
Chapter 5
Power Aware Operating Systems, Compilers,
and Application Software

What does a compiler have to do with power dissipation? A compiler is a piece
of system software that parses a high level language, performs optimizing transfor-
mations, and finally generates code for execution on a processor. On the surface,
it seems very far removed from an electrical phenomenon like power dissipation.
Yet, it was not long before the two got inextricably linked. The involvement of the
compiler along with the processor architecture in the design space exploration loop
of application specific systems (ASIPs) might have eased the transition. In this sce-
nario, compiler analysis can actually influence the choice of architectural parameters
of the final processor. Clearly, if a low power system consisting of an application
running on a processor is desired, the selected processor architecture has to work in
tandem with the compiler and application programmer – an architectural feature is
useless if it is not properly exploited by the code generated by a compiler or written
by a programmer. Low power instruction encoding is an example optimization that
features the compiler in a central role with the explicit role of reducing power. In an
ASIP, the opcode decisions need not be fixed, and could be tuned to the application.
Since the compiler has an intimate knowledge of the application, it could anticipate
the transition patterns between consecutive instructions from the program layout
and suggest an encoding of instructions that reduces switching power arising out of
the fetch, transmission, and storage of sequences of instructions. Modern compiler
designers are investigating the development of power awareness in a more direct
way in general purpose processor systems, not just ASIPs. The role of the compiler
and application programmer grows along with the concomitant provision of hooks
and control mechanisms introduced by the hardware to support high level decision
making on power-related issues.

The operating system has a very direct role in power management of a computer
system, since it has the important responsibility of monitoring and controlling every
system resource. Of course, the hardware resource itself might be designed to save
power when conditions are favorable – for example, a memory device can shift to
low power mode when it is inactive for a long period of time. However, system level
power management can be more aggressive if the operating system plays an active
role in addition to power efficiencies built into individual resources. For example, an
individual resource may require an accurate prediction of future activity, in order to
make good power management decisions. Since the operating system also assumes

P.R. Panda et al., Power-efficient System Design, DOI 10.1007/978-1-4419-6388-8 5,
c� Springer Science+Business Media, LLC 2010

139

140 5 Power Aware Operating Systems, Compilers, and Application Software

the responsibility for task allocation on resources, it may have that vital dynamic
information using which it can inform the resource whether any significant workload
is likely to be scheduled on it in the near future. It is clear that aggressive power
optimizations can take place when there is a meaningful collaboration between the
operating system and the resources it manages.

In this chapter we study some recent work in the area of power aware operating
systems, compilers, and application software. This continues to be an important
research area and we can expect exciting new problems and solutions in the days
ahead.

5.1 Operating System Optimizations

An operating system is very well placed to make intelligent run-time power man-
agement decisions because it is best suited to keep track of the dynamic variation
of the status of the different resources under its supervision. Before studying the
power optimization policies implemented by an OS, it is instructive to look at
the component-wise break-up of the power dissipation on a typical computer. As
expected, the total power dissipation, and the relative power dissipated in the indi-
vidual components, vary depending on the benchmark/application domain.

Figure 5.1 gives a comparison of the total system power of an IBM Thinkpad R40
laptop with a 1.3 GHz processor, 256 MB memory, 40 GB hard drive, optical drives,
wireless networking, and a 14.1” screen, when it is subject to workloads arising out
of different classes of benchmark applications [30]. The idle system dissipates 13 W,

20

25

30

35

0

5

10

15

Idle System PCMark CPU
test

3DMark FTP transmit Audio CD
Player

Fig. 5.1 Laptop power dissipation for different benchmarks. Idle power is 13 W. The benchmarks
vary widely in their power dissipation

5.1 Operating System Optimizations 141

while the benchmarks (3DMark – graphics benchmark; CPUMark – CPU intensive
workload; Wireless FTP – file transfer over the wireless LAN card; and Audio CD
Playback) dissipate between 17 W and 30 W, exhibiting a wide range.

Figures 5.2, 5.3, 5.4, 5.5, and 5.6 show the component-wise break-up of the to-
tal system power dissipation for the different benchmarks and idle state. In an idle
system, the LCD display consumes a relatively large fraction of the power. For the
CPU-intensive PCMark suite, the CPU was, as expected, the largest consumer of

CPU
15%

HDD
4%
Power Supply

5%

Rest of the
System

29%

Wireless
1%

LCD
8%

LCD Back
Light
26%

Optical Drive
1%

Memory
3%

Graphics
8%

Fig. 5.2 Component-wise break-up of laptop power dissipation when the system is idle. In idle
systems, the LCD display consumes a relatively large fraction (26%) of the total power

Optical Drive
1%

Memory
4%

Graphics
4%

Rest of the
System
15%

CPU
52%

HDD
3%

Power Supply
3%

Wireless
1%

LCD
4%

LCD Back
Light
13%

Fig. 5.3 Component-wise break-up of laptop power dissipation for CPUMark benchmark. This
benchmark stresses the CPU, which consumes 52% of the total power

142 5 Power Aware Operating Systems, Compilers, and Application Software

CPU
43%

Graphics
17%

Rest of the
System

14%

HDD
3%

Power Supply
2%

Wireless
0%

LCD
3%

LCD Back
Light
11%

Optical Drive
1%

Memory
6%

Fig. 5.4 Component-wise break-up of laptop power dissipation for 3DMark benchmark. The CPU
consumes a large 43% of the system power

CPU
17%

HDD
3%

Power Supply
4%

Graphics
6%

Rest of the
System
17%

Wireless
0%
LCD
5%

LCD Back
Light
18%

Optical Drive
27%

Memory
3%

Fig. 5.5 Component-wise break-up of laptop power dissipation for Audio CD player benchmark.
The optical drive was the main power consumer, accounting for 27%

power. The 3DMark suite is also CPU intensive, and the CPU power accounted
for a huge 43%. FTP showed a relatively large power dissipation in the wireless
card, drawing power comparable to the CPU. In the Audio CD playback, the op-
tical drive was the main power consumer, with its power exceeding even the CPU
power, because the drive was running at full speed throughout the playback period.
The study shows that the power distribution among the system components depends
on the type of computational and data transfer demands placed on the individual
resources. The CPU is usually among the heaviest power users.

5.1 Operating System Optimizations 143

CPU
16%

HDD
3%

Power Supply
4%

Rest of the
System
23%

Wireless
18%

LCD
6%

LCD Back
Light
20%

Optical Drive
1%

Memory
3%

Graphics
6%

Fig. 5.6 Component-wise break-up of laptop power dissipation for wireless FTP benchmark. The
wireless card dissipates 18% of the system power

Table 5.1 Hard disk drive
states [30]

HDD power state Power Consumption

Idle 0.575 W
Standby 0.173 W
Read 2.78 W
Write 2.19 W
Copy 2.29 W

Table 5.2 Power
consumption variation of
LCD display with brightness
level [30]

LCD brightness level Power Consumption

1 0.6 W
2 0.8 W
3 1.1 W
4 1.3 W
5 1.6 W
6 2.0 W
7 2.7 W
8 3.4 W

The significant difference in power consumption of individual components across
the various benchmark applications can be attributed to the different power charac-
teristics of the devices based on the usage pattern of the application. Tables 5.1, 5.2,
5.3, and 5.4 show the power drawn by the hard disk drive, LCD display, Wireless
LAN card, and CD drive, in the different power states of the respective devices.
The devices exhibit a significant dynamic power dissipation range, depending on
the state of activity. For example, the wireless LAN card draws 22 times as much
power when it is transmitting, compared to when it is idle. Similarly, there is a 7:1

144 5 Power Aware Operating Systems, Compilers, and Application Software

Table 5.3 Wireless LAN
card states [30]

Wireless LAN Card states Power Consumption

Power saver (idle) 0.14 W
Base (idle) 1.0 W
Transmit 3.2 W at 4.2 Mb/s
Receive 2.55 W at 2.9 Mb/s

Table 5.4 Optical drive
states [30]

Optical drive state Power Consumption

Initial spin up 3.34 W
Steady spin 2.78 W
Reading data 5.31 W

power dissipation ratio between the highest and lowest brightness levels of the LCD
display, and a 16:1 ratio between active and idle power for the hard disk.

5.1.1 Advanced Configuration and Power Interface (ACPI)

In a typical computing system with several input/output devices, processing units,
memory devices, etc., working in unison, it is very unlikely that all of them would
be active for the entire duration of system operation. For example, a modem may be
active only when applications running on the system request a network access, and
is inactive for the rest of the time. It is observed that a significant amount of power
is dissipated during these spells of inactivity owing to the following reasons:

� With technology scaling, leakage power has become a significant portion of
the total power consumption of an electronic circuit. For example, 40% of the
110W of power consumed by a 90nm Pentium 4 is actually due to the leakage
current [35].

� Devices such as display, waste power in doing redundant work. Displays are
designed such that the contents of the framebuffer are refreshed periodically on to
the display device. Even when the system is idle and the contents of framebuffer
are not expected to change, the display is periodically refreshed, resulting in
waste of power.

It would appear that an ideal solution to counter leakage power would be to
activate the device only when it is working. But this is not always feasible, since
the switching time from on to off and vice-versa could affect system performance.
Hence the devices are generally designed to work at different operating points called
the power modes that represent trade-offs between performance and power. Depend-
ing on the requirements of the applications running on the system, the mode of
device operation is dynamically selected and modified. The policies that govern the
switching of operating point of a device are called the power management policies.
Power management of devices could be implemented in two ways:

� in the firmware of the device and controlled by the driver of the device; and
� in the operating system.

5.1 Operating System Optimizations 145

Operating System directed Power Management (OSPM) is becoming popular in
modern systems due to the following advantages over device level implementations.

� Implementation of power management in the OS makes it platform independent.
� The limitation of implementing complex power management strategies in the

BIOS of the devices can be overcome.
� Algorithms common to power management of several devices can be imple-

mented only once, thus decreasing the development cost.

Now that the power management policies are implemented in the OS, standard
interfaces between the OS and device drivers are necessary for smooth opera-
tion. Advanced Configuration and Power Interface (ACPI) is the specification of
a common standard for OS controlled device configuration and power manage-
ment [16]. This standard was initially developed by Intel, Microsoft, and Toshiba,
with Hewlett-Packard and Phoenix being involved in the later evolution.

Let us examine the ACPI standard in some detail. Figure 5.7 shows the ar-
chitecture of a system using ACPI for power management. The operating system
communicates with the ACPI stack through software and drivers. The ACPI layer
acts as an interface between the OS and the device with the help of three main com-
ponents: (i) ACPI tables; (ii) ACPI bios; and (III) ACPI registers.

ACPI tables contain definition blocks that describe the ACPI managed devices.
The definition includes data and machine independent byte-code that performs de-
vice configuration and management.

