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1 Introduction

A branch of an algebraic or analytic plane curve can be parametrized by expressing
both the variables as power series in a parameter; we call this the MT (DMaclaurin–
Taylor) expansion. In case of zero characteristic, by Hensel’s Lemma or by
Newton’s Theorem on fractional power series expansion, one of the variables
can be arranged to be a power of the parameter, and then certain divisibility proper-
ties of the exponents in the expansion of the other variable lead to the characteristic
terms whose importance was first pointed out by Smith [34] and Halphen [23] as
noted in Zariski’s famous book [35].
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In my 1967 paper [4] I showed that, as long as the variable which is a power of
the parameter is nontangential, the characteristic terms remain invariant. This I did
by first showing that if I flip the variables, then the characteristic terms change by
a definite inversion formula whose proof essentially depends on the binomial the-
orem. This will be reviewed in Sect. 4. In Sect. 5, I shall relate this to quadratic
transformations and establish the invariance of another type of characteristic term,
namely, the first exponent whose coefficient is transcendental over a certain subfield
of the ground field. While doing this, I shall reorganize the NT (D newtonian) ex-
pansion into the ED (D euclidean) expansion, which is a generalized form of the so
called HN (DHamburger-Noether) expansion. The reorganization will partly make
things work even in the mixed characteristic meromorphic case.

As basic references for this paper, the reader may profitably consult my Rambling
Article [5], Tata Notes [6], Engineering Book [9], and Algebra Book [12].

After fixing the notation in Sect. 2, a host of Remarks and Lemmas will be
collected in Sect. 3. These deal with Euclidean Sequences (3.1), Characteristic
Sequences (3.2), Binomial Lemmas (3.3) and (3.4), Special Subfields (3.5), Gap
Lemmas (3.6) and (3.7), Valuation Expansions (3.8) and (3.9), and Uniqueness of
Power Series Rings (3.10).

In Sect. 6, I shall show how the above mentioned first transcendental coefficient
is related to a generator of the residue field of the branch. Moreover, the generator
can be chosen so that the said coefficient is a polynomial in it. This leads to an
algebraic incarnation of the topological theory of dicritical divisors which I shall
describe. In Sect. 7, I shall relate field generators to dicritical divisors.

In Sect. 8, I shall preview Part II which will include various topics from algebraic
curve theory such as the conductor and genus formulas of Dedekind and Noether,
and the automorphism theorems of Jung and Kulk. In Part II, I shall also relate all
this to the Jacobian problem which conjectures that if the Jacobian of n polynomials
in n variables over a characteristic zero field equals a nonzero constant, then the
variables can be expressed as polynomials in the given polynomials; see [13–15].

As hinted in the Note following Lemma (3.4) of Sect. 3, Newton’s Binomial The-
orem For Fractional Exponents is the real heart of this paper. I was very lucky in
having studied this in the hand-written manuscript of my father’s book [1] two years
before it was published when I was 11 years old. Very relevant is the following com-
ment which he makes on page 235 of his book:

From
.aC b/n D an C � � �

we get the standard form
.1C x/n D 1C � � �

by writing 1 for a and x for b; the standard form is simpler and is more convenient to
use; all problems regarding binomial expansions can be solved by using the standard
form.

Coming to the idea of Inversion in the title of this paper, let me repeat from
page 194 of my Engineering Book [9] the following quotation from page 323 of the
chapter on Abel in Bell’s Men of Mathematics [17]:
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Instead of assuming that people are depraved because they drink to excess,
Galton inverted this hypothesis . . . For the moment we need note only that Galton,
like Abel, inverted his problem – turned it upside-down, and inside-out, back-end-
to and foremost-end-backward . . . ‘you must always invert,’ as Jacobi said when
asked the secret of his mathematical discoveries. He was recalling what Abel and
he had done.

On page 309 of the chapter on Abel, Bell says: One of his (DAbel’s) classics
in this direction is the first proof of the general binomial theorem, special cases of
which had been stated by Newton and Euler.

In other words, Bell disagrees with my viewpoint that Newton stated and proved
the most general form of the Binomial Theorem.

In this connection, let me repeat what I said on page 417 of my Ramblings Ar-
ticle [5]: Generally speaking, from Newton to Cauchy, mathematicians used power
series without regard to convergence. They were criticized for this and the matter
was rectified by the analysts Cauchy and Abel who developed a rigorous theory
of convergence. After another hundred years or so we were taught, say by Hensel,
Krull, and Chevalley, that it really didn’t matter, i.e., we may disregard convergence
after all! So the algebraist was freed from the shackles of analysis, or rather (as in
Vedanta philosophy) he was told that he always was free but had only forgotten it
temporarily.

Now one good way to study the rest of this paper is to INVERT it by first reading
the last section called EPILOGUE, which is sort of an extended Introduction or a
Birds Eye View of the entire paper. Another idea is to start with Sect. 4 and refer
to Sects. 2 and 3 as necessary. More precisely, start by reading definition .��/ of
a valuation sequence given at the beginning of Sect. 4. Our goal in Sect. 4 is to
show that the newtonian expansion of the first two terms of that sequence partly
determines the newtonian expansion of any two consecutive terms.

2 Notation

We shall mostly follow the notation and terminology of my Kyoto paper [7] and my
books [9,12]. In particular: N D the set of all nonnegative integers, NC D the set of
all positive integers, bR D R [ f˙1g, and R� D the set of all nonzero elements in
a ring R. The GCD of a set of integers S is the unique nonnegative generator of the
ideal SZ in the ring of integers Z generated by S ; if the set S contains a noninteger
then GCD.S/ D 1. A set of integers J is bounded from below means for some
integer e we have e � j for all j 2 J , and we write min J for the smallest element
of such a set, with the convention that if J is the empty set ; then min J D 1.

To fix some more notation: Recall that a quasilocal ring is a (commutative with
identity) ring R having a unique maximal ideal M.R/; we let H.R/ stand for its
residue field R=M.R/, and by HR W R ! R=M.R/ we denote the residue class
epimorphism; note that then H.R/ D HR.R/. By a coefficient set of R, we mean
a subset k of R with 0 2 k and 1 2 k such that HR maps k bijectively onto
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H.R/. By a coefficient field of R, we mean a coefficient set k of R such that k is
a subfield of R. For any subfield K of R, we note that HR maps K isomorphically
onto the subfield HR.K/ of H.R/ and we let trdegKH.R/ and ŒH.R/ W K� stand
for trdegHR.K/H.R/ and ŒH.R/ W HR.K/�, respectively. Given an element z in an
overring of R, we say that z is residually transcendental over K at R to mean that
z 2 R and HR.z/ is transcendental over HR.K/.

Recall that a field extension L=K is algebraic (resp: finite algebraic, transcen-
dental, simple transcendental, pure transcendental) means ŒK.w/ W K� < 1 for all
w 2 L (resp: ŒL W K� < 1, trdegKL > 0, trdegKL D 1 and L D K.t/ for
some t 2 L, trdegKL D � 2 N and L D K.t1; : : : ; t�/ for some t1; : : : ; t� in L).
Recall that an affine domain over a field is a domain which is a finitely generated
ring extension of that field. The characteristic of a field K is denoted by ch.K/.
The dimension dim.R/ of a ring R is the maximum length n of a chain of prime
ideals

P0 ¤ P1 ¤ � � � ¤ Pn

in R.
A noetherian quasilocal ring R is called a local ring. The smallest number of

generators of M.R/ is called the embedding dimension of R and is denoted by
emdim.R/. We always have emdim.R/ � dim.R/ and R is regular means equality
holds; a regular local ring is always a domain. A DVR is a one-dimensional regular
local domain; Alternatively, a DVR is the valuation ring of a real discrete valuation
in the following sense. A valuation is a map W W L! G [ f1g, where L is a field
and G is an ordered abelian group, such that for all u; u0 in L we have W.uu0/ D
W.u/ C W.u0/ and W.u C u0/ � min.W.u/; W.u0// and for any u in L we have:
W.u/ D 1, u D 0. We put GW D W.K�/ and RW D fu 2 K W W.u/ � 0g and
call these the value group and the valuation ring of W . Now RW is a ring with the
unique maximal ideal M.RW / D fu 2 K W W.u/ > 0g. Thus RW is a quasilocal
ring. If GW D Z then W is said to be real discrete.

A quasilocal ring V dominates a quasilocal ring S means S is a subring of V

with M.S/ � M.V /, and then: restrdegSV denotes the residual transcendence de-
gree of V over S , i.e., the transcendence degree of H.V / over HV .S/; we say
that V is residually rational over S to mean that H.V / D HV .S/; we say that
V is residually algebraic (resp: residually finite algebraic, residually transcendental,
residually simple transcendental, residually pure transcendental) over S to mean that
the field extension H.V /=HV .S/ is algebraic (resp: finite algebraic, transcendental,
simple transcendental, pure transcendental). Given any subring A of a quasilocal
ring V , upon letting S to be the localization of A at the prime ideal A \M.V /, we
put restrdegAV D restrdegSV and call it the residual transcendence degree of V

over A, and we say that V is residually rational (resp: residually algebraic, resid-
ually finite algebraic, residually transcendental, residually simple transcendental,
residually pure transcendental) over A to mean that V is residually rational (resp:
residually algebraic, residually finite algebraic, residually transcendental, residually
simple transcendental, residually pure transcendental) over S .
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For any local domain R and any z 2 R�, we define ordRz to be the largest
nonnegative integer e such that z 2 M.R/e; if z D 0 then we put ordRz D 1. If R

is regular then we extend this to the quotient field QF.R/ of R by putting

ordR.x=y/ D ordRx � ordRy

for all x; y in R�; if dim.R/ > 0 then this gives a real discrete valuation of QF.R/

whose valuation ring V dominates R and is residually pure transcendental over R of
residual transcendence degree dim.R/ � 1. See (Q35.5) on pages 559–577 of [12].

Given any subring K of a domain L, by the transcendence degree of L over K we
mean the transcendence degree of QF.L/ over QF.K/, and we continue to denote it
by trdegKL; note that by convention, if trdegKL D 1 then .trdegKL/ � 1 D 1.
Given any subring K of a field L, by D.L=K/ we denote the set of all valuation
rings V with QF.V / D L such that K � V , and by D.L=K/ we denote the set of
all V 2 D.L=K/ such that trdegHV .K/H.V / D .trdegKL/�1; we call these V the
valuation rings and prime divisors of L=K respectively. Note that if L is a finitely
generated field extension of a field K then every member of D.L=K/ is a DVR;
moreover if trdegKL D 1 then L is the only member of D.L=K/ which does not
belong to D.L=K/.

Given any affine domain A over a field K with QF.A/ D L, by I .A=K/ and
I.A=K/ we denote the set of all V 2 D.L=K/ and V 2 D.L=K/, respectively,
such that A 6� V ; we call these V the infinity valuation rings and infinity divisors
of A=K respectively. Note that all members of D.L=K/, and hence all members
of I.A=K/, are DVRs. Also note that if trdegKL D 1 then I.A=K/ is a nonempty
finite set, and for every V 2 D.L=K/ we have ŒH.V / W K� 2 NC. Let us recall
that DD = Dedekind Domain = normal noetherian domain of dimension at most
one. Note that the localizations of a DD at the various nonzero prime ideals in it are
DVRs whose intersection is the given DD. Note that a domain is a PID iff it is a
DD as well as a UFD. Also note that a domain is a PID iff it is a notherian UFD of
dimension at most one. Let us say that a domain is proper to mean that it is not a
field. In particular, a proper PID is a PID which is not a field.

Given any local domain R, by D.R/� we denote the set of all V 2 D.QF.R/=R/

such that V dominate R, and we let D.R/� denote the set of all V 2 D.R/� such
that restrdegRV D dim.R/ � 1; we call these V the valuation rings of QF.R/

dominating R and prime divisors of R respectively; note that then for every V 2
D.R/� we have restrdegRV � dim.R/, and for every V 2 D.R/� we have that V

is a DVR.
The habitat for most of the Remarks and Lemmas of the next section will be a

DVR V with its quotient field QF.V / D L, its completion bV , a coefficient field
K , and a uniformizing parameter T , i.e., an element of V of order 1. Note that bV
can be identified with the power series ring KŒŒT �� and L with a subfield of the
meromorphic series field K..T //. For any

y D y.T / D
X

i2Z

AiT
i 2 K..T // with Ai 2 K
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we define the T -support SuppT y.T / of y.T / to be the set of all i 2 Z with Ai ¤ 0,
and then we define the T -order and T -initial-coefficient of y.T / by putting

ordT y.T / D min SuppT y.T /

and
incoT y.T / D Ae where e D ordT y.T /

with the understanding that if y.T / D 0 then ordT y.T / D1 and incoT y.T / D 0;
note that in case of bV D KŒŒT �� we have ordV y D ordT y.T / for all y 2 L. By
a special subfield S of K..T // we mean either the null ring S D f0g � K or a
subfield S of K..T // such that: if a 2 S \K� and b 2 K� with bq D ap for some
p 2 Z and q 2 NC then b 2 S ; if S � K then we may call S a special subfield
of K . Observe that if k is any special subfield of K then k as well as k..T // are
special subfields of K..T //; by convention, if k D f0g then k..T // D f0g. We put

subT y.T / D

8

ˆ

ˆ

<

ˆ

ˆ

:

the smallest special subfield k of K

such that Ai 2 S for all i 2 Z

(with the note that k D f0g , y.T / D 0)

We call subT y.T / the T -subfield of y.T /.
As a weaker version of algebraic closedness, we say that a field K is root-closed

to mean that for every a 2 K and n 2 NC we have Xn�a D .X �a1/ : : : .X �an/

for some a1; : : : ; an in K . Both the notions of a special subfield and a root-closed
field are inspired by root extraction, i.e., the finding of square-roots, cube-roots, and
so on. The process of root extraction also inspires the concept of a quasiroot-closed
domain which we shall introduce in Remark (3.10).

3 Remarks and Lemmas

We start off by codifying the euclidean algorithm (Dmethod of long division) of
finding the GCD of a pair of integers.

Remark on Euclidean algorithm (3.1). By a euclidean sequence pair, we mean a
pair

�

.ej /0�j �l ; .pj /0�j <l

�

of sequences of integers ej 2 Z and pj 2 Z with
l 2 NC such that:

e1 ¤ 0 D p0 D 0 ¤ pj for 2 � j < l with pj > 0 for 3 � j < l; (1)

ej �1 D pj ej C ej C1 with 0 < ej C1 < jej j for 1 � j � l � 1; (2)

jej j > jel j D GCD.e0; e1/ D GCD.e0; : : : ; el/ for 1 � j � l � 1; (3)

l D 1, e0 � 0 mod .e1/: (4)
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The usual euclidean algorithm implies that any pair of integers .e0; e1/ with
e1 ¤ 0 can be embedded in a unique euclidean sequence pair

�

.ej /0�j �l ;

.pj /0�j <l

�

which we call the euclidean extension of .e0; e1/.
To apply this construction to orders of elements, let V be a DVR with

V � bV D the completion of V and QF.V / D L � bL D QF.bV /

and let K be a coefficient set of V .
By a .V; K/-protosequence we mean a sequence

.zj ; ej ; pj ; A�
l .�/; e�

l ; z�
l /�2Z;0�j �lC1

where
�

.ej /0�j �l ; .pj /0�j <l

�

is a euclidean sequence pair and

(

zj 2 L� with ordV zj D ej for 0 � j � l ,

and zj �1 D z
pj

j zj C1 for 1 � j � l � 1
(5)

and

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

zlC1 2 L with ordV zlC1 D elC1 and pl D plC1 2 Z [ f1g
and z�

l
2 L with ordV z�

l
D e�

l

such that zlC1 D 0, pl D1, z�
l
D 0

and zlC1 ¤ 0) .el�1=el/ � pl.el=jel j/ with 0 < elC1 < jel j

(6)

and
8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

A�
l
.�/ 2 K for all � 2 Z such that

A�
l
.�/

8

ˆ

ˆ

<

ˆ

ˆ

:

D 0 if � < .el�1=jel j/
¤ 0 if � D .el�1=jel j/
D 0 if � > pl.el=jel j/ and zlC1 ¤ 0

(7)

such that in bL we have

z�
l D zl�1 �

X

.el�1=jel j/��<1
A�

l .�/z�.jel j=el /

l
D
(

0 if zlC1 D 0

zpl

l
zlC1 if zlC1 ¤ 0:

(8)

Any pair of elements .z0; z1/ in L� with ordV z1 ¤ 0 can clearly be embedded in a
unique .V; K/-protosequence

.zj ; ej ; pj ; A�
l .�/; e�

l ; z�
l /�2Z;0�j �lC1

which we call the .V; K/-protoexpansion of .z0; z1/.
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To contrast the above expansion (8) with the usual expansions in terms of a
uniformizing parameter T of bV , we note that

for 0 � j � l C 1

there exist unique
8

ˆ

ˆ

<

ˆ

ˆ

:

Aj .�/ 2 K for all � 2 Z

with Aj .�/ D 0 for � < ej

and if ej 2 Z then Aj .ej / ¤ 0

(9)

such that
zj D zj .T / D

X

ej ��<1
Aj .�/T � : (10)

In case z0; z1 belong to V , we may visualize x D z1.T /; y D z0.T / as giving
a parametrization of a branch of a curve in the .x; y/-plane centered at the point
.z1.0/; z0.0//.

To continue our construction by a .V; K/-presequence we mean a sequence

.zij; eij; pij; A�
il.i/.�/; e�

il.i/; z�
il.i//�2Z;0�j �l.i/C1;0�i�� with � 2 N

where
.zij; eij; pij; A�

il.i/.�/; e�
il.i/; z�

il.i//�2Z;0�j �l.i/C1

is a .V; K/-protosequence for 0 � i � � with

.z�
il.i/; zil.i// D .ziC1;0; ziC1;1/ for 0 � i < � (11)

and
z�;l.�/C1 D 0: (12)

Now given any pair of elements .z0; z1/ in L� with ordV z1 ¤ 0, clearly there exists
a unique .V; K/-presequence

.zij; eij; pij; A�
il.i/.�/; e�

il.i/; z�
il.i//�2Z;0�j �l.i/C1;0�i��

with .z00; z01/ D .z0; z1/, and we call this the .V; K/-preexpansion of .z0; z1/.
In a moment we shall relate the above expansion with the characteristic terms

coming out of Newton’s fractional power series expansion. To do this we start off
with a string of definitions in the following Remark.

Remark on GCD dropping sequence (3.2). A GCD sequence is a system d consist-
ing of its length h.d/ 2 N and its sequence .di /0�i�h.d/C2 where d0 D 0, di 2 NC
for 1 � i � h.d/C 1, di 2 diC1Z for 0 � i � h.d/, and dh.d/C2 2 bR. A charseq
(D characteristic sequence) is a system m consisting of its length h.m/ 2 N and
its sequence .mi /0�i�h.m/C1 where m0 2 Z

�, mi 2 Z for 1 � i � h.m/, and
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mh.m/C1 2 bR. Given any charseq m with h D h.m/, its GCD sequence is the GCD
sequence d D d.m/ obtained by putting h.d/ D h, and di D GCD.m0; : : : ; mi�1/

for 0 � i � hC 2; its reciprocal sequence n.m/ is the sequence n D .ni /1�i�hC1

obtained by putting ni D d1=di for 1 � i � h C 1; its difference sequence is the
charseq q D q.m/ obtained by putting h.q/ D h with qi D mi for 0 � i � 1 and
qi D mi � mi�1 for 2 � i � h C 1; note that clearly d.q/ D d.m/. Given any
charseq q with h D h.q/ and d D d.q/, its inner product sequence is the charseq
s D s.q/ obtained by putting h.s/ D h with s0 D q0 and si D P

1�j �i qj dj for
1 � i � hC 1, and its normalized inner product sequence is the charseq r D r.q/

obtained by putting h.r/ D h with r0 D s0 and ri D si=di for 1 � i � hC 1. Note
that then d.r/ D d.q/.

Let us also note that if mhC1 D 1 then qhC1 D shC1 D rhC1 D dhC2 D 1
by the infinity convention according to which: for all c 2 R we have1˙ c D 1
and �1˙ c D �1, for all c 2 RC D the set of all positive real numbers we have
1c D 1=c D 1 and �1c D �1=c D �1, and we have1C1 D1.

It is worth observing that any one of the four sequences m; q.m/; s.q.m//;

r.q.m// determines the other three.
Given any charseq m, by the characteristic pair sequence of m we mean the

sequence .bmi .m/;bni .m//1�i�h.m/ defined by putting bmi .m/ D mi=diC1.m/ and
bni .m/ D di .m/=diC1.m/ for 1 � i � h.m/; we call bm.m/ D bmi .m/1�i�h.m/ the
derived numerator sequence of m, and we callbn.m/ D bni .m/1�i�h.m/ the derived
denominator sequence of m.

A charseq m is upper-unbounded means mh.m/C1 D 1.
For any set of integers J which is bounded from below and for any nonzero

integer l , we define the GCD-dropping sequence m D m.J; l/ of J relative to l by
saying that m is the unique upper-unbounded charseq with m0 D l and m1 D min J

such that for 2 � i � h.m/C 1 we have

mi D minfj 2 J W j is nondivisible by GCD.m0; : : : ; mi�1/g:

If F.X; Y / is a monic polynomial of positive degree N in Y with coefficients in
the univariate meromorphic series field K..X// over an algebraically closed field K

with N ¤ 0 mod .ch.K// such that F is a power of a monic irreducible member
of K..X//ŒY �, then by Newton’s Theorem on fractional meromorphic series expan-
sion, we can factor

F.T N ; Y / D
Y

1�i�N

ŒY � �i .T /� with �i .T / 2 K..T //:

Clearly SuppT �i .T / is independent of i ; we denote this common support by
Supt.F / and call it the newtonian support of F . We define the newtonian charseq
m.F; l/ of F relative to a nonzero integer l by putting m.F; l/ D m.Supt.F /; l/.

