25) with some standard manipulations, we readily obtain LMIs (7.26) – subject
to (7.28). �

Remark 7.5 Indeed, there are other ways to handle the multiple values of the state-
feedback gain through the introduction of relaxation variables, invoking bilinear
matrix inequalities or iterative LMI procedure. It is felt however that the imposed
constraint (7.27) provides less conservative results.

7.1.6 H2 Feedback Design

By considering the H2 performance (7.6), the following theorems summarize the
main results:

Theorem 7.6 Given the delay bound τ ∗ > 0. In the absence of input disturbance
w(t) ≡ 0, the switched state-feedback controller (7.22) is an H2-optimal controller
for system (Σk) if there exist matrices {Y}N1 , {Q}N1 , {Z}N1 , {L}N1 satisfying the
system of LMIs
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⎡
⎣Σai Σbi Σ f i

• −Qs 0
• • −I

⎤
⎦ < 0 (7.31)

subject to

[ (
Li + Lt

i

)
/2

(
Zi + Y t

xi

)
/2

• (
Ydi + Y t

di

)
/2

]
+

[ (
Li − Lt

i

)
/2

(
Zi − Y t

xi

)
/2

• (
Ydi − Y t

di

)
/2

]
≥ 0

(7.32)

where

Σai =
[
Ydi Ãt

i + ÃiYdi + BiZi + Z t
i Bt

i −Y t
σ i + Y t

di + ÃiYxi + BiLi

• Y t
xi + Yxi − Y t

oi − Yoi

]

Σbi =
[

0
τ AdiQs

]
, Σ f i =

[
Y t

di C
t
i + Z t

i Dt
i

Y t
xi C

t
i + Lt

i Dt
i

]
(7.33)

The H2-controller feedback gain is given by Ki = ZiY−1
di , i ∈ IN. An upper

bound on the H2 performance measure is given by

J2 ≤ J+ Δ=
[
ζ t (0)

S∑
i=1

ξi (t) P̄iζ(0)

+ τ

∫ 0

−τ
ζ t (s)E2

N∑
s=1

ξs(t) Qs Et
2ζ(s) ds

]1/2

(7.34)

Proof To establish the system stability, we consider the Lyapunov functional (7.14)
for system (Σk) with w ≡ 0. As a consequence of Theorem 7.2, it is not difficult
to see that

V̇ (ζ ) < ζ t (t)

[
Λt

kiPi + P t
i Λki + τ E2Qs Et

2 + τP t E2 AdQ−1
s At

di Et
2P

]
ζ(t)

(7.35)

For asymptotic stability and since C̄ t
ki C̄ki ≥ 0, it is sufficient that

⎡
⎣Λt

kiP + P tΛki + τ E2Qs Et
2 τP t E2 Adi C̄ t

ki• −Qs 0
• • −I

⎤
⎦ < 0 (7.36)

and thus we conclude that V̇ (ζ ) < 0 for all ζ �= 0 and V̇ (ζ ) ≤ 0 for all ζ . Now, by

applying the congruence transformation IC = diag
[
P−1

i , I, I, I
]
, P−1

i = Yi
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to (7.36) along with the linearizations KiYxi = Li , KiYdi = Zi and using (7.11)
and (7.25), we readily obtain LMI (7.31) subject to (7.28) and (7.33).

Next, we examine the H2 performance. By considering (7.35) and (7.36), it fol-
lows that

V̇ (ζ ) < −yt (t)y(t)

Integrating both sides over the range [0, t f ], we obtain

−
∫ t f

0
yt (r)y(r)dr > ζ t (t f )

S∑
i=1

ξi (t) P̄iζ(t f )− ζ t (0)
S∑

i=1

ξi (t) P̄iζ(0)

+
∫ t f

t f−τ

∫ t f

−θ
ζ t (s)E2

N∑
s=1

ξs(t) Qs Et
2ζ(s) dsdθ

+
∫ 0

−τ

∫ 0

−θ
ζ t (s)E2

N∑
s=1

ξs(t) Qs Et
2ζ(s) dsdθ (7.37)

In view of the asymptotic stability of system (Σk) and letting t f −→∞, we have

ζ t (t f )

S∑
i=1

ξi (t) P̄iζ(t f ) −→ 0

∫ t f

t f−τ

∫ t f

−θ
ζ t (s)E2

N∑
s=1

ξs(t) Qs Et
2ζ(s) dsdθ −→ 0

and therefore (7.37) reduces to

∫ ∞

0
yt (r)y(r)dr ≤ ζ t (0)

S∑
i=1

ξi (t) P̄iζ(0)

+
∫ 0

−τ

∫ t

t+θ
ζ t (s)E2

N∑
s=1

ξs(t) Qs Et
2ζ(s) dsdθ �⇒

||y||2 ≤
[
ζ t (0)

S∑
i=1

ξi (t) P̄iζ(0)

+ τ

∫ 0

−τ
ζ t (s)E2

N∑
s=1

ξs(t) Qs Et
2ζ(s) ds

]1/2

= J+ (7.38)

and the proof is completed. �
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Remark 7.7 Had we considered the delayed-state feedback-control law

u(t) =
S∑

i=1

ξi (t) Kdi x(t − τ)

we would have used the state transformation as

β(t) = x(t)+
∫ t

t−τ

S∑
i=1

ξi (t) [Adi + Bi Kdi ] x(s)ds (7.39)

On substituting (7.39) into (7.1), it yields

β̇(t) =
S∑

i=1

ξi (t) [ Ãi + Bi Kdi ] x(t)+
S∑

i=1

ξi (t) Γiw(t) (7.40)

A little algebra gives the transformed system:

(Σdk) : ζ̇ (t) =
S∑

i=1

ξi (t) Λdkiζ(t)+
∫ t

t−τ

S∑
i=1

ξi (t) Υi ζ(s)ds

+
S∑

i=1

ξi (t) Γ̄ iw(t)

z(t) =
S∑

i=1

ξi (t) Ḡiζ(t)+
S∑

i=1

ξi (t) Φiw(t)

ζ(s) = κ̄(s), s ∈ [−2τ, 0] (7.41)

where

Λdki =
[

0 Ãi + Bi Kdi

−I I

]
(7.42)

Taking into account the matrices of (7.24) and (7.25), we could have established a
result parallel to that of Theorems 7.4 and 7.6 by using Ki → Kdi , i ∈ S. It is
thus not surprising to find that the results on both instantaneous and delayed state
feedback are equivalent. This, in fact, strengthens the state transformations (7.8) or
(7.39) as vehicles to derive pertinent delay-dependent dynamic models.



7.1 Continuous-Time Systems 183

7.1.7 Simultaneous H2/H∞ Design

Extending on the foregoing results, we consider below the simultaneous H2/H∞
control design problem [161, 168], which can be formally phrased as

Determine a state-feedback controller that achieves the minimization of H2 per-
formance measure (7.5) and satisfying an H∞ norm bound within a scalar γ .

Technically, the control objective is to minimize the output energy of y(t) sat-
isfying the prescribed H∞ norm bound of the feedback system from w(t) to z(t).
A solution to the delay-dependent simultaneous H2/H∞ control for switched time-
delay systems is established by the following theorem:

Theorem 7.8 Given the delay bound τ ∗ > 0 and a prescribed constant γ > 0. The
switched state-feedback controller (7.22) with gain matrix Ki = ZiY−1

di , i ∈ S
is a simultaneous H2/H∞ controller satisfying the performance measure (7.7) for
system (Σk) if there exist matrices {Y}N1 , {Q}N1 , {Z}N1 , {L}N1 , W, X , {R}N1
such that the system of generalized eigenvalue problem

min

[
λ+ T r(W)

]

subject to LMIs (7.26), (7.27), and (7.28), (7.31), (7.32), and (7.33)

[−W X t

• Rs

]
< 0 ,

[−λ φ̄t (0)E1
• Yxi

]
< 0, ∀(i, s) ∈ S (7.43)

has a feasible solution

Proof On observing that

ζ t (0)
S∑

i=1

ξi (t) P̄iζ(0)
Δ= λ �⇒

−λ + φ̄t (0)E1

S∑
i=1

ξi (t) Y−1
σ i Et

1φ̄(0) < 0 (7.44)

and in similar way using the cyclic properties of matrix trace

∫ 0

−τ
ζ t (s)E2

S∑
i=1

ξs(t) Qs Et
2ζ(s)ds

=
∫ 0

−τ(0)
T r

[
xt (s)

S∑
i=1

ξs(t) Qs x(s)

]
ds

= T r

[
XX t

S∑
i=1

ξs(t) Qs

]
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= T r

[
X t

S∑
i=1

ξs(t) R−1
s X

]
< T r(W) �⇒

−W + X t
S∑

i=1

ξs(t) R−1
s X < 0 (7.45)

where XX t = ∫ 0
−τ(0) xt (s)x(s)ds. Under arbitrary switching and utilizing the

results of Theorems 7.4 and 7.6 and achieving the objective of simultaneous
H2/H∞ control leads to the minimization of

[
λ+ T r(W )

]
subject to LMIs (7.26),

(7.27), and (7.28) and (7.31), (7.32), and (7.33). Relations (7.44) and (7.45) are
expressed by LMI (7.43), which completes the proof. �

Illustrative Example C

The following switched time-delay model is considered for state-feedback design:

A1 =
[

0 0
0 1

]
, Ad1 =

[−1 −1
0 −0.9

]
, B1 =

[
0
1

]
, Γ1 =

[
1
1

]

G1 = [1 0], D1 = 0.4 , F1 = 0.2 , Φ1 = 0.4

A2 =
[

0 1
0 1

]
, Ad2 =

[−1 −1
0 −0.9

]
, B2 =

[
0
1

]
, Γ2 =

[
1
1

]

G2 = [1 0], D2 = 0.6 , F2 = 0.4 , Φ2 = 0.6

In Table 7.2, we provide the results of some methods to compute the state feed-
back gain

It is interesting to see that the computational results of Table 7.2 are in full agree-
ment with those of the foregoing examples.

Table 7.2 Results of Example 4.1

Method γ τ ∗ Ki

Theorem 7.4 2.201 1.882 −0.1045 −1.591
−0.2284 −1.824

Theorem 7.4 1.671 2.648 −3.435 −0.764
−1.318 −1.753

Theorem 7.6 1.823 1.963 −3.358 −1.024
−1.273 −1.842

Theorem 7.6 1.588 2.745 −2.667 −1.405
−2.143 −1.426

Theorem 7.8 2.051 1.875 −1.462 −1.981
−1.534 −1.955

Theorem 7.8 1.444 3.125 −1.502 −1.977
−1.604 −1.988
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Remark 7.9 The results developed in this paper can be extended in a straightfor-
ward manner to the case of linear time-delay systems with real convex polytopic
uncertainties of the form:

[
Ao Ad Bo Co Go

]
∈ Ξ

Δ=
{[

Ao(α) Ad(α) Bo(α) Co(α) Go(α)

]

=
υ∑

j=1

α j [Aoj Ad j Boj Coj Goj

]
,

υ∑
j=1

α j = 1 , α j ≥ 0

}

by simply developing the different theorems at each of the υ vertices and solving the
resulting system of LMIs. Along similar lines, dynamic output feedback controllers
could be designed. Research results on these topics and others will be reported
shortly.

7.2 Discrete-Time Systems

Switched models containing continuous and discrete states that affect their dynamic
behavior are frequently occurring in many physical systems, including a variety
of power systems [389], chemical processes [41], and mechanical systems [47]. A
wide class of switched systems composed of several discrete subsystems and a rule
that governs the switching between these subsystems has received great attention in
the past decade because of the fast development in computing technologies, which
helped improve the efficiency of switching between systems or controllers [28, 42,
47, 174, 193] and the references cited therein.

Delay-dependent methods are usually developed to take the information about
time delay into consideration in the process of controller design. By and large,
delay-dependent methods are regarded as more practical and yield less conservative
designs. Results pertaining to discrete-time systems with state delay are found in
[25, 159, 213, 273, 345, 393] for nonswitching systems and in [41, 50, 217, 432,
437, 439] for topics on classes of switching systems.

7.2.1 Introduction

In [368], a descriptor-transformation plus a free-weighting equation are employed
to study a class of linear switched discrete-time systems with mode-dependent
bounded delays. Delay-independent LMI-based stability and state-feedback sta-
bilization conditions are derived in [298]. Robust H∞ control and stabilization
based on multiple Lyapunov functions is provided in [149] for a class of lin-
ear switched continuous-time systems. The results of [50] extended the method
of [368] to time-varying delays and bypassed the shortcomings of the descriptor
transformation; however, the solution conditions are expressed into nonstrict LMIs.
Later on in [372], the stability analysis was undertaken for a class of differentiable
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time-delay functions thereby generalized the results of [50, 368]. However, employ-
ing a bounding inequality paves the way to ample extensions. In [169], the focus was
on formulating a switching rule to stabilize a given switched system with time delay
using a common Lyapunov functional method. By using a suitable discretization,
the work of [138] converted a linear switched continuous-time system into a linear
switched delay-dependent discrete-time system and hence developed a robust con-
trol synthesis. Recent developments can be found in [76, 88, 90, 130, 297], where
delay-dependent stability method was provided in [76] for sufficiently small delay.
In [90], stabilization strategies for a class of switched discrete-time systems based
on trajectory independent and trajectory dependent were developed using the notion
of average dwell time. For a class of continuous-time systems with time-varying
delays, methods for exponential switched stability and stabilization methods were
presented in [130] using Riccati-like equations. In [297], the problem of design-
ing state-feedback controllers for a class of continuous-time systems was addressed
using arbitrary switching rules. It appears from the available results thus far that
stability and stabilization problems of classes of nonlinear switched discrete-time
systems have received little attention.

Therefore, in this section, inspired by the results of [279, 424, 438], we study
a class of nominally linear switched discrete-time systems with time-varying
delays, bounded nonlinearities satisfying some Lipschitz conditions and real convex
bounded parametric uncertainties in all system matrices. Specifically, the problems
of robust delay-dependent L2 gain analysis and control synthesis are investigated
for Lipschitz-type nonlinear switched systems under arbitrary switching sequences.
We develop new criteria for delay-dependent stability and feedback stabilization for
such class of switched state-delay systems. The main vehicle is the constructive use
of an appropriate switched Lyapunov functional coupled with Finsler’s Lemma and
a free-weighting parameter matrix. The delay-dependent L2 gain analysis is utilized
to characterize linear matrix inequality (LMI)-based conditions under which the
linear switched state-delay system with polytopic uncertainties is robustly asymp-
totically stable with an L2 gain smaller than a prescribed constant level. Then, robust
control synthesis is used to design switched-feedback schemes, based on state-,
output-measurements or by using dynamic output feedback, to guarantee that the
corresponding closed-loop system enjoys the delay-dependent robust stability with
an L2 gain smaller than a prescribed constant level. Several significant results for
classes of discrete-time switched systems are derived as special cases.

7.2.2 Problem Statement

We consider a class of nonlinear switched discrete-time systems with state-delay
described by

xk+1 = Aσ xk + Adσ xk−dk + Bσuk + Γσwk

+ fσ (xk, k)+ hσ (x(k − dk), k), σ ∈ S
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xk = αk, k = −d̄,−d̄ + 1, ..., 0 (7.46)

yk = Cσ xk + Cdσ xk−dk (7.47)

zk = Gσ xk + Gdσ xk−dk + Dσuk +Φσwk (7.48)

where xk ∈ �n is the state; uk ∈ �m is the control input; wk ∈ �q is the disturbance
input which belongs to �2[0,∞), yk ∈ �p is the measured output; zk ∈ �r is the
controlled output. The state delay dk appearing in the hybrid system dynamics is
frequently encountered in several system applications, including networked control
systems, chemical processes, population dynamics, and economic systems [216]. In
the sequel, it is assumed that dk is time varying and satisfying d ≤ dk ≤ d̄ ,
where the bounds d > 0 and d̄ > 0 known are constant scalars. The initial con-
dition sequence {αk, k = −d̄,−d̄ + 1, ..., 0} is given. The unknown functions
fσ = fσ (xk, k) ∈ �n, hσ = hσ (xk, k) ∈ �n are vector-valued time-varying non-
linear perturbations with fσ (0, t) = 0, hσ (0, t) = 0 ∀ t and satisfy the following
Lipschitz condition for all (x, k), (x̂, k) ∈ �n ×�:

|| fσ (xk, k)− fσ (x̂k, k)|| ≤ α ||F(xk − x̂k)||
||hσ (xk−dk , k)− hσ (x̂k−dk , k)|| ≤ β ||H(xk−dk − x̂k−dk )|| (7.49)

for some constant β > 0 and F ∈ �n×n, H ∈ �n×n are constant matrices. Note as
a consequence of (7.49), we have

|| fσ (xk, k)|| ≤ α ||F xk ||, ||hσ (xk−dk , k)|| ≤ β ||H xk−dk || (7.50)

Equivalently stated, condition (7.49) implies that

[
f t
σ (xk, k) fσ (xk, k)− α2xt

k Ft Fxk

]
≤ 0

[
ht
σ (xk−dk , k)hσ (xk−dk , k)− β2xt

k−dk
Ht H xk−dk

]
≤ 0 (7.51)

Extending on [174], model (7.46), (7.47), and (7.48) represents the continuous
(state) portion of a nonlinear hybrid system. The particular mode σ at any given
time instant may be a selective procedure characterized by a switching rule of the
form

σk+1 = δ(σk, xk), δ : S ×�n → S (7.52)

The function δ(.) is usually defined using a partition of the continuous-state space.
Let S denote the set of all selective rules. Therefore, the linear hybrid system under
consideration is composed of N subsystems; each of which is activated at a par-
ticular switching instant. For a switching mode i ∈ S, the associated matrices
{Ai , ..., Φi } contain uncertainties represented by a real convex bounded polytopic
model of the type
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⎛
⎝

⎡
⎣ Ai Bi Adi Γi

Ci Cdi

Gi Gdi Di Φi

⎤
⎦ ,

[
fi

hi

]⎞
⎠ Δ=

⎧⎨
⎩

⎛
⎝ Mi∑

p=1

λ j p

⎡
⎣ Aip Bip Adi Γi p

Cip Cdip

Gip Gdip Dip Φi p

⎤
⎦

Mi∑
p=1

λi p

[
fip

hip

]⎞
⎠ , i ∈ S

⎫⎬
⎭ (7.53)

where λi = (λi1, λi2, ..., λi Mi ) ∈ Λ j belongs to the unit simplex of Mi vertices

Λ j
Δ=

⎧⎨
⎩λ j :

Mi∑
p=1

λi p = 1 , λi p ≥ 0

⎫⎬
⎭ (7.54)

where Aip, ..., Φi p, p = 1, ..., Mi are known real constant matrices of appropriate
dimensions, which describe the linear portion of the i th nominal subsystem:

xk+1 = A j xk + Ad j xk−dk + B j uk + Γ jwk + f j (xk, k)+ h j (x(k − dk), k)

xk = αk, k = −d̄,−d̄ + 1, ..., 0 (7.55)

yk = C j xk + Cd j xk−dk (7.56)

zk = G j xk + Gd j xk−dk + D j uk +Φ jwk (7.57)

Remark 7.10 As indicated in [438], the polytopic-type uncertainty in (7.53) and
(7.54) can be used to describe the parametric uncertainty more precisely, and cover
wider classes of uncertainties than the norm-bounded uncertainty. In fact, (7.53)
and (7.54) is a generalization of the so-called matching condition. It is important
to note that if the lower and upper delay bounds in the become identical, that is,
d = d̄ = d, then the time delay becomes a constant delay. Also, if dk only changes
when the system mode is switched then the time delay becomes a mode-dependent
constant delay; thus the time-varying delay considered here covers the previous two
cases.

Definition 7.11 Systems (7.46), (7.47), and (7.48) with w(.) ≡ 0, u(.) ≡ 0 is said to
be delay-dependent asymptotically stable, if it is asymptotically stable in the sense
of Lyapunov for the prescribed delay range d ≤ dk ≤ d̄ . If this occurs for all admis-
sible uncertainties satisfying (7.53) and (7.54), then it is called delay-dependent
robustly asymptotically stable. If in addition it satisfies ||zk ||2 < γ ||wk ||2, then it
achieves a prescribed disturbance attenuation level γ .

Definition 7.12 Systems (7.46), (7.47), and (7.48) under the feedback control
u(t) = U (x(t)) with w(.) ≡ 0 is said to be delay-dependent asymptotically sta-
bilizable, if the closed-loop system is asymptotically stable in the sense of Lyapunov
for the prescribed delay range d ≤ dk ≤ d̄. If this takes place for all admissible
uncertainties satisfying (7.53) and (7.54), then it is called delay-dependent robustly
asymptotically stabilizable. If in addition it satisfies ||zk ||2 < γ ||wk ||2, then it
achieves a prescribed disturbance attenuation level γ .
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Our purpose hereafter, in the light of Definitions 7.11 and 7.12, is to develop
robust criteria for delay-dependent asymptotic stability and stabilization of system
(ΣJ ) and then design appropriate L2 feedback controllers that guarantee robust
delay-dependent asymptotic stability with a prescribed performance measure.

7.2.3 Delay-Dependent L2 Gain Analysis

In this section, we derive robust criteria for delay-dependent asymptotic stability
of system (ΣJ ). The major thrust is based on the fundamental stability theory of
Lyapunov, which states that for asymptotic stability, it suffices to find a Lyapunov
function candidate Vσ (xk, k) > 0, ∀xk �= 0, k ∈ Z satisfying ΔVσ (xk, k) =
Vσ (xk+1, k + 1) − Vσ (xk, k) < 0. We apply this theorem hereafter under arbitrary
switching. The following theorem summarizes the main result.

Theorem 7.13 Given d̄ > 0 and d > 0. Switched systems (7.46), (7.47), and (7.48)
with uk ≡ 0 is delay-dependent asymptotically stable with an L2 − gain < γ if
there exist matrices 0 < P t

j = P j , 0 < P t
s = Ps, X̂ j , 0 < Qt = Q, 0 < W t =

W, {M j , j = 1, ..., 5}, ∀( j, s) ∈ S and scalars γ > 0, σ > 0, κ > 0 satisfying
the LMIs for ( j, s) ∈ S

X̂ j Ã j + Ãt
j X̂ t

j + P̃js < 0 (7.58)

P̃js =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ps + d̄W M1 − d̄W −M1 0 0 −d̄M1 0
• −Ξ2 −M2 −Mt

2 Mt
4 Mt

5 −d̄M2 Gt
j

• • −Ξ3 −Mt
4 −Mt

5 −d̄M3 Gt
d j

• • • −σ I 0 −d̄M4 0
• • • • −κ I −d̄M5 0
• • • • • −d̄W Φ t

j
• • • • • • −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.59)

Ξ2 = P j − (d̄ − d + 1)Q− d̄W −M2 −Mt
2 − σα2 Ft F

Ξ3 =M3 +Mt
3 +Q− κβ2 Ht H, Ã j =

[−I A j Ad j I I 0 Γ j
]

(7.60)

Proof In the sequel, we use ξm = xm+1 − xm and consider the following switched
Lyapunov–Krasovskii functional

V (k)
Δ= Va(k)+ Vb(k)+ Vc(k)+ Vd(k)

Va(k) = xt
k Pj xk, Vb(xk, k) =

k−1∑
j=k−dk

xt
j Qx j
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Vc(k) =
−d+1∑

m=−d̄+2

k−1∑
j=k+m−1

xt
j Qx j , Vd(k) =

−1∑
m=−d̄

k−1∑
j=k+m

ξ t
j Wξ j

0 < Pt
j = Pj , 0 < Qt = Q, 0 < W t =W (7.61)

Define ΔV (k) = V (k + 1)− V (k), along with the solution of (7.55) we obtain for
all ( j, s) ∈ S × S

ΔVa(k) = xt
k+1 Ps xk+1 − xt

k Pj xk (7.62)

ΔVb(k) =
k∑

m=k−dk+1+1

xt
m Qxm −

k−1∑
j=k−dk

xt
j Qx j

= xt
k Qxk − xt

k−dk
Qxk−dk +

k−1∑
m=k−dk+1+1

xt
m Qxm

−
k−1∑

m=k−dk+1

xt
m Qxm

≤ xt
k Qxk − xt

k−dk
Qxk−dk +

k−d∑
m=k−d̄+1

xt
m Qxm (7.63)

ΔVc(k) = (d̄ − d) xt
k Qxk −

k−d∑
m=k−d̄+1

xt
m Qxm (7.64)

ΔVd(k) ≤ d̄(xk+1 − xk)
t W(xk+1 − xk)− d̄

k−1∑
m=k−d̄

ξ t
m Wξm (7.65)

Note that in (7.62), the case when j = s shows that the switched system is described
by the j th mode, whereas the case j �= s represents that the switched system is at
the switching times from mode j to mode s [42].

Since xk−dk = xk −∑k−1
m=k−dk

ξm, then for free-weighting parameter matrices
Mp, p = 1, . . . , 5, we have

x̂(k,m) = [
xt

k+1 xt
k xt

k−dk
f t ht ξ t

m
]t
, M̂ = [

Mt
1 Mt

2 Mt
3 Mt

4 Mt
5 0

]t

Ŝ = [
0 I −I 0 0 −dk I

]
(7.66)

such that the following equation holds

2
k−1∑

j=k−dk

x̂ t (k,m) M̂Ŝ x̂(k,m) = 0 (7.67)
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On considering (7.62), (7.63), (7.64), and (7.65) in the light of (7.61) for dk ≤
d̄, wk ≡ 0, it is not difficult to show that ΔV (k) < 0 is equivalent to the following
set of inequalities:

k−1∑
m=k−dk

x̂ t (k,m) P̂s j x̂(k,m) < 0, (s, j) ∈ N ×N

P̂ js =

⎡
⎢⎢⎢⎢⎢⎢⎣

−P j + d̄W M1 − d̄W −M1 0 0 −d̄M1

• −Ξ2 −M2 −Mt
2 Mt

4 Mt
5 −d̄M2

• • −Ξ3 −Mt
4 −Mt

5 −d̄M3

• • • −σ I 0 −d̄M4

• • • • −κ I −d̄M5

• • • • • −d̄W

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.68)

More importantly, in view of (7.46) with uk ≡ 0, wk ≡ 0, we have

Â j x̂(k,m) = 0 (7.69)

where Â j corresponds to Ã j in (7.60) with Γ j ≡ 0. Application of the Finsler’s
Lemma to (7.68) and (7.69) with x̂(k, j) ≡ x, P̂s j ≡ P, Âs ≡ Z t , X̂s ≡ B, and
and taking into account (7.51) via the S-procedure, we readily obtain LMI (7.58) as
desired, which establishes the asymptotic stability.

Consider the performance measure

JK =
K∑

j=0

(
zt

j z j − γ 2wt
jw j

)

For any wk ∈ �2(0,∞) �= 0 and zero initial condition xo = 0, we have

JK ≤
K∑

j=0

(
zt

j z j − γ 2wt
jw j +ΔV ( j)

)

Standard algebraic manipulation using (7.48) leads to

zt
j z j − γ 2wt

jw j +ΔV ( j) = x̃ t (k,m) P̃ js x̃(k,m)

x̃(k,m) = [̂
xt (k,m) wt

k

]t (7.70)

and P̃ js is given by (7.59). It follows from [279] for the switched system (7.46),
(7.47), and (7.48) to be asymptotically stable with an L2 − gain < γ that zt

j z j −
γ 2wt

jw j + ΔV ( j) < 0, ∀ j ∈ {0, K } holds for arbitrary switching, which in turn
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implies that JK < 0. The desired asymptotic stability result is achieved by Finsler’s
Lemma and LMI (7.58) subject to (7.59). �
In the sequel, we provide several robust stability results in terms of the following
corollaries:

Corollary 7.14 Given d̄ > 0 and d > 0. Switched system (7.46), (7.47), and (7.48)
with uk ≡ 0 and vertex representation (7.53) and (7.54) is delay-dependent asymp-
totically stable with an L2 − gain < γ if there exist matrices 0 < P t

j = P j , 0 <

P t
s = Ps, X̂ j , 0 < Qt = Q, 0 < W t = W, {M j , j = 1, ..., 5}, ( j, s) ∈
{1, 2, ...} and scalars γ > 0, σ > 0, κ > 0 satisfying the following LMIs for
( j, s) ∈ S

X̂ j Ã j p + Ãt
j p X̂ t

j + P̃ j ps < 0 (7.71)

P̃jps =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ps + d̄W M1 − d̄W −M1 0 0 −d̄M1 0
• −Ξ2p −M2 −Mt

2 Mt
4 Mt

5 −d̄M2 Gt
jp

• • −Ξ3 −Mt
4 −Mt

5 −d̄M3 Gt
d jp

• • • −σ I 0 −d̄M4 0
• • • • −κ I −d̄M5 0
• • • • • −d̄W Φ t

j p
• • • • • • −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.72)

Ξ2p = Pjp − (d̄ − d + 1)Q− d̄W −M2 −Mt
2 − σα2 Ft F,

Ã jp =
[−I A jp Ad jp I I 0 Γ j p

]
(7.73)

Proof Obtained from Theorem 7.13 by using the vertex representation (7.53) and
(7.54) to get (7.72) from (7.59).
blacksquare

Corollary 7.15 Given d̄ > 0 and d > 0. Switched system (7.46), (7.47), and (7.48)
with uk ≡ 0 is delay-dependent asymptotically stable if there exist matrices 0 <

P t
j = P j , 0 < P t

s = Ps, X̂ j , 0 < Qt = Q, 0 < W t = W, {M j , j =
1, ..., 5}, ∀( j, s) ∈ S and scalars σ > 0, κ > 0 satisfying the following LMIs for
( j, s) ∈ S

X̂ j A j + A
t
j X̂ t

j + P̃ js < 0 (7.74)

P̃js =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Ps + d̄W M1 − d̄W −M1 0 0 −d̄M1

• −Ξ2 −M2 −Mt
2 Mt

4 Mt
5 −d̄M2

• • −Ξ3 −Mt
4 −Mt

5 −d̄M3

• • • −σ I 0 −d̄M4

• • • • −κ I −d̄M5

• • • • • −d̄W

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.75)

A j =
[−I A j Ad j I I 0

]
(7.76)
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Proof Obtained from Theorem 7.13 by substituting wk ≡ 0, Γi ≡ 0, and Φ ≡ 0.

Remark 7.16 We note from that the L2− gain under arbitrary switching can be
looked as the worst-case energy amplitude gain for switched system (7.53) and
(7.54) over all possible inputs, switching signals, and all admissible uncertainties.
The functional (7.61) is called a switched Lyapunov functional (SLF) since it has
the same switching signals as system (7.46), (7.47), and (7.48), which is known to
yield less conservative results than the constant Lyapunov functional

xt
k Pxk xt

k +
k−1∑

j=k−dk

xt
j Qx j +

−d+1∑
m=−d̄+2

k−1∑
j=k+m−1

xt
j Qx j +

−1∑
m=−d̄

k−1∑
j=k+m

ξ t
j Wξ j .

.

Remark 7.17 Among the novel features of the developed approach is the arbitrary
selection of the matrix X̃ j , which helps much in the feedback stabilization later on
as well as in the numerical simulation. Another feature is the strong delay depen-
dence of the stability criteria through the upper bound d̄ and the number of delayed
samples as represented by d̄ − d + 1.

Remark 7.18 The main stability result is derived from feasibility testing in the
enlarged state space in contrast with similar techniques [50, 138, 217, 273, 279,
368, 432]. The novelty of our approach relies on the deployment of Finsler’s Lemma
in conjunction with a set of free-weighting matrices without using bounding tech-
niques to ensure that the system matrices are readily separated from the Lyapunov
matrices. This decoupling feature simplifies numerical implementation and, as will
be shown in the subsequent sections, paves the way to flexible feedback stabilization
synthesis. A simple comparison would support our intuition that the LMI results are
less conservative and in the nonswitching case are superior than the existing meth-
ods [345]. The optimal L2− gain of switched system (7.46), (7.47), and (7.48) can
be determined by solving the following convex minimization problem over LMIs:

Minimize γ

s.t. LMIs (7.58) and (7.59), ∀ ( j, s) ∈ S × S
P j , Ps, X̂ j , Q, W, {M j , j = 1, ..., 5}, ∀( j, s) ∈ S, γ > 0, σ > 0, κ > 0

which can be conveniently solved by the existing software [74].

Stability results for the linear switched system

xk+1 = A j xk + Ad j xk−dk + B j uk + Γ jwk

xk = αk, k = −d̄,−d̄ + 1, ..., 0 (7.77)

yk = C j xk + Cd j xk−dk + Ψ jwk (7.78)

zk = G j xk + Gd j xk−dk + D j uk +Φ jwk (7.79)

is provided by the following theorem
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Theorem 7.19 Given d̄ > 0 and d > 0. Switched system (7.46), (7.47), and (7.48)
with uk ≡ 0 is delay-dependent asymptotically stable with an L2 − gain < γ if
there exist matrices 0 < P t

j = P j , 0 < P t
s = Ps, X̂ j , 0 < Qt = Q, 0 < W t =

W, {M j , j = 1, ..., 5}, ( j, s) ∈ {1, 2, ...} and a scalar γ > 0 satisfying the LMIs
for ( j, s) ∈ S

X̂ j A j + At
j X̂ t

j + P̃ js < 0 (7.80)

P̃js =

⎡
⎢⎢⎢⎢⎢⎣

−Ps + d̄W M1 − d̄W −M1 −d̄M1 0
• −Ξ̂2 −M2 −Mt

2 −d̄M2 Gt
j

• • −Ξ3 −d̄M3 Gt
d j

• • • −d̄W Φ t
j

• • • • −γ 2 I

⎤
⎥⎥⎥⎥⎥⎦

(7.81)

Ξ̂2 = Pj − (d̄ − d + 1)Q− d̄W −M2 −Mt
2,

Ξ̂3 =M3 +Mt
3 +Q, A j =

[−I A j Ad j 0 Γ j
]

(7.82)

Proof Obtained from Theorem 7.13 by substituting f ≡ 0, h ≡ 0. �

Illustrative Example D

Consider the following second-order system where the switching occurs between
four modes described by the following coefficients

A1 =
[

0.7 0.09
0 0.35

]
, Ad1 =

[
0.1 0
0 0.1

]
, Γ1 =

[
0.3
−0.3

]

G1 =
[

0.25
0.15

]
, Gd1 =

[ −0.1
−0.01

]
, Φ1 = 0.01

|| f1(xk, k)|| ≤ α1||xk ||, ||h1(xk, k)|| ≤ β1||xk−dk ||, |α1| ≤ 0.1, |β1| ≤ 0.1

A2 =
[

0.41 0.11
0 0.97

]
, Ad3 =

[
0 0.05
0 −0.15

]
, Γ2 =

[
0.2
−0.02

]

G2 =
[

0.22
0.13

]
, Gd2 =

[
0

0.03

]
, Φ2 = 0.02

|| f2(xk, k)|| ≤ α2||xk ||, ||h2(xk, k)|| ≤ β2||xk−dk ||, |α2| ≤ 0.3, |β2| ≤ 0.3

A3 =
[

0.6 0.02
0 0.49

]
, Ad2 =

[−0.1 0.01
−0.1 −0.1

]
, Γ3 =

[
0.01
0.1

]

G3 =
[

0.17
0.19

]
, Gd3 =

[
0.05

0

]
, Φ3 = 0.02

|| f3(xk, k)|| ≤ α1||xk ||, ||h3(xk, k)|| ≤ β3||xk−dk ||, |α3| ≤ 0.4, |β3| ≤ 0.2

A4 =
[−0.33 0.22

0 −0.45

]
, Ad4 =

[
0 0.25
0 −0.05

]
, Γ2 =

[
0.1
−0.02

]
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G4 =
[

0.22
0.13

]
, Gd4 =

[
0

0.01

]
, Φ4 = 0.02

|| f4(xk, k)|| ≤ α4||xk ||, ||h4(xk, k)|| ≤ β4||xk−dk ||, |α4| ≤ 0.5, |β4| ≤ 0.4

In the implementation of Theorem 7.13, we start by assigning a value for the
lower bound d and seek the maximum allowable value for the upper bound d̄ ren-
dering feasible solution. For each pair (d, d̄), we record the performance bound γ .
A summary of the computations of applying Theorem 7.13 such that the above
switched system is asymptotically stable is depicted in Table 7.3.

Table 7.3 Computational summary of illustrative example D

d d̄ γ

2 6 2.145
3 8 2.663
4 10 2.874
5 12 3.114
6 13 3.219
4 16 2.874
8 18 3.534

7.2.4 Switched Feedback Design

Extending on the last section, we examine here the problem of switched feed-
back stabilization using either switched state-feedback or output-feedback design
schemes.

With reference to system (7.46), (7.47), and (7.48), we consider that the arbitrary
switching rule σ(.) activate subsystem j at instant k. Our objective herein is to
design a switched state feedback uk = K j xk at i ∈ S mode such that the closed-
loop system

xk+1 = [A j + B j K j ]xk + Ad j xk−dk + Γ jwk + f j (xk, k)+ h j (x(k − dk), k)

= Ā j xk + Ad j xk−dk + Γ jwk (7.83)

zk = [G j + D j K j ]xk + Gd j xk−dk +Φ jwk

= Ḡ j xk + Gd j xk−dk +Φ jwk (7.84)

is delay-dependent asymptotically stable with an L2 − gain < γ . It follows from
Theorem 7.13 that system (7.83) and (7.84) is delay-dependent asymptotically sta-
ble with an L2 − gain < γ if there exist matrices 0 < P t

j = P j , 0 < P t
s =

Ps, X̂ j , 0 < Qt = Q, 0 < W t = W, {M j , j = 1, ..., 7}, ( j, s) ∈ {1, 2, ...}
and scalars γ > 0, σ > 0, κ > 0 satisfying the LMIs for ( j, s) ∈ S

X̃ jA j +At
j X̃ t

j + P js < 0 (7.85)
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P js =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ps + d̄W M1 − d̄W −M1 0 0 −d̄M1 0
• −Ξ2 −M2 −Mt

2 Mt
4 Mt

5 −d̄M2 Ḡt
j

• • −Ξ3 −Mt
4 −Mt

5 −d̄M3 Gt
d j

• • • −σ I 0 −d̄M4 0
• • • • −κ I −d̄M5 0
• • • • • −d̄W Φ t

j
• • • • • • −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.86)

A j =
[−I Ā j Ad j I I 0 Γ j

]
(7.87)

The following theorem states the main result on switched state feedback

Theorem 7.20 Given d̄ > 0 and d > 0. Switched system (7.83) and (7.84) is delay-
dependent asymptotically stable with an L2 − gain < γ if there exist matrices
0 < Xt

j = X j , 0 < Xt
s = Xs, Y j , 0 < S t = S, 0 < Rt = R, Υ, Λ, {Θ j , j =

1, .., 7}, ( j, s) ∈ {1, 2, ..} and scalars γ > 0, σ > 0, κ > 0 satisfying the LMIs
for ( j, s) ∈ S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Δ1s Δ2 j Δ3 j Λ Λ −d̄Θ1 Γ j 0
• −Δ4 j Δ5 Θ t

4 Θ t
5 −d̄Θ2 ΛGt

j Θ6

• • −Δ6 −Θ t
4 −Θ t

5 −d̄Θ3 ΛGt
d j 0

• • • −σ I 0 −d̄Θ4 0 0
• • • • −κ I −d̄Θ5 0 0
• • • • • −d̄S Φ t

j 0
• • • • • • −γ 2 I 0
• • • • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (7.88)

Δ1s = Λ+Λt + Xs − d̄S, Δ2 j = A jΛ
t + B j Y j +Θ1 − d̄S

Δ4 j = X j − (d̄ − d + 1)R− d̄S −Θ2 −Θ t
2, Δ3 j = Ad jΛ

t −Θ1

Δ6 = Θ3 +Θ t
3 +R−Θ7, Δ5 = −Θ2 −Θ t

2 (7.89)

Moreover, the switched state-feedback gain is given by K j = Y jΥ
−t .

Proof Define X̃ j =
[
Υ t 0 0 0 0 0 0

]t
, Υ ∈ �n×n and let Y j = K jΥ

t . Applying
the congruence transformation

T = diag[Λ, Λ, Λ, Λ, Λ,Λ, I ], Λ = Υ −1

to inequality (7.85) using (7.86) and (7.87) and the linearizations

Xs = Υ −t PsΥ
−1, S = Υ −tWΥ −1, {Θ}51 = Υ −t {M}51Υ −1, X j = Υ −t PjΥ

−1,

Θ6 = σαΥ −t Ft , Θ7 = κβ tΥ −t H t HΥ −1

we immediately obtain LMI (7.88) subject to (7.89). �
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Remark 7.21 The optimal switched state feedback with L2−gain for system (7.83
and 7.84) can be determined by solving the following convex minimization problem
over LMIs:

Minimize γ

s. t. LMIs (7.88), ∀ ( j, s) ∈ S × S
X j , Xs, Y j , S, R, Υ, Λ, {Θ j , j = 1, ..7}, γ > 0, σ > 0, κ > 0

In the case of polytopic representation (4.30) and (4.31), the corresponding convex
minimization problem takes the form

Minimize γ

wrt X j , Xs, Y j , S, R, Υ, Λ, {Θ}71, γ > 0, σ > 0, κ > 0

the LMIs

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Δ1s Δ2 j Δ3 j Λ Λ −d̄Θ1 Γ j p 0
• −Δ4 j Δ5 Θ t

4 Θ t
5 −d̄Θ2 ΛGt

jp Θ6

• • −Δ6 −Θ t
4 −Θ t

5 −d̄Θ3 ΛGt
d j 0

• • • −σ I 0 −d̄Θ4 0 0
• • • • −κ I −d̄Θ5 0 0
• • • • • −d̄S Φ t

j p 0
• • • • • • −γ 2 I 0
• • • • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

∀ ( j, s) ∈ S × S and p = 1, . . . , M j where Δ2 j p = A jpΛ
t + B jpY j + Θ1 −

d̄S, Δ3 j p = Ad jpΛ
t −Θ1

A state-feedback design for the linear switched system (7.77), (7.78), and (7.79)
is established below:

Theorem 7.22 Given d̄ > 0 and d > 0. Linear switched system (7.77), (7.78), and
(7.79) is delay-dependent asymptotically stable with an L2 − gain < γ if there
exist matrices 0 < Xt

j = X j , 0 < Xt
s = Xs, Y j , 0 < S t = S, 0 < Rt =

R, Υ, Λ, {Θ j , j = 1, . . . , 5}, ( j, s) ∈ {1, 2, . . .} and a scalar γ > 0 satisfying
the LMIs for ( j, s) ∈ S

⎡
⎢⎢⎢⎢⎢⎣

−Δ1s Δ2 j Δ3 j −d̄Θ1 Γ j

• −Δ4 j Δ5 −d̄Θ2 ΛGt
j

• • −Δ6 −d̄Θ3 ΛGt
d j

• • • −d̄S Φ t
j

• • • • −γ 2 I

⎤
⎥⎥⎥⎥⎥⎦

< 0 (7.90)

Δ1s = Λ+Λt + Xs − d̄S, Δ2 j = A jΛ
t + B j Y j +Θ1 − d̄S
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Δ4 j = X j − (d̄ − d + 1)R− d̄S −Θ2 −Θ t
2, Δ3 j = Ad jΛ

t −Θ1

Δ6 = Θ3 +Θ t
3 +R, Δ5 = −Θ2 −Θ t

2 (7.91)

Moreover, the switched state-feedback gain is given by K j = Y jΥ
−t .

The objective now is to design a switched output feedback uk = G j yk at mode
j ∈ S such that the closed-loop system

xk+1 = [A j + B j G j C j ]xk + [Ad j + B j G j Cd j ]xk−dk + Γ jwk

= Ǎ j xk + Ǎd j xk−dk + Γ jwk (7.92)

zk = [G j + D j G j C j ]xk + [Gd j + D j G j Cd j ]xk−dk +Φ jwk

= Ǧ j xk + Ǧd j xk−dk +Φ jwk (7.93)

is delay-dependent asymptotically with an L2− gain < γ . To proceed further, we
invoke the following assumption:

Assumption 7.1 The set of output matrices {C j , j = 1, ..., N } are of full row rank.

It is worth noting that this case can be fulfilled by deleting redundant measure-
ment components of the output variable yk . Therefore, subject to Assumption 1,
it follows from Theorem 7.13 that switched system (7.92) and (7.93) is delay-
dependent asymptotically stable if there exist matrices 0 < P t

j = P j , 0 < P t
s =

Ps, X̂ j , 0 < Qt = Q, 0 < W t = W, {M j , j = 1, . . . , 5}, ∀( j, s) ∈ S and
scalars
γ > 0, σ > 0, κ > 0 satisfying the following LMIs for all ( j, s) ∈ S

X̃ j Â j + Ât
j X̃ t

j + P̂ js < 0 (7.94)

P̂ js =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ps + d̄W M1 − d̄W −M1 0 0 −d̄M1 0
• −Ξ̂2 −M2 −Mt

2 Mt
4 Mt

5 −d̄M2 Ǧt
j

• • −Ξ̂3 −Mt
4 −Mt

5 −d̄M3 Ǧt
d j

• • • −σ I 0 −d̄M4 0
• • • • −κ I −d̄M5 0
• • • • • −d̄W Φ t

j
• • • • • • −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.95)

Ξ̂2 = P j − (d̄ − d + 1)Q− d̄W −M2 −Mt
2 − σα2 Ft F

Ξ̂3 =M3 +Mt
3 +Q− κβ2 Ht H, Â j =

[−I Ǎ j Ǎd j I I 0 Γ j
]

(7.96)

The following theorem states the main result on switched static output feedback

Theorem 7.23 Given d̄ > 0 and d > 0. Switched system (7.92) and (7.93) is delay-
dependent asymptotically stable with an L2 − gain < γ it follows that there exist
matrices 0 < X t

j = X j , 0 < X t
s = Xs, Y j , 0 < S t = S, 0 < Rt =
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R, Υ, Λ, L1 j , L2 j , E1, E2, {Θ j , j = 1, . . . , 7}, ( j, s) ∈ {1, 2, ...} and
scalars γ > 0, σ > 0, κ > 0 satisfying the following LMIs for ( j, s) ∈ S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Δ1s Δ̂2 j Δ̂3 j Λ Λ −d̄Θ1 Γ j 0
• −Δ4 j Δ5 Θ t

4 Θ t
5 −d̄Θ2 Δ̂7 j Θ6

• • −Δ6 −Θ t
4 −Θ t

5 −d̄Θ3 Δ̂8 j 0
• • • −σ I 0 −d̄Θ4 0 0
• • • • −κ I −d̄Θ5 0 0
• • • • • −d̄S Φ t

j 0
• • • • • • −γ 2 I 0
• • • • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (7.97)

C jΛ = E1C j , Cd jΛ = E2Cd j (7.98)

Δ̂2 j = A jΛ+ B j L1 j C j +Θ1 − d̄S, Δ̂3 j = Ad jΛ
t + B j L2 j Cd j −Θ1

Δ̂7 j = ΛGt
j + Ct

j Lt
1 j Dt

j , Δ̂8 j = ΛGt
d j + Ct

d j Lt
2 j Dt

j (7.99)

where Δ1s, Δ4 j , Δ5, Δ6 are given in (7.89). Moreover, the switched static output-
feedback gain is given by G j = L1 j E−1

1 .

Proof Define X̃ j =
[
Υ t 0 0 0 0 0 0

]t
, Υ ∈ �n×n . Now let

C jΛ = E1C j , L1 j = G j E1, Cd jΛ = E2Cd j , L2 j = G j E2

where Ek ∈ R p×p. In the spirit of [279], it is easy to show under Assumption 1
that the matrix E is nonsingular.1 By applying the congruence transformation

T = diag[Λ, Λ, Λ, Λ, Λ,Λ, I ], Λ = Υ −1

to inequality (4.48) using (7.95) and (7.96) and the linearizations

Xs = Υ −tPsΥ
−1, S = Υ −tWΥ −1, {Θ}51 = Υ −t {M}51Υ −1, X j = Υ −tP jΥ

−1,

Θ6 = σαΥ −t Ft , Θ7 = κβ tΥ −t H t HΥ −1

we immediately obtain the LMI (7.97). �

Remark 7.24 The optimal switched static output feedback with L2 − gain for sys-
tem (7.83) and (7.84) can be determined by solving the following convex minimiza-
tion problem over LMIs:

Minimize γ

s. t. LMIs (7.97)–(7.98), ∀ ( j, s) ∈ S × S

1 This follows since p ≥ rank[E] ≥ rank[EC j ] = rank[C jΛ] ≥ rank[(C jΛ)Λ−1] =
rank[C j ] = p
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X j , Xs, Y j , S, R, Υ, Λ, L1 j , L2 j , E1, E2, {Θ j , j = 1, . . . , 7},
γ > 0, σ > 0, κ > 0

In the case of polytopic representation (7.53) and (7.54), the corresponding convex
minimization problem takes the form

Minimize γ

wrt X j , Xs, Y j , S, R, Υ, Λ, L1 j , L2 j , E1, E2, {Θ}71,
γ > 0, σ > 0, κ > 0

the LMIs ∀ ( j, s) ∈ S × S and p = 1, . . . , M j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Δ1s Δ̂2 j Δ̂3 j Λ Λ −d̄Θ1 Γ j 0
• −Δ4 j Δ5 Θ t

4 Θ t
5 −d̄Θ2 Δ̂7 j p Θ6

• • −Δ6 −Θ t
4 −Θ t

5 −d̄Θ3 Δ̂8 j p 0
• • • −σ I 0 −d̄Θ4 0 0
• • • • −κ I −d̄Θ5 0 0
• • • • • −d̄S Φ t

j 0
• • • • • • −γ 2 I 0
• • • • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

C jΛ = E1C j , Cd jΛ = E2Cd j

Δ̂2 j p = A jpΛ+ B jp L1 j C jp +Θ1 − d̄S, Δ3 j p = Ad jpΛ
t + B jp L2 j Cd jp −Θ1

Δ̂7 j p = ΛGt
jp + Ct

jp Lt
1 j Dt

jp, Δ̂8 j p = ΛGt
d jp + Ct

d jp Lt
2 j Dt

jp

Theorem 7.25 Given d̄ > 0 and d > 0. Switched linear system (7.77), (7.78), and
(7.79) with static output-feedback uk = G j yk is delay-dependent asymptotically
stable with an L2−gain < γ it follows that there exist matrices 0 < X t

j = X j , 0 <

X t
s = Xs, Y j , 0 < S t = S, 0 < Rt = R, Υ, Λ, L1 j , L2 j , E1, E2,

{N j , j = 1, . . . , 5}, ( j, s) ∈ {1, 2, ..., S} and a scalar γ > 0 satisfying the LMIs
for ( j, s) ∈ S

⎡
⎢⎢⎢⎢⎣

−Δ1s Δ̂2 j Δ̂3 j −d̄Θ1 Γ j

• −Δ4 j Δ5 −d̄Θ2 Δ̂7 j

• • −Δ6 −d̄Θ3 Δ̂8 j

• • • −d̄S ΛΦ t
j

• • • • −γ 2 I

⎤
⎥⎥⎥⎥⎦ < 0 (7.100)

C jΛ = E1C j , Cd jΛ = E2Cd j (7.101)

Moreover, the switched static output-feedback gain is given by G j = L1 j E−1
1 .

Next, we examine the case of dynamic output feedback using a switched
observer-based controller and employ it at every mode j ∈ S of the form:
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μk+1 = A jμk + B j uk + G j [yk − C j μk]
uk = K jμk (7.102)

where the gain matrices G j ∈ �n×p and K j ∈ �m×n are to be determined. Con-
necting controller (7.102) to switched system (7.77), (7.78), and (7.79) and defining
the composite vector x̂ t

k =
[
μt

k x t
k − μt

k

]
, we get the closed-loop system

x̂k+1 = A j x̂k + Ad j x̂k−dk + Γ jwk + f̄ j + h̄ j

zk = G j x̂k + Gd j x̂k−dk +Φ jwk (7.103)

where the respective matrices are given by

A j =
[

A j + B j K j G j C j

0 A j − G j C j

]
, Ad j =

[
0 0
0 Ad j − G j Cd j

]
, Γ j =

[
0
Γ j

]

f̄ j =
[

0
f j

]
, h̄ j =

[
0

h j

]
, G j = [G j + D j K j G j ]

Gd j = [Gd j Gd j ] (7.104)

Application of Theorem 7.13 shows that switched system (7.103) is delay-
dependent asymptotically stable with an L2− gain < γ if there exist matrices
0 < P t

j = P j , 0 < P t
s = Ps, X̂ j , 0 < Q̂t = Q̂, 0 < Ŵ t = Ŵ, {N j , j =

1, . . . , 5}, ( j, s) ∈ {1, 2, ...} and scalars γ > 0, σ > 0, κ > 0 satisfying the LMIs
for ( j, s) ∈ S

X̂ j Ã j + Ãt
j X̂ t

j + P̃ js < 0 (7.105)

P̃ js =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ps + d̄Ŵ N1 − d̄Ŵ −N1 0 0 −d̄N1 0
• −Π2 −N2 −N t

2 N t
4 N t

5 −d̄N2 G
t
j

• • −Π3 −N t
4 −N t

5 −d̄N3 G
t
d j

• • • −σ I 0 −d̄N4 0
• • • • −κ I −d̄N5 0
• • • • • −d̄Ŵ Φ t

j
• • • • • • −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.106)

Ã j =
[−I A j Ad j I I 0 Γ j

]
Π2 = P j − (d̄ − d + 1)Q̂− d̄Ŵ −N2 −N t

2 − σα2 F̄ t F̄

Π3 = N3 +N t
3 + Q̂− κβ2 H̄ t H̄ (7.107)

where {N }51 are a set of free-parameter matrices that play the same role for the
composite system (7.103) as {M}51 do for system (7.77), (7.78), and (7.79). Note
that X̂ j , Q̂, Ŵ have dimensions compatible with system (7.103). To facilitate
further development, define X̂ j =

[
Υ̂ t 0 0 0 0 0 0

]t
, Υ̂ ∈ �2n×2n . Now, in order
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to benefit from the foregoing design results, we conveniently express Υ̂ and Υ̂ −1 in
the form

Υ̂ =
[
Υs 0
Υo Υc

]
, Υ̂ −1 = Λ̂ =

[
Λs 0
Υo Λc

]
, P j =

[
P1 j 0
P2 j P3 j

]

Ŝ =
[
S1 0
S2 S3

]
, R̂ =

[
R1 0
R2 R3

]
, Ψk =

[
Ψ1k 0
Ψ2k Ψ3k

]

X j = P−1
j =

[
X1 j 0
X2 j X3 j

]
[6pt] (7.108)

The following design result is established:

Theorem 7.26 Given d̄ > 0 and d > 0. Switched system (7.83) and (7.84) is
delay-dependent asymptotically stable with an L2 − gain < γ if there exist matri-
ces 0 < X t

j = X j , 0 < X t
s = Xs, Y j , 0 < Ŝ t = Ŝ, 0 < R̂t =

R̂, Υ̂ , Λ̂, Es, Ω1, Ω2, {Ψ j , j = 1, . . . , 7}, ( j, s) ∈ {1, 2, ...} and scalars
γ > 0, σ > 0, κ > 0 satisfying the LMIs for ( j, s) ∈ S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Σ1s Σ2 j Σ3 j Λ̂ Λ̂ −d̄Ψ1 Γ j 0
• −Σ4 −Σ5 Ψ t

4 Ψ t
5 −d̄Ψ2 Σ7 j Ψ6

• • −Σ6 −Ψ t
4 −Ψ t

5 −d̄Ψ3 Σ8 j 0
• • • −σ I 0 −d̄Ψ4 0 0
• • • • −κ I −d̄Ψ5 0 0
• • • • • −d̄S Φ t

j 0
• • • • • • −γ 2 I 0
• • • • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (7.109)

Σ1s =
[
Λs +Λt

s + X1s + d̄S1 Λt
o

Λo + X2s + d̄S2 Λc +Λt
c + X3s − d̄S1

]

Σ2 j =
[
Ψ11 + A jΛ

t
s + B j Y j − d̄S1 A jΛ

t
o +Ω1

Ψ21 − d̄S2 A jΛ
t
c − L1 j C j

]

Σ3 j =
[−Ψ11 0
−Ψ12 −Ψ13 + Ad jΛ

t
c − G j EcΛ

t
c

]

Σ5 =
[
Ψ21 + Ψ t

21 0
Ψ22 + Ψ t

22 Ψ23 + Ψ t
23

]

Σ4 =
[
P1s − d̂S1 −R1 − Ψ21 − Ψ t

21 0
P2s − d̂S2 −R2 − Ψ22 − Ψ t

22 P3s − d̂S3 −R3 − Ψ23 − Ψ t
23

]
,

Σ6 =
[
Ψ31 + Ψ t

31 +R1 − Ψ71 0
Ψ32 + Ψ t

32 +R2 − Ψ72 Ψ33 + Ψ t
33 +R3 − Ψ73

]
,

Σ7 j =
[
Λs Gt

j + Y t
j Dt

j
ΛoGt

j +Ω2

]
, Σ8 j =

[
Λs Gt

d j
ΛoGt

d j +ΛcGt
d j

]
(7.110)
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where d̂ = (d̄ − d + 1). Moreover, the gain matrices are given by

K j = Y jΛ
−t
s , G j = L1 j E−1

s (7.111)

Proof Applying the congruence transformation

T = diag[Λ̂, Λ̂, Λ̂, Λ̂, Λ̂, Λ̂, I ]

to inequality (7.105) using (7.106) and (7.107) and the linearizations

Xs = Υ −t PsΥ
−1, S = Υ −tWΥ −1, {Θ}51 = Υ −t {M}51Υ −1, X j = Υ −t PjΥ

−1

Ψ6 = σαΛ̂F̄ t , Ψ7 = κβ2Λ̂H̄ t H̄Λ̂t

Ω1 = B j K jΛ
t
o + G j C jΛ

t
c, Ω2 = ΛoGt

j K j +ΛcGt
j

we immediately obtain LMI (7.109) subject to (7.110). �
Remark 7.27 The optimal switched dynamic output feedback with L2 − gain for
system (7.103) and (7.104) subject to the polytopic representation (7.53) and (7.54)
can be determined by solving the following convex minimization problem over
LMIs:

Minimize γ

wrt X j ,Xs,Y j , Ŝ, R̂, Λ̂, Es, Ω1,Ω2, {Ψ j , j = 1, . . . , 7},∀( j, s) ∈ S, σ, κ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Σ1s Σ2 j p Σ3 j p Λ̂ Λ̂ −d̄Ψ1 Γ j j p 0
• −Σ4 −Σ5 Ψ t

4 Ψ t
5 −d̄Ψ2 Σ7 j p Ψ6

• • −Σ6 −Ψ t
4 −Ψ t

5 −d̄Ψ3 Σ8 j p 0
• • • −σ I 0 −d̄Ψ4 0 0
• • • • −κ I −d̄Ψ5 0 0
• • • • • −d̄S Φ t

j p 0
• • • • • • −γ 2 I 0
• • • • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

Σ2 j p =
[
Ψ11 + A jpΛ

t
s + B jpY j − d̄S1 A jpΛ

t
o +Ω1

Ψ21 − d̄S2 A jpΛ
t
c − L1 j C jp

]

Σ7 j p =
[
Λs Gt

jp + Y t
j Dt

jp
ΛoGt

jp +Ω2

]
, Σ8 j p =

[
Λs Gt

d jp
ΛoGt

d j +ΛcGt
d jp

]

Σ3 j p =
[−Ψ11 0
−Ψ12 −Ψ13 + Ad jpΛ

t
c − G jp EcΛ

t
c

]

Finally, we have the following result:

Theorem 7.28 Given d̄ > 0 and d > 0. Linear switched system (7.77), (7.78), and
(7.79) is delay-dependent asymptotically stable with an L2 − gain < γ if there
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exist matrices 0 < X t
j = X j , 0 < X t

s = Xs, Y j , 0 < Ŝ t = Ŝ, 0 < R̂t =
R̂, Υ̂ , Λ̂, Es, Ω1, Ω2, {Ψ j , j = 1, . . . , 5}, ∀( j, s) ∈ S and a scalar γ > 0
satisfying the LMIs for ( j, s) ∈ S

⎡
⎢⎢⎢⎢⎣

−Σ1s Σ̄2 j Σ3 j −d̄Ψ1 Γ j

• −Σ4 −Σ5 −d̄Ψ2 Σ7 j

• • −Σ6 −d̄Ψ3 Σ8 j

• • • −d̄S Φ t
j

• • • • −γ 2 I

⎤
⎥⎥⎥⎥⎦ < 0 (7.112)

Σ̄2 j =
[
Ψ11 + A jΛ

t
s + B j Y j − d̄S1 A jΛ

t
o

Ψ21 − d̄S2 A jΛ
t
c − L1 j C j

]

Σ̄7 j =
[
Λs Gt

j + Y t
j Dt

j
ΛoGt

j

]
(7.113)

where d̂ = (d̄ − d + 1) and Σ1s, Σ3 j , Σ4, Σ5, Σ6, Σ7 j , Σ8 j are given by
(7.110). Moreover, the gain matrices are given by

K j = Y jΛ
−t
s , G j = L1 j E−1

s (7.114)

In the next section, we consider some examples for numerical implementation
and compare the results with the existing methods.

