Chapter 4
Power-efficient Memory and Cache

The memory subsystem plays a dominant role in every type of modern electronic
design, starting from general purpose microprocessors to customized application
specific systems. Higher complexity in processors, SoCs, and applications exe-
cuting on such platforms usually results from a combination of two factors: (1)
larger amounts of data interacting in complex ways and (2) larger and more com-
plex programs. Both factors have a bearing on an important class of components:
memory. This is because both data and instructions need to be stored on the chip.
Since every instruction results in instruction memory accesses to fetch it, and may
optionally cause the data memory to be accessed, it is obvious that the mem-
ory unit must be carefully designed to accommodate and intelligently exploit the
memory access patterns arising out of the very frequent accesses to instructions
and data. Naturally, memory has a significant impact on most meaningful design
metrics [31]:

Area Memory related structures dominate the area of most processors and ASICs.
In modern processors, the cache memory structures easily account for more than
60% of the chip area.

Delay Since large amounts of program and data are accessed from memory, the
access delays have an immediate impact on performance metrics such as total exe-
cution time and response time.

Power and Energy Every instruction being executed one or more memory ac-
cesses. Large amounts of data and code lead to larger energy consumption in the
memory because of both the memory size and the frequency of accesses.

Power optimizations targeting the memory subsystem have received consid-
erable attention in recent years because of the dominant role played by mem-
ory in the overall system power. The more complex the application, the greater
the volume of instructions and data involved, and hence, the greater the signifi-
cance of issues involving power-efficient storage and retrieval of these instructions
and data. In this chapter we give a brief overview of how memory architec-
ture and accesses affect system power dissipation, and mechanisms for reducing
memory-related power through diverse means: optimizations of the traditional cache

PR. Panda et al., Power-efficient System Design, DOI 10.1007/978-1-4419-6388-8_4, 89
(© Springer Science+Business Media, LLC 2010

90 4 Power-efficient Memory and Cache

memory system, architectural innovations targeting application-specific designs,
compiler optimizations, and other techniques. In addition to caches used in general
purpose computer based systems, we also give considerable emphasis in the chapter
on power-efficient memory optimizations in ASICs and SoCs found in embedded
systems.

4.1 Introduction and Memory Structure

As applications get more complex, the memory storage and retrieval plays a critical
role in determining power and energy dissipation: larger memories lead to larger
static power, and frequent accesses lead to larger dynamic power.

4.1.1 Overview

Figure 4.1 shows the typical external interface of a generic memory module. The
interface consists of three components:

Address The address bus is an input to the memory and specifies the location of the
memory that is being accessed. The width of the address bus depends on the number
of memory locations. When the bus width m equals the number of address bits, it
can be used to access a maximum of 2 locations. In some memories, especially
Dynamic Random Access Memory (DRAM), the address bus is time-multiplexed
to carry different parts of the memory address at different times.

Data The data bus carries the associated data for the memory operation. The
bus is usually bidirectional, allowing data to be either an input or output to the
memory, depending on the type of operation. The width of the data bus depends
on the typical datapath width used in the design. For example, if the design is

Address

—>

Data
Memory

Control

Fig. 4.1 External interface of a typical memory. The Address bus input gives the memory lo-
cation. The Data bus is usually bidirectional — it is an input for a WRITE operation, and an
output for a READ operation. The Control input consists of information such as type of opera-
tion (READ/WRITE) and chip enable

4.1 Introduction and Memory Structure 91

dominated by 32-bit operations, then the memory data bus is likely to be 32 bits
wide. DRAM systems may be organized differently: the data bus of an individual
DRAM chip usually has a smaller width (say 4 bits), and a 32-bit data bus is com-
posed of data bits provided by a set of eight DRAM chips.

Control In addition to the address and data buses, memories usually have some
control signals which are used to indicate important information such as whether
the memory module is selected in the current clock cycle and an encoding of the
operation to be performed. When the memory access protocol is more complex,
these signals may carry other information such as clocks and row/column address
strobe.

Memory accesses essentially constitute two types of operations: Read and Write.

Read The Read operation takes as input an address and returns the data stored at
the corresponding memory location. The address is provided through the address
input port in Fig. 4.1, and the data returned through the data port. Control signals
are set to the appropriate encoding to indicate this operation.

Write The Write operation takes as input an address and the data, and stores the
given data at the memory location corresponding the specified address. The address
port is used as in the read operation, but the data bus is now an input port to the
memory. Again, the control signals are set so as to indicate the write operation.

In addition to the above basic operations, memories may implement additional
functionality such as burst read — fetch the data stored at a sequence of memory
locations starting from a given address.

4.1.2 Memory Structure

Figure 4.2 shows a simplified view of a typical memory structure. The core storage
area is organized into rows and columns of memory cells, conceptually forming a
two-dimensional matrix.

The address is split into two parts as shown in Fig. 4.3: a row address consisting
of the higher order bits, and a column address consisting of the lower order bits.

A Read operation can be thought of as consisting of a sequence of three phases
as shown in Fig. 4.4 and Fig. 4.5. In the first phase, the row address is decoded in
the row decoder, resulting in the activation of one of the word lines. This selects one
row of cells in the memory, which causes transfer of data between the cell and the
bit lines in the second phase — these lines run through all the rows of the memory. A
sense amplifier detects the transitions on the bit lines and transmits the result on the
data bus. In the third phase, a column decoder selects the bits from the row of cells
and transmits the addressed bits to the data bus.

92 4 Power-efficient Memory and Cache

word lines b|t/||nes
row _ /I /
decoder T i / memory cells
! ’ 7
g
—— LTI T
address]
—_—
data array
~-g- _ Ssense
amplifiers
7
7
column ~ data
decoder

Fig. 4.2 Simplified view of typical memory structure. The most significant address bits are de-
coded by the row decoder to select a row through the word line. Bit lines attached to the selected
row carry the data to sense amplifiers. The column decoder now selects the data from the right
column and forwards to the data bus

31 16 15 0

Row Address Column Address

Fig. 4.3 Division of the memory address into Row Address and Column Address. The row address
is the most significant part, and is used by the row decoder to select the word line. The column
address is the least significant part, and is used by the column decoder to select the right data from
within the selected row

4.1.3 Cache Memory

Modern applications present an inherently contradictory set of requirements from
the memory system: large amounts of data have to be stored and retrieved, yet the
access delay and energy dissipation should be small. Obviously, larger memories
lead to longer access times and larger energy per access. To alleviate this so called
memory wall or memory bottleneck, system architects usually resort to a memory hi-
erarchy, consisting of several levels of memory, where higher levels comprise larger
memory capacity and hence, longer access times. The memory hierarchy operates
on the principle of locality of reference: programs tend to reuse instruction and data
they have used recently (temporal locality) and future accesses are likely to be in the
same vicinity as past accesses (spatial locality). Thus, the first time an instruction or
data is accessed, it might have to be fetched from a higher memory level, incurring

4.1 Introduction and Memory Structure 93

a Row
Memory Decoder
Address
Row
Address
Column
Address
Column
Decoder Data Bus
Word line activation
b Row
Memory Decoder
Address
Row
Address
Column
Address
Column
Decoder Data Bus

Bit line activation

Fig. 4.4 (a) Phase 1 of Memory READ operation: the row address is decoded by the row decoder
and a word line is activated. (b) Phase 2 of Memory READ: data in the memory cells are transferred
via the bit lines to the sense amplifiers

a relatively higher memory access time penalty and energy dissipation. However,
it can now be stored in a lower memory level, leading to faster retrieval on subse-
quent accesses to the same instruction or data. The different memory levels used
in most processor architectures are usually: register, cache memory, main memory,
and secondary memory.

Cache memory is the next memory level after registers and stores recently ac-
cessed memory locations — instruction cache stores recently accessed instructions
and data cache stores recently accessed data. The two are sometimes combined into
a single cache. Lower levels of cache usually reside on-chip with the processor and

94 4 Power-efficient Memory and Cache

Memory
Address

—» =TT

Column
Address

Column
Decoder
Data Bus

Fig. 4.5 Phase 3 of Memory READ operation: the column decoder selects the correct offset from
the column address and the addressed data is forwarded to the data bus

access times for cache memory usually range from one to a few CPU cycles. On-
chip caches in modern commercial general-purpose microprocessors could be as
large as a megabyte. Beyond the last level of cache lies the main memory, which
usually resides off-chip and is also volatile — the contents disappear when the power
is reset. The main memory may be backed by some form of non-volatile secondary
storage such as disk or flash memory.

Figure 4.6 shows a generalized memory hierarchy with the levels of hierarchy
described above. The register file is usually incorporated into the CPU. The cache,
in turn, could consist of multiple levels of hierarchy, of which the lower levels are
usually located on-chip with the processor, and higher levels could be in off-chip
SRAM (Static Random Access Memory). The main memory is typically imple-
mented in DRAM (Dynamic Random Access Memory) technology, which affords
higher density than SRAM, but lower access speed.

The principle of locality of reference leads to data and instructions being found
in the lowest level of the cache memory hierarchy closest to the processor most of
the time. When the required data or instruction is found in the level of memory that
is being searched, a Cache Hit is said to have occurred. Cache misses occur when
instructions or data requested by the processor are not present in the cache, and need
to be fetched from the next level of the hierarchy. Cache misses can be classified into
three categories [12]:

Compulsory misses. These are caused when a memory word is accessed for the
first time at the current cache level. Since it is being accessed for the first time, it is
obviously absent from the cache and needs to be fetched from the next level of the
memory hierarchy.

4.1 Introduction and Memory Structure 95

U
Register
File

[
[}

Fig. 4.6 Hierarchical
memory structure: the register
file is closest to the CPU,
followed by the cache levels,
followed by main memory
(DRAM) and secondary
storage (Disk, Flash memory)

CP

Level n

Main Memory i

Secondary Memory

-
(e 3

Capacity misses. These are caused when cache data that would be needed in the
future is displaced due to the working data set being larger than the cache. The cache
designer’s efforts to anticipate and store the required data from the next level may
not be always successful because of the cache’s limited size.

Conflict misses. These are caused when data present in the cache and useful in
the future, is replaced by other data, in spite of the availability of cache space. This
happens because of limitations of the mechanism used to search and replace memory
words in the cache. These limitations arise out of access time constraints imposed
by the system.

The Cache Miss Ratio is defined by the equation:

. . Number of Cache Misses
Cache Miss Ratio = “.1)
Number of Cache Accesses

The cache miss ratio is a fraction between 0 and 1, often expressed as a percentage,
and indicates the fraction of accesses that could not be serviced from the cache, and
led to accessing of the next cache level.

Cache Hit Ratio is defined as: 1 — Cache Miss Ratio.

A cache line consists of a set of memory words that are transferred between the
cache and main memory on a cache miss. A longer cache line reduces the com-
pulsory misses, but increases the cache miss penalty (the number of CPU cycles

96 4 Power-efficient Memory and Cache

required to fetch a cache line from main memory), and would also increase the
number of conflict misses.

An elementary question that determines the working of the cache is the address
mapping between the memory address and the cache location. For this purpose, the
main memory is divided into blocks of the cache line size. Given a memory block
address, a mapping function determines the location of the block in the cache.

The simplest cache design is a direct-mapped cache. Here, every memory block
can be stored in exactly one cache location given by the equation:

Cache Line = (Block Address) mod (Cache Size) 4.2)

where Block Address refers to the main memory block number and cache size is the
number of lines in the cache. The mapping of memory blocks to cache locations
is illustrated in Fig. 4.7, with a memory size of 1023 blocks and a cache size of
8 lines. Memory block n maps to cache line n» mod 8. Since the cache is smaller,
multiple blocks will map to the same cache line. Hence, the limited cache space
needs to be managed effectively. In our example, suppose we access memory block
2 first, followed by block 26. Since both blocks map to the same location, block 26
displaces block 2 from the cache. Thus, if block 2 is needed later, we incur a cache
miss due to the conflict between the two blocks.

