

Power-efficient System Design

Preeti Ranjan Panda � Aviral Shrivastava
B.V.N. Silpa � Krishnaiah Gummidipudi

Power-efficient System
Design

123

Dr. Preeti Ranjan Panda
Department Computer Science

and Engineering
Indian Institute of Technology
Hauz Khas, 110016
New Delhi
India
panda@cse.iitd.ac.in

B.V.N. Silpa
Department of Computer Science

and Engineering
Indian Institute of Technology
Hauz Khas, 110016
New Delhi
India
silpa@cse.iitd.ac.in

Aviral Shrivastava
Department of Computer Science

and Engineering
Arizona State University
699 South Mill Avenue
85281, Tempe
USA
Aviral.Shrivastava@asu.edu

Krishnaiah Gummidipudi
Department of Computer Science

and Engineering
Indian Institute of Technology
Hauz Khas, 110016
India
krishna@cse.iitd.ac.in

ISBN 978-1-4419-6387-1 e-ISBN 978-1-4419-6388-8
DOI 10.1007/978-1-4419-6388-8
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010929487

c� Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Information and communication technology (ICT) industry is said to account
for 2% of the worldwide carbon emissions – a fraction that continues to grow with
the relentless push for more and more sophisticated computing equipment, com-
munications infrastructure, and mobile devices. While computers evolved in the
direction of higher and higher performance for most of the latter half of the 20th cen-
tury, the late 1990’s and early 2000’s saw a new emerging fundamental concern that
has begun to shape our day-to-day thinking in system design – power dissipation.
As we elaborate in Chapter 1, a variety of factors colluded to raise power-efficiency
as a first class design concern in the designer’s mind, with profound consequences
all over the field: semiconductor process design, circuit design, design automation
tools, system and application software, all the way to large data centers.

Power-efficient System Design originated from a desire to capture and highlight
the exciting developments in the rapidly evolving field of power and energy opti-
mization in electronic and computer based systems. Tremendous progress has been
made in the last two decades, and the topic continues to be a fascinating research
area. To develop a clearer focus, we have concentrated on the relatively higher level
of design abstraction that is loosely called the system level. In addition to the exten-
sive coverage of traditional power reduction targets such as CPU and memory, the
book is distinguished by detailed coverage of relatively modern power optimization
ideas focussing on components such as compilers, operating systems, servers, data
centers, and graphics processors.

The book is primarily intended to serve as a graduate-level text. An elementary
familiarity with digital design, computer architecture, and system software utilities
such as compilers and operating systems, is necessary in order to appreciate the
contents of the book. However, in Chapter 2, we do attempt to quickly cover some
of the background material on which the later discussion is based. After reading this
book, the reader can expect to obtain a reasonable understanding of the opportunities
for introducing power and energy efficiency into electronic and computer based
systems, the current approaches targeting this objective, and the challenges ahead.

We gratefully acknowledge the feedback given by Sorav Bansal, Kolin Paul,
Neeraj Goel, Anoop Nair, and Kumar S. S. Vemuri on an earlier version of the
manuscript. We owe our gratitude to Chuck Glaser for his words of encouragement

v

vi Preface

and valuable advice during the writing process; it has been an immense pleasure
working with him.

Finally, we would like to place on record our heartfelt thanks to Lima Das for
working very hard to design the impressive and very appropriately conceived cover
artwork.

New Delhi, India and Tempe, USA Preeti Ranjan Panda
June 2010 Aviral Shrivastava

B.V.N. Silpa
Krishnaiah Gummidipudi

Contents

1 Low Power Design: An Introduction . 1
1.1 The Emergence of Power as an Important Design Metric 1
1.2 Power Efficiency vs. Energy Efficiency .. 3
1.3 Power-Performance Tradeoff . 6
1.4 Power Density . 7
1.5 Power and Energy Benchmarks . 7
1.6 Power Optimizations at the System Level . 7
1.7 Organization of this Book . 9
References . 10

2 Basic Low Power Digital Design . 11
2.1 CMOS Transistor Power Consumption . 11

2.1.1 Switching Power . 13
2.1.2 Short Circuit Power . 14
2.1.3 Leakage Power . 15

2.2 Trends in Power Consumption . 18
2.3 Techniques for Reducing Dynamic Power . 18

2.3.1 Gate Sizing . 20
2.3.2 Control Synthesis . 23
2.3.3 Clock Gating . 25
2.3.4 Voltage and Frequency Scaling . 28

2.4 Techniques for Reducing Short Circuit Power. 30
2.5 Techniques for Reducing Leakage Power. 31

2.5.1 Multiple Supply Voltage . 31
2.5.2 Multiple Threshold Voltage . 33
2.5.3 Adaptive Body Biasing . 34
2.5.4 Transistor Stacking . 34
2.5.5 Power Gating. 36

2.6 Summary . 37
References . 38

vii

viii Contents

3 Power-efficient Processor Architecture . 41
3.1 Introduction . 41

3.1.1 Power Budget: A Major Design Constraint . 45
3.1.2 Processor Datapath Architecture . 48
3.1.3 Power Dissipation . 52

3.2 Front-end: Fetch and Decode Logic.. 54
3.2.1 Fetch Gating . 54
3.2.2 Auxiliary Decode Buffer . 58

3.3 Issue Queue / Dispatch Buffer . 60
3.3.1 Dynamic Adaptation of Issue Queue Size . 63
3.3.2 Zero Byte Encoding . 64
3.3.3 Banking and Bit-line Segmentation .. 65
3.3.4 Fast Comparators . 66

3.4 Register File . 66
3.4.1 Port Reduction and Banking . 67
3.4.2 Clustered Organization . 70
3.4.3 Hierarchical Organization . 70

3.5 Execution Units . 72
3.5.1 Clock Gating . 73
3.5.2 Operand Isolation/Selective Evaluation . 73
3.5.3 Power Gating and Multi-threshold Logic . 74

3.6 Reorder Buffer . 77
3.6.1 Port Reduction . 79
3.6.2 Distributed ROB . 80
3.6.3 Dynamic ROB Sizing. 81
3.6.4 Zero Bytes and Power Efficient Comparators 81

3.7 Branch Prediction Unit . 81
3.7.1 Banking of BHT and BTB . 84
3.7.2 Reducing BHT/BTB Lookups . 84

3.8 Summary . 85
References . 86

4 Power-efficient Memory and Cache . 89
4.1 Introduction and Memory Structure . 90

4.1.1 Overview . 90
4.1.2 Memory Structure . 91
4.1.3 Cache Memory .. 92
4.1.4 Cache Architecture . 98
4.1.5 Power Dissipation During Memory Access .100

4.2 Power-efficient Memory Architectures .101
4.2.1 Partitioned Memory and Caches .101
4.2.2 Augmenting with Additional Memories .103
4.2.3 Reducing Tag and Data Array Fetches. .105
4.2.4 Reducing Cache Leakage Power .109

Contents ix

4.3 Translation Look-aside Buffer (TLB) .111
4.3.1 TLB Associativity – A Power-performance Trade-off113
4.3.2 Banking .113
4.3.3 Reducing TLB Lookups .. .115

4.4 Scratch Pad Memory .. .116
4.4.1 Data Placement in SPM .117
4.4.2 Dynamic Management of SPM .119
4.4.3 Storing both Instructions and Data in SPM. .121

4.5 Memory Banking.. .121
4.6 Memory Customization .. .124
4.7 Reducing Address Bus Switching .129

4.7.1 Encoding .129
4.7.2 Data Layout .131

4.8 DRAM Power Optimization .. .134
4.9 Summary .135
References .136

5 Power Aware Operating Systems, Compilers, and Application
Software .139
5.1 Operating System Optimizations .140

5.1.1 Advanced Configuration and Power Interface (ACPI)144
5.1.2 Dynamic Voltage and Frequency Scaling. .148
5.1.3 I/O Device Power Management .160

5.2 Compiler Optimizations .161
5.2.1 Loop Transformations .162
5.2.2 Instruction Encoding.. .162
5.2.3 Instruction Scheduling .. .164
5.2.4 Dual Instruction Set Architectures .164
5.2.5 Instruction Set Extension .. .168
5.2.6 Power Gating. .171
5.2.7 Dynamic Translation and Recompilation .. .172
5.2.8 Compiler Optimizations Targeting Disks .173

5.3 Application Software .174
5.3.1 Application-aided Power Management .174
5.3.2 DVFS Under Application Control .175
5.3.3 Output Quality Trade-offs .. .177

5.4 Summary .178
References .178

6 Power Issues in Servers and Data Centers .183
6.1 Power Efficiency Challenges .183

6.1.1 Nameplate Power Overestimates Actual Power184
6.1.2 Installed vs. Utilized Capacity .185
6.1.3 Load Variation .185

6.2 Where does the Power go?. .186
6.3 Server Power Modeling and Measurement .188

x Contents

6.4 Server Power Management .190
6.4.1 Frequency Scaling .190
6.4.2 Processor and Memory Packing. .193
6.4.3 Power Shifting .196

6.5 Cluster and Data Center Power Management. .197
6.5.1 Power Capping/Thresholding .198
6.5.2 Voltage and Frequency Scaling .201

6.6 Summary .204
References .204

7 Low Power Graphics Processors .207
7.1 Introduction to Graphics Processing .208

7.1.1 Graphics Pipeline .208
7.1.2 Graphics Processor Architecture .216
7.1.3 Power Dissipation in a Graphics Processor. .221

7.2 Programmable Units .222
7.2.1 Clock Gating .223
7.2.2 Predictive Shutdown .. .223
7.2.3 Code Transformation .224

7.3 Texture Unit .228
7.3.1 Custom Memory Architecture – Texture Filter Memory229
7.3.2 Texture Compression .232
7.3.3 Clock Gating .234

7.4 Raster Operations .235
7.4.1 Depth Buffer Compression .235
7.4.2 Color Buffer Compression .237

7.5 System Level Power Management .238
7.5.1 Power Modes. .238
7.5.2 Dynamic Voltage and Frequency Scaling. .238
7.5.3 Multiple Power Domains .245

7.6 Summary .245
References .246

Index .249

Chapter 1
Low Power Design: An Introduction

1.1 The Emergence of Power as an Important Design Metric

Through most of the evolution of the electronics and computer industry in the
twentieth century, technological progress was defined in terms of the inexorable
march of density and speed. Increasing density resulted from process improvements
that led to smaller and smaller geometries of semiconductor devices, so the num-
ber of transistors packed into a given area kept increasing. Increasing processing
speed indirectly resulted from the same causes: more processing power on the same
chip meant more computation resources and more data storage on-chip, leading to
higher levels of parallelism and hence, more computations completed per unit time.
Circuit and architectural innovations were also responsible for the increased speed.
In the case of processors, deeper pipelines and expanding parallelism available led
to improvements in the effective execution speed. In the case of memories, density
continued to make remarkable improvements; performance improvements were not
commensurate, but nevertheless, architectural innovations led to increased band-
width at the memory interface.

In parallel to the steady march in the density and performance of high-end chips
such as processors, a quiet mobile revolution was ignited in the 1990s. The specifica-
tion for components targeting mobile systems were very different from the high-end
processors. These chips had to fit into very tight power budgets defined by bat-
tery life considerations, which led to a significant investment in low power design
techniques, methodologies, and tools. Starting early 1990s, researchers began to
consider modifying the entire electronic design automation tool chain by incorporat-
ing power awareness. Even as the complexity of Systems-on-a-Chip (SoC) increased
significantly and proceeded in the direction of integration of a large number of
modules (cores), the individual cores were still designed to tight power constraints
and intelligence was introduced in the overall power management of these SoCs
in order to meet chip-level power budgets. Many of these cores were processors in
themselves, but these were architected very differently from the standard high-end
desktop or server processor – speed of individual cores was heavily compromised to
meet power constraints by keeping the design simple. It was a prescient move – the
high-end multicore processors of the early 21st century would later adopt the same
philosophy.

P.R. Panda et al., Power-efficient System Design, DOI 10.1007/978-1-4419-6388-8 1,
c� Springer Science+Business Media, LLC 2010

1

2 1 Low Power Design: An Introduction

Through the late 1990s and early 2000s, the parallel evolution of the two
seemingly unrelated lines of products continued unabated. High end processor sys-
tems delivered on the traditional density and performance scaling promise through
increased architectural sophistication, while the mobile revolution was well under
way, spearheaded by the ubiquitous cell phone.

Towards the mid-2000s, important directional changes were visible in the evo-
lution of these technologies. Cell phone makers began packing more and more
functionality into their devices, making them look increasingly similar to general
purpose programmable devices. All the functionality still had to be delivered within
the tight power envelope of a few watts – imposed by the simple physical require-
ment that the device should fit and stay within the pocket without burning a hole
through it. Desktop processors, at the same time, ran up against an unexpected bar-
rier – the power wall, which imposed an upper limit on the power dissipation. It
turned out that, if the processor power exceeded around 150 W, then the simple fan-
based cooling mechanism used in desktop computers might be inadequate. More
sophisticated cooling would increase the cost of the systems to inordinate levels
– the consumer had got used to price drops with increasing performance over the
years. Suddenly, power related innovation became a top concern even in high-end
processors, altering the designer’s priorities radically after decades of riding the pre-
dictable performance and density curves.

A third front had opened with the exploding Internet revolution – the world was
getting more and more connected, powered by infrastructural re-organization that
was not obviously visible to the end-user, but nevertheless, an important enabling
innovation. Large scale distributed storage and processing capabilities had become
necessary. To handle the terabytes of data continuously being generated, stored,
and retrieved, data had to be organized in non-trivial ways. Similarly, the huge pro-
cessing and computation power also needed similar architectural paradigm shifts.
Data centers were the offshoot of these pressing requirements. Designers realized
the economies of scale provided by aggregations of tens of thousands of comput-
ers stacked into a warehouse-style environment, which would make more efficient
utilization of space than the maintenance of a large number of small server rooms
in individual companies. Service models began to evolve based on this idea. There
was just one issue – power. Large data centers draw megawatts of power. It is well
established that the annual energy cost of operating a large data center rivals the
cost of the equipment itself. The time had come to start worrying about ways to
reduce the energy bills. Further, the concentration of a large number of powerful
computers in a data center leads to a very high thermal density, with significant
consequences on the cooling technology required to maintain the systems within
the operating temperature range, ultimately impacting the cost of maintaining the
infrastructure.

As we proceed to the 2010s, it is amply clear that no one can run away from
the looming power wall. Far from being limited to battery-operated devices, power
and energy efficiency now has to be built into products at every level of abstrac-
tion, starting from the semiconductor device level, through circuit and chip levels,
all the way to compilers, operating systems, and large data centers. While earlier

1.2 Power Efficiency vs. Energy Efficiency 3

generations of hardware designers invariably optimized the product for high
performance and reported the power dissipation merely as a documentation exercise
to generate complete data sheets for the customer, newer generations of designers
now need to aggressively optimize for power – even at the expense of performance.
Power is now elevated to what is referred to as a first class design concern.

Power awareness on the software side of the computation stack expressed itself
as an issue somewhat later, as expected. This followed after appropriate hooks were
provided by the hardware. It didn’t take long for researchers to realize that a huge
opportunity lay ahead for power aware system and application software. This fol-
lowed the observation that at least some of the hardware power optimizations would
work better if there were hints passed on to the hardware by the software and vice
versa. For example, a higher level macroscopic view of a system as a whole is avail-
able to an application designer or a compiler that is able to view and analyze an
extended piece of code, than a processor that is able to view only one small window
of instructions at a time. Power efficiency demands are now placed on compilers,
application developers, and operating systems.

The need for energy efficiency in electronic and computer systems tracks the
global need for energy efficiency in every other walk of life. At a time when the
world is acutely aware of the environmental consequences of the huge collective
footprint of our individual actions, and struggling to evolve a sustainable solution, it
is natural that power efficiency and energy efficiency concerns should permeate into
everything we do. With electronic and computer systems beginning to play such a
dominant role in our day-to-day lives, they present themselves as perfect targets on
which to focus our power efficiency efforts.

1.2 Power Efficiency vs. Energy Efficiency

Since the terms power efficiency and energy efficiency are both used in literature,
often interchangeably, let us look at the elementary definitions of power and energy
and clarify the distinction between power and energy efficiency and between the
objectives of power and energy optimizations.

Figure 1.1 shows the instantaneous power dissipated by a system S as a function
of time. The power P.t/ will vary from time to time because the work done inside
the system typically changes with time. In electronic systems, power is, in turn,
determined by the current drawn by the system and the voltage at which it operates,
as a function of time:

P.t/ D V.t/ � I.t/ (1.1)

where V and I are the instantaneous voltage and current respectively. If the ex-
ternal supply voltage remains constant, as is common in many systems, power is
directly proportional to the current drawn, and the power curve essentially tracks
the variation of the current over time.

4 1 Low Power Design: An Introduction

What about energy dissipation by the same system S? Power is simply the rate
at which energy is dissipated, so the energy dissipated over a period t D 0 to t D T

is given by:

E D
Z T

0

P.t/ dt (1.2)

This corresponds to the area under the P.t/ curve as indicated in Fig. 1.1.
A system S 0 that delivers the same work as the one in Fig. 1.1 in the same dura-

tion T , but is characterized by a different power curve P 0.t/, as shown in Fig. 1.2(a),
would be called more power-efficient because the P 0 curve is always lower than P .
What about its energy dissipation? Its energy E 0 corresponds to the area under the
P 0 curve, which is clearly less than E . Hence, E 0 is also more energy-efficient.

On the other hand, let us consider the power characteristic of a different system
S 00 shown in Fig. 1.2(b). System S 00 has a power curve P 00 that is under P most of

Fig. 1.1 The relationship
between power and energy:
the area under the power
curve over a time interval
gives the energy consumed

Fig. 1.2 Power efficiency
and energy efficiency. Three
systems S , S 0, and S 00 have
power curves P , P 0, and P 00

respectively. (a) S 0 is more
power-efficient and more
energy-efficient than S .
(b) S 00 has lower peak power
than S . S 00 has lower average
power/energy than S in time
period Œ0; T 00� if E 00 < E

1.2 Power Efficiency vs. Energy Efficiency 5

the time, but it takes longer to complete its task (T 00 > T). The energy dissipated is
now given by:

E 00 D
Z T 00

0

P 00.t/ dt (1.3)

Which of S , S 00 is more power efficient? Which is more energy-efficient?
The energy efficiency question is easier to answer – S 00 is more energy efficient

if E 00 < E . This is a clearer question because energy corresponds to the total work
done by a system, independent of completion time.

Power, on the other hand, is intricately tied to completion times, and the defini-
tion of power-efficiency needs to be clarified in a given context. Two major power
efficiency criteria are commonly relevant:

1. Peak power
2. Average power

The peak power criterion is sometimes externally imposed on a system. If min-
imizing peak power is the objective, then S 00 is more efficient. If a peak power
constraint is imposed on the system, then the design has to be adjusted to ensure
that the power curve is always under the horizontal line corresponding to the power
constraint, irrespective of how long it takes for completion.

Average power is defined with respect to a time interval. In Fig. 1.2(b), if we take
the time interval Œ0; T 00�, then we have:

Average Power for S D E

T 00
(1.4)

Average Power for S 00 D E 00

T 00
(1.5)

Note that, for a fair comparison of the two systems, the time durations should be
the same. S 0 has completed its task at time T , and is consuming zero power between
T and T 00, which should be accounted for in the average power calculation. Since
the two denominators are the same, the relationship between the average power
dissipation between the two systems is identical to the relationship between the
total energy.

Requirements for energy efficiency or average power reduction usually stem
from battery life considerations. To a level of approximation, battery capacity can
be viewed in terms of a fixed amount of total energy that it can supply.

Requirements for peak power usually stem from two sources:

� external power supply may impose a constraint on the maximum instantaneous
power that can be supplied; or

� there may be a cap on the maximum temperature (which is indirectly determined
by peak power) that a device is allowed to reach. This could be applicable to both
mobile devices as well as powerful server computers.

6 1 Low Power Design: An Introduction

In this book we discuss different classes of mechanisms that target the reduction
of either energy (average power) or peak power. The actual objective is clarified
from the context in which it appears.

1.3 Power-Performance Tradeoff

Figure 1.2(b) illustrates an important trade-off between peak power and perfor-
mance that is not merely theoretical. The trade-off is real and has tremendously
influenced the direction taken by the mobile computer industry. The explosion of
interest in ultra-portable computers (also referred to as netbooks) in recent times,
along with the evolution of cell phones into more sophisticated gadgets that make
them look more like handheld computers, clearly shows that there is a huge poten-
tial for the market segment where computer systems are held within a tight power
budget while sacrificing performance. Netbooks run on processors with very low
peak power and correspondingly weak performance; their acceptance in the market
may imply that the average set of applications run by many users just don’t require
very high speed. Instead of raw speed, other important features such as network con-
nectivity, mobility, and battery life are valued. The race to deliver higher and higher
raw performance may have transformed into a more nuanced battle, with new battle
grounds being created that squarely put power and energy at the center.

Design metrics such as energy-delay product are some times used to evaluate
the relative merits of two implementations in a way that accounts for both energy
and performance [1]. Such metrics help in discriminating between alternatives that
are equivalent in total energy dissipation but different in performance. Energy-delay
products for the two systems above are given by:

Energy-Delay Product for S D E � T

Energy-Delay Product for S 00 D E 00 � T 00

The term performance-per-watt is sometimes used in the industry to character-
ize energy efficiency of hardware [2]. This term is effectively a direct or indirect
computation of 1=E , with E defined as above. The performance measure here can
be interpreted in different ways, for example, execution frequency or throughput of
computation. If performance is interpreted as the inverse of latency T , then we have:

Performance-per-watt D 1

T
� 1

P
D 1

E

Higher performance-per-watt means more energy-efficient (lower total energy) and
vice versa.

The performance-per-watt metric gives equal emphasis to power and perfor-
mance, while the energy-delay product (E � T D P � T 2) gives higher emphasis
to performance (the latter varies quadratically with delay).

1.6 Power Optimizations at the System Level 7

1.4 Power Density

Power density is an additional important concern that is not captured in a straightfor-
ward way by the power and energy efficiency metrics discussed above. This refers
to the fact that the distribution of power dissipation across a chip is never uniform
because different modules exhibit different degrees of activity in any fixed period
of time. Thus, the power density – the dynamic energy dissipated per unit area – is
non-uniformly distributed on the chip, leading to hotspots where the power density
is significantly high. Higher power density leads to higher temperatures, and a non-
uniform power density leads to a non-uniform temperature variation on the chip,
leading to some associated problems. Even if the average and peak power numbers
are acceptable, power density variations can cause regions on the chip to have un-
acceptably high temperatures leading to failures. Thus, the chip designer also needs
to target a relatively uniform distribution of power density in the resulting chip.

1.5 Power and Energy Benchmarks

The rising importance of power and energy motivated the eventual development
of benchmarking efforts targeting the evaluation of different classes of systems
with respect to power and energy. Powerstone [3] was among the early reported
efforts targeting power evaluation of mobile embedded systems. The Powerstone
benchmark contained applications selected from the following domains: automo-
bile control (auto and engine), signal and image processing (fir int – integer FIR
filter, jpeg – JPEG decompression, g721 – voice compression, and g3fax – fax de-
code), graphics (bilt), and several utilities (compress – UNIX file compression, crc –
cyclic redundancy check, bilv – bit vector operations, des – data encryption, etc.).

Joulesort [4] is a more modern benchmarking effort aimed at power evaluation
of high-end server, cluster, and data center class computer systems. The benchmark
consists of essentially an application for sorting a randomly permuted collection of
records. Different categories of the benchmark contain different input data sizes (10
GB, 100 GB, and 1 TB). Thus, the benchmark has I/O as the primary emphasis, with
secondary emphasis on CPU and memory. Joulesort is good at exercising whole
system level power efficiencies. The proposed evaluation metric used here is the
energy consumed for processing a fixed input size.

1.6 Power Optimizations at the System Level

In this book we will explore power optimizations at the system level of abstraction.
Since the word system is very generic, it is important to clarify its interpretation
as used in this book. The following different levels of abstraction could possibly

8 1 Low Power Design: An Introduction

be considered in the context of power optimizations. They are arranged in the
increasing level of granularity.

Device level. This refers to the choice of the appropriate semiconductor materials
and processes used to fabricate transistors and other devices in this class which form
the building blocks of electronic technology.

Circuit Level. This refers to the interconnection of transistors and the related class
of components, along with the choice of appropriate geometry for these devices.

Gate Level. This refers to the logic level of abstraction, where the components
(gates) implement simple combinational and sequential functions (such as AND,
MUX, flip-flops, etc.). A logic synthesis tool generates an optimized logic netlist
starting from an unoptimized gate level description, or some other simple format
such as a truth table.

Register Transfer Level (RTL). This refers to a description that is usually ex-
pressed in a Hardware Description Language (HDL), containing a cycle-accurate
description of the hardware to be designed. RTL synthesis tools automate the gen-
eration of a gate netlist from an RTL HDL description. The architecture view of a
processor or other hardware falls in this level of abstraction.

Behavioral Level. At this level, the hardware is still described in an HDL, but
the level of detail is lesser than RTL. For example, we may specify an algorithm
implemented in hardware, but indicate nothing about which operation is performed
in which clock cycle. A behavioral synthesis tool takes a behavioral level model as
input, performs a series of high level synthesis optimizations, and finally generates
an RTL HDL design, to be processed further.

Transaction Level. At this level – pertaining to SoC design – the design is no
longer a pure hardware design. In fact, the decision of which part of the specification
will go into hardware and which into software, has not been finalized yet. The details
of the computation in individual blocks and communication across blocks of the
SoC are not specified yet.

Application and System Software Level. At this level, we have moved to soft-
ware executing on a processor hardware. This level encompasses all application
software and key system software such as compilers that have a deeper view of a
single application, and operating systems that have a wider view of the run-time
environment.

Full System, Server, and Data Center Level. This level of abstraction refers to
an aggregation of electronic and computer systems that can be considered complete
in some sense - for example, cell phones, laptops, dedicated servers, all the way up
to data centers.

Our focus on system-level design covers the behavioral and higher levels. That
is, in this book we focus on the Behavioral Level, Transaction Level, Application
and System Software Level, and Full System, Server, and Data Center Levels. Key
power optimization strategies at lower levels of abstraction are summarized briefly
in Chapter 2.

1.7 Organization of this Book 9

1.7 Organization of this Book

In this book we explore various mechanisms that have been proposed for reducing
power dissipation in electronic and computer systems. Figure 1.3 gives a pictorial
view of the contents of the book. The organization of the chapters is as follows.

In Chapter 2 (“Basic Low Power Digital Design”) we introduce the avenues for
power dissipation in electronic systems based on CMOS processes, and the basic
techniques employed for reducing dynamic and static power. The chapter covers

Fig. 1.3 Contents and organization of this book. Chapter 2 outlines the electronic foundations and
basic synthesis/automation techniques. Chapter 3 and 4 focus on CPU and memory respectively.
Chapter 5 discusses power-aware operating systems, compilers, and applications. Chapter 6 covers
servers and data centers. Chapter 7 describes low power graphics processors

10 1 Low Power Design: An Introduction

the electronic foundations that form the basis of most of the higher level power
optimizations discussed in subsequent chapters.

In Chapter 3 (“Power-efficient Processor Architecture”) we delve into the details
of modern processor architecture and point out some of the major strategies for
reducing power in various components. While circuit level enhancements for power
reduction naturally apply to processor design, our focus here is on the architecture-
level modifications that reduce power.

In Chapter 4 (“Power-efficient Memory and Cache”) we discuss the basics of
memory architecture and point out several techniques for reducing memory power
in different contexts. In addition to power-aware cache memory design in the context
of processors, we also discuss power reduction opportunities afforded by scratch pad
memory and banked memory in the SoC context, as well as other components such
as translation look-aside buffers and dynamic memory (DRAM).

In Chapter 5 (“Power Aware Operating Systems, Compilers, and Application
Software”) we move up another level in the compute stack – system software such as
operating systems and compilers, and application software. Once the proper power
optimization hooks are provided by the hardware, new opportunities open up with
regard to their exploitation in software, starting from power-aware compilers.

In Chapter 6 (“Power Issues in Servers and Data Centers”) we examine power
awareness issues being introduced into high-end server-class computers and aggre-
gations of servers constituting data centers. High level operating system features
such as task allocation can now take power into account, exploiting mechanisms
provided by the hardware for controlling performance and power states of individ-
ual computers.

In Chapter 7 (“Low Power Graphics Processors”) we do a detailed study of sys-
tem level power optimizations in graphics processors. The chapter gives a brief
introduction to the graphics processing domain and proceeds to illustrate the ap-
plication of several of the ideas introduced in previous chapters in the context of
a complex processing system whose components bear some similarity to general
purpose processors, but nevertheless, the overall architecture is application specific.

References

1. Gonzalez, R., Horowitz, M.: Energy dissipation in general purpose microprocessors. IEEE Jour-
nal of Solid-State Circuits 31(9), 1277–1284 (1996)

2. Laudon, J.: Performance/watt: the new server focus. SIGARCH Computer Architecture News
33(4), 5–13 (2005)

3. Malik, A., Moyer, B., Cermak, D.: The M�CORETM M340 unified cache architecture. In:
Proceedings of the IEEE International Conference On Computer Design: VLSI in computers &
processors, pp. 577–580 (2000)

4. Rivoire, S., Shah, M.A., Ranganathan, P., Kozyrakis, C.: Joulesort: a balanced energy-efficiency
benchmark. In: SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international conference
on Management of data, pp. 365–376. ACM, New York, NY, USA (2007). DOI http://doi.acm.
org/10.1145/1247480.1247522

Chapter 2
Basic Low Power Digital Design

Moore’s law [12], which states that the “number of transistors that can be placed
inexpensively on an integrated circuit will double approximately every two years,”
has often been subject to the following criticism: while it boldly states the blessing
of technology scaling, it fails to expose its bane. A direct consequence of Moore’s
law is that the “power density of the integrated circuit increases exponentially with
every technology generation”. History is witness to the fact that this was not a benign
outcome. This implicit trend has arguably brought about some of the most important
changes in electronic and computer designs. Since the 1970s, most popular elec-
tronics manufacturing technologies used bipolar and nMOS transistors. However,
bipolar and nMOS transistors consume energy even in a stable combinatorial state,
and consequently, by 1980s, the power density of bipolar designs was considered
too high to be sustainable. IBM and Cray started developing liquid, and nitrogen
cooling solutions for high-performance computing systems [5,11,16,19,21,23–25].
The 1990s saw an inevitable switch to a slower, but lower-power CMOS technol-
ogy (Fig. 2.1). CMOS transistors consume lower power largely because, to a first
order of approximation, power is dissipated only when they switch states, and not
when the state is steady. Now, in the late 2000s, we are witnessing a paradigm
shift in computing: the shift to multi-core computing. The power density has once
again increased so much that there is little option but to keep the hardware simple,
and transfer complexity to higher layers of the system design abstraction, including
software layers.

This chapter explains the basics of power consumption and dissipation in the
operation of CMOS transistors, and also discusses some of the fundamental mecha-
nisms employed for power reduction.

2.1 CMOS Transistor Power Consumption

The power consumption of a CMOS transistor can be divided into three differ-
ent components: dynamic, static (or leakage) and short circuit power consumption.
Figure 2.2 illustrates the three components of power consumption. Switching power,

P.R. Panda et al., Power-efficient System Design, DOI 10.1007/978-1-4419-6388-8 2,
c� Springer Science+Business Media, LLC 2010

11

12 2 Basic Low Power Digital Design

14
ES9000

Power Density Trend in IBM processors

8

10

12
3090S TCM

RY5
370

3033

4381

30390
TCM

4

6
RY4

VC 3

RY6

360 3081
TCM

0

2
Bipolar

CMOS
VC RX3

19641956 19761970 19841982 1988 1989 1990 19971996 1998 1999

Po
w

er
 D

en
si

ty
 (W

at
ts

/c
m

2)

Year

Fig. 2.1 Unsustainable increase in the power density caused a switch from fast, but high-power
bipolar transistors to slow, but low-power CMOS transistor technology. We are at the doorsteps of
the same problem again (Data courtesy IBM Corp)

Fig. 2.2 The dynamic, short
circuit and leakage power
components of transistor
power consumption. Dynamic
and short circuit power are
also collectively known as
switching power, and are
consumed when transistors
change their logic state, but
leakage power is consumed
merely because the circuit is
“powered-on”

Vdd

dynamic
current

Gnd

short−circuit
current

leakage
current

which includes both dynamic power and short-circuit power, is consumed when sig-
nals through CMOS circuits change their logic state, resulting in the charging and
discharging of load capacitors. Leakage power is primarily due to the sub-threshold
currents and reverse biased diodes in a CMOS transistor. Thus,

Ptotal D Pdynamic C Pshort�circuit C Pleakage: (2.1)

2.1 CMOS Transistor Power Consumption 13

2.1.1 Switching Power

When signals change their logic state in a CMOS transistor, energy is drawn from
the power supply to charge up the load capacitance from 0 to Vdd. For the inverter
example in Fig. 2.2, the power drawn from the power supply is dissipated as heat in
pMOS transistor during the charging process. Energy is needed whenever charge is
moved against some potential. Thus, dE D d.QV /. When the output of the invertor
transitions from logical 0 to 1, the load capacitance is charged. The energy drawn
from the power supply during the charging process is given by,

dEP D d.VQ/ D Vdd:dQL

since the power supply provides power at a constant voltage Vdd. Now, since QL D
CL:VL, we have:

dQL D CL:dVL

Therefore,
dEP D Vdd:CL:dVL

Integrating for full charging of the load capacitance,

EP D
Z Vdd

0

Vdd:CL:dVL

D Vdd:CL:

Z Vdd

0

dVL

D CL:V 2
dd (2.2)

Thus a total of CL:V 2
dd energy is drawn from the power source. The energy EL

stored in the capacitor at the end of transition can be computed as follows:

dEL D d.VQ/ D VL:dQL

where VL is the instantaneous voltage across the load capacitance, and QL is the
instantaneous charge of the load capacitance during the loading process. Therefore,

dEL D VL:CLdVL

Integrating for full charging of the load capacitance,

EL D
Z Vdd

0

CL:VL:dVL

D .CL:V 2
dd/

2
(2.3)

14 2 Basic Low Power Digital Design

Comparing Equations 2.2 and 2.3, we notice that only half of the energy drawn
from the power supply is stored in the load capacitance; the rest is dissipated as
heat. This 1

2
CL:V 2

dd
energy stored in the output capacitance is released during the

discharging of the load capacitance, which occurs when the output of the invertor
transitions from logical 1 to 0. The load capacitance of the CMOS logic gate consists
of the output node capacitance of the logic gate, the effective capacitance of the
interconnects, and the input node capacitance of the driven gate.

2.1.2 Short Circuit Power

Another component of power, short-circuit power (also known as crowbar power,
or —em rush-through power) becomes important because of finite non-zero rise
and fall times of transistors, which causes a direct current path between the supply
and ground. This power component is usually not significant in logic design, but
it appears in transistors that are used to drive large capacitances, such as bus wires
and especially off-chip circuitry. As wires on chip became narrower, long wires
became more resistive. CMOS gates at the end of those resistive wires see slow
input transitions. Consider the inverter in Fig. 2.2. Figure 2.3 shows the variation of
the short circuit current ISC as the inverter is driven by a rising ramp input from time
0 to TR. As the input voltage rises, at time t0, we have Vin > V Tn, i.e., the input
voltage become higher than the threshold voltage of the nMOS transistor. At this
time a short-circuit current path is established. This short circuit current increases
as the nMOS transistor turns “on”. Thereafter, the short circuit current first increases
and then decreases until, after t1, we have Vin > Vdd�V Tp, i.e., the pMOS transistor
turns off, signalling the end of short-circuit current. Therefore, in the duration when

Fig. 2.3 Short circuit power is consumed in a circuit when both the nMOS and pMOS transistors
are “on”

2.1 CMOS Transistor Power Consumption 15

.V Tn < Vin < .Vdd � V Tp// holds, there will be a conductive path open between
Vdd and GND because both the nMOS and pMOS devices will be simultaneously
on. Short-circuit power is typically estimated as:

Pshort�circuit D 1=12:k:�:Fclk:.Vdd � 2Vt /
3 (2.4)

where � is the rise time and fall time (assumed equal) and k is the gain factor of the
transistor [22].

2.1.3 Leakage Power

The third component of power dissipation in CMOS circuits, as shown in
Equation 2.1, is the static or leakage power. Even though a transistor is in a sta-
ble logic state, just because it is powered-on, it continues to leak small amounts
of power at almost all junctions due to various effects. Next we discuss about the
significant components of leakage power.

2.1.3.1 Reverse Biased Diode Leakage

The reverse biased diode leakage is due to the reverse bias current in the parasitic
diodes that are formed between the diffusion region of the transistor and substrate.
It results from minority carrier diffusion and drift near the edge of depletion re-
gions, and also from the generation of electron hole pairs in the depletion regions of
reverse-bias junctions. As shown in Fig. 2.4, when the input of inverter in Fig. 2.2
is high, a reverse potential difference of Vdd is established between the drain and the
n-well, which causes diode leakage through the drain junction. In addition, the n-
well region of the pMOS transistor is also reverse biased with respect to the p-type
substrate. This also leads to reverse bias leakage at the n-well junction. The reverse
bias leakage current is typically expressed as,

Irbdl D A:Js:.eq:Vbias=kT � 1/ (2.5)

where A is the area of the junction, Js is the reverse saturation current density, and
Vbias is the reverse bias voltage across the junction, and Vth D kT=q is the thermal
voltage. Reverse biased diode leakage will further become important as we continue
to heavily dope the n- and p-regions. As a result, zener and band-to-band tunneling
[14] will also become contributing factors to the reverse bias current.

2.1.3.2 Gate Induced Drain Leakage

Gate-induced drain leakage (GIDL) is caused by high field effect in the drain junc-
tion of MOS transistors [2]. In an nMOS transistor, when the gate is biased to form

16 2 Basic Low Power Digital Design

n

Gate

DrainSource

n

p−well

Gate−oxide
tunneling

subthreshold
leakage

Reverse−biased
diode leakage

Gate induced
drain leakage

Fig. 2.4 Components of Leakage Power: (i) Subthreshold current flows between source and drain;
(ii) Reverse-biased diode leakage flows across the parasitic diodes; (iii) Gate induced drain leakage
flows between the drain and substrate

accumulation layer in the silicon surface under the gate, the silicon surface has al-
most the same potential as the p-type substrate, and the surface acts like a p-region
more heavily doped than the substrate. However, when the gate is at zero or negative
voltage and the drain is at the supply voltage level, there can be a dramatic increase
of effects like avalanche multiplication and band-to-band tunneling. Minority car-
riers underneath the gate are swept to the substrate, creating GIDL current. GIDL
current or IGIDL is typically estimated as:

IGIDL D AEs :e�
B

Es (2.6)

where Es is the transverse electric field at the surface [3]. Thinner oxide Tox and
higher supply voltage Vdd increase GIDL. GIDL is also referred to as surface band-
to-band tunneling leakage.

2.1.3.3 Gate Oxide Tunneling

Gate oxide tunneling current Iox, flows from the gate through the oxide insulation
to the substrate. In oxide layers thicker than 3-4 nm, this type of current results
from the Fowler-Nordheim tunneling of electrons into the conduction band of the
oxide layer under a high applied electric field across the oxide layer [17]. As oxides

2.1 CMOS Transistor Power Consumption 17

get thinner, this current could surpass many other smaller leakages, e.g., weak in-
version and DIBL as a dominant leakage mechanism in the future. Iox is typically
estimated as:

Iox D A:E2
ox :e�

B
Eox (2.7)

where Eox is the electric field across the oxide.
In oxide layers less than 3-4 nm thick, there can also be direct tunneling through

the silicon oxide layer. Mechanisms for direct tunneling include electron tunneling
in the conduction band (ECB), electron tunneling in the valence band (EVB), and
hole tunneling in the valence band (HVB).

2.1.3.4 Subthreshold Leakage

Subthreshold current flows from the source to drain even if the gate to source voltage
is below the threshold voltage of the device. This happens due to several reasons.
First is the weak inversion effect: when the gate voltage is below VT , carriers move
by diffusion along the surface similar to charge transport across the base of bipolar
transistors. Weak inversion current becomes significant when the gate to source volt-
age is smaller than but very close to the threshold voltage of the device. The second
prominent effect is the Drain-Induced Barrier Lowering (DIBL). DIBL is essentially
the reduction of threshold voltage of the transistor at higher drain voltages. As the
drain voltage is increased, the depletion region of the p-n junction between the drain
and body increases in size and extends under the gate, so the drain assumes a greater
portion of the burden of balancing depletion region charge, leaving a smaller burden
for the gate. As a result, the charge present on the gate retains the charge balance by
attracting more carriers into the channel, an effect equivalent to lowering the thresh-
old voltage of the device. DIBL is enhanced at higher drain voltage and shorter
effective channel length (Leff) [14]. The third effect is the direct punch-through of
the electrons between drain and source. It occurs when when the drain and source
depletion regions approach each other and electrically “touch” deep in the channel.
In a sense, punch-through current is a subsurface version of DIBL.

As a combination of all these sub-currents, Isub is typically modeled as:

Isub D I0e

VG�VS �VT 0��VS C�VDS

nVth

1 � e

�VDS

Vth

!
; (2.8)

where Vth D kT=q is the thermal voltage, n is the subthreshold swing coeffi-
cient constant, ” is the linearized body effect coefficient, ˜ is the DIBL coef-
ficient, and I0 is the technology dependent subthreshold leakage which can be
represented as,

I0 D �0Cox

W

L
V 2

th e1:8: (2.9)

18 2 Basic Low Power Digital Design

2.2 Trends in Power Consumption

At the macro-level, the most significant trend is the increasing contribution of leak-
age power in the total power dissipation of an electronic system designed in CMOS
technology. For a long time, the switching component of the dynamic power was
the major component of the total power dissipated by a circuit. However, in order to
keep power dissipation and power delivery costs under control, the operational volt-
age Vdd was scaled down at the historical rate of 30% per technology generation. In
conjunction, to improve transistor and circuit performance the threshold voltage Vt

was also reduced at the same rate so that a sufficiently large gate overdrive (Vdd �Vt)
is maintained. However, as seen from Equation 2.8, reduction in Vt causes transis-
tor subthreshold leakage current (Isub) to increase exponentially. Furthermore, other
components of leakage current, e.g., the gate leakage and reverse-biased junction
Band To Band Tunneling (BTBT) become important as we scale fabrication tech-
nology to 45 nm and downwards. Other factors such as gate-induced drain leakage
(GIDL) and drain-induced barrier lowering (DIBL) will also become increasingly
significant.

In addition to the increasing dominance of leakage power, the subthreshold leak-
age and the gate-oxide tunneling increase extremely rapidly (exponentially) with
technology scaling, and dwarf dynamic power. We are already at a point where
Vdd � Vt is low, and leakage power is comparable to dynamic switching power,
and in some cases, may actually even dominate the overall power dissipation. Large
leakage comes with several associated problems such as lower noise immunity of
dynamic logic circuits, instability of SRAM cells, and eventually, lower yield.

Another dimension of worry is added by the fact that unlike dynamic power,
leakage power increases exponentially with temperature. In order to improve per-
formance we have been continuously scaling the supply and threshold voltages.
While this results in high frequency of operation, temperatures rise due to large ac-
tive power consumption. The high temperature increases the sub-threshold leakage
(which is a strong function of temperature), further increasing temperature. This
circular situation is depicted in Fig. 2.5. If heat cannot be dissipated effectively,
a positive feedback between leakage power and temperature can result in thermal
runaway. Such a situation can have disastrous consequences, including permanent
physical damage of the circuit. Most processors are now equipped with thermal sen-
sors and hardware circuitry that will stop the processor if the temperature increases
beyond safe limits.

2.3 Techniques for Reducing Dynamic Power

The dynamic power of a circuit in which all the transistors switch exactly once
per clock cycle will be 1

2
C V 2F , if C is the switched capacitance, V is the supply

voltage, and F is the clock frequency. However, most of the transistors in a cir-
cuit rarely switch from most input changes. Hence, a constant called the activity

2.3 Techniques for Reducing Dynamic Power 19

40 50 90 10030 60 70 80 110

0.10 um

0.13 um
0.18 um

0.25 um

1

10

100

1,000

10,000

Temp (C)

Io
ff

 (
nA

/u
m

)

Temperature
Increases

Leakage
Increases

Technology
Scaling

Fig. 2.5 Leakage increases exponentially with temperature. This can create a positive feedback
loop, where high power-density increases temperature, which in turn further increases the power-
density, causing a thermal runaway

factor (0 � A � 1) is used to model the average switching activity in the circuit.
Using A, the dynamic power of a circuit composed of CMOS transistors can be
estimated as:

P D AC V 2F (2.10)

The importance of this equation lies in pointing us towards the fundamental
mechanisms of reducing switching power. Figure 2.6 shows that one scheme is by
reducing the activity factor A. The question here is: “how to achieve the same func-
tionality by switching only a minimal number of transistors?” Techniques to do this
span several design hierarchy levels, right from the synthesis level, where, for exam-
ple, we can encode states so that the most frequent transitions occur with minimal
bit switches, to the algorithmic level, where, for example, changing the sorting al-
gorithm from insertion sort to quick sort, will asymptotically reduce the resulting

20 2 Basic Low Power Digital Design

− Fanout
− Wirelength
− Transistor size

− Dual Vdd

− DVFS

− Encoding

− Clock gating
− Frequency scaling

Capacitance

Switching Activity

Supply Voltage

Clock Frequency

Pdyn=CV2
DD A f

Fig. 2.6 Fundamental techniques to reduce dynamic power

switching activity. The second fundamental scheme is to reduce the load capaci-
tance, CL. This can be done by using small transistors with low capacitances in
non-critical parts of the circuit. Reducing the frequency of operation F will cause a
linear reduction in dynamic power, but reducing the supply voltage VDD will cause
a quadratic reduction. In the following sections we discuss some of the established
and effective mechanisms for dynamic power reduction.

2.3.1 Gate Sizing

The power dissipated by a gate is directly proportional to its capacitive load CL,
whose main components are: i) output capacitance of the gate itself (due to para-
sitics), ii) the wire capacitance, and iii) input capacitance of the gates in its fanout.
The output and input capacitances of gates are proportional to the gate size. Reduc-
ing the gate size reduces its capacitance, but increases its delay. Therefore, in order
to preserve the timing behavior of the circuit, not all gates can be made smaller; only
the ones that do not belong to a critical path can be slowed down.

Any gate re-sizing method to reduce the power dissipated by a circuit will heavily
depend on the accuracy of the timing analysis tool in calculating the true delay of
the circuit paths, and also discovering false paths. Delay calculation is relatively
easier. A circuit is modeled as a directed acyclic graph. The vertices and edges of
the graph represent the components and the connection between the components in
the design respectively. The weight associated with a vertex (an edge) is the delay
of the corresponding component (connection). The delay of a path is represented
by the sum of the weights of all vertices and edges in the path. The arrival time at
the output of a gate is computed by the length of the longest path from the primary
inputs to this gate. For a given delay constraint on the primary outputs, the required
time is the time at which the output of the gate is required to be stable. The time slack

2.3 Techniques for Reducing Dynamic Power 21

b

c

t1

t2

t3

g4g3

g2

a
g1

Fig. 2.7 False paths, which do not affect the timing, must be discovered and excluded during
timing analysis before performing gate sizing

is defined as the difference of the required time and the arrival time of a gate. If the
time slack is greater than zero, the gate can be down-sized. Consider the example
circuit in Fig. 2.7. Assuming the delay of AND and OR gates to be 4 units, delay of
NOT gate to be 1 unit, and wire delays to be 0, the top 3 timing-critical paths in the
circuit are:

p1 Wa ! g2 ! g3 ! g4 ! d

p2 Wb ! g1 ! g4 ! d

p3 Wc ! g2 ! g3 ! g4 ! d

The delay of the path p1 is 10 units, p2 is 13 units, and p3 is 13 units. Therefore
static timing analysis will conclude that the gates in both the paths p2 and p3 cannot
be down-sized. However, by logic analysis, it is easy to figure out that both these
seemingly timing critical paths are actually false paths, and can never affect the final
stable value of output d . Logically, we have:

d D t1:t2

D .a:b/:.b C t3/

D .a:b/:.b C .a C c//

D .a:b/:.a C b C c/

D .a:b:a/ C .a:b:b/ C .a:b:c/

D .a:b/ C .a:b:c/

D .a:b/:.1 C c/

D .a:b/

Thus, the actual critical path of output d is p1, which has a delay of only 10 units.
Therefore, from the perspective of output d; gates that constitute paths p2 and p3,
e.g., g2 and g3 can be down-sized. The question now is: how to find out if a path is

22 2 Basic Low Power Digital Design

false? A false path is a path that is not sensitizable. A path p D .i; g0; g1; :::gn; o/

from i to o is sensitizable if a 0 ! 1 or 1 ! 0 transition at input i can propagate
along the entire path p to output o. Whether a change in the inputs will affect the
final output at the end of a path however, depends on the values of the other inputs.
Since for a given circuit with n primary inputs, there are 2n possible input vectors,
finding out whether a path is sensitizable by enumerating all the input values is
clearly infeasible.

To work around this, typically a path-based approach is taken [6, 10, 26]. In
order to allow a signal to go through path p from primary input i to the primary
output o, we need to set all the other signals feeding to gates along p to be non-
control values. The non-control value for an AND (OR) gate is 1 (0). For the path
p1 D .b; g1; g4; d /, we must set t2 to be 1, and a to be 1. t2 can be set to 1 by
setting t3 to 1, and b to 0. Finally, t3 can be set to 1 by setting a to 1, and c can be
anything. In this case, there is an assignment of primary inputs that will allow this.
On the other hand, if there is no consistent assignment of primary inputs resulting
in non-control values of the other inputs of the gates along a path, then the path is
non-sensitizable, or a false path. For example, sensitizing path p3 requires t1 to be
1, b to be 0, and a to be 0. But this is not possible, because t1 cannot be 1 with a set
to 0. Therefore, path p3 is a false path.

Taking path sensitizability into account, the calculation of slack time can now be
formulated. For an input vector v, let AT .gi ; v/ be the arrival time of gate gi and
RT .gi ; v/ be the required time of gate gi under a given delay constraint. The time
slack of gate gi with respect to the input vector v is given by:

slack.gi ; v/ D RT .gi ; v/ � AT .gj ; v/

For all input vectors, the slack of gate gi is defined as:

slack.gi / D min8vslack.gi ; v/

All gates with slack time greater than zero are candidates for down-sizing. How-
ever, to choose a specific one, we must consider several factors, such as the power
reduction achievable, and the slack consumption by resizing it. To achieve max-
imum power reduction, the gate with least delay increment should have higher
priority, but to save the total consumed time slack of multiple paths by down-sizing
a gate, the gate belonging to a smaller number of paths is preferable for resizing.
A combined metric could be:

gain.gi / D ıpower.gi /

ıdelay.gi / � jPgi
j

where where ıpower.gi / is the reduction in power, ıdelay.gi / is the increase
in delay by down-sizing gate gi , and jPgi

j is the number of noncritical paths
passing through gate gi . The gate with the maximum gain value is selected for
resizing [10].

2.3 Techniques for Reducing Dynamic Power 23

After a gate on a non-critical path is down-sized, a critical path may become
non-critical since the load capacitances of some gates on the critical path may de-
crease. Consequently, the gates on the original critical path may be down-sized.
Thus, simultaneous down-sizing and up-sizing multiple gates may reduce power
consumption. The satisfaction of delay constraint can be retained if up-sizing gates
can compensate the loss in delay caused by downsizing gates on the critical path.

2.3.2 Control Synthesis

Most control circuits are conceived as Finite State Machines (FSM), formally de-
fined as graphs where the nodes represent states, and directed edges, labeled with
inputs and outputs, describe the transition relation between states. The state ma-
chine is eventually implemented using a state register and combinational logic, that
takes in the current state, the current inputs and computes the outputs and the new
state, which is then written into the state register at the end of the cycle. The bi-
nary values of the inputs and outputs of the FSM are usually determined by external
requirements, while the state encoding is left to the designer. Depending on the com-
plexity of the circuit, a large fraction of the power is consumed due to the switching
of the state register; this power is very dependent on the selected state encoding.
The objective of low power approaches is therefore to choose a state encoding that
minimizes the switching power of the state register.

Given a state encoding, the power consumption can be modeled as:

P D 1

2
V 2

ddf � Csr � Esr

where f is the clock frequency of the state machine, Csr is the effective capacitance
of the state register, and Esr is the expected state register switching activity. If S is
the set of all states, we can estimate Esr as:

Esr D
X

i;j2S

pij � hij

where pij is the probability of a transition between states i and j , and hij is the
Hamming Distance between the codes of states i and j . The best way to estimate
pij is to apply a sufficiently long series of input patterns until the state occur-
rence and transition probabilities converge towards discrete values [13]. Otherwise,
equal probabilities of all input patterns can be assumed, and pij can be determined
stochastically by solving Chapman Kolmogorov equations [4].

Once we have the state transition probabilities, the state encoding problem can be
formulated as an embedding of the state transition graph into a Boolean hypercube
Fig. 2.8. A Boolean hypercube of dimension n is a graph with 2n nodes, where
every node is labeled with a unique binary value from 0 to 2n � 1. Every node v

24 2 Basic Low Power Digital Design

a b

c

Fig. 2.8 (a) State transition graph (STG) contains nodes as states, and switching probabilities
as edge weights. The problem of state encoding for low-power is of embedding the STG onto a
k-dimensional hypercube. (b) A n-dimensional hypercube has 2n nodes and edges connect nodes
that have hamming distance of 1. (c) The problem is then to find an injective mapping of nodes
from STG to nodes of the hybercube so that the sum of product of distances between nodes and
switching frequency is minimized

is connected to n edges labeled 1; :::n leading to all nodes whose encodings have a
Hamming Distance of 1 from v. Consequently, the hamming distance between any
two nodes in the hypercube is equal to the length of the shortest path between the
nodes. An embedding of a graph G into a host graph H is an injective mapping
of the nodes of G to the nodes of H , so that every edge in G corresponds to the
shortest path between the mappings of its terminal nodes in H . The dilation of an
edge of G is defined as the length of the corresponding path in H .

The dimensionality of a hypercube refers to the number of bits in the state reg-
ister. To optimize the switching power, a graph embedding with small dilation in a
small hypercube must be found. We can always find a low dilation embedding in
a hypercube of high dimensionality, but this increases the area and also the power
cost of the implementation.

Given the dimensionality of the hypercube, the best solution would be an embed-
ding with dilation 1 for all edges. While such an embedding is possible for cubical
graphs, for many graphs it is not possible. The problem of finding an embedding
with minimal dilation is NP-complete [7]. The problem of finding the minimum
dimension in which a given graph can be embedded, is also NP-complete.

2.3 Techniques for Reducing Dynamic Power 25

One of the effective solutions for this problem was suggested by Noth et al. [15],
in which they create a cubical subgraph of G, which contains the edges with the
highest weights, and find a dilation-1 embedding of this subgraph. Since all trees
are cubical, a good choice for a subgraph is the maximum spanning tree (MST),
which can be easily extracted using greedy algorithms, e.g., Prim’s algorithm [9].
Since the dimension of the embedding is strongly connected to the degree of nodes
in the tree, tighter embeddings can be found by limiting the degree of any node in
the resulting spanning tree. Once the MST is obtained, they embed the MST onto the
hypercube using a divide and conquer approach. For this, they first find the center
of the tree Vc , Ec with respect to the longest paths. If p D .v0; :::vk/ is the longest
path of the MST, then V

p
C D fvbk=2c; vdk=2eg is the set of nodes in the center of p,

where k is the length of longest path p. The center of the tree can then be defined as
the set of center nodes of each path. Thus, Vc D [V

p
c . After picking Vc , we need

Ec . It can be shown that every tree has a unique center, essentially proving that there
will be either one two nodes in the center of the tree. If there is one node, we can
pick an edge of Vc along any of the longest paths; if there are two nodes in Vc , then
the two nodes must be connected by an edge, and that edge is our Ec . Removing
the edge Ec breaks up the longest path at or near its center, leaving two subtrees of
unknown size and structure. Both subtrees are then embedded recursively. Clearly it
would be best to balance the subtree embeddings with respect to dimension in order
to minimize the dimension of the overall embedding. One approach is to select an
edge .v; w/ 2 Ec , whose removal from E leads to the most evenly sized subtrees
with respect to the number of edges of the subtrees.

The low power state encoding problem is similar to the classical state encoding
problem that targets low area and high performance, but sufficiently different that
the resulting encodings will have different properties. Relatively low state register
power consumption can be expected.

2.3.3 Clock Gating

Clock signals are omnipresent in synchronous circuits. The clock signal is used in
a majority of the circuit blocks, and since it switches every cycle, it has an activity
factor of 1. Consequently, the clock network ends up consuming a huge fraction
of the on-chip dynamic power. Clock gating has been heavily used in reducing the
power consumption of the clock network by limiting its activity factor. Fundamen-
tally, clock gating reduces the dynamic power dissipation by disconnecting the clock
from an unused circuit block.

Traditionally, the system clock is connected to the clock pin on every flip-flop in
the design. This results in three major components of power consumption:

1. power consumed by combinatorial logic whose values are changing on each
clock edge;

2. power consumed by flip-flops – this has a non-zero value even if the inputs to the
flip-flops are steady, and the internal state of the flip-flops is constant; and

26 2 Basic Low Power Digital Design

Fig. 2.9 In its simplest form, clock gating can be implemented by finding out the signal that
determines whether the latch will have a new data at the end of the cycle. If not, the clock is
disabled using the signal

3. power consumed by the clock buffer tree in the design. Clock gating has the
potential of reducing both the power consumed by flip-flops and the power con-
sumed by the clock distribution network.

Clock gating works by identifying groups of flip-flops sharing a common enable
signal (which indicates that a new value should be clocked into the flip-flops). This
enable signal is ANDed with the clock to generate the gated clock, which is fed to
the clock ports of all of the flip-flops that had the common enable signal. In Fig. 2.9,
the sel signal encodes whether the latch retains its earlier value, or takes a new
input. This sel signal is ANDed with the clk signal to generate the gated clock for
the latch. This transformation preserves the functional correctness of the circuit, and
therefore does not increase the burden of verification. This simple transformation
can reduce the dynamic power of a synchronous circuit by 5–10%.