In [4], we had assumed F.X; Y / 2 KŒŒX��ŒY � and l D N . In Sect. 4, we shall
now reprove the assertions of [4] for the somewhat more general case of F.X; Y / 2
K..X//ŒY � and l D ˙N .
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First binomial lemma (3.3). Let us consider the univariate meromorphic series field
K..T // over a field K . Let y 2 K..T //� and z 2 K..T // be such that

ordT y D v < w D ordT z

with
incoT y D � and incoT z D �:

Then for any n 2 Z we have

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.y C z/n D y0 C z0 where y0 D yn 2 K..T //� and z0 2 K..T //

with incoT y0 D �0 and incoT z0 D � 0

are such that subT y0 � subT y

with ordT y0 D nv D v0 < w0 D .n � 1/vC w � ordT z0

and w0 � v0 D w � v with �0 D �n

and if n 6� 0 mod .ch.K// then ordT z0 D w0 with � 0 D n��n�1.

(�)

Moreover, assuming n 6� 0 mod .ch.K//, we have that:

(

if ordT .y � �T v/ D w

then ordT .y0 � �0T v0

/ D w0 (1�)

whereas

(

if y 2 K..T d // and w=d 62 Z for some d 2 NC
then for that d we have y0 2 K..T d // and w0=d 62 Z

(2�)

while
(

if y 2 k..T // and � 62 k for some subfield k of K

then for that k we have y0 2 k..T // and incoT z0 62 k.
(3�)

Proof. (1*)–(3*) follow from .�/. So it suffices to prove .�/. If n 2 N then we are
done because by the binomial theorem we have

z0 D
X

1�i�n

 

n

i

!

ziyn�i D nzyn�1 C � � � C zn:

If �n 2 NC then we are done by applying the geometric series identity to the
previous case. In greater detail, if �n 2 NC then by the previous case we can write

.y C z/�n D y C z where y D y�n 2 K..T //� and z 2 K..T //

with
incoT y D � and incoT z D �
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are such that subT y � subT y with

ordT y D �nv D v < w D .�n � 1/vC w � ordT z

and
w � v D w � v with � D ��n

and

if n 6� 0 mod .ch.K// then ordT z D w with � D �n���n�1.

By the geometric series identity .1CX/�1 D 1 � X CX2 � : : : we get

.y C z/�1 D y �1.1C .z=y// �1 D y �1 � z y �2 C z2y �3 � : : :

and

y �1 D ���1T �v
� �

1 � .y � �1T �v � 1/C .y � �1T �v � 1/2 � : : :
�

with subT y�1 � subT y, and therefore the desired result follows by taking

y0 D y �1 and z0 D �z y �2 C z2y �3 � : : : :

Second Binomial Lemma (3.4). Let K be a root-closed field and let us consider the
univariate meromorphic series field K..T //. Let y 2 K..T //� and z 2 K..T // be
such that

ordT y D v < w D ordT z

with
incoT y D � and incoT z D �:

Let n D p=q where p and q are integers with q > 0 and GCD.p; q/ D 1 such that
q 6� 0 mod .ch.K// and pv � 0 mod .q/. Then mantrawise (= briefly sugges-
tivewise) we have .�/ of (3.3), i.e., bhashyawise (D precisely detailwise) we have
that:
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ˆ
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:

there exists y0 2 K..T //� with .y0/q D yp and subT y0 � subT y

and for any such y0 there exists z0 2 K..T //� such that

upon letting x D y0 C z0 with incoT y0 D �0 and incoT z0 D � 0

we have xq D .y C z/p

with ordT y0 D nv D v0 < w0 D .n � 1/vC w � ordT z0

and w0 � v0 D w � v with .�0/q D �p

and if p 6� 0 mod .ch.K// then ordT z0 D w0 with q� 0 D p��0=�.

(�)

Moreover, assuming p 6� 0 mod .ch.K//, we have (1*)–(3*) of (3.3).
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Proof. (1*)–(3*) follow from .�/. So it suffices to prove .�/. Since the field K is
root-closed, we have �q D �p for some � 2 K . Applying Hensel’s Lemma to
Y q � .1CX/p we get an identity in KŒŒX�� saying that

.1C b1X C b2X2 C : : : /q D .1CX/p with b1; b2; : : : in K: (1)

Differentiating both sides with respect to X and then putting X D 0 we get

qb1 D p: (2)

Substituting X D y��1T �v � 1 in (1) and letting

y0 D �
�

1C b1.y��1T �v � 1/C b2.y��1T �v � 1/2 C : : :
�

T .pv/=q

we get y0 2 K..T //� with .y0/q D yp and subT y0 � subT y.
Now let y0 be any element of K..T //� such that

.y0/q D yp and subT y0 � subT y: (3)

Then letting incoT y0 D �0 we clearly get

.�0/q D �p : (4)

For any x 2 K..T // we have

xq D .y C z/p , .x=y0/q D .1C .z=y//p

which follows by dividing the LHS by (3), and hence substituting X D z=y in (1)
and letting

x D y0.1C b1.z=y/C b2.z=y/2 C : : : /

we get x 2 K..T //� such that xq D .y C z/p and

x � y0 D y0.b1.z=y/C b2.z=y/2 C : : : /: (5)

Now letting z0 D x � y0 and incoT z0 D � 0, by (3)–(5) we see that z0 2 K..T // and
x D y0 C z0 with

ordT y0 D nv D v0 < w0 D .n � 1/vC w � ordT z0 and w0 � v0 D w � v

and

if p 6� 0 mod .ch.K// then ordT z0 D w0 with q� 0 D p��0=�.
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Note. Lemma (3.3) was not used in Lemma (3.4). So the former was reproved in
the latter. The former used the Binomial Theorem for integer exponents, while the
latter used the Binomial Theorem for fractional exponents in disguise. Removing the
disguise, Mantrawise, Lemma (3.4) follows by saying that by the Binomial Theorem
for fractional exponents we have

.y C z/n D yn
�

1C n.y=z/C .n.n � 1/=2/.y=z/2 C : : :
�

and so we are done by taking y0 D yn and z0 D .y C z/n � y0; but care has to
be taken when ch.K/ ¤ 0. In spite of what was said in the Introduction, we shall
not directly use (3.4), i.e., we shall not explicitly use the Binomial Theorem for
fractional exponents, but really it is lurking everywhere!!

Remark on special subfields (3.5). The essence of the above two Binomial Lemmas
(3.3) and (3.4) is the Invariance of the Gap, i.e., the equation w0� v0 D w� v, which
underlies all the claims of [4] as well as their generalization in the present paper.

Now consider the univariate meromorphic series field K..T // over a field K .
The two cases (2*) and (3*) of (3.3) and (3.4) can be unified by introducing the

notion of the .T; S/-gap v of y.T / D T e
P

0�i<1 Ai T
i with Ai 2 K and A0 ¤ 0,

where S is any subfield of K..T //, by putting v D minfi 2 N W Ai T
i 62 Sg, in

case (2*) we take S D K..T d // and in case (3*) we take S D k..T //. To include
the ordinary gaps as in case (1*), like the gap of length 4 between T and T 5 in
T C T 5 C T 6 C : : : , we have to allow S to be the null ring, which is not a subfield
of K..T // under the usual convention. This is why we introduced the notion of a
special subfield.

More generally, we define a quasispecial subfield S of K..T // to be either the
nullring S D f0g � K..T // or a subfield S of K..T //; if S � K then we may
call S a quasispecial subfield of K . Now let S be a quasispecial subfield of K..T //.
Given any y D y.T / 2 K..T //� let

y.T / D T e
X

0�i<1
Ai T

i with ordTy.T / D e and Ai 2 K with A0 ¤ 0

and

v D
(

minfi 2 NC W AiT
i 62 Sg if S D f0g

minfi 2 N W AiT
i 62 Sg if S ¤ f0g

with the convention that the minimum of the empty set of integers is1. We define
the .T; S/-gap and the .T; S/-coefficient of y.T / by putting

gap.T;S/y.T / D v and coef.T;S/y.T / D
(

Av if v ¤ 1
0 if v D 1:
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We are particularly interested in the following cases .1]/, .2]/, .3]/ of a quasispecial
subfield S of K..T //; note that in each of these cases S is a special subfield of
K..T //.

(

S D f0g;
note that then v D ordT .y.T /T �e � A0/:

(1])

(

S D K..T d // where d 2 NC;

note that then v D min.SuppT .y.T /T �e �A0/ n dZ/:
(2])

8
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ˆ

:

S D k..T // where k is a nonnull special subfield of K;

note that then v D
(

minfi 2 NC W Ai 62 kg if A0 2 k

0 if A0 62 k:

(3])

To prepare for proving the next Lemma (3.6), let S be a quasispecial subfield of
K..T // and let y.T /; z.T /; x.T / in KŒŒT ��� be such that

y.T / D T
X

0�i<1
Ai T

i with ordT y.T / D 1 and gap.T;S/y.T / D v

and

z.T / D T
X

0�j <1
Bj T j with ordT z.T / D 1 and gap.T;S/z.T / D w

and

x.T / D y.z.T // D T
X

0�l<1
ClT

l with ordT x.T / D 1 and gap.T;S/x.T / D 	

where Ai ; Bj ; Cl are in K with

A0 ¤ 0 ¤ B0 ¤ 0 ¤ C0

and where we note that now e D 1. For 0 � l <1 we clearly have

ClT
l D

X

0�i�l

0

B

@AiT
i 	 the term of T -degree l � i in

0

@

X

0�j �l�i

Bj T j

1

A

iC1
1

C

A

and hence

ClT
l D

(

A0Bl T
l C B0AlT

l CP0<i<l AiT
iDil if l ¤ 0

A0B0 if l D 0
(I)
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with
Dil D

X�
M�

Y

0�j �l�i

.Bj T j /�j (II)

where
P� indicates summation over all .
0; : : : ; 
l�i / 2 N

l�iC1 for which

X

0�j �l�i

j
j D l � i (III)

and M� is the multinomial coefficient

M� D .i C 1/Š


0Š : : : 
l�i Š
:

We shall now prove the following assertions:
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:

(1) If 0 < i < l <1 with l � min.v; w/ then Ai T
iDil 2 S .

(2) 	 � min.v; w/.

(3) If v < w then 	 D v and CvT
v � B0AvT

v 2 S .

(4) If w < v then 	 D w and CwT w � A0BwT w 2 S .

(5) C0 � A0B0 D 0 2 S .

(6) If 0 ¤ v D w ¤1 then CvT
v � .A0BvT

v C B0AvT
v/ 2 S .

(7) If x.T / D T then v D w and A0B0 D 1.

(8) If x.T / D T and 0 ¤ v D w ¤1 then A0BvT
v C B0AvT

v 2 S .

(IV)

To prove (1) let 0 < i < l < 1 with l � min.v; w/. Since 0 < i < l � v, we
get Ai T

i 2 S . If S D f0g then Ai T
i D 0 and hence Ai T

iDil D 0 2 S . If S ¤ f0g
then 1 2 S and because i < l � w, every term in each product involved in (II)
belongs to S , and hence again AiT

iDil 2 S .
To prove (2) let 0 � l < min.v; w/. Then A0BlT

l 2 S and B0Al T
l 2 S , and

hence by (I) and (1) we get ClT
l 2 S . It follows that 	 � min.v; w/.

To prove (3) let v < w. If v ¤ 0 then A0BvT
v 2 S and hence by (I) and (1) we

get CvT
v � B0AvT

v 2 S ; but B0 2 S� with AvT
v 62 S and therefore CvT

v 62 S ;
consequently by (2) we see that 	 D v. If v D 0 then A0 62 S with B0 2 S and
hence by (I) we get C0 � B0A0 D 0 2 S with C0 62 S and therefore 	 D 0 D v.

To prove (4) let w < v. If w ¤ 0 then B0AwT w 2 S and hence by (I) and (1) we
get CwT w �A0BwT w 2 S ; but A0 2 S� with BwT w 62 S and therefore CwT w 62 S ;
consequently by (2) we see that 	 D w. If w D 0 then B0 62 S with A0 2 S and
hence by (I) we get C0 �A0B0 D 0 2 S with C0 62 S and therefore 	 D 0 D w.

By (I) we obviously get (5). By (I) and (1) we see that if 0 ¤ v D w ¤ 1 then
CvT

v � .A0BvT
v C B0AvT

v/ 2 S , which proves (6).
If x.T / D T then 	 D 1 with C0 D 1, and hence by (3) and (4) we get v D w

and by (5) we get A0B0 D 1, which proves (7).
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If x.T / D T and 0 ¤ v D w ¤ 1 then 	 D 1, and hence by (6) we get
A0BvT

v C B0AvT
v 2 S , which proves (8).

Gap Lemma (3.6). Consider the univariate meromorphic series field K..T // over a
root-closed field K . Let y.T / and z.T / in K..T //� with

ordT y.T / D e ¤ 0 ¤ � D ordT z.T /

be such that

y.T / D T e
X

0�i<1
AiT

i and z.T / D T �
X

0�j <1
Bj T j

where
Ai and Bj are in K with A0 ¤ 0 ¤ B0.

Assume that e 6� 0 mod .ch.K// and � 6� 0 mod .ch.K//. Then by Hensel’s
Lemma, there existby.T / andbz.T / in KŒŒT ��� with

ordTby.T / D 1 D ordTbz.T /

such that
by.T /e D y.T / and bz.T /� D z.T /

and
by.T / D T

X

0�i<1
bAi T

i and bz.T / D T
X

0�j <1
bBj T j

where

bAi and bBj are in K with bAe
0 D A0 ¤ 0 ¤ B0 D bB�

0.

Given any special subfield S of K..T // let

gap.T;S/y.T / D v with gap.T;S/by.T / Dbv

and
gap.T;S/z.T / D w with gap.T;S/bz.T / D bw:

Assume that
v ¤ 0 ¤ w:

Then
v Dbv with coef.T;S/y.T / D �coef.T;S/by.T /

�

ebAe�1
0 (1)

and
w D bw with coef.T;S/z.T / D �coef.T;S/bz.T /

�

�bB��1
0 : (2)
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Moreover,
if by.bz.T // D T then v D w and bA0

bB0 D 1 (3)

and
(

if by.bz.T // D T and 1 ¤ v D w ¤1 then
�

coef.T;S/z.T /
�

ebAe
0T v C �coef.T;S/y.T /

�

�bB�
0T v 2 S:

(4)

Proof. (1) follows from (3.3) by noting thatbv > 0 and taking

.n; v; w; y; z/ D
0

@e; 1;bvC 1; T
X

0�i<bv

bAiT
i ; T

X

bv�i<1
bAiT

i

1

A

and (2) follows from (3.3) by noting thatbw > 0 and taking

.n; v; w; y; z/ D
0

@�; 1;bwC 1; T
X

0�i<bw

bB i T
i ; T

X

bw�i<1
bB i T

i

1

A :

By (3.5)(IV)(7), we see that

if by.bz.T // D T then bv D bw and bA0
bB0 D 1 (0)

and by (3.5)(IV)(8) we see that

(

if by.bz.T // D T and bv D bw ¤ 1 then
�

coef.T;S/bz.T /
�

bA0Tbv C �coef.T;S/by.T /
�

bB0Tbv 2 S:
(00)

Now, in view of (1) and (2), by .0/ we get (3), and by .00/ we get (4).

Remark on gap lemma (3.7). We shall now paraphrase (3.6) by using the language
of DVRs.

So let V be a DVR with

V � bV D the completion of V and QF.V / D L � bL D QF.bV /.

Let T be a uniformizing parameter of bV . Assume that ch.L/ D ch.H.V // and let
K be a coefficient field of bV . Note that then bV D K..T //. Assume that H.V /, and
hence K , is root-closed.

Given any y D y.T / 2 K..T //� and z D z.T / 2 K..T //� let

ordT y D e with incoT y D A and ordT z D � with incoT z D B .

Since K is root-closed, we can choose

bA 2 K� with .bA/e D A and bB 2 K� with .bB/� D B .
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Assuming e 6� 0 mod .ch.K//, with the chosen bA, by Hensel’s Lemma there
exists a uniqueby Dby.T / 2 K..T //� such that

.by/e D y and ordTby D 1 with incoTby D bA.

Clearly �.T / 7! �.by.T // gives an automorphism K..T // ! K..T // and hence
there exists a unique Qz D Qz.T / 2 K..T //� such that

Qz.by.T // D z.T /:

We call Qz D Qz.T / the .V; K; T /-expansion of z in terms of y relative to bA, or briefly
we call Qz D Qz.T / the .V; K; T /-expansion of .z; y;bA/. Concerning the dependence
of this expansion on bA, let us note that
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:

if bA� is any other member of K with .bA�/e D A

then ! D bA�=bA is an e-th root of 1 in K

and for the .V; K; T /-expansion Qz � of .z; y;bA�/

we have Qz �.T / D Qz.!T /

and hence SuppT Qz �.T / D SuppT Qz.T /.

([)

Assuming e 6� 0 mod .ch.K// but without assuming any condition on �,
with the chosen bA, in view of .[/ we may put

m.z; y; V; K/ D m.SuppT Qz.T /; e/

(because SuppT Qz.T / is independent of bA) and call it the .V; K/-charseq of .z; y/.
Also assuming � 6� 0 mod .ch.K//, with the chosen bB , by Hensel’s Lemma

there exists a uniquebz Dbz.T / 2 K..T //� such that

.bz /� D z and ordTbz D 1 with incoTbz D bB .

Clearly �.T / 7! �.bz.T // gives an automorphism K..T // ! K..T // and hence
there exists a uniqueey Dey.T / 2 K..T //� such that

ey.bz.T // D y.T /:

Note that nowey D ey.T / is the .V; K; T /-expansion of .y; z;bB/.
Again clearly there exist unique z�.T / and y�.T / in K..T // such that

z�.by.T // Dbz.T / and y�.bz.T // D by.T /: (�)
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Substituting the first equation of .�/ in its second, we get

y�.z�.by.T /// Dby.T /

and hence

y�.z�.T // D T (1)

Raising the second equation of .�/ to the e-th power and the first to the �-th power
we get

y�.T /e Dey.T / and z�.T /� D Qz.T /: (2)

By the first equation of .�/ we get

ordT z�.T / D 1 with incoT z�.T / D bB=bA (3)

and by the second equation of .�/ we get

ordT y�.T / D 1 with incoT y�.T / D bA=bB. (4)

Now we claim the FIRST INVERSION THEOREM which says that:
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:

Given any special subfield S of K..T //,

upon letting gap.T;S/ey.T / D v and gap.T;S/Qz.T / D w,

we have the following.

(1*) If v ¤ 0 ¤ w then v D w.

.2�/

(

If1 ¤ v ¤ 0 ¤ w ¤ 1 then
�

coef.T;S/Qz.T /
�

ebAeC�T v C �coef.T;S/ey.T /
�

�bB�CeT v 2 S:

(3*) If S D K..T d // for some d 2 NC then 0 ¤ v D w ¤ 0.

(I)

Namely, in view of (1)–(4), by (3.6)(3) and (3.6)(4) we obtain (1*) and (2*)
respectively. If S ¤ f0g then by definition v ¤ 0 ¤ w and hence by (1*) we
get (3*).

Next we claim the SECOND INVERSION THEOREM which says that:
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:

Upon letting m D m.z; y; V; K/ and m0 D m.y; z; V; K/

we have 0 ¤ h.m/ D h.m0/ ¤ 0

and e D m0 D m0
1 with � D m0

0 D m1

and m� � � D m0
� � e for 2 �  � h.m/C 1

and d1.m/ D jej with d1.m0/ D j�j
and d2.m/ D d2.m0/ D GCD.e; �/

and d�.m/ D d�.m0/ for 2 �  � h.m/C 2.

(II)
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Namely, everything is obvious except the assertion h.m/ D h.m0/ together with the
assertions that for 2 �  � h.m/C 1 we have

m� � � D m0
� � e and d�C1.m/ D d�C1.m0/:

Clearly the assertions about h.m/ and d�C1.m/ follow from the assertion about
m� � �. By induction on  let us prove that for 1 �  � h.m/C 1 we have

m� � � D m0
� � e:

For  D 1 this is line 3 of (II). To go from  to C 1 can be achieved by taking

d D d�C1.m/

in (I)(3*). This completes the proof of (II).

Remark on valuation protoexpansions (3.8). To merge Remarks (3.1), (3.2), and
(3.7), let V be a DVR with

V � bV D the completion of V and QF.V / D L � bL D QF.bV /.

Let T be a uniformizing parameter of bV . Assume that ch.L/ D ch.H.V // D 0 and
let K be a coefficient field of bV . Note that then bV D K..T //. Assume that H.V /,
and hence K , is root-closed.

Given any pair of elements .z0; z1/ in L� with ordV z1 ¤ 0, by (3.1) and (3.7)
there exists a system

.zj ; ej ; pj ; A�
l .�/; e�

l ; z�
l ; Aj .�/;bAj ; QAj .�/; m.j /; Qzj /�2Z;0�j �lC1

where
.zj ; ej ; pj ; A�

l .�/; e�
l ; z�

l /�2Z;0�j �lC1

is the .V; K/-protoexpansion of .z0; z1/ as described in (3.1)(1)–(3.1)(8) with Aj .�/

as in (3.1)(9) and (3.1)(10), and

for 0 � j � l C 1

we have
8
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:

bAj 2 K� with .bAj /ej D incoT zj if j ¤ l C 1,
bAj 2 K� with .bAj /ej D incoT zj if j D l C 1 and zlC1 ¤ 0,
bAj D 0 2 K if j D l C 1 and zlC1 D 0,

(1)
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and

m.j / D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

m.zj ; zj C1; V; K/ if l ¤ j ¤ l C 1

m.zj ; zj C1; V; K/ if j D l and zlC1 ¤ 0

m.z�
j �1; zj �1; V; K/ if j D l C 1 and zlC1 ¤ 0

m.;; 1/ if l � j � l C 1 and zlC1 D 0

(2)

and
Qzj D Qzj .T / D

X

�2Z

QAj .�/T � with QAj .�/ 2 K (3)

is the .V; K; T /-expansion of .zj ; zj C1;bAj C1/ in case l ¤ j ¤ l C 1, and in the
remaining cases:

(

if j D l and zlC1 ¤ 0

then (3) is the .V; K; T /-expansion of .zj ; zj C1;bAj C1/
(4)

and
(

if j D l C 1 and zlC1 ¤ 0

then (3) is the .V; K; T /-expansion of .z�
j �1; zj �1;bAj �1/

(5)

and
(

if l � j � l C 1 and zlC1 D 0 then in (3) we take

Qzj D Qzj .T / D 0 D QAj .�/ for all � 2 Z;
(6)

we call such a system a mixed .V; K; T /-protoexpansion of .z0; z1/. It follows that

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

if zlC1 ¤ 0 then e�
l
D plel C elC1 D m

.l�1/
2

and QAl�1.�/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if e�
l

> � 6� 0 mod .el/

A�
l
.�=jel j/ if e�

l
> � � 0 mod .el/

QAlC1.� � plel/ if e�
l
� �I

(7)

In view of (3.1)(5),
for 0 � j � l � 2

upon letting

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

MAj C2.�/ 2 K for all � 2 Z such that
MAj C2.�/ D 0 for � < ej C2 and MAj C2.ej C2/ ¤ 0

and Mzj C2 D Mzj C2.T / DPej C2��<1 MAj C2.�/T �

is the .V; K; T /-expansion of .zj C2; zj C1;bAj C1/

(1j )

we have
MAj C2.� C ej C2/ D QAj .� C ej / for all � 2 Z (2j )



114 S.S. Abhyankar

and hence
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

upon letting Mm.j C2/ D m.zj C2; zj C1; V; K/

we have 0 ¤ h.m.j // D h. Mm.j C2// ¤ 0

and ej C1 D m
.j /
0 D Mm.j C2/

0 and ej D m
.j /
1 with ej C2 D Mm.j C2/

1

and m
.j /
� � ej D Mm.j C2/

� � ej C2 for 1 �  � h.m.j //C 1

and d1.m.j // D d1. Mm.j C2// D jej C1j
and d2.m.j // D d2. Mm.j C2// D GCD.ej ; ej C1/ D GCD.ej C1; ej C2/

and d�.m.j // D d�. Mm.j C2// for 1 �  � h.m.j //C 2.