Memory 0 Cfche
Block e
2mod 8=2 l
26 mod 8 =2 0
2% mod 8 = |
2
29 32mod 8=0 3
4
32 |]]]]]] 29mod 8 =5 5
6
7
Address
Mapping
1023

Fig. 4.7 Direct-mapped cache. For a cache with 8 lines, the cache location of memory block
address n, is given by n mod 8. Cache conflicts occur when two blocks (2 and 26) map to the same
cache location

4.1 Introduction and Memory Structure 97

Memory 0
Block Cache
2 _
2mod4=2 Set
- 0
26 26 mod 4 =2 1
29mod4=1 2
0 R
3
32mod4=0
»» [T
Address
Mapping

1023

Fig. 4.8 A two-way set-associative cache. The 8 lines are divided into 4 sets of 2 lines each. The
cache set for memory block address 7, is given by n mod 4. The block can stay at either way of the
selected set. This resolves cache conficts between the two blocks at adddress 2 and 26

Set-associative caches help reduce the cache conflict problem mentioned above.
An A-way set-associative cache is divided into sets of A lines each. Each memory
block maps to exactly one set, but within the set, the block could reside in any of the
constituent A lines. The address mapping in a 2-way set-associative cache (4 = 2)
is illustrated in Fig. 4.8, with a memory size of 1023 blocks and cache size of 8 lines.
Blocks 2 and 26 no longer conflict in the cache because they are accommodated in
the two lines corresponding to the two cache ways.

In a fully associative cache (illustrated in Fig. 4.9), a given memory block can
reside at any of the cache locations. As long as the working set of a program is
smaller than the cache, conflict misses do not occur in these caches, but capacity
misses may still occur when the working set of a program is larger than the cache.
A fully associative cache is essentially an N -way set-associative cache (where N is
the number of cache lines), whereas a direct mapped cache is a 1-way set-associative
cache.

The number of cache lines in a direct mapped cache, and the number of sets in a
set-associative cache, is an exact power of two (of the form 2), so that the mapping
function is very simple to implement — the k lower order bits of the block address
gives the cache line/set location.

While set-associative caches typically incur a lower miss ratio than direct-
mapped ones by eliminating some cache conflicts, they are also more complex, and
are characterized by longer access times, because, now, A searches need to be per-
formed to determine if a data element exists in the cache, as opposed to a single
search in the case of direct-mapped caches. Further, the additional work leads to an

98 4 Power-efficient Memory and Cache

Memory
Block

26

29

32 [IHHIY Address
Mapping

1023

Fig. 4.9 A fully associative cache. Any memory block can reside at any of the 8 cache lines. There
are no cache conflicts, but capacity misses can occur

increase in the cache energy dissipation. Conflict misses can be avoided by using
a fully associative cache, but due to access time and power constraints, most cache
memories employ a limited-associativity architecture.

An additional feature in associative caches is the need to implement a replace-
ment policy for deciding which cache line to evict from a cache set when a new
cache line is fetched. In Fig. 4.8, if another block at memory address 34 (which
also maps to set 34 mod 8 = 2) were accessed, the replacement policy would help
decide which of block 2 and 26 is replaced. A common replacement policy is Least
Recently Used (LRU) [12], in which the cache line that has not been accessed for
the longest duration is replaced, in keeping with the principle of locality.

4.1.4 Cache Architecture

A simplified diagram of the architecture of a typical direct-mapped cache is shown
in Fig. 4.10. The memory address presented to the cache consists of three logical
fields:

Offset This field, consisting of the lower order address bits, indicates which word
within a cache line is to be accessed. If the cache line has 2/ words, then the offset
field has / bits.

Index This field indicates the address of the set within the cache where the line will
reside, if it is present in the cache.

Tag This corresponds to the higher order bits of the address, and is stored along
with the data lines. The tag bits are used to identify which specific line (out of the
several lines in memory which could possibly be mapped into the indexed location)
currently resides in the cache.

4.1 Introduction and Memory Structure 99

Fig. 4.10 Simplified Address
architecture of Direct Mapped

Cache. Two separate o | Tag | Index | Offset |
memories store the tag and
data arrays. The index is used
to fetch the tag and cache line
from the two arrays. If the
fetched tag matches the tag
part of the address, then we
have a cache hit, and the
offset part of the address is
used to select the right data
from the cache line. If the tag
does not match, we have a
cache miss

Cache line

hit/miss data

The two major components of a direct-mapped cache are the Data Array and
the Tag Array (Fig. 4.10). Suppose we access memory line L located at memory
address A, and the index, tag, and offset fields of address A are given by i(A4),
tag(A), and o(A) respectively. The contents of L are stored in the data array of
the cache in anticipation of temporal and spatial locality, at address i (4). The i (A)
location of the tag array contains tag(A). When a new address B is presented to
the cache, the cache line data at the i (B) address is fetched from the data array.
Simultaneously, the tag bits stored at address i (B) in the tag array are also fetched.
A comparator compares these stored tag bits with tag(B). If the comparison suc-
ceeds, then we have a Cache Hit and the data bits read from the data array are
the correct data. The offset field o(B) is used to select the appropriate data from
among the different words in the cache line. If the comparison fails, we have a
Cache Miss and the address now needs to be sent to the next level of the memory
hierarchy.

Figure 4.10 omits some other components of the cache such as control bits
(Valid, Dirty, etc.) that are stored along with the tag bits in the cache. The Valid
bit is used to distinguish cache contents from random values that might be stored at
initialization. The Dirty bit is used to ensure that when a cache line is replaced, it is
written back to the next memory level only if it is modified at the current level.

The architecture of a 4-way set-associative cache is illustrated in Fig. 4.11. There
are four banks of data and tag arrays. The indexed cache line is read out from all
the four data arrays. The tag bits are also read out from the four tag arrays and
compared to the tag bits of the address. If there is a match with any of the stored
tags, the output of the corresponding comparator will be ‘1’ (and that of the others
will be ‘0’). This leads to a cache hit and the comparator output bits are used to
select the data from the correct data array. If all comparisons fail, then we have a
cache miss.

100 4 Power-efficient Memory and Cache

Address
[Tag [Index |Offset |

L L L L

Tag || Data Tag || Data Tag || Data Tag || Data
Array|| Array Array|| Array Array|| Array Array|| Array

YYVYY YYVY YYVY YYVYY

Selector

hit/miss

Fig. 4.11 Simplified architecture of 4-way associative cache. We have four different tag and data
arrays. The index is used to fetch the tag and data from all four arrays. If the address tag matches
any of the fetched tags, we have a cache hit, and the data at the corresponding cache line is selected

4.1.5 Power Dissipation During Memory Access

Power dissipation during memory accesses can be attributed to three main compo-
nents:

1. address decoders and word lines
2. data array, sense amplifiers, and the bit lines
3. the data and address buses leading to the memory.

All three components are significant as each involves the driving of high capaci-
tance wires that requires a considerable amount of energy: word lines, bit lines, and
data/address buses. Power optimizations for the memory subsystem indirectly target
one of these components and can be classified into the following broad categories:

o Power-efficient memory architectures — novel architectural concepts that aid
power reduction, both in traditional cache memory design and in other unconven-
tional memory architectures such as scratch pad memory and banked memory.

4.2 Power-efficient Memory Architectures 101

e Compiler optimizations targeting memory power — where code is generated
for general-purpose processors targeting power reduction. This topic is explored
in more detail in Chapter 5.

e Application specific memory customization — where the memory system can
be tailored for the particular application, leading to superior solutions than a
standard memory hierarchy.

e Transformations: compression and encoding — these are known techniques
from other domains that are also applicable to memory power reduction.

How is memory optimization for high performance different from memory op-
timization for low power? There are some classes of optimizations that result in
improving both performance and power — these are the optimizations that attempt
to reduce the number of memory accesses. If the number of accesses to memory
is reduced, then performance is improved because this results in reduced total la-
tency. Similarly, reduced memory access count also means reduced energy. Most
optimizations belonging to the classes of techniques summarized above specifically
target low power, and are orthogonal to standard performance improving memory
optimizations targeted by standard compilers. We must point out that most advanced
cache architecture features that aim at improving performance by effectively re-
ducing the number of cache misses (i.e., reducing the number of accesses to the
next level of memory), also improve power as an obvious consequence. However,
since they were proposed as primarily performance enhancement techniques, we do
not discuss them in detail in this book. The reader is referred to a standard com-
puter architecture text such as [12] for a more comprehensive discussion of all
performance-oriented cache features that also improve power by the simple conse-
quence of reducing the miss rate.

4.2 Power-efficient Memory Architectures

The memory subsystem in embedded processor based systems usually consists of
cache memory, along with other memory modules possibly customized for the ap-
plication. Because of the dominating role of instruction and data caches, new low
power memory architectures have been in the area of improving traditional cache
designs to make them power-efficient using a variety of techniques.

4.2.1 Partitioned Memory and Caches

Partitioning the memory structure into smaller memories (or banks) is one of the
mechanisms used to reduce the effective length of the bit-lines driven during mem-
ory operations, thereby reducing power dissipation. In the multi-bank memory
example shown in Fig. 4.12, the memory is physically partitioned into four banks,
each with 1/4 the size of the original monolithic memory. This causes each bit line

102 4 Power-efficient Memory and Cache

Address
Bank Select
Bank 0 Bank 1
sense
amplifiers -
data
Bank 2 Bank 3
, 4
, \ /
Shorter ‘\ /’
bit lines
Address
Decoders

Fig. 4.12 Memory banking reduces bit-line capacitance. The memory array is physically divided
into multiple banks. Each cell now needs to drive a smaller bit-line within a bank

to be of 1/4 the original length, and a proportional decrease in the switching bit line
capacitance. The sense amplifiers are replicated in each bank. The lower order bits
of the address (two LSB bits in Fig. 4.12) are used to generate a select signal to
the right bank. Since only one of the banks would be activated during a memory
operation, this would lead to reduced power consumption in the overall structure
because of the considerably reduced energy from the switching of the smaller
bit-lines.

The concept of banking is also naturally applicable to cache memory, since the
bulk of the cache consists of two internal memories: the data and tag arrays. Cache
banking and other partitioning studies (such as bit-line segmentation that are con-
ceptually similar) are reported in [10,23,36]. One proposed variant is to make the
smaller partitioned units complete caches as opposed to just memory banks [21].
The added flexibility here is that the different caches need not be homogeneous.

4.2 Power-efficient Memory Architectures 103

A prediction mechanism such as most recently used is employed to predict which
sub-cache will be accessed next, and the result is used to turn the other sub-caches
into low power mode.

4.2.2 Augmenting with Additional Memories

A large number of low power cache ideas have been formulated around one central
principle: add an extra cache or buffer, usually small in size, and design the system
to fetch data directly from this buffer in the steady state, thereby preventing an
access to the L1 cache altogether. Since the buffer is relatively small, we can achieve
significant power savings if we can ensure a high hit rate to the buffer.

