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Preface

Alladi Ramakrishnan (1923–2008) was an eminent scientist who had a wide
range of research interests in theoretical and mathematical physics. Professor
Ramakrishnan made significant contributions to probability and statistics, elemen-
tary particle physics, cosmic rays and astrophysics, matrix theory, and the special
theory of relativity. Ramakrishnan believed strongly that in addition to doing funda-
mental research, one must contribute to the advancement of the profession. Inspired
by his visit to the Institute for Advanced Study in Princeton in 1957–1958, he
returned to Madras and began the Theoretical Physics Seminar at his family home
Ekamra Nivas. These seminars were ultimately responsible for the creation of
MATSCIENCE, The Institute of Mathematical Sciences in 1962. This institute,
of which he was the Director for its first 21 years, has grown steadily in size and
stature, and is his monumental contribution to the profession. In a distinguished
scientific life that has spanned more than five decades, Professor Ramakrishnan has
come into close contact with, and was influenced by, several eminent mathemati-
cians and physicists, and has moulded the careers of his several students and young
researchers. This volume, which is a tribute to his great legacy, not only deals with
his significant contributions to research and the profession, but also contains a fine
collection of research and survey papers by leading physicists and mathematicians
that cover a broad range of areas in the mathematical sciences.

The first part of this volume is about Professor Alladi Ramakrishnan and his
contributions. The book begins with an article entitled “Contributions of Alladi
Ramakrishnan to the Mathematical Sciences” in which the remarkable career and
contributions of Ramakrishnan are described by his son Krishnaswami Alladi who
was very close to his father and accompanied Professor Ramakrishnan regularly
on his worldwide scientific trips. Included in Krishna’s article is a description of
Ramakrishnan’s visit to the Institute for Advanced Study in Princeton in 1957–
1958, and the subsequent exciting series of events in Madras which led to the
creation of MATSCIENCE. This is immediately followed by an article on Alladi
Ramakrishnan’s (now famous) Theoretical Physics Seminar. The list of eminent
speakers at the seminar and the list of students who attended are provided.

The creation of MATSCIENCE was heralded with enthusiasm by scientists
around the world. Telegrams and letters came pouring in for the inauguration. A few
sample congratulatory telegrams from world famous physicists and mathematicians
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viii Preface

are reproduced and brief comments are made about the person sending the telegram
or letter and Ramakrishnan’s association with that scientist.

The creation of MATSCIENCE was like a dream come true! The next item in this
volume is Alladi Ramakrishnan’s speech The Miracle has Happened which he gave
at the inauguration of MATSCIENCE on 3 January 1962. In his inimitable style,
Professor Ramakrishnan describes the series of incredible events, each as improba-
ble as the other, that took place in rapid succession. Ramakrishnan was charged with
emotion as he gave this most inspiring speech, which is actually a model in English
diction!

Professor Ramakrishnan believed in maintaining close contact with the interna-
tional scientific community. Just as he invited eminent scientists regularly to the
Theoretical Physics Seminar and to MATSCIENCE, he traveled across the globe
annually to disseminate the work of his group. In these travels, he made new con-
tacts and that invigorated not only his own research, but also the visiting scientists
program at MATSCIENCE. Thus, we have included a brief description of some of
Ramakrishnan’s significant overseas trips.

Part I of the volume concludes with the list of scientific publications of Professor
Alladi Ramakrishnan, and the list of his Ph.D. students.

Parts II–IV of the volume constitute research and survey papers by physicists and
mathematicians who got to know Professor Alladi Ramakrishnan very well over the
years. The range of topics covered by these papers is broad as were the research
interests of Professor Ramakrishnan. The papers have been grouped as follows –
Part II: pure mathematics, Part III: probability and statistics, and Part IV: applied
mathematics and theoretical physics. Some of Professor Ramakrishnan’s former
Ph.D. students and grand students have contributed papers included in Parts III
and IV. Within each of the parts of the volume, the papers are listed alphabetically
by author’s names.

Part II: Pure Mathematics

Shreeram Abhyankar, a leading algebraic geometer, admired Ramakrishnan not only
for his research, but also for creating an institute for advanced study in the mathe-
matical sciences in India. Abhyankar, who takes great pride in India’s intellectual
past, himself created and directed a mathematics institute in Pune, Maharashtra,
called the Bhaskaracharya Prathistama. In a massive paper jointly dedicated to
Professor Ramakrishnan and his father, Abhyankar discusses extensions of his im-
portant work of 1967 on “gap invariance” with the intention of applying these
ideas to a famous unsolved problem in algebraic geometry, namely, the Jacobian
Conjecture.

Alladi Ramakrishnan was very much interested in using combinatorics to provide
elegant proofs of identities and to use combinatorial insight to obtain generalizations
and extensions. In this spirit, Krishna Alladi studies partitions into nonrepeating odd
parts in a novel combinatorial way using 2-modular Ferrers graphs and their under-
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lying Durfee squares to provide a unified treatment of several important identities in
the theory of partitions and q-series.

Professor Ramakrishnan was fascinated by the symmetries and properties of the
Pascal triangle which he often used to explain various enumeration problems arising
in the theory of probability. Catalan numbers, which are defined using the middle
binomial coefficients of the Pascal triangle, arise in a variety of settings. In a charm-
ing article, George Andrews investigates a q-analogue of the Catalan numbers and
establishes several identities for these q-analogues, from which classical identities
for the Catalan numbers fall out as special cases.

Another lifelong passion for Ramakrishnan was Euclidean geometry which he
used to explain difficult concepts in the theory of special relativity. Richard Askey’s
paper deals with the beautiful theorem of Ptolemy on cyclic quadrilaterals and the
extension of this result by the Indian mathematician Brahmagupta.

Alladi Ramakrishnan was also very proud of India’s cultural and intellectual her-
itage. Naturally he was a great admirer of Ramanujan. In a joint paper with his
student Atul Dixit, Bruce Berndt, one of the greatest authorities on Ramanujan’s
work, discusses a transformation formula of Ramanujan and how this leads to trans-
formations involving the Gamma and Riemann zeta functions. This transformation
formula of Ramanujan may be found in the book “Ramanujan’s Lost Notebook and
other unpublished papers” that was released during the Ramanujan Centennial in
1987. But this particular transformation formula is not in Ramanujan’s lost notebook
discovered by George Andrews in 1976 at the Wren Library in Cambridge Univer-
sity, but is in the “loose papers” that were located in Oxford University Library.

The area of quadratic forms has witnessed dramatic progress in the last few
years including the resolution of a problem on universal quadratic forms stemming
from Ramanujan. Alexander Berkovich and William Jagy show how certain mod-
ular identities of degree 3 discovered by Ramanujan can be used to establish some
very appealing positivity results for some integral ternary quadratic forms.

Asking questions of an additive nature for integers defined multiplicatively leads
to very intriguing problems. Jean-Marc Deshouillers and Florian Luca, leading au-
thorities in additive number theory, discuss the frequency of integers for which nŠ
is a sum of three squares, and show that the density of such integers is at least 7/8.
This result is extremely interesting in the light of the classical theorem of Lagrange
which asserts that every positive integer is a sum of (at most) four squares, and the
simple observation that integers of the form 8k C 7 cannot be represented as a sum
of three squares.

Alladi Ramakrishnan was a great admirer of Euler for his many fundamental
contributions. He once wrote an article on the charms of Euler’s e. So it is only ap-
propriate that there is a paper in this volume emphasizing Euler’s work. Dominique
Foata’s paper “Eulerian polynomials: from Euler’s time to the present” provides a
beautiful survey of the topic. Foata starts with Euler’s memoir of 1755 to find out
Euler’s motivation to study these polynomials. He then describes how these poly-
nomials emerged in a q-generalized form in the work of Carlitz in the twentieth
century and describes the underlying combinatorics. The contents of this paper were
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delivered by Professor Foata in the Tenth Ulam Colloquium at the University of
Florida in February 2008 and Professor Alladi Ramakrishnan attended that lecture.

The interaction between number theory and physics has attracted a lot of atten-
tion in recent years. Continuing his earlier investigations on connections between
the Epstein zeta function and crystal symmetries, Shigeru Kanemitsu in joint work
with Haruo Tsukada discusses several interesting examples, showing how crystal
symmetry may be understood via zeta symmetry.

One of the main conjectures in the theory of linear forms is due to Minkowski
on products of linear forms. Minkowski’s conjecture has been proved for six dimen-
sions or less, but the general result is still unproven. In his paper, Raghavan treats
a modified problem in a novel fashion and obtains similar results to Minkowski’s
conjecture.

The penultimate paper of Part II is the seminal work of Peter Sin and John
Thompson on the divisor matrix, Dirichlet series, and SL.2;Z/. Although divisors
of integers have been studied since antiquity, no one has done a systematic study
of the infinite upper triangular matrix Œai;j �, where ai;j D 1 if i divides j and 0
otherwise. Thompson and Sin explore connections between this matrix, Dirichlet
series, and SL.2;Z/. The subject matter of this paper was Professor Thompson’s
talk in Oslo in May 2008 after he received the Abel Prize. We are honored that this
fundamental paper is included in this volume.

The final article in Part II is a letter by Michel Waldschmidt in which he proves
a conjecture of Alladi Ramakrishnan on circulants. Professor Ramakrishnan was
intrigued by the Lorentz Transformation in Special Relativity and provided new
and elegant derivations of it. He wrote a paper “Pythagoras to Lorentz via Fer-
mat” in which instead of considering the Fermat equation as the generalization
of the Pythagorean equation, he studied an n-dimensional circulant generalization
of the Pythagorean equation. Alladi Ramakrishnan connected this to the Lorentz
transformation and determined its rational solutions. In this context, he made a con-
jecture regarding circulants and the proof of this conjecture is provided by Michel
Waldschmidt.

Part III: Probability and Statistics

Alladi Ramakrishnan did fundamental work in the theory of probability. Thus,
it is appropriate that this volume contains excellent papers in probability and
statistics.

Alladi Ramakrishnan, along with Homi Bhabha, made pioneering contributions
to the theory of nuclear cascades by the use of stochastic processes. The opening pa-
per of Part II by Krishna Athreya deals with the Galton–Watson branching processes
and the associated branching random walk. The limiting behavior of the spatial dis-
tribution of points in certain point processes is investigated and an application to the
photon–electron cascade is described.
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The next paper by Malay Ghosh, Kwok Pui Choi, and Jialiang Li provides a
smooth treatment of the logistic distribution without the use of contour integration.
The authors show how to calculate the moments, the moment generating function,
and the characteristic function.

The paper by C.R. Rao is a comprehensive review of entropy and cross-entropy.
He discusses their characterizations and indicates possible applications. Entropy
has been used in characterizing probability distributions in theoretical physics
to which Professor Ramakrishnan has made fundamental contributions. Entropy
has been used as a measure of diversity in environmental studies. Cross-entropy
has emerged as a useful tool in solving stochastic and nonstochastic optimization
problems.

The father and son team of Jayaram Sethuraman and Sunder Sethuraman dis-
cuss connections between Bernoulli strings and random permutations. In this regard,
they point out very elegantly the connection between marked Poisson processes and
Bernoulli strings.

Professor Ramakrishnan’s grand student P.R. Vittal, S. Jaisankar, and
V. Muralidhar investigate storage models. Storage theory has received consider-
able attention, and two of the leading contributors to this field are Joe Gani and Pap
Moran, contemporaries of Alladi Ramakrishnan. Vittal, Jaisankar, and Muralidhar
discuss storage problems for a class of one-dimensional master equations with
separable kernels.

The problem of testing equality of survival distributions has received consid-
erable attention. In the final paper of Part III, S.S. Wu, P.V. Rao, and Aparna
Raychaudhry address this problem on the basis of paired censored survival data.
They utilize test statistics that consist of linear combinations of two appropriately
chosen statistics. In addition, they present a method for estimating optimal weights
for such linear combinations.

Part IV: Theoretical Physics and Applied Mathematics

Professor Alladi Ramakrishnan worked and directed students in several areas of the-
oretical physics and applied mathematics and the breadth of his interests is reflected
in the topics covered by the authors of this section.

Imaging science has become one of the most active areas of research owing to
applications ranging from determining the size of tumors to detection of tanks under
foliage. Yunmei Chen, an authority in imaging science, and her student Xiaojing Ye
present a novel variational model for inverse consistent deformable image registra-
tion. Their model is formulated as an energy minimization model and experimental
results indicate the efficiency of their model.

Alladi Ramakrishnan’s former Ph.D. student V. Devanathan (who later became
the head of the nuclear physics department at the University of Madras) discusses a
statistical model for the quark structure of the nucleon in a joint paper with his Ph.D.
student S. Karthiyayini. Their paper contains a good description of both the static
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and dynamic properties of the nucleon. A thermodynamic bag model is proposed
to obtain realistic distribution functions that correctly yield the nucleon structure
functions.

Alladi Ramakrishnan produced a technique called the �-operation to construct
the 4� 4 Dirac matrices from the 2� 2 anticommuting Pauli matrices. This led him
to study the more general !-commutation (! is a root of unity) and the hierarchy of
matrices satisfying the !-commutation. That was the evolution of Ramakrishnan’s
L-matrix theory which he pursued in depth by himself and with his Ph.D. students.
R. Jagannathan, a former Ph.D. student of Alladi Ramakrishnan who later became a
professor at MATSCIENCE, provides a nice review of generalized Clifford algebras
and their applications to physics. In doing so, he discusses various ramifications of
the work of Alladi Ramakrishnan and his group and the extensions that he himself
has obtained. The fact that generalized Clifford algebras are so pervasive is well
brought out in this paper.

Finding q-analogs of classical functions and identities has proved to be extremely
fruitful because the scope of applications is considerably broadened with the in-
troduction of q-analogs. R. Jagannathan and R. Sridhar, former student and grand
student of Alladi Ramakrishnan who later became professors at MATSCIENCE,
discuss a .p; q/-analog of the Rogers-Szegö polynomial and the .p; q/ oscillator in
physics. Just as the Rogers-Szegö polynomial is associated with the q-oscillator al-
gebra, the authors show that the .p; q/-Rogers-Szegö polynomial is associated with
the .p; q/-oscillator algebra.

John Klauder’s paper “Rethinking renormalization” is a critical re-examination
of the notion of renormalizability for several extreme types of quantum field the-
ory. Normally, counter terms that are needed to remove divergences which arise in
quantum field-theoretic calculations are introduced on a term-by-term basis after
evaluation of suitable functional integrals. Klauder’s approach differs by excising
divergence-causing terms in the integrand of functional integrals, thereby elimi-
nating divergences altogether. Ultimately, the aim is to apply this technique to the
difficult task of quantizing the gravitational field.

The father and daughter team of A.N. Mitra and Gargi-Mitra Delmotte present
a rather broad description of pattern formation in crystals and crystal-like struc-
tures under the influence of magnetic fields. The ability of these structures for
self-replication, compartmental organization, and fractionalization serves as a basis
for theoretical speculations that organic life may have originated utilizing similar
mechanisms.

The final paper in the volume is by R. Parthasarathy, a grand student of Alladi
Ramakrishnan who later became a professor at MATSCIENCE. This is a review of
the work of the Ehrenfest theorem in Abelian and non-Abelian quantum field theo-
ries. The theorem is shown to be valid in appropriately defined physical subspaces.

This volume which contains a fine collection of papers covering a broad range
of topics in number theory, algebra, geometry, probability, statistics, theoretical,
nuclear, and mathematical physics, and certain topics in applied mathematics is a
fitting tribute to the memory of Alladi Ramakrishnan who had such a profound
influence on the scientific profession. The contributors include some of his students
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and grand students who themselves went on to pursue highly successful academic
careers, and eminent mathematicians, physicists, probabilists, and statisticians, who
got know Professor Ramakrishnan and his work very well over the years. Our thanks
to all the contributors of this volume. A special thanks to Professor Frank Garvan of
the University of Florida who provided crucial help in assembling the TeX files of
the papers for production. Felix Portnoy of Springer, New York, and Ejaz Ahmad in
Chennai, India, did a fine job in typesetting the entire volume. Finally we wish to
express our appreciation to Elizabeth Loew, Ann Kostant, Joachim Heinze and Hans
Koelsch of Springer for their interest in producing this volume and their support
throughout this venture.

University of Florida Krishnaswami Alladi
University of Florida John Klauder
The Pennsylvania State University C.R. Rao
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Part I
The Legacy of Alladi Ramakrishnan



Contributions of Alladi Ramakrishnan
to the Mathematical Sciences

Krishnaswami Alladi

Professor Alladi Ramakrishnan, my father, belonged to a small eminent group of
Indian scientists who made fundamental contributions to several fields of study and
sustained a high level of productivity over a significant period of time. If among
this select versatile group of researchers we seek those who also have made monu-
mental contributions to the profession by creating leading institutions of advanced
research, then we are down to a mere handful such as Professors Raman, Bhabha,
Mahalanobis, Ramakrishnan, and a few more. In an illustrious scientific career that
began in 1947, Professor Ramakrishnan has published about 150 influential research
papers in leading journals on topics ranging over Stochastic Processes, Elemen-
tary Particle Physics, Matrix Algebra, and the Special Theory of Relativity, has
guided 24 PhD students, lectured on his research at over 200 institutions of higher
learning the world over and at numerous international conferences, and created
MATSCIENCE, The Insitute of Mathematical Sciences in Madras. It is amazing
that even after his retirement, and indeed until the very end, his passion for science
and his spirit of enquiry remained unabated. Here I shall briefly describe some of
his significant contributions including his most recent ones, and the circumstances
that led to them.

Early life and career choice: Right from his school days, my father demon-
strated his originality both in mathematics and physics. In Loyola College, Madras,
he was awarded a special prize by his mathematics teacher Adivarahan, who was
much impressed by my father’s unusual originality in classical geometry. I have
witnessed this facility with geometry in the past few years, when my father applied
simple but ingenious geometrical arguments to explain and unravel new features of
difficult concepts in Special Relativity.

My paternal grandfather Sir Alladi Krishnaswami Iyer was one of the greatest
lawyers of India during the first half of the twentieth century. He played a crucial
role in drafting the Constitution of India. Naturally, to young Ramakrishnan, his
father was a great influence. Indeed my father enrolled in law, passed the exams

K. Alladi
Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
e-mail: alladik@ufl.edu
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in flying colors, and secured a Gold Medal in Hindu Law. He even assisted my
grandfather by taking notes to his dictation concerning the Indian Constitution.
My father’s early contacts through my grandfather were men of the calibre of
Dr. S. Radhakrishnan, the great philosopher statesman who became the President
of India, C. Rajagopalachari, and others. Inspite of all this exposure and contact
with lawyers and statesmen, my father had this inner desire to pursue science as a
career. Although my grandfather was immersed in the field of law, he used to say
“compare the nationalism of politics to the internationalism of science,” a sentence
that profoundly influenced my father to change his career. Actually, the desire of my
father to take to science as a career was kindled in 1943 when he heard a magnifi-
cent lecture on Meson Theory at the Presidency College, Madras, by Professor Homi
Bhabha who had just returned to India from England as one of the youngest Fellows
of the Royal Society (FRS). However, it was only 4 years later after a brief stint in
law that my father decided to eschew a lucrative legal career and take science as a
profession. It was at this instance that my paternal grandmother Lady Venkalakshmi
convinced my grandfather to let her young son pursue his dreams and goals.

Work with Bhabha: In 1947, my father joined what was at that time the
fledgeling Tata Institute of Fundamental Research that functioned under Bhabha’s
direct supervision in Kenilworth, Bhabha’s aunt’s home. Thus my father was one of
the first members of the Tata Institute and worked closely in contact with Bhabha
himself. My father always stressed that the greatest gift a teacher can give a research
student is a good problem, and in this sense he was very fortunate that Bhabha in-
troduced him to Cascade Theory and the Fluctuation Problem of Cosmic Radiation.
The study of this problem required the probabilistic analysis of the distribution of
a discrete number of particles in continuous energy space. My father soon realized
that it was possible to attack this problem directly by noting that the contribution to
the density comes from the probability of a single particle in an infinitesimal inter-
val, which is proportional to the length of that interval, the coefficient representing
the density. He named the correlation densities as Product Densities, a name that is
still in vogue today. Bhabha, who was a master of limiting processes, had also an
idea of how to solve this problem, but by a longer method.

Product Densities and related work: In August 1949, my father left the Tata
Institute and sailed to England with my mother to complete his PhD under the
direction of Professor M. S. Bartlett at the University of Manchester. Professor
Bartlett consulted his distinguished friend Professor D. G. Kendall, who was then
at Magdalene College at Oxford University. Professor Kendall not only confirmed
the correctness of my father’s work but also approved the name product densities.
Kendall had previously arrived at such functions up to the second order in his pi-
oneering studies on population growth and called them cumulant densities. In my
father’s work on product densities, the more general n-th order functions were con-
sidered. Thus, within two months of arrival in England, my father had completed
his work for the PhD. But he had to stay for two years there to complete his res-
idency requirements. My father’s PhD work on product densities appeared in the
Proceedings of the Cambridge Philosophical Society (1950), and Bhabha’s alternate
approach appeared around the same time in the Proceedings of the Royal Society.
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Some years later, my father had the opportunity to give a talk on applications of
stochastic processes to cascade theory at the Max Planck Institute in Gottingen. The
German Nobel Laureate Werner Heisenberg who heard this lecture made very com-
plimentary comments. On the basis of Heisenberg’s comments, Professor S. Flugge
of Springer Verlag invited my father to write a comprehensive article on stochastic
processes with emphasis on product densities. This authoritative article, the first of
its kind on these topics, appeared in the Handbuch der Physik (Springer). It had
a significant influence and resulted in a flood of papers in the area, most notably
by Professor S. K. Srinivasan. A book by A.T. Barucha Reid on Markov Processes
makes ample references to product densities and the work of Bhabha-Ramakrishnan.
The method of product densities became very well-known and is considered by
many to be perhaps my father’s most significant contribution.

In the 1950s, my father worked on the problem of the Fluctuating Density
Field that came up in studies of the Milky Way by the great Indian astrophysi-
cist Subramaniam Chandrasekhar. My father wrote a series of eight papers on this
subject. Chandrasekhar was so impressed that he communicated all of them to the
Astrophysical Journal.

Another notable contribution was my father’s work on Inverse Probability in
Stochastic Processes leading to the concept of the origin of a stochastic process.
This paper was presented to the Indian Academy of Sciences in 1955. It was on the
basis of this presentation that Sir. C. V. Raman had my father elected immediately
as a Fellow of the Indian Academy of Sciences.

The work on inverse probability had other implications. It led my father to inter-
pret the Feynman observation of a negative energy electron travelling back in time
as actually tracing back in the inverse probability sense. This yielded a simple proof
of the equivalence of the Feynman and the field theoretic formulation by splitting
the Feynman propagator into positive and negative energy parts. The first person to
establish this equivalence rigorously was Dyson, but only a few have really under-
stood Dyson’s deep and difficult derivation. My father’s paper on this topic appeared
in the Journal of Mathematical Analysis and Applications (1967). In addition, at the
invitation of Professor Heitler, he published his work on stochastic processes and
the Feynman propagator as a book entitled Elementary particles and cosmic rays
published by the Pergamon Press (1962).

Visit to the Institute for Advanced Study: The year 1957–1958 was another
turning point in my father’s career when he visited the Insitute for Advanced Study
in Princeton at the invitation of its Director, Robert Oppenheimer. At the Institute,
my father had the opportunity to listen to the lectures of, and discuss with, the lead-
ing young physicists of that generation, like T. D. Lee and C. N. Yang, who soon
afterwards won the Nobel Prize in Physics. My father returned to India filled with
the desire to induct talented students into theoretical physics and expose them to the
latest advances in this field.

The Theoretical Physics Seminar: Not satisfied with the curriculum at the Uni-
versity of Madras where my father was a professor, he gave lectures on quantum
mechanics and other advanced topics at our family home Ekamra Nivas during
the period 1958–1961 and named this the Theoretical Physics Seminar. As the
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daughter of a professor of mathematics Dr. H. Subramani Iyer, and as one who had
accompanied my father to England and to Princeton, my mother Mrs. Lalitha Ra-
makrishnan had a full understanding of the significance of such efforts by my father.
With enthusiasm she hosted the eager students who gathered in Ekamra Nivas for
the Theoretical Physics Seminar, and many eminent scientists who lectured at our
home. Among the luminaries who addressed the students at the Theoretical Physics
Seminar were Nobel Laureate Donald Glaser, and Professors Murray Gell Mann
and Abdus Salam, both of whom won Nobel Prizes later.

Creation of MATSCIENCE: In 1960, Nobel Laureate Professor Niels Bohr
visited India as the guest of Prime Minister Jawaharlal Nehru. When Bohr came to
Madras, there was only one group of students who could understand his lectures,
namely, those trained by my father. Bohr spent a leisurely evening at Ekamra Nivas
discussing with my father and his students. When Bohr returned to Delhi, he was
asked what his impressions about science in India were. Professor Bohr said that
two things impressed him most – the massive Tata Institute of Fundamental Re-
search in Bombay, and the small group of students trained by Alladi Ramakrishnan
in Madras! This statement by Bohr was flashed in the newspapers like The Hindu
and sparked Nehru’s interest to contact my father. Mr. C. Subramaniam arranged
for a meeting at the Governor’s Residence, Raj Bhavan, in Madras, between Nehru
and my father, in which the students of the Theoretical Physics Seminar were in-
troduced to the Prime Minister. At this meeting, Nehru asked my father what he
wanted. Here was the Prime Minister of India asking you what you want! At such
an instance, you do not ask for anything meagre. So my father asked for an institute
for advanced fundamental research in the mathematical sciences like the Institute
for Advanced Study in Princeton. The rest is history. With the recommendation
of Niels Bohr, the support of C. Subramanian, and the benevolence of Jawaharlal
Nehru, MATSCIENCE, The Institute of Mathematical Sciences was created in 1962
with my father as the Director. Subramaniam Chandrasekhar was invited to inaugu-
rate the institute. I remember sitting in the English Lecture Hall of the Presidency
College, Madras that day and listening to a magnificent lecture by my father –
perhaps the finest he has delivered in his life.

My father served as the Director of MATSCIENCE for 21 years until his retire-
ment in 1983. He conceived it in his family home, nurtured it in its infancy, and
saw it grow in size and stature. During his tenure as Director, hundreds of eminent
mathematicians and physicists visited the Insitute, including Nobel Laureates Hans
Bethe, Hans Jensen, Linus Pauling and John Bardeen, Fields Medallists Laurent
Schwarz and Rene Thom, the mathematical giant Marshall Stone, the eminent
Indian statistician C. R. Rao, the Ramanujan expert and partition authority George
Andrews, and the legendary mathematician Paul Erdös. It was also during these
21 years that he travelled widely, lecturing at about 200 centers of learning all over
the world. My mother and I accompanied him on these trips. The constant contact
with outstanding academicians during these foreign tours as well as those who vis-
ited MATSCIENCE, and the experience of visiting several great centers of learning,
made a deep impression on me. I thought of nothing else but an academic career
and was naturally led into it.
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Work in quantum mechanics: From the early sixties on, my father’s research
shifted to theoretical and particle physics. His most significant work in this area
was the prescription he gave to make the transition from Pauli to Dirac Matrices.
He called this the �-operation. This work was part of a more comprehensive
study of !-commutation relations among matrices, generalizing the anticommut-
ing property of the Pauli matrices. All this occupied him and his students for about
a decade, when a series of about 50 papers were published under the banner of
L-matrix theory, mostly in the Journal of Mathematical Analysis and Applications.
Subsequently, these papers were also published collectively in the form of a book
entitled L-matrix theory or the grammar of Dirac matrices by Tata McGraw Hill
(1972) and released by His Excellency V. V. Giri, the President of India.

PhD students: My father’s work on product densities and L-matrix theory pro-
vided food for thought for talented students who worked under his guidance. Over
a period of a quarter century (1958–1983), he produced about 24 PhD students.
He provided opportunities for all of them to go abroad to visit centers of learn-
ing and to participate in international conferences. He was extremely generous in
providing ample leave for them to travel, much to the envy of scientists in other
institutions in India where leave and travel rules were much stricter. My father be-
lieved that young researchers would profit by contact with experts at institutions
worldwide, and he therefore provided opportunities for them to travel. There was
of course the risk of losing some of these talented students to other institutions.
But he was convinced that science is an international enterprise and therefore did
not want the students to feel stifled due to lack of travel. Such large heartedness
among senior administrators is hard to find. Some of the students who went abroad
did not return but made successful careers in the United States. Some others joined
the faculty at MATSCIENCE. Four students accepted positions at educational in-
stitutions in Madras and all four not only developed schools of research at their
respective institutions, but also became heads of their departments. They were Pro-
fessors P. M. Mathews at the Department of Theoretical Physics of the University
of Madras, S. K. Srinivasan of the Department of Mathematics at IIT Madras,
V. Devanathan of the Department of Nuclear Physics of the University of Madras,
and A. Vijayakumar of the Mathematics Department of Anna University, Madras.

Work in Special Relativity: My father had a fascination for Special Relativity
since his college days inspired by the book of Joos on Theoretical Physics that he
read at the suggestion of Sir C. V. Raman. His first significant piece of work in
this area were a series of papers on the theme Einstein is a natural completion of
Newton that appeared in the Journal of Mathematical Analysis and Applications. In a
paper entitled Ramakrishnan’s approach to the theory of relativity that also appeared
in same journal (1974), the famous analyst Norman Levinson of MIT rigorously
established some of the postulates my father made in his papers.

My father was always intrigued why only Einstein received the credit for the
theory of relativity when so much of the theory depended on the Lorentz Transfor-
mation. In his years after his retirement in 1983, he came back time and again to the
Lorentz transformation, offering new and elegant derivations of it using simple but
ingenious geometric arguments. He felt that although the Lorentz transformation
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is over a hundred years old, it still bears a youthful countenance. His work on the
Lorentz transformation reached a peak in his paper, ‘A rod approach to the theory
of relativity’ in which he clarified the distinction between Space-like and Time-like
intervals. This paper appeared in the Special Millennium Issue of the Journal of
Mathematical Analysis and Applications in September 2000 in honor of its Found-
ing Editor Professor Richard Bellman with whom my father had close scientific
contact since 1956.

Recent training of students: Although my father retired in 1983, he continued
to inspire and influence talented students. Especially in the last few years, several
brilliant high school and undergraduate students have come to his home in Madras
to learn from him. They have profited immensely by his instruction and encourage-
ment because every one of them has come to the United States to pursue higher
studies in order to take a career of research. I have met only one other person, the
mathematical legend Paul Erdös, who had such a passion to meet talented young
minds and encourage them to pursue mathematics. My father’s appetite for research
and the desire to train students had not diminished with time.

Intellectually active till the end: After his retirement in 1983, my father visited
me in Florida every year during the Spring term with my mother. During my ten
year term as Chairman of the Mathematics Department at the University of Florida,
I ran a vibrant visiting program. I was inspired as a young boy watching my father
organize an outstanding visiting program at MATSCIENCE and indeed even before
that with his Theoretical Physics Seminar. During his visits to Florida, my father
never missed a single featured colloquium talk in the mathematics department. He
enjoyed discussions with the distinguished speakers at the seminars on campus and
more informally at parties at our home graciously hosted by my wife Mathura�.
He was in good health and spirits till the very end and attended scientific lectures on
campus just a few weeks before he died. My father passed away peacefully at our
home in Gainesville, Florida, on June 7, 2008, with his entire family by his side.
In fact, just two hours before he died, he attended a dance program organized by
Mathura, in which he especially enjoyed the final item presented by Mathura and
my daughters Lalitha and Amritha.

I close with the dictum that dominated his life:

The pursuit of science is at its best
when it is a part of a way of life.

This is the motto of MATSCIENCE and is inscribed at the entrance to the institute.

�A selection of photographs of my father taken recently in Gainesville is included in this book as
part of a list of overseas photos. These photographs show him in discussion with various eminent
mathematicians at our home in Florida.
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Note

This is an updated version of an article by me under the same title that appeared in
“Point Processes and Product Densities” (S. K. Srinivasan and A. Vijayakumar

Eds.), Narosa, New Delhi (2003), pp. ix–xiv
brought out in connection with a conference in Madras, India, on the same topic in
honor of Professor Alladi Ramakrishnan for his 80-th birthday. Also, an abridged
version of this article appeared as an obituary note by me in the newsletter of the
Institute for Advanced Study. See

“Alladi Ramakrishnan (1923–2008) – Institute visit inspired creation of the
Institute of Mathematical Sciences in Madras”, The Institute Letter, Institute for
Advanced Study, Princeton (Spring 2009), p. 7

I was invited to write this obituary note by Professor Peter Goddard, Director of
the Institute for Advanced Study, Princeton.

Finally, I should add that my father has given a detailed account of his life, in-
cluding all significant scientific events, in his inimitable style in

“The Alladi Diary”, Vol 1, East–West Books, Madras, India (2000)
“The Alladi Diary”, Vol 2, East–West Books, Madras, India (2003)



Alladi Ramakrishnan’s Theoretical
Physics Seminar

Krishnaswami Alladi

After completing his PhD at the University of Manchester, my father returned to
India and joined the physics department at the University of Madras as a Reader in
1952. He was later promoted as Professor. He was developing the theory of product
densities that he had initiated in his PhD thesis and studying applications of it by
himself and with his students. He availed every possible opportunity to invite em-
inent scientists to the University of Madras and to our family home Ekamra Nivas
and encouraged his students to listen to their lectures and engage in discussions
with them. When my father visited the Institute for Advanced Study in Princeton in
1957–1958 at the invitation of its Director Robert Oppenheimer, he had the oppor-
tunity to listen to over one hundred seminars on theoretical physics by the leading
researchers of that generation. My father returned to India filled with a desire to
expose students to the latest developments in modern physics. Not satisfied with
the curriculum at the Madras University, he gave advanced lectures in theoretical
physics to students at Ekamra Nivas. Eager students gathered at the seminar to
hear his lectures, and this was formally called The Theoretical Physics Seminar.
He invited eminent scientists to lecture in this seminar. My mother Mrs. Lalitha
Ramakrishnan graciously hosted the foreign speakers and the students by arrang-
ing lavish South Indian dinners after the seminars. I was a very young boy, but I
had the privilege of meeting the eminent visitors. The seminars were held in the
upstairs lecture hall of Ekamra Nivas, and the dinners were either on the lawns or
in the rear building, and were often served on plantain leaves as is the custom in
South India. Some of these eminent scientists were our house guests. The magic
moment was when Nobel Laureate Niels Bohr visited Ekamra Nivas in 1960 and
lectured in my father’s seminar. Bohr was visiting India as the guest of Prime Min-
ister Jawaharlal Nehru. When Bohr returned to Delhi on completing his visit, he
told reporters that two things impressed him the most: the massive set up of the Tata
Insitute in Bombay, and the small group of students trained by my father in Madras.
This statement by Bohr was flashed in national newspapers like The Hindu, and it
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attracted the attention of Prime Minister Nehru, who wanted to meet my father and
his students. With the assistance of Mr. C. Subramaniam, the Minister for Education,
such a meeting was arranged at the Raj Bhavan, the residence of the Governor of
Madras. After meeting my father and his students, Nehru asked my father what
he wanted. Here was the Prime Minister of India asking what you want! At such an
instance, you do not ask for anything meagre. My father asked for an institute for ad-
vanced research like the Institute for Advanced Study in Princeton. With the support
of Mr. C. Subramaniam and the benevolence of Jawaharlal Nehru, MATSCIENCE,
The Institute of Mathematical Sciences, was inaugurated on 3 January, 1962, with
my father as its Director.

Attached is the list of eminent visitors to Ekamra Nivas and the Theoretical
Physics Seminar from 1954 to 1961 prepared from my father’s documents. Dates
of the visits are given in parenthesis. The list of students in the seminar is also
given.

Distinguished Scientists Who Visited Alladi Ramakrishnan’s
Home and the Theoretical Physics Seminar, 1954–1961

1) Professor P. A. M. Dirac, F.R.S., Nobel Laureate
Lucasian Professor, Cambridge University, England (Dec 1954)

2) Professor Mark Oliphant, F.R.S. (he was later knighted and became
Governor of South Australia)
Australian National University, Canberra (Jan 1955)

3) Professor C. F. Powell, F.R.S., Nobel Laureate
Melville Wills Professor of Physics, University of Bristol, England (Dec 1955)

4) Professor Cherry
University of Melbourne, Australia

5) Professor Harry Messel
Nuclear Science Foundation, University of Sydney, Australia (Jan 1957)

6) Professor W. W. Bruechner
Massachusetts Institute of Technology, USA

7) Professor T. G. Room, F.R.S.
University of Sydney, Australia

8) Professor Laurent Schwartz, Fields Medalist
University of Paris, France

9) Professor H. Pitt, F.R.S.
University of Leeds, England

10) Sir C. G. Darwin, F.R.S.
Former President, Royal Society, England

11) Professor L. Janossy
Director, Eotvos Institute, Budapest, Hungary (Jan 1959)

12) Professor S. Koba
Yukawa Hall, Kyoto, Japan
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13) Dr. T. Kotani
University of Tokyo, Japan

14) Professor Andre Mercier
University of Berne, Switzerland (Sept 1959)

15) Professor N. Dallaporta
University of Padova, Italy (Oct 1959)

16) Professor A. M. Lane
A.E. Research Establishment, Harwell, England (Dec 1959)

17) Professor George Gamow
University of Colorado, USA (Dec 1959)

18) Professor Abdus Salam, F.R.S. (Salam later won the Nobel Prize)
Imperial College, London, England (Jan 1960)

19) Professor Niels Bohr, Nobel Laureate
Bohr Institute of Theoretical Physics, Copenhagen, Denmark (Jan 1960)

20) Professor Christoff
University of Sofia, Bulgaria (Feb 1960)

21) Professor Phillip Morrison
Cornell University, Ithaca, USA (Mar 1960)

22) Professor A. H. Copeland
University of Michigan, Ann Arbor, USA (Oct 1960)

23) Professor Kamp-de-Feriet
University of Lille, France (Jan 1961)

24) Professor W. Heitler, F.R.S.
University of Zurich, Switzerland (Feb 1961)

25) Professor Marshall H. Stone
Distinguished Service Professor, University of Chicago, USA (Apr 1961)

26) Professor Hlavaty
Institute of Fluid Dynamics, Indiana, USA

27) Professor Murray Gell-Mann (Gell-Mann later won the Nobel Prize)
California Institute of Technology, USA (Summer 1961)

28) Professor R. A. Dalitz
University of Chicago, USA (Summer 1961)

29) Professor Sandstrom
Uppsala University, Sweden (July 1961)

30) Professor Donald Glaser, Nobel Laureate
University of California, Berkeley, USA (Aug 1961)

31) Dr. Maurice Shapiro
Naval Research Lab., Washington, USA (Aug 1961)

32) Professor S. Chandrasekhar (he later won the Nobel Prize)
Distinguished Service Professor, University of Chicago, USA (Nov 1961)

33) Professor M. J. Lighthill (he was later knighted)
Director, Royal Aircraft Establishment, Farnborough, England (Nov 1961)

34) Professor McCrea Hazlett
Vice-President, University of Rochester, USA (Dec 1961)
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Students of Professor Alladi Ramakrishnan Who Attended
the Theoretical Physics Seminar

1) K. Ananthanarayanan
2) A. P. Balachandran
3) G. Bhamathi
4) V. Devanathan (acted as the Seminar Secretary)
5) N. G. Deshpande
6) S. Indumathi
7) P. M. Mathews
8) T. K. Radha
9) V. Radhakrishnan

10) P. Rajagopal
11) B. Ramachandran
12) G. Ramachandran
13) K. Raman
14) N. R. Ranganathan
15) M. Srinivasan
16) S. K. Srinivasan
17) R. Thunga
18) R. K. Umerjee
19) R. Vasudevan
20) K. Venkatesan
21) V. K. Viswanathan

* E. T. Nambi Iyengar (helped with all academic correspondence.)
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“Ekamra Nivas”, the family home of Alladi Ramakrishnan, was the venue of the Theoretical
Physics Seminar, which was the genesis of MATSCIENCE

Prof. and Mrs. Alladi Ramakrishnan (seated) at a meeting in Madras of the Asian Students at
which Education Minister C. Subramaniam (speaking) was the chief guest. It was at this meeting,
after listening to Prof. Ramakrishnan, that Mr. Subramaniam decided to meet the students of the
Theoretical Physics Seminar – Oct 1959
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Education Minister Mr. C. Subramaniam in conversation with Prof. Ramakrishnan during a dinner
at Ekamra Nivas where he met the students of the Theoretical Physics Seminar – Oct 1959

Prof. Abdus Salam, FRS (Imperial College, London), lecturing at Alladi Ramakrishnan’s Theoret-
ical Physics Seminar at Ekamra Nivas, Jan 1960
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Abdus Salam (left) with Alladi Ramakrishnan, Mrs. Lalitha Ramakrishnan and students at Ekamra
Nivas, Jan 1960

Alladi Ramakrishnan (R) hosted a dinner at his home Ekamra Nivas for Nobel Laureate Niels Bohr
(Center), Jan 1960
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Nobel Laureate Niels Bohr and Mrs. Bohr with Alladi and Lalitha Ramakrishnan at Ekamra Nivas,
Jan 1960

Krishna was always with his father in Madras when distinguished visitors were present, and
on many trips abroad that Alladi Ramakrishnan went on. Here is Krishna with his father Alladi
Ramakrishnan and Nobel Laureate Niels Bohr at Ekamra Nivas, Jan 1960
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Nobel Laureate Niels Bohr in discussion with Professor Alladi Ramakrishnan at Ekamra Nivas,
January 1960

Alladi Ramakrishnan, Mrs. Lalitha Ramakrishnan and their son Krishna with Professor Marshall
Stone at Madras Airport – April 1961
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Alladi Ramakrishnan welcoming and introducing Nobel Laureate Donald Glaser (Berkeley) to the
students of his Theoretical Physics Seminar, August 1961

Professor Alladi Ramakrishnan explaining the work of his group to Nobel Laureate Donald Glaser
(Berkeley) at the Theoretical Physics Seminar – August 1961
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Professor Alladi Ramakrishnan with Nobel Laureate Donald Glaser at Ekamra Nivas – August
1961
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Prof. Alladi Ramakrishnan and Mrs. Lalitha Ramakrishnan with Sir James Lighthill (FRS) who
visited “Ekamra Nivas” in November 1961. Also in the picture is Mr. C. Subramaniam, Minister
of Education
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Richard Dalitz (L) and Murray Gellmann (R) with Mrs. Lalitha Ramakrishnan at Ekamra Nivas,
1961

Astrophysicist Subrahmanyam Chandrasekar (second from left) enjoying a South Indian Style
dinner served on a banana leaf at Ekamra Nivas. Also in the picture – Alladi Ramakrishnan (third
from left) and students of the Theoretical Physics Seminar, Nov 1961
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Professor Alladi Ramakrishnan and the students of his Theoretical Physics Seminar with Prime
Minister Jawaharlal Nehru at the Raj Bhavan (Governor’s Residence) in Madras on October 8,
1961



Telegrams Received for the MATSCIENCE
Inauguration

Krishnaswami Alladi

The inauguration of MATSCIENCE, The Institute of Mathematical Sciences,
Madras, India, on 3 January 1962, was greeted with great enthusiasm by scien-
tists from around the world. My father, Professor Alladi Ramakrishnan, in his
inaugural speech as the Director of the new Institute, referred to the creation of
MATSCIENCE as a miracle, because a series of unexpected pleasant circumstances
came in rapid succession to bear fruit. About a week before the inauguration
of MATSCIENCE, congratulatory telegrams and letters started pouring in from
scientists around the world. I was just past my sixth birthday at that time, but I
remember the sense of excitement at our family home Ekamra Nivas as my father
was preparing for that sensational event. I remember a dinner at the roof garden of
the Dasaprakash Hotel in Madras a few days before the inauguration at which my
father’s students who attended his Theoretical Physics Seminar were present. At
this dinner, my father asked each student to predict the number of congratulatory
telegrams and messages that would be received by 3 January 1962. Such was the
mood at that magic moment! My father had preserved these telegrams and had them
photocopied and bound in two volumes. In the following pages I have presented
photo copies of a selection of these telegrams and letters. I have made some obser-
vations about the person sending the message/telegram and my father’s association
with that scientist.
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Telegram from ABDUS SALAM, Imperial College, London, Dec. 28, 1961

Comments. Alladi Ramakrishnan and Abdus Salam were close friends and admired each
other not only for their research, but also for the efforts they both made for the scientific
profession. Salam was interested in starting an institute of fundamental research in Pakistan,
but he eventually created the International Center for Theoretical Physics (ICTP) in Trieste,
Italy, in 1964, with the support of UNESCO. Salam was Director of ICTP since its incep-
tion until his death, but he retained his position at Imperial College, London. Salam visited
Madras in 1960 as Ramakrishnan’s guest and lectured at the Theoretical Physics Seminar.
He invited Ramakrishnan to a conference in Italy in 1960 to have discussions with a small
group of visionary scientists when he (Salam) was planning the creation of ICTP. Thus, it
was natural that Salam admired and supported Ramakrishnan’s efforts to create an institute
for fundamental research in India. Ramakrishnan visited ICTP several times in the 1960s at
the invitation of Salam, and his wife and son accompanied him for these extended stays in
Trieste, the first being in 1965 when the ICTP was located in Piazza Oberdan before it moved
to its magnificent permanent location in Grignano, near the Castle Miramare outside Trieste.
After Salam won the 1979 Nobel Prize, he visited MATSCIENCE in 1980 which had by then
moved to its permanent home on Taramani Campus in Madras.
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This is the three page telegram from NIELS BOHR reassembled as one page

Comments. Nobel Laureate Niels Bohr was one of the greatest and most influential physicists.
Bohr founded and directed the Copenhagen Institute of Theoretical Physics. Bohr visited
India in January 1960 as the personal guest of Prime Minister Jawaharlal Nehru. Alladi
Ramakrishnan had corresponded with Professor Bohr earlier, and Bohr graciously agreed
to visit the Theoretical Physics Seminar at Alladi Ramakrishnan’s home Ekamra Nivas in
Madras. Bohr and his wife had dinner on the lawns of Ekamra Nivas and stayed until midnight
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talking to Ramakrishnan, the students, and other guests. Upon return to Delhi at the end of
his visit, Bohr expressed the opinion that two things impressed him the most on his trip to
India – the massive setup of the Atomic Energy Commission and the Tata Institute founded
by Homi Bhabha in Bombay, and the group of students being trained by Alladi Ramakrishnan
in Madras. Here is a quote from the The Hindu, India’s National Newspaper, about Bohr’s
statement:

Dr. Bohr said that the Atomic Energy Establishment was a mighty endeavor where research
is being conducted in the best way under the leadership of Dr. H.J. Bhabha, a great scientist
and at the same time a very good administrator.

Asked about the place mathematics should occupy in the pursuit of theoretical physics, the
professor said that in Bombay and Madras energetic efforts were being made for the pro-
motion of knowledge of physics which demanded new mathematical methods of education
of young people to be able to fruitfully contribute to such work. Wonderful work was being
done in the field of theoretical physics by Professor Alladi Ramakrishnan of the Madras
University.

This statement by Bohr, which was flashed in the newspapers, sparked the attention of Prime
Minister Nehru, and ultimately led to the creation of MATSCIENCE.

Later on an academic trip to Europe in 1960, Alladi Ramakrishnan visited the Copenhagen
Institute at Bohr’s invitation and attended the Symposium on Nuclear Structure. Ramakrishnan
was invited for dinner at Bohr’s residence where he met the whole family. Nobel Laureate Jensen
was at this dinner. Ramakrishnan was also invited to a party at the home of Aage Bohr (son of
Niels Bohr) who later became a Nobel laureate!

Bohr’s happiness in the creation of MATSCIENCE and his total support can be seen from both
the length of his telegram and its contents.
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Telegram from WERNER HEISENBERG, Munich, Germany, Jan 4, 1962

Comments. Alladi Ramakrishnan first met Professor Nobel Laureate Werner Heisenberg in
1949 at a Conference on Modern Physics in Edinburgh, Scotland. At that time, Ramakrishnan
was doing his Ph.D. at the University of Manchester on the topic of product densities in
the area of probability. Heisenberg invited Ramakrishnan to give a seminar in Gottingen
during Ramakrishnan’s round-the-world academic tour of 1956. Heisenberg was very much
impressed with Ramakrishnan’s talk in the theory of probability and stochastic processes.
Professor Flugge, Editor of the Handbuch der Physik of Springer-Verlag, was also at this
seminar. Based on Heisenberg’s recommendation, Flugge invited Ramakrishnan to write a
comprehensive article focussing on his theory of product densities and its relationship with
central ideas in the theory of probability and stochastic processes. This was published in the
Handbuch der Physik in 1959.�

�Alladi Ramakrishnan, “Probability and stochastic processes”, in Handbuch der Physik, 3 (1959)
Springer, Berlin, 524–651.
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Telegram from MURRAY GELL-MANN, Caltech, Dec 29, 1961

Telegram from RICHARD DALITZ, University of Chicago, Dec 29, 1961
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Comments. Professor Murray Gell-Mann (Caltech) and Professor Richard Dalitz (University
of Chicago) were visiting India in 1961 in connection with a summer school in theoreti-
cal physics conducted by the Tata Institute in Bangalore that Ramakrishnan also attended.
Gell-Mann’s work in physics was already creating a sensation. Ramakrishnan invited
Gell-Mann and Dalitz to Madras to speak at the Theoretical Physics Seminar and both of
them stayed at Ekamra Nivas prior to the Bangalore summer school. Gell-Mann and Dalitz
thoroughly enjoyed their visit to Madras, both academically and socially. Gell-Mann invited
Ramakrishnan to give a Colloquium in Caltech. That visit to Caltech was one of the high-
lights of Ramakrishnan’s round-the-world tour in 1962. His wife Lalitha and son Krishna
accompanied Ramakrishnan on that magnificent trip, the first for Krishna overseas, and the
beginning of several such trips with his father during the next ten years. Gell-Mann hosted a
party at his home in honor of Ramakrishnan. The legendary physicist Richard Feynman (who
later won the Nobel Prize) was also at this party.

Gell-Mann won the 1969 Nobel Prize in physics for his quark model of the atom.
Inspired by Gell-Mann’s revolutionary work, Ramakrishnan studied Gell-Mann’s ideas
closely; subsequently, Ramakrishnan obtained an elegant generalization of the Gell-Mann–
Nishijima relation.
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Telegram from T.D. LEE and C.N. YANG, Institute for Advanced Study, Princeton, Jan 3,
1962

Comments. When Ramakrishnan visited the Institute for Advanced Study in Princeton in
1957–1958, Lee and Yang were in residence at the Institute. Everyone was talking about Lee
and Yang’s theory of nonconservation of parity and excited about the possibility of a Nobel
Prize in Physics which they were awarded later that year.
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Telegram from MARK KAC, Rockefeller University, New York, Jan 4, 1962

Comments. Mark Kac was a very famous probabilist of Polish descent. He was born in
Ukraine in 1914. He received his Ph.D. in 1937 in Lwow, Poland, under the direction of Hugo
Steinhaus. Kac immigrated to the United States in 1938. He was at Cornell University until
1931 when he moved to Rockefeller University in New York where he stayed for 20 years
before finally moving to the University of Southern California. Kac was mainly interested in
probability. His question Can you hear the shape of a drum? spurred enormous research ac-
tivity. He is also known for the Erdös-Kac Theorem which led to the creation of Probabilistic
Number Theory.
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Telegram from MARSHALL STONE, University of Chicago, Jan 4, 1962

Comments. Marshall Stone was one of the most influential mathematicians of the twenti-
eth century. The Stone–Weierstrass theorem is so fundamental that everyone going through
graduate school in mathematics sees this in a course on real analysis. Stone was more than
just a great mathematician. He believed in making contributions to the profession. Under his
dynamic leadership as Chairman, the Mathematics Department at the University of Chicago
grew to great heights in the 1950s. The period when Stone was chairman at Chicago has been
often referred to as The Stone Age! Stone was also President of the American Mathematical
Society. Thus with his own desire to mould the shape of mathematics education and research
in America, he could understand and appreciate Alladi Ramakrishnan’s interests in creating
a stimulating atmosphere for scientific research in Madras. Also, Marshall Stone’s father was
a Justice of the US Supreme Court; thus, Professor Stone could appreciate and understand
Alladi Ramakrishnan’s family background very well.

Professor Stone visited India regularly in the 1960s and 1970s because he served on com-
mittees for the improvement of mathematics in India. During some of these visits, he lectured
at MATSCIENCE. In 1963 he was Ramanujan Visiting Professor at MATSCIENCE. Later in
January 1969, he was present when MATSCIENCE moved into its new buildings on Taramani
Campus. Stone attended the inauguration of the new building and gave the first lecture there.

Stone visited Madras regularly in December/January to attend the annual festival of the
Madras Music Academy with Alladi and Lalitha Ramakrishnan. Professor Stone died in
Madras in January 1987 after attending the 1986–1987 music season there.

Stone traveled extensively. This telegram was sent from Chile!
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Telegram from MAURICE BARTLETT, University College, London, Jan 3, 1962

Telegram from DAVID KENDALL, Oxford University, Dec 31, 1961
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Comments. Professor M.S. Bartlett, a highly reputed statistician, was the Ph.D. advisor of
Alladi Ramakrishnan at the University of Manchester. Bertlett is widely known for his work
in multivariate analysis, stochastic processes, and applications of statistics to genetics, and
wrote a number of influential papers and books. Among his honors are the Guy Silver (1952)
and Gold (1969) Medals of the Royal Statistical Society, Fellowship of the Royal Society
(1961), his election as Foreign Associate to the US National Academy of Sciences (1993).
He was President of the Royal Statistical Society (1966).

Bartlett was appointed as Professor at the University of Manchester in 1947. When
Alladi Ramakrishnan arrived at the University of Manchester in 1949, Bartlett was
much impressed with Ramakrishnan’s method of product densities and communicated
Ramakrishnan’s papers� to the Proceedings of the Cambridge Philosophical Society.

David Kendall (FRS), another very eminent statistician, was on Alladi Ramakrishnan’s
Ph.D. committee. Kendall at that time was at Oxford, and Ramakrishnan visited Oxford regu-
larly to have discussions with Kendall at Magdalene College. Alladi Ramakrishnan’s product
density method extended Kendall’s work to higher orders.��When Alladi Ramakrishnan vis-
ited Oxford University in 1960 during his trip to Europe, Kendall invited Ramakrishnan to a
High Table dinner. Kendall later was appointed as professor at Cambridge University.

