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6.1  Introduction

Almost all proteins present on the extracellular surface of cells or in the extracel-
lular matrix are glycoproteins. As such, they are modified either with N-linked 
glycans (on asparagines), O-linked glycans (on serines or threonines), gly-
cosaminoglycans (on serines), or with glycosylphosphatidylinositol (GPI, on vari-
able amino acids). These glycoproteins, in combination with glycolipids present 
in the plasma membrane, contribute to the expression of a glycocalyx, a highly 
concentrated halo of glycan that surrounds the extracellular surface of all cells. It 
is in this intensely carbohydrate-rich environment that all ligand-receptor signal-
ing is initiated, all infectious processes begin, and in which all cellular movements 
and adhesive changes take place. As such, it should not be surprising that the car-
bohydrate environment of proteins provides a rich and essential context in which 
to understand their function. There are many examples of essential roles for gly-
cosylation in health and disease (Freeze 2006). Examples where glycosylation is 
directly involved include the lysosomal storage disorders, which often arise from 
the inability of mutant glycosidases to break down glycans on glycolipids or gly-
coproteins (including proteoglycans), congenital disorders glycosylation, many of 
which arise from failure of enzymes in N-linked glycan biosynthesis but that also 
include defects in enzymes regulating glycosoaminoglycan synthesis, Golgi local-
ization of glycosyltransferases, and O-linked biosynthesis. In addition, there are 
myriad examples where protein glycosylation plays a secondary role in dictating 
disease behavior, particularly in inflammatory diseases, blood disorders, and can-
cer. Tumor cell extravasation from the blood to the lymph, for example, is greatly 
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affected by glycan repertoire present on cancer cells and by lectins on endothelial 
cells that bind to them. One very important membrane glycoprotein that plays both 
direct roles and indirect roles in human disease is dystroglycan (Michele and 
Campbell 2003; Higginson and Winder 2005; Sgambato and Brancaccio 2005; 
Barresi and Campbell 2006; Martin 2006). It has become clear from an amazing 
convergence of studies utilizing human and mouse genetics as well as biochemis-
try and cell biology that dystroglycan is an essential protein in mammals whose 
glycosylation is necessary for its function and whose aberrant glycosylation can 
cause disease.

6.2  The Dystroglycan Glycoprotein

In mammals, the dystroglycan gene (Dag1) is encoded by only two exons, both of 
which contain protein-coding sequence (Ibraghimov-Beskrovnaya et al. 1993). As 
such, splicing is not a regulatory mechanism important to dystroglycan biology 
(though splicing is more complex in some organisms (for example Drosophila 
melanogaster (Schneider and Baumgartner 2008))). Dystroglycan contains a signal 
peptide and becomes modified by N- and O-linked glycosylation as it makes its 
way through the endoplasmic reticulum (ER) and Golgi apparatus to the plasma 
membrane (Ervasti and Campbell 1991; Ibraghimov-Beskrovnaya et al. 1992; 
Ervasti and Campbell 1993; Holt et al. 2000). It is also proteolytically cleaved into 
two polypeptide chains, termed a and b dystroglycan (Ervasti and Campbell 1991). 
a dystroglycan is a membrane-associated extracellular protein that binds tightly, 
but non-covalently, to b dystroglycan, a transmembrane protein. a dystroglycan 
contains a mucin-like domain with as many as 55 serines or threonines (Ibraghimov-
Beskrovnaya et al. 1992) and becomes heavily glycosylated with O-linked glycans 
in the ER and Golgi (Martin 2003a). The extent of this type of glycosylation on a 
dystroglycan varies between different tissues and also within the same tissue during 
development. a dystroglycan is converted from an unglycosylated polypeptide of 
72 kDa to a glycoprotein of 120 kDa in brain, 140 kDa in cardiac muscle, and 
156 kDa in skeletal muscle (Ervasti and Campbell 1993; Gee et al. 1993; Ervasti 
et al. 1997; Barresi and Campbell 2006). The extent of glycosylation becomes 
higher as skeletal muscle development proceeds (Leschziner et al. 2000) and also 
varies with stage of pregnancy in the placenta (Santhanakrishnan et al. 2008). In 
most tissues, however, it ultimately becomes a glycoprotein that is, on average, half 
carbohydrate by molecular weight. a Dystroglycan can also be cleaved by furin in 
the trans-Golgi or at the plasma membrane, thereby eliminating the N-terminal 
third of the protein sequence (Singh et al. 2004). The extent of glycosylation on b 
dystroglycan, by contrast, is far less, with the protein likely only modified on sev-
eral N-linked sites. The enzyme that cleaves the protein into a and b chains has not 
been identified. Mutation of serine 654, the first amino acid of b dystroglycan, to 
alanine, however, inhibits cleavage of all endogenous a/b dystroglycan protein 
chains and causes muscular dystrophy when overexpressed in skeletal muscle 
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(Jayasinha et al. 2003). Some human tissues, in particular pediatric bone, have a 
160 kDa species that can be recognized by antibodies to b dystroglycan, and this is 
consistent with the presence of uncleaved a/b dystroglycan in this tissue (Martin 
et al. 2007).

Glycan sequencing of the O-linked chains on a dystroglycan, both by 
Smalheiser and Dell, from sheep brain (Smalheiser et al. 1998) and by Endo and 
colleagues, from bovine peripheral nerve (Chiba et al. 1997) and rabbit skeletal 
muscle (Sasaki et al. 1998), revealed a mixture of relatively common core 1 gly-
cans (Galb1,3GalNAca-O-Ser/Thr or T antigen) and an unusual O-linked man-
nose tetrasaccharide (NeuAca2,3Galb1,4GlcNAcb1,2Mana-O-Ser/Thr). 
Smalheiser and Dell also identified O-mannosyl-linked Lewis X (Galb1,4[Fuca1,3]
GlcNAcb1,2Mana-O) in brain (Smalheiser et al. 1998). These studies show that 
a dystroglycan contains an unusual sialylated O-linked mannose structure that has 
not been commonly found in mammals. Such structures, however, may not be 
uncommon. Feizi and colleagues, for example, showed that O-linked mannose 
may represent as much as the third of all O-linked glycan on proteins in rabbit 
brain (Chai et al. 1999), an amount far in excess of the preponderance of dystro-
glycan protein. In addition, O-linked mannose is a relatively common cell surface 
modification in lower eukaryotes such as yeast (Willer et al. 2003). While these 
elegant glycan sequencing papers leave no doubt that dystroglycan contains both 
O-linked mannose and O-linked GalNAc structures, less convincing antibody or 
lectin blotting suggests other structures may also be present, including the HNK-1 
epitope (S04-GlcAb1,3Galb1,4-) (Smalheiser and Kim 1995), the Sda/CT carbo-
hydrate epitope (Neu5Ac (or 5Gc)a2,3[GalNAcb1,4]Galb1,4GlcNAcb-) (Xia 
et al. 2002), and Tn Antigen (GalNAc-a-O) (Ervasti et al. 1997). Both HNK-1 and 
CT carbohydrates have the potential to be present on O-linked mannose structures, 
while the Tn antigen may reflect incompletely galactosylated core 1 structures. 
Some of these structures may be present on small amounts of the total dystrogly-
can protein, and as such may not have been identified in the original sequencing 
studies. For example, the CT carbohydrate is present in skeletal muscle only at the 
neuromuscular synapse (Martin et al. 1999), which comprises about 0.1% of the 
total muscle membrane protein.