There are several considerations in implementing clock gating. First, the enable
signal should remain stable when clock is high and can only switch when clock is in
low phase. Second, in order to guarantee correct functioning of the logic implemen-
tation after the gated-clock, it should be turned on in time and glitches on the gated
clock should be avoided. Third, the AND gate may result in additional clock skew.
For high-performance design with short-clock cycle time, the clock skew could be
significant and needs to be taken into careful consideration.

An important consideration in the implementation of clock gating for ASIC
designers is the granularity of clock gating. Clock gating in its simplest form is
shown in Fig. 2.9. At this level, it is relatively easy to identify the enable logic.
In a pipelined design, the effect of clock gating can be multiplied. If the inputs to
one pipeline stage remain the same, then all the later pipeline stages can also be
frozen. Figure 2.10 shows the same clock gating logic being used for gating multi-
ple pipeline stages. This is a multi-cycle optimization with multiple implementation
tradeoffs, and can can save significant power, typically reducing switching activity
by 15–25%.

Apart from pipeline latches, clock gating is also used for reducing power con-
sumption in dynamic logic. Dynamic CMOS logic is sometimes preferred over

2.3 Techniques for Reducing Dynamic Power 27

Fig. 2.10 In pipelined designs, the effectiveness of clock gating can be multiplied. If the inputs to
a pipeline stage remain the same, then the clock to the later stages can also be frozen

static CMOS for building high speed circuitry such as execution units and ad-
dress decoders. Unlike static logic, dynamic logic uses a clock to implement the
combinational circuits. Dynamic logic works in two phases, precharge and evalu-
ate. During precharge (when the clock signal is low) the load capacitance is charged.
During evaluate phase (clock is high) depending on the inputs to the pull-down
logic, the capacitance is discharged.

Figure 2.11 shows the gating technique applied to a dynamic logic block.
In Fig. 2.11(a), when the clock signal is applied, the dynamic logic undergoes
precharge and evaluate phases (charging the capacitances CG and CL) to evalu-
ate the input In, so even if the input does not change, the power is dissipated to
re-evaluate the same. To avoid such redundant computation, the clock port is gated
as shown in Fig. 2.11(b). In this case, when the input does not change or when
the output is not used, the gating signal is enabled, which prevents the logic from
evaluating the inputs and thereby reduces dynamic power dissipation. An additional
AND gate is introduced to facilitate clock gating. This additional logic presents its
own capacitance and hence dissipates power, but compared to the power saved by
preventing the charging of capacitances CG and CL (usually large for complex ex-
ecution units), the AND gate power is negligible.

Clock gating at coarse granularity or system level is much more difficult to
automate, and designers have to implement it in the functionality themselves.
For example, sleep modes in a cell phone may strategically disable the display,

28 2 Basic Low Power Digital Design

Clk

Pull−Down
LogicIn

CL

CG
Out

Vdd

E
va

lu
at

e
Pr

ec
ha

rg
e

a

Pull−Down
LogicIn CL

CG
Out

Vdd

Gating
Signal

Clk
b

Fig. 2.11 (a) Dynamic CMOS Logic (b) Clock-gated Dynamic CMOS Logic

keyboard, or radio depending on the phone’s current operational mode. System-
level clock-gating shuts off entire RTL blocks. Because large sections of logic are
not switching for many cycles it has the most potential to save power. However,
it may result in inductive power issues due to higher di=dt, since large groups of
circuits are turned on/off simultaneously. In contrast, local clock gating is more ef-
fective in reducing the worst-case switching power, and also suffers less from di=dt

issues. However, local clock gating may lead to frequent toggling of the clock-gated
circuit between enable and disable states, as well as higher area, power, and routing
overhead, especially when the clock-gating control circuitry is comparable with the
clock-gated logic itself.

2.3.4 Voltage and Frequency Scaling

Dynamic power is proportional to the square of the operating voltage. Therefore,
reducing the voltage significantly improves the power consumption. Furthermore,
since frequency is directly proportional to supply voltage, the frequency of the cir-
cuit can also be lowered, and thereby a cubic power reduction is possible. However,
the delay of a circuit also depends on the supply voltage as follows.

2.3 Techniques for Reducing Dynamic Power 29

� D k:CL:
Vdd

.Vdd � Vt /2
(2.11)

where � is the circuit delay, k is the gain factor, CL is the load capacitance, Vdd is
the supply voltage, and Vt is the threshold voltage. Thus, by reducing the voltage,
although we can achieve cubic power reduction, the execution time increases. The
main challenge in achieving power reduction through voltage and frequency scaling
is therefore to obtain power reduction while meeting all the timing constraints.

Simple analysis shows that if there is slack in execution time, executing as slow as
possible, while just meeting the timing constraints is more dynamic-power-efficient
than executing as fast as possible and then idling for the remaining time. This is the
main idea that is used in exploiting the power reduction that arises due to the cubic
relationship with power, and inverse relationship with delay, of the supply voltage.

One approach to recover the lost performance is by scaling down the threshold
voltage to the same extent as the supply voltage. This allows the circuit to deliver
the same performance at a lower Vdd. However, smaller threshold voltages lead to
smaller noise margins and increased leakage current. Furthermore, this cubic re-
lationship holds only for a limited range of Vt scaling. The quadratic relationship
between energy and Vdd deviates as Vdd is scaled down into the sub-threshold voltage
level. In the sub-threshold region, while the dynamic power still reduces quadrati-
cally with voltage, the sub-threshold leakage current increases exponentially with
the supply voltage. Hence dynamic and leakage power become comparable in the
sub-threshold voltage region, and therefore, “just in time completion” is not energy
inefficient. In practice, extending the voltage range below half Vdd is effective, but
extending this range to sub-threshold operations may not be beneficial.

2.3.4.1 Design-Time Voltage and Frequency Setting

One of the most common ways to reduce power consumption by voltage scaling is
that during design time, circuits are designed to exceed the performance require-
ments. Then, the supply voltage is reduced so as to just meet the performance
constraints of the system. This is also called design-time voltage and frequency scal-
ing. Design-time schemes scale and set the voltage and frequency, which remains
constant (and therefore inefficient) for all applications at all times.

2.3.4.2 Static Voltage and Frequency Scaling

Systems can be designed for several (typically a few) voltage and frequency levels,
and these levels can be switched at run time. In static voltage and frequency scal-
ing, the change to a different voltage and frequency is pre-determined; this is quite
popular in embedded systems. However, there are significant design challenges in
supporting multiple voltages in CMOS design.

30 2 Basic Low Power Digital Design

Timing analysis for multiple voltage design is complicated as the analysis has
to be carried out for different voltages. This methodology requires libraries char-
acterized for the different voltages used. Constraints are specified for each supply
voltage level or operating point. There can be different operating modes for different
voltages. Constraints need not be same for all modes and voltages. The performance
target for each mode can vary. Timing analysis should be carried out for all these
situations simultaneously. Different constraints at different modes and voltages have
to be satisfied.

While local on-chip voltage regulation is good way to provide multiple voltages,
unfortunately most of the digital CMOS technologies are not suitable for the im-
plementation of either switched mode of operation or linear voltage regulation. A
separate power rail structure is required for each power domain. These additional
power rails introduce different levels of IR drop, imposing limits on the achievable
power efficiency.

2.3.4.3 Dynamic Voltage and Frequency Scaling

The application and system characteristics can be dynamically analyzed to deter-
mine the voltage and frequency settings during execution. For example, adaptive
scaling techniques make the decision on the next setting based on the recent history
of execution.

Voltage and frequency scaling can also be applied to parts of a circuit. Thus,
higher voltage can be applied to the timing critical path and modules in other paths
may run on lower voltage. This maintains the overall system performance, while
significantly reducing power consumption.

Implementing multiple on-chip voltage islands is also a challenge. Signals cross-
ing from one voltage domain to another voltage domain have to be interfaced
through level shifter buffers which appropriately shift the signal levels. Design of
suitable level shifters is a challenging job. The speed at which different power do-
mains switch on or off is also important – a low voltage power domain may activate
early compared to the high voltage domain.

Every power domain requires independent local power supply and grid structure
and some designs may even have a separate power pad. A separate power pad is
possible in flip-chip designs where the power pad can be taken out near from the
power domain. For other packaging technologies, the power pads have to be taken
out from the periphery, which may impose a limit on the number of power domains.

2.4 Techniques for Reducing Short Circuit Power

Short circuit power is directly proportional to rise time and fall time on gates.
Therefore, reducing the input transition times will decrease the short circuit cur-
rent component. However, propagation delay requirements have to be considered

2.5 Techniques for Reducing Leakage Power 31

while doing so. Short circuit currents are significant when the rise/fall time at the
input of a gate is much larger than the output rise/fall time. This is because the short
circuit path will be active for a longer period of time. To minimize the total average
short circuit current, it is desirable to have equal input and output edge times. In this
case, the power consumed by the short circuit current is typically less than 10% of
the total dynamic power. An important point to note is that if the supply is lowered
to below the sum of the thresholds of the transistors, Vdd < V Tn CjV Tpj, the short-
circuit currents can be eliminated because both devices will never be on at the same
time for any input voltage value.

2.5 Techniques for Reducing Leakage Power

In order to contain the increase in the dynamic power, the supply Vdd has undergone
a continous reduction in successive technology generations. Along with Vdd, Vt must
also be scaled down, which results in an exponential increase in leakage power.
Consequently, leakage power has become a significant contributor in the total chip
power dissipation. Leakage power reduction techniques are especially important for
handheld devices such as cell phones, which are “on”, but not active most of the
time. Consequently, even though such devices dissipate minimal dynamic energy,
leakage power becomes a significant contributor in their power equation.

Some of the fundamental techniques to reduce leakage power are discussed in
the following sections.

2.5.1 Multiple Supply Voltage

The multiple supply system provides a high-voltage supply for high-performance
circuits and a low-voltage supply for low-performance circuits. In a dual Vdd circuit,
the reduced voltage (low-Vdd) is applied to the circuit on non-critical paths, while
the original voltage (high-Vdd) is applied to the circuit on critical paths. Since the
critical path of the circuit is unchanged, this transformation preserves the circuit
performance. If a gate supplied with low-Vdd drives a gate supplied with high-Vdd,
the pMOS may never turn off. Therefore a level converter is required whenever a
module at the lower supply drives a gate at the higher supply (step-up). Level con-
verters are not needed for a step-down change in voltage. The overhead of level
converters can be mitigated by doing conversions at register boundaries and embed-
ding the level conversion inside the latch. Figure 2.12(a) shows a pipeline stage in
which some of the paths have low-Vdd gates. These are shown in a darker shade in
the figure. Notice that some high-Vdd gates drive low-Vdd, but not vice versa. The
transition from low to high Vdd is condensed into the level converter latchesshown
in the figure. A simple design of level converter latches is shown in Fig. 2.12(b).

32 2 Basic Low Power Digital Design

level
converter
latch

high Vdd gate
low Vdd gate

a

high-Vdd

Vlow

Vhigh
low-Vdd

b

Fig. 2.12 Using multiple Vdds essentially reduces the power consumption by exploiting the slack
in the circuit. However, it requires a level converter. (a) Multiple supply-voltage pipeline stage.
(b) Level converter latch

Essentially, the multiple Vdd approach reduces power by utilizing excessive slack
in a circuit. Clearly, there is an optimum voltage difference between the two Vdds. If
the difference is small, the effect of power reduction is small, while if the difference
is large, there are few logic circuits that can use low-Vdd. Compared to circuits that
operate at only high Vdd, the power is reduced. The latch circuit includes a level-
transition (DC-DC converter) if there is a path where a signal propagates from low
Vdd logic to high Vdd logic.

To apply this technique, the circuit is typically designed using high-Vdd gates at
first. If the propagation delay of a circuit path is less than the required clock period,
the gates in the path are given low-Vdd. In an experimental setting [8], the dual Vdd

system was applied on a media processor chip providing MPEG2 decoding and real-
time MPEG1 encoding. By setting high-Vdd at 3.3 V and low-Vdd at 1.9 V, system
power reduction of 47% in one of the modules and 69% in the clock distribution
was obtained.

2.5 Techniques for Reducing Leakage Power 33

2.5.2 Multiple Threshold Voltage

Multiple Vt MOS devices are used to reduce power while maintaining speed. High
speed circuit paths are designed using low-V t devices, while the high-Vt devices are
applied to gates in other paths in order to reduce subthreshold leakage current. Un-
like the multiple-Vdd transformation, no level converter is required here as shown
in Fig. 2.13. In addition, multi-Vt optimization does not change the placement of the
cells. The footprint and area of low-Vt and high-Vt cells are similar. This enables
timing-critical paths to be swapped by low-Vt cells easily. However, some additional
fabrication steps are needed to support multiple Vt cells, which eventually lengthens
the design time, increases fabrication complexity, and may reduce yield [1]. Further-
more, improper optimization of the design may utilize more low-Vt cells and hence
could end up with increased power!

Several design approaches have been proposed for dual-Vt circuit design. One
approach builds the entire device using low-Vt transistors at first. If the delay of
a circuit path is less than the required clock period, the transistors in the path are
replaced by high-Vt transistors. The second approach allows all the gates to be built
with high-Vt transistors initially. If a circuit path cannot operate at a required clock
speed, gates in the path are replaced by low-Vt versions. Finally, a third set of ap-
proaches target the replacement of groups of cells by high-Vt or low-Vt versions at
one go.

In one interesting incremental scheme [18], the design is initially optimized using
the higher threshold voltage library only. Then, the multi-Vt optimization computes
the power-performance tradeoff curve up to the maximum allowable leakage power
limit for the next lower threshold voltage library. Subsequently, the optimization
starts from the most critical slack end of this power-performance curve and switches
the most critical gate to next equivalent low-Vt version. This may increase the leak-
age in the design beyond the maximum permissible leakage power. To compensate
for this, the algorithm picks the least critical gate from the other end of the power-
performance curve and substitutes it with its high-Vt version. If this does not bring
the leakage power below the allowed limit, it traverses further from the curve (from

Fig. 2.13 Multiple Vt

technology is very effective in
power reduction without the
overhead of level converters.
The white gates are
implemented using low-Vt

transistors

low Vt gate
high Vt gate

34 2 Basic Low Power Digital Design

least critical towards most critical) substituting gates with high-Vt gates, until the
leakage limit is satisfied. Then the algorithm continues with the second most critical
cell and switches it to the low-Vt version. The iterations continue until we can no
longer replace any gate with the low-Vt version without violating the leakage power
limit. The multi-Vt approach is very effective. In a 16-bit ripple-carry adder, the
active-leakage current was reduced to one-third that of the all low-Vt adder [1].

2.5.3 Adaptive Body Biasing

One efficient method for reducing power consumption is to use low supply voltage
and low threshold voltage without losing performance. But increase in the lower
threshold voltage devices leads to increased sub threshold leakage and hence more
standby power consumption. One solution to this problem is adaptive body biasing
(ABB). The substrate bias to the n-type well of a pMOS transistor is termed Vbp

and the bias to the p-type well of an nMOS transistor is termed Vbn. The voltage
between Vdd and Vbp, or between GND and Vbn is termed Vbb . In the active mode,
the transistors are made to operate at low-Vdd and low-Vt for high performance. The
fluctuations in Vt are reduced by an adaptive system that constantly monitors the
leakage current, and modulates Vbb to force the leakage current to be constant. In
the idle state, leakage current is blocked by raising the effective threshold voltage
Vt by applying substrate bias Vbb .

The ABB technique is very effective in reducing power consumption in the idle
state, with the flexibility of even increasing the performance in the active state.
While the area and power overhead of the sensing and control circuitry are shown
to be negligible, there are some manufacturing-related drawbacks of these devices
[20]. ABB requires either twin well or triple well technology to achieve different
substrate bias voltage levels in different parts of the IC. Experiments applying ABB
to a discrete cosine transform processor reported a small 5% area overhead. The
substrate-bias current of Vbb control is less than 0.1% of the total current, a small
power penalty.

2.5.4 Transistor Stacking

The subthreshold leakage current flowing through a stack of transistors connected
in series, is reduced if atleast one of them is switched off. For example, consider
the NAND gate schematic in Fig. 2.14. When both N1 and N2 are turned off, the
voltage Vm at the intermediate node between N1 and N2 is positive due to the small
drain current. This has the following three effects on subthreshold leakage current
of the circuit:

� Due to the positive potential Vm, the gate to source volatage of transistor N1
(0 � Vm = �Vm) becomes negative, resulting in reduced subthreshold current
of N1.

2.5 Techniques for Reducing Leakage Power 35

Vdd

I1

P1 P2

N1

N2

Gnd

Vm

Ileak01

~011

Inputs
(I0 I1)

Leakage

2.Ileak00

Ileak10

I0

Fig. 2.14 Several gates in a typical CMOS circuit are automatically stacked, and in low-leakage
state. The problem of finding low-leakage input vector is to find the inputs that will put most of the
transistors in a low-leakage state

� The positive volatage Vm acts as a body bias to increase the threshold voltage of
N1, again resulting in reducing the subthreshold leakage.

� The drain to source potential of N1 increases due to positive potential Vm, result-
ing in further increase in the threshold voltage, thereby decreasing the leakage
current.

Due to this stacking effect, leakage power of a CMOS gate depends heavily on the
input vector. For example, consider the NAND gate schematic in Fig. 2.14. When
the inputs I0 I1 are “00”, both P1 and P2 are on, and N1 and N2 are off. Therefore,
I 00

leak D IN1 C IN 2 � 2 � Ileak. When the inputs are “01”, N1 is off, but N2 is
on. N1 can be treated as shorted, and its leakage current is ignored. Also, since
P1 is on and P2 is off, I 01

leak D IP 2 D Ileak. Similarly, when the inputs are “10”,
I 10

leak D IP1 D Ileak. Finally, when inputs are “11”, N1 and N2 are on, but P1 and
P2 are off. Due to the stacking effect, I 11

leak � Ileak.
Typically, several gates in a large circuit block may already have low leakage due

to the stacking effect. Input vector selection seeks to further reduce the leakage of
an idle circuit by applying an input vector that gives as small a leakage current as
possible.

The problem of finding the low leakage input vector is motivated by demonstrat-
ing that the leakage power of circuits can vary by an order of magnitude over a range
of randomly chosen input vectors. The idea is that by using minimal additional cir-
cuitry, the logic can be modified so that whenever a circuit is in standby mode, its
internal state is set to low leakage. When the circuit is reactivated, it is returned to
its last valid state. If the idle periods are long enough, this leads to significant power
reductions.

36 2 Basic Low Power Digital Design

2.5.5 Power Gating

Power Gating is an extremely effective scheme for reducing the leakage power of
idle circuit blocks. The power (Vdd) to circuit blocks that are not in use is temporar-
ily turned off to reduce the leakage power. When the circuit block is required for
operation, power is supplied once again. During the temporary shutdown time, the
circuit block is not operational – it is in low power or inactive mode. Thus, the goal
of power gating is to minimize leakage power by temporarily cutting-off power to
selective blocks that are not active.

As shown in Fig. 2.15, power gating is implemented by a pMOS transistor as
a header switch to shut off power supply to parts of a design in standby or sleep
mode. nMOS footer switches can also be used as sleep transistors. Inserting the
sleep transistors splits the chip’s power network into two parts: a permanent power

Fig. 2.15 (a) Active mode: in the “on” state, the circuit sees a virtual Vcc and virtual Vss , which
are very close to the actual Vcc , and Vss respectively. (b) Idle mode: in the “off” state, both the
virtual Vcc and virtual Vss go to a floating state.

2.6 Summary 37

network connected to the power supply and a virtual power network that drives the
cells and can be turned off.

The biggest challenge in power gating is the size of the power gate transistor. The
power gate size must be selected to handle the required amount of switching current
at any given time. The gate must be big enough such that there is no measurable
voltage (IR) drop due to it. Generally, we use 3X the switching capacitance for the
gate size as a rule of thumb.

Since the power gating transistors are rather large, the slew rate is also large, and
it takes more time to switch the circuit on and off. This has a direct implication on
the effectiveness of power gating. Since it takes a long time for the power-gated cir-
cuit to transition in and out of the low power mode, it is not profitable to power gate
large circuits for short idle durations. This implies that either we implement power
gating at fine granularity, which increases the overhead of gating, or find large idle
durations for coarse-grain power gating, which are fewer and more difficult to dis-
cover. In addition, coarse-grain power gating results in a large switched capacitance,
and the resulting rush current can compromise the power network integrity. The cir-
cuit needs to be switched in stages in order to prevent this. Finally, since power
gates are made of active transistors, the leakage of the power gating transistor is an
important consideration in maximizing power savings.

For fine-grain power-gating, adding a sleep transistor to every cell that is to be
turned off imposes a large area penalty. Fine-grain power gating encapsulates the
switching transistor as a part of the standard cell logic. Since switching transistors
are integrated into the standard cell design, they can be easily be handled by EDA
tools for implementation. Fine-grain power gating is an elegant methodology result-
ing in up to 10X leakage reduction.

In contrast, the coarse-grained approach implements the grid style sleep transis-
tors which drive cells locally through shared virtual power networks. This approach
is less sensitive to process variations, introduces less IR-drop variation, and imposes
a smaller area overhead than the fine-grain implementations. In coarse-grain power
gating, the power-gating transistor is a part of the power distribution network rather
than the standard cell.

2.6 Summary

Power considerations led to the replacement of bipolar logic by CMOS in the 1980s
in spite of the former resulting in smaller and faster devices. Continuous advace-
ments in CMOS technology enabled an exponential the scaling down of transistor
area and scaling up of switching speed over the decades. Unfortunately, the power
density increased prominently as a consequence. Leakage currents are expected to
result in further increases in power density for technology nodes below 45 nm,
which is becoming unsustainable with currently available solutions. This sets up
the stage for investigation into aggressive power reduction techniques at every level
of design abstraction.

38 2 Basic Low Power Digital Design

Through this chapter we have introduced various fundamental device and circuit
level techniques as well as power management techniques for low power CMOS
technology. We discussed various sources of power consumption in a CMOS tran-
sistor. We introduced the major components of power: dynamic, short-circuit, and
leakage, followed by the basics of device and circuit level techniques to reduce these
power components. Techniques for power optimizations at higher levels of design
abstraction (microarchitectural, compiler, operating systems, etc.), discussed in later
chapters, build upon the foundations laid here.

References

1. Agarwal, A., Kang, K., Bhunia, S.K., Gallagher, J.D., Roy, K.: Effectiveness of low power
dual-Vt designs in nano-scale technologies under process parameter variations. In: ISLPED
’05: Proceedings of the 2005 international symposium on Low power electronics and design,
pp. 14–19. ACM, New York, NY, USA (2005). DOI http://doi.acm.org/10.1145/1077603.
1077609

2. Brews, J.R.: The Submicron MOSFET, Chapter 3 in S.M. Sze, editor, High Speed Semicon-
ductor Devices. John Wiley & Sons, New York (1990)

3. Choi, Y.K., Ha, D., King, T.J., Bokor, J.: Investigation of gate-induced drain leakage (gidl)
current in thin body devices: single-gate ultra-thin body, symmetrical double-gate, and asym-
metrical double-gate mosfets. Japan Journal of Applied Physics part I pp. 2073–2076 (2003)

4. Cox, D., Miller, H.: The Theory of Stochastic Processes. Chapman Hall (1965)
5. Davidson, E.: Packaging technology for the IBM 3090 series systems. In: IEEE Computer

Society Spring Workshop (1985)
6. Du, D.H., Yen, S.H., Ghanta, S.: On the general false path problem in timing analysis. In: DAC

’89: Proceedings of the 26th ACM/IEEE Design Automation Conference, pp. 555–560. ACM,
New York, NY, USA (1989). DOI http://doi.acm.org/10.1145/74382.74475

7. Garey, M.R., Johnson, D.S.: Computers and Intractibility – A Guide to the Theory of
NP-Completeness. W.H. Freeman (1979)

8. Ichiba, F., Suzuki, K., Mita, S., Kuroda, T., Furuyama, T.: Variable supply-voltage scheme
with 95 In: ISLPED ’99: Proceedings of the 1999 international symposium on Low power
electronics and design, pp. 54–59. ACM, New York, NY, USA (1999). DOI http://doi.acm.org/
10.1145/313817.313849

9. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Verlag (1990)
10. Lin, H.R., Hwang, T.T.: Power reduction by gate sizing with path-oriented slack calculation.

In: Design Automation Conference, 1995. Proceedings of the ASP-DAC ’95/CHDL ’95/VLSI
’95., IFIP International Conference on Hardware Description Languages; IFIP International
Conference on Very Large Scale Integration., Asian and South Pacific, pp. 7–12 (1995). DOI
10.1109/ASPDAC.1995.486194

11. Lyman, J.: Supercomputers demand innovation in packaging and cooling. Electronics Maga-
nize pp. 136–143 (1982)

12. Moore, G.E.: Cramming more components onto integrated circuits. Electronics Maganize
38(8) (1965)

13. Najm, F.N., Goel, S., Hajj, I.N.: Power estimation in sequential circuits. In: DAC ’95: Pro-
ceedings of the 32nd annual ACM/IEEE Design Automation Conference, pp. 635–640. ACM,
New York, NY, USA (1995). DOI http://doi.acm.org/10.1145/217474.217602

14. Neamen, D.A.: Semiconductor Physics and Devices: Basic Principles. Tata McGraw Hill
Publishing Company (1992)

15. Nöth, W., Kolla, R.: Spanning tree based state encoding for low power dissipation. In: DATE
’99: Proceedings of the conference on Design, automation and test in Europe, p. 37. ACM,
New York, NY, USA (1999). DOI http://doi.acm.org/10.1145/307418.307482

References 39

16. Oktay, S.., Kammerer, H.C.: A conduction-cooled module for high performance LSI devices.
IBM Journal of Research and Development 26(1), 55–56 (1982)

17. Pierret, R.F.: Semiconductor Device Fundamentals. Addison-Wesley, Reading, MA (1996)
18. Puri, R.: Minimizing power under performance constraint. In: International Conference on

Integrated Circuit Design and Technology, 2004. ICICDT ’04., pp. 159–163 (2004)
19. Ramadhyani, S.., Incropera, F.P.: Forced convection cooling of discrete heat sources with or

without surface enhancement. In: International Symposium on Cooling Technology for Elec-
tronic Equipment, pp. 249–264 (1987)

20. Tsividis, Y.P.: Operation and Modeling of the MOS Transistor. McGraw-Hill, New York (1987)
21. Tuckerman, D., Pease, F.: High-performance heat sinking for VLSI. IEEE Electron Device

Letters EDL-2(5), 126–129 (1981)
22. Veendrick, H.: Short-circuit dissipation of static CMOS circuitry and its impact on the design

of buffer circuits. Solid-State Circuits, IEEE Journal of 19(4), 468–473 (1984)
23. Watari, T., Murano, H.: Packaging technology for the NEX SX supercomputer. In: Electronic

Components Conference, pp. 192–198 (1985)
24. Wu, P., Little, W.A.: Measurement of the heat transfer characteristics of gas flow in fine channel

heat exchangers used for microminiature refrigerators (1984)
25. Yamamoto, H., Udagawa, Y., Okada, T.: Cooling and packaging technology for the FACOM

M-780. Fujistsu Journal 37(2), 124–134 (1986)
26. Yen, H.C., Ghanta, S., Du, H.C.: A path selection algorithm for timing analysis. In: DAC

’88: Proceedings of the 25th ACM/IEEE Design Automation Conference, pp. 720–723. IEEE
Computer Society Press, Los Alamitos, CA, USA (1988)

Chapter 3
Power-efficient Processor Architecture

3.1 Introduction

Since the creation of the first processor/CPU in 1971, silicon technology consis-
tently allowed to pack twice the number of transistors on the same die every 18 to
24 months [33]. Scaling of technology allowed the implementation of faster and
larger circuits on silicon, permitting a sophisticated and powerful set of features to
be integrated into CPU. Figure 3.1 shows the evolution of processors from 4-bit
scalar datapath to 64-bit superscalar datapath and their respective transistor counts.
Processors evolved not only in terms of datapath width, but also in terms of a wide
variety of architectural features such as pipelining, floating point support, on-chip
memories, superscalar processing, out-of-order processing, speculative execution,
multi-threading, muticore CPUs, etc.

Microprocessors have evolved through the generations with performance (pro-
cessing capacity) improvement as their primary objective. Technology scaling,
along with architectural techniques to enhance parallel processing capabilities of
a processor, have boosted the performance from a few instructions per second to a
few billion instructions per second, as shown in Fig. 3.2. Primitive processors were
scalar, where each instruction could process only one data element at a time. Since
the introduction of the first processor in early 1970s to the mid of 1980s, the addi-
tional transistors provided by technology scaling were essentially used to improve
the bit-level parallelism by increasing the word (datapath) width from 4-bit to 32-bit.

From the early 1990s, much of the increase in processing capacity was derived
by exploiting Instruction-Level Parallelism (ILP) [23]. Pipelined architectures and
on-chip cache memories have considerably improved the processor throughput.
Figure 3.3 shows a standard five-stage pipelined architecture of a processor datap-
ath. The processing of an instruction is split into five independent stages (Fetch, De-
code, Execute, Memory, and Writeback) separated by pipeline registers. A pipelined
datapath can be clocked at a much higher frequency by dividing the work among
multiple clock cycles. Though the processing of an instruction requires at least five
clock cycles, the execution of up to five consecutive instructions can be overlapped
as shown in Fig. 3.4(a), allowing the CPU to achieve a maximum throughput of one
instruction per cycle.

P.R. Panda et al., Power-efficient System Design, DOI 10.1007/978-1-4419-6388-8 3,
c� Springer Science+Business Media, LLC 2010

41

42 3 Power-efficient Processor Architecture

Fig. 3.1 Moore’s law and the evolution of processors [1]: With transistor density doubling every
24-months, the additional transistors were used for building more sophisticated processors

ILP was further exploited in the superscalar architectures by using multiple func-
tion units to allow parallel execution of instructions in each cycle. This is achieved
by simultaneously dispatching a set of instructions to the execution units. To support
multiple issue, a dispatch logic is added as a pipeline stage after decoding, which
analyzes the dependencies among the instructions and issues independent instruc-
tions to the available function units. The working of an example two issue pipeline is
shown in Fig. 3.4(b). The pipeline is designed to fetch two instructions per cycle and
can provide a maximum throughput of two instructions per clock cycle. However,
due to data and control dependencies and resource conflicts, the actual through-
put achieved by the processor is lower. Also, pipelined implementation incurs the
overhead of additional registers in the critical path, which increases instruction exe-
cution latency. For an in-order processor, pipeline stalls represent a major bottleneck
in achieving the desired throughput. Stalling occurs due to three types of hazards: (i)
data, (ii) structural, and (iii) control. Pipelined execution can potentially lead to race
conditions when the instructions have data dependencies such as Read-After-Write
(RAW), Write-After-Write (WAW) or Write-After-Read (WAR). Such dependen-
cies are identified and the execution of these (and subsequent) instructions is stalled
until they are resolved. Structural hazards occur when multiple instructions require
the same hardware unit in a given cycle. A control hazard occurs due to branch

3.1 Introduction 43

Fig. 3.2 Processing capacity of mainstream Intel processors [1]: technology scaling (leading to
faster transistors) along with advanced architectural techniques for extracting bit-level parallelism
(4-bit to 64-bit datapath), instruction-level parallelism (pipelining, superscalar, out-of-order pro-
cessing support), and thread-level parallelism (hyper-threading, multi-core) drives the performance
scaling in processors

R
E

G

R
E

G

R
E

G

R
E

G EXECUTEDECODE MEMORY WRITE−
BACK

FETCH

I−CACHE D−CACHE

Fig. 3.3 Five-stage pipelined processor datapath: pipeline stages are separated by registers and
hence, can act independently on different elements. Partitioning also allows us to clock the circuit
at higher frequencies. On-chip memories provide low latency access to instructions and data

instructions, since the instructions following the branch cannot be fetched until the
branch is resolved, resulting in a pipeline stall.

Pipeline hazards are alleviated in modern processors through dynamic out-of-
order scheduling and by using multiple execution units. In dynamic scheduling,
though instructions are fetched and graduated in program order they are allowed to
be executed out-of-order. Sophisticated techniques such as register renaming and

44 3 Power-efficient Processor Architecture

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5 6 7 8 9

Inst−1

Inst−2

Inst−3

Inst−4

Inst−5

cycle

a

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5 6 7

Inst−1

Inst−2

Inst−3

Inst−4

Inst−5

cycle

b

Fig. 3.4 Working of a five-stage (F-Fetch, D-Decode, E-Execute, M-Memory and W-Writeback)
pipelined processor. An N -issue processor can attain a maximum throughput of N instructions per
cycle. However, in reality, it is limited by the amount of parallelism available in the instruction
stream. (a) Single-issue pipeline. (b) Dual-issue/superscalar pipeline

a (expr1 > expr2)

if(a=1) goto branch1

do expr3

goto branch2

do expr4

branch2:

branch1:

do expr5

a a (expr1 > expr2)

do expr5

if(a=1) do expr4

if(a=0) do expr3

b

Fig. 3.5 Use of predication: Predicated instructions can be used to replace branches in the instruc-
tion flow. (a) Without predicate instruction. (b) With predicate instruction

speculative execution are used to eliminate data (WAR,WAW) dependencies and
most of the control dependencies. Control dependencies are resolved either using
branch predictors or through predicated instructions. Advanced branch prediction
units predict the branch direction with less than 4% error. Predicated instructions
are used to remove branches as shown in the example in Fig. 3.5. An additional
bit, called predicate bit, is used for storing the result of conditions. Predicated in-
structions are fetched, decoded, and may also be executed like any other instruction.
However, the results of the instructions whose predication bit is evaluated to be
false, are discarded. These techniques help in efficient utilization of the pipeline

3.1 Introduction 45

resources and ultimately result in the processing of more instructions per clock cy-
cle. However, the above techniques substantially increase the hardware complexity
and hence the power dissipation in a processor.

3.1.1 Power Budget: A Major Design Constraint

The frequency of various mainstream processors from Intel Corporation is shown in
Fig. 3.6(a). Technology scaling and increasing pipeline depths helped improve the
processor frequency from 108 KHz in 1971 to almost 4 GHz in 2005. Increasing
frequency also saw a rise in power dissipation, shown in Fig. 3.6(b). With cheap
cooling solutions available to disperse heat generated by a processor, power dissipa-
tion was never considered a prominent design constraint in a yesteryear processors.
However, beyond the 0:13�m process node [9], with further scaling of CMOS tech-
nology and increasing processor complexity (transistor count), the power densities
have risen exponentially to an extent that they have hit the Power Wall. Since the
existing cooling solutions are incapable of handling such power densities in a cost-
effective manner, power dissipation has become a major constraint in designing
modern processors.

Modern processors dissipate more than 100 watts of power, and a stage has been
reached where power dissipation is limiting further frequency scaling. In order to
maintain the performance scaling of the processor, the additional transistors pro-
vided by technology scaling are now used to exploit thread-level parallelism leading
to an era of chip-multiprocessor (CMP) architectures. Compared to frequency scal-
ing, exploiting thread-level parallelism using CMP architectures has provided better
performance per watt. This trend is observed from Figs. 3.2 and 3.6, where the fre-
quency of processors has been reduced after 2005 while the number of cores has
increased [40]. To further reduce the overall power consumption, each core in a
CMP is designed to be power-efficient.

Increasing constraints on power budgets have created the need for low power
architectures without compromising much on the performance front. This section
briefly describes the functionality of various hardware blocks in a typical out-of-
order superscalar datapath to give an idea of their complexity and hence power
consumption.

3.1.1.1 Why does Parallel Processing Reduce Power?

Multiple processing elements, in conjunction with parallel algorithms, can be used
for reducing the computation time of a task. However, our objective here is to reduce
power consumption. For a given computation time, we can easily establish that com-
pared to sequential processing, parallel processing results in a more power-efficient
solution. Power consumed by a capacitive system is given by:

Power / Voltage2 � clock frequency

46 3 Power-efficient Processor Architecture

a

b

Fig. 3.6 Frequency and power dissipation of mainstream Intel processors [1]: for decades, higher
performance in processors always meant higher frequency. With exponential rise in power dissipa-
tion and no efficient cooling solutions around, clock frequencies could not scale further. This led
to the drop in clock frequencies and evolution of multi-core architectures to keep up the perfor-
mance scaling. (a) Frequency scaling of processors between 1992–2009. (b) Power dissipation of
processors between 1992–2009

3.1 Introduction 47

In a parallel system, if N processors are employed to perform the same task in
the same amount of time, then the speed at which each processor needs to run could
be decreased by a factor N . Hence, the power consumed by this system is given by,

Power / N � Voltage2
new � clock frequencynew

The relationship between gate delay and the applied voltage for CMOS logic can
be expressed as:

Gate Delay / Voltage

.Voltage � Vth/2

To a first order of approximation, circuit speed can be considered proportional to
the voltage applied. Hence, if the speed of the circuit needs to be divided by a factor
N , then its voltage has to be divided by a factor N . Thus, when a parallel system
with N processors is used for performing the same task in the same amount of time,
an individual processor’s voltage and frequency are scaled down by N times. Since
power varies as V 2f , the power consumed by one processor is 1

N 2 � 1
N

D 1
N 3 times

the power of the original processor. As there are N processors in an N -way parallel
system, the total system power is 1

N 3 � N D 1
N 2 times the power consumed by the

single processor system.
Consider a task A, which needs to be completed within time period T as shown in

Fig. 3.7. We have two different systems, System-1 and System-2, with one and two
processors respectively. System-1 can finish the task A in time T by working at a
frequency F . Assuming the task can be parallelized, System-2 (with two processors)

P
4

P
8

P
8

2 2

V 2 F P
8

2 2

V 2 F P
8

Processors = 1

System−1

System−2
Processors = 2

F

time

freq

F/2

time

freq

F/2

time

T

T

T
Total Power = P

a

Processor−2

Task−A
Time Budget = T

Processor−1

Total Power = +

b

Power

P1 Power

P2 Power

V2 F PProcessor−1

Fig. 3.7 Parallel processing reduces power: (a) the system with single processor working at fre-
quency F consumes more power than (b) the parallel voltage-scaled system with two processors
working at frequency F/2. Both systems have have the same computational capacity

48 3 Power-efficient Processor Architecture

needs to work at only half the frequency of System-1 (i.e. F
2

) to complete the
same task A in time T . Thus, if System-1 consumes P watts in processing task
A, the two processors in System-2 would consume P

4
� 1

2
D P

8
watts each, lead-

ing to a total power of P
8

� 2 D P
4

. Thus, System-2 consumes 1
4

the power of
System-1.

In effect, through parallel processing, it is possible to improve overall perfor-
mance without increasing the clock frequency and, in fact, reduce power at the same
time. This single observation has profoundly impacted the evolution of processor ar-
chitecture, paving the path to CMP/multicore systems. In a CMP, the workload is
divided among the cores for power efficient processing.

3.1.2 Processor Datapath Architecture

In an N-way superscalar processor, up to N-instructions can be dispatched in a
cycle. Performance improvement in modern processors is achieved mainly through
multiple-issue logic, dynamic scheduling, and techniques such as renaming (to
resolve false dependencies) and speculative execution through branch prediction.
When instructions are processed in an order different from the actual program order,
unpredictable situations could arise due to exceptions. For example, in an out-of-
order machine, the completion or graduation of all instructions before a faulting
instruction is not guaranteed. Consider the following sequence of instructions which
are ready to execute:

1. DIV REG0, REG1, REG2

2. ADD REG6, REG5, REG6

As the instructions are independent, both can be issued to execution units simul-
taneously. Since the latency of the division operation is larger than that of addition,
the ADD instruction would complete prior to the completion of DIV instruction and
the register REG6 would be updated. If an exception occurs during the division op-
eration (say, division-by-zero) after the completion of addition, then the machine
state cannot be restored after the exception as one of the operands of the addition
instruction would be destroyed already. Hence, it is important for dynamic issue
machines to support precise exceptions and preserve exception behavior as in se-
quential in-order machines. These requirements make it obligatory for the processor
architecture to maintain proper state (program counter, register file, memory) during
exceptions.

Figure 3.8 shows the block diagram of a superscalar datapath [20]. The dataflow
and functionality of hardware blocks are explained in terms of various pipeline
stages discussed here.

3.1 Introduction 49

ISSUE QUEUE

Instruction
Memory

ALU

Data Memory

Instruction
Cache

FETCH UNIT

Shift
Load/
StoreALU

Mult/
Div

FP−DIV FP−CTR

Data Cache

Result Bus

Issue Buses

DECODER/
DISPATCH

Commit

Branch
Prediction

Unit

REGISTER

FILE

FP−ADD FP−MUL

REORDER
BUFFER

Fig. 3.8 Datapath of a superscalar processor. Front end stages of the pipeline can fetch and decode
multiple instructions per cycle. The decoded instructions are then dispatched to the issue queue.
With the availability of various function units along with out-of-order execution support for parallel
execution, multiple instructions can be issued in parallel. The completed instructions are collected
into a re-order buffer and later committed in program order

3.1.2.1 Instruction Fetch

The fetch unit reads the instruction stream from the instruction cache and passes
them to the decoder. The address of an instruction is given by a special register
called the Program Counter (PC), which is either derived from the address predicted
by the branch prediction unit or from the next PC value.

A block diagram of the fetch unit is shown in Fig. 3.9. The PC value is updated
either by the PC update unit or the branch prediction unit. In the normal flow of in-
structions, the address of the next instruction is derived by incrementing the current
PC value, which is computed by the PC update unit. In case of branch instruction,
the address of the next instruction is specified by the branch target location. The
branch prediction unit specifies the next PC value when such instructions are en-
countered. The value of PC is used to fetch the cache block from the instruction
cache.

50 3 Power-efficient Processor Architecture

Receive and
Extract

Instruction

PC
Update

Branch
Prediction Unit

PC

Instruction

Cache

Fetch Addr

To Decoder

Fig. 3.9 Instruction fetch unit. The PC register is updated either by the branch-prediction unit or
the PC update unit. The value of PC is used for fetching the cache line from instruction cache. The
instructions are extracted from the cache line and sent to decode unit

Each cache line could contain more than one instruction in a byte aligned orga-
nization, with the instruction length being fixed or variable depending on the ISA of
the processor. In case of variable length instructions, based on the type of instruc-
tion, its length is calculated to mark the start and end bytes in the cache line. The
extracted instructions are then sent to the instruction decoder.

3.1.2.2 Decode and Dispatch

In general, an instruction could specify complex functionality that is not directly
supported by the available execution units. Hence, the instruction decode logic
breaks such complex instructions into a sequence of simpler micro-operations sup-
ported by the execution units implementing the same functionality. As shown in
Fig. 3.10, the decode logic consists of several parallel decode blocks for differ-
ent types of instructions. Complex instructions are decoded using a microcode
sequencer which internally uses a Read Only Memory (ROM) to generate sequences
of micro-operations. The micro-operations specify the source and destination regis-
ters along with the operation to be performed.

The dispatch logic analyzes dependencies among the available sequence of in-
structions and attempts to resolve false dependencies through register renaming. To
avoid stalls due to register dependency, an additional set of internal registers is main-
tained. The dispatcher uses an alias table to rename the source and destination reg-
isters in an instruction to avoid stalls due to false dependencies (WAR and WAW).

The instructions are dispatched in program order to the issue queue. The dis-
patch logic reads the available operand values either from the register file or the
reorder buffer. If the operand value is dependent on a previous in-flight instruction
which has not completed, then the address of the operand source is stored in place
of its value. Appropriate flags are set in the issue queue to represent ready and wait-
ing operands. For every instruction dispatched, a free entry in the reorder buffer is

3.1 Introduction 51

Decoder−0

Parallel Decode

Decoder−N
Fetch Unit

from Dispatcher

Decoded
Instructions

operations

to

Microcode
Sequencer

Micro−

Issue Queue

Instructions

Fig. 3.10 Instruction decode and dispatch unit. The decoder unit consists of parallel decoder
blocks. Depending on the type of instruction, they are sent to the respective decoder block. The
decoded instruction (series of micro-operations) is then dispatched to the issue queue

reserved. The dispatch logic stalls if free slots are not available in the issue queue
or if the reorder buffer is full. After execution of an instruction, the result is stored
in the reserved reorder buffer entry. This helps in sequencing the completed instruc-
tions in program order.

3.1.2.3 Issue

In this stage, a set of ready instructions in the issue queue is sent to the execution
units for computation. An instruction is qualified to be ready if all its operand values
are available. Some instructions would be waiting for operand values generated by
previous in-flight instructions. The result bus is monitored by all the instructions in
the issue queue. If the generated result is a source operand for any of the waiting
instructions, the value on the result bus is immediately buffered. Hence, instructions
in the issue queue become ready as soon as the operands are available. Thus, by
waiting for operands dependent on previous instructions, RAW hazards are avoided.

In any cycle, the ready instructions having their corresponding execution unit
free are considered for issue (execution). If more than one instruction is competing
for a single execution unit, one among them is chosen. Hence, the instructions are
issued in an out-of-order manner.

3.1.2.4 Execute

The execution stage performs the computation. Superscalar processors use multiple
execution units, allowing parallel computation of independent instructions. The time
taken for computation depends on the hardware complexity of the execution unit.
For example, floating point units have longer latencies compared to integer units.
Also, some of the execution units could be pipelined. Hence, due to the varying la-
tencies of the execution units, the order of completion may not match the order of
issue. The results generated by the execution units are forwarded to the issue queue

52 3 Power-efficient Processor Architecture

via the result bus. The result value is stored in the reorder buffer slot allocated
during the dispatch stage. Store instructions directly write the value into the data
cache memory.

3.1.2.5 Commit

In this stage the result from the head of the Reorder Buffer (ROB) is written to
the architectural register file (ARF). ROB is used to re-arrange the instructions back
into the program order. ROB is a circular FIFO structure which commits instructions
to ARF only from the head of the queue. That is, an instruction is not committed
until all the instructions dispatched prior to it have committed. Thus, ROB stores all
results until the previous instructions are completed. This ensures that instructions
commit in program order even though they are issued and executed out-of-order.

3.1.3 Power Dissipation

With power dissipation becoming a major design concern for building processors in
the recent times, a large body of work has concentrated on building power-efficient
hardware structures in the processor datapath. Before discussing the power opti-
mization techniques for the datapath components, we study the power distribution
among them to understand the relative importance of operations in terms of their
power dissipation and to identify the power hungry components.

Several studies were conducted to understand how the power is distributed within
a processor [19, 31, 32, 42]. The power break-up can be studied from various per-
spectives. Different classifications are possible by studying power division among:

� Attributes of processing: Computation, Storage, and Communication
� Functional Level Operations: Various pipeline stages (Fetch, Decode, Issue, and

Commit)
� Hardware Blocks: Datapath Structures (Fetch logic, Decode logic, Issue Queue,

Register File, Execution Units, Reorder Buffer, etc.)

Consider the power distribution in Fig. 3.11 of a high performance processor
[42]. This distribution shows that the clock is the main power dissipation source,
consuming almost 36% of the total processor’s power. In this case, the clock power
includes the power dissipated by clock drivers, its distribution network, latches, and
capacitive loading due to all clocked units. Of all these, capacitive loading is the
largest component. The datapath power is contributed by the dynamic logic used for
building datapath units. Power dissipated by on-chip storage structures constitutes
the memory power. The rest of the power is dissipated by control and I/O interfaces.

The capacitive loading on the clock network is presented by various clocked
hardware units in the processor, including various datapath components and regis-
ters. So, attributing the power dissipated at the clock interface to clock power, or

3.1 Introduction 53

Fig. 3.11 Power dissipation in a high performance CPU [42]: break-up of power dissipation
among various attributes (compute, storage, and communication) of processing

Inst. Fetch
14%

Inst. Dec
14%

Reg Alias Table
4%

Rest
24%

ROB
7%

Dcache
7%

Int Exec
6%Float Exec

5%

Clock
5%

Reservation
Station

5%

Bus Logic
5%

Mem order Buf
4%

Fig. 3.12 Power dissipation in a PentiumPro chip [32]: break-up of power dissipation among
various datapath components in a high performance processor

to the power dissipated by the hardware component, is a matter of perspective. We
consider the power associated with capacitive loading of a component to be part of
the component power dissipation.

Figure 3.12 shows the break-up of the total power consumed in by an Intel Pen-
tiumPro processor. We observe that the instruction fetch, decode, and execution

54 3 Power-efficient Processor Architecture

units, along with other datapath components used for storage or support of dynamic
scheduling and out-of-order execution, constitute the bulk of the total power dis-
sipated in the chip. Hence, a substantial fraction of the total power is spent in the
datapath of a high-performance superscalar processor having complex circuitry for
supporting its sophisticated features.

The rest of this chapter is focused on architectural techniques used for building
power-efficient datapath components in a modern processor. Each section describes
a major datapath component. The functionality of the component is briefly explained
to understand its complexity and the source of power consumption in it. Various
architectural techniques for reducing power consumption in each of the compo-
nents and their effect on overall system performance are discussed qualitatively.
The power consumed in the memory subsystem (including cache memories) is also
substantial, and is addressed in detail in Chapter 4.

3.2 Front-end: Fetch and Decode Logic

The front-end pipeline stages of a processor are responsible for fetching a stream
of instructions and decoding them before issuing to the execution or back-end
stages. With increasing demand on performance, the number of (issue) ways in a
superscalar processor has increased to extract more and more parallelism from the
instruction window. Hence, the hardware logic to support such high degree of paral-
lelism has become more complex and power hungry. A significant amount of power
is dissipated by the front-end logic in modern superscalar processors, accounting for
more than 20% of the overall power consumed by the processor core. Many micro-
architectural techniques have been devised to reduce the power consumed by the
front-end logic with minimal impact on the overall performance.

3.2.1 Fetch Gating

In modern processors, speculative execution is extensively used to extract useful
work during the time that would be otherwise wasted in stalls induced by con-
trol instructions. The instruction stream is fetched and executed without waiting
for the completion of prior control instructions. Once the branch is executed, the
processor verifies the speculated decision and takes corrective action for incorrect
predictions. Due to incorrect predictions, all the fetched instructions may not ac-
tually proceed for execution. In some cases such instructions could be as high as
80% [4]. Also, due to varying workload conditions, processors seldom work at
peak performance. Hence, for most of the time, the rate at which instructions enter
the pipeline’s front-end does not match the completion rate. Usually, most of the in-
structions are squashed due to incorrect control flow, leading to improper utilization
of pipeline structures.

3.2 Front-end: Fetch and Decode Logic 55

Though squashing mis-speculated instructions does not affect performance, the
energy spent on fetching and decoding them is wasteful. With deep pipelines and
considerable amount of energy required for front-end processing, there is a need to
save the energy wasted in processing unwanted instructions to improve the perfor-
mance per watt metric.

The aim of fetch gating is to maintain the right number of instructions in the
front-end pipeline queue that matches the workload requirement in a given phase
of the application [32]. Fetch gating is applied based on the feedback derived by
monitoring the state of the application and resource utilization. The information
is used to block the instructions from entering the pipeline when conditions are
not favorable for their completion. The following techniques are devised to detect
conditions favorable for fetch gating.

3.2.1.1 Branch Confidence Estimation

Though modern branch predictors have become increasingly accurate, their aggres-
sive usage results in many instructions that are issued but never committed. To avoid
the power wasted in processing instructions that do not commit, the branch confi-
dence estimation method uses a confidence estimation strategy to decide when to
gate the fetch unit in order to reduce the inflow of instructions [32].

By reducing the number of instructions fetched, decoded, issued, and executed,
fetch gating reduces power dissipated in all stages of the pipeline including struc-
tures such as issue queue that support dynamic execution. Since performance is the
key objective of dynamic superscalar processors, any loss in performance due to
fetch gating must be well compensated with the power savings to make it an attrac-
tive solution.

Gating logic is an inexpensive hardware attached to the processor pipeline as
shown in Fig. 3.13. This hardware unit takes a decision to prevent the fetch unit
from bringing new instructions into the pipeline. The decision is based on the con-
fidence estimation information from the branch instructions. The instruction type is

Fetch Gating
Logic

DECODE
UNIT

I−CACHE

FETCH
UNIT

ISSUE
UNIT

Fetch Gate Signal

Resolved Branches

WRITEBACK
UNIT

EXECUTE
UNIT COMMIT

Branch Confidence

Fig. 3.13 Fetch gating through branch confidence estimation: based on the number of in-flight
branches and their confidence estimate, the gating logic controls the throughput of the front-end
pipeline stages by stalling them

56 3 Power-efficient Processor Architecture

not known until the decode stage of the pipeline, where the confidence estimation of
the branch is calculated for speculative execution. The actual resolution of a branch
(or conditional branch) instruction occurs after the execution stage. The confidence
estimation information from decode stage and the resolved branch information from
execution stage is shared with the newly added decision logic. This information is
used to derive the confidence measure (probability of the instruction being commit-
ted) for the instructions entering the pipeline.

When aggressive speculation is employed, the probability of a fetched instruction
actually committing reduces with increasing depth of speculation (nesting level of
control blocks). With the information on the quality of the branch prediction made
and the number of such branch instructions in flight, it is possible for the gating logic
to calculate the probability of instructions getting committed. If the probability of
completion reduces beyond a threshold, then the fetch unit is gated to stall fetching
further instructions.

Parameters such as the number of outstanding branches and their confidence
measure are considered while generating the fetch gating signal. Also, it is impor-
tant to study which unit to gate and for how long. Gating can be applied at fetch,
decode, or issue units. Usually, maximal benefits can be obtained by employing gat-
ing at the fetch stage, as the effect percolates further down the pipeline and gives
maximum energy savings. The time for which gating is applied is determined by
the gating logic. For example, in Fig. 3.13, the gating logic keeps track of the num-
ber of low confidence branches in flight; if the number exceeds a certain threshold
then the gating signal is activated and no new instructions are fetched until a certain
number of low confidence branches are resolved. The latter is a feedback from the
execution stage. Hence, the time for which the fetch unit is gated varies depending
on the phase of the application. It is observed that such a scheme would stall the
pipeline stage for 2-4 processor cycles indicating a fine control over the speculation
mechanism [32].

Confidence estimates determine the quality of the branch prediction. The two
important metrics considered for confidence estimates are specificity (SPEC) and
predictive value of a negative test (PVN). SPEC is the fraction of all mispre-
dicted branches detected as low-confidence decisions by the estimator. PVN is the
probability of mispredicting a low-confidence branch. A larger SPEC implies that
most mispredicted branches have low-confidence. Large PVN implies that the low-
confidence branch is likely to be mispredicted. Both these parameters are important
to rate a confidence estimator. The aggregate value of N low confidence branches
is considered while taking a gating decision to avoid stalling the pipeline too fre-
quently and thus minimizing performance degradation.

The effect of gating on performance could be positive or negative depending on
the nature of the workload. In some cases speculative execution helps warming up
the caches, but due to fetch gating, the benefits of warm-up effects are lost resulting
in loss of performance. In other situations, fetch gating actually helps improving
performance by blocking some of the incorrect path instructions from occupy-
ing the pipeline resources, thus allowing the correct path instructions to complete
faster.

3.2 Front-end: Fetch and Decode Logic 57

3.2.1.2 Rate Mismatch Flow Control

It is often observed that several applications do not exhibit the large degree of par-
allelism for which the processor is designed, or at least do not do so during many
phases of program execution. In these situations, though the processor works at full
throttle, it does not improve the performance significantly. Detecting such condi-
tions and reducing the instruction fetch/decode rate would lead to significant power
savings without affecting performance.

In this method, front-end gating is done based on instruction flow prediction
which is oblivious to the confidence metric discussed in Section 3.2.1.1 [4]. Con-
sider the example illustrated in Fig. 3.14, where a 4-way issue processor has to
execute four instructions A, B, C, and D in program order. Instruction D is depen-
dent on the result of instruction C. In general, a processor cannot fetch instructions
in two cache blocks in a single cycle. Hence, assuming that the instructions A, B,
C, and D belong to two different cache blocks, it takes two clock cycles to fetch the
four instructions. In normal execution flow, i.e., when the decode stage is enabled
every cycle, instruction A is decoded in cycle-2 while the instructions B, C, and D

A B C D

Pipeline without Gating Logic

A

1
2
3
4
5

A
B C D

D
A B C

(gated)
Instruction Cache

cycle

1
2
3
4
5

Fetch Decode Execute

Fetch Decode Execute

A
A

B C D

B C D

A
B C

D

cycle

Cache Blocks

B C D

a

b

c

Fig. 3.14 Front-end gating for power efficient usage of decoder. When peak throughput is not
expected or when the back-end stages of processors are working at a slower rate, gating of the
front-end stages could save power without affecting performance. Instruction cache content is
shown in (a). Compared to the normal execution flow in (b), the gating technique in (c) saves
power by stalling the decoder in cycle 2 without affecting performance

58 3 Power-efficient Processor Architecture

are decoded in cycle-3. Since instruction D can execute only after execution of C,
it takes a total of five cycles to execute all the four instructions. During these five
cycles, all pipeline units are active and dissipate power even when they are not work-
ing at full capacity. By employing instruction flow-rate feedback to control/gate the
decode units, it is possible to switch off the decode stage without losing any per-
formance. In the above example, by switching off the decode stage until all four
instructions are available for decode, i.e. during cycle-2, the processor decodes all
four instructions during cycle-3 and executes independent instructions A, B, and C
in cycle-4. It delays the execution of instruction D, which is dependent on result of
C, to cycle-5. Thus, this scheme could provide a low power solution by gating front-
end stages when performance is not affected or when the pipeline is not operated at
full throttle.

Flow based gating would require monitoring various pipeline stages to estimate
the required degree of parallelism. Gating is applied if the required parallelism is
expected to be attained even after stalling the fetch and/or decode stage. The gating
can be applied on a cycle-by-cycle basis; hence the control is very fine. Parame-
ters that could be observed to monitor the required parallelism during a program
execution are:

Decode and Commit Rate: If the decode rate in the processor is higher than
the commit rate, it implies that the extraneous work being done is due to either
the incorrect path instructions or due to little parallelism available for execu-
tion. In such conditions the decode unit can be stalled with minimal performance
degradation.

Dependence Information: If the dependence information is kept track of after the
decode stage, then it is possible to identify the number of independent or parallel
instructions ready for execution, which helps calculate the number of parallel de-
coders required to support the instruction stream. If the dependency between the
instructions is high then the average parallelism required would be low. This param-
eter can be used to stall the front-end stages while still maintaining the maximum
instruction flow.

Thus, considerable power savings can be achieved using instruction flow based
front-end gating. We discussed techniques to identify favorable conditions which are
oblivious to the confidence metrics discussed earlier. It is also possible to combine
the instruction based methods with confidence based gating to devise a more power
efficient front-end gating technique.

3.2.2 Auxiliary Decode Buffer

In general, applications spend most of their execution time in instructions within
loop nests. This observation holds for a large number of application domains, in-
cluding signal processing, multimedia, and other scientific applications.