�Alladi Ramakrishnan, “Stochastic processes relating to particles distributed in a continuous in-
finity of states”, Proc. Cambridge Phil. Soc., 46 (1950), 595–602.
Alladi Ramakrishnan, “Stochastic processes associated with random divisions of a line”, Proc.
Cambridge Phil. Soc., 49 (1953), 473–485.
��Alladi Ramakrishnan, “Stochastic processes and their applications to physical problems”, Ph.D.
Thesis, Univ. Manchester (1951).
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Telegram from HANS MAASS, Max Planck Institute, Heidelberg, Germany, Dec. 30, 1961

Comments. Hans Maass, a very eminent German mathematician, made notable contributions
to Number Theory in the area of modular forms. He is now most known for introducing in
1949 what are now called Maass wave forms which in the past few years have become crucial
in understanding the relationship between Ramanujan’s mock theta-functions and the theory
of modular forms. Alladi Ramakrishnan met Maass during his first round-the-world academic
tour of 1956 when Maass invited Ramakrishnan for a talk at the Max Planck Institute in
Heidelberg.
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Letter from N.F. Mott, F.R.S., University of Cambridge, Jan 3, 1962

Comments. Sir Nevill Francis Mott, F.R.S., won the Nobel Prize for physics in 1977 (along
with Philip W. Anderson and J.H. van Vleck) for his work on the electronic structure of
magnetic and disordered systems. Mott held a lectureship at the University of Manchester in
1929 but moved to Cambridge in 1930. He then was at Bristol where he was Wills Professor
of Physics and Director of the Wills Physical Laboratories before being appointed Cavendish
Professor of Physics at Cambridge in 1954. Mott was elected Fellow of the Royal Society in
1936 and served as President of the Physical Society in 1957. Alladi Ramakrishnan met Mott
in England while doing his Ph.D. in Manchester during 1949–1951.
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Letter from P.A.M. Dirac, Cambridge University, England, Jan 11, 1962

Comments. Professor Dirac was one of the greatest physicists of the twentieth century. He
received the Nobel Prize in Physics in 1933 along with Erwin Schroedinger. He is the one who
predicted the positron. Many things are named after him, such as the Dirac delta-function and
the Dirac equation. He was Lucasian Professor at Cambridge University, England. Among his
notable students were Homi Bhabha who later founded the Tata Institute, and Harish-Chandra
of Lie theory fame. Professor Dirac was a guest of Alladi Ramakrishnan at Ekamra Nivas in
December 1954.

Dirac was a great influence on Ramakrishnan for several reasons. After Ramakrishnan
visited the Institute for Advanced Study in Princeton in 1957–1958, the focus of his research
shifted to elementary particle physics. One of the problems that engaged Ramakrishnan’s at-
tention was why Dirac used only a set of four anticommuting matrices and discarded the fifth
(denoted as �5) in his theory. In understanding this, Ramakrishnan came up with a new idea,
namely that of a �-operation, which explained first how the anticommuting 4�4Dirac matri-
ces can be built from the 2� 2 Pauli matrices. Then with the �-operation, he constructed�

�Alladi Ramakrishnan, “The Dirac Hamiltonian as a member of a hierarchy of matrices”, J. Math.
Anal. Appl., 20 (1967), 9–16.
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an algebra of 2n � 2n matrices. In a sequence of papers by himself and with his students, he
studied various ramifications of this algebra and its connections with Clifford algebras. He
published a book (L-Matrix theory, or the grammar of Dirac matrices, Tata McGraw-Hill,
1972) which is a compilation of his papers on this topic. In 1980 on a visit to Florida State
University for a lecture in the statistics department, Ramakrishnan called on Dirac (who had
moved to the physics department at Florida State University after retirement from Cambridge)
and had a discussion with him on the �-operation.
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Letter from Laurent SCHWARTZ, Paris V, Jan 5, 1962

Comments. Laurent Schwartz, a great French mathematician, was awarded the Fields Medal
in 1950 for creating the theory of distributions through which one gets, for example, a clearer
understanding of the Dirac delta-function. He was for many years at the Ecole Polytechnique
in Paris. 1966 Fields Medalist Alexander Grothendieck was a student of Laurent Schwartz.
Alladi Ramakrishnan’s interest in stochastic processes and probability motivated his inter-
est in the fundamental work of Schwartz on distributions. Laurent Schwartz visited Alladi
Ramakrishnan’s Theoretical Physics Seminar in 1957.
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Letter from Hideki Yukawa, Director Research Institute for Fundamental Physics Kyoto
University, Kyoto, Japan, Jan 8, 1962

Comments. Hideki Yukawa won the 1949 Nobel Prize in physics for predicting the existence
of the pion which was discovered in 1947. After briefly serving as professor at Columbia
University, Yukawa became the First Director of the Yukawa Institute of Theoretical Physics
(=Yukawa Hall) in Kyoto in 1953. Alladi Ramakrishnan visited Yukawa Hall for two weeks
during his momentous first round-the-world tour of 1956. Meeting Professor Yukawa and
the new generation of Japanese physicists in the post-World War II era in Japan made a
big impression on Ramakrishnan, and gave him a desire to start create a similar institute
and atmosphere in Madras. Alladi Ramakrishnan has acknowledged the effect of the visit to
Yukawa Hall in his speech “A Miracle Has Happened” that he delivered at the inauguration
of MATSCIENCE.
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Letter from Donald A. Glaser, Visiting Professor of Biophysics, MIT, Jan 9, 1962

Comments. Donald Glaser won the Nobel Prize in Physics for the invention of the bubble
chamber. Glaser joined the faculty of the University of California, Berkeley, in 1959, and
received the Nobel Prize when he was there. Glaser lectured at Alladi Ramakrishnan’s The-
oretical Physics Seminar at Ekamra Nivas in August 1961 and had long discussions with the
students. This letter was sent from MIT where Glaser was visiting in January 1962.
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Letter from R.P. Feynman, California Institute of Technology, Jan 5, 1962

Comments. Nobel Laureate Richard Feynman was one of the most eminent physicists of the
twentieth century. His penetrating insight was admired by all. Alladi Ramakrishnan had the
opportunity to meet Feynman in his office Caltech in 1956 and hear from the great man
himself about how the electron travels back in time. Ramakrishnan was visiting the RAND
Corporation in 1956 at the invitation of Richard Bellman, and it was Bellman who arranged
this meeting with Feynman. Inspired by this meeting, and guided by his own intuition in
probability, Ramakrishnan subsequently obtained a new simple proof of the equivalence of
the Feynman and field-theoretic formalism by splitting the Feynman propagator into its real
and imaginary parts. This paper� appeared in the Journal of Mathematical Analysis and Ap-
plications, of which Bellman was the Editor-in-Chief.

In the Fall of 1962, at the invitation of Murray Gellmann, Ramakrishnan gave a colloquium
at Caltech. Feynman attended Ramakrishnan’s talk and the party in honor of Ramakrishnan
at Gellmann’s home in the hills of Altadena.

�Alladi Ramakrishnan, “Some new topological features of Feynman graphs”, J. Math. Anal. Appl.,
17 (1967), 68–71.
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Telegram from BENGT STROMGREN, Institute for Advanced Study, Princeton, Dec 30,
1961

Comments. Bengt Stromgren, a noted Danish astronomer and astrophysicist, was appointed
as the first Professor of Astrophysics at the Institute for Advanced Study in Princeton in
1957. There, he occupied the office of Albert Einstein who had died a little earlier. When
Ramakrishnan visited the Institute for Advanced Study in Princeton in 1957–1958, he heard
over 100 seminars, including those of Stromgren on astrophysics. Stromgren’s lectures were
of particular interest to Ramakrishnan who a few years earlier had started publishing papers in
the Astrophysical Journal, all of which were communicated by the great Indian astrophysicist
Subrahmanyam Chandrasekhar.
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Telegram from ROBERT MARSHAK, Professor of Physics, University of Rochester, Jan 3,
1962

Comments. Alladi Ramakrishnan’s first contact with Professor Marshak was through the High
Energy Physics Conference at Rochester that Marshak organized in 1956. Marshak invited
Ramakrishnan to this conference during Ramakrishnan’s first world tour of 1956. Marshak,
a very eminent physicist, was also a great statesman for the discipline. He launched this suc-
cessful series of conferences in high energy physics, and these were called the Rochester
Conferences because there were initially held at the University of Rochester. Subsequently,
these high energy physics conferences were held in different parts of the globe, and Marshak
continued to be a key component in the conferences.

The 1956 Rochester conference had an enormous impact on Ramakrishnan. It exposed
him to the latest advances in particle physics, and the significant research done in the United
States. It was at this conference that Ramakrishnan met Robert Oppenheimer, Director of the
Institute for Advanced Study, Princeton, and as a consequence of this meeting, Ramakrishnan
received an invitation from Oppenheimer to visit the Institute for Advanced Study in 1957–
1958. Finally, through this first meeting at the Rochester Conference, Ramakrishnan got to
know Marshak quite well, and their friendship and mutual admiration grew over the years.
Marshak who was not only an eminent scientist, but also someone who contributed to the pro-
fession with his administrative, organizational, and leadership skills, very much admired and
appreciated Ramakrishnan’s efforts in creating and leading MATSCIENCE. Marshak visited
MATSCIENCE in January 1963 as the First Niels Bohr Visiting Professor and attended the
First Anniversary Symposium of MATSCIENCE which was in his honor. He was very much
impressed with the atmosphere of the new institute, vibrant with several eminent visiting sci-
entists from abroad, and an enthusiastic group of faculty and students. In return, Marshak
invited Ramakrishnan to the University of Rochester several times in the 1960s.
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Telegram from McCREA HAZLETT, University of Rochester, Jan 3, 1962

Comments. McCrea Hazlett was Provost at the University of Rochester from 1961 to 1968.
He was one of the last visitors to Alladi Ramakrishnan’s Theoretical Physics Seminar in
Madras in November 1961 just before the creation of MATSCIENCE. When Ramakrishnan
visited the University of Rochester at the invitation of Professor Marshak in 1963, 1966, and
1967, Hazlett graciously hosted Ramakrishnan and his family. Hazlett visited Madras again
in January 1964 with his family after MATSCIENCE was created and delivered the Second
Anniversary Address of the Institute.
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Telegram from RICHARD BELLMAN, Rand Corporation, Santa Monica, California, Jan 3,
1962

Comments. Richard Bellmann, one of most well-known applied mathematicians, was a senior
scientist at the famous RAND (acronym for Research and Development) Corporation, located
in Santa Monica, a lovely suburb of Los Angeles. In 1949, when Alladi Ramakrishnan was
doing his Ph.D. at the University of Manchester, he became aware of the fundamental work
of Richard Bellman and Ted Harris. Subsequently, Bellman got interested in Ramakrishnan’s
work on product densities and invited Ramakrishnan to the RAND Corporation during
Ramakrishnan’s first round-the-world tour of 1956; Bellman was much impressed with
Ramakrishnan’s work on probability and suggested that Ramakrishnan contact the brilliant
applied mathematician Peter Lax at the Courant Institute. Indeed, Lax invited Ramakrishnan
for a colloquium at Courant that year. Bellman also arranged a meeting for Ramakrishnan
with Richard Feynman at Caltech that year. Bellman and Ramakrishnan were very close.
Bellman invited Ramakrishnan several times to California – on a major assignment to Rand
in 1962, and subsequently to the University of Southern California in the 1970s after he
(Bellman) moved there. Bellman founded the Journal of Mathematical Analysis and Appli-
cations, and Ramakrishnan contributed several fundamental papers to the journal from the
1950s to 2000 (the Millennium Bellman Memorial issue). Bellman had Ramakrishnan ap-
pointed as one of the Editors of the Journal of Mathematical Analysis and Applications.
Ramakrishnan’s only regret was that Bellman never visited Madras and he (Ramakrishnan)
did not have an opportunity to host Bellman at MATSCIENCE and Ekamra Nivas.
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Two page telegram from L.I. SCHIFF, Department of Physics, Stanford University, Jan 2,
1962

Comments. Leonard Schiff was one of the very few physicists who made notable contri-
butions to almost every branch of physics. His book on Quantum Mechanics became the
Bible in the field and was used by professors the world over to train their students. In-
deed, Ramakrishnan lectured out of Schiff’s Quantum Mechanics in Madras to his students.
Schiff was Chairman of the Physics Department at Stanford University from 1948 to 1966,
and so this telegram he sent was on behalf of the whole physics department. Schiff invited
Ramakrishnan to visit Stanford for two weeks in 1962. Schiff came to MATSCIENCE in
February 1963 and gave a series of lectures on gravitation. Ramakrishnan visited Stanford at
the invitation of Schiff later in the 1960s on his annual scientific round-the-world trips.
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Two page telegram from MARK OLIPHANT, Australian National University, Canberra,
Jan 3, 1962

Comments. During his visit to Australia in 1954, Alladi Ramakrishnan met the eminent physi-
cist Sir Mark Oliphant, a former associate of Lord Ernest Rutherford. Professor Oliphant
was soon going to be visiting India under the auspices of The Royal Society, and so Alladi
Ramakrishnan invited Oliphant to Madras to deliver the Rutherford Memorial Lecture.
Oliphant came to Madras in January 1955 and stayed in Ekamra Nivas.

Some years later, Oliphant was appointed Governor of South Australia. In 1973, when
Alladi Ramakrishnan was visiting different universities in Australia, he made a trip to
Adelaide where he was the guest of Oliphant in the Governor’s Mansion!
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Two page telegram from LAJOS JANOSSY, Eotvos Institute, Budapest, Jan 12, 1962

Comments. Alladi Ramakrishnan first met Professor Janossy in the Winter in 1949 in
Edinburgh, Scotland, at a conference on modern physics. Ramakrishnan was doing his
Ph.D. at the University of Manchester under Professor Bartlett at that time. In Edinburgh,
Ramakrishnan heard the lecture of Janossy and noticed strong connections between his own
work on product densities and that of Janossy.� Ramakrishnan was invited to talks at Dublin
where Janossy was at that time. Janossy later returned to Hungary and became the Director of
the Eotvos Institute in Budapest. After Ramakrishnan began the Theoretical Physics Seminar
in Madras, he invited Professor Janossy to address the seminar and meet his students.

�Alladi Ramakrishnan, “A note on Janossy’s model of a nucleon cascade”, Proc. Cambridge Phil.
Soc., 48 (1952), 451–456.
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Telegram from BAYARD RANKIN, Case Western University, Cleveland, Ohio, Jan 4, 1962

Telegram from BRUNO ROSSI, Department of Physics, MIT, Dec 30, 1961
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Comments. Alladi Ramakrishnan met Professors Rankin and Rossi at the Massachusetts
Institute of Technology in 1956 where he gave talks in the Norbert Weiner Seminar. Rankin
had received his Ph.D. in 1955 from Berkeley and his thesis was on stochastic processes and
its uses in cascade theory which was an area in which Ramakrishnan had done considerable
work. Thus it was natural for Rankin to be much interested in Ramakrishnan’s work and in-
vite him to a seminar at MIT. Rankin subsequently moved to Case Western University which
is where he was when he sent the telegram. Rankin is known for the book “Differential space,
quantum systems and prediction” that he edited with Norbert Weiner and published by the
MIT Press in 1966.

Bruno Rossi was a famous experimental physicist who made notable contributions to cos-
mic rays and particle physics. He was interested in Ramakrishnan’s work on cosmic rays.
Rossi made his first major discoveries on cosmic rays in Florence, Italy in 1928. He moved
to the United States in 1939 to escape the persecution of the fascist regime. He was first at
the University of Chicago but then was appointed at MIT in 1946 as Professor of Physics. He
was subsequently made Institute Professor at MIT in 1965. He was a Member of the National
Academy of Sciences and won the Wolf Prize in Physics in 1987.
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Telegram from GUIDO MUNCH, CALTECH, Pasadena, California, Dec 30, 1961

Comments. Guido Munch was an astrophysicist who worked with the great Subrahmanyam
Chandrasekhar at the famous Yerkes Observatory outside Chicago in the 1940s. Munch hailed
from Mexico. He received his Ph.D. from Chicago in 1946. Munch was on the faculty of
the California Institute of Technology (Caltech) in Pasadena from 1953 onwards and was
associated with both the Mt. Wilson and Palomar observatories outside Los Angeles. Munch
was elected to the American Academy of Arts and Sciences in 1962.

Alladi Ramakrishnan became interested in applications of stochastic processes to astro-
physics and therefore corresponded with Chandrasekhar in the early 1950s. During his first
academic world tour of 1956, Ramakrishnan was traveling east bound, and therefore he met
Guido Munch first in California and later Chandrasekhar in Chicago. Ramakrishnan pub-
lished a series of papers in the Astrophysical Journal all communicated by Chandrasekhar
who was the Managing Editor of that journal. Two of the papers� were on an integral equa-
tion of Chandrasekhar and Munch. In his second academic round-the-world tour of 1962,
when Ramakrishnan had an extended stay at the RAND Corporation in Santa Monica, he
visited Mt. Wilson again at the invitation of Guido Munch.

�A. Ramakrishnan and P.M. Mathews, “On an integral equation of Chandrasekhar and Munch”,
Astrophys. J., 115 (1952), 141–144.
A. Ramakrishnan and P.M. Mathews, “On the solution of an integral equation of Chandrasekhar
and Munch”, Astrophys. J., 119 (1954), 81–90.
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In his telegram, Munch refers to the Institute of Mathematical Sciences as being part of
the University of Madras. This is incorrect. MATSCIENCE was a separate institute, and
still is, funded by the Department of Atomic Energy and the Government of Madras. Alladi
Ramakrishnan was Professor of Physics at the University of Madras prior to being appointed
Director of MATSCIENCE, and Munch must have been misled by that connection.
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Telegram from GEORGE GAMOW, Department of Physics, University of Colorado at
Boulder, Dec 31, 1961

Comments. Professor George Gamow lectured in Alladi Ramakrishnan’s Theoretical Physics
Seminar in December 1959. Gamow was not only an eminent researcher in physics, but also
a great expositor, who by his books reached out to students of all ages.

Ramakrishnan visited the University of Colorado several times in the 1960s to participate
in physics conferences and also to deliver colloquia in the physics department there. Thus he
had several contacts in the physics department at Boulder.
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Two page telegram from MAURICE M. SHAPIRO, Superintent – Nucleonics Division, Naval
Research Laboratory, Dec 28, 1961

Comments. Maurice Shapiro was a veteran of the famous Manhattan Project directed by
Robert Oppenheimer at Los Alamos. He had a long and distinguished career in the field
of cosmic rays and neutrino astrophysics. He founded the Cosmic Ray Laboratory at the
Naval Research Laboratories in Washington, DC, and was there for the remainder of his life.
Shapiro was very much interested in Alladi Ramakrishnan’s work on cosmic rays. When
Ramakrishnan was on a round-the-world scientific trip in 1956, Shapiro invited him to lec-
ture at the Naval Research Labs. Thus began the fruitful contact with Shapiro. In 1957–1958,
when Ramakrishnan was visiting the Institute for Advanced Study in Princeton, Shapiro in-
vited him to lecture in Washington, DC.

Shapiro visited India in 1961 and lectured at the Theoretical Physics Seminar. When
Alladi Ramakrishnan introduced Shapiro to the Minister for Education Mr. C. Subramaniam,
Shapiro told the Minister how impressed he was with the theoretical physics seminar, and
that it would be in the best interests of Indian science to start a new institute as envisioned by
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Ramakrishnan. Shapiro told Subramaniam that watching the students at work in Ekamra
Nivas reminded him of the manner in which scientists gathered round Oppenheimer at
Los Alamos! That was a high and generous tribute which made a great impression on
Subramaniam. Shapiro went on to suggest that the students should meet the Prime Minister
of India. Thus Shapiro’s input was crucial in the launching of MATSCIENCE. Shapiro
visited MATSCIENCE in December 1963 and also in the 1970s. After the creation of
MATSCIENCE, Alladi Ramakrishnan visited the United States annually, and Shapiro
regularly invited him to lecture at the Naval Research Labs.
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Telegram from HARRY MESSEL, University of Sydney, Dec 28, 1961

Comments. Alladi Ramakrishnan first met Harry Messel in Dublin in the winter of 1949 when
he went there at the invitation of Professor Janossy to deliver a lecture on stochastic processes.
Ramakrishnan was, at that time, a Ph.D. student at the University of Manchester working un-
der Professor M.S. Bartlett. Messel was working under Janossy. Ramakrishnan and Messel
became very good friends and had common research interests on cosmic rays. Messel then
went to Australia where he took a permanent position in Sydney. After Ramakrishnan re-
turned to India from England and was at the University of Madras, Messel invited him to
Sydney in 1954. In return, Ramakrishnan invited Messel to Madras and to the Theoretical
Physics Seminar in 1957.

It was the notes for the lectures that Alladi Ramakrishnan gave at Sydney that became the
basis of his Handbuch der Physik article of 1959. Also, the lectures in Sydney led Alladi
Ramakrishnan to novel interpretations of integrals of random functions.�

�Alladi Ramakrishnan, “Phenomenological interpretation of the integrals of a class of random
functions”, Proc. Koninkl. Netherlands Akad. 58 (D Indag. Math., 17) (1955), 470–482.
Alladi Ramakrishnan, “Phenomenological interpretation of the integrals of a class of random func-
tions – II”, Proc. Koninkl. Netherlands Akad. 58 (D Indag. Math., 17) (1955), 634–645.
Alladi Ramakrishnan, “Processes represented as integrals of a class of random functions”, Proc.
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Telegram from VICTOR WEISSKOPF, CERNLAB, Dec 28, 1961

Comments. Victor Weisskopf, a world renowned physicist, did his Ph.D. in 1931 under the
guidance of Nobel Laureates Max Born and Eugene Wigner. He then proceeded to do his
postdoctoral work with Nobel Laureates Werner Heisenberg, Erwin Schrodinger, Wolfgang
Pauli, and Niels Bohr. He worked on the Manhattan project that produced the atom bomb.
After World War II, he was Professor at MIT. Among his students, there was Murray Gell-
Mann who later won the Nobel Prize. During 1961–1966, Weisskopf was Director-General
of CERN outside Geneva in Switzerland where one of the famous accelerators is located.
Weisskopf was awarded the National Medal of Science in 1972 and the Wolf Prize in 1981.

Alladi Ramakrishnan interacted with Weisskopf when he attended international high en-
ergy physics conferences in Rochester in 1956 and elsewhere. This telegram was sent by
Weisskopf when he was Director-General in CERN. Alladi Ramakrishnan visited CERN
several times in the 1960s, first in 1960, and later in 1965 when Weisskopf was Director-
General there. Weisskopf visited MATSCIENCE in January 1964 and inaugurated its Second
Anniversary Symposium.
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Letter from Abraham Pais, The Institute for Advanced Study, Princeton, Jan 9, 1962

Comments. Abraham Pais, a very eminent physicist, was also a science historian. Born in the
Netherlands, Pais did his doctoral work under the world renowned L. Rosenfeld at Utrecht.
His Ph.D. work attracted the attention of Niels Bohr and Pais served as Bohr’s assistant for
a few years. In 1947, Pais moved to the Institute for Advanced Study in Princeton where
he became Albert Einstein’s colleague. Among his major contributions to physics was his
explanation of certain puzzling properties of strange particles, which together with the ideas
of Murray Gell-Mann led to formulation of the quantum number called strangeness.

Alladi Ramakrishnan visited the Institute for Advanced Study in 1957–1958 and got to
know Abraham Pais quite well. Ramakrishnan attended over 100 seminars at the Institute
including those of Pais and Sam Treiman on weak interactions.



62 K. Alladi

Telegram from L. ROSENFELD, Dec 29, 1961

Comments. Leon Rosenfeld, a Belgian physicist from Liege, was a collaborator of Niels Bohr.
He did very fundamental work in quantum electrodynamics predating Dirac. Rosenfeld suc-
ceeded George Uhlenbeck as professor of theoretical physics at the University of Utrecht
in Holland in 1940. Among his notable students at Utrecht was physicist Abraham Pais. In
1947, he was appointed as Professor of Theoretical Physics at the University of Manchester.
After serving in Manchester, he moved to Copenhagen.

As a Ph.D. student at the University of Manchester during 1949–1951, Alladi
Ramakrishnan heard a course of lectures by Professor Rosenfeld on nuclear physics. Later
Ramakrishnan met Rosenfeld in Copenhagen during a visit to the Copenhagen Institute in
1960 at the invitation of its Director Niels Bohr. Rosenfeld visited MATSCIENCE as the First
Niels Bohr Visiting Professor in 1963–1964. Upon arrival in Madras, Rosenfeld said that he
had not attended a single conference in Europe in the last year without meeting someone or
the other who had not visited, or was planning to visit, MATSCIENCE. Such was the flow of
visiting scientists even in the very first years of the Institute. Professor Rosenfeld expressed
surprise at the very small and humble accommodations of the Institute which had such an
outstanding program of visitors. Rosenfeld delivered the opening lecture of the Second An-
niversary Symposium of MATSCIENCE and spoke about Bohr’s contribution to twentieth
century physics.
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Telegram from M.J. LIGHTHILL, Royal Aircraft Establishment, Farnborough, England,
Dec 29, 1961

Comments. Sir James Lighthill (FRS) was one of the most eminent and productive applied
mathematicians in England. He held the Beyer Chair at the University of Manchester during
1946–1949. As a Ph.D. student in 1949–1951 at Manchester, Alladi Ramakrishnan heard over
100 lectures of Lighthill on methods of mathematical physics. In return, Lighthill appreciated
Ramakrishnan’s new method of product densities in the theory of probability. Thus began a
long friendship between Ramakrishnan and Lighthill and the two had a mutual admiration
for their research and professional contributions.

Lighthill was one of the last visitors to the Theoretical Physics Seminar in Novem-
ber 1961, and endorsed the creation of MATSCIENCE when he met Education Minister
C. Subramaniam at Ekamra Nivas. He was at that time Director of the Royal Aircraft Estab-
lishment in Farnborough from where this telegram was sent. AVMIN in the telegram probably
refers to Aviation Ministry.

Lighthill was an acknowledged world authority on aeroacoustics and fluid mechanics. His
recognitions include the Royal Medal (1964) and the Copley Medal (1998). In 1964, he was
appointed as the Royal Society Resident Professor at Imperial College, London. At his invi-
tation, Alladi Ramakrishnan visited Imperial College in 1965 and 1969. Lighthill later served
as Lucasian Professor of Mathematics at Trinity College, Cambridge. Ramakrishnan visited
Lighthill in Cambridge in 1975 and he (Lighthill) arranged a meeting for Ramakrishnan with
Professor Alan Baker at Cambridge; Ramakrishnan wanted to meet Baker to get his advice
for Krishna who in 1975 was going to UCLA for his Ph.D. When Lighthill retired from the
Lucasian Professorship in 1979, that Chair was filled by Stephen Hawking. Lighthill then
became Provost of the University College, London.

Lighthill founded the Institute of Mathematics and its Applications (IMA) in 1964, a pro-
fessional body for mathematicians, and a learned society in England.



64 K. Alladi

Three page telegram from CAPTAIN MAXWELL, Pergamon Press, Oxford, England, Jan 2,
1962

Comments. With so much work done by Alladi Ramakrishnan and his students on the method
of product densities and its applications, as well as on the theory of elementary particles
and cosmic rays starting from 1950, it was only natural for Ramakrishnan to consider writ-
ing a book. The first was a comprehensive 1959 survey by Ramakrishnan in the Handbuch
der Physik (Springer) on probabilistic methods stemming from product densities. This was
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followed by the book “Elementary particles and cosmic rays” published by the Pergamon
Press, Oxford, in late 1962. During his 1960 trip to Europe, Alladi Ramakrishnan visited
Oxford University at the invitation of Professor D.G. Kendall, and during this visit he met
Captain Maxwell, Publisher of the Pergamon Press in London. Maxwell then extended a
book contract to Ramakrishnan. The book came to print in late 1962 after the birth of
MATSCIENCE.



The Miracle has Happened

Alladi Ramakrishnan

My father Professor Alladi Ramakrishnan was a master of exposition, both in
written and spoken form. He was a dynamic speaker, an orator in every sense. Right
from my boyhood, I had the pleasure to listen to many of his scientific lectures and
speeches, and was inspired by his manner of speaking and the power of his oratory.
The finest speech he ever gave was perhaps at the inauguration of MATSCIENCE,
the Institute of Mathematical Sciences, on January 3, 1962, when his thoughts came
pouring out at that very exciting and memorable occasion. As a six year old boy,
I was in the front row of the English Lecture Hall at the Presidency College in
Madras when he delivered that speech extempore, as was his custom. The speech
was later written up from a tape recording. This speech was printed in the appendix
to The Alladi Diary, Vol I, East–West Books, Madras, (2000). It is reprinted here
with the permission of East–West Books, Madras, Pvt. Ltd.

Krishnaswami Alladi

Alladi Ramakrishnan’s Speech on the Inauguration
of the MATSCIENCE Institute

So the miracle has happened. By the Grace of God and the will of man, a new
situation has been brought into being which augurs to be the starting point of an
intellectual renaissance, the nature and magnitude of which cannot be foreseen at
the present time. It is incredible that a series of events, each as improbable as the
other, should have taken place in such steady and rapid succession. It is as though a
chapter of a book of fairy tales has been transmuted into real life, and I feel like one
who wakes up from a dream to find reality stranger than fantasy.

K. Alladi
Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
e-mail: alladik@ufl.edu
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The dream is so chaste that I have the courage to ask all those present here to
share it with me. It originated five years ago in the exotic atmosphere of the quaint
old town of Kyoto in Japan where I spent six weeks at the invitation of Profes-
sor Yukawa. In the ‘domestic’ environment of the Yukawa Hall, young Japanese
physicists, the hope and pride of their country, just resurrected from the second
World War, gathered together in enlightened leisure to discuss the most abstruse
problems of modern physics. That strange enchantment drew me into the domain of
elementary particle physics, and I played with the idea of creating something like
the Yukawa Hall in my own home town where my great father made his legendary
reputation in another field of intellectual activity.

The enchantment became a passion when a fortitutious circumstance took me to
the New World, and I had the opportunity to attend the Conference on High Energy
Physics at the University of Rochester in the spring of 1956. Within four days, I
was brought face to face with the rising generation of American physicists. One had
only to listen to Gell-Mann and Chew, Feynman and Goldberger, to realise that a
new era in American physics had been ushered in. American institutions no longer
depended on the guidance of European scientists as they did a decade ago, when due
to the chance of war, they were able to offer hospitality to European physicists like
Fermi, Segre, and Bethe. American physics leapt from infancy to manhood within
this decade, and it has now become almost a necessity for European physicists to
spend some time in the great American institutions and in the laboratories where
things are happening every day and every hour. I felt that such a transformation
needs to come in my own country which despite its organised efforts in scientific
research has yet to take a place in creative science.

I therefore tried to analyse the causes for our failure. There has always been the
conventional argument that there was not enough talent in the country which is not
borne out by facts. It is a tragedy too deep for tears that we do not take cognisance
of talent or creative work unless it has received recognition outside our frontiers.
Sometimes the wait is too long, the response so cold, that it freezes up the all too
frail impulses for academic life in our country. What we need is a new generation
of scientists, impatient for opportunities, intolerant of mediocrity, full of action, full
of manly pride, and friendship like their compeers in the new world, who have not
only faith in their powers, but in the scientific progress of their country.

I was strengthened in this faith during my stay, at the kind invitation of Professor
Oppenheimer, in Princeton, where the most gifted minds in mathematical sciences
gather together every year in an atmosphere exhilarating for creative work. It was
a momentous year when the work of Yang and Lee marked the greatest advance
in physical thought since the birth of quantum mechanics in 1926. I held a watch-
ing brief as a representative of our unborn Institute and I returned from Princeton
with no other thought dominating my mind except to reproduce, in a small measure
at least, the atmosphere for such creative work. Chance and circumstance came to
my favour when a small band of students, stricken by the same splendid sickness,
gathered round me in goodly friendship. We had no resource at our command ex-
cept the love of common excitement for doing something new. To this fraternity,
we gave the name – “Theoretical Physics Seminar”. It was located in my family
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home with the consent of my gracious wife. We met in leisured comfort and in-
dulged in the impertinence of attempting to work on the same type of problems as
are engaging the attention of theoretical physicists elsewhere. We were encouraged
in our efforts by the frequent visits of famous physicists whose friendliness and
cooperation were our only sources of strength and sustenance. What a fine hour it
was when Bohr and Salam who span the growth of modern physics from atomic
physics to guage theories of elementary particles, evinced an interest which gave us
the strength to hope when we were all alone and everything seemed so near despair.
We waited and watched for something to happen.

It was one of the fortunate moments of my life when I met the Finance Minister
one evening at a gathering of international students. It puzzled me beyond compre-
hension to find the Minister, who must be more concerned with building dams and
bridges, getting interested in the development of mathematical research. I felt a trifle
guilty that I had inveigled him into this domain which had intoxicated me and my
associates beyond reason. Soon I realised that it became almost a faith with him, a
faith which was strengthened by his recent visit to the United States. He returned
with the conviction that creative science needed the noble heat of youthful ambition
and not the tepid caution of unfeeling mediocrity. Before proceeding to take steps
for the creation of an institute for advanced learning, he was anxious to have the
blessings and active support of our Prime Minister. It occured to him in a discussion
with my esteemed and genial friend Dr. M. M. Shapiro that all students associated
with me should be introduced to the Prime Minister during his visit to Madras. The
impression they made on our Prime Minister was more due to his generosity than
to their own achievements. It was his wide humanity and deep concern for the pros-
perity of our country that made him see the light of hope even in the feeble efforts
of smaller men. His support by agreeing to be our Patron, gave that final impulse
which resulted in the setting up of this Institute.

The final act in this strange dream is even more fantastic than the events that
preceded it. I approached Professor S. Chandrasekhar, one of the greatest astro-
physicists of our time, who stands so high above the rest of our own common mould,
with a request that he should associate himself with the new Institute. It was an in-
solence on my part to do so when I was assuming the Directorship of the Institute.
I suppose you will excuse me for this if I assure you that the spirit in which I did
so was animated by that in the greatest of legends when Arjuna approached Lord
Krishna for his support. It was accepted with that same legendary grace, and the
Institute has honoured itself by his association with it. This band of students, this
firstlings of the fold, must consider themselves to be the happy few to have chosen
him as their guide.

This then is the genesis of this new Institute, which symbolises the hopes and
ideals of the entire scientific community in India. The Government of Madras and in
particular the Chief and Finance Ministers ably assisted by the Education Secretary,
another victim of the splendid sickness, must be congratulated for the most gracious
gesture that has ever been made by any administrative authority to the academic
community in our country. The best tribute we can pay to our government is to say,
“it does not seem to be the red tape – it is the blue riband.” Is it not natural that
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greetings have poured from scientists all over the world, from California in the west
to Sydney in the east? To those scientists who visited Madras, whose very presence
had introduced the heady atmosphere of Berkeley into the placid environs of my
family home, we are deeply grateful, for they kept alive the state of hope till the
moment of its realisation. As for myself, it is a period of thanksgiving to my great
teachers Professor Bhabha and Professor Bartlett, who initiated me into theoretical
physics. My only regret is that my parents whose home nursed the happy breed, are
not alive today at the crucial moment of my academic life. In recompense, I shall
pass on to my students their message that the pursuit of science is at its best when it
is a part of a way of life. That is the ideal to which this institute is dedicated.

(l to r) Alladi Ramakrishnan, Subrahmanyam Chandrasekar (University of Chicago), and Minister
of Education Mr. C. Subramaniam walking to the dais for the inauguration of MATSCIENCE,
The Institute of Mathematical Sciences – 3 Jan 1962
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Professor Alladi Ramakrishnan delivering his speech “The Miracle has happened” at the inau-
guration of MATSCIENCE, The Institute of Mathematical Sciences – 3 Jan 1962. The inaugural
function was held at the Old English Lecture Hall of the Presidency College of the University of
Madras



Overseas Trips of Alladi Ramakrishnan

Krishnaswami Alladi

Professor Alladi Ramakrishnan believed that close interaction with the leading
scientists around the world was essential for fundamental research. He traveled
annually to present his work at conferences and universities worldwide. He has lec-
tured at more than 30 international conferences, and given talks at about 200 centers
of higher learning in North America, Europe, Asia, and Australia. In doing so, not
only did he disemminate his research work and those of his group, but also used
it as an opportunity to make new contacts and invite active researchers to Madras.
Among his many trips abroad, we mention a few that were especially significant in
terms of his career.

1949–1951 Visit to England for PhD at the University of Manchester under
M. S. Bartlett and D. G. Kendall (Oxford); method of product densities recognized
in England.

1954 Trip to Australia: Lectures at the University of Sydney at the invitation of
Harry Messel became the basis of the Handbuch der Physik article five years later.

1956 Round-the-World Trip: Visit to Yukawa Hall, Kyoto; met Richard Bellman
and Nobel Laureate Richard Feynman in California (the beginning of a long as-
sociation with Richard Bellman); met astrophysicist Subrahmanyam Chandrasekar
in Chicago; attended High Energy Physics Conference in Rochester organized
by Robert Marshak and met Robert Oppenheimer there; lectured at the Max
Planck Institute in Göttingen, Germany at the invitation of Nobel Laureate Werner
Heisenberg, which resulted in a contract with Springer for an article on probability
in the Handbuch der Physik.

1957–1958 Visit to the Institute for Advanced Study in Princeton at the invitation
of its Director Robert Oppenheimer, after which the focus of Alladi Ramakrishnan’s
research turned from stochastic processes to elementary particle physics.

1960 Trip to Europe: visited the Copenhagen Institute of Physics at the invita-
tion of Nobel Laureate Niels Bohr; series of lectures on stochastic processes at the
University of Berne at the invitation of Andre Mercier; visited Imperial College,

K. Alladi
Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
e-mail: alladik@ufl.edu

K. Alladi et al. (eds.), The Legacy of Alladi Ramakrishnan
in the Mathematical Sciences, DOI 10.1007/978-1-4419-6263-8 5,
c� Springer Science+Business Media, LLC 2010

73

alladik@ufl.edu


74 K. Alladi

London, as the guest of Abdus Salam; while in London was offered a contract by
the Pergamon Press to write a book on Elementary Particles and Cosmic Rays which
was published in 1963.

1962 First Round-the-World trip after assuming Directorship of MATSCIENCE:
two month visit to Rand Corporation in California at the invitation of Richard
Bellman; lectured at Caltech at the invitation of Murray Gellmann; spent two weeks
each at Stanford University at the invitation of Leonard Schiff and at the University
of California, Berkeley.

1964 Visit to Russia: lectured at the High Energy Physics Conference in Dubna.
1965 Trip to Europe: two month visit to the International Centre for Theoretical

Physics (ICTP) in Trieste, Italy at the invitation of its Director Abdus Salam; visits
to CERN in Geneva, Saclay, Orsay, and Institute Henri Poincare in Paris.

1968 Round-the-World trip, and visit to Europe: Lectured at Cornell University at
the invitation of Nobel Laureate Hans Bethe (contact with Bethe resulted in Bethe
visiting MATSCIENCE in 1969); visited Moscow and Leningrad as guest of the
Russian Academy of Sciences; lectured at the High Energy Physics Conference in
Vienna.

1971 Visit to New Zealand: talk at the Rutherford Centennial Conference,
Cristchurch.

On most of his trips abroad from 1962 onwards, his wife Lalitha and his son
Krishna accompanied him. It was thus a great academic experience for Krishna from
an early age. We present here a sample of some overseas photographs of Professor
Alladi Ramakrishnan.

Alladi Ramakrishnan in front of Fuld Hall, Institute for Advanced Study, Princeton, Fall 1957
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Alladi Ramakrishnan in Europe during a trip in 1960

Alladi Ramakrishnan with Nobel Laureate Niels Bohr at Bohr’s home in Copenhagen – 1960
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Prof. Alladi Ramakrishnan at a conference at the International Centre for Theoretical Physics in
Trieste, Italy – 1968

Mrs. Lalitha Ramakrishnan and Krishna who accompanied Prof. Ramakrishnan on his scientic
tours, often attended the conference lectures as well – 1968
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Professor Alladi Ramakrishnan with Nobel Lauretae Hans Bethe and other physicists at Cornell
University – 1968

Alladi Ramakrishnan in attendance at the International Conference on High Energy Physics in
Vienna – July 1968
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The following are recent pictures taken at the home of Mathura and Krishna
Alladi in Gainesville, Florida

Mathura Alladi, Lalitha Ramakrishnan and Alladi Ramakrishnan in discussion with National
Academy of Sciences Member Richard Askey (University of Wisconsin) – March 2005

Alladi Ramakrishnan in discussion with 1994 Fields Medalist Efim Zelmanov (UC San Diego)
who delivered the Tenth Erdos Colloquium – January 2008
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Alladi Ramakrishnan in discussion with the eminent combinatorialist Dominique Foata (Univ.
Strasbourg, France) who delivered the Tenth Ulam Colloquium. Mrs. Ramakrishnan looks on –
February 2008

Alladi Ramakrishnan and Krishna Alladi with National Academy of Science Member and
Ramanujan Expert George Andrews (Penn. State Univ.) who is Distinguished Visiting Professor
at Florida each spring – February, 2008
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Alladi Ramakrishnan in discussion with 1970 Fields Medalist John Thompson during a party at
the Alladi House in Gainesville – April 2008. Thompson, who is Graduate Research Professor at
the University of Florida, won the Abel Prize in May 2008

Alladi Ramakrishnan in discussion with Professor Bertram Kostant (MIT), who delivered the
Center for Applied Mathematics Colloquium – April 2008
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Summary In my 1967 paper with almost the same title which appeared in volume
89 of the American Journal of Mathematics, I proved the invariance of the character-
istic terms in the fractional power series expansion of a branch of an algebraic plane
curve over fields of characteristic zero. Now I extend the results by a more gener-
ous interpretation of the characteristic terms, and by relaxing the characteristic zero
hypothesis.
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1 Introduction

A branch of an algebraic or analytic plane curve can be parametrized by expressing
both the variables as power series in a parameter; we call this the MT (DMaclaurin–
Taylor) expansion. In case of zero characteristic, by Hensel’s Lemma or by
Newton’s Theorem on fractional power series expansion, one of the variables
can be arranged to be a power of the parameter, and then certain divisibility proper-
ties of the exponents in the expansion of the other variable lead to the characteristic
terms whose importance was first pointed out by Smith [34] and Halphen [23] as
noted in Zariski’s famous book [35].
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In my 1967 paper [4] I showed that, as long as the variable which is a power of
the parameter is nontangential, the characteristic terms remain invariant. This I did
by first showing that if I flip the variables, then the characteristic terms change by
a definite inversion formula whose proof essentially depends on the binomial the-
orem. This will be reviewed in Sect. 4. In Sect. 5, I shall relate this to quadratic
transformations and establish the invariance of another type of characteristic term,
namely, the first exponent whose coefficient is transcendental over a certain subfield
of the ground field. While doing this, I shall reorganize the NT (D newtonian) ex-
pansion into the ED (D euclidean) expansion, which is a generalized form of the so
called HN (DHamburger-Noether) expansion. The reorganization will partly make
things work even in the mixed characteristic meromorphic case.

As basic references for this paper, the reader may profitably consult my Rambling
Article [5], Tata Notes [6], Engineering Book [9], and Algebra Book [12].

After fixing the notation in Sect. 2, a host of Remarks and Lemmas will be
collected in Sect. 3. These deal with Euclidean Sequences (3.1), Characteristic
Sequences (3.2), Binomial Lemmas (3.3) and (3.4), Special Subfields (3.5), Gap
Lemmas (3.6) and (3.7), Valuation Expansions (3.8) and (3.9), and Uniqueness of
Power Series Rings (3.10).

In Sect. 6, I shall show how the above mentioned first transcendental coefficient
is related to a generator of the residue field of the branch. Moreover, the generator
can be chosen so that the said coefficient is a polynomial in it. This leads to an
algebraic incarnation of the topological theory of dicritical divisors which I shall
describe. In Sect. 7, I shall relate field generators to dicritical divisors.

In Sect. 8, I shall preview Part II which will include various topics from algebraic
curve theory such as the conductor and genus formulas of Dedekind and Noether,
and the automorphism theorems of Jung and Kulk. In Part II, I shall also relate all
this to the Jacobian problem which conjectures that if the Jacobian of n polynomials
in n variables over a characteristic zero field equals a nonzero constant, then the
variables can be expressed as polynomials in the given polynomials; see [13–15].

As hinted in the Note following Lemma (3.4) of Sect. 3, Newton’s Binomial The-
orem For Fractional Exponents is the real heart of this paper. I was very lucky in
having studied this in the hand-written manuscript of my father’s book [1] two years
before it was published when I was 11 years old. Very relevant is the following com-
ment which he makes on page 235 of his book:

From
.aC b/n D an C � � �

we get the standard form
.1C x/n D 1C � � �

by writing 1 for a and x for b; the standard form is simpler and is more convenient to
use; all problems regarding binomial expansions can be solved by using the standard
form.

Coming to the idea of Inversion in the title of this paper, let me repeat from
page 194 of my Engineering Book [9] the following quotation from page 323 of the
chapter on Abel in Bell’s Men of Mathematics [17]:
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Instead of assuming that people are depraved because they drink to excess,
Galton inverted this hypothesis . . . For the moment we need note only that Galton,
like Abel, inverted his problem – turned it upside-down, and inside-out, back-end-
to and foremost-end-backward . . . ‘you must always invert,’ as Jacobi said when
asked the secret of his mathematical discoveries. He was recalling what Abel and
he had done.

On page 309 of the chapter on Abel, Bell says: One of his (DAbel’s) classics
in this direction is the first proof of the general binomial theorem, special cases of
which had been stated by Newton and Euler.

In other words, Bell disagrees with my viewpoint that Newton stated and proved
the most general form of the Binomial Theorem.

In this connection, let me repeat what I said on page 417 of my Ramblings Ar-
ticle [5]: Generally speaking, from Newton to Cauchy, mathematicians used power
series without regard to convergence. They were criticized for this and the matter
was rectified by the analysts Cauchy and Abel who developed a rigorous theory
of convergence. After another hundred years or so we were taught, say by Hensel,
Krull, and Chevalley, that it really didn’t matter, i.e., we may disregard convergence
after all! So the algebraist was freed from the shackles of analysis, or rather (as in
Vedanta philosophy) he was told that he always was free but had only forgotten it
temporarily.

Now one good way to study the rest of this paper is to INVERT it by first reading
the last section called EPILOGUE, which is sort of an extended Introduction or a
Birds Eye View of the entire paper. Another idea is to start with Sect. 4 and refer
to Sects. 2 and 3 as necessary. More precisely, start by reading definition .��/ of
a valuation sequence given at the beginning of Sect. 4. Our goal in Sect. 4 is to
show that the newtonian expansion of the first two terms of that sequence partly
determines the newtonian expansion of any two consecutive terms.

2 Notation

We shall mostly follow the notation and terminology of my Kyoto paper [7] and my
books [9,12]. In particular: N D the set of all nonnegative integers, NC D the set of
all positive integers, bR D R [ f˙1g, and R� D the set of all nonzero elements in
a ring R. The GCD of a set of integers S is the unique nonnegative generator of the
ideal SZ in the ring of integers Z generated by S ; if the set S contains a noninteger
then GCD.S/ D 1. A set of integers J is bounded from below means for some
integer e we have e � j for all j 2 J , and we write min J for the smallest element
of such a set, with the convention that if J is the empty set ; then min J D 1.

To fix some more notation: Recall that a quasilocal ring is a (commutative with
identity) ring R having a unique maximal ideal M.R/; we let H.R/ stand for its
residue field R=M.R/, and by HR W R ! R=M.R/ we denote the residue class
epimorphism; note that then H.R/ D HR.R/. By a coefficient set of R, we mean
a subset k of R with 0 2 k and 1 2 k such that HR maps k bijectively onto
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H.R/. By a coefficient field of R, we mean a coefficient set k of R such that k is
a subfield of R. For any subfield K of R, we note that HR maps K isomorphically
onto the subfield HR.K/ of H.R/ and we let trdegKH.R/ and ŒH.R/ W K� stand
for trdegHR.K/H.R/ and ŒH.R/ W HR.K/�, respectively. Given an element z in an
overring of R, we say that z is residually transcendental over K at R to mean that
z 2 R and HR.z/ is transcendental overHR.K/.

Recall that a field extension L=K is algebraic (resp: finite algebraic, transcen-
dental, simple transcendental, pure transcendental) means ŒK.w/ W K� < 1 for all
w 2 L (resp: ŒL W K� < 1, trdegKL > 0, trdegKL D 1 and L D K.t/ for
some t 2 L, trdegKL D � 2 N and L D K.t1; : : : ; t�/ for some t1; : : : ; t� in L).
Recall that an affine domain over a field is a domain which is a finitely generated
ring extension of that field. The characteristic of a field K is denoted by ch.K/.
The dimension dim.R/ of a ring R is the maximum length n of a chain of prime
ideals

P0 ¤ P1 ¤ � � � ¤ Pn

in R.
A noetherian quasilocal ring R is called a local ring. The smallest number of

generators of M.R/ is called the embedding dimension of R and is denoted by
emdim.R/. We always have emdim.R/ � dim.R/ and R is regular means equality
holds; a regular local ring is always a domain. A DVR is a one-dimensional regular
local domain; Alternatively, a DVR is the valuation ring of a real discrete valuation
in the following sense. A valuation is a map W W L! G [ f1g, where L is a field
and G is an ordered abelian group, such that for all u; u0 in L we have W.uu0/ D
W.u/ C W.u0/ and W.u C u0/ � min.W.u/;W.u0// and for any u in L we have:
W.u/ D 1, u D 0. We put GW D W.K�/ and RW D fu 2 K W W.u/ � 0g and
call these the value group and the valuation ring of W . Now RW is a ring with the
unique maximal ideal M.RW / D fu 2 K W W.u/ > 0g. Thus RW is a quasilocal
ring. If GW D Z thenW is said to be real discrete.

A quasilocal ring V dominates a quasilocal ring S means S is a subring of V
with M.S/ � M.V /, and then: restrdegSV denotes the residual transcendence de-
gree of V over S , i.e., the transcendence degree of H.V / over HV .S/; we say
that V is residually rational over S to mean that H.V / D HV .S/; we say that
V is residually algebraic (resp: residually finite algebraic, residually transcendental,
residually simple transcendental, residually pure transcendental) overS to mean that
the field extensionH.V /=HV .S/ is algebraic (resp: finite algebraic, transcendental,
simple transcendental, pure transcendental). Given any subring A of a quasilocal
ring V , upon letting S to be the localization of A at the prime ideal A \M.V /, we
put restrdegAV D restrdegSV and call it the residual transcendence degree of V
over A, and we say that V is residually rational (resp: residually algebraic, resid-
ually finite algebraic, residually transcendental, residually simple transcendental,
residually pure transcendental) over A to mean that V is residually rational (resp:
residually algebraic, residually finite algebraic, residually transcendental, residually
simple transcendental, residually pure transcendental) over S .
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For any local domain R and any z 2 R�, we define ordRz to be the largest
nonnegative integer e such that z 2 M.R/e; if z D 0 then we put ordRz D 1. If R
is regular then we extend this to the quotient field QF.R/ of R by putting

ordR.x=y/ D ordRx � ordRy

for all x; y in R�; if dim.R/ > 0 then this gives a real discrete valuation of QF.R/
whose valuation ring V dominatesR and is residually pure transcendental overR of
residual transcendence degree dim.R/ � 1. See (Q35.5) on pages 559–577 of [12].

Given any subringK of a domainL, by the transcendence degree ofL overK we
mean the transcendence degree of QF.L/ over QF.K/, and we continue to denote it
by trdegKL; note that by convention, if trdegKL D 1 then .trdegKL/ � 1 D 1.
Given any subring K of a field L, by D.L=K/ we denote the set of all valuation
rings V with QF.V / D L such that K � V , and by D.L=K/ we denote the set of
all V 2 D.L=K/ such that trdegHV .K/H.V / D .trdegKL/�1; we call these V the
valuation rings and prime divisors of L=K respectively. Note that if L is a finitely
generated field extension of a field K then every member of D.L=K/ is a DVR;
moreover if trdegKL D 1 then L is the only member of D.L=K/ which does not
belong to D.L=K/.

Given any affine domain A over a field K with QF.A/ D L, by I .A=K/ and
I.A=K/ we denote the set of all V 2 D.L=K/ and V 2 D.L=K/, respectively,
such that A 6� V ; we call these V the infinity valuation rings and infinity divisors
of A=K respectively. Note that all members of D.L=K/, and hence all members
of I.A=K/, are DVRs. Also note that if trdegKL D 1 then I.A=K/ is a nonempty
finite set, and for every V 2 D.L=K/ we have ŒH.V / W K� 2 NC. Let us recall
that DD = Dedekind Domain = normal noetherian domain of dimension at most
one. Note that the localizations of a DD at the various nonzero prime ideals in it are
DVRs whose intersection is the given DD. Note that a domain is a PID iff it is a
DD as well as a UFD. Also note that a domain is a PID iff it is a notherian UFD of
dimension at most one. Let us say that a domain is proper to mean that it is not a
field. In particular, a proper PID is a PID which is not a field.

Given any local domainR, byD.R/� we denote the set of all V 2 D.QF.R/=R/
such that V dominate R, and we let D.R/� denote the set of all V 2 D.R/� such
that restrdegRV D dim.R/ � 1; we call these V the valuation rings of QF.R/
dominating R and prime divisors of R respectively; note that then for every V 2
D.R/� we have restrdegRV � dim.R/, and for every V 2 D.R/� we have that V
is a DVR.

The habitat for most of the Remarks and Lemmas of the next section will be a
DVR V with its quotient field QF.V / D L, its completion bV , a coefficient field
K , and a uniformizing parameter T , i.e., an element of V of order 1. Note that bV
can be identified with the power series ring KŒŒT �� and L with a subfield of the
meromorphic series field K..T //. For any

y D y.T / D
X

i2Z

AiT
i 2 K..T // with Ai 2 K
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we define the T -support SuppTy.T / of y.T / to be the set of all i 2 Z with Ai ¤ 0,
and then we define the T -order and T -initial-coefficient of y.T / by putting

ordT y.T / D min SuppT y.T /

and
incoT y.T / D Ae where e D ordT y.T /

with the understanding that if y.T / D 0 then ordT y.T / D1 and incoTy.T / D 0;
note that in case of bV D KŒŒT �� we have ordV y D ordT y.T / for all y 2 L. By
a special subfield S of K..T // we mean either the null ring S D f0g � K or a
subfield S ofK..T // such that: if a 2 S \K� and b 2 K� with bq D ap for some
p 2 Z and q 2 NC then b 2 S ; if S � K then we may call S a special subfield
of K . Observe that if k is any special subfield of K then k as well as k..T // are
special subfields of K..T //; by convention, if k D f0g then k..T // D f0g. We put

subT y.T / D

8

ˆ

ˆ

<

ˆ

ˆ

:

the smallest special subfield k of K

such that Ai 2 S for all i 2 Z

(with the note that k D f0g , y.T / D 0)

We call subT y.T / the T -subfield of y.T /.
As a weaker version of algebraic closedness, we say that a field K is root-closed

to mean that for every a 2 K and n 2 NC we haveXn�a D .X �a1/ : : : .X �an/
for some a1; : : : ; an in K . Both the notions of a special subfield and a root-closed
field are inspired by root extraction, i.e., the finding of square-roots, cube-roots, and
so on. The process of root extraction also inspires the concept of a quasiroot-closed
domain which we shall introduce in Remark (3.10).