The technique of block buffering [36] stores the previously accessed cache line in
a buffer. If the next access is from the same line, then the buffer is directly read and
there is no need to access the core of the cache. This scheme successfully reduces
power when there is a significant amount of spatial locality in memory references
(Fig. 4.13). The idea of a block buffer can be extended to include more than one line
instead of just the last accessed line. A fully associative block buffer is illustrated
in Fig. 4.14 [10]. Recent tags and data are stored in fully associative buffers asso-
ciated with each set. If a new tag is found in this buffer, then the tag array read is
inhibited. The matching address in the buffer is used to fetch the corresponding data
from the data buffer. The correct size of this fully associative buffer will have to be
determined based on an engineering trade-off because a fully associative lookup in

tag index offset

I |
cache line
— [[|
tag data
array array

vy

Fig. 4.13 Block Buffering. m m

The last tag and cache line
data are buffered. If the

current tag matches the

buffered tag, then there _>

is no need to fetch from the

memory array, thereby saving * hit/miss data

power

104 4 Power-efficient Memory and Cache

Fig. 4.14 Fully associative tag index offset
block buffer. An extension of | | | |
the block buffer idea. Recent |
tags and data are stored in the
buffer and looked up on a
cache access. If found, then .
there is again no need to cache line
access the memory array. o | | |
This saves power, as long as
the buffer is not too big, and data
manages to catch a substantial tag array
number of accesses array
+ match * * * *
| tag addr data)
buffer o buffer |

l hit/miss ¢ data

Main
Memory

L1 L2
Filter Cache Cache
CPU -4—»| Cache |=—> —-d -

Fig. 4.15 Filter cache. A small cache placed between the CPU and the L1 cache aims at catching
a significant number of accesses. Power is saved by keeping the filter cache small

a buffer is a very power-hungry operation. If the buffer is too large, then the power
overheads due to the associative lookup may overwhelm the power savings due to
the hit in the buffer. If the buffer is too small, then it may result in too many misses.
In practice, such fully associative lookups usually restrict the size to 8 or less.

One simple power reduction strategy in caches is to introduce another level of hi-
erarchy before the L1 cache, placing a very small cache (called a filter cache [22])
between the processor and the regular cache. This causes a performance overhead
because the hit ratio of this small cache is bound to be lower, but it leads to a much
lower power dissipation on a cache hit. If the hit ratio is reasonably high, then there
may be an overall power reduction. This is illustrated in Fig. 4.15. No overall mod-
ification is proposed to the overall cache hierarchy, except that the filter cache is
unusually small compared to a regular L1 cache.

4.2 Power-efficient Memory Architectures 105

— Scratch Pad |<a—

Memory
Main
L1 L2 Memory
Cache
CPU <L> 4» Cache lt——

Fig. 4.16 Scratch pad memory in a memory hierarchy. The SPM is small and fast, and resides at
the same level as the L1 cache. Power is saved because there is no hardware management of SPM
contents, unlike in caches

Data and instructions can also be statically assigned to an additional on-chip
memory whose address space is disjoint from the cached part. In Scratch Pad Mem-
ory [32], data is statically assigned by the compiler keeping in mind the data size and
frequency of access (Fig. 4.16). Unlike in caches, scratch pad memory contents are
never automatically evicted — the compiler or programmer explicitly manages the
space and “hits” are guaranteed. Techniques to exploit this architectural enhance-
ment are discussed in Section 4.4.

The well known observation that programs tend to spend a lot of time inside rela-
tively small loop structures, can be exploited with specialized hardware. Loop cache
[3] is one such structure consisting of an augmentation to the normal cache hierar-
chy. Frequently executed basic blocks within loops are stored in the loop cache. The
processor first accesses the loop cache for an instruction; if it is present, there is no
need to access the normal cache hierarchy, else the instruction cache is accessed.
The Decoded Instruction Buffer [1] is analogous to the loop cache idea, but here,
the decoded instructions occurring in a loop are stored in the buffer, to prevent the
power overhead associated with instruction decoding. The decoded instructions are
written to the buffer in the first loop iteration; in subsequent iterations, they are read
off the buffer instead of the L1 instruction cache (Fig. 3.16).

4.2.3 Reducing Tag and Data Array Fetches

For performance-related reasons, the tag array and the data array in the cache are
accessed simultaneously so that by the time the tag bits of the address of the resi-
dent cache line are fetched from the tag array and compared with the tag bits of the
required address to detect hit or miss, the corresponding cache line data is already
available for forwarding to the processor [12]. Thus, the fetching of the cache line
data is initiated even before we know whether the access is a hit or a miss; on a
miss, it is simply discarded. Since we expect most accesses to be hits, this parallel

106 4 Power-efficient Memory and Cache

access strategy improves performance significantly. In a set-associative cache, all
the tag arrays and data arrays are accessed at once. While designed for optimal per-
formance, this overall strategy results in waste of power, since in a k-way associative
cache, at least k — 1 fetches from the data array are discarded. Since cache lines are
usually wide (cache lines of length 8-32 words are common), the power wasted here
is substantial, leading to a significant scope for trade-offs between performance and
power.

The simplest power optimization addressing the above issue is to sequentialize
the accesses to the tag and data arrays — that is, to fetch from the data array only if
the tag fetch indicates a cache hit. This prevents dynamic power dissipation incurred
when data is fetched from the data array in spite of a cache miss [11]. Moreover, data
only needs to be fetched from the way that matched, not from the other ways. The
idea is illustrated in Fig. 4.17. Shaded blocks indicate data and tag arrays that are
active in the respective cycles. In the conventional cache of Fig. 4.17(a), all tag and
data arrays are shaded, indicating that all are accessed in the same cycle. In the low

a
Cycle 1 Tag || Data Tag || Data Tag || Data Tag || Data
b
Cycle 1 Tag Data Tag Data Tag Data Tag Data
. . . '
Matched way *
Cycle 2 Tag || Data Tag || Data Tag || Data Tag || Data

' ' ' '
¢

Fig. 4.17 Power saving by accessing the data array on successful tag match. (a) In a conventional
set-associative cache, all tags and data arrays are accessed simultaneously. (b) When we sequen-
tialize tag and data accesses, we first fetch only the tags. If a match is found, then data is fetched
only from the matching way. Power is saved due to the avoided accesses, at the expense of time

4.2 Power-efficient Memory Architectures 107

power cache of Fig. 4.17(b), in the first cycle, all the tag arrays are accessed using
the index field of the address and the tag bits are read and compared with the tag field
of the address — only the tag arrays are shaded in Cycle 1 of Fig. 4.17(a). In Cycle 2,
the data array of only the matched way is accessed. This leads to a performance
penalty of an extra cycle, but leads to a straightforward dynamic energy reduction
due to the three ways for which the data arrays are not accessed.

The above approach reduces cache access energy but compromises on perfor-
mance. Another simple idea is (in case of instruction cache) to retain the address
of the last accessed cache line, and to fetch from the tag array only if the next in-
struction refers to a different line [33]. If the reference is to the same line, then
we are guaranteed a cache hit, and power is saved by preventing the redundant ac-
cess of the tag array. The above is similar to the block buffering strategy, but can
be generalized in an interesting way: we can assert that if there has been no cache
miss since the last reference to a basic block of instructions, then there is no need to
fetch the tag from the instruction cache in the next reference (since the previously
fetched instruction has not had an opportunity to get evicted yet). The information
about whether the target of a branch instruction exists in the cache is recorded in
the Branch Target Buffer, a commonly used structure in modern processors. If the
condition is satisfied, then the fetch from the tag array is disabled, saving memory
activity in the process [15].

The observation that, in set-associative caches, consecutive references tend to
access data from the same way, can be exploited in a mechanism that predicts the
way number for the next access to be the same as the previous one. On the next
access, only the tag and data arrays of the predicted way are activated, resulting in
a significant amount of dynamic power savings when the prediction is correct [14].
When the prediction turns out to be incorrect, the rest of the ways are fetched in the
next cycle, which incurs a performance penalty. This is illustrated in Fig. 4.18.

An alternative method of incorporating way prediction is through the location
cache — a proposal for the L2 cache [28]. This is an extra cache that is used to
indicate which way in the actual cache contains the data. A hit in the location cache
indicates the way number, and hence, we only need to access the specific way in the
L2 cache, thereby avoiding reading all the tag and data arrays of the set-associative
cache. A miss in the location cache indicates that we do not have a prediction, and
leads to a regular access from all the ways in the L2 cache. This is illustrated in
Fig. 4.19. The location cache needs to be small in order to ensure that its power
overheads do not overwhelm the saved power.

A certain amount of flexibility can be built into set associative caches to control
accesses to the different ways — ways can be selectively enabled or disabled de-
pending on the characteristics of an application. For example, in the L2 cache, we
can reserve separate ways for instruction and data so as to prevent conflicts. Also,
for small programs where instruction cache conflicts are not expected, some of the
ways assigned to instructions can be disabled to reduce activity in their tag and data
arrays [26]. In the way-halting cache [38], some least significant tag bits from each
way are stored in a separate array, which is first accessed and the corresponding bits

108

Cycle 1

Cycle 1

Cycle 2

4 Power-efficient Memory and Cache

Cache hit on predicted way. Single cycle.

Tag Data Tag Data Tag Data Tag Data
Y i $ Y y
Cache miss on predicted way. Two cycles
Predicted way
Tag Data Tag Data Tag Data Tag Data
Y i Y y
Predicted way ‘
Tag || Data Tag Data Tag Data Tag Data
Y Y Y y

%

Fig. 4.18 Power saving by Way Prediction in associative caches. Tag and data are fetched only
from the predicted way. If prediction is correct, this reduces power by avoiding accesses to all the
other ways. If incorrect, then all other ways are accessed, losing some time

CPU

way
. info
| Location >
Cache
o L2
- Cache
L L1 L
- Cache [~
ache data

Fig. 4.19 A Location Cache stores the predicted L2 way. When L2 is accessed, only the predicted
way is looked up first

4.2 Power-efficient Memory Architectures 109

4] i tag[3:0
tag[31:4] index o, g[3:0] €30l 1 o31:4] Data

WAY 0 enable
disable

\J

: i t
tag[31:4] index g[3:0] 30l 1 o31:4] Data

]

WAY 1 enable /

disable

to

Fig. 420 Way-halting cache. A subset of the tag bits are first compared for equality. If unequal,
then there is no need to fetch the remaining tag bits

of the address compared. If the comparison fails, then a matching failure is guaran-
teed for that way, and hence, the actual fetch of the tag and data arrays is prevented,
saving power. This is shown in Fig. 4.20. The enable/disable signal is generated
for each way by comparing the least significant 4 bits of the tag. On mismatch, the
fetching of the remaining tag bits and data are disabled.

4.2.4 Reducing Cache Leakage Power

The techniques discussed in previous sections target dynamic power consumption
in caches. As mentioned earlier, the importance of static power has been growing
in recent years, and with smaller geometries, the contribution of static power to
the overall power consumption is growing. Static power is dissipated as long as a
voltage is supplied to the circuit, and can be eliminated by turning power supply
off (in which case memory data is lost) or reduced by turning the voltage down

110 4 Power-efficient Memory and Cache

(in which case data can be retained, but accessing the data requires us to raise the
voltage again). A few strategies have been proposed to address the static power
dissipation in caches.

An important observation regarding lifetime of cache contents is that, the data
tends to be accessed frequently in small intervals of time, and is essentially dead for
large periods when it is never accessed. This leads to an interesting question — can
we turn off power to a cache line if we predict that the line will not be accessed in
the near future? The cache decay technique [20] relies on this approach. A counter
is maintained for each line; when it reaches a threshold value with no access to the
cache line, the power to the line is turned off after updating the next level cache with
the new value if necessary. The counter is reset on an access to the cache line. To
keep the overhead of maintaining the counters low, there is only one global counter,
but a two-bit derived counter is placed in each line to control the power supply. The
threshold value of the counter is determined from the values of the static energy
dissipated and the energy expended in re-fetching the line from the L2 cache. This
is illustrated in Fig. 4.21.