Applications

Kernel OSPM System Code

Device Driver
ACPI Driver/

AML Interpreter

BIOSPlatform Hardware

Existing standard
register interfaces
to CMOS, PIC etc

OS specific
technologies,
interfaces, and code

OS dependent application
API’s

selbaTIPCAACPI Registers ACPI BIOS

ACPI BIOS
Interface

ACPI Table
Interface

ACPI Register
Interface

OS independent technologies
interfaces, code, & HW

Fig. 5.7 ACPI system architecture

146 5 Power Aware Operating Systems, Compilers, and Application Software

ACPI BIOS is responsible for low-level management operations of the device. It
contains code to assist in booting the system and switch the operation mode of the
device. Different power modes of a system are described in the following section.

ACPI registers are a set of hardware registers that help in configuration and man-
agement of the device. These registers are accessed through the byte-code stored in
the device-specific part of the ACPI tables.

In an ACPI based system, on power-up, the ACPI BIOS is loaded prior to the OS
and the ACPI tables are loaded into memory. Since the memory requirement of these
tables is much more than what a BIOS memory could accommodate, the ACPI BIOS
allocates space in the physical memory of the system. When the ACPI-aware OS
kernel starts its operation, it searches the BIOS memory area to obtain the address
of the ACPI tables in the physical memory. All ACPI operations, excluding a few
BIOS functions, are performed in the OS by interpreting the machine-independent
ACPI Machine Language (AML) byte-code present in the ACPI tables.

5.1.1.1 Power Modes

ACPI defines various power states in which the entire system and also individ-
ual devices in the system could be operating. These states are enumerated in
Tables 5.5, 5.6, 5.7, and 5.8.

The global states apply to system as a whole, and are visible to the user. The
G0 state (“working”) is the normal active state in which user threads are executed.

Table 5.5 Global States that define the power mode of the entire system

State Description

G0 Working
G1 Sleeping (subdivided into states S1 to S4)

� S1 – All CPU caches are flushed and CPU(s) stop executing instructions. Full
context is maintained in RAM. Power to RAM and CPU(s) is maintained.

� S2 – CPU is powered off. Processor context and cache context are not maintained
but RAM is maintained.

� S3 – Only RAM remains powered, hence all system context is lost. (commonly
referred as Standby or Sleep)

� S4 – Data in RAM is flushed to hard disk and the system is powered down.
(referred to as Hibernation) Reboot is required to wake up the system.

G2(S5) Soft off
In this state all the devices are also powered down along with CPU and caches. Some

components in the system such as mouse and keyboard remain powered to wake
up the system.

G3 Mechanical off
The system is switched off except for the real time clock in the system that is

powered by a small battery.

5.1 Operating System Optimizations 147

Table 5.6 Device Power
States

State Description

D0 Fully on.
D1,D2 Intermediate device dependent power states
D3 Powered off

Table 5.7 Processor Power States
State Description

C0 Fully on.
C1 Halt. Processor does not execute any instructions, but can instantaneously return to

execution
C2 Stop-Clock. Maintains application-visible state, but takes longer for wake-up.
C3 Sleep. Processor does not keep its cache, but maintains other state.

Table 5.8 Processor
Performance States

State Description

P0 Maximum power and frequency
P1 Less than P0, voltage and frequency scaled
Pn Less than P(n-1), voltage and frequency scaled

System power consumption in this state is generally the highest. In the G1 state
(“sleeping”), user threads are not executed and key components such as display
are turned off to save power. However, the system can be moved to active state in a
relatively small amount of time. In the G2 state (“soft off”), the system is mostly off,
but some components remain “on” so that the system can “wake up” through signals
received from an I/O device such as keyboard or mouse. Power consumed in this
state is very low. In G3 state (“mechanical off”) the system is turned off completely
and draws near zero power, except for a clock powered by a small battery.

The global sleeping state is subdivided into several further levels S1 through S4,
representing a finer grain power management. In the S1 state, the CPU caches are
flushed and the CPU does not execute instructions, but can be moved to an active
execution quickly. In the S2 state, the CPU is powered off, so the processor and
cache contexts are lost, but the RAM is maintained. In the S3 state (commonly
known as “standby” or “sleep”), the rest of the chip set is turned off, but the RAM
is still valid. In the S4 state (commonly known as “hibernate”), the memory data is
saved into the hard disk and the system is powered down. A reboot is required to
wake the system up. The S5 state coincides with the G2 state.

The device power states D0 through D3 in ACPI apply to I/O devices connected
to the system bus. These states are defined in a very generic manner, and some
devices may not feature all the four states. In the D0 state, the device is “fully
on” and consumes maximum power. The D1 and D2 states are low power states
that are device dependent. In D3, the device is turned off and consumes no power.
Re-initialization is necessary when the OS turns the device back3 on. Examples of
device power states and the power consumed in each state are given in Tables 5.1,
5.2, 5.3, and 5.4, for the laptop experiment discussed above.

148 5 Power Aware Operating Systems, Compilers, and Application Software

The Processor power states C0 through C3 represent various performance-power
trade-offs in the processor in the global state G0 (“working”). In the C0 state (“fully
on”), the processor executes normal instructions and consumes the highest power.
In the C1 state (“halt”), the processor does not execute any instruction, but can
immediately return to execution. In the C2 state (“stop clock”), the processor moves
to a low power state, does not execute instructions, and takes longer to return to
execution. The C3 state (“sleep”) offers further improvements in power savings,
with caches maintaining state but disallowing snooping.

Finally, the standard also defines the device and processor performance states
within the respective “fully on” states D0 and C0. State P0 represents the maximum
frequency for the CPU, which translates to maximum power consumption. Other
states P1, P2, P3, etc., are defined, with decreasing power and associated perfor-
mance. Dynamic voltage and frequency scaling (Section 5.1.2) is typically em-
ployed in the processors and devices to achieve the different power states.

5.1.2 Dynamic Voltage and Frequency Scaling

The basic dynamic power equation P D CV2Af , where C is the load capacitance,
V is the operating voltage, A is aggregate activity factor, and f is the operating
frequency, shows the significant leverage possible by adjusting the voltage and fre-
quency. It shows that if we can reduce voltage by some small factor, we can reduce
power by the square of that factor. Furthermore, reducing supply voltage often slows
transistors such that reducing the clock frequency is also required. The benefit of this
is that within a given system, scaling supply voltage down now offers the potential
of a cubic reduction in power dissipation. This process of reducing both the voltage
and frequency of the processor dynamically (at run time) is called Dynamic Voltage
and Frequency Scaling (DVFS). It is important to note here that while DVFS may re-
duce the instantaneous power cubically, the reduction on the total energy dissipated
is quadratic. This is because, even though programs run at lower power dissipation
levels, they run for longer durations.

Fundamentally, DVFS approaches exploit slack to achieve more power-efficient
execution. The workload profile of applications is far from a constant; in fact, it may
be highly dynamic. As a result, the processor need not be operating at the maximum
performance (maximum voltage and frequency) all the time. There may be several
opportunities to temporarily slow down the processor without any noticeable or ad-
verse effects. For example, a CPU might normally respond to a user’s command
by running at full speed for 0.001 seconds, then waiting idle; running at one-tenth
the speed, the CPU could complete the same task in 0.01 seconds, thereby saving
power and energy without generating noticeable delay. Eventually DVFS is an ap-
proach that attempts to meet the seemingly conflicting goals of a responsive and
intelligent device while maximizing battery life.

5.1 Operating System Optimizations 149

One of the most important decisions in implementing DVFS is the granularity
at which to perform DVFS. The finest granularity at which DVFS is limited by the
time it takes to switch the voltage and frequency of the processor. DVFS implemen-
tation requires a voltage regulator that is fundamentally different from a standard
voltage regulator because it must also change the operating voltage for a new clock
frequency [4, 7, 9]. This and other considerations result in high transition overhead
for DVFS. This overhead is typically in the range of tens of micro seconds. In partic-
ular, the Intel XScale processor has a frequency switching time of 20�s [10,17,18].
To be able to profitably apply DVFS, and hide the penalty of voltage regulation,
the granularity at which voltage and frequency are scaled should be at least 2 to 3
orders of magnitude higher, which is in the range of milliseconds. This falls more or
less in the domain of operating system scheduling granularity. Consequently, most
DVFS schemes have been incorporated into the OS scheduler and task management
services.

The simplest application of DVFS algorithms is a history-based scheme, where
we monitor the recent history to make a prediction about the immediately future.
The Past algorithm is a simple strategy that divides time into intervals [45]. In each
interval, the algorithm keeps track of what the CPU utilization was, and predicts
that the utilization will remain unchanged in the next interval. This assumption is
in keeping with system behavior in general – drastic changes in system load are
relatively rare. The utilization is compared against a pre-defined threshold. If the
utilization is below this threshold, then the system is slowed down by lowering the
voltage. If the utilization is above the threshold, then the system is sped up by se-
lecting a higher voltage. The strategy is illustrated in Fig. 5.8, with the threshold set
at 80% utilization. In Fig. 5.8(a), a 70% utilization is observed in time interval t .
The Past algorithm predicts a 70% utilization for interval t C 1, and slows down
the system by stepping down the voltage. Similarly, in Fig. 5.8(b), a 90% utilization
causes Past to step up the voltage. In order to prevent switching of voltages too fre-
quently, the threshold can instead be defined as a range of utilizations, for example,
between 75-85% in our example.

The Past algorithm is very simple, and suffers from some obvious difficulties as
it relies on only one data point. In the Aged Averages (AVG) algorithm, a weighted
average of the utilizations in the last few intervals is used as the prediction for the
next interval [14]. Using more than one interval makes the algorithm more robust
against transient changes in load. This is illustrated in Fig. 5.9. Here, the utilizations
at intervals t and t � 1 are averaged with equal weights to generate the predicted
utilization for interval t C 1. In Fig. 5.9(a), the utilizations for intervals t and t � 1

are 70% and 80% respectively, giving the predicted utilization for interval t C 1

to be 75%. The voltage is stepped down. In Fig. 5.9(b), intervals t and t � 1 have
utilizations 90% and 70% respectively, giving 80% as the prediction for interval
t C1. This leads to no change in voltage levels, treating the 90% value as a transient
when it appears for the first time. If the rate is sustained (for another interval in this
case), then the aged average reflects the higher load and the voltage is eventually
stepped up.