3.2 Front-end: Fetch and Decode Logic 59

Instruction
Cache Memory

Execute
Instruction

Decode
Instruction

Fetch

Fig. 3.15 Conventional processor pipeline

Instruction
Cache Memory

Buffer

Execute
Instruction

Decode
Instruction

Fetch

Dec. Inst

Gate
Dec. Inst

select control

Gate

Inst. Address

Gate

Fig. 3.16 Pipeline with auxiliary Decode Instruction Buffer (DIB) [21]. An additional buffer is
inserted between the decode and execution stages to store decoded instructions. While executing
loops, the buffer is filled with decoded instructions during the first loop iteration. For subsequent
loop iterations, decoded instructions are read from the buffer. This allows us to gate the front-end
stages from the start of second iteration to the end of loop execution, thereby saving power

In a conventional processor pipeline, shown in Fig. 3.15, the fetch unit reads in-
structions from instruction cache memory, which are then processed by the decoder
logic to generate a sequence of micro-operations. The execution units perform the
computation. During the execution of loops, instructions in the loop body are repeat-
edly executed a large number of times. Though temporal locality and availability of
on-chip caches ensures no performance loss while fetching the instructions (i.e. no
cache misses), a large amount of power is wasted by the front-end pipeline stages in
repeatedly fetching and decoding the same set of instructions.

Front-end power dissipation can be reduced for loop kernels by an auxiliary
buffer to store decoded instructions [21]. The execution pipeline is modified by
adding a small buffer after the decode stage as shown in Fig. 3.16. The buffer is
addressed by the program counter and is used only for loop kernels; in all other
cases the buffer is gated and instructions flow in normal manner from decoder to the
execution units of function units (FUs).

60 3 Power-efficient Processor Architecture

During the first iteration of the loop execution, the buffer is filled with the
decoded instructions of the loop body. For the remaining iterations of the loop, the
decoded instructions are read from the buffer instead of being fetched and decoded
again. The fetch and decode units are gated after the first iteration of a loop. The
size of the auxiliary buffer required for real applications is usually small, leading
to a negligible power overhead compared to the power consumed by the fetch and
decode logic. Since most of the computationally intensive applications spend more
than 80% of their execution time in loops, the pipeline architecture with the auxil-
iary buffer will save a substantial amount of power in the front-end stages.

3.3 Issue Queue / Dispatch Buffer

Dynamic scheduling in an out-of-order superscalar processor would require many
supporting hardware units. The Issue Queue or Dispatch Buffer is one such struc-
ture which holds the decoded instructions waiting to be executed. It also helps in
removing false dependencies through register renaming. A black-box view of the
issue queue is shown in Fig. 3.17(a). The instructions dispatched by the decoder
along with the required operands (if available) or their source (if generated by a pre-
vious instruction in flight) are stored in the issue queue. Thus an instruction in the
issue queue could be in one of three states:

� ready for execution, or
� waiting for an operand (to be generated by a previous instruction), or
� waiting for a function unit (which is busy executing any other instruction).

Issue Queue /
Dispatch Buffer

From FUs

Result Bus

Issue to FUs

D
is
pa

tc
h

fr
om

 D
ec

od
er

TAGR RdR

TAGR RdRTAGL

RdL

RdL

TAGL

TAG−N TAG−1

a b

Fig. 3.17 Abstract view of issue queue and wake-up logic. (a) Dispatched instructions are stored
in the issue queue. The tags from the result bus are broadcast to the issue queue. (b) Broadcast
tags are compared with all issue queue entries and a match leads to buffering of the corresponding
operand. The issue logic sends one or more ready operations to the available function units for
execution

3.3 Issue Queue / Dispatch Buffer 61

The result of execution and its associated tag is forwarded (broadcast) to all
instructions in the issue queue through the result bus. The issue queue performs an
associative search operation to locate instructions waiting for this operand by com-
paring the broadcast tags (TAG-1 to TAG-N) with tags of source operands (TAGL and
TAGR). The entries with matched tags will store the broadcast result and sets their
ready flags (RDL and RDR). When all input operands are available (i.e., both RDL
and RDR are set) for an instruction in the issue queue, it becomes ready to execute.

The issue queue can be implemented as a single structure holding all instruc-
tions or split into multiple issue queues, also called reservation stations, where each
queue is attached to a function unit (or group of FUs). When a reservation station is
attached to a single function unit, its scheduler has to choose only one ready instruc-
tion in a cycle. In case of shared queues a more complicated scheduler is required to
select multiple ready instructions. A centralized queue, though flexible, requires an
even more complex scheduler. In hardware, the issue queue is implemented using
one of the following structures:

Circular Buffer: In this architecture, shown in Fig. 3.18, the newly dispatched
instructions are added at the tail of the circular buffer. Instructions close to the
head pointer are older and have a higher priority during selection (for issue) among
the ready instructions. Thus, this architecture inherently maintains the relative age
among the instructions leading to simpler selection hardware. However, when in-
structions are issued in an out-of-order manner, it results in holes/gaps between tail
and head pointers leading to inefficient buffer utilization. A compaction scheme can
be designed for better utilization of the queue at the cost of additional hardware
complexity.

Random Buffer: In this architecture, shown in Fig. 3.19, the buffer is implemented
using a RAM structure. This allows the dispatched instructions to be written in
any free entry, leading to efficient buffer utilization without requiring additional

Empty slots created after
out−of−order issue

Empty Queue

Tail Pointer

Head
Pointer

Fig. 3.18 Logical view of the issue queue implemented as a circular buffer. The tail pointer follows
the newly issued instructions, while the head pointer points to the oldest instruction in the queue.
Out-of-order issue results in “gaps” between the head and tail pointers

62 3 Power-efficient Processor Architecture

Selection
Logic

From Dispatch

Address in
issue queue

wr

rd

Issued
Instructions

Ready Instructions

RAM

Instructions

Fig. 3.19 Logical view of the issue queue implemented as a random buffer. Dispatched instruc-
tions can be stored at any location in the RAM. Based on the priority, the selection logic issues a
set of instructions among the ready ones

hardware (such as compaction logic). The selection logic tracks the relative age
among the instructions in the buffer and based on this information it selects the
instructions (among the ready ones) for issue. As it is harder to maintain the relative
age among the instructions in a random buffer, the selection logic becomes more
complex in this architecture.

Among the structures supporting dynamic scheduling, the issue queue is one of
the major power dissipation sources in the processor. Power is dissipated in the issue
queue during the following operations:

� When an instruction is dispatched, energy is dissipated in locating and writing
into a free entry of the issue queue.

� When the execution is completed, the result value along with its tag address is
forwarded to all issue queue entries via the result bus. During the associative
search for matching the forwarded data, the tag comparators are activated for all
queue entries; this consume a significant amount of power.

� Power dissipated during issue is spent in arbitrating for a function unit, enabling
a ready instruction, and reading its operands from the queue before sending them
for execution.

Figure 3.20 shows the power distribution within the issue queue. The issue op-
eration consumes almost 50% of the total power dissipated by the queue, while
dispatch and forwarding operations consume about 20–25% of the total queue
power. Now that we have established the issue queue as being one of the most
power hungry structures in the datapath, the rest of this section describes vari-
ous techniques to reduce its power consumption while minimizing the impact on
performance.

3.3 Issue Queue / Dispatch Buffer 63

Fig. 3.20 Break-up of power dissipation in the issue queue [27]

3.3.1 Dynamic Adaptation of Issue Queue Size

A significant fraction of the energy in the issue queue is spent on the associative
search and wake-up logic. It is observed that up to 60% of the energy in the issue
queue is spent on such operations [16]. In every cycle, all the entries in the queue are
compared with the broadcast tags to buffer the result for waiting operands. However,
such operations are unnecessary for entries that are either ready for execution (all
operands available) or empty (invalid entries).

The size of a queue has the maximum effect on the power it dissipates; the
required size of the issue queue varies from application to application and be-
tween various phases within an application. Hence, tuning the issue queue size
dynamically depending on the instruction stream could achieve considerable power
savings.

Different entries in the issue queue are very similar in terms of their contribution
towards energy consumed, but are dissimilar when their contribution to performance
is considered. As discussed earlier, wake-up logic consumes equal energy for empty
entries, ready entries, and the entries that are actually waiting for operands. It is
observed that empty entries contribute up to 70% of the total wake-up logic energy
and the ready entries contribute another 15% of the energy. On the whole, around
85% of the energy consumed by the wake-up logic is spent on useless operations
which do not contribute to performance. Two techniques used for curtailing the
energy wasted in the wake-up logic are as follows.

Disable Wake-up for Empty Entries: The CAM cell structure of the queue is
modified to provide a gate/switch for disabling tag comparison logic. In each cycle,
the match line is precharged and conditionally discharged based on tag contents.

64 3 Power-efficient Processor Architecture

The precharge line is gated to save the dynamic power dissipated during tag match-
ing (wake-up). The gating is applied based on a bit that indicates whether the issue
queue entry is valid. Such gating would prevent all the empty or invalid entries in
the queue from dissipating energy for tag comparison.

Disable Wake-up for Ready Entries: Once ready, an entry remains in wake-up
state until it is sent for execution, thereby wasting energy for all ready entries. As
in the case of empty entries, the precharge line can be gated to avoid dynamic
power dissipation for wake-up logic. The gating signal in this case would be a
bit indicating the availability of all operands, i.e., a ready entry. The energy con-
sumed by the additional logic itself is negligible when compared to energy savings
achieved.

By employing the above two methods, substantial (upto 90%) energy wastage in
the wake-up logic can be avoided at the cost of increased area in terms of additional
logic used for gating the precharge lines in all entries of the issue queue.

In general, processors are designed with a fixed issue queue size targeting max-
imum performance. However in many cases, depending on the type application or
phase of application, each part within the issue queue has a different contribution
to performance. For a FIFO based issue queue, it is observed that, in a program
exhibiting maximum parallelism, the youngest (or most recently filled) part of the
issue queue has negligible contribution towards the IPC. The reason is simple: most
of the required parallelism is supplied by the older (higher priority) instructions in
the issue queue. Similarly, when the dependency between the instructions is large
or a minimum parallelism exists among the available instructions, it is very un-
likely that the younger entries would contribute towards the IPC. Hence, there are
time periods during which the younger part of the issue queue would have neg-
ligible contribution towards performance but still consumes significant amount of
power.

To exploit this condition for further power savings in the issue queue, a dynamic
scheme is devised which monitors the contribution of younger entries towards the
IPC or performance. If their contribution is found negligible then the size of the
issue queue is reduced and it is restricted to operate with the number of entries
that actually contribute towards performance. Since the dynamic decision is taken
based on performance, it has negligible effect on overall performance while saving
power whenever possible by dynamic adaptation of the issue queue size. In this
approach, the issue queue is sized to match its level of utilization or to the necessary
instruction window demanded by the application [8, 16]. Thus, unnecessary entries
are shut down, saving considerable energy.

3.3.2 Zero Byte Encoding

The zero byte encoding power optimization technique exploits the fact that, during
the execution of any real application, significant bytes in many of the operands are

3.3 Issue Queue / Dispatch Buffer 65

all zeros. For example, during the execution of SPEC-95 benchmarks on a cycle
level simulator, it was observed that, on an average, more than half of the bytes in
the operands were zeros [18]. This is due to the fact that many operands in a real
program are either small literals, byte level operations, or address offsets. Hence
during execution, when such instructions flow through various pipeline stages of a
processor, a considerable power is wasted in storing, processing, and driving the
zero bits of the operands. This accounts for a significant amount of overall power.

Zero-Byte Encoding is a power optimization technique proposed to avoid such
wastage of energy on processing the zero bytes. This technique utilizes extra bits
to encode the zero bytes in an operand to dynamically switch-off the function units
and memory structures to avoid transmission, processing, and storage of unwanted
zeroes [6,18]. This technique, which is generally used for reducing power consump-
tion in caches and function units, can also be applied to the issue queue [27].

To implement this in hardware, an additional zero-indicator bit is stored with
each byte of the word (operand), indicating an all zero byte. During dispatch, this
bit is used to disable the writing of zero bytes into the dispatch buffer (issue queue).
Hence, energy consumption is reduced by driving fewer bit-lines. Similarly during
issue-stage, the zero-indicator bit is used to gate the word select signals to disable
the reading of zero bytes. This technique significantly reduces the wasteful energy
spent in reading and writing the zero-bytes in the issue queue structure. The energy
savings are at the cost of increased (around 11% [27]) silicon area of the issue queue
for storing the zero-indicator bits and for the logic introduced for dynamic gating of
the hardware units.

3.3.3 Banking and Bit-line Segmentation

The issue queue is essentially a register file except that it requires associative
searches during a write operation. Writing to the issue queue involves a search
operation to locate a free entry in the queue. Since the queue structure is similar
to that of a register file or a RAM, some of the energy saving schemes used for
them are also applicable for the issue queue. Banking and Bit-line segmentation
[17] are a few such techniques used for reducing energy consumption of the issue
queue [27].

The number of rows in the queue has a linear effect on the bit-line capaci-
tance. Thus, large issue queues would require higher energy per access. Bit-line
segmentation and banking reduces the capacitive loading by splitting the bit-lines
into multiple segments. As shown in Fig. 3.21, the issue queue is split into multi-
ple CAMs and RAMs. CAM cells store tags for associative look-ups while the less
power-hungry RAM structures are used to store the instruction data. Each bank of
the CAM and RAM can be turned off independently when an access to the bank is
not required, thereby requiring lower energy per access. Chapter 4 explains these
techniques in more detail for the memory structures.

66 3 Power-efficient Processor Architecture

Enable

Data
(RAM) (RAM)

Data
(RAM)
Data

TAGS
(CAM)

TAGS
(CAM)

TAGS
(CAM)

TAGS
(CAM)

Data
(RAM)

SELECTION LOGIC

En En En

Global Tags

Fig. 3.21 Banked issue queue. Bit line segmentation and banking reduces capacitive loading,
thereby reducing the energy per access. Banking also provides an opportunity for turning-off cer-
tain banks when they are not used

3.3.4 Fast Comparators

From the simulation of SPEC-95 benchmarks, it is observed that, on an average,
less than 20% slots in a dispatch buffer will be actually waiting for the data in any
given cycle [27]. This property is exploited for saving energy, as described in Sec-
tion 3.3.1, by disabling undesired entries for comparison. Further, in any given clock
cycle, of the remaining 20% of slots actually waiting for data, only a few will match
the broadcast tags; a majority of them would result in a mismatch. In any cycle, on an
average, only 2-4 comparisons result in matches while the rest result in a mismatch.

Generally, the associative searches or comparisons are done using the typical
pull-down comparators for a fast response time. These comparators dissipate more
energy on a mismatch than for a match. Hence, using such comparators in an is-
sue queue is power-inefficient because most matches are unsuccessful. Therefore,
a comparator circuit that dissipates negligible energy on a mismatch is used in the
associative search logic for issue queues.

3.4 Register File

Register files are used to store most of the operands required by the instructions
in a processor. Register file size directly determines the number of instructions
in-flight by stalling the dispatch stage if the free registers are exhausted. The

3.4 Register File 67

increasing demand on parallelism resulted in designing wide-issue processors with
large instruction windows and support for multi-threading. Supporting a large
number of instructions in-flight would require a correspondingly large number of
operands to be stored in the register file. Also, wide-issue processors resulted in
multi-ported register files for supporting simultaneous access. For example, a 4-
issue processor would require 8-read ports and 4-write ports. Thus, the increasing
size and ports of a register file makes it one of the major power consuming struc-
tures in the datapath. In modern processors up to 15% of energy is consumed by the
register file, making it one of the hot-spots in a processor.

Increasing size and longer access times of power hungry register files are tack-
led through techniques that reduce the effective register file size and/or number of
ports. This section describes some popular techniques used for designing low power
register files.

3.4.1 Port Reduction and Banking

Conventionally register files are implemented as many-ported RAM structures. An
eight-issue processor would theoretically require a register file, shown in Fig. 3.22,
with 16-read ports and 8-write ports for a single cycle operation.

Increasing bandwidth requirements for supporting higher frequencies and multi-
threading makes it difficult for single cycle implementation of register files. Also,
the multi-cycle implementations require complex logic degrading the performance
of a processor. Thus, more scalable techniques and structure organizations, similar
to data caches, are used to reduce the power consumption.

3.4.1.1 Reducing Port Requirements

Increasing the number of ports increases the complexity of register file memory cell
and interconnections, which ultimately leads to increased power dissipation. The

Fig. 3.22 Conventional
Register File Architectures. A
multi-ported register file with
N -write and 2N -read ports.
Each read port is connected to
a specific function unit

FU1

1 2

821

Conventional
Monolithic

Register File

16

FU8

68 3 Power-efficient Processor Architecture

following observations and techniques are utilized to reduce the port requirements
of a register file:

Bypass Network: With the availability of the bypass network and with instruc-
tions that either require less than two operands or do not write results to the
register file, the average number of ports required per cycle is, in practice, less
than the theoretical value. It is observed that more than 50% of the operands
can be fetched through the pipeline’s bypass network, relieving the pressure on
the required number of ports [3]. Hence, replacing a 24-ported register file with
8-ported register file, shown in Fig. 3.23, for an 8-issue processor results in only a
small (around 2%) degradation of IPC (due to port conflicts), but provides signifi-
cant energy savings and better access times compared to the conventional structure.
The energy per access for the 8-port register file is almost 4-times lower when com-
pared to a conventional register file.

Using Auxiliary Buffers: In real applications, most of the results generated by
function units are consumed by instructions waiting in the issue queue within a
few cycles of their generation. This property can be exploited to reduce the number
of register file accesses by either directly forwarding the results from the bypass
network or storing the results in a small auxiliary structure for the next few cycles
until they are used. Since the size of such an auxiliary queue is very small, its energy
per access is much lower compared to that of the register file. Also, this reduces
the port requirement of the register file. Reducing the number of ports by using
such auxiliary queues could lead to significant energy savings at the cost of a small
performance loss [24].

Fig. 3.23 Reduced port
register file architecture. By
minimizing the number of
ports, the energy per access is
reduced. Here, one read port
is shared between more than
one FU. The reduction in
register file bandwidth is
compensated by the
availability of operands in the
bypass network and hence
results in minimum
performance loss

Monolithic
Register File

1 432

4x24x2

1 2 3 4

shared ports

FU8FU1

3.4 Register File 69

3.4.1.2 Banking

Further savings in energy could be obtained by banking the register file structure as
shown in Fig. 3.24. In banked register file architecture, the registers are split into
multiple banks. If the registers are split into N -banks and each bank has p-ports,
then such an architecture could provide upto N � p operands in one cycle but with
the limitation that no more than p operands can be fetched from a single bank in
one cycle. Compared to a single RAM with N � p ports, the complexity and energy
per access of a banked architecture is vastly reduced.

Figure 3.24 shows a register file with 4-banks, each with single read and write
ports. In cases where two operands are required from any bank in a cycle, the
instruction is stalled for one cycle. Also, when multiple instructions compete for
a single bank, only one of them will succeed in fetching the operand. Thus, an
additional arbitration stage is required in the pipeline to resolve conflicts when
ports/banks of a register file are shared. Empirically, it is found that no more than
5% degradation in IPC occurs due to port/bank conflicts [3]. Port/bank conflicts
could be reduced by efficient distribution of operands among the available register
banks (e.g., operands of the same instruction assigned to different banks). Banked
architectures reduce the bit-line capacitance by partitioning the length of bit-lines
into multiple segments. During register access, only the banks that are addressed are
activated, along with their corresponding decoding circuitry. On an average, fewer
banks are activated per cycle, reducing the overall power consumption. The banked
architecture in Fig. 3.24 has almost 4-times lower energy consumption compared to
the reduced-port architecture in Fig. 3.23 [3].

Fig. 3.24 Banked register
file architecture. Banking
reduces the complexity of a
register file and hence the
energy required per access.
Execution is stalled when
more than one data element is
required from the same bank
in a given cycle. However, its
effect on performance can be
minimized by efficient
register allocation

shared ports

FU1

Bank1 Bank3 Bank4

4x2 4x2

Bank2

FU8

Banked Register File

70 3 Power-efficient Processor Architecture

Efficiency of banking can be improved by exploiting the fact that most of the
operands would not occupy the full bit-width (usually 32-bit or 64-bit) provided
by the register file. Most of the operands are narrow, as explained in Section 3.3.1,
and occupy only a few LSB bits [18]. A 64-bit register file is implemented by
partitioning it into two banks, one containing the lower word (LSB bits) and other
containing the upper word (MSB bits) [25]. This will avoid reading unnecessary
zeroes when narrow operands are accessed and thus improve average energy per
access.

3.4.2 Clustered Organization

The access time and energy per access are adversely affected with the increasing
size of register files. Thus, for scalability, large register files could be implemented
by partitioning the storage and computational units into multiple clusters [15, 35].
Each cluster consists of a register file supplying operands to function units within
the cluster. An interconnection network is designed to support inter-cluster com-
munication. Decentralizing the register file structure into smaller and simpler units
results in faster access times, lesser number of ports, and reduced energy per access
in the register file.

Figure 3.25 shows a two-way clustered architecture [45]. The register file (as
well as issue window) is split between the clusters, each feeding a different set of
function units. If the operands are available in the local register file, then the re-
named instructions are dispatched conventionally into the issue window, otherwise
a request is sent to the Remote Access Window (RAW) to fetch the value from a
remote register file into the local Remote Access Buffer (RAB) through one of the
dedicated ports of the register file. However, accessing remote register files would
incur a penalty in terms of higher latency thus reducing the IPC when compared
to a processor with a centralized register file architecture. Energy as well as perfor-
mance efficiency is improved by minimizing inter-cluster communication. Clustered
architectures are power-efficient and provide higher performance per watt than cen-
tralized architectures.

3.4.3 Hierarchical Organization

The IPC of a machine scales with increasing size of the register file. For example,
the IPC of an 8-issue machine would scale with register file size beyond 128 en-
tries [14]. However, it is very difficult to design such large monolithic register file
structures due to cycle time and power constraints. Thus, hierarchical register file
structures are proposed to eliminate such scalability issues [3, 12, 44].

Figure 3.26 shows a hierarchical register file architecture. It has a multi-level or-
ganization with each level having a different size, ports, access times, and

3.4 Register File 71

FETCH

DECODE

RENAME

RAW
Issue

Window

REGISTER FILE

memory
disambiguation

RAB RAB

to D−Cache

CLUSTER−1

memory
disambiguation

to D−Cache

REGISTER FILE

CLUSTER−2

Issue
WindowRAW

Bypass Bypass

Fig. 3.25 Clustered register file architecture. Splitting the register file into multiple clusters re-
duces its hardware complexity and results in lower energy per access. However, this increases the
latency due to the communication overhead in fetching the register value from a different cluster

Fig. 3.26 Hierarchical
register file (Register Cache)
architecture: organizing
registers into multiple levels
reduces the port requirement
on each bank, making it more
power efficient

BANK−2Level−2

Level−1
BANK−1

72 3 Power-efficient Processor Architecture

access energy. The bank (at lowest level) closest to function unit directly supplies the
operands to function units. Operands stored in upper level banks (away from FUs)
are cached into lower level banks. The results from FUs are written into any level
depending on its usage in future time. Such a register file architecture, resembling
cache hierarchy, is often called register cache.

The upper level banks have fewer ports but more number of registers and longer
access times. The lower level banks have fewer registers and more number of ports
with single-cycle access time. When results are produced, they are stored in upper
levels and, in some cases, they are also written to lower levels depending on its
predicted usage in near future. Data is never required to be transferred from lower
to upper levels as upper levels are always updated with results. A prefetch mecha-
nism is used to transfer data from upper to lower levels of register memory. Such an
architecture improves performance by reducing access times and also saves consid-
erable energy by directing most of the accesses to smaller memory banks. Caching
and prefetch techniques in a hierarchical register organization are described below.

Caching: Unlike caches, registers do not exhibit much spatial or temporal locality.
Moreover, it is observed that almost 85% of register values are read only once during
execution of a program [12]. Thus, in case of hierarchical register organization, FU
results that are not read from bypass logic are cached at the lowest level.

Prefetching: As in caches, prefetching can be employed to overlap the data trans-
fer time between upper and lower levels of register banks with execution time. This
requires knowledge of dependency relations between instructions in flight. The de-
code stage of the pipeline could determine the dependency information which can be
used for the purpose of prefechting. Consider the following sequence of instructions
after renaming:

I1 W r1 D r2 C r3

I2 W r4 D r2 C r5

I3 W r6 D r1 C r8

When instruction I1 is issued register r8 is prefetched to overlap the execution
time of I1 with data transfer time of r8 from upper to lower level of register banks.

3.5 Execution Units

The execution units consist of dynamic logic circuitry for various integer and float-
ing point arithmetic operations required to support the instruction set of a processor.
A large number of arithmetic units are required to aid the high issue width of modern
processors. Also, deeply pipelined and/or parallel hardware is required for operating
under high clock frequency and hence, a considerable amount of power is consumed
by the execution units. This section describes techniques to reduce dynamic and
static power consumed by the execution logic.

3.5 Execution Units 73

3.5.1 Clock Gating

Clock gating is a popular technique for reducing dynamic power dissipation. In this
method, the clock supplied to a circuit is gated using a control signal which is trig-
gered when the circuit is not in use. This is based on the observation that, not all
hardware is used in every cycle, yet power is dissipated due to the constant charging
and discharging with clocks pulses. Clock gating such circuits avoids the unnec-
essary toggling and thus greatly reduces the average dynamic power dissipation.
Chapter 2 discusses this technique in detail.

An important aspect of clock gating is to identify when to gate and for what
duration to gate. This information is required in advance to take proper gating deci-
sions. Clock gating results in significant energy savings and is the most popular and
widely used technique for reducing dynamic power consumption. Some techniques
used for gating the processor execution units are discussed here.

Opcode Based: The information regarding the type of instruction is known only
after the decode stage. Hence, by the end of the issue stage one can determine which
execution units are not going to be used in the next cycle. This information is used
to generate gating signals for the unused units [30]. Clock gating signals can also
be used to prevent driving the high capacitive result bus when no execution unit is
scheduled to generate results in that cycle.

Value Based: Even though the processor data path is designed for 32 or 64-bit, it
is observed that in most of the real applications, as many as 50% operations would
require only 16-bit or even less, as mentioned earlier. To avoid unnecessary com-
putations on zero values, gating signals are used to activate the function unit for
different bit-widths. At run time, based on operand values, the appropriate width of
the function unit is activated. Up to 30% energy savings were reported when this
technique was applied to integer function units [7].

3.5.2 Operand Isolation/Selective Evaluation

Operand isolation or selective evaluation is a dynamic-power optimization tech-
nique that avoids propagation of signals that cause redundant activity in the logic
downstream [11,34,41]. It provides fine control by selectively blocking such signals.
Blocking is done using additional circuitry that prevents the signals from initiating
any redundant operations downstream.

Figure 3.27(a) shows a part of a logic circuit, where inputs A and B are supplied
to a function unit FU. The result of the operation is conditionally written to register
REG. For cycles when the register REG is not loaded with the output of FU, any
computation by FU is redundant. Computation by FU is caused due to toggling of
inputs A or B . Undesired toggling in A and B when the output of FU is redundant
results in wastage of power.

74 3 Power-efficient Processor Architecture

FU

select

R
E
G

A

B

1

0

EN

a

FU

B

A
R
E
G

EN

select

G

D

G

D

0

1

b

Fig. 3.27 Operand isolation example: when the output of FU is not required to be written to the
register (i.e., select=‘1’), then the inputs to the FU are prevented from toggling, reducing dynamic
power dissipation in FU. (a) Logic Circuit. (b) Logic with Operand Isolation

To avoid redundant computations, the signals/inputs A and B are blocked from
propagating to the FU using additional circuitry (such as transparent latch, AND
gate, OR gate, etc.), at the inputs of FU, as shown in Fig. 3.27(b). Based on a
control signal, the inputs are either allowed to propagate, or blocked to retain the
previous value. In this example, the select signal is used to block A and B when
the result of FU is not loaded into REG, thus saving power by preventing undesired
computations by FU. Needless to say, this optimization affects the area and cycle
time, but it is worth the savings it provides in terms of energy.

3.5.3 Power Gating and Multi-threshold Logic

Power gating for static or leakage power is analogous to clock gating in case of dy-
namic power. In this technique, the power source is cut-off, thereby shutting down
the supply voltage to a function unit. With no path from source to ground, the leak-
age current is blocked.

3.5 Execution Units 75

In current technology nodes, leakage current is considerably high in subthreshold
regions. Hence, multi-threshold voltage logic is used to reduce leakage power in
function units of a processor [29]. Chapter 2 discusses power gating and multi-
threshold logic in detail.

The logic is switched to sleep mode during idle periods to minimize leakage
power. The cost, in terms of power dissipated and time for transition, of switch-
ing between sleep and active modes is considerably high. Thus, frequent switching
would degrade the processor performance considerably. Therefore, for both power
gating and multi-threshold logic, it is very important to identify in advance, the fa-
vorable conditions (when and for what period) under which switching a function
unit between power modes is likely to save power with acceptable performance
degradation. The micro-architectural and compiler techniques that are used to iden-
tify such conditions are discussed below.

3.5.3.1 Time Based

A simple way of predicting idle periods is to monitor the state of a function unit;
if a streak of cycles is observed during which the function unit is idle, then it is
likely that it will be idle during the next few cycles. Hence, the function unit is
put into a low power mode by using any of the two techniques discussed earlier.
To implement this technique, a controller is designed to generate sleep/gating sig-
nal when conditions are favorable for gating. A sample state diagram is shown in
Fig. 3.28. A controller associated with a function unit monitors its activity on ev-
ery cycle. Initially, the controller is in active state and remains here as long as the
FU is busy processing inputs. If there are no inputs, then the controller switches to
idle state (idle-1 to idle-N). In these states a new input to FU is handled without
any delay and the state is switched back to active. FUs are powered on in the idle
states and hence dissipate leakage power. When a sequence of idle cycles greater
than a threshold N is detected, the controller goes to sleep-state and turns on the
power gate signal to power down the execution unit saving leakage power. The unit
remains shut-off until a new input requests the FU, which triggers the activation
process. Since there is a certain delay (due to transient currents) in activating the
FU, the controller turns off the gating signal, waits in wake-up state, and switches
to active state when the FU is ready to handle inputs.

Frequent switching between power modes leads to degradation of performance
as well as higher power consumption due to the transition overhead. Switching to
low-power mode is considered beneficial only if the power saved in low power mode
is higher than power dissipated due to transitions at acceptable performance degra-
dation. Hence, threshold values, which represent the break-even point for power
saving, are determined by considering active, idle, and sleep mode power as well
as timing characteristics of the FU (for transient behavior). In general, longer sleep
periods and lower idle states and wake-up time would result in higher power sav-
ings. In real applications it is observed that long idle periods are rare in case of
integer units when compared to floating point units [22]. Thus, time based power

76 3 Power-efficient Processor Architecture

activate

gating = OFF

gating = ON

gating = OFF

busy

idle−N

idle−2

idle−1

active

sleep

wakeup

gating = OFF

idle

idle

idle

idle

activate

activate

activate

Fig. 3.28 FSM for time-based power gating. If an FU is idle for more than N clock cycles, then
it is put to low-power (sleep) mode. A processing request in the sleep-state would put the FU in
wake-up state for a certain time (transition delay) before switching the FU to active state

gating is not beneficial when there are no long idle periods, i.e., when the FU is used
frequently, as in case of integer units.

There are many variations within time based gating, caused by defining more
intermediate power modes between active and total cut-off. This technique is used
to make the FU Gradually Sleep [13]. By having different wake-up times from
each intermediate to active state and different power and performance overheads
associated with state transitions, this technique presents more opportunities to save
leakage power even for short idle periods.

3.5.3.2 Branch Prediction Based

In this method, time based gating is augmented with branch prediction results to
determine more accurate and timely information regarding the load of execution
units [22]. Aggressive speculation leads to frequent branch mispredictions, which
causes the issue queue to be flushed and fetches the instructions from the correct
path. During this period of time, most of the function units (both integer and floating
point) are inactive. Thus, when the misprediction occurs, the FUs are immediately
switched into low power mode instead of waiting for the idle period (i.e idle-1 to
idle-N). This allows the FUs to be in sleep mode for longer durations and thus results
in more leakage power savings.

3.6 Reorder Buffer 77

3.5.3.3 Compiler Based

The disadvantage with hardware based idle period detection is that the detection
hardware itself consumes power as well as occupies area. Also, it needs some warm-
up time before it can actually take the decisions on power gating. To avoid this, the
detection mechanism can be offloaded to the compiler. However, this requires addi-
tional architecture support in terms of a power aware ISA. The compiler can analyze
a program to determine the required ILP (and type of function units) for different
code regions and insert commands/hints to power gate unnecessary function units
during the execution of those code segments [39]. Thus, compiler based techniques
would provide more intelligence and advance information for generating the power
gating signals. This idea is explored further in Chapter 5.

3.6 Reorder Buffer

Reorder Buffer (ROB) is one of the essential structures to facilitate Out-of-Order
(OoO) execution in superscalar processors. To improve instruction parallelism, su-
perscalar processors issue instructions in an out-of-order manner. Further, due to
branch speculation, some instructions from the wrong path are executed by the pro-
cessor. Thus, it is very likely that instructions may complete in an order different
from their actual program order. An an ROB is used to store the completed instruc-
tions temporarily, before they are committed in program-order, this also helps in
supporting precise interrupts and for easy roll-back in case of mispredictions.

A simple ROB can be realized as a circular FIFO buffer. During dispatch, a tail
pointer is used to allocate entries in the ROB in program order. An instruction is
dispatched only when it attains a free entry in ROB. If the ROB is full then no
more instructions are dispatched. After an instruction completes execution its result
is stored in its allotted ROB entry. Instructions are committed from the head of the
queue, pointed to by a head pointer, thus preserving the program state required for
supporting precise interrupts.

In modern processors, the physical registers are integrated into ROB to sup-
port register renaming. These architectural registers are addressed either by using
a rename table or by implementing an associative look-up mechanism. During in-
struction dispatch, operands are either read from the register file (if available), or
from the ROB if the value is available but not yet committed. If it is not available
in either location then a tag representing register source address is sent to the issue
queue.

The ROB is implemented as a multi-ported register file, as shown in Fig. 3.29.
Each ROB entry, shown in Fig. 3.29(a), consists of (a) value or result of execution,
(b) instruction address (PC value), (c) address of the architecture register, and (d) a
bit to specify the validity of result in the entry. Higher precision results, as in case of
multiplication instruction where two 32-bit operands result in 64-bit result, would
require multiple ROB entries. Thus, in such cases, twice as many ports are required

78 3 Power-efficient Processor Architecture

Value/Result Instn (PC) Reg−id valid
a

Values from
Result Bus

set−up entry
(PC, valid)

Operands to
Dispatch unit Commit ports

2*N−portsN−ports

4*N−ports 2*N−ports

REORDER BUFFER

b

Fig. 3.29 ROB architecture. The completed instructions from FUs are written to their specific
ROB entry, reserved during its dispatch. The ROB supplies the required operands to the dispatch
unit. The instructions are committed in program order from the ROB’s head. (a) Fields in ROB
Entry. (b) Block Diagram of ROB Structure for an N -Issue Processor

to write or retrieve the value in one cycle. Register file implementation of ROB [28],
shown in Fig. 3.29(b), with an N -way superscalar processor would require:

� N write ports to write set-up information such as instruction address and valid
bit,

� 2N write ports to support a higher precision result,
� 4N read ports to supply operands to dispatch stage, and
� 2N read ports to commit the value at head of the queue.

In wide-issue processors, the port requirement for ROB along with its size makes
it a complex and significantly power consuming unit in the datapath. Figure 3.30
shows the break-up of power dissipation in various components of the ROB structure
[38]. Energy is dissipated in the following operations:

� Setup: When an instruction is dispatched, energy is consumed while locating a
free entry in the ROB.

� Dispatch: The operand addresses are associatively looked up (or alternatively,
the rename table is accessed) to check if the operand values are available in the
ROB and to read the operands from ROB.

� Writeback: Writing the results of execution units to the ROB.
� Commit: Committing instructions at the head of the ROB.

The ROB being a multi-ported storage structure, many power optimizations
methods that are used for register file and issue queue are also applicable for this
unit. However, the criteria and conditions under which these techniques are applied
to ROB are different, as discussed below.

3.6 Reorder Buffer 79

Fig. 3.30 Break-up of power dissipation in ROB

3.6.1 Port Reduction

It is observed that only a small number of operands are sourced from the ROB [28].
Most of the operands required during instruction dispatch, are derived either from
the bypass paths or the register file. Simulation of various applications on different
processor configurations shows that only 1-15% of the total operands required are
read from ROB.

The superscalar pipeline architecture with reduced port ROB structure is shown
in Fig. 3.31. In this architecture, the read ports for sourcing operands from ROB to
the dispatch unit are eliminated. This architecture drastically reduces the complexity
of the ROB unit and also removes the ROB access from the critical path. However by
doing so, the value written to ROB is not visible to the dispatched instruction until it
commits to the register file. Hence, the value is forwarded twice in this scheme, once
through the result bus, when it is generated, and again when the value is committed,
through forwarding buses. Instructions dispatched after the operands are generated
cannot access them until they are committed to the register file. Thus, this technique
degrades processor performance [28]. To reduce performance degradation, an aux-
iliary buffer can be used for storing a few values generated by FUs for some cycles.
The auxiliary buffer is accessed by the dispatch stage for sourcing the operands.
Since the number of required operands from ROB is low, the size of the auxiliary
buffer could be just a few entries. Such small auxiliary structures are good enough
to keep the performance degradation under acceptable limits.

With zero read ports for sourcing operands to the dispatch unit, the complex-
ity, and hence, the power consumed by the ROB structure is reduced significantly.
Through this architecture a 30% improvement in power is reported when compared
to conventional ROBs [28].

80 3 Power-efficient Processor Architecture

AUX

Commit

Reduced−
Port
ROB

Register
File

Fetch
Decode/
Dispatch

FU−N

FU−1

operands

Issue
Queue

Fig. 3.31 Pipeline with reduced port ROB. A small additional buffer is used to store the result of
FUs for a few cycles. This buffer is used for supplying operands to the dispatch stage. Thus, the
auxiliary buffer reduces the ROB’s port requirement, and hence, its power dissipation

cluster−N

Commit

Pointers to
ROB entries

FU−N

FU−1

ROB−N

ROB−1

Register
File

Fetch
Decode/
Dispatch

Issue
Queue

Central
FIFO

Sourcing operands from ROB

cluster−1

Fig. 3.32 Clustered ROB architecture. Clustering reduces the ROB’s complexity, and hence, its
power consumption. However, for the same result-bus bandwidth, each cluster can provide one
operand per cycle which leads to a small performance overhead

3.6.2 Distributed ROB

To reduce the complexity of the ROB, the centralized structure shared by all FUs
is split into multiple units. In a distributed or clustered architecture, each smaller
unit of the ROB is associated with one or a group of FUs [26]. This will reduce
the port requirement on the ROB structure, while improving its access time. In the
clustered architecture, shown in Fig. 3.32, a centralized FIFO is still required to
establish entries in the distributed ROB for the dispatched instructions. The central-
ized FIFO stores the association of each FU with the offset in the ROB component.

3.7 Branch Prediction Unit 81

The instruction commit stage would require access through the centralized FIFO to
find entries in the distributed ROB that are to be committed.

Limited bandwidth of forwarding buses allows a value to be written to the ROB
component only when its associated FU acquires the bus. Each ROB component
has one write port and two read ports – one for sourcing the operand to dispatch and
the other for committing. Hence, when more than one operand is required from a
single ROB component then the dispatch gets delayed, thereby hurting performance.
However, in many real applications this situation seldom occurs and hence the IPC
degradation was observed to be less than 1%.

Thus with fewer ports and simpler architecture, the distributed structure offers a
power-efficient solution for the ROB unit.

3.6.3 Dynamic ROB Sizing

Exploiting the fact that program workloads vary considerably across different ap-
plications and also among various code segments of an application, many studies
have proposed power optimizations by fine tuning (resizing) various datapath com-
ponents. The large size of the ROB makes it a suitable candidate for dynamic sizing
with varying workloads [2, 16, 37, 38].

The ROB is implemented as multiple segments, each having its own precharge
logic, sense amplifiers, and input-output drivers. Each bank has independent control
for activation and deactivation. With the partitioned implementation, ROB size can
be dynamically varied by periodically monitoring its occupancy along with the dis-
patch and commit rates. As only the required ROB partition is accessed, the energy
per access is reduced. Also, deactivation of unused banks leads to savings in static
power. Thus, by adjusting the ROB size to the workload requirements, considerable
dynamic and leakage power is saved.

3.6.4 Zero Bytes and Power Efficient Comparators

Techniques such as zero byte encoding and fast power-efficient comparators for
associative search discussed in Section 3.3.2 and Section 3.3.4 respectively, are also
used for reducing ROB power consumption due to similarities in the structures of
the issue queue and ROB.

3.7 Branch Prediction Unit

The Branch Prediction Unit (BPU) is one of the central structures for increasing in-
struction level parallelism in superscalar processors. Dynamic branch prediction is
is an extensively researched area, as its prediction accuracy has immense effect on

82 3 Power-efficient Processor Architecture

overall performance of the processor. Though the branch prediction unit is not the
most power hungry piece of hardware, it still consumes a notable amount (around
5-10%) of the total processor’s power. This section discusses the hardware used for
implementing branch prediction logic and techniques to reduce BPU power con-
sumption.

Branches in an instruction sequence causes the processor to stall. Branch in-
structions are so frequent that wide issue processors may have to issue one branch
instruction every cycle for achieving maximum throughput. Thus, the penalty due to
branch stalls leads to significant performance loss. Dynamic hardware branch pre-
dictors are used to speculate the direction of a branch based on previous prediction
history.

A simple branch predictor uses a branch history table (BHT) – a small buffer
addressed by LSBs of the branch instruction address. BHT contains the information
about whether the recent branch was taken or not. For an n-bit predictor, if a se-
quence of 2n�1 mispredictions is wrong then the content of the buffer is inverted.
A simple 2-bit predictor results in 82% to 99% accurate predictions across many
benchmarks [20].

The above scheme takes only the previous branch into consideration. Gener-
ally a branch outcome is correlated to the behavior of other branch results. Hence,
to improve the prediction accuracy, the result of other branches are also used.
Such predictors are called correlating predictors. An .m; n/ correlation predic-
tor uses recent m branch behaviors to choose from 2m predictors, each of which
is an n-bit predictor. For equal amount of storage, correlation predictors outper-
form standard predictors. The number of bits required by an .m; n/ predictor is
given by,

2m � n � Number of prediction entries selected by branch address (3.1)

To reduce branch penalty, an additional buffer, called Branch Target Buffer
(BTB), is used for caching the target address of branches taken. This buffer is ac-
cessed during instruction decode stage, during which, the type of instruction is not
yet known. However, if the instruction turns out to be a branch, then its target ad-
dress based on speculation by the branch predictor is required before the end of
decode stage. This will allow fetching the next instruction from the target location
without delay, thus reducing the penalty. Figure 3.33 shows a branch target buffer
that stores the instruction addresses corresponding to recent N branch instructions
and their corresponding target address. A BTB entry contains the information about
whether the branch is taken or not, which is used to calculate the next PC address.
The PC value is sent to BTB during instruction fetch. An associative search is done
in the BTB to locate an entry with the same PC address. A match indicates that the
instruction is a branch and the next PC address is given by the second field (pre-
dicted PC) in the table, which corresponds to the target address of the branch. Thus,
the processor starts fetching the next instruction from the address pointed to by the

3.7 Branch Prediction Unit 83

INST. ADDR (PC)

Branch predicted
(next PC = Predicted PC)

Taken/
UntakenPredicted PCLook up

No

Yes

Branch not predicted
(next PC = PC + 4 i.e. normal execution flow)

Num of
BTB entries

Fig. 3.33 Logical view of the branch target buffer. The instruction address (PC value) is
looked up in the history table; if a match is found, then the PC is updated with the predicated
value

predicted PC. The third field contains additional state bits which can be used for
other prediction schemes.

Branch prediction accuracy is the most important feature of a BPU. More com-
plex and multiple predictors along with large BTB are used to improve the accuracy.
Though large BPUs have higher power consumption, they actually reduce the over-
all chip power by reducing wastage of power during mispredictions. For example,
it is observed that a more complex BPU consumed 9% higher energy compared to
simpler BPU but results in 6% net chip power savings [36]. Hence, utmost care is
required while designing a low power BPU so that it does not affect the prediction
accuracy. Though there could be many alternative low-power BPU architectures,
only the ones that result in reduced power without degrading prediction accuracy
are beneficial.

The history tables and branch target buffers could be as large as 64K-bits in size,
hence consume non-trivial amount of access energy. These buffers are implemented
as RAM memories for simple storage or as cache structures for associative search
logic. The relatively large number of accesses into these tables/buffers causes most
of the power consumption in the BPU.

Unlike other hardware units, accuracy/performance of BPU is critical for both
performance as well as overall chip power. Thus, the power optimizations targeted
to reduce the power consumption within the BPU have a strict restriction: the BPU
accuracy shall not be compromised.

84 3 Power-efficient Processor Architecture

3.7.1 Banking of BHT and BTB

BTB and BHT being storage structures, power optimizations used for cache mem-
ories and SRAMs are also applicable in this case. Through banking, the central
structure is split into multiple banks. Banking has several advantages:

� During access, only one bank needs to be activated [5, 36].
� Due to bit-line segmentation, the banks smaller capacitive loads resulting in

lower energy per access and faster access times.
� Segmented implementation can be used to dynamically resize the memory based

on application requirements [10].

All these help in reducing power consumption without affecting the BPU’s accuracy.
Though banking does not affect the accuracy of BPU, the price is paid in terms of
increased silicon area.

3.7.2 Reducing BHT/BTB Lookups

Since lookups are performed every cycle during instruction fetch, a substantial
amount of energy is expended in the look-up operation. It is observed that for many
real applications, the average distance between two branch instructions is around 12
[36, 43]. Hence most of the lookups into the BHT and BTB are wasteful of energy.
It is also observed that most of the cache lines do not have a control flow instruc-
tion. This is exploited to avoid unnecessary lookups into the BHT and direction
prediction.

Since the BPU is accessed in parallel with the instruction cache, the additional
information to avoid BHT/BTB lookups cannot be stored in the I-cache. Thus, a
storage structure called Prediction Probe Detector (PPD) is added to the micro ar-
chitecture, as shown in Fig. 3.34. Each entry in PPD is associated with a block in
I-cache. Thus, PPD has the same number of entries as the I-cache. An entry in the

BTB

Prediction
Logic

P

P

D

INSTRUCTION
CACHE

Target

PC+4

gate

gate taken / not taken

Fig. 3.34 BPU with Prediction Probe Detector [36]. Additional information regarding control
instructions in cache lines is used by PPD to disable BTH and prediction logic when they are not
required

3.8 Summary 85

PPD has two bits used for activation of BPU hardware. The PPD is updated each
time the instruction cache is filled on a miss. The PPD has the information about
whether the block fetched from the cache line requires a look-up and prediction or
not. One bit in the PPD entry is used to gate BTB look-up operation while the other
is used to gate the direction prediction logic (includes BHT). In associative caches,
the line could be found in any of the allowed ways and since the PPD is accessed
in parallel, it conservatively activates the BPU in cases where any of the ways have
control instructions. Being small (around 4 Kb), the PPD consumes little energy as
compared to the larger BPU structures and with respect to timing, these accesses
could be usually accommodated into the same (fetch) cycle along with BPU access.
Thus, the PPD helps in reducing the number of unnecessary and expensive lookups,
thereby saving considerable (almost 30% [36]) energy in the BPU without affecting
its prediction accuracy.

3.8 Summary

Continuous scaling of technology facilitated the building of denser and faster logic
on the chip, which has been utilized to cater to the increasing performance demands
by various applications. High performance processor architectures were designed
by exploiting bit parallelism (4 to 64-bit width datapaths), instruction parallelism
(scalar, vector, pipeline, out-of-order, superscalar) and thread parallelism (multi-
core). With available cooling solutions, power was never a prominent constraint
during the first three decades of processor evolution. Hence, the initial architectures
developed were not power efficient.

The last decade saw an exponential rise in power due to increasing processor
complexity and increasing leakage current. With processors dissipating more than
120 Watt power, usual cooling solutions were not suitable for handling such large
heat densities. Hence, power became a major design constraint for processors. This
led to drastic changes in the approach to microprocessor design. Low power method-
ologies were extensively studied at all design levels (device, circuit, architecture,
and system). In this chapter we discussed various architectural level power opti-
mizations used for designing high performance processors. We described in detail
the break-up of power dissipated in various datapath components of a superscalar
processor. In each section of this chapter we described the functionality of a datapath
component and various architectural techniques used for making it power efficient.
We also discussed the effect of these optimizations on the overall system perfor-
mance. System level and software techniques for power reduction are covered in the
next few chapters.

Apart from the architectural techniques for designing power-efficient processors,
there are other important low-power techniques at device level, circuit level, system
level, and also at application level. Basic low-power techniques were discussed in
Chapter-2, while the system level and software techniques are covered in the next
few chapters.

86 3 Power-efficient Processor Architecture

References

1. http://www.intel.com
2. Alper, B., Stanley, S., David, B., Pradip, B., Peter, C., David, A.: An adaptive issue queue for

reduced power at high performance. In: Power-Aware Computer Systems, pp. 25–39 (2001)
3. Balasubramonian, R., Dwarkadas, S., Albonesi, D.H.: Reducing the complexity of the regis-

ter file in dynamic superscalar processors. In: MICRO 34: Proceedings of the 34th annual
ACM/IEEE international symposium on Microarchitecture, pp. 237–248. IEEE Computer So-
ciety, Washington, DC, USA (2001)

4. Baniasadi, A., Moshovos, A.: Instruction flow-based front-end throttling for power-aware high-
performance processors. In: Low Power Electronics and Design, International Symposium on,
2001., pp. 16–21 (2001). DOI 10.1109/LPE.2001.945365

5. Baniasadi, A., Moshovos, A.: Branch predictor prediction: A power-aware branch predictor for
high-performance processors. Computer Design, International Conference on 0, 458 (2002).
DOI http://doi.ieeecomputersociety.org/10.1109/ICCD.2002.1106813

6. Brooks, D., Martonosi, M.: Dynamically exploiting narrow width operands to improve proces-
sor power and performance. In: High-Performance Computer Architecture, 1999. Proceedings.
Fifth International Symposium On, pp. 13–22 (1999). DOI 10.1109/HPCA.1999.744314

7. Brooks, D., Martonosi, M.: Value-based clock gating and operation packing: dynamic strate-
gies for improving processor power and performance. ACM Trans. Comput. Syst. 18(2),
89–126 (2000). DOI http://doi.acm.org/10.1145/350853.350856

8. Buyuktosunoglu, A., Y, T.K., Albonesi, D.H., Z, P.B.: Energy efficient co-adaptive instruction
fetch and issue. In: In ISCA 03: Proceedings of the 30th Annual International Symposium on
Computer Architecture, pp. 147–156. ACM Press (2003)

9. Chatterjee, A., Nandakumar, M., Chen, I.: An investigation of the impact of technology scal-
ing on power wasted as short-circuit current in low voltage static cmos circuits. In: ISLPED
’96: Proceedings of the 1996 international symposium on Low power electronics and design,
pp. 145–150. IEEE Press, Piscataway, NJ, USA (1996)

10. Chaver, D., Pi nuel, L., Prieto, M., Tirado, F., Huang, M.C.: Branch prediction on demand: an
energy-efficient solution. In: ISLPED ’03: Proceedings of the 2003 international symposium
on Low power electronics and design, pp. 390–395. ACM, New York, NY, USA (2003). DOI
http://doi.acm.org/10.1145/871506.871603

11. Correale Jr., A.: Overview of the power minimization techniques employed in the ibm powerpc
4xx embedded controllers. In: ISLPED ’95: Proceedings of the 1995 international symposium
on Low power design, pp. 75–80. ACM, New York, NY, USA (1995). DOI http://doi.acm.org/
10.1145/224081.224095

12. Cruz, J.L., González, A., Valero, M., Topham, N.P.: Multiple-banked register file architectures.
SIGARCH Comput. Archit. News 28(2), 316–325 (2000). DOI http://doi.acm.org/10.1145/
342001.339708

13. Dropsho, S., Kursun, V., Albonesi, D.H., Dwarkadas, S., Friedman, E.G.: Managing static
leakage energy in microprocessor functional units. In: MICRO 35: Proceedings of the 35th an-
nual ACM/IEEE international symposium on Microarchitecture, pp. 321–332. IEEE Computer
Society Press, Los Alamitos, CA, USA (2002)

14. Farkas, K.I., Chow, P., Jouppi, N.P.: Register file design considerations in dynamically
scheduled processors. In: HPCA ’96: Proceedings of the 2nd IEEE Symposium on High-
Performance Computer Architecture, p. 40. IEEE Computer Society, Washington, DC, USA
(1996)

15. Farkas, K.I., Chow, P., Jouppi, N.P., Vranesic, Z.: The multicluster architecture: reducing cycle
time through partitioning. In: MICRO 30: Proceedings of the 30th annual ACM/IEEE inter-
national symposium on Microarchitecture, pp. 149–159. IEEE Computer Society, Washington,
DC, USA (1997)

16. Folegnani, D., Gonzalez, A.: Energy-effective issue logic. In: Computer Architecture, 2001.
Proceedings. 28th Annual International Symposium on, pp. 230–239 (2001). DOI 10.1109/
ISCA.2001.937452

References 87

17. Ghose, K., Kamble, M.: Reducing power in superscalar processor caches using subbanking,
multiple line buffers and bit-line segmentation. In: Low Power Electronics and Design, 1999.
Proceedings. 1999 International Symposium on, pp. 70–75 (1999)

18. Ghose, K., Ponomarev, D., Kucuk, G., Flinders, A., Kogge, P.M.: Exploiting bit-slice inactivi-
ties for reducing energy requirements of superscalar processors. In: In Kool Chips Workshop,
MICRO-33 (2000)

19. Gonzalez, R.E.: Low-power processor design. Tech. rep., Stanford University, Stanford, CA,
USA (1997)

20. Hennessy, J.L., Patterson, D.A.: Computer architecture: a quantitative approach. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (2002)

21. Hiraki, M., Bajwa, R., Kojima, H., Gorny, D., Nitta, K., Shri, A.: Stage-skip pipeline: a low
power processor architecture using a decoded instruction buffer. In: Low Power Electronics
and Design, 1996., International Symposium on, pp. 353–358 (1996). DOI 10.1109/LPE.1996.
547538

22. Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H., Bose, P.: Microarchitec-
tural techniques for power gating of execution units. In: ISLPED ’04: Proceedings of the 2004
international symposium on Low power electronics and design, pp. 32–37. ACM, New York,
NY, USA (2004). DOI http://doi.acm.org/10.1145/1013235.1013249

23. Jouppi, N.P., Wall, D.W.: Available instruction-level parallelism for superscalar and super-
pipelined machines. In: ASPLOS-III: Proceedings of the third international conference on
Architectural support for programming languages and operating systems, pp. 272–282. ACM,
New York, NY, USA (1989). DOI http://doi.acm.org/10.1145/70082.68207

24. Kim, N.S., Mudge, T.: The microarchitecture of a low power register file. In: ISLPED ’03:
Proceedings of the 2003 international symposium on Low power electronics and design, pp.
384–389. ACM, New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/871506.871602

25. Kondo, M., Nakamura, H.: A small, fast and low-power register file by bit-partitioning. In:
HPCA ’05: Proceedings of the 11th International Symposium on High-Performance Computer
Architecture, pp. 40–49. IEEE Computer Society, Washington, DC, USA (2005). DOI http:
//dx.doi.org/10.1109/HPCA.2005.3

26. Kucuk, G., Ergin, O., Ponomarev, D., Ghose, K.: Distributed reorder buffer schemes for low
power. In: Computer Design, 2003. Proceedings. 21st International Conference on, pp. 364–
370 (2003). DOI 10.1109/ICCD.2003.1240920

27. Kucuk, G., Ghose, K., Ponomarev, D.V., Kogge, P.M.: Energy-efficient instruction dispatch
buffer design for superscalar processors. In: IEEE/ACM International Symposium on Low
Power Electronics and Design, pp. 237–242 (2001)

28. Kucuk, G., Ponomarev, D., Ghose, K.: Low-complexity reorder buffer architecture. In: ICS ’02:
Proceedings of the 16th international conference on Supercomputing, pp. 57–66. ACM, New
York, NY, USA (2002). DOI http://doi.acm.org/10.1145/514191.514202

29. Kursun, V., Friedman, E.G.: Low swing dual threshold voltage domino logic. In: GLSVLSI
’02: Proceedings of the 12th ACM Great Lakes symposium on VLSI, pp. 47–52. ACM, New
York, NY, USA (2002). DOI http://doi.acm.org/10.1145/505306.505317

30. Li, H., Bhunia, S., Chen, Y., Vijaykumar, T., Roy, K.: Deterministic clock gating for micro-
processor power reduction. In: High-Performance Computer Architecture, 2003. HPCA-9
2003. Proceedings. The Ninth International Symposium on, pp. 113–122 (2003). DOI
10.1109/HPCA.2003.1183529

31. Magklis, G., Scott, M.L., Semeraro, G., Albonesi, D.H., Dropsho, S.: Profile-based dynamic
voltage and frequency scaling for a multiple clock domain microprocessor. In: ISCA ’03:
Proceedings of the 30th annual international symposium on Computer architecture, pp. 14–27.
ACM, New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/859618.859621

32. Manne, S., Klauser, A., Grunwald, D.: Pipeline gating: speculation control for energy re-
duction. In: In Proceedings of the 25th Annual International Symposium on Computer
Architecture, pp. 132–141 (1998)

33. Moore, G.: Cramming more components onto integrated circuits. Electronics Magazine 38(8)
(1965)

88 3 Power-efficient Processor Architecture

34. Munch, M., Wurth, B., Mehra, R., Sproch, J., Wehn, N.: Automating rt-level operand isolation
to minimize power consumption in datapaths. In: Design, Automation and Test in Europe
Conference and Exhibition 2000. Proceedings, pp. 624–631 (2000). DOI 10.1109/DATE.2000.
840850

35. Palacharla, S., Jouppi, N.P., Smith, J.E.: Complexity-effective superscalar processors.
SIGARCH Comput. Archit. News 25(2), 206–218 (1997). DOI http://doi.acm.org/10.1145/
384286.264201

36. Parikh, D., Skadron, K., Zhang, Y., Stan, M.: Power-aware branch prediction: Character-
ization and design. IEEE Transactions on Computers 53, 168–186 (2004). DOI http:
//doi.ieeecomputersociety.org/10.1109/TC.2004.1261827

37. Ponomarev, D., Kucuk, G., Ghose, K.: Reducing power requirements of instruction schedul-
ing through dynamic allocation of multiple datapath resources. In: Microarchitecture, 2001.
MICRO-34. Proceedings. 34th ACM/IEEE International Symposium on, pp. 90–101 (2001).
DOI 10.1109/MICRO.2001.991108

38. Ponomarev, D., Kucuk, G., Ghose, K.: Energy-efficient design of the reorder buffer. In: PAT-
MOS ’02: Proceedings of the 12th International Workshop on Integrated Circuit Design. Power
and Timing Modeling, Optimization and Simulation, pp. 289–299. Springer-Verlag, London,
UK (2002)

39. Rele, S., Pande, S., Önder, S., Gupta, R.: Optimizing static power dissipation by functional
units in superscalar processors. In: CC ’02: Proceedings of the 11th International Conference
on Compiler Construction, pp. 261–275. Springer-Verlag, London, UK (2002)

40. Ross, P.: Why CPU frequency stalled. Spectrum, IEEE 45(4), 72–72 (2008). DOI 10.1109/
MSPEC.2008.4476447

41. Tiwari, V., Malik, S., Ashar, P.: Guarded evaluation: pushing power management to logic
synthesis/design. In: ISLPED ’95: Proceedings of the 1995 international symposium on Low
power design, pp. 221–226. ACM, New York, NY, USA (1995). DOI http://doi.acm.org/10.
1145/224081.224120

42. Tiwari, V., Singh, D., Rajgopal, S., Mehta, G., Patel, R., Baez, F.: Reducing power in
high-performance microprocessors. In: Design Automation Conference, 1998. Proceedings,
pp. 732–737 (1998)

43. Yang, C., Orailoglu, A.: Power efficient branch prediction through early identification of branch
addresses. In: CASES ’06: Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems, pp. 169–178. ACM, New York, NY, USA
(2006). DOI http://doi.acm.org/10.1145/1176760.1176782

44. Zalamea, J., Llosa, J., Ayguadé, E., Valero, M.: Two-level hierarchical register file organization
for vliw processors. In: MICRO 33: Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture, pp. 137–146. ACM, New York, NY, USA (2000). DOI
http://doi.acm.org/10.1145/360128.360143

45. Zyuban, V., Kogge, P.: Optimization of high-performance superscalar architectures for energy
efficiency. In: Low Power Electronics and Design, 2000. ISLPED ’00. Proceedings of the 2000
International Symposium on, pp. 84–89 (2000)

Chapter 4
Power-efficient Memory and Cache

The memory subsystem plays a dominant role in every type of modern electronic
design, starting from general purpose microprocessors to customized application
specific systems. Higher complexity in processors, SoCs, and applications exe-
cuting on such platforms usually results from a combination of two factors: (1)
larger amounts of data interacting in complex ways and (2) larger and more com-
plex programs. Both factors have a bearing on an important class of components:
memory. This is because both data and instructions need to be stored on the chip.
Since every instruction results in instruction memory accesses to fetch it, and may
optionally cause the data memory to be accessed, it is obvious that the mem-
ory unit must be carefully designed to accommodate and intelligently exploit the
memory access patterns arising out of the very frequent accesses to instructions
and data. Naturally, memory has a significant impact on most meaningful design
metrics [31]:

Area Memory related structures dominate the area of most processors and ASICs.
In modern processors, the cache memory structures easily account for more than
60% of the chip area.