An alternative technique to turning off the power to cache lines is to turn down the
voltage so that data is retained, but cannot be accessed directly. In order to access the
data, the line would have to be first switched to high voltage (causing a performance
overhead). The power saved per line in this manner is smaller than that in the decay
technique where the power supply to the line is turned off, but this may permit
more lines to be moved into the drowsy state [8]. The idea, called drowsy cache, is
proposed to be used for all lines in the L2 cache, and some lines of the L1 cache. A
simple strategy of putting the entire cache to drowsy mode once in a while works
quite well, as opposed to introducing active circuitry to maintain counters on a per
line basis. A variation on this theme is to use predictive schemes to selectively move
lines to and from drowsy state. Information about cache lines with high temporal
locality is maintained in the BTB, and these lines are kept active. When a cache line
is accessed, the sequentially following line is moved to active state, anticipating its
use. A very fine grain control can be exercised by permitting the compiler to insert
instructions to turn individual cache lines off when its use is not anticipated for a
long time [13,39].

2-bit
Global Counter
Counter FSM Tag Data
Power
Off

Y
A

Fig. 4.21 Cache decay.

If a cache line has not been
accessed for some time, then
turn off the power to the line 4

4.3 Translation Look-aside Buffer (TLB) 111

4.3 Translation Look-aside Buffer (TLB)

The concept of virtual memory was developed to relieve the programmer of the bur-
den of managing physical memory during program execution. The operating system
automatically manages the loading and relocation of the program at execution time.

For efficient memory management, the address space is divided into pages which
are analogous to cache blocks/lines, but at a higher level of granularity. The page
size typically varies from 4096 to 65536 bytes. A CPU with virtual memory gener-
ates a virtual address which gets translated into a physical address using hardware
and/or software approaches. This is referred as address translation. A page table
is used for mapping virtual address to physical address as shown in Fig. 4.22. The
page table contains mapping information of virtual pages to the available physical
pages. Thus, the page table size depends on the available physical memory size and
the size of each page. Typical page tables could be as large as 4 MB and are hence
usually stored in main memory. A miss in virtual memory would require an access to
secondary memory — usually hard disk — which may exhibit access latencies of mil-
lions of processor cycles. Since the miss penalties are very high, a fully-associative
strategy is used for placing blocks in the main memory.

Since the translation would impose an additional memory access overhead on
every memory access, fast address translation is performed using a special on-chip
cache called Translation Look-aside Buffer (TLB). TLB is a small cache that stores
the virtual to physical mapping information of the most recently accessed memory
locations. Typical TLB sizes vary from 8 to 128 entries. The structure of a TLB is
similar to that of a normal cache, with the tag array containing the virtual address
that is looked-up, and the data array containing the physical address to which it
maps. When the CPU requests a memory access, the virtual address is looked up

page offset

\ 4

Main Memory

virtual

> Page Table
page num physical
address

virtual—address
from processor

Fig. 4.22 Address Translation: the virtual address generated by the CPU is translated into a phys-
ical address using the page table

112 4 Power-efficient Memory and Cache

Virtual Page Number

l

TAG > DATA
CAM for
Fully Associative SRAM
Search
hit/miss physical page number

Fig. 4.23 TLB architecture: logical view of the TLB structure

simultaneously in both the L1-cache as well as the TLB. In order to simplify the
hardware, TLBs for instruction and data memories are kept separate.

The instruction TLB (ITLB) is used in every cycle. Since consecutive instruc-
tions are usually mapped to the same page, the translation lookups for instruction
references can be optimized. In case of data TLB (DTLB), the number of lookups
per cycle depend on the number of parallel data accesses supported. For a wide is-
sue superscalar processor, the TLB would require multiple read ports. The logical
structure of the TLB is shown in Fig. 4.23. To support fully associative lookup, a
content addressable memory (CAM — generally considered to be expensive in terms
of power) is used for storing the tags (virtual addresses). A simple SRAM is used
for storing data (the corresponding physical address). In a well managed memory
system, TLB miss rate is very small — usually less than 1%.

The basic cell implemented for CAM logic would require 9 transistors (shown
in Fig. 4.24), compared to 6 transistors for a simple SRAM memory cell. It consists
of the standard 6 transistor (6T) structure for storage and three additional transistors
for comparing the stored bit with the content on bit lines. All bits in the tag share a
common match signal. During CAM lookup, all the match lines are precharged and
on a mismatch they are discharged by the NOR transistor at the bottom.

In a TLB lookup operation, a maximum of one entry would result in a match,
which is then used for reading the corresponding data from the SRAM. Hence, dur-
ing a lookup, every tag entry (except the matched one) would charge and discharge
the match lines leading to a large power dissipation. Larger cell size and matching
lines lead to a CAM cell occupying larger area and consuming higher power than
a standard SRAM cell. The fully associative structure leads to significant power
consumption in the TLB, in spite of it having relatively small number of entries in
comparison to caches. In embedded processors with small cache sizes, TLB power

4.3 Translation Look-aside Buffer (TLB) 113

Bit Bit

write

1 1
I 1
1 14

match T

Fig. 4.24 CAM cell: in the 9-transistor structure of a CAM cell, the standard 6T structure is used
for storing the bit while the additional transistors are used for comparing the content with the bit
lines for a match

forms one of the major components of the total system power consumption. For in-
stance, in the StrongARM processor, TLB is reported to account upto 17% of the
total power.

In this section we discuss some of the important optimizations and trade-offs
considered in designing power-efficient TLBs.

4.3.1 TLB Associativity — A Power-performance Trade-off

Ideally, we would like the TLB to be fully associative to minimize the accesses to
main memory and hence obtain both power and performance benefits. However,
it is well established that the returns in terms of cache hits actually diminish with
increasing cache sizes. Since the TLB is also inherently a cache, this principle is
also applicable to TLBs. As a consequence, power dissipated in the fully associative
search for every lookup in a large cache can overshadow the power saved from
reducing the accesses to the main memory. Hence, large fully associative TLBs can
have a negative impact on power with little performance improvement. The trade-
off between power and performance needs to be carefully evaluated while designing
a TLB for a system.

4.3.2 Banking

TLB banking is an attractive low power solution [17,27]. In a banked architecture
shown in Fig. 4.25, the TLB is split into multiple tag and data banks. Each tag

114 4 Power-efficient Memory and Cache

Virtual Page Number

Tag |
Tag
¥ bank select
re=-"=-—m=-m"=-""-=-=-=-"=-"===== hY re=-"" "] =-=-=-=-=-=-====
I BANK -0 En En BANK-1 I
1 A 4 1 1 A 4 I
|
; TAG > DATA ; ; TAG > DATA |
| 1 | |
I 1 1 1
| 1 1 |
| 1 | |
| 1 1 I
| 1 1 |
I 1 | 1
| 1 1 I
I CAM SRAM o | CAM SRAM I
|
I | I
| hit/miss physical page | | hit/miss physical page 1

physical
page number

hit/miss

Fig. 4.25 2-way Banked TLB architecture: In a banked TLB structure, some bits of the virtual
address are used for bank selection. Each bank has a fully associative tag storage and the corre-
sponding data entries in SRAM. During lookup only one bank is activated, thereby reducing the
access energy

bank is fully associative, while each data bank is a traditional SRAM. A lookup
request to TLB would need to access only one bank, thereby reducing the access
energy per lookup by N times, where N is the number of banks. For the same TLB
size (number of entries), an N-way banked architecture would have an associativity
of Sl’vﬂ which would result in a performance loss. Thus, unlike traditional cache
architectures, banked TLB architecture needs careful study of power-performance
trade-offs.

Some advanced architectural enhancements and allocation schemes for reducing
performance loss due to banking are discussed below:

Victim Buffers — A victim buffer can be used to hold N recently replaced TLB
entries, similar to the concept used in caches. The victim buffer is shared by all
banks. During a TLB lookup operation, the victim buffer and the appropriate TLB
bank are searched in parallel. A hit either in the bank or victim would result in a
TLB hit. Thus, victim buffers can alleviate most of the capacity misses caused due
to banking and hence improve the performance [5]. The size of the victim buffer

4.3 Translation Look-aside Buffer (TLB) 115

should be selected in a way that the power consumed by searching the buffer is small
compared to the power saved due to reduced main memory accesses.

Allocation Policy — A more aggressive allocation policy can be used while replac-
ing TLB entries in a banked architecture. In general, if a free entry is not available
in the selected bank to hold the mapping for a new page, an existing page is re-
placed. In a more aggressive policy, the replaced entry could be placed in other
banks instead of being discarded, even at the expense of a second replacement. Dur-
ing a TLB lookup operation, first the TLB bank corresponding to the address being
looked-up is searched; on a miss, all the other banks are searched. If the entry is not
found in any of the banks, then a request to the main memory is sent. This scheme
would essentially ensure the same miss rate as that of a fully associative search.
However, it is more power efficient if the “hit ratio” to the bank that is searched first
is reasonably high, which is generally the case [5].

4.3.3 Reducing TLB Lookups

Since each TLB lookup is very costly in terms of power, intelligent techniques that
reduce number of lookups without having an adverse impact on performance form
attractive power optimization alternatives.

4.3.3.1 Deferred Address Translation

By employing virtually indexed and virtually tagged caches at the L1 level, address
translation would be required only during an L2 access (assuming L2 is physi-
cally addressed). Thus, TLB needs to be accessed only on L1 misses. Though this
would require an extra cycle for all L1 cache misses, the number of accesses, and
hence, energy dissipation in the TLB is considerably reduced [18]. Similarly, if the
L2 cache is also virtually indexed and virtually tagged, then the translation could
be further deferred and could even be implemented in software by the operating
system.

4.3.3.2 Using Address Mapping Register

Modern processors employ separate TLB structures for instructions and data to al-
low concurrent lookups for both data and instruction references. The ITLB is used
whenever an instruction reference requires address translation. Due to the tempo-
ral locality property of instruction addresses, there is a very high probability that
successive accesses would belong to the same memory page. With page sizes of
4KB to 64KB, one can expect a large number of accesses to the same page before
proceeding to the next. This property is exploited by storing the mapping for

116 4 Power-efficient Memory and Cache

the most recently accessed page in a special hardware register. During an ITLB
lookup, this register is accessed first for address translation and only if it is not
found in this register, the power hungry TLB lookup operation is performed [18].
Since this is stored in a register close to the processor, the overhead in timing on
a miss is negligible. The concept is similar to the idea of block buffering (Sec-
tion 4.2.2).

4.4 Scratch Pad Memory

Scratch Pad Memory (SPM) refers to on-chip memory whose contents are explicitly
managed by the compiler or programmer [32]. A typical architecture is shown in
Fig. 4.26. Address and data buses from and to the CPU could lead to on-chip caches
and scratch pad memory, but both these memory modules are optional. If the data
or instruction requested by the CPU is present on-chip, in either the scratch pad or
the caches, then it is accessed from the respective module. Otherwise, the next level
of memory hierarchy (off-chip) is looked up. The implementation of the scratch
pad could be in either SRAM or embedded DRAM on chip. The main logical char-
acteristic of the scratch memory is that, unlike caches where the management of
the memory content is decided transparently by hardware, in scratch pad the man-
agement is explicitly performed by the compiler or programmer. This could have
both positive and negative consequences. The advantages are that data and instruc-
tions stored in the scratch pad are guaranteed to be present where they were last
stored, until they are explicitly moved, which makes access times more determin-
istic. This not only enables predictability that is of crucial importance in real-time
systems, but also simplifies the hardware considerably — there is no need for the tag
memory storage, access, and lookup, which saves energy per access when data is

On-chip
Caches

Off-chip

L Memory

Fig. 4.26 Scratch pad
memory. The CPU’s request
for on-chip data/instruction
can be served from either Scratch
SPM or on-chip cache. Pad
Management of SPM Memory
contents must be performed
in software

4.4 Scratch Pad Memory 117

1-cycle o ScratchPad |0 [

Memory

-chi

(on-chip) P.1
CPU Rl -=-
’, P Memory
L7 Address
Space
On-chip DRAM
Cache 10-20
1-cycle - .
Y < cycles (off-chip)
N N\

N N . v

Fig. 4.27 Address mapping in scratch pad memory. Addresses 0..P — 1 are in SPM. Addresses
P..N — 1 are accessed through the cache. Access to both SPM and on-chip cache can be assumed
to be fast

found in the scratch pad. The latter makes scratch pads more energy efficient than
caches as long as the memory contents are efficiently managed statically. The dis-
advantages of SPM based architectures is that, often, program and data behavior
may not be easily analyzable by the compiler, making it difficult for it to exploit the
SPM well.