150 5 Power Aware Operating Systems, Compilers, and Application Software

a

b

Fig. 5.8 Past Algorithm: predict the utilization in the next interval to equal that of the last interval
(a) 70% utilization predicted for interval tC1. Slow down. (b) 90% utilization predicted for interval
tC1. Speed up

To evaluate the effectiveness of the above algorithms, one can compare them
with an Oracle algorithm that has advance knowledge of the next interval’s load.
Schemes such as AVG lie somewhere between the effectiveness of Past and Oracle,
with the increasing effectiveness coming with the associated cost penalty of larger
storage, which can be an issue in a hardware implementation. Variations of this
strategy can be thought of in slightly different contexts, particularly ones involving
the choice between different power modes: active, sleep, and power down. In gen-
eral, we would like to move the system to power down mode upon encountering
long idle periods so as to save power, but the associated penalty is that it takes a
relatively large number of cycles to bring the system back to active mode. Being
over-aggressive in powering down the system means high performance overheads
incurred in waiting for the system to be usable again.

5.1 Operating System Optimizations 151

a

b

Fig. 5.9 AVG Algorithm: predict the utilization in the next interval to be weighted average of a
few previous intervals (a) (70 C 80)/2 D 75% utilization predicted for interval tC1. Slow down.
(b) (70 C 90)/2 D 80% utilization predicted for interval tC1. No change

5.1.2.1 DVFS in Real-time OS

Essentially, DVFS schemes use a simple feedback mechanism, such as detecting
the amount of idle time on the processor over a period of time, and then adjust
the frequency and voltage to just handle the computational load. This strategy has
a simple implementation and follows the load characteristics closely, but cannot
provide any timeliness guarantees and tasks may miss their execution deadlines.
As an example, in an embedded camcorder controller, suppose there is a program
that must react to a change in a sensor reading within a 5 ms deadline, and that it
requires up to 3 ms of computation time with the processor running at the maximum

152 5 Power Aware Operating Systems, Compilers, and Application Software

operating frequency. With a DVS algorithm that reacts only to average throughput,
if the total load on the system is low, the processor would be set to operate at a low
frequency, say half of the maximum, and the task, now requiring 6 ms of processor
time, cannot meet its 5 ms deadline. To provide real-time guarantees, DVS must
consider deadlines and periodicity of real-time tasks, requiring integration with the
real-time scheduler.

Let us look at some idealized situations in real-time systems to understand the
limits of the applicability of DVFS.

First, let us consider a situation where we have tasks T1; . . . ; Tn to be scheduled
in the time interval Œ0; M �. Each task has associated with it the number of required
processor cycles Ri , the arrival time Ai 2 Œ0; M �, and deadline for completion Di 2
Œ0; M �. The voltage scheduling problem is to find the optimal speeds at which the
processor should work at every time instant in Œ0; M � so that the total energy is
minimized. It is assumed that the processor speed, and consequently the voltage,
can be varied continuously, and can take all real values. The Ri values are fixed
constants.

An optimal voltage scheduling algorithm uses the following greedy strategy[46].
For every time interval I D Œt1; t2� in the range Œ0; T �, find the intensity g.I / de-
fined as:

g.I / D
P

i Ri

t2 � t1
(5.1)

for all i such that ŒAi ; Di � 2 Œt1; t2�, that is, the intensity for interval I is computed
considering all tasks whose arrival and completion times lie within the interval.
Since

P
i Ri represents the total work that needs to be completed in time interval

I , g.I / represents the minimum required average speed of the processor during
time interval I . Thus, if the processor is run at speed g.I / during time interval
I , it will be energy-optimal for this interval (if the speed is lower, then the tasks
cannot complete; if the speed is higher, then the voltage – and hence energy – must
be higher). We have established the speed/voltage values for interval I D Œt1; t2�.
Now, we just delete the interval from consideration, and recursively solve the same
problem for the smaller interval thus obtained. The arrival and completion times of
the remaining tasks are adjusted to reflect the deleted interval. This strategy gives
the optimal speed/voltage assignment for minimizing energy [46].

The algorithm is illustrated in Fig. 5.10, with 3 tasks T1, T2, and T3, with the
arrival times and deadlines being [0,5], [2,15], and [2,25] respectively, and num-
ber of cycles R1, R2, and R3 being 1, 4, and 2 respectively. The intensities for
the intervals are as indicated in Fig. 5.10(a). For example, the interval I D Œ0; 15�

has two tasks T1 and T2 with arrival/completion times lying within the interval, so
g.I / D R1CR2

15�0
D .1 C 4/=15 D 0:33. Intervals not included in the list are those

that cannot accommodate a single task. We select [0,15] for speed/voltage assign-
ment first since this interval has the highest intensity. The assigned speed is 0.33. We
then delete this interval, leading to a smaller problem indicated in Fig. 5.10(b). Only
T3 still remains to be executed, and the arrival/completion times are as indicated in
Fig. 5.10(b). Only one interval exists with intensity R3

10�0
D 2=10 D 0:2, and it

5.1 Operating System Optimizations 153

a

b

c

Fig. 5.10 Optimal voltage scheduling. (a) Interval [0,15] has the highest intensity, so it is selected
first, and speed 0.33 is assigned to it. The interval is then deleted. (b) Interval [0,10] (corresponding
to the original interval [15,25]) is selected next, with speed 0.2. (c) The optimal voltage schedule
corresponds to the two speed settings inferred in (a) and (b)

is trivially assigned speed 0.2. The speed assignment for the complete duration is
summarized in Fig. 5.10(c). The processor runs at speed 0.33 for the first 15 time
units, and 0.2 for the next 10 units.

The above problem formulation assumed that it is possible to change a proces-
sor’s voltage and speed to any desirable value. In practice, we typically have to select
from a set of discrete voltage settings for a processor. Let us address the problem of
selecting the optimal voltages for running a processor, given a fixed load and a time
constraint [19].

Our first observation, illustrated in Fig. 5.11, is that it is always sub-optimal to
complete earlier than the specified deadline. Figure 5.11(a) shows two schedules,

154 5 Power Aware Operating Systems, Compilers, and Application Software

a

b

c

Fig. 5.11 Optimal discrete voltage scheduling with deadline T . (a) Energy is minimum when
we select a voltage (V-opt) that allows us to complete the task exactly at the deadline. Any other
voltage V leading to earlier completion is sub-optimal. (b) Discrete voltages available are: V0,
V1, V2, V3, and V4. V-opt is not one of the available choices. (c) V2 and V3 are the two discrete
voltage levels adjacent to V-opt. Energy is optimal when we use a combination of V2 and V3.
Using any other voltage is sub-optimal

one completing before the deadline, followed by an idle period (during which the
system could be assumed to dissipate zero power) with the voltage set at V ; and
the other completing at the deadline T . The task completing at T can progress at a
lower voltage, which also increases the latency. However, the latency decreases lin-
early with the voltage whereas energy decreases as square of voltage. Hence, total
energy is lower for the schedule completing at the deadline. In other words, average
power (total latency divided by latency) is minimized for the task that utilizes all

5.1 Operating System Optimizations 155

the time available. Let the corresponding voltage be Vopt. This result also follows
from the application of the optimal algorithm discussed earlier. However, in real-
ity, the voltage cannot be continuously varied, and we have to select from a set of
discrete choices. The situation is illustrated in Fig. 5.11(b), where the permissible
discrete voltages are: V0, V1, V2, V3, and V4. We notice that Vopt is not one of the
available voltages, so the optimal voltage/speed setting algorithm cannot be directly
applied. It can be proved that in the discrete voltage scenario the optimal voltage
for the processor will be a combination of the two discrete voltages adjacent to the
computed optimal voltage Vopt [19]. From Fig. 5.11(b), we notice that Vopt lies be-
tween V2 and V3. As shown in Fig. 5.11(c), the energy-optimal solution is to run
the system at voltage V2 for some time, and at V3 for the remaining time. The exact
durations can be easily computed. Naturally, the resulting energy will be larger than
the energy of running it at the hypothetical voltage Vopt, but the solution is still the
best possible in the discrete voltage scenario. There is no need to consider other
voltages. This is true even when voltage transitions are not immediate, as assumed
in this discussion, but require a fixed duration [25].

The above conceptual treatment of the real-time DVFS problem made certain ide-
alizations and simplifications that we need to be aware of, and also, exploit appropri-
ately in a practical aggressive DVFS strategy. First of all, the number of cycles or any
other measure of work done in a task may not be easily computed. This may be data
dependent. Worst case execution times (WCET) need to be used. Of course, there
may be many situations in which the worst case execution path is not exercised. Fur-
ther, the presence of a memory hierarchy makes the WCET computation very dif-
ficult, and a theoretically guaranteed WCET that takes multiple levels of cache and
secondary memory in its computation may be too pessimistic to be useful for DVFS.

Secondly, power of a large processor based system is not necessarily a quadratic
function of the supply voltage, and latency is not necessarily inversely proportional
to the supply voltage. These results hold for a single transistor, but there are other
effects in a complex circuit such as that due to memory and I/O. Since DVFS modi-
fies the delays of only the processor and does not touch components such as memory
and I/O, the latter might actually consume more energy because they are held in ac-
tive state for longer. Thus, practical DVFS strategies are more based on empirical
models and prediction than theoretical analysis [44].

An example DVS-based optimization is shown in Fig. 5.12. A and B represent
two code sequences following a memory load. A does not depend on the result of

Fig. 5.12 DVS on stall due
to memory access.
(a) Lengthy stall due to load.
A is not dependent on the
load, so can proceed during
the stall, but B cannot begin
until the stall is resolved.
(b) Anticipating the stall, we
can slow down A, saving
power

a

b

156 5 Power Aware Operating Systems, Compilers, and Application Software

the load, but B does depend on it. In the situation shown in Fig. 5.12(a), A com-
pletes before the memory system has responded to the load request, leading to a
system stall until the data is obtained, at which time B resumes execution. A pos-
sible resolution of this is shown in Fig. 5.12(b), where the system is aware of the
expected latencies of A and the memory access. A can be slowed down by DVFS
strategies to extend its execution time to be close to when the memory access is
expected to complete. B resumes at its regular time, but the solution is more energy-
optimal because A was executed at a lower voltage [44]. This optimization relies
on reasonable estimates of the execution latencies being available, and the DVFS
mechanism being able to respond with voltage/frequency switches fast enough to be
useful.

One additional factor to be considered during DVFS is the accounting for leakage
power. When the duration of a task is extended due to the voltage being scaled down,
the dynamic energy decreases, but the leakage energy increases because the system
continues to leak energy for the entire duration that it is active. Below a certain
voltage/speed, the total energy actually increases [20]. The situation is shown in
Fig. 5.13. The total system energy E consists of three components: (i) dynamic
energy (Ed); (ii) leakage energy (El); and (iii) the intrinsic energy (Eon) that is
necessary just to keep the system running. Eon consists of the power dissipated
by system components such as analog blocks (phase locked loop and I/O) that are
necessary for proper system operation.