The original studies of Ervasti and Campbell showed that removal of the 
N-linked chains from a dystroglycan removed only 10 kDa of glycan from the 
156 kDa polypeptide (Ervasti and Campbell 1993), an amount that reflects approxi-
mately 2–3 N-linked chains, which is consistent with the number of predicted 
N-linked sites (Ibraghimov-Beskrovnaya et al. 1992). These N-linked glycans, 
however, were not required for laminin binding to a dystroglycan. By contrast, acid 
digestion of all glycans (in this case both N- and O-linked) led to the loss of all 
laminin binding, suggesting an essential role for the O-linked chains. This seminal 
study has now been borne out by human genetics studies showing that genes 
required for O-linked mannose biosynthesis on a dystroglycan are required for the 
binding of laminin and other ECM proteins (Michele et al. 2002). Thus, the 
O-linked mannosylation of a dystroglycan is essential to its function as a receptor 
for the extracellular matrix.
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6.3  The Dystrophin-Associated Glycoprotein Complex

Dystroglycan associates with a large number of extracellular and intracellular pro-
teins as an essential member of transmembrane protein complexes (Fig. 6.1). The 
composition of these complexes differs depending on the cell type and its subcellular 
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Fig. 6.1 The dystrophin-associated glycoprotein (DAG) complex in normal skeletal muscle, in 
skeletal muscle with dystroglycanopathy, and at the neuromuscular junction. (a) Normal skeletal 
muscle. Dystroglycan at the sarcolemmal membrane links laminin in the extracellular matrix, 
sarcoglycans in the membrane, and dystrophin and ultimately F-actin in the cytoplasm. a and b1 
syntrophin, as well as other molecules (dystrobrevins, plectin1, ankyrin, etc., not shown), also 
bind dystrophin; (b) Patients with dystroglycanopathy (congenital muscular dystrophy, CMD) 
have reduced glycosylation of the O-linked structures on a dystroglycan. This can have the 
secondary consequence of lowering laminin expression in the extracellular matrix; (c) a dystro-
glycan at the neuromuscular junction (NMJ) is differentially glycosylated by Galgt2 with terminal 
b1, 4GalNAc structures. Synaptic forms of laminin bind to a dystroglycan. b dystroglycan is 
phosphorylated on tyrosine and interacts with synaptic linker and signaling molecules. Utrophin, 
a synaptic orthologue of dystrophin, is present, as is b2 syntrophin, as a uniquely synaptic form. 
Other synaptic proteins (e.g. a1 dystrobrevin) are not shown
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localization (Martin 2003a, b). In the sarcolemmal membrane of skeletal muscle, 
dystroglycan is a central component of the dystrophin-associated glycoprotein 
(DAG) complex (Fig. 6.1a). Here, dystroglycan binds to the principal extrasyanptic 
muscle laminin (laminin-2 or a2,b1,g1 laminin), and this binding requires the 
O-mannosyl-linked glycans present in its mucin-like domain(Ervasti and 
Campbell 1993; Michele et al. 2002). a/b dystroglycan interacts within the mem-
brane with sarcoglycans, which are a four protein complex of a−d sarcoglycan in 
skeletal muscle, and via the cytoplasmic domain of b dystroglycan with dystrophin, 
which ultimately links the complex to filamentous actin and other structural and 
signaling components (Fig. 6.2). The DAG complex was originally purified and 
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Fig. 6.2 Functions of dystroglycan in muscle and non-muscle cells. In skeletal muscle fibers, dys-
troglycan is part of a large complex that links laminin to the actin cytoskeleton via dystrophin. This 
dystrophin-associated glycoprotein (DAG) complex plays a structural role protecting the membrane 
from mechanical damage during repeated cycles of contraction. In addition, the DAG proteins are 
linked to the underlying sarcomeres at the Z-lines via desmin and regulate the phosphorylation of 
several sarcomeric proteins by anchoring protein kinase A (PKA). Dystroglycan also mediates acti-
vation of intracellular signaling pathways. Phosphorylation of b dystroglycan by c-src modulates its 
interactions with dystrophin while laminin-binding to a dystroglycan regulates activation of the 
PI3K/AKT and Rac/PAK/JNK pathways via the syntrophins and Grb2. In non-muscle cells and in 
muscle precursor cells, the dystroglycan complex antagonizes the actions of integrins. Binding of 
laminin to a dystroglycan regulates cell shape via re-organization of the actin cytoskeleton, and 
promotes differentiation and cell survival over proliferation and migration. Dystroglycan interacts 
with the PI3K/AKT and ERK/MEK signaling pathways, and b dystroglycan can be tyrosine phos-
phorylated leading to binding of SH2 domain proteins. Hypoglycosylation of a dystroglycan in 
cancers disrupts laminin binding and leads to loss of cell polarity, proliferation and migration
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characterized by James Ervasti, Kevin Campbell, and colleagues (Ervasti et al. 
1990; Ervasti and Campbell 1991).