Delay Since large amounts of program and data are accessed from memory, the
access delays have an immediate impact on performance metrics such as total exe-
cution time and response time.

Power and Energy Every instruction being executed one or more memory ac-
cesses. Large amounts of data and code lead to larger energy consumption in the
memory because of both the memory size and the frequency of accesses.

Power optimizations targeting the memory subsystem have received consid-
erable attention in recent years because of the dominant role played by mem-
ory in the overall system power. The more complex the application, the greater
the volume of instructions and data involved, and hence, the greater the signifi-
cance of issues involving power-efficient storage and retrieval of these instructions
and data. In this chapter we give a brief overview of how memory architec-
ture and accesses affect system power dissipation, and mechanisms for reducing
memory-related power through diverse means: optimizations of the traditional cache

P.R. Panda et al., Power-efficient System Design, DOI 10.1007/978-1-4419-6388-8 4,
c� Springer Science+Business Media, LLC 2010

89

90 4 Power-efficient Memory and Cache

memory system, architectural innovations targeting application-specific designs,
compiler optimizations, and other techniques. In addition to caches used in general
purpose computer based systems, we also give considerable emphasis in the chapter
on power-efficient memory optimizations in ASICs and SoCs found in embedded
systems.

4.1 Introduction and Memory Structure

As applications get more complex, the memory storage and retrieval plays a critical
role in determining power and energy dissipation: larger memories lead to larger
static power, and frequent accesses lead to larger dynamic power.

4.1.1 Overview

Figure 4.1 shows the typical external interface of a generic memory module. The
interface consists of three components:

Address The address bus is an input to the memory and specifies the location of the
memory that is being accessed. The width of the address bus depends on the number
of memory locations. When the bus width m equals the number of address bits, it
can be used to access a maximum of 2m locations. In some memories, especially
Dynamic Random Access Memory (DRAM), the address bus is time-multiplexed
to carry different parts of the memory address at different times.

Data The data bus carries the associated data for the memory operation. The
bus is usually bidirectional, allowing data to be either an input or output to the
memory, depending on the type of operation. The width of the data bus depends
on the typical datapath width used in the design. For example, if the design is

Fig. 4.1 External interface of a typical memory. The Address bus input gives the memory lo-
cation. The Data bus is usually bidirectional – it is an input for a WRITE operation, and an
output for a READ operation. The Control input consists of information such as type of opera-
tion (READ/WRITE) and chip enable

4.1 Introduction and Memory Structure 91

dominated by 32-bit operations, then the memory data bus is likely to be 32 bits
wide. DRAM systems may be organized differently: the data bus of an individual
DRAM chip usually has a smaller width (say 4 bits), and a 32-bit data bus is com-
posed of data bits provided by a set of eight DRAM chips.

Control In addition to the address and data buses, memories usually have some
control signals which are used to indicate important information such as whether
the memory module is selected in the current clock cycle and an encoding of the
operation to be performed. When the memory access protocol is more complex,
these signals may carry other information such as clocks and row/column address
strobe.

Memory accesses essentially constitute two types of operations: Read and Write.

Read The Read operation takes as input an address and returns the data stored at
the corresponding memory location. The address is provided through the address
input port in Fig. 4.1, and the data returned through the data port. Control signals
are set to the appropriate encoding to indicate this operation.

Write The Write operation takes as input an address and the data, and stores the
given data at the memory location corresponding the specified address. The address
port is used as in the read operation, but the data bus is now an input port to the
memory. Again, the control signals are set so as to indicate the write operation.

In addition to the above basic operations, memories may implement additional
functionality such as burst read – fetch the data stored at a sequence of memory
locations starting from a given address.

4.1.2 Memory Structure

Figure 4.2 shows a simplified view of a typical memory structure. The core storage
area is organized into rows and columns of memory cells, conceptually forming a
two-dimensional matrix.

The address is split into two parts as shown in Fig. 4.3: a row address consisting
of the higher order bits, and a column address consisting of the lower order bits.

A Read operation can be thought of as consisting of a sequence of three phases
as shown in Fig. 4.4 and Fig. 4.5. In the first phase, the row address is decoded in
the row decoder, resulting in the activation of one of the word lines. This selects one
row of cells in the memory, which causes transfer of data between the cell and the
bit lines in the second phase – these lines run through all the rows of the memory. A
sense amplifier detects the transitions on the bit lines and transmits the result on the
data bus. In the third phase, a column decoder selects the bits from the row of cells
and transmits the addressed bits to the data bus.

92 4 Power-efficient Memory and Cache

row
decoder

column
decoder

sense
amplifiers

bit linesword lines

memory cells

address

data

data array

Fig. 4.2 Simplified view of typical memory structure. The most significant address bits are de-
coded by the row decoder to select a row through the word line. Bit lines attached to the selected
row carry the data to sense amplifiers. The column decoder now selects the data from the right
column and forwards to the data bus

Fig. 4.3 Division of the memory address into Row Address and Column Address. The row address
is the most significant part, and is used by the row decoder to select the word line. The column
address is the least significant part, and is used by the column decoder to select the right data from
within the selected row

4.1.3 Cache Memory

Modern applications present an inherently contradictory set of requirements from
the memory system: large amounts of data have to be stored and retrieved, yet the
access delay and energy dissipation should be small. Obviously, larger memories
lead to longer access times and larger energy per access. To alleviate this so called
memory wall or memory bottleneck, system architects usually resort to a memory hi-
erarchy, consisting of several levels of memory, where higher levels comprise larger
memory capacity and hence, longer access times. The memory hierarchy operates
on the principle of locality of reference: programs tend to reuse instruction and data
they have used recently (temporal locality) and future accesses are likely to be in the
same vicinity as past accesses (spatial locality). Thus, the first time an instruction or
data is accessed, it might have to be fetched from a higher memory level, incurring

4.1 Introduction and Memory Structure 93

a

b

Fig. 4.4 (a) Phase 1 of Memory READ operation: the row address is decoded by the row decoder
and a word line is activated. (b) Phase 2 of Memory READ: data in the memory cells are transferred
via the bit lines to the sense amplifiers

a relatively higher memory access time penalty and energy dissipation. However,
it can now be stored in a lower memory level, leading to faster retrieval on subse-
quent accesses to the same instruction or data. The different memory levels used
in most processor architectures are usually: register, cache memory, main memory,
and secondary memory.

Cache memory is the next memory level after registers and stores recently ac-
cessed memory locations – instruction cache stores recently accessed instructions
and data cache stores recently accessed data. The two are sometimes combined into
a single cache. Lower levels of cache usually reside on-chip with the processor and

94 4 Power-efficient Memory and Cache

Fig. 4.5 Phase 3 of Memory READ operation: the column decoder selects the correct offset from
the column address and the addressed data is forwarded to the data bus

access times for cache memory usually range from one to a few CPU cycles. On-
chip caches in modern commercial general-purpose microprocessors could be as
large as a megabyte. Beyond the last level of cache lies the main memory, which
usually resides off-chip and is also volatile – the contents disappear when the power
is reset. The main memory may be backed by some form of non-volatile secondary
storage such as disk or flash memory.

Figure 4.6 shows a generalized memory hierarchy with the levels of hierarchy
described above. The register file is usually incorporated into the CPU. The cache,
in turn, could consist of multiple levels of hierarchy, of which the lower levels are
usually located on-chip with the processor, and higher levels could be in off-chip
SRAM (Static Random Access Memory). The main memory is typically imple-
mented in DRAM (Dynamic Random Access Memory) technology, which affords
higher density than SRAM, but lower access speed.

The principle of locality of reference leads to data and instructions being found
in the lowest level of the cache memory hierarchy closest to the processor most of
the time. When the required data or instruction is found in the level of memory that
is being searched, a Cache Hit is said to have occurred. Cache misses occur when
instructions or data requested by the processor are not present in the cache, and need
to be fetched from the next level of the hierarchy. Cache misses can be classified into
three categories [12]:

Compulsory misses. These are caused when a memory word is accessed for the
first time at the current cache level. Since it is being accessed for the first time, it is
obviously absent from the cache and needs to be fetched from the next level of the
memory hierarchy.

4.1 Introduction and Memory Structure 95

Fig. 4.6 Hierarchical
memory structure: the register
file is closest to the CPU,
followed by the cache levels,
followed by main memory
(DRAM) and secondary
storage (Disk, Flash memory)

Capacity misses. These are caused when cache data that would be needed in the
future is displaced due to the working data set being larger than the cache. The cache
designer’s efforts to anticipate and store the required data from the next level may
not be always successful because of the cache’s limited size.

Conflict misses. These are caused when data present in the cache and useful in
the future, is replaced by other data, in spite of the availability of cache space. This
happens because of limitations of the mechanism used to search and replace memory
words in the cache. These limitations arise out of access time constraints imposed
by the system.

The Cache Miss Ratio is defined by the equation:

Cache Miss Ratio D Number of Cache Misses

Number of Cache Accesses
(4.1)

The cache miss ratio is a fraction between 0 and 1, often expressed as a percentage,
and indicates the fraction of accesses that could not be serviced from the cache, and
led to accessing of the next cache level.

Cache Hit Ratio is defined as: 1 � Cache Miss Ratio.
A cache line consists of a set of memory words that are transferred between the

cache and main memory on a cache miss. A longer cache line reduces the com-
pulsory misses, but increases the cache miss penalty (the number of CPU cycles

96 4 Power-efficient Memory and Cache

required to fetch a cache line from main memory), and would also increase the
number of conflict misses.

An elementary question that determines the working of the cache is the address
mapping between the memory address and the cache location. For this purpose, the
main memory is divided into blocks of the cache line size. Given a memory block
address, a mapping function determines the location of the block in the cache.

The simplest cache design is a direct-mapped cache. Here, every memory block
can be stored in exactly one cache location given by the equation:

Cache Line D .Block Address/ mod .Cache Size/ (4.2)

where Block Address refers to the main memory block number and cache size is the
number of lines in the cache. The mapping of memory blocks to cache locations
is illustrated in Fig. 4.7, with a memory size of 1023 blocks and a cache size of
8 lines. Memory block n maps to cache line n mod 8. Since the cache is smaller,
multiple blocks will map to the same cache line. Hence, the limited cache space
needs to be managed effectively. In our example, suppose we access memory block
2 first, followed by block 26. Since both blocks map to the same location, block 26
displaces block 2 from the cache. Thus, if block 2 is needed later, we incur a cache
miss due to the conflict between the two blocks.

Cache
Line

Fig. 4.7 Direct-mapped cache. For a cache with 8 lines, the cache location of memory block
address n, is given by n mod 8. Cache conflicts occur when two blocks (2 and 26) map to the same
cache location

4.1 Introduction and Memory Structure 97

Fig. 4.8 A two-way set-associative cache. The 8 lines are divided into 4 sets of 2 lines each. The
cache set for memory block address n, is given by n mod 4. The block can stay at either way of the
selected set. This resolves cache conficts between the two blocks at adddress 2 and 26

Set-associative caches help reduce the cache conflict problem mentioned above.
An A-way set-associative cache is divided into sets of A lines each. Each memory
block maps to exactly one set, but within the set, the block could reside in any of the
constituent A lines. The address mapping in a 2-way set-associative cache (A D 2)
is illustrated in Fig. 4.8, with a memory size of 1023 blocks and cache size of 8 lines.
Blocks 2 and 26 no longer conflict in the cache because they are accommodated in
the two lines corresponding to the two cache ways.

In a fully associative cache (illustrated in Fig. 4.9), a given memory block can
reside at any of the cache locations. As long as the working set of a program is
smaller than the cache, conflict misses do not occur in these caches, but capacity
misses may still occur when the working set of a program is larger than the cache.
A fully associative cache is essentially an N -way set-associative cache (where N is
the number of cache lines), whereas a direct mapped cache is a 1-way set-associative
cache.

The number of cache lines in a direct mapped cache, and the number of sets in a
set-associative cache, is an exact power of two (of the form 2m), so that the mapping
function is very simple to implement – the k lower order bits of the block address
gives the cache line/set location.

While set-associative caches typically incur a lower miss ratio than direct-
mapped ones by eliminating some cache conflicts, they are also more complex, and
are characterized by longer access times, because, now, A searches need to be per-
formed to determine if a data element exists in the cache, as opposed to a single
search in the case of direct-mapped caches. Further, the additional work leads to an

98 4 Power-efficient Memory and Cache

Fig. 4.9 A fully associative cache. Any memory block can reside at any of the 8 cache lines. There
are no cache conflicts, but capacity misses can occur

increase in the cache energy dissipation. Conflict misses can be avoided by using
a fully associative cache, but due to access time and power constraints, most cache
memories employ a limited-associativity architecture.

An additional feature in associative caches is the need to implement a replace-
ment policy for deciding which cache line to evict from a cache set when a new
cache line is fetched. In Fig. 4.8, if another block at memory address 34 (which
also maps to set 34 mod 8 D 2) were accessed, the replacement policy would help
decide which of block 2 and 26 is replaced. A common replacement policy is Least
Recently Used (LRU) [12], in which the cache line that has not been accessed for
the longest duration is replaced, in keeping with the principle of locality.

4.1.4 Cache Architecture

A simplified diagram of the architecture of a typical direct-mapped cache is shown
in Fig. 4.10. The memory address presented to the cache consists of three logical
fields:

Offset This field, consisting of the lower order address bits, indicates which word
within a cache line is to be accessed. If the cache line has 2l words, then the offset
field has l bits.

Index This field indicates the address of the set within the cache where the line will
reside, if it is present in the cache.

Tag This corresponds to the higher order bits of the address, and is stored along
with the data lines. The tag bits are used to identify which specific line (out of the
several lines in memory which could possibly be mapped into the indexed location)
currently resides in the cache.

4.1 Introduction and Memory Structure 99

Fig. 4.10 Simplified
architecture of Direct Mapped
Cache. Two separate
memories store the tag and
data arrays. The index is used
to fetch the tag and cache line
from the two arrays. If the
fetched tag matches the tag
part of the address, then we
have a cache hit, and the
offset part of the address is
used to select the right data
from the cache line. If the tag
does not match, we have a
cache miss

The two major components of a direct-mapped cache are the Data Array and
the Tag Array (Fig. 4.10). Suppose we access memory line L located at memory
address A, and the index, tag, and offset fields of address A are given by i.A/,
tag.A/, and o.A/ respectively. The contents of L are stored in the data array of
the cache in anticipation of temporal and spatial locality, at address i.A/. The i.A/

location of the tag array contains tag.A/. When a new address B is presented to
the cache, the cache line data at the i.B/ address is fetched from the data array.
Simultaneously, the tag bits stored at address i.B/ in the tag array are also fetched.
A comparator compares these stored tag bits with tag.B/. If the comparison suc-
ceeds, then we have a Cache Hit and the data bits read from the data array are
the correct data. The offset field o.B/ is used to select the appropriate data from
among the different words in the cache line. If the comparison fails, we have a
Cache Miss and the address now needs to be sent to the next level of the memory
hierarchy.

Figure 4.10 omits some other components of the cache such as control bits
(Valid, Dirty, etc.) that are stored along with the tag bits in the cache. The Valid
bit is used to distinguish cache contents from random values that might be stored at
initialization. The Dirty bit is used to ensure that when a cache line is replaced, it is
written back to the next memory level only if it is modified at the current level.

The architecture of a 4-way set-associative cache is illustrated in Fig. 4.11. There
are four banks of data and tag arrays. The indexed cache line is read out from all
the four data arrays. The tag bits are also read out from the four tag arrays and
compared to the tag bits of the address. If there is a match with any of the stored
tags, the output of the corresponding comparator will be ‘1’ (and that of the others
will be ‘0’). This leads to a cache hit and the comparator output bits are used to
select the data from the correct data array. If all comparisons fail, then we have a
cache miss.

100 4 Power-efficient Memory and Cache

Address

Selector

datahit/miss

Tag Index Offset

Fig. 4.11 Simplified architecture of 4-way associative cache. We have four different tag and data
arrays. The index is used to fetch the tag and data from all four arrays. If the address tag matches
any of the fetched tags, we have a cache hit, and the data at the corresponding cache line is selected

4.1.5 Power Dissipation During Memory Access

Power dissipation during memory accesses can be attributed to three main compo-
nents:

1. address decoders and word lines
2. data array, sense amplifiers, and the bit lines
3. the data and address buses leading to the memory.

All three components are significant as each involves the driving of high capaci-
tance wires that requires a considerable amount of energy: word lines, bit lines, and
data/address buses. Power optimizations for the memory subsystem indirectly target
one of these components and can be classified into the following broad categories:

� Power-efficient memory architectures – novel architectural concepts that aid
power reduction, both in traditional cache memory design and in other unconven-
tional memory architectures such as scratch pad memory and banked memory.

4.2 Power-efficient Memory Architectures 101

� Compiler optimizations targeting memory power – where code is generated
for general-purpose processors targeting power reduction. This topic is explored
in more detail in Chapter 5.

� Application specific memory customization – where the memory system can
be tailored for the particular application, leading to superior solutions than a
standard memory hierarchy.

� Transformations: compression and encoding – these are known techniques
from other domains that are also applicable to memory power reduction.

How is memory optimization for high performance different from memory op-
timization for low power? There are some classes of optimizations that result in
improving both performance and power – these are the optimizations that attempt
to reduce the number of memory accesses. If the number of accesses to memory
is reduced, then performance is improved because this results in reduced total la-
tency. Similarly, reduced memory access count also means reduced energy. Most
optimizations belonging to the classes of techniques summarized above specifically
target low power, and are orthogonal to standard performance improving memory
optimizations targeted by standard compilers. We must point out that most advanced
cache architecture features that aim at improving performance by effectively re-
ducing the number of cache misses (i.e., reducing the number of accesses to the
next level of memory), also improve power as an obvious consequence. However,
since they were proposed as primarily performance enhancement techniques, we do
not discuss them in detail in this book. The reader is referred to a standard com-
puter architecture text such as [12] for a more comprehensive discussion of all
performance-oriented cache features that also improve power by the simple conse-
quence of reducing the miss rate.

4.2 Power-efficient Memory Architectures

The memory subsystem in embedded processor based systems usually consists of
cache memory, along with other memory modules possibly customized for the ap-
plication. Because of the dominating role of instruction and data caches, new low
power memory architectures have been in the area of improving traditional cache
designs to make them power-efficient using a variety of techniques.

4.2.1 Partitioned Memory and Caches

Partitioning the memory structure into smaller memories (or banks) is one of the
mechanisms used to reduce the effective length of the bit-lines driven during mem-
ory operations, thereby reducing power dissipation. In the multi-bank memory
example shown in Fig. 4.12, the memory is physically partitioned into four banks,
each with 1/4 the size of the original monolithic memory. This causes each bit line

102 4 Power-efficient Memory and Cache

Address
Decoders

Address

Bank 0

Bank 2

Shorter
bit lines

Bank Select

Bank 1

Bank 3

sense
amplifiers

data

Fig. 4.12 Memory banking reduces bit-line capacitance. The memory array is physically divided
into multiple banks. Each cell now needs to drive a smaller bit-line within a bank

to be of 1/4 the original length, and a proportional decrease in the switching bit line
capacitance. The sense amplifiers are replicated in each bank. The lower order bits
of the address (two LSB bits in Fig. 4.12) are used to generate a select signal to
the right bank. Since only one of the banks would be activated during a memory
operation, this would lead to reduced power consumption in the overall structure
because of the considerably reduced energy from the switching of the smaller
bit-lines.

The concept of banking is also naturally applicable to cache memory, since the
bulk of the cache consists of two internal memories: the data and tag arrays. Cache
banking and other partitioning studies (such as bit-line segmentation that are con-
ceptually similar) are reported in [10, 23, 36]. One proposed variant is to make the
smaller partitioned units complete caches as opposed to just memory banks [21].
The added flexibility here is that the different caches need not be homogeneous.

4.2 Power-efficient Memory Architectures 103

A prediction mechanism such as most recently used is employed to predict which
sub-cache will be accessed next, and the result is used to turn the other sub-caches
into low power mode.

4.2.2 Augmenting with Additional Memories

A large number of low power cache ideas have been formulated around one central
principle: add an extra cache or buffer, usually small in size, and design the system
to fetch data directly from this buffer in the steady state, thereby preventing an
access to the L1 cache altogether. Since the buffer is relatively small, we can achieve
significant power savings if we can ensure a high hit rate to the buffer.

The technique of block buffering [36] stores the previously accessed cache line in
a buffer. If the next access is from the same line, then the buffer is directly read and
there is no need to access the core of the cache. This scheme successfully reduces
power when there is a significant amount of spatial locality in memory references
(Fig. 4.13). The idea of a block buffer can be extended to include more than one line
instead of just the last accessed line. A fully associative block buffer is illustrated
in Fig. 4.14 [10]. Recent tags and data are stored in fully associative buffers asso-
ciated with each set. If a new tag is found in this buffer, then the tag array read is
inhibited. The matching address in the buffer is used to fetch the corresponding data
from the data buffer. The correct size of this fully associative buffer will have to be
determined based on an engineering trade-off because a fully associative lookup in

Fig. 4.13 Block Buffering.
The last tag and cache line
data are buffered. If the
current tag matches the
buffered tag, then there
is no need to fetch from the
memory array, thereby saving
power

hit/miss
data

offsetindextag

tag
array

cache line

bufferbuffer

==

data
array

104 4 Power-efficient Memory and Cache

Fig. 4.14 Fully associative
block buffer. An extension of
the block buffer idea. Recent
tags and data are stored in the
buffer and looked up on a
cache access. If found, then
there is again no need to
access the memory array.
This saves power, as long as
the buffer is not too big, and
manages to catch a substantial
number of accesses

Filter
Cache

L1
Cache

Memory
Main

L2
Cache

CPU

Fig. 4.15 Filter cache. A small cache placed between the CPU and the L1 cache aims at catching
a significant number of accesses. Power is saved by keeping the filter cache small

a buffer is a very power-hungry operation. If the buffer is too large, then the power
overheads due to the associative lookup may overwhelm the power savings due to
the hit in the buffer. If the buffer is too small, then it may result in too many misses.
In practice, such fully associative lookups usually restrict the size to 8 or less.

One simple power reduction strategy in caches is to introduce another level of hi-
erarchy before the L1 cache, placing a very small cache (called a filter cache [22])
between the processor and the regular cache. This causes a performance overhead
because the hit ratio of this small cache is bound to be lower, but it leads to a much
lower power dissipation on a cache hit. If the hit ratio is reasonably high, then there
may be an overall power reduction. This is illustrated in Fig. 4.15. No overall mod-
ification is proposed to the overall cache hierarchy, except that the filter cache is
unusually small compared to a regular L1 cache.

4.2 Power-efficient Memory Architectures 105

Scratch Pad
Memory

L1
Cache

CPU Cache
L2

Main
Memory

Fig. 4.16 Scratch pad memory in a memory hierarchy. The SPM is small and fast, and resides at
the same level as the L1 cache. Power is saved because there is no hardware management of SPM
contents, unlike in caches

Data and instructions can also be statically assigned to an additional on-chip
memory whose address space is disjoint from the cached part. In Scratch Pad Mem-
ory [32], data is statically assigned by the compiler keeping in mind the data size and
frequency of access (Fig. 4.16). Unlike in caches, scratch pad memory contents are
never automatically evicted – the compiler or programmer explicitly manages the
space and “hits” are guaranteed. Techniques to exploit this architectural enhance-
ment are discussed in Section 4.4.

The well known observation that programs tend to spend a lot of time inside rela-
tively small loop structures, can be exploited with specialized hardware. Loop cache
[3] is one such structure consisting of an augmentation to the normal cache hierar-
chy. Frequently executed basic blocks within loops are stored in the loop cache. The
processor first accesses the loop cache for an instruction; if it is present, there is no
need to access the normal cache hierarchy, else the instruction cache is accessed.
The Decoded Instruction Buffer [1] is analogous to the loop cache idea, but here,
the decoded instructions occurring in a loop are stored in the buffer, to prevent the
power overhead associated with instruction decoding. The decoded instructions are
written to the buffer in the first loop iteration; in subsequent iterations, they are read
off the buffer instead of the L1 instruction cache (Fig. 3.16).

4.2.3 Reducing Tag and Data Array Fetches

For performance-related reasons, the tag array and the data array in the cache are
accessed simultaneously so that by the time the tag bits of the address of the resi-
dent cache line are fetched from the tag array and compared with the tag bits of the
required address to detect hit or miss, the corresponding cache line data is already
available for forwarding to the processor [12]. Thus, the fetching of the cache line
data is initiated even before we know whether the access is a hit or a miss; on a
miss, it is simply discarded. Since we expect most accesses to be hits, this parallel

106 4 Power-efficient Memory and Cache

access strategy improves performance significantly. In a set-associative cache, all
the tag arrays and data arrays are accessed at once. While designed for optimal per-
formance, this overall strategy results in waste of power, since in a k-way associative
cache, at least k � 1 fetches from the data array are discarded. Since cache lines are
usually wide (cache lines of length 8-32 words are common), the power wasted here
is substantial, leading to a significant scope for trade-offs between performance and
power.

The simplest power optimization addressing the above issue is to sequentialize
the accesses to the tag and data arrays – that is, to fetch from the data array only if
the tag fetch indicates a cache hit. This prevents dynamic power dissipation incurred
when data is fetched from the data array in spite of a cache miss [11]. Moreover, data
only needs to be fetched from the way that matched, not from the other ways. The
idea is illustrated in Fig. 4.17. Shaded blocks indicate data and tag arrays that are
active in the respective cycles. In the conventional cache of Fig. 4.17(a), all tag and
data arrays are shaded, indicating that all are accessed in the same cycle. In the low

DataTag DataTag DataTag DataTag
Cycle 1

a

Cycle 2
Tag TagData Data Tag Data Tag Data

Cycle 1
Tag

b

TagData Data Tag Data Tag Data

Matched way

Fig. 4.17 Power saving by accessing the data array on successful tag match. (a) In a conventional
set-associative cache, all tags and data arrays are accessed simultaneously. (b) When we sequen-
tialize tag and data accesses, we first fetch only the tags. If a match is found, then data is fetched
only from the matching way. Power is saved due to the avoided accesses, at the expense of time

4.2 Power-efficient Memory Architectures 107

power cache of Fig. 4.17(b), in the first cycle, all the tag arrays are accessed using
the index field of the address and the tag bits are read and compared with the tag field
of the address – only the tag arrays are shaded in Cycle 1 of Fig. 4.17(a). In Cycle 2,
the data array of only the matched way is accessed. This leads to a performance
penalty of an extra cycle, but leads to a straightforward dynamic energy reduction
due to the three ways for which the data arrays are not accessed.

The above approach reduces cache access energy but compromises on perfor-
mance. Another simple idea is (in case of instruction cache) to retain the address
of the last accessed cache line, and to fetch from the tag array only if the next in-
struction refers to a different line [33]. If the reference is to the same line, then
we are guaranteed a cache hit, and power is saved by preventing the redundant ac-
cess of the tag array. The above is similar to the block buffering strategy, but can
be generalized in an interesting way: we can assert that if there has been no cache
miss since the last reference to a basic block of instructions, then there is no need to
fetch the tag from the instruction cache in the next reference (since the previously
fetched instruction has not had an opportunity to get evicted yet). The information
about whether the target of a branch instruction exists in the cache is recorded in
the Branch Target Buffer, a commonly used structure in modern processors. If the
condition is satisfied, then the fetch from the tag array is disabled, saving memory
activity in the process [15].

The observation that, in set-associative caches, consecutive references tend to
access data from the same way, can be exploited in a mechanism that predicts the
way number for the next access to be the same as the previous one. On the next
access, only the tag and data arrays of the predicted way are activated, resulting in
a significant amount of dynamic power savings when the prediction is correct [14].
When the prediction turns out to be incorrect, the rest of the ways are fetched in the
next cycle, which incurs a performance penalty. This is illustrated in Fig. 4.18.

An alternative method of incorporating way prediction is through the location
cache – a proposal for the L2 cache [28]. This is an extra cache that is used to
indicate which way in the actual cache contains the data. A hit in the location cache
indicates the way number, and hence, we only need to access the specific way in the
L2 cache, thereby avoiding reading all the tag and data arrays of the set-associative
cache. A miss in the location cache indicates that we do not have a prediction, and
leads to a regular access from all the ways in the L2 cache. This is illustrated in
Fig. 4.19. The location cache needs to be small in order to ensure that its power
overheads do not overwhelm the saved power.

A certain amount of flexibility can be built into set associative caches to control
accesses to the different ways – ways can be selectively enabled or disabled de-
pending on the characteristics of an application. For example, in the L2 cache, we
can reserve separate ways for instruction and data so as to prevent conflicts. Also,
for small programs where instruction cache conflicts are not expected, some of the
ways assigned to instructions can be disabled to reduce activity in their tag and data
arrays [26]. In the way-halting cache [38], some least significant tag bits from each
way are stored in a separate array, which is first accessed and the corresponding bits

108 4 Power-efficient Memory and Cache

Cycle 2
Tag TagData Data Tag Data Tag Data

Predicted way

Cycle 1
Tag TagData Data Tag Data Tag Data

Predicted way
Cache miss on predicted way. Two cycles

Cycle 1
Tag TagData Data Tag Data Tag Data

Cache hit on predicted way. Single cycle.

Fig. 4.18 Power saving by Way Prediction in associative caches. Tag and data are fetched only
from the predicted way. If prediction is correct, this reduces power by avoiding accesses to all the
other ways. If incorrect, then all other ways are accessed, losing some time

Fig. 4.19 A Location Cache stores the predicted L2 way. When L2 is accessed, only the predicted
way is looked up first

4.2 Power-efficient Memory Architectures 109

Fig. 4.20 Way-halting cache. A subset of the tag bits are first compared for equality. If unequal,
then there is no need to fetch the remaining tag bits

of the address compared. If the comparison fails, then a matching failure is guaran-
teed for that way, and hence, the actual fetch of the tag and data arrays is prevented,
saving power. This is shown in Fig. 4.20. The enable/disable signal is generated
for each way by comparing the least significant 4 bits of the tag. On mismatch, the
fetching of the remaining tag bits and data are disabled.

4.2.4 Reducing Cache Leakage Power

The techniques discussed in previous sections target dynamic power consumption
in caches. As mentioned earlier, the importance of static power has been growing
in recent years, and with smaller geometries, the contribution of static power to
the overall power consumption is growing. Static power is dissipated as long as a
voltage is supplied to the circuit, and can be eliminated by turning power supply
off (in which case memory data is lost) or reduced by turning the voltage down

110 4 Power-efficient Memory and Cache

(in which case data can be retained, but accessing the data requires us to raise the
voltage again). A few strategies have been proposed to address the static power
dissipation in caches.

An important observation regarding lifetime of cache contents is that, the data
tends to be accessed frequently in small intervals of time, and is essentially dead for
large periods when it is never accessed. This leads to an interesting question – can
we turn off power to a cache line if we predict that the line will not be accessed in
the near future? The cache decay technique [20] relies on this approach. A counter
is maintained for each line; when it reaches a threshold value with no access to the
cache line, the power to the line is turned off after updating the next level cache with
the new value if necessary. The counter is reset on an access to the cache line. To
keep the overhead of maintaining the counters low, there is only one global counter,
but a two-bit derived counter is placed in each line to control the power supply. The
threshold value of the counter is determined from the values of the static energy
dissipated and the energy expended in re-fetching the line from the L2 cache. This
is illustrated in Fig. 4.21.

An alternative technique to turning off the power to cache lines is to turn down the
voltage so that data is retained, but cannot be accessed directly. In order to access the
data, the line would have to be first switched to high voltage (causing a performance
overhead). The power saved per line in this manner is smaller than that in the decay
technique where the power supply to the line is turned off, but this may permit
more lines to be moved into the drowsy state [8]. The idea, called drowsy cache, is
proposed to be used for all lines in the L2 cache, and some lines of the L1 cache. A
simple strategy of putting the entire cache to drowsy mode once in a while works
quite well, as opposed to introducing active circuitry to maintain counters on a per
line basis. A variation on this theme is to use predictive schemes to selectively move
lines to and from drowsy state. Information about cache lines with high temporal
locality is maintained in the BTB, and these lines are kept active. When a cache line
is accessed, the sequentially following line is moved to active state, anticipating its
use. A very fine grain control can be exercised by permitting the compiler to insert
instructions to turn individual cache lines off when its use is not anticipated for a
long time [13, 39].

Fig. 4.21 Cache decay.
If a cache line has not been
accessed for some time, then
turn off the power to the line

4.3 Translation Look-aside Buffer (TLB) 111

4.3 Translation Look-aside Buffer (TLB)

The concept of virtual memory was developed to relieve the programmer of the bur-
den of managing physical memory during program execution. The operating system
automatically manages the loading and relocation of the program at execution time.

For efficient memory management, the address space is divided into pages which
are analogous to cache blocks/lines, but at a higher level of granularity. The page
size typically varies from 4096 to 65536 bytes. A CPU with virtual memory gener-
ates a virtual address which gets translated into a physical address using hardware
and/or software approaches. This is referred as address translation. A page table
is used for mapping virtual address to physical address as shown in Fig. 4.22. The
page table contains mapping information of virtual pages to the available physical
pages. Thus, the page table size depends on the available physical memory size and
the size of each page. Typical page tables could be as large as 4 MB and are hence
usually stored in main memory. A miss in virtual memory would require an access to
secondary memory – usually hard disk – which may exhibit access latencies of mil-
lions of processor cycles. Since the miss penalties are very high, a fully-associative
strategy is used for placing blocks in the main memory.

Since the translation would impose an additional memory access overhead on
every memory access, fast address translation is performed using a special on-chip
cache called Translation Look-aside Buffer (TLB). TLB is a small cache that stores
the virtual to physical mapping information of the most recently accessed memory
locations. Typical TLB sizes vary from 8 to 128 entries. The structure of a TLB is
similar to that of a normal cache, with the tag array containing the virtual address
that is looked-up, and the data array containing the physical address to which it
maps. When the CPU requests a memory access, the virtual address is looked up

Page Table

Main Memory

page offset

physical
address

page num

virtual

virtual−address
from processor

Fig. 4.22 Address Translation: the virtual address generated by the CPU is translated into a phys-
ical address using the page table

112 4 Power-efficient Memory and Cache

TAG

Virtual Page Number

DATA

 CAM for
Fully Associative

Search
SRAM

hit/miss physical page number

Fig. 4.23 TLB architecture: logical view of the TLB structure

simultaneously in both the L1-cache as well as the TLB. In order to simplify the
hardware, TLBs for instruction and data memories are kept separate.

The instruction TLB (ITLB) is used in every cycle. Since consecutive instruc-
tions are usually mapped to the same page, the translation lookups for instruction
references can be optimized. In case of data TLB (DTLB), the number of lookups
per cycle depend on the number of parallel data accesses supported. For a wide is-
sue superscalar processor, the TLB would require multiple read ports. The logical
structure of the TLB is shown in Fig. 4.23. To support fully associative lookup, a
content addressable memory (CAM – generally considered to be expensive in terms
of power) is used for storing the tags (virtual addresses). A simple SRAM is used
for storing data (the corresponding physical address). In a well managed memory
system, TLB miss rate is very small – usually less than 1%.

The basic cell implemented for CAM logic would require 9 transistors (shown
in Fig. 4.24), compared to 6 transistors for a simple SRAM memory cell. It consists
of the standard 6 transistor (6T) structure for storage and three additional transistors
for comparing the stored bit with the content on bit lines. All bits in the tag share a
common match signal. During CAM lookup, all the match lines are precharged and
on a mismatch they are discharged by the NOR transistor at the bottom.

In a TLB lookup operation, a maximum of one entry would result in a match,
which is then used for reading the corresponding data from the SRAM. Hence, dur-
ing a lookup, every tag entry (except the matched one) would charge and discharge
the match lines leading to a large power dissipation. Larger cell size and matching
lines lead to a CAM cell occupying larger area and consuming higher power than
a standard SRAM cell. The fully associative structure leads to significant power
consumption in the TLB, in spite of it having relatively small number of entries in
comparison to caches. In embedded processors with small cache sizes, TLB power

4.3 Translation Look-aside Buffer (TLB) 113

Bit Bit

match

write

Fig. 4.24 CAM cell: in the 9-transistor structure of a CAM cell, the standard 6T structure is used
for storing the bit while the additional transistors are used for comparing the content with the bit
lines for a match

forms one of the major components of the total system power consumption. For in-
stance, in the StrongARM processor, TLB is reported to account upto 17% of the
total power.

In this section we discuss some of the important optimizations and trade-offs
considered in designing power-efficient TLBs.

4.3.1 TLB Associativity – A Power-performance Trade-off

Ideally, we would like the TLB to be fully associative to minimize the accesses to
main memory and hence obtain both power and performance benefits. However,
it is well established that the returns in terms of cache hits actually diminish with
increasing cache sizes. Since the TLB is also inherently a cache, this principle is
also applicable to TLBs. As a consequence, power dissipated in the fully associative
search for every lookup in a large cache can overshadow the power saved from
reducing the accesses to the main memory. Hence, large fully associative TLBs can
have a negative impact on power with little performance improvement. The trade-
off between power and performance needs to be carefully evaluated while designing
a TLB for a system.

4.3.2 Banking

TLB banking is an attractive low power solution [17, 27]. In a banked architecture
shown in Fig. 4.25, the TLB is split into multiple tag and data banks. Each tag

114 4 Power-efficient Memory and Cache

TAG DATA

SRAM CAM

hit/miss physical page

TAG DATA

SRAM CAM

hit/miss physical page

hit/miss physical
page number

Virtual Page Number

BANK−0 BANK−1

Tag
Tag

bank select

EnEn

Fig. 4.25 2-way Banked TLB architecture: In a banked TLB structure, some bits of the virtual
address are used for bank selection. Each bank has a fully associative tag storage and the corre-
sponding data entries in SRAM. During lookup only one bank is activated, thereby reducing the
access energy

bank is fully associative, while each data bank is a traditional SRAM. A lookup
request to TLB would need to access only one bank, thereby reducing the access
energy per lookup by N times, where N is the number of banks. For the same TLB
size (number of entries), an N -way banked architecture would have an associativity
of size

N
which would result in a performance loss. Thus, unlike traditional cache

architectures, banked TLB architecture needs careful study of power-performance
trade-offs.

Some advanced architectural enhancements and allocation schemes for reducing
performance loss due to banking are discussed below:

Victim Buffers – A victim buffer can be used to hold N recently replaced TLB
entries, similar to the concept used in caches. The victim buffer is shared by all
banks. During a TLB lookup operation, the victim buffer and the appropriate TLB
bank are searched in parallel. A hit either in the bank or victim would result in a
TLB hit. Thus, victim buffers can alleviate most of the capacity misses caused due
to banking and hence improve the performance [5]. The size of the victim buffer

4.3 Translation Look-aside Buffer (TLB) 115

should be selected in a way that the power consumed by searching the buffer is small
compared to the power saved due to reduced main memory accesses.

Allocation Policy – A more aggressive allocation policy can be used while replac-
ing TLB entries in a banked architecture. In general, if a free entry is not available
in the selected bank to hold the mapping for a new page, an existing page is re-
placed. In a more aggressive policy, the replaced entry could be placed in other
banks instead of being discarded, even at the expense of a second replacement. Dur-
ing a TLB lookup operation, first the TLB bank corresponding to the address being
looked-up is searched; on a miss, all the other banks are searched. If the entry is not
found in any of the banks, then a request to the main memory is sent. This scheme
would essentially ensure the same miss rate as that of a fully associative search.
However, it is more power efficient if the “hit ratio” to the bank that is searched first
is reasonably high, which is generally the case [5].

4.3.3 Reducing TLB Lookups

Since each TLB lookup is very costly in terms of power, intelligent techniques that
reduce number of lookups without having an adverse impact on performance form
attractive power optimization alternatives.

4.3.3.1 Deferred Address Translation

By employing virtually indexed and virtually tagged caches at the L1 level, address
translation would be required only during an L2 access (assuming L2 is physi-
cally addressed). Thus, TLB needs to be accessed only on L1 misses. Though this
would require an extra cycle for all L1 cache misses, the number of accesses, and
hence, energy dissipation in the TLB is considerably reduced [18]. Similarly, if the
L2 cache is also virtually indexed and virtually tagged, then the translation could
be further deferred and could even be implemented in software by the operating
system.

4.3.3.2 Using Address Mapping Register

Modern processors employ separate TLB structures for instructions and data to al-
low concurrent lookups for both data and instruction references. The ITLB is used
whenever an instruction reference requires address translation. Due to the tempo-
ral locality property of instruction addresses, there is a very high probability that
successive accesses would belong to the same memory page. With page sizes of
4KB to 64KB, one can expect a large number of accesses to the same page before
proceeding to the next. This property is exploited by storing the mapping for

116 4 Power-efficient Memory and Cache

the most recently accessed page in a special hardware register. During an ITLB
lookup, this register is accessed first for address translation and only if it is not
found in this register, the power hungry TLB lookup operation is performed [18].
Since this is stored in a register close to the processor, the overhead in timing on
a miss is negligible. The concept is similar to the idea of block buffering (Sec-
tion 4.2.2).

4.4 Scratch Pad Memory

Scratch Pad Memory (SPM) refers to on-chip memory whose contents are explicitly
managed by the compiler or programmer [32]. A typical architecture is shown in
Fig. 4.26. Address and data buses from and to the CPU could lead to on-chip caches
and scratch pad memory, but both these memory modules are optional. If the data
or instruction requested by the CPU is present on-chip, in either the scratch pad or
the caches, then it is accessed from the respective module. Otherwise, the next level
of memory hierarchy (off-chip) is looked up. The implementation of the scratch
pad could be in either SRAM or embedded DRAM on chip. The main logical char-
acteristic of the scratch memory is that, unlike caches where the management of
the memory content is decided transparently by hardware, in scratch pad the man-
agement is explicitly performed by the compiler or programmer. This could have
both positive and negative consequences. The advantages are that data and instruc-
tions stored in the scratch pad are guaranteed to be present where they were last
stored, until they are explicitly moved, which makes access times more determin-
istic. This not only enables predictability that is of crucial importance in real-time
systems, but also simplifies the hardware considerably – there is no need for the tag
memory storage, access, and lookup, which saves energy per access when data is

Fig. 4.26 Scratch pad
memory. The CPU’s request
for on-chip data/instruction
can be served from either
SPM or on-chip cache.
Management of SPM
contents must be performed
in software

4.4 Scratch Pad Memory 117

Fig. 4.27 Address mapping in scratch pad memory. Addresses 0::P � 1 are in SPM. Addresses
P::N � 1 are accessed through the cache. Access to both SPM and on-chip cache can be assumed
to be fast

found in the scratch pad. The latter makes scratch pads more energy efficient than
caches as long as the memory contents are efficiently managed statically. The dis-
advantages of SPM based architectures is that, often, program and data behavior
may not be easily analyzable by the compiler, making it difficult for it to exploit the
SPM well.

A given architectural platform could omit either the scratch pad or the caches. In
this section we will assume both are present on-chip, but most of the decision mak-
ing process about data and instruction mapping into scratch pad memory remains
unchanged even if the on-chip caches are absent. Figure 4.27 shows a typical view
of the memory address space 0::N � 1 divided into on-chip scratch pad memory
and off-chip memory (typically implemented in DRAM). Addresses 0::P � 1 are
mapped into scratch pad memory, and P:::N � 1 are mapped to the off-chip DRAM
and accessed through the cache. The caches and scratch pad are both on-chip and
result in fast access (1 cycle in Fig. 4.27). Accesses to the DRAM, which occur on
cache misses, take relatively longer time and larger power (access time is 20 cycles
in Fig. 4.27). If the cache is not present in the architecture, then the connection to
off-chip DRAM is usually through a Direct Memory Access (DMA) engine.

4.4.1 Data Placement in SPM

A significant role can be played by the compiler when the architecture contains
scratch pad memory structures, as these memories are directly managed by the com-
piler. Compile-time analysis is involved in determining which data and instructions

118 4 Power-efficient Memory and Cache

should be mapped to the scratch pad memory. Since SPM space is limited, we would
like to store relatively critical data in it [32]. Criticality can be defined in terms of
two major factors:

� size of data – smaller data sizes are preferred for SPM.
� frequency of access – higher frequency is preferred for SPM.

A problem of this nature maps approximately to the well known Knapsack Prob-
lem in computer science [9], where we are given a knapsack of a fixed size, and can
fill it with objects of different sizes and profit values. The objective is to select a sub-
set of the objects that fit into the knapsack while maximizing the profit. In the SPM
application of the knapsack problem, the SPM size is the equivalent of the knapsack
size; object size corresponds to the data/array size; and the profit can be measured in
terms of the number of accesses to the variables mapped into the scratch pad. This
is because SPM access involves less energy dissipation than a cache access; this
is a consequence of the SPM being a simple SRAM with no additional tag-related
circuitry characterizing the cache, and hence, no associated dynamic power dissi-
pation. In terms of performance, the guaranteed “hit” to the scratch pad ensures no
cache-miss related delays.

Standard knapsack heuristics can also be applied in a straightforward manner
to the SPM data allocation problem. The profit density metric, defined as Pi =Si

characterizes each object in the knapsack problem in terms of the profit per unit
size. The greedy heuristic fills the knapsack by objects in decreasing order of profit
density, as long as the object size is smaller than the remaining knapsack space. The
same approximate heuristic can also be used for SPM allocation, where we sort all
arrays in terms of access frequency per unit array size, and consider arrays for SPM
assignment in decreasing order. Scalar variables can be all stored in the SPM, as
they may not amount to too much total space.

The above simple formulation can be used to obtain a reasonable SPM allocation
of arrays, but several other factors can also be taken into account in a more compre-
hensive SPM allocation solution. First, several arrays can reuse the same SPM space
because their lifetimes can be non-overlapping. Secondly, when there is a possibility
of conflicts in the caches between different arrays accessed repeatedly, one of them
could be diverted into the SPM to ensure good overall memory access behavior for
both arrays. An example is shown in Fig. 4.28. Here, arrays a and b are accessed in a
regular manner, whereas accesses to c are data-dependent. Cache conflicts between
arrays a and b could be avoided by suitably aligning the start positions of the arrays

Fig. 4.28 Arrays with irregular accesses could benefit from SPM allocation. Arrays a and b are
accessed regularly, and if properly laid out, should exhibit good cache behavior. However, access
to c is irregular – not much locality might exist, and c could benefit from SPM allocation

4.4 Scratch Pad Memory 119

in memory. However, unpredictable and unavoidable cache conflicts with array c

could occur. The conflicts could be avoided by assigning c to the SPM, where it is
guaranteed to not interfere with the cache contents.

4.4.2 Dynamic Management of SPM

We observe that the SPM allocation strategies in Section 4.4.1 assign an array to the
SPM for the entire duration of its lifetime. This has some obvious disadvantages.
An array may be occupying the SPM even if it is currently not being used, thereby
precluding a different, more relevant, array from occupying the valuable space.

Figure 4.29(a) shows an example with arrays a and b accessed in two different
loops, with a being allocated to the SPM, and b not allocated. This causes the second

a

b

Fig. 4.29 Space reuse in scratch pad memory. (a) Without reuse of SPM space, only one of a; b fits
into SPM. The second loop performs poorly. (b) After the first loop, a is replaced in the SPM by b

120 4 Power-efficient Memory and Cache

loop to perform poorly. However, noticing that a is not accessed in the second loop,
we could substitute a by b before control enters the second loop (Fig. 4.29(b)). This
calls for a more general strategy for identifying program points where we trans-
fer data between the SPM and the background memory. The decision of whether
to transfer an array to the SPM would depend on a comparison of the expected
performance and energy improvement from fetching the data against the overhead
incurred in doing so [37].

The next relaxation called for in the dynamic management of SPM is to permit
a portion of an array to occupy space in the SPM. This allows us to assign SPM
space to arrays that have heavy reuse but are larger than the SPM. One useful en-
tity in this context is the idea of a block or tile – a portion of a multi-dimensional
matrix that appears in the context of the blocking or tiling compiler transformation.
Computations involving large matrices often show poor performance when the ar-
rays are too large to fit into the data cache. Spatial and temporal locality exist in the
computation, but capacity misses prevent data reuse. To overcome the problem, the
arrays are divided into small blocks or tiles that fit into the cache, and the loops are
appropriately restructured. This results in a significant performance improvement.
Loop tiling is illustrated in Fig. 4.30 with a matrix multiplication example.

A similar conceptual transformation can be effected in the SPM. Arrays can be
divided into tiles, moved into the SPM before being processed, and moved back
later. The process is illustrated in Fig. 4.31 with the same matrix multiplication
example. Array tiles are first transferred into the SPM with the READ TILE rou-
tine. After processing, the tile Z0 is written back to memory with the WRITE TILE
routine [19].

a

b

Fig. 4.30 Blocking or tiling transformation. (a) Original loop: arrays might be too large to fit into
on-chip memory. (b) Tiled loop: tile size is chosen so that it fits into on-chip memory

4.5 Memory Banking 121

Fig. 4.31 Tiling
transformation in SPM.
(a) Tiles are first transferred
to the SPM. (b) Updated ones
are written back to main
memory after processing

a

b

4.4.3 Storing both Instructions and Data in SPM

An argument for scratch pad memory allocation can also be made in the context of
instructions. Frequently executed instructions or basic blocks of instructions can be
mapped to SPM so as to prevent the energy and performance-related overheads due
to being evicted from the instruction cache. Power is saved both on account of the
elimination of tag storage and access, and both performance and energy improves
because of reduced cache misses. In fact, a unified formulation can use the same
scratch pad memory to map either instructions or data [16, 35].

4.5 Memory Banking

The presence of multiple memory banks creates interesting optimization opportuni-
ties for the compiler. Traditionally a few DSP processors used a dual-bank on-chip
memory architecture, but in modern systems, banking is used in various contexts for
various objectives. In synchronous DRAMs (SDRAMs), banking is used to improve
performance by keeping multiple data buffers from different banks ready for data

122 4 Power-efficient Memory and Cache

access. In application specific systems, dividing a monolithic memory into several
banks leads to considerable performance improvement and power savings. The per-
formance improvement comes from the ability to simultaneously access multiple
data words, while the power savings arise from smaller addressing circuitry, word
lines, and bit lines, as observed earlier.

The power optimization problem is to assign data to memory banks in order to
minimize certain objective functions. In terms of performance, we would like to
be able to simultaneously access data in different banks so that computation time
decreases, assuming multiple datapath resources are available. In terms of power
dissipation, we have the possibility of moving specific banks to sleep mode during
periods of inactivity.

Figure 4.32 illustrates the memory bank assignment problem with a simple ex-
ample. In the schedule shown in Fig. 4.32(a), nodes in dark, labeled A; B , etc.,
represent memory load and store nodes, and result in memory accesses. M1 and
M 2 are the two memory banks. Initially, variables A, C , E , F , and G are assigned
to bank M1. Variables B and D are assigned to M 2. Assume that the memory banks
can be either in active mode or sleep mode. Further, assume that the memory can
transition from active to sleep state instantaneously, whereas it requires one cycle to
transition from sleep to active mode (i.e., one cycle has to be spent in wake-up mode
during this transition). The power dissipation during active and wake-up modes is
high, and the power during sleep mode is low. The schedule in Fig. 4.32(a) does
not permit any transition to sleep modes due to the lack of sufficiently long periods
of inactivity. In order to exploit the sleep mode without compromising the schedule
length, we can alter the bank assignment. Let us interchange the bank assignment of
C and D, which results in an alternative schedule shown in Fig. 4.32(b). We notice
that now bank M 2 is inactive for a sufficiently long time, permitting us to move it to
sleep mode for two cycles, before returning to active mode via one cycle in wake-up
mode [25].

Fig. 4.32 Bank assignment
targeting power efficiency.
Transition of a bank from
active to sleep state is
instantaneous, while
transition back requires one
cycle. (a) Bank assignment
affords no possibility to move
either bank into sleep state.
(b) Variables re-assigned to
permit M 2 to be moved to
sleep state for two cycles

a b

4.5 Memory Banking 123

Fig. 4.33 Data migration. At
t2, B is moved to M1,
permitting us to move M 2 to
sleep mode. B is not accessed
between t3 and t4. At t4, A is
moved to M 3, permitting us
to move M1 to sleep mode

Often, the presence of conditionals prevents a proper static analysis of decisions
relating to the setting of memory banks to sleep mode for saving power. Dynamic
approaches involving the run-time migration of data to different memory banks may
be needed. We can keep track of variable- and bank-referencing patterns, and can
attempt to cluster recently referenced variables into the same bank, thereby creat-
ing an opportunity to maximize the number of inactive banks and move then to
sleep mode.

Figure 4.33 illustrates the basic idea of a data migration strategy. Initially, at time
t1, three arrays A, B, and C are stored in three memory banks M1, M2, and M3.
Our monitoring hardware detects accesses to both A and B between times t1 and t2,
enabling the migration of array B to module M1. Assume that M1 is large enough
to accommodate A and B, but is not large enough to accommodate all three arrays.
With this migration, module M2 can be set to sleep mode. Between t2 and t3, we
detect accesses to all of A, B, and C, so we just retain the current modes. Between
t3 and t4, we detect accesses to A and C. This leads us to migrate A to module M3,
causing both M1 and M2 to be set to sleep mode.

In order to ensure the effectiveness of the data migration approach, some issues
that need to be addressed are:

� the delay and energy overhead of the data being migrated needs to be accounted
for; large array variables can result in large overheads.

� data migration needs to account for the sizes of the memory banks.

124 4 Power-efficient Memory and Cache

� additional hardware is needed to keep track of temporal correlation of different
variables. Since this can lead to a significant power overhead if done every cycle,
a sample-based approach may be necessary [6].

4.6 Memory Customization

One of the most important characteristics of embedded SoCs is that the hardware
architecture can be customized for the specific application or set of applications that
the system will be used on. This customization can help improve area, performance,
and power efficiency of the implementation for the given application. Even when
the overall platform may be fixed, different subsystems can be independently tai-
lored to suit the requirements of the application. The memory subsystem is a fertile
ground for such customization. Cache memory can be organized in many different
ways by varying a large number of parameters: cache size, line size, associativity,
write policy, replacement policy, etc. Since the number of possible configurations is
large, an explicitly simulation-based selection strategy may be too time-consuming.
A static inspection and analysis of the application can reveal several characteristics
that help determine the impact of different parameter values without actual execu-
tion or simulation.

Data caches are designed to have cache lines consisting of multiple words in
anticipation of spatial locality of memory accesses. How large should the cache
line be? There is a trade-off in sizing the cache line. If the memory accesses are
very regular and consecutive, i.e., exhibit good spatial locality, a longer cache line is
desirable, since it saves power and improves performance by minimizing the number
of off-chip accesses and exploits the locality by pre-fetching elements that will be
needed in the immediate future. On the other hand, if the memory accesses are
irregular, or have large strides, a shorter cache line is desirable, as this reduces off-
chip memory traffic by not bringing unnecessary data into the cache. An estimation
mechanism could be used to predict the impact of different data cache line sizes
based on a compiler analysis of array access patterns. The cache line size is bounded
from above by the DRAM burst size, which represents the maximum number of data
words that can be brought into the cache with a single burst access.