E D Ed C El C Eon

Fig. 5.13 Total system energy increases below critical voltage/speed S . At higher speed and volt-
age, dynamic energy dominates. At very low speed and voltage, the delay increases, so the system
remains on for longer, leading to higher leakage energy

5.1 Operating System Optimizations 157

For a given time duration available for running a task, both El and Eon increase
with decreasing voltage/speed; on the other hand, Ed decreases with decreasing
voltage. The graph follows a ‘U’ shape, demonstrating a specific system-determined
voltage/speed S that can be considered critical; below this level, the total energy
starts increasing.

The DVFS concept is useful in the context of real-time systems where deadlines
are imposed on tasks. Let us understand a straightforward application of intra-task
DVFS – processor speeds/voltages are varied within an application so as to mini-
mize energy. As seen earlier, the energy-optimal choice of voltage/speed is the one
that causes the task to finish exactly at the deadline. However, different paths of a
program will require different latencies depending on the amount of computation
in the different branches, and also, as discussed earlier, the input data. A program
is characterized by its worst case execution time (WCET), which, though hard to
compute in general, could be obtained from user inputs on loop iteration counts, etc.
Since the program path leading to the WCET must be executed within the deadline,
the processor speed/voltage could be chosen such that this path completes exactly
on the deadline.

Figure 5.14(a) shows a control flow graph (CFG) with each node corresponding
to a basic block of code, and annotated by the delay in number of cycles required to
execute it. Figure 5.14(b) shows a voltage/speed selection such that the worst case
execution path A-B-D completes by the 80s deadline. However, there will be situa-
tions where this path is not executed, and the A-C-D path is taken. If the system is
executed with the same voltage as in the A-B-D path, then the execution finishes by
40s, as shown in Fig. 5.14(c), and the system is idle for the remaining 40s. Instead,
DVFS can be applied as soon as C starts executing, since the discrepancy between
the remaining worst case execution time (10s for C C 20s for D D 30s) at the current
voltage/speed, and the permitted time (70s) is known here. We can thus run C and D
at a lower voltage/speed, thereby saving on the total energy, and yet meeting the task
deadline Fig. 5.14(d). Although the actual decision is taken at run time, appropriate
voltage scaling instructions can be inserted by the compiler in the C-branch [37].

In a periodic real-time system, we have a set of tasks to be executed periodically.
Each task, Ti , has an associated period, Pi , and a worst-case computation time, Ci .
Each task needs to complete its execution by its deadline, typically defined as the
end of the period, i.e., by the next release of the task. The scheduling problem in this
context is to assign the actual start times for all the tasks in such a way that all tasks
meet their deadlines. Two important classical scheduling algorithms are noteworthy:

� Earliest Deadline First (EDF). In this strategy, we give the highest scheduling
priority to the task that is constrained to complete the earliest.

� Rate Monotonic Scheduling (RMS). In this strategy, we give the highest
scheduling priority to the task with the shortest duration.

While the EDF algorithm gives optimal results in terms of finding a valid schedule,
the RMS is generally considered more practical for implementation.

The real time scheduling algorithms have to be appropriately adapted in order
to accommodate DVFS possibilities. In addition to the traditional schedulability

158 5 Power Aware Operating Systems, Compilers, and Application Software

a

b

c

d

Fig. 5.14 Intra-task DVFS by lower voltage operation on slower path. (a) Control Flow Graph
with node execution times. (b) Path A-B-D requires WCET D 80. (c) Path A-C-D completes
faster. The system remains idle for 40s. No DVFS. (d) DVFS on the A-C-D path leads to slower
execution of C and D, leading to energy saving

5.1 Operating System Optimizations 159

metric, an additional optimization criterion is total energy dissipation. For example,
the necessary and sufficient schedulability test for a task set under ideal EDF
scheduling requires that the sum of the worst-case utilizations be less than one, i.e.,

C1=P1 C ::: C Cn=Pn � 1

When we apply DVFS, the operating frequency can be scaled by a factor ˛.0 <

˛ < 1/, which in turn implies the worst case computation time of a task is scaled
by a factor 1=˛. The EDF schedulability test with frequency scaling factor ˛ will
then be:

C1=P1 C ::: C Cn=Pn � ˛

Operating frequency can then be selected as the least frequency at which the
schedulability criterion is satisfied. The minimum voltage that will allow the system
to operate at the required frequency is then chosen as a consequence. As shown in
Fig. 5.15, this solution finds one constant operating point; the frequency and voltage
do not change with time.

If each task Ti actually requires its worst-case time Ci to execute, then this result
is optimal. However, in reality a task may often finish much faster than its worst

Fig. 5.15 Static EDF finds one fixed operating point at which the system must be executed to
minimize power. Cycle-conserving and look-ahead schemes can change the operating point after
each task. Look-ahead technique is able to exploit the difference between the actual execution time
and the worst case execution time of the task

160 5 Power Aware Operating Systems, Compilers, and Application Software

case time. Thus if ci is the actual execution time of task Ti , and ci < Ci , then
this extra slack may be utilized to further slow down the system and save power.
If ci is used to compute the utilization instead of Ci , then the operating frequency
obtained will result in a task set that is schedulable, at least until Ti ’s deadline.
This is because the number of processing cycles available to other tasks between
Ti ’s release and deadline is unchanged from the case where WCET is assumed
and is actually needed. When ci � Ci , this scheme, called Cycle-conserving EDF
can exploit the excess slack to optimize power. Cycle-conserving EDF assumes the
worst case initially, executes at a high frequency until some tasks complete, and
only then reduce operating frequency and voltage. In contrast, the a look-ahead ap-
proach could defer as much work as possible, and set the operating frequency to
meet the minimum work that must be done now to ensure all future deadlines are
met. While this implies that high operating frequencies may be needed later on, but
again, if ci � Ci , this scheme will be advantageous. Experimental results show that
the look-ahead approach is the most effective, but both the approaches can signifi-
cantly reduce the energy consumption by exploiting the slack between the Ci , and
ci of the tasks.

5.1.3 I/O Device Power Management

I/O devices on computer systems such as disks and monitors dissipate a significant
amount of power, and modern operating systems support various features for power
management of these devices. The simplest strategy here is to monitor the activity
pattern on these devices, and when the idle duration exceeds a certain threshold,
move them into a low power state. For example, a laptop computer usually offers a
user-configurable setting for the idle duration after which the LCD display is turned
off; this saves a considerable amount of power. More sophisticated techniques in this
line include activating a laptop camera periodically to monitor the surroundings; if
a human face is not detected, the display could be turned off.

Simple power management mechanisms are also applicable to the hard disk.
Since hard disks consume significantly lower power when in sleep mode, an idle-
duration based decision to move the hard disk to sleep state is appropriate. Naturally,
prediction mechanisms come handy for making the critical decision of how long we
should wait before spinning a disk down. Doing it late implies wasted power but
better performance. Spinning down early leads to poor performance if too many
restarts are necessary, along with higher power because restart may be expensive in
terms of power. Moreover, disks need not be completely spun down. Disk power
management can also be performed at a finer level, where we can gradually vary the
rotation speed of the disks [15].

Certain non-trivial implications of disk power management decisions ought to be
kept in mind. Moving disks to sleep state implies that dirty buffers are written less
often to the disk – once in several minutes instead of a few seconds – to enable the
disk to stay longer in low power mode. This increases the possibility of data loss

5.2 Compiler Optimizations 161

due to power outages, where the disk does not get an opportunity to synchronize
with the modified buffers. Further, frequent spin up and spin down of disks causes
reliability problems and may lead to early failures. Overall, secondary storage in
computer systems is a rapidly evolving area; hard disks face stiff competition from
other technologies such as non-volatile memory as the latter has advantages with
respect to power, weight, and noise, and is getting close with respect to cost and
density.

5.2 Compiler Optimizations

Compiler optimizations targeting high performance generally also reduce average
power and energy indirectly. When the optimized code generated by a compiler re-
sults in lesser number of instructions executed, it also means a smaller number of
accesses to instruction memory. Since energy consumed by memory is proportional
to the number of accesses, this also reduces the total energy consumed. Along the
same lines, optimizations that reduce the number of accesses to data memory also
reduce the total memory energy consumption. Thus, for example, all register alloca-
tion related optimizations, which increase the efficiency of register usage, are also
favorable with respect to power, as it is more power-efficient to access registers than
memory. This argument also generalizes to other levels of the memory hierarchy.
Performance optimizations that increase the hit ratio to the L1 cache are also indi-
rectly energy optimizations, since the L1 cache access dissipates lesser energy than
an L2 cache access. The extent of performance improvement due to a compiler op-
timization may be different from the extent of power improvement. However, the
optimizations are generally in the same direction, and if a memory related opti-
mization improves performance, then it also reduces power and energy. However,
interesting exceptions do exist – good examples being those that rely on speculative
memory loads. In such cases, the access latency may be hidden by other CPU ac-
tivity, but the associated energy dissipated cannot be undone. Such an optimization
improves performance, but reduces energy efficiency.

Making the compiler explicitly aware of the performance/energy optimized fea-
tures present in the memory subsystem increases the compilation time, but yields
the power benefits without any run-time overhead and without the need of ex-
pensive hardware. While most standard compiler optimizations including constant
folding and propagation, algebraic simplifications, copy propagation, common sub-
expression elimination, loop invariant code motion, loop transformations such as
pipelining and interchange, etc. [32], are also relevant for power reduction, some
others that increase the code size (such as loop unrolling and function inlining)
need more careful attention. Optimizations such as unrolling and inlining increase
the code size, thereby increasing the instruction memory size. Since larger memo-
ries are associated with increased access energy, these transformations may actually
end up decreasing energy-efficiency.

162 5 Power Aware Operating Systems, Compilers, and Application Software

5.2.1 Loop Transformations

Loop transformations such as loop interchange, loop fusion, loop unrolling, and loop
tiling, which typically result in better cache performance through exploiting data
reuse, also lead to improvements in power/energy by way of minimizing accesses
to off-chip memory. Transformations such as unrolling cannot be indiscriminately
applied because they lead to cache pollution, which affects performance; the same
argument also applies to power, as we usually use cache misses as the evaluation
metric.

However, other transformations such as scalar expansion work in the opposite
direction. In scalar expansion, a global scalar variable shared across iterations that
prevents parallelization, is converted into an array variable to remove the data de-
pendency and parallelize the independent iterations. As the new array is mapped
to memory (instead of possibly a register earlier), such an optimization results in
a larger number of memory accesses and the associated address calculation, and
consequently, worse power [23].

5.2.2 Instruction Encoding

When a new instruction is fetched into the instruction register (IR), several bits
of the current IR are switched. The switching activity during the instruction fetch
phase is directly proportional to the number of bits switched in the IR between
the successively fetched instructions. The bit changes on the opcode field can be
decreased by assigning opcodes so that frequently occurring consecutive instruction
pairs have a smaller Hamming Distance between their opcodes.