Mutations affecting expression of almost all of DAGs cause forms of muscular 
dystrophy, strongly demonstrating a functional role for these protein associations. 
Loss of dystrophin causes Duchenne muscular dystrophy (Hoffman et al. 1987; 
Koenig et al. 1987), a severe X-linked myopathy, while partial loss of dystrophin 
causes Becker muscular dystrophy, which typically has a milder clinical progres-
sion than DMD (Love et al. 1989; Blake et al. 2002). Similarly, loss of any of the 
four muscle sarcoglycans (a−d) causes Limb-girdle muscular dystrophy (LGMD2D, 
2E, 2C, and 2F, respectively) (Vainzof et al. 1996; Angelini 2004; Rezniczek et al. 
2007), and loss of laminin a2 causes Congenital muscular dystrophy 1A (Mendell 
et al. 2006). Complete loss of dystroglycan is lethal in mice from an early embry-
onic stage (Williamson et al. 1997), and this may explain why human DAG1 muta-
tions have not been identified as causing muscular dystrophy. However, loss of 
proteins that glycosylate a dystroglycan cause forms of congenital muscular dys-
trophy or limb-girdle muscular dystrophy by disrupting laminin binding (Fig. 6.1b) 
and will be discussed in the next section (Martin 2006; Mendell et al. 2006).

The common feature of these muscular dystrophies is a progressive degeneration 
of muscle fibers, often linked to increased fragility of the cell membrane in the face 
of repeated mechanical stress imposed by muscle contraction. All give rise to chronic 
cycles of muscle degeneration and regeneration, with additional immune compo-
nents, that in their most severe forms lead to wasting of the skeletal muscle tissue and 
replacement of muscle with fat or extracellular matrix. Such muscle wasting leads to 
progressive muscle weakness which in the most severe forms results in wheelchair 
dependence and ultimately early mortality due to complications arising from respira-
tory and/or cardiac failure. Thus, a wealth of both biochemical and genetic data points 
to the importance of the DAG complex as a stabilizer of the muscle membrane.

At the neuromuscular junction, dystroglycan is differentially glycosylated with 
synaptic carbohydrates by Galgt2, a UDP-GalNAc:Neu5Aca2,3Galb1,4GlcNAc-b1,4 
N-acetylgalactosaminyltransferase (Nguyen et al. 2002; Xia et al. 2002). Galgt2 
(Xia et al. 2002), like the CT carbohydrate it creates (Martin et al. 1999), is normally 
confined in skeletal muscle to the area including the neuromuscular synapse, thereby 
defining a uniquely synaptic glycoform of dystroglycan protein (Fig. 6.1c). At the 
neuromuscular synapse, there are unique isoforms of laminin (laminin 9 (a4,b2,g1) 
and laminin-11 (a5,b2,g1)) (Patton et al. 1997), now called laminin 421 and 521 
respectively, that may interact with the unique glycoform of dystroglycan, and also 
utrophin, a synaptic orthologue of dystrophin (Ohlendieck et al. 1991). Additionally, 
dystroglycan may be modified by tyrosine kinases such as c-src (Sadasivam et al. 
2005) via interactions with synaptic adaptor proteins, such as rapsyn (Apel et al. 1995) 
or Grb2 (Yang et al. 1995). Further evidence of a unique synaptic complex is the fact 
that transgenic overexpression of Galgt2, which creates the CT carbohydrate on a 
dystroglycan along the entire muscle membrane, leads to the ectopic expression of 
synaptic laminins and utrophin (Nguyen et al. 2002; Xia et al. 2002). The ectopic 
expression of this synaptic glycan further prevents dystrophin-deficient muscles 
from developing muscular dystrophy, which may be in part due to the extrasynaptic 
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expression of novel synaptic DAGs (Nguyen et al. 2002). That dystroglycan is essential 
for proper synaptic structure is further supported by studies where it is deleted in the 
skeletal muscles of mice and by studies where genes that control its O-linked man-
nosylation are altered (Cote et al. 1999; Saito et al. 2007). Similarly complex novel 
protein associations may be found in other subcellular regions of skeletal myofibers 
where dystroglycan is present, such as the costamere or the myotendinous junction.

The list of proteins found to interact, either directly or indirectly, with the DAG 
complex continues to expand. This is perhaps not surprising given the number of 
DAGs involved in the complex. Many interactions are mediated by dystrophin, 
which in addition to F-actin also binds syntrophins (Peters et al. 1997), dystrobrevins 
(Butler et al. 1992; Peters et al. 1998), plectin 1 (Rezniczek et al. 2007), ankyrin 
(Ayalon et al. 2008), and cytokeratin 19 (Ursitti et al. 2004; Stone et al. 2005). 
Plectin1 and ankyrin also can associate directly with the cytoplasmic face of b dys-
troglycan (Rezniczek et al. 2007; Ayalon et al. 2008), as can a host of signaling or 
adaptor proteins, including Grb2 (Yang et al. 1995; Russo et al. 2000), dynamin 
(Zhan et al. 2005), c-src (Sotgia et al. 2001), rapsyn (Apel et al. 1995; Cartaud et al. 
1998), ezrin (Batchelor et al. 2007), and MAP kinase (Spence et al. 2004b). 
Additional signaling and channel proteins, including neuronal nitric oxide synthase 
(Brenman et al. 1995), voltage-gated Na+ channels (Gee et al. 1998), aquaporin-4 
(Adams et al. 2001), TRPC1 calcium channel (Vandebrouck et al. 2007), and syn-
coilin (a desmin-binding protein) (Newey et al. 2001; Poon et al. 2002), may enter 
the complex via interactions with dystrobrevins or syntrophins. Plectin 1 and ankyrin 
also bind to cytoskeletal proteins including microtubules, microtubule-binding pro-
teins, and intermediate filaments. Plectin1 also binds F-actin and loss of plectin1 
causes muscular dystrophy (with epidermolysis bullosa). Filamin C, which binds 
sarcoglycans and F-actin, could serve similar structural roles (Thompson et al. 
2000). These proteins provide additional scaffolds that may work even in the 
absence of dystrophin to link dystroglycan to the cytoskeleton.

Dystroglycan shows equally complex associations with the extracellular matrix 
proteins that reside in the basal lamina that surrounds each myofiber (Martin 
2003a). Outside the cell, a dystroglycan binds to b dystroglycan, via a protein-
protein interface requiring the C-terminal third of a dystroglycan, and with extra-
cellular matrix proteins, including multiple forms of laminin, agrin, and perlecan 
(Henry and Campbell 1999). a Dystroglycan also interacts with specialized ECM 
proteins, such as pikachurin (at ribbon synpases in the retina (Sato et al. 2008)), 
biglycan (Bowe et al. 2000), transmembrane proteins including neurexins (in 
neurons) (Sugita et al. 2001), infectious agents including Lassa Fever virus, 
Lymphocytic choriomeningitis virus (Cao et al. 1998; Kunz et al. 2001) (but see 
(Imperiali et al. 2008)), and Micobacterium leprae (Rambukkana et al. 1998), and 
also Golgi proteins involved in its own glycosylation (LARGE (Kanagawa et al. 
2004)). Most ECM proteins known to bind a dystroglycan contain laminin G 
domain motifs (Timpl et al. 2000), and these binding interactions require glyco-
sylation of a dystroglycan with O-linked mannose structures (Michele et al. 
2002). Whether these glycans mediate direct binding, however, remains a matter 
of debate.