(3j )

and, in view of .3j /, by taking .z; y/ D .zj C1; zj C2/ in (2.7)(II) we see that

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 ¤ h.m.j // D h.m.j C1// ¤ 0

and ej C1 D m
.j /
0 D m

.j C1/
1 and ej D m

.j /
1 with ej C2 D m

.j C1/
0

and m
.j /
� � ej D m

.j C1/
� � ej C1 for 2 �  � h.m.j //C 1

and d1.m.j // D jej C1j with d1.m.j C1// D jej C2j
and d2.m.j // D d2.m.j C1// D GCD.ej ; ej C1/ D GCD.ej C1; ej C2/

and d�.m.j // D d�.m.j C1// for 2 �  � h.m.j //C 2.

(4j )

Now .40/C � � � C .4j �1/)
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

for 0 � j � l � 1 we have 0 ¤ h.m.0// D h.m.j // ¤ 0

and e1 D m
.0/
0 and e0 D m

.0/
1 with ej C1 D m

.j /
0 and ej D m

.j /
1

and m
.0/
� � e0 D m

.j /
� � ej for 2 �  � h.m.0//C 1

and d1.m.0// D je1j with d1.m.j // D jej C1j
and d2.m.0// D d2.m.j // D GCD.e0; e1/ D GCD.ej ; ej C1/

and d�.m.0// D d�.m.j // for 2 �  � h.m.0//C 2.

(I)

Moreover, in view of (2)–(7) we see that

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

if zlC1 ¤ 0 then h.m.lC1// D h.m.l�1// � 1

and el D m
.lC1/
0 D m

.l�1/
0

and plel C elC1 D m
.lC1/
1 D m

.l�1/
2 with el�1 D m

.l�1/
1

and m
.lC1/
� D m

.l�1/
�C1 for 2 �  � h.m.lC1//C 1

and d1.m.lC1// D jel j
and d1.m.l�1// D jel j D d2.m.l�1// D GCD.el ; el�1/

and d2.m.lC1// D d3.m.l�1// D GCD.el ; elC1/

and d�.m.lC1// D d�C1.m.l�1// for 2 �  � h.m.lC1//C 2.

(II)
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Preamble for next lemma. Having dealt with case .3:5/.2]/, turning to case
.3:5/.3]/, let

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

S D k..T // where k is a nonnull special subfield of K ,
0 D an unspecified member of k�
(0 is called Abhyankar’s nonzero and may be read as �),
0 0 D an unspecified member of k

(0 0 is called Abhyankar’s constant and may be read as � 0),
gap.T;S/Qzj .T / D vj with coef.T;S/Qzj .T / D NAj for 0 � j � l

with the understanding that if zlC1 D 0 then vl D1 and NAl D 0,

(8)

and let

z�

l
D

X

.el�1=jel j/��<.vl�1Cel�1/jel j�1

A�
l .�/z�.jel j=el /

l
2 KŒzl ; z�1

l � (9)

and
z[
l D zl�1 � z�

l
2 L with ordV z[

l D e[
l (10)

and let
z[
l D z[

l .T / D
X

�2Z

A[
l .�/T � with A[

l .�/ 2 K (11)

be the usual expansion in K..T // and

8

ˆ

ˆ

<

ˆ

ˆ

:

if z[
l
¤ 0

then let Qz[
l
D Qz[

l
.T / be the .V; K; T /-expansion of .z[

l
; zl ;bAl/

and let gap.T;S/Qz[
l
.T / D v[

l
with coef.T;S/Qz[

l
.T / D NA[

l
:

(12)

Finally let
z[[
l D zl�1=z.el�1�el /=el

l
2 L� with ordV z[[

l D e[[
l (13)

and note that then
e[[

l D el : (14)

With the above notation at hand, we shall now prove the:

Coefficient lemma (III). We have the following.

(1*) If bA1 2 k and v0 > 0 then for 0 � j � l we have bAj 2 k, and for 0 � j �
l � 1 we have vj D v0 with NAj D 0 NA0 C 0 0.

(2*) zlC1 ¤ 0, m
.l�1/
2 ¤ 1) m

.l�1/
2 D plel C elC1.

(3*) If bAl 2 k and vl�1 D 1 then vl D 1 and bAlC1 2 k with Qzl�1.T / 2 k..T //

and A�
l
.�/ 2 k for all � 2 Z.

(4*) If bAl 2 k and vl�1 C m
.l�1/
1 > m

.l�1/
2 then zlC1 ¤ 0 with bAlC1 2 k and

vl Cm
.l�1/
2 D vl�1 Cm

.l�1/
1 with NAl D 0 NAl�1 C 0 0.
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(5*) IfbAl 2 k and vl�1Cm
.l�1/
1 < m

.l�1/
2 then z[

l
¤ 0 and v[

l
D 0 with NA[

l
D NAl�1

and e[
l
D vl�1 C el�1 � 0 mod .el/.

(6*) If bAl 2 k and vl�1 ¤ 1 with vl�1 C m
.l�1/
1 D m

.l�1/
2 then zlC1 ¤ 0 ¤ z[

l

and v[
l
D 0 with NA[

l
D NAl�1 and e[

l
D vl�1 C el�1 6� 0 mod .el/.

(7*) If bA1 2 k and v0 D 0 then incoT z0 D 0 NA0 2 K n k and

incoT z[[
l

incoT zl

D 0 NAE
0 with E D .�1/lC1.e1=el/ 2 Z

�:

Prenote. In the statements as well as proofs of (1*)–(7*), some quantity such as
vl�1 may take the value 1, and then the reader is advised to follow the infinity
convention described in the second paragraph of (3.2).

Note. In the following proofs of (1*)–(7*), we shall frequently invoke two obvious
but very useful principles which in the context of (8) may be stated thus. The MP
= MULTIPLICATIVE PRINCIPLE says that if bAj C1 2 k and z] 2 L is such that
z] D 0 zj zp

j C1 with p 2 Z then: z] ¤ 0 and upon letting Qz].T / be the .V; K; T /-

expansion of .z]; zj C1;bAj C1/ and putting

gap.T;S/Qz].T / D v] with coef.T;S/Qz].T / D NA]

we have

v] D vj with NA] D 0 NAj and: if vj > 0 then fincoT z]; incoT zj g � k.

The AP = ADDITIVE PRINCIPLE says that if bAj C1 2 k and z]] 2 L is such that

z]] D zj �
X

��	

QAj .�/bz�
j C1 where � 2 Z with � < vj C ej

and wherebzj C1 Dbzj C1.T / 2 K..T // is such that

bz
ej C1

j C1 D zj C1 and incoTbzj C1 D bAj C1

then: z]] ¤ 0 and upon letting ordV z]] D e]] and upon letting Qz]].T / be the
.V; K; T /-expansion of .z]]; zj C1;bAj C1/ and putting

gap.T;S/Qz]].T / D v]] with coef.T;S/Qz]].T / D NA]]

we have
v]] C e]] D vj C ej with NA]] D NAj .
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Proof of (1*). In view of an obvious induction, it suffices to show that, given any
integer j 2 f0; : : : ; l � 2g with bAj C1 2 k and vj > 0, we have fbAj ;bAj C2g � k

and vj D vj C1 with NAj D 0 NAj C1 C 0 0. Now for any j 2 f0; : : : ; l � 2g with
bAj C1 2 k and vj > 0, by .2j / and MP we see that

fbAj ;bAj C2g � k and gap.T;S/Mzj C2.T / D vj with coef.T;S/Mzj C2.T / D 0 NAj

and by taking .z; y/ D .zj C1; zj C2/ in (3.7)(I) we see that

gap.T;S/Mzj C2.T / D vj C1 with coef.T;S/Mzj C2.T / D 0 NAj C1 C 0 0

and by combining the above two displays we get fbAj ;bAj C2g � k and vj D vj C1

with NAj D 0 NAj C1 C 0 0.

Proof of (2*). In view of (2), this follows from (3.1)(6) to (3.1)(8).

Proof of (3*). In view of (1)–(7), this follows from (3.1)(6) to (3.1)(8) together
with (3.7)(I).

Proof of (4*). Assuming bAl 2 k and vl�1 Cm
.l�1/
1 > m

.l�1/
2 , by (2*) we have

bAl 2 k with zlC1 ¤ 0 and m
.l�1/
2 D plel C elC1 ¤1. (0])

To prove that

bAlC1 2 k and vl Cm
.l�1/
2 D vl�1 Cm

.l�1/
1 with NAl D 0 NAl�1 (])

we proceed thus. In view of (3.1)(8), by .0]/ we have

bAl 2 k with zlC1 ¤ 0 and z�
l D zpl

l
zlC1. (1])

Let Qz�
l
D Qz�

l
.T / be the .V; K; T /-expansion of .z�

l
; zl ;bAl/ and let

gap.T;S/Qz�
l .T / D v�

l with coef.T;S/Qz�
l .T / D NA�

l . (2])

Clearly
ordV zl�1 D m

.l�1/
1 (3])

and by .0]/ and .1]/ we see that

ordV z�
l D m

.l�1/
2 : (4])
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In view of (3.1)(8), by .2]/–.4]/ and AP with zj D zl�1 and z]] D z�
l

it follows that

v�
l Cm

.l�1/
2 D vl�1 Cm

.l�1/
1 with NA�

l D NAl�1: (5])

Let MzlC1.T / be the .V; K; T /-expansion of .zlC1; zl ;bAl/ and let

gap.T;S/MzlC1.T / D MvlC1 with coef.T;S/MzlC1.T / D MAlC1. (6])

By .5]/ we see that v�
l

> 0, and hence by .1]/, .6]/ and MP with .z]; zj ; zj C1/ D
.z�

l
; zlC1; zl/ we get

bAlC1 2 k and MvlC1 D v�
l with MAlC1 D 0 NA�

l : (7])

In view of .6]/ and .7]/, by taking .y; z/ D .zl ; zlC1/ in (3.7)(I) we see that

MvlC1 D vl with MAlC1 D 0 NAl C 0 0: (8])

Combining .5]/, .7]/ and .8]/ we get .]/.

Proof of (5*). Assuming bAl 2 k and vl�1 C m
.l�1/
1 < m

.l�1/
2 , in view of (9)–(12)

and (3.1)(6)–(3.1)(8), by .2�/ we see that

z[
l ¤ 0 with e[

l D vl�1 C el�1 � 0 mod .el/

and hence, in view of (9)–(12) and (3.1)(6)–(3.1)(8), by AP with zj D zl�1 and
z]] D z[

l
we see that

v[
l D 0 with NA[

l D NAl�1:

Proof of (6*). Assuming bAl 2 k and vl�1 ¤ 1 with vl�1 C m
.l�1/
1 D m

.l�1/
2 , in

view of (9)–(12) and (3.1)(6)–(3.1))(8), by .2�/ we see that

zlC1 ¤ 0 ¤ z[
l with e[

l D vl�1 C el�1 6� 0 mod .el/

and hence, in view of (9)–(12) and (3.2)(6)–(3.2)(8), by AP with zj D zl�1 and
z]] D z[

l
we see that

v[
l D 0 with NA[

l D NAl�1:

Proof of (7*). Assuming bA1 2 k and v0 D 0, we clearly have

incoT z0 D 0 NA0 2 K n k: (00)
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To prove the equation

incoT z[[
l

incoT zl

D 0 NAE
0 with E D .�1/lC1.e1=el/ 2 Z

� (0)

we define the euclidean postextension of the integer pair .e0; e1/ with e1 ¤ 0 to

be the sequence pair
�

.e0
j /0�j �lC1; .p0

j /0�j �l

�

obtained by putting e0
j D ej or 0

accordings as 0 � j � l or j D l C 1, and p0
j D pj or el�1=el accordings as

0 � j � l � 1 or j D l . Note that now

e0
j �1 D p0

j e0
j C e0

j C1 for 1 � j � l: (10)

Given any integers e00
0 ; e00

1 , let us define integers e00
2 ; : : : ; e00

lC1
by requiring that

e00
j �1 D p0

j e00
j C e00

j C1 for 1 � j � l: (20)

Let Mj D
�

e0

j �1
e0

j

e00

j �1
e00

j

�

for 1 � j � l C 1, and Nj D
�

0 1
1 �p0

j

�

for 1 � j � l .

Then
Mj Nj D Mj C1 with det.Nj / D �1 for 1 � j � l (30)

and hence

det.MlC1/ D .�1/l det.M1/: (40)

Clearly det.MlC1/ D e00
lC1

e0
l

and if .e00
0 ; e00

1/ D .1; 0/ then det.M1/ D �e0
1.

Therefore

if .e00
0; e00

1/ D .1; 0/ then e00
lC1 D .�1/lC1.e1=el/. (50)

Let the sequence .z0
j /0�j �lC1 be defined by putting z0

j D zj or zl�1=z
p0

l

l
according

as 0 � j � l or j D l C 1. Then

z0
j �1 D .z0

j /
p0

j z0
j C1 for 1 � j � l: (60)

Assuming A 2 K� to be such that incoT z0
j D 0 A

e00

j for 0 � j � 1, by .10/, .20/,
and .60/ we see that

incoT z0
j D 0 A

e00

j

for 0 � j � l C 1; consequently by .50/ we conclude that

8

ˆ

ˆ

<

ˆ

ˆ

:

if .e00
0; e00

1/ D .1; 0/ and A 2 K� is such that

incoT z0
j D 0 A

e00

j for 0 � j � 1,

then incoT z0
lC1
D 0 AE with E D .�1/lC1.e1=el/ 2 Z

�.

(70)
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By (13) and (14) we have

incoT z0
lC1 D

incoT z[[
l

incoT zl

and hence by taking A D NA0 in .70/ we get .0/.

Remark on valuation preexpansions (3.9). For further merging of Remarks (3.1),
(3.2), and (3.7), let V be a DVR with

V � bV D the completion of V and QF.V / D L � bL D QF.bV /.

Let T be a uniformizing parameter of bV . Assume that ch.L/ D ch.H.V // D 0 and
let K be a coefficient field of bV . Note that then bV D K..T //. Assume that H.V /,
and hence K , is root-closed.

Given any pair of elements .z0; z1/ in L� with ordV z1 ¤ 0, by (3.1) and (3.8)
there exists a system

.zij; eij; pij; A�
il.i/.�/; e�

il.i/; z�
il.i/; Aij.�/;bAij; QAij.�/; m.ij /; Qzij/�2Z;0�j �l.i/C1;0�i��

such that

.zij; eij; pij; A�
il.i/.�/; e�

il.i/; z�
il.i//�2Z;0�j �l.i/C1;0�i��

is the .V; K/-preexpansion of .z0; z1/ and

.zij; eij; pij; A�
il.i/.�/; e�

il.i/; z�
il.i/; Aij.�/;bAij; QAij.�/; m.ij /; Qzij/�2Z;0�j �l.i/C1

is a mixed .V; K; T /-protoexpansion of .zi0; zi1/ for 0 � i � �; in analogy with
a mixed protoexpansion, we call such a system a mixed .V; K; T /-preexpansion of
.z0; z1/.

Let us record that, for 0 � i � � 2 N, by (3.1)(1)–(3.1)(5) we now have a pair
of sequences

�

.eij/0�j �l.i/; .pij/0�j <l.i/

�

of integers eij 2 Z and pij 2 Z with l.i/ 2 NC such that:

(1) pi0 D 0 ¤ eil.i/,
(2) ei;j �1 D pijeij C ei;j C1 with pij ¤ 0 < ei;j C1 < jeijj for 1 � j � l.i/� 1,
(3) jeijj > jeil.i/j D GCD.ei0; ei1/ D GCD.ei0; : : : ; eil.i// for 1 � j � l.i/ � 1,
(4) l.i/ D 1, ei0 � 0 mod .ei1/,
(5) zi;j �1 D z

pij

ij zi;j C1 for 1 � j � l.i/ � 1.

Let us also record that (3.1)(6)–(3.1)(12) and (3.8)(1)–(3.8)(7) hold with obvious
modifications. Note that (3.1)(11) is used in proving (II) below.
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Now rewriting (3.8)(I) and (3.8)(II) in terms of the difference sequence q.m/

defined in (3.2) we respectively see that

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

for 0 � j � l.i/ � 1 and 0 � i � �

we have 0 ¤ h.m.i0// D h.m.ij // ¤ 0

and ei1 D m
.i0/
0 and ei0 D m

.i0/
1

with ei;j C1 D m
.ij /
0 and eij D m

.ij /
1

and q�.m.i0// D q�.m.ij // for 2 �  � h.m.i0//C 1

and d1.m.i0// D jei1j with d1.m.ij // D jei;j C1j
and d2.m.i0// D d2.m.ij // D GCD.ei0; ei1/ D GCD.eij; ei;j C1/

and d�.m.i0// D d�.m.ij // for 2 �  � h.m.i0//C 2

(I)

and
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

for 0 � i < �

we have h.m.iC1;0// D h.m.i;l.i/�1//� 1

and eiC1;1 D m
.iC1;0/
0 D m

.i;l.i/�1/
0 D eil.i/

and eiC1;0 D m
.iC1;0/
1 D m

.i;l.i/�1/
2 D pil.i/eil.i/ C ei;l.i/C1

and ei;l.i/�1 D m
.i;l.i/�1/
1

and q�.m.iC1;0// D q�C1.m.i;l.i/�1// for 2 �  � h.m.iC1;0//C 1

and d1.m.iC1;0// D jeiC1;1j
and d1.m.i;l.i/�1// D jeil.i/j D d2.m.i;l.i/�1// D GCD.eil.i/; ei;l.i/�1/

and d2.m.iC1;0// D d3.m.i;l.i/�1// D GCD.eiC1;0; eiC1;1/

and d�.m.iC1;0// D d�C1.m.i;l.i/�1// for 2 �  � h.m.iC1;0//C 2.

(II)

Combining (I) and (II) we get the concise THIRD INVERSION THEOREM
which shows the power of the difference sequence and which says that:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

for 0 � j � l.i/ � 1 and 0 � i � �

we have h.m.ij // D h.m.00// � i

and q0.m.ij // D ei;j C1 D ordV zi;j C1 with zi;j C1 2 L�

and q1.m.ij // D eij D ordV zij with zij 2 L�

and q�.m.ij // D q�Ci .m
.00// for 2 �  � h.m.ij //C 1

and d�.m.ij // D d�Ci .m
.00// for 2 �  � h.m.ij //C 2.

(III)

Remark on root-closed fields (3.10). The concepts of root-closed fields and special
subfields, as well as Newton’s Binomial Theorem for fractional exponents, all lead
to the idea of root extraction, which in turn inspires the following generalization (I)
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of a 1936 result of F. K. Schmidt, where we use the terminology according to which:
By a quasiroot-closed pair we mean a pair .R; I / consisting of a domain R and a
nonzero ideal I in it such that

(

for every a 2 I we have bn
n D .1C a/ for some bn 2 R

for infinitely many n 2 NC.

By a quasiroot-closed domain we mean a domain R such that .R; I / is a quasiroot-
closed pair for some nonzero ideal I in R. By N .R/ we denote the normalization
of a domain R, i.e., the integral closure of R in QF.R/.

(I) Let .R; I / be any quasiroot-closed pair.

(1) Then for every DVR V with QF.R/ D a subfield of QF.V / we have R � V .
(2) More generally, for every noetherian domain W with QF.R/ D a subfield of

QF.W / we have R � N .W /.
(3) Moreover, if R is noetherian and W is any quasiroot-closed noetherian domain

with QF.R/ D QF.W / then N .R/ D N .W /.
(4) Finally, if R is a DVR then for every normal noetherian domain W with

QF.R/ D QF.W / ¤ W we have R D W .

Proof of (1). If R 6� V then for some x 2 R we will have ordV .x/ D �q with
q 2 NC. Since I ¤ f0g, we can take 0 ¤ y 2 I . Upon letting a D yxm for large
m 2 NC we get a 2 I and ordV a D �p with p 2 NC. Clearly ordV .1C a/ D �p.
Now taking n > p, the equation bn

n D .1C a/ implies ordV bn D p=n 62 Z which
is a contradiction. Therefore, R � V .

Proof of (2). Follows from (1) by noting that by Theorem (4.10) on page 118 of
Nagata [28] N .W / is the intersection of all DVRs V with QF.W / D QF.V / and
W � V .

Proof of (3). By (2) we get N .R/ � N .W / with N .W / � N .R/ and hence
N .R/ D N .W /.

Proof of (4). Follows from (2) by noting that there is no subring strictly between a
DVR and its quotient field.

Recall that a quasilocal domain R is henselian means it satisfies the following
condition: If f .Y / is any monic polynomial of degree n > 0 with coefficients in
R such that, letting Nf .Y / denote the polynomial obtained by applying HR to the
coefficients of f .Y /, we have Nf .Y / D g�.Y /h�.Y / where g�.Y / and h�.Y / are
monic coprime polynomials in H.R/ŒY �, then there exits unique monic g.Y / in
h.Y / in RŒY � such that f .Y / D g.Y /h.Y / with g.Y / D g�.Y / and h.Y / D
h�.Y /. In order to apply (I) to this case, by taking

f .Y / D Y n � .1C a/ and n 6� 0 mod .ch.H.R//
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we see that:

(II) If R is a henselian quasilocal domain which is not a field then .R; M.R// is a
quasiroot-closed pair.