Illustrative Example E

Here, we consider a discrete model of the type (7.46), (7.47), and (7.48) with mul-
tiple modes. In terms of our terminology, each mode represents a particular equi-
librium operating point. We wish to design a switched feedback control for this
system. Switching taking place between the modes is described by the following
coefficients:

Mode 1

A1 =
[

0.2 0.1
0.6 0.3

]
, Ad1 =

[
0.4 0
0 0.4

]
, Γ1 =

[
0.2
0.8

]
, B1 =

[
2 0.9

0.7 2

]

C1 =
[

1 1
1 0

]
, Cd1 =

[
0.6 0
0 0.4

]

G1 =
[

0.7 0.3
]
, Gd1 =

[
0.1 0

]
, Φ1 = [0.1], D1 =

[
0.9 0.3

]
|| f1(xk, k)|| ≤ α1||xk ||, ||h1(xk, k)|| ≤ β1||xk−dk ||

|α1| ≤ 0.15, |β1| ≤ 0.15
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Mode 2

A2 =
[

0.3 0.1
−0.4 0.2

]
, Ad2 =

[
0.6 0
0.2 0.3

]
, Γ2 =

[
0.2
0.3

]
, B2 =

[
2 1

0.6 1

]

C2 =
[

1 0
0 1

]
, Cd2 =

[
0.2 0
0 0.2

]

G2 =
[

0.1 0.3
]
, Gd2 =

[
0 0.5

]
, Φ2 = [0.6], D2 =

[
0.1 0.4

]
|| f2(xk, k)|| ≤ α2||xk ||, ||h2(xk, k)|| ≤ β2||xk−dk ||

|α2| ≤ 0.25, |β2| ≤ 0.25

Mode 3

A3 =
[

0.1 0.2
0.3 0.4

]
, Ad3 =

[−0.5 0.1
0 −0.4

]
, Γ3 =

[
0.1
0.5

]
, B3 =

[
1 4
3 1

]

C3 =
[

0 1
1 0

]
, Cd3 =

[
0.2 0
0 0.2

]

G3 =
[

0.6 0.2
]
, Gd3 =

[
0.4 0.6

]
, Φ3 = [0.3], D3 =

[
0.8 0.3

]
|| f3(xk, k)|| ≤ α3||xk ||, ||h3(xk, k)|| ≤ β3||xk−dk ||

|α3| ≤ 0.35, |β3| ≤ 0.35

For simulation purposes, we select d = 2 and implementing the LMI solver
Scilab 5.1.1, a feasible solution of the convex optimization problem given in
Remark 4.18 for the case of state feedback is attained for d̄ = 9, γ = 0.9875.
The ensuing results are given by

K1 =
[−0.1144 0.0202

0.3168 −0.6754

]
, K2 =

[−0.3313 0.0525
−0.1685 −0.0088

]

K3 =
[−0.5539 −0.0424
−0.2306 −0.0423

]

For the purpose of comparison, we provide in Table 7.4 a computational sum-
mary of applying several published methods. It is quite clear that the developed
switching state-feedback control strategy provides a better performance bound in
contrast to the existing methods.

Table 7.4 Computational summary of state-feedback design: illustrative example E

Method d d̄ γ

[50] 6 11 3.4682
[174] 4 13 3.8335
[298] 4 10 2.3650
[368] 3 15 1.9874
Theorem 7.22 2 9 0.9875
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We next consider the convex optimization problem given in Remark 7.24 for the
static output feedback. A feasible solution is reached with d = 4 and d̄ = 12. The
corresponding gains are given by

G1 =
[−0.3550 0.1341
−0.6522 0.6754

]
, G2 =

[−0.4756 0.2511
−0.0985 0.1235

]

G3 =
[−0.0756 −0.1948
−0.4416 0.4512

]

Finally, we attend to the observer-based output feedback. The results of the fea-
sible computations are summarized as follows:

d = 3, d̄ = 14

G1 =
[−0.2453 0.4131
−0.6522 0.6754

]
, K1 =

[−0.4675 0.1251
−0.1859 0.5114

]

G2 =
[−0.0756 −0.1948
−0.4407 0.2856

]
K2 =

[−0.3145 0.1341
−0.6522 0.6754

]

G3 =
[−0.5226 0.4825
−0.1385 0.5008

]
, K3 =

[−0.1336 −0.1608
−0.4006 0.5217

]

Illustrative Example F

Here, we consider a discrete model of the type (7.46), (7.47), and (7.48) with two
modes with the basic linearized data from [50]. We wish to design a switched feed-
back control for this system. Switching occurring between the modes is described
by the following coefficients:

Mode 1

A1 =
[

0.09 1.00
0.00 1.2

]
, Ad1 =

[−0.03 0
0.08 0.05

]
, Γ1 =

[
0.1
0.3

]

B1 =
[

1.0
0.5

]
, C1 =

[
1 1
1 0

]

G1 =
[

0.1 0.3
]
, Φ1 = [0.1], D1 =

[
0.9 0.3

]
Cd1 =

[
0.1 0.4

]
, Gd1 =

[
0.4 0.2

]
|| f1(xk, k)|| ≤ α1||xk ||, ||h1(xk, k)|| ≤ β1||xk−dk ||

|α1| ≤ 0.1, |β1| ≤ 0.2
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Mode 2

A2 =
[

1.2 0
0.4 0.5

]
, Ad2 =

[
0.03 0.08

0 −0.05

]
, Γ1 =

[
0.2
0.2

]

B2 =
[

1
−0.5

]
, C2 =

[
0.5 0.5

]

G2 =
[−0.1 −0.2

]
, Ψ2 = [0.3] , D2 =

[
0.1 0.1

]
Cd2 =

[
0.3 0.4

]
, Gd2 =

[
0.3 0.1

]
|| f2(xk, k)|| ≤ α2||xk ||, ||h2(xk, k)|| ≤ β2||xk−dk ||

|α2| ≤ 0.2, |β1| ≤ 0.1

By selecting d = 2 and implementing the LMI solver Scilab 4, a feasible solution
of the convex optimization problem given in Remark 4.18 for the case of state
feedback is attained for d̄ = 11, γ = 0.9875, σ = 1, κ = 1. The obtained results
are given by

K1 =
[

0.0905 −1.0896
]
, K2 =

[−0.7154 −0.0375
]

In Fig. 7.1, the closed-loop state trajectories are plotted.
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Fig. 7.1 State trajectories by state feedback: illustrative example F

Next, we consider the convex optimization problem given in Remark 7.24 for
the static output feedback. A feasible solution is reached with d = 4 and d̄ = 12.
The corresponding gains are given by

G1 =
[

0.6524 −0.6752
]
, G2 =

[−0.4516 −0.0755
]
. Similarly, the closed-

loop state trajectories under switched output feedback are plotted in Fig. 7.2. It is
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readily evident from the displayed results that the switched feedback controllers
(state and output) are quite effective in stabilizing the nonlinear switched system.
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Fig. 7.2 State trajectories by output feedback: illustrative example F

Finally, we attend to the observer-based output feedback. The results of the fea-
sible computations are summarized as follows:

d = 3, d̄ = 14

G1 =
[−0.2453 0.4131
−0.6522 0.6754

]
, K1 =

[−0.4675 0.1251
−0.1859 0.5114

]

G2 =
[−0.0756 −0.1948
−0.4407 0.2856

]
K2 =

[−0.3145 0.1341
−0.6522 0.6754

]

G3 =
[−0.5226 0.4825
−0.1385 0.5008

]
, K3 =

[−0.1336 −0.1608
−0.4006 0.5217

]

7.3 Multi-Controller Structure

During the past decade, problems of stability and control of switched systems have
received increasing interests [42, 47, 174, 192] and the references cited therein.
Reported results under arbitrary switching are found in [56] using multiple Lya-
punov functions for nonlinear systems and in [42] employing switched Lyapunov
functions. Of particular interest in this chapter is the class of switched time delay
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(STD) systems, which have widespread engineering applications, including net-
work control systems and power systems [47]. More recently, some theoretical
studies were conducted for STD systems including [26, 223–226, 238–241, 252,
270–275, 278–280, 283–285] where different design methods were developed.

In this paper a switched-state feedback control is designed to deal with a class
of continuous-time systems subject to linear fractional parametric uncertainty and
interval time delays. Looked at in this light, the results of [88, 89] are generalized to
cope with switched time-delay systems. An improved Lyapunov–Krasovskii func-
tional is constructed to derive robust delay-dependent switching policies. The prob-
lem is treated as multi-controller configurations and a switched feedback approach
is developed to jointly determine the feedback gains and the switching rule while
minimizing a suitable guaranteed cost. The developed results are tested on repre-
sentative examples.

7.3.1 Problem Statement

We consider hereafter the following switched time-delay system with full parametric
uncertainties

ẋ(t) = Aξ(x)x(t)+ Dξ(x)x(t − τξ(x))+ Mξ(x)q(t)

+Γξ (x)w(t) (7.115)

p(t) = Eξ(x)x(t)+ Hξ(x)x(t − τξ(x))+ Lξ(x)q(t) (7.116)

z(t) = Cξ(x)x(t)+ Gξ(x)x(t − τξ(x))

q(t) = Δp(t), Δ ∈ Δ (7.117)

where x(t) ∈ �n is the state vector , u(t) ∈ �m is the control input , w(t) ∈
�v is the exogenous input, z(t) ∈ �v is the observed output, and the function
ξ(x) : �n → N = {1, ..., N } is a switching rule. The vectors p(t) ∈ �s, q(t) ∈ �r

are internal variables. For all j ∈ N, the matrices A j ∈ �n×n, D j ∈ �n×n, M j ∈
�n×r , C j ∈ �v×n, G j ∈ �v×n, E j ∈ �s×n, Hj ∈ �s×n, L j ∈ �s×r , and
Γ j ∈ �n×v are real and known constants and τ j (t) denotes an interval time-varying
delay satisfying

0 < τmj ≤ τ j ≤ τM j , ˙τ j (t) ≤ μ j , j ∈ N (7.118)

where the bounds τmj > 0, τM j > 0 are known constants. Observe that whenever
deemed necessary, the variables (p, q) could be easily eliminated when W j �= 0.
The initial condition x(s) = κ(s), s ∈ [−τM , 0] is a differentiable vector-valued
function. Matrix Δ represents the parametric uncertainty, which belongs to the set
Δ defined by

Δ = {Δ ∈ �r×s : ||Δ||∞ ≤ 1} (7.119)
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Remark 7.29 It should be noted that the model described by (7.115), (7.116), and
(7.117) represents a class of linear continuous-time systems with mode-dependent
interval delays and a linear-fractional transformation (LFT) structure [216]. Under
arbitrary switching and special characterizations of Δ ∈ Δ, different methods have
been proposed in the literature to design feedback stabilization such that the closed-
loop system remains asymptotically stable [280] and the references therein. In the
case of free-delay systems, excellent results are recently reported in [88–90, 92] and
[196].

For systems without delays, an approach was proposed in [342] and the
references therein, where given a set of N state-feedback gain matrices K :
{K1, ..., KN }, a switching function ξ(x) : �n → K is determined such that the
state feedback switched control

u(t) = Kξ(x(t)) x(t) (7.120)

assures the global asymptotic stability of the closed-loop time-varying system. The
matrices K : {K1, ..., KN } were supposed to be given by the designer prior to
the determination of the stabilizing switching function ξ(.). Further improvements
were attained [150] for the stabilizing problem. One of the basic modeling issues of
switched systems [366] is the multi-controller configurations. Following this trend,
a switched feedback approach was addressed in [89, 92] for linear systems with LFT
parametric uncertainties to jointly determine the feedback gains and the switching
rule while minimizing a suitable guaranteed cost. Our approach in this work extends
the results of [89, 92] for the class of linear time-delay systems (7.115), (7.116), and
(7.117).

7.3.2 Robust Delay-Dependent Switching Control

The objective now is to determine a switching rule ξ(x) that guarantees the global
asymptotic stability at the equilibrium point x = 0 and a suitable minimal value of
the performance criteria J (ξ) defined by

J (K1, ..., KN , ξ) = max
Δ∈Δ

N∑
j=1

∥∥∥zt
j (t)z j (t)

∥∥∥2

2
(7.121)

is attained. Toward our goal, we consider the Lyapunov–Krasovskii functional
L(x) = min j∈N Vj (x), where

Vj (x) = xt (t)P j x(t)+
∫ t

t−�
xt (s)R j x(s)ds

+
∫ 0

−�

∫ t

t+s
ẋ t (α)Q j ẋ(α)dα ds
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+ϕ j

∫ 0

−ϕ j

∫ t

t+s
ẋ t

j (α)W j ẋ(α)dαds

+ (� j − ϕ j )

∫ −ϕ j

−� j

∫ t

t+s
ẋ t (α)S j ẋ(α)dα

+
∫ t

t−τ j (t)
xt (s)Z j x(s)ds (7.122)

Since L(x) is not differentiable, we will work with the Dini derivative [160] defined
by

D+L(x) = lim
h→0+

sup
L(x(t + h))− L(x(t))

h

Observe in case of the switching rule ξ(x) = j, j ∈ N, we have

D+L(x) = min
j∈N

(L(x) = Vj (x(t))

where Vj (x(t) is specified in (7.122). The next theorem provides a method to meet
our objective

Theorem 7.30 Given the delay bounds ϕ j >, � j > 0, μ j > 0 for all j ∈ N. If there
exist matrices P j > 0,Q j > 0,R j > 0,S j > 0,Z j > 0, j ∈ N such that the
following LMI holds for all j ∈ N

Ω j =
⎡
⎣Ωaj Ωcj Ωz j

• −Ωej 0
• • −I

⎤
⎦ < 0 (7.123)

where

Ωaj =
⎡
⎣Ωaaj W j Ωacj

• −Ωs j S j

• • −Ωca j

⎤
⎦ , Ωz j =

⎡
⎣

Ct
j

0
Gt

j

⎤
⎦

Ωcj =
⎡
⎣

W j P j M j + Et
j L j � j At

j W j (� j − ϕ j)At
j W j

0 0 0 0
S j H t

j L j � j Dt
j W j (� j − ϕ j )Dt

j W j

⎤
⎦

Ωej =
[
Ωea j Ωecj

• Ωeej

]
, Ωeej =

[
W j 0
• W j

]

Ωea j =
[

R j + S j 0
• −Lt

j L j + I

]

Ωecj =
[

0 0
−� j Mt

j W j −(� j − ϕ j )Mt
j W j

]
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Ωaaj = P j A j + At
j P j +Q j + R j + Z j −W j + Et

j E j

Ωs j = Q j +W j + S j , Ωacj = P j D j + Et
j Hj

Ωca j = (1− μ j )Z j + 2S j − Ht
j Hj (7.124)

then the switching rule ξ(x) = arg min j∈N Vj (x) with Vj (x) being given in (7.122)
renders the equilibrium solution x = 0 of the system (7.115), (7.116), and (7.117)
globally asymptotically stable and

J (ξ) = max
Δ∈Δ

∫ ∞

0
zt (t)z(t)dt

< min
j∈N

κ t
[
P j + � j (R j + Z j )

]
κ (7.125)

Proof Introduce the set of optimal indices

I(x) = { j ∈ N : Vj (x) = L(x)}

and let the switching rule be ξ(x(t)) = j, t ≥ 0 for some j ∈ N. In the appendix,
the Dini derivative D+L(x) with respect to an arbitrary trajectory of (7.115), (7.116),
and (7.117) is computed and is shown to have the form

D+L(x) = min
j∈N

Y j (x(t))

Y j (x(t)) ≤ χ t (t)Ξ jχ(t)+ ϕ2 ẋ t (t)W j ẋ j (t)

+ (� − ϕ)2 ẋ t (t)S j ẋ(t) (7.126)

where Ξ j , χ(t) are given in the appendix. To complete our effort, we take into
consideration (7.115) subject to Δ ∈ Δ or equivalently ΔtΔ ≤ I . Together with
(7.117) and β(t) = [xt (t) xt (t − τ) q(t)]t , we get

β t (t)

⎡
⎣

Et
j E j Et

j Hj Et
j L j

• Ht
j Hj Ht

j L j

• • Lt
j L j − I

⎤
⎦β(t) ≥ 0 (7.127)

Next, considering LMI (7.123) and applying the Schur complement for ξ(x(t)) = j
and using inequality (7.127), it follows that D+L(x) < −zt z. This holds true since
Vm(x) ≥ Vj (x) = L(x) for all m ∈ N and all j ∈ I(x). This emphasizes the
stabilizing feature of the switching rule ξ(x), which in turn means that the origin is
globally asymptotically stable equilibrium point. Moreover, since from (7.123) and
(7.124) D+L(x) < −zt z for all Δ ∈ Δ, it follows upon integration over the period
[0,∞) and observing that Vj (x)|t→∞ = 0, x(0) = φ, we obtain (7.125). �

Remark 7.31 When the conditions of Theorem 7.30 are met, meaning a feasible
solution exists, then the global asymptotic stability is guaranteed by the switching
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rule ξ(x) = arg min j∈N Vj (x). A guaranteed cost associated with J (ξ) is also pro-
vided. It is interesting to observe that when LMI (7.123) is feasible for all j ∈ N,
it consequently implies the validity of the switching signal being kept constant
ξ(t) = j ∈ N, ∀t ≥ 0. Such a result is pleasing and it is eventually interpreted
as the stability of system (7.115), (7.116), and (7.117) is preserved under constant
switching. In turn, this corresponds to ||z||2/||q||2 < 1, see [216].

Remark 7.32 It is interesting to observe that when LMI (7.123) is feasible for all
j ∈ N, it consequently implies the validity of the switching signal being kept con-
stant ξ(t) = j, j ∈ N, ∀t ≥ 0. Such a result is pleasing and it is eventually
interpreted as the stability of system (7.115), (7.116), and (7.117) is preserved under
constant switching. In turn, this corresponds to ||z||2/||q||2 < 1, see [278].

Remark 7.33 We emphasize that the bound μ j might take any value, which, due to
the presence of LMI variable S j , allows for slow (μ j < 1) and fast (μ j > 1) time-
delay patterns. The case of time-delay pattern 0 < τ j ≤ τM j ˙τ(t) j ≤ μ j , j ∈ N
could be easily derived from Theorem 7.30 by setting ϕ j ≡ 0, W j ≡ 0 ∀ j ∈ N.

7.3.3 Delay-Dependent Switching Control Design

In this section, we seek to develop robust delay-dependent control strategy for the
system

ẋ(t) = A j x(t)+ D j x(t − τ j )+ M j q(t)

+Γ jw(t)+ B j u(t) (7.128)

p(t) = E j x(t)+ Hj x(t − τ j )+ L j q(t)+ Tj u(t) (7.129)

z(t) = C j x(t)+ G j x(t − τ j )+ Fj u(t)

q(t) = Δp(t), Δ ∈ Δ (7.130)

using the state-feedback switched control (7.120) and associated with the cost

J (K1, ..., KN , ξ) = max
Δ∈Δ

N∑
j=1

∣∣∣
∣∣∣zt

j (t)z j (t)
∣∣∣
∣∣∣2
2

(7.131)

Where for each j = 1, ..., N the trajectory z j (t) is the response of the closed-loop
system associated with the input signal w(t) = e jδ(t), with e j being the j th column
of identity matrix. The closed-loop system becomes

ẋ(t) = Â j x(t)+ D j x(t − τ j )+ M j q(t)

+Γ jw(t) (7.132)

p(t) = Ê j x(t)+ Hj x(t − τ j )+ L j q(t) (7.133)

z(t) = Ĉ j x(t)+ G j x(t − τ j )
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q(t) = Δp(t), Δ ∈ Δ (7.134)

Â j = A j + B j K j , Ê j = E j + Tj K j

Ĉ j = C j + Fj K j (7.135)

for which the asymptotic stability is governed by the feasibility of the LMI

⎡
⎣ Ω̂aj Ω̂cj Ω̂z j

• −Ω̂ej 0
• • −I

⎤
⎦ < 0 (7.136)

where Ω̂aj , ..., Ω̂ej correspond to Ωaj , ...,Ωaj with Â j , Ê j , Ĉ j replacing
A j , E j ,C j , respectively. The main design result is established by the next
theorem

Theorem 7.34 Given the delay bounds ϕ j >, � j > 0, μ j > 0 for all j ∈ N. If there
exist matrices X j > 0,Y j , Q̂ j > 0, R̂ j > 0, Ŝ j > 0, Ẑ j > 0, j ∈ N such that the
following LMI holds for all j ∈ N

Ω j =

⎡
⎢⎢⎣
Πaj Πcj Πz j Πv j

• −Πej 0 Πw j

• • −I 0
• • • −I

⎤
⎥⎥⎦ < 0 (7.137)

where

⎡
⎣Πaaj Ŵ j D j X j

• −Πs j S j

• • −Πca j

⎤
⎦ , Πz j =

⎡
⎣

X j Ct
j + Yt

j Ft
j

0
X j Gt

j

⎤
⎦

Πcj =
[
Πc1 j Πc2 j

]
, Πcj =

⎡
⎣ Ŵ j M j

0 0
Ŝ j 0

⎤
⎦ , Πw j =

[
0

Lt
j

]

Πc2 j =
⎡
⎢⎣
� j (X j At

j + Yt
j Bt

j ) (� j − ϕ j )
(
X j At

j + Yt
j Bt

j

)
0 0

� j X j Dt
j (� j − ϕ j )X j Dt

j

⎤
⎥⎦

Πej =
[
Πea j Πecj

• Πeej

]
, Πv j =

⎡
⎣

X j Et
j + Yt

j T
t
j

0
X j H t

j

⎤
⎦

Πeej =
[

Ŵ j − 2X j 0
• Ŵ j − 2X j

]
, Πea j =

[
R̂ j + Ŝ j 0
• I

]

Πecj =
[

0 0
−� j Mt

j −(� j − ϕ j )Mt
j

]
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Πaaj = A j X j + B j Y j + X j At
j + Yt

j Bt
j

+ Q̂ j + R̂ j + Ẑ j − Ŵ j

Πs j = Q̂ j + Ŵ j + Ŝ j , Πca j = (1− μ j )̂Z j + 2Ŝ j (7.138)

then the switching rule ξ(x) = arg min j∈N Vj (x) with Vj (x) being given in (7.122)
and the switched matrix gain K j = Y j X

−1
j render the equilibrium solution x = 0

of the system (7.115), (7.116), and (7.117) globally asymptotically stable and

J (K1, ..., KN ξ) < min
j∈N

T r
(
Γ t

o X−1
j Γo

)
(7.139)

Proof Consider LMI (7.136) with system (7.132), (7.133), (7.134), and (7.135).
Applying the congruent transformation

T = [X j , X j , X j , X j , I, I, I, I, I ], X j = P−1
j

along with the change of variables Y j = K j X j ,Ŵ j = X j W j X j ,Q̂ j =
X j Q j X j ,̂Z j = X j Z j X j ,R̂ j = X j R j X j ,Ŝ j = X j S j X j , and Schur complements
convert LMI (7.136) into LMI (7.137) subject to (7.138). Next, the output z j (t) of
system (7.132), (7.133), (7.134), and (7.135) with zero initial condition and input
w(t) = e jδ(t) can be determined from the same system with zero input and initial
condition xo = Γoe j , j = 1, ..., N . Thus we have from (7.131) that

J (K1, ..., KN ξ) ≤ max
Δ∈Δ

∣∣∣
∣∣∣zt

j (t)z j (t)
∣∣∣
∣∣∣2
2

which by Theorem 7.30 can be put into

J (K1, ..., KN ξ) <

N∑
j=1

min
j∈N

(Γoe j )
t P j (Γoe j )

By the trace properties, we reach

J (K1, ..., KN ξ) < min
j∈N

T r
(
Γ t

o X−1
j Γo

)

This in turn completes the proof. �

Illustrative Example G

A standard water-quality model [179] is described by growth of biological oxygen
demand (BOD) and dissolved oxygen (DO), respectively, at time t . Under simplify-
ing assumptions, employing a linearization procedure and using representative data
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on a single reach of the River Nile [255] about three different operating points, the
growth of (BOD,DO) can then be cast into the form (7.115), (7.116), and (7.117):

Ao =
[−1.285 0
−3.263 −1.975

]
, Do =

[−0.15 −0.05
−0.2 0.10

]

Bo = diag
[

1.2 1.4
]
, Γo = diag

[
0.1 0.1

]
C1 = diag

[
0.1 0.2

]
, G1 = diag

[−0.15 −0.10
]

E1 = diag
[

0.3 0.1
]
, H1 = diag

[−0.10 −0.15
]

M1 = diag
[

0.2 0.1
]
, L1 = diag

[−0.15 −0.12
]

C2 = diag
[

0.2 0.1
]
, G2 = diag

[−0.05 −0.05
]

E2 = diag
[

0.1 0.3
]
, H2 = diag

[−0.10 −0.10
]

M2 = diag
[

0.2 0.1
]
, L2 = diag

[−0.15 −0.12
]

C3 = diag
[

0.2 0.2
]
, G3 = diag

[−0.15 −0.10
]

E3 = diag
[

0.2 0.2
]
, H3 = diag

[−0.15 −0.10
]

M3 = diag
[

0.2 0.1
]
, L3 = diag

[−0.15 −0.12
]

where the subscript o indicates common data and 1, 2, 3 means the corresponding
operating point. With F1 = I2, F2 = 0.4I2, F3 = 0.6I2, T1 = 0.8I2, F2 =
0.3I2, F3 = 0.5I2, the feasible solution of Theorem 7.34 yields feedback gains:

K1 =
[

0.9237 −0.0307
−0.1145 0.0415

]
, K2 =

[−1.1145 −0.0513
0.3415 −0.0265

]

K3 =
[

0.9088 −0.1104
−0.1222 0.1018

]

which renders the water-quality system asymptotically stable with a guaranteed cost
J (K1, K2, K3, ξ) ≤ 4.4765. In Figs. 7.3 and 7.4, the ensuing trajectories of the
water-quality states and controls are depicted.

7.3.4 Appendix

Computing the Dini derivative D+L(x) with respect to an arbitrary trajec-
tory of (7.115), (7.116), and (7.117) is computed [160] to yield D+L(x) =
min j∈N Y j (x(t)), where

Y j (x(t)) ≤ 2xt P j [A j x(t)+ D j x(t − τ j )

+ M j q(t)] + xt (t)Q j x(t)

− xt (t − ϕ j )Q j x(t − ϕ j )+ xt (t)R j x(t)

+ xt (t)Z j x(t)− xt (t − � j )R j x(t − � j )]
− (1− μ) xt (t − τ j )Z j x j t − τ j )]
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+ ϕ2
j ẋ t (t)W j ẋ(t)− ϕ j

∫ t

t−ϕ j

ẋ t (s)W j ẋ(s)ds

+ (� j − ϕ j )
2 ẋ t (t)S j ẋ(t)

− (� j − ϕ j )

∫ t−ϕ j

t−� j

ẋ t (s)S j ẋ(s)ds (7.140)

Applying Lemma 13.3, we get

− ϕ j

∫ t

t−ϕ j

ẋ t (s)W j ẋ(s)ds ≤ −[x(t)− x(t − ϕ j )]t W j

[x(t)− x(t − ϕ j )] (7.141)

− (� j − ϕ j )

∫ t−ϕ j

t−� j

ẋ t (α)S j ẋ(α)dα

= −(� j − ϕ j )

[ ∫ t−ϕ j

t−τ j

ẋ t (α)S j ẋ(α)dα

+
∫ t−τ j

t−� j

ẋ t
j (α)S j ẋ j (α)dα

]

≤ −(τ j − ϕ j )

[ ∫ t−ϕ

t−τ j

ẋ t (α)S j ẋ(α)dα

]

− (� j − τ j )

[ ∫ t−τ j

t−� j

ẋ t (α)S j ẋ(α)dα

]

≤ −
(∫ t−ϕ j

t−τ j

ẋ t
j (α)dα

)
S j

(∫ t−ϕ j

t−τ j

ẋ t
j (α)dα

)

−
(∫ t−τ j

t−� j

ẋ t (α)dα

)
S j

(∫ t−τ j

t−� j

ẋ t (α)dα

)

= −[x(t − ϕ j )− x(t − τ j )]t S j [x(t − ϕ j )− x(t − τ j )]
− [x(t − τ j )− x(t − � j )]t S j [x(t − τ j )− x(t − � j )] (7.142)

On combining (7.140), (7.141), and (7.142), we get

Y j (x(t)) ≤ χ t (t)Ξ jχ(t)+ ϕ2
j ẋ t (t)W j ẋ j (t)

+ (� j − ϕ j )
2 ẋ t (t)S j ẋ(t) (7.143)

χ(t) = [
xt (t) xt (t − ϕ j ) xt (t − τ j ) xt (t − � j ) q(t)

]t

Ξ j =

⎡
⎢⎢⎢⎢⎣

Ξoj W j P j D j W j P j M j

• −Ξaj S j 0 0
• • −Ξcj S j 0
• • • −R j − S j 0
• • • • 0

⎤
⎥⎥⎥⎥⎦ (7.144)
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Ξoj = P j A j + At
j P j +Q j + R j + Z j −W j ,

Ξaj = Q j +W j + S j , Ξcj = (1− μ j )Z j + 2S j (7.145)

7.4 Notes and References

In the chapter, we have investigated the problems of robust delay-dependent L2 gain
analysis and feedback-control synthesis for a class of nonlinear switched discrete-
time systems with time-varying delays and real convex-bounded parametric uncer-
tainties in all system matrices under arbitrary switching sequences. Then, we devel-
oped new criteria for such class of nonlinear switched state-delay systems based on
the constructive use of an appropriate switched Lyapunov functionals coupled with
Finsler’s Lemma and a free-weighting parameter matrices. LMI characterization
of delay-dependent conditions are established under which the nonlinear switched
delay system is robustly asymptotically stable with an L2 − gain smaller than a
prescribed constant level. Finally, we designed switched-feedback schemes, based
on state-, output-measurements, or by using dynamic-output feedback to guaran-
tee that the corresponding switched closed-loop system enjoys the delay-dependent
asymptotic stability with an L2 gain smaller than a prescribed constant level.

All the developed results have been expressed in terms of convex optimization
over LMIs and tested on representative examples.
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Chapter 8
Delay-Dependent Switched Filtering

In this chapter, the filtering problem for a class of discrete-time switched systems
with state delays is thoroughly investigated. We will focus on discrete-time sys-
tems. Attention will be equally focused on the design of stable filters guaranteeing
different prescribed performance criteria including the L2 sense and in the L2−L∞
sense. In all cases, switched Lyapunov functionals are employed to derive sufficient
conditions for the solvability of the filtering problem and expressed in terms of linear
matrix inequalities (LMIs).

8.1 H∞ Filter Design

The problem of H∞ filtering for a class of discrete-time switched systems with
state delays is investigated in this section. Attention is focused on the design of a
stable filter guaranteeing a prescribed noise attenuation level in the H∞ sense. By
using switched Lyapunov functionals, sufficient conditions for the solvability of this
problem are obtained in terms of linear matrix inequalities (LMIs), by solving which
a desired H∞ filter can be constructed.

8.1.1 Introduction

It is well known that state estimation has been widely studied and has found many
practical applications during the past decades. When a priori information on the
external noise is not precisely known, the celebrated Kalman filtering scheme is
no longer applicable. In this case, H∞ filter was introduced in [57], where the
noise signal was assumed to be energy bounded and the main objective was to
minimize the H∞ norm of the filtering error system [78, 282, 346, 394, 408].
When time delays are taken into account in a system, linear matrix inequality-based
(LMI-based) results on the H∞ filtering problem have also been reported in the
literature; see, for example, [79, 106, 347, 381, 393] and the references therein.

Recently, the control synthesis of switched systems has been extensively inves-
tigated and many methodologies have been used in the study of switched systems

M.S. Mahmoud, Switched Time-Delay Systems,
DOI 10.1007/978-1-4419-6394-9_8, C© Springer Science+Business Media, LLC 2010
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[42, 52, 56, 86, 170, 191, 441]. For example, multiple Lyapunov functions were
employed to establish certain general Lyapunov-like results for nonlinear switched
systems [56]; dwell-time and average dwell-time approaches were employed to
study the stability and disturbance attenuation of switched systems [377, 426];
piecewise Lyapunov function approach was adopted in [156, 388]; and a switched
Lyapunov function method has been applied in [42] to study the stability problem
of discrete-time switched systems.

On the contrary, time delays are the inherent features of many physical process
and the big sources of instability and poor performances. Switched systems with
time delays have strong engineering background in network control systems [170]
and power systems [291]. More recently, some theoretical studies were conducted
for switched systems with time delays [370, 395, 425]. Till date, to the best of the
authors’ knowledge, the H∞ filtering problem has not been addressed for time-
delayed switched systems. In this paper, an H∞ filtering design is developed using
switched Lyapunov functional approach for discrete-time switched systems with
time delay. The filtering design solution is facilitated by introducing some addi-
tional instrumental matrix variables. These additional matrix variables decouple the
Lyapunov and the system matrices, which makes the filtering design feasible.

8.1.2 Problem Formulation

Consider the following discrete-time switched system with state delay :

Σ0 : xk+1 =
S∑

i=1

αi (k)Ai xk +
S∑

i=1

αi (k)Adi xk−d +
S∑

i=1

αi (k)Biωk (8.1)

yk =
S∑

i=1

αi (k)Ci xk +
S∑

i=1

αi (k)Cdi xk−d +
S∑

i=1

αi (k)Diωk (8.2)

zk =
S∑

i=1

αi (k)Gi xk (8.3)

where xk ∈ Rn is the state, yk ∈ Rr is the measured output, zk ∈ Rq is the signal
to be estimated, ωk ∈ R p is the disturbance input, which is assumed to belong
to l2[0,∞), and the positive integer d denotes the known state delay. αi (k) is the
switching signal:

αi : Z+ −→ {0, 1},
S∑

i=1

αi (k) = 1, k ∈ Z+ = {0, 1, · · · }

which specifies which subsystem will be activated at certain discrete time. Ai , Adi ,
Bi , Ci , Cdi , Di , and Gi are system matrices with compatible dimensions.
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Here we are interested in designing a filter described by

Σ f : x̂k+1 =
S∑

i=1

αi (k)A f i x̂k +
S∑

i=1

αi (k)B f i yk (8.4)

ẑk =
S∑

i=1

αi (k)C f i x̂k (8.5)

where x̂k ∈ Rn and ẑk ∈ Rq , the matrices A f i , B f i , and C f i are to be determined.
Augmenting the model of Σ0 to include the system Σ f , we obtain the following
system (called filtering error system):

Σc : x̃k+1 =
S∑

i=1

αi (k) Ãi x̃k +
S∑

i=1

αi (k) Ãdi x̃k−d +
S∑

i=1

αi (k)B̃iωk (8.6)

z̃k =
S∑

i=1

αi (k)C̃i x̃k (8.7)

where

Ãi =
[

Ai 0
B f i Ci A f i

]
, Ãdi =

[
Adi 0

B f i Cdi 0

]
, B̃i =

[
Bi

B f i Di

]
,

x̃k =
[

xT
k x̂T

k

]T
, z̃k = zk − ẑk, C̃i =

[
Gi −C f i

]
(8.8)

Our objective is to develop a filter in the form of (8.4) and (8.5) such that the
following specifications are met for the filtering error system Σc:

(H1): The filtering error system Σc is globally asymptotically stable when ωk = 0.
(H2): The filtering error system Σc guarantees, under zero-initial condition,

‖z̃k‖2 ≤ γ ‖ωk‖2 for all nonzero ωk ∈ l2[0,∞) and a given positive
constant γ .

In the sequel, we will refer systems satisfying (H1) and (H2) as stable and with
H∞ norm bound γ .

Remark 8.1 The robust filter design problem for switched systems has been inves-
tigated in [86], where the minimax linear filters are developed for discrete-time
systems whose dynamics switches are within a finite set of stochastic behaviors.
In this paper, our attention is focused on the design of delay-independent robust
H∞ filters for the system Σ0 under arbitrary switching signal.
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8.1.3 Stability and Performance Analysis

This section gives a new characterization involving switched Lyapunov functional
for the filtering error system Σc to be stable and with H∞ norm bound γ .

Theorem 8.2 The filtering error system Σc is stable and with H∞ norm bound γ ,
if there exist matrices {Pi }Ni=1 and {Qi }Ni=1 for all {i, j, l} ∈ S = {1, 2, · · ·, S} such
that

⎡
⎢⎢⎢⎢⎣

−P−1
j Ãi Ãdi B̃i 0

• −Pi + Qi 0 0 C̃ t
i• • −Ql 0 0

• • • −γ 2 I 0
• • • • −I

⎤
⎥⎥⎥⎥⎦ < 0 (8.9)

where ∗ denotes the corresponding transposed block matrix due to symmetry.

Proof First, we establish the stability of system (6). When ωk = 0, (8.6) becomes

x̃k+1 =
S∑

i=1

αi (k) Ãi x̃k +
S∑

i=1

αi (k) Ãdi x̃k−d (8.10)

Define

Vk = x̃ t
k

(
S∑

i=1

αi (k)Pi

)
x̃k +

k−1∑
s=k−d

x̃ t
s

(
S∑

i=1

αi (s)Qi

)
x̃s (8.11)

Then

ΔVk |(8.10) = Vk+1 − Vk

= x̃ t
k+1

(
S∑

i=1

αi (k + 1)Pi

)
x̃k+1 − x̃ t

k

(
S∑

i=1

αi (k)Pi

)
x̃k

+x̃ t
k

(
S∑

i=1

αi (k)Qi

)
x̃k − x̃k−dt T

(
S∑

i=1

αi (k − d)Qi

)
x̃k−d

It follows that for any nonzero vector x̃k and the particular case αi (k) = 1,
αr �=i (k) = 0, α j (k + 1) = 1, αr �= j (k + 1) = 0, αl(k − d) = 1, αr �=l(k − d) = 0.
Then, we have

ΔVk |(8.10) = ηt
k

([
Ãt

i
Ãdt

]
Pj

[
Ãi Ãdi

]+
[−Pi + Qi 0

0 −Ql

])
ηk
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where ηk =
[

x̃ t
k x̃k−dt

]t . By the Schur complement formula, it follows from (8.9)
that ΔVk |(8.10) < 0, which establishes the stability of system (8.10).

Let

JK =
K−1∑
k=0

(
z̃T

k z̃k − γ 2ωt
kωk

)

where K is an arbitrary positive integer. For any nonzero ωk ∈ l2[0,∞) and zero
initial condition x̃0 = 0, one has

JK =
K−1∑
k=0

(
z̃t

k z̃k − γ 2ωt
kωk +ΔVk |(8.6)

)
− VK

≤
K−1∑
k=0

(
z̃t

k z̃k − γ 2ωt
kωk +ΔVk |(8.6)

)

where ΔVk |(8.6) defines the increment of Vk along the solution of system (8.6). It is
noted that

z̃t
k z̃k − γ 2ωt

kωk +ΔVk |(8.6)

= η̃t
k

⎡
⎣ Ãt

i
Ãt

di
B̃t

i

⎤
⎦ Pj

[
Ãi Ãdi B̃i

]
η̃k

+ η̃t
k

⎡
⎣−Pi + Qi + C̃T

i C̃i 0 0
0 −Ql 0
0 0 −γ 2 I

⎤
⎦ η̃k (8.12)

where

η̃k =
[

x̃ t
k x̃k−dt ωt

k

]t

It follows from (8.9) and Schur complement that

z̃T
k z̃k − γ 2ωt

kωk +ΔVk |(8.6) < 0

which implies, for any K , JK < 0. Then one has that for any nonzero ωk ∈ l2[0,∞),
‖z̃k‖2 < γ ‖ωk‖2 �.

Motivated by the idea in [44], we present the following theorem.

Theorem 8.3 The filtering error system Σc is stable and with H∞ norm bound γ ,
if there exist matrices {Ri }Ni=1, {Ψi }Ni=1, and Ω for all {i, j, l} ∈ S = {1, 2, · · ·, S}
such that
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⎡
⎢⎢⎢⎢⎢⎢⎣

−R j ÃiΩ ÃdiΩ B̃i 0 0
• Ri − (Ω +ΩT ) 0 0 ΩT C̃T

i ΩT

• • Ψl − (Ω +ΩT ) 0 0 0
• • • −γ 2 I 0 0
• • • • −I 0
• • • • • −Ψi

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (8.13)

Proof Suppose that (8.13) holds, then it is easy to see from (8.13) that

(Ri −Ω)t R−1
i (Ri −Ω) ≥ 0

which implies

−Ω t R−1
i Ω ≤ Ri − (Ω +Ω t )

Similarly, we can get −Ω tΨ−1
i Ω ≤ Ψi − (Ω +ΩT ). Then, (8.13) is transformed

into

⎡
⎢⎢⎢⎢⎢⎢⎣

−R j ÃiΩ ÃdiΩ B̃i 0 0
• −ΩT R−1

i Ω 0 0 ΩT C̃T
i ΩT

• • −ΩTΨ−1
l Ω 0 0 0

• • • −γ 2 I 0 0
• • • • −I 0
• • • • • −Ψi

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (8.14)

Pre-multiplying (8.14) by

diag{I,Ω−t ,Ω−t , I, I, I }

and post-multiplying by

diag{I,Ω−1,Ω−1, I, I, I }

then (8.13) is transformed into

⎡
⎢⎢⎢⎢⎢⎢⎣

−R j Ãi Ãdi B̃i 0 0
• −R−1

i 0 0 C̃T
i I

• • −Ψ−1
l 0 0 0

• • • −γ 2 I 0 0
• • • • −I 0
• • • • • −Ψi

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (8.15)

Notice that Ri = P−1
i , Ψi = Q−1

i . Then, by using the Schur complement formula
we can see that (8.15) is equivalent to (8.9). The proof is completed. �
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Remark 8.4 With the introduction of a new additional matrix Ω , we obtain a suf-
ficient condition in which the matrices Ri and Ψi are not involved in any product
with matrices Ãi , Ãdi , B̃i , and C̃i . This makes a filter design feasible.

8.1.4 Filter Design

In this section, we will present a sufficient condition for the existence of H∞ filter in
the form of (8.4) and (8.5), and show how to construct a filter based on Theorem 8.2.

Theorem 8.5 Consider system Σ0 and given a constant γ > 0. If there exist matri-
ces 0 < R1 j = Rt

1 j , 0 < R3 j = Rt
3 j , 0 < X1m = Xt

1m, 0 < X3m = Xt
3m and

R2 j , X2m, Zi , Yi , Hi , Li , Mi , Si such that the following inequality holds:

⎡
⎢⎢⎢⎢⎢⎢⎣

Θ11 Θ12 Θ13 Θ14 0 0
• Θ̂22 0 0 Θ25 Θ t

26• • Θ̂33 0 0 0
• • • −γ 2 I 0 0
• • • • −I 0
• • • • • −Θ66

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (8.16)

where

Θ11 =
[

R1 j R2 j

• R3 j

]
, Θ12 =

[
Zi Ai Zi Ai

Yi Ai + Hi Ci + Li Yi Ai + Hi Ci

]

Θ13 =
[

Zi Adi Zi Adi

Yi Adi + Hi Cdi Yi Adi + Hi Cdi

]
, Θ14 =

[
Zi Bi

Yi Bi + Hi Di

]

Θ22 =
[

R1i R2i

• R3i

]
, Θ25 =

[
Gt

i − St
i

Gt
i

]
, Θ26 =

[
Zi Zi

Yi + Mi Yi

]

Θ33 =
[

X1m X2m

• X3m

]
, Θ66 =

[
X1i X2i

• X3i

]

Θ̂22 = Θ22 −Θ26 −Θ t
26, Θ̂33 = Θ33 −Θ26 −Θ t

26

then, there exists a filter in the form of (8.4) and (8.5) such that the filtering error
system Σc is asymptotically stable with H∞ norm bound γ . Moreover, if LMI (8.16)
has a feasible solution, then the filter matrix

F :=
[

Afi Bfi

Cfi 0

]
(8.17)
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can be constructed by

F :=
[

V−1
i Li M−1

i Vi V−1
i Hi

Si M−1
i Vi 0

]
(8.18)

Proof Suppose the inequality (8.16) holds. It can be obtained that

[
Zi + Zt

i Zi + Y t
i + Mt

i

• Yi + Y t
i

]
>

[
R1i Rt

2i• R3i

]
> 0 (8.19)

which implies that matrices Zi and Yi are nonsingular. Pre-multiplying (8.19) by[
I −I

]
and post-multiplying the result by

[
I −I

]t , one obtains

− Mi − Mt
i > 0 (8.20)

which implies that Mi is also nonsingular. Hence there exist nonsingular matrices
Ui and Vi satisfying Mi = ViUi such that (8.16) holds.

Let

Π t
i =

[
Zi 0
Yi Vi

]
, ΩΠi =

[
I I

Ui 0

]

Hi = Vi B f i , Li = Vi A f iUi , Si = C f iUi , Mi = ViUi

R j = Π−t
i Ψ11Π

−1
i , Ri = Π−t

i Ψ22Π
−1
i

Φm = Π−t
i Ψ33Π

−1
i , Φi = Π−t

i Ψ66Π
−1
i (8.21)

By (8.8) and (8.21), one has

Π t
i ÃiΩΠi = Ψ12, Π t

i ÃdiΩΠi = Ψ13, Π t
i B̃i = Ψ14

C̃iΩΠi = Ψ t
25, Π t

i ÃiΩΠi = Ψ26 (8.22)

Pre-multiplying (8.13) by

diag
[
Π t

i Π t
i Π t

i I I Π t
i

]

and post-multiplying the result by

diag
[
Πi Πi Πi I I Πi

]

and using (8.21) and (8.22), we readily obtain (8.16). Finally, it is not difficult to
verify from (8.21) that the filter matrices are given by (8.18), which completes the
proof.
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Remark 8.6 The filter expressed in the form of (8.4) and (8.5) not only guaran-
tees analytical properties, such as stability and guaranteed H∞ performance of the
filtering error system Σc, but is itself a switched system.

Remark 8.7 By using the techniques in [30] and [444], the result of Theorem 8.3
can be readily extended to the discrete-time switched systems with state delay,
which contain norm-bounded parameter uncertainties or linear fractional form
parameter uncertainties.

8.1.5 Illustrative Example A

Consider the system Σ0 with N = 2 and

A1 =
[

0.4 0.05
0 −0.35

]
, Ad1 =

[
0.025 0
−0.1 −0.35

]
, B1 =

[
0.34
−0.3

]

Cd1 =
[

0.02 0
]
, D1 = 0.02, G1 =

[
0.24 0.23

]
, C1 =

[
0.29 0.15

]

A2 =
[−0.2 0

0.1 0.1

]
, Ad2 =

[
0.05 −0.1

0 0.15

]
, B2 =

[
0.1
−1

]

Cd2 =
[

0 0.017
]
, D2 = 0.015, G2 =

[
0.2 0.1

]
, C2 =

[−0.19 0.17
]

The purpose here is to design a filter such that the filtering error system is sta-
ble and with a given H∞ norm bound γ . Here the performance level is chosen as
γ = 0.6. By using the Matlab LMI Control Toolbox to solve LMI (8.16), we can
get a feasible set of solutions. By Theorem 8.3, a filter in the form of (8.4) and (8.5)
as follows:

A f 1 =
[

0.3497 −0.5481
0.1094 −0.1653

]
, B f 1 =

[−8.3430
4.3427

]
, C f 1 =

[−0.0030 −0.0758
]

A f 2 =
[−0.1385 −0.0975

0.0049 0.0157

]
, B f 2 =

[−4.9351
−1.4790

]
,C f 2 =

[−0.0059 −0.0282
]

The simulation results of the state responses of the plant and filter are, respectively,
given in Figs. 8.1 and 8.2, where the initial conditions x0 =

[
1.0 −0.8

]t and x̂0 =[
0 0

]t , respectively, and the noise signal is chosen as ωk = 1/(k+1), which belongs
to l2[0,∞). The simulation results of signal zk and ẑk are shown in Figs. 8.3 and 8.4.
Figure 8.5 shows the simulation result of the filtering error z̃k = zk − ẑk . It is
observed that the designed H∞ filter meets the specified requirements, and works
well.
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Fig. 8.1 Step response of plant states

Fig. 8.2 Step response of plant states
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Fig. 8.3 Step response of plant states

Fig. 8.4 Step response of plant states
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Fig. 8.5 Step response of plant states

8.2 Filter Design for Piecewise Systems

Broadly speaking, hybrid systems have proved to be an effective tool for multi-
modeling, analysis, and design of a large number of evolving technological systems,
in which digital devices interact with an analog environment. Systems of this type
are common in embedded computation, robotics, mechatronics, avionics, and pro-
cess control. Owing to the rapid advances in computer technology, hybrid systems
are becoming increasingly relevant and important and consequently have attracted
considerable research interests. A wide class of hybrid systems is piecewise dynam-
ical systems for which some of the research results relevant to this study have been
reported in [2, 63, 144, 293, 334] and their references. Common to these activities
is the development of piecewise Lyapunov function approaches for stability anal-
ysis [156, 176, 313] and linear control design [118, 336, 431, 447] of piecewise
continuous-time systems. In a parallel development, similar results are obtained
for piecewise discrete-time linear systems [184, 293, 334, 376, 428]. For a class
of piecewise discrete-time linear systems, the output feedback control problem has
been investigated in [61] and the design of H∞ and generalized H2 filters are per-
formed in [62] using observer-type filters (without parametric uncertainties or time
delays). The solution is attained via the solution of a set of LMIs.

On another research front, the filtering problem has been the focal point of
numerous research activities in the past four decades due to its central role in
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systems, control, and signal processing. The celebrated Kalman filter [3, 158, 352,
356] provides a recursive algorithm to minimize the variance of the state estima-
tion error when the power spectral density of the process and measurement noise
is known. During the past four decades, Kalman filtering techniques have found
widespread applications in aerospace guidance, navigation, and control problems
[213–221, 235, 250, 256, 257, 262, 263, 266, 267, 269, 287, 352, 356]. When
a priori information on the external noise is not precisely known, Kalman fil-
tering approach is no longer applicable. In such cases, H∞ filtering was intro-
duced [87, 305], in which the input signal is assumed to be energy bounded
and the main objective is to minimize the energy of the estimation error for the
worst possible bounded energy disturbance. The solution to this problem guaran-
tees that the L2-induced norm from the noise signals to the filtering error will be
less than a prescribed performance bound, where the noise are arbitrary energy-
bounded signals. In the literature, there have been different approaches to solve
H∞ filtering problem [16, 67, 69, 71–216, 244, 245, 249, 250, 253, 254, 262–
265, 269, 276, 277, 287, 305, 373, 438, 439]. When the systems are subjected
to norm-bonded parametric uncertainties, robust H∞ filtering were developed in
[72] based on a Riccati equation approach and in [189] using a convex opti-
mization approach. For systems with polytopic parameter uncertainties, linear
matrix inequalities-based sufficient conditions were derived for robust H∞ filters
in [87, 317].

By contrast, the objective of L2 − L∞ filtering problem is to minimize the
peak value of the estimation error for all possible bounded energy disturbances.
Hence, the L2 −L∞ (energy-to-peak) filtering can be considered as a deterministic
formulation of the Kalman filter [223, 318]. The class of robust filtering arose out
of the desire to determine estimates of nonmeasurable state variables for dynamical
systems with uncertain parameters. The past decade has witnessed major develop-
ments in robust filtering problem using various approaches [16, 305].

In recent years, research investigations into dynamical systems with time delays
have been intensified and spread to several domains, including neural networks [35,
37, 194] and nonlinear systems [385, 390, 420]. In addition, the development of
H∞ filters and robust H∞ filters were accomplished, leading to delay-independent
and delay-dependent sufficient conditions [69, 217–223, 235–237, 250, 255–258,
266, 267, 278, 282]. By considering the developed conditions of H∞ filters, it turns
out that the results are generally conservative due to two sources: one introduced
after using finite filters for infinite-dimensional systems like time-delay systems and
the other source arose from uncertainties. To reduce overdesign conservatism, a
new approach to H∞ filtering was introduced using a bounded-real lemma (BRL)
derived for the corresponding adjoint system. This approach was further refined in
[69] using overbounding inequalities. In spite of the considerable advantages of the
H∞ filtering design results, it still entails some appreciable amount of conservatism
due to the majorization procedure in filter design.