126 F. Montanaro and P.T. Martin

6.4  The Dystroglycanopathies

Dystroglycanopathies are neuromuscular disorders defined by altered glycosylation 
of a dystroglycan (Martin and Freeze 2003; Jimenez-Mallebrera et al. 2005; Martin 
2006; Mendell et al. 2006; Moore et al. 2008; Muntoni et al. 2008). There has been 
an increasing focus given to using dystroglycan glycosylation as a diagnostic, and 
therefore the number of patients identified continues to expand. The more severe 
end of the dystroglycanopathies encompasses congenital muscular dystrophies, 
diseases that are present at or before birth. These diseases include Walker Warburg 
syndrome (WWS), muscle eye brain disease (MEB), Fukuyama congenital muscu-
lar dystrophy (FCMD), and congenital muscular dystrophy 1C and 1D (MDC1C 
and MDC1D). These diseases arise from mutations in genes affecting dystroglycan 
glycosylation, including POMT1 (Beltran-Valero de Bernabe et al. 2002), POMT2 
(van Reeuwijk et al. 2005), POMGnT1 (Yoshida et al. 2001), FKTN (Kobayashi 
et al. 1998), FKRP (Brockington et al. 2001b; Topaloglu et al. 2003; Beltran-Valero 
de Bernabe et al. 2004), and LARGE (Longman et al. 2003; van Reeuwijk et al. 
2007). WWS, MEB, and FCMD patients display a variety of neurological findings 
in the brain, including type 2-like lissencephaly (or “cobblestone cortex”), cerebel-
lar cysts, pontocerebellar hypoplasia, hydrocephalus, reduced or absent corpus 
collosum, and white matter changes (hypomyelination), and also changes in the 
eye, including congenital glaucoma, retinal dysplasia or detachment, microo-
pathalmia, myopia, atrophy of the optic nerve, buphthalmos, and anterior chamber 
defects. All also include muscle pathology consistent with severe muscular dystro-
phy as well as variably present cardiomyoapthy and also defects in neuromuscular 
synapses (Jimenez-Mallebrera et al. 2005; Taniguchi et al. 2006).

While the range of clinical presentation can be quite variable, children with 
WWS rarely live beyond a year of age and show severe hypotonia (Jimenez-
Mallebrera et al. 2005). Children with other CMD variants can live into their teens, 
typically show significant muscle weakness, and can have loss of ambulation and 
mental retardation. These diseases differ from other muscular dystrophies involving 
loss of other members of the DAG complex (e.g. dystrophin and sarcoglycans) in 
that they show multiple brain phenotypes in addition to muscular dystrophy, arguing 
that dystroglycan may have unique functions in the brain that cannot be compensated 
for by other DAG members. In patients and in animal models where lissencephaly 
is present, the observed defect in neuronal migration is not cell autonomous but 
rather arises from defects in the formation of the glial limitans-pial membrane 
surface, where dystroglycan is essential for proper ECM expression and integrity 
(Holzfeind et al. 2002; Moore et al. 2002). This has the effect of causing a fraction 
of the cortical neurons to continue to migrate through holes in the pial surface, 
ultimately leaving the brain.

At the other end of the clinical spectrum for the dystroglycanopathies are the 
Limb-girdle muscular dystrophies LGMD2I, LGMD2K, LGMD2L, LGMD2M, 
and LGMD2N (arising from mutations in FKRP (Brockington et al. 2001a), 
POMT1 (Balci et al. 2005; D’Amico et al. 2006), FKTN (Godfrey et al. 2006), 
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POMGnT1 (Clement et al. 2008), and POMT2 (Biancheri et al. 2007), respec-
tively). These diseases typically do not show brain or eye changes found in the 
congenital muscular dystrophies and have milder muscle and heart disease as well. 
There is a founder effect mutation present in the human population of FKRP carri-
ers (826C > A) that leads to an increased incidence of LGMD2I relative to other 
LGMD dystroglycanopathies (Louhichi et al. 2004; Frosk et al. 2005). Patients 
with LGMD dystroglycanopathies can often ambulate as children, but muscle 
weakness is often progressive and can be associated with cardiomyopathy (Straub 
and Bushby 2006). These diseases typically show no neurological findings (Jimenez-
Mallebrera et al. 2005; Muntoni et al. 2008). Because the molecular weight of 
skeletal muscle a dystroglycan in these LGMDs appears only to be reduced to the 
molecular weight normally seen in brain, brain dystroglycan function may be unaf-
fected in these diseases.

There are at least six genes identified where loss of function mutations give rise 
to an aberrantly underglycosylated form of a dystroglycan with defective ECM 
binding properties and also cause forms of congenital or limb-girdle muscular dys-
trophy (Moore and Hewitt 2009; Muntoni et al. 2008). These include three genes 
known to be essential for the biosynthesis of O-linked mannose chains on a dys-
troglycan: Protein O-mannosyltransferase 1 and 2 (POMT1 and POMT2) are a 
dimeric protein complex required for O-linked mannose biosynthesis on a dystro-
glycan in mammals (Akasaka-Manya et al. 2004; Manya et al. 2004; Akasaka-
Manya et al. 2006) and in flies (Ichimiya et al. 2004). POMT1 and POMT2 act to 
specifically glycosylate O-linked peptides from the mucin region of a dystrogly-
can (Manya et al. 2007). Protein O-mannosyl-b1,2-N-acetylglucosaminyltransferase 
(POMGnT1) synthesizes the second sugar of the O-mannosyl tetrasaccharide 
structure on a dystroglycan (Yoshida et al. 2001; Manya et al. 2003). The second 
three genes known to cause disease are fukutin (FKTN), fukutin-related protein 
(FKRP), and LARGE. Here again, loss of function causes underglycosylation of a 
dystroglycan and disease (Grewal et al. 2001; Hayashi et al. 2001; Brown et al. 
2004), but the exact function of these genes is not known. FKRP, FKTN, and 
LARGE proteins are localized to the Golgi in muscle tissue and all three contain 
motifs (DxD) found in glycosyltransferases that are involved in binding sugar 
nucleotide substrates (Esapa et al. 2002; Brockington et al. 2005; Grewal et al. 
2005; Torelli et al. 2005). Thus, they are localized and have structural motifs con-
sistent with their either being glycosyltransferases or in mediating glycosyltrans-
ferase activity. These genes share no sequence similarity to sialyltransferases or 
b-galactosyltransferases that synthesize the outer glycans of the O-mannosyl tet-
rasaccharide on a dystroglycan.