We can represent the instruction transition frequencies as an instruction transition
graph (ITG) G D .V; E; w/ where V is a set of instructions, E is the set of undirected
edges between all the elements in V , and w is a probability density function that
maps each edge e D .v1; v2/ 2 E to a real number between 0 and 1. w.e/ indicates
the relative frequency of the instruction transitions between v1 and v2.

Given an instruction transition graph G, a set S of binary strings of length
dlog2jV je, and an opcode assignment function f W V ! S , a power metric, the
average switching in G under f can be defined as P D P

w.e/ � h.f .v1/; f .v2//,
where h is a function returning the Hamming Distance between two binary strings.
This is illustrated in the example shown in Fig. 5.16(b). Figure 5.16(a) shows the
graph with nodes v1 to v4, each representing an instruction. The edges connecting
these nodes are annotated with the instruction transition probabilities. Figure 5.16(b)
shows the encoding of these instructions and Fig. 5.16(c) shows the cost incurred
due to the transitions shown in Fig. 5.16(a) when the encoding shown in Fig. 5.16(b)
is used.

For low-power opcode encoding, the goal is to find an optimal opcode assign-
ment function fopt that minimizes the power consumption. Standard finite state

5.2 Compiler Optimizations 163

v3

v4

v2

v1

0.05

0.05

0.20.15

0.35 0.05

0.05

0.05
0.050.0

a

OpcodeInst.

v2

v3

v4

00

01

10

11

v1

b

Inst. Seq. Cost

2

1

1

1

1

2

0

0

0

0

Total Cost

2 x 0.05

2 x 0.05

1 x 0.15

1 x 0.35

1 x 0.05

0 x 0.05

0 x 0.05

0 x 0.05

0.95

1 x 0.20

0 x 0.00

Hamming Dist.

v1 v3

v1 v4

v2 v3

v2 v4

v1 v1

v2 v2

v3 v3

v4 v4

v1 v2

v3 v4

c

Fig. 5.16 An example showing the computation of the cost associated with an encoding of in-
structions when applied to a given Instruction Transition Graph. (a) Example instruction Transition
Graph. (b) Instruction encoding. (c) Computation of cost

machine encoding techniques can be adapted for this purpose. Further reduction
in IR switching can be effected by changing the register numbers in a generated
binary to minimize the switching in register numbers in consecutive instructions.

164 5 Power Aware Operating Systems, Compilers, and Application Software

5.2.3 Instruction Scheduling

In the instruction encoding discussed above, we assume that the instruction se-
quence is fixed. Instruction scheduling is the complementary optimization, where
we exercise the flexibility to re-order instructions to minimize bit switching. Here,
sequences of instructions can be re-scheduled where permissible to reduce transition
count on the instruction register and the instruction memory data bus. Additionally,
we can re-label registers in the generated instructions such that bit switching in con-
secutive instructions is reduced [31, 33, 39, 41].

In VLIW processors, different instructions may have varying number of oper-
ations, leading to a significant variation in the step power (difference in power
between consecutive clock cycles) and peak power (maximum power dissipation
during program execution). Both step power (which affects inductive noise) and
peak power affect system reliability. A more balanced distribution of instructions
in the schedule that avoids the extremes in terms of number of instructions in a
cycle and transitions between them leads to better step power and peak power be-
havior. Since the instruction stream in VLIW processors is usually compressed, a
reordering of the instructions within the same long word may lead to a better com-
pression. The compression implications of different orderings can be evaluated by
the compiler and the best one generated, ultimately leading to fewer I-Cache misses.
Keeping in view the transition activity on the instruction bus, the instructions within
the same VLIW instruction word can be re-ordered to minimize the Hamming dis-
tance from the previous instruction word. This can also be done across words, if the
performance is not affected [6, 26, 36, 47].

Compared to the run-time environment, a compiler has a deeper view of the indi-
vidual application being compiled, and can perform optimizations spanning a large
section of code. In a hybrid VLIW/Superscalar architecture, a low-power enhance-
ment to a superscalar processor is used, where, if the compiler is able to find efficient
instruction schedules, then the low power mode is used and the circuitry for dynamic
scheduling is turned off [43].

5.2.4 Dual Instruction Set Architectures

The Instruction Set Architecture (ISA) forms the interface between the hardware
and software, and it is the compiler’s task to convert an application expressed in
high level language in terms of machine instructions. The instruction set itself has a
very significant impact on the power-efficiency of program execution.

Traditionally, ISAs have been of fixed width (e.g., 32-bit SPARC, 64-bit Alpha)
or variable width (e.g., x86). Fixed width ISAs give good performance at the cost
of code size and variable width ISAs give good performance at the cost of added
decode complexity. However, neither of the above are good choices for low power
embedded processors where performance, code size, and power are critical con-

5.2 Compiler Optimizations 165

4−bit 4−bit 4−bit20−bit

Accessibility to 16 registers

a

3−bit7−bit 3−bit 3−bit

Fewer opcodes Accessibility to only 8 registers

b

Fig. 5.17 Reduced bit-width Instruction Set Architecture or rISA is constrained due to bit-
width considerations. Consequently, rISA instructions often have access to only a fraction of the
register file. (a) 32-bit normal instruction. (b) 16-bit rISA instruction

straints. Dual width ISAs are a good trade-off between code size flexibility and
performance, making them a good choice for embedded processors. Processors with
dual width ISAs are capable of executing two different instruction sets. One is the
“normal” set, which is the original instruction set, and the other is the “reduced
bit-width” instruction set that encodes the most commonly used instructions using
fewer bits (Fig. 5.17).

A good example of a dual-width ISA is the ARM [1] ISA with a 32-bit “nor-
mal” Instruction Set and a 16-bit Instruction Set called “Thumb”. Other processors
with a similar feature include the MIPS 32/16 bit TinyRISC [29], ST100 [38], and
the Tangent A5 [3]. This feature is called the “reduced bit-width Instruction Set
Architecture” (rISA).

Processors with rISA feature dynamically expand (or translate) the narrow rISA
instructions into corresponding normal instructions. This translation usually occurs
before or during the decode stage (Fig. 5.18). Typically, each rISA instruction has
an equivalent instruction in the normal instruction set. This makes translation sim-
ple and can usually be done with minimal performance penalty. As the translation
engine converts rISA instructions into normal instructions, no other hardware is
needed to execute rISA instructions. If the whole program can be expressed in terms
of rISA instructions, then up to 50% code size reduction may be achieved. Code size
reduction also implies a reduction in the number of fetch requests to the instruction
memory. This results in a decrease in power and energy consumption by the instruc-
tion memory subsystem. Thus, the main advantage of rISA lies in achieving low
code size and low energy consumption with minimal hardware alterations. How-
ever, compiling for rISA instructions is complicated due to several reasons:

� Limited Instruction Set: The rISA instruction set is tightly constrained by the
instruction width. Since only 16 bits are available to encode the opcode field
and the three operand fields, the rISA can encode only a small number of normal
instructions. Therefore several instructions cannot be directly translated into rISA
instructions.

166 5 Power Aware Operating Systems, Compilers, and Application Software

ARM
Instruction

Decode

Decode Stage ExecuteFetch
Stage

Mux

Mux

Mux

A[1]

32−bit data

16

16

Thumb
Instruction

Decompressor

Fig. 5.18 rISA instructions are translated to normal instructions before or during decode. This
allows the rest of the processor to stay unchanged

� Access to only a fraction of registers: The rISA instruction set, because of bit-
width restrictions, encodes each operand (such as register address) using fewer
number of bits. Therefore, rISA instructions can access only a small subset of
registers. For example, the ARM Thumb allows access to 8 registers out of the
16 general-purpose ARM registers.

� Limited width of immediate operands: A severe limitation of rISA instruc-
tions is the inability to incorporate large immediate values. For example, with
only 3 bits available for operands, the maximum unsigned value that can be ex-
pressed is 7.

Because of the problems mentioned above, indiscriminate conversion of nor-
mal instructions to rISA instructions may actually increase code size and power
consumption, not only because a normal instruction can map to multiple rISA in-
structions, especially if it has large immediate operand fields, but also because of
spill code since rISA instructions can access only a limited set of registers.

One of the most important decisions in a rISA compiler is the granularity at
which to perform the conversion. The conversion can be performed at routine level
granularity, where all the instructions in a routine can be in exactly one mode – the
normal mode or the rISA mode. A routine cannot have instructions from both ISAs.
Routine-level rISAization (the process of conversion from normal instructions to
rISA instructions) has some drawbacks:

� First, a routine-level granularity approach misses out on the opportunity to rI-
SAize code sections inside a routine that is deemed non profitable to rISAize. It
is possible that it is not profitable to rISAize a routine as a whole, but some parts
of it can be profitably rISAized. For example, in Fig. 5.19(a), Function 1 and
Function 3 are found to be non-profitable to rISAize as a whole. Routine-level
granularity approaches will therefore not rISAize these routines.

5.2 Compiler Optimizations 167

Function 1

Function 2

Function 3

a

Function 1

Function 2

Function 3

32 bit

16 bit

b

Fig. 5.19 rISAization at function level has very little overhead, but misses out on the possibility
of selectively converting only the profitable regions of a function. (a) Routine Level Granularity.
(b) Instruction Granularity

� Secondly, with routine-level rISAization, it is not possible to exclude from con-
version some regions of code inside a routine that may incur several register
spills. It is possible that excluding some pieces of code inside a profitable routine
may increase the code compression achieved. For example, in Fig. 5.19(b) the
instruction-level granularity approaches have the choice to exclude some regions
of code inside a routine to achieve higher code compression.

Performing rISAization at instruction-level granularity alleviates both the above
problems, as we can rISAize profitable portions of the application code, while
excluding the non-profitable parts. However, rISAizing at instruction-level comes
with its own set of challenges. Foremost is the overhead of the mode change op-
eration: the instruction that informs the processor that the following instructions

168 5 Power Aware Operating Systems, Compilers, and Application Software

are in the normal mode, or the rISA mode. In processors that implement routine-
level conversion, this functionality can be added to the function call instruction, but
instruction-level conversion requires explicit instructions. The direct implication of
this is that converting only a few instructions will not be profitable, and several con-
tiguous instructions must be converted to overcome the conversion overhead and
obtain code size and power improvements. Since basic blocks are typically small,
a good approach requires an inter-basic block analysis for conversion. Further, an
effective approach also necessitates an associated scheme to estimate the register
pressure in a code segment in order to more reliably compute the increase in the
code size by rISAizing the code segment.