The design of robust H∞ piecewise filters based on piecewise Lyapunov func-
tional method for a class of piecewise discrete-time linear systems with time-varying
delays has not been fully addressed before, which is very challenging. In this paper,
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we attend to this problem and consider the design of novel filters for a class of
linear piecewise discrete-time systems with polytopic parametric uncertainties and
time-varying delays. The time delays appear in the state as well as the output and
measurement channels. We consider a general full-order filter that guarantees the
desired estimation accuracy over the entire uncertainty polytope and accordingly
develop two new types of filters by deploying piecewise Lyapunov–Krasovskii
functional. The first filter is based on H∞ criteria and the design incorporates new
parametrization coupled with Finsler’s Lemma to establish sufficient conditions for
delay-dependent filter feasibility. The other one utilizes the L2 − L∞ criteria and
accomplishes the design via elegant use of Schur complement operations. In both
cases, the filter gains are determined by solving linear matrix inequalities (LMIs).

8.2.1 Problem Statement and Definitions

We consider the following class of piecewise discrete-time linear (PDTL) systems:

xk+1 = A j xk + Ad j xk−dk + Γ jωk (8.23)

yk = C j xk + Cd j xk−dk

yk ∈ Ω j , j = 1, 2, ..., r (8.24)

zk = G j xk + Gd j xk−dk +Φ jωk (8.25)

x j = ψ j , j = −dM ,−dM + 1, ..., 0 (8.26)

where {Ω j } j∈S ⊆ �p denotes a partition of the output space into a num-
ber of closed polyhedral regions, with S being the index set of regions, xk ∈
�n is the state vector, ωk ∈ �q is the disturbance input, which belongs to
�2[0,∞), yk ∈ �p is the measured output and zk ∈ �m is the signal to be
estimated, {ψk, k = −dM ,−dM + 1, ..., 0} is a real-valued initial condition and
{A j , Ad j , Γ j ,C j ,Cd j , Ψ j ,G j ,Gd j , Φ j } is the sth local model of the discrete sys-
tem. In the sequel, we define the set

Π
Δ= { j, s|yk ∈ Ω j , yk+1 ∈ Ωs}

to represent all possible transitions from one region to itself or another region. In
the sequel, it is assumed that the delay dk is a time-varying function satisfying

dm ≤ dk ≤ dM (8.27)

where the lower bound dm > 0 and the upper bound dM > 0 are known constant
scalars. For well-posedness of the problem and the subsequent results [144, 156,
336], we invoke the following assumptions:

Assumption 8.8 The solution of the PDTL system (8.23), (8.24), (8.25), and (8.26)
starting from any initial condition ψk is unique for all k > 0.
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Assumption 8.9 When the state of the PDTL system (8.23), (8.24), (8.25), and
(8.26) propagates from region Ω j to Ωs at time k, then the local model Ω j governs
the system dynamics at that time.

Assumption 8.10 The state variables of the PDTL system (8.23), (8.24), (8.25), and
(8.26) are bounded for every initial condition and all admissible disturbances.

Definition 8.11 The energy-to-peak gain of system (8.23), (8.24), (8.25), and (8.26)
is defined as

sup
0 �=w∈�2

{||zk ||�∞/||wk ||�2}

Remark 8.12 It should be noted that Assumption 8.8 and 8.9 give a rule that char-
acterize the piecewise state trajectories of the PDTL system (8.23), (8.24), (8.25),
and (8.26). The partition is performed in the output space to ensure measurement
consideration. Further details are presented in [144, 156, 336].

In case the PDTL system undergoes parametric uncertainties, we consider the
following class of uncertain piecewise discrete-time linear (UPDTL) systems

xk+1 = A jΔxk + Ad jΔxk−dk + Γ jΔωk (8.28)

yk = C jΔxk + Cd jΔxk−dk

yk ∈ Ω j , j = 1, 2, ..., r (8.29)

zk = G jΔxk + Gd jΔxk−dk +Φ jΔωk (8.30)

whose matrices contain uncertainties that belong to a real convex-bounded polytopic
model of the type

⎡
⎣ A jΔ Ad jΔ Γ jΔ

C jΔ Cd jΔ

G jΔ Gd jΔ Φ jΔ

⎤
⎦ Δ=

{⎡
⎣ A jλ Ad jλ Γ jλ

C jλ Cd jλ

G jλ Gd jλ Φ jλ

⎤
⎦ =

N∑
m=1

λm

⎡
⎣ A jm Ad jm Γ jm

C jm Cd jm

G jm Gd jm Φ jm

⎤
⎦, λ ∈ Λ

}
(8.31)

where Λ is the unit simplex

Λ
Δ=

{
(λ1, · · · , λN ) :

N∑
m=1

λm = 1 , λm ≥ 0

}
(8.32)

Define the vertex set N = {1, ..., N }. We use {A j , ..., Φ j } to imply generic system
matrices and {A jm, ..., Φ jm, m ∈ N } to represent the respective values at the
vertices.

The objective of this paper is to develop delay-dependent methods for piecewise
filtering of the class of PDTL systems of the type (8.23), (8.24), (8.25), and (8.26)
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and subsequently generalize them to the UPDTL systems (8.28), (8.29), and (8.30).
We investigate this problem by recourse to linear filter structure. Specifically, we
seek to design an estimate ẑk of zk given by the linear state-space realization:

x̂k+1 = A f j x̂k + B f j yk, x̂(0) = 0, yk ∈ Ω j

ẑk = G f j x̂k (8.33)

In (8.33), x̂(t) ∈ �n is the state vector of the filter, ẑ(t) ∈ �q is the estimate of z(t)
and A f s ∈ �n×n, B f s ∈ �n×m, G f s ∈ �q×n are unknown filter matrices to be
determined in the sequel based on prescribed performance criteria.

8.2.2 Error Dynamics

In terms of the filtering error z̃k := zk− ẑk and the augmented state x̃k :=
[
xt

k x̂ t
k

]t ,
we get from the PDTL system (8.23) and the piecewise filter (8.33) the error
dynamic model described by

x̃k+1 = Ã j x̃k + Ãd j x̃k−dk + Γ̃ jωk

ỹk = C̃ j x̃k + C̃d j x̃k−dk

z̃k = G̃ j x̃k + G̃d j x̃k−dk + Φ̃ jωk, yk ∈ Ω j (8.34)

where the associated matrices are given by

Ã j =
[

A j 0
B f j C j A f j

]
, Γ̃ j =

[
Γ j

B f jΦ j

]

G̃ j =
[

G j −G f j
]
, Ãd j =

[
Ad j 0

B f j Cd j 0

]

C̃ j =
[

C j 0
]
, C̃d j =

[
Cd j 0

]
G̃d j =

[
Gd j 0

]
, Φ̃ j = Φ j (8.35)

In this regard, the piecewise filtering problem of the PDTL system under con-
sideration can be phrased as follows: Given the PDTL system (8.23), (8.24), (8.25),
and (8.26) and the piecewise filter (8.33), it is desired to determine the unknown
piecewise matrices {A f j , B f j , G f j } such that the filtered system (8.34) is asymp-
totically stable and a prescribed performance criterion is achieved for all admis-
sible uncertainties satisfying (8.31) and (8.32). Two performance criteria will be
considered in the sequel:

(1) H∞-performance meaning that for a given prescribed performance bound
γ∞ > 0, ||̃zk ||2 < γ∞||ωk ||2, ∀ω ∈ �2[0,∞),

This means that the γ∞−suboptimal H∞-piecewise filtering problem is to find a
piecewise filter such that energy-to-peak value gain of the filtered system from the
disturbance ωk to the filtering error z̃k is less than γ∞.
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(2) L2 − L∞-performance meaning that for a given prescribed performance
bound γ2 > 0 ||̃yk ||∞ < γ2||ωk ||2, ∀ω ∈ �2[0,∞), and

This means that the γ2−suboptimal generalized H2-piecewise filtering problem
is to find a piecewise filter such that energy-to-peak value gain of the filtered system
from the disturbance ωk to the output filtering error ỹk is less than γ2.

8.2.3 Delay-Dependent Stability

In this section, we develop new criteria for LMI-based characterization of delay-
dependent asymptotic stability and �2 gain analysis of the singular filtered. The
criteria include some parameter matrices aiming at expanding the range of appli-
cability of the developed conditions. The major thrust is based on the fundamental
stability theory of Lyapunov, which states that for asymptotic stability, it suffices to
find a Lyapunov function candidate Vσ (xk, k) > 0, ∀xk �= 0, k ∈ IN satisfying
ΔVσ (xk, k) = Vσ (xk+1, k + 1) − Vσ (xk, k) < 0. We apply this theorem hereafter
for arbitrary switching.

8.2.4 Piecewise Lyapunov Functional

For convenience, we define d̂ = (dM − dm + 1) as the number of delay samples.
The following theorem summarizes the main result.

Theorem 8.13 Given dM > 0 and dm > 0 subject to (8.27). Switched filtered system
(8.34) is delay-dependent asymptotically stable if there exist matrices 0 < Pt

j =
Pj , 0 < Pt

s = Ps, X̂ j , 0 < Qt = Q, 0 < W t = W, {M}31 satisfying the LMIs
for ( j, s) ∈ Π

X̂ j A j + A
t
j X̂ t

j + P̃js < 0 (8.36)

P̃js =

⎡
⎢⎢⎢⎣

−Ξ1s Ξ2 −M1 −d̄M1

• −Ξ3 j Ξ4 −d̄M2

• • −Ξ5 −d̄M3

• • • −d̄W

⎤
⎥⎥⎥⎦ (8.37)

Ξ1s = Ps − dMW, Ξ2 =M1 − dMW
Ξ3 j = Pj − d̂Q− d̄W −M2 −Mt

2

Ξ4 = −M2 −Mt
2, Ξ5 =M3 +Mt

3 +Q

A j =
[−I Ã j Ãd j 0

]
(8.38)

Proof Let the switching rule σ(.) have an activated subsystem j ∈ Π at instant k
then an activated subsystem s ∈ Π at instant k + 1 . In the sequel, we use ξm =
x̃m+1 − x̃m and consider the following switched Lyapunov–Krasovskii functional
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Vσ (̃xk, k)
Δ= Vaσ (̃xk, k)+ Vbσ (̃xk, k)+ Vcσ (̃xk, k)+ Vdσ (̃xk, k)

Vaσ (̃xk, k) = x̃ t
k Pσ x̃k, Vbσ (̃xk, k) =

k−1∑
j=k−dk

x̃ t
j Qx̃ j

Vcσ (̃xk, k) =
−dm+1∑

m=−dM+2

k−1∑
j=k+m−1

x̃ t
j Qx̃ j

Vdσ (̃xk, k) =
−1∑

m=−dM

k−1∑
j=k+m

ξ t
j Wξ j

0 < Pt
σ = Pσ , 0 < Qt = Q, 0 < W t = W, σ ∈ S (8.39)

Define ΔVσ (̃xk, k) = Vσ (̃xk+1, k+ 1)−Vσ (̃xk, k), along the solution of (8.23) we
obtain

ΔVaσ (̃xk, k) = x̃ t
k+1 Ps x̃k+1 − x̃ t

k Pj x̃k (8.40)

ΔVbσ (̃xk, k) =
k∑

m=k−dk+1+1

x̃ t
m Qx̃m −

k−1∑
j=k−dk

x̃ t
j Qx̃ j

= x̃ t
k Qx̃k − x̃ t

k−dk
Qx̃k−dk +

k−1∑
m=k−dk+1+1

x̃ t
m Qx̃m

−
k−1∑

m=k−dk+1

x̃ t
m Qx̃m

≤ x̃ t
k Qx̃k − x̃ t

k−dk
Qx̃k−dk +

k−d∑
m=k−d̄+1

x̃ t
m Qx̃m (8.41)

ΔVcσ (̃xk, k) = (dM − dm) x̃ t
k Qx̃k −

k−dm∑
m=k−dM+1

x̃ t
m Qx̃m (8.42)

ΔVdσ (̃xk, k) ≤ d̄ (̃xk+1 − x̃k)
t W (̃xk+1 − x̃k)

− dM

k−1∑
m=k−dM

ξ t
m Wξm (8.43)

Since x̃k−dk = x̃k −∑k−1
m=k−dk

ξm, then for arbitrary parameter matrices (a set of
free-weighting matrices) Mp, p = 1, . . . , 5, we have

x̂(k,m) = [
x̃ t

k+1 x̃ t
k x̃ t

k−dk
ξ t

m
]t

M̂ = [
Mt

1 Mt
2 Mt

3 0
]t

Ŝ = [
0 I −I −dk I

]
(8.44)
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such that the following equation holds

2
k−1∑

j=k−dk

x̂ t (k,m) M̂Ŝ x̂(k,m) = 0 (8.45)

On considering (8.40), (8.41), (8.42), and (8.43) in the light of (8.39) for dk ≤ d̄,
wk ≡ 0, it is not difficult to show that ΔV (xk, k) < 0 is equivalent to the following
set of inequalities:

k−1∑
m=k−dk

x̂ t (k,m) P̃s j x̂(k,m) < 0, (s, j) ∈ IN× IN (8.46)

More importantly, in view of (10.45) with uk ≡ 0, wk ≡ 0, we have

A j x̂(k,m) = 0 (8.47)

where P̃s j , Ã j are given by (8.37) and (8.38), respectively. Application of Finsler’s
Lemma A.12 (from the Appendix) to (8.46) and (8.47) with x̂(k, j) ≡ x, P̃s j ≡
P, Ãs ≡ Z t , X̂s ≡ B, we readily obtain LMI (8.37) as desired, which establishes
the asymptotic stability. �

8.2.5 Robust Stability

Corollary 8.14 Given dM > 0 and dm > 0 subject to (8.27). Switched filtered
system (8.34) and vertex representation (8.31) and (8.32) is delay-dependent asymp-
totically stable if there exist matrices 0 < Pt

j = Pj , 0 < Pt
s = Ps, X̂ j , 0 < Qt =

Q, 0 < W t = W, {M}31 satisfying the LMIs for ∀( j, s) ∈ Π

X̂ j A jp + A
t
jp X̂ t

j + P̃ j ps < 0 (8.48)

P̃ j ps =

⎡
⎢⎢⎣
−Ξ1 Ξ2 −M1 −d̄M1

• −Ξ3 Ξ4 −d̄M2

• • −Ξ5 −d̄M3

• • • −d̄W

⎤
⎥⎥⎦ (8.49)

A jp =
[−I Ã jp Ãd jp 0

]
(8.50)

Proof Obtained from Theorem (8.13) by using the polytopic representation (8.31)
and (8.32) to get (8.49) from (8.36).
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8.2.6 Common Lyapunov Functional

In the special case of using a common Lyapunov functional, the ensuing delay-
dependent stability results are summarized by the following corollaries:

Corollary 8.15 Given dM > 0 and dm > 0 subject to (8.27). Switched filtered
system (8.34) is delay-dependent asymptotically stable if there exist matrices 0 <

Pt
j = Pj , X̂ j , 0 < Qt = Q, 0 < W t = W, {M}31 satisfying the LMIs for
∀( j, s) ∈ Π

X̂ j A j + A
t
j X̂ t

j + P̃j < 0 (8.51)

P̃j =

⎡
⎢⎢⎣
−Ξ1 j Ξ2 −M1 −d̄M1

• −Ξ3 j Ξ4 −d̄M2

• • −Ξ5 −d̄M3

• • • −d̄W

⎤
⎥⎥⎦ (8.52)

Ξ1 j = Pj − d̄W, Ξ2 =M1 − d̄W
Ξ3 j = Pj − d̂Q− d̄W −M2 −Mt

2

Ξ4 = −M2 −Mt
2, Ξ5 =M3 +Mt

3 +Q
A j =

[−I Ã j Ãd j 0
]

(8.53)

Corollary 8.16 Given dM > 0 and dm > 0 subject to (8.27). Switched filtered sys-
tem (8.34) and vertex representation (8.31) and (8.32) are delay-dependent asymp-
totically stable if there exist matrices 0 < Pt

j = Pj , X̂ j , 0 < Qt = Q, 0 < W t =
W, {M}31, ∀( j) ∈ Π satisfying the LMIs for ∀( j) ∈ Π

X̂ j A jp + A
t
jp X̂ t

j + P̃ j p < 0 (8.54)

P̃jp =

⎡
⎢⎢⎣
−Ξ1 j Ξ2 −M1 −d̄M1

• −Ξ3 j Ξ4 −d̄M2

• • −Ξ5 −d̄M3

• • • −d̄W

⎤
⎥⎥⎦ (8.55)

A jp =
[−I Ã jp Ãd jp 0

]
(8.56)

Remark 8.17 The main stability results are derived from feasibility testing in the
enlarged state space in contrast with existing similar techniques [184, 368, 372,
438]. The novelty of our approach relies on the deployment of Finsler’s Lemma
in conjunction with a set of free-weighting matrices without using bounding tech-
niques to ensure that the system matrices are readily separated from the Lyapunov
matrices. This decoupling feature simplifies numerical implementation and, as will
be shown in the subsequent sections, paves the way to flexible feedback stabilization
synthesis. A simple comparison would support our intuition that the LMI results
are less conservative and in the nonswitching case are superior than the existing
methods [345, 354].
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8.2.7 H∞ Performance

Here, we consider the performance measure

J1K =
K∑

j=0

(
zt

j z j − γ 2wt
jw j

)

The following theorem states the main result

Theorem 8.18 Given dM > 0 and dm > 0 subject to (8.27). Switched system (8.23),
(8.24), and (8.25) with uk ≡ 0 is delay-dependent asymptotically stable with an
L2 − gain < γ∞ if there exist matrices 0 < Pt

j = Pj , 0 < Pt
s = Ps, X̂ j , 0 <

Qt = Q, 0 < W t = W, {M}51 and a scalar γ∞ > 0 satisfying the LMIs for
∀( j, s) ∈ Π

X̂ jA j +At
j X̂ t

j + P̂js < 0 (8.57)

P̂js =

⎡
⎢⎢⎢⎢⎢⎣

−Ξ1 Ξ2 −M1 −d̄M1 0
• −Ξ3 Ξ4 −d̄M2 G̃t

j
• • −Ξ5 −d̄M3 G̃t

d j
• • • −d̄W Φ̃ t

j
• • • • −γ 2∞ I

⎤
⎥⎥⎥⎥⎥⎦

(8.58)

A j =
[−I Ã j Ãd j 0 Γ̃ j

]
(8.59)

where Ξ1, ..., Ξ5 are given in (8.38).

Proof For any ωk ∈ �2(0,∞) �= 0 and zero initial condition xo = 0, we have

J1K ≤
K∑

j=0

(
zt

j z j − γ 2∞ωt
jω j +ΔVσ (x j , j)

)

Standard algebraic manipulation using (8.25) leads to

zt
j z j − γ 2∞ωt

jω j +ΔVσ (x j , j) =
x̃ t (k,m) P̂ js x̃(k,m), x̃(k,m) = [̂

xt (k,m) ωt
k

]t (8.60)

and P̂ js is given by (8.57). It follows from [279] that for the switched system (8.23),
(8.24), and (8.25) to be asymptotically stable with an L2−gain < γ∞ it suffices that
zt

j z j − γ 2∞ωt
jω j + ΔVσ (x j , j) < 0, ∀ j ∈ {0, K } holds for arbitrary switching,

which in turn implies that J1K < 0. The desired result is achieved by Finsler’s
Lemma and LMI (8.37) subject to (8.36). �
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8.2.8 �2 − �∞ Performance

Here, we consider the performance measure

J2K = Vσ (xK , K )−
K−1∑
j=0

ωt
j ω j

where K is an arbitrary positive integer. The following theorem states the desired
stability result

Theorem 8.19 Given dM > 0 and dm > 0 subject to (8.27). Switched filtered system
(8.34) is delay-dependent asymptotically stable with generalized H2− gain < γ2 if
there exist matrices 0 < Pt

j = Pj , 0 < Pt
s = Ps, X̂ j , 0 < Qt = Q, 0 < W t =

W, {M}51 and scalars γ2 > 0, ε j > 0 satisfying the LMIs for ∀( j, s) ∈ Π

⎡
⎢⎢⎢⎢⎢⎣

−Ps + d̂ Q 0 0 Ãt
j Pj d̄

(
Ãt

j − I
)

W

• −Q 0 Ãt
d j Pj d̄ Ãt

d j W
• • −I Γ̃ t

j Pj d̄Γ̃ t
j W

• • • −Pj 0
• • • • −d̄W

⎤
⎥⎥⎥⎥⎥⎦

< 0 (8.61)

⎡
⎣
−P j 0 C̃ t

j
• −ε j I C̃ t

d j
• • −γ 2

2 I

⎤
⎦ < 0 (8.62)

Proof For any sequence 0 �= ω j ∈ �2[0,∞), j ∈ {1, . . . , K − 1} and zero initial
condition x̃o = 0, one has

J2K =
K−1∑
j=0

[
ΔVK |(8.23) − ωt

j ω j

]
(8.63)

Using (8.40) (8.41), (8.42), and (8.43) and manipulating, we get

J2K =
⎡
⎣ xk

xk−dk

ωk

⎤
⎦

t

Ξs j

⎡
⎣ xk

xk−dk

ωk

⎤
⎦ (8.64)

Ξs j =
⎡
⎣Ξ1s j Ξ2s j Ξ3s j

• Ξ4s j Ξ5s j

• • Ξ6s j

⎤
⎦

Ξ1s j = Ãt
j Ps Ã j − Pj + (d̄ − d + 1)Q + d̄

(
Ãt

j − I
)

W ( Ã j − I )

Ξ2s j = Ãt
j Ps Ãd j + d̄

(
Ãt

j − I
)

W Ãd j
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Ξ3s j = Ãt
j PsΓ j + d̄

(
Ât

j − I
)

W Γ̃ j

Ξ4s j = −Q + Ãt
d j Ps Ãd j + d̄ Ãt

d j W Ãd j

Ξ5s j = Ãt
d j Ps Ãd j + d̄ Ât

d j W Ãd j ,

Ξ6s j = −I + Γ̃ t
j Ps Γ̃ j + d̄Γ̃ t

j W Γ̃ j (8.65)

By virtue of (8.61) and Schur complements, it is easy to see that J2K < 0 for any
K . Subsequently, for any 0 �= ω j ∈ �2[0,∞), it follows that

VK <

K−1∑
j=0

ωt
j ω j (8.66)

In turn, Schur complements on LMI (8.62) and applying the S-procedure, it yields

[
−γ 2

2 P j + C̃ t
j C̃ j C̃ t

j C̃d j

• C̃ t
d j C̃d j

]
< 0 (8.67)

from which it is readily evident that

ỹt
K ỹK − γ 2

2 VK < 0 (8.68)

Finally, by LMIs (8.66) and (8.68), it follows that switched filtered system (8.34)
has a generalized H2 norm bound γ2. �

Remark 8.20 We note from that the L2− gain under arbitrary switching can be
looked as the worst-case energy amplitude gain for the switched system (8.23,
8.24, 8.25, and 8.26) over all possible inputs, switching signals, and all admissible
uncertainties. The functional (8.39) is called a switched Lyapunov function (SLF)
since it has the same switching signals as system (8.23), (8.24), and (8.25), which
is known to yield less conservative results than the constant Lyapunov functional. A
novel feature of the developed approach is the arbitrary selection of the matrix X̃ j ,
which helps much in the feedback stabilization later on as well as in the numerical
simulation.

Remark 8.21 The optimal L2− gain of switched system (8.23, 8.24, and 8.25) can
be determined by solving the following convex minimization problem over LMIs:

Minimize γ

s.t. L M I s (8.36)− (8.37), ∀ ( j, s) ∈ IN× IN

Pj , Ps, X̂ j , Q, W, {M}51, ∀( j, s), γ > 0, σ > 0, κ > 0

which can be conveniently solved by the existing LMI software.
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8.2.9 H∞ Filter Design

To facilitate further development, define

X̂ j =
[
Υ̂ t 0 0 0 0 0 0

]t
, Υ̂ ∈ �2n×2n

Next, we express Υ̂ and Λ̂ = Υ̂ −1 and other relevant matrices into the convenient
form

Υ̂ =
[
Υs 0
Υo Υc

]
, R̂ =

[
R1 0
R2 R3

]
, Λ̂ =

[
Λ1 0
Λ1 Λ2

]

Ŝ =
[
S1 0
S2 S3

]
, Ψk =

[
Ψ1k 0
Ψ2k Ψ3k

]

P j =
[
P1 j 0
P2 j P3 j

]
, X j = P−1

j =
[
X1 j 0
X2 j X3 j

]
(8.69)

The following design result is established:

Theorem 8.22 Given dM > 0 and dm > 0 subject to (8.27) and the matrices in
(8.69). Switched filtered system (8.34) is delay-dependent asymptotically stable with
an L2 − gain < γ∞ if there exist matrices {Xk j }3k=1, {Xks}3k=1, {Sk}31, {Rk}31,
B f j , {Ψk}51, {Yk j }3k=1 and a scalar γ∞ > 0 satisfying the LMIs for ∀( j, s) ∈ Π

⎡
⎢⎢⎢⎢⎣

−Σ1s Σ2 j Σ3 j −d̄Ψ1 Γ̃ j

• −Σ4 −Σ5 −d̄Ψ2 Σ7 j

• • −Σ6 −d̄Ψ3 Σ8 j

• • • −d̄S Φ t
j

• • • • −γ 2∞ I

⎤
⎥⎥⎥⎥⎦ < 0, (8.70)

Σ1s =
[
Λ1 +Λt

1 + X1s + d̄S1 Λt
1

Λ1 + X2s + d̄S2 Λ2 +Λt
2 + X3s − d̄S1

]

Σ2 j =
[
Ψ11 + A jΛ

t
1 − d̄S1 A jΛ

t
1

Ψ21 − d̄S2 + Y1 Y1 + Y t
2 + Ψ31 − d̄S3

]

Σ7 j =
[

Λ1Gt
j

Λ1Gt
j − Y4 j

]
, Σ8 j =

[
Λ1Gt

d j
Λ1Gt

d j

]

Σ3 j =
[−Ψ11 + Ad jΛ

t
1 Ad jΛ

t
1−Ψ12 + Y3 −Ψ13 + Y3

]

Σ5 =
[
Ψ21 + Ψ t

21 0
Ψ22 + Ψ t

22 Ψ23 + Ψ t
23

]
, Σ4 =

[
Σ41 0
Σ42 Σ43

]

Σ6 =
[
Ψ31 + Ψ t

31 +R1 0
Ψ32 + Ψ t

32 +R2 Ψ33 + Ψ t
33 +R3

]

Σ41 = P1s − d̂S1 −R1 − Ψ21 − Ψ t
21,
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Σ42 = P2s − d̂S2 −R2 − Ψ22 − Ψ t
22,

Σ43 = P3s − d̂S3 −R3 − Ψ23 − Ψ t
23 (8.71)

Moreover, the gain matrices are given by

A f j = Λ−1
2 Y j2, B f j , G f j = Y4 jΛ

−t
2 (8.72)

Proof Applying the congruence transformation

diag[Λ̂, Λ̂, Λ̂, Λ̂, I ]

to inequality (8.58) using (8.57), and (8.59), and the linearizations

Xs = Υ −t PsΥ
−1, S = Υ −tWΥ −1, Y j3 = B f j Cd jΛ

t
1

X j = Υ −t PjΥ
−1, Y j1 = B f j C jΛ

t
1, Y j2 = Λ2 A f j

Y4 j = Λ2Gt
f j , {Ψ }51 = Υ −t {M}51Υ −1

we immediately obtain LMI (8.70) subject to (8.71). �

A special design procedure based on the common Lyapunov functional is given
below:

Corollary 8.23 Given dM > 0 and dm > 0 subject to (8.27) and the matrices
in (8.69). Switched filtered system (8.34) is delay-dependent asymptotically stable
with an L2 − gain < γ∞ if there exist matrices {Xk j }3k=1, {Sk}31, {Rk}31, B f j ,

{Ψk}51, {Yk j }3k=1, ∀( j, s) ∈ IN and a scalar γ∞ > 0 satisfying the LMIs for
∀( j) ∈ Π

⎡
⎢⎢⎢⎢⎣

−Σ1 j Σ2 j Σ3 j −d̄Ψ1 Γ̃ j

• −Σ4 −Σ5 −d̄Ψ2 Σ7 j

• • −Σ6 −d̄Ψ3 Σ8 j

• • • −d̄S Φ t
j

• • • • −γ 2∞ I

⎤
⎥⎥⎥⎥⎦ < 0 (8.73)

Σ1 j =
[
Λ1 +Λt

1 + X1 j + d̄S1 Λt
1

Λ1 + X2 j + d̄S2 Λ2 +Λt
2 + X3 j − d̄S1

]
(8.74)

where Σ2 j , ..., Σ43 are given by (8.71). Moreover, the gain matrices are given by

A f j = Λ−1
2 Y j2, B f j , G f j = Y4 jΛ

−t
2 (8.75)

8.2.10 �2 − �∞ Filter Design

Initially, we recall the following result:
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Lemma 8.24 The matrix inequality

−M+N Ω−1 N t < 0 (8.76)

holds for some 0 < Ω = Ω t ∈ �n×n, if and only if
[−M NX
• −X − X t + Z

]
< 0 (8.77)

holds for some matrices X ∈ �n×n and Z ∈ �n×n.

Proof (�⇒) By Schur complements, inequality (8.76) is equivalent to
[−M NΩ−1

• −Ω−1

]
< 0 (8.78)

Setting X = X t = Z = Ω−1, we readily obtain inequality (8.77).
(⇐�) Since the matrix [I N ] is of full rank, we obtain

[
I
N t

]t [−M NX
• −X − X t + Z

] [
I
N t

]
< 0 ⇐⇒

−M+N Z N t < 0 ⇐⇒,

−M+N Ω−1 N t < 0, Z = Ω−1 (8.79)

which completes the proof. �
In preparation for the filter design, we use Lemma 8.24 to introduce relaxation

variables and establish the theorem below:

Theorem 8.25 Given dM > 0 and dm > 0 subject to (8.27). Switched filtered system
(8.34) is delay-dependent asymptotically stable with �2 − �∞ < γ2 if there exist
matrices {X }Ni=1, Y, G, F ∀(i, j, s) ∈ Π and scalars γ2 > 0, ε j > 0 such that
the LMIs

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Xs 0 0 Gt Ãt
j d̄Gt

(
Ãt

j − I
)

d̄F
• −F − F t + Y 0 Gt Ãt

d j d̄Gt Ãt
d j 0

• • −I Γ̃ t
i d̄Γ̃ t

i 0
• • • −X j 0 0
• • • • −G − Gt + d̄Z 0
• • • • • −F − F t + d̂Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (8.80)

⎡
⎣−γ

2
2 I C̃d j C̃ jG
• −ε j I 0
• • −G − Gt + X j

⎤
⎦ < 0 (8.81)

have a feasible solution.
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Proof Applying the congruent transformations

[Xs, I, I, X j , I, I ]

to LMI (8.61) and

[X j , I, I ]

to LMI (8.62), respectively, with Xi = P−1
i , i = j, s and Schur complements, it

yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Xs 0 0 Xs Ãt
j d̄

(
Ãt

j − I
)

d̄XsQ
• −Q 0 Ãt

d j d̄ Ãt
d j 0

• • −I Γ̃ j 0 0
• • • −X j 0 0
• • • • −d̄W−1 0
• • • • • −d̄Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (8.82)

⎡
⎣
−X j 0 X j C̃ t

j
• −ε j I C̃ t

d j
• • −γ 2

2 I

⎤
⎦ < 0 (8.83)

When (8.80) and (8.81) hold, it is not difficult to infer that 0 < X j < G + Gt . The
inequality (X j−G)tX−1

j (X j−G) ≥ 0 implies that−GtX−1
j G ≤ X j−(G+Gt ) and

in the same way, the inequality (Y−F)tY−1(Y−F) ≥ 0 implies that−F tY−1F ≤
Y − (F + F t ). Alternatively, it follows from Lemma A.2 that there exist matrices
G, F , YN

i=1 such that LMIs (8.80) and (8.81) are readily obtained. �

Next, to determine the unknown matrices of the piecewise filter we proceed and
define the following matrices

Xk =
[
X1k 0
X2k X3k

]
, k = s, j, G =

[
G1 0
G1 G2

]

Ψk =
[
Ψ1k 0
Ψ2k Ψ3k

]
, F =

[
F1 0
F1 F2

]
(8.84)

and the linearizations

D1 j = Gt
2 At

f j , D2 j = Gt
1Ct

j Bt
f j + Gt

1 At
f j

The following design results are established.

Theorem 8.26 Given dM > 0 and dm > 0 subject to (8.27) and the matrices in
(8.84). Switched filtered system (8.34) is delay-dependent asymptotically stable with
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an L2−L∞ < γ2 if there exist matrices {Xk j }3k=1, {Xks}3k=1, {Sk}31, {Rk}31, B f j ,

{Ψk}51, {Yk j }3k=1, ∀( j, s) ∈ IN and scalars γ2 > 0, ε j > 0 satisfying the LMIs for
∀( j, s) ∈ Π

⎡
⎢⎢⎢⎢⎢⎢⎣

−Π1s 0 0 Π2 j d̄Π3 j d̄F
• −Π4 0 −Π4 −d̄Π4 0
• • −I Γ̃ t

j −d̄Γ̃ t
j 0

• • • −Π1 j 0 0
• • • • −Π5 0
• • • • • −Π6

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (8.85)

⎡
⎣−γ

2
2 I C̃d j Π7
• −ε j I 0
• • −Π8

⎤
⎦ < 0 (8.86)

Π1s =
[
X1s 0
X2s X3s

]
, Π2 j =

[
Gt

1 At
j D2 j

0 D1 j

]

Π3 j =
[
Gt

1

(
At

j − I
)

D2 j

0 D1 j − Gt
2

]
, Π7 =

[
C jG1

0

]

Π4 =
[
F1 + F t

1 − Y1 0
F2 + F t

2 − Y2 F3 + F t
3 − Y3

]

Π5 =
[
G1 + Gt

1 − d̄Z1 0
G2 + Gt

2 − d̄Z2 G3 + Gt
3 − d̄Z3

]

Π6 =
[
F1 + F t

1 − d̄Y1 0
F2 + F t

2 − d̄Y2 F3 + F t
3 − d̄Y3

]

Π8 =
[
G1 + Gt

1 − X1 j 0
G2 + Gt

2 − X2 j G3 + Gt
3 − G3 j

]
(8.87)

Moreover, the gain matrices are given by

A f j = Λ−1
2 Y j2, B f j , G f j = Y4 jΛ

−t
2 (8.88)

A special design procedure based on a common Lyapunov functional is given
below:

Corollary 8.27 Given dM > 0 and dm > 0 subject to (8.27) and the matrices
in (8.84). Switched filtered system (8.34) is delay-dependent asymptotically stable
with an �2 − �∞ < γ2 if there exist matrices {Xk j }3k=1, {Sk}31, {Rk}31, B f j ,

{Ψk}51, {Yk j }3k=1, ∀( j, s) ∈ IN and scalars γ2 > 0, ε j > 0 satisfying the LMIs for
∀( j, s) ∈ Π
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⎡
⎢⎢⎢⎢⎢⎢⎣

−Π1 j 0 0 Π2 j d̄Π3 j d̄F
• −Π4 0 −Π4 −d̄Π4 0
• • −I Γ̃ t

j −d̄Γ̃ t
j 0

• • • −Π1 j 0 0
• • • • −Π5 0
• • • • • −Π6

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (8.89)

⎡
⎣−γ

2
2 I C̃d j Π7
• −ε j I 0
• • −Π8

⎤
⎦ < 0 (8.90)

Π1 j =
[
X1 j 0
X2 j X3 j

]
(8.91)

where Π2 j , ...,Π8 are given by (8.87). Moreover, the gain matrices are given by

A f j = Λ−1
2 Y j2, B f j , G f j = Y4 jΛ

−t
2 (8.92)

8.2.11 Illustrative Example B

Consider the following system of the type (8.23), (8.24), and (8.25) where the
switching occurs between four modes described by the following coefficients:

A1 =
[

0.7 0.09
0 0.35

]
, Ad1 =

[
0.1 0
0 0.1

]
, Γ1 =

[
0.3
−0.3

]

G1 =
[

0.25
0.15

]
, Gd1 =

[ −0.1
−0.01

]
, Φ1 = 0.01

C1 =
[

0.5 0.5
]
, Cd1 =

[−0.1 0
]

A2 =
[

0.41 0.11
0 0.97

]
, Ad3 =

[
0 0.05
0 −0.15

]
, Φ2 = 0.02

G2 =
[

0.22
0.13

]
, Gd2 =

[
0

0.03

]
, Γ2 =

[
0.2
−0.02

]

C2 =
[

0.7 0.3
]
, Cd2 =

[
0 −0.1

]

A3 =
[

0.6 0.02
0 0.49

]
, Ad2 =

[−0.1 0.01
−0.1 −0.1

]
, Φ3 = 0.02

G3 =
[

0.17
0.19

]
, Gd3 =

[
0.05

0

]
, Γ3 =

[
0.01
0.1

]

C3 =
[

0.4 0.6
]
, Cd3 =

[−0.1 0
]

A4 =
[−0.33 0.22

0 −0.45

]
, Ad4 =

[
0 0.25
0 −0.05

]
, Φ4 = 0.02
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G4 =
[

0.22
0.13

]
, Gd4 =

[
0

0.01

]
, Γ4 =

[
0.1
−0.02

]

C4 =
[

0.3 0.7
]
, Cd4 =

[−0.1 0.1
]

and the corresponding two sets { j = 1 i f yk < 1} and { j = 2 i f yk ≥ 1}
respectively.

A computational summary of applying Theorem 8.22 and Corollary 8.23 and
using the tools of [17], such that the above piecewise system is asymptotically stable
is depicted in Table 8.1. The piecewise filter matrices are given by

A f 1 =
[−0.8118 −0.2795

0.2105 −0.7467

]
, B f 1 =

[−0.7833
−1.2554

]

G f 1 =
[−1.3024 −0.1185

]

A f 2 =
[

0.7767 −0.2665
0.1905 −0.6885

]
, B f 2 =

[−0.8452
−1.3725

]

G f 2 =
[−1.4513 −0.1335

]

A f 3 =
[−0.7467 −0.2835

0.2019 0.7645

]
, B f 3 =

[−1.3675
−0.9008

]

G f 3 =
[−0.2025 −1.4366

]

A f 4 =
[

0.8258 −0.2193
0.2005 −0.7534

]
, B f 4 =

[−1.5364
−0.8111

]

G f 4 =
[−1.4448 −0.2167

]

The state x and filtered state x̂ trajectories using H∞-performance are plotted in
Figs. 8.6 and 8.7.

It is quite evident the developed piecewise H∞ filter gives improved perfor-
mance.

Turning to the implementation of Theorem 8.26 and Corollary 8.27 such that the
piecewise discrete-time system under consideration is asymptotically stable, com-
parison of the feasible results is presented in Table 8.2 and the corresponding state x
and filtered state x̂ trajectories using L2 − L∞-performance are plotted in Figs. 8.8
and 8.9.

The foregoing results come in support with the effectiveness of our filtering
approach.

Table 8.1 A summary of H∞-performance bound: illustrative example B

d d̄ T he.8.22 Coro.8.23

2 6 2.145 2.335
3 9 2.774 3.021
4 11 3.182 3.664
5 13 3.534 4.875
6 13 3.732 6.438
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Fig. 8.6 Plot of x1 and x̂1 versus time: H∞ filter
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Fig. 8.7 Plot of x2 and x̂2 versus time: H∞ filter
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Table 8.2 A summary of �2 − �∞-performance bound: illustrative example B

d d̄ T he.8.26 Coro.8.27

2 6 3.015 3.532
3 9 3.684 4.021
4 11 5.182 6.224
5 13 6.534 7.694
6 13 6.732 9.015
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Fig. 8.8 Plot of x1 and x̂1 versus time: L2 − L∞ filter

8.2.12 Illustrative Example C

Consider a third-order system of the type (8.23), (8.24), and (8.25) where the switch-
ing occurs between two modes described by the following coefficients:

Mode 1 = yk ≥ 0

A1 =
⎡
⎣ 0 0.2 0.3
−0.3 0 0.2
−0.1 0.4 0

⎤
⎦, Gd1 =

⎡
⎣ −0.1

0
−0.01

⎤
⎦

G1 =
⎡
⎣−0.3

0
0.7

⎤
⎦, Ad1 =

⎡
⎣0.1 −0.2 0.4

0 0.2 −0.3
0.5 0.1 0

⎤
⎦
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Fig. 8.9 Plot of x2 and x̂2 versus time: L2 − L∞ filter

C1 =
⎡
⎣0.8

0.2
0.2

⎤
⎦, Cd1 =

⎡
⎣−0.1
−0.2
0.1

⎤
⎦, Γ1 =

⎡
⎣0.1

0.5
0

⎤
⎦

Φ1 = 0.1

Mode 2 = yk ≤ 0

A2 =
⎡
⎣0.3 0.2 0

0.3 0 0.5
0 0.4 −0.1

⎤
⎦, Gd2 =

⎡
⎣−0.1

0.1
0

⎤
⎦

G2 =
⎡
⎣ 0.8
−0.2
0.3

⎤
⎦ , Ad2 =

⎡
⎣0.1 0.2 −0.4

0 0.2 −0.5
0 −0.1 0.3

⎤
⎦

C2 =
⎡
⎣0.7

0.1
0.4

⎤
⎦ , Cd2 =

⎡
⎣ 0.1

0.2
−0.1

⎤
⎦, Γ2 =

⎡
⎣0.1

0
0.4

⎤
⎦

Φ2 = 0.3

and the corresponding two sets { j = 1 i f yk < 0} and { j = 2 i f yk ≥ 0},
respectively.
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The piecewise filter matrices such that the above piecewise system is asymptoti-
cally stable are given by

A f 1 =
⎡
⎣−0.6110 1.5279 −1.4688
−1.6789 3.6755 −3.1187
−1.6333 4.1765 −3.8337

⎤
⎦

B f 1 =
⎡
⎣−0.3753
−0.4955
−0.4675

⎤
⎦

G f 1 =
[−2.8874 −0.8225 2.8795

]

A f 2 =
⎡
⎣−1.6022 2.7952 −2.4268
−3.9458 5.3355 −5.1167
−3.6443 6.1385 −34.9837

⎤
⎦

B f 2 =
⎡
⎣−0.8883
−3.0495
−3.0465

⎤
⎦

G f 2 =
[

1.2098 0.0224 −0.2615
]

In Tables 8.3 and 8.4, computational summaries of applying Theorem 8.22–
Corollary 8.23 for H∞-filter and Theorem 8.26–Corollary 8.27 for �2− �∞-filter
are depicted.

Once again, the foregoing results come in support with the effectiveness of our
filtering approach.

Table 8.3 A summary of H∞-performance bound: illustrative example C

d d̄ T he.8.22 Coro.8.23

2 6 0.889 1.035
3 8 0.924 1.044
4 10 0.965 1.067
5 12 0.977 1.095
6 14 0.989 1.105

Table 8.4 A summary of L2 − L∞-performance bound: illustrative example C

d d̄ T he.8.26 Coro.8.27

2 6 0.975 1.045
3 8 0.986 1.076
4 10 1.015 1.088
5 12 1.117 1.096
6 14 1.229 1.107
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8.3 Notes and References

In this chapter, novel delay-dependent filtering design approaches have been devel-
oped for a class of linear piecewise discrete-time systems with convex-bounded
parametric uncertainties and time-varying delays appearing in the state as well as
the output and measurement channels. The filters have linear full-order structure and
guarantee the desired estimation accuracy over the entire uncertainty polytope. We
have used switched Lyapunov functionals and introduced some additional instru-
mental matrix variables to pave the way toward deriving sufficient conditions for
the asymptotic stability of the filtering error system.

The desired accuracy has been assessed in terms of either H∞-performance or
�2 − �∞ criteria. A new parametrization procedure based on a combined Finsler’s
Lemma and piecewise Lyapunov–Krasovskii functional has been established to
yield sufficient conditions for delay-dependent filter feasibility. The filter gains
have been subsequently determined by solving a convex optimization problem over
LMIs. In comparison to the existing design methods, the developed methodology
has been shown to yield the least conservative measures since all previous overde-
sign limitations are almost eliminated. By means of simulation examples, the advan-
tages of the developed technique have been readily demonstrated.



Chapter 9
Switched Kalman Filtering

In this chapter, the problem of Kalman filtering for a class of switched systems with
state delays is investigated. Both discrete-time and continuous-time representations
are treated. In both cases, attention is focused on the design of a stable filter guaran-
teeing a prescribed noise attenuation level in the H∞ sense. By using an appropriate
switched estimation scheme, sufficient conditions for the solvability of this problem
are obtained in terms of algebraic Riccatti equations (AREs), which, when solved,
a desired H∞ filter can be constructed.

9.1 Discrete Switched Delay System

The problem of optimal filtering has been well studied for more than three decades
in various branches of science and engineering. Much focus has been directed to
dynamical systems subject to stationary Gaussian input and measurement noise
processes [3]. The celebrated Kalman filtering provides a solution to this prob-
lem. When the available plant model contains uncertain parameters, the robust
state estimation problem comes into the scene for which several techniques have
been proposed; see [326, 328–356, 360–372, 374–393, 399, 400] and the references
cited therein. On another front of research, uncertain systems with state delay have
received increasing interests in recent years [207, 208]. Most of the research efforts
have been concentrated on robust stability and stabilization; see [54, 216] and the
references cited therein. The problem of estimating the state of uncertain system
with state delay has been overlooked despite its importance for control and signal
processing.

We consider in this section the state estimation problem for linear switched
discrete-time systems with norm-bounded parameter uncertainties and constant
state delay. This delay factor arises naturally in different engineering fields [216]. It
could result from constant processing delays as in digital systems, inherent gestation
lags as in production systems, or finite transit time as in industrial mills. Indeed,
this delay is among the main sources of instability in control systems. A related
problem is the design of deterministic observers with unknown inputs [60] using
algebraic methods. Here, we address the state estimator design problem such that the

M.S. Mahmoud, Switched Time-Delay Systems,
DOI 10.1007/978-1-4419-6394-9_9, C© Springer Science+Business Media, LLC 2010
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estimation error covariance has a guaranteed bound for all admissible uncertainties
and state delay. The approach hinges upon the application of the multi-estimation
structure depicted in Fig. 9.1 The main tool for solving the foregoing problem is the
Riccati equation approach. It is shown that the stabilizing solution of robust Kalman
filtering is given in terms of two algebraic Riccati equations. The existence of the
solutions hinges on the quadratic stability of the uncertain system. In principle, all
the developed results can be cast into the framework of linear matrix inequalities to
yield a satisfactory solution (not necessarily stabilizing) [216].

Fig. 9.1 Multi-estimator structure: discrete

9.1.1 Problem Formulation

We consider a class of switched time-delay systems represented by the discrete
model:

xk+1 = [Aξ(k) +ΔAξ(k)] xk + Dξ(k) xk−τξ(k) + Γξ(k) wk

= Aξ(k),Δ xk + Dξ(k) xk−τξ(k) + Γξ(k) wk (9.1)

yk = [Cξ(k) +ΔCξ(k)] xk + vk

= Cξ(k),Δ xk + vk (9.2)

zk = C1,ξ(k) xk (9.3)

ξ(k) ∈ S = {1, . . . , s} (9.4)

where in (9.1), (9.2), (9.3), and (9.4), xk ∈ �n is the state, yk ∈ �p is the mea-
sured output, zk ∈ �q is a linear combination of the state variables to be esti-
mated, and wk ∈ �r and vk ∈ �p are, respectively, the process and measurement
noise sequences. The matrices Aξ(k) ∈ �n×n, Dξ(k) ∈ �n×n, Γξ(k) ∈ �n×r , and
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Cξ(k) ∈ �p×n are the nominal plant matrices, which are allowed to depend on the
system mode ξ(k) with Aξ(k) being invertible for all modes. Here, τξ(k) is a known
constant scalar depending on the system mode and representing the amount of delay
in the state. As in the previous chapters, the switching signal ξ(k) defines the system
mode at the discrete instant k, which determines the current system dynamics and
the associated measurements and input vectors. The signal ξ(k) can be generated by
finite-discrete automata. The matrices ΔAξ(k) and ΔCξ(k) represent time-varying
parametric uncertainties given by

[
ΔAξ(k)

ΔCξ(k)

]
=

[
H1,ξ(k)
H2,ξ(k)

]
Δξ(k) Eξ(k) (9.5)

where H1,ξ(k) ∈ �n×α , H2,ξ(k) ∈ �m×α , and Eξ(k) ∈ �β×n are known matrices at
every mode ξ(k) and Δξ(k) ∈ �α×β is an unknown matrix satisfying

Δt
ξ(k) Δξ(k) ≤ I k = 0, 1, 2... (9.6)

The initial condition is specified as 〈xo, φ(s)〉, where φ(.) ∈ �2[−τ, 0] . The vec-
tor xo is assumed to be a zero-mean Gaussian random vector. The following standard
assumptions on xo and the noise sequences {wξ(k)} and {vξ(k)}, are assumed:

(a) IE[wξ(k)] = 0, IE
[
wξ(k)w

t
ξ( j)

]
= Wξ(k) δ(k − j), Wk > 0 ∀k, j (9.7)

(b) IE[vξ(k)] = 0, IE
[
vξ(k)v

t
ξ( j)

]
= Vξ(k) δ(k − j), Vk > 0 ∀k, j (9.8)

(c) IE
[
wξ(k)v

t
ξ( j)

]
= 0, IE

[
xow

t
ξ(k)

]
= 0, IE

[
xov

t
ξ(k)

]
= 0 ∀k, j (9.9)

(d) IE
[
xoxt

o

] = Ro (9.10)

where IE[.] stands for the mathematical expectation and

δ(s) =
{

1 s = 0
0 otherwise

is the Dirac function.
It is interesting to observe that system (9.1), (9.2), (9.3), and (9.4) can be

expressed as the composition of two subsystems: the first is a deterministic time-
delay subsystem described by

x̄k+1 = Aξ(k) x̄k + Bξ(k) uξ(k),k + Dξ(k) x̄k−τξ(k) (9.11)

ȳk = Cξ(k) x̄k, x̄(0) = 0 (9.12)

and the other is a stochastic autonomous subsystem given by

x̃k+1 = Aξ(k) x̃k + Dξ(k) x̃k−τξ(k) + Γξ(k) wk (9.13)
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ỹk = Cξ(k) x̃k + vξ(k),k, x̄(0) = xo (9.14)

such that

xk+1 = x̄k+1 + x̃k+1 (9.15)

yk = ȳk + ỹk (9.16)

Such an approach is very useful when Dξ(k) ≡ 0 corresponding to the delay-free
case [21]. We follow hereafter the approach developed in [287].

9.1.2 Switched State Estimation

Given the measurement sequences yξ(0), ..., yξ(k), the switched state estimation of
interest is to determine at each discrete step k an unbiased linear estimation x̂k of
the unknown system state xk with the following properties:

• The error model of the state estimation should be stable in the sense of Lyapunov.
• The variances of all components of the estimation error xk− x̂k should not exceed

any finite bound.
• The estimation method must be applicable for all switching sequences

ξ(0), ..., ξ(k).