A given architectural platform could omit either the scratch pad or the caches. In
this section we will assume both are present on-chip, but most of the decision mak-
ing process about data and instruction mapping into scratch pad memory remains
unchanged even if the on-chip caches are absent. Figure 4.27 shows a typical view
of the memory address space 0..N — 1 divided into on-chip scratch pad memory
and off-chip memory (typically implemented in DRAM). Addresses 0..P — 1 are
mapped into scratch pad memory, and P...N — 1 are mapped to the off-chip DRAM
and accessed through the cache. The caches and scratch pad are both on-chip and
result in fast access (1 cycle in Fig. 4.27). Accesses to the DRAM, which occur on
cache misses, take relatively longer time and larger power (access time is 20 cycles
in Fig. 4.27). If the cache is not present in the architecture, then the connection to
off-chip DRAM is usually through a Direct Memory Access (DMA) engine.

4.4.1 Data Placement in SPM

A significant role can be played by the compiler when the architecture contains
scratch pad memory structures, as these memories are directly managed by the com-
piler. Compile-time analysis is involved in determining which data and instructions

118 4 Power-efficient Memory and Cache

should be mapped to the scratch pad memory. Since SPM space is limited, we would
like to store relatively critical data in it [32]. Criticality can be defined in terms of
two major factors:

o size of data — smaller data sizes are preferred for SPM.
e frequency of access — higher frequency is preferred for SPM.

A problem of this nature maps approximately to the well known Knapsack Prob-
lem in computer science [9], where we are given a knapsack of a fixed size, and can
fill it with objects of different sizes and profit values. The objective is to select a sub-
set of the objects that fit into the knapsack while maximizing the profit. In the SPM
application of the knapsack problem, the SPM size is the equivalent of the knapsack
size; object size corresponds to the data/array size; and the profit can be measured in
terms of the number of accesses to the variables mapped into the scratch pad. This
is because SPM access involves less energy dissipation than a cache access; this
is a consequence of the SPM being a simple SRAM with no additional tag-related
circuitry characterizing the cache, and hence, no associated dynamic power dissi-
pation. In terms of performance, the guaranteed “hit” to the scratch pad ensures no
cache-miss related delays.

Standard knapsack heuristics can also be applied in a straightforward manner
to the SPM data allocation problem. The profit density metric, defined as P;/S;
characterizes each object in the knapsack problem in terms of the profit per unit
size. The greedy heuristic fills the knapsack by objects in decreasing order of profit
density, as long as the object size is smaller than the remaining knapsack space. The
same approximate heuristic can also be used for SPM allocation, where we sort all
arrays in terms of access frequency per unit array size, and consider arrays for SPM
assignment in decreasing order. Scalar variables can be all stored in the SPM, as
they may not amount to too much total space.

The above simple formulation can be used to obtain a reasonable SPM allocation
of arrays, but several other factors can also be taken into account in a more compre-
hensive SPM allocation solution. First, several arrays can reuse the same SPM space
because their lifetimes can be non-overlapping. Secondly, when there is a possibility
of conflicts in the caches between different arrays accessed repeatedly, one of them
could be diverted into the SPM to ensure good overall memory access behavior for
both arrays. An example is shown in Fig. 4.28. Here, arrays a and b are accessed in a
regular manner, whereas accesses to ¢ are data-dependent. Cache conflicts between
arrays a and b could be avoided by suitably aligning the start positions of the arrays

for (1=0;1<100; i++) {
b [i]=a[i] + 1; // regular access to 'a', 'b'
c [b[i]] =a[i]; // irregular access to 'c'

}

Fig. 4.28 Arrays with irregular accesses could benefit from SPM allocation. Arrays a and b are
accessed regularly, and if properly laid out, should exhibit good cache behavior. However, access
to ¢ is irregular — not much locality might exist, and ¢ could benefit from SPM allocation

4.4 Scratch Pad Memory 119

in memory. However, unpredictable and unavoidable cache conflicts with array ¢
could occur. The conflicts could be avoided by assigning ¢ to the SPM, where it is
guaranteed to not interfere with the cache contents.

4.4.2 Dynamic Management of SPM

We observe that the SPM allocation strategies in Section 4.4.1 assign an array to the
SPM for the entire duration of its lifetime. This has some obvious disadvantages.
An array may be occupying the SPM even if it is currently not being used, thereby
precluding a different, more relevant, array from occupying the valuable space.
Figure 4.29(a) shows an example with arrays a and b accessed in two different
loops, with a being allocated to the SPM, and b not allocated. This causes the second

a Performance Good Main
(SPM access) SPM Memory
for (1= 0;1<100; i++) {)
ali]=0; l a
for (1= 0;1<100; i++) {
b [i]=0; b
} \
AY
Performance Poor
(Main memory access)
b Performance Good Main
(SPM access) SPM Memory
for (i = 0; i < 100; i++) { ‘_> a/bf\ a
ali]=0;
}
Remove 'a' from SPM _ b

Move 'b' to SPM
for (1= 0;1<100; i++) {
b [i] = 0;
} \
N

Performance Good
(SPM reused)

Fig. 4.29 Space reuse in scratch pad memory. (a) Without reuse of SPM space, only one of a, b fits
into SPM. The second loop performs poorly. (b) After the first loop, a is replaced in the SPM by b

120 4 Power-efficient Memory and Cache

loop to perform poorly. However, noticing that a is not accessed in the second loop,
we could substitute a by b before control enters the second loop (Fig. 4.29(b)). This
calls for a more general strategy for identifying program points where we trans-
fer data between the SPM and the background memory. The decision of whether
to transfer an array to the SPM would depend on a comparison of the expected
performance and energy improvement from fetching the data against the overhead
incurred in doing so [37].

The next relaxation called for in the dynamic management of SPM is to permit
a portion of an array to occupy space in the SPM. This allows us to assign SPM
space to arrays that have heavy reuse but are larger than the SPM. One useful en-
tity in this context is the idea of a block or tile — a portion of a multi-dimensional
matrix that appears in the context of the blocking or tiling compiler transformation.
Computations involving large matrices often show poor performance when the ar-
rays are too large to fit into the data cache. Spatial and temporal locality exist in the
computation, but capacity misses prevent data reuse. To overcome the problem, the
arrays are divided into small blocks or tiles that fit into the cache, and the loops are
appropriately restructured. This results in a significant performance improvement.
Loop tiling is illustrated in Fig. 4.30 with a matrix multiplication example.

A similar conceptual transformation can be effected in the SPM. Arrays can be
divided into tiles, moved into the SPM before being processed, and moved back
later. The process is illustrated in Fig. 4.31 with the same matrix multiplication
example. Array tiles are first transferred into the SPM with the READ_TILE rou-
tine. After processing, the tile Z’ is written back to memory with the WRITE_TILE
routine [19].

for (i=0;1<N; it++)
for (j=0;j <N;jt+)
for (k =0; k <N; k++)
Z[i](j] += X[i][k] * Y [k][j];

b
for (it=0; it <N; it += S) S
for (jt=0;jt<N;jt+=S) <>
for (kt = 0; kt <N; kt +=S)
for (i=1it; i <it+S; it++)
for (j=jt; j <jt+S; j++)
for (k = kt; k < kt+S; k++)
Z[i][j] += X[il[k] * Y [K][5];

>
N

Fig. 4.30 Blocking or tiling transformation. (a) Original loop: arrays might be too large to fit into
on-chip memory. (b) Tiled loop: tile size is chosen so that it fits into on-chip memory

4.5 Memory Banking 121

Fig. 4.31 Tiling a S
transformation in SPM.

(a) Tiles are first transferred
to the SPM. (b) Updated ones
are written back to main N K Array Z
memory after processing |

7
X' SPM

Y'

b
for (it=0; it <N; it +=S)
for (jt=0;jt<N;jt+=S5)
for (kt = 0; kt <N; kt +=S) {
READ_TILE Z[it...it+S-1, jt...jt+S-1] -> Z'[0...S-1][0...S-1]
READ_TILE X[it...it+S-1, kt...kt+S-1] -> X'[0...S-1][0...S-1]
READ_TILE Y[kt...kt+S-1, jt..jt+S-1] -> Y'[0...S-1][0...S-1]
for (i=0;i<8;itt+)
for (j=0;j<8;j++)
for (k=0;k<S; k++)
Z'[i][5] += X'1[k] * Y'[K][j];
WRITE_TILE Z'[0...S][0...S] -> Z[it...it+S-1, jt.. jt+S-1]
}

4.4.3 Storing both Instructions and Data in SPM

An argument for scratch pad memory allocation can also be made in the context of
instructions. Frequently executed instructions or basic blocks of instructions can be
mapped to SPM so as to prevent the energy and performance-related overheads due
to being evicted from the instruction cache. Power is saved both on account of the
elimination of tag storage and access, and both performance and energy improves
because of reduced cache misses. In fact, a unified formulation can use the same
scratch pad memory to map either instructions or data [16,35].

4.5 Memory Banking

The presence of multiple memory banks creates interesting optimization opportuni-
ties for the compiler. Traditionally a few DSP processors used a dual-bank on-chip
memory architecture, but in modern systems, banking is used in various contexts for
various objectives. In synchronous DRAMs (SDRAMs), banking is used to improve
performance by keeping multiple data buffers from different banks ready for data

122 4 Power-efficient Memory and Cache

access. In application specific systems, dividing a monolithic memory into several
banks leads to considerable performance improvement and power savings. The per-
formance improvement comes from the ability to simultaneously access multiple
data words, while the power savings arise from smaller addressing circuitry, word
lines, and bit lines, as observed earlier.

The power optimization problem is to assign data to memory banks in order to
minimize certain objective functions. In terms of performance, we would like to
be able to simultaneously access data in different banks so that computation time
decreases, assuming multiple datapath resources are available. In terms of power
dissipation, we have the possibility of moving specific banks to sleep mode during
periods of inactivity.

Figure 4.32 illustrates the memory bank assignment problem with a simple ex-
ample. In the schedule shown in Fig. 4.32(a), nodes in dark, labeled A, B, etc.,
represent memory load and store nodes, and result in memory accesses. M1 and
M ?2 are the two memory banks. Initially, variables A, C, E, F, and G are assigned
to bank M 1. Variables B and D are assigned to M 2. Assume that the memory banks
can be either in active mode or sleep mode. Further, assume that the memory can
transition from active to sleep state instantaneously, whereas it requires one cycle to
transition from sleep to active mode (i.e., one cycle has to be spent in wake-up mode
during this transition). The power dissipation during active and wake-up modes is
high, and the power during sleep mode is low. The schedule in Fig. 4.32(a) does
not permit any transition to sleep modes due to the lack of sufficiently long periods
of inactivity. In order to exploit the sleep mode without compromising the schedule
length, we can alter the bank assignment. Let us interchange the bank assignment of
C and D, which results in an alternative schedule shown in Fig. 4.32(b). We notice
that now bank M 2 is inactive for a sufficiently long time, permitting us to move it to
sleep mode for two cycles, before returning to active mode via one cycle in wake-up
mode [25].