A given amount of on-chip data memory space could be divided in various ways
into data cache and scratch pad memory. An associated memory customization prob-
lem is to determine the best division of the space. The division that results in the least
off-chip memory accesses would again maximize performance as well as minimize
power. Figure 4.34 shows a typical variation of the total number of off-chip memory
accesses with increasing data cache size (D), with the total on-chip memory fixed to
a constant T . Thus, the choice of a larger cache size D results in a correspondingly
smaller scratch pad memory size T � D. We note that when the cache size is too
small or too large, the number of memory accesses is relatively higher. When the
cache size is too small, it is essentially ineffective due to serious capacity misses.
When the cache is large, occupying all of the on-chip memory, then there is no

4.6 Memory Customization 125

Fig. 4.34 Division of on-chip memory space T into cache and scratch pad. When cache is too
small, latency increases because of capacity misses. When cache is too large, latency also increases
because there is no room for effective SPM utilization

room for scratch pad memory, thereby losing the advantages of SPM. The optimal
on-chip memory configuration lies somewhere in between the two extremes, with
some space devoted to both data cache and SPM, augmented by an intelligent com-
piler strategy that allocates data to the two components.

Other than the cache vs. scratch pad trade-off above, the total on-chip memory
space allocated to the application can also be a variable, to be customized depending
on the requirements of the application. In general, data cache performance, as mea-
sured by hit rate, improves with increasing cache size. Similarly, increasing scratch
pad memory performance also leads to higher performance. A memory exploration
loop can vary the total on-chip memory space, and study the performance variation,
as depicted in Fig. 4.35. Each data point (A, B, C, D, and E) could represent the best
result obtained from a finer-grain exploration of scratch pad vs. cache partition for
a fixed total on-chip memory size [30]. Figure 4.35 shows that the performance, as
measured by hit rate (or, equivalently, in terms of total off-chip memory traffic), im-
proves with increasing on-chip memory size, but tapers off beyond a certain point.
Design points such as C in Fig. 4.35 are strong candidates, since they represent
the boundary beyond which it may not be worth increasing the memory size – for
higher sizes, the hit-rate improves marginally, but the resulting larger memory size
represents an overhead in both memory access time and energy.

Embedded SoCs allow the possibility of customized memory architectures that
are tailored to reducing power for a specific application. Figure 4.36 shows an ex-
ample of such an instance. A simple loop is shown in Fig. 4.36(a), with two arrays
a and b accessed as shown. A default computation and memory architecture for im-
plementing this system is shown in Fig. 4.36(b). The computation is performed in

126 4 Power-efficient Memory and Cache

a

b

Fig. 4.35 (a) Off-chip memory access count decreases with increasing on-chip memory size.
Beyond point D, performance does not improve (but power continues increasing). (b) Energy de-
creases with increasing on-chip memory, but the trend reverses for larger on-chip memory because
the per-access energy of larger memories is greater

the proc block, and arrays a and b are stored in memory module Mem of size N

words. Assuming there is no cache structure here, every array reference results in
an access to Mem block, resulting in the standard power dissipation associated with
reading or writing of an N -word memory.

A more careful analysis of the array reference patterns reveals some optimization
possibilities [29]. Figure 4.36(c) shows the elements of a that are accessed in one it-
eration of the j -loop, with i D 5 and j D 2. We assume that a is an 8 � 8 array and
L D 4. In Fig. 4.36(d), we show the elements of a accessed in the next j -iteration,
i.e., i D 5; j D 3. We notice an overlap of three array elements, indicating a signifi-
cant data reuse resulting from temporal locality of data access. In general, out of the
L array elements accessed in the innermost loop, we have already accessed L � 1

elements in the previous j iteration. A suggested power optimization here is that,

4.6 Memory Customization 127

P
M1

M2

a b

c d

e f

Fig. 4.36 Memory Customization Example (a) Original Loop (b) Default memory architecture
(c) ‘a’ elements accessed in inner loop for iD 5, jD 2 (d) ‘a’ elements accessed in inner loop for
iD 5, jD 3 (e) Modified loop (f) Customized memory architecture. Only the relatively smaller M1

is accessed in the inner loop, saving power

we can instantiate a small buffer a buf of size L words which would store the last
L elements of a accessed in the previous j -iteration. Since L is much smaller than
N , we would be accessing data only from the much smaller M1 memory module
shown in Fig. 4.36(f) in the innermost loop. Since the energy cost for access from
M1 is expected to be much smaller than that due to access from Mem, we can expect
a significant energy saving for the entire loop nest. The modified loop is shown in
Fig. 4.36(e).

128 4 Power-efficient Memory and Cache

An explicit physical partitioning of the logical memory space could also be per-
formed based on the dynamic profile of memory address references. This could be
useful when a static analysis of the array references is difficult either due to com-
plex conditionals in the specification, or due to data dependence. The frequency of
memory references for an application is generally not uniformly distributed over
the address space – certain parts of the memory are likely to be more heavily ac-
cessed than others. Figure 4.37(a) shows an example of a memory access frequency
distribution over the address space. The accesses could be logically grouped into
three windows of different characteristics – the first 256 addresses have a relatively
high access frequency; the next 2048 elements have a low access frequency; and
the final 1024 elements have a medium frequency. Such variations in access dis-
tributions could occur in typical code because different data arrays are accessed in
different ways. Based on the above grouping, the memory space could be partitioned
into three physical modules. Figure 4.37(b) shows a default memory architecture in
which all memory accesses are made to one large memory module storing the en-
tire address space. This could, however, lead to unnecessarily high memory access
energy because every access would be made to the large memory. Figure 4.37(c)

a

b c

Fig. 4.37 Memory Partitioning. (a) Distribution of access frequency over memory address space.
(b) Default memory architecture. (c) Partitioned memory. The most frequent accesses are made to
the smaller M1, saving power

4.7 Reducing Address Bus Switching 129

shows an example memory partitioning with the three logical address ranges identi-
fied above mapped to three separate physical modules. This partitioning ensures that
the high frequency accesses are restricted to the relatively smaller memory module,
thereby leading to a significant energy saving over the default architecture.

4.7 Reducing Address Bus Switching

The memory address bus is typically long because of several reasons. The memory
core might have been separately obtained and instantiated, and it may not be possi-
ble to physically place it next to the address generation logic. The memory may be
serving several units which are independently generating addresses and accessing
data. Hence, bits switching on the address lines lead to significant power dissipa-
tion because of the large capacitance associated with each line. This provides an
important power optimization opportunity – power can be reduced by reducing the
total number of bits switching on the memory address lines. This reduction can be
effected by two broad approaches: (i) encoding the address lines; and (ii) transform-
ing the data layout.

4.7.1 Encoding

The sequence of bits appearing over the memory address bus can be changed by, in
general, inserting an encoder close to the address generation block, and a decoder
near the memory in such a way that the same addresses are generated and seen
by the memory as before, but the sequence of signals appearing at the address bus
is modified. The difference is illustrated in Fig. 4.38(a) and (b). The encoder and

a

b

Fig. 4.38 Address Bus Encoding. (a) Original architecture (b) Encoder and decoder for address
bus. The objective of encoding is to have lower activity on the encoded address bus at the expense
of a small encoding and decoding power

130 4 Power-efficient Memory and Cache

Fig. 4.39 Bus Invert Coding.
(a) Original sequence – total
bits switchingD 14
(b) Modified sequence –
control bitD 1 indicates the
data bits should be inverted.
Total bits switchingD 8

a

b

decoder logic blocks incur additional power overhead, but the power saved by re-
duced switching on the high-capacitance memory address lines is expected to be
much larger. We study two very simple and effective encoding techniques in this
section.

The Bus-invert encoding technique attempts to minimize the Hamming Distance
between successive words appearing on the address bus [34]. An extra bit is added to
the memory bus, indicating to the decoder whether or not the address word should be
bitwise inverted. The choice of whether to invert or not is made depending on which
option reduces the hamming distance between the current and previous words. This
is illustrated in Fig. 4.39, with four successive addresses appearing on an 8-bit ad-
dress bus. The four successive address values appearing on the address bus have
hamming distances 6, 6, and 2, making a total of 14 bits switching. The bus-invert
encoding mechanism adds an auxiliary bit to the address bus (shown in grey), mak-
ing the width 9 bits. Noticing that 6 out of the 8 bits have switched in the second
word, we decide to complement the address bits in the second word. The fact that
the bits are inverted is transmitted by making the auxiliary bit ‘1’. This causes a total
hamming distance of 3 between the first two words (two bits in the address word,
and one due to the auxiliary bit). Comparing the second transmitted word with the
third word, we notice a hamming distance of just 2, so the word is sent as is, with the
auxiliary bit set to ‘0’ (indicating that the word is normal, not complemented). Thus,
whenever the number of bits switching is more than half the bus width, we can send
the complemented bits, thereby ensuring that no more than half the bits in the bus
will change from one transaction to the next. The total number of bits switching in
the encoded bus is 8, as opposed to 14 in the original bus. The encoding is a general
mechanism and is not address-bus specific.

An encoding scheme that is specifically tailored to the typical behavior of mem-
ory address buses is the T0 encoding. It exploits the general observation that
often, the address sequence generated on the instruction memory address bus of

4.7 Reducing Address Bus Switching 131

Fig. 4.40 T0 Encoding.
(a) Original sequence – total
bits switchingD 4
(b) Modified sequence –
control bitD 1 indicates that
the previous value should be
incremented. Total bits
switchingD 0

a

b

a processor tends to have consecutive values because of spatial locality of reference
in the instruction stream. The T0 code adds an extra line to the bus, which is used
to indicate whether the next address is consecutive and is generated by increment-
ing the previous one [4]. This is illustrated in Fig. 4.40. The original sequence of
four address has consecutive values, with the hamming distances between words
being 1, 2, and 1, giving a total of 4 bits switching for the sequence (Fig. 4.40(a)).
In T0 encoding the second address repeats the first, with the extra control bit be-
ing ‘0’, indicating that the the previous address should be incremented to generate
the new one. This continues for the remaining words, with the decoder expected to
increment the previous address to generate the new one as long as the control bit
is ‘0’. This scheme may lead to near zero transitions in the steady state when there
is a sequence of consecutive addresses. In addition to short consecutive sequences
occurring in the instruction address sequence, this also happens during array data
accesses in loops.

4.7.2 Data Layout

An orthogonal transformation to address encoding is to rearrange the data layout in
memory so that the generated address sequence has lower switching when the data is
accessed. Such layout transformations apply more to data memory than instructions.

Figure 4.41 shows an example of a simple data layout transformation that helps
bring down the memory address bus switching. An example code is shown in
Fig. 4.41(a), and its corresponding data memory access sequence is shown in
Fig. 4.41(b). We notice that the memory address alternates between two regions
of the memory corresponding to arrays a and b. This usually results in a large num-
ber of address bits switching between every consecutive pair of address words (with

132 4 Power-efficient Memory and Cache

Fig. 4.41 Data Interleaving.
(a) Behavior (b) Original
address sequence (c) Address
sequence when arrays are
interleaved. The interleaved
address sequence usually has
lower total switching, and is
amenable to other encoding
strategies such as gray code

a

b c

the exception of the specific case where the corresponding data elements of equal
width are separated by an exact power of two, in which case only one bit would
be flipping). Since the sequence is deterministic, we can perform a simple trans-
formation of interleaving the elements of the two arrays, as shown in Fig. 4.41(c).
This causes the address sequence to be consecutive, which is much better behaved
in terms of bit switching, and can then be exploited by other encoding and decoding
mechanisms such as Gray Code or T0.

A more complex data transformation is shown in Fig. 4.42. In the example of
Fig. 4.42(a), the two-dimensional array a is accessed in a tiled pattern visually de-
picted in Fig. 4.42(b). Using the standard storage conventions of row-major and
column-major storage for multi-dimensional arrays, we see that the address se-
quence incurs large hops even within a tile, since we have more than one row
and column accessed in each tile. The sequence for row-major storage is shown
in Fig. 4.42(c). Again, the predictability of the behavioral array reference pattern
can be used to use a more custom tile-based mapping to store array data in memory.
Figure 4.42(d) shows the tiles laid out in memory in a manner that avoids the large
hops in the memory address bus.

Detailed discussions on encoding and data transformations for reducing address
bus power can be found in [4, 29]. Before deciding on the applicability of such
encoding and transformations to a specific system design scenario, it is important to
perform a careful cost-benefit analysis.

4.7 Reducing Address Bus Switching 133

a

b

c d

Fig. 4.42 Tile-based data storage. (a) Behavior (b) Tiled memory access pattern (c) Address se-
quence using row-major storage (d) Address sequence using tile-based storage. Access pattern is
more regular and shows lower total switching in tile-based storage

� The address bus encoding decision would depend on the actual address bus
lengths in the system. If the on-chip bus has a relatively small length, the area
and power overhead incurred in encoding and decoding circuitry may not be
worthwhile.

� The actual memory architecture and address protocol may also influence the ap-
plicability of such optimizations, a good example being a DRAM. In DRAMs,
the actual address is time-multiplexed into row and column addresses, using half
the number of address bits. This obviously requires changes to the simple encod-
ing techniques discussed above based on hamming-distance between complete

134 4 Power-efficient Memory and Cache

addresses – here, we need to worry about the hamming distance between the
row- and column address as well.

� Address bus hamming distance is not the only metric of importance in determin-
ing total energy. It is possible that a hamming distance of 1 refers to a physically
distant memory location if the switch happens in the higher order address bits.
This may cause a switch in the DRAM memory page, which will lead to addi-
tional power costs in the DRAM and associated changes in the access protocol
FSM that should be accounted for.

� A similar cost analysis has to be performed for data transformations targeting the
memory address bus. Data transformations are more global in their effect – they
go beyond the specific loop for which the transformation was derived. Transfor-
mations to the same arrays in different loops might be conflicting – they may be
useful in one and harmful in another. Data transformations need to be performed
after analyzing their effect on all sections of code where the data is accessed.

4.8 DRAM Power Optimization

As the amount of memory in computer systems continues to grow, the off-chip mem-
ory – the DRAM sub-system – increasingly consumes larger amounts of power,
even though the CPU is designed against a tight power budget. Newer generations
of DRAMs have exposed power management controls so that external controllers
can implement aggressive optimization policies to reduce DRAM power. The most
common such feature has been the introduction of low power modes in different
DRAM states. These could be one of the following:

� Active: The DRAM could be moved to an Active Power-down mode. In this “shal-
low” low-power mode, one or more DRAM banks is open, and it is relatively
fastest to bring the DRAM back to accessing data from this mode.

� Precharge: In the Precharge Power-down mode, all banks are closed, and it takes
more time to return to the active state where we can access data again. Power
consumption is lower than in active power-down.

� Self-refresh: In the Self-refresh Power-down mode, the power consumption is the
lowest, and it takes the maximum time to recover to the active state.

The transitions to and from the above DRAM low power states is expected to be
explicitly performed by the memory controller. The architectural details and pro-
gramming possibilities continue to evolve with newer generation of DRAMs.

The above power reduction opportunities have led to attention being focussed on
optimizations through various mechanisms – starting from the level of memory con-
trollers that directly interface to DRAMs, all the way to page allocation policies in
operating systems. DRAM power management functions can be performed by many
different entities: the DRAM controller can use prediction techniques; the compiler
can analyze the source code and insert explicit instructions to change DRAM power
state; and the operating system scheduler can also monitor activity on the DRAM

4.9 Summary 135

and make the management decisions. Since the operating system is able to simulta-
neously monitor activities of different processes, it may discover reference patterns
not visible to the compiler.

It is obvious that some variant of the standard predictive shutdown policy gener-
ally useful in several other low power controller strategies – predict the future idle
time based on past behavior, and switch to low power mode if there is an expecta-
tion of power saving – is also applicable in the DRAM context (see Section 5.1.2
for an application of the same principle to voltage scaling decisions based on past
CPU utilization). Basically, the controller’s policy should ensure that the overhead
of transitioning to and from the low power state is less than the expected power
saving [7]. The choice of the controller policy would depend on the amount of
performance penalty we are willing to tolerate. This is achieved by setting specific
threshold parameters for every power state of the DRAM. If the chip has not been
accessed for a time period beyond the threshold, then we can move the DRAM to
the next low power state [24].

The data migration policy discussed in Section 4.5 – where data objects are
grouped into a smaller number of memory modules so that others can be set to sleep
mode – is an example of a high-level data organization concept that also applies to
DRAM. The default page allocation of the operating system, which effectively does
a random assignment of memory pages across the different memory chips present
in the system, can be made power aware by exploiting the same data consolidation
idea introduced in Section 4.5 – frequently accessed memory pages are migrated to
a common memory chip so as to improve the possibility of power saving through
moving unused chips to low power mode [24].

Finally, attempts can be made to bring successive DRAM accesses closer in time
so that idle periods can be made artificially longer. Bringing two DRAM accesses
together is usually achieved by delaying the first access, which may incur a perfor-
mance penalty.

4.9 Summary

The storage and retrieval of large amounts of data and instructions in modern
electronic and computer systems make the memory subsystem an important tar-
get component for power optimization. Memory related power reduction spans a
broad spectrum across several levels of abstraction. Circuit and architecture level
opportunities have been identified for trading off a small performance penalty for
significant savings in power dissipation in processor caches. Scratch pad memo-
ries help reduce system power by avoiding expensive tag lookups associated with
caches. Since SoCs permit flexible on-chip memory architectures, estimation based
exploration can help determine the best memory configurations for an application
scenario. Techniques such as encoding and data layout transformation could be used
to reduce power dissipation on high-capacitance memory address buses.

136 4 Power-efficient Memory and Cache

The chapter covered some of the basic techniques in each of the categories de-
scribed above. The reader is encouraged to look up the references indicated at
various places in the chapter to obtain an idea of the more advanced proposals in
the memory power optimization field. The area continues to draw significant in-
terest from researchers as systems move in the direction of higher complexity. For
example, as next generation DRAMs evolve to include more power controls, we can
expect associated power optimization proposals to exploit them. Advanced transfor-
mations such as compression also help reduce power by reducing off-chip memory
traffic and providing similar performance with smaller memory and cache sizes.

References

1. Bajwa, R.S., Hiraki, M., Kojima, H., Gorny, D.J., Nitta, K., Shridhar, A., Seki, K., Sasaki, K.:
Instruction buffering to reduce power in processors for signal processing. IEEE Transactions
on VLSI Systems 5(4), 417–424 (1997)

2. Bellas, N., Hajj, I., Polychronopoulos, C.: Using dynamic cache management techniques to
reduce energy in a high-performance processor. In: International symposium on low power
electronics and design, pp. 64–69. San Diego, USA (1999)

3. Bellas, N., Hajj, I.N., Polychronopoulos, C.D., Stamoulis, G.: Architectural and compiler tech-
niques for energy reduction in high-performance microprocessors. IEEE Transactions on VLSI
Systems 8(3), 317–326 (2000)

4. Benini, L., Micheli, G.D.: System level power optimization: Techniques and tools. ACM Trans-
actions on Design Automation of Electronic Systems 5(2), 115–192 (2000)

5. Chang, Y.J.: An ultra low-power tlb design. In: DATE ’06: Proceedings of the conference
on Design, automation and test in Europe, pp. 1122–1127. European Design and Automation
Association, 3001 Leuven, Belgium, Belgium (2006)

6. Delaluz, V., Sivasubramaniam, A., Kandemir, M., Vijaykrishnan, N., Irwin, M.J.: Scheduler-
based dram energy management. In: Design Automation Conference. New Orleans, USA
(2002)

7. Fan, X., Ellis, C., Lebeck, A.: Memory controller policies for dram power management.
In: International symposium on low power electronics and design, pp. 129–134. Huntington
Beach, USA (2001)

8. Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T.: Drowsy caches: simple tech-
niques for reducing leakage power. In: International symposium on computer architecture,
pp. 240–251. Anchorage, USA (2002)

9. Garey, M.R., Johnson, D.S.: Computers and Intractibility – A Guide to the Theory of
NP-Completeness. W.H. Freeman (1979)

10. Ghose, K., Kamble, M.B.: Reducing power in superscalar processor caches using subbanking,
multiple line buffers and bit-line segmentation. In: International symposium on low power
electronics and design, pp. 70–75. San Diego, USA (1999)

11. Hasegawa, A., Kawasaki, I., Yamada, K., Yoshioka, S., Kawasaki, S., Biswas, P.: SH3: High
code density, low power. IEEE Micro 15(6), 11–19 (1995)

12. Hennessy, J.L., Patterson, D.A.: Computer Architecture – A Quantitative Approach. Morgan
Kaufman, San Francisco, CA (1994)

13. Hu, J.S., Nadgir, A., Vijaykrishnan, N., Irwin, M.J., Kandemir, M.: Exploiting program
hotspots and code sequentiality for instruction cache leakage management. In: International
symposium on low power electronics and design, pp. 402–407. Seoul, Korea (2003)

14. Inoue, K., Ishihara, T., Murakami, K.: Way-predicting set-associative cache for high perfor-
mance and low energy consumption. In: International symposium on low power electronics
and design, pp. 273–275. San Diego, USA (1999)

References 137

15. Inoue, K., Moshnyaga, V.G., Murakami, K.: A history-based I-cache for low-energy multi-
media applications. In: International symposium on low power electronics and design, pp.
148–153. Monterey, USA (2002)

16. Janapsatya, A., Parameswaran, S., Ignjatovic, A.: Hardware/software managed scratchpad
memory for embedded systems. In: Proceedings of the IEEE/ACM International Conference
on Computer Aided Design (2004)

17. Juan, T., Lang, T., Navarro, J.J.: Reducing tlb power requirements. In: ISLPED ’97: Proceed-
ings of the 1997 international symposium on Low power electronics and design, pp. 196–201.
ACM, New York, NY, USA (1997). DOI http://doi.acm.org/10.1145/263272.263332

18. Kadayif, I., Sivasubramaniam, A., Kandemir, M., Kandiraju, G., Chen, G.: Generating physical
addresses directly for saving instruction tlb energy. In: MICRO 35: Proceedings of the 35th an-
nual ACM/IEEE international symposium on Microarchitecture, pp. 185–196. IEEE Computer
Society Press, Los Alamitos, CA, USA (2002)

19. Kandemir, M., Ramanujam, J., Irwin, M.J., Vijaykrishnan, N., Kadayif, I., Parikh, A.: Dynamic
management of scratch-pad memory space. In: ACM/IEEE Design Automation Conference,
pp. 690–695 (2001)

20. Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: exploiting generational behavior to reduce
cache leakage power. In: International symposium on computer architecture, pp. 240–251.
Goteberg, Sweden (2001)

21. Kim, S., Vijaykrishnan, N., Kandemir, M., Sivasubramaniam, A., Irwin, M.J., Geethanjali, E.:
Power-aware partitioned cache architectures. In: International symposium on low power elec-
tronics and design, pp. 64–67. Huntington Beach, USA (2001)

22. Kin, J., Gupta, M., Mangione-Smith, W.H.: The filter cache: an energy efficient memory struc-
ture. In: International symposium on microarchitecture, pp. 184–193. Research Triangle Park,
USA (1997)

23. Ko, U., Balsara, P.T., Nanda, A.K.: Energy optimization of multi-level processor cache archi-
tectures. In: International symposium on low power design, pp. 45–49. New York, USA (1995)

24. Lebeck, A.R., Fan, X., Zeng, H., Ellis, C.: Power aware page allocation. SIGOPS Oper. Syst.
Rev. 34(5), 105–116 (2000). DOI http://doi.acm.org/10.1145/384264.379007

25. Lyuh, C.G., Kim, T.: Memory access scheduling and binding considering energy minimization
in multi-bank memory systems. In: Design automation conference, pp. 81–86. San Diego,
USA (2004)

26. Malik, A., Moyer, B., Cermak, D.: A low power unified cache architecture providing power
and performance flexibility. In: International symposium on low power electronics and design,
pp. 241–243. Rapallo, Italy (2000)

27. Manne, S., Klauser, A., Grunwald, D.C., Somenzi, F., Somenzi, F.: Low power tlb design for
high performance microprocessors. Tech. rep., University of Colorado (1997)

28. Min, R., Jone, W.B., Hu, Y.: Location cache: A low-power l2 cache system. In: International
symposium on low power electronics and design, pp. 120–125. Newport Beach, USA (2004)

29. Panda, P.R., Catthoor, F., Dutt, N.D., Danckaert, K., Brockmeyer, E., Kulkarni, C.,
Vandercappelle, A., Kjeldsberg, P.G.: Data and memory optimization techniques for embed-
ded systems. ACM Transactions on Design Automation of Electronic Systems 6(2), 149–206
(2001)

30. Panda, P.R., Dutt, N.D., Nicolau, A.: Local memory exploration and optimization in embedded
systems. IEEE Transactions on Computer Aided Design 18(1), 3–13 (1999)

31. Panda, P.R., Dutt, N.D., Nicolau, A.: Memory Issues in Embedded Systems-On-Chip: Opti-
mizations and Exploration. Kluwer Academic Publishers, Norwell, MA (1999)

32. Panda, P.R., Dutt, N.D., Nicolau, A.: On-chip vs. off-chip memory: The data partitioning
problem in embedded processor-based systems. ACM Transactions on Design Automation
of Electronic Systems 5(3), 682–704 (2000)

33. Panwar, R., Rennels, D.: Reducing the frequency of tag compares for low power i-cache design.
In: International symposium on low power design, pp. 57–62. New York, USA (1995)

34. Stan, M.R., Burleson, W.P.: Bus-invert coding for low power I/O. IEEE Transactions on VLSI
Systems 3(1), 49–58 (1995)

138 4 Power-efficient Memory and Cache

35. Steinke, S., Wehmeyer, L., Lee, B., Marwedel, P.: Assigning program and data objects to
scratchpad for energy reduction. In: Design Automation and Test in Europe, pp. 409–417.
Paris, France (2002)

36. Su, C.L., Despain, A.M.: Cache design trade-offs for power and performance optimization: a
case study. In: International Symposium on Low Power Design, pp. 63–68. New York, NY
(1995)

37. Udayakumaran, S., Dominguez, A., Barua, R.: Dynamic allocation for scratch-pad memory
using compile-time decisions. ACM Transactions on Embedded Computing Systems 5(2),
472–511 (2006)

38. Zhang, C., Vahid, F., Yang, J., Najjar, W.: A way-halting cache for low-energy high-
performance systems. In: International symposium on low power electronics and design,
pp. 126–131. Newport Beach, USA (2004)

39. Zhang, W., Hu, J.S., Degalahal, V., Kandemir, M., Vijaykrishnan, N., Irwin, M.J.: Compiler
directed instruction cache leakage optimization. In: International symposium on microarchi-
tecture, pp. 208–218. Istanbul, Turkey (2002)

Chapter 5
Power Aware Operating Systems, Compilers,
and Application Software

What does a compiler have to do with power dissipation? A compiler is a piece
of system software that parses a high level language, performs optimizing transfor-
mations, and finally generates code for execution on a processor. On the surface,
it seems very far removed from an electrical phenomenon like power dissipation.
Yet, it was not long before the two got inextricably linked. The involvement of the
compiler along with the processor architecture in the design space exploration loop
of application specific systems (ASIPs) might have eased the transition. In this sce-
nario, compiler analysis can actually influence the choice of architectural parameters
of the final processor. Clearly, if a low power system consisting of an application
running on a processor is desired, the selected processor architecture has to work in
tandem with the compiler and application programmer – an architectural feature is
useless if it is not properly exploited by the code generated by a compiler or written
by a programmer. Low power instruction encoding is an example optimization that
features the compiler in a central role with the explicit role of reducing power. In an
ASIP, the opcode decisions need not be fixed, and could be tuned to the application.
Since the compiler has an intimate knowledge of the application, it could anticipate
the transition patterns between consecutive instructions from the program layout
and suggest an encoding of instructions that reduces switching power arising out of
the fetch, transmission, and storage of sequences of instructions. Modern compiler
designers are investigating the development of power awareness in a more direct
way in general purpose processor systems, not just ASIPs. The role of the compiler
and application programmer grows along with the concomitant provision of hooks
and control mechanisms introduced by the hardware to support high level decision
making on power-related issues.

The operating system has a very direct role in power management of a computer
system, since it has the important responsibility of monitoring and controlling every
system resource. Of course, the hardware resource itself might be designed to save
power when conditions are favorable – for example, a memory device can shift to
low power mode when it is inactive for a long period of time. However, system level
power management can be more aggressive if the operating system plays an active
role in addition to power efficiencies built into individual resources. For example, an
individual resource may require an accurate prediction of future activity, in order to
make good power management decisions. Since the operating system also assumes

P.R. Panda et al., Power-efficient System Design, DOI 10.1007/978-1-4419-6388-8 5,
c� Springer Science+Business Media, LLC 2010

139

140 5 Power Aware Operating Systems, Compilers, and Application Software

the responsibility for task allocation on resources, it may have that vital dynamic
information using which it can inform the resource whether any significant workload
is likely to be scheduled on it in the near future. It is clear that aggressive power
optimizations can take place when there is a meaningful collaboration between the
operating system and the resources it manages.

In this chapter we study some recent work in the area of power aware operating
systems, compilers, and application software. This continues to be an important
research area and we can expect exciting new problems and solutions in the days
ahead.

5.1 Operating System Optimizations

An operating system is very well placed to make intelligent run-time power man-
agement decisions because it is best suited to keep track of the dynamic variation
of the status of the different resources under its supervision. Before studying the
power optimization policies implemented by an OS, it is instructive to look at
the component-wise break-up of the power dissipation on a typical computer. As
expected, the total power dissipation, and the relative power dissipated in the indi-
vidual components, vary depending on the benchmark/application domain.

Figure 5.1 gives a comparison of the total system power of an IBM Thinkpad R40
laptop with a 1.3 GHz processor, 256 MB memory, 40 GB hard drive, optical drives,
wireless networking, and a 14.1” screen, when it is subject to workloads arising out
of different classes of benchmark applications [30]. The idle system dissipates 13 W,

20

25

30

35

0

5

10

15

Idle System PCMark CPU
test

3DMark FTP transmit Audio CD
Player

Fig. 5.1 Laptop power dissipation for different benchmarks. Idle power is 13 W. The benchmarks
vary widely in their power dissipation

5.1 Operating System Optimizations 141

while the benchmarks (3DMark – graphics benchmark; CPUMark – CPU intensive
workload; Wireless FTP – file transfer over the wireless LAN card; and Audio CD
Playback) dissipate between 17 W and 30 W, exhibiting a wide range.

Figures 5.2, 5.3, 5.4, 5.5, and 5.6 show the component-wise break-up of the to-
tal system power dissipation for the different benchmarks and idle state. In an idle
system, the LCD display consumes a relatively large fraction of the power. For the
CPU-intensive PCMark suite, the CPU was, as expected, the largest consumer of

CPU
15%

HDD
4%
Power Supply

5%

Rest of the
System

29%

Wireless
1%

LCD
8%

LCD Back
Light
26%

Optical Drive
1%

Memory
3%

Graphics
8%

Fig. 5.2 Component-wise break-up of laptop power dissipation when the system is idle. In idle
systems, the LCD display consumes a relatively large fraction (26%) of the total power

Optical Drive
1%

Memory
4%

Graphics
4%

Rest of the
System
15%

CPU
52%

HDD
3%

Power Supply
3%

Wireless
1%

LCD
4%

LCD Back
Light
13%

Fig. 5.3 Component-wise break-up of laptop power dissipation for CPUMark benchmark. This
benchmark stresses the CPU, which consumes 52% of the total power

142 5 Power Aware Operating Systems, Compilers, and Application Software

CPU
43%

Graphics
17%

Rest of the
System

14%

HDD
3%

Power Supply
2%

Wireless
0%

LCD
3%

LCD Back
Light
11%

Optical Drive
1%

Memory
6%

Fig. 5.4 Component-wise break-up of laptop power dissipation for 3DMark benchmark. The CPU
consumes a large 43% of the system power

CPU
17%

HDD
3%

Power Supply
4%

Graphics
6%

Rest of the
System
17%

Wireless
0%
LCD
5%

LCD Back
Light
18%

Optical Drive
27%

Memory
3%

Fig. 5.5 Component-wise break-up of laptop power dissipation for Audio CD player benchmark.
The optical drive was the main power consumer, accounting for 27%

power. The 3DMark suite is also CPU intensive, and the CPU power accounted
for a huge 43%. FTP showed a relatively large power dissipation in the wireless
card, drawing power comparable to the CPU. In the Audio CD playback, the op-
tical drive was the main power consumer, with its power exceeding even the CPU
power, because the drive was running at full speed throughout the playback period.
The study shows that the power distribution among the system components depends
on the type of computational and data transfer demands placed on the individual
resources. The CPU is usually among the heaviest power users.

5.1 Operating System Optimizations 143

CPU
16%

HDD
3%

Power Supply
4%

Rest of the
System
23%

Wireless
18%

LCD
6%

LCD Back
Light
20%

Optical Drive
1%

Memory
3%

Graphics
6%

Fig. 5.6 Component-wise break-up of laptop power dissipation for wireless FTP benchmark. The
wireless card dissipates 18% of the system power

Table 5.1 Hard disk drive
states [30]

HDD power state Power Consumption

Idle 0.575 W
Standby 0.173 W
Read 2.78 W
Write 2.19 W
Copy 2.29 W

Table 5.2 Power
consumption variation of
LCD display with brightness
level [30]

LCD brightness level Power Consumption

1 0.6 W
2 0.8 W
3 1.1 W
4 1.3 W
5 1.6 W
6 2.0 W
7 2.7 W
8 3.4 W

The significant difference in power consumption of individual components across
the various benchmark applications can be attributed to the different power charac-
teristics of the devices based on the usage pattern of the application. Tables 5.1, 5.2,
5.3, and 5.4 show the power drawn by the hard disk drive, LCD display, Wireless
LAN card, and CD drive, in the different power states of the respective devices.
The devices exhibit a significant dynamic power dissipation range, depending on
the state of activity. For example, the wireless LAN card draws 22 times as much
power when it is transmitting, compared to when it is idle. Similarly, there is a 7:1

144 5 Power Aware Operating Systems, Compilers, and Application Software

Table 5.3 Wireless LAN
card states [30]

Wireless LAN Card states Power Consumption

Power saver (idle) 0.14 W
Base (idle) 1.0 W
Transmit 3.2 W at 4.2 Mb/s
Receive 2.55 W at 2.9 Mb/s

Table 5.4 Optical drive
states [30]

Optical drive state Power Consumption

Initial spin up 3.34 W
Steady spin 2.78 W
Reading data 5.31 W

power dissipation ratio between the highest and lowest brightness levels of the LCD
display, and a 16:1 ratio between active and idle power for the hard disk.

5.1.1 Advanced Configuration and Power Interface (ACPI)

In a typical computing system with several input/output devices, processing units,
memory devices, etc., working in unison, it is very unlikely that all of them would
be active for the entire duration of system operation. For example, a modem may be
active only when applications running on the system request a network access, and
is inactive for the rest of the time. It is observed that a significant amount of power
is dissipated during these spells of inactivity owing to the following reasons:

� With technology scaling, leakage power has become a significant portion of
the total power consumption of an electronic circuit. For example, 40% of the
110W of power consumed by a 90nm Pentium 4 is actually due to the leakage
current [35].

� Devices such as display, waste power in doing redundant work. Displays are
designed such that the contents of the framebuffer are refreshed periodically on to
the display device. Even when the system is idle and the contents of framebuffer
are not expected to change, the display is periodically refreshed, resulting in
waste of power.

It would appear that an ideal solution to counter leakage power would be to
activate the device only when it is working. But this is not always feasible, since
the switching time from on to off and vice-versa could affect system performance.
Hence the devices are generally designed to work at different operating points called
the power modes that represent trade-offs between performance and power. Depend-
ing on the requirements of the applications running on the system, the mode of
device operation is dynamically selected and modified. The policies that govern the
switching of operating point of a device are called the power management policies.
Power management of devices could be implemented in two ways:

� in the firmware of the device and controlled by the driver of the device; and
� in the operating system.

5.1 Operating System Optimizations 145

Operating System directed Power Management (OSPM) is becoming popular in
modern systems due to the following advantages over device level implementations.

� Implementation of power management in the OS makes it platform independent.
� The limitation of implementing complex power management strategies in the

BIOS of the devices can be overcome.
� Algorithms common to power management of several devices can be imple-

mented only once, thus decreasing the development cost.

Now that the power management policies are implemented in the OS, standard
interfaces between the OS and device drivers are necessary for smooth opera-
tion. Advanced Configuration and Power Interface (ACPI) is the specification of
a common standard for OS controlled device configuration and power manage-
ment [16]. This standard was initially developed by Intel, Microsoft, and Toshiba,
with Hewlett-Packard and Phoenix being involved in the later evolution.

Let us examine the ACPI standard in some detail. Figure 5.7 shows the ar-
chitecture of a system using ACPI for power management. The operating system
communicates with the ACPI stack through software and drivers. The ACPI layer
acts as an interface between the OS and the device with the help of three main com-
ponents: (i) ACPI tables; (ii) ACPI bios; and (III) ACPI registers.

ACPI tables contain definition blocks that describe the ACPI managed devices.
The definition includes data and machine independent byte-code that performs de-
vice configuration and management.

Applications

Kernel OSPM System Code

Device Driver
ACPI Driver/

AML Interpreter

BIOSPlatform Hardware

Existing standard
register interfaces
to CMOS, PIC etc

OS specific
technologies,
interfaces, and code

OS dependent application
API’s

selbaTIPCAACPI Registers ACPI BIOS

ACPI BIOS
Interface

ACPI Table
Interface

ACPI Register
Interface

OS independent technologies
interfaces, code, & HW

Fig. 5.7 ACPI system architecture

146 5 Power Aware Operating Systems, Compilers, and Application Software

ACPI BIOS is responsible for low-level management operations of the device. It
contains code to assist in booting the system and switch the operation mode of the
device. Different power modes of a system are described in the following section.

ACPI registers are a set of hardware registers that help in configuration and man-
agement of the device. These registers are accessed through the byte-code stored in
the device-specific part of the ACPI tables.

In an ACPI based system, on power-up, the ACPI BIOS is loaded prior to the OS
and the ACPI tables are loaded into memory. Since the memory requirement of these
tables is much more than what a BIOS memory could accommodate, the ACPI BIOS
allocates space in the physical memory of the system. When the ACPI-aware OS
kernel starts its operation, it searches the BIOS memory area to obtain the address
of the ACPI tables in the physical memory. All ACPI operations, excluding a few
BIOS functions, are performed in the OS by interpreting the machine-independent
ACPI Machine Language (AML) byte-code present in the ACPI tables.

5.1.1.1 Power Modes

ACPI defines various power states in which the entire system and also individ-
ual devices in the system could be operating. These states are enumerated in
Tables 5.5, 5.6, 5.7, and 5.8.

The global states apply to system as a whole, and are visible to the user. The
G0 state (“working”) is the normal active state in which user threads are executed.

Table 5.5 Global States that define the power mode of the entire system

State Description

G0 Working
G1 Sleeping (subdivided into states S1 to S4)

� S1 – All CPU caches are flushed and CPU(s) stop executing instructions. Full
context is maintained in RAM. Power to RAM and CPU(s) is maintained.

� S2 – CPU is powered off. Processor context and cache context are not maintained
but RAM is maintained.

� S3 – Only RAM remains powered, hence all system context is lost. (commonly
referred as Standby or Sleep)

� S4 – Data in RAM is flushed to hard disk and the system is powered down.
(referred to as Hibernation) Reboot is required to wake up the system.

G2(S5) Soft off
In this state all the devices are also powered down along with CPU and caches. Some

components in the system such as mouse and keyboard remain powered to wake
up the system.

G3 Mechanical off
The system is switched off except for the real time clock in the system that is

powered by a small battery.

5.1 Operating System Optimizations 147

Table 5.6 Device Power
States

State Description

D0 Fully on.
D1,D2 Intermediate device dependent power states
D3 Powered off

Table 5.7 Processor Power States
State Description

C0 Fully on.
C1 Halt. Processor does not execute any instructions, but can instantaneously return to

execution
C2 Stop-Clock. Maintains application-visible state, but takes longer for wake-up.
C3 Sleep. Processor does not keep its cache, but maintains other state.

Table 5.8 Processor
Performance States

State Description

P0 Maximum power and frequency
P1 Less than P0, voltage and frequency scaled
Pn Less than P(n-1), voltage and frequency scaled

System power consumption in this state is generally the highest. In the G1 state
(“sleeping”), user threads are not executed and key components such as display
are turned off to save power. However, the system can be moved to active state in a
relatively small amount of time. In the G2 state (“soft off”), the system is mostly off,
but some components remain “on” so that the system can “wake up” through signals
received from an I/O device such as keyboard or mouse. Power consumed in this
state is very low. In G3 state (“mechanical off”) the system is turned off completely
and draws near zero power, except for a clock powered by a small battery.

The global sleeping state is subdivided into several further levels S1 through S4,
representing a finer grain power management. In the S1 state, the CPU caches are
flushed and the CPU does not execute instructions, but can be moved to an active
execution quickly. In the S2 state, the CPU is powered off, so the processor and
cache contexts are lost, but the RAM is maintained. In the S3 state (commonly
known as “standby” or “sleep”), the rest of the chip set is turned off, but the RAM
is still valid. In the S4 state (commonly known as “hibernate”), the memory data is
saved into the hard disk and the system is powered down. A reboot is required to
wake the system up. The S5 state coincides with the G2 state.

The device power states D0 through D3 in ACPI apply to I/O devices connected
to the system bus. These states are defined in a very generic manner, and some
devices may not feature all the four states. In the D0 state, the device is “fully
on” and consumes maximum power. The D1 and D2 states are low power states
that are device dependent. In D3, the device is turned off and consumes no power.
Re-initialization is necessary when the OS turns the device back3 on. Examples of
device power states and the power consumed in each state are given in Tables 5.1,
5.2, 5.3, and 5.4, for the laptop experiment discussed above.

148 5 Power Aware Operating Systems, Compilers, and Application Software

The Processor power states C0 through C3 represent various performance-power
trade-offs in the processor in the global state G0 (“working”). In the C0 state (“fully
on”), the processor executes normal instructions and consumes the highest power.
In the C1 state (“halt”), the processor does not execute any instruction, but can
immediately return to execution. In the C2 state (“stop clock”), the processor moves
to a low power state, does not execute instructions, and takes longer to return to
execution. The C3 state (“sleep”) offers further improvements in power savings,
with caches maintaining state but disallowing snooping.

Finally, the standard also defines the device and processor performance states
within the respective “fully on” states D0 and C0. State P0 represents the maximum
frequency for the CPU, which translates to maximum power consumption. Other
states P1, P2, P3, etc., are defined, with decreasing power and associated perfor-
mance. Dynamic voltage and frequency scaling (Section 5.1.2) is typically em-
ployed in the processors and devices to achieve the different power states.

5.1.2 Dynamic Voltage and Frequency Scaling

The basic dynamic power equation P D CV2Af , where C is the load capacitance,
V is the operating voltage, A is aggregate activity factor, and f is the operating
frequency, shows the significant leverage possible by adjusting the voltage and fre-
quency. It shows that if we can reduce voltage by some small factor, we can reduce
power by the square of that factor. Furthermore, reducing supply voltage often slows
transistors such that reducing the clock frequency is also required. The benefit of this
is that within a given system, scaling supply voltage down now offers the potential
of a cubic reduction in power dissipation. This process of reducing both the voltage
and frequency of the processor dynamically (at run time) is called Dynamic Voltage
and Frequency Scaling (DVFS). It is important to note here that while DVFS may re-
duce the instantaneous power cubically, the reduction on the total energy dissipated
is quadratic. This is because, even though programs run at lower power dissipation
levels, they run for longer durations.

Fundamentally, DVFS approaches exploit slack to achieve more power-efficient
execution. The workload profile of applications is far from a constant; in fact, it may
be highly dynamic. As a result, the processor need not be operating at the maximum
performance (maximum voltage and frequency) all the time. There may be several
opportunities to temporarily slow down the processor without any noticeable or ad-
verse effects. For example, a CPU might normally respond to a user’s command
by running at full speed for 0.001 seconds, then waiting idle; running at one-tenth
the speed, the CPU could complete the same task in 0.01 seconds, thereby saving
power and energy without generating noticeable delay. Eventually DVFS is an ap-
proach that attempts to meet the seemingly conflicting goals of a responsive and
intelligent device while maximizing battery life.

5.1 Operating System Optimizations 149

One of the most important decisions in implementing DVFS is the granularity
at which to perform DVFS. The finest granularity at which DVFS is limited by the
time it takes to switch the voltage and frequency of the processor. DVFS implemen-
tation requires a voltage regulator that is fundamentally different from a standard
voltage regulator because it must also change the operating voltage for a new clock
frequency [4, 7, 9]. This and other considerations result in high transition overhead
for DVFS. This overhead is typically in the range of tens of micro seconds. In partic-
ular, the Intel XScale processor has a frequency switching time of 20�s [10,17,18].
To be able to profitably apply DVFS, and hide the penalty of voltage regulation,
the granularity at which voltage and frequency are scaled should be at least 2 to 3
orders of magnitude higher, which is in the range of milliseconds. This falls more or
less in the domain of operating system scheduling granularity. Consequently, most
DVFS schemes have been incorporated into the OS scheduler and task management
services.

The simplest application of DVFS algorithms is a history-based scheme, where
we monitor the recent history to make a prediction about the immediately future.
The Past algorithm is a simple strategy that divides time into intervals [45]. In each
interval, the algorithm keeps track of what the CPU utilization was, and predicts
that the utilization will remain unchanged in the next interval. This assumption is
in keeping with system behavior in general – drastic changes in system load are
relatively rare. The utilization is compared against a pre-defined threshold. If the
utilization is below this threshold, then the system is slowed down by lowering the
voltage. If the utilization is above the threshold, then the system is sped up by se-
lecting a higher voltage. The strategy is illustrated in Fig. 5.8, with the threshold set
at 80% utilization. In Fig. 5.8(a), a 70% utilization is observed in time interval t .
The Past algorithm predicts a 70% utilization for interval t C 1, and slows down
the system by stepping down the voltage. Similarly, in Fig. 5.8(b), a 90% utilization
causes Past to step up the voltage. In order to prevent switching of voltages too fre-
quently, the threshold can instead be defined as a range of utilizations, for example,
between 75-85% in our example.

The Past algorithm is very simple, and suffers from some obvious difficulties as
it relies on only one data point. In the Aged Averages (AVG) algorithm, a weighted
average of the utilizations in the last few intervals is used as the prediction for the
next interval [14]. Using more than one interval makes the algorithm more robust
against transient changes in load. This is illustrated in Fig. 5.9. Here, the utilizations
at intervals t and t � 1 are averaged with equal weights to generate the predicted
utilization for interval t C 1. In Fig. 5.9(a), the utilizations for intervals t and t � 1

are 70% and 80% respectively, giving the predicted utilization for interval t C 1

to be 75%. The voltage is stepped down. In Fig. 5.9(b), intervals t and t � 1 have
utilizations 90% and 70% respectively, giving 80% as the prediction for interval
t C1. This leads to no change in voltage levels, treating the 90% value as a transient
when it appears for the first time. If the rate is sustained (for another interval in this
case), then the aged average reflects the higher load and the voltage is eventually
stepped up.

150 5 Power Aware Operating Systems, Compilers, and Application Software

a

b

Fig. 5.8 Past Algorithm: predict the utilization in the next interval to equal that of the last interval
(a) 70% utilization predicted for interval tC1. Slow down. (b) 90% utilization predicted for interval
tC1. Speed up

To evaluate the effectiveness of the above algorithms, one can compare them
with an Oracle algorithm that has advance knowledge of the next interval’s load.
Schemes such as AVG lie somewhere between the effectiveness of Past and Oracle,
with the increasing effectiveness coming with the associated cost penalty of larger
storage, which can be an issue in a hardware implementation. Variations of this
strategy can be thought of in slightly different contexts, particularly ones involving
the choice between different power modes: active, sleep, and power down. In gen-
eral, we would like to move the system to power down mode upon encountering
long idle periods so as to save power, but the associated penalty is that it takes a
relatively large number of cycles to bring the system back to active mode. Being
over-aggressive in powering down the system means high performance overheads
incurred in waiting for the system to be usable again.

5.1 Operating System Optimizations 151

a

b

Fig. 5.9 AVG Algorithm: predict the utilization in the next interval to be weighted average of a
few previous intervals (a) (70C 80)/2 D 75% utilization predicted for interval tC1. Slow down.
(b) (70C 90)/2D 80% utilization predicted for interval tC1. No change

5.1.2.1 DVFS in Real-time OS

Essentially, DVFS schemes use a simple feedback mechanism, such as detecting
the amount of idle time on the processor over a period of time, and then adjust
the frequency and voltage to just handle the computational load. This strategy has
a simple implementation and follows the load characteristics closely, but cannot
provide any timeliness guarantees and tasks may miss their execution deadlines.
As an example, in an embedded camcorder controller, suppose there is a program
that must react to a change in a sensor reading within a 5 ms deadline, and that it
requires up to 3 ms of computation time with the processor running at the maximum

152 5 Power Aware Operating Systems, Compilers, and Application Software

operating frequency. With a DVS algorithm that reacts only to average throughput,
if the total load on the system is low, the processor would be set to operate at a low
frequency, say half of the maximum, and the task, now requiring 6 ms of processor
time, cannot meet its 5 ms deadline. To provide real-time guarantees, DVS must
consider deadlines and periodicity of real-time tasks, requiring integration with the
real-time scheduler.

Let us look at some idealized situations in real-time systems to understand the
limits of the applicability of DVFS.

First, let us consider a situation where we have tasks T1; . . . ; Tn to be scheduled
in the time interval Œ0; M �. Each task has associated with it the number of required
processor cycles Ri , the arrival time Ai 2 Œ0; M �, and deadline for completion Di 2
Œ0; M �. The voltage scheduling problem is to find the optimal speeds at which the
processor should work at every time instant in Œ0; M � so that the total energy is
minimized. It is assumed that the processor speed, and consequently the voltage,
can be varied continuously, and can take all real values. The Ri values are fixed
constants.

An optimal voltage scheduling algorithm uses the following greedy strategy[46].
For every time interval I D Œt1; t2� in the range Œ0; T �, find the intensity g.I / de-
fined as:

g.I / D
P

i Ri

t2 � t1
(5.1)

for all i such that ŒAi ; Di � 2 Œt1; t2�, that is, the intensity for interval I is computed
considering all tasks whose arrival and completion times lie within the interval.
Since

P
i Ri represents the total work that needs to be completed in time interval

I , g.I / represents the minimum required average speed of the processor during
time interval I . Thus, if the processor is run at speed g.I / during time interval
I , it will be energy-optimal for this interval (if the speed is lower, then the tasks
cannot complete; if the speed is higher, then the voltage – and hence energy – must
be higher). We have established the speed/voltage values for interval I D Œt1; t2�.
Now, we just delete the interval from consideration, and recursively solve the same
problem for the smaller interval thus obtained. The arrival and completion times of
the remaining tasks are adjusted to reflect the deleted interval. This strategy gives
the optimal speed/voltage assignment for minimizing energy [46].

The algorithm is illustrated in Fig. 5.10, with 3 tasks T1, T2, and T3, with the
arrival times and deadlines being [0,5], [2,15], and [2,25] respectively, and num-
ber of cycles R1, R2, and R3 being 1, 4, and 2 respectively. The intensities for
the intervals are as indicated in Fig. 5.10(a). For example, the interval I D Œ0; 15�

has two tasks T1 and T2 with arrival/completion times lying within the interval, so
g.I / D R1CR2

15�0
D .1 C 4/=15 D 0:33. Intervals not included in the list are those

that cannot accommodate a single task. We select [0,15] for speed/voltage assign-
ment first since this interval has the highest intensity. The assigned speed is 0.33. We
then delete this interval, leading to a smaller problem indicated in Fig. 5.10(b). Only
T3 still remains to be executed, and the arrival/completion times are as indicated in
Fig. 5.10(b). Only one interval exists with intensity R3

10�0
D 2=10 D 0:2, and it

5.1 Operating System Optimizations 153

a

b

c

Fig. 5.10 Optimal voltage scheduling. (a) Interval [0,15] has the highest intensity, so it is selected
first, and speed 0.33 is assigned to it. The interval is then deleted. (b) Interval [0,10] (corresponding
to the original interval [15,25]) is selected next, with speed 0.2. (c) The optimal voltage schedule
corresponds to the two speed settings inferred in (a) and (b)

is trivially assigned speed 0.2. The speed assignment for the complete duration is
summarized in Fig. 5.10(c). The processor runs at speed 0.33 for the first 15 time
units, and 0.2 for the next 10 units.

The above problem formulation assumed that it is possible to change a proces-
sor’s voltage and speed to any desirable value. In practice, we typically have to select
from a set of discrete voltage settings for a processor. Let us address the problem of
selecting the optimal voltages for running a processor, given a fixed load and a time
constraint [19].

Our first observation, illustrated in Fig. 5.11, is that it is always sub-optimal to
complete earlier than the specified deadline. Figure 5.11(a) shows two schedules,

154 5 Power Aware Operating Systems, Compilers, and Application Software

a

b

c

Fig. 5.11 Optimal discrete voltage scheduling with deadline T . (a) Energy is minimum when
we select a voltage (V-opt) that allows us to complete the task exactly at the deadline. Any other
voltage V leading to earlier completion is sub-optimal. (b) Discrete voltages available are: V0,
V1, V2, V3, and V4. V-opt is not one of the available choices. (c) V2 and V3 are the two discrete
voltage levels adjacent to V-opt. Energy is optimal when we use a combination of V2 and V3.
Using any other voltage is sub-optimal

one completing before the deadline, followed by an idle period (during which the
system could be assumed to dissipate zero power) with the voltage set at V ; and
the other completing at the deadline T . The task completing at T can progress at a
lower voltage, which also increases the latency. However, the latency decreases lin-
early with the voltage whereas energy decreases as square of voltage. Hence, total
energy is lower for the schedule completing at the deadline. In other words, average
power (total latency divided by latency) is minimized for the task that utilizes all

5.1 Operating System Optimizations 155

the time available. Let the corresponding voltage be Vopt. This result also follows
from the application of the optimal algorithm discussed earlier. However, in real-
ity, the voltage cannot be continuously varied, and we have to select from a set of
discrete choices. The situation is illustrated in Fig. 5.11(b), where the permissible
discrete voltages are: V0, V1, V2, V3, and V4. We notice that Vopt is not one of the
available voltages, so the optimal voltage/speed setting algorithm cannot be directly
applied. It can be proved that in the discrete voltage scenario the optimal voltage
for the processor will be a combination of the two discrete voltages adjacent to the
computed optimal voltage Vopt [19]. From Fig. 5.11(b), we notice that Vopt lies be-
tween V2 and V3. As shown in Fig. 5.11(c), the energy-optimal solution is to run
the system at voltage V2 for some time, and at V3 for the remaining time. The exact
durations can be easily computed. Naturally, the resulting energy will be larger than
the energy of running it at the hypothetical voltage Vopt, but the solution is still the
best possible in the discrete voltage scenario. There is no need to consider other
voltages. This is true even when voltage transitions are not immediate, as assumed
in this discussion, but require a fixed duration [25].

The above conceptual treatment of the real-time DVFS problem made certain ide-
alizations and simplifications that we need to be aware of, and also, exploit appropri-
ately in a practical aggressive DVFS strategy. First of all, the number of cycles or any
other measure of work done in a task may not be easily computed. This may be data
dependent. Worst case execution times (WCET) need to be used. Of course, there
may be many situations in which the worst case execution path is not exercised. Fur-
ther, the presence of a memory hierarchy makes the WCET computation very dif-
ficult, and a theoretically guaranteed WCET that takes multiple levels of cache and
secondary memory in its computation may be too pessimistic to be useful for DVFS.

Secondly, power of a large processor based system is not necessarily a quadratic
function of the supply voltage, and latency is not necessarily inversely proportional
to the supply voltage. These results hold for a single transistor, but there are other
effects in a complex circuit such as that due to memory and I/O. Since DVFS modi-
fies the delays of only the processor and does not touch components such as memory
and I/O, the latter might actually consume more energy because they are held in ac-
tive state for longer. Thus, practical DVFS strategies are more based on empirical
models and prediction than theoretical analysis [44].

An example DVS-based optimization is shown in Fig. 5.12. A and B represent
two code sequences following a memory load. A does not depend on the result of

Fig. 5.12 DVS on stall due
to memory access.
(a) Lengthy stall due to load.
A is not dependent on the
load, so can proceed during
the stall, but B cannot begin
until the stall is resolved.
(b) Anticipating the stall, we
can slow down A, saving
power

a

b

156 5 Power Aware Operating Systems, Compilers, and Application Software

the load, but B does depend on it. In the situation shown in Fig. 5.12(a), A com-
pletes before the memory system has responded to the load request, leading to a
system stall until the data is obtained, at which time B resumes execution. A pos-
sible resolution of this is shown in Fig. 5.12(b), where the system is aware of the
expected latencies of A and the memory access. A can be slowed down by DVFS
strategies to extend its execution time to be close to when the memory access is
expected to complete. B resumes at its regular time, but the solution is more energy-
optimal because A was executed at a lower voltage [44]. This optimization relies
on reasonable estimates of the execution latencies being available, and the DVFS
mechanism being able to respond with voltage/frequency switches fast enough to be
useful.

One additional factor to be considered during DVFS is the accounting for leakage
power. When the duration of a task is extended due to the voltage being scaled down,
the dynamic energy decreases, but the leakage energy increases because the system
continues to leak energy for the entire duration that it is active. Below a certain
voltage/speed, the total energy actually increases [20]. The situation is shown in
Fig. 5.13. The total system energy E consists of three components: (i) dynamic
energy (Ed); (ii) leakage energy (El); and (iii) the intrinsic energy (Eon) that is
necessary just to keep the system running. Eon consists of the power dissipated
by system components such as analog blocks (phase locked loop and I/O) that are
necessary for proper system operation.

E D Ed C El C Eon

Fig. 5.13 Total system energy increases below critical voltage/speed S . At higher speed and volt-
age, dynamic energy dominates. At very low speed and voltage, the delay increases, so the system
remains on for longer, leading to higher leakage energy

5.1 Operating System Optimizations 157

For a given time duration available for running a task, both El and Eon increase
with decreasing voltage/speed; on the other hand, Ed decreases with decreasing
voltage. The graph follows a ‘U’ shape, demonstrating a specific system-determined
voltage/speed S that can be considered critical; below this level, the total energy
starts increasing.