The switching state estimation under consideration could be solved by the block
diagram depicted in Fig. 9.1. Observe that the current state estimate x̂k+1 is gener-
ated by

x̂k+1 = Gξ(k) x̂k + Kξ(k)yξ(k) (9.17)

where Gξ(k) ∈ �n×n and Kξ(k) ∈ �n×p are appropriately selected gain matrices
such that there exists a matrix Ψ ≥ 0 satisfying

IE[{xk − x̂k}{xk − x̂k}t ] = IE
[
eket

k

]
≤ Ψ (9.18)

Note that (9.18) implies

IE[{xk − x̂k}t {xk − x̂k}] = IE
[
et

kek
]

≤ tr(Ψ ) (9.19)

In this case, the estimator (9.17) is said to provide a guaranteed cost (GC) matrix Ψ .
It should be noted that if the signal ξ(k) changes, the last state estimate x̂k gen-

erated by the estimator for the system mode ξ(k − 1) is now utilized as initial state
estimate for the estimator designed for the new system mode ξ(k).
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9.1.3 Robust Linear Filtering

We proceed to analyze the switched state estimator (9.17) by defining

Gξ(k) = (Aξ(k) + δAξ(k)) − Kξ(k)Cξ(k) (9.20)

where δAξ(k) and Kξ(k) are now the unknown matrices to be determined later on.
Using (9.1), (9.2) and (9.20) to express the dynamics of the state estimator in the
form

x̂k+1 = [(Aξ(k) + δAξ(k))− Kξ(k)Ck]x̂k

+ Kξ(k)[Cξ(k)xk + vk] (9.21)

Introducing the augmented state vector

ζk =
[

xk

xk − x̂k

]
=

[
xk

ek

]
∈ �2n (9.22)

Then, it follows from (9.1) and (9.21) that

ζk+1 = [Aξ(k) + Hξ(k)Δξ(k)Eξ(k)] ζk + Dξ(k) ξk−τξ(k) + Bξ(k) ηk

= Aξ(k),Δ ζk + Dξ(k) ξk−τξ(k) + Bξ(k) ηk (9.23)

where ηk is a stationary zero-mean noise signal with identity covariance matrix and

Aξ(k) =
[

Aξ(k) 0
−δAξ(k) (Aξ(k) + δAξ(k))− Kξ(k)Cξ(k)

]

Dξ(k) =
[

Dξ(k) 0
Dξ(k) 0

]
, ηk =

[
wk

vk

]
(9.24)

BkBt
k =

[
Γξ(k)Wξ(k)Γ

t
ξ(k) 0

0 Wξ(k) + Kξ(k)Vξ(k)K t
ξ(k)

]
(9.25)

Hξ(k) =
[

H1,ξ(k)
H1,ξ(k) − Kξ(k)H2,ξ(k)

]
, Eξ(k) = [Eξ(k) 0] (9.26)

Definition 9.1 Estimator (9.17) is said to be a switched quadratic estimator
(SQE) at mode ξ(k) associated with a sequence of matrices {Ωξ(k)} > 0 for system
(9.1) and (9.2) if there exist a sequence of scalars {λξ(k)} > 0 and a sequence of
matrices {Ωξ(k)} such that

0 < Ωξ(k) =
[
Ω1,ξ(k) Ω3,ξ(k)
Ω t

3,ξ(k) Ω2,ξ(k)

]
(9.27)

satisfying the algebraic matrix inequality
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(1+ λξ(k))Aξ(k),Δ Ωξ(k) At
ξ(k),Δ −Ωξ(k+1) +(

1+ λ−1
ξ(k)

)
Dξ(k) Ωk−τξ(k) Dt

ξ(k) + Bξ(k)Bt
ξ(k) ≤ 0, k ≥ 0 (9.28)

for all admissible uncertainties satisfying (9.5) and (9.6)

The following result shows that if (9.17) is a SQE for system (9.1) and (9.2) with
cost matrix Ωξ(k), then Ωξ(k) defines an upper bound for the filtering error covari-
ance, that is,

IE
[
ek et

k

] ≤ Ω2,ξ(k), ∀k ≥ 0 (9.29)

Theorem 9.2 Consider the time-delay system (9.1) and (9.2) satisfying (9.5) and
(9.6) and with known initial state. Suppose there exists a solution Ωξ(k) = Ω t

ξ(k) ≥
0 to inequality (21) for some λk > 0 and for all admissible uncertainties. Then
the estimator (9.17) provides an upper bound for the filtering error covariance, that
is,

IE
[
ek et

k

] ≤ [0 I ]Ωξ(k)[0 I ]t ∀k ≥ 0 (9.30)

Proof Suppose that estimator (9.17) is a QE with cost matrix Ωξ(k). By evaluating
the one-step ahead covariance matrix Σζ,ξ(k+1) = IE

[
ζk+1 ζ t

k+1

]
, we get

Σζ,ξ(k+1) = IE[Aξ(k),Δ ξk + Dξ(k)ζk−τ + Bξ(k)ηk] ×
[Aξ(k),Δζk + Dkζk−τξ(k) + Bξ(k)ηk]t

= IE
[
Aξ(k),Δζkζ

t
k Aξ(k),Δ

]+ IE
[
Aξ(k),Δζkζ

t
k−τξ(k)D

t
ξ(k)

]

+IE
[
Dξ(k)ζk−τξ(k) ζ t

k Aξ(k),Δ
]

+IE
[
Dξ(k)ζk−τξ(k) ζ t

k−τξ(k)D
t
ξ(k)

]
+ IE

[
Bξ(k)ηkη

t
kBt

ξ(k)

]
(9.31)

Note that

Dξ(k)IE
[
ζk−τξ(k) ζ t

ξ(k)

]
At
ξ(k),Δ + Aξ(k),ΔIE

[
ζkζ

t
k−τξ(k)

]
Dt
ξ(k)

≤ λξ(k) Aξ(k),ΔIE
[
ζk ζ t

k

]
At
ξ(k),Δ

+λ−1
ξ(k)Dξ(k)IE

[
ζk−τξ(k) ζ t

k−τξ(k)
]

Dt
ξ(k) (9.32)

Using inequality (9.32) into (9.31) and arranging terms, we get

Σζ,ξ(k+1) ≤ (1+ λξ(k))Aξ(k),ΔΣζ,ξ(k)At
ξ(k),Δ

+
(

1+ λ−1
ξ(k)

)
Dk Σζ,k−τξ(k) Dt

k + BkBt
ξ(k) (9.33)
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Letting Ξξ(k) = Σζ,ξ(k)−Ωξ(k) with ek = xk− x̂k and considering inequalities (21)
and (25), we get

Ξξ(k+1) ≤
(1+ λξ(k))Aξ(k)Ξξ(k)At

ξ(k) +
(

1+ λ−1
ξ(k)

)
DkΞk−τξ(k)Dt

ξ(k) (9.34)

By considering that the state is known over the period [−τξ(k), 0], it justifies letting
Σζ,ξ(k) = 0 ∀k ∈ [−τξ(k), 0]. Then it follows from (9.34) that Ξξ(k) ≤ 0 for k > 0;
that is, Σζ,ξ(k) ≤ Ωξ(k) for k > 0. Hence, IE

[
eket

k

] ≤ [0 I ]Ωξ(k)[0 I ]t ∀k ≥ 0.�

9.1.4 A Design Approach

Motivated by the recent results of robust filtering theory [15, 399, 400], we employ
hereafter a Riccati equation approach to solve the robust Kalman filtering for
switched time-delay systems. To this end, we define matrices 0 < Pξ(k) = Pt

ξ(k) ∈
�n×n; 0 < Sξ(k) = St

ξ(k) ∈ �n×n as the solutions of the Riccati difference equa-
tions (RDEs):

Pξ(k+1) = (1+ λξ(k)){Aξ(k)
(
I + μξ(k)Pξ(k)Yξ(k)

)
Pξ(k)At

ξ(k)}
+

(
1+ λ−1

ξ(k)

)
Dξ(k)Pk−τξ(k) Dt

ξ(k) + Ŵξ(k)

Pk−τξ(k) = 0 ∀ k ∈ [0, τξ(k)] (9.35)

Sξ(k+1) = (1+ λξ(k)) Âξ(k)
(
I + μξ(k)Sξ(k)Yξ(k)

)
Sξ(k) Ât

ξ(k)

+(1+ λξ(k))δAξ(k)
(
I + μξ(k)Pξ(k)Yξ(k)

)
Pξ(k)δAt

ξ(k)

+ (1+ λξ(k))μξ(k) Âξ(k)Pξ(k)Yξ(k)Sξ(k) Ât
ξ(k)

+(1+ λξ(k)) Âξ(k)μξ(k)Sξ(k)Yξ(k)Pξ(k)δAt
ξ(k)

−M̂t
ξ(k)

(
Γ̂ξ(k) + V̂ξ(k)

)−1
M̂ξ(k)

+
(

1+ λ−1
ξ(k)

)
Dξ(k)Pk−τξ(k) Dt

ξ(k) + Ŵξ(k)

Sk−τξ(k) = 0 ∀ k ∈ [0, τ ] (9.36)

where μξ(k) > 0, λξ(k) > 0 are scaling parameters such that P−1
ξ(k) −

μ−1
ξ(k)Eξ(k)Et

ξ(k) > 0 and the matrices Âξ(k), δAξ(k), V̂ξ(k), Ŵξ(k), Γ̂ξ(k), and M̂ξ(k)

are given by

Yξ(k) = Et
ξ(k)

(
I − μξ(k)Eξ(k)Pξ(k)E

t
ξ(k)

)−1
Eξ(k) (9.37)

Ŵξ(k) = Wξ(k) + (1+ λξ(k))μ
−1
ξ(k)H1,ξ(k)Ht

1,ξ(k) (9.38)
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V̂ξ(k) = Vξ(k) + (1+ λξ(k))μ
−1
ξ(k)H2,ξ(k)Ht

2,ξ(k) (9.39)

Tξ(k) = (1+ λξ(k))(Pξ(k) − Sξ(k))
(
I + μξ(k)Yξ(k)Pξ(k)

)
At
ξ(k)

Zξ(k) = (1+ λξ(k))M̂t
ξ(k)

(
Γ̂ξ(k) + V̂ξ(k)

)−1

×
(

CkSk(I + μξ(k)Yξ(k)Pξ(k))At
ξ(k) + μ−1

ξ(k)H2,ξ(k)Ht
1,ξ(k)

)
(9.40)

Xξ(k) = (1+ λξ(k))μξ(k)Aξ(k)Sξ(k)Yξ(k)Pξ(k)At
ξ(k)

+(1+ λξ(k))μ
−1
ξ(k)H1,ξ(k)Ht

1,ξ(k)

+
(

1+ λ−1
ξ(k)

)
Dξ(k)Pk−τξ(k) Dt

ξ(k) (9.41)

Γ̂ξ(k) = (1+ λξ(k))Cξ(k)Sξ(k)C
t
ξ(k) (9.42)

Âξ(k) = Aξ(k) + δAξ(k), δAξ(k) = T −1
ξ(k)

(
Xξ(k) + Zξ(k)

)
(9.43)

M̂ξ(k) = (1+ λξ(k))
[
Cξ(k)Sξ(k)At

ξ(k) + μξ(k)Sξ(k)Yξ(k)Pξ(k)δAt
ξ(k)

+ μξ(k)H2,ξ(k)Ht
1,ξ(k)

]
(9.44)

Note that the assumption that Aξ(k), being invertible for all k, is needed for the
existence of Tξ(k) and δAξ(k). Let the (λ, μ)−parametrized switched estimator be
expressed as

x̂k+1 =
(

Aξ(k) + T −1
ξ(k)(Xξ(k) + Zξ(k))

)
x̂k

+ Kξ(k)[yk − Cξ(k) x̂k] (9.45)

where the Kalman gain matrix Kξ(k) ∈ �n×m is to be determined. The following
theorem summarizes the main result:

Theorem 9.3 Consider system (9.1) and (9.2) satisfying the uncertainty structure
(9.5) and (9.6) with zero initial condition and Aξ(k) being invertible ∀ξ(k) ∈ S.
Suppose the process and measurement noises satisfy (9.7), (9.8), (9.9), and (9.10).
For some μξ(k) > 0 , λξ(k) > 0, ξ(k) ∈ S let 0 < Pξ(k) = Pt

ξ(k) and 0 < Sξ(k) =
St
ξ(k) be the solutions of RDEs (9.35) and (9.36), respectively. Then the (λ, μ)−

parametrized estimator (9.45) is an SQE estimator with GC

IE[{x̂k − xk}t {x̂k − xk}] ≤ tr (Sξ(k)) (9.46)

Moreover, the gain matrix K is given by

Kξ(k) = M̂t
ξ(k)

(
Γ̂ξ(k) + V̂ξ(k)

)−1
(9.47)
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Proof Let

Xξ(k) =
[

Pξ(k) Sξ(k)

Sξ(k) Sk

]
(9.48)

where Pξ(k) and Sξ(k) are the positive-definite solutions to (9.35) and (9.36) at mode
ξ(k), respectively. By using the following standard inequalities (see the Appendix)

• For any real matrices Σ1 , Σ2, and Σ3 with appropriate dimensions and
Σ t

3 Σ3 ≤ I , it follows that

Σ1Σ3Σ2 +Σ t
2Σ

t
3Σ

t
1 ≤ α−1 Σ1Σ

t
1 + α Σ t

2Σ2 ∀α > 0 (9.49)

• Let Σ1, Σ2, Σ3 and 0 < R = Rt be real constant matrices of compatible dimen-
sions and H(t) be a real matrix function satisfying Ht (t)H(t) ≤ I. Then for
any ρ > 0 satisfying ρΣ t

2Σ2 < R , the following matrix inequality holds:

(Σ3 +Σ1 H(t)Σ2)R−1 (
Σ t

3 +Σ t
2 Ht (t)Σ t

1

) ≤
ρ−1Σ1Σ

t
1 +Σ3

(
R − ρΣ t

2Σ2
)−1

Σ t
3 (9.50)

combining (9.35), (9.36), (9.37), (9.38), (9.39), (9.40), (9.41), (9.42), (9.43), and
(9.44), it is a simple task to show that

(1+ λξ(k))

[
Aξ(k)Xξ(k)At

ξ(k) + μξ(k)Aξ(k)Xξ(k)Et
k

[I − μξ(k)Eξ(k)Xξ(k)Et
ξ(k)]−1Eξ(k)Xξ(k)At

ξ(k)

]

−Xk+1 + (1+ λξ(k))μ
−1
ξ(k)Hξ(k)Ht

ξ(k) + Bξ(k)Bt
ξ(k)

+
(

1+ λ−1
ξ(k)

)
Dk Xk−τξ(k) Dt

ξ(k)

=
[
Π1,ξ(k) Π3,ξ(k)
• Π2,ξ(k)

]
= 0 (9.51)

where Π1,ξ(k) ∈ �n×n,Π2,ξ(k) ∈ �n×n,Π3,ξ(k) ∈ �n×n and Ak,Bk,Hk,Dk are
given by (9.24), (9.25), and (9.26). One way to verify this is to expand (9.51) using
(9.24), (9.25), and (9.26) and (9.48) to yield

Π1,ξ(k) = (1+ λξ(k)){Aξ(k)
(
I + μξ(k)Pξ(k)Yξ(k)

)
Pξ(k)At

ξ(k)}
+

(
1+ λ−1

ξ(k)

)
Dξ(k)Pk−τξ(k) Dt

ξ(k) + Ŵξ(k) − Pξ(k+1) (9.52)

Π2,ξ(k) = (1+ λξ(k)) Âξ(k)
(
I + μξ(k)Sξ(k)Yξ(k)

)
Sξ(k) Ât

ξ(k)

+(1+ λξ(k))δAξ(k)
(
I + μξ(k)Pξ(k)Yξ(k)

)
Pξ(k)δAt

ξ(k)
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+ (1+ λξ(k))μξ(k) Âξ(k)Pξ(k)E
t
ξ(k)

(
I − μξ(k)Eξ(k)Pξ(k)E

t
ξ(k)

)−1

×Eξ(k)Sξ(k) Ât
ξ(k) + (1+ λξ(k)) Âξ(k)μξ(k)Sξ(k)Yξ(k)Pξ(k)δAt

ξ(k)

−M̂t
ξ(k)

(
Γ̂ξ(k) + V̂ξ(k)

)−1
M̂ξ(k) − Sξ(k+1)

+
(

1+ λ−1
ξ(k)

)
Dξ(k)Pk−τξ(k) Dt

ξ(k) + Ŵξ(k) (9.53)

Π3,ξ(k) = −(1+ λξ(k))Aξ(k)Pξ(k)δAt
ξ(k)

+(1+ λξ(k))Aξ(k)Sξ(k)

[
At
ξ(k) + δAt

ξ(k) − Ct
ξ(k)K

t
ξ(k)

]

−μξ(k)(1+ λξ(k))Aξ(k)Pξ(k)E
t
ξ(k)

×
(

I − μξ(k)Eξ(k)Pξ(k)E
t
ξ(k)

)−1
Eξ(k)Pξ(k)δAt

ξ(k)

+
(

1+ λ−1
ξ(k)

)
Dξ(k)Pk−τξ(k) Dt

ξ(k) − Sξ(k+1)

+(1+ λξ(k))μ
−1
ξ(k)H1,ξ(k)

[
Ht

1,ξ(k) − H2,ξ(k)K
t
ξ(k)

]
(9.54)

By setting Π1,ξ(k) ≡ 0 in (9.52) and using (9.37), (9.38), (9.39), (9.40), (9.41),
(9.42), (9.43), and (9.44) we immediately obtain (9.35). Next, we enforce Π2 ≡ 0 in
(9.53). By using (9.39), (9.40), (9.41), (9.42), (9.43), and (9.44) with some standard
matrix manipulations, we define Kξ(k) as in (9.47) to yield (9.36). Finally, by using
(9.36), (9.37), (9.38), (9.39), (9.40), (9.41), and (9.42) in (9.54) and setting δAξ(k)

as in (9.43), we find that Π3,ξ(k) ≡ 0.
Now, using the results of [45], it is easy to see on using inequality (9.50) with

some algebraic manipulations that (9.51) implies that

(1+ λξ(k))[Aξ(k) + Hξ(k)Δξ(k)Eξ(k)]Xξ(k)[Aξ(k) + Hξ(k)Δξ(k)Eξ(k)]t
− Xξ(k+1) +

(
1+ λ−1

ξ(k)

)
Dξ(k) Xk−τξ(k) Dt

ξ(k) + Bξ(k)Bt
ξ(k)

= (
1+ λξ(k)

)
Aξ(k),ΔXξ(k)At

ξ(k),Δ − Xξ(k+1)

+
(

1+ λ−1
ξ(k)

)
Dξ(k) Xk−τξ(k) Dt

ξ(k) + Bξ(k)Bt
ξ(k) ≤ 0 (9.55)

∀ Δξ(k) : Δt
ξ(k) Δξ(k) ≤ I ∀ ξ(k) ∈ S.

It follows from Theorem 9.2 that (9.45) is a quadratic estimator and

IE
[
eket

k

] = IE[0 I ]Xξ(k)[0 I ]t ≤ Sξ(k)

which implies that IE
[
et

k ek
] ≤ tr (Sξ(k)). �

Remark 9.4 From the foregoing analysis, it is seen that our results are independent
of the size of the delay. This might be considered to yield a conservative design
method. However, as shown in the simulation example, the developed switched
estimation method works well for a wide range of the delay factor τξ(k).
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Remark 9.5 In the case of systems without uncertainties and delay factors, that is,
H1,ξ(k) = 0, H2,ξ(k) = 0, Eξ(k) = 0, Dξ(k) = 0, it can be easily shown that

Yξ(k) = 0; Xξ(k) = 0; Ŵξ(k) = Wξ(k)

Tξ(k) = (1+ λξ(k))(Pξ(k) − Sξ(k))At
ξ(k)

Zξ(k) = (1+ λξ(k))
2 Aξ(k)Sξ(k)C

t
ξ(k)

×
[
(1+ λξ(k))Cξ(k)Sξ(k)C

t
ξ(k) + Vξ(k)

]−1
Cξ(k)Sξ(k)At

ξ(k)

Now, in terms of Lk = Pk − Sk and

Ψξ(k) = Sξ(k)C
t
ξ(k)

[
(1+ λξ(k))Cξ(k)Sξ(k)C

t
ξ(k) + Vξ(k)

]−1
Cξ(k)Sξ(k)

Φξ(k) = Aξ(k)Ψξ(k)At
ξ(k)

Rξ(k) = A−t
ξ(k)(Pξ(k) − Sξ(k))

−1, Âξ(k) = (1+ λξ(k))Rξ(k)Φξ(k)

we manipulate (9.35) and (9.36) to reach

Lξ(k+1) = (1+ λξ(k))
[

Aξ(k)Lξ(k)At
ξ(k) +Λξ(k)

]
, Lk−τξ(k) = 0 ∀k ∈ [0, τξ(k)]

Λξ(k) = Φξ(k)

− (1+ λξ(k))

[
Aξ(k)(Pξ(k) − Lξ(k))Φ

t
ξ(k)Rt

kξ(k)

+ Rξ(k)Φξ(k)(Pξ(k) − Lξ(k))At
ξ(k)

+ (1+ λξ(k))Rξ(k)Φξ(k)(2Pξ(k) − Lξ(k))Φ
t
ξ(k)Rt

ξ(k)

]
(9.56)

By iterating on (9.35) and (9.56), it follows that Lξ(k) = Pξ(k) − Sξ(k) > 0 ∀ξ(k) ∈
S.

It can be shown in the general case that manipulation of (9.35), (9.36), (9.37),
(9.38), (9.39), (9.40), (9.41), (9.42), (9.43), (9.44), and (9.45) yields

Lξ(k+1) = (1+ λξ(k))[Aξ(k)(I + μξ(k)Lξ(k)Yξ(k))Lξ(k)At
ξ(k) + Υξ(k)],

Lk−τξ(k) = 0 ∀k ∈ [0, τξ(k)]

In this case, Υk depends on the system matrices

Aξ(k), H1,ξ(k), H2,ξ(k), Dξ(k),Cξ(k),Pξ(k)

Remark 9.6 Note that Pξ(k) does not depend on the filter matrices, and the structure
of Xξ(k) is identical to that of the joint covariance matrix of the state of a cer-
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tain system and its standard H2-optimal estimator. By similarity to the standard
H2−optimal filter, an estimate of zk in (9.3) will be given by ẑk = C1,ξ(k) x̂k .

Remark 9.7 In the delay-free case (Dξ(k) ≡ 0), we suppress the parameter λξ(k)
and observe that (9.45) reduces to the recursive Kalman filter for the system

xk+1 = Âξ(k) xk + ŵk

yk = Cξ(k) xk + v̂k (9.57)

where ŵk and v̂k are zero-mean white noise sequences with covariance matrices
Ŵξ(k) and Γ̂ξ(k), respectively, and having cross-covariance matrix M̂ξ(k). Hence,
the approach to robust filtering in Theorem 9.3 generalizes the results of [287, 399,
400] to switched systems and corresponds to designing a standard Kalman filter for
a related discrete-time system which captures all admissible uncertainties and time
delay, but does not involve parameter uncertainties. In this regard, the matrix δAξ(k)

reflects the effect of uncertainties (ΔAξ(k), ΔCξ(k)) and time-delay factor Dξ(k) on
the structure of the filter.

9.1.5 Steady-State Robust Filter

In the sequel, we investigate the asymptotic properties of the recursive Kalman filter
developed in the foregoing section. For this purpose, we consider that the switched
signals are independent of the discrete instants. In this case, the uncertain switched
time-delay system is given by

xk+1 = [Aξ + H1,ξΔk,ξ Eξ ] xk + Dξ xk−τξ + wk

= Aξ,Δ xk + Dξ xk−τξ + wk (9.58)

yk = [Cξ + H2,ξΔk,ξ Eξ ] xk + vk

= Cξ,Δ xk + vk (9.59)

ξ ∈ S̄ = {1, . . . , s} (9.60)

where now the switching signal ξ defines the system mode, which determines the
current system dynamics and the associated measurements and input vectors. The
signal ξ can be generated by finite-discrete automata but has a constant value
independent of the discrete instant k. In addition, Δk,ξ satisfies (9.6). In the
sequel, we assume that Aξ is a Schur matrix; that is, |λ(Aξ )| < 1. The matrices
Aξ ∈ �n×n,Cξ ∈ �m×n are mode-dependent constant matrices representing the
nominal plant. The uncertain parameter matrix Δk,ξ is, however, time varying. In
this regard, the objective is to design a switched shift-invariant a priori estimator of
the form

x̂k+1 = Âξ x̂k + Kξ [yk − Cξ x̂k] (9.61)
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that achieves the following asymptotic performance bound

lim
k→∞ IE

{
(x̂k − xk)(x̂k − xk)

t} ≤ Sξ (9.62)

Theorem 9.8 Consider the uncertain time-delay system (9.58), (9.59), and (9.60)
with Aξ being invertible at every mode ξ . If for some scalars μξ > 0, λξ > 0, ξ ∈
S̄, there exist stabilizing solutions Pξ ≥ 0, Sξ ≥ 0 for the AREs

Pξ = (1+ λξ ){Aξ

(
I + μξ PξYξ

)
Pξ At

ξ }
+(1+ λ−1

ξ )Dξ Pξ Dt
ξ + Ŵξ (9.63)

Sξ = (1+ λξ ) Âξ

(
I + μξ SξYξ

)
Sξ Ât

ξ

+(1+ λξ )δAξ

(
I + μξ PξYξ

)
Pξ δAt

ξ

+ (1+ λξ )μξ Âξ PξYξ Sξ Ât
ξ + (1+ λξ ) Âξμξ SξYξ Pξ δAt

ξ

−M̂t
ξ

(
Γ̂ξ + V̂ξ

)−1
M̂ξ (9.64)

Yξ = Et
ξ

(
I − μξ Eξ Pξ Et

ξ

)−1
Eξ

Ŵξ = Wξ + (1+ λξ )μ
−1
ξ H1,ξ Ht

1,ξ (9.65)

V̂ξ = Vξ + (1+ λξ )μ
−1
ξ H2,ξ Ht

2,ξ , Γ̂ξ = (1+ λξ )Cξ SξCt
ξ (9.66)

M̂ξ = (1+ λξ )[Cξ Sξ At
ξ + μξ SξYξ Pξ δAt

ξ + μH2,ξ Ht
1,ξ ] (9.67)

Then the estimator (9.61) is a stable switched quadratic (SSQ) estimator and
achieves (9.62) with

Âξ = Aξ + δAξ , δAξ = T −1
ξ

(
Xξ + Zξ

)
(9.68)

Kξ = M̂t
{
Γ̂ + V̂

}−1
, Tξ = (1+ λξ )(Pξ − Sξ )

(
I + μξYξ Pξ

)
At
ξ (9.69)

Zξ = (1+ λξ )M̂t
ξ

(
Γ̂ξ + V̂ξ

)−1

×
(

Cξ Sξ (I + μξYξ Pξ )At
ξ + μ−1

ξ H2,ξ Ht
1,ξ

)
(9.70)

Xξ = (1+ λξ )μξ Aξ SξYξ Pξ At
ξ + (1+ λξ )μ

−1
ξ H1,ξ Ht

1,ξ

+
(

1+ λ−1
ξ

)
Dξ Sξ Dt

ξ (9.71)

Proof To examine the stability of the closed-loop system, we augment (9.58),
(9.59), and (9.60) with (wk = 0, vk = 0) to obtain

ζk+1 = Aξ,Δζk + Dξ ζk−τξ
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=
[

Aξ,Δ 0
Aξ,Δ − Âξ − Kξ (Cξ,Δ − Cξ ) Âξ − KξCξ

]
ζk

+
[

Dξ 0
Dξ 0

]
ζk−τξ (9.72)

Introduce a discrete Lyapunov – Krasovskii functional

Vk,ξ = ζ t
k Xξ ζk +

k−1∑
j=k−τξ

ζ t
j

(
1+ λ−1

ξ

)
Dt
ξ XξDξ ζ j (9.73)

for some λξ > 0. By evaluating the first-order difference ΔVk,ξ = Vk+1,ξ − Vk,ξ

along the trajectories of (9.72) and arranging terms, we get

ΔVk,ξ = ζ t
k

[
At
ξ,ΔXξAξ,Δ − Xξ

]
ζk + ζ t

k−τξ D
t
ξ XξAξ,Δζk + ζ t

k At
ξ,ΔXξDξ ζk−τξ

+ ζ t
k−τξ D

t XξDξ ζk−τξ + (1+ λ−1)ζ t
k Dt

ξ XξDξ ζk

− (1+ λ−1)ζ t
k−τξ D

t
ξ XξDξ ζk−τξ

≤ ζ t
k

[
At
ξ,ΔXξAξ,Δ − Xξ +

(
1+ λ−1

ξ

)
Dt
ξ XξDξ

]
ζk

+ λ−1ζ t
k−τξ D

t
ξ XξDξ ζk−τξ + λζ t

k At
ξ,ΔXξAξ,Δζk

+ ζ t
k−τDt XDξk−τ − ξ t

k−τ (1+ λ−1)Dt XDξk−τ
= ζ t

k

[
(1+ λξ )At

ξ,ΔXξAξ,Δ − Xξ +
(

1+ λ−1
ξ

)
Dt
ξ XξDξ

]
ζk (9.74)

Sufficient condition of asymptotic stability ΔVk,ξ < 0 , ζk �= 0 is implied by

(1+ λξ )At
ξ,ΔXξAξ,Δ − Xξ +

(
1+ λ−1

ξ

)
Dt
ξ XξDξ < 0 (9.75)

Now select Xξ as

Xξ =
[

Pξ Sξ
Sξ Sξ

]
(9.76)

with Pξ and Sξ being the stabilizing solutions of (9.63) and (9.64), respectively.
Following a similar procedure as in the proof of Theorem 9.3 and in view of Def-
inition 9.1, it follows in the steady state as k → ∞ that the augmented system
(9.72) is asymptotically stable. The guaranteed performance IE[eket

k] ≤ S follows
from similar lines of argument as in the proof of Theorem 9.3. �

Remark 9.9 Note that the invertibility of Aξ is needed for the existence of Tξ and
δAξ . In the switched delayless case Dξ ≡ 0, it follows from (9.59) and (9.62) with

Ŵξ = ¯Bξ Bξ
t

that
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Pξ = (1+ λξ ){Aξ Pξ At
ξ + Aξ Pξ

[(
μ−1
ξ I + Eξ Pξ Et

ξ

)−1
Pξ At

ξ } + Ŵξ (9.77)

which is a bounded real lemma equation for the system

Σξ =
(

Aξ

√
1+ λξ , B̄ξ , Eξ , 0

)

Suppose that for μξ = μ+, the ARE (9.77) admits a solution Pξ = P+. This
implies that the H∞-norm of Σξ is less than (μ+)−1/2. It then follows, given a λξ ,
that system (9.58) and (9.59) is quadratically stable for some μξ ≤ μ+.

9.1.6 Simulation Example

Consider the following discrete time-delay system with two operational modes

Mode 1

xk+1 =
⎛
⎝

⎡
⎣ 0.2 −0.1 0

0.004 0.4 0.1
0 0.1 0.6

⎤
⎦+

⎡
⎣0.1

0.1
0.1

⎤
⎦Δk[0.5 0.4 0.2]

⎞
⎠ xk

+
⎡
⎣−0.1 0 0

0.05 −0.2 0.1
0 0 −0.1

⎤
⎦ xk−3 + wk

yk =
([

1.0 0 0
0 1.0 0

]
+

[
0.2
0.3

]
Δk[0.5 0.4 0.2]

)
xk + vk

Mode 2

xk+1 =
⎛
⎝

⎡
⎣ 0.3 0 −0.1

0.002 0.5 0.2
0 −0.1 0.7

⎤
⎦+

⎡
⎣0.1

0
0.1

⎤
⎦Δk[0.3 0.2 0.1]

⎞
⎠ xk

+
⎡
⎣−0.3 0 0

0.02 −0.1 −0.1
0 0 −0.2

⎤
⎦ xk−3 + wk

yk =
([

1.0 0 0
0 2.0 0

]
+

[
0.1
0.4

]
Δk[0.3 0.5 0.3]

)
xk + vk

which is of the type (9.1)-(9.2) with three units of delay. We further assume that
W1 = I, W2 = 0.8I, V1 = 0.2I, V2 = 0.3I . To determine the Kalman gains, we
solve (9.63) and (9.64) with the aid of (9.65), (9.66), (9.67), (9.68), (9.69), (9.70),
and (9.71) for selected values of λ,μ. The numerical computation is basically of the
form of iterative schemes and the results for a typical case of μ1 = μ2 = 0.7, λ1 =
0.3, λ2 = 0.4 are given by
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P1 =
⎡
⎣0.141 0.005 0.003

0.005 0.255 0.175
0.003 0.175 0.501

⎤
⎦, S1 = 10−4

⎡
⎣ 0.284 −1.17 −2.966
−1.17 4.813 12.208
−2.966 12.208 30.962

⎤
⎦

K1 = 10−6

⎡
⎣−0.841 −1.309

3.463 5.388
8.782 13.665

⎤
⎦, Â1 =

⎡
⎣ 0.331 −0.019 −0.034
−0.277 0.254 0.175
−1.641 −0.897 0.961

⎤
⎦

P2 =
⎡
⎣0.137 0.004 0.003

0.004 0.215 0.166
0.003 0.166 0.498

⎤
⎦, S2 = 10−4

⎡
⎣ 0.277 −1.23 −2.887
−1.23 4.813 11.768
−2.887 11.768 31.102

⎤
⎦

K2 = 10−6

⎡
⎣−0.798 −1.287

4.114 4.987
7.978 14.121

⎤
⎦, Â2 =

⎡
⎣ 0.342 −0.023 −0.042
−0.281 0.261 0.183
−1.666 −0.928 0.973

⎤
⎦

The developed estimator is indeed asymptotically stable since

λ( Â)1 = {0.3020, 0.4800, 0.7650} ∈ (0, 1)

λ( Â)1 = {0.7844, 0.3052, 0.4864} ∈ (0, 1)

The guaranteed cost over the two modes is 36.059× 10−4. Several simulation stud-
ies have been carried out to examine the performance of the steady-state Kalman
filter. In Table 9.1, the guaranteed cost is presented for selected values of the scaling
parameters (μ, λ). It is readily evident that the scaling parameters (μ, λ) have a
crucial impact on the optimality of the guaranteed cost. This is equally true for
specified μ while changing λ or given λ and varying μ.

For the purpose of comparison, a standard Kalman filter was designed for the tw-
mode nominal delayless system under consideration by setting Δk ≡ 0, xk−3 ≡ 0.
Then, we applied the developed robust Kalman filter and the standard Kalman filter
with Δk = 0,Δk = 0.2,Δk = −0.2 and retained the delayed state. The resulting
filtering costs for both filtering schemes are provided in Table 9.2. Again, it is clearly
shown that the developed robust Kalman filter outperforms the standard nominal
Kalman filter in the presence of uncertainty and delay factor.

Together, Tables 9.1 and 9.2 demonstrate the superior performance of the devel-
oped robust Kalman filter.

In the next section, we look at the switched linear Kalman filter for a class
of continuous-time state-delay systems with norm-bounded uncertain parameters.
Essentially, this is the continuous analog of the foregoing section.

9.2 Continuous Switched Delay System

State estimation forms an integral part of control systems theory. Estimating
the state variables of a dynamic model is important to help in improving our
knowledge about different systems for the purpose of analysis and control design.
The seminal Kalman filtering algorithm [3] is the optimal estimator over all
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Table 9.1 The guaranteed cost (GC) vs. the scaling parameters (μ, λ)

Mode 1
λ = 0.2
μ 0.2 0.45 0.7 1.1 1.5 2.3
GC × 10−4 219.241 141.706 37.029 27.583 65.742 120.333

λ = 0.4
μ 0.2 0.45 0.7 1.1 1.5 2.3
GC × 10−4 173.601 121.016 31.125 25.113 60.142 101.471

λ = 0.8
μ 0.2 0.45 0.7 1.1 1.5 2.3
GC × 10−4 96.711 101.315 29.451 24.881 51.371 89.116

λ = 1.4
μ 0.2 0.45 0.7 1.1 1.5 2.3
GC × 10−4 109.345 117.996 38.222 24.003 61.332 110.541

λ = 2.7
μ 0.2 0.45 0.7 1.1 1.5 2.3
GC × 10−4 165.124 122.236 46.113 35.723 72.119 121.171

λ = 3.4
μ 0.2 0.45 0.7 1.1 1.5 2.3
GC × 10−4 259.943 165.176 51.152 41.907 77.139 151.454

Mode 2
λ = 0.2
μ 0.21 0.43 0.71 1.1 1.48 2.31
GC × 10−4 219.241 141.706 37.029 27.583 65.742 120.333

λ = 0.4
μ 0.2 0.45 0.7 1.1 1.5 2.3
GC × 10−4 173.601 121.016 31.125 25.113 60.142 101.471

λ = 0.8
μ 0.2 0.45 0.7 1.1 1.5 2.3
GC × 10−4 96.711 101.315 29.451 24.881 51.371 89.116

λ = 1.4
μ 0.2 0.45 0.7 1.1 1.5 2.3
GC × 10−4 109.345 117.996 38.222 24.003 61.332 110.541

λ = 2.7
μ 0.2 0.45 0.7 1.1 1.5 2.3
GC × 10−4 165.124 122.236 46.113 35.723 72.119 121.171

λ = 3.4
μ 0.2 0.45 0.7 1.1 1.5 2.3
GC × 10−4 259.943 165.176 51.152 41.907 77.139 151.454

Table 9.2 Comparison between the nominal kalman filter

Actual cost

Filter Δk = −0.8 Δk = 0 Δk = 0.8

Nominal kalman filter 72.034× 10−2 45.147× 10−4 235.654× 10−2

Robust kalman filter 66.802× 10−4 61.147× 10−4 67.113× 10−4
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possible linear ones and gives unbiased estimates of the unknown state vectors
under the conditions that the system and measurement noise processes are mutually
independent Gaussian distributions. Robust state estimation arises out of the desire
to estimate unmeasurable state variables when the plant model has uncertain param-
eters. In [16], a Kalman filtering approach has been studied with an H∞ − norm
constraint. For linear systems with norm-bounded parameter uncertainty, the robust
estimation problem has been addressed in [329, 398, 399] and the references cited
therein, where H∞-estimators have been constructed. On another front of research,
uncertain systems with state delay have received increasing interests in recent years
[206, 344]. When dealing with continuous-time systems with state delay, there have
been three basic approaches [206]:

• Infinite-dimensional systems theory, which is based on embedding the class of
TLS into a larger class of dynamical systems for which the state evolution is
described by appropriate operators in infinite-dimensional spaces;

• Algebraic systems theory, in which the evolution of delay-differential systems is
provided in terms of linear systems over rings; and

• Functional differential systems, by incorporating the influence of the hereditary
effects of system dynamics on the rate of change of the system and it provides
an appropriate mathematical structure in which the system state evolves either in
finite-dimensional space or in function space.

In this section, we follow the third approach for convenient representation and
numerical compatibility.

The purpose of this section is to consider the state-estimation problem for
a class of linear continuous-state delay systems with norm-bounded parameter
uncertainties. Specifically, we address the state-estimator design problem such that
the estimation error covariance has a guaranteed bound for all admissible uncer-
tainties. The approach hinges upon the application of the multi-estimation struc-
ture depicted in Fig. 9.2. The main tool for solving the foregoing problem is

Fig. 9.2 Multi-estimator structure: continuous
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the Riccati equation approach. Both time-varying and steady-state robust Kalman
filtering are considered.

9.2.1 Problem Formulation

We consider a class of uncertain switched time-delay systems represented by

ẋ(t) = [A(ξ(t))+ΔA(ξ(t))]x(t)+ Ad(ξ(t))x(t − τξ(t))+ w(t)

= AΔ,ξ(t)x(t)+ Ad(ξ(t))x(t − τξ(t))+ w(t) (9.78)

y(t) = [C(ξ(t))+ΔC(ξ(t))]x(t)+ v(t)

= CΔ,ξ(t)x(t)+ v(t) (9.79)

where x(t) ∈ �n is the state, y(t) ∈ �m is the measured output, and w(t) ∈ �n

and v(t) ∈ �m are, respectively, the process and measurement noises. In (9.78)
and (9.79), A(ξ(t)) ∈ �n×n , Ad(ξ(t)) ∈ �n×n , and C(ξ(t)) ∈ �m×n are mode-
dependent piecewise-continuous matrix functions. The switching rule ξ(t) is not
known a priori but we assume its instantaneous value is available in real time for
practical implementations. Define the indicator function

ξ(t) = [ξ1(t), ..., αs(t)]t , ∀ j ∈ S

ξ j (t) =
{= 1 when system (9.78) is in the jth mode,
= 0 otherwise

(9.80)

Here, τξ(t) is a mode-dependent constant scalar representing the amount of time lag
in the state. The matrices ΔA(ξ(t)) and ΔC(ξ(t)) represent time-varying parametric
uncertainties, which are of the form

[
ΔA(ξ(t))
ΔC(ξ(t))

]
=

[
H(ξ(t))
Hc(ξ(t))

]
Δ(ξ(t)) E(ξ(t)) (9.81)

where H(ξ(t)) ∈ �n×α , Hc(ξ(t)) ∈ �m×α , and E(ξ(t)) ∈ �β×n are known
piecewise-continuous matrix functions and Δ(ξ(t)) ∈ �α×β is an unknown matrix
with Lebesgue measurable elements satisfying

Δt (ξ(t))Δ(ξ(t)) ≤ I ∀ t (9.82)

The initial condition is specified as 〈x(0), x(s)〉 = 〈xo, φ(s)〉, where φ(·) ∈
L2[−τξ(t), 0] which is assumed to be a zero-mean Gaussian random vector. The
following standard assumptions on noise statistics are recalled:
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Assumption 9.10 ∀t , s ≥ 0

(a)E[w(t)] = 0; E[w(t)wt (s)] = W (t)δ(t − s);W (t) > 0 (9.83)

(b)E[v(t)] = 0; E[v(t)vt (s)] = V (t)δ(t − s); V (t) > 0 (9.84)

(c)E[x(0)wt (t)] = 0; E[x(0)vt (t)] = 0 (9.85)

(d)E[w(t)vt (s)] = 0; E[x(0)xt (0)] = Ro (9.86)

where, as before, IE[·] stands for the mathematical expectation and δ(·) is the Dirac
function.

9.2.2 Robust Linear Filtering

Our objective is to design a stable switched-state estimator of the form

˙̂x(t) = G(ξ(t)) x̂(t)+ K (ξ(t)) y(t), x̂(0) = 0 (9.87)

where G(ξ(t)) ∈ �n×n and K (ξ(t)) ∈ �n×m are mode-dependent piecewise-
continuous matrices to be determined such that there exists a matrix Ψ ≥ 0
satisfying

IE[(x − x̂)(x − x̂)t ] ≤ Ψ (ξ(t)), ∀Δ : Δt (ξ(t))Δ(ξ(t)) ≤ I (9.88)

Note that (10) implies

IE[(x − x̂)t (x − x̂)] ≤ tr(Ψ )(ξ(t)), ∀Δ(ξ(t)) : Δt (ξ(t))Δ(ξ(t)) ≤ I (9.89)

In this case, the switched estimator (9.87) is said to provide a guaranteed cost (GC)
matrix Ψ .

Examination of the switched estimator proceeds by analyzing the estimation
error

e(t) = x(t)− x̂(t) (9.90)

Substituting (9.78) and ( 9.87) into ( 9.90), we express the dynamics of the error in
the form:

ė(ξ(t)) = G(ξ(t))e(t)+ [A(ξ(t))− G(ξ(t))− K (ξ(t))C(ξ(t))]x(t)
+[ΔA(ξ(t))− K (ξ(t))ΔC(ξ(t))]x(t)
+Ad(ξ(t))x(t − τξ(t))+ [w(t)− K (ξ(t))v(t)] (9.91)

By introducing the extended state vector

ζ(t) =
[

x(t)
e(t)

]
∈ �2n (9.92)
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it follows from (9.78), (9.79), and (9.91) that

ζ̇ (t) = [A(ξ(t))+ H(ξ(t))Δ(ξ(t))E(ξ(t))]ζ(t)+ D(ξ(t))ζ(t − τξ(t))+ B(ξ(t))η(t)

= A(ξ(t),Δ)ζ(t)+ D(ξ(t))ζ(t − τξ(t))+ B(ξ(t))η(t) (9.93)

where η(t) is a stationary zero-mean noise signal with identity covariance matrix
and

A(ξ(t)) =
[

A(ξ(t)) 0
A(ξ(t))− G(ξ(t))− K (ξ(t))C(ξ(t)) G(ξ(t))

]
(9.94)

H(ξ(t)) =
[

H(ξ(t))
H(ξ(t))− K (ξ(t))Hc(ξ(t))

]

E(ξ(t)) = [E(ξ(t)) 0] (9.95)

BBt (ξ(t)) =
[

W (ξ(t)) W (ξ(t))
W (ξ(t)) W (ξ(t))+ K (ξ(t))V (ξ(t))K t (ξ(t))

]
(9.96)

D(ξ(t)) =
[

Ad(ξ(t)) 0
Ad(ξ(t)) 0

]
, η =

[
w(t)
v(t)

]
(9.97)

Definition 9.11 Estimator (9.87) is said to be a switched quadratic estimator (SQE)
associated with a matrix Ω(ξ(t)) > 0 for system (9.78) if there exists a scalar
λ(ξ(t)) > 0 and a matrix

0 < Ω(ξ(t)) =
[
Ω1,ξ(t) Ω3,ξ(t)
• Ω2,ξ(t)

]
(9.98)

satisfying the algebraic inequality

−Ω̇(ξ(t))+ Aξ(t),ΔΩ(ξ(t))+Ω(ξ(t))At
ξ(t),Δ + λ(ξ(t)) Ω(t − τξ(t))

+λ−1(ξ(t))D(ξ(t))Ω(t − τξ(t))Dt (ξ(t))+ B(ξ(t))Bt (ξ(t)) ≤ 0 (9.99)

The next result shows that if (9.87) is an SQE for system (9.78) and (9.79) with
cost matrix Ω(ξ(t)), then Ω(ξ(t)) defines an upper bound for the filtering error
covariance, that is,

IE[e(t)et (t)] ≤ Ω2,ξ(t) ∀ (t, ξ(t)) (9.100)

for all admissible uncertainties satisfying (9.80) and (9.81).

Theorem 9.12 Consider the time delay (9.78) and (9.79) satisfying (9.80) and
(9.81) and with known initial state. Suppose there exists a solution Ω(ξ(t)) ≥ 0
to inequality (9.99) for some λ(ξ(t)) > 0 and for all admissible uncertainties.
Then the switched estimator (9.87) provides an upper bound for the filtering error
covariance, that is,
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IE[e(t)et (t)] ≤ Ω(ξ(t)) (9.101)

Proof Suppose that the estimator (9.87) is an SQE with cost matrix Ω(ξ(t)). By
evaluating the derivative of the covariance matrix Σ(ξ(t)) = IE[ζ(t) ζ t (t)],
we get

Σ̇(ξ(t)) = Aξ(t),Δ Σ(ξ(t))+Σ(ξ(t))At
ξ(t),Δ + D(ξ(t))IE[ζ(t − τξ(t))ζ

t (t)]
+ IE[ζ(t) ζ t (t − τξ(t))] Dt (ξ(t))

+ IE[η(t) ζ t (t)] + IE[ζ(t) ηt (t)] (9.102)

Using inequality (9.49), we get the following inequality:

D(ξ(t))IE[ζ(t − τξ(t)) ζ
t (t)] + IE[ζ(t) ζ t (t − τξ(t))] Dt (ξ(t)) =

D(ξ(t))Σ(t − τξ(t))+Σ(t − τξ(t))Dt (ξ(t)) ≤
λ(ξ(t)) Σ(t − τξ(t))+ λ−1(ξ(t))D(ξ(t))Σ(t − τξ(t))Dt ((ξ(t)) (9.103)

Substituting (9.103) into (9.102) and arranging the terms, we obtain

Σ̇(ξ(t)) ≤ AΔ,ξ(t)(ξ(t)) Σ(ξ(t))+Σ(ξ(t))At
Δ(t)+ λ(ξ(t)) Σ(t − τξ(t))

+ λ−1(ξ(t))D(ξ(t)) Σ(t − τξ(t)) Dt (ξ(t))+ B(ξ(t))Bt (ξ(t)) (9.104)

Combining (9.99) and (9.104) and letting Ξ(ξ(t)) = Σ(ξ(t))−Ω(ξ(t)), we obtain

Ξ̇(ξ(t)) ≤ Aξ(t),Δ Ξ(ξ(t))+Ξ(ξ(t))At
ξ(t),Δ + λ(ξ(t)) Ξ(t − τξ(t))

+ λ−1(ξ(t))D(ξ(t)) Ξ(t − τξ(t)) Dt (ξ(t)) (9.105)

On considering that the state is known over the period [−τξ(t), 0] justifies letting
Σ(ξ(t))|t=0 = 0 . Hence, inequality (9.105) implies that Ξ(ξ(t)) ≤ 0 ∀ t > 0,
that is, Σ(ξ(t)) ≤ Ω(ξ(t)) ∀ t > 0. Finally, it is obvious that

IE[e(t)et (t)] = [0 I ]Σ(ξ(t))

[
0
I

]
≤ Ω2,ξ(t) (9.106)

9.2.3 A Design Approach

In line of the discrete-time case, we employ hereafter a Riccati equation approach
to solve the robust Kalman filtering for switched continuous time-delay systems. To
this end, we define switched matrices P(ξ(t)) = Pt (ξ(t)) ∈ �n×n ; L(ξ(t)) =
Lt (ξ(t)) ∈ �n×n as the solutions of the Riccati differential equations (RDEs):



9.2 Continuous Switched Delay System 281

Ṗ(ξ(t)) = A(ξ(t))P(ξ(t))+ P(ξ(t))At (ξ(t))+ λ(ξ(t))P(t − τξ(t))

+λ−1(ξ(t))Ad(ξ(t))P(t − τξ(t))At
d(ξ(t))+ Ŵ (ξ(t))

+μ(ξ(t))P(ξ(t))Et (ξ(t))E(ξ(t))P(ξ(t))

P(t − τ(ξ(t))) = 0 ∀ t ∈ [0, τξ(t)] (9.107)

L̇(ξ(t)) = A(ξ(t))L(ξ(t))+ L(ξ(t))At (ξ(t))+ λ(ξ(t))L(t − τξ(t))

+λ−1(ξ(t))Ad(ξ(t))P(t − τξ(t))At
d(ξ(t))+ Ŵ (ξ(t))

+μ(ξ(t))L(ξ(t))Et (ξ(t))E(ξ(t))L(ξ(t))

−
[

L(ξ(t))Ct (ξ(t))+ μ−1(ξ(t))H(ξ(t))Ht
c (ξ(t))

]
V̂−1(ξ(t))

[C(ξ(t))L(ξ(t))+ μ−1(ξ(t))Hc(ξ(t))Ht (ξ(t))]
L(t − τξ(t)) = 0 ∀t ∈ [0, τξ(t)] (9.108)

where λ(ξ(t)) > 0, μ(ξ(t)) > 0∀t are scaling parameters and the matrices
Â(ξ(t)), V̂ (ξ(t)), and Ŵ (ξ(t)) are given by

Ŵ (ξ(t)) = W (ξ(t))+ μ−1(ξ(t))H(ξ(t))Ht (ξ(t)) (9.109)

V̂ (ξ(t)) = V (ξ(t))+ μ−1(ξ(t))Hc(ξ(t))Ht
c (ξ(t)) (9.110)

Â(ξ(t)) = A(ξ(t))+ δA(ξ(t))

= A(ξ(t))+ μ−1(ξ(t))Lt (ξ(t))Et (ξ(t))E(ξ(t)) (9.111)

Let the (λ, μ)−parameterized switched estimator be expressed as

˙̂x(t) =
{

A(ξ(t))+ μ−1(ξ(t))Lt (ξ(t))Et (ξ(t))E(ξ(t))
}

x̂(t)

+K (ξ(t))
{

y(t)− C(ξ(t))x̂(t)
}

(9.112)

where the gain matrix K (ξ(t)) ∈ �n×m is to be determined. The following theorem
summarizes the main result:

Theorem 9.13 Consider system (9.78) and (9.79) satisfying the uncertain structure
(9.80) and (9.81) with zero initial condition. Suppose the process and measure-
ment noises satisfy Assumption 9.10. For some μ(ξ(t)) > 0, λ(ξ(t)) > 0, let
P(ξ(t)) = Pt (ξ(t)) and L(ξ(t)) = Lt (ξ(t)) be the solutions of RDEs (9.107)
and (9.108), respectively. Then the (λ, μ)−parametrized estimator (31) is the SQE
estimator with GC such that

IE[{x(t)− x̂(t)}t {x(t)− x̂(t)}] ≤ tr [L(ξ(t))] (9.113)

Moreover, the gain matrix K (ξ(t)) is given by

K (ξ(t)) =
{

L(ξ(t))Ct (ξ(t))+ μ−1(ξ(t))H(ξ(t))Ht
c (ξ(t))

}
V̂−1(ξ(t)) (9.114)
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Proof Let

X (ξ(t)) =
[

P(ξ(t)) L(ξ(t))
L(ξ(t)) L(ξ(t))

]
(9.115)

where P(ξ(t)) and L(ξ(t)) are the positive-definite solutions to (9.107) and (9.108),
respectively. By combining (9.107), (9.108), (9.109), (9.110), (9.111), (9.112), and
(9.113) with some standard matrix manipulations, it is easy to see that

−Ẋ(ξ(t))+ A(ξ(t))X (ξ(t))+ X (ξ(t))At (ξ(t))+ λ(ξ(t))X (t − τξ(t))

+μ−1(ξ(t))H(ξ(t))Ht (ξ(t))+ μ(ξ(t))X (ξ(t))Et (ξ(t))E(ξ(t))X (ξ(t))

+λ−1(ξ(t))D(ξ(t)) X (t − τξ(t)) Dt (ξ(t))+ B(ξ(t))Bt (ξ(t)) = 0 (9.116)

where A(ξ(t)),B(ξ(t)),H(ξ(t)),D(ξ(t)) are given by (9.94), (9.96), and (9.97). A
simple comparison of (9.87) and (9.114) taking into consideration (9.111), (9.112),
(9.113), and (9.114) and (9.116) shows that

G(ξ(t)) = Â(ξ(t))− K (ξ(t)) C(ξ(t))

By making use of a version of inequality (9.49) that for some μ(ξ(t)) > 0, we
have

H(ξ(t))Δ(ξ(t))E(ξ(t))X (ξ(t))+ X (ξ(t))Et (ξ(t))Δt (ξ(t))Ht (ξ(t)) ≤
μ(ξ(t)) X (ξ(t))Et (ξ(t))E(ξ(t))X (ξ(t))+ μ−1(ξ(t))H(ξ(t))Ht (ξ(t)) (9.117)

Using (9.117), it is now a simple task to verify that (9.116) becomes

−Ẋ(ξ(t))+ Aξ(t),ΔX (ξ(t))+ X (ξ(t))At
ξ(t),Δ + λ(ξ(t))X (t − τξ(t))

+λ−1(ξ(t))D(ξ(t))X (t − τξ(t))Dt (ξ(t))+ B(ξ(t))Bt (ξ(t)) ≤ 0 (9.118)

∀Δ(ξ(t)): Δt (ξ(t)) Δ(ξ(t)) ≤ I ∀(ξ(t)) ∈ S̄ (9.119)

By Theorem 9.12, it follows that for some μ(ξ(t)) > 0, λ(ξ(t)) > 0, that (9.112)
is a switched quadratic estimator and IE[e(t)et (t)] ≤ L(ξ(t)). This implies that
IE[et (t)e(t)] ≤ tr [L(ξ(t))]
Remark 9.14 It is known that the uncertainty representation (9.80) and (9.81) is not
unique. We note that H(ξ(t)), Hc(ξ(t)) may be postmultiplied and E(ξ(t)) may be
premultiplied by any unitary matrix since eventually this unitary matrix may be
absorbed in Δ(ξ(t)). It is significant to observe that such unitary multiplication
does not affect the solution developed in this section.
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Remark 9.15 Had we defined

X (ξ(t)) =
[

P−1(ξ(t)) 0
0 L(ξ(t))

]
(9.120)

we would have obtained

Ṗ(ξ(t)) = P(ξ(t))A(ξ(t))+ At (ξ(t))P(ξ(t))+ λ(ξ(t))P(t − τξ(t))

+ P(ξ(t))Ŵ (ξ(t))P(ξ(t))

+ λ−1(ξ(t))P(t − τξ(t))Ad(ξ(t))P−1(t − τξ(t))At
d(ξ(t))P(t − τξ(t))

+ μ(ξ(t))Et (ξ(t))E(ξ(t))

P(t − τξ(t)) = 0 ∀ t ∈ [0, τξ(t)] (9.121)

L̇(ξ(t)) = A(ξ(t))L(ξ(t))+ L(ξ(t))At (ξ(t))+ λ(ξ(t))L(t − τξ(t))

+ Ŵ (ξ(t))+ λ−1(ξ(t))Ad(ξ(t))P(t − τξ(t))At
d(ξ(t))

+ μ(ξ(t))L(ξ(t))Et (ξ(t))E(ξ(t))L(ξ(t))

−
[

L(ξ(t))Ct (ξ(t))+ μ−1(ξ(t))H(ξ(t))Ht
c (ξ(t))

]
V̂−1(ξ(t))

[C(ξ(t))L(ξ(t))+ μ−1(ξ(t))Hc(ξ(t))Ht (ξ(t))]
L(t − τξ(t)) = 0 ∀ t ∈ [0, τξ(t)] (9.122)

We note that (9.121), which is of a nonstandard form, although X(t) in (9.120) is
frequently used in similar situations for the nonswitched delayless systems [329,
398, 399]. Indeed, the difficulty comes from the delay-term

λ−1(ξ(t))P(t − τξ(t))Ad(ξ(t))P−1(t − τξ(t))At
d(ξ(t))P(t − τξ(t))

This point emphasizes the fact that not every result of delayless systems are straight-
forwardly transformable to time delay systems.

Remark 9.16 It is interesting to observe that the switched estimator (9.113) is
independent of the delay factor τξ(t) and it reduces to the standard Kalman fil-
tering algorithm in the case of systems without uncertainties and delay factor
H(ξ(t)) ≡ 0, Hc(ξ(t)) ≡ 0, E(ξ(t)) ≡ 0, Ad(ξ(t)) ≡ 0, λ(ξ(t)) ≡ 0.

Remark 9.17 In the delay-free case (Ad(ξ(t)) ≡ 0, λ(ξ(t)) ≡ 0), we observe that
(9.114) reduces to the Kalman filter for the system

ẋ(t) = Â(ξ(t)) x(t)+ ŵ(t) (9.123)

y(t) = C(ξ(t)) x(t)+ v̂(t) (9.124)

where ŵ(t) and v̂(t) are zero-mean white noise sequences with covariance
matrices Ŵ (t) and V̂ (t), respectively, and having cross-covariance matrix
[μ−1(ξ(t))H(ξ(t))Ht

c (ξ(t))]. Looked at in this light, the approach developed here
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before to robust filtering in Theorem 9.13 corresponds to designing a standard
Kalman filter for a related continuous-time system, which captures all admissible
uncertainties and time delay, but does not involve parameter uncertainties. Indeed,
the robust filter (9.113) using (9.108), (9.109), (9.110), (9.111), and (9.112) can be
rewritten as

˙̂x(t) = [A(ξ(t))+ δA(ξ(t))] x̂(t)+ K (ξ(t)) {y(t)− C(ξ(t)) x̂(t)} (9.125)

where δA(ξ(t)) is defined in (9.108) and it reflects the effect of uncertainties
{ΔA(ξ(t)),ΔC(ξ(t))} and time-delay factor Ad((ξ(t)) on the structure of the filter.

Remark 9.18 In view of the foregoing notes, it is readily evident that the results
achieved by Theorems 9.12 and 9.13 extend some of the existing robust estimation
results to linear systems with state delay.

9.2.4 Steady-State Robust Filter

Now, we investigate the asymptotic properties of the Kalman filter developed pre-
viously, where the switching signal ξ is now independent of time. For this purpose,
we consider the uncertain time-delay system

ẋ(t) = [A(ξ)+ H(ξ)Δ(ξ)E(ξ)]x(t)+ Ad(ξ)x(t − τξ )+ w(t)

= Aξ,Δx(t)+ Ad(ξ)x(t − τξ )+ w(t) (9.126)

y(t) = [C(ξ)+ Hc(ξ)Δ(ξ)E(ξ)]x(t)+ v(t)

= Cξ,Δx(t)+ v(t) (9.127)

where Δ(ξ) satisfies (9.81). The matrices A(ξ) ∈ �n×n,C(ξ) ∈ �m×n are mode-
dependent constant matrices representing the nominal plant. It is assumed that
A(ξ), ξ ∈ S̄ is Hurwitz. Our objective now is to design a switched time-invariant a
priori estimator of the form:

˙̂x(t) = Â(ξ) x̂(t)+ K (ξ) [y(t)− C(ξ)x̂(t)] x̂(0) = 0 (9.128)

that achieves the following asymptotic performance bound

lim
t→∞ IE

{[x̂(t)− x(t)][x̂(t)− x(t)]t} ≤ L(ξ) (9.129)

Theorem 9.19 Consider the uncertain time-delay system (9.126) and (9.127) with
A(ξ) being Hurwitz. If for some scalars μ(ξ) > 0, λ(ξ) > 0, there exist stabilizing
solutions for the AREs

A(ξ)P(ξ)+ P(ξ)At (ξ)+ λ(ξ)P(ξ)+ Ŵ (ξ)+ λ−1(ξ)Ad(ξ)P(ξ)At
d(ξ)

+ μ(ξ)P(ξ)Et (ξ)E(ξ)P(ξ) = 0 (9.130)
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A(ξ)L(ξ)+ L(ξ)At (ξ)+ λ(ξ)L(ξ)+ Ŵ (ξ)+ λ−1(ξ)Ad(ξ)P(ξ)At
d(ξ)

+ μ(ξ)L(ξ)Et (ξ)E(ξ)L(ξ)−[
L(ξ)Ct (ξ)+ μ−1(ξ)H(ξ)Ht

c (ξ)
]

V̂−1(ξ)

[C(ξ)L(ξ)+ μ−1(ξ)Hc(ξ)Ht (ξ)] = 0 (9.131)

then the estimator (9.125) is a stable switched quadratic (SSQ) and achieves (9.129)
with

Ŵ (ξ) = W + μ−1(ξ)H(ξ)Ht (ξ)

V̂ (ξ) = V + μ−1(ξ)Hc(ξ)Ht
c (ξ) (9.132)

Â(ξ) = A(ξ)+ δA(ξ)

= A(ξ)+ μ−1(ξ)Lt (ξ)Et (ξ)E(ξ)

K (ξ) =
{

L(ξ)Ct (ξ)+ μ−1(ξ)H(ξ)Ht
c (ξ)

}
V̂−1(ξ) (9.133)

for some L(ξ) ≥ 0.