Fig. 4.32 Bank assignment
targeting power efficiency.
Transition of a bank from
active to sleep state is
instantaneous, while
transition back requires one
cycle. (a) Bank assignment
affords no possibility to move
either bank into sleep state.
(b) Variables re-assigned to
permit M2 to be moved to
sleep state for two cycles

4.5 Memory Banking 123

Fig. 4.33 Data migration. At Ml M2 M3
t2, B ismoved to M1, tl
permitting us to move M2 to
sleep mode. B is not accessed A " A B C
between 3 and 4. Att4, A is ceesses to //
moved to M 3, permitting us A,B,C /
to move M1 to sleep mode // Active
/
2 4
A C
Accesses to B
A, B, C
/ Sleep
3
A C
Accesses to B
A, C = SQ
. Migrate A
t4 h
C
B
A

Often, the presence of conditionals prevents a proper static analysis of decisions
relating to the setting of memory banks to sleep mode for saving power. Dynamic
approaches involving the run-time migration of data to different memory banks may
be needed. We can keep track of variable- and bank-referencing patterns, and can
attempt to cluster recently referenced variables into the same bank, thereby creat-
ing an opportunity to maximize the number of inactive banks and move then to
sleep mode.

Figure 4.33 illustrates the basic idea of a data migration strategy. Initially, at time
t1, three arrays A, B, and C are stored in three memory banks M1, M2, and M3.
Our monitoring hardware detects accesses to both A and B between times 71 and 72,
enabling the migration of array B to module M1. Assume that M1 is large enough
to accommodate A and B, but is not large enough to accommodate all three arrays.
With this migration, module M2 can be set to sleep mode. Between 72 and ¢3, we
detect accesses to all of A, B, and C, so we just retain the current modes. Between
13 and 4, we detect accesses to A and C. This leads us to migrate A to module M3,
causing both M1 and M2 to be set to sleep mode.

In order to ensure the effectiveness of the data migration approach, some issues
that need to be addressed are:

o the delay and energy overhead of the data being migrated needs to be accounted
for; large array variables can result in large overheads.
e data migration needs to account for the sizes of the memory banks.

124 4 Power-efficient Memory and Cache

e additional hardware is needed to keep track of temporal correlation of different
variables. Since this can lead to a significant power overhead if done every cycle,
a sample-based approach may be necessary [6].

4.6 Memory Customization

One of the most important characteristics of embedded SoCs is that the hardware
architecture can be customized for the specific application or set of applications that
the system will be used on. This customization can help improve area, performance,
and power efficiency of the implementation for the given application. Even when
the overall platform may be fixed, different subsystems can be independently tai-
lored to suit the requirements of the application. The memory subsystem is a fertile
ground for such customization. Cache memory can be organized in many different
ways by varying a large number of parameters: cache size, line size, associativity,
write policy, replacement policy, etc. Since the number of possible configurations is
large, an explicitly simulation-based selection strategy may be too time-consuming.
A static inspection and analysis of the application can reveal several characteristics
that help determine the impact of different parameter values without actual execu-
tion or simulation.

Data caches are designed to have cache lines consisting of multiple words in
anticipation of spatial locality of memory accesses. How large should the cache
line be? There is a trade-off in sizing the cache line. If the memory accesses are
very regular and consecutive, i.e., exhibit good spatial locality, a longer cache line is
desirable, since it saves power and improves performance by minimizing the number
of off-chip accesses and exploits the locality by pre-fetching elements that will be
needed in the immediate future. On the other hand, if the memory accesses are
irregular, or have large strides, a shorter cache line is desirable, as this reduces off-
chip memory traffic by not bringing unnecessary data into the cache. An estimation
mechanism could be used to predict the impact of different data cache line sizes
based on a compiler analysis of array access patterns. The cache line size is bounded
from above by the DRAM burst size, which represents the maximum number of data
words that can be brought into the cache with a single burst access.

A given amount of on-chip data memory space could be divided in various ways
into data cache and scratch pad memory. An associated memory customization prob-
lem is to determine the best division of the space. The division that results in the least
off-chip memory accesses would again maximize performance as well as minimize
power. Figure 4.34 shows a typical variation of the total number of off-chip memory
accesses with increasing data cache size (D), with the total on-chip memory fixed to
a constant 7'. Thus, the choice of a larger cache size D results in a correspondingly
smaller scratch pad memory size 7 — D. We note that when the cache size is too
small or too large, the number of memory accesses is relatively higher. When the
cache size is too small, it is essentially ineffective due to serious capacity misses.
When the cache is large, occupying all of the on-chip memory, then there is no

4.6 Memory Customization 125

A
Off-chip
Memory
Accesses
>
cache size =0 cache size =D cache size=T
SPM size =T SPM size = T-D SPM size =0

Cache size
(total on-chip memory = constant T)

Fig. 4.34 Division of on-chip memory space T into cache and scratch pad. When cache is too
small, latency increases because of capacity misses. When cache is too large, latency also increases
because there is no room for effective SPM utilization

room for scratch pad memory, thereby losing the advantages of SPM. The optimal
on-chip memory configuration lies somewhere in between the two extremes, with
some space devoted to both data cache and SPM, augmented by an intelligent com-
piler strategy that allocates data to the two components.

Other than the cache vs. scratch pad trade-off above, the total on-chip memory
space allocated to the application can also be a variable, to be customized depending
on the requirements of the application. In general, data cache performance, as mea-
sured by hit rate, improves with increasing cache size. Similarly, increasing scratch
pad memory performance also leads to higher performance. A memory exploration
loop can vary the total on-chip memory space, and study the performance variation,
as depicted in Fig. 4.35. Each data point (A, B, C, D, and E) could represent the best
result obtained from a finer-grain exploration of scratch pad vs. cache partition for
a fixed total on-chip memory size [30]. Figure 4.35 shows that the performance, as
measured by hit rate (or, equivalently, in terms of total off-chip memory traffic), im-
proves with increasing on-chip memory size, but tapers off beyond a certain point.
Design points such as C in Fig. 4.35 are strong candidates, since they represent
the boundary beyond which it may not be worth increasing the memory size — for
higher sizes, the hit-rate improves marginally, but the resulting larger memory size
represents an overhead in both memory access time and energy.

Embedded SoCs allow the possibility of customized memory architectures that
are tailored to reducing power for a specific application. Figure 4.36 shows an ex-
ample of such an instance. A simple loop is shown in Fig. 4.36(a), with two arrays
a and b accessed as shown. A default computation and memory architecture for im-
plementing this system is shown in Fig. 4.36(b). The computation is performed in

126 4 Power-efficient Memory and Cache

Off-chip
Memory
Accesses

Overall
Energy

>

Total on-chip memory

Fig. 4.35 (a) Off-chip memory access count decreases with increasing on-chip memory size.
Beyond point D, performance does not improve (but power continues increasing). (b) Energy de-
creases with increasing on-chip memory, but the trend reverses for larger on-chip memory because
the per-access energy of larger memories is greater

the proc block, and arrays a and b are stored in memory module Mem of size N
words. Assuming there is no cache structure here, every array reference results in
an access to Mem block, resulting in the standard power dissipation associated with
reading or writing of an N -word memory.

A more careful analysis of the array reference patterns reveals some optimization
possibilities [29]. Figure 4.36(c) shows the elements of a that are accessed in one it-
eration of the j-loop, withi = 5 and j = 2. We assume that a is an 8 x § array and
L = 4. In Fig. 4.36(d), we show the elements of a accessed in the next j -iteration,
ie.,i =5, j = 3. We notice an overlap of three array elements, indicating a signifi-
cant data reuse resulting from temporal locality of data access. In general, out of the
L array elements accessed in the innermost loop, we have already accessed L — 1
elements in the previous j iteration. A suggested power optimization here is that,

4.6 Memory Customization 127

afor(i=0;i<N;i++){ b a,b
for (j =0;j <N-L; j++) { /
b][] =0;
for (k=0; k <L; k++) Proc Mem
b [i][j] +=a [i][j+k]; I I
}
}
c d

i=5j=2 i=5,j=3

e f

for 1=0;1<N;itt) {

for (j = 03 < N-L; j++) { a_buf »b
b_buf = 0; /
a_buf [(+L-1)%L] = a [j+L-1];
for (k = 0 k < L; k++) Proc Mz
b_buf+=a_buf [(j+k)%L]; I I

bli][j] = b_buf;

}
}

Fig. 4.36 Memory Customization Example (a) Original Loop (b) Default memory architecture
(c) ‘a’ elements accessed in inner loop fori =5, j=2 (d) ‘a’ elements accessed in inner loop for
i=15,j =23 (e) Modified loop (f) Customized memory architecture. Only the relatively smaller M1
is accessed in the inner loop, saving power

we can instantiate a small buffer a_buf of size L words which would store the last
L elements of a accessed in the previous j -iteration. Since L is much smaller than
N, we would be accessing data only from the much smaller M1 memory module
shown in Fig. 4.36(f) in the innermost loop. Since the energy cost for access from
M1 is expected to be much smaller than that due to access from Mem, we can expect
a significant energy saving for the entire loop nest. The modified loop is shown in
Fig. 4.36(e).

128 4 Power-efficient Memory and Cache

An explicit physical partitioning of the logical memory space could also be per-
formed based on the dynamic profile of memory address references. This could be
useful when a static analysis of the array references is difficult either due to com-
plex conditionals in the specification, or due to data dependence. The frequency of
memory references for an application is generally not uniformly distributed over
the address space — certain parts of the memory are likely to be more heavily ac-
cessed than others. Figure 4.37(a) shows an example of a memory access frequency
distribution over the address space. The accesses could be logically grouped into
three windows of different characteristics — the first 256 addresses have a relatively
high access frequency; the next 2048 elements have a low access frequency; and
the final 1024 elements have a medium frequency. Such variations in access dis-
tributions could occur in typical code because different data arrays are accessed in
different ways. Based on the above grouping, the memory space could be partitioned
into three physical modules. Figure 4.37(b) shows a default memory architecture in
which all memory accesses are made to one large memory module storing the en-
tire address space. This could, however, lead to unnecessarily high memory access
energy because every access would be made to the large memory. Figure 4.37(c)

a A
Access
Frequency
| —
1 I 1 >
256 2048 1024
Memory address spac'e
b c
3324
2048 1024
Mem 36 | v
Proc Proc [MT M3
M

Fig. 4.37 Memory Partitioning. (a) Distribution of access frequency over memory address space.
(b) Default memory architecture. (¢) Partitioned memory. The most frequent accesses are made to
the smaller M1, saving power

4.7 Reducing Address Bus Switching 129

shows an example memory partitioning with the three logical address ranges identi-
fied above mapped to three separate physical modules. This partitioning ensures that
the high frequency accesses are restricted to the relatively smaller memory module,
thereby leading to a significant energy saving over the default architecture.

4.7 Reducing Address Bus Switching

The memory address bus is typically long because of several reasons. The memory
core might have been separately obtained and instantiated, and it may not be possi-
ble to physically place it next to the address generation logic. The memory may be
serving several units which are independently generating addresses and accessing
data. Hence, bits switching on the address lines lead to significant power dissipa-
tion because of the large capacitance associated with each line. This provides an
important power optimization opportunity — power can be reduced by reducing the
total number of bits switching on the memory address lines. This reduction can be
effected by two broad approaches: (i) encoding the address lines; and (ii) transform-
ing the data layout.