The DVFS concept is useful in the context of real-time systems where deadlines
are imposed on tasks. Let us understand a straightforward application of intra-task
DVFS – processor speeds/voltages are varied within an application so as to mini-
mize energy. As seen earlier, the energy-optimal choice of voltage/speed is the one
that causes the task to finish exactly at the deadline. However, different paths of a
program will require different latencies depending on the amount of computation
in the different branches, and also, as discussed earlier, the input data. A program
is characterized by its worst case execution time (WCET), which, though hard to
compute in general, could be obtained from user inputs on loop iteration counts, etc.
Since the program path leading to the WCET must be executed within the deadline,
the processor speed/voltage could be chosen such that this path completes exactly
on the deadline.

Figure 5.14(a) shows a control flow graph (CFG) with each node corresponding
to a basic block of code, and annotated by the delay in number of cycles required to
execute it. Figure 5.14(b) shows a voltage/speed selection such that the worst case
execution path A-B-D completes by the 80s deadline. However, there will be situa-
tions where this path is not executed, and the A-C-D path is taken. If the system is
executed with the same voltage as in the A-B-D path, then the execution finishes by
40s, as shown in Fig. 5.14(c), and the system is idle for the remaining 40s. Instead,
DVFS can be applied as soon as C starts executing, since the discrepancy between
the remaining worst case execution time (10s for C C 20s for D D 30s) at the current
voltage/speed, and the permitted time (70s) is known here. We can thus run C and D
at a lower voltage/speed, thereby saving on the total energy, and yet meeting the task
deadline Fig. 5.14(d). Although the actual decision is taken at run time, appropriate
voltage scaling instructions can be inserted by the compiler in the C-branch [37].

In a periodic real-time system, we have a set of tasks to be executed periodically.
Each task, Ti , has an associated period, Pi , and a worst-case computation time, Ci .
Each task needs to complete its execution by its deadline, typically defined as the
end of the period, i.e., by the next release of the task. The scheduling problem in this
context is to assign the actual start times for all the tasks in such a way that all tasks
meet their deadlines. Two important classical scheduling algorithms are noteworthy:

� Earliest Deadline First (EDF). In this strategy, we give the highest scheduling
priority to the task that is constrained to complete the earliest.

� Rate Monotonic Scheduling (RMS). In this strategy, we give the highest
scheduling priority to the task with the shortest duration.

While the EDF algorithm gives optimal results in terms of finding a valid schedule,
the RMS is generally considered more practical for implementation.

The real time scheduling algorithms have to be appropriately adapted in order
to accommodate DVFS possibilities. In addition to the traditional schedulability

158 5 Power Aware Operating Systems, Compilers, and Application Software

a

b

c

d

Fig. 5.14 Intra-task DVFS by lower voltage operation on slower path. (a) Control Flow Graph
with node execution times. (b) Path A-B-D requires WCET D 80. (c) Path A-C-D completes
faster. The system remains idle for 40s. No DVFS. (d) DVFS on the A-C-D path leads to slower
execution of C and D, leading to energy saving

5.1 Operating System Optimizations 159

metric, an additional optimization criterion is total energy dissipation. For example,
the necessary and sufficient schedulability test for a task set under ideal EDF
scheduling requires that the sum of the worst-case utilizations be less than one, i.e.,

C1=P1 C ::: C Cn=Pn � 1

When we apply DVFS, the operating frequency can be scaled by a factor ˛.0 <

˛ < 1/, which in turn implies the worst case computation time of a task is scaled
by a factor 1=˛. The EDF schedulability test with frequency scaling factor ˛ will
then be:

C1=P1 C ::: C Cn=Pn � ˛

Operating frequency can then be selected as the least frequency at which the
schedulability criterion is satisfied. The minimum voltage that will allow the system
to operate at the required frequency is then chosen as a consequence. As shown in
Fig. 5.15, this solution finds one constant operating point; the frequency and voltage
do not change with time.

If each task Ti actually requires its worst-case time Ci to execute, then this result
is optimal. However, in reality a task may often finish much faster than its worst

Fig. 5.15 Static EDF finds one fixed operating point at which the system must be executed to
minimize power. Cycle-conserving and look-ahead schemes can change the operating point after
each task. Look-ahead technique is able to exploit the difference between the actual execution time
and the worst case execution time of the task

160 5 Power Aware Operating Systems, Compilers, and Application Software

case time. Thus if ci is the actual execution time of task Ti , and ci < Ci , then
this extra slack may be utilized to further slow down the system and save power.
If ci is used to compute the utilization instead of Ci , then the operating frequency
obtained will result in a task set that is schedulable, at least until Ti ’s deadline.
This is because the number of processing cycles available to other tasks between
Ti ’s release and deadline is unchanged from the case where WCET is assumed
and is actually needed. When ci � Ci , this scheme, called Cycle-conserving EDF
can exploit the excess slack to optimize power. Cycle-conserving EDF assumes the
worst case initially, executes at a high frequency until some tasks complete, and
only then reduce operating frequency and voltage. In contrast, the a look-ahead ap-
proach could defer as much work as possible, and set the operating frequency to
meet the minimum work that must be done now to ensure all future deadlines are
met. While this implies that high operating frequencies may be needed later on, but
again, if ci � Ci , this scheme will be advantageous. Experimental results show that
the look-ahead approach is the most effective, but both the approaches can signifi-
cantly reduce the energy consumption by exploiting the slack between the Ci , and
ci of the tasks.

5.1.3 I/O Device Power Management

I/O devices on computer systems such as disks and monitors dissipate a significant
amount of power, and modern operating systems support various features for power
management of these devices. The simplest strategy here is to monitor the activity
pattern on these devices, and when the idle duration exceeds a certain threshold,
move them into a low power state. For example, a laptop computer usually offers a
user-configurable setting for the idle duration after which the LCD display is turned
off; this saves a considerable amount of power. More sophisticated techniques in this
line include activating a laptop camera periodically to monitor the surroundings; if
a human face is not detected, the display could be turned off.

Simple power management mechanisms are also applicable to the hard disk.
Since hard disks consume significantly lower power when in sleep mode, an idle-
duration based decision to move the hard disk to sleep state is appropriate. Naturally,
prediction mechanisms come handy for making the critical decision of how long we
should wait before spinning a disk down. Doing it late implies wasted power but
better performance. Spinning down early leads to poor performance if too many
restarts are necessary, along with higher power because restart may be expensive in
terms of power. Moreover, disks need not be completely spun down. Disk power
management can also be performed at a finer level, where we can gradually vary the
rotation speed of the disks [15].

Certain non-trivial implications of disk power management decisions ought to be
kept in mind. Moving disks to sleep state implies that dirty buffers are written less
often to the disk – once in several minutes instead of a few seconds – to enable the
disk to stay longer in low power mode. This increases the possibility of data loss

5.2 Compiler Optimizations 161

due to power outages, where the disk does not get an opportunity to synchronize
with the modified buffers. Further, frequent spin up and spin down of disks causes
reliability problems and may lead to early failures. Overall, secondary storage in
computer systems is a rapidly evolving area; hard disks face stiff competition from
other technologies such as non-volatile memory as the latter has advantages with
respect to power, weight, and noise, and is getting close with respect to cost and
density.

5.2 Compiler Optimizations

Compiler optimizations targeting high performance generally also reduce average
power and energy indirectly. When the optimized code generated by a compiler re-
sults in lesser number of instructions executed, it also means a smaller number of
accesses to instruction memory. Since energy consumed by memory is proportional
to the number of accesses, this also reduces the total energy consumed. Along the
same lines, optimizations that reduce the number of accesses to data memory also
reduce the total memory energy consumption. Thus, for example, all register alloca-
tion related optimizations, which increase the efficiency of register usage, are also
favorable with respect to power, as it is more power-efficient to access registers than
memory. This argument also generalizes to other levels of the memory hierarchy.
Performance optimizations that increase the hit ratio to the L1 cache are also indi-
rectly energy optimizations, since the L1 cache access dissipates lesser energy than
an L2 cache access. The extent of performance improvement due to a compiler op-
timization may be different from the extent of power improvement. However, the
optimizations are generally in the same direction, and if a memory related opti-
mization improves performance, then it also reduces power and energy. However,
interesting exceptions do exist – good examples being those that rely on speculative
memory loads. In such cases, the access latency may be hidden by other CPU ac-
tivity, but the associated energy dissipated cannot be undone. Such an optimization
improves performance, but reduces energy efficiency.

Making the compiler explicitly aware of the performance/energy optimized fea-
tures present in the memory subsystem increases the compilation time, but yields
the power benefits without any run-time overhead and without the need of ex-
pensive hardware. While most standard compiler optimizations including constant
folding and propagation, algebraic simplifications, copy propagation, common sub-
expression elimination, loop invariant code motion, loop transformations such as
pipelining and interchange, etc. [32], are also relevant for power reduction, some
others that increase the code size (such as loop unrolling and function inlining)
need more careful attention. Optimizations such as unrolling and inlining increase
the code size, thereby increasing the instruction memory size. Since larger memo-
ries are associated with increased access energy, these transformations may actually
end up decreasing energy-efficiency.

162 5 Power Aware Operating Systems, Compilers, and Application Software

5.2.1 Loop Transformations

Loop transformations such as loop interchange, loop fusion, loop unrolling, and loop
tiling, which typically result in better cache performance through exploiting data
reuse, also lead to improvements in power/energy by way of minimizing accesses
to off-chip memory. Transformations such as unrolling cannot be indiscriminately
applied because they lead to cache pollution, which affects performance; the same
argument also applies to power, as we usually use cache misses as the evaluation
metric.

However, other transformations such as scalar expansion work in the opposite
direction. In scalar expansion, a global scalar variable shared across iterations that
prevents parallelization, is converted into an array variable to remove the data de-
pendency and parallelize the independent iterations. As the new array is mapped
to memory (instead of possibly a register earlier), such an optimization results in
a larger number of memory accesses and the associated address calculation, and
consequently, worse power [23].

5.2.2 Instruction Encoding

When a new instruction is fetched into the instruction register (IR), several bits
of the current IR are switched. The switching activity during the instruction fetch
phase is directly proportional to the number of bits switched in the IR between
the successively fetched instructions. The bit changes on the opcode field can be
decreased by assigning opcodes so that frequently occurring consecutive instruction
pairs have a smaller Hamming Distance between their opcodes.

We can represent the instruction transition frequencies as an instruction transition
graph (ITG) G D .V; E; w/ where V is a set of instructions, E is the set of undirected
edges between all the elements in V , and w is a probability density function that
maps each edge e D .v1; v2/ 2 E to a real number between 0 and 1. w.e/ indicates
the relative frequency of the instruction transitions between v1 and v2.

Given an instruction transition graph G, a set S of binary strings of length
dlog2jV je, and an opcode assignment function f W V ! S , a power metric, the
average switching in G under f can be defined as P D P

w.e/ � h.f .v1/; f .v2//,
where h is a function returning the Hamming Distance between two binary strings.
This is illustrated in the example shown in Fig. 5.16(b). Figure 5.16(a) shows the
graph with nodes v1 to v4, each representing an instruction. The edges connecting
these nodes are annotated with the instruction transition probabilities. Figure 5.16(b)
shows the encoding of these instructions and Fig. 5.16(c) shows the cost incurred
due to the transitions shown in Fig. 5.16(a) when the encoding shown in Fig. 5.16(b)
is used.

For low-power opcode encoding, the goal is to find an optimal opcode assign-
ment function fopt that minimizes the power consumption. Standard finite state

5.2 Compiler Optimizations 163

v3

v4

v2

v1

0.05

0.05

0.20.15

0.35 0.05

0.05

0.05
0.050.0

a

OpcodeInst.

v2

v3

v4

00

01

10

11

v1

b

Inst. Seq. Cost

2

1

1

1

1

2

0

0

0

0

Total Cost

2 x 0.05

2 x 0.05

1 x 0.15

1 x 0.35

1 x 0.05

0 x 0.05

0 x 0.05

0 x 0.05

0.95

1 x 0.20

0 x 0.00

Hamming Dist.

v1 v3

v1 v4

v2 v3

v2 v4

v1 v1

v2 v2

v3 v3

v4 v4

v1 v2

v3 v4

c

Fig. 5.16 An example showing the computation of the cost associated with an encoding of in-
structions when applied to a given Instruction Transition Graph. (a) Example instruction Transition
Graph. (b) Instruction encoding. (c) Computation of cost

machine encoding techniques can be adapted for this purpose. Further reduction
in IR switching can be effected by changing the register numbers in a generated
binary to minimize the switching in register numbers in consecutive instructions.

164 5 Power Aware Operating Systems, Compilers, and Application Software

5.2.3 Instruction Scheduling

In the instruction encoding discussed above, we assume that the instruction se-
quence is fixed. Instruction scheduling is the complementary optimization, where
we exercise the flexibility to re-order instructions to minimize bit switching. Here,
sequences of instructions can be re-scheduled where permissible to reduce transition
count on the instruction register and the instruction memory data bus. Additionally,
we can re-label registers in the generated instructions such that bit switching in con-
secutive instructions is reduced [31, 33, 39, 41].

In VLIW processors, different instructions may have varying number of oper-
ations, leading to a significant variation in the step power (difference in power
between consecutive clock cycles) and peak power (maximum power dissipation
during program execution). Both step power (which affects inductive noise) and
peak power affect system reliability. A more balanced distribution of instructions
in the schedule that avoids the extremes in terms of number of instructions in a
cycle and transitions between them leads to better step power and peak power be-
havior. Since the instruction stream in VLIW processors is usually compressed, a
reordering of the instructions within the same long word may lead to a better com-
pression. The compression implications of different orderings can be evaluated by
the compiler and the best one generated, ultimately leading to fewer I-Cache misses.
Keeping in view the transition activity on the instruction bus, the instructions within
the same VLIW instruction word can be re-ordered to minimize the Hamming dis-
tance from the previous instruction word. This can also be done across words, if the
performance is not affected [6, 26, 36, 47].

Compared to the run-time environment, a compiler has a deeper view of the indi-
vidual application being compiled, and can perform optimizations spanning a large
section of code. In a hybrid VLIW/Superscalar architecture, a low-power enhance-
ment to a superscalar processor is used, where, if the compiler is able to find efficient
instruction schedules, then the low power mode is used and the circuitry for dynamic
scheduling is turned off [43].

5.2.4 Dual Instruction Set Architectures

The Instruction Set Architecture (ISA) forms the interface between the hardware
and software, and it is the compiler’s task to convert an application expressed in
high level language in terms of machine instructions. The instruction set itself has a
very significant impact on the power-efficiency of program execution.

Traditionally, ISAs have been of fixed width (e.g., 32-bit SPARC, 64-bit Alpha)
or variable width (e.g., x86). Fixed width ISAs give good performance at the cost
of code size and variable width ISAs give good performance at the cost of added
decode complexity. However, neither of the above are good choices for low power
embedded processors where performance, code size, and power are critical con-

5.2 Compiler Optimizations 165

4−bit 4−bit 4−bit20−bit

Accessibility to 16 registers

a

3−bit7−bit 3−bit 3−bit

Fewer opcodes Accessibility to only 8 registers

b

Fig. 5.17 Reduced bit-width Instruction Set Architecture or rISA is constrained due to bit-
width considerations. Consequently, rISA instructions often have access to only a fraction of the
register file. (a) 32-bit normal instruction. (b) 16-bit rISA instruction

straints. Dual width ISAs are a good trade-off between code size flexibility and
performance, making them a good choice for embedded processors. Processors with
dual width ISAs are capable of executing two different instruction sets. One is the
“normal” set, which is the original instruction set, and the other is the “reduced
bit-width” instruction set that encodes the most commonly used instructions using
fewer bits (Fig. 5.17).

A good example of a dual-width ISA is the ARM [1] ISA with a 32-bit “nor-
mal” Instruction Set and a 16-bit Instruction Set called “Thumb”. Other processors
with a similar feature include the MIPS 32/16 bit TinyRISC [29], ST100 [38], and
the Tangent A5 [3]. This feature is called the “reduced bit-width Instruction Set
Architecture” (rISA).

Processors with rISA feature dynamically expand (or translate) the narrow rISA
instructions into corresponding normal instructions. This translation usually occurs
before or during the decode stage (Fig. 5.18). Typically, each rISA instruction has
an equivalent instruction in the normal instruction set. This makes translation sim-
ple and can usually be done with minimal performance penalty. As the translation
engine converts rISA instructions into normal instructions, no other hardware is
needed to execute rISA instructions. If the whole program can be expressed in terms
of rISA instructions, then up to 50% code size reduction may be achieved. Code size
reduction also implies a reduction in the number of fetch requests to the instruction
memory. This results in a decrease in power and energy consumption by the instruc-
tion memory subsystem. Thus, the main advantage of rISA lies in achieving low
code size and low energy consumption with minimal hardware alterations. How-
ever, compiling for rISA instructions is complicated due to several reasons:

� Limited Instruction Set: The rISA instruction set is tightly constrained by the
instruction width. Since only 16 bits are available to encode the opcode field
and the three operand fields, the rISA can encode only a small number of normal
instructions. Therefore several instructions cannot be directly translated into rISA
instructions.

166 5 Power Aware Operating Systems, Compilers, and Application Software

ARM
Instruction

Decode

Decode Stage ExecuteFetch
Stage

Mux

Mux

Mux

A[1]

32−bit data

16

16

Thumb
Instruction

Decompressor

Fig. 5.18 rISA instructions are translated to normal instructions before or during decode. This
allows the rest of the processor to stay unchanged

� Access to only a fraction of registers: The rISA instruction set, because of bit-
width restrictions, encodes each operand (such as register address) using fewer
number of bits. Therefore, rISA instructions can access only a small subset of
registers. For example, the ARM Thumb allows access to 8 registers out of the
16 general-purpose ARM registers.

� Limited width of immediate operands: A severe limitation of rISA instruc-
tions is the inability to incorporate large immediate values. For example, with
only 3 bits available for operands, the maximum unsigned value that can be ex-
pressed is 7.

Because of the problems mentioned above, indiscriminate conversion of nor-
mal instructions to rISA instructions may actually increase code size and power
consumption, not only because a normal instruction can map to multiple rISA in-
structions, especially if it has large immediate operand fields, but also because of
spill code since rISA instructions can access only a limited set of registers.

One of the most important decisions in a rISA compiler is the granularity at
which to perform the conversion. The conversion can be performed at routine level
granularity, where all the instructions in a routine can be in exactly one mode – the
normal mode or the rISA mode. A routine cannot have instructions from both ISAs.
Routine-level rISAization (the process of conversion from normal instructions to
rISA instructions) has some drawbacks:

� First, a routine-level granularity approach misses out on the opportunity to rI-
SAize code sections inside a routine that is deemed non profitable to rISAize. It
is possible that it is not profitable to rISAize a routine as a whole, but some parts
of it can be profitably rISAized. For example, in Fig. 5.19(a), Function 1 and
Function 3 are found to be non-profitable to rISAize as a whole. Routine-level
granularity approaches will therefore not rISAize these routines.

5.2 Compiler Optimizations 167

Function 1

Function 2

Function 3

a

Function 1

Function 2

Function 3

32 bit

16 bit

b

Fig. 5.19 rISAization at function level has very little overhead, but misses out on the possibility
of selectively converting only the profitable regions of a function. (a) Routine Level Granularity.
(b) Instruction Granularity

� Secondly, with routine-level rISAization, it is not possible to exclude from con-
version some regions of code inside a routine that may incur several register
spills. It is possible that excluding some pieces of code inside a profitable routine
may increase the code compression achieved. For example, in Fig. 5.19(b) the
instruction-level granularity approaches have the choice to exclude some regions
of code inside a routine to achieve higher code compression.

Performing rISAization at instruction-level granularity alleviates both the above
problems, as we can rISAize profitable portions of the application code, while
excluding the non-profitable parts. However, rISAizing at instruction-level comes
with its own set of challenges. Foremost is the overhead of the mode change op-
eration: the instruction that informs the processor that the following instructions

168 5 Power Aware Operating Systems, Compilers, and Application Software

are in the normal mode, or the rISA mode. In processors that implement routine-
level conversion, this functionality can be added to the function call instruction, but
instruction-level conversion requires explicit instructions. The direct implication of
this is that converting only a few instructions will not be profitable, and several con-
tiguous instructions must be converted to overcome the conversion overhead and
obtain code size and power improvements. Since basic blocks are typically small,
a good approach requires an inter-basic block analysis for conversion. Further, an
effective approach also necessitates an associated scheme to estimate the register
pressure in a code segment in order to more reliably compute the increase in the
code size by rISAizing the code segment.

Experimentation with the rISAization strategy shows that rISA is a very effective
code size reduction, as well as power reduction technique, and a smart compiler can
consistently achieve upwards of 30% reduction in code size, and similar reduction
in the power consumption of the instruction cache.

5.2.5 Instruction Set Extension

Instruction set extension is the process of adding new instructions in the processor,
and adding the corresponding functional unit and control circuitry to enable the de-
tection and execution of the new instruction, with the objective of improving the
power and performance of the processor. This is specially useful in application spe-
cific processors (ASIPs), where there may be some large pieces of functionality that
are used very often, and the application could benefit from performing it directly in
hardware. Consider a cryptographic application using elliptic curve encryption to
encode data. A processor used for this application could greatly benefit if the en-
tire elliptic curve encryption could be performed as one single instruction, rather
than as a sequence of smaller instructions. One common application for instruction
set extension is the MMX extension to the x86 architecture that provides special
instructions for SIMD arithmetic and string manipulation.

The procedure for extending the instruction set of a processor starts with iden-
tifying commonly occurring instruction patterns in the application set of interest,
replacing them by a new instruction in the application code, adding a new hardware
unit to execute the new instruction, and finally adding control logic to decode,
issue, and commit the instruction.

An Instruction Set Extension or ISE typically encapsulates multiple atomic op-
erations constituting the critical portion of the application. Execution of an ISE on a
custom unit effectively migrates multiple operations from software to hardware, thus
greatly accelerating the application performance. Along with performance, there
are other obvious benefits of such application-specific processor customization. Be-
cause of compacting multiple operations into a single ISE, there is an overall code
size reduction. Furthermore, we can expect energy reduction because fewer instruc-
tions are executed for every replacement of a large set of operations by the ISE. Such

5.2 Compiler Optimizations 169

replacement causes reduced switching activity due to reductions in the number of
fetch, decode, and register store operations.

Automatic generation of ISEs is a key, and perhaps the most crucial step in au-
tomating the process of processor customization. To do this, the Control Flow Graph
(CFG), and the Data Flow Graph (DFG) of the basic blocks of the application must
be abstracted. DFG is a Directed Acyclic Graph (DAG) G D .V; E/, where the
nodes V represents the instructions or external inputs/outputs and the edges E cap-
ture the data dependencies between the nodes. A cut C � G can be a potential ISE
if it satisfies some conditions:

� Forbidden Operations: Due to microarchitectural restrictions, operations of a
certain type might not be allowed within the cut. For example, memory opera-
tions have been traditionally prohibited in the process of ISE generation. This
is because, first of all, if memory operations are allowed in ISEs then the ISE
must be combined with the load/store unit. Otherwise, the custom unit must have
a new connection (that could be shared) to the memory, causing coherency is-
sues between the data shared by the custom unit and the rest of the processor.
Therefore, when searching for a cut, we have to find a maximal cut that does not
contain any node that cannot be a part of the ISE.

� Input-Output Constraints: The custom unit will receive its operands from
a register file (shown in Fig. 5.20). As a result, the number of source and
destination operands of the new instruction is limited by the number of read
and write ports respectively in the register file. For embedded processors with
relatively fewer read/write ports on the Register File, this can be a crippling
limitation.

� Convexity Constraint: Only convex cuts can be a candidate for ISE. In a convex
cut C there exists no path from a node u 2 C to another node v 2 C through a
node w … C . This is needed because scheduling policies in processors typically
assume that all operands of an instruction are read before the instruction starts
execution. Implementing a non-convex graph would require significant changes

Execution
Unit

Memory
Unit

Instruction
Memory

Fetch,
Decode,
and Issue

Custom
Unit

Register
File

Data Memory

Fig. 5.20 In tightly-coupled processors, a custom unit is tightly integrated with the processor
pipeline to implement instruction set extension functions

170 5 Power Aware Operating Systems, Compilers, and Application Software

5

6

7

8

4

3

1

0

2

a

1

3

4

0

2

5

6

7

8

b

1

3

4

0

2

5

6

7

8

c

Fig. 5.21 The objective of ISE generation is to find a maximal cut that does not have forbidden
functions (Shaded Nodes) and satisfies input-output and convexity constraints. (a) Graph with Max.
InputsD 3, Max. OutputsD 2. (b) Invalid Cut. (c) Valid Cut

in the scheduling policy. Figure 5.21(c) shows a valid cut, while Fig. 5.21(b)
shows a cut that violates convexity constraints. This is because there is a path
from node 1 to node 4 (both in the cut) that goes through node 3 (outside the cut).

Thus the problem of finding an ISE is to find non-overlapping cuts Ci � G

that satisfy the input-output, convexity, and forbidden operations constrains, and
maximize the improvements in power and performance. This dual objective is tricky
because on one hand, finding as large a cut as possible is beneficial, but on the other
hand, the cut should be relatively small so that it is generic enough to have several
instances in the application, to deliver good results. Integer Linear Programming
(ILP) solutions have been developed, with the predictable behavior of generating
optimal results but at the expense of too much time; they work well on small DFGs,
and therefore are unable to find large cuts. On the other hand, heuristics have a hard
time finding large cuts. Monte carlo and genetic solutions have also been explored.
However it is difficult to define good fitness function and the termination criteria.
Clustering techniques [11, 40] start with a seed node and use a guide function to
select the best direction to grow the cluster. One technique prunes the candidates
that do not reach a certain percentage of the best priority discovered so far, while the
other prunes the directions of search that are not estimated to be worthy for growing

5.2 Compiler Optimizations 171

a candidate. ISEGEN [5] uses a graph partitioning scheme based on the Kernighan-
Lin heuristic. On multimedia benchmarks and a processor with 4 read ports and 2
write ports on the Register File, an average of 50% speedup and is reported. The
power savings also fall in the same range.

5.2.6 Power Gating

The compiler has an intimate knowledge of the processor microarchitecture. This
has been exploited to develop several compiler techniques to modify the application,
so that it executes in a power-efficient manner on the microarchitecture. Among
various techniques proposed for leakage energy reduction at the microarchitecture
level, power gating has emerged as one of the most promising approaches [8, 34].
In this technique, leakage power is reduced by shutting off the power supply to the
FU during periods of inactivity (Section 3.5.3) [21].

Figure 5.22 shows the estimated energy density of different components in
the ALPHA DEC 21364 processor while executing a representative susan-corners
benchmark from the MiBench suite on PTScalar [27] simulator. The ALUs have the
second highest energy density among all the units, next only to the integer register
file. This observation is also consistent with other studies such as [12], where it is
reported that compared to large modules such as secondary caches, FUs are very

30.000
Energy Density

25.000

15.000

20.000

10.000

5.000

E
ne

rg
y

D
en

si
ty

 (
m

J/
m

m
^
2)

0.000

R
U

U

IA
L

U
1

B
ra

nc
h

IA
L

U
2

In
tR

eg

D
L

1

L
SQ

F
A

L
U

2

F
A

L
U

1

D
ec

od
e

IA
L

U
4

IA
L

U
3

IT
L

B

R
A

T

F
P
R

eg

D
T

L
BL
2

IL
1

Fig. 5.22 Power gating of functional units is important, as they are typically the most important
hotspots in the processor

172 5 Power Aware Operating Systems, Compilers, and Application Software

active blocks with power densities up to twenty times higher. High power densities
directly result in high temperature, which ultimately makes function units some of
the highest leakage sites in the processor.

Power gating promises to be an effective approach for containing the leakage
power of FUs. However, power gating large logic structures such as ALU require
a large sleep transistor (see Section 2.5.5). Synthesis results at 65nm show that the
delay of the sleep transistor will be about 6-10 processor cycles with a 3 GHz clock.
Given this, the problem of power gating FUs translates to finding idle intervals of
inactivity of the FUs, and power gating the FUs during these periods. The good
news is that inherent instruction dependencies in programs ensures that we cannot
use all FUs all the time. Hence, idle periods on FUs are a commonly occurring
phenomenon.

One popular power gating technique is based on FU idle periods [42]. Here, the
activity of FUs is monitored, and if an FU is idle for more than a threshold tidle

cycles, the power supply to the FU is gated off. The control circuit for power gating
each FU is local and independent of other FUs. Once in a power-gated state, the
FU will be woken up (power gating is disabled) when an operation is issued to it.
Power gating has also been attempted in a VLIW compiler by issuing instructions
to turn the FUs on or off. This is typically done at a loop-level – the number of FUs
required for a loop is determined, and those not needed are turned-off. However, in
order to not overheat the few active FUs, the activity is circulated among the FUs,
turning them on and off in an iteration.

Use of tiny leakage sensors deployed on each FU can lead to further optimization
of FU leakage power [24]. This approach attacks the power gating problem in two
steps. First, it looks at the recent history of execution and determines how many FUs
to keep “on”. Second, it power gates the FU whose leakage is the least. Operations
are issued only to the “on” FUs. Since the decision of which FUs to keep “on” is
based on the leakage of the FU, it automatically considers the usage, temperature,
and also the process variation effects. Because of process variations (manufacturing
inaccuracies), FUs can have different base leakages. This is an exponentially grow-
ing problem as we tread towards finer dimensions in manufacturing. Leakage-aware
power gating automatically considers this process variation effect, and is able to
“even-out” the leakage of the FUs (Fig. 5.23).

5.2.7 Dynamic Translation and Recompilation

One traditional handicap of the compiler with respect to power optimization is that
it has a limited view of the run-time environment. Since the compiler is unaware
of what other tasks would be simultaneously contending for common system re-
sources, it is difficult for it to be aggressive in its power optimizations. Dynamic
translation and dynamic recompilation refer to techniques where a certain amount
of code generation is actually performed by the CPU in hardware at execution time.
The Transmeta Crusoe processor provided an early glimpse into such possibilities
in a commercial setting [13]. A VLIW-style architecture was adopted with a view to

5.2 Compiler Optimizations 173

Fig. 5.23 Leakage-Aware power gating helps not only in reducing the leakage of FUs, but also
helps in reducing the variation in the leakage due to process variations

reducing the power overhead of performing major tasks such as instruction reorder-
ing. Instead, a run-time software binary translator was used to generate the VLIW
instructions from the original x86 code on the fly, a small sequence at a time. This
still led to a significant overhead the first time the code was translated, but the result-
ing decoded VLIW code was cached so that future accesses to the same instruction
could be read from the local memory, without the power overhead of decoding and
instruction re-ordering.

The Crusoe processor was an early instance of a laptop class processor that
could be run at several different voltage and frequency settings. In addition to the
dynamic translation, a dynamic recompilation feature was also introduced, which
would monitor the execution carefully to find frequently executed sections of code
and generate optimized versions at run time. The dynamic translation and opti-
mization feature has, since then, been implemented by several newer generation
processors.

5.2.8 Compiler Optimizations Targeting Disks

Since accesses to the disk involves a significant amount of energy, making compiler
optimizations disk-aware can help reduce overall system power. Both data layout
and instruction transformations can benefit from knowledge of the disk subsys-
tem. For example, data can be laid out in such a manner that in a parallel disk
system, only a few disks are continuously accessed, generating the opportunity

174 5 Power Aware Operating Systems, Compilers, and Application Software

Fig. 5.24 The loop fusion
transformation could be bad
for disk power when data
from different disks are
accessed in the merged loop.
In this example, arrays a and
b reside on Disks 1 and 2
respectively. When the loops
are split (left), Disk 2 can be
powered down during the first
loop and Disk 1 can be
powered down during the
second loop. When the loops
are fused, both disks are busy
throughout the merged loop

to power down the remaining ones. In this context, it is worth re-examining the
implications of typical compiler optimizations – some of them work in the op-
posite direction in this context. An interesting observation is that loop fusion can
be detrimental from the point of view of disk power, especially when it leads to
additional arrays being accessed – and hence, more disks being activated simulta-
neously [22]. The reverse optimization, loop fission, can be beneficial using the
same argument (Fig. 5.24). Note that this is in contrast to the previous observation
in Section 5.2.1.

5.3 Application Software

Power awareness at the level of the hardware, operating systems, and compilers, is
gradually finding its way to application software through application programming
interfaces (APIs) that expose the underlying power management facilities. These
APIs can be used by the programmer to pass useful information on to the operating
system – specific information about the application’s behavior that might not be
easy to infer automatically. The converse is equally useful – knowledge provided
by the operating system helps the application tune itself to the state of the system
resources.

5.3.1 Application-aided Power Management

One class of hints that can be provided by an application includes task completion
deadlines, expected execution times, and other measures of the estimated complex-
ity of the task that might not be easily available statically, but could be present or

5.3 Application Software 175

computed at run time. Such information can help the operating system make more
informed power management decisions.

Exposing the state of different system resources to an application can help build-
ing systems that adapt themselves dynamically to achieve better power efficiency.
An example is when there is a choice to fetch a piece of data from multiple sources –
a disk and the network. If the current power modes (and associated performance
penalties) of the connected devices were available to the application, a quick esti-
mate could help decide the most appropriate device for servicing a request. If the
disk is powered down, it may be cheaper in terms of both performance and energy
to fetch relatively small-sized data from other networked devices [2, 44]. A gen-
eral handling of this situation needs some additional intelligence. If a sequence of
such small-sized requests are issued, then, beyond a certain count, it would be more
energy-efficient to wake up the disk instead. A co-ordinated strategy is shown to
be useful. Involving the application in the power management decision is useful
here. The application, which may have knowledge about the future request pat-
terns it will issue, can take the decision about the optimal power state of the disk.
If such information is not present, then it could drop a hint to a power manager
regarding what the ideal power state should have been for the device. After receiv-
ing several such ghost hints, the power manager can alter the power state of the
device [2].

5.3.2 DVFS Under Application Control

So far, we have seen DVFS schemes being implemented either by the operating sys-
tem or by the hardware itself. In both cases, the decisions have to be taken not on
the basis of future requirements of the application but on the basis of past observed
workload history. However, since the power-performance requirements of different
applications are distinct, power management policies that are tailor made for the
applications could result in improved power efficiency with minimum effect on per-
formance [28]. A few example applications having varying nature of operation and
the associated unique power management strategies are discussed below.

5.3.2.1 MPEG Video Decoder

MPEG video decoder is a soft real-time application – it needs to meet timeliness
constrains, failing which, the quality of the user experience is degraded. Other appli-
cations such as DVD playback, audio players, music synthesizers, and video capture
belong to the same class of soft real-time applications. These applications could be
abstracted as a sequence of tasks such that each task completes within a given time.
Applications in this class could use the following DVFS policy.

176 5 Power Aware Operating Systems, Compilers, and Application Software

Consider a task among the sequence of tasks needed to be executed by the appli-
cation. Let the task completion deadline be d starting from time t. If c is the CPU
time needed to complete the task when the CPU is operated at maximum frequency
and e is the CPU time allotted to this task before the deadline, the processor speed
is calculated as shown below.

1. If t C c > d , the task is bound to miss the deadline even when operated at
maximum frequency. Hence, we choose to operate at maximum CPU frequency.

2. If e < c, the CPU demand exceeds its availability and the task is bound to miss
the deadline in this case also. Hence, it is best to run the processor at maximum
frequency.

3. If t C c < d and e > c, the task can be slowed down so that it completes
just at the deadline. The frequency f at which the CPU is to be operated is
calculated as

f D c

min(e,d-t)
� fmax (5.2)

In order to compute f , the application needs to know the CPU availability e and
an estimate of the processor demand c.

Estimation of CPU availability: An interface could be defined between the ap-
plication and the OS such that the application receives the start and end times of,
say, the previous k instances when this application was scheduled on the CPU.
The average of times allotted in these previous instances can be used as an esti-
mate for the availability in the next instance of the same application scheduled on
the CPU.

Estimation of CPU demand: This could be obtained by characterizing the work-
load of a task in the application with respect to parameters that are expected to vary
from task to task. For example, in the case of MPEG decoder, the decode time of a
frame is found to be varying as a function of frame size and type of frame (frames are
of three types I,B and P). Hence, a predictor could be built that computes the work-
load of the frame as a function of size and type of the frame. The predictor stores
the observed decode times of previous N frames at full CPU frequency, to refit the
prediction function to the parameters – size and type. Since each frame is annotated
with a header that contains the information of frame size and type of frame, prior to
decoding a frame we can extract this information and obtain the workload estimate
from the prediction function.

5.3.2.2 Word Processor

This is an example of an interactive real time application. Several other applications
such as games and web browsers, fall in this category of applications. These appli-
cations also consist of tasks that are to be finished within a deadline, but the tasks are
initiated by an event of user interaction with the application. Hence, the workload of
the applications is to be characterized as a function of these events. Since the number

5.3 Application Software 177

of these events types is generally very large, a reasonable workload characterization
is not feasible for such applications. Instead, an approach of gradually increasing the
CPU frequency to satisfy the CPU demand can be employed for power management
of these applications. The duration available for the task is divided into a number
of sub-intervals. Processing is started at minimum CPU frequency and every time a
sub-interval is crossed before task completion, the CPU frequency is scaled to next
available frequency level.

5.3.2.3 Batch Compilation

Compilation using make is a batch application, where throughput is more important
than the time taken for completion of individual tasks – in this case, a task being
compilation of a program. Since it is difficult to estimate the compilation time of
each program, the best strategy in this case would be to allow the end user to specify
the required speed settings. For example, the user can specify the priority of the
batch application to be low, and hence cause it to run in the background.

Thus we see that, different DVFS policies suit different applications, and the ap-
plication programmer can contribute significantly to efficient power management
depending on the power-performance characteristics of the application. As men-
tioned earlier, an enhanced interface is necessary through which the application can
collect resource utilization statistics from the OS. Secondly, the scheduler should be
modified such that per-process CPU power settings are maintained and conveyed to
the underlying hardware whenever the program is scheduled for execution. Finally,
the OS needs to have the ability to map the application-specific power setting to the
appropriate CPU frequency supported by the hardware.

5.3.3 Output Quality Trade-offs

Often, applications have multiple choices of solutions at their disposal for a cer-
tain processing task. Different algorithms with different computational complexities
could be employed for the same processing task, with different associated quality
of results. Such choices could be judiciously exercised by an application when it is
made aware of the status of resources in the run-time environment. For example, an
MPEG encoder under power constraints could sacrifice compression efficiency by
skipping some steps in encoding process. Of course, the trade-offs involved here –
less energy to encode vs. more energy due to possibly larger I/O – should be prop-
erly studied before making the decision. Similarly, a video player with access to
multiple versions of videos with different image sizes, could select smaller images
when under energy constraints [44].

Many applications in the signal processing and graphics domain are character-
ized by a graceful degradation feature with respect to the bit-width of data types
used for computation. Such flexibilities can be exploited by applications to continue

178 5 Power Aware Operating Systems, Compilers, and Application Software

operation with reduced quality of output when under power and energy constraints.
For example, when battery life-related constraints do not permit full-fledged pro-
cessing with double precision arithmetic, an application could continue to operate
by converting data to single precision and operating upon it, or by shifting to fixed
point arithmetic.

5.4 Summary

Once power saving mechanisms have been incorporated into the underlying hard-
ware, appropriate hooks need to be provided so that the software executing on the
system can fully exploit them. In this chapter we covered the software components
that can benefit from power awareness: the operating system, the compiler, and ap-
plication software.

When the system under consideration is extended to include multiple tasks and
multiple components such as the CPU, memory, I/O devices, and other resources, it
is clear that the operating system emerges as an attractive entity in which to perform
power management actions, since it has a good overall view of the resource usage
by the different system tasks. We outlined several power management techniques
including the important concept of intra-task and inter-task dynamic voltage and
frequency scaling for real-time and non-real time systems.

The compiler interface is directly affected the first that is affected by the new
hardware feature, since the compiler generates the code to execute on the hardware.
Since a compiler has a deeper view of the program that is to ultimately execute on
a processor, it can take power management decisions that may be difficult to handle
at run time. We discussed different power optimization mechanisms involving the
compiler: loop transformations, instruction encoding and scheduling, compilation
for dual instruction architectures, instruction set extension, compiler directed power
gating, and finally, disk optimizations. Finally, the application program can be made
aware of the different hooks and knobs provided by the run-time environment to en-
able close monitoring of the state of system resources, as well as passing on crucial
hints to the operating system about the state of the application.

References

1. Advanced RISC Machines Ltd: ARM7TDMI (Rev 4) Technical Reference Manual
2. Anand, M., Nightingale, E.B., Flinn, J.: Ghosts in the machine: interfaces for better power man-

agement. In: MobiSys ’04: Proceedings of the 2nd international conference on Mobile systems,
applications, and services, pp. 23–35 (2004). DOI http://doi.acm.org/10.1145/990064.990070

3. ARC Cores: ARCtangent-A5 Microprocessor Technical Manual
4. Azevedo, A., Issenin, I., Cornea, R., Gupta, R., Dutt, N., Veidenbaum, A., Nicolau, A.: Profile-

based dynamic voltage scheduling using program checkpoints. In: DATE ’02: Proceedings
of the conference on Design, automation and test in Europe, p. 168. IEEE Computer Society,
Washington, DC, USA (2002)

References 179

5. Biswas, P., Banerjee, S., Dutt, N., Pozzi, L., Ienne, P.: ISEGEN: Generation of high-quality
instruction set extensions by iterative improvement. In: DATE ’05: Proceedings of the con-
ference on Design, Automation and Test in Europe, pp. 1246–1251. IEEE Computer Society,
Washington, DC, USA (2005). DOI http://dx.doi.org/10.1109/DATE.2005.191

6. Bona, A., Sami, M., Sciuto, D., Zaccaria, V., Silvano, C., Zafalon, R.: Energy estimation and
optimization of embedded vliw processors based on instruction clustering. In: DAC ’02: Pro-
ceedings of the 39th conference on Design automation, pp. 886–891. New Orleans, Louisiana,
USA (2002)

7. Burd, T.D., Brodersen, R.W.: Design issues for dynamic voltage scaling. In: ISLPED ’00:
Proceedings of the 2000 international symposium on Low power electronics and design,
pp. 9–14. ACM, New York, NY, USA (2000). DOI http://doi.acm.org/10.1145/344166.344181

8. Butts, J.A., Sohi, G.S.: A static power model for architects. In: Micro33, pp. 191–201 (2000).
URL citeseer.ist.psu.edu/butts00static.html

9. Choi, K., Soma, R., Pedram, M.: Fine-grained dynamic voltage and frequency scaling for
precise energy and performance tradeoff based on the ratio of off-chip access to on-chip com-
putation times. IEEE Transactions on CAD 24(1), 18–28 (2005)

10. Clark, L.T., Hoffman, E.J., Biyani, M., Liao, Y., Strazdus, S., Morrow, M., Velarde, K.E.,
Yarch, M.A.: An embedded 32-b microprocessor core for low-power and high-performance
applications. IEEE Journal of Solid State Circuits 36(11), 1599–1608 (2001)

11. Clark, N., Zhong, H., Mahlke, S.: Processor acceleration through automated instruction set
customization. In: In MICRO, pp. 129–140 (2003)

12. Deeney, J.: Reducing power in high-performance microprocessors. In: International Sympo-
sium on Microelectronics (2002)

13. Dehnert, J.C., Grant, B.K., Banning, J.P., Johnson, R., Kistler, T., Klaiber, A., Mattson, J.:
The transmeta code morphingTMsoftware: using speculation, recovery, and adaptive retransla-
tion to address real-life challenges. In: Proceedings of the international symposium on Code
generation and optimization, pp. 15–24 (2003)

14. Govil, K., Chan, E., Wasserman, H.: Comparing algorithm for dynamic speed-setting of a low-
power cpu. In: MOBICOM, pp. 13–25 (1995)

15. Gurumurthi, S., Sivasubramaniam, A., Kandemir, M.T., Franke, H.: Drpm: Dynamic speed
control for power mangagement in server class disks. In: 30th International Symposium on
Computer Architecture, pp. 169–179 (2003)

16. Hewlett-Packard, Intel, Microsoft, Phoenix Technologies Ltd., and Toshiba: Advanced Config-
uration and Power Interface Specification (2009)

17. Intel Corporation, http://www.intel.com/design/iio/manuals/273411.htm: Intel 80200 Proces-
sor based on Intel XScale Microarchitecture

18. Intel Corporation, http://www.intel.com/design/intelxscale/273473.htm: Intel XScale(R) Core:
Developer’s Manual

19. Ishihara, T., Yasuura, H.: Voltage scheduling problem for dynamically variable voltage pro-
cessors. In: Proceedings of the 1998 International Symposium on Low Power Electronics and
Design, 1998, Monterey, California, USA, August 10-12, 1998, pp. 197–202 (1998)

20. Jejurikar, R., Pereira, C., Gupta, R.K.: Leakage aware dynamic voltage scaling for real-time
embedded systems. In: Proceedings of the 41th Design Automation Conference, DAC 2004,
San Diego, CA, USA, June 7-11, 2004, pp. 275–280 (2004)

21. Jiang, H., Marek-Sadowska, M., Nassif, S.R.: Benefits and costs of power-gating technique.
In: ICCD ’05: Proceedings of the 2005 International Conference on Computer Design. IEEE
Computer Society, Washington, DC, USA (2005)

22. Kandemir, M., Son, S.W., Chen, G.: An evaluation of code and data optimizations in the context
of disk power reduction. In: ISLPED ’05: Proceedings of the 2005 international symposium
on Low power electronics and design, pp. 209–214. San Diego, CA, USA (2005)

23. Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Ye, W.: Influence of compiler optimizations on
system power. In: Proceedings of the 37th Design Automation Conference, pp. 304–307. Los
Angeles, USA (2000)

citeseer.ist.psu.edu/butts00static.html

180 5 Power Aware Operating Systems, Compilers, and Application Software

24. Kim, C.H., Roy, K., Hsu, S., Krishnamurthy, R., Borkar, S.: A Process Variation Compensating
Technique with an On-Die Leakage Current Sensor for nanometer Scale Dynamic Circuits.
IEEE Transactions on VLSI 14(6), 646–649 (2006)

25. Kim, T.: Application-driven low-power techniques using dynamic voltage scaling. In: 12th
IEEE Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA
2006), 16-18 August 2006, Sydney, Australia, pp. 199–206 (2006)

26. Lee, C., Lee, J.K., Hwang, T., Tsai, S.C.: Compiler optimization on vliw instruction scheduling
for low power. ACM Trans. Des. Autom. Electron. Syst. 8(2), 252–268 (2003)

27. Liao, W., He, L., Lepak, K.: Ptscalar version 1.0 (2004). URL http://eda.ee.ucla.edu/PTscalar/
28. Liu, X., Shenoy, P., Corner, M.D.: Chameleon: Application-level power management. IEEE

Transactions on Mobile Computing 7(8), 995–1010 (2008). DOI http://dx.doi.org/10.1109/
TMC.2007.70767

29. LSI LOGIC: TinyRISC LR4102 Microprocessor Technical Manual
30. Mahesri, A., Vardhan, V.: Power consumption breakdown on a modern laptop. In: Power-

Aware Computer Systems, pp. 165–180 (2004)
31. Mehta, H., Owens, R.M., Irwin, M.J., Chen, R., Ghosh, D.: Techniques for low energy soft-

ware. In: ISLPED ’97: Proceedings of the 1997 international symposium on Low power
electronics and design, pp. 72–75. Monterey, USA (1997)

32. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufman, San Fran-
cisco, CA (1997)

33. Petrov, P., Orailoglu, A.: Compiler-based register name adjustment for low-power embedded
processors. In: ICCAD ’03: Proceedings of the 2003 IEEE/ACM international conference on
Computer-aided design, p. 523 (2003)

34. Powell, M., Yang, S.H., Falsafi, B., Roy, K., Vijaykumar, T.N.: Gated-vdd: a circuit technique
to reduce leakage in deep-submicron cache memories. In: ISLPED ’00: Proceedings of the
2000 international symposium on Low power electronics and design, pp. 90–95 (2000)

35. Sery, G., Borkar, S., De, V.: Life is cmos: why chase the life after? In: DAC ’02: Proceedings
of the 39th annual Design Automation Conference, pp. 78–83. ACM, New York, NY, USA
(2002). DOI http://doi.acm.org/10.1145/513918.513941

36. Shao, Z., Xiao, B., Xue, C., Zhuge, Q., Sha, E.H.M.: Loop scheduling with timing and
switching-activity minimization for vliw dsp. ACM Trans. Des. Autom. Electron. Syst. 11(1),
165–185 (2006)

37. Shin, D., Kim, J., Lee, S.: Intra-task voltage scheduling for low-energy, hard real-time applica-
tions. IEEE Design & Test of Computers 18(2), 20–30 (2001)

38. ST Microelectronics: ST100 Technical Manual
39. Su, C.L., Despain, A.M.: Cache design trade-offs for power and performance optimization: a

case study. In: ISLPED ’95: Proceedings of the 1995 international symposium on Low power
design, pp. 63–68. ACM Press, New York, NY, USA (1995)

40. Sun, F., Ravi, S., Raghunathan, A., Jha, N.K.: Synthesis of custom processors based on
extensible platforms. In: ICCAD ’02: Proceedings of the 2002 IEEE/ACM international
conference on Computer-aided design, pp. 641–648. ACM, New York, NY, USA (2002). DOI
http://doi.acm.org/10.1145/774572.774667

41. Tomiyama, H., Ishihara, T., Inoue, A., Yasuura, H.: Instruction scheduling for power reduction
in processor-based system design. In: DATE ’98: Proceedings of the conference on Design,
automation and test in Europe, pp. 855–860. Le Palais des Congrés de Paris, France
(1998)

42. Tschanz, J.W., Narendra, S.G., Ye, Y., Bloechel, B.A., Borkar, S., De, V.: Dynamic sleep tran-
sistor and body bias for active leakage power control of microprocessors. IEEE Journal of
Solid State Circuits 38 (2003)

43. Valluri, M., John, L., Hanson, H.: Exploiting compiler-generated schedules for energy savings
in high-performance processors. In: ISLPED ’03: Proceedings of the 2003 international sym-
posium on Low power electronics and design, pp. 414–419. ACM Press, New York, NY, USA
(2003)

44. Venkatachalam, V., Franz, M.: Power reduction techniques for microprocessor systems. ACM
Computing Surveys 37(3), 195–237 (2005)

http://eda.ee.ucla.edu/PTscalar/

References 181

45. Weiser, M., Welch, B.B., Demers, A.J., Shenker, S.: Scheduling for reduced cpu energy. In:
OSDI, pp. 13–23 (1994)

46. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy. In: FOCS,
pp. 374–382 (1995)

47. Yun, H.S., Kim, J.: Power-aware modulo scheduling for high-performance vliw processors. In:
ISLPED ’01: Proceedings of the 2001 international symposium on Low power electronics and
design, pp. 40–45. Huntington Beach, USA (2001)

Chapter 6
Power Issues in Servers and Data Centers

Power optimization as a research topic was first studied in the context of portable
and handheld systems where saving battery life was of prime importance. However,
since that time, the need for saving power has become significantly more pervasive
all over the computing machinery, from portable devices to high-end servers and
data centers. The need for power optimization in larger scale computing environ-
ments such as servers and data centers arise from the increasing maintenance costs
(including the electricity charges) due to the power demands of a very large number
of computers. This introduces new contradicting requirements in the server design
space, which, in the past, were designed to a different set of specifications. Perfor-
mance was the primary design metric, with execution time and throughput being
the main considerations. In addition, reliability and fault-tolerance related concerns
were also significant, leading to designs with redundancy that offered high avail-
ability. While these concerns continue to be important, the emergence of power
efficiency has led to interesting innovations in the way such systems are conceived,
architected, and programmed.

The previous two decades have led to the emergence of data centers as integral
components of the world’s computing infrastructure. These facilities, consisting of
thousands of powerful computers, are the hosting sites of a variety of computing
services involving data storage, search, and processing. The concentration of a large
number of powerful computers in a small area in such a facility is understood to
lower the overall cost of providing the services, due to economies of scale in the
management leading to operational efficiencies. At the same time, this consolidation
also leads to large amounts of power being consumed by the data centers, clearly
paving the way for innovation in energy efficiency in the domains of relatively pow-
erful server computers, clusters of servers, and entire data centers [1].

6.1 Power Efficiency Challenges

In what way are power and energy efficiency concerns at macro-level entities such
as servers and data centers different from those at the chip-level? At the level of
servers, the building blocks that play a role in determining and influencing energy

P.R. Panda et al., Power-efficient System Design, DOI 10.1007/978-1-4419-6388-8 6,
c� Springer Science+Business Media, LLC 2010

183

184 6 Power Issues in Servers and Data Centers

dissipation include not only devices that are already well researched for low-power
implementation, such as processors and memories, but also other components such
as fans, power supplies, network and I/O controllers, and disks. The operating sys-
tem controlling the hardware devices plays a key role in the budgeting and manage-
ment of power for the server as a whole. Due to the disparate nature of the building
blocks which range from electronic to mechanical components, the energy optimiza-
tion problem for the server is an interesting new challenge. Chip level power opti-
mizations still need to be anticipated and the overarching scenarios such as power-
performance trade-offs are similar, but the power management mechanisms cannot
be trivially re-targeted. The time periods over which events occur are no longer in
the nanoseconds but at least three orders of magnitude larger. The power models
needed for optimization at the server level are similarly macroscopic in nature.

Clusters of servers and data centers represent the next higher level in the archi-
tectural hierarchy and energy management in this context involves co-ordinating the
activity of a possibly large number of individual servers. Again, a sufficiently high
level view of the constituent servers needs to be taken in order to do an intelligent
power management within practically available periods of time, and subtle trade-
offs exist between how much decision making should be done at a centralized level
and how much autonomy to provide, for example, to individual CPUs for determin-
ing their own decisions dynamically.

Given a power budget, a power management strategy would involve the appor-
tioning of the budget among the different components. However, several factors
discussed below lead to an inefficient allocation.

6.1.1 Nameplate Power Overestimates Actual Power

The term Nameplate Power is used to indicate the power rating for a server system
published by the manufacturer. The power drawn by the system is guaranteed to
not exceed this number. While such a label could be useful, it is often computed by
merely adding the maximum power dissipation advertised for the individual com-
ponents of the system! This is the equivalent of estimating maximum power of a
circuit by adding the maximum power drawn by each component separately, which
of course is a gross overestimate because the different components are extremely
unlikely to draw peak power simultaneously.

In a comparison of nameplate power against actual power drawn, a server with
the component power ratings given in Table 6.1 was used [5]. The server consists
of a motherboard with 2 CPUs, 4 memory modules, 2 PCI slots, and an IDE disk
drive. The total power drawn by the system components is 213 W. With a power
supply efficiency of 85%, the nameplate AC power drawn by the system is 251 W.
When such a system was subjected to rigorous power measurement by power inten-
sive benchmark test suites, the actual peak power observed was only 145 W, which
is only 58% of the nameplate power. This is one illustrative example with relatively
low-power CPUs. However, the observation is routine, with the actual percentage

6.1 Power Efficiency Challenges 185

Table 6.1 Rated power
dissipation of server
components [5] for relatively
low power CPUs. AC power
is higher to account for power
supply inefficiency

Component Power

2 CPUs 80 W
4 Memory modules 36 W
Disk 12 W
2 PCI slots 50 W
Motherboard 25 W
Fan 10 W
Total 213 W
AC power 251 W

varying across systems. This calls into question the utility of nameplate power as
a serious metric for use in power management strategies. A separate calibration is
typically necessary to measure peak power in more carefully controlled environ-
ments, executing programs spanning the range of applications expected to run on
the server.

6.1.2 Installed vs. Utilized Capacity

Estimates for data center power are often based on the maximum possible oc-
cupancy, which is seldom true in practice. In reality, a data center’s computing
equipment grows over a period of time, leading to the actual power dissipation being
much less than the budgeted power.

Redundancies built into the power supply design also leads us in the same direc-
tion. Dual power supplies are commonly used in computer equipment so that one
can serve as a back up if the other fails. Since each power supply is connected to
its own circuit, the provisioned power is clearly double that of the maximum dissi-
pated power [11]. Such overestimation ultimately leads to excess cooling capacity,
leading to higher cost of operation of the data center. Further, racks in data centers
are also frequently not filled up completely because of basic capacity mismatches.
For example, if we have 300W servers and 1KW racks, then one rack will house
only 3 servers, making the total peak power dissipation 900W, leaving 10% power
unutilized in the rack.

6.1.3 Load Variation

Power drawn by server depends on the work being currently performed, and hence
is inherently a dynamic quantity. When the server is idle, its dissipated power is
much less than its peak power. Thus, it is clear that the dynamic behavior of the
servers in the data center has to be taken into account in any intelligent power man-
agement strategy spanning clusters and data centers. Similarly, at a higher level of
the hierarchy, work done in different servers may not be correlated and all may not

186 6 Power Issues in Servers and Data Centers

draw their respective peak power simultaneously. Thus, it would be inaccurate to
estimate the data center power as the sum of the rated power for the constituent
servers, analogous to the issue with nameplate power.

Factors such as the ones mentioned above lead to overstating of power require-
ments for data centers, which has several undesirable consequences including higher
infrastructure costs incurred by data center owners in terms of provision for cooling
and excess generation and distribution for utility planners. These factors also point
to possible innovations in power management policies for servers and data centers.

6.2 Where does the Power go?

Where does the power go in servers and data centers? It is worth examining the
data for some example machines to understand the possible areas to be targeted
by power management schemes. Table 6.2 shows a power dissipation comparison
of two configurations of an IBM p670 server system. Column 2 shows the power
dissipation in a “small configuration” version with a 4-way server consisting of 4
single-core processors with a 128 MB L3 cache and a 16 GB memory. Column 3
shows the numbers for a “large configuration” 16-way version consisting of a dual
multi-chip module with 4 dual-core processors, 256 MB L3 cache, and 128 GB
memory.

The components of the server power are as follows:

� Processors, caches, and cache controllers
� Off-chip memory, including L3 cache, DRAM, memory controllers
� I/O and other equipment
� Fans dedicated for cooling processors and memory
� Fans dedicated for cooling I/O components

Some of the data are approximate (large configuration data estimated by scaling
up small configuration data, fan data read from data sheets, etc.), but nevertheless,
useful in setting the context for where power management policies should concen-
trate. Processors and memory account for the bulk of the power dissipation, but
there is a major difference in the relative power of the processor and memory among
the two configurations. The trend of high-end servers being packed with increasing

Table 6.2 Power dissipation in components of small and large configuration servers [9]

Component Small Configuration Large Configuration

Processors and Caches 384 840
Memory 318 1223
I/O and others 90 90
CPU/Memory Fans 676 676
I/O Fans 144 144

Total 1614 2972

6.2 Where does the Power go? 187

amounts of memory leads to memory power becoming the dominant component,
pointing to the increasing importance of memory in server power optimizations.