Recent studies have shown that fukutin-deficient mice have reduced POMGnT1 
activity and that fukutin can interact with POMGnT1 (Xiong et al. 2006), suggest-
ing that fukutin may be a mediator of POMGnT1 activity or subcellular localiza-
tion. Indeed, mutations in FKRP and FKTN can cause protein mislocalization from 
the Golgi to the ER, and FKTN mutations additionally cause POMGnT1 mislocal-
ization (Esapa et al. 2002; Xiong et al. 2006). Further evidence of a protein targeting 
role is the finding that FKRP binds dystroglycan and can co-localize with it at the 
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sarcolemmal membrane in skeletal muscle (Beedle et al. 2007). LARGE is perhaps 
the most intriguing of these genes with unknown function. Campbell and colleagues 
have shown that overexpression of LARGE in cells deficient in POMGnT1 or FKTN 
can stimulate glycosylation of a dystroglycan, converting it from its underglycosy-
lated pathologic form to its native state. In doing so, LARGE overexpression 
restores laminin binding (Barresi et al. 2004). LARGE2, described by Hewitt 
and colleagues (Grewal et al. 2005), has a similar function, but is not normally 
expressed at appreciable levels in skeletal muscle. It is clear from studies using 
CHO cell glycosylation mutants and also from digestion of a dystroglycan 
with glycosidases that the type of glycosylation LARGE stimulates is not one com-
mon to other mammalian glycoproteins (Combs and Ervasti 2005; Patnaik and 
Stanley 2005).

Importantly, muscles from most patients with dystroglycanopathies show nor-
mal expression of a and b dystroglycan protein at the sarcolemmal membrane, only 
having reduced a dystroglycan glycosylation. This is typically demonstrated by 
showing altered migration of a dystroglycan on SDS-PAGE gels and by absent or 
reduced binding of carbohydrate-dependent monoclonal antibodies, such as IIH6, 
to a dystroglycan (using both immunostaining and immunoblotting). A defect in a 
dystroglycan glycosylation was first described by Hayashi et al. in FCMD patients 
(Hayashi et al. 2001). There are a number of patients with dystroglycanopathies 
where all six of the genes known to cause disease are not mutated. Thus, additional 
genes in this class of disorders have yet to be discovered. Indeed, there may also be 
patients where a dystroglycan expression is reduced without altering protein gly-
cosylation. Such a molecular change has been recently described for a novel dys-
troglycanopathy in the Sphinx and Devon Rex breeds of cat (Martin et al. 2008).

Because loss of dystroglycan leads to early embryonic lethality in mice 
(Williamson et al. 1997), an increasing number of tissue-specific knockouts, cou-
pled with genetic chimeras, have been created to allow viability into adulthood. 
These include loss of DAG1 in skeletal muscle, astrocytes, Schwann cells, and the 
embryonic nervous system (Cote et al. 1999; Cohn et al. 2002; Moore et al. 2002; 
Saito et al. 2003; Satz et al. 2008). These valuable mouse models have shown that 
most of the phenotypes found in patients can be mimicked by loss of the dystro-
glycan protein. Work by Campbell and colleagues has conclusively demonstrated 
that dystroglycan can be the primary mediator of glycosylation defect because loss 
of dystroglycan protein in the affected tissues phenocopies loss of genes affecting 
its glycosylation (Cohn et al. 2002; Moore et al. 2002; Saito et al. 2003; Satz et al. 
2008). Jarad and Miner (2009) used an unusual Pax3-Cre transgenic mouse that 
has a rostral-caudal gradient of Cre transgene expression to knock out dystrogly-
can specifically in caudal skeletal muscles, which allows the mice to live up to a 
year of age. Such animals should be especially useful in exploring the role of 
DAG1 in skeletal muscle. In particular, a dystroglycan can, in some circumstances, 
stimulate the polymerization of proteins, in particular laminins, into the extracel-
lular matrix (Yurchenco et al. 2004; Nishimune et al. 2008). Since laminin binding 
is dependent upon glycosylation, this polymerization process may be affected in 
dystroglycanopathy patients, where laminin a2 protein is often reduced in the 
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muscle basal lamina (Brockington et al. 2001a, b; Brown et al. 2004). Thus, altered 
a dystroglycan glycosylation may work in a bidirectional manner, leading to both 
loss of ECM ligand binding and ECM polymerization. Indeed, lethality in DAG1, 
POMT1, and FKTN null mice appears to be due to loss of laminin expression in 
the basal lamina (in particular Reichert’s membrane) and resultant fracturing of 
surrounding basement membranes (Williamson et al. 1997; Willer et al. 2004; 
Kurahashi et al. 2005).

As is the case with all of the muscular dystrophies, the relative severity of dys-
troglycanopathies can vary between affected tissues, as can the glycosylation 
changes. For example, Nishino and colleagues have described patients with FKTN 
mutations that have minimal muscle weakness but with severe cardiomyopathy, 
much as can be seen in some Becker MD cases (Murakami et al. 2006). Likewise, 
Muntoni and collaborators have found several patients with FKTN and FKRP muta-
tions where dystroglycan glycosylation is greatly reduced but that have only clini-
cally mild forms of LGMD (Jimenez-Mallebrera et al. 2008). While such data 
would seem to argue that glycosylation might not be an absolute predictor of dis-
ease, the carbohydrate reagents used for such studies are often fraught with quality 
control issues, as the specific glycans they bind to are unknown. Toda and col-
leagues have made a knock-in model of the most common FCMD gene deletion in 
Japan, which is retrotransponsal insertion in the 3¢ untranslated region of the FKTN 
gene (Kanagawa et al. 2009). This in effect knocks down FKTN mRNA expression 
in the affected tissues. Mice with this insertion, unlike FCMD patients with the 
same genetic abnormality, show only a 50% decrease in glycosylated a dystrogly-
can, and show no disease (Kanagawa et al. 2009). This appears to be an increas-
ingly common theme in mouse models. In mice, quality control in protein synthesis 
and/or folding may be more efficient than in humans, thus leading to a relatively 
reduced loss of function for missense mutations or insertions. Perhaps the best 
recent example of this is that mice with a knock-in of the most common LGMD2D 
mutation in a sarcoglycan (R77C) show normal expression of the mutant protein 
on the sarcolemmal membrane, and thus no disease (Kobuke et al. 2008), while 
humans with the same mutation have reduced a sarcoglycan expression (and have 
LGMD2D) (Vainzof et al. 1996). It may be that fukutin protein is similarly stabi-
lized in mice with FCMD-like insertions relative to humans, thus making the reduc-
tion in its protein levels less impact-full than would be the case in human muscle.