4.7.1 Encoding

The sequence of bits appearing over the memory address bus can be changed by, in
general, inserting an encoder close to the address generation block, and a decoder
near the memory in such a way that the same addresses are generated and seen
by the memory as before, but the sequence of signals appearing at the address bus
is modified. The difference is illustrated in Fig. 4.38(a) and (b). The encoder and

a Address Bus
Address

Generator Memory

b

Address Bus

Address
Generator Encoder Decoder Memory

Fig. 4.38 Address Bus Encoding. (a) Original architecture (b) Encoder and decoder for address
bus. The objective of encoding is to have lower activity on the encoded address bus at the expense
of a small encoding and decoding power

130 4 Power-efficient Memory and Cache

Fig. 4.39 Bus Invert Coding. a
(a) Original sequence — total
bits switching = 14

—

Lolofofofofofofo]

(b) Modified sequence — 2 [i[i]i[i]i]i]o]o] up-56
control bit = 1 indicates the
databit.sshot.lldbeinvened. 31|1|0|0|0|0|0|1|0| HD =6
Total bits switching = 8 4 |0|0|0|0|0|0|0|0| HD =2
Byte sequence
b
1 {o]o]o]o]ofo]o]o]o]
2 lofo]ofolo]o]i]1 1] np-=3
{1]oJoJoJofo]1]o]o] npo=3
4 lo]o]ofofo]o]o]o]o] np=2

Modified sequence with control bit

decoder logic blocks incur additional power overhead, but the power saved by re-
duced switching on the high-capacitance memory address lines is expected to be
much larger. We study two very simple and effective encoding techniques in this
section.

The Bus-invert encoding technique attempts to minimize the Hamming Distance
between successive words appearing on the address bus [34]. An extra bit is added to
the memory bus, indicating to the decoder whether or not the address word should be
bitwise inverted. The choice of whether to invert or not is made depending on which
option reduces the hamming distance between the current and previous words. This
is illustrated in Fig. 4.39, with four successive addresses appearing on an 8-bit ad-
dress bus. The four successive address values appearing on the address bus have
hamming distances 6, 6, and 2, making a total of 14 bits switching. The bus-invert
encoding mechanism adds an auxiliary bit to the address bus (shown in grey), mak-
ing the width 9 bits. Noticing that 6 out of the 8 bits have switched in the second
word, we decide to complement the address bits in the second word. The fact that
the bits are inverted is transmitted by making the auxiliary bit ‘1’. This causes a total
hamming distance of 3 between the first two words (two bits in the address word,
and one due to the auxiliary bit). Comparing the second transmitted word with the
third word, we notice a hamming distance of just 2, so the word is sent as is, with the
auxiliary bit set to ‘0’ (indicating that the word is normal, not complemented). Thus,
whenever the number of bits switching is more than half the bus width, we can send
the complemented bits, thereby ensuring that no more than half the bits in the bus
will change from one transaction to the next. The total number of bits switching in
the encoded bus is 8, as opposed to 14 in the original bus. The encoding is a general
mechanism and is not address-bus specific.

An encoding scheme that is specifically tailored to the typical behavior of mem-
ory address buses is the 70 encoding. It exploits the general observation that
often, the address sequence generated on the instruction memory address bus of

4.7 Reducing Address Bus Switching 131

Fig. 4.40 TO Encoding. a
(a) Original sequence — total
bits switching = 4

oot [i]ofofo]o]

(b)Modlﬁedsequepce— 23|1|0|1|1|0|0|0|1|HD=1
control bit = 1 indicates that

the previous value should be 3: | 1 |0 | 1 | 1 |0 |0 | 1 |0 | HD=2
incremented. Total bits

switching = 0 “lifofofufofofefrjnp=t

Address sequence

L fof i ifofofo]o o]

201 foft[1]o]o]o]o]o] up=0
s fofi[ifofofo]o o] no-o
4

Lelofefefofofo o Jorf 1o=0

Modified sequence with control bit

a processor tends to have consecutive values because of spatial locality of reference
in the instruction stream. The TO code adds an extra line to the bus, which is used
to indicate whether the next address is consecutive and is generated by increment-
ing the previous one [4]. This is illustrated in Fig. 4.40. The original sequence of
four address has consecutive values, with the hamming distances between words
being 1, 2, and 1, giving a total of 4 bits switching for the sequence (Fig. 4.40(a)).
In TO encoding the second address repeats the first, with the extra control bit be-
ing ‘0’, indicating that the the previous address should be incremented to generate
the new one. This continues for the remaining words, with the decoder expected to
increment the previous address to generate the new one as long as the control bit
is ‘0’. This scheme may lead to near zero transitions in the steady state when there
is a sequence of consecutive addresses. In addition to short consecutive sequences
occurring in the instruction address sequence, this also happens during array data
accesses in loops.

4.7.2 Data Layout

An orthogonal transformation to address encoding is to rearrange the data layout in
memory so that the generated address sequence has lower switching when the data is
accessed. Such layout transformations apply more to data memory than instructions.

Figure 4.41 shows an example of a simple data layout transformation that helps
bring down the memory address bus switching. An example code is shown in
Fig. 4.41(a), and its corresponding data memory access sequence is shown in
Fig. 4.41(b). We notice that the memory address alternates between two regions
of the memory corresponding to arrays a and b. This usually results in a large num-
ber of address bits switching between every consecutive pair of address words (with

132 4 Power-efficient Memory and Cache

Fig. 4.41 Data Interleaving. . . .
(a) Behavior (b) Original a for (1=0;1<100; 1++)
address sequence (c¢) Address b [1] =2 [1] +1:
sequence when arrays are i
interleaved. The interleaved
address sequence usually has b c
lower total switching, an'd is alo 8.[0]
amenable to other encoding
strategies such as gray code a[]] b[O]
a[2] a[l]
a[3] b[1]
a[2]
b[2]
b[0]
b[1]
b[2]
b[3]

the exception of the specific case where the corresponding data elements of equal
width are separated by an exact power of two, in which case only one bit would
be flipping). Since the sequence is deterministic, we can perform a simple trans-
formation of interleaving the elements of the two arrays, as shown in Fig. 4.41(c).
This causes the address sequence to be consecutive, which is much better behaved
in terms of bit switching, and can then be exploited by other encoding and decoding
mechanisms such as Gray Code or TO.

A more complex data transformation is shown in Fig. 4.42. In the example of
Fig. 4.42(a), the two-dimensional array a is accessed in a tiled pattern visually de-
picted in Fig. 4.42(b). Using the standard storage conventions of row-major and
column-major storage for multi-dimensional arrays, we see that the address se-
quence incurs large hops even within a tile, since we have more than one row
and column accessed in each tile. The sequence for row-major storage is shown
in Fig. 4.42(c). Again, the predictability of the behavioral array reference pattern
can be used to use a more custom tile-based mapping to store array data in memory.
Figure 4.42(d) shows the tiles laid out in memory in a manner that avoids the large
hops in the memory address bus.

Detailed discussions on encoding and data transformations for reducing address
bus power can be found in [4,29]. Before deciding on the applicability of such
encoding and transformations to a specific system design scenario, it is important to
perform a careful cost-benefit analysis.

4.7 Reducing Address Bus Switching 133

a
for(i=0;1<99;i=1+2)
for(G=0;j<99j=j+2)
a [it1][j+1] = (a [i]§] +a [i][j+1]
+a [i+1][j] +a [i+1][+1]) / 4;

a0][0] | a[O][1] | a[0][2] | a[0](3]
a[1][0] | a[1][1] | a[l][2] | a[1](3]

c d
< a[0][0] a[0][0]
al0][1] a[0][1]
a[0][2] a[0][2]
a[0][3] a[0][3]
a[1][0]
a[1][1]
iy e
a[1][1]
< a[1][2]
a[1][3]

Fig. 4.42 Tile-based data storage. (a) Behavior (b) Tiled memory access pattern (c) Address se-
quence using row-major storage (d) Address sequence using tile-based storage. Access pattern is
more regular and shows lower total switching in tile-based storage

e The address bus encoding decision would depend on the actual address bus
lengths in the system. If the on-chip bus has a relatively small length, the area
and power overhead incurred in encoding and decoding circuitry may not be
worthwhile.

e The actual memory architecture and address protocol may also influence the ap-
plicability of such optimizations, a good example being a DRAM. In DRAMs,
the actual address is time-multiplexed into row and column addresses, using half
the number of address bits. This obviously requires changes to the simple encod-
ing techniques discussed above based on hamming-distance between complete

134 4 Power-efficient Memory and Cache

addresses — here, we need to worry about the hamming distance between the
row- and column address as well.

e Address bus hamming distance is not the only metric of importance in determin-
ing total energy. It is possible that a hamming distance of 1 refers to a physically
distant memory location if the switch happens in the higher order address bits.
This may cause a switch in the DRAM memory page, which will lead to addi-
tional power costs in the DRAM and associated changes in the access protocol
FSM that should be accounted for.

e A similar cost analysis has to be performed for data transformations targeting the
memory address bus. Data transformations are more global in their effect — they
go beyond the specific loop for which the transformation was derived. Transfor-
mations to the same arrays in different loops might be conflicting — they may be
useful in one and harmful in another. Data transformations need to be performed
after analyzing their effect on all sections of code where the data is accessed.

4.8 DRAM Power Optimization

As the amount of memory in computer systems continues to grow, the off-chip mem-
ory — the DRAM sub-system — increasingly consumes larger amounts of power,
even though the CPU is designed against a tight power budget. Newer generations
of DRAMs have exposed power management controls so that external controllers
can implement aggressive optimization policies to reduce DRAM power. The most
common such feature has been the introduction of low power modes in different
DRAM states. These could be one of the following:

e Active: The DRAM could be moved to an Active Power-down mode. In this “shal-
low” low-power mode, one or more DRAM banks is open, and it is relatively
fastest to bring the DRAM back to accessing data from this mode.

e Precharge: In the Precharge Power-down mode, all banks are closed, and it takes
more time to return to the active state where we can access data again. Power
consumption is lower than in active power-down.

o Self-refresh: In the Self-refresh Power-down mode, the power consumption is the
lowest, and it takes the maximum time to recover to the active state.

The transitions to and from the above DRAM low power states is expected to be
explicitly performed by the memory controller. The architectural details and pro-
gramming possibilities continue to evolve with newer generation of DRAM:s.

The above power reduction opportunities have led to attention being focussed on
optimizations through various mechanisms — starting from the level of memory con-
trollers that directly interface to DRAMs, all the way to page allocation policies in
operating systems. DRAM power management functions can be performed by many
different entities: the DRAM controller can use prediction techniques; the compiler
can analyze the source code and insert explicit instructions to change DRAM power
state; and the operating system scheduler can also monitor activity on the DRAM

4.9 Summary 135

and make the management decisions. Since the operating system is able to simulta-
neously monitor activities of different processes, it may discover reference patterns
not visible to the compiler.

It is obvious that some variant of the standard predictive shutdown policy gener-
ally useful in several other low power controller strategies — predict the future idle
time based on past behavior, and switch to low power mode if there is an expecta-
tion of power saving — is also applicable in the DRAM context (see Section 5.1.2
for an application of the same principle to voltage scaling decisions based on past
CPU utilization). Basically, the controller’s policy should ensure that the overhead
of transitioning to and from the low power state is less than the expected power
saving [7]. The choice of the controller policy would depend on the amount of
performance penalty we are willing to tolerate. This is achieved by setting specific
threshold parameters for every power state of the DRAM. If the chip has not been
accessed for a time period beyond the threshold, then we can move the DRAM to
the next low power state [24].