The fans in the server are responsible for cooling the processor, memory, and
other devices. The relatively high percentage of power attributed to the fans might
seem surprising. The fans in Table 6.1 had a relatively lower wattage. However,
servers dissipating higher power need more powerful fans that themselves require
higher power.

Disk power is not directly accounted for in the above data, primarily because
modern server systems have the disks decoupled from the compute unit and bundled
into a separate networked storage. The storage system now becomes the target of a
possibly independent power management strategy.

As expected from the above discussion, most power management strategies di-
rectly involve manipulation of the processor and memory activity. The move towards
a large number of processor cores lends itself to power management control at the
individual core level, where the activity state of the cores can be manipulated to
range from fully active to shutdown, with other intermediate states also being avail-
able when necessary.

At the data center level, it is worth looking at the power losses along the delivery
chain to the computing units to see where energy is dissipated even before reaching
the computers. Figure 6.1 illustrates the inefficiencies of the power delivery chain

Fig. 6.1 Power losses along the delivery chain. The percentages indicate the efficiencies of con-
version and distribution. Only 40% of the drawn power actually reaches the computation units

188 6 Power Issues in Servers and Data Centers

arising out of energy losses at various stages [10]. For a hypothetical loading of
the server, the power supply unit converting AC to DC power within the server may
operate at 70% efficiency (i.e., 30% of the power dissipated by the server is lost at
the power supply unit itself). Voltage Regulator Modules (VRM) then convert the
output DC into specific voltages needed for different chips. The processor, memory,
peripherals and disk may need different voltages such as 12V, 3.3V, 5V, etc. The
voltage conversion causes energy losses at the VRMs; only 85% of the power reach-
ing the VRMs is forwarded to the chips. Beyond the rack of servers, the next hop
is the Power Distribution Unit (PDU), which is generally considered very efficient
at 98%. Powering the entire data centre is the Uninterruptible Power Supply, with a
90% efficiency. The heat generated by all the data center equipment has to be cooled
by an air-conditioning unit whose energy requirements are proportional to the power
dissipated inside the equipment, with a 76% efficiency.

The cumulative result of energy losses along the distribution chain is that only
40% (product of the efficiencies) of the energy drawn by the data center actually
reaches the electronic hardware. The scale of power dissipated at the various distri-
bution stages could pave the way for future power management strategies taking a
more holistic view of the optimization problem, enlarging the emphasis to include
mechanical and other components in the data center in addition to the electronics.

6.3 Server Power Modeling and Measurement

In order to perform power management functions at the server level, a sufficiently
accurate power model is necessary. Such a model helps in the identification of op-
timization opportunities and in the prediction of the consequences of the decisions
taken. An important criterion of a power model that could be useful at the server
level is that the model should be characterized by easily accessible parameters. For
example, an instruction set level power model for the processor is not suitable for
use here because getting a trace of all instructions executed on the processor is ex-
pensive and would also interfere with the working of the processor.

The processor’s power dissipation consists of a static and dynamic component,
with the static component being approximately constant and the dynamic compo-
nent varying with the activity of the processor. The static component is not strictly
constant because the processor’s internal power management policy may induce
variations in the static power, but could still be treated as such at the high level.
The extent of activity in the processor is a very complex function of many differ-
ent simultaneous states and transitions. However, one gross metric that has been
identified as a reasonable representation of dynamic activity is CPU utilization. The
utilization metric could be interpreted in different ways, but a simple interpretation
is the fraction of clock cycles for which the CPU is NOT halted. Such a metric could
be used for the entire processor, or derived individually for the constituent cores in
a multicore processor. CPU utilization is a very attractive metric from the system
management point of view, because this parameter can be easily obtained through
the operating system.

6.3 Server Power Modeling and Measurement 189

Fig. 6.2 Server power model
based on CPU utilization. A
linear model serves as a good
approximation

A simple idealized power model for a processor is shown in Fig. 6.2. Point A

represents the idle power at 0% utilization, when the processor is doing nothing.
Point B represents the peak power drawn at 100% utilization. The power varies
linearly with the utilization according to the equation:

Power D A C .B � A/ � CPU utilization (6.1)

where CPU utilization is a fraction between 0 and 1. The power numbers A and B

are usually obtained by an initial calibration. Although this model is very simple and
approximate, studies show that it actually tracks the CPU power well enough to be
practically useful, in spite of ignoring the details of the processor’s internal activity
[5]. For a data center, the model above generalizes to A representing the idle power
of all servers combined and B representing the total power when all servers are
100% busy. CPU utilization would now represent the average utilization across all
processors.

More complex server power models could be built by accessing various per-
formance counters that are built into modern processors. Going down one level in
detail, we can keep track of the relative activity rates for the CPU, memory, network,
and hard disk. A high-level power model could be now based on the following data:

� CPU utilization
� Memory access count
� Hard disk access rate
� Network access rate

The power equation is a linear combination of the above factors:

Power D A � CPU utilization C B � memory access count C
C � disk access rate C D � network access rate C E

190 6 Power Issues in Servers and Data Centers

For different systems, an initial calibration is necessary to obtain the constants
A; B; C; D; and E [3]. The power estimate obtained from the above model also
closely tracks the measured power. The reason CPU utilization performs well is that
the other server components can also be thought of as being dependent on CPU
activity. For example, if more instructions are executed from the CPU, then more
of them are fetched from the memory, which also increases the memory access rate,
leading to a good correlation between the CPU utilization and the other activity
metrics.

6.4 Server Power Management

In this section we will review some power management techniques that are applica-
ble to single server computers, possibly employing a multiprocessor architecture.

6.4.1 Frequency Scaling

System level power management is achieved in several server systems through con-
trolling the voltage and/or frequency settings. In several systems, the two parameters
are not independently adjustable, but we have the choice of different power states,
with the low power states corresponding to lower voltage and frequency, and the
high performance states corresponding to higher voltage and frequency. Sometimes,
the control available is only in terms the system clock frequency, with the voltage
being fixed. Clock throttling is a simpler mechanism to control the performance
state without changing either voltage or frequency. The clock is merely gated for
some period at regular intervals to reduce the rate of activity, thereby reducing the
average dynamic power. In multicore systems, ideally we should have independent
voltage and frequency control over each of the processor cores, but even a rela-
tively modern multicore processor such as the POWER7 [15] does not provide this
flexibility; only the frequency of the individual cores is independently controllable.

The choice of the performance and power states in a server should be made judi-
ciously by considering the overall priorities.

Objective 1: deliver highest speed. If delivering the fastest execution and re-
sponse times is the primary goal, then the highest performance state is chosen.

Objective 2: deliver highest speed under power constraint. If delivering the
fastest response while meeting a power budget is the goal, then the highest per-
formance state that does not exceed this budget is chosen. The system would first
need to be characterized for power dissipation at the different performance states.

Objective 3: deliver a given performance at lowest energy. If the goal is to
minimize the total energy dissipated while delivering a particular performance

6.4 Server Power Management 191

a

b

Fig. 6.3 Servers running at high performance and low power operating points. (a) Low power
mode: the system is run at power P lp, just meeting the deadline. (b) High performance mode:
the system is run at high performance mode with power P hi ; it finishes faster, then idles at power
P id . Relative energy efficiency is determined by the relative power values

(measured in, say, throughput of tasks per unit time), then the choice is not obvious,
and depends on the relative performance and power numbers of the different
states [12].

Consider a server system that is required to execute a given load within a given
time period. The start time is t1 and the deadline is t2 (Fig. 6.3). We have the choice
to run the server in two different modes: low power mode dissipating P lp power,
and high performance mode dissipating P hi power. Assume that the system is able
to meet the t2 deadline when run in the low power mode, as shown in Fig. 6.3(a).
The energy consumed in this case is given by:

E lp D P lp � .t2 � t1/ (6.2)

Alternatively, let us run the system in a high performance mode, leading to a
faster execution. The execution completes at time t3 (< t2). For the remaining
duration until t2, the system is idle, dissipating power P id . The energy dissipated

192 6 Power Issues in Servers and Data Centers

is given by:

E hi D P hi � .t3 � t1/ C P id � .t2 � t3/ (6.3)

The deadline is met in both cases. Which alternative dissipates lower total en-
ergy? The relative values of E lp and E hi depend on the actual power numbers
(P hi , P lp, and P id), and execution times (t2 � t1 and t3 � t1). This problem
generalizes to the following problem:

Problem: Given a workload and a performance constraint, select the appropriate
performance state/frequency at which the server system should be executed, so that
the total energy dissipated is minimized.

In general, we have to choose one among several different performance states or
frequencies. Let us make the following definitions:

fmin The minimum frequency at which the system can be executed.
fmax The maximum frequency at which the system can be executed.
Pf The power dissipated when we execute the system at frequency f .
Pidle The power dissipated when the system is idle.

Let us assume that the system is able to just meet the deadline at the minimum
frequency fmin, and the execution time is Tmin. The energy corresponding to the
execution of the system at this frequency is:

Emin D Pmin � Tmin (6.4)

We compare the above energy number with that of the total energy dissipated
when the system is run at higher frequencies, with the same deadline Tmin. We use a
simple linear model of performance and power scaling – the power is a linear func-
tion of frequency (voltage and switching activity remaining constant), and execution
time is inversely proportional to frequency. At frequency f , the execution time is:

Tf D Tfmin � fmin

f
(6.5)

The system is idle for the remaining time = Tmin � Tf . Thus, the total energy dissi-
pation at frequency f is:

Ef D Pf � Tf C Pidle � �Tmin � Tf

�

D Pf �
�

Tfmin � fmin

f

�
C Pidle � Tfmin

�
1 � fmin

f

�

Using the linear power model, we have the power at frequency f given by:

Pf D Pfmin C m � .f � fmin/ (6.6)

6.4 Server Power Management 193

where the slope m is determined by the characteristics of the processor. Substituting
into the expression for Ef , we obtain:

Ef D �
Pfmin C m � .f � fmin/

��
�

Tfmin � fmin

f

�
C Pidle � Tfmin

�
1 � fmin

f

�

(6.7)
Thus, the choice of frequency f for energy minimization can be based on the

computed value Ef at that frequency. This computation is determined by:

1. nature of the application.
2. characteristics of the processor.

The nature of the application exhibits itself in the execution time estimate used
in the above computation. The Tf value computed above is valid for CPU-intensive
workloads, but not in situations where other components such as memory or disk
are the bottleneck. For example, if memory is the bottleneck, when we increase the
frequency, then memory requests will require a higher number of cycles than at a
lower frequency. This increases Tf beyond Tfmin � fmin

f
, which had assumed that the

number of clock cycles remains the same.
Similarly, the internal design of the processor, which determines the value of

m above, also influences the decision of whether it is energy-efficient to run the
system at frequency f . Experiments on servers based on an 850 MHz Pentium
and a PowerPC 405GP revealed that the Pentium gives the lowest energy at the
highest performance state (frequency), while the PowerPC dissipates the lowest
energy at the lowest performance state that meets the time constraint. Thus, the
behavior of the two systems is opposite, and power management algorithms have to
take this difference into account, in addition to the difference in the nature of the
applications [12].

Where the option of voltage scaling is available, an analysis similar to the above
is necessary. Since power varies as the square of the voltage, the scaled power does
not vary linearly. However, note that only the CPU power may vary directly with
frequency change. The voltages at the other components are likely to be the same.
Hence, a separate characterization of both the server and the application is required
to estimate the impact of voltage and frequency variations.

6.4.2 Processor and Memory Packing

It is instructive to look at the workload variation in some commercial server applica-
tions in order to understand the opportunities for optimization. Figure 6.4 gives one
view of the typical load seen by a transaction processing server processing web ser-
vice or data base requests in a commercial enterprise [9]. The period with relatively
high load corresponds to the office hours in a business. The load is lower outside
business hours, especially late night to early morning.

194 6 Power Issues in Servers and Data Centers

Fig. 6.4 Workload variation
over a 1-day period in a
commercial server. The
significant variation creates
power optimization
opportunities

a

b

Fig. 6.5 Balancing the workload in multiprocessor (SMP) servers. Performance is maximized
when the servers are equally loaded in both heavy and light load conditions. (a) Heavy Load.
(b) Light Load: Equally Balanced

Servers with a symmetric multiprocessor (SMP) or multicore architecture can
effect energy optimizations by exploiting the situation above where wide variations
exist in the workloads submitted to the server. Figure 6.5 shows two situations with
heavy and light load faced by an SMP server with 4 processors. In Fig. 6.5(a), the

6.4 Server Power Management 195

Fig. 6.6 Processor packing:
asymmetric load distribution.
Light load is distributed into a
smaller number (3) of
processors, switching one
processor off

load is heavy and when distributed equally among the 4 processors, keeps all of them
at 90% utilization. In Fig. 6.5(b), the load is lighter, and when distributed equally
among the 4 servers, keeps all of them 60% utilized.

In contrast, Fig. 6.6 shows the same light load (of Fig. 6.5(b)) distributed over
only 3 of the 4 processors. This causes the load on the 3 servers to increase to 80%,
but gives us the option to turn the fourth server off. This is an example of an impor-
tant class of optimizations called Processor Packing or Processor Consolidation [9].
An idle processor, as mentioned earlier, consumes a significant amount of power –
in typical servers, it could dissipate 50-60% of the peak power consumed. Simi-
larly, when processors are lightly loaded, their energy efficiency is low. Processor
packing aims to produce an asymmetric load distribution, creating the potential for
energy reduction by turning unused processors off. The power consumed by three
CPUs operating at 80% utilization is expected to be smaller than that consumed by
4 CPUs operating at 60% utilization, though the exact power numbers depend on
the actual processors used.

The concept of memory packing is analogous to the processor packing idea.
DRAM memory modules with no active data can be dynamically set to low power
mode so as to save power. When they are actually needed, the modules can be re-
stored to active mode to enable their usage. Whether a memory module is active
or idle depends on the data distribution. The data distribution can be influenced by
the operating system’s page allocation policies. A power aware page allocation pol-
icy would allocate new memory pages in memory modules that are already active,
which reduces the number of active modules. Power can also be saved by periodic
page migration by moving active data from one memory module to another so as to
enable setting one of them to low power mode. The analysis is similar to the on-chip
memory case discussed in Section 4.5, but the data objects are at a higher level of
granularity. A similar view can also be taken during the memory address mapping
phase. Multiple memory controllers may be present in the system, with a different
set of banks assigned to each controller. If the allocated memory pages can be clus-
tered into a small number of banks, one or more memory devices and controllers
may be powered down.

196 6 Power Issues in Servers and Data Centers

Memory packing has associated with it a trade-off between energy efficiency and
the delivered performance/bandwidth. Turning banks and controllers saves energy
but leads to latency delays when requests are directed at banks that are turned off.

6.4.3 Power Shifting

Although the frequency scaling and clock throttling mechanisms help control the
performance and power states of a server, a more fine-grain, independent control of
the different server components could help exploit more energy efficiency opportu-
nities. As seen in Section 6.3, the power model of a server could be improved by
considering other parameters in addition to CPU utilization, such as memory access
rate and disk access rate. We can attempt to control the processor and memory sep-
arately, since these two are the major power consuming components in any server.

The Power Shifting technique attempts to trade-off processor power for memory
power in an attempt to deliver maximum performance under a given total power
budget [6]. In an experiment conducted by running benchmark examples over a
period of time, it was observed that the peak CPU power was 53W, and the peak
memory power was 29W (Fig. 6.7). However, the peak total power was only 58W
(as opposed to the sum of peak power for CPU and memory, which is 82W). This
suggests that the CPU and memory are not drawing peak power at the same time,
and that a dynamic apportioning of a total power budget between CPU and memory
would achieve better performance than a static partition.

For controlling the power consumption of the CPU and memory components sep-
arately, throttling mechanisms are used. A characterization phase derives the linear

Fig. 6.7 Plot of CPU vs memory power at different times [6]. Sum of CPU power and memory
power is always less than 58W (less than sum of peak CPU and memory power numbers)

6.5 Cluster and Data Center Power Management 197

relationship between power consumption and activity factors, measured as the num-
ber of operations in a time interval (instructions in the case of CPU and memory
accesses in the case of memory). For throttling, hard limits are placed on the num-
ber of operations in every time interval. Once the limit is reached, the system is
stalled until the start of the next interval. Larger or smaller values for the interval
lead to coarse grain or fine grain control.

Different policies could be used to control the power allocation of the different
components.

Static Allocation. In this case, we allocate the total power budget according to the
ratio of the characterized peak power values for the CPU and memory. For example,
if the peak CPU power is 100W and peak memory power is 50W, and a power budget
of 90W is imposed, then we allocate power in a 2:1 ratio for CPU and memory, i.e.,
CPU gets 60W and memory gets 30W. Note that the example in Fig. 6.7 shows that
this is inefficient, since the peaks for CPU and memory may not occur together, and
hence, the total power in this approach may never come close to 90W. In the static
allocation scheme, the budgets are fixed once and never modified during program
execution.

Proportional by Last Interval (PLI). In this mechanism, it is predicted that the ra-
tio of CPU and memory activity in the current interval will be the same as that in the
next interval, and the power budgets are fixed accordingly. It is recognized that the
power dissipation has an activity-dependent part and an activity-independent part.
The activity-independent part is always budgeted for the components. The activity-
dependent part is determined by the allocated activity in the next interval.

Sliding Window. This policy generalizes the prediction mechanism in PLI to in-
clude historical behavior from more than one previous interval. Here, the throttling
decisions are taken every interval, but the monitoring period includes a window
several consecutive intervals. The activity of the next interval is now predicted to
be the average activity of the last several intervals. This leads to a smoothing out of
transient departures from normal behavior.

Several other activity prediction mechanisms popularly used in system-level
power optimizations could also be used for the power shifting process. Other vari-
ants include an on-demand strategy that does not interfere with the normal program
working if the current system power is significantly below the budget, but switches
to a PLI-like scheme when the power approaches the budget.

6.5 Cluster and Data Center Power Management

We will cover in this section the strategies applicable to server clusters and data
centers, where the number of servers could range from a few computers (say
within a single rack of servers) to hundreds of thousands of computers (in a large

198 6 Power Issues in Servers and Data Centers

scale commercial data center). The basic power management mechanisms at the
multiprocessor server level are also relevant at the server cluster and data center
level, with the CPU core being substituted by an entire server. However, there are
significant differences in the details of the parameters monitored, manipulation of
server state, and the time intervals over which optimization is performed.

6.5.1 Power Capping/Thresholding

Since an idle server may dissipate 60% of the peak server power, it is expensive
to maintain servers in idle state. This basic observation can be used to influ-
ence power management decisions at the cluster level. Similar to the processor
packing/consolidation proposal discussed in Section 6.4.1, the workload can be dis-
tributed intelligently across the cluster of servers. During periods of high load, the
load can be balanced equally among the servers. During idle periods, the load can be
concentrated into a smaller number of servers, giving us the opportunity to switch
the others off or set them to a low power state.

Figure 6.8(a) shows an idealized profile of the expected variation in power as
the load increases in performance-optimized and energy-optimized server clusters
using the informal strategy outlined above. In the performance-optimized version
where all servers are always in active state, the power dissipation at low loads
is relatively high because idle servers dissipate significant power. In contrast, in
the energy-optimized version, the low-load power is much smaller due to aggres-
sive power management leading to several servers being turned off. As the load
increases, the total power increases linearly, with the performance-optimized and
energy-optimized lines exhibiting different slopes. At the highest load, all servers
operate in the highest performance states in both cases and the total power values
converge.

Figure 6.8(b) shows the corresponding performance variation, characterized in
terms of latency. At low loads the energy-optimized cluster exhibits higher latency
because the smaller number of active servers are loaded to a higher extent in com-
parison to the performance-optimized cluster. As the load increases, the latency
numbers become similar because the two configurations begin to look similar [2].

Consider a homogeneous server cluster consisting of identical servers, with a
load balancing switch that can be enhanced to include power awareness (Fig. 6.9).
The operating system on each server monitors the load and communicates the infor-
mation to the central switch, which maintains a list of currently active servers and
the extent to which each is loaded.

A performance-optimized cluster will attempt to distribute the load equally
among all the servers, so a new request will be forwarded to the server with the
lowest current load. As shown in Fig. 6.10(a), the capacity of the cluster in terms of
servicing the requests remains constant irrespective of the actual load seen, leading
to excess capacity at low loads.

6.5 Cluster and Data Center Power Management 199

a

b

Fig. 6.8 Variation of power and delay in performance-optimized and energy-optimized server
clusters. (a) At low load, the performance-optimized system consumes more power due to idle
servers. At high load, all servers are heavily utilized, and power consumed is similar. (b) At low
load, the performance-optimized system performs better because individual servers are lightly
loaded; the energy-optimized system is worse because it uses fewer (heavily loaded) servers, so
individual tasks have higher latency. At high load, server states are similar, so latencies are also
similar

In an energy-optimized cluster, the switch will need the additional ability to add
or remove nodes from the current active cluster. We can define a threshold T for
the average utilization factor at which we wish to keep the set of active servers.
During execution with k active servers, if the average utilization approaches T ,
then a new server is activated, making the total number of active servers k C 1.
With k servers, the available capacity is kT , with capacity being measured in terms
of CPU utilization multiples. When the load falls in the region of .k � 1/T , we

200 6 Power Issues in Servers and Data Centers

Fig. 6.9 Load balancing switch in server cluster. A central switch distributes tasks to one of n

servers by keeping track of their individual states

Fig. 6.10 Changing capacity
with load in energy-optimized
server cluster. (a) In
performance-optimized
system, all servers are always
active, so the total capacity is
constant. At low load, excess
capacity is larger. (b) In
energy-optimized system,
new servers are turned on
(i.e., extra capacity is added)
as and when the load on the
current set reaches 100%
(T D 1), leading to a
step-function like behavior in
the capacity

a

b

6.5 Cluster and Data Center Power Management 201

Fig. 6.11 Capacity variation
with a different threshold
T D 0:8. New capacity is
added when average load
reaches 80% of current
capacity

deactivate one server, decreasing the total number of active servers to k � 1. Thus,
the available capacity changes as a step function, as shown in Fig. 6.10(b), where
we use a threshold of T D 1. That is, a new server is commissioned when the
existing capacity is fully utilized. Comparing with Fig. 6.10(a), this strategy leads
to a significant reduction in excess capacity available, which is exploited to save
power by turning the remaining servers off.

Figure 6.11 shows the scenario when we use a different threshold such as
T D 0:8. Now, the load intervals are smaller – we switch server state at smaller in-
tervals, and as shown by the shaded region, a greater excess capacity is maintained.

As seen above, the set of resources utilized by a cluster or data center can be dy-
namically varied depending on the current load. The task allocation decisions taken
by the load distribution switch can be based either on actual measurement of instan-
taneous load, power, etc., or a performance/power model of the system in terms of
high level parameters that can be tracked and manipulated by a load balancing unit.
The decision to assign a task to a resource can be based on a more complex cost
function that ultimately relates the cost of making the resource available for the task
for that duration against the benefits obtained from allocating it. Thus, the provision-
ing of resources in a data center need not target the worst case utilization scenario,
but can take into account a more nuanced analysis of the cost of not meeting the
occasionally occurring peak request rate.

6.5.2 Voltage and Frequency Scaling

In addition to varying the set of currently managed active servers, the voltage scaling
mechanism available on each individual server could also be used for cluster power
management. When a specific voltage is selected for operation, the frequency is
appropriately scaled so that the system still works reliably at the selected voltage.
The general problem can be stated as follows.

202 6 Power Issues in Servers and Data Centers

Problem: Given a workload, a performance constraint, and a set of n homoge-
neous servers that can be set to one of m different states, each setting corresponding
to a voltage and frequency, select the appropriate setting Vi at which each individual
server should be executed, so that the total energy dissipated is minimized.

Several different power management policies could be contemplated, which
differ with respect to the resulting power savings and the corresponding implemen-
tation complexity [4].

The simplest cluster level power management policy is to just allow each server
to make its own voltage and frequency adjustments depending on the load submitted
to it. All the optimizations of Section 6.5.1 could still be applied independently at
each server. No further co-ordination is performed, and the load balancing switch
just performs its normal function of approximately equalizing the load across all the
servers. Although each node has the freedom to set its own operating conditions, we
may find the settings to be roughly equal in practice, since the load balancer ensures
approximately similar load for all the servers.

A more interesting power management policy at the server level is to combine
the two policies in a co-ordinated manner:

1. switch servers off when the load is relatively low.
2. manipulate the voltage and frequency of each active server appropriately to de-

liver the required performance at the lowest voltage/frequency setting.

A simple model of the power consumption of the cluster of servers is necessary
to work out the overall power management strategy. Let the dynamic power con-
sumption of the CPU be given by:

Dynamic CPU Power D 1

2
˛C V 2f (6.8)

where ˛ is the activity factor, V is the voltage, C is the effective capacitance, and
f is the frequency of operation. The frequency also varies linearly with the voltage,
making the power equation:

Dynamic CPU Power D c1f 3 (6.9)

where c1 is a constant.
We assume that the task latency is proportional to the frequency of operation.

That is, if the frequency is doubled, then the task takes half the original time. This
assumption is not quite accurate since the changed CPU frequency leads to differ-
ences in stall cycles, thereby affecting the total number of cycles in unpredictable
ways, but is nevertheless useful for generating some important insights. The power
consumed by the rest of the system (other components C leakage power in the CPU)
is constant, so the total system power at frequency f can be expressed as:

P.f / D c0 C c1f 3 (6.10)

where c0 and c1 are constants.

6.5 Cluster and Data Center Power Management 203

For a cluster of n systems operating at frequency f1, the total power is:

S .n; f1/ D n � P .f1/ D n �
�
c0 C c1f1

3
�

(6.11)

If the frequency f1 is too low the load balancer can turn off one server and re-
distribute its load among the remaining n � 1 servers. In this process, the power
consumed by one server is subtracted from the total, but the re-distribution of the
load increases the dynamic power of the remaining servers. If performance is not to
be sacrificed, then the frequency of the remaining n � 1 servers have to proportion-
ately increase to n

n�1
f1. The power dissipated by the new cluster configuration is

given by:

S
�
n � 1;

n

n � 1
f1

�
D .n�1/�P

� n

n � 1
f1

�
D .n�1/� D

�
c0 C c1

n

n � 1
f1

3
�

(6.12)

The new configuration with n � 1 servers dissipates less power than the n-server
configuration when:

S
�
n � 1;

n

n � 1
f1

�
< S.n; f1/ (6.13)

From the expressions above, we can easily solve for f1 and take the decision to
turn a server off if the frequency of the n servers falls below f1. Similarly, when f1

is high, we can consider an additional server on, increasing the server count in the
cluster to n C 1. This permits us to deliver the same performance by reducing the
server frequencies to n

nC1
f1/. The addition is worth it when:

S.n; f1/ > S

�
n C 1;

n

n C 1
f1

�
(6.14)

From Equations 6.13 and 6.14, we can compute the optimal frequency ranges
for an n-server cluster for different values of n. It should be pointed out that the
above analysis is only an approximate indication of the actual relationships between
power, performance, and frequency. In practice, this needs to be refined with other
relevant information. For example, performance measured in terms of response time
may not be exactly inversely proportional to frequency; all the required frequency
points may not be available for a server; etc.

The approximate performance and power model used above can be replaced by a
power management strategy using actual measurements of power and performance.
Modern servers have sensors for reporting instantaneous power, which can be used
along with performance information obtained from the operating system to build a
fully dynamic control theory based strategy where decisions on frequency changes
are taken in response to observed variations in power and performance as a conse-
quence of current load and frequency/voltage settings [14].

Finally, we can drop the assumption we have made earlier about the cluster be-
ing homogeneous. In reality, large clusters centers are always heterogeneous simply

204 6 Power Issues in Servers and Data Centers

because they are not fully populated at once – the specifications of later machines
will most likely be different from the original set. The different machine types need
to be first characterized for the variation of system power as a function of frequency
and voltage settings, and also the performance metric at different operating condi-
tion settings [7,8]. In a scenario where a power constraint has to be met, the system
can keep track of the projected power with the current cluster configuration and
selection of operating conditions. If the power rises too high, then we evaluate the
estimated performance loss by reducing the operating frequency at different nodes
of the heterogeneous cluster, and select the server and its setting that leads to mini-
mum performance loss while respecting the total power budget.

6.6 Summary

Power management at the server, cluster, and data center levels has emerged as an
important problem in recent years, with energy costs of maintaining large comput-
ing infrastructure rivaling the cost of the systems themselves. Two major power
management knobs available at this level of abstraction are: (i) dynamic voltage
and frequency scaling for individual servers, and (ii) server consolidation, where we
keep only as many servers in active state as necessary so that power can be saved by
turning the rest off or setting them to low power mode. Simple techniques discussed
in this chapter have been proposed as first attempts to manage power at these levels,
but the topic continues to be an important research challenge. Accurate power and
performance models are necessary for prediction of the impact of adjusting high
level parameters. Server hardware continues to grow more sophisticated with the
addition of sensors to report power, temperature, and other useful information that
helps power management algorithms.

Server level power management strategies do have to be aware of long term con-
sequences of the power optimizations performed, such as the impact of frequent
on/off switching on disk reliability. In practice, the idealized situations discussed in
this chapter regarding server task allocation needs to be refined. For example, all
tasks may not be eligible to be executed on all servers because of restrictions arising
out of client agreements [13]. A good data center level power management strat-
egy of the future is likely to be co-designed with the mechanical analysis such as
air-flow study.

References

1. Bohrer, P., Cohn, D., Elnozahy, E., Keller, T., Kistler, M., Lefurgy, C., Rajamony, R., Rawson,
F., Hensbergen, E.V.: Energy conservation for servers. In: Proceedings of the IEEE Workshop
on Power Management for Real-Time and Embedded Systems, pp. 1–4 (2001)

2. Chase, J.S., Doyle, R.P.: Energy management for server clusters. In: Proceedings of
HotOS-VIII: 8th Workshop on Hot Topics in Operating Systems, May 20-23, 2001,
Elmau/Oberbayern, Germany, p. 165 (2001)

References 205

3. Economou, D., Rivoire, S., Kozyrakis, C., Ranganathan, P.: Full-system power analysis and
modeling for server environments. In: Workshop on Modeling Benchmarking and Simulation
(MOBS) (2006)

4. Elnozahy, E.N., Kistler, M., Rajamony, R.: Energy-efficient server clusters. In: Power-Aware
Computer Systems, Second International Workshop, PACS 2002 Cambridge, MA, USA,
February 2, 2002, Revised Papers, pp. 179–196 (2002)

5. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. In:
34th International Symposium on Computer Architecture (ISCA), San Diego, California, USA,
pp. 13–23 (2007)

6. Felter, W.M., Rajamani, K., Keller, T.W., Rusu, C.: A performance-conserving approach for
reducing peak power consumption in server systems. In: Proceedings of the 19th Annual In-
ternational Conference on Supercomputing, ICS 2005, Cambridge, Massachusetts, USA, June
20-22, 2005, pp. 293–302 (2005)

7. Heath, T., Diniz, B., Carrera, E.V., Jr., W.M., Bianchini, R.: Energy conservation in heteroge-
neous server clusters. In: Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPOPP), Chicago, IL, USA, pp. 186–195 (2005)

8. Kotla, R., Ghiasi, S., Keller, T.W., III, F.L.R.: Scheduling processor voltage and frequency in
server and cluster systems. In: High-Performance, Power-Aware Computing (HPPAC) (2005)

9. Lefurgy, C., Rajamani, K., III, F.L.R., Felter, W.M., Kistler, M., Keller, T.W.: Energy manage-
ment for commercial servers. IEEE Computer 36(12), 39–48 (2003)

10. Mansoor, A., Griffith, B.: Enabling high efficient power supplies for servers. Presentation at
Intel Technology Symposium (2004)

11. Mitchell-Jackson, Jennifer, Koomey, J., Nordman, B., Blazek, M.: Data center power require-
ments: Measurements from silicon valley. Energy – The International Journal 28(8), 837–850
(2003)

12. Miyoshi, A., Lefurgy, C., Hensbergen, E.V., Rajamony, R., Rajkumar, R.: Critical power slope:
understanding the runtime effects of frequency scaling. In: Proceedings of the International
Conference on Supercomputing, New York City, NY, USA, pp. 35–44 (2002)

13. Vasan, A., Sivasubramaniam, A., Shimpi, V., Sivabalan, T., Subbiah, R.: Worth their watts? an
empirical study of datacenter servers. In: 16th International Conference on High-Performance
Computer Architecture (HPCA-16), Raleigh, North Carolina, USA (2010)

14. Wang, X., Lefurgy, C., Ware, M.: Managing peak system-level power with feedback control.
Tech. Rep. RC23835, IBM (2005)

15. Ware, M., Rajamani, K., Floyd, M., Brock, B., Rubio, J.C., Rawson, F., Carter, J.B.: Archi-
tecting for power management: The power7 approach. In: 16th International Conference on
High-Performance Computer Architecture (HPCA-16), Raleigh, North Carolina, USA (2010)

Chapter 7
Low Power Graphics Processors

So far we studied power optimizations at various levels of design abstraction such as
the circuit level, architectural level, all the way up to the server and data center level.
In this chapter, we present a case study that combines several of the aforementioned
techniques in a reasonably complex system: a power efficient Graphics Processor.

Computer graphics has progressed profoundly in recent years with applications
in diverse fields. What started as a tool for military simulation ultimately evolved
into an indispensable utility in a huge number of different application domains
such as movie special effects, medical imaging, gaming, and computer-aided de-
sign. Since the applications are so varied, the kind of constraints they impose on
graphics processing are also different. Applications such as games, animated chats,
etc. are real time applications and need on-line synthesis of images. The empha-
sis is more on maintaining uniform frame rates, at times compromising the detail
and precision at which the images are generated. On the other hand, graphics ap-
plications such CAD use images that are generated offline. The aim is to generate
images at the highest level of detail without processing time constraints. Sometimes,
huge workstations work for several hours to generate visually stunning images with
special effects used in movies or to synthesize a view of an automobile part to the
minutest detail used in CAD.

Advancements in semiconductor technology have made it possible to pack mo-
bile devices with the computational capacity sufficient to port extremely complex
applications on them. Some of the graphics applications such as screen savers, gam-
ing, GPS-backed maps, animated chats, etc. that have been developed for either
desktops or dedicated consoles are now emerging to be possible applications for mo-
bile devices. The challenge in porting complex 3D graphics applications onto mo-
bile platforms is posed not so much by performance as power consumption. Mobile
devices are powered by battery, and since battery capacity is not increasing at par
with processing power of chips, the gap between the demand and supply of power is
widening. Increasing popularity of mobile graphics applications has introduced an
additional dimension of power in the design of a graphics subsystem to the already
existing ones of performance and quality. In recent years, industry and academia
have been active in coming up with power optimizations for various aspects of
graphics processing: (i) scaling down the applications to suit mobile platforms;
(ii) low power graphics processor design; (iii) system level power reduction, etc.

P.R. Panda et al., Power-efficient System Design, DOI 10.1007/978-1-4419-6388-8 7,
c� Springer Science+Business Media, LLC 2010

207

208 7 Low Power Graphics Processors

Low power graphics system design forms the focus of this chapter. A detailed
account of the operations in graphics processing is presented to provide a functional
view of a graphics processor. This is followed by a discussion on the architecture of
modern graphics processors highlighting the major power consuming components.
Optimizations specific to each of these units and also the system level power man-
agement techniques are discussed further in the chapter.

7.1 Introduction to Graphics Processing

7.1.1 Graphics Pipeline

The aim of a graphics pipeline is to generate the view of a scene on a display de-
vice. The pipeline processes the complex geometry present in the scene, which is
represented using several smaller primitives such as triangles, lines, etc., to produce
the color corresponding to each position on a 2D screen called a pixel.

Several operations are applied in sequential order, on the data representing the
mathematical model of an object, to create its graphical representation on the screen.
The high level view of the flow of these operations, generally called the Graphics
Pipeline, is illustrated in Fig. 7.1.

7.1.1.1 Application Stage

The application layer acts as an interface between the player and the game engine.
Based on the inputs from the player, the application layer places the view camera,
which defines the position of the “eye” of the viewer in 3D space. The application
also maintains the geometry database, which is the repository of the 3D world and
the objects used in the game, represented as geometric primitives (triangles, lines,
points etc). Every object is associated with a position attribute defining its placement
in the world space, and a pose defining the orientation of the object and movable-
parts of the object with respect to a fixed point on the object as shown in Fig. 7.2.

Animation is the process of changing the position and pose of the objects from
frame to frame, so as to cause the visual effect of motion. The movement of objects
in a frame can be brought about by a combination of translation, rotation, scaling,
and skewing operations (Fig. 7.3).

The application associates the objects in the geometry database with transfor-
mations as determined by the game play. The actual transformation operation on
the primitives of the object happens in the next stage – the geometry stage of the
pipeline. In addition, the application layer also identifies possible collisions among
objects in the frame and generates a response in accordance with the game play.
This layer is also responsible for processing the artificial intelligence (AI), physics,
audio, networking, etc.

7.1 Introduction to Graphics Processing 209

1. Position Camera
2. Animation
3. Frustum Culling
4. Occlusion Culling
5. Calculate LOD

1. Slope and Delta
 Calculation
2. Scan−Line Convert

1. Shading
2. Texturing
3. Fog
4. Alpha, Depth & Stencil test
5. Antialiasing

1. Swap Buffers
2. Screen Refresh

1. Translation, Rotation & Scaling
2. Tranform to view space
3. Lighting
4. Persepective Divide
5. Clipping and culling

Triangle Setup

Rasterization

Display

Application

Geometry

G
R

A
P
H

IC
S

 P
IP

E
L

IN
E

Fig. 7.1 Graphics Pipeline

Fig. 7.2 (a), (b), and (c)
Three different poses of the
same character in a 3D game

ba c

210 7 Low Power Graphics Processors

X

Z

Y

Z’

X’

Y’

A C

B

A’

B’

C’

a

X

Z

Y

B

A
C

B’A’

C’

b

X

Z

Y

A

B

C

A’

B’

C’

c

X

Z

Y

A

B

C

A’

d

Fig. 7.3 Transformations on an object from ABC to A’B’C’. (a) Translation: displacement of an
object from one position to another (b) Rotation: movement of an object around an axis causing
angular displacement (c) Scaling: resizing of an object (d) Skewing: reshaping an object by scaling
it along one or more axes

7.1.1.2 Geometry

The geometry engine receives the vertices representing the primitives of the ob-
jects as inputs from the application stage. The first step in the geometry stage is
to apply the transformations (associated with them in the application stage) on the
primitives. The various transformations are illustrated in Fig. 7.4. In newer pipeline
implementations, the geometry engine is also capable of animating the primitives.
In this case, the transformations are generated and applied by the geometry engine
itself.

7.1 Introduction to Graphics Processing 211

Y

Z

X

a

Z

Y

X

b

c

Fig. 7.4 Space-Space transformations on an object – (a) Model Space: centered at a point on the
object (b) World Space: a common co-ordinate space us used for all the objects (c) View Space:
the camera/eye forms the center of the world

In addition to these transformations, the geometry engine also needs to apply
space-space transformations on the primitives. Various spaces used to represent a
scene are illustrated in Fig. 7.4 and discussed below:

� Model Space: where each object is described with respect to a co-ordinate sys-
tem centered at a point on the object.

� World Space: where all the objects that form the scene are placed in a common
co-ordinate space.

� View Space: where the camera/eye forms the center of the world thus represent-
ing the world as seen by the viewer.

To transform the primitives from model space to view space, they are either first
transformed to world space and then to view space, or directly transformed to
view space. In terms of operations, these transformations are also a combination
of translations and rotations. The next step is lighting the vertices taking into ac-
count the light sources present in the scene and also the reflections from the objects
present in the scene. The lighting of primitives could be done either at vertex level
or pixel level. Though pixel level shading results in better effects, the downside
of per-pixel lighting is the resulting heavy computational workload. Thus, the

212 7 Low Power Graphics Processors

choice between per-vertex and per-pixel shading is a trade-off between accuracy and
workload.

After the per-vertex operations of transformation and lighting are done, the ver-
tices are assembled into triangles. Before the triangles are sent to the next stages
of the pipeline for further processing, the primitives that would not contribute to
the pixels that are finally displayed on the screen, are discarded so as to reduce the
workload on the pixel processor. As a first step, the geometry engine identifies the
triangles that fall partially or totally outside the view frustum. The primitives that
fall totally outside the frustum are trivially rejected. If the primitives are not com-
pletely outside the frustum, they are divided into smaller primitives so that the part
falling outside the frustum can be clipped off. In addition to the primitives falling
totally outside the view frustum, the triangles that face away from the camera are
also trivially rejected. This process is called back-face culling. For example, inde-
pendent of the viewing point, half of a solid sphere’s surface is always invisible and
hence can be discarded.

7.1.1.3 Triangle Setup

So far in the pipeline, the scene is represented in terms of triangles, lines, and points.
But what is finally displayed on the screen is a 2D array of points called pixels. In
order to progress towards this final objective, the triangles are first divided into a set
of parallel horizontal lines called scan-lines, as shown in Fig. 7.5. These lines are
further divided into points, thus forming the 2D array of points called the fragments.
The scan-line conversion of the triangles occurs during the triangle setup phase; the
scan lines are then passed on to the rasterization engine, which then generates pixels
from these lines. While dividing the triangles into the corresponding scan lines, the
triangle setup unit calculates the attributes – depth, color, lighting factor, texture co-
ordinates, normals, etc., of the end points of the lines through interpolation of the
vertex attributes of the triangle.

A(x1,y1)

C(x3,y3)

slope=m3

slope=m1

(x1+1/m1, y1+1)

slope=m2

B(x2,y2)

(x1+1/m3, y1+1)

(x2+1/m2, y2+1)

(x1’, y2) where x1’=x1+(y2−y1)/m3
(x1’+1/m3, y2+1)

Fig. 7.5 Scan line conversion: the process of dividing the primitives into parallel scan-lines

7.1 Introduction to Graphics Processing 213

7.1.1.4 Rasterization

The raster engine generates the pixels from the scan-lines received from the setup
unit. Each pixel is associated with a color stored in a color buffer and depth stored in
a depth buffer. These two buffers together form the framebuffer of the graphics pro-
cessor. The aim of the pixel processor is to compute the color of the pixel displayed
on the screen. The various operations involved in this processing are enumerated
below:

Shading: In this step, the lighting values of the pixels are computed. This is done
by either assigning the weighted average of vertex lighting values or, for greater
accuracy, actually computing the lighting at each pixel.

Texturing: Texture mapping is a technique of adding surface detail, texture, or
color to an object and helps significantly in adding realism to the scene. The pro-
cess of texture mapping can be explained with a simple example shown in Fig. 7.6.
Consider modeling a globe. One way to do this is to represent the sphere as a large
number of tiny triangles and associate the vertices of these triangles with appropri-
ate colors so that after the triangles are passed through the pipeline, what finally
appears on the screen looks like a globe. The modeling effort in this case is so huge
that it makes rendering such models almost impossible. Things would be easier if
we could just define the mapping of a few points on a sphere to the points on a 2-D
world map, and the pipeline had the capability to associate the pixels with appropri-
ate colors from the world map. This process of mapping the pixels on a 3D model
to points on a 2D texture called texels, is called texture mapping or texturing. This
has made the generation of objects with surface irregularities such as the bumps on
the surface of moon, objects with surface texture such as that on a wooden plank,
etc., possible in a graphics pipeline.

Fog: After texturing, fog is added to the scene, giving the viewer perception of
depth. Fogging effect is simulated by increasing the haziness of the objects with
increasing distance from the camera. The fog factor is thus a function of the
z-value of a pixel and could increase either linearly or exponentially. The fog factor
is then applied to the pixel by blending it with the color computed in shading and

Fig. 7.6 Texture mapping example. (a) Object. (b) Texture. (c) Textured object

214 7 Low Power Graphics Processors

texturing steps. Another application of fogging is to make the clipping of objects at
the far clipping plane less obvious by fading their disappearance rather than abruptly
cutting them out of the scene.

Alpha and Depth: Alpha value is one of the attributes of a vertex that is used to
model opacity of the vertex. This is required to model transparency and translucency
of the objects, for example in simulating water, lens, etc. An opaque object occludes
the objects that are behind it. Thus, if a pixel is opaque and the z-value of the pixel
is less than the value present in the depth buffer at the position corresponding to the
pixel, then the depth buffer and color buffer are updated with the attributes of the
pixel. However, if the object transparent, depending on its transparency, the color of
the occluded objects have to be blended with the color of the object to simulate the
effect of transparency. In addition to depth and color buffers, a graphics pipeline also
has a stencil buffer. Generally, this buffer stores a value of 0/1 per pixel to indicate
whether the pixel has to be masked or not. This is used to create many effects such
as shadowing, highlighting, and outline drawing. The operations involved in these
three tests together can be summarized as follows (Algorithm 1).

Algorithm 1 Alpha, depth and stencil test
1: if StencilBuffer (x,y)¤ 0 then
2: if Alpha¤ 0 then
3: if DepthBuffer (x,y) � z then
4: ColorBuffer (x,y) color
5: DepthBuffer (x,y) z
6: end if
7: end if
8: end if

Anti-aliasing: When an oblique line is rendered, it appears jagged on the screen
as shown in Fig. 7.7(a). This is a result of discretization of a continuous function
(line) by sampling it over a discrete space (screen). One way to alleviate this effect
is to render the image at a resolution higher than the required resolution and then
filter down to the screen resolution. This technique is called full screen anti-aliasing
(Fig. 7.7(a)). The problem with this method is that it increases the load due to pixel

Fig. 7.7 Anti-aliasing illustration. (a) Line. (b) Anti-aliased line

7.1 Introduction to Graphics Processing 215

processing. Hence an optimization called multi-sampling is generally used, which
identifies the edges of the objects in the screen and applies anti-aliasing only to the
edges.

7.1.1.5 Display

When a new frame is to be displayed, the screen is first cleared; then the driver
reads the new frame from the framebuffer and prints it on the screen. Generally a
screen refresh rate of 60fps is targeted. If only one buffer is used for writing (by the
GPU) and reading (by the display driver), artifacts such as flickering are common
because the GPU could update the contents of the frame before they are displayed
on the screen. To overcome this problem, generally double buffering is used, as
shown in Fig. 7.8, wherein the display driver reads the fully processed frame from
the front buffer while the GPU writes the next frame to the back buffer. The front and
back buffers are swapped once the read and write operations to the front and back
buffers respectively, are completed. The obvious drawback of double buffering is
performance loss. Since the frame which needs slightly more than 16.67msec (1/60
of a sec) would be updated only in the next refresh cycle, the GPU cannot start
processing the next frame until then. In such cases, the overall frame rate may fall
to half the targeted frame rate even when the load is only slightly increased. To
counter this problem, triple buffering using three buffers (one front and two back
buffers) can be used. The GPU can now write to the additional buffer, while the

Write
Frame #N

Read
Frame #N−1

Front
Buffer

Back
Buffer

GPU Display

B1

B2

a

Write
Frame #N+1

Read
Frame #NGPU Display

B1

B2 Back
Buffer

Front
Bufferb

Fig. 7.8 Double Buffering. (a) GPU writes to B1 and Display driver reads from B2. (b) Swap
Buffers: GPU writes to B2 and driver reads from B1

216 7 Low Power Graphics Processors

other buffer holds the frame to be refreshed. The choice of double buffering or triple
buffering depends on the availability of memory space.

7.1.2 Graphics Processor Architecture

The computational workload of 3D graphics applications is so high that to achieve
real time rendering rates, hardware acceleration for graphics processing is almost al-
ways necessary. Generally, the application layer executes on the CPU and the rest of
the graphics processing is offloaded to Graphics Processing Units (GPUs). To enable
ease of development and also application portability, an Application Programming
Interface (API) is used to abstract the hardware from the application. The device
driver that forms the interface between the CPU and GPU receives the API calls
from the application and interprets them to the GPU. The interaction between CPU
and GPU is shown in Fig. 7.9.

The commands from the application running on the CPU are passed on to the
GPU through a ring buffer interface. The data associated with these commands,
such as vertex attributes, textures, and shader programs are transferred from system
memory to VRAM through Direct Memory Access (DMA) transfers. In addition
to acting as temporary storage for input data, VRAM also needs to store the pro-

Application

API

Device Driver

GPU

CPU
RAM Hard

Disk

Graphics
Card

Ring Buffer

Interface
DMA Transfer

VRAM

Display

Host CPU

Fig. 7.9 Interaction between CPU and GPU: Commands are transferred through the Ring buffer
interface and the data through DMA transfers

7.1 Introduction to Graphics Processing 217

cessed frames that are ready for display. This area in VRAM that is reserved for
storing the processed frames is essentially the framebuffer. Since the GPU need not
send the processed frames to CPU, the CPU need not wait for the GPU to complete
the processing before issuing the next GPU command. This helps CPU and GPU to
work in parallel, thus increasing the processing speed.

In graphics applications, we observe that the input data set is operated upon by a
large number of sequential operations. Hence, GPUs are generally deeply pipelined
to enhance the throughput. Moreover, the data set is huge and operations on one data
element are independent of operations on other data elements. Hence, each stage in
the pipeline consists of multiple function units to support parallel processing of the
data streaming into it. The Fig. 7.10 shows the high level architectural view of a
graphics processor.

The Host Interface acts as an interface between the host CPU and the GPU
pipeline. It maintains the state of the pipeline, and on receiving the commands from
the driver, it updates the state and issues appropriate control signals to the other
units in the pipeline. It also initiates the required DMA transfers from system mem-
ory to GPU memory to fill vertex buffer and index buffer, load the shader program,
load textures, etc. Vertex buffer is generally implemented as a cache, since re-use of
vertices is expected.

The first block in the pipeline, Transformation and Lighting, is responsible for
performing the transformation and lighting computations on the vertices. The vertex
input cache and index buffer are used to buffer the inputs to this block. The primi-
tives of an object are generally found to share vertices as shown in Fig. 7.11 – vertex
3 is common to triangles T1; T 2; and T 3. Index mode for addressing the vertices
results in reduced CPU-GPU transfer bandwidth than transferring the vertices in the
presence of vertex reuse [13].

For the example shown in Fig. 7.11, if we send the vertices forming each of
the triangles T1, T2, and T3 to the GPU, we need to send 9 vertices as shown in
Fig. 7.12. If each vertex is made of N attributes, where each attribute is a four
component vector (e.g., x,y,z,w components for position; R,G,B,A components of
color), a bandwidth of 9 � 4 � N floating point data is required. Instead, we could
assign each vertex an index (a pointer to the vertex – of integer data type), and send
9 indices and only 5 vertices to the GPU. Thus, in indexed mode we send only 9
integers and 5 � 4 � N floating point data. Indexed mode for vertex transfer and the
resulting bandwidth saving are depicted in Fig. 7.12. The indices of the vertices to
be processed are buffered into the index buffer and the attributes of these vertices
are fetched into the vertex input cache, since they are expected to be reused [5].
The processed vertices are also cached into a vertex output cache so as to reuse the
processed vertices. Before processing a new vertex, it is first looked up in the vertex
output cache [5]. If the result is a hit, the processed vertex can be fetched from the
cache and sent down the pipeline, thereby avoiding the processing cost.

The transformed and lit vertices are sent to the Primitive Assembly unit which
assembles them into triangles. These triangles are sent to the Clipper where trivial
rejection, back-face culling, and clipping take place. The triangles are then sent to
the Triangle Setup unit which generates fragments from the triangles. The scan-line

218 7 Low Power Graphics Processors

Vertex I/P
Cache

Color
Cache

Texture
Cache

Host Interface

Vertex O/P Cache

Index
Buffer

Primitive Assembly

Clipping and Culling

Triangle Setup

Hierarchial Z−Test

Early Z −Test

Pixel Processor

Color Blend

CPU

Z−Test

Transformation
and Lighting

HZ
Buffer

Depth
Cache

VRAM

Fig. 7.10 Fixed function Graphics Processor Architecture

7.1 Introduction to Graphics Processing 219

Fig. 7.11 Triangles sharing
vertices

2

3

4

51

T1

T2

T3

T1

T2

T3

v3 v4

v1

v2

v2 v3

v3 v4 v5

a
T1

T2

T3

1

2

2

3

3 4

3

4

5

Vertex

Index

v1 v2 v3 v4 v5

1 2 3 4 5

b

Fig. 7.12 Indexed addressing into vertex buffer needs a transfer of 5 vertices and 9 indices instead
of 9 vertices. (a) Triangles represented in terms of vertices. (b) Indexed triangle representation

Fig. 7.13 Tiled Triangle
Traversal: All pixels
belonging to a tile are
generated before moving on
to the pixels falling in the
next tile. Spatial locality into
Framebuffer and Texture
cache is hence exploited to
reduce memory bandwidth
requirement

1 2 8

9

4

3

16 1817

5 6 7

12

151413

10 11

16 17 18

19 20

21

24

25

2322

conversion of triangles into lines does not exploit the spatial locality of accesses into
the framebuffer and also the texture memory. Hence tiled rasterization, as shown
in Fig. 7.13, is generally employed. In this technique, the screen is divided into
rectangular tiles and triangles are fragmented such that the pixels belonging to same
tile are generated first before proceeding to pixels falling in a different tile. The
accesses to the framebuffer and texture cache are also matched to this tile size so
that accesses to memories can be localized [16].

220 7 Low Power Graphics Processors

The next unit is the pixel processor which shades and textures the pixels. Since
texture accesses exhibit high spatial and temporal reuse, a dedicated cache called
the Texture Cache is used in this unit to cache the textures. Most architectures use
depth based optimizations prior to pixel processing because a large number of frag-
ments are often culled in the depth test that follows pixel processing. Thus, the
time spent on shading and texturing such fragments is actually wasted. However,
it is not possible to conduct the depth test prior the pixel processing because, the
pixel processor can potentially change the depth or transparency of the pixel. In
circumstances where it is known that the pixel processor would not change these
parameters, we can always perform the depth test prior to pixel processing. This
is known as the earlyZ test [19]. It is generally observed that if a pixel fails the
depth test, the pixels neighboring it also fail the depth test with a high probabil-
ity. This property is exploited by the Hierarchical Z Buffer algorithm in identifying
the groups of pixels that could be culled, thus reducing the number of per-pixel
z-tests [3, 7].

After being shaded and textured, the pixels are sent to the Render Output Pro-
cessor (ROP) for depth, stencil, and alpha tests followed by blending, and finally,
writing to the framebuffer. Generally, the z-cache and color cache are used in this
block to exploit spatial locality in the accesses to the off-chip framebuffer.

The initial generations of GPUs were completely hardwired. However, with rapid
advances in computer graphics, there is a need to support a large number of newer
operations on vertices and pixels. Fixed function implementations have been found
inadequate to support the evolving features in the field of graphics processing due to
their restricted vertex and pixel processing capabilities. Programmable units to han-
dle vertex and pixel processing have been introduced in the programmable graphics
processors of recent years. The vertex and pixel programs that run on these pro-
grammable units are called Shaders. By changing the shader code, we can now
generate various effects on the same graphics processing unit.

A study of the workload characteristics of various applications on modern pro-
grammable processors reveals that the relative load due to vertex processing and
pixel processing varies with applications and also within an application [2]. This
results in durations when the vertex processors are overloaded while the pixel
processors are idle and vice-versa, leading to inefficient usage of resources. The
resource utilization efficiency can be improved by balancing the load for both ver-
tex and pixel processing on the same set of programmable units, leading to faster
overall processing. This is illustrated in Fig. 7.14).

Modern games are expected to have a primitive count of about a million resulting
in tens of millions of pixels. The operations on these millions of vertices and pixels
offer the scope for a very high degree of parallelism. Moreover, large batches of
these vertices and pixels share the same vertex shader and pixel shader programs
respectively. Hence, the programmable units are generally designed as wide SIMT
(Single Instruction Multiple Thread) processors. In Fig. 7.14, we observe that the
GPU consists of multiple programmable units, each consisting of several processing
elements (PEs). Different threads could be running on different programmable units,
but within a programmable unit, the same thread is executed on a different data

7.1 Introduction to Graphics Processing 221

TF
TFTF

TFTF
TF

TF
TFTF

TFTF
TF

TF
TF

TF
TF

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Pixel Thread IssueVertex Thread Issue

Input Assembler

Host

Set Up / Rasterize / Z−Cull

L2ROPROP L2

T
hr

ea
d

P
ro

ce
ss

or
Frame Buffer

L1

Programmable Unit

L1

Programmable Unit

Fig. 7.14 Unified Shader Architecture for Graphics Processor

element in every PE. All these PEs can hence share the same instruction memory
and decoder. This results not only in optimization of area, but also in considerable
power savings because the costs of instruction fetch and decode are amortized over
the group of threads running in tandem on the PEs of the programmable unit.

7.1.3 Power Dissipation in a Graphics Processor

From the analysis of operations in a graphics pipeline, it is observed that most of
the computations are concentrated in the programmable units, texture units, and
ROP units. Programmable units execute a large number of floating point vector
operations; texture units use large memory bandwidth to move the textures from
VRAM to cache, and perform a large number of floating point operations for

222 7 Low Power Graphics Processors

Fig. 7.15 Footprint of the die
of GT200 fapproximately to
the scaleg [1]: PUs, ROPs and
Texture units occupy most of
the chip’s real estate

PUTex

Tex PU

ROP

ROP

Frame Buffer Frame Buffer

PU

PU

Tex

Tex

Rest

filtering the texels; ROP units are memory intensive, needing multiple reads and
writes to the color and depth buffers. This is also obvious from the footprint of the
die of nVidia’s graphics processor (GT200 targeted for laptop computers) shown in
Fig. 7.15; most of the die area is occupied by these three units.

Since the three units identified above occupy most of the real estate on the die and
also contribute to a major fraction of the power consumption, most of the attention in
low power graphics also revolves around these three units. Optimizations targeting
each of these units are discussed in detail in the following sections.

7.2 Programmable Units

The high level view of a processing element(PE) in the Programmable Unit is shown
in Fig. 7.16. Each processing element in the programmable unit consists of a SIMD
ALU working on floating point vectors. In addition to the SIMD ALU, there is a also
a scalar ALU that implements special functions such as logarithmic, trigonometric,
etc. The ALU supports multi-threading so as to hide the texture cache miss latency.
Context switches between threads in a conventional processor causes some overhead
since the current state (consisting of inputs and the auxiliaries generated) needs to
be stored in memory and the state of the next thread has to be loaded from memory.
In order to support seamless context switches between the threads, the PUs in a
graphics processor store the thread state in registers. The register file in the shader
has four banks, one each to store input attributes, output attributes, constants, and
intermediate results of the program. The constant register bank is shared by all
threads whereas separate input/output and temporary registers are allocated to each
thread. The instruction memory is implemented either as a scratch pad memory
where the driver assumes the responsibility of code transfer or through a regular
cache hierarchy.