3 Remarks and Lemmas

We start off by codifying the euclidean algorithm (Dmethod of long division) of
finding the GCD of a pair of integers.

Remark on Euclidean algorithm (3.1). By a euclidean sequence pair, we mean a
pair

�

.ej /0�j�l ; .pj /0�j<l
�

of sequences of integers ej 2 Z and pj 2 Z with
l 2 NC such that:

e1 ¤ 0 D p0 D 0 ¤ pj for 2 � j < l with pj > 0 for 3 � j < l; (1)

ej�1 D pj ej C ejC1 with 0 < ejC1 < jej j for 1 � j � l � 1; (2)

jej j > jel j D GCD.e0; e1/ D GCD.e0; : : : ; el/ for 1 � j � l � 1; (3)

l D 1, e0 	 0 mod .e1/: (4)
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The usual euclidean algorithm implies that any pair of integers .e0; e1/ with
e1 ¤ 0 can be embedded in a unique euclidean sequence pair

�

.ej /0�j�l ;
.pj /0�j<l

�

which we call the euclidean extension of .e0; e1/.
To apply this construction to orders of elements, let V be a DVR with

V � bV D the completion of V and QF.V / D L � bL D QF.bV /

and let K be a coefficient set of V .
By a .V;K/-protosequence we mean a sequence

.zj ; ej ; pj ; A
�
l .�/; e

�
l ; z
�
l /�2Z;0�j�lC1

where
�

.ej /0�j�l ; .pj /0�j<l
�

is a euclidean sequence pair and

(

zj 2 L� with ordV zj D ej for 0 � j � l ,
and zj�1 D z

pj

j zjC1 for 1 � j � l � 1 (5)

and

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

zlC1 2 L with ordV zlC1 D elC1 and pl D plC1 2 Z [ f1g
and z�

l
2 L with ordV z�

l
D e�

l

such that zlC1 D 0, pl D1, z�
l
D 0

and zlC1 ¤ 0) .el�1=el/ � pl.el=jel j/ with 0 < elC1 < jel j

(6)

and
8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

A�
l
.�/ 2 K for all � 2 Z such that

A�
l
.�/

8

ˆ

ˆ

<

ˆ

ˆ

:

D 0 if � < .el�1=jel j/
¤ 0 if � D .el�1=jel j/
D 0 if � > pl.el=jel j/ and zlC1 ¤ 0

(7)

such that in bL we have

z�l D zl�1 �
X

.el�1=jel j/��<1
A�l .�/z

�.jel j=el /

l
D
(

0 if zlC1 D 0
zpl

l
zlC1 if zlC1 ¤ 0:

(8)

Any pair of elements .z0; z1/ in L� with ordV z1 ¤ 0 can clearly be embedded in a
unique .V;K/-protosequence

.zj ; ej ; pj ; A
�
l .�/; e

�
l ; z
�
l /�2Z;0�j�lC1

which we call the .V;K/-protoexpansion of .z0; z1/.



100 S.S. Abhyankar

To contrast the above expansion (8) with the usual expansions in terms of a
uniformizing parameter T of bV , we note that

for 0 � j � l C 1

there exist unique
8

ˆ

ˆ

<

ˆ

ˆ

:

Aj .�/ 2 K for all � 2 Z

with Aj .�/ D 0 for � < ej

and if ej 2 Z then Aj .ej / ¤ 0
(9)

such that
zj D zj .T / D

X

ej��<1
Aj .�/T

� : (10)

In case z0; z1 belong to V , we may visualize x D z1.T /; y D z0.T / as giving
a parametrization of a branch of a curve in the .x; y/-plane centered at the point
.z1.0/; z0.0//.

To continue our construction by a .V;K/-presequence we mean a sequence

.zij; eij; pij; A
�
il.i/.�/; e

�
il.i/; z

�
il.i//�2Z;0�j�l.i/C1;0�i�� with � 2 N

where
.zij; eij; pij; A

�
il.i/.�/; e

�
il.i/; z

�
il.i//�2Z;0�j�l.i/C1

is a .V;K/-protosequence for 0 � i � � with

.z�il.i/; zil.i// D .ziC1;0; ziC1;1/ for 0 � i < � (11)

and
z�;l.�/C1 D 0: (12)

Now given any pair of elements .z0; z1/ in L� with ordV z1 ¤ 0, clearly there exists
a unique .V;K/-presequence

.zij; eij; pij; A
�
il.i/.�/; e

�
il.i/; z

�
il.i//�2Z;0�j�l.i/C1;0�i��

with .z00; z01/ D .z0; z1/, and we call this the .V;K/-preexpansion of .z0; z1/.
In a moment we shall relate the above expansion with the characteristic terms

coming out of Newton’s fractional power series expansion. To do this we start off
with a string of definitions in the following Remark.

Remark on GCD dropping sequence (3.2). A GCD sequence is a system d consist-
ing of its length h.d/ 2 N and its sequence .di /0�i�h.d/C2 where d0 D 0, di 2 NC
for 1 � i � h.d/C 1, di 2 diC1Z for 0 � i � h.d/, and dh.d/C2 2 bR. A charseq
(D characteristic sequence) is a system m consisting of its length h.m/ 2 N and
its sequence .mi /0�i�h.m/C1 where m0 2 Z

�, mi 2 Z for 1 � i � h.m/, and
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mh.m/C1 2 bR. Given any charseqm with h D h.m/, its GCD sequence is the GCD
sequence d D d.m/ obtained by putting h.d/ D h, and di D GCD.m0; : : : ; mi�1/
for 0 � i � hC 2; its reciprocal sequence n.m/ is the sequence n D .ni /1�i�hC1
obtained by putting ni D d1=di for 1 � i � h C 1; its difference sequence is the
charseq q D q.m/ obtained by putting h.q/ D h with qi D mi for 0 � i � 1 and
qi D mi � mi�1 for 2 � i � h C 1; note that clearly d.q/ D d.m/. Given any
charseq q with h D h.q/ and d D d.q/, its inner product sequence is the charseq
s D s.q/ obtained by putting h.s/ D h with s0 D q0 and si D P

1�j�i qjdj for
1 � i � hC 1, and its normalized inner product sequence is the charseq r D r.q/

obtained by putting h.r/ D h with r0 D s0 and ri D si=di for 1 � i � hC 1. Note
that then d.r/ D d.q/.

Let us also note that if mhC1 D 1 then qhC1 D shC1 D rhC1 D dhC2 D 1
by the infinity convention according to which: for all c 2 R we have1˙ c D 1
and �1˙ c D �1, for all c 2 RC D the set of all positive real numbers we have
1c D 1=c D 1 and �1c D �1=c D �1, and we have1C1 D1.

It is worth observing that any one of the four sequences m; q.m/; s.q.m//;
r.q.m// determines the other three.

Given any charseq m, by the characteristic pair sequence of m we mean the
sequence .bmi .m/;bni .m//1�i�h.m/ defined by putting bmi .m/ D mi=diC1.m/ and
bni .m/ D di .m/=diC1.m/ for 1 � i � h.m/; we call bm.m/ D bmi .m/1�i�h.m/ the
derived numerator sequence of m, and we callbn.m/ D bni .m/1�i�h.m/ the derived
denominator sequence of m.

A charseq m is upper-unbounded meansmh.m/C1 D 1.
For any set of integers J which is bounded from below and for any nonzero

integer l , we define the GCD-dropping sequence m D m.J; l/ of J relative to l by
saying thatm is the unique upper-unbounded charseq withm0 D l andm1 D min J
such that for 2 � i � h.m/C 1 we have

mi D minfj 2 J W j is nondivisible by GCD.m0; : : : ; mi�1/g:

If F.X; Y / is a monic polynomial of positive degree N in Y with coefficients in
the univariate meromorphic series fieldK..X// over an algebraically closed fieldK
with N ¤ 0 mod .ch.K// such that F is a power of a monic irreducible member
ofK..X//ŒY �, then by Newton’s Theorem on fractional meromorphic series expan-
sion, we can factor

F.T N ; Y / D
Y

1�i�N
ŒY � �i .T /� with �i .T / 2 K..T //:

Clearly SuppT �i .T / is independent of i ; we denote this common support by
Supt.F / and call it the newtonian support of F . We define the newtonian charseq
m.F; l/ of F relative to a nonzero integer l by puttingm.F; l/ D m.Supt.F /; l/.

In [4], we had assumed F.X; Y / 2 KŒŒX��ŒY � and l D N . In Sect. 4, we shall
now reprove the assertions of [4] for the somewhat more general case of F.X; Y / 2
K..X//ŒY � and l D ˙N .
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First binomial lemma (3.3). Let us consider the univariate meromorphic series field
K..T // over a field K . Let y 2 K..T //� and z 2 K..T // be such that

ordT y D v < w D ordT z

with
incoT y D � and incoT z D 	:

Then for any n 2 Z we have

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.y C z/n D y0 C z0 where y0 D yn 2 K..T //� and z0 2 K..T //
with incoTy0 D �0 and incoT z0 D 	 0
are such that subT y0 � subT y

with ordT y0 D nv D v0 < w0 D .n � 1/vC w � ordT z0

and w0 � v0 D w � v with �0 D �n
and if n 6	 0 mod .ch.K// then ordT z0 D w0 with 	 0 D n	�n�1.

(�)

Moreover, assuming n 6	 0 mod .ch.K//, we have that:

(

if ordT .y � �T v/ D w

then ordT .y0 � �0T v0

/ D w0
(1�)

whereas

(

if y 2 K..T d // and w=d 62 Z for some d 2 NC
then for that d we have y0 2 K..T d // and w0=d 62 Z

(2�)

while
(

if y 2 k..T // and 	 62 k for some subfield k of K

then for that k we have y0 2 k..T // and incoT z0 62 k.
(3�)

Proof. (1*)–(3*) follow from .�/. So it suffices to prove .�/. If n 2 N then we are
done because by the binomial theorem we have

z0 D
X

1�i�n

 

n

i

!

ziyn�i D nzyn�1 C � � � C zn:

If �n 2 NC then we are done by applying the geometric series identity to the
previous case. In greater detail, if �n 2 NC then by the previous case we can write

.y C z/�n D y C z where y D y�n 2 K..T //� and z 2 K..T //

with
incoT y D � and incoT z D 	
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are such that subT y � subT y with

ordT y D �nv D v < w D .�n � 1/vC w � ordT z

and
w � v D w � v with � D ��n

and

if n 6	 0 mod .ch.K// then ordT z D w with 	 D �n	��n�1.

By the geometric series identity .1CX/�1 D 1 � X CX2 � : : : we get

.y C z/�1 D y �1.1C .z=y//�1 D y �1 � z y �2 C z2y �3 � : : :

and

y �1 D ���1T �v
� �

1 � .y ��1T �v � 1/C .y ��1T �v � 1/2 � : : : �

with subT y
�1 � subT y, and therefore the desired result follows by taking

y0 D y �1 and z0 D �z y �2 C z2y �3 � : : : :

Second Binomial Lemma (3.4). LetK be a root-closed field and let us consider the
univariate meromorphic series field K..T //. Let y 2 K..T //� and z 2 K..T // be
such that

ordT y D v < w D ordT z

with
incoT y D � and incoT z D 	:

Let n D p=q where p and q are integers with q > 0 and GCD.p; q/ D 1 such that
q 6	 0 mod .ch.K// and pv 	 0 mod .q/. Then mantrawise (= briefly sugges-
tivewise) we have .�/ of (3.3), i.e., bhashyawise (D precisely detailwise) we have
that:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

there exists y0 2 K..T //� with .y0/q D yp and subT y0 � subT y

and for any such y0 there exists z0 2 K..T //� such that

upon letting x D y0 C z0 with incoTy0 D �0 and incoT z0 D 	 0
we have xq D .y C z/p

with ordT y0 D nv D v0 < w0 D .n � 1/vC w � ordT z0

and w0 � v0 D w � v with .�0/q D �p
and if p 6	 0 mod .ch.K// then ordT z0 D w0 with q	 0 D p	�0=�.

(
)

Moreover, assuming p 6	 0 mod .ch.K//, we have (1*)–(3*) of (3.3).
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Proof. (1*)–(3*) follow from .
/. So it suffices to prove .
/. Since the field K is
root-closed, we have �q D �p for some � 2 K . Applying Hensel’s Lemma to
Y q � .1CX/p we get an identity in KŒŒX�� saying that

.1C b1X C b2X2 C : : : /q D .1CX/p with b1; b2; : : : in K: (1)

Differentiating both sides with respect to X and then putting X D 0 we get

qb1 D p: (2)

Substituting X D y��1T �v � 1 in (1) and letting

y0 D � �1C b1.y��1T �v � 1/C b2.y��1T �v � 1/2 C : : : �T .pv/=q

we get y0 2 K..T //� with .y0/q D yp and subTy0 � subT y.
Now let y0 be any element of K..T //� such that

.y0/q D yp and subT y0 � subT y: (3)

Then letting incoT y0 D �0 we clearly get

.�0/q D �p : (4)

For any x 2 K..T // we have

xq D .y C z/p , .x=y0/q D .1C .z=y//p

which follows by dividing the LHS by (3), and hence substituting X D z=y in (1)
and letting

x D y0.1C b1.z=y/C b2.z=y/2 C : : : /
we get x 2 K..T //� such that xq D .y C z/p and

x � y0 D y0.b1.z=y/C b2.z=y/2 C : : : /: (5)

Now letting z0 D x � y0 and incoT z0 D 	 0, by (3)–(5) we see that z0 2 K..T // and
x D y0 C z0 with

ordT y0 D nv D v0 < w0 D .n � 1/vC w � ordT z0 and w0 � v0 D w � v

and

if p 6	 0 mod .ch.K// then ordT z0 D w0 with q	 0 D p	�0=�.
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Note. Lemma (3.3) was not used in Lemma (3.4). So the former was reproved in
the latter. The former used the Binomial Theorem for integer exponents, while the
latter used the Binomial Theorem for fractional exponents in disguise. Removing the
disguise, Mantrawise, Lemma (3.4) follows by saying that by the Binomial Theorem
for fractional exponents we have

.y C z/n D yn �1C n.y=z/C .n.n � 1/=2/.y=z/2 C : : : �

and so we are done by taking y0 D yn and z0 D .y C z/n � y0; but care has to
be taken when ch.K/ ¤ 0. In spite of what was said in the Introduction, we shall
not directly use (3.4), i.e., we shall not explicitly use the Binomial Theorem for
fractional exponents, but really it is lurking everywhere!!

Remark on special subfields (3.5). The essence of the above two Binomial Lemmas
(3.3) and (3.4) is the Invariance of the Gap, i.e., the equation w0� v0 D w� v, which
underlies all the claims of [4] as well as their generalization in the present paper.

Now consider the univariate meromorphic series field K..T // over a field K .
The two cases (2*) and (3*) of (3.3) and (3.4) can be unified by introducing the

notion of the .T; S/-gap v of y.T / D T eP0�i<1AiT i with Ai 2 K and A0 ¤ 0,
where S is any subfield of K..T //, by putting v D minfi 2 N W AiT i 62 Sg, in
case (2*) we take S D K..T d // and in case (3*) we take S D k..T //. To include
the ordinary gaps as in case (1*), like the gap of length 4 between T and T 5 in
T C T 5 C T 6 C : : : , we have to allow S to be the null ring, which is not a subfield
of K..T // under the usual convention. This is why we introduced the notion of a
special subfield.

More generally, we define a quasispecial subfield S of K..T // to be either the
nullring S D f0g � K..T // or a subfield S of K..T //; if S � K then we may
call S a quasispecial subfield ofK . Now let S be a quasispecial subfield ofK..T //.
Given any y D y.T / 2 K..T //� let

y.T / D T e
X

0�i<1
AiT

i with ordTy.T / D e and Ai 2 K with A0 ¤ 0

and

v D
(

minfi 2 NC W AiT i 62 Sg if S D f0g
minfi 2 N W AiT i 62 Sg if S ¤ f0g

with the convention that the minimum of the empty set of integers is1. We define
the .T; S/-gap and the .T; S/-coefficient of y.T / by putting

gap.T;S/y.T / D v and coef.T;S/y.T / D
(

Av if v ¤ 1
0 if v D 1:
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We are particularly interested in the following cases .1]/, .2]/, .3]/ of a quasispecial
subfield S of K..T //; note that in each of these cases S is a special subfield of
K..T //.

(

S D f0g;
note that then v D ordT .y.T /T �e � A0/:

(1])

(

S D K..T d // where d 2 NC;

note that then v D min.SuppT .y.T /T
�e �A0/ n dZ/:

(2])

8

ˆ

ˆ

<

ˆ

ˆ

:

S D k..T // where k is a nonnull special subfield of K;

note that then v D
(

minfi 2 NC W Ai 62 kg if A0 2 k
0 if A0 62 k:

(3])

To prepare for proving the next Lemma (3.6), let S be a quasispecial subfield of
K..T // and let y.T /; z.T /; x.T / in KŒŒT ��� be such that

y.T / D T
X

0�i<1
AiT

i with ordTy.T / D 1 and gap.T;S/y.T / D v

and

z.T / D T
X

0�j<1
BjT

j with ordT z.T / D 1 and gap.T;S/z.T / D w

and

x.T / D y.z.T // D T
X

0�l<1
ClT

l with ordT x.T / D 1 and gap.T;S/x.T / D �

where Ai ; Bj ; Cl are in K with

A0 ¤ 0 ¤ B0 ¤ 0 ¤ C0
and where we note that now e D 1. For 0 � l <1 we clearly have

ClT
l D

X

0�i�l

0

B

@AiT
i � the term of T -degree l � i in

0

@

X

0�j�l�i
BjT

j

1

A

iC11

C

A

and hence

ClT
l D

(

A0BlT
l C B0AlT l C

P

0<i<l AiT
iDil if l ¤ 0

A0B0 if l D 0 (I)
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with
Dil D

X�
M�

Y

0�j�l�i
.BjT

j /�j (II)

where
P� indicates summation over all .0; : : : ; l�i / 2 N

l�iC1 for which

X

0�j�l�i
jj D l � i (III)

and M� is the multinomial coefficient

M� D .i C 1/Š
0Š : : : l�i Š

:

We shall now prove the following assertions:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

(1) If 0 < i < l <1 with l � min.v;w/ then AiT iDil 2 S .

(2) � � min.v;w/.

(3) If v < w then � D v and CvT
v � B0AvT

v 2 S .

(4) If w < v then � D w and CwT
w � A0BwT

w 2 S .

(5) C0 � A0B0 D 0 2 S .

(6) If 0 ¤ v D w ¤1 then CvT
v � .A0BvT

v C B0AvT
v/ 2 S .

(7) If x.T / D T then v D w and A0B0 D 1.

(8) If x.T / D T and 0 ¤ v D w ¤1 then A0BvT
v C B0AvT

v 2 S .

(IV)

To prove (1) let 0 < i < l < 1 with l � min.v;w/. Since 0 < i < l � v, we
get AiT i 2 S . If S D f0g then AiT i D 0 and hence AiT iDil D 0 2 S . If S ¤ f0g
then 1 2 S and because i < l � w, every term in each product involved in (II)
belongs to S , and hence again AiT iDil 2 S .

To prove (2) let 0 � l < min.v;w/. Then A0BlT l 2 S and B0AlT l 2 S , and
hence by (I) and (1) we get ClT l 2 S . It follows that � � min.v;w/.

To prove (3) let v < w. If v ¤ 0 then A0BvT
v 2 S and hence by (I) and (1) we

get CvT
v � B0AvT

v 2 S ; but B0 2 S� with AvT
v 62 S and therefore CvT

v 62 S ;
consequently by (2) we see that � D v. If v D 0 then A0 62 S with B0 2 S and
hence by (I) we get C0 � B0A0 D 0 2 S with C0 62 S and therefore � D 0 D v.

To prove (4) let w < v. If w ¤ 0 then B0AwT
w 2 S and hence by (I) and (1) we

get CwT
w �A0BwT

w 2 S ; but A0 2 S� with BwT
w 62 S and therefore CwT

w 62 S ;
consequently by (2) we see that � D w. If w D 0 then B0 62 S with A0 2 S and
hence by (I) we get C0 �A0B0 D 0 2 S with C0 62 S and therefore � D 0 D w.

By (I) we obviously get (5). By (I) and (1) we see that if 0 ¤ v D w ¤ 1 then
CvT

v � .A0BvT
v C B0AvT

v/ 2 S , which proves (6).
If x.T / D T then � D 1 with C0 D 1, and hence by (3) and (4) we get v D w

and by (5) we get A0B0 D 1, which proves (7).
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If x.T / D T and 0 ¤ v D w ¤ 1 then � D 1, and hence by (6) we get
A0BvT

v C B0AvT
v 2 S , which proves (8).

Gap Lemma (3.6). Consider the univariate meromorphic series fieldK..T // over a
root-closed field K . Let y.T / and z.T / in K..T //� with

ordT y.T / D e ¤ 0 ¤ � D ordT z.T /

be such that

y.T / D T e
X

0�i<1
AiT

i and z.T / D T �
X

0�j<1
BjT

j

where
Ai and Bj are in K with A0 ¤ 0 ¤ B0.

Assume that e 6	 0 mod .ch.K// and � 6	 0 mod .ch.K//. Then by Hensel’s
Lemma, there existby.T / andbz.T / in KŒŒT ��� with

ordTby.T / D 1 D ordTbz.T /

such that
by.T /e D y.T / and bz.T /� D z.T /

and
by.T / D T

X

0�i<1
bAiT

i and bz.T / D T
X

0�j<1
bBjT

j

where

bAi and bBj are in K with bAe0 D A0 ¤ 0 ¤ B0 D bB�0.

Given any special subfield S of K..T // let

gap.T;S/y.T / D v with gap.T;S/by.T / Dbv

and
gap.T;S/z.T / D w with gap.T;S/bz.T / D bw:

Assume that
v ¤ 0 ¤ w:

Then
v Dbv with coef.T;S/y.T / D

�

coef.T;S/by.T /
�

ebAe�10 (1)

and
w D bw with coef.T;S/z.T / D

�

coef.T;S/bz.T /
�

�bB��10 : (2)
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Moreover,
if by.bz.T // D T then v D w and bA0bB0 D 1 (3)

and
(

if by.bz.T // D T and 1 ¤ v D w ¤1 then
�

coef.T;S/z.T /
�

ebAe0T
v C �coef.T;S/y.T /

�

�bB�0T
v 2 S: (4)

Proof. (1) follows from (3.3) by noting thatbv > 0 and taking

.n; v;w; y; z/ D
0

@e; 1;bvC 1; T
X

0�i<bv
bAiT

i ; T
X

bv�i<1
bAiT

i

1

A

and (2) follows from (3.3) by noting thatbw > 0 and taking

.n; v;w; y; z/ D
0

@�; 1;bwC 1; T
X

0�i<bw
bB iT

i ; T
X

bw�i<1
bB iT

i

1

A :

By (3.5)(IV)(7), we see that

if by.bz.T // D T then bv D bw and bA0bB0 D 1 (0)

and by (3.5)(IV)(8) we see that

(

if by.bz.T // D T and bv D bw ¤ 1 then
�

coef.T;S/bz.T /
�

bA0T
bv C �coef.T;S/by.T /

�

bB0T
bv 2 S: (00)

Now, in view of (1) and (2), by .0/ we get (3), and by .00/ we get (4).

Remark on gap lemma (3.7). We shall now paraphrase (3.6) by using the language
of DVRs.

So let V be a DVR with

V � bV D the completion of V and QF.V / D L � bL D QF.bV /.

Let T be a uniformizing parameter of bV . Assume that ch.L/ D ch.H.V // and let
K be a coefficient field of bV . Note that then bV D K..T //. Assume that H.V /, and
henceK , is root-closed.

Given any y D y.T / 2 K..T //� and z D z.T / 2 K..T //� let

ordTy D e with incoTy D A and ordT z D � with incoT z D B .

Since K is root-closed, we can choose

bA 2 K� with .bA/e D A and bB 2 K� with .bB/� D B .
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Assuming e 6	 0 mod .ch.K//, with the chosen bA, by Hensel’s Lemma there
exists a uniqueby Dby.T / 2 K..T //� such that

.by/e D y and ordTby D 1 with incoTby D bA.

Clearly �.T / 7! �.by.T // gives an automorphism K..T // ! K..T // and hence
there exists a unique Qz D Qz.T / 2 K..T //� such that

Qz.by.T // D z.T /:

We call Qz D Qz.T / the .V;K; T /-expansion of z in terms of y relative to bA, or briefly
we call Qz D Qz.T / the .V;K; T /-expansion of .z; y;bA/. Concerning the dependence
of this expansion on bA, let us note that

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

if bA� is any other member of K with .bA�/e D A
then ! D bA�=bA is an e-th root of 1 in K

and for the .V;K; T /-expansion Qz� of .z; y;bA�/

we have Qz�.T / D Qz.!T /
and hence SuppT Qz�.T / D SuppT Qz.T /.

([)

Assuming e 6	 0 mod .ch.K// but without assuming any condition on �,
with the chosen bA, in view of .[/ we may put

m.z; y; V;K/ D m.SuppT Qz.T /; e/

(because SuppT Qz.T / is independent of bA) and call it the .V;K/-charseq of .z; y/.
Also assuming � 6	 0 mod .ch.K//, with the chosen bB , by Hensel’s Lemma

there exists a uniquebz Dbz.T / 2 K..T //� such that

.bz /� D z and ordTbz D 1 with incoTbz D bB .

Clearly �.T / 7! �.bz.T // gives an automorphism K..T // ! K..T // and hence
there exists a uniqueey Dey.T / 2 K..T //� such that

ey.bz.T // D y.T /:

Note that nowey D ey.T / is the .V;K; T /-expansion of .y; z;bB/.
Again clearly there exist unique z�.T / and y�.T / in K..T // such that

z�.by.T // Dbz.T / and y�.bz.T // D by.T /: (�)
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Substituting the first equation of .�/ in its second, we get

y�.z�.by.T /// Dby.T /

and hence

y�.z�.T // D T (1)

Raising the second equation of .�/ to the e-th power and the first to the �-th power
we get

y�.T /e Dey.T / and z�.T /� D Qz.T /: (2)

By the first equation of .�/ we get

ordT z�.T / D 1 with incoT z�.T / D bB=bA (3)

and by the second equation of .�/ we get

ordTy�.T / D 1 with incoT y�.T / D bA=bB. (4)

Now we claim the FIRST INVERSION THEOREM which says that:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Given any special subfield S of K..T //,

upon letting gap.T;S/ey.T / D v and gap.T;S/Qz.T / D w,

we have the following.

(1*) If v ¤ 0 ¤ w then v D w.

.2�/
(

If1 ¤ v ¤ 0 ¤ w ¤ 1 then
�

coef.T;S/Qz.T /
�

ebAeC�T v C �coef.T;S/ey.T /
�

�bB�CeT v 2 S:
(3*) If S D K..T d // for some d 2 NC then 0 ¤ v D w ¤ 0.

(I)

Namely, in view of (1)–(4), by (3.6)(3) and (3.6)(4) we obtain (1*) and (2*)
respectively. If S ¤ f0g then by definition v ¤ 0 ¤ w and hence by (1*) we
get (3*).

Next we claim the SECOND INVERSION THEOREM which says that:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Upon letting m D m.z; y; V;K/ and m0 D m.y; z; V;K/
we have 0 ¤ h.m/ D h.m0/ ¤ 0
and e D m0 D m01 with � D m00 D m1
andm� � � D m0� � e for 2 � � � h.m/C 1
and d1.m/ D jej with d1.m0/ D j�j
and d2.m/ D d2.m0/ D GCD.e; �/

and d�.m/ D d�.m0/ for 2 � � � h.m/C 2.

(II)
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Namely, everything is obvious except the assertion h.m/ D h.m0/ together with the
assertions that for 2 � � � h.m/C 1 we have

m� � � D m0� � e and d�C1.m/ D d�C1.m0/:

Clearly the assertions about h.m/ and d�C1.m/ follow from the assertion about
m� � �. By induction on � let us prove that for 1 � � � h.m/C 1 we have

m� � � D m0� � e:

For � D 1 this is line 3 of (II). To go from � to �C 1 can be achieved by taking

d D d�C1.m/

in (I)(3*). This completes the proof of (II).

Remark on valuation protoexpansions (3.8). To merge Remarks (3.1), (3.2), and
(3.7), let V be a DVR with

V � bV D the completion of V and QF.V / D L � bL D QF.bV /.

Let T be a uniformizing parameter of bV . Assume that ch.L/ D ch.H.V // D 0 and
let K be a coefficient field of bV . Note that then bV D K..T //. Assume that H.V /,
and henceK , is root-closed.

Given any pair of elements .z0; z1/ in L� with ordV z1 ¤ 0, by (3.1) and (3.7)
there exists a system

.zj ; ej ; pj ; A
�
l .�/; e

�
l ; z
�
l ; Aj .�/;

bAj ; QAj .�/;m.j /; Qzj /�2Z;0�j�lC1

where
.zj ; ej ; pj ; A

�
l .�/; e

�
l ; z
�
l /�2Z;0�j�lC1

is the .V;K/-protoexpansion of .z0; z1/ as described in (3.1)(1)–(3.1)(8) withAj .�/
as in (3.1)(9) and (3.1)(10), and

for 0 � j � l C 1

we have
8

ˆ

ˆ

<

ˆ

ˆ

:

bAj 2 K� with .bAj /ej D incoT zj if j ¤ l C 1,
bAj 2 K� with .bAj /ej D incoT zj if j D l C 1 and zlC1 ¤ 0,
bAj D 0 2 K if j D l C 1 and zlC1 D 0,

(1)
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and

m.j / D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

m.zj ; zjC1; V;K/ if l ¤ j ¤ l C 1
m.zj ; zjC1; V;K/ if j D l and zlC1 ¤ 0
m.z�j�1; zj�1; V;K/ if j D l C 1 and zlC1 ¤ 0
m.;; 1/ if l � j � l C 1 and zlC1 D 0

(2)

and
Qzj D Qzj .T / D

X

�2Z

QAj .�/T � with QAj .�/ 2 K (3)

is the .V;K; T /-expansion of .zj ; zjC1;bAjC1/ in case l ¤ j ¤ l C 1, and in the
remaining cases:

(

if j D l and zlC1 ¤ 0
then (3) is the .V;K; T /-expansion of .zj ; zjC1;bAjC1/

(4)

and
(

if j D l C 1 and zlC1 ¤ 0
then (3) is the .V;K; T /-expansion of .z�j�1; zj�1;bAj�1/

(5)

and
(

if l � j � l C 1 and zlC1 D 0 then in (3) we take

Qzj D Qzj .T / D 0 D QAj .�/ for all � 2 Z;
(6)

we call such a system a mixed .V;K; T /-protoexpansion of .z0; z1/. It follows that

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

if zlC1 ¤ 0 then e�
l
D plel C elC1 D m.l�1/2

and QAl�1.�/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if e�
l
> � 6	 0 mod .el/

A�
l
.�=jel j/ if e�

l
> � 	 0 mod .el/

QAlC1.� � plel/ if e�
l
� �I

(7)

In view of (3.1)(5),
for 0 � j � l � 2

upon letting

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

MAjC2.�/ 2 K for all � 2 Z such that
MAjC2.�/ D 0 for � < ejC2 and MAjC2.ejC2/ ¤ 0

and MzjC2 D MzjC2.T / DPej C2��<1 MAjC2.�/T �
is the .V;K; T /-expansion of .zjC2; zjC1;bAjC1/

(1j )

we have
MAjC2.� C ejC2/ D QAj .� C ej / for all � 2 Z (2j )
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and hence
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

upon letting Mm.jC2/ D m.zjC2; zjC1; V;K/
we have 0 ¤ h.m.j // D h. Mm.jC2// ¤ 0
and ejC1 D m.j /0 D Mm.jC2/0 and ej D m.j /1 with ejC2 D Mm.jC2/1

andm.j /� � ej D Mm.jC2/� � ejC2 for 1 � � � h.m.j //C 1
and d1.m.j // D d1. Mm.jC2// D jejC1j
and d2.m.j // D d2. Mm.jC2// D GCD.ej ; ejC1/ D GCD.ejC1; ejC2/
and d�.m.j // D d�. Mm.jC2// for 1 � � � h.m.j //C 2.

(3j )

and, in view of .3j /, by taking .z; y/ D .zjC1; zjC2/ in (2.7)(II) we see that

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 ¤ h.m.j // D h.m.jC1// ¤ 0
and ejC1 D m.j /0 D m.jC1/1 and ej D m.j /1 with ejC2 D m.jC1/0

andm.j /� � ej D m.jC1/� � ejC1 for 2 � � � h.m.j //C 1
and d1.m.j // D jejC1j with d1.m.jC1// D jejC2j
and d2.m.j // D d2.m.jC1// D GCD.ej ; ejC1/ D GCD.ejC1; ejC2/
and d�.m.j // D d�.m.jC1// for 2 � � � h.m.j //C 2.

(4j )

Now .40/C � � � C .4j�1/)
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

for 0 � j � l � 1 we have 0 ¤ h.m.0// D h.m.j // ¤ 0
and e1 D m.0/0 and e0 D m.0/1 with ejC1 D m.j /0 and ej D m.j /1
and m.0/� � e0 D m.j /� � ej for 2 � � � h.m.0//C 1
and d1.m.0// D je1j with d1.m.j // D jejC1j
and d2.m.0// D d2.m.j // D GCD.e0; e1/ D GCD.ej ; ejC1/
and d�.m.0// D d�.m.j // for 2 � � � h.m.0//C 2.

(I)

Moreover, in view of (2)–(7) we see that

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

if zlC1 ¤ 0 then h.m.lC1// D h.m.l�1// � 1
and el D m.lC1/0 D m.l�1/0

and plel C elC1 D m.lC1/1 D m.l�1/2 with el�1 D m.l�1/1

and m.lC1/� D m.l�1/�C1 for 2 � � � h.m.lC1//C 1
and d1.m.lC1// D jel j
and d1.m.l�1// D jel j D d2.m.l�1// D GCD.el ; el�1/
and d2.m.lC1// D d3.m.l�1// D GCD.el ; elC1/
and d�.m.lC1// D d�C1.m.l�1// for 2 � � � h.m.lC1//C 2.

(II)
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Preamble for next lemma. Having dealt with case .3:5/.2]/, turning to case
.3:5/.3]/, let

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

S D k..T // where k is a nonnull special subfield of K ,
0 D an unspecified member of k�
(0 is called Abhyankar’s nonzero and may be read as �),
0 0 D an unspecified member of k
(0 0 is called Abhyankar’s constant and may be read as � 0),
gap.T;S/Qzj .T / D vj with coef.T;S/Qzj .T / D NAj for 0 � j � l
with the understanding that if zlC1 D 0 then vl D1 and NAl D 0,

(8)

and let

z�
l
D

X

.el�1=jel j/��<.vl�1Cel�1/jel j�1

A�l .�/z
�.jel j=el /

l
2 KŒzl ; z�1l � (9)

and
z[l D zl�1 � z�

l
2 L with ordV z[l D e[l (10)

and let
z[l D z[l .T / D

X

�2Z

A[l .�/T
� with A[l .�/ 2 K (11)

be the usual expansion in K..T // and

8

ˆ

ˆ

<

ˆ

ˆ

:

if z[
l
¤ 0

then let Qz[
l
D Qz[

l
.T / be the .V;K; T /-expansion of .z[

l
; zl ;bAl/

and let gap.T;S/Qz[l .T / D v[
l

with coef.T;S/Qz[l .T / D NA[l :
(12)

Finally let
z[[l D zl�1=z.el�1�el /=el

l
2 L� with ordV z[[l D e[[l (13)

and note that then
e[[l D el : (14)

With the above notation at hand, we shall now prove the:

Coefficient lemma (III). We have the following.

(1*) If bA1 2 k and v0 > 0 then for 0 � j � l we have bAj 2 k, and for 0 � j �
l � 1 we have vj D v0 with NAj D 0 NA0 C 0 0.

(2*) zlC1 ¤ 0, m
.l�1/
2 ¤ 1) m

.l�1/
2 D plel C elC1.

(3*) If bAl 2 k and vl�1 D 1 then vl D 1 and bAlC1 2 k with Qzl�1.T / 2 k..T //
and A�

l
.�/ 2 k for all � 2 Z.

(4*) If bAl 2 k and vl�1 C m.l�1/1 > m
.l�1/
2 then zlC1 ¤ 0 with bAlC1 2 k and

vl Cm.l�1/2 D vl�1 Cm.l�1/1 with NAl D 0 NAl�1 C 0 0.
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(5*) IfbAl 2 k and vl�1Cm.l�1/1 < m
.l�1/
2 then z[

l
¤ 0 and v[

l
D 0with NA[

l
D NAl�1

and e[
l
D vl�1 C el�1 	 0 mod .el/.

(6*) If bAl 2 k and vl�1 ¤ 1 with vl�1 C m.l�1/1 D m
.l�1/
2 then zlC1 ¤ 0 ¤ z[

l

and v[
l
D 0 with NA[

l
D NAl�1 and e[

l
D vl�1 C el�1 6	 0 mod .el/.

(7*) If bA1 2 k and v0 D 0 then incoT z0 D 0 NA0 2 K n k and

incoT z[[
l

incoT zl
D 0 NAE0 with E D .�1/lC1.e1=el/ 2 Z

�:

Prenote. In the statements as well as proofs of (1*)–(7*), some quantity such as
vl�1 may take the value 1, and then the reader is advised to follow the infinity
convention described in the second paragraph of (3.2).

Note. In the following proofs of (1*)–(7*), we shall frequently invoke two obvious
but very useful principles which in the context of (8) may be stated thus. The MP
= MULTIPLICATIVE PRINCIPLE says that if bAjC1 2 k and z] 2 L is such that
z] D 0 zj zpjC1 with p 2 Z then: z] ¤ 0 and upon letting Qz].T / be the .V;K; T /-

expansion of .z]; zjC1;bAjC1/ and putting

gap.T;S/Qz].T / D v] with coef.T;S/Qz].T / D NA]

we have

v] D vj with NA] D 0 NAj and: if vj > 0 then fincoT z]; incoT zj g � k.

The AP = ADDITIVE PRINCIPLE says that if bAjC1 2 k and z]] 2 L is such that

z]] D zj �
X

��	
QAj .�/bz�jC1 where � 2 Z with � < vj C ej

and wherebzjC1 DbzjC1.T / 2 K..T // is such that

bz
ej C1

jC1 D zjC1 and incoTbzjC1 D bAjC1

then: z]] ¤ 0 and upon letting ordV z]] D e]] and upon letting Qz]].T / be the
.V;K; T /-expansion of .z]]; zjC1;bAjC1/ and putting

gap.T;S/Qz]].T / D v]] with coef.T;S/Qz]].T / D NA]]

we have
v]] C e]] D vj C ej with NA]] D NAj .
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Proof of (1*). In view of an obvious induction, it suffices to show that, given any
integer j 2 f0; : : : ; l � 2g with bAjC1 2 k and vj > 0, we have fbAj ;bAjC2g � k

and vj D vjC1 with NAj D 0 NAjC1 C 0 0. Now for any j 2 f0; : : : ; l � 2g with
bAjC1 2 k and vj > 0, by .2j / and MP we see that

fbAj ;bAjC2g � k and gap.T;S/MzjC2.T / D vj with coef.T;S/MzjC2.T / D 0 NAj

and by taking .z; y/ D .zjC1; zjC2/ in (3.7)(I) we see that

gap.T;S/MzjC2.T / D vjC1 with coef.T;S/MzjC2.T / D 0 NAjC1 C 0 0

and by combining the above two displays we get fbAj ;bAjC2g � k and vj D vjC1
with NAj D 0 NAjC1 C 0 0.

Proof of (2*). In view of (2), this follows from (3.1)(6) to (3.1)(8).

Proof of (3*). In view of (1)–(7), this follows from (3.1)(6) to (3.1)(8) together
with (3.7)(I).

Proof of (4*). Assuming bAl 2 k and vl�1 Cm.l�1/1 > m
.l�1/
2 , by (2*) we have

bAl 2 k with zlC1 ¤ 0 and m.l�1/2 D plel C elC1 ¤1. (0])

To prove that

bAlC1 2 k and vl Cm.l�1/2 D vl�1 Cm.l�1/1 with NAl D 0 NAl�1 (])

we proceed thus. In view of (3.1)(8), by .0]/ we have

bAl 2 k with zlC1 ¤ 0 and z�l D zpl

l
zlC1. (1])

Let Qz�
l
D Qz�

l
.T / be the .V;K; T /-expansion of .z�

l
; zl ;bAl/ and let

gap.T;S/Qz�l .T / D v�l with coef.T;S/Qz�l .T / D NA�l . (2])

Clearly
ordV zl�1 D m.l�1/1 (3])

and by .0]/ and .1]/ we see that

ordV z�l D m.l�1/2 : (4])
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In view of (3.1)(8), by .2]/–.4]/ and AP with zj D zl�1 and z]] D z�
l

it follows that

v�l Cm.l�1/2 D vl�1 Cm.l�1/1 with NA�l D NAl�1: (5])

Let MzlC1.T / be the .V;K; T /-expansion of .zlC1; zl ;bAl/ and let

gap.T;S/MzlC1.T / D MvlC1 with coef.T;S/MzlC1.T / D MAlC1. (6])

By .5]/ we see that v�
l
> 0, and hence by .1]/, .6]/ and MP with .z]; zj ; zjC1/ D

.z�
l
; zlC1; zl/ we get

bAlC1 2 k and MvlC1 D v�l with MAlC1 D 0 NA�l : (7])

In view of .6]/ and .7]/, by taking .y; z/ D .zl ; zlC1/ in (3.7)(I) we see that

MvlC1 D vl with MAlC1 D 0 NAl C 0 0: (8])

Combining .5]/, .7]/ and .8]/ we get .]/.

Proof of (5*). Assuming bAl 2 k and vl�1 C m.l�1/1 < m
.l�1/
2 , in view of (9)–(12)

and (3.1)(6)–(3.1)(8), by .2�/ we see that

z[l ¤ 0 with e[l D vl�1 C el�1 	 0 mod .el/

and hence, in view of (9)–(12) and (3.1)(6)–(3.1)(8), by AP with zj D zl�1 and
z]] D z[

l
we see that

v[l D 0 with NA[l D NAl�1:
Proof of (6*). Assuming bAl 2 k and vl�1 ¤ 1 with vl�1 C m.l�1/1 D m

.l�1/
2 , in

view of (9)–(12) and (3.1)(6)–(3.1))(8), by .2�/ we see that

zlC1 ¤ 0 ¤ z[l with e[l D vl�1 C el�1 6	 0 mod .el/

and hence, in view of (9)–(12) and (3.2)(6)–(3.2)(8), by AP with zj D zl�1 and
z]] D z[

l
we see that

v[l D 0 with NA[l D NAl�1:
Proof of (7*). Assuming bA1 2 k and v0 D 0, we clearly have

incoT z0 D 0 NA0 2 K n k: (00)
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To prove the equation

incoT z[[
l

incoT zl
D 0 NAE0 with E D .�1/lC1.e1=el/ 2 Z

� (0)

we define the euclidean postextension of the integer pair .e0; e1/ with e1 ¤ 0 to

be the sequence pair
�

.e0j /0�j�lC1; .p0j /0�j�l
�

obtained by putting e0j D ej or 0

accordings as 0 � j � l or j D l C 1, and p0j D pj or el�1=el accordings as
0 � j � l � 1 or j D l . Note that now

e0j�1 D p0j e0j C e0jC1 for 1 � j � l: (10)

Given any integers e000 ; e001 , let us define integers e002 ; : : : ; e00lC1 by requiring that

e00j�1 D p0j e00j C e00jC1 for 1 � j � l: (20)

Let Mj D
�

e0

j �1
e0

j

e00

j �1
e00

j

�

for 1 � j � l C 1, and Nj D
�

0 1
1 �p0

j

�

for 1 � j � l .
Then

MjNj D MjC1 with det.Nj / D �1 for 1 � j � l (30)

and hence

det.MlC1/ D .�1/l det.M1/: (40)

Clearly det.MlC1/ D e00
lC1e

0
l

and if .e000 ; e001/ D .1; 0/ then det.M1/ D �e01.
Therefore

if .e000; e001/ D .1; 0/ then e00lC1 D .�1/lC1.e1=el/. (50)

Let the sequence .z0j /0�j�lC1 be defined by putting z0j D zj or zl�1=z
p0

l

l
according

as 0 � j � l or j D l C 1. Then

z0j�1 D .z0j /p
0

j z0jC1 for 1 � j � l: (60)

Assuming A 2 K� to be such that incoT z0j D 0 Ae
00

j for 0 � j � 1, by .10/, .20/,
and .60/ we see that

incoT z0j D 0 Ae
00

j

for 0 � j � l C 1; consequently by .50/ we conclude that

8

ˆ

ˆ

<

ˆ

ˆ

:

if .e000; e001/ D .1; 0/ and A 2 K� is such that

incoT z0j D 0 Ae
00

j for 0 � j � 1,

then incoT z0
lC1 D 0 AE with E D .�1/lC1.e1=el/ 2 Z

�.

(70)
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By (13) and (14) we have

incoT z0lC1 D
incoT z[[

l

incoT zl

and hence by taking A D NA0 in .70/ we get .0/.

Remark on valuation preexpansions (3.9). For further merging of Remarks (3.1),
(3.2), and (3.7), let V be a DVR with

V � bV D the completion of V and QF.V / D L � bL D QF.bV /.

Let T be a uniformizing parameter of bV . Assume that ch.L/ D ch.H.V // D 0 and
let K be a coefficient field of bV . Note that then bV D K..T //. Assume that H.V /,
and henceK , is root-closed.

Given any pair of elements .z0; z1/ in L� with ordV z1 ¤ 0, by (3.1) and (3.8)
there exists a system

.zij; eij; pij; A
�
il.i/.�/; e

�
il.i/; z

�
il.i/; Aij.�/;bAij; QAij.�/;m

.ij /; Qzij/�2Z;0�j�l.i/C1;0�i��

such that

.zij; eij; pij; A
�
il.i/.�/; e

�
il.i/; z

�
il.i//�2Z;0�j�l.i/C1;0�i��

is the .V;K/-preexpansion of .z0; z1/ and

.zij; eij; pij; A
�
il.i/.�/; e

�
il.i/; z

�
il.i/; Aij.�/;bAij; QAij.�/;m

.ij /; Qzij/�2Z;0�j�l.i/C1

is a mixed .V;K; T /-protoexpansion of .zi0; zi1/ for 0 � i � �; in analogy with
a mixed protoexpansion, we call such a system a mixed .V;K; T /-preexpansion of
.z0; z1/.

Let us record that, for 0 � i � � 2 N, by (3.1)(1)–(3.1)(5) we now have a pair
of sequences

�

.eij/0�j�l.i/; .pij/0�j<l.i/
�

of integers eij 2 Z and pij 2 Z with l.i/ 2 NC such that:

(1) pi0 D 0 ¤ eil.i/,
(2) ei;j�1 D pijeij C ei;jC1 with pij ¤ 0 < ei;jC1 < jeijj for 1 � j � l.i/� 1,
(3) jeijj > jeil.i/j D GCD.ei0; ei1/ D GCD.ei0; : : : ; eil.i// for 1 � j � l.i/ � 1,
(4) l.i/ D 1, ei0 	 0 mod .ei1/,
(5) zi;j�1 D z

pij

ij zi;jC1 for 1 � j � l.i/ � 1.

Let us also record that (3.1)(6)–(3.1)(12) and (3.8)(1)–(3.8)(7) hold with obvious
modifications. Note that (3.1)(11) is used in proving (II) below.
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Now rewriting (3.8)(I) and (3.8)(II) in terms of the difference sequence q.m/
defined in (3.2) we respectively see that

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

for 0 � j � l.i/ � 1 and 0 � i � �
we have 0 ¤ h.m.i0// D h.m.ij // ¤ 0
and ei1 D m.i0/0 and ei0 D m.i0/1

with ei;jC1 D m.ij /0 and eij D m.ij /1

and q�.m.i0// D q�.m.ij // for 2 � � � h.m.i0//C 1
and d1.m.i0// D jei1j with d1.m.ij // D jei;jC1j
and d2.m.i0// D d2.m.ij // D GCD.ei0; ei1/ D GCD.eij; ei;jC1/
and d�.m.i0// D d�.m.ij // for 2 � � � h.m.i0//C 2

(I)

and
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

for 0 � i < �
we have h.m.iC1;0// D h.m.i;l.i/�1//� 1
and eiC1;1 D m.iC1;0/0 D m.i;l.i/�1/0 D eil.i/

and eiC1;0 D m.iC1;0/1 D m.i;l.i/�1/2 D pil.i/eil.i/ C ei;l.i/C1
and ei;l.i/�1 D m.i;l.i/�1/1

and q�.m.iC1;0// D q�C1.m.i;l.i/�1// for 2 � � � h.m.iC1;0//C 1
and d1.m.iC1;0// D jeiC1;1j
and d1.m.i;l.i/�1// D jeil.i/j D d2.m.i;l.i/�1// D GCD.eil.i/; ei;l.i/�1/
and d2.m.iC1;0// D d3.m.i;l.i/�1// D GCD.eiC1;0; eiC1;1/
and d�.m.iC1;0// D d�C1.m.i;l.i/�1// for 2 � � � h.m.iC1;0//C 2.

(II)

Combining (I) and (II) we get the concise THIRD INVERSION THEOREM
which shows the power of the difference sequence and which says that:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

for 0 � j � l.i/ � 1 and 0 � i � �
we have h.m.ij // D h.m.00// � i
and q0.m.ij // D ei;jC1 D ordV zi;jC1 with zi;jC1 2 L�
and q1.m.ij // D eij D ordV zij with zij 2 L�
and q�.m.ij // D q�Ci .m.00// for 2 � � � h.m.ij //C 1
and d�.m.ij // D d�Ci .m.00// for 2 � � � h.m.ij //C 2.

(III)

Remark on root-closed fields (3.10). The concepts of root-closed fields and special
subfields, as well as Newton’s Binomial Theorem for fractional exponents, all lead
to the idea of root extraction, which in turn inspires the following generalization (I)
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of a 1936 result of F. K. Schmidt, where we use the terminology according to which:
By a quasiroot-closed pair we mean a pair .R; I / consisting of a domain R and a
nonzero ideal I in it such that

(

for every a 2 I we have bnn D .1C a/ for some bn 2 R
for infinitely many n 2 NC.

By a quasiroot-closed domain we mean a domain R such that .R; I / is a quasiroot-
closed pair for some nonzero ideal I in R. By N .R/ we denote the normalization
of a domain R, i.e., the integral closure of R in QF.R/.

(I) Let .R; I / be any quasiroot-closed pair.

(1) Then for every DVR V with QF.R/ D a subfield of QF.V / we have R � V .
(2) More generally, for every noetherian domain W with QF.R/ D a subfield of

QF.W / we have R � N .W /.
(3) Moreover, if R is noetherian andW is any quasiroot-closed noetherian domain

with QF.R/ D QF.W / then N .R/ D N .W /.
(4) Finally, if R is a DVR then for every normal noetherian domain W with

QF.R/ D QF.W / ¤ W we have R D W .

Proof of (1). If R 6� V then for some x 2 R we will have ordV .x/ D �q with
q 2 NC. Since I ¤ f0g, we can take 0 ¤ y 2 I . Upon letting a D yxm for large
m 2 NC we get a 2 I and ordV a D �p with p 2 NC. Clearly ordV .1C a/ D �p.
Now taking n > p, the equation bnn D .1C a/ implies ordV bn D p=n 62 Z which
is a contradiction. Therefore,R � V .

Proof of (2). Follows from (1) by noting that by Theorem (4.10) on page 118 of
Nagata [28] N .W / is the intersection of all DVRs V with QF.W / D QF.V / and
W � V .

Proof of (3). By (2) we get N .R/ � N .W / with N .W / � N .R/ and hence
N .R/ D N .W /.

Proof of (4). Follows from (2) by noting that there is no subring strictly between a
DVR and its quotient field.

Recall that a quasilocal domain R is henselian means it satisfies the following
condition: If f .Y / is any monic polynomial of degree n > 0 with coefficients in
R such that, letting Nf .Y / denote the polynomial obtained by applying HR to the
coefficients of f .Y /, we have Nf .Y / D g�.Y /h�.Y / where g�.Y / and h�.Y / are
monic coprime polynomials in H.R/ŒY �, then there exits unique monic g.Y / in
h.Y / in RŒY � such that f .Y / D g.Y /h.Y / with g.Y / D g�.Y / and h.Y / D
h�.Y /. In order to apply (I) to this case, by taking

f .Y / D Y n � .1C a/ and n 6	 0 mod .ch.H.R//
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we see that:

(II) If R is a henselian quasilocal domain which is not a field then .R;M.R// is a
quasiroot-closed pair.

By (I) and (II) we get the following:

(III) If R and S are henselian local domains with R ¤ QF.R/ D QF.S/ ¤ S then
R D S .

In this connection, referring to [12], we note that:

(IV) Every complete local domain is henselian. The r-variable power series ring
KŒŒX1; : : : ; Xr �� over a field K with r 2 NC is an r-dimensional complete local
domain which is normal and unequal to its quotient field K..X1; : : : ; Xr //.

By (III) and (IV) we see that:

(V) If r and s are positive integers and K and L are fields for which we
have K..X1; : : : ; Xr // D L..Y1; : : : ; Ys//, then we have KŒŒX1; : : : ; Xr �� D
LŒŒY1; : : : ; Ys �� and r D s.

4 Newtonian Expansion

In Remarks (3.1) and (3.9), we organized the valuation data in � C 1 blocks
of sizes l.0/; l.1/; : : : ; l.�/. Now we shall reorganize it in a single sequence of
length l.0/ C l.1/ C � � � C l.�/. To be more precise, the blocks were of sizes
l.0/C 2; : : : ; l.�/C 2 where the last two members of a block essentially coincided
with the second and third members of the next block. Likewise the reorganized sin-
gle sequence will more precisely be of length l.0/C� � �Cl.�/��C1. In Sect. 5, we
shall give a brief review of quadratic transformations and discuss invariance prop-
erties of newtonian characteristic sequences. In PART II, we shall revisit Newton’s
polygonal method and thereby deduce certain integral dependence properties of the
coefficients of fractional power series expansions.

Let V be a DVR with

V � bV D the completion of V and QF.V / D L � bL D QF.bV /

and let K be a coefficient set of V . In (3.1) we have defined what we mean by a
.V;K/-presequence

.zij; eij; pij; A
�
il.i/.�/; e

�
il.i/; z

�
il.i//�2Z;0�j�l.i/C1;0�i��: (�)



124 S.S. Abhyankar

Note that then
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

� 2 N with l.�/ 2 NC,

2 � l.i/ 2 NC for 0 � i < �,

zij 2 L with ordV zij D eij,

z�il.i/ 2 L with ordV z�il.i/ D e�il.i/,
pij 2 Z [ f1g with A�il.i/.�/ 2 K ,

(1�)

where the quantities zij; z�il.i/; pij; A
�
il.i/.�/ satisfy the conditions described in (3.1).