By (I) and (II) we get the following:

(III) If R and S are henselian local domains with R ¤ QF.R/ D QF.S/ ¤ S then
R D S .

In this connection, referring to [12], we note that:

(IV) Every complete local domain is henselian. The r-variable power series ring
KŒŒX1; : : : ; Xr �� over a field K with r 2 NC is an r-dimensional complete local
domain which is normal and unequal to its quotient field K..X1; : : : ; Xr //.

By (III) and (IV) we see that:

(V) If r and s are positive integers and K and L are fields for which we
have K..X1; : : : ; Xr // D L..Y1; : : : ; Ys//, then we have KŒŒX1; : : : ; Xr �� D
LŒŒY1; : : : ; Ys �� and r D s.

4 Newtonian Expansion

In Remarks (3.1) and (3.9), we organized the valuation data in � C 1 blocks
of sizes l.0/; l.1/; : : : ; l.�/. Now we shall reorganize it in a single sequence of
length l.0/ C l.1/ C � � � C l.�/. To be more precise, the blocks were of sizes
l.0/C 2; : : : ; l.�/C 2 where the last two members of a block essentially coincided
with the second and third members of the next block. Likewise the reorganized sin-
gle sequence will more precisely be of length l.0/C� � �Cl.�/��C1. In Sect. 5, we
shall give a brief review of quadratic transformations and discuss invariance prop-
erties of newtonian characteristic sequences. In PART II, we shall revisit Newton’s
polygonal method and thereby deduce certain integral dependence properties of the
coefficients of fractional power series expansions.

Let V be a DVR with

V � bV D the completion of V and QF.V / D L � bL D QF.bV /

and let K be a coefficient set of V . In (3.1) we have defined what we mean by a
.V; K/-presequence

.zij; eij; pij; A�
il.i/.�/; e�

il.i/; z�
il.i//�2Z;0�j �l.i/C1;0�i��: (�)
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Note that then
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

� 2 N with l.�/ 2 NC,

2 � l.i/ 2 NC for 0 � i < �,

zij 2 L with ordV zij D eij,

z�
il.i/
2 L with ordV z�

il.i/
D e�

il.i/
,

pij 2 Z [ f1g with A�
il.i/

.�/ 2 K ,

(1�)

where the quantities zij; z�
il.i/

; pij; A�
il.i/

.�/ satisfy the conditions described in (3.1).
In particular we have ordV z00 D e00 2 Z with ordV z01 D e01 2 Z

�. Moreover,
having noted that the pair .z00; z01/ uniquely determines .�/, we have called .�/ the
.V; K/-preexpansion of .z00; z01/.

Now we define a .V; K/-sequence to be a sequence

.zj ; ej ; pj ; Bj .�/; �.i/; �.j //�2Z;0�j ��;0�i�� (��)

where
8

ˆ

ˆ

<

ˆ

ˆ

:

� 2 N with 
 D �.�/ 2 NC,

�.i/ 2 NC for 0 � i � �,

�.i/ < �.i C 1/ for 0 � i < �,

(1
)

and

�.j / D
8

<

:

maxfi W 1 � i � � C 1 with �.i � 1/ � j g if j � �.0/

0 if j < �.0/
(2
)

and
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

zj 2 L� with ordV zj D ej 2 Z for 0 � j � 
,

e1 ¤ 0 < ej C1 < jej j for 1 � j < 
,

pj 2 Z for 0 � j < 
 with p� D 1,

p0 D 0 ¤ pj for 2 � j < 
 with pj > 0 for 3 � j < 
,

Bj .�/ 2 K for 0 � j � 
 and � 2 Z,

B0.�/ D 0 for all � 2 Z,

(3
)

with

zj �1 �
X

.ej �1=jej j/��<1
Bj .�/z

�.jej j=ej /

j D
(

0 in bL if j D 


z
pj

j zj C1 if 1 � j < 

(4
)
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are such that

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

if j 2 f1; : : : ; 
g n f�.0/; : : : ; �.�/g
then Bj .�/ D 0 for all � 2 Z

and ej �1=ej 62 Z with ej �1 D pj ej C ej C1,

and zj �1 D z
pj

j zj C1,

(5
)

and
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

if j 2 f�.0/; : : : ; �.�/g
then ej �1=ej 2 Z with ej �1=ej � pj .ej =jej j/,

and Bj .�/

8

ˆ

ˆ

<

ˆ

ˆ

:

D 0 if � < .ej �1=jej j/
¤ 0 if � D .ej �1=jej j/
D 0 if � > pj .ej =jej j/ and j ¤ 
,

(6
)

and we make the convention that

�.�1/ D 0 and �.� C 1/ D1: (7
)

Any pair of elements .z0; z1/ in L� with ordV z1 ¤ 0 can clearly be embedded in a
unique .V; K/-sequence .��/ which we call the .V; K/-expansion of .z0; z1/.

Note that if .z00; z01/ D .z0; z1/ then .�/ and .��/ determine each other by the
relations

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:


 D l.0/C � � � C l.�/� �;

�.i/ D l.0/C � � � C l.i/ � i for 0 � i � �;

zj D z0j for 0 � j � �.0/,

zj D zi;j C1��.i�1/ for 1 � i � � and �.i � 1/ � j � �.i/,

pj D p0j for 0 � j � �.0/,

pj D pi;j C1��.i�1/ for 1 � i � � and �.i � 1/ � j � �.i/,

(2�)

and
(

Bj .�/ D A�
il.i/

.�/ for 1 � i � � and j D �.i/,

z
pj

j zj C1 D z�
il.i/

for 1 � i < � and j D �.i/.
(3�)

Descriptive Note (8�). In a more descriptive manner, the i -th row of .�/ as a “matrix”
looks like

zi0; zi1; : : : ; zi;l.i/C1

and a slight trimming converts it into the i -th D �-th subsequence of .��/ which
looks like

z�.i�1/; z�.i�1/C1; : : : ; z�.i/�1
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with the convention .7
/ that �.�1/ D 0; namely, for i D 0, delete the last two
terms of the i -th row whereas, for i > 0, delete the first and the last two terms of the
i -th row. Moreover, at the �.i/-th spot of .��/ with 0 � i < � we put the following
expansion with nonempty support:

z�.i/�1 D
 

X

�

B�.i/.�/z�
�.i/

!

C z
p�.i/

�.i/
z�.i/C1:

In .��/, the basic sequence is .zj ; ej ; pj ; Bj .�//�2Z;0�j ��. The remaining two
quantities �.i/ and �.j / are determined by the basic sequence thus. The �.i/ are
those values of j at which the support of the function � 7! Bj .�/ is nonempty; we
label the �.i/ so that they increase with i . The �.j / are the counters to locate �.i/. In
other words, if j D 0; 1; 2; : : : ; 
 are the markers of the train stations as we march
along the basic sequence, then �.i/ is the label of a crowded station (say, a junction),
and for 0 � j � 
 we have �.j / D i , �.i � 1/ � j < �.i/, i.e., we have

�.�.j / � 1/ � j < �.�.j //

with the convention .7
/ that �.�1/ D 0 and �.� C 1/ D 1. With this convention
we can write

�.�1/ D 0 < �.0/ < �.1/ < � � � < �.�/ D 
 <1 D �.� C 1/:

Definition. Let T be a uniformizing parameter of bV . Assume that ch.L/ D
ch.H.V // D 0 and K is a coefficient field of bV . Note that then bV D K..T //.
Assume that H.V /, and hence K , is root-closed. Given any pair .z0; z1/ in L� with
ordV z1 ¤ 0, in view of (3.7) and what we have said above, there exists a system

.zj ; ej ; pj ; Bj .�/; �.i/; �.j /; Aj .�/;bAj ; QAj .�/; m.j /; Qzj /�2Z;0�j ��;0�i��

(� � �)
such that .��/ is the .V; K/-expansion of .z0; z1/ and

for 0 � j � 


we have
bAj 2 K� with .bAj /ej D incoT zj (1)

and
m.j / D m.zj ; zj C1; V; K/ (2)

and
(

Aj .�/ 2 K for all � 2 Z

with Aj .�/ D 0 for � < ej and Aj .ej / ¤ 0
(3)

and
( QAj .�/ 2 K for all � 2 Z

with QAj .�/ D 0 for � < ej and QAj .ej / ¤ 0
(4)
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such that
zj D zj .T / D

X

ej ��<1
Aj .�/T � (5)

is the usual expansion of zj in K..T // and

Qzj D Qzj .T / D
X

ej ��<1
QAj .�/T � (6)

is the .V; K; T /-expansion of .zj ; zj C1;bAj C1/ with the proviso that

(

if j D 
 then m.j / D m.;; 1/

and Qzj D Qzj .T / D 0 D QAj .�/ for all � 2 Z;
(7)

we call such a system a mixed .V; K; T /-expansion of .z0; z1/.

Since .�/ and .��/ determine each other, referring to (3.2) for notation, (3.9)(III)
may be paraphrased as the:

First invariance theorem (I). For 0 � j � 
 � 1 we have

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

h.m.j // D h.m.0//� �.j /

and q0.m.j // D ej C1 D ordV zj C1 with zj C1 2 L�

and q1.m.j // D ej D ordV zj with zj 2 L�

and q�.m.j // D q�C�.j /.m
.0// for 2 �  � h.m.j //C 1

and d�.m.j // D d�C�.j /.m
.0// for 2 �  � h.m.j //C 2.

Moreover, we have

h.m.�// D h.m.0//� �.
/ D 0 with �.
/ D � C 1:

Preamble for next theorem. Referring to (3.5) for notation, having just dealt with
case .3:5/.2]/, turning to case .3:5/.3]/ let

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

S D k..T // where k is a nonnull special subfield of K ,

0 D an unspecified member of k�

( 0 is called Abhyankar’s nonzero and may be read as �),

0 0 D an unspecified member of k

( 0 0 is called Abhyankar’s constant and may be read as � 0),
gap.T;S/Qzj .T / D vj with coef.T;S/Qzj .T / D NAj for 0 � j � 


with the understanding that v� D 1 and NA� D 0

(8)
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and
for 1 � l � 


let
z�

l
D

X

.el�1=jel j/��<.vl�1Cel�1/jel j�1

Bl .�/z�.jel j=el /

l
2 KŒzl ; z�1

l � (9)

and
z[
l D zl�1 � z�

l
2 L with ordV z[

l D e[
l (10)

and let
z[
l D z[

l .T / D
X

�2Z

A[
l .�/T � with A[

l .�/ 2 K (11)

be the usual expansion in K..T // and

8

ˆ

ˆ

<

ˆ

ˆ

:

if z[
l
¤ 0

then let Qz[
l
D Qz[

l
.T / be the .V; K; T /-expansion of .z[

l
; zl ;bAl/

and let gap.T;S/Qz[
l
.T / D v[

l
with coef.T;S/Qz[

l
.T / D NA[

l

(12)

and finally let
z[[
l 2 L with ordV z[[

l D e[[
l (13)

and
z[[[
l 2 L with ordV z[[[

l D e[[[
l (14)

be defined by putting

z[[
l D

(

0 if el�1=el 62 Z

zl�1=z.el�1�el /=el

l
if el�1=el 2 Z

(15)

and

z[[[
l D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z[
l
D 0

0 if z[
l
¤ 0 and e[

l
=el 62 Z

z[
l
=z

.e[
l
�el /=el

l
if z[

l
¤ 0 and e[

l
=el 2 Z

(16)

and let
z[[
l D z[[

l .T / D
X

�2Z

A[[
l .�/T � with A[[

l .�/ 2 K (17)

and
z[[[
l D z[[[

l .T / D
X

�2Z

A[[[
l .�/T � with A[[[

l .�/ 2 K (18)

be the usual expansion in K..T //.



Inversion and Invariance of Characteristic Terms: Part I 129

With the above notation at hand, we shall now prove the:

Second invariance theorem (II). For 0 � j � 
 � 1 we have the following.

(1*) If bAj C1 2 k with vj > 0 and l D �.�.j // with vj Cm
.l�1/
1 > m

.l�1/
2 then:

bAl 2 k and vl�1 D vj with NAl�1 D 0 NAj C 0 0 and we have l < 
 with
bAlC1 2 k and vl D vj Cm

.l�1/
1 �m

.l�1/
2 > 0 with NAl D 0 NAj C 0 0.

(2*) If bAj C1 2 k with vj > 0 and l D �.�.j // with vj Cm
.l�1/
1 < m

.l�1/
2 then:

bAl 2 k and vl�1 D vj with NAl�1 D 0 NAj C 0 0 and we have z[
l
¤ 0 and

v[
l
D 0 with NA[

l
D NAl�1 and e[

l
D vl�1 C el�1 � 0 mod .el/.

(3*) If bAj C1 2 k with1 ¤ vj > 0 and l D �.�.j // with vj Cm
.l�1/
1 D m

.l�1/
2

then: bAl 2 k and vl�1 D vj with NAl�1 D 0 NAj C 0 0 and l � 
 ¤ 0 ¤ z[
l

and we have v[
l
D 0 with NA[

l
D NAl�1 and e[

l
D vl�1 C el�1 6� 0 mod .el/.

(3**) Notation. For stating the following generalization (4*)–(6*) of
(1*)–(3*) we introduce the quantities .j /, �.j /, and .j; j 0/ thus. We
put

.j / D maxf 2 f1; : : : ; h.m.j //C 1g W vj Cm
.j /
1 � m.j /

� g

and we note that if vj D 1 then .j / D h.m.j //C 1, whereas if vj ¤ 1
then .j / is the unique integer with 1 � .j / � h.m.j // such that

m
.j /

�.j /
� vj Cm

.j /
1 < m

.j /

�.j /C1
:

If vj D 1 then we put �.j / D1, whereas if vj ¤1 then we put

�.j / D vj Cm
.j /
1 �m

.j /

�.j /
:

For j � j 0 � 
 � 1 we put

.j; j 0/ D �.j 0/� �.j /C 1

and we note that then .j; j / D 1 and hence �.j / D vj Cm
.j /

�.j;j /
�m

.j /

�.j /
.

The proofs of (4*)–(6*) will be by induction on .j; j 0/ starting with the

ground case of .j; j 0/ D 1;

i.e., the case when

�.j 0/ D �.j / and �.�.j / � 1/ � j � j 0 < �.�.j //:
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(4*) If bAj C1 2 k with �.j / D 1 then for j � j 0 � 
 � 1 we have
fbAj 0 ;bAj 0C1g � k with vj 0C1 D vj 0 D 1 and Qzj 0.T / 2 k..T // with
Bj 0C1.�/ 2 k for all � 2 Z.

(5*) If bAj C1 2 k with1¤ �.j / > 0 then, letting l D �.�.j /C.j /� 1/, for
j � j 0 � l �1 we have fbAj 0 ;bAj 0C1g � k and 1 � .j; j 0/ � .j; l �1/ D
.j / with .j; j 0/ C .j 0/ D 1 C .j / and1 ¤ �.j 0/ D �.j / > 0

with NAj 0 D 0 NAj C 0 0, and moreover: z[
l
¤ 0 and v[

l
D 0 with NA[

l
D NAl�1

and e[
l
D vl�1 C el�1 � 0 mod .el/, and finally: NAj 2 K n k and

incoT z[[[
l

incoT zl

D 0 NA[
l D 0 NAj C 0 0:

(6*) If bAj C1 2 k with �.j / D 0 and .j / ¤ 1 then, letting l D �.�.j / C
.j /�2/, for j � j 0 � l�1 we have fbAj 0 ;bAj 0C1g � k and 1 � .j; j 0/ �
.j; l � 1/ D .j / � 1 with .j; j 0/C .j 0/ D 1C .j / and �.j 0/ D
�.j / D 0 with NAj 0 D 0 NAj C 0 0, and moreover: bAl 2 k and vl�1 D vj

with NAl�1 D 0 NAj C 0 0 and l � 
 ¤ 0 ¤ z[
l

and v[
l
D 0 with NA[

l
D NAl�1

and e[
l
D vl�1 C el�1 6� 0 mod .el/.

(6**) Notation. To facilitate stating claim (7*), we supplement the definition of the
derived denominator sequencebni .m/1�i�h.m/ of a charseq m with h.m/ > 0

given in (3.2) by introducing its signed version

n[[
i .m/ D .�1/n[

i
.m/
bni .m/

where the positive integer n[
i .m/ is defined thus. Let

�

.e
.i/
j /0�j �l.i/ ;

.p
.i/
j /0�j <l.i/

�

be the euclidean extension of .e
.i/
0 ; e

.i/
1 / where

.e
.i/
0 ; e

.i/
1 / D

(

.qi .m/; di .m// if 2 � i � h.m/

.q1.m/; q0.m// if i D 1:

Now (paying special attention to the j D 0 case) we put

n[
i .m/ D

(

l .i/ C 1 if e
.i/
1 > 0

l .i/ if e
.i/
1 � 0.

(7*) If bAj C1 2 k with �.j / D 0 then, letting l D �.�.j / C .j / � 1/, we have
NAj 2 K n k and

incoT z[[
l

incoT zl

D 0 . NAj C 0 0/E with E D n[[
�.j /.m

.j // 2 Z
�:
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Note. In proving Theorem (II), we shall be using the following Reincarnated
Version of Lemma (3.8)(III). The said Reincarnated Version says that the Origi-
nal Version remains valid when for 0 � j � 
 � 1, upon letting l D �.�.j //,
we substitute the subsequence .zj ; zj C1; : : : ; zl / and its associated quantities
.ej ; : : : ; el/; : : : for the sequence .z0; z1; : : : ; zl / together with its associated quan-
tities considered in (3.8). Note that in the said substitution we put A�

l
.�/ D Bl.�/.

Reincarnated coefficient lemma (III). For 0 � j � 
 � 1, upon letting l D �.�.j //,
we have the following.

(1*) If bAj C1 2 k with vj > 0 then for j � j 0 � l we have bAj 0 2 k, and for
j � j 0 � l � 1 we have vj 0 D vj with NAj 0 D 0 NAj C 0 0.

(2*) l < 
, l � 
 ¤ 0, m
.l�1/
2 ¤1) m

.l�1/
2 D plel C elC1.

(3*) If bAl 2 k and vl�1 D 1 then vl D 1 and bAlC1 2 k with Qzl�1.T / 2 k..T //

and Bl .�/ 2 k for all � 2 Z.
(4*) If bAl 2 k and vl�1 C m

.l�1/
1 > m

.l�1/
2 then l < 
 with bAlC1 2 k and

vl Cm
.l�1/
2 D vl�1 Cm

.l�1/
1 with NAl D 0 NAl�1 C 0 0.

(5*) IfbAl 2 k and vl�1Cm
.l�1/
1 < m

.l�1/
2 then z[

l
¤ 0 and v[

l
D 0 with NA[

l
D NAl�1

and e[
l
D vl�1 C el�1 � 0 mod .el/.

(6*) If bAl 2 k and vl�1 ¤ 1 with vl�1 Cm
.l�1/
1 D m

.l�1/
2 then l � 
 ¤ 0 ¤ z[

l

and v[
l
D 0 with NA[

l
D NAl�1 and e[

l
D vl�1 C el�1 6� 0 mod .el/.

(7*) If bAj C1 2 k and vj D 0 then incoT zj D 0 NAj 2 K n k and

incoT z[[
l

incoT zl

D 0 NAE
j with E D .�1/lC1�j .ej C1=el/ 2 Z

�:

Proof of (II)(1*). Now ifbAj C1 2 k with vj > 0 and l D �.�.j // with vjCm
.l�1/
1 >

m
.l�1/
2 then by (III)(1*) we get bAl 2 k with vl�1 D vj and also vl�1 C m

.l�1/
1 >

m
.l�1/
2 with NAl�1 D 0 NAj C 0 0 and hence by (III)(4*) we conclude that l < 
 with

bAlC1 2 k and vl D vj Cm
.l�1/
1 �m

.l�1/
2 > 0 with NAl D 0 NAl�1 C 0 0.

Proof of (II)(2*). Now ifbAj C1 2 k with vj > 0 and l D �.�.j // with vjCm
.l�1/
1 <

m
.l�1/
2 then by (III)(1*) we getbAl 2 k with vl�1Cm

.l�1/
1 < m

.l�1/
2 and vl�1 D vj

with NAl�1 D 0 NAj C 0 0 and hence by (III)(5*) we conclude that z[
l
¤ 0 and v[

l
D 0

with NA[
l
D NAl�1 and

e[
l D vl�1 C el�1 � 0 mod .el/:

Proof of (II)(3*). Now if bAj C1 2 k with 1 ¤ vj > 0 and l D �.�.j // with

vj Cm
.l�1/
1 D m

.l�1/
2 then by (III)(1*) we getbAl 2 k with vl�1Cm

.l�1/
1 D m

.l�1/
2

and vl�1 D vj with NAl�1 D 0 NAj C 0 0 and hence by (III)(6*) we conclude that
l � 
 ¤ 0 ¤ z[

l
and v[

l
D 0 with NA[

l
D NAl�1 and

e[
l D vl�1 C el�1 6� 0 mod .el/:
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Proof of (II)(4*). Assuming bAj C1 2 k with �.j / D 1, and given any j 0 with
j � j 0 � 
�1, by induction on .j; j 0/ we shall show that fbAj 0 ;bAj 0C1g � k with
vj 0C1 D vj 0 D 1 and Qzj 0.T / 2 k..T // with Bj 0C1.�/ 2 k for all � 2 Z. In the
ground case we are done by (III)(1*) and (III)(3*). So let .j; j 0/ > 1 and assume
true for all smaller values of .j; j 0/. Now letting j1 D �.�.j // and j 00 D j1 � 1

we have j � j 00 < j 00 C 1 D j1 � j 0 � 
 � 1 with (i) .j; j 00/ D 1 and
(ii) .j1; j 0/ D .j; j 0/ � 1. In view of (i), by (III)(1*) and (III)(3*) we get (iii)
bAj1C1 2 k and (iv) �.j1/ D 1. In view of (ii) to (iv) we are done by the induction
hypothesis.