Proof To examine the stability of the closed-loop system, we augment (9.126),
(9.127) and (9.128) with (w(t) = 0, v(t) = 0), to obtain

ξ̇ (t) = Aξ,Δξ(t)+ D(ξ)ξ(t − τξ )

=
[

Aξ,Δ 0
Aξ,Δ − G(ξ)− K (ξ)Cξ,Δ G(ξ)

]
ξ(t)

+
[

Ad(ξ) 0
Ad(ξ) 0

]
ξ(t − τξ ) (9.134)

By a similar argument as in the proof of Theorem 9.13, it is easy to see that

X (ξ)Aξ,Δ + At
ξ,ΔX (ξ)− λ(ξ)X (ξ)+ λ−1(ξ)D(ξ)X (ξ)Dt (ξ) < 0 (9.135)

where

X (ξ) =
[

P(ξ) L(ξ)
L(ξ) L(ξ)

]
(9.136)

Introducing a Lyapunov – Krasovskii functional

V (ξ) = ζ t (t)X (ξ)ζ(t)+
∫ t

t−τξ
ζ t (α)λ−1(ξ)D(ξ)X (ξ)Dt (ξ)ζ(α) dα (9.137)

and observe that V (ξ) > 0, for ζ(t) �= 0, for some λ(ξ) > 0 and V (ξ) = 0 when
ζ = 0. By differentiating the Lyapunov – Krasovskii functional (9.137) along the
trajectories of system (9.134), we get
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V̇ (ξ) = ζ t (t)
[

X (ξ)Aξ,Δ + At
ξ,ΔX (ξ)+ λ−1(ξ)D(ξ)X (ξ)Dt (ξ)

]
ζ(t)

+ζ t (t)X (ξ)D(ξ)ζ(t − τξ )+ ζ t (t − τξ )Dt (ξ)X (ξ)ζ(t)

−λ−1(ξ)ζ t (t − τξ )D(ξ)X (ξ)Dt (ξ)ζ(t − τξ )

≤ ζ t (t)
[

X (ξ)Aξ,Δ + At
ξ,ΔX (ξ)+ λX (ξ)+ λ−1(ξ)D(ξ)X (ξ)Dt (ξ)

]
ζ(t)

+λ−1(ξ)ζ t (t − τξ )D(ξ)X (ξ)Dt (ξ)ζ(t − τξ )

−λ−1(ξ)ζ t (t − τξ )D(ξ)X (ξ)Dt (ξ)ζ(t − τξ )

= ζ t (t)
[

X (ξ)Aξ,Δ + At
ξ,ΔX (ξ)+ λ(ξ)X (ξ)+ λ−1(ξ)D(ξ)XDt (ξ)

]
ζ(t)

< 0 (9.138)

which means that the augmented system (9.132) is asymptotically stable. In turn,
this implies that (9.125) is SSQ. The guaranteed performance

IE[e(t)et (t)] ≤ L(ξ) (9.139)

follows from similar lines of argument as in the proof of Theorem 9.13.

The next theorem provides LMI-based solution to the steady-state robust Kalman
filter.

Theorem 9.20 Consider the uncertain switched time-delay system (9.126) and
(9.127) with A(ξ) being Hurwitz. The estimator

˙̂x(t) = [A(ξ)+ μ−1(ξ)Lt (ξ)Et (ξ)E(ξ)]x̂(t)
+

[
L(ξ)Ct (ξ)+ μ−1(ξ)H(ξ)Ht

c (ξ)
]

V̂−1(ξ)[y(t)− C(ξ)x̂(t)](9.140)

where

V̂ (ξ) = V + μ−1(ξ)Hc(ξ)Ht
c (ξ) (9.141)

is a stable switched quadratic and achieves (9.139) for some L(ξ) ≥ 0 if for some
scalars μ(ξ) > 0, λ(ξ) > 0, there exist matrices 0 < Y (ξ) = Y t (ξ) and 0 <

X (ξ) = Xt (ξ) satisfying the LMIs

⎡
⎣ A(ξ)Y (ξ)+ Y (ξ)At (ξ)+ Qy(Y, λ, (ξ)) Ad(ξ)Y (ξ) Y (ξ)Et (ξ)

Y (ξ)At
d(ξ) −λ(ξ)I 0

E(ξ)Y (ξ) 0 −μ−1(ξ)I

⎤
⎦ < 0 (9.142)

⎡
⎣ A(ξ)X (ξ)+ X (ξ)At (ξ)+ Qx (X, λ, (ξ)) Ad(ξ)Y (ξ) X (ξ)Et (ξ)

Y (ξ)At
d(ξ) −λ(ξ)I 0

E(ξ)X (ξ) 0 −μ−1(ξ)I

⎤
⎦ < 0 (9.143)

where
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Qy(Y, λ, (ξ)) = λ(ξ)Y (ξ)+W + μ−1(ξ)H(ξ)Ht (ξ),

Qx (X, λ, (ξ)) = λ(ξ)X (ξ)+W + μ−1(ξ)H(ξ)Ht (ξ)

−
[

X (ξ)Ct (ξ)+ μ−1(ξ)H(ξ)Ht
c (ξ)

]
V̂−1(ξ)

[C(ξ)X (ξ)+ μ−1(ξ)Hc(ξ)Ht (ξ)] (9.144)

Proof By inequality (9.50) and (9.130) and (9.131), it follows that there exist matri-
ces 0 < Y (ξ) = Y t (ξ) and 0 < X (ξ) = Xt (ξ) satisfying the algebraic Riccati
inequalities (ARIs):

A(ξ)Y (ξ)+ Y (ξ)At (ξ)+ λ(ξ)Y (ξ)+ Ŵ (ξ)+ λ−1(ξ)Ad(ξ)Y (ξ)At
d(ξ)

+ μ(ξ)Y (ξ)Et (ξ)E(ξ)Y (ξ) < 0 (9.145)

A(ξ)X (ξ)+ X (ξ)At (ξ)+ λ(ξ)X (ξ)+ Ŵ (ξ)+ λ−1(ξ)Ad(ξ)Y (ξ)At
d(ξ)

+ μ(ξ)X (ξ)Et (ξ)E(ξ)X (ξ)−[
X (ξ)Ct (ξ)+ μ−1(ξ)H(ξ)Ht

c (ξ)
]

V̂−1(ξ)

[C(ξ)X (ξ)+ μ−1(ξ)Hc(ξ)Ht (ξ)] < 0 (9.146)

such that Y (ξ) > P(ξ), X (ξ) > L(ξ). Application of (9.50) to the ARIs (9.145)
and (9.146) yields the LMIs (9.142) and (9.143).

Remark 9.21 It should be emphasized the AREs (9.130) and (9.131) do not have
clear-cut monotonicity properties enjoyed by standard AREs. The main reason for
this is the presence of the term Ad(ξ)P(ξ)At

d(ξ).

Extending on the results [329], given τξ , it follows that the uncertain time-delay
system

ẋ(t) = [A(ξ)+ H(ξ)Δ(ξ)E(ξ)]x(t)+ Ad(ξ)x(t − τξ ) (9.147)

is switched quadratically stable (SQS) if there exist matrices 0 < P̄(ξ) = P̄ t (ξ) ∈
�n×n, 0 < R̄(ξ) = R̄t (ξ) ∈ �n×n satisfying the ARI:

P̄(ξ)A(ξ)+ At (ξ)P̄(ξ)+ Et (ξ)E(ξ)+ P̄(ξ)H(ξ)Ht (ξ)P̄(ξ)

+P̄(ξ)Ad(ξ)R̄−1(ξ)At
d(ξ)P̄(ξ)+ R̄(ξ) < 0 (9.148)

The next theorem examines further properties of the positive-definite solution of the
ARE (9.130).

Theorem 9.22 If system (9.147) is (SQS), then there exist some μ(ξ) > 0, λ(ξ) > 0
such that the ARE (9.130) admits a positive-definite solution P(ξ) > 0 for some
0 < R(ξ) = Rt (ξ). Furthermore, for a given μ(ξ) > 0, λ(ξ) > 0 and R(ξ) > 0,
if there exist μ̄(ξ) > 0, λ̄(ξ) > 0 such that (9.130) admits a positive-definite
solution 0 < P̄(ξ) = P̄ t (ξ) for some 0 < R̄(ξ) = R̄t (ξ), then for any μ(ξ) ∈
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(0, μ̄(ξ)], λ(ξ) ∈ (0, λ̄(ξ)], the solution of (9.131) P(ξ) > 0 satisfies 0 < P(ξ) ≤
(μ(ξ)/μ̄(ξ))P̄(ξ) for some 0 < R(ξ) ≤ (λ(ξ)/λ̄(ξ))R̄(ξ).

Proof Using (9.148), it follows for some μ(ξ) > 0 that

P̄(ξ)A(ξ)+ At (ξ)P̄(ξ)+ Et (ξ)E(ξ)+ P̄(ξ)[μ(ξ)W + H(ξ)Ht (ξ)]P̄(ξ)

+P̄(ξ)Ad(ξ)R̄−1(ξ)At
d(ξ)P̄(ξ)+ R̄(ξ) < 0 (9.149)

By setting P̂(ξ) = μ(ξ)P̄(ξ), we get

P̂(ξ)A(ξ)+ At (ξ)P̂(ξ)+ μ(ξ)Et (ξ)E(ξ)

+P̂(ξ)[W + μ−1(ξ)H(ξ)Ht (ξ)]P̂(ξ)

+μ−1(ξ)P̂(ξ)Ad(ξ)R̄−1(ξ)At
d(ξ)P̂(ξ)

+μ(ξ)R̄(ξ) < 0 (9.150)

This implies that

A(ξ)P̂(ξ)+ P̂(ξ)At (ξ)+ μ(ξ)P̂(ξ)Et (ξ)E(ξ)P̂(ξ)

+ [W + μ−1(ξ)H(ξ)Ht (ξ)] + μ−1(ξ)Ad(ξ)R̄−1(ξ)At
d(ξ)

+ μ(ξ)P̂(ξ)R̄(ξ)P̂(ξ) < 0 (9.151)

By letting R̄(ξ) = (λ(ξ)/μ(ξ))P̂−1(ξ) for some λ(ξ) > 0, it follows that there
exist a positive-definite solution P(ξ) > 0 to the ARE

A(ξ)P(ξ)+ P(ξ)At (ξ)+ λ(ξ)P(ξ)+ μ(ξ)P(ξ)Et (ξ)E(ξ)P(ξ)

+ [W + μ−1(ξ)H(ξ)Ht (ξ)] + λ−1(ξ)Ad(ξ)P(ξ)At
d(ξ) = 0 (9.152)

The remaining part regarding the monotonicity of μ(ξ) and that 0 < P(ξ) <

(μ(ξ)/μ̄(ξ))P̄(ξ) for some 0 < R(ξ) ≤ (λ(ξ)/λ̄(ξ))R̄(ξ) follows by applying the
results of [398].

Remark 9.23 For any pairs (λ1(ξ), μ1(ξ)), (λ2(ξ), μ2(ξ)) ∈ (0, λ̄(ξ)] ×
(0, μ̄(ξ)],
λ1(ξ) ≤ λ2(ξ), μ1(ξ) ≤ μ2(ξ), it follows from Theorem 9.22 that

P(ξ, μ1)/μ1(ξ) ≤ P(ξ, μ2)/μ2(ξ)

for some R(ξ, λ1) ≤ R(ξ, λ2). Thus

d2 P(ξ)/dμ2(ξ) ≥ 0

This can also be justified by differentiating (9.130) using (9.132) and (9.133) to
yield
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A(ξ)
d2 P(ξ)

dμ2(ξ)
+ d2 P(ξ)

dμ2(ξ)
At (ξ)+ λ(ξ)

d2 P(ξ)

dμ2(ξ)

+λ−1(ξ)D(ξ)
d2 P(ξ)

dμ2(ξ)
Dt (ξ)+ 2

μ3(ξ)
H1(ξ)Ht

1(ξ) = 0 (9.153)

Since A(ξ) is Hurwitz, it is obvious from (9.153) that

d2 P(ξ)

dμ2(ξ)
≥ 0

By the same arguments, we have

A(ξ)
d2 P(ξ)

dλ2(ξ)
+ d2 P(ξ)

dλ2(ξ)
At (ξ)+ λ(ξ)

d2 P(ξ)

dλ2(ξ)
+ 2

d P(ξ)

dλ(ξ)

+D(ξ)

{
2P(ξ)

λ3(ξ)
− 2P(ξ)

λ2(ξ)

d P(ξ)

λ(ξ)
+ 1

λ(ξ)

d2 P(ξ)

dλ2(ξ)

}
Dt (ξ)

μ(ξ)P(ξ)Et (ξ)E(ξ)P(ξ)
d2 P(ξ)

dλ2(ξ)
+ μ(ξ)

d2 P(ξ)

dλ2(ξ)
Et (ξ)E(ξ)P(ξ)

+2μ(ξ)
d P(ξ)

dλ(ξ)
Et (ξ)E(ξ)

d P(ξ)

dλ(ξ)
= 0 (9.154)

which leads to

d2 P(ξ)

dλ2(ξ)
≥ 0

Following a similar procedure, it can be shown that

d2L(ξ)

dμ2(ξ)
≥ 0,

d2L(ξ)

dλ2(ξ)
≥ 0

Thus we conclude that tr (L)(ξ) is a convex function over the region (0, λ̄(ξ)] ×
(0, μ̄(ξ)]. This indicates that a suboptimal robust Kalman filter can be obtained via
convex optimization approach.

9.2.5 Numerical Simulation

For the purpose of illustrating the developed theory, we focus on the steady-state
Kalman filtering and proceed to determine the estimator gains. Essentially, seek to
solve (9.130), (9.131), (9.132), and (9.133) when λ(ξ) ∈ [λ1 → λ2], μ(ξ) ∈
[μ1 → μ2], where λ1, λ2, μ1, μ2 are given constants and ξ ∈ {1, 2, 3}. Initially,
we observe that (9.130) depends on P(ξ) only and it is not of the standard-forms of
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AREs. On the contrary, (9.131) depends on both L(ξ) and P(ξ) and it can be put into
the standard ARE form. For numerical simulation, we employ a Kronecker Product-
like technique to reduce (9.130) into a system of nonlinear algebraic equations of
the form

f (α) = G α + h(α)+ q (9.155)

where α ∈ �n(n+1)/2 is a vector of the unknown elements of the P matrix. The
algebraic equation (9.135) can then be solved using an iterative Newton – Raphson
technique according to the rule

α(i+1) = α(i) − γ(i)[G +∇αh(α(i)]−1 f (α(i)) (9.156)

where i is the iteration index, α(o) = 0 , ∇αh(α) is the Jacobian of h(α), and the
step-size γ(i) is given by γ(i) = 1/[|| f (α(i))|| + 1].

Given the solution of (9.130), we proceed to solve (9.131) using a standard hamil-
tonian/eigenvector method. All the computations are carried out using the Linear
Algebra and System (L-A-S) software [5]. As a typical case, consider a time-delay
system of the type (9.78)-(9.79) with

Mode 1

A =
[−2 0.5

1 −3

]
, Ad =

[−0.2 −0.1
0.1 0.4

]

W =
[

1 0
0 1

]
, H =

[
0.5
0.5

]

C = [1 − 3], E = [0.5 1], Hc = 2, V = 1

Mode 2

A =
[−3 0

0.5 −4

]
, Ad =

[−0.3 −0.2
0 0.3

]

W =
[

2 0
0 1

]
, H =

[
0.3
0.4

]

C = [0.7 − 2], E = [0.4 0.7], Hc = 1, V = 1

Mode 3

A =
[−4 1

0 −5

]
, Ad =

[−0.2 −0.1
0.1 0.4

]

W =
[

1 0
0 2

]
, H =

[
0.5
0.5

]

C = [0.6 − 1], E = [0.3 0.8], Hc = 2, V = 0.7

A summary of the computational results is presented in Table 9.3 and from which
we observe the following:
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(1) For a given λ ∈ [0.1 − 0.9], increasing μ by 50% results in 0.3% increase in
||K || (for small λ) and about 1.12% increase in ||K || when λ is relatively large.

(2) For a given μ, increasing λ from 0.1 to 0.9 causes ||K || to increase by about
5.35%.

(3) For μ < 0.6, λin[0.1, 0.9], the estimator is unstable.
(4) Increasing (λ, μ) beyond (1, 1) yields unstable estimator.

Therefore, we conclude that:

(1) The stable-estimator gains are practically insensitive to the (λ, μ) parameters.
(2) There is a finite range for (λ, μ) that guarantees stable performance of the devel-

oped Kalman filter.

9.3 Notes and References

We have considered in this chapter a robust Kalman filter for a class of switched
continuous-time systems with norm-bounded uncertainties and unknown constant
state delay. Both time-varying and steady-state filtering algorithms have been exam-
ined. The main results are contained in two parts: Part 1 includes Theorems 9.2 and
9.3 that deal with time-varying problems on a finite horizon and Part 2 includes
Theorems 9.8–9.13 that treat the steady-state problem and its related properties. It
has been established that the Kalman filter algorithm is related to solutions of two
Riccati equations involving scalar parameters. Important properties of the robust
filter have been delineated. It has been further shown that the guaranteed cost is a
convex function of the scaling parameters. A numerical simulation is provided to
illustrate the developed theory. The research results in the literature are few and
hence researchers are encouraged to develop pertinent results.
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Switched Decentralized Control



Chapter 10
Switched Decentralized Control

There are real-world systems consisting of coupled units or subsystems that directly
interact with each other in a simple and predictable fashion to serve a common pool
of objectives. When viewed as a whole, the resulting overall system often displays
rich and complex behavior. Typical examples are found in electric power systems
with strong interactions, water networks, which are widely distributed in space,
traffic systems with many external signal or large-space flexible structures, to name
a few, which are often termed large-scale or interconnected systems. It becomes
increasingly evidently that the underlying notions of interconnected systems mani-
fest the complexity as an essential and dominating problem in systems theory and
practice and that the many associated problems cannot be tackled using one-shot
approaches. Recent research investigations have revealed [8] that the crucial need
for improved methodologies relies on dividing the analysis and synthesis of the over-
all system into independent or almost independent subproblems, searches for new
ideas of dealing with the incomplete information about the system, for treating with
the uncertainties, and for dealing with delays. System complexity frequently leads
to severe difficulties that are encountered in the tasks of analyzing, designing, and
implementing appropriate control methods. These difficulties arise mainly from the
following well-known reasons: dimensionality; information structure constraints;
uncertainty; delays. Pertinent results can be found in [7, 9, 10, 141, 201, 348].

In this chapter, we address the problems of robust decentralized stability and
stabilization of classes of nonlinear interconnected systems. This class of intercon-
nected systems consists of coupled nominally linear subsystems with unknown-
but-bounded state delay. In one section, we treat discrete-time systems with arbi-
trary switched rules. We showed that multi-controller switched schemes provide
an effective and powerful mechanism to cope with highly complex systems with
large uncertainties. We developed a delay-dependent decentralized structure that
guarantees asymptotic stability with local disturbance attenuation on the subsystem
level. Then, we constructed decentralized switched control schemes based on state
feedback and dynamic output feedback to ensure stabilizability of the global system
with �2-performance bound.

M.S. Mahmoud, Switched Time-Delay Systems,
DOI 10.1007/978-1-4419-6394-9_10, C© Springer Science+Business Media, LLC 2010
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10.1 Interconnected Discrete-Time Systems

For classes of switched time-delay (STD) systems, some of the stability and sta-
bilization methods are given in [183, 295, 297, 351, 432]. In [351] a design pro-
cedure based on proportional plus delay control is presented for a class of flex-
ible structures possessing multiple modes. In [298] constant delay factor is con-
sidered which render the results delay independent under arbitrary switchings.
The case of time-varying delay was addressed in [183, 295] using appropriate
parameter-dependent (switched) Lyapunov–Krasovskii functionals (LKFs). How-
ever, the results ignored some useful negative terms while evaluating the difference
of the respective terms in the proposed LKF. Output-feedback H∞ control for a class
of switched linear discrete-time systems with time-varying delays was developed
in [432].

From the published results on STD systems, we conclude that the study of
switched linear systems provides additional insights into some long-standing prob-
lems, such as robust, adaptive, and intelligent control, gain scheduling, or multi-
rate digital control. The recent results in switched systems have benefited many
real-world systems such as power systems, automotive control, air traffic control,
network and congestion control. One important problem in uncertain switched
systems is the design of switching rules, which guarantee quadratic stability
and performance, and such switching rules must be independent of uncertainties.
A state-dependent switching rule satisfying this requirement, which is called the
min-projection strategy, is presented in [148, 330]. The min-projection strategy
introduced in [331, 332] as a simple stabilization method for systems composed of
several subsystems. This motivates the need of multi-controller switched schemes
for large-scale complex systems when implementing low-order local controllers.
However, all these references deal with a centralized switching rule.

It appears that the problems of stability analysis and control design intercon-
nected switched systems with time-varying delays have not been fully resolved thus
far. In this section, both problems are addressed where we consider the subsys-
tems representing the lower-level local dynamics governed by delayed difference
equations, while the supervisor is the high-level coordinator producing the switches
among the local dynamics. The dynamics of the global system is therefore deter-
mined by both the subsystem and the switching signal, which may depend on the
time, its own past value, the state/output, and/or possibly an external signal. We
deal with the problem of low-order H∞ state-feedback or output-feedback con-
troller design with a decentralized switching rule for a class of switching discrete-
time interconnected systems, where we extend further the results of [26, 44, 224–
234, 239–243, 246–248, 251, 252, 259–261, 268, 270–272, 274, 275, 279–281,
283–286, 288–325, 327–329, 331–334, 421] to the class of switched discrete-
time systems with unknown-but-bounded state delay. In our work, we showed
that multi-controller switched schemes provide an effective and powerful mecha-
nism to cope with highly complex systems and/or systems with large uncertainties.
We developed a delay-dependent decentralized structure that guarantees asymp-
totic stability with local disturbance attenuation on the subsystem level. Then, we
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constructed decentralized switched control schemes based on state-feedback and
dynamic output feedback to ensure stabilizability of the global system with �2-
performance bound.

10.1.1 Problem Statement and Preliminaries

A class of nonlinear interconnected discrete-time systems with state-delay Σ

composed of N coupled subsystems Σ j , j ∈ N = {1, . . . , N }, which is
represented by

Σ j : x j (k + 1) = A jξ x j (k)+ D jξ x j (k − d j (k))+ B jξu j (k)

+Γ jξω j (k)+ g j (k, x(k), x(k − d(k)))

y j (k) = C jξ x j (k)+ Fjξ x j (k − d j (k))+ Ψ jξω j (k)

z j (k) = G jξ x j (k)+ Hjξ x j (k − d j (k))+Φ jξω j (k) (10.1)

where k ∈ I+
Δ= {0, 1, ...} and the scalar d j (k) a time-varying delay is unknown

but lies within the range 0 < d jm ≤ d j (k) ≤ d j M where the lower bound
d jm > 0 and the upper bound d j M > 0 being known constant scalars and the
function ξ = ξ(x j , k) : � × I+ → S = {1, 2, ..., S} is a switching rule within
subsystem Σ j which takes its values in the finite set of modes S. This rule is
selected for all j such that ξ(x j , k) = s implies that the sth switching mode
is activated for the j th subsystem of the interconnected system. In this way, the
matrices {Aα, Dα, ..., Φα} take values, at arbitrary discrete instants, in the finite
set of

{(A j1, D j1, ..., Φ j1), (A j2, D j2, ..., Φ j2), ..., (A j S, D j S, ..., Φ j S)}

Thus the matrices (A js, D js, ..., Φ js) denotes the sth model of local subsystem j
corresponding to operational mode s and hence (10.1) represents a time-controlled
switched system [42]. Typically, the switching rule ξ is not known a priori but we
assume its instantaneous value is available in real time for practical implementa-
tions. Define the indicator function

α(k) = [α1(k), ..., αN (k)]t , ∀ j ∈ N

αs(k) =
⎧⎨
⎩
= 1 when the j th subsystem (10.1) is in the sth mode,

(A js, D js, ..., Φ js)

= 0 otherwise
(10.2)

It is obvious that αi (k) : I+ → {0, 1}, ∑N
j=1 α j (k) = 1, k ∈ I+, i ∈ N . Now we

cast system (10.1) into the form
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Σ j : x j (k + 1) =
N∑

i=1

αi (k)

[
A ji x j (k)+ D ji x j (k − d j (k))+ B ji u j (k)

+Γ j iω j (k)+ g j (k, x(k), x(k − d(k)))

]

y j (k) =
N∑

i=1

αi (k)

[
C ji x j (k)+ Fji x j (k − d j (k))

+Ψ j iω j (k)

]

z j (k) =
N∑

i=1

αi (k)

[
G ji x j (k)+ Hji x j (k − d j (k))

+Φ j iω j (k)

]
(10.3)

where upon relating the local subsystems to the global system, we have

x(k) = (
xt

1(k), . . . , xt
N (k)

)t ∈ �n, n =
N∑

j=1

n j

x(k − d(k)) = (
xt

1(k − d1(k)), . . . , xt
N (k − dN (k))

)t ∈ �n, n =
N∑

j=1

n j

u(k) = (
ut

1(k), ..., ut
N (k)

)t ∈ �p, p =
N∑

j=1

p j

y(k) = (
yt

1(k), ..., yt
N (k)

)t ∈ �m, m =
N∑

j=1

m j

z(k) = (
zt

1(k), ..., zt
N (k)

)t ∈ �q , q =
N∑

j=1

q j

being the state, delayed state, control input, measured output, and performance out-
put vectors of interconnected (global) system Σ and ω(k) = (

ωt
1(k), ..., ω

t
N (k)

)t ∈
�q is the disturbance input, which is assumed to belong to �2[0,∞). It is significant
to observe in the foregoing setup that there are N distinct switching rules where each
subsystem has been assigned one local state-dependent switching rule that operates
independently from other rules.

The associated matrices are real constants and modeled as

As = diag{A1s, . . . , ANs}, A js ∈ �n j×n j

Bs = diag{B1s, . . . , BNs}, B js ∈ �n j×p j
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Ds = diag{D1s, . . . , DNs}, D js ∈ �n j×n j

Cs = diag{C1s, . . . ,CNs}, C js ∈ �q j×n j

Hs = diag{H1s, . . . , HNs}, Hjs ∈ �q j×p j

The function g j : I+ × �n × �n → �n j is a piecewise-continuous vector function
in its arguments and it satisfies the quadratic inequality

gt
j (k, x(k), x(k − d(k)))g j (k, x(k), x(k − d(k))) ≤ φ2

j x t (k)Ẽ t
j Ẽ j x(k)+

ψ2
j x t (k − d(k))Ẽ t

d j Ẽd j x(k − d(k)) (10.4)

where φ j > 0, ψ j > 0 are bounding parameters such that

Φ̃ = diag
{
φ2

j Ir1 , . . . , φ
2
j IrN

}
, Ψ̃ = diag

{
ψ2

j Is1 , . . . , ψ
2
j IsN

}

with Im j being the m j × m j identity matrix. From (10.4) and the notation

g(k, x(k), x(k−d(k))) = [
gt

1(k, x(k), x(k − d(k))), . . . , gt
N (k, x(k), x(k − d(k)))

]t

it is always possible to find matrices Φ, Ψ such that

gt (k, x(k), x(k − d(k)))g(k, x(k), x(k − d(k))) ≤ xt (k)EtΦ−1 Ex(k)+
xt (k − d(k))Et

dΨ
−1 Ed x(k − d(k)) (10.5)

where E = diag{E1, . . . , EN }, Ed = diag{Ed1, . . . , Ed N }, δ j = φ−2
j ,

ν j = ψ−2
j , Φ = diag{δ1 Ir1 , . . . , δN IrN }, Ψ = diag{νd1 Is1 , . . . , νd N IsN } with

E j ∈ �r j×n j , Ed j ∈ �s j×n j . Letting ξ(k) = [xt (k) xt (k − d j (k)) gt (k, x(k),

x(k − d(k)))]t Δ= [
ξ t

1, . . . , ξ
t
N

]t . Then (10.5) can be conveniently written as

ξ t

⎡
⎣−EtΦ−1 E 0 0

• − Et
dΨ

−1 Ed 0
• • I

⎤
⎦ ξ ≤ 0 (10.6)

and in view of the block structure of matrices, it turns out for Σ j that

ξ t
j

⎡
⎢⎣
−δ−2

j Et
j E j 0 0

• −ν−2
j Et

d j Ed j 0
• • I j

⎤
⎥⎦ ξ j ≤ 0 (10.7)

Remark 10.1 It is significant to note that class of systems (10.3) is quite general
in the context of switched time-delay systems as it includes state, measurement,
and output-delays. This class emerges in many areas dealing with the applications
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functional difference equations or delay-difference equations [216] while preserving
the nonlinear character of the models. These applications include cold rolling mills,
decision-making processes, and manufacturing systems. Related results for a class
of discrete-time systems with time-varying delays can be found in [25] where delay-
independent stability and stabilization conditions are derived. It should be stressed
that although we consider only the case of single time delay, extension to multiple
time-delay systems can be easily attained using an augmentation procedure.

Remark 10.2 This section essentially develops a good conceptual framework for
multi-controller state-dependent switching structure among smooth controllers with
all the effort and computations being performed on the subsystem level thereby
providing an efficient decentralized feedback control design guaranteeing the level
of disturbance attenuation for the overall interconnected systems. In this work,
we consider that the modes are represented by discrete-time linear systems with
unknown-but-bounded delays. The subsystems thus represent the lower-level local
dynamics governed by difference equations, while the supervisor is the high-level
coordinator producing the switches among the local dynamics. The dynamics of the
system is determined by both the subsystem and the switching signal. In general, a
switching signal may depend on the time, its own past value, the state/output, and/or
possibly an external signal.

10.1.2 Decentralized �2 Gain Analysis

In this section, we develop new criteria for LMI-based characterization of delay-
dependent asymptotic stability and �2 gain analysis. Introduce

δx j (k) = x j (k + 1)− x j (k) = (A ji − I )x j (k)+ D ji x j (k − d j (k))

+ B ji u j (k)+ Γ j iω j (k)

x j (k − d j (k)) = x j (k)−
k−1∑

s=k−d j (k)

δx j (k), d js = (d j M − d jm + 1) (10.8)

To facilitate the delay-dependent analysis and feedback design, we consider the
following switched Lyapunov–Krasovskii functional (SLKF):

V (k) =
N∑

j=1

Vj (k), Vj (k) = Vjo(k)+ Vja(k)+ Vjc(k)+ Vjm(k)

+ Vjn(k)+ Vjs(k)

Vjo(k) = xt
j (k)

N∑
i=1

αi (k)P j i x j (k)
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Vja(k) =
k−1∑

s=k−d j (k)

xt
s(k)

N∑
i=1

αi (k)Q j i xs(k)

Vjc(k) =
k−1∑

k−d jm

xt
j (k)

N∑
i=1

αi (k)R j i x j (k)+
k−1∑

k−d j M

xt
j (k)

N∑
i=1

αi (k)S j i x j (k)

Vjm(k) =
−d jm∑

m=−d j M+1

k−1∑
j=k+m

xt
j (m)

N∑
i=1

αi (k)Q j i x j (m)

Vjn(k) =
−d jm−1∑
m=−d j M

k−1∑
j=k+m

δxt
j (m)

N∑
i=1

αi (k)W jaiδx j (m)

Vjs(k) =
−1∑

m=−d j M

k−1∑
j=k+m

δxt
j (m)

N∑
i=1

αi (k)W jciδx j (m) (10.9)

where P j i , Q j i , R j i , S j i , W jai , W jci , j ∈ N , i ∈ S are weighting matrices
of appropriate dimensions.

Remark 10.3 Note in the local Lyapunov functional Vj (k) of (10.9) that the first
term is standard to the delayless nominal systems while the second term and the
first part of the fifth term together correspond to the delay-dependent conditions.
The second part of the third term and the fourth terms are added to compensate for
the enlargement in the time interval from (k−1 → d−d j (k)) to (k−1 → d−d j M ).
The introduction of

k−1∑
k−d jm

xt
j (k)

N∑
i=1

αi (k)R j i x j (k)

k−1∑
k−d j M

xt
j (k)

N∑
i=1

αi (k)S j i x j (k)

−d jm−1∑
m=−d j M

k−1∑
j=k+m

δxt
j (m)

N∑
i=1

αi (k)W jaiδx j (m)

and

−1∑
m=−d j M

k−1∑
j=k+m

δxt
j (m)

N∑
i=1

αi (k)W jciδx j (m)

plus appropriate free-weighting matrices (to be introduced later on) serve in reduc-
ing the number of manipulated variables, a feature that improves the performance of
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the developed delay-dependent stability criterion. This is quite evident upon com-
parison with the LKFs in [298, 432].

The following theorem establishes the main LMI-based stability result for
switched system (10.3):

Theorem 10.4 Given the bounds d j M > 0, d jm > 0, j = 1, ..., N. The
global system Σ with subsystem Σ j given by (10.3) is delay-dependent asymp-
totically stable with �2-performance bound γ j is delay-dependent asymptotically
stable with an L2 − gain < γ j if there exist weighting matrices if there exist
weighting matrices P j i , P js, Q j i , R j i , S j i , W jai , W jci , parameter matrices
L ja, L jc, M ja, M jc,N ja, N jc, , ∀(i, s) ∈ S, ∀ j ∈ N and scalars γ j > 0
satisfying the following LMIs

Π jsi =
⎡
⎣ Ω̂ jsi Ω̂ jwi Ω̂ j xi

• −Ω̂ j zi 0
• • −I j

⎤
⎦ < 0 (10.10)

where

Ω̂ jsi =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ω̃ j io Ω̃ j ia M ja −L ja At
jiP js Ω̃ j ic

• Ω̃ j ie M jc −L jc Dt
jiP js Ω̃ j is

• • −R j i 0 0 0
• • • −S j i 0 0
• • • • P js − I j P jsΓ j i

• • • • • Ω̃ j iv

⎤
⎥⎥⎥⎥⎥⎥⎦

Ω̃ j io = At
jiP js A ji + d jsQ j i − P j i +R j i + S j i + φ2

j Et
j E j

+ (d j M − d jm)(A ji − I j )
tW jai (A ji − I j )

+ d j M (At
ji − I j )W jci (A ji − I j )+ N ja + N t

ja

Ω̂ j ia = At
jiP js D ji + (d j M − d jm)(A ji − I )tW jai D ji

+ d j M

(
At

ji − I j

)
W jci D ji + L ja − M ja − N ja + N t

jc

Ω̃ j ic = At
jiP jsΓ j i + (d j M − d jm)(A ji − I )tW jaiΓ j i

+ d j M

(
At

ji − I j

)
W jciΓ j i

Ω̃ j ie = Dt
jiP js D ji −Q j i + (d j M − d jm)Dt

jiW jai D ji + d j M Dt
jiW jci D ji

+ L jc + Lt
jc − M jc − Mt

jc − N jc − N t
jc + ψ2

j Et
d j Ed j

Ω̃ j is = Dt
jiP jsΓ j i + (d j M − d jm)Dt

jiW jaiΓ j i + d j M Dt
jiW jciΓ j i

Ω̃ j iv = Γ t
j iP jsΓ j i + (d j M − d jm)Γ

t
j iW jaiΓ j i

+ d j MΓ t
j iW jciΓ j i − γ 2

j I j (10.11)
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Ω̂ jwi =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
d j M − d jm L jai

√
d j M − d jm M jai

√
d j M N jai√

d j M − d jm L jci
√

d j M − d jm M jci
√

d j M N jci

0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Ω̂ j zi = diag
[
W jai +W jci W jai W jci

]
Ω̂ j xi =

[
G ji G jdi 0 0 0 Φ j i

]t (10.12)

Proof Consider the selective LKF (10.9). A straightforward computation gives the
first difference of ΔVj (k) = Vj (k + 1) − Vj (k) along the solutions of (10.3) with
u j (k) ≡ 0 as

ΔVjo(k) = xt
j (k + 1)

N∑
i=1

αi (k + 1)P j i x j (k + 1)− xt
j (k)

N∑
i=1

αi (k)P j i x j (k)

=
[

A ji x j (k)+ D ji x j (k − d j (k))+ Γ j iω j (k)+ g j

]t

×
N∑

i=1

αi (k + 1)P j i ×
[

A ji x j (k)+ D ji x j (k − d j (k))+ Γ j iω j (k)+ g j

]

−xt
j (k)

N∑
i=1

αi (k)P j i x j (k) (10.13)

Also,

ΔVja(k) =
k∑

j=k−d j (k+1)+1

xt
j (k)

N∑
i=1

αi (k)Q j i x j (k)

−
k−1∑

j=k−d j (k)

xt
j (k)

N∑
i=1

αi (k)Q j i x j (k)

Noting that

k−1∑
j=k−d j (k+1)+1

xt
j (k)

N∑
i=1

αi (k)Q j i x j (k) =

k−1∑
j=k−d jm+1

xt
j (k)

N∑
i=1

αi (k)Q j i x j (k)+
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k−d jm∑
j=k−d j (k+1)+1

xt
j (k)

N∑
i=1

αi (k)Q j i x j (k) ≤

k−1∑
j=k−d j (k)+1

xt
j (k)

N∑
i=1

αi (k)Q j i x j (k)+

k−d jm∑
j=k−d j M+1

xt
j (k)

N∑
i=1

αi (k)Q j i x j (k)

Thus, we have

ΔVja(k) ≤ xt
j (k)

N∑
i=1

αi (k)Q j i x j (k)

− xt
j (k − d j (k))

N∑
i=1

αi (k)Q j i x j (k − d j (k))

+
k−d jm∑

j=k−d j M+1

xt
j (k)

N∑
i=1

αi (k)Q j i x j (k) (10.14)

Similarly,

ΔVjc(k) = xt
j (k)

N∑
i=1

αi (k)R j i x j (k)

− xt
j (k − d jm)

N∑
i=1

αi (k)R j i x j (k − d jm)

+ xt
j (k)

N∑
i=1

αi (k)S j i x j (k)

− xt
j (k − d j M )

N∑
i=1

αi (k)S j i x j (k − d j M ) (10.15)

In addition,

ΔVjm(k) = (d j M − d jm)x
t
j (k)

N∑
i=1

αi (k)Q j i x j (k)

−
k−d jm∑

r=k−d j M+1

xt
j (r)

N∑
i=1

αi (k)Q j i x j (r) (10.16)
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ΔVjn(k) = (d j M − d jm)δxt
j (k)

N∑
i=1

αi (k)W jaiδx j (k)

−
k−d jm−1∑
r=k−d j M

xt
j (r)

N∑
i=1

αi (k)W jai x j (r) (10.17)

ΔVjs(k) = d j Mδxt
j (k)

N∑
i=1

αi (k)W jciδx j (k)

−
k−1∑

r=k−d j M

xt
j (r)

N∑
i=1

αi (k)W jci x j (r) (10.18)

Finally, from (10.13), (10.14), (10.15), (10.16), (10.17), and (10.18) we have

ΔVj (k) ≤
[

A ji x j (k)+ D ji x j (k − d j (k))+ Γ j iω j (k)+ g j

]t N∑
i=1

αi (k + 1)P j i

×
[

A ji x j (k)+ D ji x j (k − d j (k))+ Γ j iω j (k)+ g j

]

− xt
j (k)

N∑
i=1

αi (k)P j i x j (k)+ xt
j (k)

N∑
i=1

αi (k)Q j i x j (k)

− xt
j (k − d j (k))

N∑
i=1

αi (k)Q j i x j (k − d j (k))

+
k−d jm∑

j=k−d j M+1

xt
j (k)

N∑
i=1

αi (k)Q j i x j (k)+ xt
j (k)

N∑
i=1

αi (k)R j i x j (k)

− xt
j (k − d jm)

N∑
i=1

αi (k)R j i x j (k − d jm)

+ xt
j (k)

N∑
i=1

αi (k)S j i x j (k)

− xt
j (k − d j M )

N∑
i=1

αi (k)S j i x j (k − d j M )

+ (d j M − d jm)x
t
j (k)

N∑
i=1

αi (k)Q j i x j (k)
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−
k−d jm∑

r=k−d j M+1

xt
j (r)

N∑
i=1

αi (k)Q j i x j (r)

+ (d j M − d jm)δxt
j (k)

N∑
i=1

αi (k)W jaiδx j (k)

−
k−d jm−1∑
r=k−d j M

xt
j (r)

N∑
i=1

αi (k)W jai x j (r)

+ d j Mδxt
j (k)

N∑
i=1

αi (k)W jciδx j (k)

−
k−1∑

r=k−d j M

xt
j (r)

N∑
i=1

αi (k)W jci x j (r) (10.19)

Since (10.19) has to be satisfied under arbitrary switching, it follows that this
holds for the particular case αi (k) = 1, αm �=i (k) = 0, α j (k + 1) = 1, and
αm �= j (k + 1) = 0. This implies for all δx j (k) ≥ 0 that

ΔVj (k) ≤
(A ji x j (k)+ D ji x j (k − d j (k))+ Γ j iω j (k)+ g j )

tP j i

× (A ji x j (k)+ D ji x j (k − d j (k))+ Γ j iω j (k)+ g j )

− xt
j (k)P j i x j (k)+ xt

j (k)Q j i x j (k)

− xt
j (k − d j (k))Q j i x j (k − d j (k))

+
k−d jm∑

j=k−d j M+1

xt
j (k)Q j i x j (k)+ xt

j (k)R j i x j (k)

− xt
j (k − d jm)R j i x j (k − d jm)

+ xt
j (k)S j i x j (k)

− xt
j (k − d j M )S j i x j (k − d j M )

+ (d j M − d jm)x
t
j (k)Q j i x j (k)

−
k−d jm∑

r=k−d j M+1

xt
j (r)Q j i x j (r)

+ (d j M − d jm)δxt
j (k)W jaiδx j (k)

−
k−d jm−1∑
r=k−d j M

xt
j (r)W jai x j (r)
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+ d j Mδxt
j (k)W jciδx j (k)

−
k−1∑

r=k−d j M

xt
j (r)W jci x j (r) (10.20)

To facilitate the delay-dependence analysis, we consider the following identities:

[2xt (k)L ja + 2xt (k − d j (k))L jc][x j (k)− x j (k − d j (k))−
k−1∑

k−d j (k)

δx j (k)] = 0

[2xt (k)M ja + 2xt (k − d j (k))M jc] ×

[x j (k − d j (k))− x j (k − d j M )−
k−d j (k)−1∑
j=k−d j M

δx j (k)] = 0

[2xt (k)N ja + 2xt (k − d j (k))N jc][x j (k)− x j (k − d j M )

−
k−1∑

j=k−d j M

δx j (k)] = 0 (10.21)

for arbitrary parameter matrices L ja, ..., N jc. Adding up (10.20) to (10.21) with
some algebraic manipulations leads to

ΔVj (k) ≤ ζ t
j (k)Υ̃ jsiζ j (k) (10.22)

where

ζ j (k) =
[

xt
j (k) xt

j (k − d j (k)) xt
j (k − d jm) xt

j (k − d j M ) gt
j ω

t (k)
]t

Υ̃ jsi = Ω̃ jsi + (d j M − d jm)L j (W jai +W jci )
−1Lt

j

+ (d j M − d jm)M j (W jai )
−1Mt

j + d j MN j (W jci )
−1Nt

j

Ω̃ jsi =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ω̃ j io Ω̃ j ia M ja −L ja At
jiP js Ω̃ j ic

• Ω̃ j ie M jc −L jc Dt
jiP js Ω̃ j is

• • −R j i 0 0 0
• • • −S j i 0 0
• • • • P js P jsΓ j i

• • • • • Ω̃ j iv

⎤
⎥⎥⎥⎥⎥⎥⎦

Ω̃ j io = At
jiP js A ji + d jsQ j i − P j i +R j i + S j i

+ (d j M − d jm)(A ji − I )tW jai (A ji − I )+ d j M (A ji − I )tW jci (A ji − I )

+ N ja + N t
ja

Ω̃ j ia = At
jiP js D ji + (d j M − d jm)(A ji − I )tW jai D ji

+ d j M (A ji − I )tW jci D ji + L ja − M ja − N ja + N t
jc
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Ω̃ j ic = At
jiP jsΓ j i + (d j M − d jm)(A ji − I )tW jaiΓ j i + d j M (A ji − I )tW jciΓ j i

Ω̃ j ie = Dt
jiP js D ji −Q j i + (d j M − d jm)Dt

jiW jai D ji

+ d j M Dt
jiW jci D ji + L jc + Lt

jc − M jc − Mt
jc − N jc +−N t

jc

Ω̃ j is = Dt
jiP jsΓ j i + Dt

ji (W jai +W jci )Γ j i

Ω̃ j iv = Γ t
j iP jsΓ j i + (d j M − d jm)Γ

t
j iW jaiΓ j i

+ d j MΓ t
j iW jciΓ j i (10.23)

L j =
[

Lt
ja Lt

jc 0 0 0 0
]t

M j =
[

Mt
ja Mt

jc 0 0 0 0
]t

N j =
[

N t
ja N t

jc 0 0 0 0
]t

(10.24)

It is known that the sufficient condition of subsystem stability is ΔVj k < 0 implies
that Υ̃ j i < 0, which is true for an unconstrained case. To include the effect of
quadratic constraint on uncertainties, we resort to the S procedure [27] to express
inequalities (10.22) and (10.7) together into the form

P js > 0, P j i > 0, σ j ≥ 0

Ῡ jsi = Ω̄ jsi + (d j M − d jm)L j (W jai +W jci )
−1Lt

j

+ (d j M − d jm)M j (W jai )
−1Mt

j + d j MN j (W jci )
−1Nt

j < 0

Ω̄ jsi =⎡
⎢⎢⎢⎢⎢⎢⎣

Ω̃ j io + σ jφ
2
j Et

j E j Ω̃ j ia M ja −L ja At
jiP js Ω̃ j ic

• Ω̃ j ie + σ jψ
2
j Et

d j Ed j M jc −L jc Dt
jiP js Ω̃ j is

• • −R j i 0 0 0
• • • −S j i 0 0
• • • • P js − I j P jsΓ j i

• • • • • Ω̃ j iv

⎤
⎥⎥⎥⎥⎥⎥⎦

(10.25)

which describes nonstrict LMIs since σ j ≥ 0. Recalling from [27] that minimization
under nonstrict LMIs corresponds to the same result as minimization under strict
LMIs when both strict and nonstrict LMI constraints are feasible. Moreover, if there
is a solution for (10.25) for σ j = 0, there will also be a solution for some σ j > 0
and sufficiently small φ j , ψ j . Therefore, we safely replace σ j ≥ 0 by σ j > 0.
Equivalently, we may further rewrite (10.25) in the form

P̄ js > 0, P̄ j i > 0

Υ̃ jsi = Ω̃ jsi + (d j M − d jm)L j (W jai +W jci )
−1Lt

j

+ (d j M − d jm)M j (W jai )
−1Mt

j + d j MN j (W jci )
−1Nt

j < 0
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Ω̃ jsi =

⎡
⎢⎢⎢⎢⎢⎣

Ω̃ j io + φ2
j Et

j E j At
ji P̄ js D ji 0 At

ji P̄ js At
ji P̄ jsΓ j i

• Ω̃ j ic + ψ2
j Et

d j Ed j 0 Dt
ji P̄ js Dt

ji P̄ jsΓ j i

• • −R j i 0 0
• • • P̄ js − I j P̄ jsΓ j i

• • • • Γ t
j i P̄ jsΓ j i

⎤
⎥⎥⎥⎥⎥⎦

Ω̃ j io = At
ji P̄ js A ji + d jsQ̄ j i − P̄ j i + R̄ j i

Ω̃ j ic = Dt
ji P̄ js D ji − Q̄ j i

Ω̃ j ie = Dt
ji P̄ js D ji −Q j i + Dt

ji (W̄ jai + W̄ jci )D ji

Ω̃ j is = Dt
ji P̄ jsΓ j i + Dt

ji (W̄ jai + W̄ jci )Γ j i

Ω̃ j iv = Γ t
j i P̄ jsΓ j i (d j M − d jm)Γ

t
j iW̄ jaiΓ j i

+ d j MW̄ jciW jciΓ j i (10.26)

where

P̄ j i = σ−1
j P j i , P̄ js = σ−1

j P js, Q̄ j i = σ−1
j Q j i ,

R̄ j i = σ−1
j R j i , W̄ jai = σ−1

j W jai , W̄ jci = σ−1
j W jci

By setting G ji ≡ 0, Hji ≡ 0, Φ j i ≡ 0, letting P̄ j i → P j i , ..., W̄ jci → W jci

without abuse of notations and applying Schur complements, it is readily seen that
(10.10) corresponds to (10.26), which provides the robust stability of the nonlinear
interconnected system (10.1) under the constraint (10.2) with maximal φ j , ψ j .

Next, consider the performance measure

J =
∞∑
j=0

(
zt

j (k)z j (k)− γ 2ωt
j (k)ω j (k)

)

For any ω j (k) ∈ �2(0,∞) �= 0 and zero initial condition x jo = 0 (hence
Vj (0) = 0), we have

J =
∞∑
j=0

(
zt

j (k)z j (k)− γ 2ωt
j (k)ω j (k) +ΔVj (k)|(10.3) −

∞∑
j=0

ΔVj (k)|(10.3)

)

=
∞∑
j=0

(
zt

j (k)z j (k)− γ 2ωt
j (k)ω j (k) +ΔVj (k)|(10.3)

)
− Vj (∞)

≤
∞∑
j=0

(
zt

j (k)z j (k)− γ 2ωt
j (k)ω j (k) +ΔVj (k)|(10.3)

)
(10.27)

where ΔVj (k)|(10.3) defines the Lyapunov difference along the solutions of
system (10.3) with u j (k) ≡ 0. On proceeding as before and considering
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(10.1), (10.26), and (10.27), it can easily shown by algebraic manipulations
that

zt
j (k)z j (k)− γ 2ωt

j (k)ω j (k) +ΔVj (k)|(10.3) =
χ t

j (k) Π jsi χ
t
j (k) (10.28)

where Π jsi is given in (10.10) by Schur complements. It is readily seen that

zt
j (k)z j (k)− γ 2ωt

j (k)ω j (k) +ΔVj (k)|(10.3) < 0

for arbitrary j ∈ [0,∞), which implies for any ω j (k) ∈ �2(0,∞) �= 0 that
J < 0. This eventually leads to ||z j (k)||2 < γ ||ω j (k)||2 and hence the proof is
completed. �

Remark 10.5 As we learnt from the last chapter on water-quality application, the
lower bound dm and the upper bound dM account for extreme cases of light and
heavy waste dump loadings, respectively. System stability and stabilization of water
and related resources systems are generally expressed in terms of algebraic Ric-
cati inequalities (ARIs). Seeking computational convenience and effectiveness, the
solutions to the problems of stability analysis and control synthesis are cast into
convex optimization in terms of linear matrix inequalities (LMIs) that are handled
using interior-point minimization algorithms. These algorithms have been recently
coded into efficient numerical software [74]. It is remarked that LMIs and ARIs are
equivalent [27]; however, parameter tuning intrinsic to the ARIs can be avoided by
using the framework of feasibility testing of LMIs.

Remark 10.6 In comparison with the published results on stability methods for
switched time-delay systems [174, 183, 295, 298, 432], it is significant to notice
that Theorem 10.4 has a more general setting as it deals with time-varying delays
while [183, 298] deal with constant delay. In addition, it provides least-conservative
LMI-based delay-dependent stability criteria and it employs reduced number of LMI
variables. It can be calculated that the condition of Theorem 10.4 involves 6n2+6n
variables as opposed to 16.5n2 + 1.5n required by [295]. Moreover, it does not rely
on overbounding relations and inequalities as used in [432] but rather deploys finite
number of free-weighting matrices.

10.1.3 Switched State-Feedback Control

Next, we address the feedback control problem for the interconnected discrete-
time systems Σ by focusing the design effort on the subsystem Σ j as given by
(10.3). The goal is to find global decentralized feedback switching controllers and
a decentralized switching rule asymptotically stabilizing the system formed by sub-
systems Σ j , i ∈ S, j ∈ N . This decentralized feedback controllers are composed



10.1 Interconnected Discrete-Time Systems 313

of N local feedback controllers and each equipped with the corresponding local
switching rule. In the sequel, a decentralized switched scheme is considered based
on state-feedback measurements.