The secondary pathological or molecular consequence of dystroglycanopathy 
mutations is similarly becoming increasingly variable. For example, Reilich et al. 
(2006) have identified LGMD2I patients that have inclusion bodies in their mus-
cles, a finding not present in most muscular dystrophies, including CMDs. While 
such changes could be secondary, for example to muscle inflammation (which can 
be present in LGMD2I (Darin et al. 2007)), this may also reflect the fact that the 
pathological consequences of FKRP mutations have not yet be fully elucidated. 
Similarly, Topolalglu and colleagues have identified a patient with a POMGnT1 
mutation where the dominant presenting sign is severe autistic features (Haliloglu 
et al. 2004), a finding very different from most CMD patients. At the molecular 
level, the notion that a dystroglycan is normally expressed at the membrane is 
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questioned by the study of McNalley and colleagues where some patients with 
FKRP mutations have reduced expression of both a and b dystroglycan on the 
sarcolemmal membrane (MacLeod et al. 2007). Again, this is contrary to the origi-
nal published reports showing that glycosylation did not affect membrane expres-
sion of a and b dystroglycan protein (Michele et al. 2002).

Similar findings, including reduced expression also of sarcoglycans and sar-
cospans, have been found in FCMD muscles (Wakayama et al. 2008). Such studies 
add potentially new insights to the current molecular dogmas of how these diseases 
are caused. In a similar vein, Hewitt and colleagues has shown that IIH6, the anti-
body that recognizes the laminin-binding carbohydrate epitope of a dystroglycan, 
shows a very restricted pattern that does not coincide with LARGE but rather with 
LARGE2 in zebrafish (Moore et al. 2008). As such, LARGE2 may be important for 
stimulating the glycosylation-dependent laminin binding epitopes on a dystrogly-
can, consistent with its activity in cultured cells (Brockington et al. 2005; Fujimura 
et al. 2005; Grewal et al. 2005). Knock-down of LARGE2 in eliminates IIH6 stain-
ing, demonstrating a clear requirement of LARGE2 for dystroglycan glycosylation 
in fish (Moore et al. 2008). Because LARGE2, like LARGE, can stimulate a dys-
troglycan glycosylation when overexpressed, it may be an important new target for 
therapeutic intervention in the CMDs. Additionally, fish may be used to identify 
genetic suppressors of LARGE that inhibit its activity.

6.5  Dystroglycan and Cancer

The development and progression of many types of cancers involves changes in 
cell-extracellular matrix receptors that normally function in the maintenance of 
normal tissue cytoarchitecture and adhesion. In the context of cancer, the most 
studied extracellular matrix receptors are integrins, a and b heterodimeric protein 
receptors involved in regulating cell adhesion, migration, survival and proliferation. 
A growing body of evidence, however, now also implicates dystroglycan in tumor 
cell biology. In fact, disruption of the dystroglycan complex appears to be a wide-
spread phenomenon in cancers of varied cellular origins.

In vitro and in vivo studies have implicated dystroglycan in epithelial cell 
growth inhibition, cell polarity, tissue-specific gene expression, differentiation, 
basement membrane formation, and survival. These functions are all affected dur-
ing tumor progression and their disruption parallels the loss of dystroglycan in a 
growing list of epithelial tumors and tumor cell lines, including breast cancer 
(Cross et al. 2008) and oral squamous cell carcinoma (Jing et al. 2004). Loss of 
dystroglycan expression or altered dystroglycan glycosylation has also been dem-
onstrated in non-epithelial cancers, including pediatric rhabdomyosarcoma and 
neuroblastoma (Martin et al. 2007) and also adult glioma (Calogero et al. 2006). 
Exceptions to this list include pediatric liver cancers, osteosarcomas, yolk sack 
tumors, and Hodgkin’s lymphomas (Martin et al. 2007). Thus disruption of dystro-
glycan function appears in many, but not all, cancer types.
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Three major mechanisms have been proposed in cancer cells for disruption of 
dystroglycan function: proteolytic cleavage of the dystroglycan complex, altered 
glycosylation of a dystroglycan, and overall reduction or loss of dystroglycan 
expression (Losasso et al. 2000; Yamada et al. 2001; Singh et al. 2004; Martin et al. 
2007; Cross et al. 2008). The first two mechanisms converge on the fact that they 
disrupt the ability of a dystroglycan to tether the cell to the surrounding basement 
membrane, either by removing carbohydrates essential for its interactions with 
laminin or by inducing shedding of a dystroglycan from the membrane. The latter 
can involve cleavage of b dystroglycan, leading to loss of the extracellular domain 
of b dystroglycan, which also binds a dystroglycan, from the membrane (Yamada 
et al. 2001; Singh et al. 2004).

Cleavage of the extracellular domain of b dystroglycan coincides with the 
appearance of a 31 kDa protein fragment recognized by monoclonal antibodies to 
the extreme C-terminus of the b dystroglycan protein (in its cytoplasmic domain) 
(Yamada et al. 2001; Singh et al. 2004). This protein fragment has been detected in 
primary oral squamous cell carcinomas (Jing et al. 2004) and cervical cancers 
(Sgambato et al. 2006) as well as in mammary epithelial and prostate tumor cell 
lines (Losasso et al. 2000; Sgambato et al. 2007b). Of note, this 31 kDa b dystro-
glycan protein is not unique to tumors and has been detected in normal tissues 
(Yamada et al. 2001; Sgambato et al. 2006). The function of this 31 kDa b dystro-
glycan protein is unknown (Losasso et al. 2000; Yamada et al. 2001), but it appears 
to be more readily targeted for degradation than intact b dystroglycan since its 
levels are increased following treatment with proteasome inhibitors (Singh et al. 
2004). The identity of the protease mediating this cleavage of b dystroglycan 
remains controversial; Some studies have implicated matrix metalloproteases 
(MMPs) (Yamada et al. 2001; Singh et al. 2004) while others reported no (or par-
tial) effect of MMP inhibitors (Jing et al. 2004). Adding to the confusion, MMP 
inhibitors can restore association of a dystroglycan with the cell membrane in cells 
where only full-length 43 kDa b dystroglycan is present (Singh et al. 2004). This 
result indicates the existence of a second proteolytic mechanism for disruption of 
the dystroglycan complex by MMPs that does not involve direct cleavage of either 
a or b dystroglycan.