7.2 Programmable Units 223

Fig. 7.16 Processing
Element (PE)

DeMux

Special
FUSIMD ALU

Constant
Reg Bank

Context

Context

Context #1

Context #N

Mux Mux

O/P
Reg Bank

I/P
Reg Bank

AUX
Reg Bank

7.2.1 Clock Gating

Clock gating of the various sub-blocks of a programmable unit presents itself as a
huge power saving opportunity. Since the PUs support a large number of threads and
use registers to save the state, large register files are needed. However, since only one
thread is active at any given instant, it is sufficient to clock only the registers allotted
to the active thread and gate the clock to the remaining the registers. Similarly, the
special function units in the ALU are infrequently used, and hence, can be activated
only when the decoder stage confirms the need.

7.2.2 Predictive Shutdown

Predictive shutdown is an effective technique for reducing power loss due to leakage
in the idle components of a system. Due to workload variations, not all pro-
grammable units are fully utilized in every frame. Advance information about a
frame’s workload can help estimate the number of cores required to process it within
the time budget. By activating only the required number of cores and powering down
the surplus ones, leakage power from the idle cores can be avoided, thereby leading
to substantial power savings. A history based method could be used to estimate the
utilization of the PUs [24]. Let the number of active cores used to process the nth

frame be Sn and the rate at which it was processed be FPSn. Then the maximum

224 7 Low Power Graphics Processors

rate at which each of the cores processed the frame is given as FPSn

Sn
. Similarly, the

maximum number of cores required to process n C 1th frame can be caculated as

SnC1 D Target frame rate for n C 1th frame

minimum rate at which a core is estimated to process the frame
(7.1)

The expected rate at which the core processes a frame can be approximated to
the mimimum processing rate observed in processing of a window of m previous
frames.

Based on previous history, the number of active cores SnC1 required to process
the n C 1th frame is given by the equation:

SnC1 D ŒFPStarget C ˛�

minf FPSn

Sn
; FPSn�1

Sn�1
; ::::::;

FPSn�mC1

Sn�mC1
g (7.2)

The factor ˛ is introduced so as to slightly overestimate the core requirement,
so that small variations in the workload can be taken care of without missing the
deadline. In the above formula, it is assumed that the entire duration in processing
the frame is spent on the PUs, which is generally not true. The frame could as well
be texture intensive or ROP intensive. The ˛ factor also serves to reduce the effect
of deadline misses due to under estimation of workload.

7.2.3 Code Transformation

Several scalar and vector code transformations and compiler optimizations applica-
ble to generic SIMD code are also be applicable to the vertex and pixel shaders. In
addition, there are transformations that are specific to graphics processing. One such
transformation that divides the vertex shader into multiple passes to save power due
to geometry processing is described in this section [21].

Geometry – the measure of the number of objects present in the scene and the
level of detail at which they are modeled, is one of the most important aspects deter-
mining the complexity and visual reality of a scene. The increasing emphasis on the
incorporation of intricate details in a scene is leading to an increase in the number
of primitives per frame, since modeling at finer levels of granularity requires the
objects to be represented with a large number of smaller primitives. As a result the
workload due to geometry processing in the modern games is significantly impact-
ing the performance and also power consumption of modern games.

It has been observed from the simulation of games and benchmarks, that on
an average about 50% of primitives are trivially rejected in each frame. Trivial
rejects comprise the primitives that fall totally outside the viewing frustum and
also front/back face culled primitives. Since testing for trivial rejection requires

7.2 Programmable Units 225

dp4 o0.y, c1, i0

dp4 o0.z, c2, i0

dp4 o0.z, c3, i0

dp4 o0.x, c0, i0

dp4 o0.y, c1, i0

dp4 o0.z, c2, i0

dp4 o0.z, c3, i0

dp4 o0.x, c0, i0

dp4 o6.z, c4, i0

dp4 o6.z, c5, i0

dp4 o7.z, c6, i0

dp4 o7.z, c7, i0

dp4 o6.z, c4, i0

dp4 o6.z, c5, i0

dp4 o7.z, c6, i0

dp4 o7.z, c7, i0

SHADER PROGRAM

PARTITION 2 (VS2)

Position
Independent

Partition

Position
Dependent
Partition

PARTITION 1 (VS1)

mov o1, i3

mov o1, i3

Fig. 7.17 Vertex Shader partitioning into position variant (VS1) and position invariant (VS2)
shaders. In this example, o0 is the output position attribute

only the position information of the vertex, the time spent on processing the
non-transformation part of the vertex shader on these vertices is wasteful. Instead,
the vertex shader can be partitioned into position variant (transformation) and po-
sition invariant (lighting and texture mapping) parts. The position invariant part is
deferred until after the post trivial reject stage of the pipeline, achieving significant
savings in cycles and energy expended on processing these rejected vertices. An
example illustrating vertex shader partitioning is shown in Fig. 7.17.

The changes to be incorporated in the conventional graphics pipeline to introduce
partitioned vertex shading are shown in Fig. 7.18. In the modified pipeline, the VS1
stage computes only the position variant part of the vertex shader and the rest of
the vertex processing is deferred to the VS2 stage. The Clipper stage is divided
into Trivial Reject and Must Clip stages. Triangles passing through the trivial reject
test are sent to the VS2 stage after disassembling them into vertices (since the vertex
shader can only work on vertex granularity). These vertices, after being processed in
VS2, are assembled back to triangles and sent to the Must Clip stage. The geometry
engine of the pipeline is thus modified and the fragment generation and rendering
takes place as it was in the original pipeline.

From the discussion so far it might appear that it is most appropriate for the API
to support vertex shader partitioning. This would require the application developer
to provide two pieces of vertex shader programs – one for transforming the ver-
tices and one for lighting and texturing. But such hard partitioning of shaders is not
always viable due to the following reasons.

� There could be a significant number of instructions common to position-variant
and position-invariant parts of the vertex shader. This leads to code duplication.

226 7 Low Power Graphics Processors

Primitive Assembly

Triangle Setup

Rasterization

Primitive Assembly

Vertex Shader

Trivial Reject

Vertex Shader 1

Vertex Shader 2

Must Clip

Rasterization

Triangle Setup

Primitive Assembly

Primitive Disassembly

Clipping

a

b

Fig. 7.18 Pipeline Modified to support Vertex Shader Partitioning. (a) Conventional Pipeline.
(b) Modified Pipeline

� Thread setup overhead for the second vertex shader could overshadow the ad-
vantage of deferring the position invariant part of the shader code. Hence, an
adaptive algorithm for vertex shader partitioning could be used, where the par-
titioning decision is based on a trade-off between the setup overhead and cycles
saved due to partitioning.

7.2 Programmable Units 227

Fig. 7.19 DAG of a vertex
shader. Nodes 1,2 contribute
only to position variant part
of vertex shader. Nodes 10,11
contribute to position
invariant partition. Nodes 3-9
are shared by both position
variant and invariant parts of
the vertex shader

O1 O2

S

I0 I1 I2 I3

T

1

11

O0

2

3 4

5 6

7 8

9

10

To tackle the issue of code duplication, some of the auxiliary variables that are gen-
erated in stage VS1 and re-used in stage VS2 could be transmitted to stage VS2. For
example, in the DAG shown in Fig. 7.19 where each node represents the operands
of the instructions of the shader, the solid nodes are shared by both position variant
and position invariant parts of the shader.

If these common auxillary variables can be passed on to VS2, cost of recomput-
ing them in VS2 can be avoided. The number of these variables is limited by the
fact that most of the shader architectures have a limit on the number of inputs to the
programmable units. But since most of the time, the shaders do not need as many
inputs, some of the auxiliary variables also can be sent as inputs to stage VS2. Data
flow analysis of the vertex shader would lead to identification of best set of auxiliary
variables to be transmitted from VS1 to VS2 so that the cost due to code duplication
is minimized.

Spawning a thread on the Programmable Shader Unit incurs some thread setup
overhead, the extent of which is dependent on the micro-architecture of the thread
setup unit. This could include the idle time waiting for the availability of resources,
time spent on loading the inputs, time spent on transmission of outputs, etc. Vertex
shader partitioning incurs an overhead for setting up VS2 threads. Hence it is
important to weigh the benefit of cycles saved on rejected vertices against the over-
head incurred on thread setup for the vertices that are not rejected.

Let ST and ET be the setup overhead and execution time of the shader with-
out partitioning; ST1 and ST2 be the setup overheads, and ET1 and ET2 be the

228 7 Low Power Graphics Processors

execution times of VS1 and VS2 respectively. The cost of processing a batch of
vertices (B) without vertex shader partitioning is given as

Costno�part D B � .ST C ET/ (7.3)

If C is the rate at which vertices are trivially rejected, then the cost incurred to
process the batch with partitioning is given by:

Costpart D B � .ST1 C ET1/ C B � .1 � C / � .ST2 C ET2/ (7.4)

Vertex shader partitioning is profitable only if Costpart is less than Costno�part. Since
the clip rate is known only after processing the frame, it is not possible to use the
above cost functions to take the partitioning decision prior to processing the frame.
However, due to spatial coherence of the frames, the trivial reject rate of adjacent
frames is observed to be comparable. Thus, the clip rate of the previous frame can
be taken as an approximation for the clip rate of present frame and the driver can be
enhanced to take the partitioning decision on-the-fly based on the clip rate history
and overheads and execution times of VS1 and VS2 shaders.

Thus, the history based adaptive vertex shader partitioning can be used to avoid
redundant operations in the pipeline, thereby saving power.

7.3 Texture Unit

Texture mapping is the process of mapping an image in texture space on to a surface
in object space using some mapping function [18]. Since texture space and object
space could be at arbitrary distance and orientation with respect to each other, there
is no one-to-one correspondence between the pixels on the object and texels of the
texture. This necessitates the use of some texture filtering mechanism to attribute
the best color to a pixel.

Bilinear filtering and Trilinear filtering [18] are two most common filtering tech-
niques used for texture mapping. In bilinear filtering the weighted average of four
texels nearest to the pixel center gives the color of the pixel (Fig. 7.21). In order
to produce good results for various levels of depth (lod) at which the object could
be viewed, the texture image is stored at various resolutions called mipmaps [18].
The nearest mipmap is picked for filtering at run time based on the lod. In trilinear
interpolation, the bi-linearly interpolated values from the two nearest mipmap levels
are averaged to give the color of the pixel.

Standard cache based memory architecture could be used for the texture mem-
ory accesses since it exploits locality of accesses. However, this is still expensive
in terms of power, as each access results in a cache lookup operation with the stan-
dard power overheads. A custom memory architecture that uses some knowledge of
texture access patterns can save power over a conventional cache architecture.

7.3 Texture Unit 229

A second major source for power dissipation in a texture unit is the power
expended in fetching the textures from off-chip VRAM to the on-chip texture
cache. We also discuss various texture compression techniques that ameliorate this
problem.

7.3.1 Custom Memory Architecture – Texture Filter Memory

Since the direction of accesses in texture memory is arbitrary, a blocked represen-
tation of texture maps in memory is generally used. This is illustrated in Fig. 7.20.
Texels within a block reside in contiguous memory space, similar to the tiled storage
in Section 4.7.2. The computation of the texel address from the texel co-ordinates
is shown in Algorithm 2. The overhead of extra additions and shifts in the block
address computation is offset by the performance gained by the reduced cache miss
rates by selecting the line size equal to the block size [11].

Texture mapping with bilinear filtering exhibits high spatial and temporal local-
ity. This is because:

� to compute the color of a pixel we need to fetch four neighboring texels,
� consecutive pixels on the scan line map to neighboring texels, and
� consecutive scan-lines of a primitive share texels.

In addition to locality, texture mapping also exhibits predictability in access pat-
tern. As seen in Fig. 7.21, access to texel t1 is followed by accesses to texels t2,
t3, and t4. Thus, the t1 access gives us advance information about the future texel
accesses. However, all the other three texels might not lie in the same block. The
different cases that arise are illustrated in Fig. 7.22. The information about which of

Fig. 7.20 Blocked
representation of texture

bw

width

bh 1 2 3 4

5

16

(tu,tv)

sysx

by=2

bx=2

230 7 Low Power Graphics Processors

Algorithm 2 Computation of texel address
Input: Texel Co-ordinates (tu,tv), Base - Starting address of Texture
Output: Texel address
1: lbw log2.bw/

2: lbh log2.bh/

3: rs log2.width � bh/

4: bs log2.bw � bh/

5: bx tu >> lbw
6: by tv >> lbh

7: sx tu&&.bw� 1/

8: sy tv&&.bh� 1/

9: block address .by << rs/C .bx << bs/

10: offset .sy << lbw/C sx

11: texel address baseC block addressC offset
12: return texel address

Fig. 7.21 Footprint
of a Bilinear filter

(tx+1,ty+1)

(tx+1,ty)

PIXEL
CENTER

(tx,ty+1)

(tx,ty)
t1 t2

t4t3

CASE 1 CASE 2 CASE 3 CASE 4

Fig. 7.22 Scenarios to which the bilinear filter footprint could be mapped: (i) CASE1: all four
texels fall in same block, (ii) CASE2 and CASE3: the four texels fall in two of the neighboring
block; and (iii) CASE4: the four texels fall in four different blocks

the four cases applies to a texture access can be obtained by comparing the block
co-ordinates of the texels. If the accesses belong to case 1, where all the texels are
mapped to same block, a lookup for texel t1 could be followed by fetching the tex-
els t2, t3, and t4 from the same block. Thus, only one lookup suffices for fetching
four texels. Similarly, for cases 2 and 3, two lookups are sufficient for four texel
accesses. Only case 4 requires four lookups.

Thus we see that though the mapping between pixel and texture space is deter-
mined only at run-time, the footprint of a bilinear filter always has a fixed pattern.
Hence a customized memory architecture designed such that it allows both lookup
operation as in a cache and also a direct register access to exploit spatial locality
and predictability in the access stream results in a low power solution without com-
promising on performance. Texture Filter Memory (TFM), provides such access by
introducing a few registers between the conventional texture cache and the texture
fetch unit as shown in Fig. 7.23.

The texture blocks that are expected to be accessed in the near future are buffered
in a set of registers, since register accesses need very little power compared to a

7.3 Texture Unit 231

Bank−1 Bank−2

TFM
Texture

Fetch Unit

Addr1

Addr2

Addr3

Addr4

Buffer −1

Buffer −2

Buffer −3

Buffer −4

Texture Cache

Fig. 7.23 Texture Filter Memory: each buffer stores a block of 4 � 4 texels. Each bank has 4
such buffers. Bilinear filtering needs one bank and trilinear filter needs two banks – one each for
buffering values of two mipmap levels

standard data cache access. The number of blocks to be buffered depends on the
type of filter being used. In a bilinear filtering operation, the texels could be in one,
two, or four of the neighboring blocks as shown in Fig. 7.22. Also, since the next
set of texels could fall in one of these four blocks with a high probability, upto four
texture blocks are buffered for bilinear interpolation. In trilinear filtering we need to
buffer eight blocks – four blocks from each of the two nearest mipmap levels.

The conventional kernel for bilinear filtering, as shown in Algorithm 3, needs to
be modified to the one shown in Algorithm 4 so as to take advantage of the above
buffering mechanism.

Algorithm 3 Kernel For Bilinear Filtering
Input: Texel Co-ordinates (tu,tv), Base - Starting address of Texture

Compute texel addresses corresponding to texel co-ordinates (tu,tv), (tu+1,tv), (tu,tv+1) and
(tu+1,tv+1)

2: for I D 1 to 4 do
texelI CacheLookup.texeladdressI/

4: end for
color WeightedAverage.texel1; texel2; texel3; texel4/

6: return color

Though two additional comparison operations are used for classifying the ac-
cesses to different cases, at the same time, the number of block address computations
and the texel address computations is reduced. Since all four texels fall in the same
block with high probability, only one lookup is required for most texture accesses.
Even though this single lookup can consume the same power as in an associative

232 7 Low Power Graphics Processors

Algorithm 4 Modified Bilinear Texture Filtering
Input: Texel Co-ordinates (tu,tv), Base - Starting address of Texture
Output: Color

bx tu >> lbw
2: by tv >> lbh

bx1 .tuC 1/ >> lbw
4: by1 .tvC 1/ >> lbh

c0 .bx D bx1/‹ 0 W 1
6: c1 .by D by1/‹ 0 W 1

Calculate offset1, offset2, offset3 and offset4
8: if c0D 0 and c1 D 0 then

compute block address1
10: texel1 LookupBuffer.block address1; offset1/

Read texels 2,3 and 4 from the same block
12: else if c0D 0 and c1 D 1 then

compute block address1 and block address 3
14: texel1 LookupBuffer.block address1; offset1/

Read texels 2 from the same block
16: texel3 LookupBuffer.block address3; offset3/

Read texels 4 from the same block
18: else if c0D 1 and c1 D 0 then

compute block address1 and block address 2
20: texel1 LookupBuffer.block address1; offset1/

Read texels 3 from the same block
22: texel2 LookupBuffer.block address2; offset2/

Read texels 4 from the same block
24: else

compute block addresses of all the four texels
26: for I D 1 to 4 do

texelI LookupBuffer.blockaddressI; offsetI/
28: end for

end if
30: color WeightedAverage.texel1; texel2; texel3; texel4/

return color

cache (though smaller in magnitude because the buffers have only 4 registers), the
remaining three accesses do not require any lookup/comparison operation because
the register containing the block is already known. On an average, the number of
memory accesses and comparisons is drastically reduced.

7.3.2 Texture Compression

To reduce the power consumed in fetching textures from off-chip caches, the texture
memory bandwidth is reduced by transferring compressed textures from off-chip
texture memory to the texture cache. Since texture accesses have a very high impact
on system performance, the main requirement of s texture compression system is

7.3 Texture Unit 233

that it should allow fast random access to texture data. Block compression schemes
such as JPEG are not suitable for textures though they give high compression ratios.
Since the accesses to texture memory are non-affine, it cannot be assured that the
decompressed data is used up before the next block is fetched and decompressed.
In cases where consecutive texture accesses alternate between a few texture blocks,
the same block would have to fetched and decompressed multiple times resulting in
increased block fetch and decompression overhead. Hence, we require compression
schemes where the texels in a block can be decompressed independent of the other
elements of the block. The S3TC compression technique is commonly used for this
purpose [14].

In this technique, for a block of texels, two reference values and a few val-
ues generated by interpolation of the reference values are chosen such that each
texel in the block can be approximated to one of the chosen values with least loss
in accuracy. For example, if four values are to be used to represent the colors of
a texture block, and c0 and c1 are the chosen reference values, two other colors
(c2 and c3) are generated from interpolation of c0 and c1 as shown in Fig. 7.24. For
each texel in the block, the closest of the colors among c0 to c3 is chosen. Thus,
a 4 � 4 tile would require 2 reference values and 16 2-bit offsets to generate the
interpolants from the reference values instead of 16 texel values. Based on this prin-
ciple five modes of compression named DXT1. . . DXT5 have been proposed, with
varying accuracy and compression ratios.

1. DXT1 gives the highest compression ratio among all the variants of DXT com-
pression. Texels are usually represented as 32-bit values with the R,G,B,A
components allotted 8-bits each. However, most of the time, textures do not
need 32-bit accuracy. Hence, DXT1 uses 16-bit representation for RGB com-
ponents (5:6:5) of the reference colors and allows a choice of 0 or 255 for
transarency.
The colors that could be generated from the two 16 bit reference values and
2 bits per texel which determine the weights for interpolation are shown
below:
If c0 and c1 are the reference values, the other two colors are calculated as
If c0>c1

c2 D 2c0 C c1

3
and c3 D c0 C 2c1

3

Fig. 7.24 c2 and c3 are
generated on the fly by
interpolation of c0 and c1

C2 C3 C1

C3 =
C0 + 2.C1

3
C2 =

2.C0 + C1

3

C0

1−unit1−unit 1−unit

234 7 Low Power Graphics Processors

else

c2 D c0 C c1

2
and c3 D 0

For a 4 � 4 tile size, this scheme needs 64 bits per tile giving 8:1 compression.
2. The DXT2 and DXT3 compression schemes encode alpha values also in ad-

dition to color values and the compression scheme is similar to that described
in DXT1. Thus for a 4 � 4 tile, they need 64 bits for color as in DXT1 and
an additional 64 bits for alpha values, giving a 4:1 compression. In DXT2,
color data is assumed to be pre-multiplied by alpha, which is not the case in
DXT3.

3. In the DXT4 and DXT5 schemes, color components are compressed as in
DXT2/3 and for alpha compression, two 8-bits reference values are used and
6 other alphas are interpolated from them, giving 8 alpha values to choose from.
The alpha encoding is as shown below:

If ˛0 > ˛1,

˛2 D 6˛0 C ˛1

7
, ˛3 D 5˛0 C 2˛2

7
, ˛4 D 4˛0 C 3˛3

7
,

˛5 D 3˛0 C 4˛4

7
, ˛6 D 2˛0 C 5˛5

7
, ˛7 D ˛0 C 6˛6

7

else

˛2 D 4˛0 C ˛1

5
, ˛3 D 3˛0 C 2˛2

5
, ˛4 D 2˛0 C 3˛3

5
,

˛5 D ˛0 C 4˛4

5
, ˛6 D 0, ˛7 D 255

DXT4 is used in case color is pre-multiplied with alpha and DXT5 is used if
it are not. DXT4/5 also give 4:1 compression, but produce superior results for
alpha values.

7.3.3 Clock Gating

Clock gating is a powerful technique that could be used to conserve the power dis-
sipated in a texture unit. The textures are generally stored in such a way that the
odd mipmap and even mipmap levels map to different cache banks so that the texels
could be fetched in parallel during tri-linear interpolation. Moreover, the addressing
and filtering units are also present in pairs so that the texels could be filtered in par-
allel so as to facilitate faster texture sampling. However, when the texels are filtered
in bilinear mode, half of these units and texture banks are idle. There could also be
intervals during which the vertex or pixel shader threads would not be using textur-
ing at all. Since the requirement of texture and the type of filter used is a part of the
state information that the driver sends to the GPU, texture enable and filtering modes

7.4 Raster Operations 235

are set before the processing of the batch starts. Ideally, half of these units could be
powered off when bilinear filtering is used and the entire texture module is switched
off when texturing is not used. However, since the intervals between switching from
one condition to another may not be large enough to merit powering-down of these
circuits, clock gating is generally used to conserve the power associated with clock-
ing these units.

7.4 Raster Operations

Raster operations are highly memory intensive since they need multiple reads and
writes to the off-chip framebuffer. Since off-chip accesses are slow and power
hungry, these framebuffer accesses affect the power consumption and also the per-
formance of the system. Reducing the memory bandwidth between the GPU and
framebuffer is therefore a very important power-performance optimization. Major
techniques that are generally employed to reduce the required bandwidth between
GPU and VRAM are:

� Re-use the data fetched from VRAM to the maximum extent before it is replaced
by other data. Efforts made in this direction include extensive on-chip caching
and blocked data accesses to maximize cache hits.

� Send compressed data to GPU from VRAM and decompress it on-chip so as to
decrease the memory traffic. The decoder has to be simple enough so that the
savings due to compressed data transfers dominates the decompression cost in
terms of power and performance.

In this section we discuss the data compression strategies for memory bandwidth
reduction of color and depth buffer.

7.4.1 Depth Buffer Compression

As described in Fig. 7.13, the fragments are generated in tiles to exploit spatial lo-
cality of accesses to color, depth, and texture data. Several tiles of depth information
are cached in the on-chip depth cache; whenever there is a miss in this cache, a tile
of data is fetched into it from the off-chip VRAM. To reduce the memory bandwidth
due to these transfers, VRAM stores and transfers compressed tiles, which are de-
compressed on-the-fly before they are stored in the on-chip depth cache. Differential
Differential Pulse Code Modulation (DDPCM) is one of the popular compression
techniques used for depth buffer compression [12]. It is based on the principle that,
since the depth values of fragments of a triangle are generated by interpolation of
depth values of the vertices, if a tile is completely covered by a single triangle, the
second order differentials of the depth values across the tile would all be zeroes.

236 7 Low Power Graphics Processors

The steps in the compression scheme are enumerated below:

1. Start with a tile of depth values. Assuming the tile is covered by a single triangle,
the interpolated depth values in the tile would be as shown below:

2. Compute the column wise first order differentials, and then repeat the same step
to obtain column-wise second order differentials.

3. Follow it up with row-wise second order differential computation.

We see that in the best case (i.e., when the triangle covers a tile), we need to store
only one z value and two differentials. Thus, for an 8 � 8 block (which would origi-
nally need 64 � 32 bits), the compressed form would need 32 bits for the reference
z value and 2 � 33 bits for the differentials. Since the depth values are generally in-
terpolated at a higher precision than they are stored in, the second order differentials

7.4 Raster Operations 237

would be one among the values 0,-1, and 1. Hence two bits are required to encode
the value of the second differential. Thus with an addition 61 � 2 bits for the second
differentials, a total of 32 C 2 � 33 C 61 � 2 D 220 bits would be required instead
of 2048 bits. With the two bits used to represent the differentials, four values can be
realized. Since only values 0,-1, and 1 are required to be realized, the fourth value
can be used to indicate the case when the differentials take values other than 0, -1,
and 1. In this case a fixed number of second order differentials are stored at higher
precision and picked up in order each time a violation is indicated.

7.4.2 Color Buffer Compression

The transfers from color buffer to color cache are also done in tiles, so as to ex-
ploit spatial locality of accesses. Hence, block based compression schemes are used
for these data transfers. Since color values are not always interpolated from vertex
colors (they could be textured), the compression scheme used for depth buffer com-
pression is not very efficient for color buffer compression. The difference between
the color values of the neighboring pixels is small and this makes variable length en-
coding of the differences a suitable option for color buffer compression [20]. This
compression technique is called exponent coding since the numbers are represented
as s.2x � y/, where s is the sign bit and y 2 Œ0; 2x�1 � 1�. x C 1 is unary coded and
concatenated with sign and y coded in normal binary coding to give the compressed
value. For example, value 3 is represented as .22 � 1/. Here x C 1 D 3 which is
1110 in unary coding, s D 0 and y D 1, hence the code for 3 is 111001. Table 7.1
shows the coded values for numbers in the range Œ�32; 32�.

From the table we see that smaller numbers can be represented with relatively
fewer number of bits than larger numbers. Since in most of the cases the differen-
tials are observed to be small, significant compression ratios can be expected. Color
values are used by both GPU and also the display controller. Compression helps re-
duce the bandwidth between the framebuffer and display controller also. Hence the
display controller also needs a decompressor to decode the compressed color values
read from the framebuffer.

Table 7.1 Exponential
Encoding - Smaller numbers
need lesser number of bits

Value range Code

0b 0
10sb ˙1

110sb ˙2

1110sxb ˙Œ3; 4�

11110sxxb ˙Œ5; 8�

11110sxxxb ˙Œ9; 16�

11110sxxxxb ˙Œ17; 32�

11110sxxxxxb 8-bit absolute value

238 7 Low Power Graphics Processors

7.5 System Level Power Management

In addition to the architectural power optimization techniques discussed so far, sys-
tem level power management techniques also prove to be effective in reducing the
power consumption by minimizing the wastage of power in a graphics subsystem.
Techniques such as system level power gating, Vdd and Vth scaling, and DVFS scal-
ing are very efficient in saving power. These techniques, as applicable to GPUs, are
discussed in detail in this section.

7.5.1 Power Modes

Graphics processors are used for accelerating various kinds of applications such as
word processors, GUIs for various tools such as internet browsers, games, etc. Since
the amount of graphics processing varies to a great extent from application to appli-
cation, the GPU workload due to these applications also varies greatly. Moreover,
there could be large intervals of time during which none of the applications requires
graphics processing, leaving the GPU idle. Since it is not always required to operate
the GPU at peak performance levels, a few power modes with varying performance
levels are generally supported. For example, when the GPU is idle, it can be oper-
ated at minimum Vdd and Vth levels saving maximum dynamic and leakage power.
However, when 3D games, which use heavy graphics processing are running on
the system, the GPU can be operated at maximum performance mode. Performance
monitors are used to gauge the utilization of the GPU (similar to monitoring CPU
utilization), and the operating system switches the GPU to a power mode that deliv-
ers the required performance level with minimum power consumption.

7.5.2 Dynamic Voltage and Frequency Scaling

In case of power management by mode switching, since the switching overhead
is high, there is a relatively large difference between the thresholds that cause a
transition between power modes. The observation intervals are also large. How-
ever, applications such as games have been shown to exhibit significant variation
in workload presented by different frames in the application. Fine tuning the com-
putational capacity of the GPU in response to such workload variations has a huge
power saving potential. DVFS techniques can be employed to achieve this with min-
imum performance impact. The properties of an application that makes it amenable
to DVFS are:

1. varying workload, and
2. accurate predictability of workload.

7.5 System Level Power Management 239

Though games also show significant variation of workload from frame to frame,
their interactive nature might give us the impression that it would be difficult to
adapt the system to abrupt workload variations, making it unsuitable for DVFS. To
understand why interactivity makes games distinct from any other real time appli-
cation in the context of DVFS, let us see how DVFS is applied to a video decoder.
The MPEG video decoding standard has been used extensively in literature to make
a case for DVFS [6, 15].

A video stream is generally composed of a series of still images which, when dis-
played sequentially at a constant rate, creates an illusion of motion. These images
are called frames, and are stored in compressed form so as to minimize the stor-
age and transfer requirements. MPEG is a popular standard used for compression
of video streams. MPEG compression divides the video stream into a sequence of
Group of Pictures (GOPs), each of which comprises several frames. Each frame is
further divided into vertical strips called slices and each slice is divided into several
macro blocks which comprise a 16 � 16 pixel area of the image. Header informa-
tion is associated with each structure in this hierarchical representation of the video
stream; this information is used for workload prediction [23]. During the decoding
process, all frames in a GOP are first buffered, the workload of the entire GOP is es-
timated, and the optimum value of voltage and frequency at which the GOP is to be
decoded to meet the deadline is determined. Since the first frame is displayed only
after the entire GOP is decoded, an output buffer is required to hold all the decoded
frames of the GOP. Since the input frames keep streaming in at constant rate while
decoding time could vary from frame to frame, an input buffer is used to store the
incoming frames as shown in Fig. 7.25.

The example shown in Fig. 7.26 clearly demonstrates the advantage of buffer
based DVFS over one without buffering [23]. If DVFS is applied over a set of
buffered frames instead of varying the operating point online on per frame pre-
diction basis, the slack over the set of frames can be accumulated and distributed
among all the frames, leading to a lower power solution. An additional advantage
of the buffer based mechanism is that it is possible to correct the losses due to
mis-predictions to some extent in this method. Errors in predicting the workload
would result in accumulation of frames in these buffers [4]. Hence the buffer
occupancy is constantly monitored to correct the prediction inaccuracies and the
operating voltage and frequency scaled accordingly as shown in Fig. 7.27.

In case of games, the application has to respond to the user’s inputs, and ideally,
the response needs to be instantaneous. For instance, when the user is playing a

Video Decoder

Output BufferInput Buffer

Decoded FramesIncoming Frames

Fig. 7.25 I/O buffering for video decoder: since decoding time varies from frame to frame, the
input buffer is needed to hold the frames streaming in. All the decoded frames are buffered into the
output buffer until the GOP is completely rendered, and only then the decoded frames of the entire
GOP are streamed out

240 7 Low Power Graphics Processors

E1 = V2 *F*T + (V/2)2 *(F/2)*T
 = 0.75 E

Frame
#1

Frame
#1

E = V2 *F*(1.5 T) E2 = (3V/4)2 *(3F/4)*2T
 = 0.56 E

Frame
#1

Vdd

T 2T

V

V/2
#2

Without Buffer
2T

Vdd

T

V

Without DVFS

#2

Vdd

2T1.33T

3V/4

#2

With Buffer

a b c

Fig. 7.26 Buffer based DVFS for video decoder. (a) A slack of T/2 is expected if the frames are
processed at maximum frequency. (b) In this case, only frame 2 makes use of the slack. (c) The
slack is distributed among both the buffered frames resulting in a lower power solution

#1
Frame

2TT 2T

Vdd

2TT

#2

V/2
Frame #1

#2V/2

Vdd
V

T/2

Vdd

#2
#1

V/2
V/3

Predicted Deadlines
for Frames 1 and 2

#1 Under Prediction
#2 Accelerated

#1 Over Prediction
#2 Slowed down

a b c

Fig. 7.27 Buffer occupancy based correction of workload prediction – (a) shows the predicted
deadlines for frames 1 and 2 (b) workload for Frame 1 was underpredicted, hence the frame re-
mains in output buffer for more than the expected time. This results in increased buffer occupancy.
Frame 2 has to be processed faster to bring back the occupancy to the threshold value. (c) work-
load for Frame 1 was overpredicted, hence the frame leaves the output buffer at a rate faster than
expected. Frame 2 can be slowed down to bring the occupancy rate to the threshold level

shooter game and has fired at a target, he would want this to reflect immediately on
the screen rather than after some latency. Here we do not have the liberty to buffer
a set of frames and then correct prediction inaccuracies of one frame by adjust-
ing the operating voltage of the next frame. Interactivity also gives the impression
that workload prediction based on previous frames behavior would not be viable
for games. However, this is not true owing to the fact that consecutive frames of
the games exhibit high levels of coherence in their pixel values. This is because,
to maintain continuity of motion, positions of the objects in the frame can be dis-
placed only by small amounts. Thus, the workloads do exhibit large but infrequent
variations, making games excellent candidates for DVFS.

Since the quality of service in games is highly sensitive to the frame rates, it
is important to predict the workload accurately in order to minimize the number of
frames missing their deadlines. Some techniques use the workload history to predict

7.5 System Level Power Management 241

the expected workload of the current frame, while others attempt to extract hints
from the frame state information to guide the workload prediction. Various predic-
tion techniques proposed in literature are discussed in more detail in the following
sections.

7.5.2.1 History based Workload Estimation

The history based workload estimation technique predicts the workload of the cur-
rent frame from the workload of the previously rendered frames [10]. The simplest
and most straightforward way to do this is to approximate the workload of the
current frame to that of the previous frame. However, doing so would result in fre-
quent voltage-frequency changes, which are not desirable, since switching from one
voltage-frequency level to another imposes an overhead of stabilization time. To
minimize the number of transitions, the average workload of a window of previous
frames is used to guess the workload of the current frame. A large window size is
helpful in reducing the number of voltage changes, but at the same time, leads to a
larger number of frames missing the deadlines as a result of the slower correction
mechanism. This history based workload prediction can be extended to estimate the
workload of all the voltage islands in the design and the operating point of each of
the islands can be tuned to match the workload changes experienced by the island.

7.5.2.2 Control Theory based Workload Estimation

Control theory based DVFS takes into account the previous prediction error along
with the previous predicted workload to predict the workload of the current frame
[8]. Since it can adapt faster to the workload changes, it results in lesser num-
ber of frames missing their deadline. In a control based DVFS scheme, a simple
Proportional Integral Derivative (PID) controller, as shown in Fig. 7.28, is used as

Error

Set Point
Process

Kp x Error
Proportional

ErrorKi x
Integral

Kd x Error
Differential

Output
+

−

Fig. 7.28 PID controller: Proportional component aims to reduce prediction error; Integral com-
ponent reduces the accumulated error in prediction; and the Differential component aims to reduce
the rate of increase of the prediction error

242 7 Low Power Graphics Processors

a closed loop feedback mechanism to adjust the predicted workload of the current
frame based on the prediction errors for some of the previously rendered frames.
The workload of the current frame wi is expressed as

wi D wi�1 C delta(w) (7.5)

where delta.w/ is the output from the PID controller. The proportional control reg-
ulates the speed at which the predicted workload responds to the prediction error
of the previous frame. The Integral control determines how the workload predic-
tion reacts to the prediction errors accumulated over a few of the recently processed
frames. The differential control adjusts the workload based on the rate at which the
prediction errors have changed over a few of the recent frames.

Thus the correction value generated by the PID controller can be expressed as

delta(w) D Kp � Error C Ki �
X

Error C Kd � �Error (7.6)

The contribution of each of the Proportional, Integral, and Differential compo-
nents of the controller can be tuned by varying the coefficients Kp, Ki , and Kd

respectively. The flow of operations that take place in a PID based DVFS scheme
can be summarized as shown in Fig. 7.29. Based on the difference between the
actual workload and the predicted workload (Error) of the current frame, the PID
controller estimates the workload for the next frame. The volatge and frequency of
the system are scaled to match the computational capacity of the system with the
predicted workload of the next frame. The frame is processed at this operating point
and actual workload of the frame is observed to generate the Error value that drives
the PID controller.

Fig. 7.29 PID controller
based DVFS for graphics
processor

Error

PID Controller
Generates Correction from Error

 Workload =
Previous Workload + Correction

Process Frame & Measure Workload

Error =
(Predicted−Measured) Workload

Scale Voltage and Frequency

7.5 System Level Power Management 243

7.5.2.3 Frame Structure based Workload Estimation

In all the above discussed methods, the workload of a frame is estimated based on
the history of previously processed frames. Hence the prediction would be good
only when the scene remains almost the same across consecutive frame captures.
The workload is bound to be mis-predicted when there is a significant change in the
scene, which may result in frames missing their deadlines. To alleviate this problem,
the frame structure based estimation technique bases its prediction on the structure
of the frame and the properties of the objects present in the frame [9]. Since this
information is obtained prior to processing of the frame, the workload prediction
could be based on the properties of the current frame rather than basing it on the
workload of previous frames. In this approach, a set of parameters impacting the
workload are identified and an analytical model for the workload as a function
of these parameters is constructed. During the execution of the application, each
frame is parsed to obtain these parameters and the pre-computed workload model is
used to predict the expected workload of the current frame. For example, the basic
elements that make up a frame in the Quake game engine can be enumerated as
follows.

� Brush models used to construct the world space. The complexity of a brush model
is determined by the number of polygons present in the model. If the average
workload for processing a polygon is w, the workload W presented by n brush
models each consisting of p polygons is represented as:

W D n � p � w (7.7)

� Alias models used to build the characters and objects such as monsters, soldiers,
weapons, etc. Alias models consist of geometry and the skin texture of the entity
being modeled. The skin could be rendered in one of two modes – opaque and
alpha blend. Since the geometry consists essentially of triangles, its workload is
characterized in terms of the number of triangles and average area of the triangle.
Since alpha blending and opaque blending present different workloads, the work-
load is parametrized for both modes of rendering. If the workload of processing a
single pixel with blending is wt and without blending is wo, the workload W due
to alias models consisting of Nt triangles with blend and No opaque triangles, of
average area A is given by:

W D Nt � A � wt C No � A � wo (7.8)

� Textures applied to the surfaces of brush model to give a realistic appearance like
that of wood, brick wall, etc. The workload W due to applying Nt textures, where
w is the workload for applying a single texture on N polygons with average area
A, is given by:

W D Nt � N � A � w (7.9)

244 7 Low Power Graphics Processors

� Light maps to create lighting effects in the scene. Since they are similar to texture
maps, the workload due to light-maps is estimated similar to the estimation for
texture maps.

� Particles to create bullets, debris, dust, etc. The workload W due to rendering
the N particles, where the number of pixels in a particle i is given as Pi and
workload for rendering one such pixel is w, is given by:

W D N � Pi � w (7.10)

Finally the total workload of the frame is the sum total of the workloads com-
puted above.

7.5.2.4 Signature based Workload Estimation

The Signature based estimation technique aims to estimate the workload using the
properties of the frame in addition to the history of cycles expended in processing
the previous frames [17]. Every frame is associated with a signature composed from
its properties such as the number of triangles in the frame, average height and area of
the triangles, the number of vertices in the frame, etc. A signature table records the
actual observed workload of the frame against the signature of the frame. Prior to
rendering a frame, its signature is computed and the predicted workload of the frame
is picked from the signature table. On rendering the frame, if there is a discrepancy
between the observed and predicted workloads, the signature table is updated with
the observed workload value.

To compute the signature of the frame, we need the vertex count, triangle count,
and also the area and height of the triangles. The pipeline has to be modified to fa-
cilitate the signature extraction since the triangle information can be obtained only
after the triangle culling and clipping are performed. The modified pipeline is shown
in Fig. 7.30. The geometry stage is divided into vertex transformation and lighting
stages. Triangle clipping and culling stages are now performed prior to lighting and
a signature buffer is inserted prior to the lighting stage to collect the fram statis-
tics. Since we need the information of the entire frame to compute a meaningful
signature, the buffer should be big enough to handle one frame delay. Signature
based prediction works on the assumption that the computational intensity of the
pre-signature stage is negligible and also can be performed on the CPU without
hardware acceleration.

For every signature generated, the best matching signature from the table is to be
looked up. A distance metric shown in equation 7.11 is used to locate the signature
that is closest to the current signature. For a signature S consisting of parameters
s1; s2; :::sd and a signature T comprising of t1; :::td in the signature table, the dis-
tance D.S; T / is defined as

D.S; T / D
dX

iD1

jsi � ti j
si

(7.11)

7.6 Summary 245

Pixel ProcessingClippingLightingTransform Rasterization

Monitor Perf &
Update Sig Table

Pixel ProcessingRasterization
Transform
& Clip

Lighting

LookupExtract
Signature Sig. Table

Scale
Vol & Freq

Choose
Vol and Freq

a

b

Fig. 7.30 (a) Conventional pipeline. (b) Signature based DVFS for graphics processor: the signa-
ture buffer collects the primitives of the frame after geometry processing. Once the primitives of
the entire frame are collected in the signature buffer, the signature of the current frame is estimated
and the DVFS operating point is selected based on the signature

The signature that is at a minimum distance from the current signature could be
looked up either by linear search or any other sophisticated searching mechanism.

7.5.3 Multiple Power Domains

From the discussion in Section 7.1.3, it is clear that PUs, texture units, and ROPs are
major components in the graphics processor that consume power. From the work-
load analysis of games it has been observed that some frames use a lot of texturing;
others load the programmable units; still others require a large number of ROP oper-
ations. Hence these three modules could be designed to have different sets of power
and clock signals. Thus, the voltage and frequency of each of these domains can be
independently varied in accordance to their load, leading to power savings.

7.6 Summary

In this chapter we discussed a few important low power techniques used for graph-
ics processors. There is ample scope to customize the architecture to the kind of
processing in graphics applications in order to minimize power dissipation. In this
chapter, we discussed the applicability of several low power techniques discussed
earlier in the book in the context of power-efficient graphics processor design.

We studied memory customization for texture caches, compiler support for power
optimized code generation for vertex shaders, clock and power gating for several
blocks in the processor, along with system level power management techniques such
as dynamic voltage scaling, switching to low power modes, and also multiple power
domain design as mechanisms for improving power efficiency.

246 7 Low Power Graphics Processors

Graphics processor architectures are evolving extremely rapidly, and we expect
several new power optimization possibilities will arise in the near future. The dis-
tinct architecture evolution paths of high-end GPUs discussed in this chapter and
the relatively simpler mobile graphics processors, represent a good illustration of
the performance-power trade-offs alluded in earlier chapters of the book.

References

1. Http://www.anandtech.com/
2. Barrio, V.M.D., González, C., Roca, J., Fernández, A., Espasa, R.: A single (unified) shader

gpu microarchitecture for embedded systems. In: HiPEAC, pp. 286–301 (2005)
3. Chen, C.H., Lee, C.Y.: Two-level hierarchical Z-buffer for 3D graphics hardware. In: Circuits

and Systems, 2002. ISCAS 2002. IEEE International Symposium on, vol. 2, pp. II–253–II–256
vol.2 (2002)

4. Choi, K., Soma, R., Pedram, M.: Off-chip latency-driven dynamic voltage and frequency scal-
ing for an mpeg decoding. In: DAC ’04: Proceedings of the 41st annual Design Automation
Conference, pp. 544–549. ACM, New York, NY, USA (2004). DOI http://doi.acm.org/10.1145/
996566.996718

5. Chung, K., Yu, C.H., Kim, L.S.: Vertex cache of programmable geometry processor for mobile
multimedia application. In: Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE
International Symposium on, pp. 4 pp.– (2006). DOI 10.1109/ISCAS.2006.1692983

6. Flautner, K., Mudge, T.: Vertigo: automatic performance-setting for linux. SIGOPS Oper. Syst.
Rev. 36(SI), 105–116 (2002). DOI http://doi.acm.org/10.1145/844128.844139

7. Greene, N., Kass, M., Miller, G.: Hierarchical Z-buffer visibility. In: SIGGRAPH ’93: Pro-
ceedings of the 20th annual conference on Computer graphics and interactive techniques, pp.
231–238. ACM, New York, NY, USA (1993). DOI http://doi.acm.org/10.1145/166117.166147

8. Gu, Y., Chakraborty, S.: Control theory-based dvs for interactive 3D games. In: DAC ’08: Pro-
ceedings of the 45th annual Design Automation Conference, pp. 740–745. ACM, New York,
NY, USA (2008). DOI http://doi.acm.org/10.1145/1391469.1391659

9. Gu, Y., Chakraborty, S.: Power management of interactive 3D games using frame structures.
In: VLSI Design, 2008. VLSID 2008. 21st International Conference on, pp. 679–684 (2008).
DOI 10.1109/VLSI.2008.102

10. Gu, Y., Chakraborty, S., Ooi, W.T.: Games are up for dvfs. In: Design Automation Conference,
2006 43rd ACM/IEEE, pp. 598–603 (2006). DOI 10.1109/DAC.2006.229295

11. Hakura, Z.S., Gupta, A.: The design and analysis of a cache architecture for texture mapping.
SIGARCH Comput. Archit. News 25(2), 108–120 (1997). DOI http://doi.acm.org/10.1145/
384286.264152

12. Hasselgren, J., Akenine-Möller, T.: Efficient depth buffer compression. In: GH ’06: Pro-
ceedings of the 21st ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware,
pp. 103–110. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1283900.
1283917

13. Hoppe, H.: Optimization of mesh locality for transparent vertex caching. In: SIGGRAPH ’99:
Proceedings of the 26th annual conference on Computer graphics and interactive techniques,
pp. 269–276. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1999). DOI
http://doi.acm.org/10.1145/311535.311565

14. Iourcha, K.I., Nayak, K.S., Hong, Z.: System and method for fixed-rate block-based image
compression with inferred pixel values. Patent 5956431 (1999). Http://www.freepatentsonline.
com/5956431.html

Http://www.anandtech.com/

References 247

15. Lu, Z., Hein, J., Humphrey, M., Stan, M., Lach, J., Skadron, K.: Control-theoretic dynamic
frequency and voltage scaling for multimedia workloads. In: CASES ’02: Proceedings of the
2002 international conference on Compilers, architecture, and synthesis for embedded systems,
pp. 156–163. ACM, New York, NY, USA (2002). DOI http://doi.acm.org/10.1145/581630.
581654

16. McCormack, J., McNamara, R.: Tiled polygon traversal using half-plane edge functions. In:
HWWS ’00: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware, pp. 15–21. ACM, New York, NY, USA (2000). DOI http://doi.acm.org/10.1145/
346876.346882

17. Mochocki, B.C., Lahiri, K., Cadambi, S., Hu, X.S.: Signature-based workload estimation for
mobile 3D graphics. In: DAC ’06: Proceedings of the 43rd annual Design Automation Con-
ference, pp. 592–597. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/
1146909.1147062

18. Möller, T., Haines, E.: Real-time rendering. A. K. Peters, Ltd., Natick, MA, USA (1999)
19. Park, W.C., Lee, K.W., Kim, I.S., Han, T.D., Yang, S.B.: A mid-texturing pixel rasterization

pipeline architecture for 3D rendering processors. In: Application-Specific Systems, Architec-
tures and Processors, 2002. Proceedings. The IEEE International Conference on, pp. 173–182
(2002). DOI 10.1109/ASAP.2002.1030717

20. Rasmusson, J., Strom, J., Akenine-Moller, T.: Error-bounded lossy compression of floating-
point color buffers using quadtree decomposition. Vis. Comput. 26(1), 17–30 (2009). DOI http:
//dx.doi.org/10.1007/s00371-009-0372-y

21. Silpa, B., Kumar S.S, V., Panda, P.R.: Adaptive partitioning of vertex shader for low power
high performance geometry engine. In: Advances in Visual Computing, Lecture Notes in
Computer Science, vol. 5875/2009, pp. 111–124. Springer Berlin / Heidelberg (2009). DOI
10.1007/978-3-642-10331-5n 11

22. Silpa, B.V.N., Patney, A., Krishna, T., Panda, P.R., Visweswaran, G.S.: Texture filter memory:
a power-efficient and scalable texture memory architecture for mobile graphics processors.
In: ICCAD ’08: Proceedings of the 2008 IEEE/ACM International Conference on Computer-
Aided Design, pp. 559–564. IEEE Press, Piscataway, NJ, USA (2008)

23. Tan, Y., Malani, P., Qiu, Q., Wu, Q.: Workload prediction and dynamic voltage scaling for
mpeg decoding. In: ASP-DAC ’06: Proceedings of the 2006 Asia and South Pacific Design
Automation Conference, pp. 911–916. IEEE Press, Piscataway, NJ, USA (2006). DOI http:
//doi.acm.org/10.1145/1118299.1118505

24. Wang, P.H., Chen, Y.M., Yang, C.L., Cheng, Y.J.: A predictive shutdown technique for
gpu shader processors. IEEE Computer Architecture Letters 8, 9–12 (2009). DOI http://doi.
ieeecomputersociety.org/10.1109/L-CA.2009.1

Index

ACPI, 145
Device power states, 147
Global States, 146
power modes, 146
processor performance states, 147
Processor power states, 147

adaptive body bias, 34
address bus, 90

encoding, 129
bus-invert, 130
T0 encoding, 130

switching, 129
address translation, 111
alpha, 214
animation, 208
anti-aliasing, 214

full screen, 214
Application Specific Processor, 168
ARM, 165
array lifetime, 118
ASIP, 168
auxiliary decode buffer, 58
average power, 5

back-face culling, 212
BHT, 82

banking, 84
lookups, 84

bilinear filter, 228
bit-level parallelism, 41
block buffering, 103
blocking, 120
body bias, 34
BPU, 81
branch confidence, 56
branch history table, 82
branch prediction unit, 81
branch predictor, 82

correlating, 82
simple, 82

branch stalls, 82
branch target buffer, 82, 84
BTB, 82
bypass network, 68

cache
loop cache, 105

cache decay, 110
cache leakage power, 109
cache line, 95
cache memory, 92

access time, 94
associativity, 97
banked cache, 101
block buffering, 103
cache conflict, 118
cache decay, 110
cache hit, 94
cache leakage power, 109
cache line, 95
cache miss, 94
capacity miss, 94
compulsory miss, 94
conflict miss, 95
data cache, 93
direct-mapped, 96
dirty bit, 99
drowsy cache, 110
filter cache, 104
fully associative, 97
hit ratio, 95
index, 98
instruction cache, 93
least recently used, 98
location cache, 107
miss penalty, 95

249

250 Index

miss ratio, 95
offset, 98
partitioned cache, 101
replacement policy, 98
sequentialized access, 106
set-associative, 97
spatial locality, 99
tag, 98
temporal locality, 99
valid bit, 99
way halting cache, 107
way prediction, 107

CAM cell, 112
chip-multiprocessor, 45
clipper, 217
clipping, 212
clock gating, 25, 73, 223

opcode based, 73
value based, 73

clock throttling, 190
CMOS, 11
CMP, 45
color buffer compression, 237
control synthesis, 23
Convexity constraint, 169
CPU

utilization, 188
cpu

evolution, 41
frequency, 45
performance, 41
power, 45
power-breakup, 52

data bus, 90
Data center, 2
data center, 183
data layout, 131
data migration, 123
decode

micro-operations, 50
depth, 214
depth buffer compression, 235
depth test, 220
DFS, 28, 148
dispatch buffer, 60
dispatch logic, 50
display, 215
double buffering, 216
DRAM, 90
drowsy cache, 110
dual power supplies, 185
dual width ISA, 164

DVFS, 28, 148, 201, 238
DVS, 28, 148, 201
dynamic frequency scaling, 148, 201
dynamic logic, 26

evaluate, 27
precharge, 27

dynamic scheduling, 43
dynamic voltage and frequency scaling, 28,

148
dynamic voltage scaling, 148, 201

earlyZ, 220
embedded systems, 90
energy efficiency, 3
energy-delay product, 6
exception, 48

precise-exceptions, 48
execution units, 72

fast comparators, 66
fetch, 49
fetch gating, 54

branch confidence based, 55
flow based gating, 58

filter cache, 104
fog, 213
Fowler-Nordheim tunneling, 16
fragment, 212
frequency scaling, 28, 190, 201
FU, 171
Functional Unit, 171

gate induced drain leakage, 15
gate oxide tunneling, 16
gate sizing, 20
gating

branch prediction based gating, 76
compiler driven gating, 77

GIDL, 15
graphics pipeline, 208, 216

application layer, 208
geometry, 210
rasterization, 213
triangle setup, 212

graphics processor, 216

hamming distance, 23
hierarchical Z buffer, 220
homogeneous cluster, 198
host interface, 217
hotspot, 7, 172

Index 251

ILP, 41, 170
index mode, 217
input vector selection, 35
Instruction

decode, 50
instruction

commit, 52
execute, 51
issue, 51
ready, 51, 61

Instruction Encoding, 162
instruction level parallelism, 41
Instruction Set Architecture, 164
Instruction Set Extension, 168
instruction set extension, 168
instruction-level granularity, 167
Integer Linear Programming, 170
ISA, 164
ISE, 168
issue queue, 51, 60, 65

banking, 65
bit-line segmentation, 65
dynamic sizing, 63
power dissipation, 62
wake-up, 63

knapsack problem, 118
profit density, 118

leakage power, 15
leakage sensors, 172
leakage-aware power gating, 172
least recently used, 98
level of abstraction, 7

behavioral level, 8
circuit level, 8
data center level, 8
device level, 8
gate level, 8
register transfer level, 8
server level, 8
software level, 8
transaction level, 8

lighting, 211
locality of reference, 92
LRU, 98

memory
access delay, 89
address, 90
address bus

time multiplexing, 90
width, 90

architecture, 89, 91
area, 89
banking, 121
bit line, 91
column address, 91
column decoder, 91
control signals, 91
customization, 124
data bus, 90

width, 90
data layout, 131
DRAM, 90, 94
energy, 89
hierarchy, 92, 94
interface, 90
multi-banked, 101
page, 134
partitioning, 128
power, 89
read, 91
row address, 91
row decoder, 91
scratch pad memory, 105, 116, 117, 119,

121
sense amplifier, 91
SRAM, 94
structure, 91
subsystem, 89
word line, 91
write, 91

memory address, 90
memory banking, 121
memory bottleneck, 92
memory customization, 124
memory hierarchy, 92
memory packing, 195
memory page, 111
memory wall, 92
microarchitecture, 171
model space, 211
Moore’s Law, 11
multi-threshold logic, 74
multicore, 193
multiple power domains, 245
Multiple Vdd, 31
Multiple Vt, 33
multiple-issue, 48
multisampling, 215

nameplate power, 184

252 Index

operand isolation, 73
Operating System, 140
OS, 140
OSPM, 145
out-of-order, 43

page migration, 195
page table, 111
peak power, 5
performance-per-watt, 6
pipeline, 41

front-end, 54
hazards, 42
multiple-issue, 42
stall, 42

pixel, 208
power allocation, 197

PLI, 197
sliding window, 197
static allocation, 197

power capping, 198
power density, 7, 172
power efficiency, 3
power gating, 36, 74, 171

time based gating, 75
Power management, 144
power mode, 238
power shifting, 196
power states, 190
power thresholding, 198
power wall, 45
power-performance tradeoff, 6
PPD, 84
prediction probe detector, 84
predictive shutdown, 223
predictive value of negative test, 56
primitive assembly, 217
process variations, 172
processor packing, 195
program order, 77
PVN, 56

raster operation, 235
RBDL, 15
reduced bit-width ISA, 164
register file, 66, 94

banked organization, 69
clustered organization, 70
hierarchical organization, 70

prefetch, 72
register cache, 72

multi-ported, 67

rename table, 77
reorder buffer, 52, 77
reorder buffer,ROB

distributed organization, 80
dynamic sizing, 81
port reduction, 79
power dissipation, 78
zero byte encoding, 81

reservation station, 61
reverse biased diode leakage, 15
rISA, 164
ROB, 52, 77
ROP, 220
routine-level granularity, 166

scan-line, 212
scheduling

Earliest Deadline First, 157
EDF, 157
Rate Monotonic, 157
RMS, 157

scratch pad memory, 105, 116, 117, 119, 121
data placement, 117
dynamic management, 119

server, 183
server clusters, 184
shader, 220
shading, 213
short-circuit power, 14
sleep transistor, 36
spatial locality, 99
SPEC, 56
specificity, 56
subthreshold leakage, 17
superscalar, 42, 48
switching power, 13
symmetric multiprocessor, 193
System-on-a-Chip, 1

temperature, 172
temporal locality, 99
texel, 213
texture blocking, 229
texture cache, 220
texture compression, 232
texture filter memory, 229, 232
texture mapping, 213
texture unit, 228
thread level parallelism, 45
thread setup overhead, 227
tiled rasterization, 219
tiling, 120

Index 253

TLB
banking, 113

transformation, 210
Transistor Power Consumption, 11
transistor stacking, 34
translation look-aside buffer, TLB, 111
trilinear filter, 228
triple buffering, 216
trivial reject, 212

unified shader, 220

vertex, 210
vertex input cache, 217
vertex output cache, 217
vertex shader partitioning, 225
view space, 211
virtual address, 111

virtual memory, 111
voltage and frequency scaling, 28
voltage scaling, 28, 201
VRAM, 216

workload estimation, 241
control based, 241
frame structure based, 243
history based, 241
signature based, 244

workload variation, 193
world space, 211

XScale, 149

zero byte encoding, 65

	Power-efficient System Design
	Preface
	Contents
	1 Low Power Design: An Introduction
	2 Basic Low Power Digital Design
	3 Power-efficient Processor Architecture
	4 Power-efficient Memory and Cache
	5 Power Aware Operating Systems, Compilers, and ApplicationSoftware
	6 Power Issues in Servers and Data Centers
	7 Low Power Graphics Processors
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