Experimentation with the rISAization strategy shows that rISA is a very effective
code size reduction, as well as power reduction technique, and a smart compiler can
consistently achieve upwards of 30% reduction in code size, and similar reduction
in the power consumption of the instruction cache.

5.2.5 Instruction Set Extension

Instruction set extension is the process of adding new instructions in the processor,
and adding the corresponding functional unit and control circuitry to enable the de-
tection and execution of the new instruction, with the objective of improving the
power and performance of the processor. This is specially useful in application spe-
cific processors (ASIPs), where there may be some large pieces of functionality that
are used very often, and the application could benefit from performing it directly in
hardware. Consider a cryptographic application using elliptic curve encryption to
encode data. A processor used for this application could greatly benefit if the en-
tire elliptic curve encryption could be performed as one single instruction, rather
than as a sequence of smaller instructions. One common application for instruction
set extension is the MMX extension to the x86 architecture that provides special
instructions for SIMD arithmetic and string manipulation.

The procedure for extending the instruction set of a processor starts with iden-
tifying commonly occurring instruction patterns in the application set of interest,
replacing them by a new instruction in the application code, adding a new hardware
unit to execute the new instruction, and finally adding control logic to decode,
issue, and commit the instruction.

An Instruction Set Extension or ISE typically encapsulates multiple atomic op-
erations constituting the critical portion of the application. Execution of an ISE on a
custom unit effectively migrates multiple operations from software to hardware, thus
greatly accelerating the application performance. Along with performance, there
are other obvious benefits of such application-specific processor customization. Be-
cause of compacting multiple operations into a single ISE, there is an overall code
size reduction. Furthermore, we can expect energy reduction because fewer instruc-
tions are executed for every replacement of a large set of operations by the ISE. Such

5.2 Compiler Optimizations 169

replacement causes reduced switching activity due to reductions in the number of
fetch, decode, and register store operations.

Automatic generation of ISEs is a key, and perhaps the most crucial step in au-
tomating the process of processor customization. To do this, the Control Flow Graph
(CFG), and the Data Flow Graph (DFG) of the basic blocks of the application must
be abstracted. DFG is a Directed Acyclic Graph (DAG) G D .V; E/, where the
nodes V represents the instructions or external inputs/outputs and the edges E cap-
ture the data dependencies between the nodes. A cut C � G can be a potential ISE
if it satisfies some conditions:

� Forbidden Operations: Due to microarchitectural restrictions, operations of a
certain type might not be allowed within the cut. For example, memory opera-
tions have been traditionally prohibited in the process of ISE generation. This
is because, first of all, if memory operations are allowed in ISEs then the ISE
must be combined with the load/store unit. Otherwise, the custom unit must have
a new connection (that could be shared) to the memory, causing coherency is-
sues between the data shared by the custom unit and the rest of the processor.
Therefore, when searching for a cut, we have to find a maximal cut that does not
contain any node that cannot be a part of the ISE.

� Input-Output Constraints: The custom unit will receive its operands from
a register file (shown in Fig. 5.20). As a result, the number of source and
destination operands of the new instruction is limited by the number of read
and write ports respectively in the register file. For embedded processors with
relatively fewer read/write ports on the Register File, this can be a crippling
limitation.

� Convexity Constraint: Only convex cuts can be a candidate for ISE. In a convex
cut C there exists no path from a node u 2 C to another node v 2 C through a
node w … C . This is needed because scheduling policies in processors typically
assume that all operands of an instruction are read before the instruction starts
execution. Implementing a non-convex graph would require significant changes

Execution
Unit

Memory
Unit

Instruction
Memory

Fetch,
Decode,
and Issue

Custom
Unit

Register
File

Data Memory

Fig. 5.20 In tightly-coupled processors, a custom unit is tightly integrated with the processor
pipeline to implement instruction set extension functions

170 5 Power Aware Operating Systems, Compilers, and Application Software

5

6

7

8

4

3

1

0

2

a

1

3

4

0

2

5

6

7

8

b

1

3

4

0

2

5

6

7

8

c

Fig. 5.21 The objective of ISE generation is to find a maximal cut that does not have forbidden
functions (Shaded Nodes) and satisfies input-output and convexity constraints. (a) Graph with Max.
Inputs D 3, Max. Outputs D 2. (b) Invalid Cut. (c) Valid Cut

in the scheduling policy. Figure 5.21(c) shows a valid cut, while Fig. 5.21(b)
shows a cut that violates convexity constraints. This is because there is a path
from node 1 to node 4 (both in the cut) that goes through node 3 (outside the cut).

Thus the problem of finding an ISE is to find non-overlapping cuts Ci � G

that satisfy the input-output, convexity, and forbidden operations constrains, and
maximize the improvements in power and performance. This dual objective is tricky
because on one hand, finding as large a cut as possible is beneficial, but on the other
hand, the cut should be relatively small so that it is generic enough to have several
instances in the application, to deliver good results. Integer Linear Programming
(ILP) solutions have been developed, with the predictable behavior of generating
optimal results but at the expense of too much time; they work well on small DFGs,
and therefore are unable to find large cuts. On the other hand, heuristics have a hard
time finding large cuts. Monte carlo and genetic solutions have also been explored.
However it is difficult to define good fitness function and the termination criteria.
Clustering techniques [11, 40] start with a seed node and use a guide function to
select the best direction to grow the cluster. One technique prunes the candidates
that do not reach a certain percentage of the best priority discovered so far, while the
other prunes the directions of search that are not estimated to be worthy for growing

5.2 Compiler Optimizations 171

a candidate. ISEGEN [5] uses a graph partitioning scheme based on the Kernighan-
Lin heuristic. On multimedia benchmarks and a processor with 4 read ports and 2
write ports on the Register File, an average of 50% speedup and is reported. The
power savings also fall in the same range.

5.2.6 Power Gating

The compiler has an intimate knowledge of the processor microarchitecture. This
has been exploited to develop several compiler techniques to modify the application,
so that it executes in a power-efficient manner on the microarchitecture. Among
various techniques proposed for leakage energy reduction at the microarchitecture
level, power gating has emerged as one of the most promising approaches [8, 34].
In this technique, leakage power is reduced by shutting off the power supply to the
FU during periods of inactivity (Section 3.5.3) [21].

Figure 5.22 shows the estimated energy density of different components in
the ALPHA DEC 21364 processor while executing a representative susan-corners
benchmark from the MiBench suite on PTScalar [27] simulator. The ALUs have the
second highest energy density among all the units, next only to the integer register
file. This observation is also consistent with other studies such as [12], where it is
reported that compared to large modules such as secondary caches, FUs are very

30.000
Energy Density

25.000

15.000

20.000

10.000

5.000

E
ne

rg
y

D
en

si
ty

 (
m

J/
m

m
^
2)

0.000

R
U

U

IA
L

U
1

B
ra

nc
h

IA
L

U
2

In
tR

eg

D
L

1

L
SQ

F
A

L
U

2

F
A

L
U

1

D
ec

od
e

IA
L

U
4

IA
L

U
3

IT
L

B

R
A

T

F
P
R

eg

D
T

L
BL
2

IL
1

Fig. 5.22 Power gating of functional units is important, as they are typically the most important
hotspots in the processor

172 5 Power Aware Operating Systems, Compilers, and Application Software

active blocks with power densities up to twenty times higher. High power densities
directly result in high temperature, which ultimately makes function units some of
the highest leakage sites in the processor.

Power gating promises to be an effective approach for containing the leakage
power of FUs. However, power gating large logic structures such as ALU require
a large sleep transistor (see Section 2.5.5). Synthesis results at 65nm show that the
delay of the sleep transistor will be about 6-10 processor cycles with a 3 GHz clock.
Given this, the problem of power gating FUs translates to finding idle intervals of
inactivity of the FUs, and power gating the FUs during these periods. The good
news is that inherent instruction dependencies in programs ensures that we cannot
use all FUs all the time. Hence, idle periods on FUs are a commonly occurring
phenomenon.

One popular power gating technique is based on FU idle periods [42]. Here, the
activity of FUs is monitored, and if an FU is idle for more than a threshold tidle

cycles, the power supply to the FU is gated off. The control circuit for power gating
each FU is local and independent of other FUs. Once in a power-gated state, the
FU will be woken up (power gating is disabled) when an operation is issued to it.
Power gating has also been attempted in a VLIW compiler by issuing instructions
to turn the FUs on or off. This is typically done at a loop-level – the number of FUs
required for a loop is determined, and those not needed are turned-off. However, in
order to not overheat the few active FUs, the activity is circulated among the FUs,
turning them on and off in an iteration.

Use of tiny leakage sensors deployed on each FU can lead to further optimization
of FU leakage power [24]. This approach attacks the power gating problem in two
steps. First, it looks at the recent history of execution and determines how many FUs
to keep “on”. Second, it power gates the FU whose leakage is the least. Operations
are issued only to the “on” FUs. Since the decision of which FUs to keep “on” is
based on the leakage of the FU, it automatically considers the usage, temperature,
and also the process variation effects. Because of process variations (manufacturing
inaccuracies), FUs can have different base leakages. This is an exponentially grow-
ing problem as we tread towards finer dimensions in manufacturing. Leakage-aware
power gating automatically considers this process variation effect, and is able to
“even-out” the leakage of the FUs (Fig. 5.23).

5.2.7 Dynamic Translation and Recompilation

One traditional handicap of the compiler with respect to power optimization is that
it has a limited view of the run-time environment. Since the compiler is unaware
of what other tasks would be simultaneously contending for common system re-
sources, it is difficult for it to be aggressive in its power optimizations. Dynamic
translation and dynamic recompilation refer to techniques where a certain amount
of code generation is actually performed by the CPU in hardware at execution time.
The Transmeta Crusoe processor provided an early glimpse into such possibilities
in a commercial setting [13]. A VLIW-style architecture was adopted with a view to

5.2 Compiler Optimizations 173

Fig. 5.23 Leakage-Aware power gating helps not only in reducing the leakage of FUs, but also
helps in reducing the variation in the leakage due to process variations

reducing the power overhead of performing major tasks such as instruction reorder-
ing. Instead, a run-time software binary translator was used to generate the VLIW
instructions from the original x86 code on the fly, a small sequence at a time. This
still led to a significant overhead the first time the code was translated, but the result-
ing decoded VLIW code was cached so that future accesses to the same instruction
could be read from the local memory, without the power overhead of decoding and
instruction re-ordering.

The Crusoe processor was an early instance of a laptop class processor that
could be run at several different voltage and frequency settings. In addition to the
dynamic translation, a dynamic recompilation feature was also introduced, which
would monitor the execution carefully to find frequently executed sections of code
and generate optimized versions at run time. The dynamic translation and opti-
mization feature has, since then, been implemented by several newer generation
processors.