Many studies have reported a specific loss of a dystroglycan in primary tumors 
and cancer cell lines however these often have used the IIH6 or VIA4-1 monoclonal 
antibodies that recognize only natively glycosylated a dystroglycan. Thus the appar-
ent loss of a dystroglycan, as evidenced by loss of IIH6 or VIA4-1 binding, accom-
panied with preservation of b dystroglycan, could reflect hypoglycosylation of a 
dystroglycan or loss of a dystroglycan protein expression. Primary tumors where a 
dystroglycan appears to be affected include oral squamous cell carcinoma (Jing et al. 
2004), cervical cancer (Sgambato et al. 2006), renal carcinoma (Sgambato et al. 
2007a), glioma (Calogero et al. 2006), prostate cancer (Sgambato et al. 2007b), and 
pediatric rhabdomyosarcoma and neuroblastoma (Martin et al. 2007).

Some studies using antibodies to the core peptide of a dystroglycan have shown 
that this hypoglycosylated form of a dystroglycan remains associated with the cell 
membrane but is unable to bind laminin (Beltran-Valero de Bernabe et al. 2009), 
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and similar studies have also utilized antibodies to b dystroglycan, which is 
co-translated with a dystroglycan, to show maintained dystroglycan expression 
(Martin et al. 2007). Recent studies in tumor cell lines have attributed the 
hypoglycosylation of a dystroglycan to a selective loss of LARGE expression. 
Altered LARGE function is attributed to epigenetic modifications rather than 
mutations in the LARGE gene (Beltran-Valero de Bernabe et al. 2009). Finally, 
expression of b dystroglycan has been found to be reduced or absent in a rela-
tively large set of primary cancers. These include prostate cancer (15 out of 
15 tumors (Henry et al. 2001)), breast cancer (337/343 tumors (Cross et al. 2008); 
6/6 tumors (Henry et al. 2001)), esophageal adenocarcinomas (10/10 tumors (Cross 
et al. 2008)), colorectal adenocarcinomas (102/105 tumors (Cross et al. 2008)), and 
ureteric transitional cell carcinomas (55/55 tumors (Cross et al. 2008)). Expression 
of glycosylated a dystroglycan and core protein was not assayed in most of these 
tumors. It is interesting that the same b dystroglycan antibody was found to strongly 
stain most pediatric cancers (Martin et al. 2007), suggesting adult and pediatric 
cancers may be fundamentally different with regard to dystroglycan expression.

Cancer progression involves loss of the differentiated phenotype as well as 
uncontrolled cellular proliferation and, in more advanced stages, acquisition of a 
metastatic potential associated with altered cellular interactions with the extracel-
lular matrix. In normal mammary epithelial cells, the interaction of dystroglycan 
with laminin has been implicated in cellular differentiation, including the establish-
ment of cell polarity and expression of b-casein, a gene expressed during the pro-
cess of maturation (Weir et al. 2006). Down-regulation of dystroglycan expression 
by siRNA in non-tumorigenic mouse mammary epithelial cells leads to inhibition 
of lactogenic differentiation and apoptotic cell death. Given the known roles of 
dystroglycan in epithelial cell differentiation and maturation, it is important to 
determine whether the loss of dystroglycan is a secondary consequence of cellular 
transformation or a significant contributor to the malignant phenotype. Forced 
expression of dystroglycan in prostate and mammary epithelial tumor cell lines 
leads to inhibition of cell cycle progression, loss of anchorage-independent growth, 
and impairment in tumor formation in vivo (Sgambato et al. 2004, 2007b; Calogero 
et al. 2006). Interestingly, up-regulation of b dystroglycan, without restoration of 
glycosylated a dystroglycan, was sufficient to inhibit cell proliferation and signifi-
cantly reduce tumorigenicity in these cancer cell lines. However, expression of 
markers of cell polarity and differentiation did depend on expression of glycosy-
lated a dystroglycan capable of interacting with laminin (Muschler et al. 2002).

Taken together these observations suggest that dystroglycan performs a dual 
function in epithelial cells; the interaction of a dystroglycan with laminin is impor-
tant for cellular polarization and maturation while signaling through b dystroglycan 
regulates cellular proliferation. These experiments are particularly relevant in light 
of the suggested correlation for some primary tumors between loss of dystroglycan 
expression and tumor grade or stage (Sgambato et al. 2003, 2006, 2007a; Martin 
et al. 2007). For example, a study of oral squamous cell carcinomas found that 
while primary tumors consistently lost expression of a dystroglycan, tumors show-
ing metastasis lost both a and b dystroglycan expression (Jing et al. 2004). Thus, 
in these tumors, metastasis was accompanied by a complete loss of dystroglycan 
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protein. The possible correlation between dystroglycan expression and tumor grade 
or stage is tantalizing, however, the number of tumors used in many of these studies 
is often too small to support any clinical relevance. In addition, such results may be 
complicated by residual normal tissue within the samples and by the absence of 
generally available antibodies to the a dystroglycan core protein suitable for immu-
nohistochemistry. Nonetheless, these studies support an important role for dystro-
glycan as a tumor suppressor and warrant further exploration as to dystroglycan’s 
diagnostic and prognostic significance.

6.6  Dystroglycan and Signaling

Dystroglycan was first described as a core member of the dystrophin-associated 
glycoprotein (DAG) complex in skeletal muscle, connecting the cytoskeletal actin-
binding protein dystrophin, or its synaptic orthologue utrophin, through the mem-
brane to the extracellular matrix. The proteins liking to dystroglycan in the 
sarcolemmal membrane involve laminin and other ECM proteins in the basal lam-
ina surrounding the myofiber, sarcoglycans within the membrane, and cytoplasmic 
structural proteins at the Z-band including dystrophin, desmin, plectin, myospryn, 
syncoilin and filamin C, among others (Fig. 6.2). The linkage to the sarcomere is 
more than just structural since myospryn also anchors protein kinase A to the sar-
comere (Reynolds et al. 2008), which modulates contraction via phosphorylation of 
sarcomeric proteins including myosin and titin. In addition, the DAG complex is 
linked to proteins that control calcium dynamics, and calcium homeostasis is dys-
regulated in skeletal and cardiac muscles lacking dystrophin (Constantin et al. 
2006; Williams et al. 2006; Williams and Allen 2007).