Note on proofs of (II)(5*)–(II)(7*). In the following arguments we may tacitly use
(I) together with the fact that for 1 � j � 
 � 1 we have m

.j /
0 D q0.m.j // and

m
.j /
� D q1.m.j // C � � � C q�.m.j // for 1 �  � h.mj // C 1. This is particu-

larly relevant for comparing .j / and .j 0/ with j ¤ j 0. Similarly for �.j / and
�.j 0/.

Proof of (II)(5*). Assume that bAj C1 2 k with 1 ¤ �.j / > 0, and let us put
l D �.�.j /C .j / � 1/.

In case of .j / D 1 everything follows from (III)(1*) and (III)(5*).
In the general case, given any j 0 with j � j 0 � l � 1, by induction on .j; j 0/

we shall show that fbAj 0 ;bAj 0C1g � k and 1 � .j; j 0/ � .j; l � 1/ D .j /

with .j; j 0/ C .j 0/ D 1 C .j / and1 ¤ �.j 0/ D �.j / > 0 with NAj 0 D
0 NAj C 0 0. In the ground case we are done by (III)(1*). So let .j; j 0/ > 1 and
assume true for all smaller values of .j; j 0/. Now upon letting j1 D �.�.j // and
j 00 D j1�1 we see that j � j 00 < j 00C1 D j1 � j 0 � 
�1 with (i) .j; j 00/ D 1

and (ii) .j1; j 0/ D .j; j 0/ � 1. Assuming .j / > 1, in view of (i), by (III)(1*)
and (III)(4*) we also conclude that (iii) bAj1C1 2 k and (iv)1 ¤ �.j1/ > 0 and
(v) �.j1/C.j1/ D �.j /C.j /. In view of (ii) to (v) we are done by the induction
hypothesis.

In view of what we have proved in the above paragraph, by (III)(5*) we get the
“moreover” and the “finally.”

Proof of (II)(6*). Assume that bAj C1 2 k with �.j / D 0 and .j / ¤ 1, and let us
put l D �.�.j /C .j / � 2/.

In case of .j / D 2 everything follows from (III)(1*) and (III)(6*).
In the general case, given any j 0 with j � j 0 � l�1, by induction on .j; j 0/ we

shall show that fbAj 0 ;bAj 0C1g � k and 1 � .j; j 0/ � .j; l � 1/ D .j /� 1 with
.j; j 0/C .j 0/ D 1C .j / and �.j 0/ D �.j / D 0 with NAj 0 D 0 NAj C 0 0.
In the ground case we are done by (III)(1*). So let .j; j 0/ > 1 and assume true
for all smaller values of .j; j 0/. Now upon letting j1 D �.�.j // and j 00 D j1 � 1

we see that j � j 00 < j 00 C 1 D j1 � j 0 � 
 � 1 with (i) .j; j 00/ D 1 and
(ii) .j1; j 0/ D .j; j 0/ � 1. Assuming .j / > 2, in view of (i), by (III)(1*)
and (III)(4*) we also conclude that (iii) bAj1C1 2 k and (iv) �.j1/ D 0 and (v)
�.j1/ C .j1/ D �.j / C .j /. In view of (ii) to (v) we are done by the induction
hypothesis.
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In view of what we have proved in the above paragraph, by (III)(6*) we get the
“moreover.”

Proof of (II)(7*). This follows from (II)(6*) and (III)(7*). In greater detail, the case
of .j / D 1 is done by (III)(7*). So assume that .j / ¤ 1 and let

.z0
0; z0

1/ D .z[
L; zL/ where L D �.�.j /C .j / � 2/ (0)

and let
.z0

J ; e0
J ; p0

J ; B 0
J .�/; �0.i/; �0.J //�2Z;0�J ��0;0�i��0 (��0)

be the .V; K/-expansion of .z0
0; z0

1/. Also let

.z0
J ; e0

J ; p0
J ; B 0

J .�/; �0.i/; �0.J /; A0
J .�/;bA0

J ; : : : /�2Z;0�J ��0;0�i��0 (� � �0)

be the mixed .V; K; T /-expansion of .z0
0; z0

1/, and let

v0
J ; NA0

J ; .z0
J /[[; : : :

have the corresponding meanings. Then assuming

bAj C1 2 k with �.j / D 0

by (II)(6*) we see that

NA0
0 D 0 NAj C 0 0 with e0

0 6� 0 mod .e0
1/ (i)

and
bA0

1 2 k with v0
0 D 0: (ii)

In view of (i) and (ii), upon letting

l 0 D �0.�0.0// (iii)

and applying (III)(7*) with j D 0 to the “primed” system we see that

incoT z0
0 D 0 NA0

0 2 K n k (iv)

and
incoT .z0

l 0

/[[

incoT z0
l 0

D 0 . NA0
0/E 0

with E 0 D .�1/l 0C1.e0
1=e0

l 0

/ 2 Z
�: (v)

Now clearly
z[
L D zpL

L zLC1: (vi)

In view of (vi), upon letting

l D �.�.j /C .j / � 1/ (vii)
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we see that

z0
l 0

D zl and .z0
l 0

/[[ D z[[
l with E 0 D n[[

�.j /.m
.j //:

By (i)–(vii) we conclude that
NAj 2 K n k (i*)

and
incoT z[[

l

incoT zl

D 0 . NAj C 0 0/E with E D n[[
�.j /.m

.j // 2 Z
�: (ii*)

Note on the proof of (II)(7*). To get a clearer picture of the above proof remember
that, as explained in the Descriptive Note .8
/, the .V; K/-sequence .��/ is obtained
by straightening the .V; K/-presequence .�/, and while doing this we drop the first
element of each row, except the first; the dropped element is reinstated by the con-
cept of z[

l
where we observe that z[

l
D zpl

l
zlC1. Also remembering (3.1)(8) and

(3.1)(11) we observe that

incoT z[[
l

incoT zl

D A�
l .el�1=jel j/ D the first coefficient of the summation in (3.1)(8):

At any rate, .��0/ is obtained by chopping off the initial 0 � j � L � 1 piece of
.��/ and replacing the chopped off piece by z[

L D zpL

L zLC1. Finally observe that the
j D 0 case of (II)(7*) requires special treatment which is taken care of in (II)(6**).

5 Quadratic Transformations

For details referring to [2, 3, 9–11] in general, and specifically to (Q35.8) on
pages 569–577 of [12], let us recall some basic facts about QDTs = Quadratic
Transformations.

Recall that, spec.S/ denotes the set of all prime ideals in a ring S . If S is a
domain then the modelic spec V.S/ D the set of all localizations of S at various
prime ideals in S , and if J is an ideal in S then the modelic blowup

W.S; J / D
[

0¤x2J

V.SŒJ x�1�/

where J x�1 D fyx�1 W y 2 J g; if S is quasilocal then the dominating modelic
blowup W.S; J /� D the set of all those members of W.S; J / which dominate S .

Let R be a positive dimensional local domain. By a QDT of R we mean a member
of W.R; M.R//�. For any QDT S of R we have 0 < dim.S/ � dim.R/ with
dim.R/�dim.S/ D restrdegRS , and S=M.S/ is a finitely generated field extension
of R=M.R/. We have dim.S/ D 1 for at least one and at most a finite number of
QDTs S of R. If R is regular then every QDT S of R is regular, and dim.S/ D 1
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for exactly one S which then coincides with the valuation ring of the real discrete
valuation ordR mentioned in Sect. 2, and hence in particular it is residually pure
transcendental over R. Some QDT of R coincides with R iff R is a DVR. If V is
any valuation ring dominating R then V dominates exactly one QDT S of R, and
we call S the QDT of R along V .

A QDT of a positive dimensional local domain R may also be called a first QDT
of R; by a second QDT of R we mean a first QDT of a first QDT of R, . . . , by a j -th
QDT of R we mean a first QDT of a .j � 1/-th QDT of R. We declare R to be the
only zeroeth QDT of R. By a QDT sequence of R we mean a sequence .Rj /0�j <1
with R0 D R such that Rj is a first QDT of Rj �1 for 0 < j <1.

If V is any valuation ring dominating a positive dimensional local domain R

then, for any nonnegative integer j , there is a unique j -th QDT Rj of R which is
dominated by V and we call it the j -th QDT of R along V ; we call .Rj /0�j <1 the
QDT sequence of R along V . To get a concrete set of generators of M.Rj / for all
j , we proceed thus.

Definition (]). Let V be the valuation ring of a valuation W W L! G [ f1g of a
field L and let K be a coefficient set of V . Let

L D fz 2 L W W.z/ D 0 or1g:

Given any .z0; : : : ; z� / 2 L�C1 nL
�C1

where � is a positive integer, we shall define
its QDT sequence .0]/ along .V; K/. The reader may prefer to first study the � D 1

case starting in Note (III*). Now clearly there exists a unique sequence

.z0j ; : : : ; z�j ; c0j ; : : : ; c�j ; t.j //0�j <1 (0])

with .z00; : : : ; z�0/ D .z0; : : : ; z� / and

.z0j ; : : : ; z�j ; c0j ; : : : ; c�j ; t.j // 2 .L�C1 n L
�C1

/ 	K�C1 	 f0; : : : ; �g

for 0 � j <1 such that for 0 � j <1 and 0 � t � � we have

zt;j C1 D

8

ˆ

ˆ

<

ˆ

ˆ

:

ztj with ctj D 1 if t D t.j /

ztj with ctj D 0 if t ¤ t.j / and W.ztj / ¤ 0

ztj � ctj 2 M.V / with ctj ¤ 0 if t ¤ t.j / and W.ztj / D 0

(1])

where

ztj D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

ztj

zt.j /j
if 0 < W.zt.j /j / � W.ztj /

ztj

zt.j /j
if W.zt.j /j / < 0 > W.ztj /

ztj

1=zt.j /j
if W.ztj / < 0 < W.zt.j /j /

ztj

1=zt.j /j
if W.zt.j /j / < 0 < jW.zt.j /j /j � W.ztj /

ztj if 0 D W.ztj / < jW.zt.j /j /j

(2])
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and where, upon letting

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

t�.j / D f0 � t � � W 0 ¤ W.ztj / ¤ 1g
t��.j / D max.t�.j //

t�C.j / D ft 2 t�.j / W 0 < W.ztj / <1g
t��C .j / D maxft 2 t�C.j / W W.ztj / � W.zt 0j / 8 t 0 2 t�C.j /g
t��.j / D ft 2 t�.j / W t � t��C .j /g
t��� .j / D maxft 2 t��.j / W jW.ztj /j � jW.zt 0j /j 8 t 0 2 t��.j /g

(3])

with the understanding that if t�C.j / D ; then t��C .j / D 0 D t��� .j /, we put

t.j / D
(

t��� .j / if t�C.j / ¤ ;
t��.j / if t�C.j / D ;: (4])

Noting that for all j 2 N we have 0 ¤ W.zt.j /j / <1, for 0 � t � � we put

	.t; j / D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 if 0 < W.zt.j /j / � W.ztj /

1 if W.z.j /j / < 0 > W.ztj /

�1 if W.ztj / < 0 < W.zt.j /j /

�1 if W.zt.j /j / < 0 < jW.zt.j /j /j � W.ztj /

0 if 0 D W.ztj / < jW.zt.j /j /j

(5])

and we observe that z.t;j /

t.j /j
is the denominator in each line of .2]/.

Let us define the flipping set ˆ] of .0]/ by putting

ˆ] D the set of all j 2 NC such that t.j � 1/ ¤ t.j /. (6])

Let p.u/
1�u<b�

be the unique sequence such that fp.u/ W 1 � u < b
g D ˆ] with

p.u/ < p.u C 1/ whenever 1 � u < u C 1 < b
 whereb
 D 1 or card.ˆ]/ C 1

according as the cardinality card.ˆ]/ is infinite or finite.
Let us define the translation set ‰] of .0]/ by putting

‰] D

8

ˆ

ˆ

<

ˆ

ˆ

:

the set of all j 2 N such that

for every t 2 f0; : : : ; �g with ztj ¤ 0 we have
ztj

zn.t;j /

t.j /j

2 V nM.V / for some n.t; j / 2 Z

(7])

and let us note that this defines n.t; j / uniquely. Let u.i/
0�i<b�

be the unique se-

quence such that fp.u.i// W 0 � i <b�g D ˆ] \‰] with u.i/ < u.i C 1/ whenever
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0 � i < i C 1 < b� whereb� D 1 or card.ˆ] \ ‰]/ according as the cardinality
card.ˆ] \‰]/ is infinite or finite.

We call .0]/ the QDT sequence of .z0; : : : ; z� / along .V; K/ and we call

.	.0; j /; : : : ; 	.�; j /; p.u/; u.i//
0�j <1;1�u<b�;0�i<b�

(8])

the supplement of the QDT sequence.

Note (I �). The proofs of the following Lemmas (I) and (II) are straightforward.
Lemma (II) deals with a situation when .z0j ; : : : ; z�j / are generators of the maximal
ideal M.Rj / of a local domain Rj dominated by V ; in that situation clearly j

belongs to N ] where N ] D fj 2 N W W.ztj / > 0 for 0 � t � �g. Note that if
j 2 N ] then only the first line of .2]/ is relevant. Also note that:

(i) j 2 N ] for a certain value of j implies j 2 N ] for all bigger values of j .
(ii) t�C.j / ¤ ; for a certain value of j implies t�C.j / ¤ ; for all bigger values

of j .
(iii) If W is real, i.e., if the value group GW is order isomorphic to an additive

subgroup of R then j 2 N ] for all sufficiently large values of j .
(iv) If j < j � in N [ f1g are such that t.j / D t.j 0/ for all j � j 0 < j � then

zt.j /j D zt.j 0/j 0 whenever j � j 0 < j �.

Finally note that by definition

jW.z/j D W.z/ or �W.z/ according as W.z/ � 0 or W.z/ < 0.

Lemma (I). Let j 2 ˆ] and j < j � 2 NC [ f1g be such that for all j 0 2 N with
j < j 0 < j � we have j 0 62 ˆ], and if j � ¤ 1 then we have j � 2 ˆ]. Then we
have the following.

(I.1) For all j 0 2 N with j � j 0 < j � we have t.j 0/ D t.j / and zt.j 0/j 0 D zt.j /j .
If j � ¤ 1 then we have t.j �/ ¤ t.j /.

(I.2) If j � D1 then we have 1 <b
 <1 and p.b
�1/ D j . If j � ¤ 1 then for a
unique integer u with 1 � u < uC1 <b
 we have p.u/ D j < j � D p.uC1/.

(I.3) Assume j 62 ‰]. Then for 0 � i < b� we have j ¤ p.u.i//. Moreover,
either: for all t 2 f0; : : : ; �g n ft.j /g we have ztj D 0, or: for some t 2
f0; : : : ; �g n ft.j /g we have ztj ¤ 0 with ztj =zn

t.j /j
62 V nM.V / for all n 2 Z.

In the “either” case, for all t 2 f0; : : : ; �gnft.j /g and for all j 0 2 N with
j � j 0 < j �, we have ctj 0 D 0 D ztj 0 . Furthermore, for every t of the “or”
case and for all j 0 2 N with j � j 0 < j �, we have

ctj 0 D 0 with 	.t; j 0/ D 	.t; j / and ztj D z.t;j /.j 0�j /

t.j /j
ztj 0 :

(I.4) Assume j 2 ‰]. Then j D p.u.i// for a unique i with 0 � i <b�. Moreover,
if j � D 1 then for any t 2 f0; : : : ; �g n ft.j /g, whereas if j � ¤ 1 then for
t D t.j �/, for all j 0 2 N with j � j 0 < j � we have
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ztj�
X

j ��<j 0

ct�z.t;j /.��j C1/

t.j /j
D z.t;j /.j 0�j /

t.j /j
ztj 0 with 	.t; j 0/ D 	.t; j / (i)

which may be viewed as a Taylor Expansion with Remainder discussed in
(9.5). If j � D1 then (i) gives rise to the equation

ztj D
X

j ��<j �

ct�z.t;j /.��j C1/

t.j /j
(ii)

which may be thought of as an infinite Taylor Expansion discussed in (9.2),
with a suitable interpretation of the equality; see (9.3) for the case when V is
a DVR.

(I.5) Assuming j 2 ‰] and letting � D f� 2 N W j � � < j � with ct� ¤ 0g
we have the following. If j � D 1 and t 2 f0; : : : ; �g n ft.j �/g then letting
�1 < � � � < �w or �1 < �2 < : : : be the finitely many or infinitely many values
of � 2 � and putting �0 D j � 1 we have

n.t; �v C 1/ D �vC1 � �v

for 0 � v < w or 0 � v < 1 respectively. If j � ¤ 1 and t D t.j �/ then
letting �1 < � � � < �w be the values of � 2 � and putting �0 D j � 1 we have

n.t; �v C 1/ D �vC1 � �v

for 0 � v < w.

Sketch proof of (I.5). Letting

X D zt.j /j and .N.q/; Z.q// D .n.t; q/; ztq/

for all q 2 N, we have

Z.q/ D C.q/XN.q/ CXN.q/Z.q CN.q// where 0 ¤ C.q/ 2 K: [q]

Comparing Œ�0 C 1� and (i) with j 0 D �1 C 1 we see that

N.�0 C 1/ D �1 � �0 and C.�0 C 1/ D ct�1

with
Z.�0 C 1/ D ct�1

X�1��0 CX�1��0 Z.�1 C 1/:

Substituting Œ�1 C 1� in the last equation and comparing the resulting equation and
(i) with j 0 D �2 C 1 we see that

N.�1 C 1/ D �2 � �1 and C.�1 C 1/ D ct�2
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with
Z.�0 C 1/ D ct�1

X�1��0 C ct�2
X�2��1 CX�2��1 Z.�2 C 1/:

And so on. Thus by induction on v we get

N.�v C 1/ D �vC1 � �v and C.�v C 1/ D c�vC1

with

Z.�0C1/Dct�1
X�1��0Cct�2

X�2��1C� � �Cct�vC1
X�vC1��vCX�vC1��vZ.�vC1C1/

for all relevant values of v.

Lemma (II). Assume that V dominates a positive dimensional local domain R for
which M.R/ D .z0; : : : ; z� /R. Let .Rj /0�j <1 be the QDT sequence of R along V .
Then we have the following.

(II.1) If n 2 N is such that K contains a coefficient set Kj of Rn for 0 � j � n,
then for 0 � j � n we have

fc0j ; : : : ; c�j g 2 Kj D K \ Rj and M.Rj / D .z0j ; : : : ; z�j /Rj :

(II.2) If V is a DVR thenb
 2 NC and for all integers n �b
 we have t.n/ D t.b
/.
If V is a DVR and QF.R/ D QF.V / thenb
 2 NC and for all integers n �b

we have t.n/ D t.b
/ and W.zt.n/n/ D 1.

(II.3) If R is regular of dimension � C 1 and V is a prime divisor of R then there
exists a unique positive integer n such that for all integers 0 � j < n � 

we have Rj ¤ Rn D R� D V and dim.Rj / > dim.Rn/ D dim.R�/ D 1.
Moreover, Rn is residually pure transcendental over Rn�1 of residual tran-
scendence degree dim.Rn�1/�1. Finally n is the essential length of the QDT
sequence .Rj /0�j <1 in the sense of Note (II**) below.

(II.4) If R is one dimensional and V is a prime divisor of R then V is residually
finite algebraic over R and there exists n 2 N such that for all integers  � n

we have M.V / D M.R�/V with V=M.V / D R�=M./.

Note (II�). For (II.3) see Proposition 3 of [2] and its proof. The first part of (II.4) is
proved in Theorem 1(4) of [2], and the rest of (II.4) follows from it by (II.2). It may
be tempting to think that (II.4) implies V D R� for large , but Example (E3.2) on
page 206 of Nagata [28] shows this to be untrue.

Note (II�). Given any positive dimensional local domain R and any QDT sequence
.Rj /0�j <1 of R, by the essential length of the QDT sequence we mean the unique
n 2 N [ f1g such that if n D 1 then for all j 2 N we have Rj ¤ Rj C1, whereas
if n 2 N then for all j 2 N with j < n we have Rj ¤ Rj C1 and for all j 2 N with
j � n we have Rj D Rj C1. Note that Rj D Rj C1 iff Rj is a DVR.
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Lemma (III). Assume that � D 1 and V dominates a two dimensional regular
local domain R with quotient field L and M.R/ D .z0; z1/R. Let .Rj /0�j <1 be
the QDT sequence of R along V . Then we have the following.

(III.1) The essential length of the QDT sequence .Rj /0�0<1 is finite or infinite
according as V is residually transcendental or algebraic over R.

(III.2) If V is residually transcendental over R then V is a prime divisor of R.
(III.3) Assume that V is residually algebraic over R. Then the value group GW

is order isomorphic to either (i) the set of all lexicographically ordered
pairs of integers or (ii) the additive group of all integers or (iii) a non-
cyclic additive subgroup of Q or (iv) an additive subgroup of R of the form
fa1	1Ca2	2 W .a1; a2/ 2 Z

2g for some positive real numbers 	1; 	2 which
are linearly independent over Q. In these cases, we shall respectively say
that V is nonreal discrete or real discrete or rational nondiscrete or irrational.
Now assume that K contains a coefficient set Kj of Rj for all j 2 N. Then:

(i*) card.ˆ]/ ¤1 ¤ card.‰]/ iff V is nonreal discrete;
(ii*) card.ˆ]/ ¤1 D card.‰]/ iff V is real discrete;

(iii*) card.ˆ]/ D1 D card.‰]/ iff V is rational nondiscrete;
(iv*) card.ˆ]/ D1 ¤ card.‰]/ iff V is irrational.

Proof. In view of Lemma (II) this follows from [2, 3].

Note (III�). In the next two Lemmas we continue to give special attention to the
� D 1 case. Here we make some definitions for that case. For any nonnegative
integer j we let t 0.j / be the unique member of f0; 1g different from t.j /. By the

quadratic expansion of any .z0; z1/ 2 L2 nL
2

along .V; K/ we mean the sequence

.z0j ; z1j ; c0j ; c1j ; t.j /; t 0.j //0�j <1 (9])

where .z0j ; z1j ; c0j ; c1j ; t.j //0�j <1 is the � D 1 version of .0]/; moreover, by the
supplement of the quadratic expansion we mean the � D 1 version of .8]/, i.e.,

.	.0; j /; 	.1; j /; p.u/; u.i//
0�j <1;1�u<b�;0�i<b�

: (10])

Since the euclidean algorithm played a crucial role in it, the .V; K/-expansion

.zj ; ej ; pj ; Bj .�/; �.i/; �.j //�2Z;0�j ��;0�i�� (��)

introduced in (4.1) is called the euclidean expansion of .z0; z1/ along .V; K/, and
.���/ is called the mixed euclidean expansion of .z0; z1/ along .V; K; T /. In Lemma
(IV) we shall give a stand alone description of the quadratic expansion. In Lemma
(V) we shall restate the � D 1 case of Lemma (I). In Part II, we shall compare the
quadratic expansion with the euclidean expansion.