5.2.8 Compiler Optimizations Targeting Disks

Since accesses to the disk involves a significant amount of energy, making compiler
optimizations disk-aware can help reduce overall system power. Both data layout
and instruction transformations can benefit from knowledge of the disk subsys-
tem. For example, data can be laid out in such a manner that in a parallel disk
system, only a few disks are continuously accessed, generating the opportunity

174 5 Power Aware Operating Systems, Compilers, and Application Software

Fig. 5.24 The loop fusion
transformation could be bad
for disk power when data
from different disks are
accessed in the merged loop.
In this example, arrays a and
b reside on Disks 1 and 2
respectively. When the loops
are split (left), Disk 2 can be
powered down during the first
loop and Disk 1 can be
powered down during the
second loop. When the loops
are fused, both disks are busy
throughout the merged loop

to power down the remaining ones. In this context, it is worth re-examining the
implications of typical compiler optimizations – some of them work in the op-
posite direction in this context. An interesting observation is that loop fusion can
be detrimental from the point of view of disk power, especially when it leads to
additional arrays being accessed – and hence, more disks being activated simulta-
neously [22]. The reverse optimization, loop fission, can be beneficial using the
same argument (Fig. 5.24). Note that this is in contrast to the previous observation
in Section 5.2.1.

5.3 Application Software

Power awareness at the level of the hardware, operating systems, and compilers, is
gradually finding its way to application software through application programming
interfaces (APIs) that expose the underlying power management facilities. These
APIs can be used by the programmer to pass useful information on to the operating
system – specific information about the application’s behavior that might not be
easy to infer automatically. The converse is equally useful – knowledge provided
by the operating system helps the application tune itself to the state of the system
resources.

5.3.1 Application-aided Power Management

One class of hints that can be provided by an application includes task completion
deadlines, expected execution times, and other measures of the estimated complex-
ity of the task that might not be easily available statically, but could be present or

5.3 Application Software 175

computed at run time. Such information can help the operating system make more
informed power management decisions.

Exposing the state of different system resources to an application can help build-
ing systems that adapt themselves dynamically to achieve better power efficiency.
An example is when there is a choice to fetch a piece of data from multiple sources –
a disk and the network. If the current power modes (and associated performance
penalties) of the connected devices were available to the application, a quick esti-
mate could help decide the most appropriate device for servicing a request. If the
disk is powered down, it may be cheaper in terms of both performance and energy
to fetch relatively small-sized data from other networked devices [2, 44]. A gen-
eral handling of this situation needs some additional intelligence. If a sequence of
such small-sized requests are issued, then, beyond a certain count, it would be more
energy-efficient to wake up the disk instead. A co-ordinated strategy is shown to
be useful. Involving the application in the power management decision is useful
here. The application, which may have knowledge about the future request pat-
terns it will issue, can take the decision about the optimal power state of the disk.
If such information is not present, then it could drop a hint to a power manager
regarding what the ideal power state should have been for the device. After receiv-
ing several such ghost hints, the power manager can alter the power state of the
device [2].

5.3.2 DVFS Under Application Control

So far, we have seen DVFS schemes being implemented either by the operating sys-
tem or by the hardware itself. In both cases, the decisions have to be taken not on
the basis of future requirements of the application but on the basis of past observed
workload history. However, since the power-performance requirements of different
applications are distinct, power management policies that are tailor made for the
applications could result in improved power efficiency with minimum effect on per-
formance [28]. A few example applications having varying nature of operation and
the associated unique power management strategies are discussed below.

5.3.2.1 MPEG Video Decoder

MPEG video decoder is a soft real-time application – it needs to meet timeliness
constrains, failing which, the quality of the user experience is degraded. Other appli-
cations such as DVD playback, audio players, music synthesizers, and video capture
belong to the same class of soft real-time applications. These applications could be
abstracted as a sequence of tasks such that each task completes within a given time.
Applications in this class could use the following DVFS policy.

176 5 Power Aware Operating Systems, Compilers, and Application Software

Consider a task among the sequence of tasks needed to be executed by the appli-
cation. Let the task completion deadline be d starting from time t. If c is the CPU
time needed to complete the task when the CPU is operated at maximum frequency
and e is the CPU time allotted to this task before the deadline, the processor speed
is calculated as shown below.

1. If t C c > d , the task is bound to miss the deadline even when operated at
maximum frequency. Hence, we choose to operate at maximum CPU frequency.

2. If e < c, the CPU demand exceeds its availability and the task is bound to miss
the deadline in this case also. Hence, it is best to run the processor at maximum
frequency.

3. If t C c < d and e > c, the task can be slowed down so that it completes
just at the deadline. The frequency f at which the CPU is to be operated is
calculated as

f D c

min(e,d-t)
� fmax (5.2)

In order to compute f , the application needs to know the CPU availability e and
an estimate of the processor demand c.

Estimation of CPU availability: An interface could be defined between the ap-
plication and the OS such that the application receives the start and end times of,
say, the previous k instances when this application was scheduled on the CPU.
The average of times allotted in these previous instances can be used as an esti-
mate for the availability in the next instance of the same application scheduled on
the CPU.

Estimation of CPU demand: This could be obtained by characterizing the work-
load of a task in the application with respect to parameters that are expected to vary
from task to task. For example, in the case of MPEG decoder, the decode time of a
frame is found to be varying as a function of frame size and type of frame (frames are
of three types I,B and P). Hence, a predictor could be built that computes the work-
load of the frame as a function of size and type of the frame. The predictor stores
the observed decode times of previous N frames at full CPU frequency, to refit the
prediction function to the parameters – size and type. Since each frame is annotated
with a header that contains the information of frame size and type of frame, prior to
decoding a frame we can extract this information and obtain the workload estimate
from the prediction function.

5.3.2.2 Word Processor

This is an example of an interactive real time application. Several other applications
such as games and web browsers, fall in this category of applications. These appli-
cations also consist of tasks that are to be finished within a deadline, but the tasks are
initiated by an event of user interaction with the application. Hence, the workload of
the applications is to be characterized as a function of these events. Since the number

5.3 Application Software 177

of these events types is generally very large, a reasonable workload characterization
is not feasible for such applications. Instead, an approach of gradually increasing the
CPU frequency to satisfy the CPU demand can be employed for power management
of these applications. The duration available for the task is divided into a number
of sub-intervals. Processing is started at minimum CPU frequency and every time a
sub-interval is crossed before task completion, the CPU frequency is scaled to next
available frequency level.

5.3.2.3 Batch Compilation

Compilation using make is a batch application, where throughput is more important
than the time taken for completion of individual tasks – in this case, a task being
compilation of a program. Since it is difficult to estimate the compilation time of
each program, the best strategy in this case would be to allow the end user to specify
the required speed settings. For example, the user can specify the priority of the
batch application to be low, and hence cause it to run in the background.

Thus we see that, different DVFS policies suit different applications, and the ap-
plication programmer can contribute significantly to efficient power management
depending on the power-performance characteristics of the application. As men-
tioned earlier, an enhanced interface is necessary through which the application can
collect resource utilization statistics from the OS. Secondly, the scheduler should be
modified such that per-process CPU power settings are maintained and conveyed to
the underlying hardware whenever the program is scheduled for execution. Finally,
the OS needs to have the ability to map the application-specific power setting to the
appropriate CPU frequency supported by the hardware.

5.3.3 Output Quality Trade-offs

Often, applications have multiple choices of solutions at their disposal for a cer-
tain processing task. Different algorithms with different computational complexities
could be employed for the same processing task, with different associated quality
of results. Such choices could be judiciously exercised by an application when it is
made aware of the status of resources in the run-time environment. For example, an
MPEG encoder under power constraints could sacrifice compression efficiency by
skipping some steps in encoding process. Of course, the trade-offs involved here –
less energy to encode vs. more energy due to possibly larger I/O – should be prop-
erly studied before making the decision. Similarly, a video player with access to
multiple versions of videos with different image sizes, could select smaller images
when under energy constraints [44].

Many applications in the signal processing and graphics domain are character-
ized by a graceful degradation feature with respect to the bit-width of data types
used for computation. Such flexibilities can be exploited by applications to continue

178 5 Power Aware Operating Systems, Compilers, and Application Software

operation with reduced quality of output when under power and energy constraints.
For example, when battery life-related constraints do not permit full-fledged pro-
cessing with double precision arithmetic, an application could continue to operate
by converting data to single precision and operating upon it, or by shifting to fixed
point arithmetic.

5.4 Summary

Once power saving mechanisms have been incorporated into the underlying hard-
ware, appropriate hooks need to be provided so that the software executing on the
system can fully exploit them. In this chapter we covered the software components
that can benefit from power awareness: the operating system, the compiler, and ap-
plication software.

When the system under consideration is extended to include multiple tasks and
multiple components such as the CPU, memory, I/O devices, and other resources, it
is clear that the operating system emerges as an attractive entity in which to perform
power management actions, since it has a good overall view of the resource usage
by the different system tasks. We outlined several power management techniques
including the important concept of intra-task and inter-task dynamic voltage and
frequency scaling for real-time and non-real time systems.

The compiler interface is directly affected the first that is affected by the new
hardware feature, since the compiler generates the code to execute on the hardware.
Since a compiler has a deeper view of the program that is to ultimately execute on
a processor, it can take power management decisions that may be difficult to handle
at run time. We discussed different power optimization mechanisms involving the
compiler: loop transformations, instruction encoding and scheduling, compilation
for dual instruction architectures, instruction set extension, compiler directed power
gating, and finally, disk optimizations. Finally, the application program can be made
aware of the different hooks and knobs provided by the run-time environment to en-
able close monitoring of the state of system resources, as well as passing on crucial
hints to the operating system about the state of the application.