In particular we have ordV z00 D e00 2 Z with ordV z01 D e01 2 Z
�. Moreover,

having noted that the pair .z00; z01/ uniquely determines .�/, we have called .�/ the
.V;K/-preexpansion of .z00; z01/.

Now we define a .V;K/-sequence to be a sequence

.zj ; ej ; pj ; Bj .�/; �.i/; �.j //�2Z;0�j��;0�i�� (��)

where
8
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<

ˆ

ˆ

:

� 2 N with  D �.�/ 2 NC,

�.i/ 2 NC for 0 � i � �,

�.i/ < �.i C 1/ for 0 � i < �,

(1
)

and

�.j / D
8

<

:

maxfi W 1 � i � � C 1 with �.i � 1/ � j g if j � �.0/
0 if j < �.0/

(2
)

and
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ˆ

ˆ
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ˆ

ˆ

:

zj 2 L� with ordV zj D ej 2 Z for 0 � j � ,

e1 ¤ 0 < ejC1 < jej j for 1 � j < ,

pj 2 Z for 0 � j <  with p� D 1,

p0 D 0 ¤ pj for 2 � j <  with pj > 0 for 3 � j < ,

Bj .�/ 2 K for 0 � j �  and � 2 Z,

B0.�/ D 0 for all � 2 Z,

(3
)

with

zj�1 �
X

.ej �1=jej j/��<1
Bj .�/z

�.jej j=ej /

j D
(

0 in bL if j D 
z
pj

j zjC1 if 1 � j <  (4
)
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are such that

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

if j 2 f1; : : : ; g n f�.0/; : : : ; �.�/g
then Bj .�/ D 0 for all � 2 Z

and ej�1=ej 62 Z with ej�1 D pj ej C ejC1,

and zj�1 D z
pj

j zjC1,

(5
)

and
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

if j 2 f�.0/; : : : ; �.�/g
then ej�1=ej 2 Z with ej�1=ej � pj .ej=jej j/,

and Bj .�/

8

ˆ

ˆ

<

ˆ

ˆ

:

D 0 if � < .ej�1=jej j/
¤ 0 if � D .ej�1=jej j/
D 0 if � > pj .ej =jej j/ and j ¤ ,

(6
)

and we make the convention that

�.�1/ D 0 and �.� C 1/ D1: (7
)

Any pair of elements .z0; z1/ in L� with ordV z1 ¤ 0 can clearly be embedded in a
unique .V;K/-sequence .��/ which we call the .V;K/-expansion of .z0; z1/.

Note that if .z00; z01/ D .z0; z1/ then .�/ and .��/ determine each other by the
relations

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

 D l.0/C � � � C l.�/� �;
�.i/ D l.0/C � � � C l.i/ � i for 0 � i � �;
zj D z0j for 0 � j � �.0/,
zj D zi;jC1��.i�1/ for 1 � i � � and �.i � 1/ � j � �.i/,
pj D p0j for 0 � j � �.0/,
pj D pi;jC1��.i�1/ for 1 � i � � and �.i � 1/ � j � �.i/,

(2�)

and
(

Bj .�/ D A�il.i/.�/ for 1 � i � � and j D �.i/,
z
pj

j zjC1 D z�il.i/ for 1 � i < � and j D �.i/. (3�)

Descriptive Note (8�). In a more descriptive manner, the i -th row of .�/ as a “matrix”
looks like

zi0; zi1; : : : ; zi;l.i/C1
and a slight trimming converts it into the i -th D �-th subsequence of .��/ which
looks like

z�.i�1/; z�.i�1/C1; : : : ; z�.i/�1



126 S.S. Abhyankar

with the convention .7
/ that �.�1/ D 0; namely, for i D 0, delete the last two
terms of the i -th row whereas, for i > 0, delete the first and the last two terms of the
i -th row. Moreover, at the �.i/-th spot of .��/ with 0 � i < � we put the following
expansion with nonempty support:

z�.i/�1 D
 

X

�

B�.i/.�/z
�
�.i/

!

C z
p�.i/

�.i/
z�.i/C1:

In .��/, the basic sequence is .zj ; ej ; pj ; Bj .�//�2Z;0�j��. The remaining two
quantities �.i/ and �.j / are determined by the basic sequence thus. The �.i/ are
those values of j at which the support of the function � 7! Bj .�/ is nonempty; we
label the �.i/ so that they increase with i . The �.j / are the counters to locate �.i/. In
other words, if j D 0; 1; 2; : : : ;  are the markers of the train stations as we march
along the basic sequence, then �.i/ is the label of a crowded station (say, a junction),
and for 0 � j �  we have �.j / D i , �.i � 1/ � j < �.i/, i.e., we have

�.�.j / � 1/ � j < �.�.j //
with the convention .7
/ that �.�1/ D 0 and �.� C 1/ D 1. With this convention
we can write

�.�1/ D 0 < �.0/ < �.1/ < � � � < �.�/ D  <1 D �.� C 1/:

Definition. Let T be a uniformizing parameter of bV . Assume that ch.L/ D
ch.H.V // D 0 and K is a coefficient field of bV . Note that then bV D K..T //.
Assume that H.V /, and henceK , is root-closed. Given any pair .z0; z1/ in L� with
ordV z1 ¤ 0, in view of (3.7) and what we have said above, there exists a system

.zj ; ej ; pj ; Bj .�/; �.i/; �.j /; Aj .�/;bAj ; QAj .�/;m.j /; Qzj /�2Z;0�j��;0�i��
(� � �)

such that .��/ is the .V;K/-expansion of .z0; z1/ and

for 0 � j � 

we have
bAj 2 K� with .bAj /ej D incoT zj (1)

and
m.j / D m.zj ; zjC1; V;K/ (2)

and
(

Aj .�/ 2 K for all � 2 Z

with Aj .�/ D 0 for � < ej and Aj .ej / ¤ 0
(3)

and
( QAj .�/ 2 K for all � 2 Z

with QAj .�/ D 0 for � < ej and QAj .ej / ¤ 0
(4)
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such that
zj D zj .T / D

X

ej��<1
Aj .�/T

� (5)

is the usual expansion of zj in K..T // and

Qzj D Qzj .T / D
X

ej��<1
QAj .�/T � (6)

is the .V;K; T /-expansion of .zj ; zjC1;bAjC1/ with the proviso that

(

if j D  then m.j / D m.;; 1/
and Qzj D Qzj .T / D 0 D QAj .�/ for all � 2 Z;

(7)

we call such a system a mixed .V;K; T /-expansion of .z0; z1/.

Since .�/ and .��/ determine each other, referring to (3.2) for notation, (3.9)(III)
may be paraphrased as the:

First invariance theorem (I). For 0 � j �  � 1 we have

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

h.m.j // D h.m.0//� �.j /
and q0.m.j // D ejC1 D ordV zjC1 with zjC1 2 L�
and q1.m.j // D ej D ordV zj with zj 2 L�
and q�.m.j // D q�C�.j /.m.0// for 2 � � � h.m.j //C 1
and d�.m.j // D d�C�.j /.m.0// for 2 � � � h.m.j //C 2.

Moreover, we have

h.m.�// D h.m.0//� �./ D 0 with �./ D � C 1:

Preamble for next theorem. Referring to (3.5) for notation, having just dealt with
case .3:5/.2]/, turning to case .3:5/.3]/ let

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

S D k..T // where k is a nonnull special subfield of K ,

0 D an unspecified member of k�

( 0 is called Abhyankar’s nonzero and may be read as �),

0 0 D an unspecified member of k

( 0 0 is called Abhyankar’s constant and may be read as � 0),
gap.T;S/Qzj .T / D vj with coef.T;S/Qzj .T / D NAj for 0 � j � 
with the understanding that v� D 1 and NA� D 0

(8)
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and
for 1 � l � 

let
z�
l
D

X

.el�1=jel j/��<.vl�1Cel�1/jel j�1

Bl .�/z
�.jel j=el /

l
2 KŒzl ; z�1l � (9)

and
z[l D zl�1 � z�

l
2 L with ordV z[l D e[l (10)

and let
z[l D z[l .T / D

X

�2Z

A[l .�/T
� with A[l .�/ 2 K (11)

be the usual expansion in K..T // and

8

ˆ

ˆ

<

ˆ

ˆ

:

if z[
l
¤ 0

then let Qz[
l
D Qz[

l
.T / be the .V;K; T /-expansion of .z[

l
; zl ;bAl/

and let gap.T;S/Qz[l .T / D v[
l

with coef.T;S/Qz[l .T / D NA[l
(12)

and finally let
z[[l 2 L with ordV z[[l D e[[l (13)

and
z[[[l 2 L with ordV z[[[l D e[[[l (14)

be defined by putting

z[[l D
(

0 if el�1=el 62 Z

zl�1=z.el�1�el /=el

l
if el�1=el 2 Z

(15)

and

z[[[l D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z[
l
D 0

0 if z[
l
¤ 0 and e[

l
=el 62 Z

z[
l
=z
.e[

l
�el /=el

l
if z[

l
¤ 0 and e[

l
=el 2 Z

(16)

and let
z[[l D z[[l .T / D

X

�2Z

A[[l .�/T
� with A[[l .�/ 2 K (17)

and
z[[[l D z[[[l .T / D

X

�2Z

A[[[l .�/T
� with A[[[l .�/ 2 K (18)

be the usual expansion in K..T //.



Inversion and Invariance of Characteristic Terms: Part I 129

With the above notation at hand, we shall now prove the:

Second invariance theorem (II). For 0 � j �  � 1 we have the following.

(1*) If bAjC1 2 k with vj > 0 and l D �.�.j // with vj Cm.l�1/1 > m
.l�1/
2 then:

bAl 2 k and vl�1 D vj with NAl�1 D 0 NAj C 0 0 and we have l <  with
bAlC1 2 k and vl D vj Cm.l�1/1 �m.l�1/2 > 0 with NAl D 0 NAj C 0 0.

(2*) If bAjC1 2 k with vj > 0 and l D �.�.j // with vj Cm.l�1/1 < m
.l�1/
2 then:

bAl 2 k and vl�1 D vj with NAl�1 D 0 NAj C 0 0 and we have z[
l
¤ 0 and

v[
l
D 0 with NA[

l
D NAl�1 and e[

l
D vl�1 C el�1 	 0 mod .el/.

(3*) If bAjC1 2 k with1 ¤ vj > 0 and l D �.�.j // with vj Cm.l�1/1 D m.l�1/2

then: bAl 2 k and vl�1 D vj with NAl�1 D 0 NAj C 0 0 and l �  ¤ 0 ¤ z[
l

and we have v[
l
D 0 with NA[

l
D NAl�1 and e[

l
D vl�1 C el�1 6	 0 mod .el/.

(3**) Notation. For stating the following generalization (4*)–(6*) of
(1*)–(3*) we introduce the quantities �.j /, ��.j /, and �.j; j 0/ thus. We
put

�.j / D maxf� 2 f1; : : : ; h.m.j //C 1g W vj Cm.j /1 � m.j /� g

and we note that if vj D 1 then �.j / D h.m.j //C 1, whereas if vj ¤ 1
then �.j / is the unique integer with 1 � �.j / � h.m.j // such that

m
.j /

�.j /
� vj Cm.j /1 < m

.j /

�.j /C1:

If vj D 1 then we put ��.j / D1, whereas if vj ¤1 then we put

��.j / D vj Cm.j /1 �m.j /�.j /:

For j � j 0 �  � 1 we put

�.j; j 0/ D �.j 0/� �.j /C 1

and we note that then �.j; j / D 1 and hence ��.j / D vj Cm.j /�.j;j /�m.j /�.j /.
The proofs of (4*)–(6*) will be by induction on �.j; j 0/ starting with the

ground case of �.j; j 0/ D 1;

i.e., the case when

�.j 0/ D �.j / and �.�.j / � 1/ � j � j 0 < �.�.j //:
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(4*) If bAjC1 2 k with ��.j / D 1 then for j � j 0 �  � 1 we have
fbAj 0 ;bAj 0C1g � k with vj 0C1 D vj 0 D 1 and Qzj 0.T / 2 k..T // with
Bj 0C1.�/ 2 k for all � 2 Z.

(5*) If bAjC1 2 k with1¤ ��.j / > 0 then, letting l D �.�.j /C�.j /� 1/, for
j � j 0 � l �1 we have fbAj 0 ;bAj 0C1g � k and 1 � �.j; j 0/ � �.j; l �1/ D
�.j / with �.j; j 0/ C �.j 0/ D 1 C �.j / and1 ¤ ��.j 0/ D ��.j / > 0

with NAj 0 D 0 NAj C 0 0, and moreover: z[
l
¤ 0 and v[

l
D 0 with NA[

l
D NAl�1

and e[
l
D vl�1 C el�1 	 0 mod .el/, and finally: NAj 2 K n k and

incoT z[[[
l

incoT zl
D 0 NA[l D 0 NAj C 0 0:

(6*) If bAjC1 2 k with ��.j / D 0 and �.j / ¤ 1 then, letting l D �.�.j / C
�.j /�2/, for j � j 0 � l�1 we have fbAj 0 ;bAj 0C1g � k and 1 � �.j; j 0/ �
�.j; l � 1/ D �.j / � 1 with �.j; j 0/C �.j 0/ D 1C �.j / and ��.j 0/ D
��.j / D 0 with NAj 0 D 0 NAj C 0 0, and moreover: bAl 2 k and vl�1 D vj
with NAl�1 D 0 NAj C 0 0 and l �  ¤ 0 ¤ z[

l
and v[

l
D 0 with NA[

l
D NAl�1

and e[
l
D vl�1 C el�1 6	 0 mod .el/.

(6**) Notation. To facilitate stating claim (7*), we supplement the definition of the
derived denominator sequencebni .m/1�i�h.m/ of a charseqm with h.m/ > 0
given in (3.2) by introducing its signed version

n[[i .m/ D .�1/n
[
i
.m/
bni .m/

where the positive integer n[i .m/ is defined thus. Let
�

.e
.i/
j /0�j�l.i/ ;

.p
.i/
j /0�j<l.i/

�

be the euclidean extension of .e.i/0 ; e
.i/
1 / where

.e
.i/
0 ; e

.i/
1 / D

(

.qi .m/; di .m// if 2 � i � h.m/

.q1.m/; q0.m// if i D 1:

Now (paying special attention to the j D 0 case) we put

n[i .m/ D
(

l .i/ C 1 if e.i/1 > 0

l .i/ if e.i/1 � 0.

(7*) If bAjC1 2 k with ��.j / D 0 then, letting l D �.�.j / C �.j / � 1/, we have
NAj 2 K n k and

incoT z[[
l

incoT zl
D 0 . NAj C 0 0/E with E D n[[�.j /.m.j // 2 Z

�:
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Note. In proving Theorem (II), we shall be using the following Reincarnated
Version of Lemma (3.8)(III). The said Reincarnated Version says that the Origi-
nal Version remains valid when for 0 � j �  � 1, upon letting l D �.�.j //,
we substitute the subsequence .zj ; zjC1; : : : ; zl / and its associated quantities
.ej ; : : : ; el/; : : : for the sequence .z0; z1; : : : ; zl / together with its associated quan-
tities considered in (3.8). Note that in the said substitution we put A�

l
.�/ D Bl.�/.

Reincarnated coefficient lemma (III). For 0 � j �  � 1, upon letting l D �.�.j //,
we have the following.

(1*) If bAjC1 2 k with vj > 0 then for j � j 0 � l we have bAj 0 2 k, and for
j � j 0 � l � 1 we have vj 0 D vj with NAj 0 D 0 NAj C 0 0.

(2*) l < , l �  ¤ 0, m
.l�1/
2 ¤1) m

.l�1/
2 D plel C elC1.

(3*) If bAl 2 k and vl�1 D 1 then vl D 1 and bAlC1 2 k with Qzl�1.T / 2 k..T //
and Bl .�/ 2 k for all � 2 Z.

(4*) If bAl 2 k and vl�1 C m
.l�1/
1 > m

.l�1/
2 then l <  with bAlC1 2 k and

vl Cm.l�1/2 D vl�1 Cm.l�1/1 with NAl D 0 NAl�1 C 0 0.
(5*) IfbAl 2 k and vl�1Cm.l�1/1 < m

.l�1/
2 then z[

l
¤ 0 and v[

l
D 0with NA[

l
D NAl�1

and e[
l
D vl�1 C el�1 	 0 mod .el/.

(6*) If bAl 2 k and vl�1 ¤ 1 with vl�1 Cm.l�1/1 D m
.l�1/
2 then l �  ¤ 0 ¤ z[

l

and v[
l
D 0 with NA[

l
D NAl�1 and e[

l
D vl�1 C el�1 6	 0 mod .el/.

(7*) If bAjC1 2 k and vj D 0 then incoT zj D 0 NAj 2 K n k and

incoT z[[
l

incoT zl
D 0 NAEj with E D .�1/lC1�j .ejC1=el/ 2 Z

�:

Proof of (II)(1*). Now ifbAjC1 2 k with vj > 0 and l D �.�.j // with vjCm.l�1/1 >

m
.l�1/
2 then by (III)(1*) we get bAl 2 k with vl�1 D vj and also vl�1 C m.l�1/1 >

m
.l�1/
2 with NAl�1 D 0 NAj C 0 0 and hence by (III)(4*) we conclude that l <  with

bAlC1 2 k and vl D vj Cm.l�1/1 �m.l�1/2 > 0 with NAl D 0 NAl�1 C 0 0.

Proof of (II)(2*). Now ifbAjC1 2 k with vj > 0 and l D �.�.j // with vjCm.l�1/1 <

m
.l�1/
2 then by (III)(1*) we getbAl 2 k with vl�1Cm.l�1/1 < m

.l�1/
2 and vl�1 D vj

with NAl�1 D 0 NAj C 0 0 and hence by (III)(5*) we conclude that z[
l
¤ 0 and v[

l
D 0

with NA[
l
D NAl�1 and

e[l D vl�1 C el�1 	 0 mod .el/:

Proof of (II)(3*). Now if bAjC1 2 k with 1 ¤ vj > 0 and l D �.�.j // with

vj Cm.l�1/1 D m.l�1/2 then by (III)(1*) we getbAl 2 k with vl�1Cm.l�1/1 D m.l�1/2

and vl�1 D vj with NAl�1 D 0 NAj C 0 0 and hence by (III)(6*) we conclude that
l �  ¤ 0 ¤ z[

l
and v[

l
D 0 with NA[

l
D NAl�1 and

e[l D vl�1 C el�1 6	 0 mod .el/:
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Proof of (II)(4*). Assuming bAjC1 2 k with ��.j / D 1, and given any j 0 with
j � j 0 � �1, by induction on �.j; j 0/ we shall show that fbAj 0 ;bAj 0C1g � k with
vj 0C1 D vj 0 D 1 and Qzj 0.T / 2 k..T // with Bj 0C1.�/ 2 k for all � 2 Z. In the
ground case we are done by (III)(1*) and (III)(3*). So let �.j; j 0/ > 1 and assume
true for all smaller values of �.j; j 0/. Now letting j1 D �.�.j // and j 00 D j1 � 1
we have j � j 00 < j 00 C 1 D j1 � j 0 �  � 1 with (i) �.j; j 00/ D 1 and
(ii) �.j1; j 0/ D �.j; j 0/ � 1. In view of (i), by (III)(1*) and (III)(3*) we get (iii)
bAj1C1 2 k and (iv) ��.j1/ D 1. In view of (ii) to (iv) we are done by the induction
hypothesis.

Note on proofs of (II)(5*)–(II)(7*). In the following arguments we may tacitly use
(I) together with the fact that for 1 � j �  � 1 we have m.j /0 D q0.m

.j // and

m
.j /
� D q1.m

.j // C � � � C q�.m
.j // for 1 � � � h.mj // C 1. This is particu-

larly relevant for comparing �.j / and �.j 0/ with j ¤ j 0. Similarly for ��.j / and
��.j 0/.

Proof of (II)(5*). Assume that bAjC1 2 k with 1 ¤ ��.j / > 0, and let us put
l D �.�.j /C �.j / � 1/.

In case of �.j / D 1 everything follows from (III)(1*) and (III)(5*).
In the general case, given any j 0 with j � j 0 � l � 1, by induction on �.j; j 0/

we shall show that fbAj 0 ;bAj 0C1g � k and 1 � �.j; j 0/ � �.j; l � 1/ D �.j /

with �.j; j 0/ C �.j 0/ D 1 C �.j / and1 ¤ ��.j 0/ D ��.j / > 0 with NAj 0 D
0 NAj C 0 0. In the ground case we are done by (III)(1*). So let �.j; j 0/ > 1 and
assume true for all smaller values of �.j; j 0/. Now upon letting j1 D �.�.j // and
j 00 D j1�1 we see that j � j 00 < j 00C1 D j1 � j 0 � �1 with (i) �.j; j 00/ D 1
and (ii) �.j1; j 0/ D �.j; j 0/ � 1. Assuming �.j / > 1, in view of (i), by (III)(1*)
and (III)(4*) we also conclude that (iii) bAj1C1 2 k and (iv)1 ¤ ��.j1/ > 0 and
(v) �.j1/C�.j1/ D �.j /C�.j /. In view of (ii) to (v) we are done by the induction
hypothesis.

In view of what we have proved in the above paragraph, by (III)(5*) we get the
“moreover” and the “finally.”

Proof of (II)(6*). Assume that bAjC1 2 k with ��.j / D 0 and �.j / ¤ 1, and let us
put l D �.�.j /C �.j / � 2/.

In case of �.j / D 2 everything follows from (III)(1*) and (III)(6*).
In the general case, given any j 0 with j � j 0 � l�1, by induction on�.j; j 0/we

shall show that fbAj 0 ;bAj 0C1g � k and 1 � �.j; j 0/ � �.j; l � 1/ D �.j /� 1 with
�.j; j 0/C �.j 0/ D 1C �.j / and ��.j 0/ D ��.j / D 0 with NAj 0 D 0 NAj C 0 0.
In the ground case we are done by (III)(1*). So let �.j; j 0/ > 1 and assume true
for all smaller values of �.j; j 0/. Now upon letting j1 D �.�.j // and j 00 D j1 � 1
we see that j � j 00 < j 00 C 1 D j1 � j 0 �  � 1 with (i) �.j; j 00/ D 1 and
(ii) �.j1; j 0/ D �.j; j 0/ � 1. Assuming �.j / > 2, in view of (i), by (III)(1*)
and (III)(4*) we also conclude that (iii) bAj1C1 2 k and (iv) ��.j1/ D 0 and (v)
�.j1/ C �.j1/ D �.j / C �.j /. In view of (ii) to (v) we are done by the induction
hypothesis.
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In view of what we have proved in the above paragraph, by (III)(6*) we get the
“moreover.”

Proof of (II)(7*). This follows from (II)(6*) and (III)(7*). In greater detail, the case
of �.j / D 1 is done by (III)(7*). So assume that �.j / ¤ 1 and let

.z00; z01/ D .z[L; zL/ where L D �.�.j /C �.j / � 2/ (0)

and let
.z0J ; e0J ; p0J ; B 0J .�/; �0.i/; �0.J //�2Z;0�J��0;0�i��0 (��0)

be the .V;K/-expansion of .z00; z01/. Also let

.z0J ; e
0
J ; p

0
J ; B

0
J .�/; �

0.i/; �0.J /; A0J .�/;bA
0
J ; : : : /�2Z;0�J��0;0�i��0 (� � �0)

be the mixed .V;K; T /-expansion of .z00; z01/, and let

v0J ; NA0J ; .z0J /[[; : : :

have the corresponding meanings. Then assuming

bAjC1 2 k with ��.j / D 0

by (II)(6*) we see that

NA00 D 0 NAj C 0 0 with e00 6	 0 mod .e01/ (i)

and
bA01 2 k with v00 D 0: (ii)

In view of (i) and (ii), upon letting

l 0 D �0.�0.0// (iii)

and applying (III)(7*) with j D 0 to the “primed” system we see that

incoT z00 D 0 NA00 2 K n k (iv)

and
incoT .z0l 0/

[[

incoT z0
l 0

D 0 . NA00/E
0

with E 0 D .�1/l 0C1.e01=e0l 0/ 2 Z
�: (v)

Now clearly
z[L D zpL

L zLC1: (vi)

In view of (vi), upon letting

l D �.�.j /C �.j / � 1/ (vii)
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we see that

z0l 0 D zl and .z0l 0/
[[ D z[[l with E 0 D n[[�.j /.m.j //:

By (i)–(vii) we conclude that
NAj 2 K n k (i*)

and
incoT z[[

l

incoT zl
D 0 . NAj C 0 0/E with E D n[[�.j /.m.j // 2 Z

�: (ii*)

Note on the proof of (II)(7*). To get a clearer picture of the above proof remember
that, as explained in the Descriptive Note .8
/, the .V;K/-sequence .��/ is obtained
by straightening the .V;K/-presequence .�/, and while doing this we drop the first
element of each row, except the first; the dropped element is reinstated by the con-
cept of z[

l
where we observe that z[

l
D zpl

l
zlC1. Also remembering (3.1)(8) and

(3.1)(11) we observe that

incoT z[[
l

incoT zl
D A�l .el�1=jel j/ D the first coefficient of the summation in (3.1)(8):

At any rate, .��0/ is obtained by chopping off the initial 0 � j � L � 1 piece of
.��/ and replacing the chopped off piece by z[L D zpL

L zLC1. Finally observe that the
j D 0 case of (II)(7*) requires special treatment which is taken care of in (II)(6**).

5 Quadratic Transformations

For details referring to [2, 3, 9–11] in general, and specifically to (Q35.8) on
pages 569–577 of [12], let us recall some basic facts about QDTs = Quadratic
Transformations.

Recall that, spec.S/ denotes the set of all prime ideals in a ring S . If S is a
domain then the modelic spec V.S/ D the set of all localizations of S at various
prime ideals in S , and if J is an ideal in S then the modelic blowup

W.S; J / D
[

0¤x2J
V.SŒJx�1�/

where Jx�1 D fyx�1 W y 2 J g; if S is quasilocal then the dominating modelic
blowup W.S; J /� D the set of all those members of W.S; J / which dominate S .

LetR be a positive dimensional local domain. By a QDT ofRwe mean a member
of W.R;M.R//�. For any QDT S of R we have 0 < dim.S/ � dim.R/ with
dim.R/�dim.S/ D restrdegRS , and S=M.S/ is a finitely generated field extension
of R=M.R/. We have dim.S/ D 1 for at least one and at most a finite number of
QDTs S of R. If R is regular then every QDT S of R is regular, and dim.S/ D 1
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for exactly one S which then coincides with the valuation ring of the real discrete
valuation ordR mentioned in Sect. 2, and hence in particular it is residually pure
transcendental over R. Some QDT of R coincides with R iff R is a DVR. If V is
any valuation ring dominating R then V dominates exactly one QDT S of R, and
we call S the QDT of R along V .

A QDT of a positive dimensional local domainR may also be called a first QDT
ofR; by a second QDT ofR we mean a first QDT of a first QDT ofR, . . . , by a j -th
QDT of R we mean a first QDT of a .j � 1/-th QDT of R. We declare R to be the
only zeroeth QDT ofR. By a QDT sequence ofR we mean a sequence .Rj /0�j<1
with R0 D R such that Rj is a first QDT of Rj�1 for 0 < j <1.

If V is any valuation ring dominating a positive dimensional local domain R
then, for any nonnegative integer j , there is a unique j -th QDT Rj of R which is
dominated by V and we call it the j -th QDT of R along V ; we call .Rj /0�j<1 the
QDT sequence of R along V . To get a concrete set of generators of M.Rj / for all
j , we proceed thus.

Definition (]). Let V be the valuation ring of a valuation W W L! G [ f1g of a
field L and let K be a coefficient set of V . Let

L D fz 2 L W W.z/ D 0 or1g:

Given any .z0; : : : ; z� / 2 L�C1 nL�C1 where � is a positive integer, we shall define
its QDT sequence .0]/ along .V;K/. The reader may prefer to first study the � D 1
case starting in Note (III*). Now clearly there exists a unique sequence

.z0j ; : : : ; z�j ; c0j ; : : : ; c�j ; t.j //0�j<1 (0])

with .z00; : : : ; z�0/ D .z0; : : : ; z� / and

.z0j ; : : : ; z�j ; c0j ; : : : ; c�j ; t.j // 2 .L�C1 n L�C1/ �K�C1 � f0; : : : ; �g

for 0 � j <1 such that for 0 � j <1 and 0 � t � � we have

zt;jC1 D

8

ˆ

ˆ

<

ˆ

ˆ

:

ztj with ctj D 1 if t D t.j /
ztj with ctj D 0 if t ¤ t.j / and W.ztj / ¤ 0
ztj � ctj 2 M.V / with ctj ¤ 0 if t ¤ t.j / and W.ztj / D 0

(1])

where

ztj D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

ztj

zt.j /j
if 0 < W.zt.j /j / � W.ztj /

ztj

zt.j /j
if W.zt.j /j / < 0 > W.ztj /

ztj

1=zt.j /j
if W.ztj / < 0 < W.zt.j /j /

ztj

1=zt.j /j
if W.zt.j /j / < 0 < jW.zt.j /j /j � W.ztj /

ztj if 0 D W.ztj / < jW.zt.j /j /j

(2])
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and where, upon letting

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

t�.j / D f0 � t � � W 0 ¤ W.ztj / ¤ 1g
t��.j / D max.t�.j //
t�C.j / D ft 2 t�.j / W 0 < W.ztj / <1g
t��C .j / D maxft 2 t�C.j / W W.ztj / � W.zt 0j / 8 t 0 2 t�C.j /g
t��.j / D ft 2 t�.j / W t � t��C .j /g
t��� .j / D maxft 2 t��.j / W jW.ztj /j � jW.zt 0j /j 8 t 0 2 t��.j /g

(3])

with the understanding that if t�C.j / D ; then t��C .j / D 0 D t��� .j /, we put

t.j / D
(

t��� .j / if t�C.j / ¤ ;
t��.j / if t�C.j / D ;:

(4])

Noting that for all j 2 N we have 0 ¤ W.zt.j /j / <1, for 0 � t � � we put

�.t; j / D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 if 0 < W.zt.j /j / � W.ztj /
1 if W.z.j /j / < 0 > W.ztj /

�1 if W.ztj / < 0 < W.zt.j /j /

�1 if W.zt.j /j / < 0 < jW.zt.j /j /j � W.ztj /
0 if 0 D W.ztj / < jW.zt.j /j /j

(5])

and we observe that z.t;j /
t.j /j

is the denominator in each line of .2]/.

Let us define the flipping set ˆ] of .0]/ by putting

ˆ] D the set of all j 2 NC such that t.j � 1/ ¤ t.j /. (6])

Let p.u/
1�u<b�

be the unique sequence such that fp.u/ W 1 � u < bg D ˆ] with

p.u/ < p.u C 1/ whenever 1 � u < u C 1 < b whereb D 1 or card.ˆ]/ C 1
according as the cardinality card.ˆ]/ is infinite or finite.

Let us define the translation set ‰] of .0]/ by putting

‰] D

8

ˆ

ˆ

<

ˆ

ˆ

:

the set of all j 2 N such that

for every t 2 f0; : : : ; �g with ztj ¤ 0 we have
ztj

zn.t;j /

t.j /j

2 V nM.V / for some n.t; j / 2 Z

(7])

and let us note that this defines n.t; j / uniquely. Let u.i/
0�i<b� be the unique se-

quence such that fp.u.i// W 0 � i <b�g D ˆ] \‰] with u.i/ < u.i C 1/ whenever
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0 � i < i C 1 < b� whereb� D 1 or card.ˆ] \ ‰]/ according as the cardinality
card.ˆ] \‰]/ is infinite or finite.

We call .0]/ the QDT sequence of .z0; : : : ; z� / along .V;K/ and we call

.�.0; j /; : : : ; �.�; j /; p.u/; u.i//
0�j<1;1�u<b�;0�i<b� (8])

the supplement of the QDT sequence.

Note (I�). The proofs of the following Lemmas (I) and (II) are straightforward.
Lemma (II) deals with a situation when .z0j ; : : : ; z�j / are generators of the maximal
ideal M.Rj / of a local domain Rj dominated by V ; in that situation clearly j
belongs to N ] where N ] D fj 2 N W W.ztj / > 0 for 0 � t � �g. Note that if
j 2 N ] then only the first line of .2]/ is relevant. Also note that:

(i) j 2 N ] for a certain value of j implies j 2 N ] for all bigger values of j .
(ii) t�C.j / ¤ ; for a certain value of j implies t�C.j / ¤ ; for all bigger values

of j .
(iii) If W is real, i.e., if the value group GW is order isomorphic to an additive

subgroup of R then j 2 N ] for all sufficiently large values of j .
(iv) If j < j � in N [ f1g are such that t.j / D t.j 0/ for all j � j 0 < j � then

zt.j /j D zt.j 0/j 0 whenever j � j 0 < j �.
Finally note that by definition

jW.z/j D W.z/ or �W.z/ according as W.z/ � 0 or W.z/ < 0.

Lemma (I). Let j 2 ˆ] and j < j � 2 NC [ f1g be such that for all j 0 2 N with
j < j 0 < j � we have j 0 62 ˆ], and if j � ¤ 1 then we have j � 2 ˆ]. Then we
have the following.

(I.1) For all j 0 2 N with j � j 0 < j � we have t.j 0/ D t.j / and zt.j 0/j 0 D zt.j /j .
If j � ¤ 1 then we have t.j �/ ¤ t.j /.

(I.2) If j � D1 then we have 1 <b <1 and p.b�1/ D j . If j � ¤ 1 then for a
unique integer u with 1 � u < uC1 <bwe have p.u/ D j < j � D p.uC1/.

(I.3) Assume j 62 ‰]. Then for 0 � i < b� we have j ¤ p.u.i//. Moreover,
either: for all t 2 f0; : : : ; �g n ft.j /g we have ztj D 0, or: for some t 2
f0; : : : ; �g n ft.j /g we have ztj ¤ 0 with ztj =zn

t.j /j
62 V nM.V / for all n 2 Z.

In the “either” case, for all t 2 f0; : : : ; �gnft.j /g and for all j 0 2 N with
j � j 0 < j �, we have ctj 0 D 0 D ztj 0 . Furthermore, for every t of the “or”
case and for all j 0 2 N with j � j 0 < j �, we have

ctj 0 D 0 with �.t; j 0/ D �.t; j / and ztj D z.t;j /.j
0�j /

t.j /j
ztj 0 :

(I.4) Assume j 2 ‰]. Then j D p.u.i// for a unique i with 0 � i <b�. Moreover,
if j � D 1 then for any t 2 f0; : : : ; �g n ft.j /g, whereas if j � ¤ 1 then for
t D t.j �/, for all j 0 2 N with j � j 0 < j � we have
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ztj�
X

j��<j 0

ct�z.t;j /.��jC1/
t.j /j

D z.t;j /.j
0�j /

t.j /j
ztj 0 with �.t; j 0/ D �.t; j / (i)

which may be viewed as a Taylor Expansion with Remainder discussed in
(9.5). If j � D1 then (i) gives rise to the equation

ztj D
X

j��<j�

ct�z.t;j /.��jC1/
t.j /j

(ii)

which may be thought of as an infinite Taylor Expansion discussed in (9.2),
with a suitable interpretation of the equality; see (9.3) for the case when V is
a DVR.

(I.5) Assuming j 2 ‰] and letting � D f� 2 N W j � � < j � with ct� ¤ 0g
we have the following. If j � D 1 and t 2 f0; : : : ; �g n ft.j �/g then letting
�1 < � � � < �w or �1 < �2 < : : : be the finitely many or infinitely many values
of � 2 � and putting �0 D j � 1 we have

n.t; �v C 1/ D �vC1 � �v

for 0 � v < w or 0 � v < 1 respectively. If j � ¤ 1 and t D t.j �/ then
letting �1 < � � � < �w be the values of � 2 � and putting �0 D j � 1 we have

n.t; �v C 1/ D �vC1 � �v

for 0 � v < w.

Sketch proof of (I.5). Letting

X D zt.j /j and .N.q/;Z.q// D .n.t; q/; ztq/

for all q 2 N, we have

Z.q/ D C.q/XN.q/ CXN.q/Z.q CN.q// where 0 ¤ C.q/ 2 K: [q]

Comparing Œ�0 C 1� and (i) with j 0 D �1 C 1 we see that

N.�0 C 1/ D �1 � �0 and C.�0 C 1/ D ct�1

with
Z.�0 C 1/ D ct�1

X�1��0 CX�1��0Z.�1 C 1/:
Substituting Œ�1 C 1� in the last equation and comparing the resulting equation and
(i) with j 0 D �2 C 1 we see that

N.�1 C 1/ D �2 � �1 and C.�1 C 1/ D ct�2
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with
Z.�0 C 1/ D ct�1

X�1��0 C ct�2
X�2��1 CX�2��1Z.�2 C 1/:

And so on. Thus by induction on v we get

N.�v C 1/ D �vC1 � �v and C.�v C 1/ D c�vC1

with

Z.�0C1/Dct�1
X�1��0Cct�2

X�2��1C� � �Cct�vC1
X�vC1��vCX�vC1��vZ.�vC1C1/

for all relevant values of v.

Lemma (II). Assume that V dominates a positive dimensional local domain R for
whichM.R/ D .z0; : : : ; z� /R. Let .Rj /0�j<1 be the QDT sequence of R along V .
Then we have the following.

(II.1) If n 2 N is such that K contains a coefficient set Kj of Rn for 0 � j � n,
then for 0 � j � n we have

fc0j ; : : : ; c�j g 2 Kj D K \ Rj andM.Rj / D .z0j ; : : : ; z�j /Rj :

(II.2) If V is a DVR thenb 2 NC and for all integers n �b we have t.n/ D t.b/.
If V is a DVR and QF.R/ D QF.V / thenb 2 NC and for all integers n �b
we have t.n/ D t.b/ andW.zt.n/n/ D 1.

(II.3) If R is regular of dimension � C 1 and V is a prime divisor of R then there
exists a unique positive integer n such that for all integers 0 � j < n � �
we have Rj ¤ Rn D R� D V and dim.Rj / > dim.Rn/ D dim.R�/ D 1.
Moreover, Rn is residually pure transcendental over Rn�1 of residual tran-
scendence degree dim.Rn�1/�1. Finally n is the essential length of the QDT
sequence .Rj /0�j<1 in the sense of Note (II**) below.

(II.4) If R is one dimensional and V is a prime divisor of R then V is residually
finite algebraic overR and there exists n 2 N such that for all integers� � n
we haveM.V / D M.R�/V with V=M.V / D R�=M.�/.

Note (II�). For (II.3) see Proposition 3 of [2] and its proof. The first part of (II.4) is
proved in Theorem 1(4) of [2], and the rest of (II.4) follows from it by (II.2). It may
be tempting to think that (II.4) implies V D R� for large �, but Example (E3.2) on
page 206 of Nagata [28] shows this to be untrue.

Note (II�). Given any positive dimensional local domain R and any QDT sequence
.Rj /0�j<1 of R, by the essential length of the QDT sequence we mean the unique
n 2 N [ f1g such that if n D 1 then for all j 2 N we have Rj ¤ RjC1, whereas
if n 2 N then for all j 2 N with j < n we have Rj ¤ RjC1 and for all j 2 N with
j � n we have Rj D RjC1. Note that Rj D RjC1 iff Rj is a DVR.
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Lemma (III). Assume that � D 1 and V dominates a two dimensional regular
local domain R with quotient field L and M.R/ D .z0; z1/R. Let .Rj /0�j<1 be
the QDT sequence of R along V . Then we have the following.

(III.1) The essential length of the QDT sequence .Rj /0�0<1 is finite or infinite
according as V is residually transcendental or algebraic over R.

(III.2) If V is residually transcendental over R then V is a prime divisor of R.
(III.3) Assume that V is residually algebraic over R. Then the value group GW

is order isomorphic to either (i) the set of all lexicographically ordered
pairs of integers or (ii) the additive group of all integers or (iii) a non-
cyclic additive subgroup of Q or (iv) an additive subgroup of R of the form
fa1�1Ca2�2 W .a1; a2/ 2 Z

2g for some positive real numbers �1; �2 which
are linearly independent over Q. In these cases, we shall respectively say
that V is nonreal discrete or real discrete or rational nondiscrete or irrational.
Now assume thatK contains a coefficient setKj of Rj for all j 2 N. Then:

(i*) card.ˆ]/ ¤1 ¤ card.‰]/ iff V is nonreal discrete;
(ii*) card.ˆ]/ ¤1 D card.‰]/ iff V is real discrete;

(iii*) card.ˆ]/ D1 D card.‰]/ iff V is rational nondiscrete;
(iv*) card.ˆ]/ D1 ¤ card.‰]/ iff V is irrational.

Proof. In view of Lemma (II) this follows from [2, 3].

Note (III�). In the next two Lemmas we continue to give special attention to the
� D 1 case. Here we make some definitions for that case. For any nonnegative
integer j we let t 0.j / be the unique member of f0; 1g different from t.j /. By the

quadratic expansion of any .z0; z1/ 2 L2 nL2 along .V;K/ we mean the sequence

.z0j ; z1j ; c0j ; c1j ; t.j /; t
0.j //0�j<1 (9])

where .z0j ; z1j ; c0j ; c1j ; t.j //0�j<1 is the � D 1 version of .0]/; moreover, by the
supplement of the quadratic expansion we mean the � D 1 version of .8]/, i.e.,

.�.0; j /; �.1; j /; p.u/; u.i//
0�j<1;1�u<b�;0�i<b�: (10])

Since the euclidean algorithm played a crucial role in it, the .V;K/-expansion

.zj ; ej ; pj ; Bj .�/; �.i/; �.j //�2Z;0�j��;0�i�� (��)

introduced in (4.1) is called the euclidean expansion of .z0; z1/ along .V;K/, and
.���/ is called the mixed euclidean expansion of .z0; z1/ along .V;K; T /. In Lemma
(IV) we shall give a stand alone description of the quadratic expansion. In Lemma
(V) we shall restate the � D 1 case of Lemma (I). In Part II, we shall compare the
quadratic expansion with the euclidean expansion.

Lemma (IV). Assuming � D 1, for the quadratic expansion .9]/ of .z0; z1/ along

.V;K/ with .z0j ; z1j / 2 L2 n L2 for 0 � j <1, we have the following.
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(IV.1) Recalling that for every j 2 N we have .z0j ; z1j / 2 L2 n L2, we can para-
phrase the characterizations .3]/–.5]/ of t.j / and �.t; j / by saying that
t.j / 2 f0; 1g with zt.j /j 62 L and with �.t.j /; j / D 1 with �.t 0.j /; j / 2
f0; 1;�1g satisfy (1)–(8) stated below.

(1) If 0 < W.z1j / � W.z0j / then t.j / D 1 and �.t 0.j /; j / D 1.
(2) If 0 < W.z0j / < W.z1j / then t.j / D 0 and �.t 0.j /; j / D 1.
(3) If W.z1j / < 0 > W.z0j / then t.j / D 1 and �.t 0.j /; j / D 1.
(4) If W.z1j / > 0 > W.z0j / then t.j / D 1 and �.t 0.j /; j / D �1.
(5) If W.z1j / < 0 < �W.z1j / � W.z0j / then t.j / D 1 and �.t 0.j /; j /
D �1.

(6) If W.z1j / < 0 < W.z0j / < �W.z1j / then t.j / D 0 and �.t 0.j /; j /
D �1.

(7) If W.z1j / ¤ 0 D W.z0j / then t.j / D 1 and �.t 0.j /; j / D 0.
(8) If W.z1j / D 0 ¤ W.z0j / then t.j / D 0 and �.t 0.j /; j / D 0.

(IV.2) Next the definitions .1]/ and .2]/ can be paraphrased by saying that for
0 � j <1 and 0 � t � 1 we have

zt;jC1 D

8

ˆ

ˆ

<

ˆ

ˆ

:

ztj with ctj D 1 if t D t.j /
ztj with ctj D 0 if t D t 0.j / and W.ztj / ¤ 0
ztj � ctj 2M.V / with ctj ¤ 0 if t D t 0.j / and W.ztj / D 0

where
ztj D ztj

z.t;j /
t.j /j

:

(IV.3) To paraphrase definition .6]/ of the flipping set ˆ], recalling that

ˆ] D the set of all j 2 NC such that t.j � 1/ ¤ t.j /.

and
b D card.ˆ]/C 1 2 NC [ f1g

we supplement the definition of p.u/
1�u<b�

by the convention

p.�1/ D p.0/ D 0

and we note that now the members ofˆ] [ f0g are labelled as

p.�1/ D p.0/ D 0 < p.1/ < p.2/ < : : : ifb D 1

and

p.�1/ D p.0/ D 0 < p.1/ < � � � < p.b � 1/ ifb 2 NC:
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(IV.4) To paraphrase definition .7]/ of the translation set ‰], recalling that

‰] D

8

ˆ

ˆ

<

ˆ

ˆ

:

the set of all j 2 N such that

for every t 2 f0; 1g with ztj ¤ 0 we have
ztj

zn.t;j /

t.j /j

2 V nM.V / for a (unique) n.t; j / 2 Z

and
b� D card.ˆ] \‰]/ 2 N [ f1g

we supplement the definition of u.i/
0�i<b� by the convention

u.�1/ D 0

and we note that now we have the integer sequences

u.�1/ D 0 < u.0/ < u.1/ < : : : if b� D1

and
u.�1/ D 0 < u.0/ < � � � < u.b� � 1/ if b� 2 N

while the members of .ˆ] \‰]/[ f0g are labelled as

p.u.�1// D 0 < p.u.0// < p.u.1// < : : : if b� D 1

and

p.u.�1// D 0 < p.u.0// < � � � < p.u.b� � 1// if b� 2 N:

Lemma (V). Assume � D 1. Let j 2 ˆ] and j < j � 2 NC [ f1g be such that
for all j 0 2 N with j < j 0 < j � we have j 0 62 ˆ], and if j � ¤ 1 then we have
j � 2 ˆ]. Then we have the following.

(V.1) For all j 0 2 N with j � j 0 < j � we have t.j 0/ D t.j / and zt.j 0/j 0 D zt.j /j .
If j � ¤1 then we have t.j �/ D t 0.j /.

(V.2) If j � D 1 then we have 1 < b < 1 and p.b � 1/ D j . If j � ¤ 1 then
for a unique integer u with 1 � u < uC 1 < b we have p.u/ D j < j � D
p.uC 1/.

(V.3) Assume j 62 ‰]. Then for 0 � i <b� we have j ¤ p.u.i//. Moreover, either:
zt 0.j /j D 0, or: zt 0./j ¤ 0 with zt 0.j /j =zn

t.j /j
62 V nM.V / for all n 2 Z. In

the “either” case, for t D t 0.j / and for all j 0 2 N with j � j 0 < j �, we
have ctj 0 D 0 D ztj 0 . In the “or” case, for t D t 0.j / and for all j 0 2 N with
j � j 0 < j �, we have

ctj 0 D 0 with �.t; j 0/ D �.t; j / and ztj D z.t;j /.j
0�j /

t.j /j
ztj 0 :
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(V.4) Assume j 2 ‰]. Then j D p.u.i// for a unique i with 0 � i <b�. Moreover,
if j � D 1 then for t D t 0.j /, whereas if j � ¤ 1 then for t D t.j �/, for all
j 0 2 N with j � j 0 < j � we have

ztj�
X

j��<j 0

ct�z.t;j /.��jC1/
t.j /j

D z.t;j /.j
0�j /

t.j /j
ztj 0 with �.t; j 0/ D �.t; j /

(i)
which may be viewed as a Taylor Expansion with Remainder discussed in
(9.5). If j � D1 then (i) gives rise to the equation

ztj D
X

j��<j�

ct�z.t;j /.��jC1/
t.j /j

(ii)

which may be thought of as an infinite Taylor Expansion discussed in (9.2),
with a suitable interpretation of the equality; see (9.3) for the case when V is
a DVR.

(V.5) Assuming j 2 ‰] and letting � D f� 2 N W j � � < j � with ct� ¤ 0g we
have the following. If j � D 1 and t D t 0.j �/ then letting �1 < � � � < �w or
�1 < �2 < : : : be the finitely many or infinitely many values of � 2 � and
putting �0 D j � 1 we have

n.t; �v C 1/ D �vC1 � �v

for 0 � v < w or 0 � v < 1 respectively. If j � ¤ 1 and t D t.j �/ then
letting �1 < � � � < �w be the values of � 2 � and putting �0 D j � 1 we have

n.t; �v C 1/ D �vC1 � �v

for 0 � v < w.

Note on inversion and invariance (VI). The three Inversion Theorems of Sects. (3.7)
and (3.9), the two Invariance Theorems of Sect. 4, and the above quadratic trans-
formation Lemmas (I)–(V) of this section are refinements of the results of my
papers [2, 4]. More about all this in Part II.

6 Dicritical Divisors

The concept of dicritical divisors arose in the topological study of a map C
2 ! C

given by a polynomial f 2 kŒX; Y � n k when k is the field of complex num-
bers. The term dicritical divisor seems to have been introduced by Mattei and
Moussu [27], and was then used by Artal-Bartolo [16], Eisenbud–Neumann [21],
Fourrier [22], Le–Weber [26], Neumann [29], Rudolph [31], and others. On the
other hand, Pierrette Cassou-Noguès [18, 19] and Neumann–Norbury [30] use the
alternative term horizontal divisors.
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In Definition (6.1) we introduce the algebraic incarnation of dicritical divisors.
In Note (6.2) we pay a heuristic visit to the original topological version.

The dicritical divisors may be viewed as a nonempty finite set of univariate poly-
nomials strategically (and quite algebraically) located inside the belly of a randomly
chosen bivariate polynomial. It is certainly amazing that, until 1980, no endoscopic
examination of bivariate polynomial bellies (Daffine plane curve bellies) revealed
their existence. We have stressed “and quite algebraically” to indicate that in our
treatment we do not use any topology or analysis which, under the pretext of geo-
metric viewpoint, only muddies the water. Of course, it may be admitted that one
person’s clarity can be another person’s muddying of waters and vice versa. Posi-
tively speaking, muddying may amount to stirring!!

In Note (6.6) I shall introduce the dicritical divisor theory of local rings and
compare it to the analogous theory of quasirational and nonquasirational surface
singularities coming out of my papers [2, 8].

Preamble for (6.1)–(6.4). Let us consider the bivariate polynomial ringB D kŒX; Y �
over a field k and let L D k.X; Y / D QF.B/ where QF.B/ denotes the quotient
field of B . Given any

f D f .X; Y / 2 B n k
of (total) degree N , by Bf we denote the localization of B at the multiplicative
set kŒf ��, and we note that then Bf is the affine domain k.f /ŒX; Y � over the field
k.f / with QF.Bf / D k.X; Y / D L and we have trdegk.f /L D 1. Now a local-
ization of a UFD is a UFD, and irreducibles in the localization are essentially the
same as irreducibles in the original UFD except that the localization has more units.
Consequently Bf is a one-dimensional UFD and hence it is a DD as well as a PID.
It follows that Bf is the affine coordinate ring of an irreducible nonsingular affine
plane curve over k.f /.

Note thatD.L=k/ is the set of all valuation rings V with QF.V / D L and k � V
such that trdegkH.V / D 1 where HV W V ! H.V / D V=M.V / is the residue
class epimorphisms; moreover, every member ofD.L=k/ is a DVR, and I.B=k/ is
the set of all V 2 D.L=k/ with B 6� V . Also note that D.L=k.f // is the set of all
valuation rings V with QF.V / D L and k.f / � V ¤ L; moreover, every member
of D.L=k.f // is a DVR, and I.Bf =k.f // is the set of all V 2 D.L=k.f // with
Bf 6� V .

Definition (6.1). For every V 2 D.L=k.f // we put

deg.V / D degf V D ŒH.V / W k.f /� 2 NC

and we call this the f -degree of V , or briefly the degree of V . Moreover, for every
V 2 I.Bf =k.f // we put

ind.V / D indf V D �min.ordVX; ordV Y / 2 NC
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and we call this the f -index of V , or briefly the index of V . Finally we put

I.B=k; f / D
(

the set of all V 2 I.B=k/ at which

f is residually transcendental over k

and we observe that

I.B=k; f / D I.Bf =k.f // D a nonempty finite set. (
)

Now labelling the distinct members of I.B=k; f / as V1; : : : ; Vm, we call them the
dicritical divisors of f (inB). In Part II we shall show that by the “sigma-eeye-feye”
formula from extension theory of DVRs we have

X

1�i�m
ind.Vi /deg.Vi / D N (�)

and, if k is algebraically closed and is of characteristic zero, then for 1 � i � m
8

ˆ

ˆ

<

ˆ

ˆ

:

H.Vi / D HVi
.k.ti // for some ti 2 Vi so that HVi

.f / D HVi
.Pi .ti //

where Pi .Z/ 2 kŒZ� n k is a univariate polynomial

whose Z-degree equals deg.Vi/

(��)

In the proof we shall use Newton’s fractional power series expansion. In Part II we
shall also show that the characteristic zero hypothesis can be removed by replacing
Newton expansion by Hamburger-Noether expansion. Note that the integers m and
deg.V1/; : : : ; deg.Vm/ depend only on f as a element of the ring B and not on
the particular generatorsX; Y of that ring, but the integers ind.V1/; : : : ; ind.Vm/ do
depend on X; Y , as will be shown in Example (6.5).

Note (6.2). Momentarily assuming k to be the complex number field C, the dicriti-
cal divisors may be “heuristically explained” thus. The polynomial map C

2 ! C
1

which is given by .a; b/ 7! f .a; b/ can be extended to a rational map P 2 ! P 1

of the complex projective plane to the complex projective line. But as a “rational
map” it may have points of indeterminacy. We get rid of these by “blowing up” P 2

to get a compact complex nonsingular surface W on which the map f extends to
a well defined map � W W ! P 1. Just as P 2 is obtained by adding one projec-
tive line (called the line at infinity) to C

2, the surface W is obtained by adding a
finite number of projective lines P 11 ; : : : ; P

1
n to C

2. Consideration of connectivity
tells us that, depending on the particular line P 1i , the restriction of the map � to P 1i
maps it either onto the entire target line P 1 or to a single point of it, i.e., it is either
surjective or constant. Those P 1i for which it is surjective are called dicritical divi-
sors. By suitably relabelling, we may assume that P 11 ; : : : ; P

1
m are dicritical while

P 1mC1; : : : ; P 1n are not. It can be shown that m is positive. Moreover, it can also
be shown that by deleting a suitable point from a dicritical P 1i and also deleting a
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suitable point from the target P 1, the resulting map C
1
i ! C

1 is given by a univari-
ate polynomial Pi .Z/ of some degree di ; note that di is the degree of the ramified
covering P 1i ! P 1. By rotating the axes, i.e., by making a homogeneous linear
transformation, we may assume that f is monic of degree N in Y . It turns out
that then

X

1�i�m
eidi D N

where the positive integer ei is the ramification index coming out of the Dedekind
Domain theory which is the same thing as the Riemann Surface theory.