The data migration policy discussed in Section 4.5 — where data objects are
grouped into a smaller number of memory modules so that others can be set to sleep
mode — is an example of a high-level data organization concept that also applies to
DRAM. The default page allocation of the operating system, which effectively does
a random assignment of memory pages across the different memory chips present
in the system, can be made power aware by exploiting the same data consolidation
idea introduced in Section 4.5 — frequently accessed memory pages are migrated to
a common memory chip so as to improve the possibility of power saving through
moving unused chips to low power mode [24].

Finally, attempts can be made to bring successive DRAM accesses closer in time
so that idle periods can be made artificially longer. Bringing two DRAM accesses
together is usually achieved by delaying the first access, which may incur a perfor-
mance penalty.

4.9 Summary

The storage and retrieval of large amounts of data and instructions in modern
electronic and computer systems make the memory subsystem an important tar-
get component for power optimization. Memory related power reduction spans a
broad spectrum across several levels of abstraction. Circuit and architecture level
opportunities have been identified for trading off a small performance penalty for
significant savings in power dissipation in processor caches. Scratch pad memo-
ries help reduce system power by avoiding expensive tag lookups associated with
caches. Since SoCs permit flexible on-chip memory architectures, estimation based
exploration can help determine the best memory configurations for an application
scenario. Techniques such as encoding and data layout transformation could be used
to reduce power dissipation on high-capacitance memory address buses.

136 4 Power-efficient Memory and Cache

The chapter covered some of the basic techniques in each of the categories de-
scribed above. The reader is encouraged to look up the references indicated at
various places in the chapter to obtain an idea of the more advanced proposals in
the memory power optimization field. The area continues to draw significant in-
terest from researchers as systems move in the direction of higher complexity. For
example, as next generation DRAMs evolve to include more power controls, we can
expect associated power optimization proposals to exploit them. Advanced transfor-
mations such as compression also help reduce power by reducing off-chip memory
traffic and providing similar performance with smaller memory and cache sizes.

References

1. Bajwa, R.S., Hiraki, M., Kojima, H., Gorny, D.J., Nitta, K., Shridhar, A., Seki, K., Sasaki, K.:
Instruction buffering to reduce power in processors for signal processing. IEEE Transactions
on VLSI Systems 5(4), 417-424 (1997)

2. Bellas, N., Hajj, 1., Polychronopoulos, C.: Using dynamic cache management techniques to
reduce energy in a high-performance processor. In: International symposium on low power
electronics and design, pp. 64—69. San Diego, USA (1999)

3. Bellas, N., Hajj, I.N., Polychronopoulos, C.D., Stamoulis, G.: Architectural and compiler tech-
niques for energy reduction in high-performance microprocessors. IEEE Transactions on VLSI
Systems 8(3), 317-326 (2000)

4. Benini, L., Micheli, G.D.: System level power optimization: Techniques and tools. ACM Trans-
actions on Design Automation of Electronic Systems 5(2), 115-192 (2000)

5. Chang, Y.J.: An ultra low-power tlb design. In: DATE ’06: Proceedings of the conference
on Design, automation and test in Europe, pp. 1122-1127. European Design and Automation
Association, 3001 Leuven, Belgium, Belgium (2006)

6. Delaluz, V., Sivasubramaniam, A., Kandemir, M., Vijaykrishnan, N., Irwin, M.J.: Scheduler-
based dram energy management. In: Design Automation Conference. New Orleans, USA
(2002)

7. Fan, X., Ellis, C., Lebeck, A.: Memory controller policies for dram power management.
In: International symposium on low power electronics and design, pp. 129—-134. Huntington
Beach, USA (2001)

8. Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T.: Drowsy caches: simple tech-
niques for reducing leakage power. In: International symposium on computer architecture,
pp. 240-251. Anchorage, USA (2002)

9. Garey, M.R., Johnson, D.S.: Computers and Intractibility — A Guide to the Theory of
NP-Completeness. W.H. Freeman (1979)

10. Ghose, K., Kamble, M.B.: Reducing power in superscalar processor caches using subbanking,
multiple line buffers and bit-line segmentation. In: International symposium on low power
electronics and design, pp. 70-75. San Diego, USA (1999)

11. Hasegawa, A., Kawasaki, 1., Yamada, K., Yoshioka, S., Kawasaki, S., Biswas, P.: SH3: High
code density, low power. IEEE Micro 15(6), 11-19 (1995)

12. Hennessy, J.L., Patterson, D.A.: Computer Architecture — A Quantitative Approach. Morgan
Kaufman, San Francisco, CA (1994)

13. Hu, J.S., Nadgir, A., Vijaykrishnan, N., Irwin, M.J., Kandemir, M.: Exploiting program
hotspots and code sequentiality for instruction cache leakage management. In: International
symposium on low power electronics and design, pp. 402—407. Seoul, Korea (2003)

14. Inoue, K., Ishihara, T., Murakami, K.: Way-predicting set-associative cache for high perfor-
mance and low energy consumption. In: International symposium on low power electronics
and design, pp. 273-275. San Diego, USA (1999)

References 137

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Inoue, K., Moshnyaga, V.G., Murakami, K.: A history-based I-cache for low-energy multi-
media applications. In: International symposium on low power electronics and design, pp.
148-153. Monterey, USA (2002)

Janapsatya, A., Parameswaran, S., Ignjatovic, A.: Hardware/software managed scratchpad
memory for embedded systems. In: Proceedings of the IEEE/ACM International Conference
on Computer Aided Design (2004)

Juan, T., Lang, T., Navarro, J.J.: Reducing tlb power requirements. In: ISLPED ’97: Proceed-
ings of the 1997 international symposium on Low power electronics and design, pp. 196-201.
ACM, New York, NY, USA (1997). DOI http://doi.acm.org/10.1145/263272.263332

Kadayif, I., Sivasubramaniam, A., Kandemir, M., Kandiraju, G., Chen, G.: Generating physical
addresses directly for saving instruction tlb energy. In: MICRO 35: Proceedings of the 35th an-
nual ACM/IEEE international symposium on Microarchitecture, pp. 185-196. IEEE Computer
Society Press, Los Alamitos, CA, USA (2002)

Kandemir, M., Ramanujam, J., Irwin, M.J., Vijaykrishnan, N., Kadayif, L., Parikh, A.: Dynamic
management of scratch-pad memory space. In: ACM/IEEE Design Automation Conference,
pp. 690-695 (2001)

Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: exploiting generational behavior to reduce
cache leakage power. In: International symposium on computer architecture, pp. 240-251.
Goteberg, Sweden (2001)

Kim, S., Vijaykrishnan, N., Kandemir, M., Sivasubramaniam, A., Irwin, M.J., Geethanjali, E.:
Power-aware partitioned cache architectures. In: International symposium on low power elec-
tronics and design, pp. 64-67. Huntington Beach, USA (2001)

Kin, J., Gupta, M., Mangione-Smith, W.H.: The filter cache: an energy efficient memory struc-
ture. In: International symposium on microarchitecture, pp. 184—193. Research Triangle Park,
USA (1997)

Ko, U., Balsara, P.T., Nanda, A.K.: Energy optimization of multi-level processor cache archi-
tectures. In: International symposium on low power design, pp. 45-49. New York, USA (1995)
Lebeck, A.R., Fan, X., Zeng, H., Ellis, C.: Power aware page allocation. SIGOPS Oper. Syst.
Rev. 34(5), 105-116 (2000). DOI http://doi.acm.org/10.1145/384264.379007

Lyuh, C.G., Kim, T.: Memory access scheduling and binding considering energy minimization
in multi-bank memory systems. In: Design automation conference, pp. 81-86. San Diego,
USA (2004)

Malik, A., Moyer, B., Cermak, D.: A low power unified cache architecture providing power
and performance flexibility. In: International symposium on low power electronics and design,
pp. 241-243. Rapallo, Italy (2000)

Manne, S., Klauser, A., Grunwald, D.C., Somenzi, F., Somenzi, F.: Low power tlb design for
high performance microprocessors. Tech. rep., University of Colorado (1997)

Min, R., Jone, W.B., Hu, Y.: Location cache: A low-power 12 cache system. In: International
symposium on low power electronics and design, pp. 120-125. Newport Beach, USA (2004)
Panda, P.R., Catthoor, F., Dutt, N.D., Danckaert, K., Brockmeyer, E., Kulkarni, C.,
Vandercappelle, A., Kjeldsberg, P.G.: Data and memory optimization techniques for embed-
ded systems. ACM Transactions on Design Automation of Electronic Systems 6(2), 149-206
(2001)

Panda, P.R., Dutt, N.D., Nicolau, A.: Local memory exploration and optimization in embedded
systems. IEEE Transactions on Computer Aided Design 18(1), 3—13 (1999)

Panda, PR., Dutt, N.D., Nicolau, A.: Memory Issues in Embedded Systems-On-Chip: Opti-
mizations and Exploration. Kluwer Academic Publishers, Norwell, MA (1999)

Panda, PR., Dutt, N.D., Nicolau, A.: On-chip vs. off-chip memory: The data partitioning
problem in embedded processor-based systems. ACM Transactions on Design Automation
of Electronic Systems 5(3), 682-704 (2000)

Panwar, R., Rennels, D.: Reducing the frequency of tag compares for low power i-cache design.
In: International symposium on low power design, pp. 57-62. New York, USA (1995)

Stan, M.R., Burleson, W.P.: Bus-invert coding for low power I/O. IEEE Transactions on VLSI
Systems 3(1), 49-58 (1995)

138 4 Power-efficient Memory and Cache

35. Steinke, S., Wehmeyer, L., Lee, B., Marwedel, P.: Assigning program and data objects to
scratchpad for energy reduction. In: Design Automation and Test in Europe, pp. 409-417.
Paris, France (2002)

36. Su, C.L., Despain, A.M.: Cache design trade-offs for power and performance optimization: a
case study. In: International Symposium on Low Power Design, pp. 63-68. New York, NY
(1995)

37. Udayakumaran, S., Dominguez, A., Barua, R.: Dynamic allocation for scratch-pad memory
using compile-time decisions. ACM Transactions on Embedded Computing Systems 5(2),
472-511 (2006)

38. Zhang, C., Vahid, F, Yang, J., Najjar, W.: A way-halting cache for low-energy high-
performance systems. In: International symposium on low power electronics and design,
pp. 126-131. Newport Beach, USA (2004)

39. Zhang, W., Hu, J.S., Degalahal, V., Kandemir, M., Vijaykrishnan, N., Irwin, M.J.: Compiler
directed instruction cache leakage optimization. In: International symposium on microarchi-
tecture, pp. 208-218. Istanbul, Turkey (2002)

	4 Power-efficient Memory and Cache
	4.1 Introduction and Memory Structure
	4.1.1 Overview
	4.1.2 Memory Structure
	4.1.3 Cache Memory
	4.1.4 Cache Architecture
	4.1.5 Power Dissipation During Memory Access

	4.2 Power-efficient Memory Architectures
	4.2.1 Partitioned Memory and Caches
	4.2.2 Augmenting with Additional Memories
	4.2.3 Reducing Tag and Data Array Fetches
	4.2.4 Reducing Cache Leakage Power

	4.3 Translation Look-aside Buffer (TLB)
	4.3.1 TLB Associativity -- A Power-performance Trade-off
	4.3.2 Banking
	4.3.3 Reducing TLB Lookups
	4.3.3.1 Deferred Address Translation
	4.3.3.2 Using Address Mapping Register

	4.4 Scratch Pad Memory
	4.4.1 Data Placement in SPM
	4.4.2 Dynamic Management of SPM
	4.4.3 Storing both Instructions and Data in SPM

	4.5 Memory Banking
	4.6 Memory Customization
	4.7 Reducing Address Bus Switching
	4.7.1 Encoding
	4.7.2 Data Layout

	4.8 DRAM Power Optimization
	4.9 Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