Lemma (IV). Assuming � D 1, for the quadratic expansion .9]/ of .z0; z1/ along

.V; K/ with .z0j ; z1j / 2 L2 n L
2

for 0 � j <1, we have the following.
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(IV.1) Recalling that for every j 2 N we have .z0j ; z1j / 2 L2 n L
2
, we can para-

phrase the characterizations .3]/–.5]/ of t.j / and 	.t; j / by saying that
t.j / 2 f0; 1g with zt.j /j 62 L and with 	.t.j /; j / D 1 with 	.t 0.j /; j / 2
f0; 1;�1g satisfy (1)–(8) stated below.

(1) If 0 < W.z1j / � W.z0j / then t.j / D 1 and 	.t 0.j /; j / D 1.
(2) If 0 < W.z0j / < W.z1j / then t.j / D 0 and 	.t 0.j /; j / D 1.
(3) If W.z1j / < 0 > W.z0j / then t.j / D 1 and 	.t 0.j /; j / D 1.
(4) If W.z1j / > 0 > W.z0j / then t.j / D 1 and 	.t 0.j /; j / D �1.
(5) If W.z1j / < 0 < �W.z1j / � W.z0j / then t.j / D 1 and 	.t 0.j /; j /

D �1.
(6) If W.z1j / < 0 < W.z0j / < �W.z1j / then t.j / D 0 and 	.t 0.j /; j /

D �1.
(7) If W.z1j / ¤ 0 D W.z0j / then t.j / D 1 and 	.t 0.j /; j / D 0.
(8) If W.z1j / D 0 ¤ W.z0j / then t.j / D 0 and 	.t 0.j /; j / D 0.

(IV.2) Next the definitions .1]/ and .2]/ can be paraphrased by saying that for
0 � j <1 and 0 � t � 1 we have

zt;j C1 D

8

ˆ

ˆ

<

ˆ

ˆ

:

ztj with ctj D 1 if t D t.j /

ztj with ctj D 0 if t D t 0.j / and W.ztj / ¤ 0

ztj � ctj 2M.V / with ctj ¤ 0 if t D t 0.j / and W.ztj / D 0

where
ztj D ztj

z.t;j /

t.j /j

:

(IV.3) To paraphrase definition .6]/ of the flipping set ˆ], recalling that

ˆ] D the set of all j 2 NC such that t.j � 1/ ¤ t.j /.

and
b
 D card.ˆ]/C 1 2 NC [ f1g

we supplement the definition of p.u/
1�u<b�

by the convention

p.�1/ D p.0/ D 0

and we note that now the members of ˆ] [ f0g are labelled as

p.�1/ D p.0/ D 0 < p.1/ < p.2/ < : : : ifb
 D 1

and

p.�1/ D p.0/ D 0 < p.1/ < � � � < p.b
 � 1/ ifb
 2 NC:
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(IV.4) To paraphrase definition .7]/ of the translation set ‰], recalling that

‰] D

8

ˆ

ˆ

<

ˆ

ˆ

:

the set of all j 2 N such that

for every t 2 f0; 1g with ztj ¤ 0 we have
ztj

zn.t;j /

t.j /j

2 V nM.V / for a (unique) n.t; j / 2 Z

and
b� D card.ˆ] \‰]/ 2 N [ f1g

we supplement the definition of u.i/
0�i<b�

by the convention

u.�1/ D 0

and we note that now we have the integer sequences

u.�1/ D 0 < u.0/ < u.1/ < : : : if b� D1

and
u.�1/ D 0 < u.0/ < � � � < u.b� � 1/ if b� 2 N

while the members of .ˆ] \‰]/[ f0g are labelled as

p.u.�1// D 0 < p.u.0// < p.u.1// < : : : if b� D 1

and

p.u.�1// D 0 < p.u.0// < � � � < p.u.b� � 1// if b� 2 N:

Lemma (V). Assume � D 1. Let j 2 ˆ] and j < j � 2 NC [ f1g be such that
for all j 0 2 N with j < j 0 < j � we have j 0 62 ˆ], and if j � ¤ 1 then we have
j � 2 ˆ]. Then we have the following.

(V.1) For all j 0 2 N with j � j 0 < j � we have t.j 0/ D t.j / and zt.j 0/j 0 D zt.j /j .
If j � ¤1 then we have t.j �/ D t 0.j /.

(V.2) If j � D 1 then we have 1 < b
 < 1 and p.b
 � 1/ D j . If j � ¤ 1 then
for a unique integer u with 1 � u < uC 1 < b
 we have p.u/ D j < j � D
p.uC 1/.

(V.3) Assume j 62 ‰]. Then for 0 � i <b� we have j ¤ p.u.i//. Moreover, either:
zt 0.j /j D 0, or: zt 0./j ¤ 0 with zt 0.j /j =zn

t.j /j
62 V nM.V / for all n 2 Z. In

the “either” case, for t D t 0.j / and for all j 0 2 N with j � j 0 < j �, we
have ctj 0 D 0 D ztj 0 . In the “or” case, for t D t 0.j / and for all j 0 2 N with
j � j 0 < j �, we have

ctj 0 D 0 with 	.t; j 0/ D 	.t; j / and ztj D z.t;j /.j 0�j /

t.j /j
ztj 0 :
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(V.4) Assume j 2 ‰]. Then j D p.u.i// for a unique i with 0 � i <b�. Moreover,
if j � D 1 then for t D t 0.j /, whereas if j � ¤ 1 then for t D t.j �/, for all
j 0 2 N with j � j 0 < j � we have

ztj�
X

j ��<j 0

ct�z.t;j /.��j C1/

t.j /j
D z.t;j /.j 0�j /

t.j /j
ztj 0 with 	.t; j 0/ D 	.t; j /

(i)
which may be viewed as a Taylor Expansion with Remainder discussed in
(9.5). If j � D1 then (i) gives rise to the equation

ztj D
X

j ��<j �

ct�z.t;j /.��j C1/

t.j /j
(ii)

which may be thought of as an infinite Taylor Expansion discussed in (9.2),
with a suitable interpretation of the equality; see (9.3) for the case when V is
a DVR.

(V.5) Assuming j 2 ‰] and letting � D f� 2 N W j � � < j � with ct� ¤ 0g we
have the following. If j � D 1 and t D t 0.j �/ then letting �1 < � � � < �w or
�1 < �2 < : : : be the finitely many or infinitely many values of � 2 � and
putting �0 D j � 1 we have

n.t; �v C 1/ D �vC1 � �v

for 0 � v < w or 0 � v < 1 respectively. If j � ¤ 1 and t D t.j �/ then
letting �1 < � � � < �w be the values of � 2 � and putting �0 D j � 1 we have

n.t; �v C 1/ D �vC1 � �v

for 0 � v < w.

Note on inversion and invariance (VI). The three Inversion Theorems of Sects. (3.7)
and (3.9), the two Invariance Theorems of Sect. 4, and the above quadratic trans-
formation Lemmas (I)–(V) of this section are refinements of the results of my
papers [2, 4]. More about all this in Part II.

6 Dicritical Divisors

The concept of dicritical divisors arose in the topological study of a map C
2 ! C

given by a polynomial f 2 kŒX; Y � n k when k is the field of complex num-
bers. The term dicritical divisor seems to have been introduced by Mattei and
Moussu [27], and was then used by Artal-Bartolo [16], Eisenbud–Neumann [21],
Fourrier [22], Le–Weber [26], Neumann [29], Rudolph [31], and others. On the
other hand, Pierrette Cassou-Noguès [18, 19] and Neumann–Norbury [30] use the
alternative term horizontal divisors.
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In Definition (6.1) we introduce the algebraic incarnation of dicritical divisors.
In Note (6.2) we pay a heuristic visit to the original topological version.

The dicritical divisors may be viewed as a nonempty finite set of univariate poly-
nomials strategically (and quite algebraically) located inside the belly of a randomly
chosen bivariate polynomial. It is certainly amazing that, until 1980, no endoscopic
examination of bivariate polynomial bellies (Daffine plane curve bellies) revealed
their existence. We have stressed “and quite algebraically” to indicate that in our
treatment we do not use any topology or analysis which, under the pretext of geo-
metric viewpoint, only muddies the water. Of course, it may be admitted that one
person’s clarity can be another person’s muddying of waters and vice versa. Posi-
tively speaking, muddying may amount to stirring!!

In Note (6.6) I shall introduce the dicritical divisor theory of local rings and
compare it to the analogous theory of quasirational and nonquasirational surface
singularities coming out of my papers [2, 8].

Preamble for (6.1)–(6.4). Let us consider the bivariate polynomial ring B D kŒX; Y �

over a field k and let L D k.X; Y / D QF.B/ where QF.B/ denotes the quotient
field of B . Given any

f D f .X; Y / 2 B n k

of (total) degree N , by Bf we denote the localization of B at the multiplicative
set kŒf ��, and we note that then Bf is the affine domain k.f /ŒX; Y � over the field
k.f / with QF.Bf / D k.X; Y / D L and we have trdegk.f /L D 1. Now a local-
ization of a UFD is a UFD, and irreducibles in the localization are essentially the
same as irreducibles in the original UFD except that the localization has more units.
Consequently Bf is a one-dimensional UFD and hence it is a DD as well as a PID.
It follows that Bf is the affine coordinate ring of an irreducible nonsingular affine
plane curve over k.f /.

Note that D.L=k/ is the set of all valuation rings V with QF.V / D L and k � V

such that trdegkH.V / D 1 where HV W V ! H.V / D V=M.V / is the residue
class epimorphisms; moreover, every member of D.L=k/ is a DVR, and I.B=k/ is
the set of all V 2 D.L=k/ with B 6� V . Also note that D.L=k.f // is the set of all
valuation rings V with QF.V / D L and k.f / � V ¤ L; moreover, every member
of D.L=k.f // is a DVR, and I.Bf =k.f // is the set of all V 2 D.L=k.f // with
Bf 6� V .

Definition (6.1). For every V 2 D.L=k.f // we put

deg.V / D degf V D ŒH.V / W k.f /� 2 NC

and we call this the f -degree of V , or briefly the degree of V . Moreover, for every
V 2 I.Bf =k.f // we put

ind.V / D indf V D �min.ordV X; ordV Y / 2 NC
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and we call this the f -index of V , or briefly the index of V . Finally we put

I.B=k; f / D
(

the set of all V 2 I.B=k/ at which

f is residually transcendental over k

and we observe that

I.B=k; f / D I.Bf =k.f // D a nonempty finite set. (�)

Now labelling the distinct members of I.B=k; f / as V1; : : : ; Vm, we call them the
dicritical divisors of f (in B). In Part II we shall show that by the “sigma-eeye-feye”
formula from extension theory of DVRs we have

X

1�i�m

ind.Vi /deg.Vi / D N (�)

and, if k is algebraically closed and is of characteristic zero, then for 1 � i � m

8

ˆ

ˆ

<

ˆ

ˆ

:

H.Vi / D HVi
.k.ti // for some ti 2 Vi so that HVi

.f / D HVi
.Pi .ti //

where Pi .Z/ 2 kŒZ� n k is a univariate polynomial

whose Z-degree equals deg.Vi/

(��)

In the proof we shall use Newton’s fractional power series expansion. In Part II we
shall also show that the characteristic zero hypothesis can be removed by replacing
Newton expansion by Hamburger-Noether expansion. Note that the integers m and
deg.V1/; : : : ; deg.Vm/ depend only on f as a element of the ring B and not on
the particular generators X; Y of that ring, but the integers ind.V1/; : : : ; ind.Vm/ do
depend on X; Y , as will be shown in Example (6.5).

Note (6.2). Momentarily assuming k to be the complex number field C, the dicriti-
cal divisors may be “heuristically explained” thus. The polynomial map C

2 ! C
1

which is given by .a; b/ 7! f .a; b/ can be extended to a rational map P 2 ! P 1

of the complex projective plane to the complex projective line. But as a “rational
map” it may have points of indeterminacy. We get rid of these by “blowing up” P 2

to get a compact complex nonsingular surface W on which the map f extends to
a well defined map � W W ! P 1. Just as P 2 is obtained by adding one projec-
tive line (called the line at infinity) to C

2, the surface W is obtained by adding a
finite number of projective lines P 1

1 ; : : : ; P 1
n to C

2. Consideration of connectivity
tells us that, depending on the particular line P 1

i , the restriction of the map � to P 1
i

maps it either onto the entire target line P 1 or to a single point of it, i.e., it is either
surjective or constant. Those P 1

i for which it is surjective are called dicritical divi-
sors. By suitably relabelling, we may assume that P 1

1 ; : : : ; P 1
m are dicritical while

P 1
mC1; : : : ; P 1

n are not. It can be shown that m is positive. Moreover, it can also
be shown that by deleting a suitable point from a dicritical P 1

i and also deleting a
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suitable point from the target P 1, the resulting map C
1
i ! C

1 is given by a univari-
ate polynomial Pi .Z/ of some degree di ; note that di is the degree of the ramified
covering P 1

i ! P 1. By rotating the axes, i.e., by making a homogeneous linear
transformation, we may assume that f is monic of degree N in Y . It turns out
that then

X

1�i�m

ei di D N

where the positive integer ei is the ramification index coming out of the Dedekind
Domain theory which is the same thing as the Riemann Surface theory.

As a side remark recall that f is a field generator means k.f; g/ D k.X; Y / for
some rational function g 2 k.X; Y /; it turns out that if the polynomial f is a field
generator then the complementary generator g can be chosen to be a polynomial iff
di D 1 for some dicritical P 1

i . Without assuming f to be a field generator, how do
we show that the dicritical divisors are independent of the particular blow up W and
how do we algebracize them?

To consider the independence, let � W W ! P 1 be any other blow up, and label

the projective lines in W n C
2 as P

1

1; : : : ; P
1

m; P
1

mC1; : : : ; P
1

n so that the first m

are dicritical while the remaining ones are not. It can be shown that there exists a
blow upe� W eW ! P 1 together with maps � W eW ! W and � W eW ! W such that
� � D e� D � � . Label the projective lines in eW nC2 as eP 1

1; : : : ;eP 1

em
;eP 1

emC1
; : : : ;eP 1

en
so that the first em are dicritical while the remaining ones are not. It can be shown
that em D m D m and after suitable labelling, for 1 � i � m, we have �.bP 1

i / D P 1
i

and �.bP 1
i / D P

1

i with induced bijections eP 1
i ! P 1

i and eP 1
i ! P

1

i .
Now let us proceed to the algebraization which will actually reprove the indepen-

dence. Recall that: for any finitely generated field extension L of a field K we have
put D.L=K/ D the set of all prime divisors of L=K , i.e., the set of all DVRs V with
quotient field QF.V / D L such that K � V and trdegKH.V / D .trdegKL/ � 1

where H.V / D V=M.V / D the residue field of V ; for any affine domain A over K

with QF.A/ D L we have put I.A=K/ D the set of all infinity divisors of A=K , i.e.,
the set of all V 2 D.L=K/ such that A 6� V . Henceforth, we consider the bivariate
polynomial ring B D kŒX; Y � over a field k and we let QF.B/ D L D k.X; Y /

and we put I.B=k; f / D the set of all those members V of I.B=k/ for which f is
residually transcendental over k. Let Vi be the local ring of P 1

i on W . Then clearly
Vi 2 I.B=k/ for 1 � i � n, and we have: Vi 2 I.B=k; f /, 1 � i � m.

It can also be shown that I.B=k/ D the totality of the local rings of the projec-
tive lines on various blow ups of P 2 which are in the complements of C

2. At any
rate, I.B=k; f / is a nonempty finite set which we have defined without any aid of
blowing ups, and this is our algebraic definition of dicritical divisors of f . Since
I.B=k; f / does correspond to the geometrically defined dicritical divisors on any
blow up of P 2 on which the rational map P 2 ! P 1 becomes well-defined, this
reproves the independence in a more succinct manner; the geometric proof sketched
in the paragraph before last was rather fuzzy at best. This is the beauty of the ap-
proach by “models” which are collections of local rings and so on; for details see
the Algebra and Geometry books [9, 12].
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Now the I.B=k; f / from surface theory coincides with the I.Bf =k.f // from
curve theory, where we have put Bf D k.f /ŒX; Y �. Note that Bf can be identified
with the affine coordinate ring of the generic curve f ] D 0 where we take an in-
determinate u over k and put f ] D f � u. Substituting f for u, this generic curve
acquires the confusing equation f D f . The confusion (like the Maya covering the
Brahma) can be removed by using two sets of variables giving f .X; Y / D f .X; Y /.
Indeed, experience shows that such f D f arguments provide exceptionally power-
ful tools! Although the curve f D 0 may be reducible and may even have multiple
components and may be full of singularities, but miraculously the curve f ] D 0 is
irreducible and nonsingular. The best way to see this is to realize Bf as the local-
ization of B at the multiplicative subset kŒf �� D the set of all nonzero elements in
kŒf �. Of course, the nonsingularity of f ] is only at finite distance, i.e., in general it
will have singularities at infinity.

In any case, I.Bf =k.f // is nothing but the set of all branches of f ] at infinity.
To deal with them we put F.X; Y / D f .X�1; Y / and F ].X; Y / D F.X; Y / � u.
Now

F.X; Y / D Y N C
X

1�j �N

Aj .X/Y N �j where Aj .X/ 2 k.X/ � k..X//:

The branches of f ] at infinity are the branches of F ] which in turn are the irre-
ducible factors in k.u/..X//ŒY � written as

F ].X; Y / D
Y

1�i�m

F
]
i .X; Y / with F

]
i .X; Y / D Y Ni C

X

1�j �Ni

A
]
ij.X/Y Ni �j

where A
]
ij.X/ 2 k.u/..X//. Yes, it is not an accident that this is the same m as the

number of dicritical divisors V1; : : : ; Vm. Indeed, after suitable labelling, there is a
natural isomorphism �i of Vi onto the DVR V

�
i given by the branch F

]
i .

Basically, assuming k to be an algebraically closed field of characteristic zero,
we shall end up finding t

�
i in an algebraic closure of k.u/ such that H.V

�
i / D k.t

�
i /

and u D Pi .t
�
i / where Pi .Z/ 2 kŒZ� is the univariate polynomial of degree di we

spoke of in the first paragraph of this Note. Upon letting ti D ��1.t�/ we would
then get ti 2 Vi such that H.Vi / D k.ti / and f D Pi .ti /.

To find t
�
i we use Newton’s polygonal method to solve the equation F

]
i .X; Y /D 0

and thereby expand Y as a fractional meromorphic serieseY in X , and also to expand
X as a fractional meromorphic series eX in Y . Now we use the inversion formula
given in [4] to compare these two expansions. Details in Part II.

Philosophy (6.3). The importance of polynomials derives from the fact that they
can be viewed as functions in two different ways. To the algebraist, a bivariate poly-
nomial

f D f .X; Y / D
X

iCj �N

aijX
iY j 2 kŒX; Y � n k with aij 2 k
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of (total) degree N is a function N
2 ! k given by .i; j / 7! aij. To the analyst, who

prefers his field to be the complex number field C, it is a map C
2 ! C given by

.˛; ˇ/ 7! f .˛; ˇ/. Finally, to the geometer, who is an animal linking the analyst
with the algebraist, it defines a plane curve C W f .X; Y / D 0; if k is algebraically
closed then the points of C belong to k2; if k is not algebraically closed then it is
better to let the points of C live in spec.kŒX; Y �/.

Before he proceeds to “compactify” C
2 and C, the analyst thinks of the “fibers”

of the map C
2 ! C above various values c of f , and then he may perform catas-

trophic tortuous surgery, and so on.
In place of this, as algebraists (or algebraic-geometers) we take an indeterminate

u over k.X; Y / and think of the “generic curve” f ] D 0 where

f ] D f ].X; Y / D f .X; Y / � u 2 k.u/ŒX; Y �:

By “identifying” u with f , i.e., by the shocking (= absurd sounding but surprisingly
correct and extremely useful) equation f D f , we can take Bf to be the affine
coordinate ring of f ]. As noted above, Bf is a PID and hence f ] is an irreducible
nonsingular affine plane curve. Instead of saying that we can take Bf to be the affine
coordinate ring of f ], let us be more pedantic and set up an isomorphism between
the two. Now the affine coordinate ring B

]

f
of f ] is given by

Hf W B] D k.u/ŒX; Y �! k.u/ŒX]; Y ]� D B
]

f

where Hf is a k.u/-epimorphism which sends .X; Y / to .X]; Y ]/ and for whose
kernel we have

ker.Hf / D f ]B]:

Taking indeterminates .X; Y / over k.X; Y /, we view Bf as an affine coordinate
ring by considering the k.f /-epimorphism

H f W Bf D k.f /ŒX; Y �! k.f /ŒX; Y � D Bf

which sends .X; Y / to .X; Y / and for whose kernel we have

ker.H f / D .f .X; Y / � f .X; Y //Bf :

Also we have an obvious k-isomorphism

bH f W B] D k.u/ŒX; Y �! k.f /ŒX; Y � D Bf

which sends .u; X; Y / to .f; X; Y /. Now the said isomorphism

eH f .D restriction of H
]

f
/ W Bf ! B

]

f



Inversion and Invariance of Characteristic Terms: Part I 149

is the unique isomorphism such that eH f H f
bH f D Hf , i.e., such that the obvious

rectangle

Bf D k.f /ŒX; Y �
eH f .Drestriction of H

]

f
/

���������������! B
]

f
D k.u/ŒX]; Y ]�

H f

x

?

?
Hf

x

?

?