In non-muscle cells, where contraction is not an issue, dystroglycan has also 
been shown to perform a structural role in determining cell shape, such as polarity 
of mammary epithelial cells (Weir et al. 2006), and in the formation of cellular 
extensions such as microvilli (Spence et al. 2004a) (Fig. 6.2). In these processes 
dystroglycan also regulates the actin cytoskeleton via its interactions with laminin. 
It is therefore not surprising that restoration of cellular polarity in mammary tumor 
cell lines depends on glycosylation of a dystroglycan allowing binding to laminin. 
In this respect it is interesting that utrophin, the intracellular ligand of dystroglycan 
in epithelial cells, is mutated in some breast cancers (21/61 cancers screened) (Li 
et al. 2007) and its expression is lost in breast and prostate cancers in a manner 
similar to a dystroglycan (Henry et al. 2001).

The intracellular interactions of b dystroglycan are modulated by two processes 
(Fig. 6.2): engagement of a dystroglycan by extracellular ligands and phosphoryla-
tion of the cytoplasmic region of b dystroglycan on tyrosines, particularly tyrosine 
892. In muscle cells, binding of laminin to a dystroglycan has been shown to induce 
activation of the PI3K/AKT and the Rac1/PAK1/JNK signaling pathways 
(Langenbach and Rando 2002; Oak et al. 2003). Experimental evidence includes 
biochemical studies of protein interactions via pull-downs (Oak et al. 2003; Xiong 
et al. 2009) as well as altered regulation of these signaling pathways in muscles of 
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mdx mice (Xiong et al. 2009), which lack dystrophin (Hoffman et al. 1987) and 
therefore have a destabilized DAG complex (Matsumura et al. 1992). The actions of 
dystroglycan on these signaling pathways appear to mediate muscle fiber survival 
and protection from atrophy (Chockalingam et al. 2002; Langenbach and Rando 
2002). In non-muscle cells, dystroglycan can also act as a scaffold for the ERK/MAP 
kinase signaling cascade (Fig. 6.2). Here, dystroglycan can negatively modulate the 
ERK/MAP kinase activity by physically segregating the cellular compartments, 
thereby preventing their interaction (Ferletta et al. 2003; Spence et al. 2004b). 
Furthermore, dystroglycan can inhibit the ERK/MEK pathway in pancreatic cells to 
promote differentiation (Jiang et al. 2001). As the PI3K/AKT and MEK/ERK signal-
ing cascades mediate cancer cell proliferation and survival (McCubrey et al. 2007), 
it is tempting to speculate that dystroglycan may have anti-proliferative and tumor 
suppressor activities that could be manipulated to alter tumor behavior or growth.

Phosphorylation of b dystroglycan has been reported to disengage dystroglycan 
from dystrophin and utrophin (James et al. 2000; Ilsley et al. 2001), rendering its 
cytoplasmic region available for interaction with SH2 domain containing proteins 
involved in signal transduction (Sotgia et al. 2001). Proteins that may bind to the 
cytoplasmic domain of b dystroglycan include Src, Fyn, Csk, Nck and Shc. The 
biological significance of these interactions is currently not known. One biological 
process linked to b dystroglycan phosphorylation involves the assembly of podo-
somes (Thompson et al. 2008). Podosomes are transient adhesion structures that 
mediate directional cellular migration and tissue invasion via protrusions called 
invadopodia. Podosomes are often formed on migrating tumor cells and their assem-
bly is regulated by Rho family GTPases and tyrosine kinases including src. 
Overexpression of dystroglycan leads to inhibition of podosome formation by 
sequestering proteins essential for podosome assembly. Overexpression of a mutant 
dystroglycan lacking a src phosphorylation site is unable to interfere with podosome 
formation, indicating that this process relies on b dystroglycan phosphorylation.

The current knowledge on the connections of dystroglycan to major signaling 
pathways as well as its interplay with integrins favor the notion of different biologi-
cal functions of dystroglycan depending on the cellular context (Fig. 6.2). In par-
ticular, dystroglycan appears to cooperate with integrins in muscle fibers where 
activation of the ERK/MEK and PI3K/AKT signaling pathways contributes to sur-
vival and prevent atrophy. In other cell types, dystroglycan appears to antagonize 
integrin’s functions by inhibiting cell proliferation, promoting differentiation, and 
interfering with the formation of cell-matrix adhesion structures important for cell 
migration and tissue invasion.

6.7  Conclusions

The glycosylation of dystroglycan is complex and contains an unusual sialylated 
O-linked mannose structure not commonly found in mammals. This unique pattern 
of glycosylation involves a series of genes, POMT1, POMT2, POMGnT1, FKTN, 
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FKRP, and LARGE, some of which encode specialized glycosyltransferases. 
Mutations affecting the activity of any one of the proteins encoded by these genes 
leads to a group of diseases commonly referred to as dystroglycanopathies. Clinical 
features of these disorders include progressive and usually severe muscular dystro-
phy accompanied in some cases by neurological involvement and/or cardiomyopa-
thy. While it is not clearly established whether dystroglycan is the only protein 
glycosylated by these specialized glycosyltransferases, tissue-specific dystroglycan 
knockout mice phenocopy many of the clinical pathological aspects associated with 
human disease. Thus, the disruption of dystroglycan function is likely a key deter-
minant of phenotype. a dystroglycan is a receptor for a subset of extracellular matrix 
proteins and most of these interactions depend on or are modulated by glycosylation. 
The effects of hypoglycosylation of a dystroglycan in disease states such as dystro-
glycanopathies and cancer is providing insights on how glycosylation modulates key 
aspects of cellular function. Dystroglycan has also been implicated in extracellular 
matrix assembly, protection of the plasma membrane from mechanical stress, and 
intracellular signaling via a variety of pathways regulating cell survival, prolifera-
tion, differentiation and migration. Resolving the composition and structure of the 
different carbohydrate moieties on a dystroglycan in normal and disease states is 
essential to gain a clearer and broader picture of how the structural and intracellular 
signaling functions of the dystroglycan complex are regulated.
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