With reference to system (10.3), we seek to design a switched state feedback

u j (k) =
N∑

i=1

αi (k)K ji x j (k), i ∈ S, j ∈ N

that guarantees the controlled switched system achieves a prescribed performance
level, where K ji ∈ �p j×n j is the local state-feedback gain matrix at the mode
i . Letting A j i = A ji + B ji K ji , it is readily seen from Theorem 10.4 that the
closed-loop switched system

Σ j : x j (k + 1) =
N∑

i=1

αi (k)

[
A j i x j (k)+ D ji x j (k − d j (k))+ Γ j iω j (k)

+ g j (k, x(k), x(k − d(k)))

]

z j (k) =
N∑

i=1

αi (k)

[
G ji x j (k)+ Hji x j (k − d j (k))+Φ j iω j (k)

]
(10.29)

is delay-dependent asymptotically stable with an L2 − gain < γ j if there exist
weighting matrices P j i , P js, Q j i , R j i , W jai ,W jci , parameter matrices
L ja, L jc, M ja, M jc, N ja, N jc, ∀(i, s) ∈ S,∀ j ∈ N and scalars γ j > 0
satisfying the following LMIs

Π̆ jsi =
⎡
⎣ Ω̆ jsi Ω̃ jwi Ω̃ j xi

• −Ω̃ j zi 0
• • −I j

⎤
⎦ < 0 (10.30)

where

Ω̆ jsi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ω̆ j io Ω̆ j ia M ja −L ja At
jiP js 0

• −Ω̆ j ie M jc −L jc Dt
jiP js 0

• • −R j i 0 0 0
• • • −S j i 0 0
• • • • P js − I j P jsΓ j i

• • • • • −γ 2
j I j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Π̆ jsi =

⎡
⎢⎢⎢⎢⎢⎢⎣

At
j i φ j Et

j 0
√

d j M − d jm
(
At

j i − I j
) √

d j M
(
At

j i − I j
)

Dt
ji 0 ψ j Et

d j

√
d j M − d jm Dt

ji

√
d j M Dt

ji
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Γ t

j i 0 0
√

d j M − d jmΓ
t
j i

√
d j MΓ t

j i

⎤
⎥⎥⎥⎥⎥⎥⎦

Π̆ jsi = diag
[
P−1

js I j I j W−1
jai W

−1
jci

]

Ω̆ j io = d jsQ j i − P j i +R j i + S j i + N ja + N t
ja

Ω̆ j ia = L ja − M ja − N ja + N t
jc

Ω̆ j ie = Q j i − L jc − Lt
jc + M jc + Mt

jc + N jc + N t
jc (10.31)

where Ω̃ jwi , ..., Ω̃ j zi are given by (10.65). It is convenient for feedback design to
work with LMI (11.8) as it includes explicit terms of the closed-loop system matrix
A j i , a feature which paves the way to systematic convex analysis leading to the
determination of the unknown gain matrices {K ji }, i ∈ S. Based thereon, the
following theorem states the main design result:

Theorem 10.7 Given the bounds d j M > 0, d jm > 0, j ∈ N . Then system (10.3)
with state-feedback controller u j (k) = ∑N

i=1 αi (k)K ji x j (k), i ∈ S, j ∈ N is
delay-dependent asymptotically stable with �2-performance bound γ if there exist
parameter matrices X j i ,Y j i ,Θ jqi , Θ jr i , Θ jsi , Θ jwai , Θ jwci , Θ jla,Θ jlc,Θ jma,

Θ jmc, Θ jna, Θ jnc and scalars γ j > 0, ∀( j, s) ∈ N , ∀(i) ∈ S satisfying the
following LMIs

Π̆ jsi =

⎡
⎢⎢⎣
Υ̃ joi Υ̃ jai Υ̃ jci Υ̃ jei

• −Υ̃ jsi 0 0
• • −I j 0
• • • −Υ̃ jvi

⎤
⎥⎥⎦ < 0 (10.32)

where

Υ̃ joi =

⎡
⎢⎢⎢⎢⎢⎢⎣

Θ j i1 Θ j i2 Θ jma −Θ jla X js At
ji + Y t

j i Bt
ji 0

• −Θ j i3 Θ jmc −Θ jlc X js Dt
ji 0

• • −Θ jr i 0 0 0
• • • −Θ jsi 0 0
• • • • −X js + I j Γ j i

• • • • • −γ 2
j I j

⎤
⎥⎥⎥⎥⎥⎥⎦

Θ j iq =
[
Θ j iq1 Θ j iq2

]
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Θ j iq1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

X js At
ji + Y t

j i Bt
ji φ jX js Et

j 0
X js Dt

ji 0 ψ jX js Et
d j

0 0 0
0 0 0
0 0 0
Γ t

j i 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Θ j iq2 =⎡
⎢⎢⎢⎢⎢⎢⎣

√
d j M − d jm

(
X js At

ji − X js + Y t
j i Bt

ji

) √
d j M

(
X js At

ji − X js + Y t
j i Bt

ji

)
√

d j M − d jmX js Dt
ji

√
d j MX js Dt

ji
0 0
0 0
0 0√

d j M − d jmΓ
t
j i

√
d j MΓ t

j i

⎤
⎥⎥⎥⎥⎥⎥⎦

Π̆ j ti = diag
[
X js I j I j 2X js −Θ jwa 2X js −Θ jwc

]
Θ j i1 = d jsΘ jqi − X j i +Θ jr i +Θ jsi +Θ jna +Θ t

jna

Θ j i2 = Θ jla −Θ jma −Θ jna +Θ t
jnc,

Θ j i3 = Θ jqi −Θ jlc −Θ t
jlc +Θ jmc +Θ t

jmc +Θ jnc +Θ t
jnc

Υ̃ jai =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
d j M − d jmΘ jla

√
d j M − d jmΘ jma

√
d j MΘ jna√

d j M − d jmΘ jlc
√

d j M − d jmΘ jmc
√

d j MΘ jnc

0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Υ̃ jci = diag
[
Θ jwai +Θ jwci Θ jwai Θ jwci

]
Υ̃ jsi =

[
X js G ji X js G jdi 0 0 0 Φ j i

]t (10.33)

Moreover, the feedback gain matrix is given by K ji = Y j iX−1
js

Proof Define X js = P−1
js and using the congruent transformation

Tjs = diag[Tjs1 Tjs2]
T js1 = diag[X js, X js, X js, X js, X js, I j ],
T js2 = diag[I j , X js, X js, X js, I j , X js, I j , I j , I j , I j ][−6pt]

into LMI (10.30) using (10.31) along with the linearizations

Θ jqi = X jsQ j iX js, Θ jr i = X jsR j iX js, Θ jsi = X jsS j iX js,

Θ jna = X js N jaX js, Θ jnc = X js N jcX js, Θ jla = X js L jaX js,

Θ jlc = X js L jcX js, Θ jma = X js M jaX js, Θ jmc = X js M jcX js,

Θ jwai = X jsW jaiX js, Θ jwci = X jsW jciX js, (10.34)
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We then deploy the algebraic inequalities

(X js − X jsW jaiX js)
t (X jsW jaiX js)

−1(X js − X jsW jaiX js) ≥ 0

which leads to

W−1
jai ≥ 2X js −Θ jwai

and similarly

W−1
jci ≥ 2X js −Θ jwci

We finally cast T t
jsΠ̆ jsi Tjs into the LMI (10.32) with (10.33) as desired. �

10.1.4 Switched Dynamic Output Feedback

Next, we direct attention to the design of a switched dynamic output feedback of the
form

x̂ j (k + 1) =
N∑

i=1

αi (k)L ji x̂ j (k)+
N∑

i=1

αi (k)Koji y j (k)

uk =
N∑

i=1

αi (k)Kcji x̂ j (k) (10.35)

where x̂ j ∈ �s j is the controller state vector and L ji ∈ �s j×s j , Koji ∈
�s j×p j , Kcji ∈ �m j×s j are the unknown controller gain matrices. Observe that
the controller (10.35) is a general linear switched dynamic system. Connecting this
controller to system (10.3) yields the augmented switched closed-loop system:

ξ j (k + 1) =
N∑

i=1

αi (k)

[
A j iξk + D j i xk−dk + Γ̂ j iωk

+ ĝ j (k, x(k), x(k − d(k)))

]

z j (k) =
N∑

i=1

αi (k)Ĝ jiξk +
N∑

i=1

αi (k)Ĥ jiξk−dk +
N∑

i=1

αi (k)Φ j iωk (10.36)

where

ξ j (k) =
[

x j (k)
x̂ j (k)

]
, A j i =

[
A ji B ji Kcji

Koji C ji L ji

]
, D j i =

[
D ji 0

Koji Fji 0

]
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Γ̂ j i =
[

Γ j i

KojiΨ j i

]
, Ĝ ji =

[
G ji 0

]
, Ĥ ji =

[
Hji 0

]

ĝ j (k, x(k), x(k − d(k))) =
[

g j (k, x(k), x(k − d(k)))
0

]
(10.37)

The objective now is to determine the controller

K j i =
[

L ji Koji

Kcji 0

]
∈ �(s j+m j )×(s j+p j )

such that the feedback controlled system (10.36 ) is delay-dependent asymptotically
stable with an L2− gain < γ j . It is worth mentioning that the determination of
the controller Ki by several methods [27, 295, 354, 432] using suitable transforma-
tions. In the sequel, we use a systematic convex procedure to determine the gains
L ji , Koji , Kcji by elaborating on the results of Theorem 10.4. For this purpose,
we introduce the following block matrices

P̃ j i =
[
Paji 0

0 Pcji

]
, Q̃ j i =

[
Qaji 0

0 Qcji

]
, R̃ j i =

[
Raji 0

0 Rcji

]

W̃aji =
[
Wv j i 0

0 Ww j i

]
, W̃cji =

[
Wr ji 0

0 Ws ji

]
, M̃ j =

[
Maj 0

0 Mcj

]

S̃ j =
[
Saj 0
0 Scj

]
, Z̃ j =

[
Zaj 0

0 Zcj

]

X js = P̃−1
js =

[
Xajs 0

0 Xcjs

]
(10.38)

Remark 10.8 Note that the block form of the weighting matrices is used, without
loss of generality, for the purpose of preserving LMIs as a basis for computing the
unknown gain matrices. Our experience has indicated that nonblock diagonal matri-
ces tend generally to yield nonlinear matrix inequalities requiring iterative algebraic
equations that are computationally demanding.

Now, in line with the preceding section, it follows from Theorem 10.11
and in the manner of the foregoing section that augmented switched sys-
tem (10.36) is delay-dependent asymptotically stable if there exist weighting
matrices P̃ j i , P̃ js, Q̃ j i , R̃ j i , S̃ j i , W̃aji , W̃cji , parameter matrices
L̃ ja, L̃ jc, M̃ ja, M̃ jc, Ñ ja, Ñ jc,∀(i, s) ∈ S, ∀ j ∈ N and scalars γ j > 0
satisfying the following LMIs

Σ jsi =

⎡
⎢⎢⎣
Σ̂ jsi Σ̂ jwi Σ̂ j xi Π̌ jsi

• −Σ̂ j zi 0 0
• • −I j 0
• • • −Π̌ j ti

⎤
⎥⎥⎦ < 0 (10.39)
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where

Σ̂ jsi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Σ̃ j io Σ̃ j ia M̂ ja −L̂ ja At
j i 0

• −Σ̃ j ie M̂ jc −L̂ jc Dt
j i 0

• • −R̃ j i 0 0 0
• • • −S̃ j i 0 0
• • • • P̃−1

js − I j Γ̂ j i

• • • • • −γ 2
j I j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Π̌ jsi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

At
j i φ j Ẽ t

j 0
√

d j M − d jm

(
At

j i − I j

) √
d j M

(
At

j i − I j

)
Dt

j i 0 ψ j Ẽ t
d j

√
d j M − d jm Dt

ji

√
d j M Dt

j i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Γ̂ t

j i 0 0
√

d j M − d jm Γ̂
t
j i

√
d j M Γ̂ t

j i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Π̌ j ti = diag
[
P̃−1

js I j I j W̃−1
jai W̃

−1
jci

]

Σ̃ j io = d jsQ̃ j i − P̃ j i + R̃ j i + S̃ j i + N̂ ja + N̂ t
ja

Σ̃ j ia = L̂ ja − M̂ ja − N̂ ja + N̂ t
jc

Σ̃ j ie = Q̃ j i − L̂ jc − L̂ t
jc + M̂ jc + M̂t

jc + N̂ jc + N̂ t
jc

Σ̂ jwi =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
d j M − d jm L̂ jai

√
d j M − d jm M̂ jai

√
d j M N̂ jai√

d j M − d jm L̂ jci
√

d j M − d jm M̂ jci
√

d j M N̂ jci

0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Σ̂ j xi = diag
[
W̃ jai + W̃ jci W̃ jai W̃ jci

]
Σ̂ j zi =

[
Ĝ ji Ĥ ji 0 0 0 Φ j i

]t
(10.40)

and

L̂ jai =
[

L jai1
L jai2

]
, L̂ jci =

[
L jci1
L jci2

]
, M̂ jai =

[
M jai1
M jai2

]

M̂ jci =
[

M jci1
M jci2

]
, N̂ jai =

[
N jai1
N jai2

]
, N̂ jci =

[
N jai1
N jai2

]
(10.41)

The following theorem states the main design result

Theorem 10.9 Given the bounds d j M > 0, d jm > 0, j ∈ N . Then system (10.3)
with dynamic output-feedback controller (10.35). Then system (10.3) with dynamic
output-feedback controller (10.35) is delay-dependent asymptotically stable with
�2-performance bound γ if there exist parameter matrices Xaji , Xcji , Yeji , Y f j i ,
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Ys ji , {Θ̂ j i1, ...., Θ̂ j i22} and scalars γ j > 0, ∀( j, s) ∈ N , ∀(i) ∈ S satisfying
the following LMIs

Σ jsi =

⎡
⎢⎢⎣
Σ̂ joi Σ̂ jwi Σ̂ j xi Σ̂ j pi

• −Σ̂ j zi 0 0
• • −I j 0
• • • −Σ̂ jqi

⎤
⎥⎥⎦ < 0 (10.42)

where

Σ̃ joi =

⎡
⎢⎢⎢⎢⎢⎢⎣

Θ̃ j i1 Θ̃ j i2 Θ̂ jmai −Θ̂ jlai Σ̂ jaxi 0

• −Θ̃ j i3 Θ̂ jmci −Θ̂ jlci Σ̂ jdxi 0
• • −Θ̂ jr i 0 0 0
• • • −Θ̂ jsi 0 0
• • • • X js − I j Γ̂ j i

• • • • • −γ 2
j I j

⎤
⎥⎥⎥⎥⎥⎥⎦

Σ̂ j pi =
[
Σ̂ j pi1 Σ̂ j pi2

]

Σ̂ j pi1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

Σ̂ jaxi φ j Σ̂ jmxi 0
Σ̂ jdxi 0 ψ j Σ̂ jnxi

0 0 0
0 0 0
0 0 0
Γ̂ t

j i 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Σ̂ j pi2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
d j M − d jm(Σ̂ jaxi − X js)

√
d j M (Σ̂ jaxi − X js)√

d j M − d jmΣ̂ jdxi
√

d j MΣ̂ jdxi

0 0
0 0
0 0√

d j M − d jm Γ̂
t
j i

√
d j M Γ̂ t

j i

⎤
⎥⎥⎥⎥⎥⎥⎦

Σ̂ jqi = diag
[

X js I j I j 2X js − Θ̂ jwai 2X js − Θ̂ jwci
]

Θ̃ j i1 = diag
[
Θ̃ j i1a Θ̃ j i1c

]
Θ̃ j i1a = d jsΘ̂ j i1 − Xaji + Θ̂ j i3 + Θ̂ j i5 + Θ̂ j i19 + Θ̂ t

j i19

Θ̃ j i1c = d jsΘ̂ j i2 − Xcji + Θ̂ j i4 + Θ̂ j i6 + Θ̂ j i20 + Θ̂ t
j i20

Θ̃ j i2 = diag
[
Θ̃ j i2a Θ̃ j i2c

]
Θ̃ j i2a = Θ̂ t

j i11 − Θ̂ t
j i15 − Θ̂ t

j i19 + Θ̂ t
j i21

Θ̃ j i2c = Θ̂ t
j i12 − Θ̂ t

j i16 − Θ̂ t
j i20 + Θ̂ t

j i22

Θ̃ j i3 = diag
[
Θ̃ j i3a Θ̃ j i3c

]
Θ̃ j i3a = Θ̂ j i1 − Θ̂ j i13 − Θ̂ t

j i13 + Θ̂ j i17 + Θ̂ t
j i17 + Θ̂ j i21 + Θ̂ t

j i21
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Θ̃ j i3c = Θ̂ j i2 − Θ̂ j i14 − Θ̂ t
j i14 + Θ̂ j i18 + Θ̂ t

j i18 + Θ̂ j i22 + Θ̂ t
j i22

Σ̂ jaxi =
[

Xajs At
ji Yt

ej i
Yt

cj i Bt
ji Yt

ej i

]
, Σ̂ jdxi =

[
Xajs Dt

ji Yt
f j i

0 0

]

Σ̂ jmxi =
[

Xajs E j

0

]
, Σ̂ jnxi =

[
Xajs Ed j

0

]

Θ̂ jlai = diag
[
Θ̂ j i11 Θ̂ j i12

]
, Θ̂ jmai = diag

[
Θ̂ j i15 Θ̂ j i16

]
Θ̂ jlci = diag

[
Θ̂ j i13 Θ̂ j i14

]
, Θ̂ jmci = diag

[
Θ̂ j i17 Θ̂ j i18

]
Θ̂ jr i = diag

[
Θ̂ j i3 Θ̂ j i4

]
, Θ̂ jsi = diag

[
Θ̂ j i5 Θ̂ j i6

]
Θ̂ jwai = diag

[
Θ̂ j i7 Θ̂ j i8

]
, Θ̂ jwci = diag

[
Θ̂ j i9 Θ̂ j i10

]
(10.43)

where X js and Γ̂ j i are given by (10.38). Moreover, the feedback gain matrix is
given by

L ji = Ys ji X
−1
cji , Koji , Kcji = Ycji X

−1
cji

Proof Using the congruent transformation

T js = diag[T js1, T js2],
T js1 = diag[X js, X js, X js, X js, I j , I j ],
T js2 = diag[X js, X js, X js, I j , X js, I j , I j , I j , I j ]

into LMI (10.39) using (10.40) and (10.41) along with the linearizations

Θ̂ jqi = X jsQ̃ j iX js =
[

XajsQaji Xajs 0
0 XcjsQcji Xcjs

]
=

[
Θ̂ j i1 0

0 Θ̂ j i2

]

Θ̂ jr i = X jsR̃ j iX js =
[

XajsRaji Xajs 0
0 XcjsRcji Xcjs

]
=

[
Θ̂ j i3 0

0 Θ̂ j i4

]

Θ̂ jsi = X js S̃ j iX js =
[

XajsSaji Xajs 0
0 XcjsScji Xcjs

]
=

[
Θ̂ j i5 0

0 Θ̂ j i6

]

Θ̂ jwai = X jsW̃ jaiX js =
[

XajsWv j i Xajs 0
0 XcjsWw j i Xcjs

]
=

[
Θ̂ j i7 0

0 Θ̂ j i8

]

Θ̂ jwci = X jsW̃ jciX js =
[

XajsWr ji Xajs 0
0 XcjsWs ji Xcjs

]
=

[
Θ̂ j i9 0

0 Θ̂ j i10

]

Θ̂ jlai = X js L̂ jaiX js =
[

Xajs L jai1Xajs 0
0 Xcjs L jai2Xcjs

]
=

[
Θ̂ j i11 0

0 Θ̂ j i12

]

Θ̂ jlci = X js L̂ jciX js =
[

Xajs L jci1Xajs 0
0 Xcjs L jci2Xcjs

]
=

[
Θ̂ j i13 0

0 Θ̂ j i14

]

Θ̂ jmai = X js M̂ jaiX js =
[

Xajs M jai1Xajs 0
0 Xcjs M jai2Xcjs

]
=

[
Θ̂ j i15 0

0 Θ̂ j i16

]
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Θ̂ jmci = X js L̂ jaiX js =
[

Xajs M jai1Xajs 0
0 Xcjs M jai2Xcjs

]
=

[
Θ̂ j i17 0

0 Θ̂ j i18

]

Θ̂ jlnai = X js L̂ jaiX js =
[

Xajs N jai1Xajs 0
0 Xcjs N jai2Xcjs

]
=

[
Θ̂ j i19 0

0 Θ̂ j i20

]

Θ̂ jnci = X js L̂ jaiX js =
[

Xajs N jai1Xajs 0
0 Xcjs N jai2Xcjs

]
=

[
Θ̂ j i21 0

0 Θ̂ j i22

]

Ycji = Kcji Xcjs, Ys ji = L ji Xcjs (10.44)

We then deploy the algebraic inequalities

(X js − X jsW̃ jai X js)
t (X jsW̃ jai X js)

−1(X js − X jsW̃ jai X js) ≥ 0

which leads to

W̃−1
jai ≥ 2X js − Θ̂ jwai

and similarly

W̃−1
jci ≥ 2X js − Θ̂ jwci

We finally cast Tt
jsΣ jsi T js into the LMI (10.42) with (10.43) as desired. �

Finally, we provide a numerical simulation example.

10.1.5 Simulation Example A

A discrete model for water pollution control of the type (10.3) simulating three
consecutive reaches (N = 3, a reach is of length 6−10 km) and having three opera-
ting points (modes) is considered (S = 3) which reflects seasonal water plans.
The first mode corresponds to light dumped effluents where the water control
policy would be proportional to pretreated waste water, the second mode reflects
the moderate dumped effluents where the water control policy would be propor-
tional to change in stream velocity, and the third indicates heavy dumped efflu-
ents where the water control policy would be a combined action of both propor-
tional to changes in pretreated waste water and stream velocity. The water pollution
model represents two aggregate bio-strata, the first one is for algae (first order)
and the other is of fourth-order simulating the concentration levels of ammonia
products, phosphate products, BOD (biochemical oxygen demand), and DO (dis-
solved oxygen). The data values are taken from [117, 254]. In this study, we wish to
design switched feedback controllers for this system based on Theorems 10.7 and
10.9. Switching occurs between three modes (1, 2, 3) described by the following
coefficients:
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Mode 1:

A1i =

⎡
⎢⎢⎢⎢⎣

0.608+ α(i) 0.01 0.01 0.11 0.13
−0.01 0.457+ α(i) 0 0.22 0.24
−0.01 0 −0.332+ α(i) 0.24 0.29
−0.12 −0.21 −0.25 −0.617+ α(i) 0.35
−0.13 −0.21 −0.31 −0.25 0.536+ α(i)

⎤
⎥⎥⎥⎥⎦

D1i =

⎡
⎢⎢⎢⎢⎣

0.4+ β(i) 0 0 0 0
0 0.29+ β(i) 0 −0.02 0.04
0 0 −0.33+ β(i) 0 0.16
0 0 −0.05 −0.18+ β(i) 0.03
0 0 −0.03 0 0.13+ β(i)

⎤
⎥⎥⎥⎥⎦

B1i =

⎡
⎢⎢⎢⎢⎣

0.3 0
0 β(i)
0 β(i)
0 0.35
0 0.45

⎤
⎥⎥⎥⎥⎦ , Ct

1i =

⎡
⎢⎢⎢⎢⎣

1 0
0 0.25
0 0.25
0 0.25
0 0.25

⎤
⎥⎥⎥⎥⎦ , Ft

1i =

⎡
⎢⎢⎢⎢⎣

−0.61 0
−0.01 0

0 −0.05
0 −0.03

0.01 −0.01

⎤
⎥⎥⎥⎥⎦

G1i =
[

0.1 0.3+ β(i) 0 0.2+ β(i) 0.1
]
, Ψ t

1i =
[

0.01 0.01
]
, Φ1i = [0.6]

Γ t
1i =

[
0.5 0.1 0.2 0.1 0.2

]
, H1i =

[
0.1 0.01 0.01 0.03 0.04

]

Mode 2:

A2i =

⎡
⎢⎢⎢⎢⎣

0.51+ κ(i) 0.01 0.01 0.11 0.13
−0.01 0.412+ κ(i) 0 0.22 0.24
−0.01 0 −0.362+ κ(i) 0.24 0.29
−0.12 −0.21 −0.25 −0.568+ κ(i) 0.35
−0.13 −0.21 −0.31 −0.25 0.304+ κ(i)

⎤
⎥⎥⎥⎥⎦

D2i =

⎡
⎢⎢⎢⎢⎣

0.21+ β(i) 0 0 0 0
0 0.20+ β(i) 0 −0.02 0.04
0 0 −0.15+ β(i) 0 0.16
0 0 −0.05 −0.14+ β(i) 0.03
0 0 −0.03 0 0.26+ β(i)

⎤
⎥⎥⎥⎥⎦

B2i =

⎡
⎢⎢⎢⎢⎣

0.4 0
0 β(i)
0 β(i)
0 0.45
0 0.35

⎤
⎥⎥⎥⎥⎦ , Ct

2i =

⎡
⎢⎢⎢⎢⎣

1 0
0 0.15
0 0.15
0 0.15
0 0.15

⎤
⎥⎥⎥⎥⎦ , Ft

2i =

⎡
⎢⎢⎢⎢⎣

−0.48 0
−0.01 0

0 −0.05
0 −0.03

0.01 −0.01

⎤
⎥⎥⎥⎥⎦

G2i =
[

0.2 0.2+ β(i) 0 0.1+ β(i) 0.2
]
, Ψ t

2i =
[

0.01 0.01
]
, Φ2i = [0.5]

Γ t
2i =

[
0.4 0.1 0.3 0.1 0.3

]
, H2i =

[
0.1 0.02 0.01 0.04 0.03

]
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Mode 3:

A3i =

⎡
⎢⎢⎢⎢⎣

0.324+ δ(i) 0.01 0.02 0.12 0.11
−0.01 0.503+ δ(i) 0 0.18 0.14
−0.01 0 −0.401+ δ(i) 0.21 0.28
−0.11 −0.22 −0.24 −0.582+ δ(i) 0.25
−0.11 −0.20 −0.28 −0.23 0.61+ δ(i)

⎤
⎥⎥⎥⎥⎦

D3i =

⎡
⎢⎢⎢⎢⎣

0.34+ β(i) 0 0 0 0
0 0.277+ β(i) 0 −0.02 0.02
0 0 −0.38+ β(i) 0 0.16
0 0 −0.05 −0.17+ β(i) 0.02
0 0 −0.03 0 0.14+ β(i)

⎤
⎥⎥⎥⎥⎦

B3i =

⎡
⎢⎢⎢⎢⎣

0.6 0
0 β(i)
0 β(i)
0 0.15
0 0.55

⎤
⎥⎥⎥⎥⎦ , Ct

3i =

⎡
⎢⎢⎢⎢⎣

1 0
0 0.25
0 0.35
0 0.25
0 0.35

⎤
⎥⎥⎥⎥⎦ , Ft

3i =

⎡
⎢⎢⎢⎢⎣

−0.44 0
−0.01 0

0 −0.05
0 −0.03

0.01 −0.01

⎤
⎥⎥⎥⎥⎦

G3i =
[

0.1 0.4+ β(i) 0 0.3+ β(i) 0.1
]
, Ψ t

3i =
[

0.01 0.01
]
, Φ3i = [0.7]

Γ t
3i =

[
0.4 0.1 0.3 0.1 0.3

]
, H3i =

[
0.1 0.02 0.02 0.04 0.03

]

Coupling:

E1 =
[

0.3 0.1
0.2 0.5

]
, E2 =

[
0.4 0.2
0.1 0.2

]
, E3 =

[
0.5 0.4
0.1 0.3

]

Ed1 =
[

0.1 0.2
0.2 0.1

]
, Ed2 =

[
0.2 0.1
0.1 0.2

]
, Ed3 =

[
0.2 0.1
0.1 0.2

]

where the respective values of the parameters α(i), β(i), δ(i), κ(i) are given in
Table 10.1.

Table 10.1 Ranges of model parameters

Mode 1 2 3

α(i) 0.1 0.2 0.15
β(i) −0.2 −0.3 −0.15
δ(i) 0.2 0.1 0.3
κ(i) −0.1 0.1 0.2

Choosing d jm = 2, d j M = 9, j = 1, . . . , 3 and invoking the software envi-
ronment [74], the feasible solution of LMIs (10.32) and (10.33) yields the state-
feedback gains:

γ1 = 2.9411

K11 =
[−0.1754 −0.8234 −0.0274 0.0005 −0.0068
−0.4567 −0.5754 −0.0312 0.0004 −0.0075

]
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K12 =
[−0.2633 −0.9012 0.0004 0.0105 −0.0132
−0.3219 −0.4105 −0.0002 −0.0114 −0.1125cc

]

K13 =
[−0.2318 −0.8241 0.0001 0.0114 −0.0162
−0.3144 −0.5003 −0.0001 −0.0127 −0.1231cc

]

γ2 = 3.4022

K21 =
[−0.5469 −0.8775 −0.0014 0.0003 −0.0138
−0.6114 −0.7004 −0.0332 0.0004 −0.0039

]

K22 =
[−0.6229 −0.9347 −0.0012 0.0002 −0.0141
−0.4328 −0.6803 −0.0292 0.0003 −0.0028

]

K23 =
[−0.7111 −0.7813 −0.0105 0.0011 −0.0008
−0.8121 −0.6163 −0.0372 0.0123 −0.0008

]

γ3 = 3.3856

K31 =
[−0.4213 −0.2815 −0.0104 0.0001 −0.0098
−0.6114 −0.7004 −0.0332 −0.0004 −0.0009

]

K32 =
[−0.5464 −0.3781 −0.0202 0.0001 −0.0144
−0.2897 −0.6121 −0.0087 0.0011 −0.0022

]

K33 =
[−0.6842 −0.7453 −0.0115 0.00101 −0.0017
−0.8002 −0.5972 −0.0122 −0.0146 −0.0012

]

By contrast, using second-order dynamic feedback controller (s1 = s2 = s3 = 2)
the feasible solution of LMIs (10.42) and (10.43) yields the output-feedback gains:

L11 =
[−0.4172 −0.5715

0.3332 −0.2908

]
, L12 =

[−0.3986 −0.3335
0.4242 −0.3127

]

L13 =
[−0.2983 −0.6121

0.3542 −0.3128

]
, Ko11 =

[−0.5155 0.0126
0.3125 −0.3978

]

Ko12 =
[−0.4875 0.0134

0.2985 −0.3865

]
, Ko13 =

[−0.5155 0.0516
0.0325 −0.3252

]

Kc11 =
[−0.3107 0.0131

0.0025 0.0942

]
, Kc12 =

[−0.3107 0.0091
0.0165 0.0888

]

Kc13 =
[−0.3107 0.3201

0.0425 0.1126

]
, γ1 = 1.5337

L21 =
[−0.5021 −0.6602

0.3401 −0.2877

]
, L22 =

[−0.0894 −0.6716
−0.3514 0.4306

]

L23 =
[−0.7181 −0.9001

0.0533 −0.1418

]
, Ko21 =

[−0.4933 0.2125
−0.3008 −0.4243

]

Kc22 =
[−0.4123 −0.2525

0.0178 0.1223

]
, Ko23 =

[−0.0045 −0.0716
−0.0514 −0.4415

]

Kc21 =
[−0.8354 −0.0894

0.4306 0.2157

]
, Kc23 =

[−0.8354 −0.7105
−0.5222 0.2157

]
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Kc23 =
[−0.8354 −0.1077

0.4081 0.2157

]
, γ2 = 1.6265,

L31 =
[−0.1897 −0.7101
−0.1928 −0.2677

]
, L32 =

[−0.2093 −0.7555
−0.2108 −0.2797

]

L33 =
[−0.1024 −0.4521
−0.2108 −0.2797

]
, Ko31 =

[ −0.5977 −0.7956
0.3254− 0.4705

]

Ko32 =
[−0.6328 −0.1234

0.0508 −0.5121

]
, Ko33 =

[−0.6328 −0.0005
0.3017 −0.4877

]

Kc31 =
[−0.6645 −0.0055

0.0116 0.3448

]
, Kc32 =

[−0.4833 −0.0024
0.4107 −0.7487

]

Kc33 =
[−0.5937 −0.0245

0.1118 0.2948

]
, γ3 = 1.7355

The ensuing results show that the developed switched feedback control policies
have been quite effective in clearing out the impact of sudden dumped pollutant
disturbance, and the closed-loop water-quality system settles to regular levels of
water-quality constituents. This is in agreement with our theoretical developments.
To further illustrate the validity of our design method, we simulate the closed-loop
water-quality system in both state-feedback and dynamic output-feedback cases.
The corresponding state trajectories are plotted in Figs. 10.1, 10.2, 10.3, 10.4, 10.5
under state-feedback and in Figs. 10.6, 10.7, 10.8, 10.9, and 10.10 using dynamic
output feedback.
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Fig. 10.1 Algae trajectories under switched state feedback
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Fig. 10.2 Ammonia nitrogen trajectories under switched state feedback

It is readily seen from the computational results that the switched dynamic
output-feedback controller is more responsive than the switched state-feedback con-
troller since the closed-loop system settles rather quickly with a better performance
index. Hence, the switched dynamic output-feedback controller is more effective in
clearing the disturbed water system.

10.2 Interconnected Continuous-Time Systems

This section develops a decentralized approach to the robust stability and stabiliza-
tion problems of class of interconnected continuous-time switched systems with
cone-bounded uncertainties and nonlinearities. This class consists of coupled nom-
inally linear subsystems with unknown-but-bounded time-varying state-delay. We
showed that multi-controller switched schemes provide an effective and powerful
mechanism to cope with highly complex systems with large parameter variations.
We developed a delay-dependent decentralized structure that guarantees global
asymptotic stability with local disturbance attenuation on the subsystem level. Then,
we constructed decentralized switched control schemes based on state feedback to
ensure stabilizability of the global system with L2-performance bound.
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Fig. 10.3 Phosphate phosphorous trajectories under switched state feedback

10.2.1 Introduction

There are real-world systems consisting of coupled units or subsystems which
directly interact with each other in a simple and predictable fashion to serve a com-
mon pool of objectives. When viewed as a whole, the resulting overall system often
displays rich and complex behavior. Typical examples are found in electric power
systems with strong interactions, water networks which are widely distributed in
space, traffic systems with many external signal or large-space flexible structures,
to name a few, which are often termed large-scale or interconnected systems. It
becomes increasingly evident that the underlying notions of interconnected systems
manifest the complexity as an essential and dominating problem in systems theory
and practice and that several associated problems cannot be tackled using one-shot
approaches. Recent research investigations have revealed [8] that the crucial need
for improved methodologies relies on: (1) dividing the analysis and synthesis of the
overall system into independent or almost independent subproblems, (2) searching
for new ideas of coping with the incomplete information about the system, and
(3) seeking appropriate methods of handling the uncertainties and for dealing with
delays. System complexity frequently leads to severe difficulties that are encoun-
tered in the tasks of analyzing, designing, and implementing appropriate control
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Fig. 10.6 Algae trajectories under switched output feedback
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Fig. 10.7 Ammonia nitrogen trajectories under switched output feedback
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Fig. 10.8 Phosphate phosphorous trajectories under switched output feedback

methods. These difficulties arise mainly from the following well-known reasons:
dimensionality; information structure constraints; uncertainty; and delays. Perti-
nent results can be found in [141, 201, 276, 348].

On another research front, switched systems are composed of a finite family of
continuous- or discrete-time subsystems (called modes) and a rule that governs the
switching among them. Switched systems have received growing attention in the
control literature [15, 28, 42, 47] and have been intensively studied in recent years
due to their widespread applications, including power systems and chemical pro-
cesses and mechanical systems [47]. Each mode is regarded as a state of a finite-state
machine whose evolution dynamics determines the switching. Research investiga-
tions into problems pertaining to switched dynamical systems have received a great
deal of attention because of the fast development in computing technologies, see
[174, 193, 327, 366] and the references cited therein. In [351] a design procedure
based on proportional plus delay control is presented for a class of flexible structures
possessing multiple modes.

From the published results, we conclude that the study of switched linear sys-
tems provides additional insights into some long-standing problems, such as robust,
adaptive, and intelligent control, gain scheduling, or multi-rate digital control. The
recent results in switched systems have benefited many real-world systems such
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Fig. 10.9 BOD trajectories under switched output feedback

as power systems, automotive control, air traffic control, network and congestion
control. One important problem in uncertain switched systems is the design of
switching rules which guarantee quadratic stability and performance and such
switching rules must be independent of uncertainties. The min-projection strat-
egy introduced in [331] as a simple stabilization method for systems composed
of several subsystems. This motivates need of multi-controller switched schemes
for large-scale complex systems when implementing low-order local controllers.
However, all these references deal with a centralized switching rule. In addition,
it appears that the problems of stability analysis and control design interconnected
switched systems with time-varying delays have not been fully resolved thus far.
Therefore, in this paper, both problems are addressed where we consider the sub-
systems representing the lower-level local dynamics governed by delayed differ-
ential equations, while the supervisor is the high-level coordinator producing the
switches among the local dynamics. The dynamics of the global system is therefore
determined by both the subsystem and the switching signal, which may depend
on the time, its own past value, the state/output, and/or possibly an external sig-
nal. We deal with the problem of low-order H∞ state-feedback or output-feedback
controller design with a decentralized switching rule for a class of switching
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Fig. 10.10 DO trajectories under switched output feedback

discrete-time interconnected systems, where we extend further the results of
[26, 224–227, 232, 239–241, 243, 247, 248, 252, 260, 270–272, 274, 275, 279–
281, 283–285] to the class of interconnected switched continuous-time systems with
unknown-but-bounded state delay. In our work, we showed that multi-controller
switched schemes provide an effective and powerful mechanism to cope with highly
complex systems and/or systems with large uncertainties. We developed a delay-
dependent decentralized structure that guarantees asymptotic stability with local
disturbance attenuation. Then, we constructed a decentralized switched control
scheme based on state feedback to ensure stabilizability of the global system with
L2-performance bound.

10.2.2 Problem Statement and Preliminaries

A class of nonlinear interconnected discrete-time systems with state-delay Σ

composed of N coupled subsystems Σ j , j ∈ N = {1, . . . , N }, which is
represented by
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Σ j : ẋ j (t) = A jξ x j (t)+ D jξ x j (t − τ j (t))+ B jξu j (t)+ Γ jξω j (t)

+ g j (t, x(t), x(t − τ(t)))

y j (t) = C jξ x j (t)+ Fjξ x j (t − τ j (t))+ Ψ jξω j (t)

z j (t) = G jξ x j (t)+ Hjξ x j (t − τ j (t))+Φ jξω j (t) (10.45)

where the function ξ = ξ(x j , t) : �n × �+ → S = {1, 2, . . . , S} is a switching
rule within subsystem Σ j which takes its values in the finite set of modes S. This
rule is selected for all j such that ξ(x j , t) = s implies that the sth switching mode is
activated for the j th subsystem of the interconnected system. In general, the switch-
ing rule is a piecewise constant function depending on the subsystem state in each
time. It is seen that system (10.45) can be viewed as autonomous switched system in
which the effective system changes when the state x j (t) hits predefined boundaries,
that is, the switching rule is dependent on the system trajectories.

The factors τ j , j ∈ {1, ..., N } are unknown time-delay factors satisfying

0 ≤ ϕ j ≤ τ j (t) ≤ � j , τ̇ j (t) ≤ μ j (10.46)

where the bounds � j , ≤ ϕ j , μ j are known constants in order to guarantee smooth
growth of the state trajectories.

The system matrices {Aα, Dα, ..., Φα} take values, at arbitrary discrete instants,
in the finite set of

{(A j1, D j1, ..., Φ j1), (A j2, D j2, ..., Φ j2), ..., (A j N , D j N , ..., Φ j N )}

Thus the matrices (A js, D js, ..., Φ js) denotes the sth model of local subsystem j
corresponding to operational mode s and hence (10.45) represents a time-controlled
switched system [42]. Typically, the switching rule ξ is not known a priori but we
assume its instantaneous value is available in real time for practical implementa-
tions. Define the indicator function

α(t) = [α1(t), ..., αN (t)]t , ∀ j ∈ N

αs(t) =
⎧⎨
⎩

1 when the j th subsystem (10.45) is in the sth mode
(A js, D js, ..., Φ js)

0 otherwise
(10.47)

It is obvious that αi (t) : �+ → {0, 1}, ∑N
j=1 α j (t) = 1, t ∈ �+, i ∈ N . Now

we cast system (10.45) into the form

Σ j : ẋ j (t) =
N∑

i=1

αi (t)

[
A ji x j (t)+ D ji x j (t − τ j (t))+ B ji u j (t)+ Γ j iω j (t)

+ g j (t, x(t), x(t − τ(t)))

]
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y j (t) =
N∑

i=1

αi (t)

[
C ji x j (t)+ Fji x j (t − τ j (t))+ Ψ j iω j (t)

]

z j (t) =
N∑

i=1

αi (t)

[
G ji x j (t)+ Hji x j (t − τ j (t))+Φ j iω j (t)

]
(10.48)

where, relating the local subsystems to the global system,

x(t) = (
xt

1(t), ..., xt
N (t)

)t ∈ �n, n =
N∑

j=1

n j

x(t − τ(t)) = (
xt

1 (t − τ1(t)) , ..., xt
N (t − τN (t))

)t ∈ �n, n =
N∑

j=1

n j

u(t) = (
ut

1(t), ..., ut
N (t)

)t ∈ �p, p =
N∑

j=1

p j

y(t) = (
yt

1(t), ..., yt
N (t)

)t ∈ �m, m =
N∑

j=1

m j

z(t) = (
zt

1(t), ..., zt
N (t)

)t ∈ �q , q =
N∑

j=1

q j

being the state, delayed state, control input, measured output, and performance out-
put vectors of interconnected (global) system Σ and ω(t) = (

ωt
1(t), ..., ω

t
N (t)

)t ∈
�q is the disturbance input, which is assumed to belong to L2[0,∞). It is significant
to observe in the foregoing setup that there are N distinct switching rules where each
subsystem has been assigned one local state-dependent switching rule that operates
independently from other rules.

The associated matrices are real constants and modeled as

As = diag{A1s, . . . , ANs}, A js ∈ �n j×n j

Bs = diag{B1s, . . . , BNs}, B js ∈ �n j×p j

Ds = diag{D1s, . . . , DNs}, D js ∈ �n j×n j

Cs = diag{C1s, . . . ,CNs}, C js ∈ �q j×n j

Hs = diag{H1s, . . . , HNs}, Hjs ∈ �q j×p j

The function g j : �+ × �n × �n → �n j is a piecewise-continuous vector
function in its arguments and it satisfies thequadratic inequality
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gt
j (t, x(t), x(t − τ(t))) g j (t, x(t), x(t − τ(t))) ≤ φ2

j x t (t)Ẽ t
j Ẽ j x(t)

+ ψ2
j x t (t − τ j (t))Ẽ t

d j Ẽd j x(t − τ j (t)) (10.49)

where φ j > 0, ψ j > 0 are bounding parameters such that

Φ̃ = diag
{
φ2

j Ir1 , . . . , φ
2
j IrN

}
, Ψ̃ = diag

{
ψ2

j Is1 , . . . , ψ
2
j IsN

}

with Im j being the m j × m j identity matrix. From (10.49) and the notation

g(t, x(t), x(t − τ(t))) = [
gt

1(t, x(t), x(t − τ1(t))), . . . , gt
N (t, x(t), x(t − τN (t)))

]t

it is always possible to find matrices Φ, Ψ such that

gt
j (t, x(t), x(t − τ(t))) g j (t, x(t), x(t − τ(t))) ≤ xt (t)EtΦ−1 Ex(t)

+ xt (t − τ j (t))Et
dΨ

−1 Ed x(t − τ j (t)) (10.50)

where E = diag{E1, . . . , EN }, Ed = diag{Ed1, . . . , Ed N }, δ j = φ−2
j , ν j =

ψ−2
j , Φ = diag{δ1 Ir1 , . . . , δN IrN }

Ψ = diag{νd1 Is1 , . . . , νd N IsN } with E j ∈ �r j×n j , Ed j ∈ �s j×n j .

Letting ζ(t) =
[
xt (t) xt (t − τ j (t)) gt

j (t, x(t), x(t − τ j (t)))
]t Δ= [

ζ t
1, . . . , ζ

t
N

]t ,

then (10.50) can be conveniently written as

ζ t diag
[−EtΦ−1 E − Et

dΨ
−1 Ed I

]
ζ ≤ 0 (10.51)

and in view of the block structure of matrices, it turns out for Σ j that

ζ t
j diag

[
−δ−1

j Et
j E j −ν−1

j Et
d j Ed j I j

]
ζ j ≤ 0 (10.52)

Remark 10.10 This paper essentially develops a flexible conceptual framework for
multi-controller state-dependent switching structure among smooth controllers with
all the effort and computations being performed on the subsystem level thereby
providing an efficient decentralized feedback control design guaranteeing the level
of disturbance attenuation for the overall interconnected systems. In this work,
we consider that the modes are represented by discrete-time linear systems with
unknown-but-bounded delays. The subsystems thus represent the lower-level local
dynamics governed by difference equations, while the supervisor is the high-level
coordinator producing the switches among the local dynamics. The dynamics of the
system is determined by both the subsystem and the switching signal. In general, a
switching signal may depend on the time, its own past value, the state/output, and/or
possibly an external signal.
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10.2.3 Delay-Dependent L2 Gain Analysis

In this section, we develop new criteria for LMI-based characterization of delay-
dependent asymptotic stability and �2 gain analysis. Toward our goal, we consider
the Lyapunov–Krasovskii functional (LKF):

V (t) =
ns∑

j=1

Vj (t), Vj (t) = Voj (t)+ Vaj (t)+ Vcj (t)+ Vej (t)

+ Vmj (t)+ Vnj (t)),

Voj (t) = xt
j (t)P j i x j (t), Vaj (t) =

∫ 0

−� j

∫ t

t+s
ẋ t

j (α)Q j i ẋ j (α)dα ds

Vmj (t) = ϕ j

∫ 0

−ϕ j

∫ t

t+s
ẋ t

j (α)Θ j i ẋ j (α)dα ds,

Vnj (t) = (� j − ϕ j )

∫ −ϕ j

−� j

∫ t

t+s
ẋ t

j (α)Λ j i ẋ j (α)dα ds,

Vcj (t) =
∫ t

t−τ(t)
xt

j (s)Z j i x j (s) ds,

Vej (t) =
∫ t

t−� j

x t
j (s)Υ j i x j (s) ds (10.53)

where 0 < P j i , 0 < Θ j i , 0 < Q j i , 0 < Z j i , 0 < Λ j i , 0 < Υ j i , j ∈
{1, ..., N }, i ∈ {1, ..., S} are weighting matrices of appropriate dimensions. The
first term in (5.51) is standard to nominal systems without delay while the second
and third terms correspond to the delay-dependent conditions since they provide
measures of the individual and derivative signal energies during the delay-period
(recall that

∫ t
t−� j

ẋ j (α)dα = x j (t) − x j (t − � j ) by the Leibniz–Newton formula)
and the fourth term corresponds to the intra-connection delays. The main result is
provided by the following theorem:

Theorem 10.11 Given the bounds ϕ j > 0, � j > 0, μ j > 0, j = 1, ..., N . The
global system Σ with subsystem Σ j given by (10.48) is delay-dependent asymp-
totically stable with L2-performance bound γ j if there exist weighting matrices
X j i , Y j i , M j i , S j i , W j i , R j i , ∀i ∈ S, ∀ j ∈ N and scalars γ j > 0
satisfying the following LMIs

Ω̃ j i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ω j i1 Ω j i2 Ω j i4 X j i Et
j 0 Ω j i7

• −Ω j i6 Ω j i5 0 X j i Et
d j 0

• • −Ω j i8 0 0 0
• • • −δ j I 0 0
• • • • −ν j I 0
• • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (10.54)



10.2 Interconnected Continuous-Time Systems 337

Ω j i1 =

⎡
⎢⎢⎣
Ωoji W j i D jiX j i W j i

• −Ωaji 0 0
• • −Ωcji S j i

• • • −R j i − S j i

⎤
⎥⎥⎦ , Ω j i7 =

⎡
⎢⎢⎢⎢⎢⎢⎣

Gt
ji

0
Ht

ji
0
0

Φ t
j i

⎤
⎥⎥⎥⎥⎥⎥⎦

(10.55)

Ω j i2 =

⎡
⎢⎢⎣
X j i Γ j i

0 0
0 0
0 0

⎤
⎥⎥⎦ , Ω j i4 =

⎡
⎢⎢⎣
� jX j i At

ji (� j − ϕ j )X j i At
ji

0 0
� jX j i Dt

ji (� j − ϕ j )X j i Dt
ji

0 0

⎤
⎥⎥⎦ ,

Ω j i6 =
[

I j 0
• γ 2

j I j

]

Ω j i5 =
[
� j I j (� j − ϕ j )I j

� jΓ j i (� j − ϕ j )Γ j i

]
, Ω j i8 =

[
2I j −W j i 0

• 2I j −W j i

]
(10.56)

Ωoji = A jiX j i + X j i At
ji +M j i +R j i + Y j i −W j i ,

Ωaji =M j i +W j i + S j i , Ωcji = (1− μ j )M j i + 2S j i (10.57)

Proof A straightforward computation gives the time derivative of V (t) along the
solutions of (10.45) with u(t) ≡ 0 as

V̇oj (t) = 2xt
jP j i ẋ j

= 2xt
jP j i

N∑
i=1

αi (t)

[
A ji x j (t)+ D ji x j (t − τ j (t))+ Γ j iω j (t)+ g j

]

V̇a j (t) =
[
xt

j (t)Q j i x(t)− xt
j (t − ϕ j )Q j i x j (t − ϕ j )

]
(10.58)

V̇cj (t) ≤
[
xt

j (t)Z j i x j (t)− (1− μ j ) xt
j (t − τ j )Z j i x j (t − τ j )

]

V̇ej (t) =
[
xt

j (t)Υ j i x j (t)− xt
j (t − � j )Υ j i x j (t − � j )

]

V̇mj (t) = ϕ2
j ẋ t

j (t)Θ j i ẋ j (t)− ϕ j

∫ t

t−ϕ j

ẋ t
j (s)θ j i ẋ j (s)ds

≤ ϕ2
j ẋ t

j (t)Θ j i ẋ j (t)− ϕ j

∫ t

t−ϕ j

ẋ t (s)Θ j i ẋ(s)ds

V̇nj (t) = (� j − ϕ j )
2 ẋ t

j (t)Λ j i ẋ j (t)

− (� j − ϕ j )

∫ t−ϕ j

t−� j

ẋ t
j (s)Λ j i ẋ j (s)ds

≤ (� j − ϕ j )
2 ẋ t

j (t)Λ j i ẋ j (t)
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− (� j − ϕ j )

∫ t−ϕ j

t−� j

ẋ t
j (s)Λ j i ẋ j (s)ds (10.59)

Applying Lemma A.13, we get

−ϕ j

∫ t

t−ϕ j

ẋ t
j (α)Θ j i ẋ(α)dα ≤

[
x j (t)

x j (t − ϕ j )

]t [−Θ j i Θ j i

• −Θ j i

] [
x j (t)

x j (t − ϕ j )

]
(10.60)

Similarly,

−(� j − ϕ j )

∫ t−ϕ j

t−� j

ẋ t
j (α)Λ j i ẋ j (α)dα

= −(� j − ϕ j )

[ ∫ t−ϕ j

t−τ j

ẋ t
j (α)Λ j i ẋ j (α)dα +

∫ t−τ j

t−� j

ẋ t
j (α)Λ j i ẋ j (α)dα

]

≤ −(τ j − ϕ j )

[ ∫ t−ϕ j

t−τ j

ẋ t
j (α)Λ j i ẋ j (α)dα

]

− (� − τ)

[ ∫ t−τ j

t−� j

ẋ t
j (α)Λ j i ẋ j (α)dα

]

≤ −
(∫ t−ϕ j

t−τ j

ẋ t
j (α)dα

)
Λ j i

(∫ t−ϕ

t−τ
ẋ t

j (α)dα

)

−
(∫ t−τ j

t−� j

ẋ t
j (α)dα

)
Λ j i

(∫ t−τ j

t−� j

ẋ t (α)dα

)

= −[x(t − ϕ j )− x(t − τ j )]tΛ j i [x(t − ϕ j )− x(t − τ j )]
− [x(t − τ j )− x(t − � j )]tΛ j i [x(t − τ j )− x(t − � j )] (10.61)

Since (10.58) has to be satisfied under arbitrary switching, it follows that this holds
for the particular case αi (k) = 1, αm �=i (k) = 0. This implies by combining (10.53),
(10.54), (10.55), (10.56), (10.57), (10.58), (10.59), (10.60), and (10.61) and using
Schur complements with u(t) ≡ 0 that

V̇ j (t)|(10.48) ≤ χ t
j (t) Ξ j i χ j (t)

+ ϕ2
j ẋ t

j (t)Θ j i ẋ j (t)+ (� j − ϕ j )
2 ẋ t

j (t)Λ j i ẋ j (t) (10.62)

χ j (t) =
[
xt

j (t) xt
j (t − ϕ j ) xt

j (t − τ j ) xt
j (t − � j ) g j ω j

]t

Ξ j i =
[
Ξ j i1 Ξ j i2
• Ξ j i3

]
, Ξ j i3 =

[
0 0
• 0

]
(10.63)
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Ξ j i1 =

⎡
⎢⎢⎣
Ξoji Θ j i P j i D ji Θ j i

• −Ξaji 0 0
• • −Ξcji Λ j i

• • • −Υ j i −Λ j i

⎤
⎥⎥⎦

Ξ j i2 =

⎡
⎢⎢⎣
P j i P j iΓ j i

0 0
0 0
0 0

⎤
⎥⎥⎦ (10.64)

Ξoji = P j i A ji + At
jiP j i +Q j i + Υ j i + Z j i −Θ j i ,

Ξaji = Q j i +Θ j i +Λ j i , Ξcj = (1− μ j )Z j i + 2Λ j i (10.65)

where V̇ j (t)|(10.48) defines the Lyapunov derivative along the solutions of system
(10.45). By Schur complements we express (10.62) into the form π t (t)Ξ̂ j iπ(t) for
some π(t) �= 0 where

Ξ̂ j i =
⎡
⎣Ξ j i1 Ξ j i2 Ξ j i4

• −Ξ j i3 Ξ j i5
• • −Ξ j i6

⎤
⎦ , Ξ j i4 =

⎡
⎢⎢⎣
� j At

jiΘ j i (� j − ϕ j )At
jiΛ j i

0 0
� j Dt

jiΘ j i (� j − ϕ j )Dt
jiΛ j i

0 0

⎤
⎥⎥⎦

Ξ j i5 =
[

� jΘ j i (� j − ϕ j )Λ j i

� jΓ j iΘ j i (� j − ϕ j )Γ j iΛ j i

]
, Ξ j i6 =

[
Θ j i 0
• Θ j i

]
(10.66)

By resorting to the S-procedure [27], inequalities (10.52) and (10.66) can be rewrit-
ten together for some σ j ≥ 0 as

Ξ̂ j i =
⎡
⎣ Ξ̂ j i1 Ξ j i2 Ξ j i4

• −Ξ̂ j i3 Ξ j i5
• • −Ξ j i6

⎤
⎦ , Ξ̂ j i3 =

[
I j 0
• 0

]

Ξ̂ j i1 =

⎡
⎢⎢⎣
Ξ̂oji Θ j i P j i D ji Θ j i

• −Ξaji 0 0
• • −Ξ̂cji Λ j i

• • • −Υ j i −Λ j i

⎤
⎥⎥⎦ (10.67)

Ξ̂oji = Ξoji + σ jφ
2
j Et

j E j , Ξ̂cji = Ξcji + σ jψ
2
j Et

d j Ed j (10.68)

which describe nonstrict LMIs since σ j ≥ 0. Recalling from [31] that minimization
under nonstrict LMIs corresponds to the same result as minimization under strict
LMIs when both strict and nonstrict LMI constraints are feasible. Moreover, if there
is a solution for (10.67) for σ j = 0, there will also be a solution for some σ j > 0
and sufficiently small φ j , ψ j . Therefore, we safely replace σ j ≥ 0 by σ j > 0.
Equivalently, we may further rewrite (10.67) with some manipulations in the form
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Ξ̃ j i =
⎡
⎣ Ξ̃ j i1 Ξ j i2 Ξ j i4

• −Ξ̂ j i3 Ξ j i5
• • −Ξ j i6

⎤
⎦

Ξ̃ j i1 =

⎡
⎢⎢⎣
Ξ̃oji Θ j i P j i D ji Θ j i

• −Ξaji 0 0
• • −Ξ̃cji Λ j i

• • • −Υ j i −Λ j i

⎤
⎥⎥⎦ (10.69)

Ξ̃oji = Ξ̄oji + φ2
j Et

j E j , Ξ̃cji = Ξ̄cji + ψ2
j Et

d j Ed j (10.70)

where Ξ̄oji , Ξ̄cji correspond to Ξoji , Ξcji with bar values defined by P̄ j i =
σ−1

j P j i , Q̄ j i = σ−1
j Q j i ,Θ̄ j i = σ−1

j Θ j i , Ῡ j i = σ−1
j Υ j i , Λ̄ j i = σ−1

j Λ j i , Z̄ j i =
σ−1

j Z j i . Using the linearizations

X j i = P̄−1
j i , M j i = P̄−1

j i Q̄ j i P̄−1
j i , Y j i = P̄−1

j i Z̄ j i P̄−1
j i , W j i = P̄−1

j i Θ̄ j i P̄−1
j i

R j i = P̄−1
j i Ῡ j i P̄−1

j i , S j i = P̄−1
j i Λ̄ j i P̄−1

j i

with δ j = φ−2
j and ν j = ψ−2

j . Applying the congruent transformation

T = diag[X j i , X j i , X j i , X j i , I, I, I, I ]

with some arrangement, we can express (10.69) in the form (10.55) with G ji ≡ 0,
Hji ≡ 0, Φ j i ≡ 0, Γ j i ≡ 0. This establishes robust stability of the nonlinear
interconnected system (10.45) under the constraint (10.47) with maximal φ j , ψ j .

Consider the L2 − gain performance measure

J =
ns∑

j=1

∫ ∞

0

(
zt

j (s)z j (s)− γ 2
j w

t
j (s)w j (s)

)
ds

For any w j (t) ∈ L2(0,∞) �= 0 with zero initial condition x j (0) = 0, hence
V (0) = 0, we have

J =
ns∑

j=1

∫ ∞

0

(
zt

j (s)z j (s)− γ 2
j w

t
j (s)w j (s) + V̇ j (t)|(10.48) − Vj (∞)

)
ds

≤
ns∑

j=1

∫ ∞

0

(
zt

j (s)z j (s)− γ 2
j w

t
j (s)w j (s) + V̇ j (t)|(10.48)

)
ds
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Proceeding as before, we make use of (10.62) to get

ns∑
j=1

(
zt

j (s)z j (s)− γ 2
j w

t
j (s)w j (s) + V̇ j (t)|(10.48)

)

=
ns∑

j=1

χ t
j (t, s) Ω̃ j i χ j (t, s) (10.71)

where Ω̃ j i is given by (10.54). It is readily seen that when Ξ̂ j < 0 the condition

ns∑
j=1

(
zt

j (s)z j (s)− γ 2
j w

t
j (s)w j (s) + V̇ j (t)|(10.48)

)
< 0

for arbitrary s ∈ [t,∞), which implies for any w j (t) ∈ L2(0,∞) �= 0 that
J < 0 leading to

∑ns
j=1 ||z j (t)||2 <

∑ns
j=1 γ j ||w(t) j ||2, which assures the

desired performance. �
The following corollaries provide some relevant special cases:

Corollary 10.12 Given the bounds ϕ j > 0, � j > 0, μ j > 0, j = 1, ..., N. The
linear system Σn with subsystem Σnj given by

Σnj : ẋ j (t) =
N∑

i=1

αi (t)

[
A ji x j (t)+ D ji x j (t − τ j (t))+ B ji u j (t)+ Γ j iω j (t)

]

y j (t) =
N∑

i=1

αi (t)

[
C ji x j (t)+ Fji x j (t − τ j (t))+ Ψ j iω j (t)

]

z j (t) =
N∑

i=1

αi (t)

[
G ji x j (t)+ Hji x j (t − τ j (t))+Φ j iω j (t)

]
(10.72)

is delay-dependent asymptotically stable with L2-performance bound γ j if there
exist weighting matrices
X j i , Y j i , M j i , S j i , W j i , R j i , ∀i ∈ S, ∀ j ∈ N and scalars γ j > 0
satisfying the following LMIs

Ω̌ j i =

⎡
⎢⎢⎣
Ω j i1 Ω̌ j i2 Ω j i4 Ω j i7

• −Ω̌ j i6 Ω̌ j i5 0
• • −Ω j i8 0
• • • −I

⎤
⎥⎥⎦ < 0 (10.73)

Ω̌ t
j i2 =

[
Γ j i 0 0 0

]
, Ω̌ j i6 =

[
0 γ 2

j I j

]
,

Ω̌ j i5 =
[
� jΓ j i (� j − ϕ j )Γ j i

]
(10.74)



342 10 Switched Decentralized Control

Proof Follows from Theorem 10.11 by deleting the contributions of g j (.) and the
remaining entries are given in (10.55), (10.56), and (10.57).