As a side remark recall that f is a field generator means k.f; g/ D k.X; Y / for
some rational function g 2 k.X; Y /; it turns out that if the polynomial f is a field
generator then the complementary generator g can be chosen to be a polynomial iff
di D 1 for some dicritical P 1i . Without assuming f to be a field generator, how do
we show that the dicritical divisors are independent of the particular blow upW and
how do we algebracize them?

To consider the independence, let � W W ! P 1 be any other blow up, and label

the projective lines in W n C
2 as P

1

1; : : : ; P
1

m; P
1

mC1; : : : ; P
1

n so that the first m
are dicritical while the remaining ones are not. It can be shown that there exists a
blow upe� W eW ! P 1 together with maps � W eW ! W and � W eW ! W such that
� � D e� D � � . Label the projective lines in eW nC2 as eP 11; : : : ;eP

1

em
;eP 1
emC1; : : : ;

eP 1
en

so that the first em are dicritical while the remaining ones are not. It can be shown
that em D m D m and after suitable labelling, for 1 � i � m, we have �.bP 1i / D P 1i
and �.bP 1i / D P

1

i with induced bijections eP 1i ! P 1i and eP 1i ! P
1

i .
Now let us proceed to the algebraization which will actually reprove the indepen-

dence. Recall that: for any finitely generated field extension L of a field K we have
putD.L=K/ D the set of all prime divisors of L=K , i.e., the set of all DVRs V with
quotient field QF.V / D L such that K � V and trdegKH.V / D .trdegKL/ � 1
whereH.V / D V=M.V / D the residue field of V ; for any affine domain A overK
with QF.A/ D Lwe have put I.A=K/ D the set of all infinity divisors ofA=K , i.e.,
the set of all V 2 D.L=K/ such that A 6� V . Henceforth, we consider the bivariate
polynomial ring B D kŒX; Y � over a field k and we let QF.B/ D L D k.X; Y /

and we put I.B=k; f / D the set of all those members V of I.B=k/ for which f is
residually transcendental over k. Let Vi be the local ring of P 1i on W . Then clearly
Vi 2 I.B=k/ for 1 � i � n, and we have: Vi 2 I.B=k; f /, 1 � i � m.

It can also be shown that I.B=k/ D the totality of the local rings of the projec-
tive lines on various blow ups of P 2 which are in the complements of C

2. At any
rate, I.B=k; f / is a nonempty finite set which we have defined without any aid of
blowing ups, and this is our algebraic definition of dicritical divisors of f . Since
I.B=k; f / does correspond to the geometrically defined dicritical divisors on any
blow up of P 2 on which the rational map P 2 ! P 1 becomes well-defined, this
reproves the independence in a more succinct manner; the geometric proof sketched
in the paragraph before last was rather fuzzy at best. This is the beauty of the ap-
proach by “models” which are collections of local rings and so on; for details see
the Algebra and Geometry books [9, 12].
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Now the I.B=k; f / from surface theory coincides with the I.Bf =k.f // from
curve theory, where we have put Bf D k.f /ŒX; Y �. Note that Bf can be identified
with the affine coordinate ring of the generic curve f ] D 0 where we take an in-
determinate u over k and put f ] D f � u. Substituting f for u, this generic curve
acquires the confusing equation f D f . The confusion (like the Maya covering the
Brahma) can be removed by using two sets of variables giving f .X; Y / D f .X; Y /.
Indeed, experience shows that such f D f arguments provide exceptionally power-
ful tools! Although the curve f D 0 may be reducible and may even have multiple
components and may be full of singularities, but miraculously the curve f ] D 0 is
irreducible and nonsingular. The best way to see this is to realize Bf as the local-
ization of B at the multiplicative subset kŒf �� D the set of all nonzero elements in
kŒf �. Of course, the nonsingularity of f ] is only at finite distance, i.e., in general it
will have singularities at infinity.

In any case, I.Bf =k.f // is nothing but the set of all branches of f ] at infinity.
To deal with them we put F.X; Y / D f .X�1; Y / and F ].X; Y / D F.X; Y / � u.
Now

F.X; Y / D Y N C
X

1�j�N
Aj .X/Y

N�j where Aj .X/ 2 k.X/ � k..X//:

The branches of f ] at infinity are the branches of F ] which in turn are the irre-
ducible factors in k.u/..X//ŒY � written as

F ].X; Y / D
Y

1�i�m
F
]
i .X; Y / with F

]
i .X; Y / D Y Ni C

X

1�j�Ni

A
]
ij.X/Y

Ni�j

where A]ij.X/ 2 k.u/..X//. Yes, it is not an accident that this is the same m as the
number of dicritical divisors V1; : : : ; Vm. Indeed, after suitable labelling, there is a
natural isomorphism �i of Vi onto the DVR V �i given by the branch F ]i .

Basically, assuming k to be an algebraically closed field of characteristic zero,
we shall end up finding t�i in an algebraic closure of k.u/ such thatH.V �i / D k.t�i /
and u D Pi .t

�
i / where Pi .Z/ 2 kŒZ� is the univariate polynomial of degree di we

spoke of in the first paragraph of this Note. Upon letting ti D ��1.t�/ we would
then get ti 2 Vi such that H.Vi / D k.ti / and f D Pi .ti /.

To find t�i we use Newton’s polygonal method to solve the equationF ]i .X; Y /D 0
and thereby expandY as a fractional meromorphic serieseY inX , and also to expand
X as a fractional meromorphic series eX in Y . Now we use the inversion formula
given in [4] to compare these two expansions. Details in Part II.

Philosophy (6.3). The importance of polynomials derives from the fact that they
can be viewed as functions in two different ways. To the algebraist, a bivariate poly-
nomial

f D f .X; Y / D
X

iCj�N
aijX

iY j 2 kŒX; Y � n k with aij 2 k
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of (total) degreeN is a function N
2 ! k given by .i; j / 7! aij. To the analyst, who

prefers his field to be the complex number field C, it is a map C
2 ! C given by

.˛; ˇ/ 7! f .˛; ˇ/. Finally, to the geometer, who is an animal linking the analyst
with the algebraist, it defines a plane curve C W f .X; Y / D 0; if k is algebraically
closed then the points of C belong to k2; if k is not algebraically closed then it is
better to let the points of C live in spec.kŒX; Y �/.

Before he proceeds to “compactify” C
2 and C, the analyst thinks of the “fibers”

of the map C
2 ! C above various values c of f , and then he may perform catas-

trophic tortuous surgery, and so on.
In place of this, as algebraists (or algebraic-geometers) we take an indeterminate

u over k.X; Y / and think of the “generic curve” f ] D 0 where

f ] D f ].X; Y / D f .X; Y / � u 2 k.u/ŒX; Y �:

By “identifying” u with f , i.e., by the shocking (= absurd sounding but surprisingly
correct and extremely useful) equation f D f , we can take Bf to be the affine
coordinate ring of f ]. As noted above, Bf is a PID and hence f ] is an irreducible
nonsingular affine plane curve. Instead of saying that we can takeBf to be the affine
coordinate ring of f ], let us be more pedantic and set up an isomorphism between
the two. Now the affine coordinate ring B]

f
of f ] is given by

Hf W B] D k.u/ŒX; Y �! k.u/ŒX]; Y ]� D B]
f

where Hf is a k.u/-epimorphism which sends .X; Y / to .X]; Y ]/ and for whose
kernel we have

ker.Hf / D f ]B]:
Taking indeterminates .X; Y / over k.X; Y /, we view Bf as an affine coordinate
ring by considering the k.f /-epimorphism

Hf W Bf D k.f /ŒX; Y �! k.f /ŒX; Y � D Bf

which sends .X; Y / to .X; Y / and for whose kernel we have

ker.Hf / D .f .X; Y / � f .X; Y //Bf :

Also we have an obvious k-isomorphism

bHf W B] D k.u/ŒX; Y �! k.f /ŒX; Y � D Bf

which sends .u; X; Y / to .f;X; Y /. Now the said isomorphism

eHf .D restriction of H ]

f
/ W Bf ! B

]

f
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is the unique isomorphism such that eHfHf
bHf D Hf , i.e., such that the obvious

rectangle

Bf D k.f /ŒX; Y �
eHf .Drestriction ofH]

f
/

���������������! B
]

f
D k.u/ŒX]; Y ]�

Hf

x

?

?
Hf

x

?

?

Bf D k.f /ŒX; Y �
bHf ���������������� B] D k.u/ŒX; Y �:

commutes. Moreover, the said isomorphism extends to an isomorphism

H
]

f
W L D QF.Bf / D k.X; Y /! k.u/.X]; Y ]/ D QF.B]

f
/ D L]

f

of the function fields.
To distinguish between Bf =k.f / (resp: L=k.f /) and B

]

f
=k.u/ (resp:

L
]

f
=k.u/) we may call them the affine coordinate ring (resp: function field) of

the intrinsic generic curve and the extrinsic generic curve, respectively.
The affine coordinate ring Bf;k of f is given by the k-epimorphism

Hf;k W B D kŒX; Y �! Bf;k D kŒx; y� D Bf;k � k.x; y/ D Lf;k
which sends .X; Y / to .x; y/ and for whose kernel we have

ker.Hf;k/ D fB

where Lf;k is the total quotient ring of Bf;k , which means the quotient field if f is
irreducible (in B).

Assuming f to be irreducible, I.Bf;k=k/ is a nonempty finite subset of
D.Lf;k=k/ which is a set of DVRs; for every V 2 D.Lf;k=k/ we put

degf;k.V / D ŒH.V / W k� 2 NC

and we call this is the .f; k/-degree of V ; for every V 2 I.Bf;k=k/ we put

indf;kV D �min.ordV x; ordV y/ 2 NC

and we call this the .f; k/-index of V .
Note that, without assuming f to be irreducible, for every V 2 D.L=k.f /, upon

letting V ] D H ]

f
.V /, we have

V ] 2 D.L]
f
=k.u// with deg.V / D deg.f ];k.u// V

]
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and if V 2 I.Bf =k.f // then we have

V ] 2 I.B]
f
=k.u// with ind.V / D ind.f ];k.u//V

]:

Remark on infinity (6.4). Continuing the discussion of (6.3), without assuming f
to be irreducible, to take care of points at infinity, we introduce two different incar-
nations Pf D Pf . PX; PY / and Rf D Rf . RX; RY / of f thus.

We write

f .X; Y / D
X

0�l�N
fl.X; Y / with fl.X; Y / D

X

iCjDl
aijX

iY j

where fl is either zero or is homogeneous of degree l . We call fN D fN .X; Y / the
degree form of f which we denote by defo.f / or f C. Now we let

. PX; PY / D .1=X; Y=X/ and PB D kŒ PX; PY �
with

Pf . PX; PY / D PXNf .1= PX; PY = PX/ D
X

0�l�N
PXN�lfl.1; PY / 2 kŒ PX; PY �

and
. RX; RY / D .X=Y; 1=Y / and RB D kŒ RX; RY �

with

Rf . RX; RY / D PY Nf . PX= PY ; 1= PY / D
X

0�l�N
PY N�lfl. PX; 1/ 2 kŒ RX; RY �

and we note that Pf and Rf are polynomials of degree N .
Let L1 consist of X together with all irreducible homogeneous polynomials

in kŒX; Y � n k which are monic in Y . We call L1 the line at infinity (over k). If
Q 2 L1 n fXg is of degree 1 then Q D Y � ˇX where ˇ 2 k and with Q we
associate the triple .1; ˇ; 0/ 2 k3 by putting Q.1; ˇ; 0/ D Q. With X associate
the triple .0; 1; 0/ by putting Q.0; 1; 0/ D X ; note that Q.1; 0; 0/ D Y . Thinking
of the usual projective line (over k) as consisting of all triples .˛; ˇ; 0/ 2 k3 such
that if ˛ ¤ 0 then ˛ D 1 and if ˛ D 0 then ˇ D 1, the mapping which sends
.˛; ˇ; 0/ to Q.˛; ˇ; 0/ gives a bijection of the said line onto the set of degree 1
points of L1. For any Q 2 L1, we let e.f;Q/ be the largest nonnegative integer
such thatQe.f;Q/ divides f C inB; we call e.f;Q/ the exponent ofQ in f . Clearly
fQ 2 L1 W e.f;Q/ > 0g is a nonempty finite set and labelling its distinct members
which are different from X as fQ1; : : : ;Qpg and letting Q0 D X we have

f C D 0
Y

0�i�p
Q
ei

i with ei D e.f;Qi /
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and hence, as a case of Bézout’s theorem, we get the obvious equation

X

0�i�p
eidi D N with di D deg.Qi /

which says that f and L1 meet in N points counted properly.
Recall that for any finite number of elements x1; : : : ; xr in an overfield of k we

have defined

W.kI x1; : : : ; xr / D
[

1�j�r with xj¤0
V.kŒx1=xj ; : : : ; xr=xj �/

and for any subset J of a domain S let us put

V.S; J / D fR 2 V.S/ W JR ¤ Rg:

Also recall that any V 2 D.L=k/ dominates a unique member of W.kI x1; : : : ; xr /
which is called the center of V on W.kI x1; : : : ; xr /.

We define the projective plane and the projective line over k by putting

P2k DW.kIX; Y; 1/ with P1k DW.kIX; 1/

and we define the affine plane and the affine line over k by putting

A2k D V.B/ with A1k D V.kŒX�/

and we define the projective point and the affine point over k by putting

P0k D A0k D fkg

and we note that then
P2k D V.B/ [V. PB/ [V. RB/

and by putting

PA1k D V. PB; . PX PB// with RA0k D V. RB; . RX; RY / RB/

we have the disjoint unions

P2k D A2k
a PA1k

a RA0k with P1k D A1k
a

A0k :

Informally speaking, RA0
k

is the set consisting only of the local ring of the origin
in the . RX; RY /-plane, and so we may identify RA0

k
with A0

k
. Again informally speak-

ing, PA1
k

is the line PX D 0 in the plane V. PB/; formally speaking, to identify PA1
k

with the X -line A1
k
D V.kŒX�/, considering the k-epimorphism PB ! kŒX� given
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by . PX; PY / 7! .0;X/, and remembering the commutativity of epimorphism and lo-
calization, we note that R 7! R=. PXR/ gives a bijection PA1

k
! A1

k
. Thus PB is the

preferred chart to study the line at infinity in P2
k

, i.e.,

P2k nA2k D PA1k
a RA0k :

To match this line at infinity with L1, first we define the local ring R.L1/ of L1
by putting

R.L1/ D PB PX PB
and noting that this is the unique one-dimensional member of PA1

k
; it can also be

characterized as the DVR R1 of L=k for which

ordR1
g D � deg.g/ for all g 2 B:

Next we define the local ring R.Q/ of Q 2 L1 by putting

R.Q/ D
8

<

:

RB. RX; RY / RB if Q D X
PBM where M D . PX;Q=Xdeg.Q// PB if Q ¤ X

and we note thatQ 7! R.Q/ gives bijections fXg ! RA0
k

and L1 n fXg ! PA1
k

. To
complete the picture, we define the local ringR.Q/ of anyQ 2 spec.B/ by putting

R.Q/ D BQ
so that Q 7! R.Q/ gives a bijection spec.B/! A2

k
. Thus,

Q 7! R.Q/ gives a bijection SP 2k ! P2k

where by definition

the spectral projective plane SP 2k D spec.B/
a

L1
a

fL1g:

Moreover, for any .˛; ˇ; 1/ 2 k3 we put

Q.˛; ˇ; 1/ D .X � ˛; Y � ˇ/B 2 spec.B/

and we note that then

.˛; ˇ; �/ 7! R.Q.˛; ˇ; �// gives a bijection UP 2k ! RP 2k
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where by definition

the usual projective plane UP 2k D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

the set of all .˛; ˇ; �/ 2 k3
such that: if � ¤ 0 then � D 1,

if � D 0 ¤ ˛ then ˛ D 1,

if � D 0 D ˛ then ˇ D 1,

and

the rational projective plane RP 2k D

8

ˆ

ˆ

<

ˆ

ˆ

:

the set of rational points of P2
k
;

i.e., 2-dimensional members of P2
k

which are residually rational over k.

To summarize, we have maps

UP 2
k

Q�����! SP 2
k

R�����! P2
k

with im.QR/ D RP 2k

where the first injective map is .˛; ˇ; �/ 7! Q.˛; ˇ; �/ and the second bijective map
is Q 7! R.Q/.

Let us observe that I.B=k; f / � I.B=k/ n fR1g, and moreover the center of
any V 2 I.B=k/ n fR1g on P2

k
is the two dimension regular local domain R, with

quotient field L and ŒH.R/ W k� <1, described thus:
.�/ R D kŒx; y�J with x 2M.R/ nM.R/2 where

.x; y/ D .1=X; Y=X/ or .x; y/ D .1=Y;X=Y / according as X 62 V or x 2 V

and J is the maximal ideal in kŒx; y� generated by x and a nonconstant irreducible
monic polynomial 	.y/ 2 kŒy�. Furthermore, if V 2 I.B=k; f / then V is a dicriti-
cal divisor of f in R with f xN 2 R and we have

FN .1; y/ 2 	.y/kŒy� or FN .y; 1/ 2 	.y/kŒy� according as X 62 V or x 2 V .

By Lemma (II) of Sect. 5, it follows that if V 2 I.B=k; f / then the relative
algebraic closure k0 of k inH.V / is a finite algebraic extension of k andH.V / is a
simple transcendental extension of k0; we say that f is residually a polynomial over
B relative to V to mean that f 2 V and HV .f / 2 k0Œt � n k0 for some t 2 H.V /
with H.V / D k0.t/.

Further discussion in Part II.

Example (6.5). To indicate the dependence of N and m on f , let us write Nf and
mf for them. Then clearly mf and degf .V1/; : : : ; degf .Vm/ depend only on f as
an element of B and not on the particular generators X; Y of B . This can be para-
phrased by letting Autk.B/ be the group of all k-automorphisms of B and saying
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that for every � in Autk.B/ we have that: (i) m�.f / D mf ; (ii) �.Vi /1�i�m are the
dicritical divisors of �.f /; and (iii) deg�.f /.�.Vi // D degf .Vi / for 1 � i � m.
Let us call f a ring generator to mean that B D kŒf; g� for some g in B . Then it is
clear that f is a ring generator iff N�.f / D 1 for some � in Autk.B/. Therefore by
(6.1).�/, it follows that:

f is a ring generator, mf D 1 D degf .V1/) indf .V1/ D Nf .

Now to exhibit the dependence of indf .Vi / on X; Y , it suffices to take f to be the
ring generator Y � XN with any N 2 NC and noting that indf .V1/DNf DN
but ind�.f /.�.V1//DN�.f /D 1 where � in Autk.B/ is given by .X; Y / 7!
.X; Y CXN /.
Note (6.6). Let R be a two dimensional regular local domain. Now given any
z 2 QF.R/�, by a dicritical divisor of z in R we mean a prime divisor V of R such
that z is residually transcendental over R relative to V . By Lemma (II) of Sect. 5,
we know that the residue field K� D H.V / of any prime divisor V of R is of the
form K� D K 0.t/ where the finite algebraic field extension K 0 of K D HV .R/

is the relative algebraic closure of K in K� and the element t is not algebraic over
K 0. Assuming z 2 QF.R/ to be residually transcendental over R relative to V , after
writing

HV .z/ D P.t/

Q.t/

where P.t/;Q.t/ are nonzero members of K 0Œt � having no nonconstant common
factor in K 0Œt �, we define the relative polar degree rpdeg.V;t/z of z relative to .V; t/
to be the number of distinct nonconstant irreducible monic factors of Q.t/ in K 0Œt �.
Note that

max.degt P.t/; degt Q.t//

is a positive integer which is independent of t as long asK� D K 0.t/; we denote this
positive integer by resdeg.V;R/z and call it the residue degree of z relative to .V;R/.
We also define the polar degree pdegV z of z relative to V to be the minimum of
rpdeg.V;t/z taken over all t 2 K� with K� D K 0.t/. We say that z is residually
a polynomial over R relative to V to mean that pdegV z D 0, i.e., to mean that
HV .z/ 2 K 0Œt � nK 0 for some t 2 K� with K� D K 0.t/; note that for any such t we
have resdeg.V;R/z D degt P.t/; moreover if t 0 and P 0.t 0/ are any other such values
of t and P.t/ then P 0.t 0/ D aP.bt C c/ for some a; b; c in K 0 with a ¤ 0 ¤ b.
.
�/ As an analogue of (6.1).
/we note that any z 2 QF.R/� has at most a finite

number of dicritical divisors in R. Moreover, this number is zero iff either z 2 R
or 1=z 2 R. [To see this, first observe that if z has a dicritical divisor in R then
obviously z 62 R and 1=z 62 R. So henceforth assume that z 62 R and 1=z 62 R. Now
R is normal because it is regular, and hence by the bracketed proof on pages 75–76
of [3] we find an epimorphism h W RŒz�! H.R/ŒZ�with indeterminateZ such that
h.z/ D Z and h.x/ D HR.x/ for all x 2 R. It follows that M.R/RŒz� is a prime
ideal in RŒz� with .M.R/RŒz�/ \ R D M.R/. Let S be the localization of RŒz� at
M.R/RŒz� and let T be the integral closure of S in QF.R/. By Lemma (T54) on
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page 268 of [12] we have dim.S/ D 1 and hence by Theorem (4.10) on page 118 of
Nagata [28] we see that

T D V1 \ � � � \ Ve
where e is a positive integer and V1; : : : ; Ve are pairwise distinct DVRs with quotient
field QF.R/. Clearly V1; : : : ; Ve are exactly all the dicritical divisors of z in R.]

Given any F;G inR�, by a dicritical divisor of .F;G/ inR we mean a dicritical
divisor of F=G in R. The above terms relative polar degree rpdeg, residue degree
resdeg, polar degree pdeg, and residually a polynomial, are now applicable with z
replaced by .F;G/.

Geometrically speaking, we may visualizeR to be the local ring of a simple point
of an algebraic or arithmetical surface, and think of z as a rational function at that
simple point, and .F;G/ as the pencil of curves F D uG at that point. Let us call
the pencil special to mean thatG equals a unit times a power of a regular parameter,
i.e., GR D xmR for some x 2M.R/ nM.R/2 and m 2 N.

By (6.4)(�) we see that a bivariate polynomial f 2 B n k gives rise to a special
pencil in each relevant R, and hence the following Local Ring Proposition LRP
would imply the following Polynomial Ring Proposition PRP.

LRP says that if .F;G/ is any special pencil in a two dimensional regular local
ring R then F=G is residually a polynomial over R relative to any dicritical divisor
V of F=G in R.

PRP says that if f is any nonconstant member of a bivariate polynomial ring
B D kŒX; Y � then f is residually a polynomial over B relative to any dicritical
divisor of f in R.

Let A be a two-dimensional affine domain over an algebraically closed field and
let R be the localization of A at a maximal ideal. Now .
�/ says that if R is regular
then, for any rational function

z D F=G
with F ¤ 0 ¤ G in R, z has only a finite number of dicritical divisors in R;
morover, if the pencil .F;G/ is special then z is residually a polynomial over R
relative to every dicritical divisor of z in R. In view of the results of [2, 8], it can
be shown that all except a finite number of prime divisors V of R are residually
simple transcendental over R; moreover, if R is regular then the said finite number
is zero. This is the analogue from the theory of quasirational singularities we spoke
of in the preamble of this section. Thus a (possibly singular) point of a surface in the
quasirational theory is replaced by a rational function at a simple point of a surface
in the dicritical theory.

Needless to say that a simple point in the former theory is replaced by a special
pencil in the latter theory. Likewise, residually simple transcendental in the former
theory is replaced by residually a polynomial in the latter theory.

As a final philosophical comment, I wish to observe that the LHS I.B=k; f /
of the equation .6:1/.
/ represents points at infinity of the projective plane while
its RHS I.Bf ; =k.f // represents the branches at infinity of a generic plane curve.
Thus the LHS stands for the projective viewpoint while the RHS stands for the
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meromorphic viewpoint. Although, in [6, 7, 13–15], I have been beating the drums
of the meromorphic viewpoint, it has suddenly dawned on me that the difference
between these two methods is merely a matter of semantics!!

More discussion in Part II.

7 Field Generators

Consider the bivariate polynomial ring kŒX; Y � over a field k. A polynomial
f .X; Y / 2 kŒX; Y � is a field generator means for some g D g.X; Y / 2 k.X; Y /
we have k.X; Y / D k.f; g/; here the complementary generator g may or may
not be a polynomial. In his 1974 Purdue Ph.D. Thesis [25], Jan gave an example
of a field generator which has no complementary polynomial field generator. In
Theorem (7.6) I shall give a criterion for the existence of a complementary poly-
nomial field generator. Recently, Pierrette Cassou-Noguès [18, 19] ascribed this
criterion to Russell [32, 33], and she used it to revisit Jan’s example. However, I
shall give a short, almost obvious, proof of (7.6) which is completely independent
of the rest of this paper. The criterion (7.6) can be paraphrased by saying that a field
generator f has a complementary polynomial field generator iff f has a dicritical
divisor of degree 1.

Note that if a polynomial f is a field generator then the generic curve f D u,
where u is an indeterminate, is a curve of genus zero having a rational place over
k.u/, and conversely. In Example (7.7), I shall discuss the circle to illustrate this
fact. It was conjectured by me and proved by my student Jan in his Thesis [25] that
a field generator has at most two points at infinity. Without assuming f to be a field
generator, in Part II I shall generalize this by giving a bound on the number of points
at infinity of f in terms of the genus of f D u.

Preamble for (7.1)–(7.5). Let L be a finitely generated field extension of a field K
with trdegKL D �. Let A be an affine domain over K with QF.A/ D L where
QF.A/ denotes the quotient field of A. Note thatD.L=K/ is the set of all valuation
rings V with QF.V / D L and K � V such that trdegKH.V / D � � 1 where

HV W V ! H.V / D V=M.V /

is the residue class epimorphisms and we are identifying H.K/ with K; moreover,
every member of D.L=K/ is a DVR, and I.A=K/ is the set of all V 2 D.L=K/
with A 6� V .

Lemma (7.1). Assume that L D K.x/ where x is transcendental overK . Let V be
the .1=x/-adic valuation, i.e., let V be the localization of KŒx� at the prime ideal
generated by 1=x. Then V 2 D.L=K/ with H.V / D K .

Proof. Obvious.
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Lemma (7.2). Assume that L D K.y/ where y is transcendental over K . Let V 2
D.L=K/ be such that H.V / D K . Then L D K.x/ for some x 2 L such that V
is the .1=x/-adic valuation. Moreover, if K is infinite and V2; : : : ; Vm are any finite
number of members of D.L=K/ n fV g, then x can be chosen so that we also have
x 62M.V2/ [ � � � [M.Vm/.
Proof. If V is the .1=y/-adic valuation then taking z D y we see that L D K.z/
and V is the .1=z/-adic valuation. If not then V must be the localization of KŒy� at
the prime ideal generated by y � a for some a 2 K , and taking z D 1=.y � a/ we
see that L D K.z/ and V is the .1=z/-adic valuation. Now without the “Moreover”
it suffices to take x D z. With the “Moreover” we clearly have z 2 V2 [ � � � [ Vm
and, since K is infinite, for all except a finite number of c 2 K we must have

zC c 62M.V2/[ � � � [M.Vm/
and it suffices to take x D zC c.

Lemma (7.3). Assume that L D K.x/ where x is transcendental over K . Let V
be the .1=x/-adic valuation and assume that V 2 I.A=K/. Let fV2; : : : ; Vmg be
the distinct elements of I.A=K/ n fV g, and note that for 2 � i � m we clearly
have KŒx� � Vi and Vi is the localization of KŒx� at the prime ideal generated
by an irreducible element xi in kŒx�. Now assume that A is a UFD. Then A is a
proper PID, and A is the localization of KŒx� at the multiplicative set consisting of
all monomials in x2; : : : ; xm. Moreover, if x 62 M.V2/ [ � � � [M.Vm/ then clearly
x is an irreducible element in A.

Proof. To see that A equals the said localization, note that A is normal because it is
a UFD, and hence A is the intersection of all the members of D.A=K/ n I.A=K/,
but this intersection clearly equals the said localization.

Lemma (7.4). Assume that � D 1 and L D K.x/ for some x 2 A. Then H.V / D
K for some V 2 I.A=K/.
Proof. Take V to be the .1=x/-adic valuation and apply (7.1).

Lemma (7.5). Assume that � D 1 and L D K.y/ for some y 2 L. Also assume
that, K is infinite, A is a UFD, and H.V / D K for some V 2 I.A=K/. Then A is
a proper PID and L D K.x/ for some irreducible x 2 A.

Proof. Take fV2; : : : ; Vmg D I.A=K/ n fV g and apply (7.2) and (7.3).

Preamble for (7.6). Consider the bivariate polynomial ringB D kŒX; Y � over a field
k and let L D k.X; Y / D QF.B/ D the quotient field of B . Given any

f D f .X; Y / 2 B n k;
by Bf we denote the localization of B at the multiplicative set kŒf ��, and we note
that then Bf is the affine domain k.f /ŒX; Y � over the field k.f / with QF.Bf / D
k.X; Y / D L and we have trdegk.f /L D 1. Note that a localization of a UFD is a
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UFD, and irreducibles in the localization are essentially the same as irreducibles in
the original UFD except that the localization has more units. Hence we get:

Theorem (7.6). In the above setup we have the following.

(1) If L D k.f; g/ for some g 2 B , then H.V / D k.f / for some V 2
I.Bf =k.f //.

(2) If L D k.f; l/ for some l 2 L and H.V / D k.f / for some V 2 I.Bf =k.f /,
then L D k.f; g/ for some g 2 B .

Proof. Taking .K;L;A/ D .k.f /; k.X; Y /; Bf /, (1) follows from (7.4). Likewise
(2) follows from (7.5) after noting that the irreducible x 2 Bf when multiplied
by a suitable b 2 kŒf �� produces an irreducible bx 2 B and we obviously have
k.f; bx/ D k.f; x/ D L.

Example (7.7). We illustrate the above theorem by showing that the circle is a field
generator over C but not over R. The underlying obvious fact behind this is that
f is a field generator of L D k.X; Y / iff the general curve f ] D f .X; Y / � u,
where u is an indeterminate, is of genus zero and has a rational place over k.u/,
i.e., a V 2 D.L

]

f
=k.u// which is residually rational over k.u/; here L]

f
is the

function field of f ], i.e., the quotient field of the residue class ring of k.u/ŒX; Y �
modulo the ideal generated by f ]. For the circle f D X2 C Y 2 � 1 with k D R, if
f ] had a rational place then we can find a nonzero triple .a.u/; b.u/; c.u// in kŒu�
such that

a.u/2 C b.u/2 D c.u/2 C uc.u/2:

Since the equation x2Cy2 D 0 has no solution in R other than .0; 0/, it follows that
if .a.u/; b.u// ¤ 0 then the LHS of the above equation is a nonzero polynomial of
even degree. But if c.u/ ¤ 0 then the RHS of the equation is a nonzero polynomial
of odd degree. Therefore, the circle is not a field generator over R. Over k D C it is
a field generator because k.f;X C iY / D k.X; Y /.

8 Preview of Part II

As said in the Introduction, Part II will include various topics from algebraic curve
theory such as the conductor and genus formulas of Dedekind and Noether, and the
automorphism theorems of Jung and Kulk. In Part II, I shall also relate all this to
the Jacobian problem which conjectures that if the Jacobian of n polynomials in n
variables over a characteristic zero field equals a nonzero constant then the variables
can be expressed as polynomials in the given polynomials; see [13–15]. As indicated
in the preamble of Sect. 4, in Part II, I shall revisit Newton’s polygonal method.
As said at the end of Sect. 5, in Part II, I shall say more about the Inversion and
Invariance Theorems and about quadratic transformations. As said in Sect. 6, in Part
II, I shall discuss Dicritical Divisors some more. Finally, as said in the beginning
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of Sect. 7, in Part II, I shall give a bound on the number of points at infinity of an
algebraic plane curve.

9 Epilogue

Let me close with a chatty survey of the paper which can also serve as an alternative
Introduction.

9.1 Trigonometry

In high-school we learn the expansion

sin x D x � x
3

3Š
C x5

5Š
� x

7

7Š
C � � � D x

X

0�i<1
aix

i

where ai D 0 or .�1/
i=2

.iC1/Š according as i is odd or even. The fact that in the expansion

of sin x there is no x2 term but there is an x3 term, may be codified by saying that
sin x has a gap of size 2, i.e., 2 is the smallest positive value of i for which ai ¤ 0.
Now

sin�1 x D x C x3

3Š
C

and so the inverse function has a gap of the same size 2.
It was around 1665 that Newton gave the above two expansions and Gregory

gave the expansion

tan�1 x D x � x
3

3
C x5

5
� x

7

7
C : : :

and from this it follows that

tanx D x C x3

3
C : : :

but the full expansion of tan x is rather complicated and was obtained by Bernoulli
only in the next century. At any rate the size of the gap in tanx as well as tan�1 x
is again 2. All these formulas can be found in Chrystal’s Algebra [20] published
in 1886 and Hobson’s Trigonometry [24] published in 1891. I was lucky to have
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studied these two excellent books towards the end of my high-school years at the
suggestion of my father. After hundred years, they are still being reprinted and I
highly recommend them to all students of mathematics.

Renaming the above type of gap as absolute gap, given any positive integer d , let
us define the d -gap to be the smallest value of i which is nondivisible by d and for
which ai ¤ 0. Then in all the above examples, the value of the d -gap is 2 for every
d > 2. As an example of a function with 3-gap 7, we can consider the power series

x C x4 C x7 C x8 C x9 C � � � D x.1C x3 C x6 C x7 C x8 C : : : /:

To illustrate yet another type of gap, consider the power series

x.1C x2 C x3 C �x5 C �2x6 C x7 C : : : /

where � is a transcendental number. This has a transcendentality gap of size 5, i.e.,
after factoring out x, the smallest power with transcendental coefficient is x5.

Formalizing all this, in (3.5) we were led to the definition of the .T; S/-gap v of
a nonzero meromorphic series

y.T / D T e
X

0�i<1
AiT

i with ordTy.T / D e and Ai 2 K with A0 ¤ 0

over a field K , where S is a subfield of the meromorphic series field K..T // and
v D minfi 2 N W AiT i 62 Sg. For the definitions of meromorphic series, ord, field,
etc., see pages 25–32 and 67–88 of [9], or pages 1–39 of [12]. In particular see the
first paragraph of Sect. 2 for the symbols N, NC, Z, and so on.

In the above examples we wrote x for T , and let e D 1. In the d -gap case we take
S D K..T d //, and in the transcendentality gap case we take S D k..T // where k
is an algebraically closed subfield ofK . In the absolute gap case we take S to be the
null ring f0g although technically speaking it is not a subfield.

Assuming e D 1, let z.T / 2 K..T // be the inverse of y.T /, i.e., ordT z
.T / D 1 with y.z.T // D T ; note that if y.T / D sin T then z.T / D sin�1 T , and
if y.T / D tan�1 T then z.T / D tan T . In (3.5)(IV)(7) we show that the .T; S/-gap
of z.T / equals the .T; S/-gap of y.T /. We prove this gap invariance by relating the
coefficients of y.T / and z.T /. Applying the said relating of coefficients to tan�1 x
we can recover the Bernoulli expansion of tan x.

Actually, in (3.5) we prove something which is more general than gap invari-
ance. Namely, for any z.T / 2 K..T // with ordT z.T / D 1, without assuming
y.z.T // D T but considering the composition x.T / D y.z.T //, by using the multi-
nomial theorem

.X1 C � � � CXr/n D
X nŠ

t1Š : : : tr Š
X
t1
1 : : : X

tr
r with r and n in N (1)
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where the summation is over all t D .t1; : : : ; tr / 2 N
r with t1 C � � � C tr D n,

we express the coefficients of x as polynomials in the coefficients of y and z. As a
consequence we show that the .T; S/-gaps v;w; � of x; y; z satisfy the relations

8

ˆ

ˆ

<

ˆ

ˆ

:

� � min.v;w/

v < w) � D v

w < v) � D w:

(2)

The r D 2 case of (1) is Newton’s Binomial Theorem for positive integer expo-
nents which he obtained around 1665. Soon after he generalized it to fractional
exponents which led him to his famous theorem on fractional meromorphic se-
ries expansion of algebraic functions. For Newton’s Theorem and the related result
called Hensel’s Lemma see pages 89–108 of [9].

In (3.6)(1) and (3.6)(2) we prove some properties of the .T; S/-gap by using the
Binomial Lemma (3.3). It should be stressed that in this usage the full force of (3.3)
has to be brought into play including the information about the relationship between
the initial coefficients of the various meromorphic series.

9.2 Taylor Expansion and Valuations

A power series

f .T / D
X

0�i<1
˛iT

i 2 KŒŒT �� with ˛i 2 K (1)

over a field K is a meromorphic series without negative degree terms, i.e., with
ordTf .T / � 0. Differentiating both sides i -times and then putting T D 0 we get

˛i D f .i/.0/

i Š
(2)

where f .i/.T / denotes the i -th T -derivative of f .T /. Formula (1) with the value of
˛i as in Formula (2), is called the Taylor expansion of f .T /. Sometimes it is called
the Maclaurin expansion. Maclaurin and Taylor were disciples of Newton. We can
use this to deduce the expansions

sinx D x � x
3

3Š
C x5

5Š
� and cosx D 1 � x

2

2Š
C x4

4Š
�

from the identities

d sinx

dx
D cos x with

d cosx

dx
D � sinx and sin 0 D 0 with cos 0 D 1:
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The definitions of sin x and cosx give the last two identities while the first two
follow from the equation sin2 x C cos2 x D 1 by implicit differentiation.

For further commentary on Taylor Expansion see pages 104–105 of [9]. There,
and on pages 39–43 of [12], you will also find the definition of a (real) discrete
valuation of a field L as a surjective (= onto) map W W L! Z [ f1g such that for
all u; u0 in L we have W.uu0/ D W.u/CW.u0/ and

W.uC u0/ � min.W.u/;W.u0// (1)

and for any u in L we have: W.u/ D 1 , u D 0. Replacing Z by any ordered
abelian group and deleting the adjective “surjective” we get the definition of a (gen-
eral) valuation. Note that

(

W.u/ < W.u0/) W.uC u0/ D W.u/
W.u0/ < W.u/) W.uC u0/ D W.u0/ (2)

Writing v;w; � for W.u/;W.u0/;W.u C u0/ and then comparing (1) and (2) with
(9.1)(2) we observe an analogy between valuations under sums and gaps under com-
positions. See pages 65–70 of [9] for the fact that, in case G is subgroup of R, (1)
and (2) may be reformulated by saying that sometimes the usual triangle inequality
can be replaced by a stronger inequality which requires all triangles to be isosceles.

For any W we put GW D W.K�/ and RW D fu 2 K W W.u/ � 0g and call
these the value group and the valuation ring ofW . NowRW is a ring with the unique
maximal ideal M.RW / D fu 2 K W W.u/ > 0g. Thus RW is a quasilocal ring to
which the second paragraph of Sect. 2 is applicable. More generally, by a valuation
ring of a field L we mean the valuation ring of some valuation of L. Finally, by a
valuation ring we mean a valuation ring of some field. It can be shown that a ring V
is a valuation ring iff V is domain such that: x ¤ 0 ¤ y in V ) either x=y 2 V or
y=x 2 V .

This would be a good time to read the rest of Sect. 2. An ambitious reader may
also gradually look up the material on pages 43–201 of [12].

9.3 Discrete Valuation Rings or DVRs

As a supplement to the reading of Sect. 2, let us add some details about DVRs =
discrete valuation rings.

We defined a DVR to be a one-dimensional regular local domain. If V is any
DVR then u 7! ordV u gives a discrete valuation of the field QF.V / whose valuation
ring coincide with V . Conversely, the valuation ring RW of any discrete valuation
W of a field L is a DVR and for all u 2 L we have ordRW

u D W.u/. As another
characterization of a DVR we note that a domain V is a DVR iff V is a PID such
that V has exactly a nonzero prime ideal P and P 0; P 1; P 2; P 3; : : : are exactly
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all the distinct nonzero ideals in V . As yet another characterization of a DVR we
note that a domain V is a DVR iff V is a DD with exactly one nonzero prime ideal,
where DD = Dedekind Domain = a normal noetherian domain of dimension at most
one. Here noetherian ring means a ring in which every ideal is finitely generated.
Normal domain means a domain which is integrally closed in its quotient field, i.e.,
every element of its quotient field which is integral over it (i.e., satisfies a monic
polynomial equation over the domain) over the domain belongs to the domain. We
note that the valuation ring of any valuation is normal.

Recall that a multiplicative set in a domain E is subset M of E� with 1 2 M
such that the product of any two elements in M belongs to M , and the localization
EM of E at M is defined by putting EM D fu=v W u 2 E and v 2 M g; note
that EM is a subdomain of QF.E/, and if E is noetherian (resp: UFD) then EM is
noetherian (resp: UFD). In caseM D E nP for a prime ideal P inE , we may write
EP in place of EEnP g; note that EP is a quasilocal domain with M.EP / D PEP .

A typical example of a DVR V is provided by taking a UFD E and letting
V D EpE where p is a nonzero nonunit irreducible element in E . For instance,
take E D Z and let p D a prime number, or take E to be the polynomial
ring KŒX1; : : : ; Xn� in a finite number of variables over a field K and p D
p.X1; : : : ; Xn/ D a nonconstant irreducible polynomial, or take E to be the power
series ring KŒŒX1; : : : ; Xn�� in a finite number of variables over a field K and
p D p.X1; : : : ; Xn/ D a nonzero nonunit irreducible power series.

In the one variable power series case, KŒŒX�� is itself a DVR. In the one variable
polynomial case of E D KŒX�, for every a 2 K , the localization Ea D E.X�a/E is
a DVR. Moreover,

E1 D KŒ1=X�.1=X/KŒ1=X�
is also a DVR; this is the valuation ring of the discrete valuation W of K.X/ with
W.X/ D �1 which we call the .1=X/-adic valuation ofK.X/. IfK is algebraically
closed, then E1 together with .Ea/a2K are exactly all the distinct DVRs with
K � V and QF.V / D K.X/. In case K is not algebraically closed, we have to
replace .Ea/a2K by .EpE / with p varying over all nonconstant monic irreducible
polynomials in X overK .

Let V be a DVR with quotient field L, let HV W V ! H.V / be the residue class
epimorphism, let T be a uniformizing parameter of V , and let k be a coefficient set
of V . The passage from Q to R suggests the definition of the completion bV of V
together with the quotient field bL of bV thus. A sequence y D .yi /1�i<1 in L is
Cauchy means for every � 2 NC there exists N� 2 NC such that for all i > N� and
j > N� we have ordV .yi � yj / > �. This is equivalent to the Cauchy sequence
y0 D .y0i /1�i<1 if for every � 2 NC there existsM� 2 NC such that for all i > M�

we have ordV .yi � y0i / > �. Now bL may be defined to be the set of all equivalence
classes of Cauchy sequences. Moreover bV may be defined to be the set of those
members ofbL which contain a Cauchy sequence consisting of elements of V . Sums
and products in bL in an obvious manner. This makes bL an overfield of L and bV
an overdomain of V in such a manner that bL is the quotient field of bV . Now bV is
a DVR and for all x 2 L we have ordV x D ord

bV
x. Given a sequence z1; z2; : : :
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and an element z in bL we say that zi tend to z, in symbols zi ! z, to mean that
ord
bV
.z � zi / ! 1, and we put

P

1�i<1 zi D z to mean that
P

1�j�i zj ! z.

Taking any uniformizing parameter T and coefficient set k of bV , by mimicking
the idea of Taylor expansion, we can show that any z 2 bL� with ord

bV
z D e can

uniquely be expressed as
z D

X

e�i<1
aiT

i

where ai 2 k with ae ¤ 0; we may call this the Taylor expansion of z in k..T //;
we can extend the sum to the left of e by putting ai D 0 for all i < e; if z D 0 then
we can take ai D 0 for all i 2 Z. If k is a coefficient field then k..T // is the usual
power series ring.

Let us sketch a proof of the observation made in Sect. 2 to the effect that if A is
an affine domain over a field K such that the transcendence degree of the quotient
field L of A over K is 1, then I.A=K/ is a nonempty finite set where I.A=K/ is
defined to be the set of all DVRs V with QF.V / D L such that A 6� V . For any
x 2 A, let J.x/ be the set of all DVRs V with QF.V / D L such that x 62 V . If x is
algebraic overK then clearly J.x/ is empty. If x is transcendental overK then J.x/
is a nonempty finite set because nowL=K.x/ is a finite algebraic field extension and
the members of J.x/ are the valuation rings of the extensions to L of the .1=x/-adic
valuation ofK.x/. We can write A D KŒx1; : : : ; xn� where x1; : : : ; xn is a finite set
of elements in A at least one of which is transcendental over K . It only remains to
note that I.A=K/ D [1�i�nJ.xi /. Geometrically speaking,A represents the affine
coordinate ring of a curve C in A

n
K D the affine n-space over K , and I.A=K/

represents the set of branches of C at infinity. Recall that

I.A=K/ � D.L=K/ D
(

the set of all DVRs V

with K � V and QF.V / D L.

D.L=K/ represents the set of all branches of C , andD.L=K/n I.A=K/ represents
the set of all branches of C at finite distance.

To talk more about the branches of C in case n D 2 and K is algebraically
closed, let f .X; Y / be the bivariate irreducible polynomial in KŒX; Y � such that
f .x; y/ D 0 where .x; y/ D .x1; x2/. Note that f .X; Y / is unique up to multi-
plication by a nonzero element of K , and f .X; Y / D 0 is an affine equation C .
To use homogeneous coordinates, let F.X; Y;Z/ D Zdf .X=Z; Y=Z/ where d is
the degree of f . Now a point of C at finite distance is of the form .a; b; 1/ where
a; b in K with f .a; b/ D 0, and at infinity it is either of the form .a; 1; 0/ where
a 2 K with F.a; 1; 0/ D 0 or of the form .1; 0; 0/ with F.1; 0; 0/ D 0. Let Iy be
the set of all those members V of I.A=K/ for which ordV y � ordV x and let Ix
be the set of all the remaining members of I.A=K/. We define the center of any
V 2 D.L=K/ on C thus: if V 62 I.A=K/ then it is the point .a; b; 1/ of C such that
ordV .x � a/ > 0 < ordV .y � b/; if V 2 Iy then it is the point .a; 1; 0/ of C such
that ordV ..x=y/ � a/ > 0; if V 2 Ix then it is the point .1; 0; 0/ of C . It can be
shown that every point of C is the center of at least one and at most a finite number
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of branches of C . For V 2 D.L=K/ n I.A=K/ and its center .a; b; 1/ on C , taking
a uniformizing parameter T of bV , we get the Taylor expansions

x D z1.T / 2 KŒŒT �� and y D z0.T / 2 KŒŒT ��

with z1.0/ D a and z0.0/ D b. We call this a parametrization of C at the point
.a; b; 1/. It elucidates the material in the short paragraph of (3.1) just before the
definition of .V;K/-presequence.

9.4 Newton Expansion and Hamburger-Noether Expansion

Having elucidated a part of (3.1), let us elucidate parts of (3.2) and (3.7). So consider

x D z1.T / 2 K..T // and y D z0.T / 2 K..T //

with
ordT z1.T / D � 2 Z

� and ordT z0.T / D e 2 Z
�

where K is an algebraically closed field of characteristic zero. Following Newton,
we can expand y in terms of x by first taking an �-th root ı.T / of x, i.e.,

ı.T / 2 K..T // with ı.T /� D z1.T /

and then rewriting y in terms of it as

y D �.T / 2 K..T // with �.ı.T // D z0.T /

Let J be the T -support of �.T /. The charseq (= characteristic sequence) m.J; �/
is, roughly speaking, a record of the members of J where the GCD with � drops.
This is introduced in (3.2) and studied in (3.7). Here the main tool is the concept of
d -gap mentioned in (9.1).

We call �.T / the Newton expansion of z0 in terms of z1. In (3.1) we replicate
this without taking roots, and call it the .V;K/-preexpansion which we develop
further in (3.8), (3.9), and (4.1) where it culminates into the Valuation Theoretic
expansion, i.e., the .V;K/-expansion; here V is a certain DVR. The avoidance of
roots motivates items (6)–(8) of (3.1).

The Valuation Theoretic expansion is a generalized version of the so called
Hamburger-Noether expansion. The Mixed Valuation Theoretic expansion, i.e., the
.V;K; T /-expansion of (4.1) is a mixture of the Newton expansion and the Valuation
Theoretic expansion.

Let us now further describe the organization of these numerous expansions.
In (3.1) we introduce the .V;K/-protoexpansion as a simple sequence, and the

.V;K/-preexpansion as a double sequence consisting of several sequences each of
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which is a .V;K/-protoexpansion. In (3.1) we reorganize the .V;K/-preexpansion
as a simple sequence which we call the .V;K/-expansion. This reorganization is
something like reorganizing an m by n matrix .aij/ as the simple sequence

a11; : : : ; a1m; a21; : : : ; a2n; : : : ; am1; : : : ; amn

of length mn. Actually, the rows of the .V;K/-preexpansion may have different
lengths. Namely, the i -th row looks like zi0; : : : ; zi;l.i/C1 and has length l.i/ C 2.
We chop off its first term and then the first two terms of the chopped off version co-
incide with the last two terms of the previous row, i.e., .zi�1:l.i�1/; zi�1;l.i�1/C1/ D
.zi1; zi2/, and so we glue the two rows at the coincidental terms. Doing this for all
except the first row, the .V;K/-preexpansion converts into a single sequence which
we call the .V;K/-expansion.

In (3.8), (3.9), and (4.1), we inject some newtonian expansions into the .V;K/-
protoexpansion, the .V;K/-preexpansion, and the .V;K/-expansion, and then we
call the resulting object the mixed .V;K; T /-protoexpansion, the mixed .V;K; T /-
preexpansion, and the mixed .V;K; T /-expansion, respectively.

9.5 Taylor Series with Remainder

The Taylor formula (9.2)(1) may be truncated at some value of i , say i D j , and then

the last term ˛j need not equal f
.j /.0/
j Š

. The resulting formula is called Taylor series
with remainder. This is illustrated by the crucial formula (3.1)(8) which explains
the avoidance of roots mentioned in (9.4). Note that in (3.1), the quantity pl is not
defined until items (6)–(8), and in case of zlC1 ¤ 0, the summation in (8) terminates
at � D pl.el=jel j/, i.e., (8) is reduced to the equation

zl�1 D
0

@

X

.el�1=jel j/���pl .el=jel j/
A�l .�/z

�.jel j=el /

l

1

AC z�l with z�l D zpl

l
zlC1:

Also note that in (3.1) we have ej > 0 and pj > 0 for all j > 1 and hence, in case
of l ¤ 1, items (6)–(8) become more transparent by putting jel j D el . Finally note
that formula (4.1).4
/ is another incarnation of (3.1)(8).

To illustrate (3.1)(8) by an example, consider the DVR V D KŒŒT �� having uni-
formizing parameter T with coefficient field K , and let

zl D T 3 and zl�1 D T 6 C T 9Cu with 0 � u < 3.

Then

zl�1 D
(

z2
l
C z3

l
C z�

l
with z�

l
D zlC1 D 0 & pl D 1 if u D 0

z2
l
C z�

l
with z�

l
D z3

l
zlC1 & zlC1 D T u & .pl ; elC1/ D .3; 2/ if u ¤ 0.
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Let us now further comment on the formation of the mixed .V;K; T /-expansion
we talked about in (9.4) above. In (3.8) we consider the sequence

.z0; z1; : : : ; zl ; zlC1; zl /

of meromorphic series inK..T //, and we expand each term of the sequence relative
to the next term in the newtonian manner, i.e., as a .V;K; T /-expansion. For the last
two pairs, this is possible only if zlC1 ¤ 0. The flipping of zlC1 and zl in the end
of the sequence is meant for connecting it smoothly to the next sequence of the
presequence as achieved in (3.9). Think of two wagons of a railway train being
connected at the smooth round buffers. Thus in (3.8), we are constructing a perfect
wagon which in (3.9) gets joined to other wagon to form a whole train. In (4.1),
the whole train is thought of as a single very long wagon which is called the mixed
.V;K; T /-expansion.

9.6 Polynomials and Power Series

The field K.X1; : : : ; Xn/ of rational functions over s field K does not deter-
mine the polynomial ring KŒX1; : : : ; Xn� as can be seen by noting that clearly
we have KŒ1=X1; : : : ; 1=Xn� ¤ KŒX1; : : : ; Xn� but K.1=X1; : : : ; 1=Xn/ D
K.X1; : : : ; Xn/. However, the quotient field K..X1; : : : ; Xn// of the power se-
ries ringKŒŒX1; : : : ; Xn�� does determine the said ring. See (3.10).
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Partitions with Non-Repeating Odd Parts
and Q-Hypergeometric Identities

Krishnaswami Alladi�

Dedicated to the memory of my father Professor Alladi Ramakrishnan

Summary We obtain a series expansion for the product generating function of
partitions in which the odd parts do not repeat. This is done by studying the
2-modular Ferrers graphs of such partitions via Durfee squares. This provides a
unified approach to several fundamental identities in the theory of partitions and
q-series such as those of Sylvester, Lebesgue, Gauss, and Rogers-Fine, and provides
links with Göllnitz’s deep theorem.
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1 Introduction

One of the most fundamental identities in the theory of partitions and q-series is

1
X

nD0

qn.nC1/=2.1C bq/.1C bq2/:::.1C bqn/
.1 � q/.1� q2/:::.1 � qn/ D

1
Y

mD1

.1C bq2m/
.1 � q2m�1/ (1.1)

due to Lebesgue (see Andrews [9], Chap. 2). The right hand side of (1.1) is the
generating function of partitions in which the even parts do not repeat, where the
power of b keeps track of the number of even parts. The case b D �1 yields the
famous Gauss identity
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1
Y

mD1

�

1 � q2m�

.1 � q2m�1/ D
1
X

nD0
qn.nC1/=2 (1.2)

which can be compared to Euler’s celebrated Pentagonal Numbers Theorem.
In view of the many implications of Lebesgue’s identity including (1.2), parti-

tions with non-repeating even parts have evinced considerable interest. In contrast,
partitions with non-repeating odd parts have not attracted much attention, one reason
being that no series expansion similar to (1.1) is known for their product generating
function

1
Y

mD1

�

1C q2m�1�

.1 � q2m/ : (1.3)

Our purpose is to derive identity (2.10) below, which provides such a series expan-
sion for a two parameter refinement of the product in (1.3). We achieve this using
2-modular Ferrers graphs and their Durfee square classification (see Sect. 2). As a
consequence, the classical identities of Sylvester, Lebesgue, and Rogers-Fine, fall
out as special cases – see Sects. 3–6. Thus our approach shows that partitions with
non-repeating odd parts are worthy of a closer study. Recently there have been some
investigations of partitions with non-repeating odd parts: (a) Berkovich and Garvan
[10] considered these partitions and others in the course of obtaining extensions of
Dyson’s rank statistic for partitions; (b) Hirschhorn and Sellers [12] have established
congruences modulo powers of 3 satisfied by these partitions. But our approach and
results are different from those in [10] and [12].

