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Description

The Bernoulli equation can be viewed as an energy law. It relates blood pressure (P) 
to flow velocity (v). Bernoulli’s law says that if we follow a blood particle along its 
path (dashed line in left Figure in the box) the following sum remains constant:
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where r is blood density, g acceleration of gravity, and z elevation with respect to 
a horizontal reference surface (i.e., ground level or heart level). The equation of 
Bernoulli says that as a fluid particle flows, the sum of the hydrostatic pressure, P, 
potential energy, r · g · z, and the dynamic pressure or kinetic energy, ½ · r · v2, 
remains constant. One can easily derive Bernoulli’s equation from Newton’s law: 
Pressure forces + gravitational forces = mass × acceleration.

Strictly speaking, the Bernoulli equation is applicable only if there are no viscous 
losses and blood flow is steady.

Physiological and Clinical Relevance

Bernoulli’s law tells us that when a fluid particle decelerates pressure increases. 
Conversely, when a fluid particle accelerates, such as when going through a severe 
stenosis, pressure drops.

Because of the direct relationship between pressure and velocity, the Bernoulli 
equation has found several interesting clinical applications, such as the Gorlin [1] 
equation for estimating the severity of an aortic or mitral valve stenosis. Let us 
consider flow through a stenosed valve, s, as shown in Fig. 3.1.

Applying Bernoulli’s Law
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Fig. 3.1  Pressures, P
v
 and P

s
, and 

velocities, v
v
, and v

s
, in ventricular 

lumen and valvular stenosis
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The flow Q is the same at both locations, thus A
v
 · v

v
 = A

s
 · v

s
 = Q, where A

v
 and A

s
 

are the cross-sectional areas of ventricle and valve, respectively. Substituting this 
into the Bernoulli’s equation we obtain:
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Since the cross-sectional area of the stenosed valve A
s
 is much smaller than the 

cross-sectional area of the ventricle (A
s
 << A

v
), the equation can be simplified to:

r r u∆ = ⋅ ⋅ = ⋅ ⋅2 2 21 1
2 2/ s sP Q A

When velocity in the stenosis, v
s
, is expressed in m/s the pressure drop (P, in 

mmHg) is approximately 4 · v
s
2.

Earlier this approach was used to estimate effective area [1], A
s
, of the valvular 

stenosis by measuring flow and pressure gradient (e.g., using a pressure wire).

=
∆2sA Q

P

r

When the pressure is in mmHg and flow in ml/s, this gives an effective area: A
s
 (in 

cm2) = 0.02 · Q/√DP. If pressure recovery downstream of the vena contracta (see 
below) is included then: A

s
 = 0.0225 · Q/√DP = Q/(44√DP), [2].

Calculation of Aortic Valvular Area

Doppler velocimetry applied to both the valvular annulus and the aorta allows for 
the direct calculation of valve area (Fig. 3.2). Since volume flow is the same, the 
product of velocity and area is also the same at both locations. Thus

= · /valve aorta aorta valveA A u u

Fig. 3.2  Aortic valve area, A
v
, 

can be derived from Doppler 
velocity measurements, in 
aorta and valve, v

ao
 and v

v
, and 

aortic area, A
ao



18 3 Bernoulli’s Equation

Jets and Vena Contracta

Jets and vena contracta (Fig. 3.3) are formed when blood flow emerges from an 
opening such as a valve, and play a role in valvular stenosis and regurgitation. The 
contraction coefficient, i.e., the area ratio of the jet (color) and the valve (dashed 
lines) depends on the shape of the valve. The coanda effect is the phenomenon that 
a jet along the atrial or ventricular wall appears smaller than a free jet. Estimation 
of valvular area from the jet area is therefore not straightforward. Computational 
flow dynamics, i.e., the numerical solution of the Navier-Stokes equations 
(Appendix  5), allows the calculation flow velocity in complex geometries and 
makes it possible to learn more about jets.

Kinetic Energy

Bernoulli’s equation pertains to conservation of energy. The term ½ · r · v2 is the 
kinetic energy. At peak systole (P = 130 mmHg), the blood flowing in the lower 
abdominal aorta with a velocity v = 1 m/s hits the wall of the apex of the iliac bifur-
cation. When it would come to a rest there, velocity is negligible (v = 0). On the basis 
of the Bernoulli equation this implies a pressure rise of ½ · r · v2 = 1/2 · 1,060 · 12 =  
530 N/m2 » 0.5 kPa. With 1 kPa = 7.5 mmHg, this pressure due to flow deceleration 
is thus about 3.5 mmHg.

The Hydrostatic Pressure

Most measurements are performed in the supine position. However, most activity 
takes place in the standing position. Figure 3.4 shows the pressures in the arterial and 
venous systems when a person is in the supine and the (motionless) standing position. 
It may be seen that the arterio-venous pressure gradients are not much affected. 

Fig. 3.3  Vena contracta effect is the result of the inability of the fluid to turn a sharp corner. The 
contraction coefficient A

jet
/A

valve
 depends on the anatomical shape
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Thus the driving forces for the flow are not much different in the two positions. 
The transmural pressures are strongly different and this mainly has an effect on the venous 
and capillary systems since the arterial system is rather stiff. The venous pooling of blood 
reduces cardiac filling and therefore has a, temporary, effect on the pump function of the 
heart. The capillary transmural pressure increase gives rise to edema formation.

When a person is lying in a reclined position the venous pressure can be esti-
mated in the veins of the neck and hand (Fig. 3.5). The height difference between 

Fig. 3.4  Effect of posture on arterial and venous pressures (estimates, in mmHg). Effect of level is 
given by the hydrostatic pressure r g h, with r blood density, g, acceleration of gravity, and h height 
difference z

1
 − z

2
. Dashed line indicates the heart level. Adapted from ref. [3], used by permission

Fig.  3.5  Estimation of venous pressure by collapse. The level above the heart where collapse 
takes place, h, is measured in cm. The central venous pressure is then h/1.33 mmHg. Adapted from 
ref. [3], used by permission
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the point of collapse of superficial veins and the heart is the venous pressure. If the 
height difference is z in cm, the venous pressure can be calculated as r · g · z = 1.05 · 980 · z 
dynes/cm2 or 1.05 · 980 · z/1,360 = z/1.33 mmHg, and thus for z = 10 cm the pressure 
equals ~7 mmHg.
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