Bf D k.f /ŒX; Y �
bH f ���������������� B] D k.u/ŒX; Y �:

commutes. Moreover, the said isomorphism extends to an isomorphism

H
]

f
W L D QF.Bf / D k.X; Y /! k.u/.X]; Y ]/ D QF.B

]

f
/ D L

]

f

of the function fields.
To distinguish between Bf =k.f / (resp: L=k.f /) and B

]

f
=k.u/ (resp:

L
]

f
=k.u/) we may call them the affine coordinate ring (resp: function field) of

the intrinsic generic curve and the extrinsic generic curve, respectively.
The affine coordinate ring Bf;k of f is given by the k-epimorphism

Hf;k W B D kŒX; Y �! Bf;k D kŒx; y� D Bf;k � k.x; y/ D Lf;k

which sends .X; Y / to .x; y/ and for whose kernel we have

ker.Hf;k/ D fB

where Lf;k is the total quotient ring of Bf;k , which means the quotient field if f is
irreducible (in B).

Assuming f to be irreducible, I.Bf;k=k/ is a nonempty finite subset of
D.Lf;k=k/ which is a set of DVRs; for every V 2 D.Lf;k=k/ we put

degf;k.V / D ŒH.V / W k� 2 NC

and we call this is the .f; k/-degree of V ; for every V 2 I.Bf;k=k/ we put

indf;kV D �min.ordV x; ordV y/ 2 NC

and we call this the .f; k/-index of V .
Note that, without assuming f to be irreducible, for every V 2 D.L=k.f /, upon

letting V ] D H
]

f
.V /, we have

V ] 2 D.L
]

f
=k.u// with deg.V / D deg.f ];k.u// V ]
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and if V 2 I.Bf =k.f // then we have

V ] 2 I.B
]

f
=k.u// with ind.V / D ind.f ];k.u//V

]:

Remark on infinity (6.4). Continuing the discussion of (6.3), without assuming f

to be irreducible, to take care of points at infinity, we introduce two different incar-
nations Pf D Pf . PX; PY / and Rf D Rf . RX; RY / of f thus.

We write

f .X; Y / D
X

0�l�N

fl.X; Y / with fl.X; Y / D
X

iCj Dl

aijX
i Y j

where fl is either zero or is homogeneous of degree l . We call fN D fN .X; Y / the
degree form of f which we denote by defo.f / or f C. Now we let

. PX; PY / D .1=X; Y=X/ and PB D kŒ PX; PY �

with

Pf . PX; PY / D PXN f .1= PX; PY = PX/ D
X

0�l�N

PXN �lfl.1; PY / 2 kŒ PX; PY �

and
. RX; RY / D .X=Y; 1=Y / and RB D kŒ RX; RY �

with

Rf . RX; RY / D PY N f . PX= PY ; 1= PY / D
X

0�l�N

PY N �l fl. PX; 1/ 2 kŒ RX; RY �

and we note that Pf and Rf are polynomials of degree N .
Let L1 consist of X together with all irreducible homogeneous polynomials

in kŒX; Y � n k which are monic in Y . We call L1 the line at infinity (over k). If
Q 2 L1 n fXg is of degree 1 then Q D Y � ˇX where ˇ 2 k and with Q we
associate the triple .1; ˇ; 0/ 2 k3 by putting Q.1; ˇ; 0/ D Q. With X associate
the triple .0; 1; 0/ by putting Q.0; 1; 0/ D X ; note that Q.1; 0; 0/ D Y . Thinking
of the usual projective line (over k) as consisting of all triples .˛; ˇ; 0/ 2 k3 such
that if ˛ ¤ 0 then ˛ D 1 and if ˛ D 0 then ˇ D 1, the mapping which sends
.˛; ˇ; 0/ to Q.˛; ˇ; 0/ gives a bijection of the said line onto the set of degree 1
points of L1. For any Q 2 L1, we let e.f; Q/ be the largest nonnegative integer
such that Qe.f;Q/ divides f C in B; we call e.f; Q/ the exponent of Q in f . Clearly
fQ 2 L1 W e.f; Q/ > 0g is a nonempty finite set and labelling its distinct members
which are different from X as fQ1; : : : ; Qpg and letting Q0 D X we have

f C D 0
Y

0�i�p

Q
ei

i with ei D e.f; Qi /
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and hence, as a case of Bézout’s theorem, we get the obvious equation

X

0�i�p

eidi D N with di D deg.Qi /

which says that f and L1 meet in N points counted properly.
Recall that for any finite number of elements x1; : : : ; xr in an overfield of k we

have defined

W.kI x1; : : : ; xr / D
[

1�j �r with xj ¤0

V.kŒx1=xj ; : : : ; xr=xj �/

and for any subset J of a domain S let us put

V.S; J / D fR 2 V.S/ W JR ¤ Rg:

Also recall that any V 2 D.L=k/ dominates a unique member of W.kI x1; : : : ; xr /

which is called the center of V on W.kI x1; : : : ; xr /.
We define the projective plane and the projective line over k by putting

P2
k DW.kIX; Y; 1/ with P1

k DW.kIX; 1/

and we define the affine plane and the affine line over k by putting

A2
k D V.B/ with A1

k D V.kŒX�/

and we define the projective point and the affine point over k by putting

P0
k D A0

k D fkg

and we note that then
P2

k D V.B/ [V. PB/ [V. RB/

and by putting

PA1
k D V. PB; . PX PB// with RA0

k D V. RB; . RX; RY / RB/

we have the disjoint unions

P2
k D A2

k

a PA1
k

a RA0
k with P1

k D A1
k

a

A0
k :

Informally speaking, RA0
k

is the set consisting only of the local ring of the origin
in the . RX; RY /-plane, and so we may identify RA0

k
with A0

k
. Again informally speak-

ing, PA1
k

is the line PX D 0 in the plane V. PB/; formally speaking, to identify PA1
k

with the X -line A1
k
D V.kŒX�/, considering the k-epimorphism PB ! kŒX� given
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by . PX; PY / 7! .0; X/, and remembering the commutativity of epimorphism and lo-
calization, we note that R 7! R=. PXR/ gives a bijection PA1

k
! A1

k
. Thus PB is the

preferred chart to study the line at infinity in P2
k

, i.e.,

P2
k nA2

k D PA1
k

a RA0
k :

To match this line at infinity with L1, first we define the local ring R.L1/ of L1
by putting

R.L1/ D PB PX PB
and noting that this is the unique one-dimensional member of PA1

k
; it can also be

characterized as the DVR R1 of L=k for which

ordR
1

g D � deg.g/ for all g 2 B:

Next we define the local ring R.Q/ of Q 2 L1 by putting

R.Q/ D
8

<

:

RB. RX; RY / RB if Q D X

PBM where M D . PX; Q=Xdeg.Q// PB if Q ¤ X

and we note that Q 7! R.Q/ gives bijections fXg ! RA0
k

and L1 n fXg ! PA1
k

. To
complete the picture, we define the local ring R.Q/ of any Q 2 spec.B/ by putting

R.Q/ D BQ

so that Q 7! R.Q/ gives a bijection spec.B/! A2
k

. Thus,

Q 7! R.Q/ gives a bijection SP 2
k ! P2

k

where by definition

the spectral projective plane SP 2
k D spec.B/

a

L1
a

fL1g:

Moreover, for any .˛; ˇ; 1/ 2 k3 we put

Q.˛; ˇ; 1/ D .X � ˛; Y � ˇ/B 2 spec.B/

and we note that then

.˛; ˇ; �/ 7! R.Q.˛; ˇ; �// gives a bijection UP 2
k ! RP 2

k
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where by definition

the usual projective plane UP 2
k D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

the set of all .˛; ˇ; �/ 2 k3

such that: if � ¤ 0 then � D 1,

if � D 0 ¤ ˛ then ˛ D 1,

if � D 0 D ˛ then ˇ D 1,

and

the rational projective plane RP 2
k D

8

ˆ

ˆ

<

ˆ

ˆ

:

the set of rational points of P2
k
;

i.e., 2-dimensional members of P2
k

which are residually rational over k.

To summarize, we have maps

UP 2
k

Q�����! SP 2
k

R�����! P2
k

with im.QR/ D RP 2
k

where the first injective map is .˛; ˇ; �/ 7! Q.˛; ˇ; �/ and the second bijective map
is Q 7! R.Q/.

Let us observe that I.B=k; f / � I.B=k/ n fR1g, and moreover the center of
any V 2 I.B=k/ n fR1g on P2

k
is the two dimension regular local domain R, with

quotient field L and ŒH.R/ W k� <1, described thus:
.�/ R D kŒx; y�J with x 2M.R/ nM.R/2 where

.x; y/ D .1=X; Y=X/ or .x; y/ D .1=Y; X=Y / according as X 62 V or x 2 V

and J is the maximal ideal in kŒx; y� generated by x and a nonconstant irreducible
monic polynomial �.y/ 2 kŒy�. Furthermore, if V 2 I.B=k; f / then V is a dicriti-
cal divisor of f in R with f xN 2 R and we have

FN .1; y/ 2 �.y/kŒy� or FN .y; 1/ 2 �.y/kŒy� according as X 62 V or x 2 V .

By Lemma (II) of Sect. 5, it follows that if V 2 I.B=k; f / then the relative
algebraic closure k0 of k in H.V / is a finite algebraic extension of k and H.V / is a
simple transcendental extension of k0; we say that f is residually a polynomial over
B relative to V to mean that f 2 V and HV .f / 2 k0Œt � n k0 for some t 2 H.V /

with H.V / D k0.t/.
Further discussion in Part II.

Example (6.5). To indicate the dependence of N and m on f , let us write Nf and
mf for them. Then clearly mf and degf .V1/; : : : ; degf .Vm/ depend only on f as
an element of B and not on the particular generators X; Y of B . This can be para-
phrased by letting Autk.B/ be the group of all k-automorphisms of B and saying
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that for every � in Autk.B/ we have that: (i) m�.f / D mf ; (ii) �.Vi /1�i�m are the
dicritical divisors of �.f /; and (iii) deg�.f /.�.Vi // D degf .Vi / for 1 � i � m.
Let us call f a ring generator to mean that B D kŒf; g� for some g in B . Then it is
clear that f is a ring generator iff N�.f / D 1 for some � in Autk.B/. Therefore by
(6.1).�/, it follows that:

f is a ring generator, mf D 1 D degf .V1/) indf .V1/ D Nf .

Now to exhibit the dependence of indf .Vi / on X; Y , it suffices to take f to be the
ring generator Y � XN with any N 2 NC and noting that indf .V1/DNf DN

but ind�.f /.�.V1//DN�.f /D 1 where � in Autk.B/ is given by .X; Y / 7!
.X; Y CXN /.

Note (6.6). Let R be a two dimensional regular local domain. Now given any
z 2 QF.R/�, by a dicritical divisor of z in R we mean a prime divisor V of R such
that z is residually transcendental over R relative to V . By Lemma (II) of Sect. 5,
we know that the residue field K� D H.V / of any prime divisor V of R is of the
form K� D K 0.t/ where the finite algebraic field extension K 0 of K D HV .R/

is the relative algebraic closure of K in K� and the element t is not algebraic over
K 0. Assuming z 2 QF.R/ to be residually transcendental over R relative to V , after
writing

HV .z/ D P.t/

Q.t/

where P.t/; Q.t/ are nonzero members of K 0Œt � having no nonconstant common
factor in K 0Œt �, we define the relative polar degree rpdeg.V;t/z of z relative to .V; t/

to be the number of distinct nonconstant irreducible monic factors of Q.t/ in K 0Œt �.
Note that

max.degt P.t/; degt Q.t//

is a positive integer which is independent of t as long as K� D K 0.t/; we denote this
positive integer by resdeg.V;R/z and call it the residue degree of z relative to .V; R/.
We also define the polar degree pdegV z of z relative to V to be the minimum of
rpdeg.V;t/z taken over all t 2 K� with K� D K 0.t/. We say that z is residually
a polynomial over R relative to V to mean that pdegV z D 0, i.e., to mean that
HV .z/ 2 K 0Œt � nK 0 for some t 2 K� with K� D K 0.t/; note that for any such t we
have resdeg.V;R/z D degt P.t/; moreover if t 0 and P 0.t 0/ are any other such values
of t and P.t/ then P 0.t 0/ D aP.bt C c/ for some a; b; c in K 0 with a ¤ 0 ¤ b.

.��/ As an analogue of (6.1).�/ we note that any z 2 QF.R/� has at most a finite
number of dicritical divisors in R. Moreover, this number is zero iff either z 2 R

or 1=z 2 R. [To see this, first observe that if z has a dicritical divisor in R then
obviously z 62 R and 1=z 62 R. So henceforth assume that z 62 R and 1=z 62 R. Now
R is normal because it is regular, and hence by the bracketed proof on pages 75–76
of [3] we find an epimorphism h W RŒz�! H.R/ŒZ� with indeterminate Z such that
h.z/ D Z and h.x/ D HR.x/ for all x 2 R. It follows that M.R/RŒz� is a prime
ideal in RŒz� with .M.R/RŒz�/ \ R D M.R/. Let S be the localization of RŒz� at
M.R/RŒz� and let T be the integral closure of S in QF.R/. By Lemma (T54) on
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page 268 of [12] we have dim.S/ D 1 and hence by Theorem (4.10) on page 118 of
Nagata [28] we see that

T D V1 \ � � � \ Ve

where e is a positive integer and V1; : : : ; Ve are pairwise distinct DVRs with quotient
field QF.R/. Clearly V1; : : : ; Ve are exactly all the dicritical divisors of z in R.]

Given any F; G in R�, by a dicritical divisor of .F; G/ in R we mean a dicritical
divisor of F=G in R. The above terms relative polar degree rpdeg, residue degree
resdeg, polar degree pdeg, and residually a polynomial, are now applicable with z
replaced by .F; G/.

Geometrically speaking, we may visualize R to be the local ring of a simple point
of an algebraic or arithmetical surface, and think of z as a rational function at that
simple point, and .F; G/ as the pencil of curves F D uG at that point. Let us call
the pencil special to mean that G equals a unit times a power of a regular parameter,
i.e., GR D xmR for some x 2M.R/ nM.R/2 and m 2 N.

By (6.4)(�) we see that a bivariate polynomial f 2 B n k gives rise to a special
pencil in each relevant R, and hence the following Local Ring Proposition LRP
would imply the following Polynomial Ring Proposition PRP.

LRP says that if .F; G/ is any special pencil in a two dimensional regular local
ring R then F=G is residually a polynomial over R relative to any dicritical divisor
V of F=G in R.

PRP says that if f is any nonconstant member of a bivariate polynomial ring
B D kŒX; Y � then f is residually a polynomial over B relative to any dicritical
divisor of f in R.

Let A be a two-dimensional affine domain over an algebraically closed field and
let R be the localization of A at a maximal ideal. Now .��/ says that if R is regular
then, for any rational function

z D F=G

with F ¤ 0 ¤ G in R, z has only a finite number of dicritical divisors in R;
morover, if the pencil .F; G/ is special then z is residually a polynomial over R

relative to every dicritical divisor of z in R. In view of the results of [2, 8], it can
be shown that all except a finite number of prime divisors V of R are residually
simple transcendental over R; moreover, if R is regular then the said finite number
is zero. This is the analogue from the theory of quasirational singularities we spoke
of in the preamble of this section. Thus a (possibly singular) point of a surface in the
quasirational theory is replaced by a rational function at a simple point of a surface
in the dicritical theory.

Needless to say that a simple point in the former theory is replaced by a special
pencil in the latter theory. Likewise, residually simple transcendental in the former
theory is replaced by residually a polynomial in the latter theory.

As a final philosophical comment, I wish to observe that the LHS I.B=k; f /

of the equation .6:1/.�/ represents points at infinity of the projective plane while
its RHS I.Bf ; =k.f // represents the branches at infinity of a generic plane curve.
Thus the LHS stands for the projective viewpoint while the RHS stands for the
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meromorphic viewpoint. Although, in [6, 7, 13–15], I have been beating the drums
of the meromorphic viewpoint, it has suddenly dawned on me that the difference
between these two methods is merely a matter of semantics!!

More discussion in Part II.

7 Field Generators

Consider the bivariate polynomial ring kŒX; Y � over a field k. A polynomial
f .X; Y / 2 kŒX; Y � is a field generator means for some g D g.X; Y / 2 k.X; Y /

we have k.X; Y / D k.f; g/; here the complementary generator g may or may
not be a polynomial. In his 1974 Purdue Ph.D. Thesis [25], Jan gave an example
of a field generator which has no complementary polynomial field generator. In
Theorem (7.6) I shall give a criterion for the existence of a complementary poly-
nomial field generator. Recently, Pierrette Cassou-Noguès [18, 19] ascribed this
criterion to Russell [32, 33], and she used it to revisit Jan’s example. However, I
shall give a short, almost obvious, proof of (7.6) which is completely independent
of the rest of this paper. The criterion (7.6) can be paraphrased by saying that a field
generator f has a complementary polynomial field generator iff f has a dicritical
divisor of degree 1.

Note that if a polynomial f is a field generator then the generic curve f D u,
where u is an indeterminate, is a curve of genus zero having a rational place over
k.u/, and conversely. In Example (7.7), I shall discuss the circle to illustrate this
fact. It was conjectured by me and proved by my student Jan in his Thesis [25] that
a field generator has at most two points at infinity. Without assuming f to be a field
generator, in Part II I shall generalize this by giving a bound on the number of points
at infinity of f in terms of the genus of f D u.

Preamble for (7.1)–(7.5). Let L be a finitely generated field extension of a field K

with trdegKL D �. Let A be an affine domain over K with QF.A/ D L where
QF.A/ denotes the quotient field of A. Note that D.L=K/ is the set of all valuation
rings V with QF.V / D L and K � V such that trdegKH.V / D � � 1 where

HV W V ! H.V / D V=M.V /

is the residue class epimorphisms and we are identifying H.K/ with K; moreover,
every member of D.L=K/ is a DVR, and I.A=K/ is the set of all V 2 D.L=K/

with A 6� V .

Lemma (7.1). Assume that L D K.x/ where x is transcendental over K . Let V be
the .1=x/-adic valuation, i.e., let V be the localization of KŒx� at the prime ideal
generated by 1=x. Then V 2 D.L=K/ with H.V / D K .

Proof. Obvious.
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Lemma (7.2). Assume that L D K.y/ where y is transcendental over K . Let V 2
D.L=K/ be such that H.V / D K . Then L D K.x/ for some x 2 L such that V

is the .1=x/-adic valuation. Moreover, if K is infinite and V2; : : : ; Vm are any finite
number of members of D.L=K/ n fV g, then x can be chosen so that we also have
x 62M.V2/ [ � � � [M.Vm/.

Proof. If V is the .1=y/-adic valuation then taking z D y we see that L D K.z/
and V is the .1=z/-adic valuation. If not then V must be the localization of KŒy� at
the prime ideal generated by y � a for some a 2 K , and taking z D 1=.y � a/ we
see that L D K.z/ and V is the .1=z/-adic valuation. Now without the “Moreover”
it suffices to take x D z. With the “Moreover” we clearly have z 2 V2 [ � � � [ Vm

and, since K is infinite, for all except a finite number of c 2 K we must have

zC c 62M.V2/[ � � � [M.Vm/

and it suffices to take x D zC c.

Lemma (7.3). Assume that L D K.x/ where x is transcendental over K . Let V

be the .1=x/-adic valuation and assume that V 2 I.A=K/. Let fV2; : : : ; Vmg be
the distinct elements of I.A=K/ n fV g, and note that for 2 � i � m we clearly
have KŒx� � Vi and Vi is the localization of KŒx� at the prime ideal generated
by an irreducible element xi in kŒx�. Now assume that A is a UFD. Then A is a
proper PID, and A is the localization of KŒx� at the multiplicative set consisting of
all monomials in x2; : : : ; xm. Moreover, if x 62 M.V2/ [ � � � [M.Vm/ then clearly
x is an irreducible element in A.

Proof. To see that A equals the said localization, note that A is normal because it is
a UFD, and hence A is the intersection of all the members of D.A=K/ n I.A=K/,
but this intersection clearly equals the said localization.

Lemma (7.4). Assume that � D 1 and L D K.x/ for some x 2 A. Then H.V / D
K for some V 2 I.A=K/.

Proof. Take V to be the .1=x/-adic valuation and apply (7.1).

Lemma (7.5). Assume that � D 1 and L D K.y/ for some y 2 L. Also assume
that, K is infinite, A is a UFD, and H.V / D K for some V 2 I.A=K/. Then A is
a proper PID and L D K.x/ for some irreducible x 2 A.

Proof. Take fV2; : : : ; Vmg D I.A=K/ n fV g and apply (7.2) and (7.3).

Preamble for (7.6). Consider the bivariate polynomial ring B D kŒX; Y � over a field
k and let L D k.X; Y / D QF.B/ D the quotient field of B . Given any

f D f .X; Y / 2 B n k;

by Bf we denote the localization of B at the multiplicative set kŒf ��, and we note
that then Bf is the affine domain k.f /ŒX; Y � over the field k.f / with QF.Bf / D
k.X; Y / D L and we have trdegk.f /L D 1. Note that a localization of a UFD is a
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UFD, and irreducibles in the localization are essentially the same as irreducibles in
the original UFD except that the localization has more units. Hence we get:

Theorem (7.6). In the above setup we have the following.

(1) If L D k.f; g/ for some g 2 B , then H.V / D k.f / for some V 2
I.Bf =k.f //.

(2) If L D k.f; l/ for some l 2 L and H.V / D k.f / for some V 2 I.Bf =k.f /,
then L D k.f; g/ for some g 2 B .

Proof. Taking .K; L; A/ D .k.f /; k.X; Y /; Bf /, (1) follows from (7.4). Likewise
(2) follows from (7.5) after noting that the irreducible x 2 Bf when multiplied
by a suitable b 2 kŒf �� produces an irreducible bx 2 B and we obviously have
k.f; bx/ D k.f; x/ D L.

Example (7.7). We illustrate the above theorem by showing that the circle is a field
generator over C but not over R. The underlying obvious fact behind this is that
f is a field generator of L D k.X; Y / iff the general curve f ] D f .X; Y / � u,
where u is an indeterminate, is of genus zero and has a rational place over k.u/,
i.e., a V 2 D.L

]

f
=k.u// which is residually rational over k.u/; here L

]

f
is the

function field of f ], i.e., the quotient field of the residue class ring of k.u/ŒX; Y �

modulo the ideal generated by f ]. For the circle f D X2 C Y 2 � 1 with k D R, if
f ] had a rational place then we can find a nonzero triple .a.u/; b.u/; c.u// in kŒu�

such that

a.u/2 C b.u/2 D c.u/2 C uc.u/2:

Since the equation x2Cy2 D 0 has no solution in R other than .0; 0/, it follows that
if .a.u/; b.u// ¤ 0 then the LHS of the above equation is a nonzero polynomial of
even degree. But if c.u/ ¤ 0 then the RHS of the equation is a nonzero polynomial
of odd degree. Therefore, the circle is not a field generator over R. Over k D C it is
a field generator because k.f; X C iY / D k.X; Y /.