2 The Series Expansion

The 2-modular Ferrers graph of a partition is one in which each part is represented
by a left justified row of twos, with a one at the end on the right if a part is odd.
Thus, the parts of the partition correspond to the row sums of the entries at each
node.

Partitions with non-repeating odd parts are especially convenient to study using
2-modular graphs because the ones will occur only in the corners of the graph.
Therefore, conjugation would also yield a partition with non-repeating odd parts,
and the number of odd parts would remain invariant under conjugation.

Our goal is to study partitions into non-repeating odd parts by keeping track of
the number of odd parts and the number of even parts. That is, we wish to obtain an
expansion for the product generating function

1
Y

mD1

�

1C bq2m�1�

.1 � cq2m/ ; (2.1)

where the powers of b and c keep track of the number of odd and even parts respec-
tively. In practice, it turns to be more convenient to keep track of the total number
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of parts by a parameter z, and the number of (distinct) odd parts by a parameter b,
thereby leading to the product generating function

1
Y

mD1

�

1C zbq2m�1
�

.1 � zq2m/
: (2.2)

This is equivalent to (2.1) because the number of even parts is the total number of
parts minus the number of odd parts. That is, the series expansion for (2.1) can be
obtained from the series for (2.2) by the substitutions z 7! c and b 7! bc�1.

We will use standard notation

.a/n D .aI q/n D
n�1
Y

jD0

�

1� aqj � ; (2.3)

for any complex number a and base q. Also

.a/1 D limn!1.a/n D
n�1
Y

jD0
.1 � aqj /; (2.4)

when jqj < 1. As in (2.3) and (2.4), when the base is q, we might write .a/n and
.a/1 without displaying q, but when the base is other than q, it will be displayed.

We will study partitions with non-repeating odd parts by considering the Durfee
squares (D the largest square of nodes starting from the top left hand corner of
the graph) in the 2-modular graphs. In any such graph � , there is a set of nodes
to the right of the Durfee square which we denote by �r , and a set of nodes below
the Durfee square which we denote by �b . Since we do not distinguish between
a graph and the partition it represents, we will refer to these components also as
partitions �r and �b .

With regard to Durfee squares of 2-modular graphs, there are two cases to
consider:

Case 1: The bottom right hand node has a 2
Case 2: The bottom right hand node has a 1

Generating function of Case 1: Consider partitions with non-repeating odd parts
whose 2-modular Ferrers graphs have a k � k Durfee square D. The sum of the
entries in the nodes is 2k2 and so we have the term

zkq2k
2

(2.5)

as the generating of D. The generating function of the partition �b is
��zbqI q2�

k

.zq2I q2/k
: (2.6)

In computing the generating function of �r , we do not need to keep track of the
number of parts. Thus the parameter z will be absent in this generating function.
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Since we are only after the number of odd parts in �r all of which are non-repeating,
we consider the conjugate partition ��r to get the generating function which is

.�bqI q2/k
.q2I q2/k : (2.7)

Thus, the generating function for partitions in Case 1 with a k � k Durfee square is
the product of the expressions in (2.5), (2.6), and (2.7):

zkq2k
2

:
.�zbqI q2/k
.zq2I q2/k :

.�bqI q2/k
.q2I q2/k : (2.8)

Generating function of Case 2: Here again we consider partitions whose 2-modular
graph have a k � k Durfee square. In this case, the sum of the nodes inside the
Durfee square is 2k2 � 1. The analysis of the partitions �b and �r is as above with
the only difference being that the largest parts of �b and ��r are � 2k� 2. Thus, the
generating function for such partitions in Case 2 would be

bzkq2k
2�1:

.�zbqI q2/k�1
.zq2I q2/k�1 :

.�bqI q2/k�1
.q2I q2/k�1 : (2.9)

The sum of the generating functions of Cases 1 and 2 is

zkq2k
2�1.�zbqI q2/k�1.�bqI q2/k�1
.zq2I q2/k.q2I q2/k

n

q.1C zbq2k�1/.1C bq2k�1/

Cb.1 � zq2k/.1� q2k/
o

:

D zkq2k
2�1.�zbqI q2/k�1.�bqI q2/k�1
.zq2I q2/k.q2I q2/k :.b C q/.1C zbq4k�1/:

The desired series expansion for the product in (2.2) is obtained by summing the
above expression over k and adding one, namely,

1C
1
X

kD1

zkq2k
2�1.�zbqI q2/k�1.�bqI q2/k�1.b C q/.1C zbq4k�1/

.zq2I q2/k.q2I q2/k

D .�zbqI q2/1
.zq2I q2/1 : (2.10)

From (2.10), the corresponding series expansion for the product in (2.1) is obtained
by means of the substitutions z 7! c and b 7! bc�1:

1C
1
X

kD1

ckq2k
2�1.�bqI q2/k�1.�bc�1qI q2/k�1.bc�1 C q/.1C bq4k�1/

.cq2I q2/k.q2I q2/k

D .�bqI q2/1
.cq2I q2/1 : (2.11)
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The left hand side of (2.10) can be expressed in a more elegant form as a sum starting
at k D 0:

1
X

kD0

zkq2k
2
.�zbqI q2/k.�bq�1I q2/k
.zq2I q2/k.q2I q2/k :

.1C zbq4k�1/

.1C zbq2k�1/
D .�zbqI q2/1

.zq2I q2/1 : (2.12)

The advantage in our identity (2.10) over Lebesgue’s identity (1.1) is that in
(2.10), there are two free parameters z and b, thereby providing more flexibility
in choosing specializations. In what follows, we will use these identities to derive
several fundamental identities in the theory of partitions and q-series.

3 Sylvester’s Identity

By analyzing partitions into distinct parts via Durfee squares, Sylvester [14] showed
combinatorially that

.�bq/1 D 1C
1
X

kD1

bkq.3k
2�k/=2.�bq/k�1.1C bq2k/

.q/k
: (3.1)

The case b D �1 (3.1) is Euler’s celebrated Pentagonal Numbers Theorem:

.q/1 D
1
X

kD�1
.�1/kq.3k2�k/=2:

In (2.11), note that

ck.�bc�1qI q2/k�1.bc�1Cq/ D .cCbq/.cCbq3/:::.cCbq2k�3/.bCcq/: (3.2)

So by letting c ! 0, the expression in (3.2) becomes

bkq.k�1/2 ;

yielding

.�bqI q2/1 D 1C
1
X

kD1

bkq3k
2�2k.�bqI q2/k�1.1C bq4k�1/

.q2I q2/k : (3.3)

Sylvester’s identity (3.1) follows from (3.3) by the substitutions b 7! bq, q2 7! q,
in that order. For partition interpretations of (3.1) and (3.3), see Sect. 7.
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4 Lebesgue’s Identity

In (2.10), replace z 7! q�1, b 7! bq2 to get

.�bq2I q2/1
.q2I q2/1 D 1C

1
X

kD1

q2k
2�k�1.�bq2I q2/k�1.�bq3I q2/k�1.bq2 C q/.1C bq4k/

.qIq2/k.q2I q2/k

D 1C
1
X

kD1

q2k
2�k.�bq/2k�1.1C bq4k/

.q/2k
: (4.1)

The series on the right in (4.1) is actually the series in Lebesgue’s identity (1.1). To
see this, we will add consecutive pairs of terms with odd (n D 2k � 1) and even
(n D 2k) subscripts in (1.1) to get (4.1). More precisely, observe that

1
X

nD0

qn.nC1/=2.�bq/n
.q/n

D 1C
1
X

kD1

(

q2k
2�k.�bq/2k�1
.q/2k�1

C q2k
2Ck.�bq/2k
.q/2k

)

D 1C
1
X

kD1

q2k
2�k.�bq/2k�1
.q/2k

n

.1 � q2k/C q2k.1C bq2k/
o

1C
1
X

kD1

q2k
2�k.�bq/2k�1.1C bq4k/

.q/2k
;

which is the right hand side of (4.1). This proves Lebesgue’s identity as a conse-
quence of (2.10).

This amalgamation of the terms with odd and even subscripts is also present in
the special case b D �1 in (4.1), which yields Gauss’ identity (1.2):

.q2I q2/1
.qI q2/1 D 1C

1
X

kD1
q2k

2�k.1C q2k/ D
1
X

kD�1
q2k

2�k D
1
X

nD0
qn.nC1/=2: (4.2)

5 Three Parameter Extension

Our combinatorial approach to (2.10) permits the introduction of one more param-
eter 	, which would keep track of the size of the largest part. In that case, 	 would
enter into the series (2.10), but we would lose the product representation on the right
in (2.10); the product would be replaced by a series which would be simpler than
the series on the left in (2.10). Actually, instead of keeping track of the largest part,
it is combinatorially more convenient to keep track of the number of columns by a
parameter w in the 2-modular graphs of the partitions with non-repeating odd parts.
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If the number of columns is k, the largest part is either 2k or 2k � 1. Thus we have
two cases:

Case E: Largest part is 2k

In this case, the three parameter generating function of partitions with non-
repeating odd parts is:

wkzq2k.�zbqI q2/k
.zq2I q2/k : (5.1)

Case O: Largest part is 2k � 1
In this case, the three parameter generating function is:

wkzbq2k�1.�zbqI q2/k�1
.zq2I q2/k�1 : (5.2)

The sum of the generating functions in (5.1) and (5.2) is:

wkzq2k�1.�zbqI q2/k�1
.zq2I q2/k

n

.q.1C zbq2k�1/C b.1 � zq2k/
o

D wkzq2k�1.�zbqI q2/k�1.b C q/
.zq2I q2/k : (5.3)

We sum the expression in (5.3) over k and add 1 to get

g.b; z;wI q/ D 1C
1
X

kD1

wkzq2k�1.�zbqI q2/k�1.b C q/
.zq2I q2/k : (5.4)

as the three parameter generating function of partitions with non-repeating odd parts
that replaces the product (2.2) and has an extra parameter w.

Next we try to get a series expansion for g.b; z;wI q/ that extends (2.10) by the
Durfee square analysis of 2-modular graphs of partitions with non-repeating odd
parts. We have the two cases as in section 2.

Case1: The bottom right node of the Durfee square has a 2.
Case2: The bottom right node of the Durfee square has a 1.

Generating function of Case 1: As before, consider partitions with non-repeating
odd parts whose 2-modular Ferrers graphs have a k � k Durfee square. The ar-
guments in Sect. 2 carry over with the extra parameter w, and we get the three
parameter generating function of such partitions to be

wkzkq2k
2

:
.�zbqI q2/k
.zq2I q2/k :

.�wbqI q2/k
.wq2I q2/k ; (5.5)

which generalizes (2.8).



176 K. Alladi

Generating function of Case 2: In this case, if we consider the relevant partitions
with a fixed k � k Durfee square, we get

bwkzkq2k
2�1

:
.�zbqI q2/k�1
.zq2I q2/k�1 :

.�wbqI q2/k�1
.wq2I q2/k�1 ; (5.6)

which extends (2.9).
We sum the expressions in (5.5) and (5.6) over k to get

wkzkq2k
2�1.�zbqI q2/k�1.�wbqI q2/k�1
.zq2I q2/k.wq2I q2/k

n

q.1C zbq2k�1/.1C wbq2k�1/

Cb.1 � zq2k/.1 � wq2k/
o

(5.7)

With the extra parameter w, the expression within f:::g in (5.7) simplifies as

.b C q/.1C wzbq4k�1/:

Finally, summing the expression in (5.7) over k and adding 1 we get

1C
1
X

kD1

wkzkq2k
2�1.�zbqI q2/k�1.�wbqI q2/k�1.b C q/.1C wzbq4k�1/

.zq2I q2/k.wq2I q2/k

D 1C
1
X

kD1

wkzq2k�1.�zbqI q2/k�1.b C q/
.zq2I q2/k : (5.8)

This is a three parameter extension of (2.10) with the product on the right in (2.10)
replaced by a series on the right in (5.8).

In the next section we show how (5.8) is connected to the Rogers-Fine identity.

6 The Rogers-Fine Identity

The Rogers-Fine identity in the form obtained by Fine [11] is

1
X

nD0

.˛q/n�
n

.ˇq/n
D
1
X

nD0

.˛q/n.˛�q=ˇ/nˇ
n�nqn

2
.1 � ˛�q2nC1/

.ˇq/n.�/nC1
: (6.1)

Fine [11] studied the function

F.˛; ˇ; � I q/ D
1
X

nD0

.˛q/n�
n

.ˇq/n
(6.2)
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in detail under various transformations and iterations, and obtained a number of
results involving this function, one of which was identity (6.1). Subsequently,
Andrews [8] gave a combinatorial proof of (6.1) by studying partitions in terms
of n � 2n Durfee rectangles. More recently, another proof of (6.1) has been given
in [15] using in the course Sylvester’s bijection connecting partitions into odd parts
with partitions into distinct parts. Identity (6.1) is a special case of Watson’s transfor-
mation formula for a terminating very well poised 8�7 as a multiple of a terminating
balanced 4�3. Recently, Rowell and Yee [13] have given a combinatorial proof of a
special case of a 4�3 from which the Rogers-Fine identity (6.1) follows.

In [5], we provided the simplest and the most direct derivation of the Rogers-Fine
identity by studying the following three parameter generating function of unre-
stricted partitions (this was first announced in [3] without proof):

f .a; b; cI q/ D
X



.1 � a/�d ./b�./c�./q�./; (6.3)

where the sum is over all partitions � , and where

�.�/ D the sum of the parts of�;

.�/ D the largest part of �;

�.�/ D the number of parts of �;

and

�d .�/ D the number of different parts of �:

It turns out that

f .a; b; cI q/ D 1C
1
X

nD1

.1 � a/.abq/n�1bcnqn
.bq/n

; (6.4)

by a straightforward analysis of the defining sum in (6.3). Our function f is related
to Fine’s function F by the equation

.1 � bq/
.1 � a/bcq

ff .a; b; cI q/ � 1g D F.ab; bq; cqI q/: (6.5)

as can be seen by comparing the series in (6.2) and (6.4), but it is f that has such a
natural partition interpretation. Under conjugation, the largest part and the number
of parts are interchanged, and the number of different parts is invariant. Thus from
the definition of f in (5.3), it follows that

f .a; b; cI q/ D f .a; c; bI q/; (6.6)
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although this symmetry is not seen in the series in (6.4). So in [3], we sought a
series representation for f that would render this symmetry explicit. An analysis of
the three parameter generating function of unrestricted partitions via Durfee squares
provided the desired expansion, namely,

1C
1
X

nD1

.1 � a/.abq/n�1bcnqn

.bq/n

D 1C
1
X

nD1

bncnqn
2
.1 � a/.abq/n�1.acq/n�1.1 � abcq2n/

.bq/n.cq/n
: (6.7)

Identity (6.7) is equivalent to the Rogers-Fine identity because the series on the right
in (6.1) and (6.7) are also related via the transformation (6.5). Identity (6.7) was first
stated in [2] without proof.

Although the function f defined in (6.3) is so natural and simple, it has not
attracted much attention, perhaps because its representation is only in the form of
a series as in (6.4) and not as a product. But if one of the parameters b or c is set
equal to 1, we do get a product. This special case is actually Cauchy’s identity (see
Andrews [6])

1
X

nD0

.a/nc
nqn

.q/n
D f .a; 1; cI q/ D f .a; c; 1I q/ D .acq/1

.cq/1
: (6.8)

Thus, choosing b D 1 in the series on the right in (6.7), we have

1C
1
X

kD1

ckqk
2
.a/k.acq/k�1.1 � acq2k/

.q/k.cq/k
D .acq/1

.cq/1
; (6.9)

which is the product form of the Rogers-Fine identity in this special case.
The three parameter identity (5.8) is equivalent to the Rogers-Fine identity. More

precisely, the substitutions

q 7! q2; b 7! z; c 7! w; and a 7! bq�1; (6.10)

convert (6.7) to (5.8). Although (5.8) and (6.7) are equivalent, there are crucial dif-
ferences in the combinatorics underlying them for two reasons: (a) In discussing
(5.8) combinatorially, we enumerated only the corners having a 1 in the 2-modular
graphs and not the corners having a 2 and (b) the last substitution a 7! bq�1 changes
the combinatorics because q is present in the substitution.

Just as (6.7) corresponds to (5.8), the product form (6.9) of the Rogers-Fine iden-
tity corresponds to (2.10).
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7 Partition Interpretations

The identities of Sylvester, Lebesgue, and Rogers-Fine have partition interpretation,
the first two in the form of weighted partition identities.

In [1], I showed that Sylvester’s identity (3.1) is equivalent to the following:

Theorem 1. Let D denote the set of partitions into distinct parts, and D3 the set
of partitions into parts differing by at least 3. Let �.�/; �.�/; and �d .�/ be as in
section 4. Also, for �� 2 D3; �� W h1Ch2C :::Chk , let �3.��/ denote the number
of strict inequalities hi � hiC1 > 3, for i D 1; 2; :::; k, where hkC1 D �1. Then we
have

X

2D;�./Dn
c�./ D

X

�2D3;�.
�/Dn

c�.
�/.1C c/�3.

�/:

I also studied the combinatorics underlying Theorem 1. This involved the study
of Ferrers graphs of partitions into distinct parts and the hooks of these graphs
which lead to partitions into parts differing by �3. By going from partitions into
distinct parts to partitions in D3 via hooks, we get a surjective map between the
sets D and D3, which yields Theorem 1 directly without recourse to Sylvester’s
identity (3.1). In [2], I showed that Theorem 1 has a three parameter refinement in
which we can have parameters a; b; c keep track on the number of parts in residue
classes 1; 2; 0.mod 3/, respectively. It was also noted in [2] that this three parame-
ter refinement of Theorem 1 is equivalent to the three parameter generalization and
refinement of Göllnitz’s (Big) partition theorem in Alladi-Andrews-Gordon [6].

Subsequently, I studied [4] partitions into distinct odd parts by representing these
partitions as 2-modular Ferrer’s graphs. By considering hooks in these graphs, we
get partitions into parts that differ by �6, with strict inequality when a part is
even, and with 2 not as a part. Interestingly, the correspondence via hooks in such
2-modular graphs yields a bijection and not a surjection1 as in the case of Theo-
rem 1. More specifically, we get the following elegant result [4]:

Theorem 2. The number of partitions � of an integer n into distinct odd parts is
equal to the number of partitions Q� of n into parts that differ by �6, where the
inequality is strict if a part is even, and 2 is not a part.

Refinement. This hook operation immediately yields the following refinement of
Theorem 2: The number of parts of � is equal to the number of parts of Q� , with
the convention that the even parts of Q� are counted twice. We now show that this
refinement of Theorem 2 is in fact the partition interpretation of (3.3).

To this end, we note the decomposition

1C bq4k�1 D .1C bq2k�1/ � bq2k�1.1 � q2k/: (7.1)

1 It is worthwhile to note that under dilations (in this case q 7! q2) and translations, the underlying
combinatorics can change and this is non-trivial; in going from Theorem 1 to Theorem 2, the
surjection changed to a bijection.
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Using the decomposition in (7.1), we rewrite (3.3) as

.�bqI q2/1 D
X

k�0

bkq3k
2�2k.�bqI q2/k
.q2I q2/k �

X

k�1

bkq3k
2�2kbq2k�1.�bqI q2/k�1

.q2I q2/k�1
D †1 �†2; respectively: (7.2)

In †1, the term 3k2 � 2k represents the minimal partition into parts that differ
by �6, namely 1C 7C 13C � � � C .6k � 5/. Represent this minimal partition as a
Ferrer’s graph. Then the term .q2I q2/k may be interpreted as the imbedding of pairs
of columns of length j into this graph for 1 � j � k, thereby yielding all partitions
into k distinct odd parts that differ by �6. Now in the graphs of such partitions, the
term .�bqI q2/k may be interpreted as imbedding at most one pair of columns of
length j; j � 1, for each j 2 Œ1; k�. Each imbedding of a pair of columns j; j � 1
creates an even part, and makes the gap >6. Also this is exactly how even parts are
produced in the graph. Thus, †1 is the generating function of partitions into parts
that differ by �6 with strict inequality if a part is even.

Regarding†2, we interpret .3k2 � 2k/C .2k � 1/ as the minimal partition with
2 as a part, and with distinct odd parts such that all parts differ by �6, namely
the minimal partition 2 C 9 C 15 C � � � C .6k � 3/ for k�2, and 2 for k D 1.
To such partitions, the term .q2I q2/k�1 imbeds pairs of columns of length j for
1 � j � .k � 1/ only and not for j D k. Thus the smallest part remains as 2, the
rest of the parts are odd, and all parts differ by �6. Finally the term .�qI q2/k�1
imbeds at most one pair of columns of lengths j; j � 1 for each j 2 Œ1; k� 1�. Each
imbedding creates an even part, and the inequality becomes>6. The smallest part 2
remains untouched. Thus†2 is the generating function of the same type of partitions
as those enumerated by †1 but with the extra condition that the smallest part is 2.
Hence the right hand side of (7.2) represents the generating function of partitions
into parts that differ by �6 with strict inequality if a part is even, and not having
2 as a part. When an even part is created by an imbedding, an extra factor b is
introduced, and so this even part is counted twice. By keeping track of the powers
of b on both sides of (7.2) and from the correspondence given above, we have shown
that the refinement stated immediately after Theorem 2 is the partition interpretation
of (3.3).

Actually, just as we noted a three parameter refinement of Theorem 1 in [2], we
have a three parameter refinement of Theorem 2 in [4].

With regard to Lebesgue’s identity (1.1), Gordon and I [7] gave a combinatorial
proof after showing that it has the following weighted partition interpretation:

Theorem 3. Let G denote the set of partitions with non-repeating even parts, and
let D be as in Theorem 1. For � 2 G, let �e.�/ denote the number of even parts
in � . For �� 2 D;�� D m1 C m2 C � � � C mk , let �1.��/ denote the number of
strict inequalitiesmi �miC1 > 1, where miC1 D 0. Then we have

X

2G;�./Dn
b�e./ D

X

�2D;�.�/Dn
b�1.

�/.1C b/�1.
�/:
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There are two reasons for including a discussion of Theorem 2 in this paper:
(a) Theorem 2 is the partition interpretation of (3.3) and (b) the 2-modular graph
approach to Theorem 2 in [4] is after all the special case of the main considera-
tion here. That is, in this paper we are considering 2-modular graphs of partitions in
which the odd parts do not repeat and separately keep track of the number of odd and
even parts using two parameters. If we set equal to 0 the parameter keeping track of
the number of even parts, we connect to Theorem 2. As noted in this section, the var-
ious special cases of (2.10) leading to the identities of Sylvester and Lebesgue, have
interesting weighted partition interpretations. Similarly, it would be worthwhile to
have a nice weighted partition interpretation of the more general identity (2.10).

Acknowledgments My father, Professor Alladi Ramakrishnan, was the greatest source of strength
for me. He encouraged me in every aspect of my academic and research career. I was inspired by
his passion for fundamental research and his grand scientific vision; indeed it was because of the
exposure I had by meeting the eminent scientists he brought to our family home Ekamra Nivas
in Madras, India, and those whom I met by being with him on his worldwide scientific tours that
I decided on a research career. The main idea for this paper came in summer 2007 while I was
visiting my parents in Madras. Hence, it is a privilege for me to dedicate this paper to his memory.

References

1. K. Alladi, “Partition identities involving gaps and weights”, Trans. Am. Math. Soc., 349 (1997),
5001–5019.

2. K. Alladi, “A combinatorial correspondence related to Göllnitz’s (Big) partition theorem and
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q-Catalan Identities

George E. Andrews

Dedicated to the memory of Professor Alladi Ramakrishnan

Summary q-Analogs of the Catalan number identities of Touchard, Jonah,
and Koshy are derived.
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1 Introduction

Alladi Ramakrishnan was a grand man. I mostly knew him in the last two decades
of his life. One always took away from conversation with him a sense of his joy in
living and his excitement over mathematics and physics.

In my visits with him in the winter of 2008 shortly before his death, he was en-
thralled with the implications of and extensions of Pascal’s triangle. He had prepared
an expository article titled: “Magic Lattice Imbedding Pascal Triangles.” I was a
very receptive audience. Now that Professor Alladi Ramakrishnan is gone, I propose
to remember him with some observations about the Catalan numbers:

Cn D 1

nC 1

 

2n

n

!

; (1.1)

a topic closely related to Pascal’s triangle. These famous integers are, by their
very definition, slight variations on the central binomial coefficients. In addi-
tion, Koshy [10] has just published a 422-page book titled “Catalan Numbers.”

Partially supported by National Science Foundation Grant DMS-0801184.

G.E. Andrews
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA
e-mail: andrews@math.psu.edu

K. Alladi et al. (eds.), The Legacy of Alladi Ramakrishnan
in the Mathematical Sciences, DOI 10.1007/978-1-4419-6263-8 10,
c� Springer Science+Business Media, LLC 2010

183

andrews@math.psu.edu


184 G.E. Andrews

Stanley [11–13] has devoted extensive attention to Catalan numbers and Gould [8]
has provided an extensive bibliography. These are just a few of the many works on
the Catalan numbers.

My interest in the Catalan numbers has arisen from looking at various q-analogs
(cf. [6]), that is, polynomials or rational functions in a variable q that reduce natu-
rally to the Catalan numbers when q D 1.

To provide the flavor of q-analogs, we recall Lagrange’s identity for the sum of
the squares of the binomial coefficients [10, p. 89]:

n
X

jD0

 

n

j

!2

D
 

2n

n

!

: (1.2)

Let us recall the Gaussian polynomials (a.k.a. q-binomial coefficients):

"

n

j

#

q

D
(

0; if j < 0 or j > n;
.qIq/n

.qIq/j .qIq/n�j
; 0 5 j 5 n;

(1.3)

where
.aI q/N D .1 � a/.1 � aq/ � � � .1 � aqN�1/: (1.4)

The q-analog of (1.2) is well known [2, p. 37, (33.10),m D n D h, k ! n � k]

n
X

jD0
qj

2

"

n

j

#2

q

D
"

2n

n

#

q

: (1.5)

While there are a number of q-analogs of the Catalan numbers (cf. [5]), we shall
be primarily interested in the following two:

First,

Cn.q/ D .1 � q/
.1� qnC1/

"

2n

n

#

q

: (1.6)

Clearly by l’Hôpital’s rule,
Cn.1/ D Cn:

(Actually Cn.q/ is a polynomial in q so that we may take q D 1 directly without
invoking l’Hôpital.) Cn.q/ was shown [4] to be related to partitions as follows:

The partition 5C 5C 4C 2C 1C 1 has Ferrers graph

� � � � �
� � � � �
� � � �
� �
�
�

and conjugate 6C 4C 3C 3C 2 (read columns instead of rows). The largest square
of nodes in a partition (in this case, a 3 � 3 square) is called the Durfee square.
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We say that a partition

œ1 C œ2 C � � � C œr .œi = œiC1/

with conjugate
œ01 C œ02 C � � � C œ0t .œ0i = œ0iC1/

is Catalan provided œi < œ0i for 1 � i � s, where s is the side of the Durfee square.
It was proved in [4, Corollary 1] thatCN .q/ is the generating function for Catalan

partitions with largest part < N and number of parts 5 N .
For example, C3.q/ D 1Cq2Cq3Cq4Cq6 and the partitions being generated

are 1C 1, 1C 1C 1, 2C 1C 1, and 2C 2C 2.
In another paper [3], we considered

Cn.œ; q/ D q2n.�œ=qI q2/n
.q2I q2/n : (1.7)

There, it was shown that

lim
q!1 Cn.�1; q/ D lim

q!1 Cn.1;�q/ D �2
1�2nCn�1:

In this case [3, (3.2)], Cn.œ; q/ is the two-variable generating function for parti-
tions without repeated odd parts whose total number of parts is n with the exponent
on œ counting the number of odd parts and the exponent on q exhibiting the number
being partitioned.

The overarching object of this chapter is to emphasize the methods for finding
q-analogs [1, Sect. 5]. Succinctly put, this method reduces binomial coefficient iden-
tities to identities for the generalized hypergeometric function [5, p. 8]:

nC1Fn

"

a0; a1; : : : ; anI t
b1; : : : ; bn

#

D
1
X

jD0

Œa0�j Œa1�j � � � Œan�j tj
j ŠŒb1�j � � � Œbn�j ; (1.8)

where
ŒA�j D A.AC 1/ � � � .AC j � 1/:

(We note that the symbol ŒA�j is unconventional but is necessary in a paper where
the symbol .AI q/n also appears.)

Once this first step is complete, there is generally a canonical q-analog from the
world of generalized q-hypergeometric functions [7, p. 4]:

nC1�n

 

A0; A1; : : : ; AnI q; t
B1; : : : ; Bn

!

D
1
X

jD0

.A0I q/j .A1I q/j � � � .AnI q/j tj
.qI q/j .B1I q/j � � � .BnI q/j : (1.9)

The final step involves reversing the evaluation in step 1 to provide the perfect
q-analog.
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We have chosen three identities. First is Touchard’s identity [10, p. 319]:

CnC1 D
X

r=0

 

n

2r

!

2n�2rCr : (1.10)

We shall prove

Theorem 1.

CnC1.q/ D
X

r=0
q2r

2C2r
"

n

2r

#

q

Cr.q/
.�qrC2I q/n�r
.�qI q/r : (1.11)

Note how, in this instance, the q-analog of 2n�2r is .�qrC2I q/n�r=.�qI q/r .
This is surely not something easily guessed.

Koshy provides another recursive formula for Catalan numbers [10, p. 322]:

Cn D
1
X

rD1
.�1/r�1

 

n � r C 1
r

!

Cn�r : (1.12)

We shall prove
Theorem 2.

Cn.q/ D
n
X

rD1
.�1/r�1qr2�r

"

n � r C 1
r

#

q

Cn�r.q/
.�qn�rC1I q/r
.�qI q/r : (1.13)

Note that in this q-analog, the factor .�qn�rC1I q/r=.�qI q/r is equal to 1 when
we set q D 1.

Both Theorems 1 and 2 are deduced from the q-analog of the Chu-Vandermonde
summation [7, p. 236, (II.6) and (II.7)].

Finally, we consider Jonah’s identity [10, p. 325]

 

nC 1
r

!

D
r
X

jD0

 

n � 2j
r � j

!

Cj ; (1.14)

provided 2r 5 n.
We shall prove

Theorem 3.

.1C qn�rC1/
.1C qrC1/

"

nC 1
r

#

q2

D �.�qI q/nC1
r
X

jD0

"

n � 2j
r � j

#

q2

CjC1.�1I q/
.�qI q/n�2j q

�j�1:

(1.15)

Here, we must rely on the q-analog of the Pfaff-Saalschütz summation [7, p. 237,
(II.12)].
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In our final section, we discuss some of the combinatorial questions that arise
from these considerations.

2 q-Touchard’s Identity

Following the standard reduction rules given in [1, Sect. 5], we see that (1.10),
Touchard’s identity, may be reduced to the equivalent assertion:

2n2F1

"

�n
2
;�n

2
C 1

2
I 1

2

#

D 22nC2
�

1
2

	

nC1
.nC 2/Š D CnC1: (2.1)

Identity (2.1) is a specialization of the classic Chu-Vandermonde summation
[5, p. 3]. Now, we choose the natural q-analog of (2.1) [7, p. 236, (II.7)]

.�q2I q/n2�1
 

q�n; q�nC1I q2; q2
q4

!

D CnC1.q/; (2.2)

and the standard reduction of the left-hand side of (2.2) following the rules given
in [1, Sect. 5] yields (1.11) which is Theorem 1.

3 Koshy’s Identity

First, we rewrite (1.2) as follows:

n
X

rD0
.�1/r

 

n � r C 1
r

!

Cn�r D 0: (3.1)

This identity is equivalent to the assertion that

2F1

 �n�1
2
; �n
2
I 1

�nC 1
2

!

D 0 (3.2)

and (3.2) is also a specialization of the Chu-Vandermonde summation [5, p. 3]. The
corresponding q-Chu-Vandermonde summation [7, p. 236, (II.7)] is

2�1

 

q�n�1; q�nI q2; q2
q1�2n

!

D 0: (3.3)
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After reversing the steps from (3.2) to (3.1) in the q-analogous procedure, we
obtain

n
X

rD0
.�1/rqr2�r

"

n � r C 1
r

#

q

Cn�r.q/
.�qn�rC1I q/r
.�qI q/r D 0: (3.4)

Equation (3.4) reduces to (1.13) once we move the r D 0 term to the other side of
the equation.

4 Jonah’s Identity

Identity (1.15) is deeper than the previous results. In this case, assuming
0 5 2r 5 n,

r
X

jD0

 

n � 2j
r � j

!

Cj D �1
2

 

nC 2
r C 1

! 

3F2

 

�r � 1;�nC r � 1;�1
2
I 1

�n
2
� 1; n

2
� 1
2

!

� 1
!

D �1
2

 

nC 2
r C 1

!

�

n � 2r
nC 2 � 1

�

.by [5, Sect. 2.2]/

D
 

nC 1
r

!

: (4.1)

The summation identity used was Pfaff-Saalschütz. The related q-analog
[5, Sect. 8.4] is

3�2

 

q�2r�2; q�2nC2r�2; q�1I q2; q2
q�n�2; q�n�1

!

� 1 D � .1 � q
rC1/.1C qn�rC1/
.1 � qnC2/ : (4.2)

Finally using (4.2) to produce the q-analog of (4.1), we obtain (1.15) which is
Theorem 3.

5 Conclusion

First, we note along with Koshy [10, p. 327] that Jonah’s theorem was generalized
by Hilton and Pedersen [9] to remove the restrictions 2r 5 n. A q-analog of the
Hilton–Pedersen extension can be obtained in exactly the way that the q-analog
of Jonah’s theorem was proved. Indeed, the following identity is equivalent to a
q-analog of the Hilton–Pedersen identity [10, p. 327]:

X

j=0

.a2q2�2r�2j I q2/r�j .�aq1�2j I q/2jC1CjC1.�1I q/q�j
.q2I q2/r�j

D q1C2r�r2

a2r .a�2q�2I q2/r .aq C qr/.�1/r�1
.1C qrC1/.q2I q2/r : (5.1)



q-Catalan Identities 189

More intriguing are some obvious combinatorial questions that lie within some
of our q-analogs. Suppose we rewrite (1.13) as

Cn.q/ D
n
X

rD1
.�1/r�1Tr.n; q/; (5.2)

where

Tr .n; q/ D qr2�r
"

n � r C 1
r

#

q

Cn�r.q/
.�qn�rC1I q/r
.�qI q/r : (5.3)

Problem 1. Show that Tr .n; q/ is a polynomial.

Problem 2. If 2r 5 n, show that all the coefficients in Tr .n; q/ are nonnegative.

Problem 3. Show that TrC1.2r C 1;�q/ has nonnegative coefficients.

Problem 4. Provide a partition-theoretic interpretation of Tr .n; q/ for 2r 5 n and
for TnC1.2nC 1;�q/.
Problem 5. In light of the fact that Cn.q/ generates the Catalan partitions with
largest part < n and number of parts 5 n, show by using Problem 4 to inter-
pret the right-hand side of (5.2) that a sieve process eliminates all non-Catalan
partitions.
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Completing Brahmagupta’s Extension
of Ptolemy’s Theorem

Richard Askey

In memory of Alladi Ramakrishnan with thanks for his work in mathematics
and physics and his hospitality of visitors

Summary Brahmagupta extended Ptolemy’s theorem on cyclic quadrilaterals to
find the lengths of the diagonals, the segments made when they are cut at the point of
intersection of the diagonals, and the lengths of the sides of the needles, the figures
formed when opposite sides of the quadrilateral are extended until they meet. Proofs
of these results are given, and a derivation of the 19th century result of the length of
the third diagonal is given. This “diagonal” is formed by connecting the tips of the
needles with a line segment.

Mathematics Subject Classification (2000) 01A32, 51M04

Key words and phrases Ptolemy’s theorem � Brahmagupta � Third diagonal of
cyclic quadrilateral

1 Introduction

Ptolemy’s theorem on cyclic quadrilaterals is one of the gems of later Greek math-
ematics. We do not know how this theorem was discovered, but both the statement
and the synthetic proof in [11, pages 50–51] have been admired by many. This proof
has been included in many books such as the textbook [5, Sect. 198], in Heath’s
translation of Euclid [6, page 225], and the cultural history book [7, page 162], on
the web [1], and there is even an article treating it as a “desert island theorem” [3].

As background, triangles are rigid, but quadrilateral are not. However, there is
an important class of quadrilaterals which are rigid, those whose vertices lie on a
circle; Ptolemy was very interested in those quadrilaterals, for he needed to be able
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to approximate lengths of chords in circles in terms of the radius of the circle and
the angle cut off by the chord. Ptolemy’s theorem makes this possible since it is
equivalent to the later treatment of trigonometry of triangles, containing the addi-
tion formulas of sine and cosine and also following from these addition formulas.
Ptolemy’s theorem is

Theorem 1. The product of the diagonals of a cyclic quadrilateral is equal to the
sum of the product of the opposite sides, or

xy D ac C bd: (1.1)

Since this quadrilateral is rigid, it should be possible to find the lengths of the
diagonals in terms of the lengths of the sides. Brahmagupta [2, page 300, Chap. XII,
Sect. IV, entry 28] stated formulas for the diagonals. Details were not given, but for
the refinement he gave, which will be mentioned later, he gave a suggestion about
how to derive them. There is also an interesting example in [2, pp. 301–305].

2 Brahmagupta’s Refinements of Ptolemy’s Theorem

For the cyclic quadrilaterals in Figure 1, the angles at B andD add to � . The length
of the diagonal AC can be found by using the cosine law twice.

x2 D a2 C b2 � 2ab cosB
D c2 C d 2 C 2cd cosB

(2.1)

Figure 1 Ptolemy’s theorem
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since cosD D cos.� � B/ D � cosB . Eliminate cosB by multiplication and
addition to get

.ab C cd/x2 D cd.a2 C b2/C ab.c2 C d 2/ (2.2)

The right hand side is not attractive as it is, so first regroup the products to remove
the squares, and then factor common expressions.

.ac/.ad/C.bc/.bd/C.ac/.bc/C .ad/.bd/ D .ac/Œad C bc�C .bd/Œad C bc�
D .ac C bd/.ad C bc/

Thus,

x2 D .ac C bd/.ad C bc/
.ab C cd/ (2.3)

Similarly,

y2 D .ac C bd/.ab C cd/
.ad C bc/ (2.4)

Ptolemy’s theorem (1.1) follows from multiplication, and Brahmagupta’s result
follows from division:

x

y
D .ad C bc/
.ab C cd/ (2.5)

The proof above is in [8, Sect. 167], [4, p. 25], and [7, p. 219]. Heilbron also
included another derivation of (2.3) found by Parameśvara from (1.1). The idea is
simple and a gem. Interchange the sides a and d . One of the diagonals remains
the same. The diagonals have lengths u and y. Then interchange the sides b and d ,
giving diagonals with lengths u and x. Then multiply to get x2y2u2 and divide by
the square of Ptolemy’s theorem with diagonals of lengths y and u. See [7, p. 219].

3 Further Results of Brahmagupta

In [2, p. 303, Sect. 32], Brahmagupta wrote: “At the intersection of the diagonals
and perpendiculars, the lower segments of the diagonal and of the perpendiculars
are found by proportion; those lines less these segments and the upper segments of
the same. So in the needle as well as in the intersection [of the prolonged sides and
perpendiculars].”

The last remark was given by the translator Colebrooke. Colebrooke also re-
marked: “The text relative to the method of finding those segments is irretrievably
corrupt, and has been therefore omitted in the version.” [2, p. 304].

Here is how to find the segments of the diagonals and the needles, which will be
described below. As Brahmagupta remarked, proportions are the key (Figure 2).
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Figure 2 Brahmagupta’s theorem on segments of diagonals

Triangles AOB and DOC are similar since they each have two angles which cut
off the same arcs of the circle. This gives

r

v
D u

s
D a

c

This along with r C s D x gives

av

c
C cu

a
D x

or
a

c
.y � u/C c

a
u D x

or
.c2 � a2/u D a.cx � ay/

Then use (2.3) and (2.4) to get

x D .ad C bc/T
y D .ab C cd/T

where

T D



ac C db
.ab C cd/.ad C bc/

� 1
2

(3.1)

This gives
u D abT (3.2)
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Figure 3 Brahmagupta’s theorem on needles

and symmetry gives

v D cdT (3.3)

r D adT (3.4)

s D bcT (3.5)

The needles are formed by extending opposite sides of the cyclic quadrilateral
until they meet. Here is one (Figure 3).

Triangles AEC and BED are similar since angles at D and C cut off the same
arc and angle E is in both triangles. Thus,

m

n
D nC b
mC d D

x

y
D ad C bc
ab C cd

A little algebra gives

m D a.ad C bc/
c2 � a2 (3.6)

mC d D c.ab C cd/
c2 � a2 (3.7)
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Symmetry then gives

n D a.ab C cd/
c2 � a2 (3.8)

nC d D c.ad C bc/
c2 � a2 (3.9)

Notice that when a D c, a pair of opposite sides of the cyclic quadrilateral are
parallel, so this needle does not exist.

The other needle is treated in the same way. We use all of the parts listed in
(3.6)–(3.9) in the derivation of the result in the next section.

4 The Third Diagonal of a Cyclic Quadrilateral

The third diagonal of a cyclic quadrilateral is formed by connecting the tips of
the two needles. Brahmagupta seemingly did not consider this. Both Hobson
[8, Sect. 16] and Durell and Robson [4, p. 26] dealt with this problem. Hobson gave
a derivation of the formula, but one important step was just stated with a reference

Figure 4 The third diagonal of a cyclic quadrilateral



Completing Brahmagupta’s Extension of Ptolemy’s Theorem 197

to McDowell’s Geometry. The only geometry book by McDowell that I have been
able to find is [9], and the theorem in question is on pages 75 and 76, while Hobson
wrote page 92. Durell and Robson gave a series of problems leading up to the length
of the third diagonal. They ask the reader to prove a geometry theorem using the
previous problem, which contains the essence of Sect. 3 in this paper. However, it is
not necessary to do that as we will see (Figure 4).

To find the third diagonal, we again use the argument used in Sect. 2.

z2 D n2 C p2 C 2np cosD

D .mC d/2 C .q C c/2 � 2.mC d/.q C c/ cosD

Remove cosD and do some routine algebra to get

z2 D .ab C cd/.ad C bc/



ac

.c2 � a2/2 C
bd

.d 2 � b2/2
�

(4.1)
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the Gamma and Riemann Zeta Functions
in Ramanujan’s Lost Notebook
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In Memory of Alladi Ramakrishnan

Summary Two proofs are given for a series transformation formula involving the
logarithmic derivative of the Gamma function found in Ramanujan’s lost notebook.
The transformation formula is connected with a certain integral embodying the
Riemann zeta function that is similar to integrals examined by Ramanujan in his
one published paper on the zeta function.
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1 Introduction

Pages 219–227 in the volume [17] containing Ramanujan’s lost notebook are de-
voted to material “Copied from the Loose Papers.” We emphasize that these pages
are not part of the original lost notebook found by George Andrews at Trinity
College Library, Cambridge in the spring of 1976. These “loose papers”, in the
handwriting of G.N. Watson, are found in the Oxford University Library; the origi-
nal manuscripts are in the library at Trinity College and have not been photocopied
for publication. Most of these nine pages, which are divided into three rough, par-
tial manuscripts, are connected with material in Ramanujan’s published papers.
However, there is much that is new in these fragments, which will be completely
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examined in [2]. One claim in the first manuscript on pages 219–220 is the subject
of this short note and is the most interesting theorem in the manuscript. This claim
provides a beautiful series transformation involving the logarithmic derivative of the
gamma function and the Riemann zeta function. To state Ramanujan’s claim, it will
be convenient to use the familiar notation [8, p. 952, formulas 8.360, 8.362, no. 1]

 .x/ WD � 0.x/
�.x/

D �” �
1
X

kD0

�

1

k C x �
1

k C 1
�

; (1.1)

where ” denotes Euler’s constant. We also need to recall the following functions
associated with Riemann’s zeta function 	.s/. Let

�.s/ WD .s � 1/�� 12 s�.1C 1
2
s/	.s/:

Then Riemann’s„-function is defined by

„.t/ WD �.1
2
C it/:

Theorem 1.1. Define

�.x/ WD  .x/C 1

2x
� logx: (1.2)

If ˛ and ˇ are positive numbers such that ˛ˇ D 1, then

p
˛

(

” � log.2�˛/

2˛
C
1
X

nD1
�.n˛/

)

D pˇ
(

” � log.2�ˇ/

2ˇ
C
1
X

nD1
�.nˇ/

)

D � 1

�3=2

Z 1

0

ˇ

ˇ

ˇ

ˇ

„

�

1

2
t

�

�

��1C it

4

�ˇ

ˇ

ˇ

ˇ

2 cos
�

1
2
t log˛

�

1C t2 dt; (1.3)

where ” denotes Euler’s constant and„.x/ denotes Riemann’s„-function.

The first identity in (1.3) is beautiful in its elegant symmetry and surprising
as well because why would subtracting the two leading terms in the asymptotic
expansion of the logarithmic derivative of the Gamma function, in order to gain
convergence of the infinite series on the left side, yield a “modular relation” for the
resulting function? The second identity in (1.3) is also surprising, for why would the
first identity foreshadow a connection with the Riemann zeta function in the second?

Although Ramanujan does not provide a proof of (1.3), he does indicate that (1.3)
“can be deduced from”

Z 1

0

. .1C x/ � logx/ cos.2�nx/ dx D 1

2
. .1C n/ � logn/ : (1.4)
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This latter result was rediscovered by A.P. Guinand [10] in 1947, and he later found
a simpler proof of this result in [11]. In a footnote at the end of his paper [11],
Guinand remarks that T.A. Brown had told him that he himself had proved the
self-reciprocality of  .1 C x/ � logx some years ago, and that when he (Brown)
communicated the result to G.H. Hardy, Hardy told him that the result was also
given by Ramanujan in a progress report to the University of Madras, but was
not published elsewhere. However, we cannot find this result in any of the three
Quarterly Reports that Ramanujan submitted to the University of Madras [3, 18].
Therefore, Hardy’s memory was perhaps imperfect; it would appear that he saw
(1.4) in the aforementioned manuscript that Watson had copied. On the other hand,
the only copy of Ramanujan’s Quarterly Reports that exists is in Watson’s hand-
writing! It could be that the manuscript on pages 219–220 of [17], which is also in
Watson’s handwriting, was somehow separated from the original Quarterly Reports,
and therefore that Hardy was indeed correct in his assertion!

The first equality in (1.3) was rediscovered by Guinand in [10] and appears in
a footnote on the last page of his paper [10, p. 18]. It is interesting that Guinand
remarks, “This formula also seems to have been overlooked.” Here then is one more
instance in which a mathematician thought that his or her theorem was new, but
unbeknownst to the claimant, Ramanujan had beaten her/him to the punch! We now
give Guinand’s version of (1.3).

Theorem 1.2. For any complex z such that j arg zj < � , we have

1
X

nD1

 

�
0

�
.nz/ � lognzC 1

2nz

!

C 1

2z
.” � log 2�z/

D 1

z

1
X

nD1

 

�
0

�

�

n

z

�

� log
n

z
C z

2n

!

C 1

2

�

” � log
2�

z

�

: (1.5)

The first equality in (1.3) can be easily obtained from Guinand’s version by multi-
plying both sides of (1.5) by

p
z and then letting z D ˛ and 1=z D ˇ. Although

not offering a proof of (1.5) in [10], Guinand did remark that it can be obtained
by using an appropriate form of Poisson’s summation formula, namely the form
given in Theorem 1 in [9]. Later, Guinand gave another proof of Theorem 1.2 in
[11], while also giving extensions of (1.5) involving derivatives of the  -function.
He also established a finite version of (1.5) in [12]. However, Guinand apparently
did not discover the connection of his work with Ramanujan’s integral involving
Riemann’s„-function.

In this paper, we first provide a proof of both identities in Theorem 1.1. In Sect. 4,
we construct a second proof of (1.5) along the lines suggested by Guinand in [10].
We can also provide another proof of (1.3) employing both (1.4) and

Z 1

0

�

1

e2x � 1 �
1

2�x

�

e�2nx dx D 1

2�
.logn �  .1C n// ; (1.6)
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which can be derived from an integral evaluation in [8, p. 377, formula 3.427, no. 7].
However, this proof is similar but slightly more complicated than the first proof that
we provide below. The second author has obtained two additional proofs in [6] and
[7]. In the proof in [6], (1.3) is obtained as a limiting case of a more general formula.

Although the Riemann zeta function appears at various instances throughout
Ramanujan’s notebooks [15] and lost notebook [17], he only wrote one paper in
which the zeta function plays the leading role [14], [16, pp. 72–77]. In fact, a
result proved by Ramanujan in [14], namely (3.7) in Sect. 3 below, is a key to prov-
ing (1.3). About the integral involving Riemann’s „-function in this result, Hardy
[13] comments that “the properties of this integral resemble those of one which
Mr. Littlewood and I have used, in a paper to be published shortly in the Acta
Mathematica, to prove that

Z T

�T

ˇ

ˇ

ˇ

ˇ

	

�

1

2
C t i

�ˇ

ˇ

ˇ

ˇ

2

dt 
 2

�
T logT:00 (1.7)

It is also interesting that on a page in the original lost notebook [17, p. 195],
Ramanujan defines

�.x/ WD  .x/C 1

2x
� ” � logx (1.8)

and then concludes that (1.3) is valid. However, with the definition (1.8) of �.x/,
the series in (1.3) do not converge. For a more complete discussion of Ramanujan’s
incorrect claim, see [2].

2 Preliminary Results

We first collect several well-known theorems that we use in our proof. First, from
[5, p. 191], for t ¤ 0,

1
X

nD1

1

t2 C 4n2�2 D
1

2t

�

1

et � 1 �
1

t
C 1

2

�

: (2.1)

Second, from [18, p. 251], we find that, for Re z > 0,

�.z/ D �2
Z 1

0

t dt

.t2 C z2/.e2t � 1/ : (2.2)

Third, we require Binet’s integral for log�.z/, i.e., for Re z > 0 [18, p. 249],
[8, p. 377, formula 3.427, no. 4],

log�.z/ D
�

z � 1
2

�

log z � zC 1

2
log.2�/C

Z 1

0

�

1

2
� 1
t
C 1

et � 1
�

e�zt

t
dt:

(2.3)
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Fourth, from [8, p. 377, formula 3.427, no. 2], we find that

Z 1

0

�

1

1 � e�x
� 1
x

�

e�x dx D ”; (2.4)

where ” denotes Euler’s constant. Fifth, by Frullani’s integral [8, p. 378, formula
3.434, no. 2],

Z 1

0

e��x � e��x

x
dx D log

�

�
; �; � > 0: (2.5)

3 First Proof of Theorem 1.1

Proof. Our first goal is to establish an integral representation for the far left side
of (1.3). Replacing z by n˛ in (2.2) and summing on n, 1 � n < 1, we find, by
absolute convergence, that

1
X

nD1
�.n˛/ D �2

1
X

nD1

Z 1

0

t dt

.t2 C n2˛2/.e2t � 1/

D �2
˛2

Z 1

0

t dt

.e2t � 1/
1
X

nD1

1

.t=˛/2 C n2 : (3.1)

Invoking (2.1) in (3.1), we see that

1
X

nD1
�.n˛/ D �2�

˛

Z 1

0

1

.e2t � 1/
�

1

e2t=˛ � 1 �
˛

2�t
C 1

2

�

dt: (3.2)

Next, setting x D 2�t in (2.4), we readily find that

” D
Z 1

0

�

2�

e2t � 1 �
e�2t

t

�

dt: (3.3)

By Frullani’s integral (2.5),

Z 1

0

e�t=˛ � e�2t

t
dt D log

�

2�

1=˛

�

D log.2�˛/: (3.4)

Combining (3.3) and (3.4), we arrive at

” � log .2�˛/ D
Z 1

0

 

2�

e2t � 1 �
e�t=˛

t

!

dt: (3.5)
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Hence, from (3.2) and (3.5), we deduce that

p
˛

 

” � log.2�˛/

2˛
C
1
X

nD1
�.n˛/

!

D 1

2
p
˛

Z 1

0

 

2�

e2t � 1 �
e�t=˛

t

!

dt

� 2�p
˛

Z 1

0

1

.e2t � 1/
�

1

e2t=˛ � 1 �
˛

2�t
C 1

2

�

dt

D
Z 1

0

 p
˛

t.e2t � 1/ �
2�p

˛.e2t=˛ � 1/.e2t � 1/ �
e�t=˛

2t
p
˛

!

dt: (3.6)

Now from [14, p. 260, (22)] or [16, p. 77], for n real,

Z 1

0

�

��1C it

4

�

�

��1 � it

4

��

„

�

1

2
t

��2 cos nt

1C t2 dt

D
Z 1

0

ˇ

ˇ

ˇ

ˇ

„

�

1

2
t

�

�

��1C it

4

�ˇ

ˇ

ˇ

ˇ

2 cosnt

1C t2 dt

D �3=2
Z 1

0

�

1

exen � 1 �
1

xen

��

1

exe�n � 1 �
1

xe�n

�

dx: (3.7)

Letting n D 1
2

log˛ and x D 2�t=p˛ in (3.7), we deduce that

� 1

�3=2

Z 1

0

ˇ

ˇ

ˇ

ˇ

„

�

1

2
t

�

�

��1C it

4

�ˇ

ˇ

ˇ

ˇ

2 cos.1
2
t log˛/

1C t2 dt

D � 2�p
˛

Z 1

0

�

1

e2t � 1 �
1

2�t

��

1

e2t=˛ � 1 �
˛

2�t

�

dt

D
Z 1

0

� �2�=p˛
.e2t=˛ � 1/.e2t � 1/ C

p
˛

t.e2t � 1/
C 1

t
p
˛.e2t=˛ � 1/ �

p
˛

2�t2

�

dt: (3.8)

Hence, combining (3.6) and (3.8), in order to prove that the far left side of (1.3)
equals the far right side of (1.3), we see that it suffices to show that

Z 1

0

 

1

t
p
˛.e2t=˛ � 1/ �

p
˛

2�t2
C e�t=˛

2t
p
˛

!

dt

D 1p
˛

Z 1

0

 

1

u.eu � 1/ �
1

u2
C e�u=.2/

2u

!

du D 0; (3.9)
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where we made the change of variable u D 2�t=˛. In fact, more generally, we show
that

Z 1

0

�

1

u.eu � 1/ �
1

u2
C e�ua

2u

�

du D �1
2

log.2�a/ (3.10)

so that if we set a D 1=.2�/ in (3.10), we deduce (3.9).
Consider the integral, for t > 0,

F.a; t/ W D
Z 1

0

��

1

eu � 1 �
1

u
C 1

2

�

e�tu

u
C e�ua � e�tu

2u



du

D log�.t/�
�

t � 1
2

�

log t C t � 1
2

log.2�/C 1

2
log

t

a
; (3.11)

where we applied (2.3) and (2.5). Upon the integration of (1.1), it is easily gleaned
that, as t ! 0,

log�.t/ 
 � log t � ”t;
where ” denotes Euler’s constant. Using this in (3.11), we find, upon simplification,
that, as t ! 0,

F.a; t/ 
 �”t � t log t C t � 1
2

log.2�/� 1
2

log a:

Hence,

lim
t!0F.a; t/ D �

1

2
log.2�a/: (3.12)

Letting t approach 0 in (3.11), taking the limit under the integral sign on the right-
hand side using Lebesgue’s dominated convergence theorem, and employing (3.12),
we immediately deduce (3.10). As previously discussed, this is sufficient to prove
the equality of the first and third expressions in (1.3), namely,

p
˛

(

” � log.2�˛/

2˛
C
1
X

nD1
�.n˛/

)

D � 1

�3=2

Z 1

0

ˇ

ˇ

ˇ

ˇ

„

�

1

2
t

�

�

��1C it

4

�ˇ

ˇ

ˇ

ˇ

2 cos
�

1
2
t log˛

�

1C t2 dt: (3.13)

Lastly, using (3.13) with ˛ replaced by ˇ and employing the relation ˛ˇ D 1, we
conclude that

p

ˇ

(

” � log.2�ˇ/

2ˇ
C
1
X

nD1
�.nˇ/

)

D � 1

�3=2

Z 1

0

ˇ

ˇ

ˇ

ˇ

„

�

1

2
t

�

�

��1C it

4

�ˇ

ˇ

ˇ

ˇ

2 cos
�

1
2
t logˇ

�

1C t2 dt
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D � 1

�3=2

Z 1

0

ˇ

ˇ

ˇ

ˇ

„

�

1

2
t

�

�

��1C it

4

�ˇ

ˇ

ˇ

ˇ

2 cos
�

1
2
t log.1=˛/

�

1C t2 dt

D � 1

�3=2

Z 1

0

ˇ

ˇ

ˇ

ˇ

„

�

1

2
t

�

�

��1C it

4

�ˇ

ˇ

ˇ

ˇ

2 cos
�

1
2
t log˛

�

1C t2 dt:

Hence, the equality of the second and third expressions in (1.3) has been demon-
strated, and so the proof is complete. ut

4 Second Proof of (1.3)

In this section, we give our second proof of the first identity in (1.3) using Guinand’s
generalization of Poisson’s summation formula in [9]. We emphasize that this route
does not take us to the integral involving Riemann’s„-function in the second iden-
tity of (1.3). First, we reproduce the needed version of the Poisson summation
formula from Theorem 1 in [9].