Corollary 10.13 Given the bounds ϕ j > 0, � j > 0, μ j > 0, j = 1, ..., N. The
linear system Σm with subsystem Σmj given by

Σmj : ẋ j (t) =
N∑

i=1

αi (t)

[
A ji x j (t)+ B ji u j (t)+ Γ j iω j (t)

+ g j (t, x(t), x(t − τ(t)))

]

y j (t) =
N∑

i=1

αi (t)

[
C ji x j (t)+ Fji x j (t − τ j (t))+ Ψ j iω j (t)

]

z j (t) =
N∑

i=1

αi (t)

[
G ji x j (t)+ Hji x j (t − τ j (t))+Φ j iω j (t)

]

(10.75)

is delay-dependent asymptotically stable with L2-performance bound γ j if there
exist weighting matrices
X j i , Y j i , M j i , S j i , W j i , R j i , ∀i ∈ S, ∀ j ∈ N and scalars γ j > 0
satisfying the following LMIs

Ω̃ j i =

⎡
⎢⎢⎢⎢⎢⎢⎣

A jiX j i + X j i At
ji X j i Γ j i X j i Et

j 0 Gt
ji

• −I j 0 0 X j i Et
d j 0

• • −γ 2
j I j 0 0 Φ t

j i
• • • −δ j I 0 0
• • • • −ν j I 0
• • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎦
<0 (10.76)

Proof Follows from Theorem 10.11 by deleting the contributions of D j (.) and the
effectively considering V (t) =∑ns

j=1 xt
j (t)P j i x j (t). �

10.2.4 Switched State-Feedback Design

Next, we address the feedback control problem for the interconnected continuous-
time systems Σ by focusing the design effort on the subsystem Σ j as given by
(10.48). The goal is to find global decentralized feedback switching controllers and
a decentralized switching rule asymptotically stabilizing the system formed by sub-
systems Σ j , j = 1, . . . , N . This decentralized feedback controllers are composed
of N local feedback controllers and each equipped with the corresponding local
switching rule. In the sequel, we start with decentralized switched-state-feedback
scheme. We seek to design a switched state feedback
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u j (k) =
N∑

i=1

αi (k)K ji x j (k), i ∈ S, j ∈ N

which guarantees that the controlled switched system achieves a prescribed perfor-
mance level, where K ji ∈ �p j×n j is the local state-feedback gain matrix at the
mode i . Letting A j i = A ji + B ji K ji , it is readily seen from Theorem 10.11 that
the closed-loop switched system

Σcj : ẋ j (t) =
N∑

i=1

αi (t)

[
A j i x j (t)+ D ji x j (t − τ j (t))+ Γ j iω j (k)

+ g j (t, x(t), x(t − τ(t)))

]

z j (t) =
N∑

i=1

αi (t)

[
G ji x j (t)+ Hji x j (t − τ j (t))+Φ j iω j (t)

]

(10.77)

is delay-dependent asymptotically stable with an L2 − gain < γ j if there exist
weighting matrices X j i , Y j i , M j i ,S j i , W j , R j , ∀i ∈ S, ∀ j ∈ N and
scalars γ j > 0 satisfying the following LMIs

Ω j i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ω j i1 Ω j i2 Ω j i4 X j i Et
j 0 Ω j i7

• −Ω j i6 Ω j i5 0 X j i Et
d j 0

• • −Ω j i8 0 0 0
• • • −δ j I 0 0
• • • • −ν j I 0
• • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (10.78)

Ω j i1 =

⎡
⎢⎢⎣
Ωoji W j i D jiX j i W j i

• −Ωaji 0 0
• • −Ωcji S j i

• • • −R j i − S j i

⎤
⎥⎥⎦

Ω j i4 =

⎡
⎢⎢⎣
� jA j i (� j − ϕ j )A j i

0 0
� j D ji (� j − ϕ j )D ji

0 0

⎤
⎥⎥⎦ (10.79)

Ωoji = A j iX j i + X j iAt
j i +M j i +R j i + Y j i −W j i

A j i = A ji + B ji K ji (10.80)

where Ω j i2, Ω j i3, Ω j i5, Ω j i6, Ω j i8 are given by (10.56) and (10.57). The fol-
lowing theorem establishes the main design result:
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Theorem 10.14 Given the bounds ϕ j > 0, � j > 0, μ j > 0, j = 1, ..., N. The
global system Σc with subsystem Σcj given by (10.77) is delay-dependent asymp-
totically stable with L2-performance bound γ j if there exist weighting matrices
X j i , G j i , Y j i , M j i , S j i , W j i , R j i , ∀i ∈ S, ∀ j ∈ N and scalars
γ j > 0 satisfying the following LMIs

Ω̂ j i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ω̂ j i1 Ω j i2 Ω̂ j i4 X j i Et
j 0 Ω j i7

• −Ω j i6 Ω j i5 0 X j i Et
d j 0

• • −Ω j i8 0 0 0
• • • −δ j I 0 0
• • • • −ν j I 0
• • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (10.81)

Ω̂ j i1 =

⎡
⎢⎢⎣
Ω̂oji W j i D jiX j i W j i

• −Ωaji 0 0
• • −Ωcji S j i

• • • −R j i − S j i

⎤
⎥⎥⎦ (10.82)

Ω̂ j i4 =

⎡
⎢⎢⎢⎣
� j

(
X j i At

ji + Gt
j iBt

j i

)
(� j − ϕ j )

(
X j i At

ji + Gt
j iBt

j i

)
0 0

� j Dt
ji (� j − ϕ j )Dt

ji
0 0

⎤
⎥⎥⎥⎦

Ω̂oji = A jiX j i + X j i At
ji + B jiG j i + Gt

j i Bt
ji

+M j i +R j i + Y j i −W j i (10.83)

where Ω j i2, Ω j i3, Ω j i5, Ω j i6, Ω j i7, Ω j i8, Ωaji , Ωcji are given by (10.55),
(10.56), and (10.57). Moreover, the local state-feedback gain matrices are given by
K j i = G j i X−1

j i

Proof The results immediately follow by substituting G j i = K j iX j i and arranging
the terms. �

10.2.5 Simulation Example B

To demonstrate the theoretical developments, we consider an aggregate model rep-
resenting physiochemical changes of three consecutive identical reaches of the River
Nile with each reach (about 6 km length) being subject to sewage-dump from pol-
lution station. The subsystem model is based on the variation of concentrations of
three bio-strata of water-quality constituents: algae, nitrogen group, and phosphate-
BOD-DO group. Two types of water-quality control are enforced: one through
effluent discharge and the other is through water velocity. There are two modes
of operation corresponding to high-pollutionlevel (H) and low-pollution level (L).
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The dynamical equations in the form (10.48), (10.49), (10.50), (10.51), and (10.52)
are given for j = 1, 2, 3 by

Mode H:

A j =
⎡
⎣−0.893 0.003 0
−0.003 −1.146 −0.0026
−0.006 −0.561 −1.257

⎤
⎦ , D j =

⎡
⎣−0.225 0 0.001
−0.001 −0.136 −0.001
−0.002 −0.041 −0.233

⎤
⎦

B j =
⎡
⎣0.05 0

0 0.1
0 0.2

⎤
⎦ ,Gt

j =
⎡
⎣0.2

0.2
0.2

⎤
⎦ , Ht

j =
⎡
⎣0.05

0.05
0.05

⎤
⎦ , Γ j =

⎡
⎣1

0
1

⎤
⎦ , Φ j = 0.4

E j =
[

0.3 0.1 0.1
]
, Ed j =

[
0.05 0.02 0.02

]

Mode L:

A j =
⎡
⎣−1.341 0.007 0
−0.003 −1.477 −0.005
−0.007 −0.888 −1.745

⎤
⎦ , D j =

⎡
⎣−0.235 0 0.001
−0.001 −0.156 −0.001
−0.002 −0.041 −0.363

⎤
⎦

B j =
⎡
⎣0.1 0

0 0.2
0 0.4

⎤
⎦ ,Gt

j =
⎡
⎣0.4

0.4
0.4

⎤
⎦ , Ht

j =
⎡
⎣0.09

0.09
0.09

⎤
⎦ , Γ j =

⎡
⎣2

1
2

⎤
⎦ , Φ j = 0.6

E j =
[

0.5 0.3 0.2
]
, Ed j =

[
0.07 0.04 0.04

]

The feasible solution of Theorem 10.11 is summarized in Table 10.2.

Table 10.2 Performance results

Mode Method ϕ j � j μ j γ j

High Theorem 10.11 0.425 2.975 1.284 2.693
0.613 2.987 1.337 2.584
0.762 3.553 1.414 2.752
0.884 3.973 1.454 2.788

Low Theorem 10.11 0.425 3.225 1.254 2.773
0.613 3.557 1.297 2.635
0.762 3.986 1.311 2.826
0.884 4.113 1.335 2.895

We observe that the water-system stability is preserved for both modes of opera-
tion. Application of Theorem 10.14 yields the following feasible set of results

Mode H:
γ j = 2.1057, ϕ j = 0.585, � j = 3.166, μ j = 1.366

K j H =
[−0.2781 −0.5715 −0.4219

0.1132 −0.6125 −0.7326

]
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Mode L:
γ j = 2.6342, ϕ j = 0.615, � j = 3.245, μ j = 1.297

K j L =
[−0.5571 −0.6865 −0.6673

0.1665 −0.8636 −0.5908

]

Typical closed-loop state trajectories are depicted in Figs. 10.11, 10.12, and 10.13
and the associated water-control trajectories are plotted in Fig. 10.14. From the ensu-
ing results, it is evident that the developed switched state-feedback control has been
able to smooth the effects of dumped pollutants. Of particular interest is that most
of the control effort are exerted during 1/3 the planning period.
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Fig. 10.11 Algae trajectories under switched-state feedback

10.2.6 Simulation Example C

A switched system of the type 10.45 is composed of three identical subsystems
( j = 1, 2, 3) subject to two modes of operation with the following data
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Fig. 10.12 Nitrogen group trajectories under switched state feedback

Mode 1:
A j =

[−24.3 1.2
−4.95 −2.1

]
, D j =

[−1.2 0
0 −0.83

]

B j =
[

2
0

]
, Gt

j =
[

0.02
0.02

]
, Ht

j =
[

0.04
0.03

]
, Γ j =

[
0.3
0

]
, Φ j = 0.7

E j =
[

0.75 0.1
]
, Ed j =

[
0.2 0.4

]

Mode 2:
A j =

[−12.0 6.9
−3.1 −14.1

]
, D j =

[−1.3 0
0 −0.55

]

B j =
[

1
0

]
, Gt

j =
[

0.03
0.03

]
, Ht

j =
[

0.06
0.04

]
, Γ j =

[
0.4
0

]
, Φ j = 0.8

E j =
[

0.5 0.4
]
, Ed j =

[
0.32 0.3

]
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Fig. 10.13 Phosphate-BOD-DO group trajectories under switched state feedback
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Application of Theorem 10.14 yields the following feasible set of results

Mode 1:
γ j = 0.808, ϕ j = 0.375, � j = 2.776, μ j = 1.212

K j1 =
[−1.44 −0.02

]

Mode 2:
γ j = 0.911, ϕ j = 0.425, � j = 2.855, μ j = 1.311

K j2 =
[

0.01 −0.74
]

10.3 Notes and References

A decentralized approach has been developed to the robust stability and stabilization
problems of class of nonlinear interconnected discrete-time systems with arbitrary
switched rules. This class of interconnected systems has been considered to consist
of coupled nominally linear subsystems with unknown-but-bounded state delay. We
have shown that multi-controller switched schemes provide an effective and pow-
erful mechanism to cope with highly complex systems with large uncertainties. We
have developed a delay-dependent decentralized structure that guarantees asymp-
totic stability with local disturbance attenuation on the subsystem level. Then, we
have constructed decentralized switched control schemes based on state feedback
and dynamic output feedback to ensure stabilizability of the global system with
�2-performance bound. The theoretical developments have been demonstrated by
numerical simulation of a multi-reach water-pollution control problem. The analy-
sis pursued in this chapter represents a new and preliminary avenue in the theory
of switched time-delay systems, which should attract the attention of researchers
and readers to attempt to move further and attain subsequent results. The reader is
advised to look at [8] for more useful avenues.
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Chapter 11
Applications to Water-Quality Control

Switched systems have been intensively studied in recent years due to their
widespread applications, including power systems and chemical processes [41] and
mechanical systems [47]. A wide class of switched systems composed of a finite
family of continuous- or discrete-time subsystems (called modes) and a rule that
governs the switching between these subsystems. Each mode is regarded as a state
of a finite-state machine whose evolution dynamics determines the switching. In this
work, we consider that the modes are represented by discrete-time linear systems
with unknown-but-bounded delays. Research investigations into problems pertain-
ing to switched dynamical systems have received a great deal of attention because
of the fast development in computing technologies [15, 28, 42, 47, 174, 193] and
the references cited therein.

The phenomena of delays, on the contrary, is often encountered in several phys-
ical and man-made systems due to finite capabilities of information processing,
inherent phenomena like mass transport flow and recycling and/or by product of
computational delays [216]. The available results can be categorized into two broad
categories: delay-independent and delay-dependent. In the former category, the sta-
bility and stabilization results are feasible irrespective of the size of the delay. In
the latter category, methods are developed to take the information about time delay
into consideration in the process of controller design. By and large, delay-dependent
methods are regarded as more practical and yield less conservative designs. Results
on discrete-time systems with state delay are found in [25, 159, 213] and recent
developments of delay-dependent stability and control are presented in [34, 71].

11.1 Application I: Water-Quality Control

In this section, the results of [26, 44, 224–234, 239–243, 246–248, 251, 252,
259–261, 268, 270–272, 274, 275, 279–281, 283–286, 288–325, 327–329, 331–
334, 421] are extended further to the class of switched discrete-time systems with
unknown-but-bounded state delay. The analytical development is inspired by the
contemporary research activities in water resources development, planning, and
management [119, 294, 363]. Through a multi-model representation of preserving

M.S. Mahmoud, Switched Time-Delay Systems,
DOI 10.1007/978-1-4419-6394-9_11, C© Springer Science+Business Media, LLC 2010
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water-quality constituents to standard in multi-reach fresh water streams, the prob-
lem of water-quality control is cast as the problem of delay-dependent L2 gain anal-
ysis and is fully investigated. New delay-dependent asymptotic stability criteria are
developed under arbitrary switching based on appropriately constructed switched
Lyapunov–Krasovskii functionals and cast as feasibility testing of linear matrix
inequalities (LMIs). Switched control synthesis is performed to design switched
feedback schemes, based on state- or output-measurements, to guarantee that the
corresponding closed-loop system enjoys the delay-dependent asymptotic stability
with an L2 gain smaller than a prescribed constant level. All the developed results
are expressed in terms of convex optimization over LMIs and tested on a represen-
tative water-quality example of the River Nile.

11.1.1 Motivating Example

It has been widely recognized that water and related resources systems play a major
role in the socio-economic development due to their long-range economic effects
[119]. Perhaps the most significant environmental problems nowadays is that of
excessive pollution levels in streams of fresh water as these are usually the main
source for potable supply. The problems arise from the discharge of industrial wastes
and sewage into the water basin, which in turn disturb the balance of the ecological
system. There has been increased activity by different environmental boards toward
preserving water-quality standards. This calls for integrated approaches [363]. It
turns out that one effective method for studying water-quality standards in streams
using mathematical modeling and computer control is by simulating the in-stream
interaction of the chemical and biochemical constituents in steady-flow rivers. It
turns out under reasonable simplifying assumptions [107, 117, 253] that a compre-
hensive picture about the growth of water-quality constituents can be described by
a linearized model evaluated about several operating points (multiple modes). By
considering a representative reach of the River Nile subjected to dumped waste-
water and applying computer control methods [254, 277], the water-quality model
can then be expressed in multi-model form as

xk+1 = Aξ xk + Adξ xk−dk + Γξωk

yk = Cξ xk + Cdξ xk−dk + Ψξωk

zk = Gξ xk + Gdξ xk−dk +Φξωk (11.1)

where dk > 0 a time-varying delay reflecting the mixing effect of biochemical con-
stituents in the reach at time k,1 xk ∈ �n is the state vector of water-quality consti-
tuents (like algae, ammonia nitrogen, dissolved oxygen, biochemical oxygen
demand), yk ∈ �p is the measured output vector, zk ∈ �q is the performance

1 In systems terminology, the delay factor represents an average time to clear up the water-stream
and through control effects, water-quality constituents are brought back to their standard levels.
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vector, ωk ∈ �q is the disturbance input (due to irregular discharge of effluents)
which is assumed to belong to �2[0,∞), and ξ is a switching rule which takes
its values in the finite set modes IN = {1, 2, ..., N }. This means that the matrices
(Aα, Adα, ..., Φα) take values, at arbitrary discrete instants, in the finite set of

{(A1, Ad1, ..., Φ1), ..., (AN , Ad N , ..., ΦN )}

Thus the matrices (A j , Ad j , ..., Φ j ) denotes the j th water-quality model corre-
sponding to operational mode j and hence (11.1) represents a time-controlled
switched system [42]. Typically, the switching rule ξ is not known a priori but we
assume its instantaneous value is available in real time for practical implementations
by water pollution management. Define the indicator function

α(k) = [α1(k), ..., αN (k)]t , ∀ i ∈ IN

αi (k) = 1 when system (11.1) is in the i th mode,

(AN , Ad N , ..., ΦN )

= 0 otherwise

Thus we cast system (11.1) into the form

xk+1 =
N∑

i=1

αi (k)Ai xk +
N∑

i=1

αi (k)Adi xk−dk +
N∑

i=1

αi (k)Γiωk

yk =
N∑

i=1

αi (k)Ci xk +
N∑

i=1

αi (k)Cdi xk−dk +
N∑

i=1

αi (k)Ψiωk

zk =
N∑

i=1

αi (k)Gi xk +
N∑

i=1

ξi (k)Gdi xk−dk

+
N∑

i=1

αi (k)Φiωk (11.2)

It is significant that system (11.2) is quite general in the context of switched time-
delay systems as in includes state, measurement, and output delays. In this paper, we
are interested in the stability analysis and control synthesis for this class of discrete-
time switched systems with time-varying delays. In the sequel, it is assumed that the
delay dk is a time-varying function satisfying

dm ≤ dk ≤ dM (11.3)

where the lower bound dm > 0 and the upper bound dM > 0 are known constant
scalars.
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11.1.2 Delay-Dependent L2 Gain Analysis

In this section, we develop new criteria for LMI-based characterization of delay-
dependent asymptotic stability and L2 gain analysis. Introduce

δxk = xk+1 − xk, xk−dk = xk −
k−1∑

j=k−dk

δx j

δxk = (A j − I )xk + Ad j xk−dk + Γ jwk

ζk =
[
xt

k xt
k−dk

xt
k−dM

]t
, d = (dM − dm + 1) (11.4)

The following theorem establishes the main LMI-based stability result for
switched system (11.2):

Theorem 11.1 Given the bounds dM > 0 and dm > 0. System (11.2) is delay-
dependent asymptotically stable with �2-performance bound γi if there exist weight-
ing matrices Pi , P j ,

Qs, Ri , Wai , Wci , parameter matrices Mi , Si , Zi , ∀(i, j, s) ∈ IN and
scalars γi > 0 satisfying the following LMIs for (i, j, s) ∈ IN

Ωi =
[
Ω̄ +Ωai +Ω t

ai +Ωci Ωzi

• −Ωwi

]
< 0 (11.5)

where

Ω̄ =

⎡
⎢⎢⎣
Ωoj Ωmj 0 Ωnj

• Ωqs 0 Ωs j

• • −Ri 0
• • • −Ωv j

⎤
⎥⎥⎦

Ωoj = At
iP j Ai − Pi + dQi +Ri + Gt

i Gi

Ωmj = At
iP j Adi + Gt

i Gdi , Ωnj = At
iP jΓi + Gt

iΦi

Ωai =
[
Mi + Zi Si −Mi −Si − Zi 0

]
Ωqs = At

diP j Adi −Qs + Gt
di Gdi

Ωs j = At
diP jΓi + Gt

diΦi , Ωci = dMΩ t
cci (Wai +Wci ) Ωcci

Ωcci =
[

Ai − I Adi 0 I
]

Ωzi =
[√

dMMi
√

dM − dmSi
√

dMZi
]

Ωv j = γ 2
i I − Γ t

i P jΓi −Φ t
i Φi

Ωwi = diag
[
Wai Wai Wci

]
(11.6)

Proof See the Appendix

Remark 11.2 It should be noted that the lower bound dm and the upper bound dM

account for extreme cases of light and heavy waste dump loadings, respectively.
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System stability and stabilization of water and related resources systems are gen-
erally expressed in terms of algebraic Riccati inequalities (ARIs). Seeking com-
putational convenience and effectiveness, the solutions to the problems of stability
analysis and control synthesis are cast into convex optimization that are handled
using interior-point minimization algorithms that have been recently coded into
efficient numerical software [74]. It is remarked that LMIs and ARIs are equivalent
[27]; however, parameter tuning intrinsic to the ARIs can be avoided by using the
framework of feasibility testing of linear matrix inequalities (LMIs). It is crucial
to observe that Theorem 11.1 provides least-conservative stability criteria since
it employs reduced number of LMI variables and does not rely on overbounding
relations and inequalities.

Remark 11.3 In comparison with the published results [25, 34, 71, 82, 159, 213,
262, 354], it is crucial to observe that Theorem 11.1 provides least-conservative
stability criteria since it employs reduced number of LMI variables and does not
rely on overbounding relations and inequalities.

11.1.3 Switched Feedback Control

Next, we address the feedback control problem for discrete-time switched system

xk+1 =
N∑

i=1

αi (k)Ai xk +
N∑

i=1

αi (k)Adi xk−dk

+
N∑

i=1

αi (k)Bi uk +
N∑

i=1

αi (k)Γiωk

yk =
N∑

i=1

αi (k)Ci xk +
N∑

i=1

αi (k)Cdi xk−dk

+
N∑

i=1

αi (k)Ψiωk

zk =
N∑

i=1

αi (k)Gi xk +
N∑

i=1

ξi (k)Gdi xk−dk

+
N∑

i=1

αi (k)Φiωk (11.7)

where uk ∈ �m is the control input. In case of water-quality system, the control
inputs correspond to command signals proportional to change in stream velocity
and after-treated discharges from waste water facilities. In the sequel, two switched
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feedback schemes are considered: one utilizes state feedback and the other is based
on output feedback.

11.1.4 Switched State Feedback

With reference to system (11.7), we seek to design a switched state feedback

uk =
N∑

i=1

αi (k)Ki xk, i ∈ IN

that guarantees the controlled switched system achieves a prescribed performance
level. This corresponds to regulating the water-quality constituents to practical stan-
dards. Letting Ai = Ai+Bi Ki , it is readily seen from Theorem 11.1 that the closed-
loop switched system is delay-dependent asymptotically stable with an L2 − gain
< γ if there exist weighting matrices Qi , Qs, Pi , P j , Ri , Wai , Wci , param-
eter matrices Mi , Si , Zi , ∀(i, j, s) ∈ IN and scalars γi > 0 satisfying the
following LMIs for (i, j, s) ∈ IN

⎡
⎢⎢⎢⎢⎢⎢⎣

Θoj Θmj Θxi Θnj dMΘ t
cciWi Ωzi

• Θqs 0 Ωs j 0 0
• • −Ri 0 0 0
• • • −Ωvv 0 0
• • • • −dMWi 0
• • • • • −Ωwi

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0

Θoj = At
iP jAi − Pi + dQi +Ri + Gt

i Gi

+Mi + Zi +Mt
i + Z t

i , Wi = (Wai +Wci )

Θqs = At
diP j Adi −Qs + Gt

di Gdi

Θcci =
[
Ai − I Adi 0 I

]
Θmj = At

iP j Adi + Gt
i Gdi + Si −Mi

Θnj = At
iP jΓi + Gt

iΦi , Θxi = −Si − Zi (11.8)

The following theorem states the main design result

Theorem 11.4 Let the bounds dM > 0 and dm > 0 and the matrices Wai >

0, Wci > 0 be given. Then system (11.2) with uk = ∑N
i=1 αi (k)Ki xk, i ∈ IN is

delay-dependent asymptotically stable with �2-performance bound γ if there exist
parameter matrices Xi , Ri , X j , Qs,

Yi , {Θ̂}81 and scalars γi > 0 satisfying the following LMIs for (i, j, s) ∈ IN
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Θ̂si Θ̂4 − Θ̂3 −Θ̂4 − Θ̂5 0 dMΘ̂vi Θ̂w Θ̂cj Xi Gt
i• −Θ̂8 0 0 0 0 At

di Gt
di• • −Ri 0 0 0 0 0

• • • −γ 2
i I 0 0 Γi Φ t

i• • • • −dMWi 0 0 0
• • • • • −Θ̂k 0 0
• • • • •
• • • • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (11.9)

Θ̂si = Xi − dΘ̂1 − Θ̂2 − Θ̂4 − Θ̂ t
4 − Θ̂5 − Θ̂ t

5,

Θ̂k = diag
[
Θ̂6 Θ̂6 Θ̂7

]
Θ̂cj = X j At

i + Y t
j Bt

i , Θ̂vi =
(
Xi At

i − Xi + Y t
i Bt

i

)
Wi

Θ̂w =
[√

dMΘ̂3
√

dM − dmΘ̂4
√

dMΘ̂5
]

(11.10)

Moreover, the feedback gain matrix is given by Ki = YiX−1
i

Proof See the Appendix

11.1.5 Switched Static Output Feedback

Now, the objective is to design a switched output feedback uk =∑N
i=1 αi (k)Hi yk,

∀i ∈ IN, where the set of output matrices {Ci , i ∈ IN } are assumed to be of full-row
rank, such that the switched closed-loop system

xk+1 =
N∑

i=1

αi (k) Âi xk +
N∑

i=1

αi (k) Âdi xk−dk

+
N∑

i=1

αi (k)Γ̂iωk

zk =
N∑

i=1

αi (k)Ĝi xk +
N∑

i=1

αi (k)Gdi xk−dk

+
N∑

i=1

αi (k)Φiωk

Âi = Ai + Bi Hi Ci , Âdi = Adi + Bi Hi Cdi

Γ̂i = Γi + Bi HiΨi , Ĝi = Gi + Di Hi Ci (11.11)

is delay-dependent asymptotically stable with an L2− gain < γ . Therefore, in line
with the preceding section, it follows from Theorem 11.1 that switched system
(11.2) is delay-dependent asymptotically stable if there exist weighting matrices
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Pi , P j , Qs, Ri , Wai , Wci , parameter matrices Mi , Si , Zi , ∀(i, j, s) ∈ IN
and scalars γi > 0 satisfying the following LMIs for (i, j, s) ∈ IN

Θ̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Θ̂i Θ̂mi Θxi Θnj dMΩ t
ccW Ωzi Ât

iP j Ĝt
i• −Qs 0 0 0 0 Ât

diP j Gt
di• • −Ri 0 0 0 0 0

• • • −γ 2
i I 0 0 Γ̂iP j Φ t

i• • • • −dMWi 0 0 0
• • • • • −Ωwi 0 0
• • • • • • −P j 0
• • • • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

−Θ̂i = −Pi + dQi +Ri +Mi + Zi +Mt
i + Z t

i ,

Θ̂mi = Si −Mi (11.12)

where the matrices Θxi , Θnj , Ωzi , Ωwi are given in (11.8). The following theorem
states the main design result

Theorem 11.5 Let the bounds dM > 0 and dm > 0 and the matrices Wai >

0, Wci > 0 be given. Then system (11.2) with uk = ∑N
i=1 αi (k)Hi yk, ∀i ∈ IN is

delay-dependent asymptotically stable with �2-performance bound γ if there exist
parameter matrices X̂i , X̂ j , Ri , G j , F j , {Θ̂}81 and scalars γi > 0 satisfying the
following LMIs for (i, j, s) ∈ IN

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Θ̂si Θ̂4 − Θ̂3 −Θ̂4 − Θ̂5 0 dMΘ̂vi Θ̂w Θ̃ t
cj Θ̂ei

• −Θ̂8 0 0 0 0 Θ̂ t
d j Gt

di
• • −Ri 0 0 0 0 0
• • • −γ 2

i I 0 0 Γi Φ t
i• • • • −dMWi 0 0 0

• • • • • −Θ̂k 0 0
• • • • • • −X̂ j 0
• • • • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (11.13)

Θ̃ t
cj = X̂ j At

i + Ct
i Gt

j Bt
i , Θ̃d j = X̂ j At

di + F t
j Bt

i (11.14)

Moreover, the feedback gain matrix is given by Hi = Ri Ci X̂i C
†
i

2

Proof See the Appendix.

Finally, we provide a numerical simulation example.

2 C†
i is the right Moore–Penrose inverse of Ci = Ct

i

(
Ci Ct

i

)−1 since rank[Ci ] = p.
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Illustrative Example

A discrete water-pollution model of the type (11.2) with multiple operating points
is considered. The model represents two aggregate bio-strata, the one for algae and
the other for ammonia products. We wish to design switched feedback controllers
for this system based on Theorems 11.4 and 11.5. Switching occurs between three
modes described by the following coefficients:

Mode 1

A1 =
[

0.3 0.1
−0.4 0.2

]
, Ad1 =

[
0.6 0
0.2 0.3

]
, Γ1 =

[
0.2
0.3

]

Cd1 =
[

0.02 0
0 0.02

]
, B1 =

[
0.2
0

]
, C1 =

[
1 0
0 1

]

G1 =
[

0.1 0.3
]
, Gd1 =

[
0.5 0.5

]

Φ1 = [0.6], Ψ1 = [0.01]

Mode 2

A2 =
[

0.1 0.2
0.3 0.4

]
, Ad2 =

[−0.5 0.1
0 −0.4

]
, Γ2 =

[
0.1
0.5

]

Cd2 =
[

0.01 0
0 0.01

]
, B2 =

[
0

0.2

]
, C2 =

[
2 0
0 2

]

G2 =
[

0.6 0.2
]
, Gd2 =

[
0.4 0.6

]

Φ2 = [0.3], Ψ2 = [0.02]

Mode 3

A3 =
[

0.2 0.1
0.6 0.3

]
, Ad3 =

[
0.4 0
0 0.4

]
, Γ3 =

[
0.2
0.8

]

Cd3 =
[

0.01 0
0 0.02

]
, B3 =

[
0.2
0.2

]
, C3 =

[
2 0
0 12

]

G3 =
[

0.7 0.3
]
, Gd3 =

[
0.6 0.4

]

Ψ3 = [0.1], Ψ2 = [0.02]

Note that single control action (either proportional to change in stream velocity or
pretreated waste water) is used in modes 1 and 2 and both control actions are used
in mode 3. Choosing dm = 2, dM = 6 and invoking the software environment [74],
the feasible solution of LMIs (11.9)-(11.10) yields the state feedback gains:
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γ1 = 2.3411, K1 =
[−0.1144 −0.6754

]
γ2 = 3.5448, K2 =

[−0.5539 −0.8685
]

γ3 = 1.8694, K3 =
[−0.3313 −0.2306

]

On the contrary, the feasible solution of LMIs (11.13)-(11.14) yields the output-
feedback gains:

γ1 = 1.5421, H1 =
[−0.7184 −0.6716

]
γ2 = 2.1367, H2 =

[−1.0345 −0.4415
]

γ3 = 1.3742, H3 =
[−0.5977 −0.4705

]

These results validate our theoretical developments. To further show the validity
of our design method, we simulate the closed-loop water-quality system using the
disturbance ωk = 0.04 exp(0.04k) sin(0.05πk), a randomly generated switching
signal from a uniform distribution in the interval (0, 1). The obtained state and
control trajectories from 400 samples over a time horizon of 10 s are plotted in
Figs. 11.1, 11.2, 11.3, and 11.4. It is readily seen from the computational results
that the switched dynamic controller is more effective in clearing the disturbed water
system than the switched static controller. This takes place on the expense of being
more involved to realize.
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Fig. 11.1 Algae and ammonia trajectories under switched state feedback
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Fig. 11.4 Trajectories of switched output feedback control

11.2 Appendix

11.2.1 Proof of Theorem 11.1

Consider the switched Lyapunov–Krasovskii functional (SLKF):

Vk = Vok + Vak + Vck + Vmk + Vnk

Vok = xt
k

N∑
i=1

αi (k)Pi xk, Vak =
k−1∑

j=k−dk

xt
j

N∑
i=1

αi (k)Qi x j

Vck =
k−1∑

k−dM

xt
j

N∑
i=1

αi (k)Ri x j

Vnk =
−1∑

m=−dM

k−1∑
j=k+m

δxt
j

N∑
i=1

αi (k)(Wai +Wci )δx j

Vmk =
−dm∑

m=−dM+1

k−1∑
j=k+m

xt
j

N∑
i=1

αi (k)Qi x j (11.15)

where Pi , Qi , Ri , Wai , Wci are weighting matrices of appropriate dimensions.
The first term in (8.8) is standard to the delayless nominal system while the second
and fifth correspond to the delay-dependent conditions. The third and fourth terms
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are added to compensate for the enlargement in the time interval from (k − 1 →
d−dk) to (k−1 → d−dM ). A straightforward computation gives the first-difference
of ΔVk = Vk+1 − Vk along the solutions of (11.2) with wk ≡ 0 as

ΔVk ≤ xt
k+1

N∑
i=1

αi (k + 1)Pi xk+1 − xt
k

N∑
i=1

αi (k)Pi xk +

xt
k

N∑
i=1

αi (k)Qi xk − xt
k−dk

N∑
i=1

αi (k)Qi xk−dk +

k−dm∑
j=k−dM+1

xt
j

N∑
i=1

αi (k)Qi x j + xt
k

N∑
i=1

αi (k)Ri xk −

xt
k−dM

N∑
i=1

αi (k)Ri xk−dM +

(dM − dm)x
t
k

N∑
i=1

αi (k)Qi xk −
k−dm∑

j=k−dM+1

xt
j

N∑
i=1

αi (k)Qi x j

+ dMδxt
k

N∑
i=1

αi (k)(Wai +Wci )δxk −

k−1∑
s=k−dk

δxt
s

N∑
i=1

αi (k)Waiδxs −
k−dk−1∑
s=k−dM

δxt
s

N∑
i=1

αi (k)Waiδxs

−
k−1∑

s=k−dM

δxt
s

N∑
i=1

αi (k)Wciδxs < 0 (11.16)

Since (11.16) has to be satisfied under arbitrary switching, it follows that this holds
for the particular case αi (k) = 1, αm �=i (k) = 0, α j (k+1) = 1, αm �= j (k+1) = 0,
αs(k − dk) = 1 and αm �=s(k − dk) = 0. Together with the following identities:

2ζ t
kM[xk − xk−dk −

k−1∑
j=k−dk

δx j ] = 0

2ζ t
kS[xk−dk − xk−dM −

k−dk−1∑
j=k−dM

δx j ] = 0

2ζ t
kZ[xk − xk−dM −

k−1∑
j=k−dM

δx j ] = 0 (11.17)
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for arbitrary parameter matrices M, S, Z , and ζk from (11.4), algebraic manipu-
lation of (11.16) using (11.2) yields

ΔVk ≤ ζ t
k Ω̂ ζk

−
k−1∑

j=k−dk

[
ξ t

kM+ δxt
jWa

]
W−1

a [Mtξk +Waδx j ]

−
k−dk−1∑
j=k−dM

[
ξ t

kS + δxt
jWai

]
W−1

ai [S tξk +Waiδx j ]

−
k−1∑

j=k−dM

[
ξ t

kZ + δxt
jWci

]
W−1

ci [Z tξk +Wciδx j ] (11.18)

Ω̂ = Ω̂s + Ω̂a + Ω̂ t
a + Ω̂c + dMMW−1

ai Mt +
(dM − dm)SW−1

ai S t + dMNW−1
ci N t (11.19)

where Ω̂s, Ω̂a, Ω̂c correspond to Ωs, Ωa, Ωc in (11.6) when Gi ≡ 0, Gdi ≡
0, Γi ≡ 0, Φi ≡ 0. Since Wai > 0, Wci > 0, it follows from (11.5) by com-
bining (11.8)–(11.18) and Schur complements that Ω̂ < 0. In turn, this implies that
ΔVk < −�||xk ||2 for a sufficiently small � > 0, which establishes the internal
asymptotic stability. Next, consider the performance measure

JK =
K∑

j=0

(
zt

j z j − γ 2wt
jw j

)

For any wk ∈ �2(0,∞) �= 0 and zero initial condition xo = 0, we have

JK ≤
K∑

j=0

(
zt

j z j − γ 2wt
jw j +ΔV (x)|(11.2)

)

where ΔV (x)|(11.2) defines the Lyapunov difference along with the solutions of
system (11.2). Proceeding as before, we get

zt
j z j − γ 2wt

jw j +ΔVk |(11.2) =
[
ζ t

k wt
j

]
Ω̃

[
ζ t

k wt
j

]t
(11.20)

where Ω̃ corresponds to Ωi in (11.5) by Schur complements. It is readily seen that

zt
j z j − γ 2wt

jw j +ΔVk |(11.1) < 0

for arbitrary j ∈ [0, K ), which implies for any wk ∈ �2(0,∞) �= 0 that J < 0
leading to ||zk ||2 < γ ||wk ||2 and the proof is completed. �
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11.2.2 Proof of Theorem 11.4

Applying Schur complements, we express inequalities (11.8) conveniently in the
form

Θ̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Θ̂i Θ̂mi Θxi Θnj dMΩ t
cciWi Ωzi At

iP j Gt
i• −Qs 0 0 At

diP j Gt
di• • −Ri 0 0 0 0 0

• • • −γ 2 I 0 0 Γ jP j Φ t
i• • • • −dMWi 0 0 0

• • • • • −Ωwi 0 0
• •• • •• −Pi 0
• • • • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

−Θ̂i = −Pi + dQi +Ri +Mi + Zi +Mt
i + Z t

i ,

Θ̂mi = Si −Mi (11.21)

Define Xi = P−1
i and using the congruent transformation

T = diag[Xi , Xs, Xi , I, I, Xi , X j , I ]

into LMI (11.21) along with the linearizations

Θ̂1 = XiQiXi , Θ̂5 = XiZiXi , Θ̂8 = XiQsXi ,

Θ̂2 = XiRiXi , Θ̂6 = XiWaiXi

Yi = KiXi , Θ̂3 = XiMiXi , Θ̂7 = XiWciXi (11.22)

we cast T t Θ̃T into the LMI (11.9) as desired.

11.2.3 Proof of Theorem 11.5

Starting from LMI (11.12), we apply the congruent transformation

[X̂i , I, I, I, I, I, X̂ j , I ]

with X̂i = P−1
i , Ci X̂i = T̂i Ci , Gi = Hi T̂i along with the linearizations (10.34) in

addition to F j = Hi Cdi X̂ j , we obtain LMI (11.13) as desired. The output gain is
computed by Hi = Ri T̂

†
i and T̂ †

i = Ci X̂i C
†
i . �
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11.3 Notes and References

We have studied delay-dependent analysis and control synthesis for a class of lin-
ear discrete-time switched state-delay systems under arbitrary switching using an
appropriate switched Lyapunov functional. LMI-based feasibility conditions have
been developed to ensure that the linear switched discrete delay system is delay-
dependent asymptotically stable with an L2− gain smaller than a prescribed con-
stant level. Subsequently, switched feedback schemes have been designed using
state measurements and output measurements, to guarantee that the corresponding
closed-loop system enjoys the same delay-dependent asymptotic stability with an
L2− gain smaller than a prescribed constant level. All the developed results have
been expressed in terms of convex optimization over LMIs and have been tested by
Matlab simulation on a representative water-quality example.



Chapter 12
Applications to Mutli-Rate Control

A class of hybrid multi-rate control models with time-delay and switching con-
trollers are formulated based on combined remote control and local control
strategies. The problem of robust dissipative control for this discrete system is
investigated. An improved Lyapunov–Krasovskii functional is constructed and the
subsequent analysis provides some new sufficient conditions in the form of linear
matrix inequalities (LMIs) for both nominal and uncertain representations. Several
special cases of practical interests are derived. A numerical simulation example is
given to illustrate the effectiveness of the theoretical result.

12.1 Introduction

In the past decade, the most successful network developed has been the Internet
that has proved a powerful tool for distributed collaborative work. The emerging
Internet technologies offer unprecedented interconnection capability and ways of
distributing collaborative work, and these have great potential to bring the advan-
tages of these ways of working to the high-level control of process plants. These
advantages include: (1) enabling remote monitoring and adjustment of plants;
(2) enabling collaboration between skilled plant managers situated in geographically
diverse locations; and (3) enabling the business to relocate the physical location of
plant management staff easily in response to business needs.

In the areas of control theory and application, researchers began to exploit the
advantages of the Internet for control systems, namely Internet-based control sys-
tems, and its controllability and stability. These new types of control systems are
characterized as globally remote monitoring and adjustment of plants over the
Internet. In recent years, Internet-based control systems have gained considerable
attention in science and engineering [299, 300, 308], since they provide a new
and convenient unified framework for system control and practical applications.
Examples include intelligent home environments, wind-mill and solar power sta-
tions, small-scale hydroelectric power stations, and other highly geographically
distributed devices, as well as tele-manufacturing, tele-surgery, and tele-control of
spacecraft.

M.S. Mahmoud, Switched Time-Delay Systems,
DOI 10.1007/978-1-4419-6394-9_12, C© Springer Science+Business Media, LLC 2010
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With the explosive dominance of Internet services, physical systems stand to
benefit from the patterns of retrieving data and reacting to system fluctuations
from anywhere around the globe at any time. On the educational level, web-
based virtual control laboratories for distance learning purposes have been real-
ized [315, 360, 380, 415]. Essentially, Internet-based control systems have been
developed by means of extending discrete control systems, which do not explicitly
consider Internet transmission features [315]. It is further elaborated in [415] to
address the Internet transmission issue as characterized by unpredictable time delay
and data loss. One of the major challenges in Internet-based control systems is how
to deal with the Internet transmission delay, and this has demonstrated the need for
new control structure and relative elements as framework for Internet-based control
systems.

The existing approaches of overcoming network transmission delay mainly focus
on designing a model based on time-delay compensator or a state observer to reduce
the effect of the transmission delay. In [416], the overcoming of the Internet time
delay has been investigated from the control system architecture angle, including
introducing a tolerant time to the fixed sampling interval to potentially maximize
the possibility of succeeding the transmission on time. A dual-rate control scheme
for Internet-based control systems has been proposed in [410] where a two-level
hierarchy was used in the dual-rate control scheme. At the lower level, a local con-
troller that is implemented to control the plant at a higher frequency to stabilize the
plant and guarantee the plant being under control even when the network commu-
nication is lost for a long time. At the higher level, a remote controller is employed
to remotely regulate the desirable reference at a lower frequency to reduce the com-
munication load and increase the possibility of receiving data over the Internet on
time. The local and the remote controller are composed of some modes, which is
enabled due to the time and state of the network. Since the time delay is variable and
the uncertainty of the process parameters is unavoidable, a dual-rate Internet-based
control system may be unstable for certain control intervals.

The interest in the stability of networked control systems has grown in recent
years due to its theoretical and practical significance [83, 113, 235, 343, 380, 430,
433]. To the best our knowledge, there is virtually no result on robust dissipative
Internet-based control systems despite the significance of dissipativity analysis and
synthesis in dynamic systems [139, 203]. Results on the robust dissipative con-
trol problem for time-delay systems were reported in [236, 237]. This motivates
the present dissipativity investigation of multi-rate Internet-based switching control
systems with time-varying delays and uncertainties.

In this chapter, we study the modeling and robust dissipative control for Internet-
based switching control systems with multi-rate scheme, time-varying delays, and
uncertainties from a general perspective. The controller switches between some
modes due to the time and state of the network, either different time or the state
changing may cause the controller to change its mode and the mode may change
at each instant time. Based on remote control and local control strategy, a new
class of multi-rate switching control models with time delay is formulated. Some
new robust dissipative properties of such systems under arbitrary switching are
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investigated. All subsequent stability analysis and synthesis provide for both nom-
inal and uncertain representations some new sufficient conditions in the form of
linear matrix inequalities (LMIs), which can be conveniently explained by efficient
interior-point minimization methods [27]. Several special cases of practical interests
are derived.

12.2 Problem Statement

The Internet provides a great potential for the high-level control of process plants
and remote dynamical systems. Internet-based (or remote network) control is a new
concept which has received much attention in the previous years. However, little
work has so far been done which aimed at developing systematic design methods
for the design of such Internet-based process control systems. In this work, we focus
on one approach: that is, dual-rate network control of linear plants. We consider a
class of discrete-time dynamical systems under the action of a dual-rate control
structure with remote controller (RC) and local controller (LC), a block diagram of
which is depicted in Fig. 12.1.

Fig. 12.1 Network control model

In the sequel, it is assumed that the sampling interval of the RC is s multiple of
the LC, with s being a positive integer, and the switching device S1 closes only at
the time instant k = ns, n ∈ N and otherwise, it switches off. Correspondingly,
RC updates its state at k = ns, n ∈ N only, and otherwise, it keeps intact.
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12.2.1 Dual-Rate Network Control Model

In this diagram, there are three building blocks: the plant is a linear shift-invariant
system represented by

x(k + 1) = Ax(k)+ Bu(k)+ Γ ω(k)

z(k) = Cx(k)+Λω(k) (12.1)

where x(k) ∈ �n is the state vector, u(k) ∈ �m is the local control vector, z(k) ∈ �q

is the output observation vector, and ω(k) ∈ �q is the exogenous vector which is
assumed to belong to �2[0,∞), r(k) is the input, and for the dissipativity analy-
sis one can let r(k) = 0. The matrices A ∈ �n×n, B ∈ �n×m,C ∈ �q×n, Γ ∈
�n×q ,Λ ∈ �q×q are constants.

The second building block is a local controller (LC) of state-feedback type and
described by

u(k) = Gv(k − d(k))− K j x(k) (12.2)

where v(k) ∈ �m is the remote control vector, G ∈ �m×m, and K j ∈ �m×n, j ∈
{1, 2, ..., Na} are mode gain switching matrices where the switching rules are des-
ignated by

j (k) = φ(k, x(k)), j ∈ {1, 2, ..., Na}, m(k) = σ(k, x(k))

m ∈ {1, 2, ..., No}, Na, No ∈ N

implying that the switching controllers have Na and No modes, respectively, and
k, s ∈ N. The third building block is an RC implemented via a network and
given by

v(k − d(k))(k) = r(k − d(k))− Fm x(k − d(k)− τ(k)), k = n s

v(k − d(k))(k) = r(ns − d(k))− Fm x(ns − d(k)− τ(k))

k ∈ {ns + 1, ..., ns + s − 1} (12.3)

where d(k), τ (k) are communication- and network-induced delays and k,

n ∈ I+
Δ= {0, 1, 2, 3, ...}. For all practical purposes, we consider that these delays

are not exactly known and satisfy

0 < dm ≤ d(k) ≤ dM , 0 < τm ≤ τ(k) ≤ τM (12.4)

where dm, dM , τm, τM are constants designating delay bounds with dm, τm reflect-
ing a finite delay irrespective of the technology level of the communication links
whereas dM , τM reflecting the maximum allowable bound beyond which the net-
worked system will become unstable.
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With j ∈ {1, 2, ..., Na, m ∈ {1, 2, ..., No}, it follows from (12.1, 12.2, and 12.3)
that for k = n s,

x(k + 1) = (A − BK j )x(k)− BG Fm x(k − d(k)− τ(k))+ BGr(k − d(k))

+Γ ω(k)

z(k) = Cx(k)+Λω(k) (12.5)

and for k ∈ {ns + 1, ..., ns + s − 1}

x(k + 1) = (A − BK j )x(k)− BG Fm x(ns − d(k)− τ(k))+ BGr(ns − d(k))

+Γ ω(k)

z(k) = Cx(k)+Λω(k) (12.6)

Remark 12.1 When undertaking dissipativity analysis, we let r(k) ≡ 0, in which
case system (12.5) and (12.6) reduce to

x(k + 1) = (A − BK j )x(k)− BG Fm x(k − η(k))+ Γ ω(k), k = n s

z(k) = Cx(k)+Λω(k) (12.7)

and

x(k + 1) = (A − BK j )x(k)− BG Fm x(k − η(k))+ Γ ω(k)

k ∈ {ns + 1, ..., ns + s − 1}
z(k) = Cx(k)+Λω(k) (12.8)

where η(k) = d(k)+ τ(k), k, n ∈ I+, s > 0

12.2.2 Hybrid Control Model

To study the behavior of dual-control models under dissipativity, we use the change
of variables

A j = (A − BK j ), Bm = −BG Fm (12.9)

into (12.7) and (12.8) to obtain

x(k + 1) = A j x(k)+ Bm x(k − η(k))+ Γ ω(k), k = n s

x(k + 1) = A j x(k)+ Bm x(ns − η(k))+ Γ ω(k)

k ∈ {ns + 1, ..., ns + s − 1}
z(k) = Cx(k)+Λω(k) (12.10)
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Observe that at each time instant k, there will be only one mode of each controller
that enabled with η(k) > 0, k, s ∈ N. Moreover, noting that as k = ns + r, r =
0, 1, ..., s − 1 and ns − η(k) = k − (η(k) + r), then system (12.10) can be
expressed as

x(k + 1) = A j x(k)+ Bm x(k − θ(k))+ Γ ω(k)

0 < η(k) ≤ θ(k) ≤ η(k)+ s − 1

z(k) = Cx(k)+Λω(k) (12.11)

In the case the system matrices undergo structured parametric uncertainties, we have
the uncertain model

x(k + 1) = (A j +ΔA(k))x(k)+ (Bm +ΔB(k))x(k − θ(k))

+Γ ω(k)

z(k) = (C +ΔC(k))x(k)+Λ ω(k) (12.12)

and the associated uncertain matrices are given by

[ΔA(k) ΔB(k)] = MoΔ(k)[Na, Nb], Δt (k)Δ(k) ≤ I ∀k

ΔC(k) = McΔ(k)Na (12.13)

where in view of (12.4) for both models (12.12) and (12.13), we have

0 ≤ θm ≤ θ(k) ≤ θM (12.14)

12.3 Dissipativity Analysis

In the sequel, we study the dissipativity analysis of the following discrete-time
switching models in the nominal case:

x(k + 1) = A j x(k)+ Bm x(k − θ(k))+ Γ ω(k)

z(k) = Cx(k)+Λω(k)

j (k) = φ(k, x(k)), j ∈ {1, 2, ..., Na}, m(k) = σ(k, x(k))

0 < θm ≤ θ(k) ≤ θM , m ∈ {1, 2, ..., No} (12.15)

and in the uncertain case

x(k + 1) = (A j +ΔA(k))x(k)+ (Bm +ΔB(k))x(k − θ(k))+ Γ ω(k)

z(k) = (C +ΔC(k))x(k)+Λ ω(k)

j (k) = φ(k, x(k)), j ∈ {1, 2, ..., Na}, m(k) = σ(k, x(k))

0 < θm ≤ θ(k) ≤ θM , m ∈ {1, 2, ..., No}
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ΔA(k) = MoΔ(k)Na,ΔB(k) = MoΔ(k)Nb

ΔC(k) = McΔ(k)Na,Δ
t (k)Δ(k) ≤ I ∀k (12.16)

The following dissipativity definition is adopted

Definition 12.2 Hill and Moylan [139] Given matrices 0 < Qt = Q ∈ �q×q , 0 <

Rt = R ∈ �q×q , S system (12.11) is called (Q,S,R)-dissipative if for some real
function η(.), η(0) = 0,

K∑
r=0

[
zt ( j)Qz( j)+ 2ωt ( j)Sz( j)+ ωt (r)Rω(r)

]

+η(xo) ≥ 0, ∀K ≥ 0 (12.17)

Furthermore, if for some scalar α > 0,

K∑
r=0

[
zt (r)Qz(r)+ 2wt (r)Sz(r)+ wt (r)Rw(r)

]

+η(xo) ≥
K∑

r=0

αωt (r)ω(r), ∀ K ≥ 0 (12.18)

System (12.11) is called strictly (Q,S,R)-dissipative

Remark 12.3 It is significant to observe that Definition 12.2 paves the way to a
general performance objective

ΔV (k)+ δ||z||2 + ε||ω||2 − βztω ≤ 0 (12.19)

for an energy function V (k) = xt (k)Ξ x(k),Ξ > 0. The significance of the objec-
tive (12.18) is readily interpreted upon summing up inequality (12.19) over the
period [0, K ] to yield

xt (K )Ξ x(K ) ≤ xt (0)Ξ x(0)

−
K∑

j=0

[
δ||z( j)||2 + ε||ω( j)||2 − βzt ( j)ω( j)

]
(12.20)

By Rayleigh’s inequality [27], λm(Ξ)||x ||2 ≤ xt (k)Ξ x(k) ≤ λM (Ξ)||x ||2, we get

λm(Ξ)||x ||2 ≤ λM (Ξ)||x ||2

−
[ K∑

j=0

δ||z( j)||2 + ε||ω( j)||2 − βzt ( j)ω( j)
]

(12.21)
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As will be shown in the sequel, this allows several optimization possibilities in a
unified eigenvalue problem framework.

Our objective hereafter is to establish conditions for system (12.15) or (12.16)
with the switching controllers to be strictly (Q,S,R)-dissipative.