References

1. Advanced RISC Machines Ltd: ARM7TDMI (Rev 4) Technical Reference Manual
2. Anand, M., Nightingale, E.B., Flinn, J.: Ghosts in the machine: interfaces for better power man-

agement. In: MobiSys ’04: Proceedings of the 2nd international conference on Mobile systems,
applications, and services, pp. 23–35 (2004). DOI http://doi.acm.org/10.1145/990064.990070

3. ARC Cores: ARCtangent-A5 Microprocessor Technical Manual
4. Azevedo, A., Issenin, I., Cornea, R., Gupta, R., Dutt, N., Veidenbaum, A., Nicolau, A.: Profile-

based dynamic voltage scheduling using program checkpoints. In: DATE ’02: Proceedings
of the conference on Design, automation and test in Europe, p. 168. IEEE Computer Society,
Washington, DC, USA (2002)

References 179

5. Biswas, P., Banerjee, S., Dutt, N., Pozzi, L., Ienne, P.: ISEGEN: Generation of high-quality
instruction set extensions by iterative improvement. In: DATE ’05: Proceedings of the con-
ference on Design, Automation and Test in Europe, pp. 1246–1251. IEEE Computer Society,
Washington, DC, USA (2005). DOI http://dx.doi.org/10.1109/DATE.2005.191

6. Bona, A., Sami, M., Sciuto, D., Zaccaria, V., Silvano, C., Zafalon, R.: Energy estimation and
optimization of embedded vliw processors based on instruction clustering. In: DAC ’02: Pro-
ceedings of the 39th conference on Design automation, pp. 886–891. New Orleans, Louisiana,
USA (2002)

7. Burd, T.D., Brodersen, R.W.: Design issues for dynamic voltage scaling. In: ISLPED ’00:
Proceedings of the 2000 international symposium on Low power electronics and design,
pp. 9–14. ACM, New York, NY, USA (2000). DOI http://doi.acm.org/10.1145/344166.344181

8. Butts, J.A., Sohi, G.S.: A static power model for architects. In: Micro33, pp. 191–201 (2000).
URL citeseer.ist.psu.edu/butts00static.html

9. Choi, K., Soma, R., Pedram, M.: Fine-grained dynamic voltage and frequency scaling for
precise energy and performance tradeoff based on the ratio of off-chip access to on-chip com-
putation times. IEEE Transactions on CAD 24(1), 18–28 (2005)

10. Clark, L.T., Hoffman, E.J., Biyani, M., Liao, Y., Strazdus, S., Morrow, M., Velarde, K.E.,
Yarch, M.A.: An embedded 32-b microprocessor core for low-power and high-performance
applications. IEEE Journal of Solid State Circuits 36(11), 1599–1608 (2001)

11. Clark, N., Zhong, H., Mahlke, S.: Processor acceleration through automated instruction set
customization. In: In MICRO, pp. 129–140 (2003)

12. Deeney, J.: Reducing power in high-performance microprocessors. In: International Sympo-
sium on Microelectronics (2002)

13. Dehnert, J.C., Grant, B.K., Banning, J.P., Johnson, R., Kistler, T., Klaiber, A., Mattson, J.:
The transmeta code morphingTMsoftware: using speculation, recovery, and adaptive retransla-
tion to address real-life challenges. In: Proceedings of the international symposium on Code
generation and optimization, pp. 15–24 (2003)

14. Govil, K., Chan, E., Wasserman, H.: Comparing algorithm for dynamic speed-setting of a low-
power cpu. In: MOBICOM, pp. 13–25 (1995)

15. Gurumurthi, S., Sivasubramaniam, A., Kandemir, M.T., Franke, H.: Drpm: Dynamic speed
control for power mangagement in server class disks. In: 30th International Symposium on
Computer Architecture, pp. 169–179 (2003)

16. Hewlett-Packard, Intel, Microsoft, Phoenix Technologies Ltd., and Toshiba: Advanced Config-
uration and Power Interface Specification (2009)

17. Intel Corporation, http://www.intel.com/design/iio/manuals/273411.htm: Intel 80200 Proces-
sor based on Intel XScale Microarchitecture

18. Intel Corporation, http://www.intel.com/design/intelxscale/273473.htm: Intel XScale(R) Core:
Developer’s Manual

19. Ishihara, T., Yasuura, H.: Voltage scheduling problem for dynamically variable voltage pro-
cessors. In: Proceedings of the 1998 International Symposium on Low Power Electronics and
Design, 1998, Monterey, California, USA, August 10-12, 1998, pp. 197–202 (1998)

20. Jejurikar, R., Pereira, C., Gupta, R.K.: Leakage aware dynamic voltage scaling for real-time
embedded systems. In: Proceedings of the 41th Design Automation Conference, DAC 2004,
San Diego, CA, USA, June 7-11, 2004, pp. 275–280 (2004)

21. Jiang, H., Marek-Sadowska, M., Nassif, S.R.: Benefits and costs of power-gating technique.
In: ICCD ’05: Proceedings of the 2005 International Conference on Computer Design. IEEE
Computer Society, Washington, DC, USA (2005)

22. Kandemir, M., Son, S.W., Chen, G.: An evaluation of code and data optimizations in the context
of disk power reduction. In: ISLPED ’05: Proceedings of the 2005 international symposium
on Low power electronics and design, pp. 209–214. San Diego, CA, USA (2005)

23. Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Ye, W.: Influence of compiler optimizations on
system power. In: Proceedings of the 37th Design Automation Conference, pp. 304–307. Los
Angeles, USA (2000)

citeseer.ist.psu.edu/butts00static.html

180 5 Power Aware Operating Systems, Compilers, and Application Software

24. Kim, C.H., Roy, K., Hsu, S., Krishnamurthy, R., Borkar, S.: A Process Variation Compensating
Technique with an On-Die Leakage Current Sensor for nanometer Scale Dynamic Circuits.
IEEE Transactions on VLSI 14(6), 646–649 (2006)

25. Kim, T.: Application-driven low-power techniques using dynamic voltage scaling. In: 12th
IEEE Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA
2006), 16-18 August 2006, Sydney, Australia, pp. 199–206 (2006)

26. Lee, C., Lee, J.K., Hwang, T., Tsai, S.C.: Compiler optimization on vliw instruction scheduling
for low power. ACM Trans. Des. Autom. Electron. Syst. 8(2), 252–268 (2003)

27. Liao, W., He, L., Lepak, K.: Ptscalar version 1.0 (2004). URL http://eda.ee.ucla.edu/PTscalar/
28. Liu, X., Shenoy, P., Corner, M.D.: Chameleon: Application-level power management. IEEE

Transactions on Mobile Computing 7(8), 995–1010 (2008). DOI http://dx.doi.org/10.1109/
TMC.2007.70767

29. LSI LOGIC: TinyRISC LR4102 Microprocessor Technical Manual
30. Mahesri, A., Vardhan, V.: Power consumption breakdown on a modern laptop. In: Power-

Aware Computer Systems, pp. 165–180 (2004)
31. Mehta, H., Owens, R.M., Irwin, M.J., Chen, R., Ghosh, D.: Techniques for low energy soft-

ware. In: ISLPED ’97: Proceedings of the 1997 international symposium on Low power
electronics and design, pp. 72–75. Monterey, USA (1997)

32. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufman, San Fran-
cisco, CA (1997)

33. Petrov, P., Orailoglu, A.: Compiler-based register name adjustment for low-power embedded
processors. In: ICCAD ’03: Proceedings of the 2003 IEEE/ACM international conference on
Computer-aided design, p. 523 (2003)

34. Powell, M., Yang, S.H., Falsafi, B., Roy, K., Vijaykumar, T.N.: Gated-vdd: a circuit technique
to reduce leakage in deep-submicron cache memories. In: ISLPED ’00: Proceedings of the
2000 international symposium on Low power electronics and design, pp. 90–95 (2000)

35. Sery, G., Borkar, S., De, V.: Life is cmos: why chase the life after? In: DAC ’02: Proceedings
of the 39th annual Design Automation Conference, pp. 78–83. ACM, New York, NY, USA
(2002). DOI http://doi.acm.org/10.1145/513918.513941

36. Shao, Z., Xiao, B., Xue, C., Zhuge, Q., Sha, E.H.M.: Loop scheduling with timing and
switching-activity minimization for vliw dsp. ACM Trans. Des. Autom. Electron. Syst. 11(1),
165–185 (2006)

37. Shin, D., Kim, J., Lee, S.: Intra-task voltage scheduling for low-energy, hard real-time applica-
tions. IEEE Design & Test of Computers 18(2), 20–30 (2001)

38. ST Microelectronics: ST100 Technical Manual
39. Su, C.L., Despain, A.M.: Cache design trade-offs for power and performance optimization: a

case study. In: ISLPED ’95: Proceedings of the 1995 international symposium on Low power
design, pp. 63–68. ACM Press, New York, NY, USA (1995)

40. Sun, F., Ravi, S., Raghunathan, A., Jha, N.K.: Synthesis of custom processors based on
extensible platforms. In: ICCAD ’02: Proceedings of the 2002 IEEE/ACM international
conference on Computer-aided design, pp. 641–648. ACM, New York, NY, USA (2002). DOI
http://doi.acm.org/10.1145/774572.774667

41. Tomiyama, H., Ishihara, T., Inoue, A., Yasuura, H.: Instruction scheduling for power reduction
in processor-based system design. In: DATE ’98: Proceedings of the conference on Design,
automation and test in Europe, pp. 855–860. Le Palais des Congrés de Paris, France
(1998)

42. Tschanz, J.W., Narendra, S.G., Ye, Y., Bloechel, B.A., Borkar, S., De, V.: Dynamic sleep tran-
sistor and body bias for active leakage power control of microprocessors. IEEE Journal of
Solid State Circuits 38 (2003)

43. Valluri, M., John, L., Hanson, H.: Exploiting compiler-generated schedules for energy savings
in high-performance processors. In: ISLPED ’03: Proceedings of the 2003 international sym-
posium on Low power electronics and design, pp. 414–419. ACM Press, New York, NY, USA
(2003)

44. Venkatachalam, V., Franz, M.: Power reduction techniques for microprocessor systems. ACM
Computing Surveys 37(3), 195–237 (2005)

http://eda.ee.ucla.edu/PTscalar/

References 181

45. Weiser, M., Welch, B.B., Demers, A.J., Shenker, S.: Scheduling for reduced cpu energy. In:
OSDI, pp. 13–23 (1994)

46. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy. In: FOCS,
pp. 374–382 (1995)

47. Yun, H.S., Kim, J.: Power-aware modulo scheduling for high-performance vliw processors. In:
ISLPED ’01: Proceedings of the 2001 international symposium on Low power electronics and
design, pp. 40–45. Huntington Beach, USA (2001)

	5 Power Aware Operating Systems, Compilers, and ApplicationSoftware
	5.1 Operating System Optimizations
	5.1.1 Advanced Configuration and Power Interface (ACPI)
	5.1.1.1 Power Modes

	5.1.2 Dynamic Voltage and Frequency Scaling
	5.1.2.1 DVFS in Real-time OS

	5.1.3 I/O Device Power Management

	5.2 Compiler Optimizations
	5.2.1 Loop Transformations
	5.2.2 Instruction Encoding
	5.2.3 Instruction Scheduling
	5.2.4 Dual Instruction Set Architectures
	5.2.5 Instruction Set Extension
	5.2.6 Power Gating
	5.2.7 Dynamic Translation and Recompilation
	5.2.8 Compiler Optimizations Targeting Disks

	5.3 Application Software
	5.3.1 Application-aided Power Management
	5.3.2 DVFS Under Application Control
	5.3.2.1 MPEG Video Decoder
	5.3.2.2 Word Processor
	5.3.2.3 Batch Compilation

	5.3.3 Output Quality Trade-offs

	5.4 Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