Theorem 4.1. If f .x/ is an integral, f .x/ tends to zero as x ! 1, and xf
0

.x/

belongs to Lp.0;1/, for some p, 1 < p � 2, then

lim
N!1

 

N
X

nD1
f .n/ �

Z N

0

f .t/ dt

!

D lim
N!1

 

N
X

nD1
g.n/ �

Z N

0

g.t/ dt

!

; (4.1)

where

g.x/ D 2
Z !1

0

f .t/ cos.2�xt/ dt: (4.2)

Next, we state a lemma2 that will subsequently be used in our proof of (1.3).

Lemma 4.2. If  .x/ is defined by (1.1), then

Z 1

0

�

 .t C 1/� 1

2.t C 1/ � log t

�

dt D 1

2
log 2�: (4.3)

Proof. Let I denote the integral on the left-hand side of (1.1). Then,

I D
Z 1

0

d

dt

�

log
et�.t C 1/
t t
p
t C 1

�

dt

D lim
t!1 log

et�.t C 1/
t t
p
t C 1 � lim

t!0 log
et�.t C 1/
t t
p
t C 1

2 The authors are indebted to M. L. Glasser for the proof of this lemma. The authors’ original proof
of this lemma was substantially longer than Glasser’s given here.
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D log lim
t!1

et�.t C 1/
t t
p
t C 1 � log

�

lim
t!0 et�.t C 1/

�

� lim
t!0 t log t � lim

t!0
1

2
log.tC1/

D log lim
t!1

et�.t C 1/
t t
p
t C 1 : (4.4)

Next, Stirling’s formula [8, p. 945, formula 8.327] tells us that

�.z/ 
 p2� zz�1=2e�z; (4.5)

as jzj ! 1 for j arg zj � � � ı, where 0 < ı < � . Hence, employing (4.5), we find
that

et�.t C 1/
t t
p
t C 1 


p
2�

e

�

1C 1

t

�t

(4.6)

so that

lim
t!1

et�.t C 1/
t t
p
t C 1 D

p
2�: (4.7)

Thus, from (4.4) and (4.7), we conclude that

I D 1

2
log 2�: (4.8)

ut
Now we are ready to give our second proof of (1.3). We first prove it for Re z > 0.

Let
f .x/ D  .xzC 1/� logxz: (4.9)

We show that f .x/ satisfies the hypotheses of Theorem 4.1. From (1.4), we see that
f .x/ is an integral. Next, we need two formulas for  .x/. First, from [1, p. 259,
formula 6.3.18], for j arg zj < � , as z!1,

 .z/ 
 log z� 1

2z
� 1

12z2
C 1

120z4
� 1

252z6
C � � � : (4.10)

Second, from [18, p. 250],

 
0

.z/ D
1
X

nD0

1

.zC n/2 : (4.11)

From (4.9) and (4.10), it follows that

f .x/ 
 1

2xz
� 1

12x2z2
C 1

120x4z4
� 1

252x6z6
C � � � (4.12)

so that

lim
x!1f .x/ D 0: (4.13)
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Next, we show that xf
0

.x/ belongs toLp.0;1/ for some p such that 1 < p � 2.
Using (4.10), we find that, as x !1,

xf
0

.x/ 
 � 1

2xz
(4.14)

so that jxf 0

.x/jp 
 .2xjzj/�p. Thus, for p > 1, we see that xf
0

.x/ is locally
integrable near1. Also, using (4.11), we have

lim
x!0xf

0

.x/ D lim
x!0

 

xz
1
X

nD0

1

.xzC n/2 �
1

xz
� 1

!

D lim
x!0

 

xz
1
X

nD1

1

.xzC n/2 � 1
!

D �1: (4.15)

This proves that xf
0

.x/ is locally integrable near 0. Hence, we have shown that
xf

0

.x/ belongs to Lp.0;1/ for some p such that 1 < p � 2.
Now from (4.2) and (4.9), we find that

g.x/ D 2
Z 1

0

. .tzC 1/� log tz/ cos .2�xt/ dt:

Employing the change of variable y D tz and using (1.4), we find that

g.x/ D 2

z

Z 1

0

. .y C 1/� logy/ cos .2�xy=z/ dy

D 1

z

�

 

�

x

z
C 1

�

� log

�

x

z

��

: (4.16)

Substituting the expressions for f .x/ and g.x/ from (4.9) and (4.16), respectively,
in (4.1), we find that

lim
N!1

 

N
X

nD1
. .nzC 1/� lognz/ �

Z N

0

. .tzC 1/� log tz/ dt

!

D 1

z

"

lim
N!1

 

N
X

nD1

�

 

�

n

z
C 1

�

� log
n

z

�

�
Z N

0

�

 

�

t

z
C 1

�

� log
t

z

�

dt

!#

:

(4.17)
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Thus,

lim
N!1

 

N
X

nD1

 

�
0

�
.nz/C 1

2nz
� lognz

!

C
N
X

nD1

1

2nz
�
Z N

0

. .tzC 1/� log tz/ dt

!

D 1

z

"

lim
N!1

 

N
X

nD1

 

�
0

�

�

n

z
C z

2n
� log

n

z

�

C
N
X

nD1

z

2n

�
Z N

0

�

 

�

t

z
C 1

�

� log
t

z

�

dt

!#

: (4.18)

Now if we can show that

lim
N!1

 

N
X

nD1

1

2nz
�
Z N

0

. .tzC 1/� log tz/ dt

!

D ” � log 2�z

2z
; (4.19)

then replacing z by 1=z in (4.19) will give us

lim
N!1

 

N
X

nD1

z

2n
�
Z N

0

�

 

�

t

z
C 1

�

� log
t

z

�

dt

!

D z.” � log.2�=z//

2
: (4.20)

Then substituting (4.19) and (4.20) in (4.18) will complete the proof of the theorem.
To that end,

lim
N!1

 

N
X

nD1

1

2nz
�
Z N

0

. .tzC 1/� log tz/ dt

!

D lim
N!1

 

1

2z

 

N
X

nD1

1

n
� logN

!

C logN

2z
�
Z N

0

. .tzC 1/� log tz/ dt

!

D ”

2z
C lim
N!1

 

� log z

2z
C logN z

2z
�
Z N

0

. .tzC 1/� log tz/ dt

!

D ”

2z
� log z

2z
C lim
N!1

 

log.N zC 1/
2z

� 1
z

Z N z

0

. .t C 1/� log t/ dt

� 1
2z

log

�

1C 1

N z

��

D ”

2z
� log z

2z
C 1

z
lim
N!1

 

log.N zC 1/
2

�
Z N z

0

. .t C 1/� log t/ dt

!

D ”

2z
� log z

2z
C 1

z
lim
N!1

 

1

2

Z N z

0

1

t C 1 dt �
Z N z

0

. .t C 1/� log t/ dt

!



210 B.C. Berndt and A. Dixit

D ”

2z
� log z

2z
� 1

z
lim
N!1

Z N z

0

�

 .t C 1/� 1

2.t C 1/ � log t

�

dt

D ”

2z
� log z

2z
� 1

z

Z 1

0

�

 .t C 1/� 1

2.t C 1/ � log t

�

dt

D ”

2z
� log z

2z
� log 2�

2z

D ” � log 2�z

2z
; (4.21)

where in the antepenultimate line we have made use of Lemma 4.2. This completes
the proof of (4.19) and hence the proof of Theorem 1.2 for Re z > 0. But both sides
of (1.5) are analytic for j arg zj < � . Hence, by analytic continuation, the theorem
is true for all complex z such that j arg zj < � .
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Ternary Quadratic Forms, Modular Equations,
and Certain Positivity Conjectures

Alexander Berkovich� and William C. Jagy

Dedicated to the memory of Professor Alladi Ramakrishnan

Summary We show that many of Ramanujan’s modular equations of degree 3 can
be interpreted in terms of integral ternary quadratic forms. This way we establish
that for any n 2 N,

ˇ

ˇ

ˇ

ˇ

�

.x; y; z/ 2 Z3 W x.x C 1/
2

C y2 C z2 D n
 ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

�

.x; y; z/ 2 Z3 W x.x C 1/
2

C 3y2 C 3z2 D n
 ˇ

ˇ

ˇ

ˇ

;

just to name one among many similar “positivity” results of this type. In particular,
we prove the recent conjecture of H. Yesilyurt and the first author, stating that for
any n 2 N,

ˇ

ˇ

ˇ

ˇ

�

.x; y; z/ 2 Z3 W x.x C 1/
2

C y2 C z2 D n
 ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

�

.x; y; z/ 2 Z3 W x.x C 1/
2

C 7y2 C 7z2 D n
 ˇ

ˇ

ˇ

ˇ

:

We prove a number of identities for certain ternary forms with discriminants
144; 400; 784; or 3; 600 by converting every ternary identity into an identity for
the appropriate �-quotients. In the process, we discover and prove a few new mod-
ular equations of degree 5 and 7. For any square free odd integer S with prime
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factorization p1 : : : pr , we define the S -genus as a union of 2r specially selected
genera of ternary quadratic forms, all with discriminant 16S2. This notion of
S -genus arises naturally in the course of our investigation. It entails an interesting
injection from genera of binary quadratic forms with discriminant�8S to genera of
ternary quadratic forms with discriminant 16S2.

Mathematics Subject Classification (2000) Primary 11E20, 11F37, 11B65;
Secondary 05A30, 33 E05

Key words and phrases Ternary quadratic forms � S -genus � Modular functions �
Modular equations � �-functions � �-quotients

1 Introduction

Alladi Ramakrishnan’s visits to Gainesville were always memorable. His interests
were diverse, and his passion for science was truly amazing. He was a very open
man, always happy to make new friends. He had so many stories to tell. His family
was a true pillar of strength for him and in turn he was devoted to them.

Ramanujan’s general theta-function f .a; b/ is defined by

f .a; b/ D
1
X

nD�1
a

.n�1/n
2 b

.nC1/n
2 ; jabj < 1: (1.1)

In Ramanujan’s notation, the celebrated Jacobi triple product identity takes the
shape

f .a; b/ D .�aI ab/1.�bI ab/1.abI ab/1; jabj < 1; (1.2)

with
.aI q/1 WD

Y

j�0
.1� aqj /:

It is always assumed that jqj < 1. The following four special cases will play a
prominent role in our narrative

�.q/ WD f .q; q/ D
1
X

nD�1
qn

2

; (1.3)

 .q/ WD f .q; q3/ D
X

n�0
q

.nC1/n
2 ; (1.4)

f .q; q2/ D
1
X

nD�1
q

.3nC1/n
2 ; (1.5)

f .q; q5/ D
1
X

nD�1
q.3nC2/n: (1.6)
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Using (1.2), it is not hard to derive the product representation formulas

�.q/ D E.q2/5

E.q/2E.q4/2
; (1.7)

 .q/ D E.q2/2

E.q/
; (1.8)

f .q; q2/ D E.q3/2E.q2/

E.q6/E.q/
; (1.9)

f .q; q5/ D E.q12/E.q3/E.q2/2

E.q6/E.q4/E.q/
; (1.10)

where
E.q/ WD

Y

j�1
.1 � qj /:

Combining (1.7) and (1.8), we see that

 .q/2 D �.q/ .q2/: (1.11)

Note that the Dedekind �.z/ is related to E.q/ as

�.z/ D q 1
24E.q/; if q D exp.2�iz/ with Im .z/ > 0: (1.12)

And so �.q/, q
1
8 .q/, q

1
24 f .q; q2/, q

1
3 f .q; q5/ all have �-quotient

representations.
Following [2], we say that a q-series is positive if its power series coefficients are

all non-negative. We define P Œq� to be the set of all such series. It is plain that �.q/,
 .q/, f .q; q2/, f .q; q5/, 1

E.q/
(and their products) are in P Œq�. However, it is not

at all obvious that

 .q/.�.q/2 � �.q7/2/ 2 P Œq�: (1.13)

Motivated by their studies of 7-core partitions, H. Yesilyurt and the first author con-
jectured (1.13) in ((6.2), [2]). The reader should be cautioned that other similar
conjectures there: (6.1), (6.3), and (6.4) are false. What makes (1.13) somewhat
non-trivial is the fact that it is not true that �.q/2 � �.q7/2 2 P Œq�. However, in
Sect. 3, we shall prove

Theorem 1.1. The following identities are true

 .q/.�.q/2 � �.q7/2/ D 4q .q2/ .q7/�.q7/C 8q2 .q14/ .q3/�.q21/
C 8q4 .q14/f .q; q2/f .q7; q35/; (1.14)
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and

7�.q7/2 .q7/ D 8q2 .q2/ .q21/�.q3/C 8 .q2/f .q; q5/f .q7; q14/
� 4q .q14/ .q/�.q/ �  .q7/�.q/2: (1.15)

One does not have to be very perceptive to deduce that the right hand side of (1.14)
is in P Œq�. Hence, (1.13) follows. Our proof of (1.14) makes naive use of the theory
of modular forms. We employ certain of Ramanujan’s modular equations of degree
7 [1] to derive (1.15) from (1.14). Also in Sect. 3, we provide the following beautiful
interpretation of Theorem 1.1 in terms of integral ternary quadratic forms.

Theorem 1.2. If M 	 1 .mod 8/, then

.1; 8; 8; 0; 0; 0/.M/ D .1; 14; 14; 0; 0; 0/.M/

C 2.2; 7; 14; 0; 0; 0/.M/C 4.3; 5; 14; 0; 0; 2/.M/:

(1.16)

If M 	 1 .mod 8/ and 7jM , then

7.1; 8; 8; 0; 0; 0/

�

M

72

�

D � .1; 14; 14; 0; 0; 0/.M/

� 2.2; 7; 14; 0; 0; 0/.M/C 4.3; 5; 14; 0; 0; 2/.M/;

(1.17)

where here and everywhere

.a; b; c; d; e; f /.M/ WDjf.x; y; z/ 2 Z3 W ax2Cby2Ccz2CdyzCezxCf xyDM gj:

We also have the following

Corollary 1.3. If M 	 1 .mod 8/ and .M j7/ D 1, then

.1; 8; 8; 0; 0; 0/.M/D .1; 14; 14; 0; 0; 0/.M/C 2.2; 7; 14; 0; 0; 0/.M/:

If M 	 1 .mod 8/, 7 k M , then

.1; 8; 8; 0; 0; 0/.M/D 2.1; 14; 14; 0; 0; 0/.M/C 4.2; 7; 14; 0; 0; 0/.M/:

A few remarks are in order. We use the convention that Jacobi’s symbol .M ja/ D 0,
whenever .M; a/ > 1. The notation p k nmeans that pjn but it is not true that p2jn.
A slightly different version of this corollary was communicated to us by Benjamin
Kane. His observation was crucial to our investigation. We understand that Kane
used Siegel’s weighted average theorem [8] together with some local calculations
of Jones [9]. We note that the Corollary 1.3 has a twin:



Ternary Quadratic Forms, Modular Equations, Positivity 215

Corollary 1.4. If M 	 1 .mod 8/ and .M j7/ D �1, then

.1; 8; 8; 0; 0; 0/.M/D 4.3; 5; 14; 0; 0; 2/.M/:

If M 	 1 .mod 8/, 7 k M , then

.1; 8; 8; 0; 0; 0/.M/D 8.3; 5; 14; 0; 0; 2/.M/:

There is nothing very special about the exponent 7 in (1.13). In a future paper,
we plan to prove that for any S 2 N,

 .q/.�.q/2 � �.qS /2/ 2 P Œq�: (1.18)

In this paper, we discuss in great detail S D 3; 5; 7; 15. In these cases, we will
construct and prove �-quotient identities that imply appropriate positivity results.
For S D 3 and 5, our identities can be written concisely as modular equations of
degree 3 and 5, respectively. Ramanujan found an astounding number of modular
equations of degree 3 and 5. These are collected and proven in [1]. The results there
are sufficient to prove everything needed for our treatment of S D 3, 5 in Sects. 2
and 3. In Sect. 4, we prove our Theorems 1.1 and 1.2. Section 5 deals with the
S D 15 case. In Sect. 6, we define an injective map from genera of binary quadratic
forms to genera of ternary quadratic forms. This map allows us to introduce a very
useful notion of S -genus.

2 Ramanujan’s Modular Equations of Degree 3

and Associated Identities for Ternary Quadratic
Forms with Discriminant 144

Following Ramanujan, we define the multiplierm of degree n as

m WD m.n; q/ D �.q/2

�.qn/2
; (2.1)

and

˛ WD ˛.q/ D 1 � �.�q/
4

�.q/4
; (2.2)

ˇ WD ˇ.n; q/ D ˛.qn/: (2.3)

We often say that ˇ has degree n over ˛. We also call an algebraic relation con-
necting m, ˛, and ˇ a modular equation of degree n. It is well-known, page 40,
[1] that

�.q/ D �.q4/C 2q .q8/; (2.4)

�.q/4 � �.�q/4 D 16q .q2/4: (2.5)
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The last equation implies another formula for ˛

˛ D 16q .q
2/4

�.q/4
; (2.6)

which will come in handy later. Pages 230–237 in [1] contain an impressive col-
lection of 15 of Ramanujan’s modular equations of degree 3 together with succinct
proofs. In particular, one can find there what amounts to the following:

Lemma 2.1. If

˛ D p.2C p/3
.1C 2p/3

;

then

ˇ.3; q/ D p3.2C p/
.1C 2p/

;

and
m.3; q/ D 1C 2p:

We comment that this lemma is a very efficient tool for verifying any modular
equations of degree 3. In particular, we see that

m � 1 D 2ˇ
3
8

˛
1
8

: (2.7)

From (1.11), (2.1), (2.3), (2.6), and (2.7), it is readily shown that

�.q/2

�.q3/2
� 1 D 4q .q/ .q

3/ .q6/

 .q2/�.q3/2
: (2.8)

Clearly, this theta-function identity can be rewritten as

 .q2/�.q/2 D  .q2/�.q3/2 C 4q .q/ .q3/ .q6/: (2.9)

Next, we multiply both sides of (2.9) by  .q/

 .q2/
and employ (1.11) again to deduce

that

 .q/�.q/2 D  .q/�.q3/2 C 4q .q3/ .q6/�.q/: (2.10)

The truth of

 .q/.�.q/2 � �.q3/2/ 2 P Œq�; (2.11)

and of

 .q2/.�.q/2 � �.q3/2/ 2 P Œq� (2.12)
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is now evident. Remarkably, we can interpret (2.9) and (2.10) in terms of integral
ternary quadratic forms with discriminant 144. We remind the reader that the dis-
criminant of a ternary form ax2 C by2 C cz2 C dyzC ezx C f xy is defined as

1

2
det

2

4

2a f e

f 2b d

e d 2c

3

5 :

To this end, we define a sifting operator St;s by its action on power series as follows:

St;s
X

n�0
c.n/qn WD

X

k�0
c.tk C s/qk ; (2.13)

where t , s are integers and 0 � s < t . Observe that (2.4) implies that

S8;1�.q/�.q
8/2 D 2 .q/�.q/2; (2.14)

S8;1�.q/�.q
6/2 D 2 .q/�.q3/2; (2.15)

S8;1�.q
2/�.q3/�.q6/ D 4q�.q/ .q3/ .q6/: (2.16)

Employing (2.14), (2.15), (2.16) together with (2.10) we see that

S8;1
�

�.q/�.q8/2 � �.q/�.q6/2 � 2�.q2/�.q3/�.q6/� D 0: (2.17)

But the above is nothing else but the statement that

.1; 8; 8; 0; 0; 0/.M/D .1; 6; 6; 0; 0; 0/.M/C 2.2; 3; 6; 0; 0; 0/.M/; (2.18)

for any M 	 1 .mod 8/. Actually, with the aid of (2.4), we can easily check that

S8;r�.q/�.q
8/2 D 1

3
S8;r�.q/

3 (2.19)

with r D 1; 7. Hence, (2.18) may be stated as

1

3
.1; 1; 1; 0; 0; 0/.M/D .1; 6; 6; 0; 0; 0/.M/C 2.2; 3; 6; 0; 0; 0/.M/; (2.20)

for anyM 	 1 .mod 8/. It is very likely that modular equation (2.7) was known to
Legendre and Jacobi. Surprisingly, the quadratic form interpretation given in (2.20)
above appears to be new. We note that the two ternary forms x2 C 6y2 C 6z2 and
2x2C3y2C6z2 on the right of (2.20) have the same discriminantD 144. Moreover,
these two forms have class numberD 1. This means that these forms belong to dif-
ferent genera and that they are both regular [7,9,10]. Moreover, it is easy to see that
.�n1j3/ D �1 for any integer n1 represented by x2C6y2C6z2, gcd.n1; 3/ D 1 and
that .�n2j3/ D 1 for any integer n2 represented by 2x2C3y2C6z2, gcd.n2; 3/ D 1.
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We remark that the appearance of at least two genera with the same discriminant is
the salient feature of all our ternary form identities. Somewhat anticipating devel-
opments in Sect. 6, we would like to comment that one can obtain the two ternary
forms on the right of (2.20) starting with binary forms of discriminant �24. There
are just two genera of binary quadratic forms with this discriminant: the (proper
equivalence) class of x2 C 6y2 and the class of 2x2 C 3y2 (See [6], pages 52–54).
All we need to do to obtain our desired ternaries is to add 6z2 to x2 C 6y2 and
2x2 C 3y2, respectively. Actually, we can extend (2.20) a bit as

1

3
.1; 1; 1; 0; 0; 0/.M/D .1; 6; 6; 0; 0; 0/.M/C 2.2; 3; 6; 0; 0; 0/.M/; (2.21)

for any M 	 1; 2 .mod 4/. To this end, we make repeated use of (2.4) and
confirm that

S4;1�.q/
3 D 6 .q2/�.q/2; (2.22)

S4;1�.q/�.q
6/2 D 2 .q2/�.q3/2; (2.23)

S4;1�.q
2/�.q3/�.q6/ D 4q .q/ .q3/ .q6/ (2.24)

S4;2�.q/
3 D 12�.q/ .q2/2; (2.25)

S4;2�.q/�.q
6/2 D 4q .q6/2�.q/; (2.26)

S4;2�.q
2/�.q3/�.q6/ D 2 .q/ .q3/�.q3/: (2.27)

Next, we combine (2.9) and (2.22)–(2.24), to arrive at

S4;1

�

1

3
�.q/3 � �.q/�.q6/2 � 2�.q2/�.q3/�.q6/

�

D 0;

which is, essentially, the case M 	 1 .mod 4/ in (2.21). To see that (2.21) is also
valid when M 	 2 .mod 4/, we again use Lemma 2.1 to verify our next modular
equation of degree 3

m D ˇ
1
2

˛
1
2

C 2ˇ
1
8

˛
3
8

: (2.28)

Indeed, expressing everything in terms of p and simplifying, we obtain the trivial
identity

1C 2p D p.1C 2p/
2C p C 21C 2p

2C p :

Hence, the proof of (2.28) is complete. The theta-function identity associated with
(2.28) takes the pleasant form

�.q/ .q2/2 D  .q/ .q3/�.q3/C q�.q/ .q6/2: (2.29)
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Hence,
�.q/. .q2/2 � q .q6/2/ 2 P Œq�:

We observe that  .q2/2 � q .q6/2 62 P Œq�. Again, we combine (2.25)–(2.27) and
(2.29) to obtain

S4;2

�

1

3
�.q/3 � �.q/�.q6/2 � 2�.q2/�.q3/�.q6/

�

D 0;

which is essentially the case M 	 2 .mod 4/ in (2.21). This is not the end of the
story, however. We discovered that (2.18) has an attractive companion

3.1; 8; 8; 0; 0; 0/

�

M

32

�

D �.1; 6; 6; 0; 0; 0/.M/C 2.2; 3; 6; 0; 0; 0/.M/; (2.30)

whereM 	 1 .mod 8/, 3jM . To prove it, we begin with the modular equation

3

m
C 1 D 2˛

3
8

ˇ
1
8

; (2.31)

which can be routinely verified with the aid of Lemma 2.1. Next, we use (2.1), (2.3),
and (2.6) to convert (2.31) into the theta-function identity

� .q3/�.q/2 C 4 .q/ .q2/�.q3/ D 3 .q3/�.q3/2: (2.32)

With a bit of labor, we can show that (2.32) is equivalent to

S24;9.��.q/�.q6/2 C 2�.q2/�.q3/�.q6// D 6 .q3/�.q3/2:
Hence,

� .1; 6; 6; 0; 0; 0/.24nC 9/C 2.2; 3; 6; 0; 0; 0/.24nC 9/ D
3

ˇ

ˇ

ˇ

ˇ

�

.x; y; z/ 2 Z3 W 3x2 C 3y2 C 3.1C z/z

2
D n

ˇ

ˇ

ˇ

ˇ

:

Observe that

3

ˇ

ˇ

ˇ

ˇ

�

.x; y; z/ 2 Z3 W 3x2 C 3y2 C 3.1C z/z

2
D n

ˇ

ˇ

ˇ

ˇ

D

3

ˇ

ˇ

ˇ

ˇ

�

.x; y; z/ 2 Z3 W 8x2 C 8y2 C z2 D 1C 8n

3

ˇ

ˇ

ˇ

ˇ

:

And so we have completed the proof of (2.30). We note the following interesting
corollary

.1; 6; 6; 0; 0; 0/.M/D 2.2; 3; 6; 0; 0; 0/.M/; (2.33)
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when M 	 1 .mod 8/, 3 k M . Recalling (2.18), we see that

.1; 8; 8; 0; 0; 0/.M/D 2.1; 6; 6; 0; 0; 0/.M/; (2.34)

with M 	 1 .mod 8/, 3 k M . Analogously, (2.21) has its own companion identity

.1; 1; 1; 0; 0; 0/

�

M

32

�

D �.1; 6; 6; 0; 0; 0/.M/C 2.2; 3; 6; 0; 0; 0/.M/; (2.35)

with M 	 1; 2 .mod 4/, 3jM . Since the argument is pretty similar, we confine
ourselves to the following diagram
Lemma 2.1
+
Modular equation:

3Cm˛
1
2

ˇ
1
2

D 2m˛
1
8

ˇ
3
8

:

+
Theta-function identity

 .q2/2�.q3/ �  .q/ .q3/�.q/C 3q .q6/ .q3/2 D 0:

+
Ternary identity

.1; 1; 1; 0; 0; 0/

�

M

32

�

D �.1; 6; 6; 0; 0; 0/.M/C 2.2; 3; 6; 0; 0; 0/.M/;

with M 	 2 .mod 4/, 3jM .
Lemma 2.1
+
Modular equation

3Cm D 2m˛
3
8

ˇ
1
8

:

+
Theta-function identity

 .q6/�.q/2 � 4 .q/ .q2/ .q3/C 3 .q3/2�.q3/ D 0:

+
Ternary identity

.1; 1; 1; 0; 0; 0/

�

M

32

�

D �.1; 6; 6; 0; 0; 0/.M/C 2.2; 3; 6; 0; 0; 0/.M/
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with M 	 1 .mod 4/, 3jM . We conclude this section by stating (2.18), (2.30)
in a way that would suggest an elegant and straightforward generalization. Let
jAut.a; b; c; d; e; f /j denote the number of integral automorphs of a ternary form
ax2 C by2 C cz2 C dyzC ezx C fxy. It is easy to check that

16

jAut(1,6,6,0,0,0)j D 1;

16

jAut(2,3,6,0,0,0)j D 2:

And so we can rewrite the right hand side of (2.18) as a weighted average over two
genera. This way it becomes

.1; 8; 8; 0; 0; 0/.M/D 16.1; 6; 6; 0; 0; 0/.M/

jAut(1,6,6,0,0,0)j C
16.2; 3; 6; 0; 0; 0/.M/

jAut(2,3,6,0,0,0)j ; (2.36)

with M 	 1 .mod 8/. Analogously, (2.30) may be stated as

3.1; 8; 8; 0; 0; 0/

�

M

32

�

D .�n1j3/16.1; 6; 6; 0; 0; 0/.M/

jAut(1,6,6,0,0,0)j
C .�n2j3/16.2; 3; 6; 0; 0; 0/.M/

jAut(2,3,6,0,0,0)j ; (2.37)

where M 	 1 .mod 8/, 3jM and n1, n2 are any integers prime to 3 that are
represented by x2 C 6y2 C 6z2, 2x2 C 3y2 C 6z2, respectively.

3 Ramanujan’s Modular Equations of Degree 5

and Associated Identities for Ternary Quadratic
Forms with Discriminant 400

If all we ever wanted was to show that

 .q/.�.q/2 � �.q5/2/ 2 P Œq�; (3.1)

we could be done in a second. Indeed, using the simple identity 5.x2 C y2/ D
.x � 2y/2 C .y C 2x/2, we find that for any n 2 N,

ˇ

ˇ

˚

.x; y/ 2 Z2 W x2 C y2 D n�ˇˇ �
ˇ

ˇ

˚

.x; y/ 2 Z2 W 5x2 C 5y2 D n�ˇˇ ;

from which .q/.�.q/2��.q5/2/ 2 P Œq� follows quickly. However, we want much
more. We ask for analogues of (2.18) and for associated theta-function identities.
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Where do we begin? How about if we begin with binary forms of discriminant�40.
Again, there are just two genera of binary quadratic forms with this discriminant:
the class of x2 C 10y2 and the class of 2x2 C 5y2. We now add 10z2 to both
forms to obtain ternaries x2 C 10y2 C 10z2, 2x2 C 5y2 C 10z2 of discriminant
400. We observe that 2x2 C 5y2 C 10z2 is the only form in its genus and that the
genus containing x2 C 10y2 C 10z2 contains one more non-diagonal ternary form
4x2 C 5y2 C 6z2 C 4zx.

It would be wrong to assume that we constructed all genera of ternary quadratic
forms of discriminant 400 this way. In fact, we are being very selective by picking
just two out of twelve possible genera of discriminant 400. For the interested reader,
we note that a table of genera of ternary quadratic forms, up to discriminant 1,000,
is available on Neil Sloane’s website at http://www.research.att.com/
njas/lattices/
Brandt 1.html and was computed by Alexander Schiemann. In particular, this table
includes relevant discriminants 144, 400, and 784. However, it should be noted that
Schiemann’s discriminants are the negative of ours. The reader should also be cau-
tioned that the integer sextuple defining each form is preceded by an identification
number and a colon, and that the identification number has no mathematical sig-
nificance. The present authors use a combination of Schiemann’s software, scripts
in a language called Magma, and C++ code written by the second author. For the
reader with no experience of ternary forms, we heartily recommend [7], especially
the tables on pages 111–113.

Again, it is easy to see that .�n1j5/ D 1 for any integer n1 represented by the
genus of x2 C 10y2 C 10z2, .n1; 5/ D 1 and that .�n2j5/ D �1 for any integer n2
represented by 2x2 C 5y2 C 10z2, .n2; 5/ D 1. Also

jAut(1,10,10,0,0,0)j D 16;

jAut(4,5,6,0,4,0)j D jAut(2,5,10,0,0,0)j D 8:
And so we anticipate two results similar to (2.36) and (2.37). Namely,

.1; 8; 8; 0; 0; 0/.M/ D .1; 10; 10; 0; 0; 0/.M/C 2.4; 5; 6; 0; 4; 0/.M/

C 2.2; 5; 10; 0; 0; 0/.M/; (3.2)

with M 	 1 .mod 8/, and

5.1; 8; 8; 0; 0; 0/

�

M

52

�

D .1; 10; 10; 0; 0; 0/.M/C 2.4; 5; 6; 0; 4; 0/.M/

� 2.2; 5; 10; 0; 0; 0/.M/; (3.3)

with M 	 1 .mod 8/, 5jM . To prove (3.2), we rewrite it as

S8;1.�.q/�.q
8/2 � �.q/�.q10/2 � 2�.q5/�.q/ � 2�.q2/�.q5/�.q10// D 0;

(3.4)
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where
�.q/ WD

X

x;z2Z

q4x
2C4xzC6z2

:

It is easy to see that
�.q/ D

X

x	z .mod 2/

qx
2C5z2

:

Hence,

�.q/ D �.q4/�.q20/C 4q6 .q8/ .q40/: (3.5)

Upon employing (2.4), (3.5) we obtain

S8;1.�.q/�.q
8/2/ D 2 .q/�.q/2;

S8;1.�.q/�.q
10/2/ D 2 .q/�.q5/2;

S8;1.�.q
2/�.q5/�.q10// D 8q2 .q2/ .q5/ .q10/;
S8;1.�.q

5/�.q// D S8;1.�.q5/�.q4/�.q20//
D S8;1.�.q5/�.q16/�.q20//
C S8;1.2q4�.q5/ .q32/�.q20//
D 4q3 .q5/ .q20/�.q2/C 4q .q4/ .q5/�.q10/:

This means that (3) and, as a result, (3.2) is equivalent to the following theta-function
identity

 .q/.�.q/2 � �.q5/2/ D 4q3 .q5/ .q20/�.q2/
C 4q .q4/ .q5/�.q10/C 8q2 .q2/ .q5/ .q10/:

(3.6)

It is easy to convert (3.6) into a modular equation of degree 5,

.m � 1/˛
1
8

ˇ
1
8

D .1C .1 � ˛/ 1
2 /

1
2 .1 � .1 � ˇ/ 1

2 /
1
2

C .1 � .1 � ˛/ 1
2 /

1
2 .1C .1 � ˇ/ 1

2 /
1
2 C 2.˛ˇ/ 1

4 : (3.7)

Here

m D �.q/2

�.q5/2
;

˛ D 1 � �.�q/
4

�.q/4
D 16q .q

2/4

�.q/4
;

ˇ D 1 � �.�q
5/4

�.q5/4
D 16q5 .q

10/4

�.q5/4
:
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Our proof of (3.7) hinges upon three powerful results established in [1],
pp. 285–286.

2.1� .˛ˇ/ 1
2 � ..1 � ˛/.1 � ˇ// 1

2 / D .m � 1/
�

�1C 5

m

�

; (3.8)

˛
1
4

ˇ
1
4

D 2mC r
m.m� 1/ ; (3.9)

4.˛3ˇ/
1
8 D r

m
C 3 � 5

m
; (3.10)

where r D .m.m2 � 2mC 5// 1
2 . We begin by rewriting (3.7) as

.m � 1/˛
1
8

ˇ
1
8

� 2.˛ˇ/ 1
4 D .1C .1 � ˛/ 1

2 /
1
2 .1 � .1 � ˇ/ 1

2 /
1
2

C .1 � .1 � ˛/ 1
2 /

1
2 .1C .1 � ˇ/ 1

2 /
1
2 : (3.11)

Then we square both sides to obtain

.m � 1/2 ˛
1
4

ˇ
1
4

� 4.m� 1/˛ 3
8ˇ

1
8 D 2.1� .˛ˇ/ 1

2 � ..1 � ˛/.1 � ˇ// 1
2 /:

Next, we use (3.8)–(3.10) to arrive at the trivial statement

.m � 1/.2mC r/
m

� .m � 1/.r C 3m � 5/
m

D .m � 1/
�

5

m
� 1

�

:

Hence, the proof of (3.7) is complete. Consequently, (3.2) is true, as desired.
To prove (3.3), we wish to consider another modular equation of degree 5

�

5

m
� 1

�

ˇ
1
8

˛
1
8

C 4.˛ˇ/ 1
4 D .1C .1 � ˛/ 1

2 /
1
2 .1 � .1 � ˇ/ 1

2 /
1
2

C .1 � .1 � ˛/ 1
2 /

1
2 .1C .1 � ˇ/ 1

2 /
1
2 : (3.12)

Comparing it with (3.11), we see that

.m� 1/˛
1
8

ˇ
1
8

D
�

5

m
� 1

�

ˇ
1
8

˛
1
8

C 4.˛ˇ/ 1
4 :

Next, we multiply both sides by ˛
1
8

ˇ
1
8

to obtain

.m � 1/˛
1
4

ˇ
1
4

D 5

m
� 1C 4.˛3ˇ/ 1

8 :



Ternary Quadratic Forms, Modular Equations, Positivity 225

Employing (3.9)–(3.10), we arrive at the trivial statement

2mC r
m

D 5

m
� 1C r

m
C 3 � 5

m
:

This completes the proof of (3.12). To proceed further, we rewrite (3.12) in terms of
theta-functions as:

5 .q5/�.q5/2 �  .q5/�.q/2 D 4 .q/ .q4/�.q10/� 8q .q/ .q2/ .q10/
C 4q2 .q/ .q20/�.q2/: (3.13)

Using (2.4) and (3.5) and some elbow grease, we can show that (3.13) is equiva-
lent to

S40;25.�.q/�.q
10/2 C 2�.q5/�.q/� 2�.q2/�.q5/�.q10// D 10 .q5/�.q5/2:

This implies that

.1; 10; 10; 0; 0; 0/.M/C 2.4; 5; 6; 0; 4; 0/.M/� 2.2; 5; 10; 0; 0; 0/.M/D
5

ˇ

ˇ

ˇ

ˇ

�

.x; y; z/ 2 Z3 W 5x2 C 5y2 C 5.1C z/z

2
D n

 ˇ

ˇ

ˇ

ˇ

;

with M D 40n C 25. The last equation can be easily recognized as (3.3). As
before, we can extend (3.2) and (3.3) by using 1

3
.1; 1; 1; 0; 0; 0/.M/ in place of

.1; 8; 8; 0; 0; 0/.M/ as

1

3
.1; 1; 1; 0; 0; 0/.M/D .1; 10; 10; 0; 0; 0/.M/

C 2.4; 5; 6; 0; 4; 0/.M/C 2.2; 5; 10; 0; 0; 0/.M/; (3.14)

with M 	 1; 2 .mod 4/, and

5

3
.1; 1; 1; 0; 0; 0/

�

M

52

�

D .1; 10; 10; 0; 0; 0/.M/

C 2.4; 5; 6; 0; 4; 0/.M/� 2.2; 5; 10; 0; 0; 0/.M/;

(3.15)

with M 	 1; 2 .mod 4/, 5jM . While we have to suppress the details for the sake
of brevity, we cannot resist displaying four relevant theta-function identities.

 .q2/.�.q/2 � �.q5/2/ D 2q .q5/2�.q/C 2q .q10/�.q2/�.q10/
C 8q4 .q4/ .q10/ .q20/:
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This one proves the case M 	 1 .mod 4/ in (3.14). Analogously,

 .q2/2�.q/ D q2 .q10/2�.q/C 2q .q2/ .q5/2
C q2 .q20/�.q2/�.q5/C  .q4/�.q5/�.q10/

proves the case M 	 2 .mod 4/ in (3.14). Finally,

5q .q10/�.q5/2 D q .q10/�.q/2 C 2 .q/2�.q5/
� 8q3 .q2/ .q4/ .q20/ � 2 .q2/�.q2/�.q10/

and

5q2 .q5/2 .q10/ D  .q2/2�.q5/C 2q .q/2 .q10/
�  .q4/�.q/�.q10/ � q2 .q20/�.q/�.q2/

are required to prove (3.15).

4 Ternary Forms with Discriminant 784

Here we will prove Theorem 1.1 and Theorem 1.2, stated in the Introduction. It
seems that the identities for theta functions in (1.14) and (1.15) correspond to mod-
ular equations of mixed degree 21. While Ramanujan had some results for modular
equations of this degree [1], we could not find enough relations to handle our for-
mulas (1.14) and (1.15). And so, it is with some reluctance that we resort to routine
modular function techniques. The necessary background theory on modular func-
tions and forms may be found in Rankin’s book [13]. Of central importance to us is
the valence formula (p.98, [13]).

We begin by dividing both sides of (1.14) by  .q/�.q/2. Making use of (1.7),
(1.8), (1.9), (1.10), and (1.12) we end up with a simple identity for four �-quotients

g1.z/C 4g2.z/C 8g3.z/C 8g4.z/ D 1; (4.1)

where

g1.z/ WD �.14z/10�.4z/4�.z/4

�.28z/4�.7z/4�.2z/10
;

g2.z/ WD �.14z/7�.4z/6�.z/5

�.28z/2�.7z/3�.2z/13
;

g3.z/ WD �.42z/5�.28z/2�.6z/2�.4z/4�.z/5

�.84z/2�.21z/2�.14z/�.3z/�.2z/12
;

g4.z/ WD �.84z/�.28z/�.21z/�.14z/�.4z/4�.3z/2�.z/4

�.42z/�.7z/�.6z/�.2z/11
:
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Clearly, all our �-quotients in (4.1) are of the form

f .z/ D
Y

ıjn
�.ız/rı ;

where n is some positive integer (84 in our case) and all ı � 1, rı are integers. The
following result was proved by Morris Newman [12].

Theorem 4.1. The �-quotient f .z/ is a modular function on

�0.n/ WD
� 


a b

c d

�

2 SL2.Z/ W c 	 0 .mod n/



;

if the following four conditions are met

X

ıjn
rı D 0;

X

ıjn
ırı 	 0 .mod 24/;

X

ıjn

nrı

ı
	 0 .mod 24/;

Y

ıjn
ırı is a rational square.

It is now straightforward to verify that g1.z/; g2.z/; g3.z/; and g4.z/ are modular
functions on �0.84/. Consequently,

h.z/ WD g1.z/C 4g2.z/C 8g3.z/C 8g4.z/ � 1

is also a modular function on �0.84/. To proceed, we will need the following obser-
vation from [3].

Theorem 4.2. If n is square free integer, then a complete set of inequivalent cusps
for �0.4n/ is f1=s W sj4ng.

And so, k [ f 1
84
g is a complete set of 12 inequivalent cusps of �0.84/ where

k WD f1; 1=2; 1=6; 1=4; 1=12; 1=7; 1=42; 1=21; 1=3; 1=14; 1=28g. From the defini-
tion of �.z/, it follows that the �-quotients have no zeros or poles in the upper-half
plane (i.e., Im.z/ > 0). Ligozat [11] calculated the order of the �-quotient f .z/ at
the cusps of �0.n/.

Theorem 4.3. If an �-quotient f is a modular function on �0.n/, then at the cusp
b
c

with gcd.b; c/ D 1

ORD

�

f;
b

c

�

D n

24 gcd.n; c2/

X

ıjn

rı gcd.c; ı/2

ı
:
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Table 1 Orders of the cusps
of �0.84/

CUSP O1.s/ O2.s/ O3.s/ O4.s/ Oh.s/

1 0 0 0 0 0

1/2 �9 �12 �12 �12 �12
1/6 �3 �4 �1 �4 �4
1/4 0 3 �1 �1 �1

1/12 0 1 2 0 0

1/7 0 0 0 0 0

1/42 3 2 5 0 0

1/21 0 0 0 3 0

1/3 0 0 0 5 0

1/14 9 6 0 0 0

1/28 0 3 5 5 0

This way we obtain Table 1, where Oh.s/ is a lower bound for ORD.h; s/ and
Oi .s/ WD ORD.gi ; s/; i D 1; 2; 3; 4. To prove (1.14) and (4.1), we must show that
h.z/ D 0. The valence formula implies that (unless h is a constant)

X

s2k
ORD.h; s/C ORD.h; 1=84/ � 0:

Using data collected in Table 1 and keeping in mind that cusp 1=84 is equivalent to
i1, we infer that (unless h is constant)

�17CORD.h; i1/ � 0:

But direct inspection shows that ORD.h; i1/ > 17. That is, if one expands h in
powers of q, then one finds that the first 18 coefficients in this expansion are zero.
Hence, one arrives at a contradiction. This contradiction implies that h D 0, as
desired. This completes our proof of (1.14). Obviously, we could have proved (1.15)
in a similar fashion. Instead, we choose a more painful way because there is nothing
like pain for achieving excellence. In any event, our approach will shed some extra
light on the relation between (1.14) and (1.15). It is not hard to verify (in term by
term fashion) that

8q2 .q3/ .q14/�.q21/C 8q4 .q14/f .q; q2/f .q7; q35/ D
C.q/.8q2 .q2/ .�q21/�.�q3/C 8 .q2/f .�q;�q5/f .�q7; q14//;

(4.2)

where

C.q/ D q2E.q
28/E.q14/E.q2/2

E.q7/E.q4/2E.q/
:
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All one needs is a simple formula

E.�q/ D E.q2/3

E.q4/E.q/
:

We will prove shortly that

 .q/.�.q/2 � �.q7/2/ � 4q .q2/ .q7/�.q7/ D
C.q/. .�q7/.7�.�q7/2 C �.�q/2/ � 4q .�q/ .q14/�.�q//: (4.3)

Next, we rewrite (1.14) as

 .q/.�.q/2 � �.q7/2/� 4q .q2/ .q7/�.q7/ D
8q2 .q3/ .q14/�.q21/C 8q4 .q14/f .q; q2/f .q7; q35/; (4.4)

and use (4) on the right and (4.3) on the left to get

C.q/. .�q7/.7�.�q7/2 C �.�q/2/� 4q .�q/ .q14/�.�q// D
C.q/.8q2 .q2/ .�q21/�.�q3/C 8 .q2/f .�q;�q5/f .�q7; q14//:

(4.5)

Dividing both sides by C.q/ and replacing q by �q, we get (1.15).
But what about (4.3)? We start by rewriting it as a modular equation of degree 7.

Let m be a multiplier of degree 7, ˇ have degree 7 over ˛ and t be defined by

t D .˛ˇ/1=8:
Then

m � 1 � 2t D 7

mt2
ˇ

7
12 .1 � ˇ/ 7

12

˛
1

12 .1 � ˛/ 1
12

C 1

t2
ˇ

7
12 .1 � ˇ/ 7

12

˛
1

12 .1 � ˛/ 1
12

.1 � ˛/ 1
2

.1 � ˇ/ 1
2

� 2 ˇ
t4
˛

7
24 .1� ˛/ 7

24

ˇ
1

24 .1� ˇ/ 1
24

: (4.6)

The proof of the following modular equations of degree 7 can be found in
(p. 314, [1])

.1 � ˛/ 1
8 .1 � ˇ/ 1

8 D 1 � t; (4.7)

7.1 � 2t/
m

C 1 D 4 ˛
7

24 .1 � ˛/ 7
24

ˇ
1

24 .1 � ˇ/ 1
24

; (4.8)

.m.2t � 1/C 1/2
16

D ˇ
7

12 .1 � ˇ/ 7
12

˛
1

12 .1 � ˛/ 1
12

: (4.9)
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Observe that (4.7) implies that

.1 � ˛/ 1
2

.1 � ˇ/ 1
2

D .1 � t/4
1 � ˇ :

And so (4.6) becomes

m � 1 � 2t C ˇ
7.1�2t/
m
C 1

2t4
�
�

7

m
C .1 � t/4

1 � ˇ
�

.m.2t � 1/C 1/2
16t2

D 0: (4.10)

Next, we recall the (19.19) in [1]

m D t � ˇ
t.1 � t/.1 � t C t2/ :

We use it to eliminate m from (4.10) and obtain after some algebra that

.ˇ2 � ˇ..1C t8/ � .1 � t/8/C t8/P.t; ˇ/
Q.t; ˇ/

D 0; (4.11)

where P.t; ˇ/ and Q.t; ˇ/ are some polynomials in t and ˇ. But ˇ and ˛ are roots
of the quadratic equation

x2 � x..1C t8/ � .1 � t/8/C t8 D 0;

as observed on page 316 in [1]. Hence, the proof of (4.3) is complete. Consequently,
(1.15) is true.

We now are ready to prove Theorem 1.2. Clearly, (1.16) is equivalent to

S8;1
�

�.q/�.q8/2 � �.q/�.q14/2 � 2�.q2/�.q7/�.q14/� 4�.q14/u.q/� D 0;
(4.12)

where
u.q/ WD

X

x;y2Z

q3x
2C2xyC5y2

:

It is not hard to check that

u.q/ D
X

x	y .mod 3/

q
x2

C14y2

3 :

Hence,

u.q/ D �.q3/�.q42/C 2q5f .q; q5/f .q14; q70/: (4.13)
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We shall also require

S8;1.q
3f .q; q5/f .q14; q70// D q2f .q; q2/f .q7; q35/: (4.14)

Using (2.4) together with (4.13) and (4.14), we deduce that

S8;1.�.q
14/u.q// D 2q .q14/S8;1.q6.�.q3/�.q42/C 2q5f .q; q5/f .q14; q70///

D 4q2 .q14/ .q3/�.q21/C 4q4 .q14/f .q; q2/f .q7; q35/:
(4.15)

Next, with the aid of (2.4), we verify that

S8;1.�.q/�.q
14/2/ D 2 .q/�.q7/2; (4.16)

S8;1.�.q
2/�.q7/�.q14// D 4q .q2/ .q7/�.q7/: (4.17)

Combining (2.14), (4.12), and (4.15)–(4.17) we end up with (1.14). Hence, the proof
of (1.16) is complete.