8 Preview of Part II

As said in the Introduction, Part II will include various topics from algebraic curve
theory such as the conductor and genus formulas of Dedekind and Noether, and the
automorphism theorems of Jung and Kulk. In Part II, I shall also relate all this to
the Jacobian problem which conjectures that if the Jacobian of n polynomials in n

variables over a characteristic zero field equals a nonzero constant then the variables
can be expressed as polynomials in the given polynomials; see [13–15]. As indicated
in the preamble of Sect. 4, in Part II, I shall revisit Newton’s polygonal method.
As said at the end of Sect. 5, in Part II, I shall say more about the Inversion and
Invariance Theorems and about quadratic transformations. As said in Sect. 6, in Part
II, I shall discuss Dicritical Divisors some more. Finally, as said in the beginning
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of Sect. 7, in Part II, I shall give a bound on the number of points at infinity of an
algebraic plane curve.

9 Epilogue

Let me close with a chatty survey of the paper which can also serve as an alternative
Introduction.

9.1 Trigonometry

In high-school we learn the expansion

sin x D x � x3

3Š
C x5

5Š
� x7

7Š
C � � � D x

X

0�i<1
ai x

i

where ai D 0 or .�1/i=2

.iC1/Š
according as i is odd or even. The fact that in the expansion

of sin x there is no x2 term but there is an x3 term, may be codified by saying that
sin x has a gap of size 2, i.e., 2 is the smallest positive value of i for which ai ¤ 0.
Now

sin�1 x D x C x3

3Š
C

and so the inverse function has a gap of the same size 2.
It was around 1665 that Newton gave the above two expansions and Gregory

gave the expansion

tan�1 x D x � x3

3
C x5

5
� x7

7
C : : :

and from this it follows that

tan x D x C x3

3
C : : :

but the full expansion of tan x is rather complicated and was obtained by Bernoulli
only in the next century. At any rate the size of the gap in tan x as well as tan�1 x

is again 2. All these formulas can be found in Chrystal’s Algebra [20] published
in 1886 and Hobson’s Trigonometry [24] published in 1891. I was lucky to have
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studied these two excellent books towards the end of my high-school years at the
suggestion of my father. After hundred years, they are still being reprinted and I
highly recommend them to all students of mathematics.

Renaming the above type of gap as absolute gap, given any positive integer d , let
us define the d -gap to be the smallest value of i which is nondivisible by d and for
which ai ¤ 0. Then in all the above examples, the value of the d -gap is 2 for every
d > 2. As an example of a function with 3-gap 7, we can consider the power series

x C x4 C x7 C x8 C x9 C � � � D x.1C x3 C x6 C x7 C x8 C : : : /:

To illustrate yet another type of gap, consider the power series

x.1C x2 C x3 C �x5 C �2x6 C x7 C : : : /

where � is a transcendental number. This has a transcendentality gap of size 5, i.e.,
after factoring out x, the smallest power with transcendental coefficient is x5.

Formalizing all this, in (3.5) we were led to the definition of the .T; S/-gap v of
a nonzero meromorphic series

y.T / D T e
X

0�i<1
Ai T

i with ordTy.T / D e and Ai 2 K with A0 ¤ 0

over a field K , where S is a subfield of the meromorphic series field K..T // and
v D minfi 2 N W AiT

i 62 Sg. For the definitions of meromorphic series, ord, field,
etc., see pages 25–32 and 67–88 of [9], or pages 1–39 of [12]. In particular see the
first paragraph of Sect. 2 for the symbols N, NC, Z, and so on.

In the above examples we wrote x for T , and let e D 1. In the d -gap case we take
S D K..T d //, and in the transcendentality gap case we take S D k..T // where k

is an algebraically closed subfield of K . In the absolute gap case we take S to be the
null ring f0g although technically speaking it is not a subfield.

Assuming e D 1, let z.T / 2 K..T // be the inverse of y.T /, i.e., ordT z
.T / D 1 with y.z.T // D T ; note that if y.T / D sin T then z.T / D sin�1 T , and
if y.T / D tan�1 T then z.T / D tan T . In (3.5)(IV)(7) we show that the .T; S/-gap
of z.T / equals the .T; S/-gap of y.T /. We prove this gap invariance by relating the
coefficients of y.T / and z.T /. Applying the said relating of coefficients to tan�1 x

we can recover the Bernoulli expansion of tan x.
Actually, in (3.5) we prove something which is more general than gap invari-

ance. Namely, for any z.T / 2 K..T // with ordT z.T / D 1, without assuming
y.z.T // D T but considering the composition x.T / D y.z.T //, by using the multi-
nomial theorem

.X1 C � � � CXr/n D
X nŠ

t1Š : : : tr Š
X

t1
1 : : : X tr

r with r and n in N (1)
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where the summation is over all t D .t1; : : : ; tr / 2 N
r with t1 C � � � C tr D n,

we express the coefficients of x as polynomials in the coefficients of y and z. As a
consequence we show that the .T; S/-gaps v; w; 	 of x; y; z satisfy the relations

8

ˆ

ˆ

<

ˆ

ˆ

:

	 � min.v; w/

v < w) 	 D v

w < v) 	 D w:

(2)

The r D 2 case of (1) is Newton’s Binomial Theorem for positive integer expo-
nents which he obtained around 1665. Soon after he generalized it to fractional
exponents which led him to his famous theorem on fractional meromorphic se-
ries expansion of algebraic functions. For Newton’s Theorem and the related result
called Hensel’s Lemma see pages 89–108 of [9].

In (3.6)(1) and (3.6)(2) we prove some properties of the .T; S/-gap by using the
Binomial Lemma (3.3). It should be stressed that in this usage the full force of (3.3)
has to be brought into play including the information about the relationship between
the initial coefficients of the various meromorphic series.

9.2 Taylor Expansion and Valuations

A power series

f .T / D
X

0�i<1
˛i T

i 2 KŒŒT �� with ˛i 2 K (1)

over a field K is a meromorphic series without negative degree terms, i.e., with
ordT f .T / � 0. Differentiating both sides i -times and then putting T D 0 we get

˛i D f .i/.0/

i Š
(2)

where f .i/.T / denotes the i -th T -derivative of f .T /. Formula (1) with the value of
˛i as in Formula (2), is called the Taylor expansion of f .T /. Sometimes it is called
the Maclaurin expansion. Maclaurin and Taylor were disciples of Newton. We can
use this to deduce the expansions

sin x D x � x3

3Š
C x5

5Š
� and cos x D 1 � x2

2Š
C x4

4Š
�

from the identities

d sin x

dx
D cos x with

d cos x

dx
D � sin x and sin 0 D 0 with cos 0 D 1:
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The definitions of sin x and cos x give the last two identities while the first two
follow from the equation sin2 x C cos2 x D 1 by implicit differentiation.

For further commentary on Taylor Expansion see pages 104–105 of [9]. There,
and on pages 39–43 of [12], you will also find the definition of a (real) discrete
valuation of a field L as a surjective (= onto) map W W L! Z [ f1g such that for
all u; u0 in L we have W.uu0/ D W.u/CW.u0/ and

W.uC u0/ � min.W.u/; W.u0// (1)

and for any u in L we have: W.u/ D 1 , u D 0. Replacing Z by any ordered
abelian group and deleting the adjective “surjective” we get the definition of a (gen-
eral) valuation. Note that

(

W.u/ < W.u0/) W.uC u0/ D W.u/

W.u0/ < W.u/) W.uC u0/ D W.u0/
(2)

Writing v; w; 	 for W.u/; W.u0/; W.u C u0/ and then comparing (1) and (2) with
(9.1)(2) we observe an analogy between valuations under sums and gaps under com-
positions. See pages 65–70 of [9] for the fact that, in case G is subgroup of R, (1)
and (2) may be reformulated by saying that sometimes the usual triangle inequality
can be replaced by a stronger inequality which requires all triangles to be isosceles.

For any W we put GW D W.K�/ and RW D fu 2 K W W.u/ � 0g and call
these the value group and the valuation ring of W . Now RW is a ring with the unique
maximal ideal M.RW / D fu 2 K W W.u/ > 0g. Thus RW is a quasilocal ring to
which the second paragraph of Sect. 2 is applicable. More generally, by a valuation
ring of a field L we mean the valuation ring of some valuation of L. Finally, by a
valuation ring we mean a valuation ring of some field. It can be shown that a ring V

is a valuation ring iff V is domain such that: x ¤ 0 ¤ y in V ) either x=y 2 V or
y=x 2 V .

This would be a good time to read the rest of Sect. 2. An ambitious reader may
also gradually look up the material on pages 43–201 of [12].

9.3 Discrete Valuation Rings or DVRs

As a supplement to the reading of Sect. 2, let us add some details about DVRs =
discrete valuation rings.

We defined a DVR to be a one-dimensional regular local domain. If V is any
DVR then u 7! ordV u gives a discrete valuation of the field QF.V / whose valuation
ring coincide with V . Conversely, the valuation ring RW of any discrete valuation
W of a field L is a DVR and for all u 2 L we have ordRW

u D W.u/. As another
characterization of a DVR we note that a domain V is a DVR iff V is a PID such
that V has exactly a nonzero prime ideal P and P 0; P 1; P 2; P 3; : : : are exactly
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all the distinct nonzero ideals in V . As yet another characterization of a DVR we
note that a domain V is a DVR iff V is a DD with exactly one nonzero prime ideal,
where DD = Dedekind Domain = a normal noetherian domain of dimension at most
one. Here noetherian ring means a ring in which every ideal is finitely generated.
Normal domain means a domain which is integrally closed in its quotient field, i.e.,
every element of its quotient field which is integral over it (i.e., satisfies a monic
polynomial equation over the domain) over the domain belongs to the domain. We
note that the valuation ring of any valuation is normal.

Recall that a multiplicative set in a domain E is subset M of E� with 1 2 M

such that the product of any two elements in M belongs to M , and the localization
EM of E at M is defined by putting EM D fu=v W u 2 E and v 2 M g; note
that EM is a subdomain of QF.E/, and if E is noetherian (resp: UFD) then EM is
noetherian (resp: UFD). In case M D E nP for a prime ideal P in E , we may write
EP in place of EEnP g; note that EP is a quasilocal domain with M.EP / D PEP .

A typical example of a DVR V is provided by taking a UFD E and letting
V D EpE where p is a nonzero nonunit irreducible element in E . For instance,
take E D Z and let p D a prime number, or take E to be the polynomial
ring KŒX1; : : : ; Xn� in a finite number of variables over a field K and p D
p.X1; : : : ; Xn/ D a nonconstant irreducible polynomial, or take E to be the power
series ring KŒŒX1; : : : ; Xn�� in a finite number of variables over a field K and
p D p.X1; : : : ; Xn/ D a nonzero nonunit irreducible power series.

In the one variable power series case, KŒŒX�� is itself a DVR. In the one variable
polynomial case of E D KŒX�, for every a 2 K , the localization Ea D E.X�a/E is
a DVR. Moreover,

E1 D KŒ1=X�.1=X/KŒ1=X�

is also a DVR; this is the valuation ring of the discrete valuation W of K.X/ with
W.X/ D �1 which we call the .1=X/-adic valuation of K.X/. If K is algebraically
closed, then E1 together with .Ea/a2K are exactly all the distinct DVRs with
K � V and QF.V / D K.X/. In case K is not algebraically closed, we have to
replace .Ea/a2K by .EpE / with p varying over all nonconstant monic irreducible
polynomials in X over K .

Let V be a DVR with quotient field L, let HV W V ! H.V / be the residue class
epimorphism, let T be a uniformizing parameter of V , and let k be a coefficient set
of V . The passage from Q to R suggests the definition of the completion bV of V

together with the quotient field bL of bV thus. A sequence y D .yi /1�i<1 in L is
Cauchy means for every � 2 NC there exists N� 2 NC such that for all i > N� and
j > N� we have ordV .yi � yj / > �. This is equivalent to the Cauchy sequence
y0 D .y0

i /1�i<1 if for every � 2 NC there exists M� 2 NC such that for all i > M�

we have ordV .yi � y0
i / > �. Now bL may be defined to be the set of all equivalence

classes of Cauchy sequences. Moreover bV may be defined to be the set of those
members ofbL which contain a Cauchy sequence consisting of elements of V . Sums
and products in bL in an obvious manner. This makes bL an overfield of L and bV
an overdomain of V in such a manner that bL is the quotient field of bV . Now bV is
a DVR and for all x 2 L we have ordV x D ord

bV
x. Given a sequence z1; z2; : : :
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and an element z in bL we say that zi tend to z, in symbols zi ! z, to mean that
ord
bV

.z � zi / ! 1, and we put
P

1�i<1 zi D z to mean that
P

1�j �i zj ! z.

Taking any uniformizing parameter T and coefficient set k of bV , by mimicking
the idea of Taylor expansion, we can show that any z 2 bL� with ord

bV
z D e can

uniquely be expressed as
z D

X

e�i<1
ai T

i

where ai 2 k with ae ¤ 0; we may call this the Taylor expansion of z in k..T //;
we can extend the sum to the left of e by putting ai D 0 for all i < e; if z D 0 then
we can take ai D 0 for all i 2 Z. If k is a coefficient field then k..T // is the usual
power series ring.

Let us sketch a proof of the observation made in Sect. 2 to the effect that if A is
an affine domain over a field K such that the transcendence degree of the quotient
field L of A over K is 1, then I.A=K/ is a nonempty finite set where I.A=K/ is
defined to be the set of all DVRs V with QF.V / D L such that A 6� V . For any
x 2 A, let J.x/ be the set of all DVRs V with QF.V / D L such that x 62 V . If x is
algebraic over K then clearly J.x/ is empty. If x is transcendental over K then J.x/

is a nonempty finite set because now L=K.x/ is a finite algebraic field extension and
the members of J.x/ are the valuation rings of the extensions to L of the .1=x/-adic
valuation of K.x/. We can write A D KŒx1; : : : ; xn� where x1; : : : ; xn is a finite set
of elements in A at least one of which is transcendental over K . It only remains to
note that I.A=K/ D [1�i�nJ.xi /. Geometrically speaking, A represents the affine
coordinate ring of a curve C in A

n
K D the affine n-space over K , and I.A=K/

represents the set of branches of C at infinity. Recall that

I.A=K/ � D.L=K/ D
(

the set of all DVRs V

with K � V and QF.V / D L.

D.L=K/ represents the set of all branches of C , and D.L=K/n I.A=K/ represents
the set of all branches of C at finite distance.

To talk more about the branches of C in case n D 2 and K is algebraically
closed, let f .X; Y / be the bivariate irreducible polynomial in KŒX; Y � such that
f .x; y/ D 0 where .x; y/ D .x1; x2/. Note that f .X; Y / is unique up to multi-
plication by a nonzero element of K , and f .X; Y / D 0 is an affine equation C .
To use homogeneous coordinates, let F.X; Y; Z/ D Zd f .X=Z; Y=Z/ where d is
the degree of f . Now a point of C at finite distance is of the form .a; b; 1/ where
a; b in K with f .a; b/ D 0, and at infinity it is either of the form .a; 1; 0/ where
a 2 K with F.a; 1; 0/ D 0 or of the form .1; 0; 0/ with F.1; 0; 0/ D 0. Let Iy be
the set of all those members V of I.A=K/ for which ordV y � ordV x and let Ix

be the set of all the remaining members of I.A=K/. We define the center of any
V 2 D.L=K/ on C thus: if V 62 I.A=K/ then it is the point .a; b; 1/ of C such that
ordV .x � a/ > 0 < ordV .y � b/; if V 2 Iy then it is the point .a; 1; 0/ of C such
that ordV ..x=y/ � a/ > 0; if V 2 Ix then it is the point .1; 0; 0/ of C . It can be
shown that every point of C is the center of at least one and at most a finite number
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of branches of C . For V 2 D.L=K/ n I.A=K/ and its center .a; b; 1/ on C , taking
a uniformizing parameter T of bV , we get the Taylor expansions

x D z1.T / 2 KŒŒT �� and y D z0.T / 2 KŒŒT ��

with z1.0/ D a and z0.0/ D b. We call this a parametrization of C at the point
.a; b; 1/. It elucidates the material in the short paragraph of (3.1) just before the
definition of .V; K/-presequence.

9.4 Newton Expansion and Hamburger-Noether Expansion

Having elucidated a part of (3.1), let us elucidate parts of (3.2) and (3.7). So consider

x D z1.T / 2 K..T // and y D z0.T / 2 K..T //

with
ordT z1.T / D � 2 Z

� and ordT z0.T / D e 2 Z
�

where K is an algebraically closed field of characteristic zero. Following Newton,
we can expand y in terms of x by first taking an �-th root ı.T / of x, i.e.,

ı.T / 2 K..T // with ı.T /� D z1.T /

and then rewriting y in terms of it as

y D �.T / 2 K..T // with �.ı.T // D z0.T /

Let J be the T -support of �.T /. The charseq (= characteristic sequence) m.J; �/

is, roughly speaking, a record of the members of J where the GCD with � drops.
This is introduced in (3.2) and studied in (3.7). Here the main tool is the concept of
d -gap mentioned in (9.1).

We call �.T / the Newton expansion of z0 in terms of z1. In (3.1) we replicate
this without taking roots, and call it the .V; K/-preexpansion which we develop
further in (3.8), (3.9), and (4.1) where it culminates into the Valuation Theoretic
expansion, i.e., the .V; K/-expansion; here V is a certain DVR. The avoidance of
roots motivates items (6)–(8) of (3.1).

The Valuation Theoretic expansion is a generalized version of the so called
Hamburger-Noether expansion. The Mixed Valuation Theoretic expansion, i.e., the
.V; K; T /-expansion of (4.1) is a mixture of the Newton expansion and the Valuation
Theoretic expansion.

Let us now further describe the organization of these numerous expansions.
In (3.1) we introduce the .V; K/-protoexpansion as a simple sequence, and the

.V; K/-preexpansion as a double sequence consisting of several sequences each of
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which is a .V; K/-protoexpansion. In (3.1) we reorganize the .V; K/-preexpansion
as a simple sequence which we call the .V; K/-expansion. This reorganization is
something like reorganizing an m by n matrix .aij/ as the simple sequence

a11; : : : ; a1m; a21; : : : ; a2n; : : : ; am1; : : : ; amn

of length mn. Actually, the rows of the .V; K/-preexpansion may have different
lengths. Namely, the i -th row looks like zi0; : : : ; zi;l.i/C1 and has length l.i/ C 2.
We chop off its first term and then the first two terms of the chopped off version co-
incide with the last two terms of the previous row, i.e., .zi�1:l.i�1/; zi�1;l.i�1/C1/ D
.zi1; zi2/, and so we glue the two rows at the coincidental terms. Doing this for all
except the first row, the .V; K/-preexpansion converts into a single sequence which
we call the .V; K/-expansion.

In (3.8), (3.9), and (4.1), we inject some newtonian expansions into the .V; K/-
protoexpansion, the .V; K/-preexpansion, and the .V; K/-expansion, and then we
call the resulting object the mixed .V; K; T /-protoexpansion, the mixed .V; K; T /-
preexpansion, and the mixed .V; K; T /-expansion, respectively.

9.5 Taylor Series with Remainder

The Taylor formula (9.2)(1) may be truncated at some value of i , say i D j , and then

the last term ˛j need not equal f .j /.0/
j Š

. The resulting formula is called Taylor series
with remainder. This is illustrated by the crucial formula (3.1)(8) which explains
the avoidance of roots mentioned in (9.4). Note that in (3.1), the quantity pl is not
defined until items (6)–(8), and in case of zlC1 ¤ 0, the summation in (8) terminates
at � D pl.el=jel j/, i.e., (8) is reduced to the equation

zl�1 D
0

@

X

.el�1=jel j/���pl .el =jel j/
A�

l .�/z�.jel j=el /

l

1

AC z�
l with z�

l D zpl

l
zlC1:

Also note that in (3.1) we have ej > 0 and pj > 0 for all j > 1 and hence, in case
of l ¤ 1, items (6)–(8) become more transparent by putting jel j D el . Finally note
that formula (4.1).4
/ is another incarnation of (3.1)(8).

To illustrate (3.1)(8) by an example, consider the DVR V D KŒŒT �� having uni-
formizing parameter T with coefficient field K , and let

zl D T 3 and zl�1 D T 6 C T 9Cu with 0 � u < 3.

Then

zl�1 D
(

z2
l
C z3

l
C z�

l
with z�

l
D zlC1 D 0 & pl D 1 if u D 0

z2
l
C z�

l
with z�

l
D z3

l
zlC1 & zlC1 D T u & .pl ; elC1/ D .3; 2/ if u ¤ 0.
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Let us now further comment on the formation of the mixed .V; K; T /-expansion
we talked about in (9.4) above. In (3.8) we consider the sequence

.z0; z1; : : : ; zl ; zlC1; zl /

of meromorphic series in K..T //, and we expand each term of the sequence relative
to the next term in the newtonian manner, i.e., as a .V; K; T /-expansion. For the last
two pairs, this is possible only if zlC1 ¤ 0. The flipping of zlC1 and zl in the end
of the sequence is meant for connecting it smoothly to the next sequence of the
presequence as achieved in (3.9). Think of two wagons of a railway train being
connected at the smooth round buffers. Thus in (3.8), we are constructing a perfect
wagon which in (3.9) gets joined to other wagon to form a whole train. In (4.1),
the whole train is thought of as a single very long wagon which is called the mixed
.V; K; T /-expansion.

9.6 Polynomials and Power Series

The field K.X1; : : : ; Xn/ of rational functions over s field K does not deter-
mine the polynomial ring KŒX1; : : : ; Xn� as can be seen by noting that clearly
we have KŒ1=X1; : : : ; 1=Xn� ¤ KŒX1; : : : ; Xn� but K.1=X1; : : : ; 1=Xn/ D
K.X1; : : : ; Xn/. However, the quotient field K..X1; : : : ; Xn// of the power se-
ries ring KŒŒX1; : : : ; Xn�� does determine the said ring. See (3.10).
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