12.3.1 Dissipative Stability of the Nominal System

In the sequel, we use θs = (θM−θm) which accounts for the discrete span, and define
the state increment δx(k) = x(k + 1) − x(k). The following theorem provides the
desired stability result:

Theorem 12.4 Suppose that the gains K j , Fm are specified. Given the bounds
θM > 0, θm > 0 and a scalar convergence rate σ > 0. System (12.15) is delay-
dependent asymptotically stable and strictly (Q,S,R)-dissipative under arbitrary
switching rules φ and σ if there exist weighting matrices P,Q,Z,S,Raj ,Rcj ,

parameter matrices Θaj ,Θcj , Ψaj , Ψcj , Φaj , Φcj satisfying the following LMIs for
j ∈ {1, 2, ..., Na},m ∈ {1, 2, ..., No}, Na, No ∈ N

Π̃ =

⎡
⎢⎢⎢⎣

Ω jm Υ jm −Ct QΛ− Ct St At
jP

• −Ξ j 0 Bt
mP

• • −Σ Γ t

• • • −P

⎤
⎥⎥⎥⎦ < 0 (12.22)

Υ jm =

⎡
⎢⎢⎢⎣

√
θsΦaj

√
θsΨaj

√
θMΘaj

√
θs(A j − I )tRaj

√
θM (A j − I )tRcj√

θsΦcj
√
θsΨcj

√
θMΘcj

√
θsBt

mRaj
√
θMBt

mRcj

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎦

Ω jm =

⎡
⎢⎢⎢⎣

Π̃o Πaj Ψaj −Φaj

• −Πcj Ψcj −Φcj

• • −Z 0

• • • −S

⎤
⎥⎥⎥⎦

Ξ j = diag
[
Raj +Rcj Raj Rcj Raj Rcj

]
(12.23)

where

Π̃o = −P + (θs + 1)Q+ Z + S +Θaj +Θ t
a j − Ct QC

Πaj = −Θaj +Θ t
cj +Φaj − Ψaj

Πcj = Q+Θcj +Θ t
cj −Φcj −Φ t

cj + Ψcj + Ψ t
cj
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Σ = (R− α I )+Λt QΛ+ SΛ+Λt St (12.24)

Proof In terms of the state increment δx(k) = x(k + 1) − x(k), consider the
Lyapunov–Krasovskii functional (LKF):

V (k) = Vo(k)+ Va(k)+ Vc(k)+ Vm(k)+ Vn(k)

Vo(k) = xt (k)Px(k), Va(k) =
k−1∑

j=k−θ(k)
xt ( j)Qx( j)

Vc(k) =
k−1∑

j=k−θm

xt ( j)Zx( j)+
k−1∑

j=k−θM

xt ( j)Sx( j)

Vm(k) =
−θm∑

j=−θM+1

k−1∑
m=k+ j

x t (m)Qx(m)

Vn(k) =
−θm−1∑
j=−θM

k−1∑
m=k+ j

δxt (m)Raδx(m)

+
−1∑

j=−θM

k−1∑
m=k+ j

δxt (m)Rcδx(m) (12.25)

where P > 0,Q > 0,Z > 0,S > 0,Ra > 0,Rc > 0 are weighting matrices of
appropriate dimensions. A straightforward computation gives the first difference of
ΔV (k) = V (k + 1)− V (k) along the solutions of (12.15) as

ΔVo(k) = xt (k + 1)Px(k + 1)− xt (k)Px(k)

= [A j x(k)+ Bm x(k − θ(k))+ Γ ω(k)]tP
[A j x(k)+ Bm x(k − θ(k))+ Γ ω(k)]

−xt (k)Px(k)

ΔVa(k) ≤ xt (k)Qx(k)− xt (k − θ(k))Qx(k − θ(k))

+
k−θm∑

j=k−θM+1

xt ( j)Qx( j)

ΔVc(k) = xt (k)Zx(k)− xt (k − θm)Zx(k − θm)

+xt (k)Sx(k)− xt (k − θM )Sx(k − θM )

ΔVm(k) = (θM − θm)x
t (k)Qx(k)−

k−θm∑
j=k−θM+1

xt (k)Qx(k)
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ΔVn(k) = (θM − θm)δxt (k)Raδx(k)+ θMδxt (k)Rcδx(k)

−
k−dm−1∑
j=k−θM

δxt ( j)Raδx( j)−
k−1∑

j=k−θM

δxt ( j)Rcδx( j) (12.26)

To facilitate the delay-dependence analysis, we invoke the following identities

[
2xt (k)Θaj + 2xt (k − θ(k))Θcj

][
x(k)− x(k − θ(k))−

k−1∑
j=k−θ(k)

δx( j)

]
= 0

[
2xt (k)Φaj + 2xt (k − θ(k))Φcj

][
x(k − θ(k))− x(k − θM )

−
k−θ(k)−1∑
j=k−θM

δx( j)

]
= 0

[
2xt (k)Ψaj + 2xt (k − θ(k))Ψcj

][
x(k − θm)− x(k − θ(k))

−
k−θm−1∑
j=k−θ(k)

δx( j)

]
= 0 (12.27)

for some matrices Θa, Φa, Ψa,Θc, Φc, Ψc. By algebraic manipulations, we set
ω(k) ≡ 0 and proceed to get from (12.26) and (12.27)

ΔVk = ΔVo(k)+ΔVa(k)+ΔVc(k)+ΔVm(k)+ΔVn(k)

+
[

2xt (k)Θaj + 2xt (k − θ(k))Θcj

][
x(k)− x(k − θ(k))−

k−1∑
j=k−d(k)

δx( j)

]

+[2xt (k)Φaj + 2xt (k − θ(k))Φcj ]⎡
⎣x(k − θ(k))− x(k − dM )−

k−d(k)−1∑
j=k−dM

δx( j)

⎤
⎦

+[2xt (k)Ψaj + 2xt (k − θ(k))Ψcj ]⎡
⎣x(k − θm)− x(k − θ(k))−

k−dm−1∑
j=k−d(k)

δx( j)

⎤
⎦

= μt (k) Υ̃ μ(k), μ = [
xt (k) xt (k − θ(k)) xt (k − θm) xt (k − θM )

]t

Υ̃ = Ω jm + θsΦ j (Raj +Rcj )
−1Φ t

j + θsΨ jR−1
aj Ψ

t
j + θMΘ jR−1

cj Θ
t
j
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Ψ j =

⎡
⎢⎢⎣
Ψaj

Ψcj

0
0

⎤
⎥⎥⎦ , Φ j =

⎡
⎢⎢⎣
Φaj

Φcj

0
0

⎤
⎥⎥⎦ , Θ j =

⎡
⎢⎢⎣
Θaj

Θcj

0
0

⎤
⎥⎥⎦ (12.28)

Schur complement operations to (12.22) using (12.23) with C ≡ 0, Λ ≡ 0 leads
to Υ̃ < 0. In view of this and (12.28), it follows that there exists a small scalar
σ > 0 guaranteeing that ΔVk ≤ −σ ||x(k)||2. This proves that the system (12.15)
is asymptotically stable for θm ≤ θ(k) ≤ θM .

Considering the performance of system (12.15), we get from (12.26) and (12.27)

JK =
K∑

r=0

[
ΔVk − zt ( j)Qz( j)− 2 ωt ( j)Sz( j)− ωt (r)(R− α I )ω(r)

]

≤ [μt (r) ωt (r)] Π̃ [μt (r) ωt (r)]t (12.29)

In view of (12.22) using (12.23), we get JK < 0 implying that

K∑
r=0

[
zt ( j)Qz( j)+ 2 ωt ( j)Sz( j)+ ωt (r)(R− α I )ω(r)

]

>

K∑
r=0

ΔVr = VK+1 − V (0)

In addition, since Vk = V (xk) ≥ 0, it follows that

K∑
r=0

[
zt ( j)Qz( j)+ 2 ωt ( j)Sz( j)+ ωt (r)(R− α I )ω(r)

]

≥ −V (0)
Δ= η, ∀K ∈ N, ∀ω ∈ �2[0,∞)

which implies from Definition 12.2 that system (12.15) is delay-dependent asymp-
totically stable and strictly (Q,S,R)-dissipative under arbitrary switching rules φ

and σ and therefore completes the proof.

12.3.2 Dissipative Synthesis of the Nominal System

The following corollary establishes a method to determine the gains:

Corollary 12.5 Given the bounds θM > 0, θm > 0 and matrices Raj ,Rcj . System
(12.15) is delay-dependent asymptotically stable and strictly (Q,S,R)-dissipative
under arbitrary switching rules φ and σ if there exist weighting matrices
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X ,Ya,Yc,Ye,Yr j ,Yt j ,Yej ,Ys j ,Yv j ,Yw j ,Xaj ,Xcj satisfying the following LMIs
for j ∈ {1, 2, ..., Na},m ∈ {1, 2, ..., No}, Na, No ∈ N

Π̃x =

⎡
⎢⎢⎣
Ω̂ jm Υ̂ jm −Ct QΛ− Ct St X At

j − Y t
k j Bt

• −Ξ̂ j 0 −Y t
m Gt Bt

• • −Σ Γ t

• • • −X

⎤
⎥⎥⎦ < 0 (12.30)

Υ̂ jm =

⎡
⎢⎢⎣

√
θsYej

√
θsYv j

√
θMYr j

√
θsXs jRaj

√
θM (Xs j − I )Rcj√

θsYs j
√
θsYw j

√
θMYt j −√θsY t

m Gt BtRaj −√θMY t
m Gt BtRcj

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦

Ω̂ jm =

⎡
⎢⎢⎣
Π̂o Π̂aj Yv j −Yej

• −Π̂cj Yw j −Ys j

• • −Yc 0
• • • −Ye

⎤
⎥⎥⎦

Ξ̂ j = diag
[
Xaj + Xcj Xaj Xcj Xaj Xcj

]
(12.31)

where

Π̂o = −X + (θs + 1)Ya + Yc + Ye + Yr j + Y t
r j − XCt QCX ,

Π̂aj = −Yr j + Y t
t j + Yej − Yv j

Π̂cj = Ya + Yt j + Y t
t j − Ys j − Y t

s j + Yw j + Y t
w j , Xs j = X At

j − X − Y t
k j Bt

Σ = (R− α I )+Λt QΛ+ SΛ+Λt St (12.32)

Moreover, the feedback gains are given by K j = Yk jX−1 and Fm = Y f mX−1.

Proof Introducing the congruent transformation

T = diag[Ta, Te, I ], Ta = diag[X , X , X , X ]
Te = diag[X , X , X , I, I, I ], X = P−1

and making the change of variables

Ya = XQX , Yc = XZX , Ye = XSX , Yr j = XΘajX
Yt j = XΘcjX , Yej = XΦajX
Ys j = XΦcjX , Yv j = XΨajX , Yw j = XΨcjX , Yk j = X K j

Xaj = X RajX , Xcj = X RcjX , Y f m = X Fm

Simple manipulations show that T Π̃ T = Π̃x .
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12.3.3 Dissipativity Stability of the Uncertain System

In preparation to develop robust dissipative stability of system (12.16), we introduce
the following block matrices:

M̂ =

⎡
⎢⎢⎢⎢⎣

Mo 0
0 Mo

0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦, N̂ t =

⎡
⎢⎢⎢⎢⎣

0 0√
θs(Na − Nb K j )Raj −√θs NbG FmRaj√
θM (Na − Nb K j )Rcj −√θM NbG FmRcj

0 0
(Na − Nb K j )P NbG FmP

⎤
⎥⎥⎥⎥⎦

M̃ =

⎡
⎢⎢⎢⎢⎣

−N t
a

0
0
0
0

⎤
⎥⎥⎥⎥⎦, Ñ t =

⎡
⎢⎢⎢⎢⎣

0
0
0

(QΛ− St )t Mc

0

⎤
⎥⎥⎥⎥⎦, U =

⎡
⎢⎢⎢⎢⎢⎢⎣

N t
a πCt Q M̂ εN̂ t M̃ ν Ñ t

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

V = diag
[
π I

(
Q− πQMc Mt

cQ
)
ε I ε I ν I ν I

]
Ξ̄ j = diag

[
R−1

aj +R−1
cj R−1

aj R−1
cj R−1

aj R−1
cj

]
(12.33)

for some scalars π > 0, ε > 0, ν > 0. The corresponding robust results are
provided by the following theorem and corollary:

Theorem 12.6 Suppose that the gains K j , Fm are specified. Given the bounds
θM > 0, θm > 0 and a scalar convergence rate σ > 0. System (12.16) is delay-
dependent asymptotically stable and strictly (Q,S,R)-dissipative under arbitrary
switching rules φ and σ if there exist weighting matrices P,Q,Z,S,Raj ,Rcj ,

parameter matrices Θaj ,Θcj , Ψaj , Ψcj , Φaj , Φcj and scalars π > 0, ε > 0, ν > 0
satisfying the following LMIs for j ∈ {1, 2, ..., Na},m ∈ {1, 2, ..., No}, Na, No ∈ N

Π =

⎡
⎢⎢⎢⎢⎣

Ω jm Υ jm −Ct QΛ− Ct St At
jP U

• −Ξ j 0 Bt
mP 0

• • −Σ Γ t 0
• • • −P 0
• • • • −V

⎤
⎥⎥⎥⎥⎦ < 0 (12.34)

Ω jm =

⎡
⎢⎢⎣
Πo Πaj Ψaj −Φaj

• −Πcj Ψcj −Φcj

• • −Z 0
• • • −S

⎤
⎥⎥⎦ (12.35)

where Πo = −P + (θs + 1)Q+Z +S +Θaj +Θ t
a j and the matrices Ξ j , Υ jm are

given in (12.22 and 12.23).
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Proof Incorporating the system matrices of (12.16) into LMI (12.30) of Theorem
12.4 and manipulating with the help of inequalities A.1.1 and A.1.2 in the Appendix
and (12.33), we obtain LMI (12.34).

12.3.4 Dissipative Synthesis of the Uncertain System

By a parallel development to Corollary 12.5, we have the following result for sys-
tem (12.16):

Corollary 12.7 Given the bounds θM > 0, θm > 0 and matrices Raj , Rcj . System
(12.16) is delay-dependent asymptotically stable and strictly (Q,S,R)-dissipative
under arbitrary switching rules φ and σ if there exist weighting matrices
X , Ya, Yc, Ye, Yq , Xx j , Xym, Yr j , Yt j , Yej , Ys j , Yv j , Yw j ,

X̂aj , X̂cj and scalars π > 0, ε > 0, ν > 0 satisfying the following LMIs for
j ∈ {1, 2, ..., Na}, m ∈ {1, 2, ..., No}, Na, No ∈ N

Π x =

⎡
⎢⎢⎢⎢⎣

Ω jm Υ jm −Ct QΛ− Ct St X At
j − Y t

k j Bt U
• −Ξ̂ j 0 −Y t

m Gt Bt 0
• • −Σ Γ t 0
• • • −X 0
• • • • −V

⎤
⎥⎥⎥⎥⎦ < 0 (12.36)

Υ jm =

⎡
⎢⎢⎣

√
θsYej

√
θsYv j

√
θMYr j

√
θsXs j

√
θM (Xs j − I )√

θsYs j
√
θsYw j

√
θMYt j −√θsY t

m Gt Bt −√θMY t
m Gt Bt

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦

Ω jm =

⎡
⎢⎢⎣
Π̂o Π̂aj Yv j −Yej

• −Π̂cj Yw j −Ys j

• • −Yc 0
• • • −Ye

⎤
⎥⎥⎦ , Ξ j = diag

[
X̂aj + X̂cj X̂aj X̂cj X̂aj X̂cj

]

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

X N t
a Yq X M̂ Ŷ X M̃ νX Ñ t

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Ŷ =

⎡
⎢⎢⎢⎢⎣

0 0√
θsXx j −√θsXym√
θMXx j −√θMXym

0 0
Xx j Xym

⎤
⎥⎥⎥⎥⎦ (12.37)
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where

Π̂o = −X + (θs + 1)Ya + Yc + Ye + Yr j + Y t
r j , Π̂aj = −Yr j + Y t

t j + Yej − Yv j

Π̂cj = Ya + Yt j + Y t
t j − Ys j − Y t

s j + Yw j + Y t
w j ,Xs j = X At

j − X − Y t
k j Bt

Σ = (R− α I )+Λt QΛ+ SΛ+Λt St (12.38)

Moreover, the feedback gains are given by K j = Yk jX−1 and Fm = Y f mX−1.

Proof Introducing the congruent transformation

T = diag[Ta, Te, To], Ta = diag[X , X , X , X ]
Te = diag[X , X , X , I, I, I ], X = P−1

To = diag[I, I, I, I, X , X , I, I ]

and making the change of variables

Ya = XQX , Yc = XZX , Ye = XSX , Yr j = XΘajX
Yt j = XΘcjX , Yej = XΦajX
Ys j = XΦcjX , Yv j = XΨajX , Yw j = XΨcjX , Yk j = X K j

X̂aj = X Raj , X̂cj = X Rcj , Y f m = X Fm, Yq = πXCt Q

Xx j = X (NaX − NbYk j ), Xym = X NbGY f m

Simple manipulations show that T Π T = Π x .

12.4 Special Cases

In order to illustrate the generality of our analysis and synthesis approach, hereafter
we provide results pertaining to some relevant interesting cases in system theory.
These results are summarized by the following corollaries:

Corollary 12.8 Suppose that the gains K j , Fm are specified. Given the bounds
θM > 0, θm > 0 and a scalar convergence rate σ > 0. System (12.15) is delay-
dependent asymptotically stable with disturbance attenuation γ under arbitrary
switching rules φ and σ if there exist weighting matrices P,Q,Z,S,Raj ,Rcj ,

parameter matrices Θaj ,Θcj , Ψaj , Ψcj , Φaj , Φcj satisfying the following LMIs for
j ∈ {1, 2, ..., Na},m ∈ {1, 2, ..., No}, Na, No ∈ N

Π̃∞ =

⎡
⎢⎢⎢⎣

Ω jmd Υ jm CtΛ At
jP

• −Ξ j 0 Bt
mP

• • −Σ̂ Γ t

• • • −P

⎤
⎥⎥⎥⎦ < 0 (12.39)



384 12 Applications to Multi-Rate Control

Ω jmd =

⎡
⎢⎢⎣
Π̃o Πaj Ψaj −Φaj

• −Πcj Ψcj −Φcj

• • −Z 0
• • • −S

⎤
⎥⎥⎦ (12.40)

where

Π̃o = −P + (θs + 1)Q+ Z + S +Θaj +Θ t
a j + Ct C

Σ̂ = γ 2
o I −ΛtΛ (12.41)

Proof Follows from Theorem 12.4 by setting Q = −I, S = 0, (R− α I ) = γ 2 I .

Corollary 12.9 Suppose that the gains K j , Fm are specified. Given the bounds
θM > 0, θm > 0 and a scalar convergence rate σ > 0. System (12.15) is
delay-dependent asymptotically stable and strictly positive real under arbitrary
switching rules φ and σ if there exist weighting matrices P,Q,Z,S,Raj ,Rcj ,

parameter matrices Θaj ,Θcj , Ψaj , Ψcj , Φaj , Φcj satisfying the following LMIs for
j ∈ {1, 2, ..., Na},m ∈ {1, 2, ..., No}, Na, No ∈ N

Π̃s =

⎡
⎢⎢⎣
Ω jms Υ jm −Ct At

jP
• −Ξ j 0 Bt

mP
• • −Σ̃ Γ t

• • • −P

⎤
⎥⎥⎦ < 0 (12.42)

Ω jms =

⎡
⎢⎢⎣
Π̃s Πaj Ψaj −Φaj

• −Πcj Ψcj −Φcj

• • −Z 0
• • • −S

⎤
⎥⎥⎦ (12.43)

where

Π̃s = −P + (θs + 1)Q+ Z + S +Θaj +Θ t
a j

Σ̃ = Λ+Λt (12.44)

Proof Follows from Theorem 12.4 by setting Q = 0, S = I, (R− α I ) = 0.

Corollary 12.10 Suppose that the gains K j , Fm are specified. Given the bounds
θM > 0, θm > 0 and a scalar convergence rate σ > 0. System (12.15)
is delay-dependent asymptotically stable and passive under arbitrary switching
rules φ and σ if there exist weighting matrices P,Q,Z,S,Raj ,Rcj , parame-
ter matrices Θaj ,Θcj , Ψaj , Ψcj , Φaj , Φcj satisfying the following LMIs for j ∈
{1, 2, ..., Na},m ∈ {1, 2, ..., No}, Na, No ∈ N
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Π̃ =

⎡
⎢⎢⎢⎣

Ω jms Υ jm −Ct At
jP

• −Ξ j 0 Bt
mP

• • −Σp Γ t

• • • −P

⎤
⎥⎥⎥⎦ < 0 (12.45)

where Σp = β I +Λ+Λt .

Proof Follows from Theorem 12.4 by setting Q = 0,S = I, (R− α I ) = β I .

12.5 Numerical Simulation

In order to demonstrate the applicability and effectiveness of the developed
approach, we present a numerical simulation example. Consider system (12.16) with
the following data (Na = 2, No = 3)

A1 =
⎡
⎣ 0 0.1 −0.05

0 0.01 0.3
0.1 0.4 0.6

⎤
⎦ , A2 =

⎡
⎣ 0 −0.3 −0.01

0.1 0.02 0.1
0.2 −0.3 0.5

⎤
⎦ , B1 =

⎡
⎣1.2 1.1 −1.8

0.7 0.2 0.5
0.2 −0.3 1.4

⎤
⎦

B2 =
⎡
⎣ 0.7 0.4 −1.2
−0.5 1.1 −2.3
0.3 −1.4 1.9

⎤
⎦ , B3 =

⎡
⎣−1.1 0.4 0.5

1.3 0.5 −1.3
−0.1 0.8 −1.5

⎤
⎦ , Ct =

⎡
⎣0.5

0.6
0.2

⎤
⎦

Γ =
⎡
⎣0.4

0.2
0.3

⎤
⎦ , Mo =

⎡
⎣0.4

0
0.2

⎤
⎦ , N t

a =
⎡
⎣0.1

0.1
0.1

⎤
⎦ , N t

b =
⎡
⎣0.2

0.3
0

⎤
⎦ , Mc = 0.5, Λ = 0.1

Observe that the system under consideration is unstable. Using the Matlab LMI
Control Toolbox with θm = 4, θM = 8, it is found that the feasible solution of
LMI (12.36) is given by

X =
⎡
⎣ 0.8737 0.4545 0.2458

0.4545 0.7785 0.1658
0.2458 0.1658 0.5756

⎤
⎦ , Yk1 =

[
0.7624 0.1103 0.0005
0.1205 0.0144 0.2367

]

Yk2 =
[

0.6543 0.2103 0.0101
0.0145 0.5282 0.2175

]
, Y f 1 =

[
0.9012 0.6334 0.0008
0.1546 0.1024 0.1055

]

Y f 2 =
[

0.7172 0.5481 0.0003
0.4323 0.1455 0.0019

]
, Y f 3 =

[
0.8344 0.5756 0.6362
0.4143 0.2872 0.0005

]

K1 =
⎡
⎣ 0.0077 0.1467 −0.0447

0.0050 0.0026 0.0609
0.0033 0.0033 0.0714

⎤
⎦ , K2 =

⎡
⎣ 0.0813 −0.0326 −0.0078
−0.1063 0.0087 0.4208
−0.0653 −0.0446 −0.0218

⎤
⎦

F1 =
⎡
⎣−0.0292 0.0607 −0.0036

0.0914 −0.0469 −0.0160
0.0024 0.0061 0.0823

⎤
⎦ , F2 =

⎡
⎣−0.0143 0.0732 −0.0144
−0.0787 0.2397 −0.0321
−0.0051 0.0032 0.0723

⎤
⎦
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F3 =
⎡
⎣−0.0269 0.1033 0.0446
−0.2409 0.5193 −0.0459
0.0043 −0.0056 −0.0663

⎤
⎦

State trajectories simulation is depicted in Fig. 12.2 and the corresponding con-
trols are plotted in Figs. 12.3 and 12.4. It can be easily verified that the closed-loop
system now is stable, which emphasizes the effectiveness of the robust dissipative
approach in stabilizing the system by remote and local controllers.
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Fig. 12.4 Control trajectories: input 2

12.6 Conclusions

In this chapter, we have formulated a class of hybrid multi-rate control models with
time-delay and switching controllers based on combined remote control and local
control strategies. We have addressed the problem of designing robust dissipative
controllers based on generalized criteria. An improved Lyapunov–Krasovskii func-
tional has been constructed and the subsequent analysis has established some new
sufficient conditions in the form of LMIs for both nominal and uncertain represen-
tations. Several special cases of practical interests have been derived. A numerical
simulation example has been given to illustrate the effectiveness of the theoretical
result.



Appendix

In this appendix, we collect some useful mathematical inequalities and lemmas,
which have been extensively used throughout the book.

A.1 Basic Inequalities

All mathematical inequalities are proved for completeness. They are termed facts
due to their high frequency of usage in the analytical developments.

A.1.1 Inequality 1

For any real matrices Σ1, Σ2, and Σ3 with appropriate dimensions, it follows that

Σ1Σ2 +Σ t
2Σ

t
1 ≤ αΣ1Σ

t
1 + α−1Σ t

2Σ2,∀α > 0

Proof This inequality can be proved as follows. Since Φ tΦ ≥ 0 holds for any
matrix Φ, then take Φ as

Φ = [α1/2Σ1 − α−1/2Σ2]

Expansion of Φ tΦ ≥ 0 gives ∀α > 0

αΣ1Σ
t
1 + α−1Σ t

2Σ2 −Σ t
1Σ2 −Σ t

2Σ1 ≥ 0

which by simple arrangement yields the desired result.

A.1.2 Inequality 2

Let Σ1, Σ2, Σ3 and 0 < R = Rt be real constant matrices of compatible dimen-
sions and H(t) be a real matrix function satisfying Ht (t)H(t) ≤ I. Then for any
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ρ > 0 satisfying ρΣ t
2Σ2 < R, the following matrix inequality holds:

(Σ3+Σ1 H(t)Σ2)R−1 (
Σ t

3 +Σ t
2 Ht (t)Σ t

1

) ≤ ρ−1Σ1Σ
t
1+Σ3

(
R− ρΣ t

2Σ2
)−1

Σ t
3

Proof The proof of this inequality proceeds like the previous one by considering
that

Φ =
[(

ρ−1Σ2Σ
t
2

)−1/2
Σ2 R−1Σ t

3 −
(
ρ−1Σ2Σ

t
2

)−1/2
Ht (t)Σ t

1

]

Recall the following results

ρΣ t
2Σ2 < R,

[
R − ρΣ t

2Σ2
]−1 =

[
R−1 + R−1Σ t

2

[
ρ−1 I −Σ2 R−1Σ t

2

]−1
Σ2 R−1Σ2

]

and

Ht (t)H(t) ≤ I �⇒ H(t)Ht (t) ≤ I

Expansion of Φ tΦ ≥ 0 under the condition ρΣ t
2Σ2 < R with standard matrix

manipulations gives

Σ3 R−1Σ t
2 Ht (t)Σ t

1 +Σ1 H(t)Σ2 R−1Σ t
3 +Σ1 H(t)Σ2Σ

t
2 Ht (t)Σ t

1 ≤
ρ−1Σ1 H(t)Ht (t)Σ t

1 +Σ t
3 R−1Σ2

[
ρ−1 IΣ2Σ

t
2

]−1
Σ2 R−1Σ t

3 �⇒
(Σ3 +Σ1 H(t)Σ2)R−1 (

Σ t
3 +Σ t

2 Ht (t)Σ t
1

)−Σ3 R−1Σ t
3 ≤

ρ−1Σ1 H(t)Ht (t)Σ t
1 +Σ t

3 R−1Σ2

[
ρ−1 I −Σ2Σ

t
2

]−1
Σ2 R−1Σ t

3 �⇒
(Σ3 +Σ1 H(t)Σ2)R−1 (

Σ t
3 +Σ t

2 Ht (t)Σ t
1

) ≤
Σ3

[
R−1 +Σ2

[
ρ−1 I −Σ2Σ

t
2

]−1
Σ2 R−1

]
Σ t

3 +
ρ−1Σ1 H(t)Ht (t)Σ t

1 =
ρ−1Σ1 H(t)Ht (t)Σ t

1 +Σ3
(
R − ρΣ t

2Σ2
)−1

Σ t
3

which completes the proof.

A.1.3 Inequality 3

For any real vectors β, ρ and any matrix Qt = Q > 0 with appropriate dimensions,
it follows that
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−2ρtβ ≤ ρt Qρ + β t Q−1β

Proof Starting from the fact that

[ρ + Q−1β]t Q[ρ + Q−1β] ≥ 0, Q > 0

which, when expanded and arranged, yields the desired result.

A.1.4 Inequality 4 (Schur Complements)

Given a matrix Ω composed of constant matrices Ω1, Ω2, Ω3 where Ω1 = Ω t
1 and

0 < Ω2 = Ω t
2 as follows

Ω =
[
Ω1 Ω3
Ω t

3 Ω2

]

We have the following results
(A) Ω ≥ 0 if and only if either

⎧⎨
⎩

Ω2 ≥ 0
Π = ΥΩ2

Ω1 − ΥΩ2Υ
t ≥ 0

(A.1)

or
⎧⎨
⎩

Ω1 ≥ 0
Π = Ω1Λ

Ω2 −ΛtΩ1Λ ≥ 0
(A.2)

hold where Λ,Υ are some matrices of compatible dimensions.
(B) Ω > 0 if and only if either

{
Ω2 > 0

Ω1 −Ω3Ω
−1
2 Ω t

3 > 0

or
{

Ω1 ≥ 0
Ω2 −Ω t

3Ω
−1
1 Ω3 > 0

hold where Λ,Υ are some matrices of compatible dimensions.
In this regard, matrix Ω3Ω

−1
2 Ω t

3 is often called the Schur complement Ω1(Ω2)

in Ω .

Proof (A) To prove (A.1), we first note that Ω2 ≥ 0 is necessary. Let zt = [
zt

1 zt
2

]
be a vector partitioned in accordance with Ω . Thus we have
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ztΩz = zt
1Ω1z1 + 2zt

1Ω3z2 + zt
2Ω2z2 (A.3)

Select z2 such that Ω2z2 = 0. If Ω3z2 �= 0, let z1 = −πΩ3z2, π > 0. Then it
follows that

ztΩz = π2zt
2Ω

t
3Ω1Ω3z2 − 2π zt

2Ω
t
3Ω3z2

which is negative for a sufficiently small π > 0. We thus conclude Ω1z2 = 0, which
then leads to Ω3z2 = 0,∀z2 and consequently

Ω3 = ΥΩ2 (A.4)

for some Υ .
Since Ω ≥ 0, the quadratic term ztΩz possesses a minimum over z2 for any z1.

By differentiating ztΩz from (A.3) wrt zt
2, we get

∂(ztΩz)

∂zt
2

= 2Ω t
3z1 + 2Ω2z2 = 2Ω2Υ

t z1 + 2Ω2z2

Setting the derivative to zero yields

Ω2Υ z1 = −Ω2z2 (A.5)

Using (A.4) and (A.5) in (A.3), it follows that the minimum of ztΩz over z2 for any
z1 is given by

min
z2

ztΩz = zt
1[Ω1 − ΥΩ2Υ

t ]z1

which proves the necessity of Ω1 − ΥΩ2Υ
t ≥ 0.

On the contrary, we note that the conditions (A.1) are necessary for Ω ≥ 0 and
since together they imply that the minimum of ztΩz over z2 for any z1 is nonnega-
tive, they are also sufficient.

Using similar argument, conditions (A.2) can be derived as those of (A.1) by
starting with Ω1.

The proof of (B) follows as direct corollary of (A).

A.1.5 Inequality 5

For any quantities u and v of equal dimensions and for all ηt = i ∈ S, it follows
that the following inequality holds

||u + v||2 ≤ [1+ β−1]||u||2 + [1+ β]||v||2 (A.6)

for any scalar β > 0, i ∈ S
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Proof Since

[u + v]t [u + v] =
ut u + vtv + 2utv (A.7)

It follows by taking norm of both sides of (A.7) for all i ∈ S that

||u + v||2 ≤ ||u||2 + ||v||2 + 2||utv|| (A.8)

We know from the triangle inequality that

2||utv|| ≤ β−1||u||2 + β||v||2 (A.9)

On substituting (A.9) into (A.8), it yields (A.6).

A.1.6 Inequality 6

Given matrices 0 < Qt = Q,P = P t , then it follows that

− PQ−1P ≤ −2P +Q (A.10)

This can be easily established by considering the algebraic inequality

(P −Q)tQ−1(P −Q) ≥ 0

and expanding to get

PQ−1P − 2P +Q ≥ 0 (A.11)

which, when manipulating, yields (A.10). An important special case is obtained
when P ≡ I , that is

−Q−1 ≤ −2I +Q (A.12)

This inequality proves useful when using Schur complements to eliminate the quan-
tity Q−1 from the diagonal of an LMI without alleviating additional math opera-
tions.

A.2 Lemmas

The basic tools and standard results that are utilized in robustness analysis and
resilience design in the different chapters are collected hereafter.
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Lemma A.1 Consider the functional

H =
∫ β(t)

α(t)

∫ t

t−s
g(r)drds

with g(r) > 0, then the time-derivative Ḣ is given by

Ḣ = [β(t)− α(t)]g(t)− [1− β̇]
∫ t−α(t)

t−β(t)
g(s)ds

+[β̇ − α̇]
∫ t

t−α
g(s)ds

Proof Defining G(s) = ∫
g(s)ds and applying the classical Leibniz rule of calculus

d

dx

∫ p(x)

q(x)
f (x, t)dt = dp

dx
f (x, p(x))

−dq

dx
f (x, q(x))+

∫ p(x)

q(x)

∂ f

∂x
(x, t)dt

the desired result readily follows. �
Lemma A.2 The matrix inequality

−Λ+ SΩ−1St < 0 (A.13)

holds for some 0 < Ω = Ω t ∈ �n×n, if and only if
[−Λ SX
• −X − X t + Z

]
< 0 (A.14)

holds for some matrices X ∈ �n×n and Z ∈ �n×n.

Proof (�⇒) By Schur complements, inequality (A.13) is equivalent to

[−Λ SΩ−1

• −Ω−1

]
< 0 (A.15)

Setting X = X t = Z = Ω−1, we readily obtain inequality (A.14).
(⇐�) Since the matrix [I S] is of full rank, we obtain

[
I
St

]t [−Λ SX
• −X − X t + Z

] [
I
St

]
< 0 ⇐⇒

−Λ+ SZSt < 0 ⇐⇒
−Λ+ SΩ−1St < 0,Z = Ω−1 (A.16)

which completes the proof. �
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Lemma A.3 The matrix inequality

AP + PAt + DtRD +M < 0 (A.17)

holds for some 0 < P = P t ∈ �n×n, if and only if

⎡
⎣ AV + V t At +M P + AW − V DtR

• −W −W t 0
• • −R

⎤
⎦ < 0 (A.18)

holds for some V ∈ �n×n and W ∈ �n×n.

Proof (�⇒) By Schur complements, inequality (A.17) is equivalent to

[
AP + PAt +M DtR

• −R
]
< 0 (A.19)

Setting V = V t = P,W = W t = R, it follows from Lemma (A.2) with Schur
complements that there exists P > 0,V,W such that inequality (A.18) holds.
(⇐�) In a similar way, Schur complements to inequality (A.18) imply that

⎡
⎣ AV + V t At +M P + AW − V DtR

• −W −W t 0
• • −R

⎤
⎦ < 0

⇐⇒
[

I
A

] [
AV + V t At +M+ DtP−1 D P + AW − V

• −W −W t

] [
I
A

]t

< 0

⇐⇒ AP + PAt + DtPD +M < 0,V = V t (A.20)

which completes the proof. �

The following lemmas are found in [334].

Lemma A.4 Given any x ∈ �n:

max{[xt RHΔGx]2 : Δ ∈ �} = xt RH Ht Rxxt Gt Gx

Lemma A.5 Given matrices 0 ≤ X = Xt ∈ �p×p,Y = Y t < 0 ∈ �p×p, 0 ≤ Z =
Zt ∈ �p×p, such that

[ξ t Y ξ ]2 − 4[ξ t Xξξ t Zξ ]2 > 0

for all 0 �= ξ ∈ �p is satisfied. Then there exists a constant α > 0 such that

α2 X + αY + Z < 0
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The following lemma can be found in [301].

Lemma A.6 For given two vectors α ∈ �n, β ∈ �m and matrix N ∈ �n×m defined
over a prescribed interval Ω , it follows for any matrices X ∈ �n×n,Y ∈ �n×m,

and Z ∈ �m×m, the following inequality holds

−2
∫
Ω

αt (s)Nβ(s)ds ≤
∫
Ω

[
α(s)
β(s)

]t [ X Y −N
Y t −N t Z

] [
α(s)
β(s)

]
ds

where

[
X Y
Y t Z

]
≥ 0

An algebraic version of Lemma A.6 is stated below

Lemma A.7 For given two vectors α ∈ �n, β ∈ �m and matrix N ∈ �n×m defined
over a prescribed interval Ω , it follows for any matrices X ∈ �n×n,Y ∈ �n×m,

and Z ∈ �m×m, the following inequality holds

−2αtNβ ≤
[
α

β

]t [ X Y −N
Y t −N t Z

] [
α

β

]

= αt Xα + β t (Y t −N t )α + αt (Y −N )β + β t Zβ

subject to

[
X Y
Y t Z

]
≥ 0

The following lemma can be found in [216]

Lemma A.8 Let 0 < Y = Y t and M, N be given matrices with appropriate dimen-
sions. Then it follows that

Y + MΔN + N tΔt Mt < 0,∀ΔtΔ ≤ I

holds if and only if there exists a scalar ε > 0 such that

Y + εM Mt + ε−1 N t N < 0

In the following lemma, we let X (z) ∈ �n×p be a matrix function of the variable
z. A matrix X∗(z) is called the orthogonal complement of X (z) if Xt (z)X∗(z) = 0
and X (z)X∗(z) is nonsingular (of maximum rank).

Lemma A.9 Let 0 < L = Lt and X,Y be given matrices with appropriate dimen-
sions. Then it follows that the inequality
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L(z)+ X (z)PY (z)+ Y t (z)Pt Xt (z) > 0 (A.21)

holds for some P and z = zo if and only if the following inequalities

Xt∗(z)L(z)X∗(z) > 0,Y t∗(z)L(z)Y∗(z) > 0 (A.22)

hold with z = zo.

It is significant to observe that feasibility of matrix inequality (A.21) with variables
P and z is equivalent to the feasibility of (A.22) with variable z and thus the matrix
variable P has been eliminated from (A.21) to form (A.22). Using Finsler’s lemma
[27], we can express (A.22) in the form

L(z)− βX (z)Xt (z) > 0, L(z)− βY (z)Y t (z) > 0 (A.23)

for some β ∈ IR.
The following is a statement of the reciprocal projection Lemma [4]

Lemma A.10 Let P > 0 be a given matrix. The following statements are equiva-
lent:

(i) M+ Z + Zt < 0

(ii) the LMI problem

[
M+ P − (V + V t ) V t + Zt

V + Z −P
array

]
< 0

is feasible with respect to the general matrix V .

A useful lemma that is frequently used in overbounding given inequalities is pre-
sented.

Lemma A.11 For matrices X and Y and K t = K ≥ 0 of appropriate dimensions,
with K † being the Moore–Penrose generalized inverse of matrix K , the following
lemma is proved:

Xt K K †Y + Y t K K † X ≤ Xt K X + Y t K †Y

In particular, if x and y are vectors and K t = K > 0, then

xt y ≤ (1/2)xt K x + (1/2)yt K−1 y

Proof Lrt the real Schur decomposition of K be K = U t V U where U = U−t

is orthogonal and V = diag(λ1, ..., λn) is the diagonal matrix of eigenvalues. The
lemma then follows from
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0 ≤
[√

V U X −
√

V †U−t Y
]t [√

V U X −
√

V †U−t Y
]

≤ XtU t V U X + Y tU−1V †UY − Y tU−1
√

V †
√

V U X

− XtU t
√

V
√

V †U−t X

as U−1
√

V †
√

V U = U t
√

V
√

V †U−t = K K † and K † = U−1V †U

Lemma A.12 Let x ∈ �n, P t = P ∈ �n×n,Z ∈ �m×n, rank(Z) = r < n. The
following statements are equivalent:

(I) xtPx < 0,∀x �= 0 : Zx = 0, thatis,∀x( �= 0) ∈ KerZ ,

(II) ∃B ∈ �n×m : P + BZ + Z tBt < 0.

This is frequently called Finsler’s Lemma and can be found in [27].

A.3 Linear Matrix Inequalities

It has been shown in [27] that a wide variety of problems arising in system and
control theory can conveniently reduced to a few standard convex or quasi-convex
optimization problems involving linear matrix inequalities (LMIs). The resulting
optimization problems can then be solved numerically very efficiently using com-
mercially available interior-point methods.

A.3.1 Basics

One of the earliest LMIs arises in Lyapunov theory. It is well known that the differ-
ential equation

ẋ(t) = Ax(t) (A.24)

has all of its trajectories converge to zero (stable) if and only if there exists a matrix
P > 0 such that

At P + AP < 0 (A.25)

This leads to the LMI formulation of stability, that is, a linear time-invariant system
is asymptotically stable if and only if there exists a matrix 0 < P = Pt satisfying
the LMIs

At P + AP < 0, P > 0
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Given a vector variable x ∈ IRn and a set of matrices 0 < G j = Gt
j ∈ IRn×n, j =

0, ..., p, then a basic compact formulation of a linear matrix inequality is

G(x)
Δ= G0 +

p∑
j=1

x j G j > 0 (A.26)

Notice that (A.26) implies that vt G(x)v > 0∀0 �= v ∈ �n . More importantly, the
set {x |G(x) > 0 is convex. Nonlinear (convex) inequalities are converted to LMI
form using Schur complements in the sense that

[
Q(x) S(x)
• R(x)

]
> 0 (A.27)

where Q(x) = Qt (x), R(x) = Rt (x), S(x) depend affinely on x , is equivalent to

R(x) > 0, Q(x)− S(x)R−1(x)St (x) > 0 (A.28)

More generally, the constraint

T r [St (x)P−1(x)S(x)] < 1, P(x) > 0

where P(x) = Pt (x) ∈ �n×n, S(x) ∈ �n×p depend affinely on x , is handled by
introducing a new (slack) matrix variable Y (x) = Y t (x) ∈∈ �p×p and the LMI (in
x and Y ):

T rY < 1,

[
Y S(x)
• P(x)

]
> 0 (A.29)

Most of the time, our LMI variables are matrices. It should be clear from the fore-
going discussions that a quadratic matrix inequality (QMI) in the variable P can be
readily expressed as a linear matrix inequality (LMI) in the same variable.

A.3.2 Some Standard Problems

Here we provide some common convex problems that we encountered throughout
the monograph. Given an LMI G(x) > 0, the corresponding LMI problem (LMIP)
is to

find a feasible x ≡ x f such that G(x f ) > 0,
or determine that the LMI is infeasible.

It is obvious that this is a convex feasibility problem.
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The generalized eigenvalue problem (GEVP) is to minimize the maximum gen-
eralized eigenvalue of a pair of matrices that depend affinely on a variable, subject
to an LMI constraint. GEVP has the general form

minimize λ

subject to λB(x)− A(x) > 0, B(x) > 0,C(x) > 0 (A.30)

where A, B,C are symmetric matrices that are affine functions of x . Equivalently
stated

minimize λM [A(x), B(x)]
subject to B(x) > 0,C(x) > 0 (A.31)

where λM [X,Y ] denotes the largest generalized eigenvalue of the pencil λY − X
with Y > 0. This is a quasi-convex optimization problem since the constraint is
convex and the objective λM [A(x), B(x)] is quasi-convex.

The eigenvalue problem (EVP) is to minimize the maximum eigenvalue of a
matrix that depends affinely on a variable, subject to an LMI constraint. EVP has
the general form

minimize λ

subject to λI − A(x) > 0, B(x) > 0 (A.32)

where A, B are symmetric matrices that are affine functions of the optimization
variable x . This is a convex optimization problem.
EVPs can appear in the equivalent form of minimizing a linear function subject to
an LMI, that is

minimize ct x

subject to G(x) > 0 (A.33)

where G(x) is an affine function of x . Examples of G(x) include

P A + At P + Ct C + γ−1 P B Bt P < 0, P > 0

It should be stressed that the standard problems (LMIPs, GEVPs, EVPs) are
tractable, from both theoretical and practical viewpoints:

They can be solved in polynomial time.
They can solved in practice very efficiently using commercial software [74].
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A.3.3 The S-Procedure

In some design applications, we faced the constraint that some quadratic functions
be negative whenever some other quadratic function is negative. In such cases, this
constraint can be expressed as an LMI in the data variables defining the quadratic
functions.

Let Go, ...,G p be quadratic functions of the variable ξ ∈ �n :

G j (ξ)
Δ= ξ t R jξ + 2ut

jξ + v j , j = 0, ..., p, R j = Rt
j

We consider the following condition on Go, ...,G p:

Go(ξ) ≤ 0∀ξ such that G j (ξ) ≥ 0, j = 0, ..., p (A.34)

It is readily evident that if there exist scalars ω1 ≥ 0, ..., ωp ≥ 0 such that

∀ξ, Go(ξ)−
p∑

j=1

ω j G j (ξ) ≥ 0 (A.35)

then inequality (A.34) holds. Observe that if the functions Go, ...,G p are affine,
then Farkas lemma [27] state that (A.34) and (A.35) are equivalent. Interestingly
enough, inequality (A.35) can written as

[
Ro uo

• vo

]
−

p∑
j=1

ω j

[
R j u j

• v j

]
≥ 0 (A.36)

The foregoing discussions were stated for nonstrict inequalities. In case of strict
inequality, we let Ro, ..., Rp ∈ �n×n be symmetric matrices with the following
qualifications

ξ t Ro ξ > 0∀ξ such that ξ t G jξ ≥ 0, j = 0, ..., p (A.37)

Once again, it is obvious that there exist scalars ω1 ≥ 0, ..., ωp ≥ 0 such that

∀ξ,Go(ξ)−
p∑

j=1

ω j G j (ξ) > 0 (A.38)

then inequality (A.37) holds. Observe that (A.38) is an LMI in the variables
Ro, ω1, ..., ωp .

It should be remarked that the S-procedure deals with nonstrict inequalities and
allows the inclusion of constant and linear terms. In the strict version, only quadratic
functions can be used.
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A.4 Some Continuous Lyapunov–Krasovskii Functionals

In this section, we provide some Lyapunov–Krasovskii functionals and their time
derivatives which are of common use in stability studies throughout the text.

V1(x) = xt Px +
∫ 0

−τ
xt (t + θ)Qx(t + θ)dθ (A.39)

V2(x) =
∫ 0

−τ

[ ∫ t

t+θ
xt (α)Rx(α)dα

]
dθ (A.40)

V3(x) =
∫ 0

−τ

[ ∫ t

t+θ
ẋ t (α)W ẋ(α)dα

]
dθ (A.41)

where x is the state vector, τ is a constant delay factor, and the matrices 0 < Pt =
P, 0 < Qt = Q, 0 < Rt = R, 0 < W t = W are appropriate weighting factors.

Standard matrix manipulations lead to

V̇1(x) = ẋ t Px + xt P ẋ + xt (t)Qx(t)− xt (t − τ)Qx(t − τ) (A.42)

V̇2(x) =
∫ 0

−τ

[
xt (t)Rx(t)− xt (t + α)Rx(t + α)

]
dθ

= τ xt (t)Rx(t)−
∫ 0

−τ
xt (t + θ)Rx(t + θ)

]
dθ (A.43)

V̇3(x) = τ ẋ t (t)W x(t)−
∫ t

t−τ
ẋ t (α)W ẋ(α)dα (A.44)

A.5 Some Formulas on Matrix Inverses

This concerns some useful formulas for inverting matrix expressions in terms of the
inverses of its constituents.

A.5.1 Inverse of Block Matrices

Let A be a square matrix of appropriate dimension and partitioned in the form

A =
[

A1 A2
A3 A4

]
(A.45)

where both A1 and A4 are square matrices. If A1 is invertible, then

Δ1 = A4 − A3 A−1
1 A2

is called the Schur complement of A1. Alternatively, if A4 is invertible, then
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Δ4 = A1 − A2 A−1
4 A3

is called the Schur complement of A4.
It is well known [157] that matrix A is invertible if and only if either

A1 and Δ1 are invertible,

or

A4 and Δ4 are invertible.

Specifically, we have the following equivalent expressions

[
A1 A2
A3 A4

]−1

=
[

Υ1 −A−1
1 A2Δ

−1
1

−Δ−1
1 A3 A−1

1 Δ−1
1

]
(A.46)

or

[
A1 A2
A3 A4

]−1

=
[

Δ−1
4 −Δ−1

4 A2 A−1
4

−A−1
4 A3Δ

−1
4 Υ4

]
(A.47)

where

Υ1 = A−1
1 + A−1

1 A2Δ
−1
1 A3 A−1

1

Υ4 = A−1
4 + A−1

4 A3Δ
−1
4 A2 A−1

4 (A.48)

Important special cases are

[
A1 0
A3 A4

]−1

=
[

A−1
1 0

−A−1
4 A3 A−1

1 A−1
4

]
(A.49)

and

[
A1 A2
0 A4

]−1

=
[

A−1
1 −A−1

1 A2 A−1
4

0 A−1
4

]
(A.50)

A.5.2 Matrix Inversion Lemma

Let A ∈ �n×n and C ∈ �m×m be nonsingular matrices. By using the definition of
matrix inverse, it can be easily verified that

[A + BC D]−1 = A−1 − A−1 B[D A−1 B + C−1]−1 D A−1 (A.51)
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A.6 Some Discrete Lyapunov–Krasovskii Functionals

In this section, we provide some general form of discrete Lyapunov–Krasovskii
functionals and their first difference, which can be used in stability studies of dis-
crete time throughout the text.

V (k) = Vo(k)+ Va(k)+ Vc(k)+ Vm(k)+ Vn(k)

Vo(k) = xt (k)Pσ x(k), Va(k) =
k−1∑

j=k−d(k)

xt ( j)Qσ x( j)

Vc(k) =
k−1∑

j=k−dm

xt ( j)Zσ x( j)+
k−1∑

j=k−dM

xt ( j)Sσ x( j)

Vm(k) =
−dm∑

j=−dM+1

k−1∑
m=k+ j

x t (m)Qσ x(m)

Vn(k) =
−dm−1∑
j=−dM

k−1∑
m=k+ j

δxt (m)Raσ δx(m)

+
−1∑

j=−dM

k−1∑
m=k+ j

δxt (m)Rcσ δx(m) (A.52)

where

0 < Pσ =
N∑

j=1

λ jP j , 0 < Qσ =
N∑

j=1

λ jQ j , 0 < Sσ =
N∑

j=1

λ jS j

0 < Zσ =
N∑

j=1

λ jZ j , 0 < Raσ =
N∑

j=1

λ jRaj , 0 < Rcσ =
N∑

j=1

λ jRcj (A.53)

are weighting matrices of appropriate dimensions. Consider now a class of discrete-
time systems, with interval-like time delays can be described by

x(k + 1) = Aσ x(k)+ Dσ x(k − dk)+ Γσω(k)

z(k) = Cσ x(k)+ Gσ x(k − dk)+Σσω(k) (A.54)

where x(k) ∈ �n is the state, z(k) ∈ �q is the controlled output, and ω(k) ∈ �p is
the external disturbance which is assumed to belong to �2[0,∞). In the sequel, it is
assumed that dk is time varying and satisfying

dm ≤ dk ≤ dM (A.55)
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where the bounds dm > 0 and dM > 0 are constant scalars. The system matrices
containing uncertainties which belong to a real convex bounded polytopic model of
the type

[Aσ , Dσ , ...,Σσ ] ∈ Ξ̂λ :=
{
[Aλ, Dλ, ...,Σλ]

=
N∑

j=1

λ j [A j , D j , ..., Σ j ], λ ∈ Λ

}
(A.56)

where Λ is the unit simplex

Λ
Δ=

{
(λ1, . . . , λN ) :

N∑
j=1

λ j = 1, λ j ≥ 0

}
(A.57)

Define the vertex set N = {1, ..., N }. We use {A, ..., Σ} to imply generic system
matrices and {A j , ..., Σ j , j ∈ N } to represent the respective values at the vertices.
In what follows, we provide a definition of exponential stability of system (A.54):

A straightforward computation gives the first difference of ΔV (k) = V (k+1)−
V (k) along the solutions of (A.54) with ω(k) ≡ 0 as

ΔVo(k) = xt (k + 1)Pσ x(k + 1)− xt (k)Pσ x(k)

= [Aσ x(k)+ Dσ x(k − dk)]tPσ [Aσ x(k)+ Dσ x(k − dk)]
−xt (k)Pσ x(k)

ΔVa(k) ≤ xt (k)Qx(k)− xt (k − d(k))Qx(k − d(k))+
k−dm∑

j=k−dM+1

xt ( j)Qx( j)

ΔVc(k) = xt (k)Zx(k)− xt (k − dm)Zx(k − dm)+ xt (k)Sx(k)

−xt (k − dM )Sx(k − dM )

ΔVm(k) = (dM − dm)x
t (k)Qx(k)−

k−dm∑
j=k−dM+1

xt (k)Qx(k)

ΔVn(k) = (dM − dm)δxt (k)Raδx(k)+ dMδxt (k)Rcδx(k)

−
k−dm−1∑
j=k−dM

δxt ( j)Raδx( j)−
k−1∑

j=k−dM

δxt ( j)Rcδx( j) (A.58)
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A.7 Additional Inequalities

A basic inequality that has been frequently used in the stability analysis of time-
delay systems is called Jensen’s Inequality or the Integral Inequality, a detailed
account of which is available in [105]:

Lemma A.13 For any constant matrix 0 < Σ ∈ �n×n, scalar τ∗ < τ(t) < τ+ and
vector function ẋ : [−τ+,−τ∗] → �n such that the following integration is well
defined, then it holds that

−(τ+ − τ∗)
∫ t−τ∗

t−τ+
ẋ t (s)Σ ẋ(s)ds ≤

[
x(t − τ∗)
x(t − τ+)

]t [−Σ Σ

• −Σ
] [

x(t − τ∗)
x(t − τ+)

]

Building on Lemma A.13, the following lemma specifies a particular inequality
for quadratic terms:

Lemma A.14 : For any constant matrix 0 < Σ ∈ �n×n, scalar τ∗ < τ(t) < τ+
and vector function ẋ : [−τ+,−τ∗] → �n such that the following integration is
well defined, then it holds that

− (τ+ − τ∗)
∫ t−τ∗

t−τ+
ẋ t (s)Σ ẋ(s)ds ≤ ξ t (t)Υ ξ(t)

ξ(t) =
⎡
⎣ x(t − τ∗)

x(t − τ(t))
x(t − τ+)

⎤
⎦

t

, Υ =
⎡
⎣−Σ Σ 0
• −2Σ Σ

• • −Σ

⎤
⎦

Proof Considering the case τ∗ < τ(t) < τ+ and applying the Leibniz–Newton
formula, it follows that

−(τ+ − τ∗)
∫ t−τ∗

t−τ+
ẋ t (s)Σ ẋ(s)ds − (τ+ − τ∗)

∫ t−τ∗

t−τ(t)

[
ẋ t (s)Σ ẋ(s)ds

+
∫ t−τ(t)

t−τ+
ẋ t (s)Σ ẋ(s)ds

]

≤ −(τ (t)− τ∗)
∫ t−τ∗

t−τ(t)

[
ẋ t (s)Σ ẋ(s)ds

−(τ+ − τ(t))
∫ t−τ(t)

t−τ+
ẋ t (s)Σ ẋ(s)ds

]

≤ −
∫ t−τ∗

t−τ(t)
ẋ t (s)dsΣ

∫ t−τ∗

t−τ(t)
ẋ t (s)ds

−
∫ t−τ(t)

t−τ+
ẋ t (s)dsΣ

∫ t−τ(t)

t−τ+
ẋ t (s)ds
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= [x(t − τ∗)− x(t − τ(t))]tΣ[x(t − τ∗)− x(t − τ(t))]
−[x(t − τ(t))− x(t − τ+)]tΣ[x(t − τ(t))− x(t − τ+)]

which completes the proof.

Lemma A.15 For any constant matrix 0 < Σ ∈ �n×n, scalar η, any t ∈ [0,∞),

and vector function g : [t − η, t] → �n such that the following integration is well
defined, then it holds that

(∫ t

t−η
g(s)ds

)t

Σ

∫ t

t−η
g(s)ds ≤ η

∫ t

t−η
gt (s)Σg(s)ds (A.59)

Proof It is simple to show that for any s ∈ [t − η, t], t ∈ [0,∞), and Schur com-
plements

[
gt (s)Σg(s) gt (s)

• Σ−1

]
≥ 0

Upon integration, we have

[∫ t
t−η gt (s)Σg(s)ds

∫ t
t−η gt (s)ds

• ηΣ

]
≥ 0

By Schur complements, we obtain inequality (A.59).
The following lemmas show how to produce equivalent LMIs by elimination

procedure.

Lemma A.16 There exists X such that
⎡
⎣P Q X
• R Z
• • S

⎤
⎦ > 0 (A.60)

if and only if

[
P Q
• R

]
> 0,

[
R Z
• S

]
> 0 (A.61)

Proof Since LMIs (A.61) form sub-blocks on the principal diagonal of LMI (A.60),
necessity is established. To show sufficiency, apply the congruence transformation

⎡
⎣ I 0 0
• I 0
0 −V t R−1 I

⎤
⎦

to LMI (A.60), it is evident that (A.60) is equivalent to
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⎡
⎣P Q X −QR−1Z
• R 0
• • S − Z tR−1Z

⎤
⎦ > 0 (A.62)

Clearly (A.61) is satisfied for X = QR−1Z if (A.61) is satisfied in view of Schur
complements.

Lemma A.17 There exists X such that

⎡
⎣P Q+ XG X
• R Z
• • S

⎤
⎦ > 0 (A.63)

if and only if

[
P Q
• R− VG − GtV t + GtZG

]
> 0,

[
R− VG − GtV t + GtZG V − GtZ

• Z

]
> 0 (A.64)

Proof Applying the congruence transformation

⎡
⎣ I 0 0

0 I 0
0 −G I

⎤
⎦

to LMI (A.63) and using Lemma A.16, we readily obtain the results.

Lemma A.18 There exists 0 < X t = X such that

[
Pa + X Qa

• Ra

]
> 0,

[
Pc − X Qc

• Rc

]
> 0 (A.65)

if and only if

⎡
⎣Pa + Pc Qa Qc

• Ra 0
• • Rc

⎤
⎦ > 0 (A.66)

Proof It is obvious from Schur complements that LMI (A.66) is equivalent to

Ra > 0,Rc > 0

Ξ = Pa + Pc −QaR−1
a Qt

a −QcR−1
c Qt

c > 0 (A.67)
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On the other hand, LMI (A.65) is equivalent to

Ra > 0,Rc > 0

Ξa = Pa + X −QaR−1
a Qt

a > 0,

Ξc = Pc − X −QcR−1
c Qt

c > 0 (A.68)

It is readily evident from (A.67) and (A.68) that Ξ = Ξa + Ξc and hence the
existence of X satisfying (A.68) implies (A.67). By the same token, if (A.67) is
satisfied, X = QaR−1

a Qt
a − Pa − 1

2Ξ yields Ξa = Ξc = Ξa = 1
2Ξ and (A.68) is

satisfied.
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