Our proof of (1.17) is analogous. We verify that

S56;49.�.q/�.q
14/2/ D 2 .q7/�.q/2;

S56;49.�.q
2/�.q7/�.q14// D 4q .q/ .q14/�.q/;

S56;49.�.q
14/u.q// D 4q2 .q2/ .q21/�.q3/C 4 .q2/f .q; q5/f .q7; q14/:

These results enable us to convert (1.15) into

S56;49
���.q/�.q14/2 � 2�.q2/�.q7/�.q14/C 4�.q14/u.q/� D 14 .q7/�.q7/2:

Hence, we have

� .1; 14; 14; 0; 0; 0/.M/� 2.2; 7; 14; 0; 0; 0/.M/C 4.3; 5; 14; 0; 0; 2/.M/D
7

ˇ

ˇ

ˇ

ˇ

�

.x; y; z/ 2 Z3 W 7x.x C 1/
2

C 7y2 C 7z2 D n
 ˇ

ˇ

ˇ

ˇ

D

7
ˇ

ˇ

ˇ

n

.x; y; z/ 2 Z3 W x2 C 8y2 C 8z2 D 1C 8n
7

oˇ

ˇ

ˇ ; M D 56nC 49:

The truth of (1.17) is now transparent. Again, we can extend (1.14),(1.15) by using
1
3
.1; 1; 1; 0; 0; 0/.M/ instead of .1; 8; 8; 0; 0; 0/.M/. In this way we have

1

3
.1; 1; 1; 0; 0; 0/.M/D .1; 14; 14; 0; 0; 0/.M/C 2.2; 7; 14; 0; 0; 0/.M/

C 4.3; 5; 14; 0; 0; 2/.M/; (4.18)
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with M 	 1; 2 .mod 4/, and

7

3
.1; 1; 1; 0; 0; 0/

�

M

72

�

D �.1; 14; 14; 0; 0; 0/.M/� 2.2; 7; 14; 0; 0; 0/.M/

C 4.3; 5; 14; 0; 0; 2/.M/;

(4.19)

with M 	 1; 2 .mod 4/, 7jM . We limit ourselves to a few remarks. The theta-
function identities

 .q2/.�.q/2 � �.q7/2/ D 4q2 .q4/ .q14/�.q14/C 4q5�.q2/ .q14/ .q28/
C 8q4 .q6/ .q7/ .q21/
C 4q .q7/f .q2; q4/f .q7; q14/;

and

�.q/. .q2/2 � q3 .q14/2/ D q3 .q28/�.q2/�.q7/C  .q4/�.q7/�.q14/
C 2q3 .q7/ .q21/�.q3/
C 2q .q7/f .q; q5/f .q7; q14/

imply the cases M 	 1 .mod 4/ and M 	 2 .mod 4/ in (4.18), respectively.
Analogously,

7q .q7/2�.q7/ D 8q5 .q/ .q3/ .q42/C 4 .q/f .q; q2/f .q14; q28/
� q�.q/2 .q14/� 4 .q2/ .q4/�.q14/
� 4q3 .q2/ .q28/�.q2/

and

7q3 .q7/2 .q14/ D 2 .q/ .q3/�.q21/C 2q2 .q/f .q7; q35/f .q; q2/
�  .q2/2�.q7/�  .q4/�.q/�.q14/ � q3 .q28/�.q/�.q2/

can be used to prove both cases in (4.19).
We conclude this section by showing how to relate the ternaries on the right

of (1.16) and (1.17) to binaries with discriminant �56. Again, there are just two
genera of binary quadratic forms with this discriminant. The first one contains the
class of x2 C 14y2 and the class of 2x2 C 7y2. The second one contains the class
of 3x2 C 2xy C 5y2 and the class of 3x2 � 2xy C 5y2. We now add 14z2 to both
forms in the first genus of binary quadratic forms to obtain our first genus of ternary
quadratic forms of discriminant 784

fx2 C 14y2 C 14z2; 2x2 C 7y2 C 14z2g:
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Next, we add 14z2 to the first forms in the second genus of binary quadratic forms
to obtain our second genus of ternary quadratic forms of discriminant 784

f3x2 C 2xy C 5y2 C 14z2g:
Both these genera are complete as described, no other forms need be added. As

a result, 3x2C 2xyC 5y2C 14z2 is obviously regular. Also, it is easy to verify that

16

jAut.1; 14; 14; 0; 0; 0/j D 1;

16

jAut.2; 7; 14; 0; 0; 0/j D 2;

16

jAut.3; 5; 14; 0; 0; 2/j D 4:

And so (1.16) can be stated as

.1; 8; 8; 0; 0; 0/.M/D 16.1; 14; 14; 0; 0; 0/.M/

jAut.1; 14; 14; 0; 0; 0/j C
16.2; 7; 14; 0; 0; 0/.M/

jAut.2; 7; 14; 0; 0; 0/j

C 16.3; 5; 14; 0; 0; 2/.M/

jAut.3; 5; 14; 0; 0; 2/j ;

with M 	 1 .mod 8/. The right hand side of this identity is a weighted average. In
effect, this is what would occur if one extended Siegel’s fundamental theorem to a
sum over more than one genus. Moreover, it is easy to see that

.�n1j7/ D �1;

for any integer n1 represented by the genus of x2 C 14y2 C 14z2, .n1; 7/ D 1 and
that

.�n2j7/ D 1;
for any integer n2 represented by 3x2C5y2C14z2C2xy, .n2; 7/ D 1. This allows
us to rewrite (1.17) as

7.1; 8; 8; 0; 0; 0/

�

M

72

�

D .�n1j7/
�

16.1; 14; 14; 0; 0; 0/.M/

jAut.1; 14; 14; 0; 0; 0/j

C 16.2; 7; 14; 0; 0; 0/.M/

jAut.2; 7; 14; 0; 0; 0/j
�

C .�n2j7/16.3; 5; 14; 0; 0; 2/.M/

jAut.3; 5; 14; 0; 0; 2/j ;

with M 	 1 .mod 8/, 7jM .
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5 Ternary Forms with Discriminant 3600

Up to now, all our theorems involved certain ternary forms with disciminant
16p2 for prime p D 3; 5; 7. In this section, we consider ternaries with discrim-
inant 16S2 for composite S D 15. This case has all of the ingredients of the general
case to be discussed later. Again, we start with the binaries with discriminant�120.
There are four genera with this discriminant and each has a single class per genus:
fx2C 30y2g, f3x2C 10y2g, f5x2C 6y2g, f2x2C 15y2g. Following a well-trodden
path, we add 30z2 to each of these forms to get four ternary forms with discriminant
3; 600. Next, we extend each ternary form to a genus of ternary quadratic forms. In
this way, we obtain four genera of ternary quadratic forms with discriminant 3; 600:

fx2 C 30y2g ! TG1 WD fx2 C 30y2 C 30z2; 6x2 C 10y2 C 15z2g;
f3x2 C 10y2g ! TG2 WD f3x2 C 10y2 C 30z2g;

f5x2C6y2g ! TG3 WDf5x2C6y2C30z2; 9x2C11y2C11z2C2yzC6zxC6xyg;
f2x2 C 15y2g ! TG4 WD f2x2 C 15y2 C 30z2; 5x2 C 12y2 C 18z2 C 12yzg:

We check that
16

jAut.1; 30; 30; 0; 0; 0/j D 1;

16

jAut.6; 10; 15; 0; 0; 0/j D
16

jAut.3; 10; 30; 0; 0; 0/j D 2

16

jAut.5; 6; 30; 0; 0; 0/j D
16

jAut.2; 15; 30; 0; 0; 0/j D
16

jAut.5; 12; 18; 12; 0; 0/j D 2;

16

jAut.9; 11; 11; 2; 6; 6/j D 4:

We now take Siegel’s weighted average over the four genera above. In this way, we
are led to

.1; 8; 8; 0; 0; 0/.M/D .1; 30; 30; 0; 0; 0/.M/C 2.6; 10; 15; 0; 0; 0/.M/

C 2.3; 10; 30; 0; 0; 0/.M/C 2.5; 6; 30; 0; 0; 0/.M/

C 4.9; 11; 11; 2; 6; 6/.M/C 2.2; 15; 30; 0; 0; 0/.M/

C 2.5; 12; 18; 12; 0; 0/.M/; (5.1)

with M 	 1 .mod 8/. This can be stated compactly as

.1; 8; 8; 0; 0; 0/.M/D
4
X

iD1
Wi .M/; (5.2)
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with M 	 1 .mod 8/. Here,

Wi .M/ WD 16
X

f 2TGi

Rf .M/

jAut.f /j ; i D 1; 2; 3; 4;

and Rf .M/ denotes the number of representations of M by f . The associated
theta-function identity is as follows:

 .q/�.q/2 D  .q/�.q15/2 C 4q3 .q10/ .q15/�.q3/C 4q4 .q3/ .q30/�.q5/
C 8q5 .q5/ .q6/ .q30/C 4q .q9/�.q45/2
C 8q11 .q9/f .q15; q75/2 C 8q5�.q45/f .q3; q6/f .q15; q75/
C 4q10f .q3; q6/f .q15; q75/2 C 4q2 .q2/ .q15/�.q15/
C 4q8 .q5/ .q60/�.q6/C 4q2 .q5/ .q12/�.q30/: (5.3)

Using (5.3), we easily see that

 .q/.�.q/2 � �.q15/2/ 2 P Œq�:
To prove (5.3), we divide both sides by  .q/�.q/2 and use (1.7)–(1.10), (1.12) to
end up with an identity for eleven �-quotients

1 D �.30z/10�.4z/4�.z/4

�.60z/4�.15z/4�.2z/10
C 4 �.30z/2�.20z/2�.6z/5�.4z/4�.z/5

�.15z/�.12z/2�.10z/�.3z/2�.2z/12

C 4�.60z/2�.10z/5�.6z/2�.4z/4�.z/5

�.30z/�.20z/2�.5z/2�.3z/�.2z/12
C 8�.60z/2�.12z/2�.10z/2�.4z/4�.z/5

�.30z/�.6z/�.5z/�.2z/12

C 4 �.90z/10�.18z/2�.4z/4�.z/5

�.180z/4�.45z/4�.9z/�.2z/12

C 8�.180z/2�.45z/2�.30z/4�.18z/2�.4z/4�.z/5

�.90z/2�.60z/2�.15z/2�.9z/�.2z/12

C 8 �.90z/4�.30z/2�.9z/2�.6z/�.4z/4�.z/5

�.180z/�.60z/�.45z/�.18z/�.15z/�.3z/�.2z/12

C 4�.180z/2�.45z/2�.30z/4�.9z/2�.6z/�.4z/4�.z/5

�.90z/2�.60z/2�.18z/�.15z/2�.3z/�.2z/12

C 4 �.30z/7�.4z/6�.z/5

�.60z/2�.15z/3�.2z/13
C 4�.120z/2�.12z/5�.10z/2�.4z/4�.z/5

�.60z/�.24z/2�.6z/2�.5z/�.2z/12

C 4 �.60z/5�.24z/2�.10z/2�.4z/4�.z/5

�.120z/2�.30z/2�.12z/�.5z/�.2z/12
: (5.4)

To verify the last identity, we use the Newman theorem stated in the last section to
show that all eleven quotients on the right of (5.4) are modular functions on�0.360/.
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Next, let H denote the right side of (5.4) minus 1. Obviously, H is also a modular
function on �0.360/:We will expandH in powers of q to confirm thatH D 0: Just
how many terms to calculate is determined by the Ligozat theorem. In this regard,
we note thatK[1=360 is a complete set of 32 inequivalent cusps of �0.360/. Here,

K WD
�

1;
1

2
;
1

3
;
2

3
;
1

4
;
1

5
;
1

6
;
5

6
;
1

8
;
1

9
;
1

10
;
1

12
;
5

12
;
1

15
;
2

15
;
1

18
;
1

20
;
1

24
;

5

24
;
1

30
;
11

30
;
1

36
;
1

40
;
1

45
;
1

60
;
11

60
;
1

72
;
1

90
;
1

120
;
5

120
;
1

180



:

Table 2 Lower bounds for orders at the cusps of �0.360/

CUSP 1
1

2

1

3

2

3

1

4

1

5

1

6

5

6

1

8

1

9

OH .s/ 0 �54 0 0 �5 0 �6 �6 �5 0

CUSP
1

10

1

12

5

12

1

15

2

15

1

18

1

20

1

24

5

24

1

30

OH .s/ �6 0 0 0 0 �6 �1 0 0 0

CUSP
11

30

1

36

1

40

1

45

1

60

11

60

1

72

1

90

1

120

5

120

1

180

OH .s/ 0 0 �1 0 0 0 0 0 0 0 0

From Ligozat’s theorem, we derive the results in Table 2, where OH .s/ is a lower
bound for ORD.H; s/. The valence formula says that (unless H is a constant)

X

s2K
ORD.H; s/C ORD

�

H;
1

360

�

� 0:

Using data collected in Table 2 and keeping in mind that the cusp 1=360 is equivalent
to i1, we deduce that (unlessH is constant)

�90C ORD.H; i1/ � 0: (5.5)

We use Maple to calculate 91 coefficients of the Fourier expansion ofH . In this way
we see that ORD.H; i1/ > 90, and thus (5.5) is contradicted. Hence, H D 0. The
proof of (5.3) and (5.4) is now complete. In exactly the same mechanical manner,
we can prove three companion identities:

3 .q3/�.q3/2 D 4q .q5/ .q6/�.q5/C 8q3 .q2/ .q10/ .q15/
C 4 .q3/�.q15/2 C 4q3f .q; q2/f .q5; q25/2
C 4q2 .q4/ .q15/�.q10/C 4q4 .q15/ .q20/�.q2/
�  .q3/�.q5/2 � 4q4 .q5/ .q30/�.q/
� 4q .q/ .q10/�.q15/; (5.6)
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5 .q5/�.q5/2 D  .q5/�.q3/2 C 4 .q2/ .q3/�.q15/
C 8q4 .q/ .q6/ .q30/C 4q5�.q9/2 .q45/
C 8q7f .q3; q15/2 .q45/C 8qf .q15; q30/f .q3; q15/�.q9/
C 4q2f .q3; q15/2f .q15; q30/� 4q2 .q6/ .q15/�.q/
� 4q7 .q/ .q60/�.q6/ � 4q .q/ .q12/�.q30/
� 4q�.q3/ .q3/ .q10/; (5.7)

15q .q15/�.q15/2 D �q .q15/�.q/2 � 4 .q/ .q6/�.q5/
C 4 .q2/ .q5/�.q3/C 4f .q; q5/2f .q5; q10/
C 4q .q15/�.q3/2 C 8q .q2/ .q3/ .q10/
� 4q3 .q/ .q30/�.q/� 4 .q3/ .q4/�.q10/
� 4q2 .q3/ .q20/�.q2/: (5.8)

Moreover, using some elbow grease, one checks that the above is just a generating
function form of the following statements.

3.1; 8; 8; 0; 0; 0/

�

M

32

�

D �W1.M/�W2.M/CW3.M/CW4.M/; (5.9)

with M 	 1 .mod 8/, 3jM ,

5.1; 8; 8; 0; 0; 0/

�

M

52

�

D W1.M/ �W2.M/CW3.M/�W4.M/; (5.10)

with M 	 1 .mod 8/, 5jM ,

15.1; 8; 8; 0; 0; 0/

�

M

152

�

D �W1.M/CW2.M/CW3.M/�W4.M/; (5.11)

with M 	 1 .mod 8/, 15jM . To state (5.9)–(5.11) in an economical manner, we
need to develop appropriate notation. Let ni be some integer represented by TGi ,
such that gcd.ni ;w/ D 1 for some 1 � w, wj15. Next, we define �.i;w/ as

�.i;w/ WD .�ni jw/:
We also require that

�.i; 1/ WD 1:
It is important to realize that this definition does not depend on one’s choice of ni .
We are now well-equipped to combine (5.2), (5.9)–(5.11) into the single potent
statement

w.1; 8; 8; 0; 0; 0/

�

M

w2

�

D
4
X

iD1
�.i;w/Wi .M/; (5.12)
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where w D 1; 3; 5; 15 and M 	 1 .mod 8/, wjM . As before one can extend (5.12)
by using 1

3
.1; 1; 1; 0; 0; 0/.M/ instead of .1; 8; 8; 0; 0; 0/.M/

w.1; 1; 1; 0; 0; 0/

�

M

w2

�

D 3
4
X

iD1
�.i;w/Wi .M/; (5.13)

where w D 1; 3; 5; 15 and M 	 1; 2 .mod 4/, wjM . We forgo the proof.

6 S -Genus

Let S be an odd and square free number and let S D p1p2 : : : pr be the prime
factorization of S . In this section, we introduce (what we believe to be new) a notion
of S -genus of ternary forms. To this end, we define an injective map from genera of
binary quadratic forms of discriminant�8S to genera of ternary quadratic forms of
discriminant 16S2. According to Theorem 3.15 in [6], there are exactly 2r of these
genera of binary quadratic forms BG1; : : : ;BG2r . Let ax2 C bxy C cy2 be some
quadratic form in BGi , with some 1 � i � 2r . We convert it into a ternary form

f .x; y; z/ WD ax2 C jbjxy C cy2 C 2Sz2:

Next, we extend f to a genus TGi that contains f . It can be shown that the map

BGi ! TGi ; i D 1; 2; : : : ; 2r

does not depend on what specific binary form from BGi we decided to start with.
We can now define the S -genus as a union

S -genus WD TG1 [ TG2 [ : : : [ TG2r : (6.1)

We have an elementary proof that the TGi ’s are disjoint, using all the special fea-
tures of the construction. Put briefly, any possible r-tuple with entries ˙1 occurs
as ..qjp1/; .qjp2/; :::; .qjpr // for some BGk and an odd prime q represented by
a form in BGk : Therefore, for some i ¤ j; there is a prime pjS such that the
forms in, say, BGi represent only quadratic residues .mod p/ among numbers
not divisible by p; while the forms in BGj represent only quadratic nonresidues
.mod p/ among numbers not divisible by p: This separation is carried over to TGi
and TGj ; showing disjointness. We did wonder if the structure of the S -genus
were really required for the proof, and the answer seems to be yes. It is easy to
show this much: if g1.x; y/ and g2.x; y/ are any positive primitive binary quadratic
forms of the same discriminant and the same genus, and N is any positive integer,
then g1.x; y/ C N z2 and g2.x; y/ C N z2 are in the same genus. The converse is
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not always true; however, as shown in this example kindly supplied by Wai Kiu
Chan, the binaries x2C 12y2 and 3x2C 4y2 are in distinct genera, but the ternaries
x2 C 12y2 C 2z2 and 3x2 C 4y2 C 2z2 are in the same genus.

Let ni be some integer represented by TGi such that gcd.ni ;w/ D 1 for some
1 � w, wjS . For any positive divisor w of S , we define �.i;w/ as

�.i;w/ WD .�ni jw/; (6.2)

and for that matter we always take �.i; 1/ WD 1. Again, we remark that this definition
does not depend on our choice of ni . For those with some background in quadratic
forms, we comment that for the prime divisor p of S , �.i; p/ D 1 if and only if the
forms of TGi are isotropic over the p-adic numbers.

We will be using the mass of a genus. As our quadratic forms are positive, each
has only a finite set of integral automorphs. On the other hand, any form is equivalent
to an infinite set of forms, so when we start with a genusG and define

Mass.G/ WD
X

f 2G

1

jAut.f /j

we emphasize that the summation is understood to be over the (finite) set of equiva-
lence classes inG: Furthermore, for ternary forms we allow our automorphs to have
determinants˙1:

We propose that for i D 1; 2; : : : ; 2r

Mi D
r
Y

jD1

pj C �.i; pj /
2

; (6.3)

where

Mi WD
X

f 2TGi

16

jAut.f /j D 16Mass.TGi /: (6.4)

This seems to generalize Lemma 6.6 on page 152 in [4].
One way to see why the S -genus is such an appealing construct is to consider a

mass for the S -genus, defined by

M.S -genus/ WD
X

f 2S-genus

16

jAut.f /j D M1 C � � � CM2r : (6.5)

Remarkably, (6.3) together with the orthogonality relation

2r
X

iD1
�.i;w/ D 0; 2 � w;wjS: (6.6)
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implies that

M.S -genus/ D S: (6.7)

Thus, 2r genera conspire to produce a startling simplification. Perhaps, more im-
portant is the fact that all our identities for ternary forms can be stated in laconic
fashion as

.1; 1; 1; 0; 0; 0/.M/D
X

f 2S-genus

48Rf .M/

jAut.f /j ; (6.8)

with M 	 1; 2 .mod 4/.
Recall that

.a; b; c; d; e; f /.N / WDjf.x; y; z/ 2 Z3 Wax2Cby2Ccz2CdyzCezxCf xy D N gj;

and note that this is 0 if N is not an integer. For any 2 � w;wjS

w.1; 1; 1; 0; 0; 0/

�

M

w2

�

D 3
2r
X

iD1
�.i;w/Wi .M/; (6.9)

with M 	 1; 2 .mod 4/, wjM and

Wi .M/ WD 16
X

f 2TGi

Rf .M/

jAut.f /j : (6.10)

Note that (6.10) allows us to rewrite (6.8) as

.1; 1; 1; 0; 0; 0/.M/D 3
2r
X

iD1
Wi .M/;

with M 	 1; 2 .mod 4/. We propose that (6.8) and (6.9) hold true for any square
free odd S .

We pause at this point to describe orthogonality relations a bit more fully.
First, it follows from properties of the Jacobi symbol that if uvjS , then �.i; uv/ D
�.i; u/�.i; v/: Next, the earlier brief proof that the TGis are disjoint shows us that
for any i ¤ j , there is a prime pjS such that �.i; p/�.j; p/ D �1: In turn, for
i ¤ j this gives an easy proof that

P

wjS �.i;w/�.j;w/ D 0: So, fixing the divi-
sors wjS in increasing order w1 D 1; : : : ;w2r D S and thereby constructing a 2r

by 2r matrix called E with entries Eij D �.j;wi / and transpose E 0; we find that
EE 0 D E 0E D 2rI:

Now, suppose that we have some M 	 1; 2 .mod 4/ for which each pi k M
so that S jM and gcd.S2;M / D S; but more to the point if wjS and w > 1, then
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M ¤ 0 .mod w2/: So both sides of (6.9) are 0 in this case. Make a column vector
W with the entries W1.M/;W2.M/; : : : ;W2r .M/; we see that the vector EW has
a nonzero entry in the first position but 0 everywhere else. But if we take a column
vector T with all entries equal to 1; it is also true that the vector ET has a nonzero
entry in the first position but 0 everywhere else. As E is nonsingular, it follows that
vectorsW and T are linearly dependent, so for these values of M ,

W1.M/ D W2.M/ D � � � D W2r .M/:

We also point out that for M 	 1; 2 .mod 4/ but gcd.S;M/ D 1, only a single
genus in the S -genus is allowed to have forms that represent M . This will be the
genus TGi that gives �.i; pj / D .�M jpj / for all j:What is remarkable about (6.8)
is that it continues to be true as gcd.M; S/ increases, and indeed as M becomes
divisible by high powers of several pi . The proofs of (6.3), (6.8), and (6.9) will be
given elsewhere.
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Summary The positive integers n such that nŠ is a sum of three squares have a
density which is equal to 7=8. The key point for the proof of this result is to show that
the above sequence is automatic and to study the matrix associated to the underlying
automaton.
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1 Introduction

In this paper, we prove the following result.

Theorem 1. The estimate

#fn � x W nŠ is a sum of three squaresg D 7x=8CO.x2=3/
holds.

Our proof is based on the so-called automatic sequences. We refer the reader to
the excellent monography [1] for the relevant definitions and results that we use in
this paper.

J.-M. Deshouillers
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For a positive integer n, we let

� �.n/ be the exponent of 2 in the factorization of nŠ;
� p.n/ 2 f0; 1g be the parity of �.n/; i.e., p.n/ is chosen such that �.n/ 	 p.n/

.mod 2/;
� "1.n/; "2.n/ 2 f0; 1g be such that

nŠ 	 2�.n/ C "1.n/2�.n/C1 C "2.n/2�.n/C2 .mod 2�.n/C3/:

In other words, we can write nŠ in base 2 as

nŠ D � � � "2.n/"1.n/1 0 � � �0
„ƒ‚…

�.n/ times

: (1)

Whenever needed, we may complete the expansion of n Š by zeros on the left. For
example,

100 Š D 11000D 011000;
and so "2.4/ D 0. Here, we point out that it is known that the number of 1’s in the
binary representation of nŠ tends to infinity with n at a rate at least as large as the
logarithm of n (see [2]).

By a celebrated result of Legendre, nŠ is a sum of three squares except when
the ."2.n/; "1.n/; p.n// D .1; 1; 0/. Thus, our main result can be reformulated as
follows.

Theorem 2. The number of positive integers n � x such that

."2.n/; "1.n/; p.n// D .1; 1; 0/

equals x=8CO.x2=3/.
We next introduce some more definitions. For a nonnegative integer k, we let

� Ei .k/ D ."i .8k/; : : : ; "i .8k C 7//, for i D 1; 2;
� P.k/ D .p.8k/; : : : ; p.8k C 7//;
� B.k/ D .E2.k/; E1.k/; P.k//.

In the next section, we prove that the sequence .B.0/B.1/ � � � /, regarded as
.E2.0/E2.1/ � � � ; E1.0/E1.1/ � � � ; P.0/P.1/ � � � / is the fixed point of a certain sub-
stitution. In the last section, we study that substitution.

2 The Substitution

We first give names to a family of strings of eight elements from f0; 1g so that we
can identify them later. We let
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A D 00111100; B D 11000011;
J D 00011101; K D 11101101; L D 00010010; M D 11100010;
S D 00000110; T D 00111010; U D 00001001; V D 11001010;
W D 11000101; X D 11110110; Y D 00110101; Z D 11111001:

We have the following preliminary result.

Proposition 1. (i) The sequence P.0/P.1/P.2/ � � � is the fixed point, starting with
A, of the substitution

A! AB; B ! BA:

(ii) The sequence E1.0/E1.1/E1.2/ � � � is the fixed point, starting with J , of the
substitution

J ! JK; K !MK; L! JL; M !ML:

(iii) The sequence E2.0/E2.1/E2.2/ � � � is the fixed point, starting with S , of the
substitution

S ! ST; T ! UV; U ! SW V ! XV;

W ! XY; X ! ZT; Y ! UY; Z ! ZW:

Indeed, the sequence P.0/P.1/P.2/ � � � is also the fixed point of the substitution

00! 0011; 11! 1100I

an avatar of the well-known Thue-Siegel-Morse substitution.
In a similar way, the sequenceE1.0/E1.1/E1.2/ � � � can be seen as a fixed point,

starting with 00, of the substitution

00! 0001; 01! 1101; 10! 0010; 11! 1110:

That is indeed what we are going to prove.
The advantage of considering substitutions acting on strings of length 8 is that

Proposition 1 immediately implies that the sequence B.0/B.1/B.2/ � � � is the fixed
point, starting with .S; J; A/, of the substitution
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B1 D .S; J; A/! .ST; JK;AB/; B2 D .T;K;B/! .UV;MK;BA/;

B3 D .U;M;B/! .SW;ML;BA/; B4 D .V;K;A/! .XV;MK;AB/;

B5 D .S;M;B/! .ST;ML;BA/; B6 D .W;L;A/! .XY; JL;AB/;

B7 D .X;M;A/! .ZT;ML;AB/; B8 D .V;K;B/! .XV;MK;BA/;

B9 D .T; L;A/! .UV; JL;AB/; B10 D .X; J;A/! .ZT; JK;AB/;

B11 D .Y; L;B/! .UY; JL;BA/; B12 D .Z;M;A/! .ZW;ML;AB/;

B13 D .T; L;B/! .UV; JL;BA/; B14 D .X;M;B/! .ZT;ML;BA/;

B15 D .U; J; A/! .SW; JK;AB/; B16 D .V;L;B/! .XV; JL;BA/;

B17 D .Z; J;A/! .ZW; JK;AB/; B18 D .U; J; B/! .SW; JL;BA/;

B19 D .Y; L;A/! .UY; JL;AB/; B20 D .W;L;B/! .XY; JL;BA/;

B21 D .V;L;A/! .XV; JL;AB/; B22 D .Z;M;B/! .ZW;ML;BA/;

B23 D .W;K;B/! .XY;MK;BA/; B24 D .X; J; B/! .ZT; JK;BA/;

B25 D .S; J; B/! .ST; JK;BA/; B26 D .W;K;A/! .XY;MK;AB/;

B27 D .Y;K;A/! .UY;MK;AB/; B28 D .Z; J; B/! .ZW; JK;BA/;

B29 D .T;K;A/! .UV;MK;AB/; B30 D .Y;K;B/! .UY;MK;BA/;

B31 D .U;M;A/! .SW;ML;AB/; B32 D .S;M;A/! .ST;ML;AB/:

One advantage of that explicit list is to number the relevant triples, numbering which
will be used in the next section.

Let us now sketch the proof of Proposition 1. We shall indeed restrict ourselves
to the case of the sequence E1.0/E1.1/E1.2/ � � � . For any positive n, we consider
its expression in the base 2 as we did in (1), namely

n D � � �˛2.n/˛1.n/10 � � � 0

so that ."2.n/; "1.n// D .˛2.n Š/; ˛1.n Š//.
From now on, we shall work in Z=2Z. We leave it to the reader to check the

following easy lemma.

Lemma 1. Let n andm be two positive integers. We have the following relations:

.˛2.nm/; ˛1.nm// D .˛2.n/; ˛1.n//C .˛2.m/; ˛1.m// I (2)

˛1.2n/ D ˛1.n/; ˛1.4nC 1/ D 0; ˛1.4nC 3/ D 1: (3)

Of course, the sequence .˛2.n//n�1 possesses properties similar to (3). We now
introduce the formal power series in Z=2Z..X// defined by

F1.X/ D
X

k�1
˛1.k/X

k: (4)
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Relation (3) leads to the following functional equation for F1.X/:

F1.X/ D
4
X

hD1

X

k�1
k	hmod4

˛1.k/X
k

D
X

k�1
˛1.2k/X

2k C
X

k�0
X4kC3

D
X

k�1
˛1.k/X

2k C X3

1 �X4

D F1.X2/C X3

1 � X4 : (5)

The usual convention 0 Š D 1 D 001 allows us to set ˛1.0/ D 0. Relation (2)
combined with the convention we just introduced implies that for n � 0 we have

"1.n/ D
X

0�k�n
˛1.k/: (6)

Denoting
G1.X/ WD

X

n�0
"1.n/X

n;

the relation (6) implies that we have

G1.X/ D
X

n�0
"1.n/X

n D
X

n�0

0

@

X

0�k�n
˛1.k/

1

AXn

D
X

k�0
˛1.k/

X

n�k
Xn D

X

k�0
˛1.k/

Xk

1 �X

D F1.X/

1 � X D
F1.X/

1CX : (7)

Thus, the functional (5) for F1.X/ leads to the following functional equation for
G1.X/:

.1CX/G1.X/ D .1CX2/G1.X2/C X3

1 �X4 : (8)

The direct consideration of the first terms and that of the coefficients of Xk for the
different congruence classes of k modulo 4 leads us to the following set of relations
which are satisfied by the sequence ."1.n//n�0 for all integers ` � 0:

(R0) "1.1/ D "1.2/ D 0; "1.3/ D 1;
(R1) "1.4`/C "1.4` � 1/C "1.2`/C "1.2` � 1/ D 0;
(R2) "1.4`C 1/C "1.4`/ D 0;
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(R3) "1.4`C 2/C "1.4`C 1/C "1.2`C 1/C "1.2`/ D 0;
(R4) "1.4`C 3/C "1.4`C 2/C 1 D 0.

We first remark that the set of relations (R) completely determines the sequence
."1.n//n�0. In order to prove the second assertion in Proposition 1, it is enough to
show that the sequence .".n//n�0 which is the fixed point, starting with 00, of the
substitution

00! 0001; 01! 1101; 10! 0010; 11! 1110;

is indeed the sequence ."1.n//n�0. For that purpose, it is enough to show that the
sequence .".n//n�0 satisfies the set of relations (R). Well, relations (R0) and (R2)–
(R4) are easily checked. Relation (R1) is slightly more subtle to check, so let us
justify it in detail. For any integerm � 0, we have

".4m/C ".4mC 1/ D 0 and ".4mC 2/C ".4mC 3/ D 1;

which is due to the fact that the only possible blocks for the string

".4m/".4mC 1/".4mC 2/".4mC 3/ are f0001; 1101; 0010; 1110g:

This implies that

".2` � 2/C ".2` � 1/C ".2`/C ".2`C 1/C 1 D 0:

But by looking at the substitution, we clearly see that

1C".2`�2/ D 1C".2.`�1// D ".4.`�1/C3/ D ".4`�1/; ".2`C1/ D ".4`/:

We thus have
".4` � 1/C ".2` � 1/C ".2`/C ".4`/ D 0;

which implies that .".n//n�0 satisfies also relation (R1). Thus, " D "1. The second
assertion of Proposition 1 is therefore proved. The first one is much easier, and the
third one can be proved by arguments very similar to the above one.

3 Proof of Theorem 2

We introduce a 32 � 32 matrix called M , with coefficients mij which are all 0
except when there is either a term Bj ! BkBi or a term Bj ! BiBk in the set
of the relations defining the substitution associated to the sequence .B.k//k�0. For
example, the first relation is B1 ! B1B2. Thus, the first column of the matrix M
consists of elements which are successively 1, 1 and the remaining ones are equal
to 0. A further example is the following: the only relations in which the second
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element contains a termB32 areB31 ! B32B20 and B32 ! B32B13. Thus, the last
line of M consists of 0 everywhere, except a 1 in the last two columns i.e., column
31 and 32.

The matrix M is shown below.

M WD

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

We next state a lemma which explains why we introduced the matrix M .
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Lemma 2. Let a be a positive integer. Consider the finite sequence B.a/ D
B.a/; B.a C 1/; : : : B.2a � 1/ with a elements. For 1 � i � 32, we let …i .a/

denote the number of occurrences of Bi in the sequence B.a/. We also let ….a/
denote the column vector .…1.a/; : : : ;…32.a//

T. Then, for any integer h � 0, we
have

….2ha/ DM h….a/: (9)

We now give the key property of the sequence .M h/h�0 of powers of M .

Proposition 2. (i) 1 D 2 is an eigenvalue ofM of multiplicity 1. All other eigen-
values of M are � 21=2 in absolute value.

(ii) The sequence .2�hM h/h�0 tends to the matrix J the entries of which are all
equal to 1=32.

Proof. Part (i) of Propositon 2 was easily confirmed by MAPLE. Part (ii) of
Proposition 2 is a simple application of the Perron–Frobenius Theorem, which is
classical in the study of homogeneous Markov chains. Indeed, let us consider the
matrix

S WD .1=2/M:
The following properties are straightforward to verify:

(S1) S is stochastic meaning that all its entries are nonnegative and the sum of the
entries in each column is equal to 1;

(S2) The transposed ST of S is also stochastic;
(S3) S16 has only positive entries.

By the Perron–Frobenius Theorem, properties (S1) and (S3) imply that the sequence
.Sh/h�0 converges to a matrix with identical columns. Properties (S2) and (S3)
imply that .Sh/h�0 converges to a matrix with identical rows. Hence, the desired
result (ii). ut

We are now in a position to prove Theorem 2.

Proof of Theorem 2. We let x be large and put h WD bc logxc, where c WD
2=.3 log 2/. By Proposition 2, we have that

.M h/i;j D 2h�5 CO.2h=2/ for all i; j 2 f1; : : : ; 32g: (10)

Let a WD b8x=2hc. Observe that a D O.x1=3/. Furthermore, we obviously have

#
�

Œx ; 2x/ 4 Œ2h 8a ; 2hC1 8a/
�

D x CO.2h/ D x CO.x2=3/; (11)

where for two subsets B and C of real numbers, we use B 4 C for the symmetric
difference B4 C D .B [ C/ n .B \ C/ :

Although we have a very limited knowledge of the vector ….a/ introduced in
Lemma 2, namely we only know that the sum of its entries is a, relations (9) and
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(10) imply that the coordinates of the vector ….2h a/ are almost all equal. More
precisely, we have that the estimate

ˇ

ˇ

ˇ…i .2
h a/� 2h�5 a

ˇ

ˇ

ˇ D O.2h=2 a/ D O.x2=3/ holds for all i 2 f1; : : : ; 32g:
(12)

Our aim is to evaluate the number of integers n in Œx ; 2x/ for which

."2.n/; "1.n/; p.n// D .1; 1; 0/:

Via relation (11), it follows that by discarding at mostO.x2=3/ such values of n, we
may assume that n 2 Œ2h 8a ; 2hC1 8a/. Our life would have been very easy if there
were exactly one triple equal to .1; 1; 0/ in each Bi for i D 1; : : : ; 32. This is not
the case. For example, in the 8-tuple B3 D .U;M;B/, there is no triple .1; 1; 0/,
whereas in the 8-tuple B14 D .X;M;B/, there are three such triples. However,
in the totality of the 32 tuples Bi for i D 1; : : : ; 32, there are exactly 32 triples
.1; 1; 0/ so that on the average there is exactly one triple .1; 1; 0/ for each Bi for
i D 1; : : : ; 32. Combining this with the important relation (12), which states the
equidistribution of the blocks Bi for i D 1; : : : ; 32, implies that the counting func-
tion of the set of positive integers n � x such that ."2.n/; "1.n/; p.n// D .1; 1; 0/

is x=8CO.x2=3/, which proves Theorem 2, and therefore also Theorem 1.

References

[1] J-P. Allouche and J. Shallit, Automatic Sequences. Theory, Applications, Generalizations,
Cambridge University Press, Cambridge, UK, (2003).

[2] F. Luca, “The number of nonzero digits of nŠ”. Canadian Math. Bull. 45 (2002), 115–118.



Eulerian Polynomials: From Euler’s Time
to the Present

Dominique Foata�

Dedicated to the memory of Professor Alladi Ramakrishnan

Summary The polynomials commonly called “Eulerian” today have been
introduced by Euler himself in his famous book “Institutiones calculi differen-
tialis cum eius usu in analysi finitorum ac Doctrina serierum” [5, Chap. VII], back
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1 Introduction

Before Euler’s time Jacques Bernoulli had already introduced his famous Bernoulli
numbers, denoted by B2n .n � 1/ in the sequel. Those numbers can be defined by
their generating function as

u

eu � 1 D 1 �
u

2
C
X

n�1

u2n

.2n/Š
.�1/nC1B2n; (1.1)
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their first values being shown in the table:

n 1 2 3 4 5 6 7

B2n 1=6 1=30 1=42 1=30 5=66 691=2730 7=6
(1.2)

Note that besides the first term �u=2, there is no term of odd rank in the series
expansion (1.1), a property easy to verify. On the other hand, the factor .�1/nC1
in formula (1.1) and the first values shown in the above table suggest that those
numbers are all positive, which is true.

Jacques Bernoulli ([1], p. 95–97) had introduced the numbers called after his
name to evaluate the sum of the n-th powers of the first m integers. He then proved
the following summation formula

m
X

iD1
in D mnC1

nC 1 C
mn

2
C 1

nC 1
X

1�r�n=2

 

nC 1
2r

!

mn�2rC1.�1/rC1B2r ; (1.3)

where n; m � 1. Once the first bn=2cBernoulli numbers have been determined (and
there are quick ways of getting them, directly derived from (1.1)), there are only
2Cbn=2c terms to sum on the right-hand side for evaluating

Pm
iD1 in, whatever the

numberm.
Euler certainly had this summation formula in mind when he looked for an ex-

pression for the alternating sum
Pk
iD1 in.�1/i . Instead of the Bernoulli numbers,

he introduced another sequence .G2n/ .n � 1/ of integers, later called Genocchi
numbers, after the name of Peano’s mentor [11]. They are related to the Bernoulli
numbers by the relation

G2n WD 2.22n � 1/B2n .n � 1/; (1.4)

their first values being shown in the next table.

n 1 2 3 4 5 6 7
B2n 1/6 1/30 1/42 1/30 5/66 691/2,730 7/6
G2n 1 1 3 17 155 2,073 38,227

Of course, it is not obvious that the numbers G2n defined by (1.4) are integers and
furthermore odd integers. This is a consequence of the little Fermat theorem and
the celebrated von Staudt–Clausen theorem (see, for instance, the classical treatise
by Nielsen [16] entirely devoted to the studies of Bernoulli numbers and related
sequences) that asserts that the expression

.�1/nB2n �
X

p

1

p
; (1.5)

where the sum is over all prime numbers p such that .p � 1/ j 2n, is an integer.
From (1.1) and (1.4), we can easily obtain the generating function for the Genocchi
numbers in the form:

2u

eu C 1 D uC
X

n�1

u2n

.2n/Š
.�1/nG2n: (1.6)
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The formula obtained by Euler for the alternating sum
Pm
iD1 in.�1/i is quite

analogous to Bernoulli’s formula (1.3). It suffices to know the first bn=2c Genocchi
numbers to complete the computation. Euler’s formula is the following.

Theorem 1.1. Let .G2n/ .n � 1/ be the sequence of numbers defined by relation
(1.4) (or by (1.6)). If n D 2p � 2, then

m
X

kD1
k2p.�1/k D .�1/mm

2p

2
C

p
X

kD1

 

2p

2k � 1

!

.�1/mCkC1G2k
4k

m2p�2kC1; (1.7)

while, if n D 2p C 1, the following holds:

m
X

kD1
k2pC1.�1/k D .�1/mm

2pC1

2
C
pC1
X

kD1

 

2p C 1
2k � 1

!

.�1/mCkC1G2k
4k

m2p�2kC2

C .�1/pC1 G2pC2
4.p C 1/ : (1.8)

The first values of the numbers G2n do appear in Euler’s memoir. However,
he did not bother proving that they were odd integral numbers. The two iden-
tities (1.7) and (1.8) have not become classical, in contrast to Bernoulli’s for-
mula (1.3), but the effective discovery of the Eulerian polynomials made by Euler
for deriving (1.7) and (1.8) has been fundamental in numerous arithmetical and
combinatorial studies in modern times. Our purpose in the sequel is to present Eu-
ler’s discovery by making a contemporary reading of his calculation. Two centuries
after Euler, the Eulerian polynomials were given an extension in the algebra of the
q-series, thanks to Carlitz [2]. Our intention is also to discuss some aspects of that
q-extension with a short detour to contemporary works in Combinatorics.

It is a great privilege for me to have met Professor Alladi Ramakrishnan, the
brilliant Indian physicist and mathematician, who has been influential in so many
fields, from Probability to Relativity Theory. He was kind enough to listen to my
2008 University of Florida Ulam Colloquium address and told me of his great ad-
miration for Euler. I am pleased and honored therefore to dedicate the present text
to his memory.

2 Euler’s Definition of the Eulerian Polynomials

Let .ai .x// .i � 0/ be a sequence of polynomials in the variable x and let t be
another variable. For each positive integerm, we have the banal identity:

m�1
X

iD0
ai .x/t

i D 1

t

m
X

iD1
ai�1.x/t i D a0.x/C

m
X

iD1
ai .x/t

i � am.x/tm: (2.1)
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Now, consider the operator � D
X

k�0

.�1/k
kŠ

Dk , where D is the usual differential

operator. Starting with a given polynomial p.x/ define

ai .x/ WD �m�ip.x/ .0 � i � m/I

S.p.x/; t/ WD
m
X

iD1
�m�ip.x/ t i D

m
X

iD1
ai .x/ t

i :

AsD commutes with�, we have S.Dkp.x/; t/ D DkS.p.x/; t/ for each k � 0 so
that using (2.1), we get:

a0.x/C S.p.x/; t/ � p.x/tm D a0.x/C
m
X

iD1
ai .x/t

i � am.x/tm

D 1

t

m
X

iD1
ai�1.x/t i D 1

t

m
X

iD1
�ai .x/ t

i

D 1

t

m
X

iD1

X

k�0

.�1/k
kŠ

Dkai .x/ t
i

D 1

t

X

k�0

.�1/k
kŠ

m
X

iD1
Dkai .x/ t

i

D 1

t

X

k�0

.�1/k
kŠ

S.Dkp.x/; t/

D 1

t

�

S.p.x/; t/C
X

k�1

.�1/k
kŠ

S.Dkp.x/; t/
�

:

Hence,

S.p.x/; t/ D 1

t � 1
�

p.m/tmC1 � a0.x/t C
X

k�1

.�1/k
kŠ

S.Dkp.x/; t/
�

: (2.2)

We now work out specializations of (2.2) for the monomials p.x/ D xn .n � 0/

and for x D m. First, we verify that:

�ixn D .x � i/n .0 � i � m/: (2.3)

It is true for i D 0 and all n � 0. When i � 0, we have

�iC1xn D ��ixn D �.x � i/n

D
n
X

kD0
.�1/k

 

n

k

!

.x � i/n�k D .x � .i C 1//n: ut
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Consequently,

S.xn; t/ D
m
X

iD1
�m�ixn t i D

m
X

iD1
.x � .m � i//n t i :

Let S.xn; t/ WD S.xn; t/ jfxDmg so that

S.xn; t/ D
m
X

iD1
int i : (2.4)

On the other hand,

a0.m/ D �mxn jfxDmgD
(

1; si n D 0I
0; si n � 1 : (2.5)

Identity (1.2), when p.x/ D xn and x D m, becomes:

S.xn; t/ D 1

t � 1
�

mntmC1 � a0.m/t C
n
X

kD1

.�1/k
kŠ

S.Dkxn; t/
�

D 1

t � 1
�

mntmC1 � a0.m/t

C
n
X

kD1

.�1/k
kŠ

S.n.n � 1/ � � � .n � k C 1/xn�k ; t/
�

;

and finally,

S.xn; t/ D 1

t � 1
�

mntmC1 � a0.m/t C
n
X

kD1
.�1/k

 

n

k

!

S.xn�k ; t/
�

: (2.6)

Another proof of identity (2.6) consists, for m � 1, 0 � k � m and n � 0,

of letting s.k;m; n/ WD .�1/k�n
k

�
m
P

iD1
in�kt i so that s.0;m; n/ D

m
P

iD1
int i and of

deriving the previous identity under the form

s.0;m; n/ D 1

t � 1
�

mntm � a0.m/t C
n
X

kD1
s.k;m; n/

�

;

still assuming that a0.m/ D 1 if n D 0 and a0.m/ D 0 if n � 1. The identity is
banal for m D 1 and every n � 0. When m � 2, we have the relations

s.k;m; n/ D .�1/k
 

n

k

!

tm C s.k;m � 1; n/
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so that

n
X

kD1
s.k;m; n/ D �.m � 1/n �mn�tm C

n
X

kD1
s.k;m � 1; n/:

Hence, by induction onm � 1

s.0;m; n/ D
m
X

iD1
int i D mntm C

m�1
X

iD1
intn D mntm C s.0;m � 1; n/

D mntm C 1

t � 1
�

.m � 1/tm � a0.m/t C
n
X

kD1
s.k;m � 1; n/

�

D mntm C 1

t � 1
�

�a0.m/t C
n
X

kD1
s.k;m; n/Cmntm

�

D 1

t � 1
�

mntm � a0.m/t C
n
X

kD1
s.k;m; n/

�

: ut

As a0.m/ D 1 when n D 0, identity (2.6) yields

S.1; t/ D
m
X

iD1
t i D 1

t � 1.t
mC1 � t/ D t.tm � 1/

t � 1 ;

which is the classical formula for geometric progressions.
For discovering the polynomials, later called “Eulerian,” Euler further rewrites

identity (2.6) for n D 1; 2; 3; : : : by reporting the expressions already derived for
S.xk; t/ .0 � k � n � 1/ into S.xn; t/. As a0.m/ D 0 for n � 1, the successive
reports lead to

S.x; t/ D 1

t � 1.mt
mC1 � S.1; t// D 1

t � 1
�

mtmC1 � t.t
m � 1/
t � 1

�

D mtmC1

t � 1 1 � t.t
m � 1/

.t � 1/2 1I

S.x2; t/ D 1

t � 1
�

m2tmC1 � 2S.x; t/C S.1; t/
�

D m2tmC1

t � 1 1 � 2mt
mC1

.t � 1/2 1C t.tm � 1/
.t � 1/3 .tC 1/I

S.x3; t/ D 1

t � 1
�

m3tmC1 � 3S.x2; t/C 3S.x; t/� S.1; t/
�

D m3tmC1

t � 1 1 � 3m
2tmC1

.t � 1/2 1C 3mtmC1

.t � 1/3 .tC 1/

� t.t
m � 1/

.t � 1/4 .t
2 C 4tC 1/I
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S.x4; t/ D 1

t � 1
�

m4tmC1 � 4S.x3; t/C 6S.x2; t/ � 4S.x; t/C S.1; t/
�

D m4tmC1

t � 1 1 � 4m
3tmC1

.t � 1/2 1C 6m2tmC1

.t � 1/3 .tC 1/

� 4mt
mC1

.t � 1/4 .t
2 C 4tC 1/C t.tm � 1/

.t � 1/5 .t
3 C 11t2 C 11tC 1/I

S.x5; t/ D 1

t � 1
�

m5tmC1 � 5S.x4; t/C 10S.x3; t/
� 10S.x2; t/C 5S.x; t/ � S.1; t/

�

D m5tmC1

t � 1 1 � 5m
4tmC1

.t � 1/2 1C 10m3tmC1

.t � 1/3 .tC 1/

� 10m
2tmC1

.t � 1/4 .t2 C 4tC 1/C 5mtmC1

.t � 1/5 .t
3 C 11t2 C 11tC 1/

� t.t
m � 1/

.t � 1/6 .t
4 C 26t3 C 66t2 C 26tC 1/:

Let An.t/ be the coefficient of
t.tm � 1/
.t � 1/nC2 in the above expansions of S.xn; t/ for

n D 0; 1; 2; 3; 4; 5 so thatA0.t/ D A1.t/ D 1, A2.t/ D tC1, A3.t/ D t2C4tC1,
A4.t/ D t3 C 11t2 C 11t C 1, A5.t/ D t4 C 26t3 C 66t2 C 26t C 1. We observe
that the expression of An.t/ in the expansion of S.xn; t/ is obtained by means of
the formula

An.t/ D
n�1
X

kD0

 

n

k

!

Ak.t/.t � 1/n�1�k: (2.7)

We also see that S.xn; t/ D
m
P

iD1
int i can be expressed as

S.xn; t/ D
n
X

lD1
.�1/nCl

 

n

l

!

tmC1An�l .t/
.t � 1/n�lC1m

l C .�1/n t.t
m � 1/

.t � 1/nC1An.t/: (2.8)

Once those two facts have been observed, it remains to prove that the new expression
found for S.xn; t/ holds for every n � 0 as stated next.

Theorem 2.1. Let A0.t/ WD 1 and let .An.t// .n � 0/ be the sequence of polyno-
mials inductively defined by (2.7). Then identity (2.8) holds.

Proof. For proving such a theorem today we proceed by induction, reporting (2.7)
into (2.6) and making an appropriate change of variables in the finite sums. This is
the first proof that is now presented. At the time of Euler the “

P

” notation does not
exist, and of course not the double sums! For example, (2.6) is displayed as:
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S:xnpx D 1

p � 1
�

xnpxC1 � Ap � nS:xn�1px C n.n � 1/
1 � 2 S:xn�2px

� n.n � 1/.n� 2/
1 � 2 � 3 S:xn�2px

C n.n � 1/.n� 2/.n� 3/
1 � 2 � 3 � 4 S:xn�4px �&c

�

:

Euler is then led to imagine another proof based on fact on the concept of linear
independence.

For the first proof, start with identity (2.6) and apply the induction hypothesis to
all the terms S.xn�k ; t/ of the sum, with k running from 1 to n:

S.xn; t/ D 1

t � 1
�

mntmC1 C
n
X

kD1
.�1/k

 

n

k

!

S.xn�k ; t/
�

D 1

t � 1
�

mntmC1 C
n�1
X

jD0
.�1/n�j

 

n

j

!

S.xj ; t/
�

D 1

t � 1
�

mntmC1 C
n�1
X

jD0
.�1/n�j

 

n

j

!

j
X

lD1
.�1/jCl

 

j

l

!

tmC1Aj�l .t/
.t � 1/n�lC1m

l C .�1/j t.t
m � 1/

.t � 1/jC1Aj .t/
�

D mntmC1

t � 1 C
n�1
X

lD1

n�1
X

jDl
.�1/nCl nŠ

.n � j /Š lŠ .j � l/Š
tmC1Aj�l.t/
.t � 1/j�lC2m

l

C .�1/n t.t
m � 1/

.t � 1/nC1
n�1
X

jD0

 

n

j

!

Aj .t/.t � 1/n�j�1:

With j D k � l , we deduce

S.xn; t/ D mntmC1

t � 1 C
n�1
X

lD1
.�1/nCl

 

n

l

!

tmC1ml
n�1�l
X

kD0

 

n � l
k

!

Ak.t/

.t � 1/kC2

C .�1/n t.t
m � 1/

.t � 1/nC1An.t/

D mntmC1

t � 1 C
n�1
X

lD1
.�1/nCl

 

n

l

!

tmC1ml

.t � 1/n�lC1
n�1�l
X

kD0

 

n � l
k

!

Ak.t/.t � 1/n�l�k�1 C .�1/n t.t
m � 1/

.t � 1/nC1An.t/
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D mntmC1

t � 1 C
n�1
X

lD1
.�1/nCl

 

n

l

!

tmC1ml

.t � 1/n�lC1An�l.t/

C .�1/n t.t
m � 1/

.t � 1/nC1An.t/

D
n
X

lD1
.�1/nCl

 

n

l

!

tmC1ml

.t � 1/n�lC1An�l .t/C .�1/
n t.t

m � 1/
.t � 1/nC1An.t/: ut

The original proof by Euler can be reproduced as follows. With p.x/ D xn

(n � 1) and l D 0; 1; : : : ; n let

Yl WD S.Dlp.x/; t/I

Zl WD

8

ˆ

ˆ

<

ˆ

ˆ

:

Dlp.m/

t � 1 tmC1; si 0 � l � n � 1I
Dnp.m/

t � 1 .tmC1 � t/; si l D n:

In formula (2.2), successively replace p.x/ by Dlp.x/ for l D 0; 1; : : : ; n. We
obtain

Yl D Zl C
n�l
X

jD1

.�1/j
j Š

1

t � 1YlCj .0 � l � n/; (2.9)

remembering that a0.x/ is null for x D m, and 1 for Yn D S.Dnp.x/; t/. Now, each
of the two sequences .Y0; Y1; : : : ; Yn/, .Z0; Z1; : : : ; Zn/ is a basis for the algebra of
polynomials of degree at most equal to n, since both Yl and Zl are polynomials of
degree n� l .l D 0; 1; : : : ; n/. Accordingly, there exists a sequence .b0; b1; : : : ; bn/
of coefficients such that

Y0 D
n
X

lD0
bl.�1/lZl (2.10)

so that, by using (2.9),

Y0 D
n
X

lD0
bl.�1/l

�

Yl �
n�l
X

jD1

.�1/j
j Š

1

t � 1YlCj
�

D
n
X

kD0

�

bk.�1/k �
X

lCjDk;
l�0; j�1

bl.�1/l .�1/
j

j Š

1

t � 1
�

Yk:

Hence, b0 D 1; furthermore, for k D 1; 2; : : : ; n,

bk D 1

t � 1
�bk�1
1Š
C bk�2

2Š
C � � � C b1

.k � 1/Š C
b0

kŠ

�
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or still

kŠ .t � 1/kbk D
l�1
X

lD0

 

k

l

!

lŠ .t � 1/lbl.t � 1/k�1�l :

By comparison with the induction formula for the Eulerian polynomials

bn D 1

nŠ .t � 1/nAn.t/ .n � 0/:

Finally, reporting bn into (2.10) yields (2.8). ut

3 A Formulary for the Eulerian Polynomials

The polynomials An.t/ .n D 0; 1; : : : /, inductively defined by A0.t/ WD 1 and
identity (2.7) for n � 1 are unanimously called Eulerian polynomials. It is hard to
trace back the exact origin of their christening.

Form the exponential generating function

A.t; u/ WD
X

n�0
An.t/

un

nŠ
:

Then (2.7) is equivalent to the identity

A.t; u/ D 1C
X

n�1

X

kClDn
0�k�n�1

Ak.t/
uk

kŠ

.t � 1/l�1
lŠ

ul

D 1C A.t; u/ �
X

l�1

.t � 1/l�1
lŠ

ul

D 1C A.t; u/ 1

t � 1
�

exp.u.t � 1//� 1�I

hence
A.t; u/ D

X

n�0
An.t/

un

nŠ
D t � 1
t � exp.u.t � 1// ; (3.1)

which is the traditional exponential generating function for the Eulerian polynomi-
als, explicitly given by Euler himself in his memoir.

We may also write:

X

n�0

An.t/

.1� t/nC1
un

nŠ
D eu

1 � teu
D eu

X

j�0
.teu/j

D
X

j�0
tj
X

n�0

.u.j C 1//n
nŠ

D
X

n�0

u

nŠ

X

j�0
tj .j C 1/n;
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which leads to another equivalent definition of the Eulerian polynomials

An.t/

.1 � t/nC1 D
X

j�0
tj .j C 1/n .n � 0/; (3.2)

which is the most common starting definition of those polynomials today.
Now rewrite identity (2.8) as

m
X

iD1
int i D �tmC1

n
X

kD0

 

n

k

!

Ak.t/

.1 � t/kC1m
n�k C tAn.t/

.1 � t/nC1 : (3.3)

A simple argument on the order of the formal series in t shows that, when m tends
to infinity, (3.3) implies (3.2). Conversely, replace each fraction Ak.t/=.1 � t/kC1
on the right-hand side of (3.3) by

P

j�0 tj .j C 1/k , which is the right-hand side of
(3.2). An easy calculation shows that the right-hand side of (3.3) becomes

�
X

j�0
tmC1Cj .mC 1C j /n C t

X

j�0
tj .j C 1/n D

m
X

iD1
int i :

Consequently, identity (3.2) and its finite form (3.3) are also equivalent.
The relation

An.t/ D .1C .n � 1/t/An�1.t/C t.1 � t/ �DAn�1.t/ .n � 1/; (3.4)

whereD stands for the differential operator in t , can be proved from (3.2) as follows:
the right-hand side of (3.3) is equal to:

.1� t/n
X

j�0
tj .j C 1/n�1.1C .n � 1/t � nt C .1 � t/j /

D .1 � t/n
X

j�0
tj .j C 1/n�1.1 � t/.j C 1/

D .1 � t/nC1
X

j�0
tj .j C 1/n D An.t/: ut

Finally, let
An.t/ WD

X

k�0
An;kt

k :

By (3.2),A0.t/ D .1�t/=.1�t/ D 1 and the constant coefficient of each polynomial
An.t/ is An;0 D 1. In (3.3), the coefficient of tk .k � 1/ is equal to An;k on the
left and An�1;k C .n � 1/An�1;k�1 C kAn�1;k � .k � 1/An�1;k�1 on the right. As
An;k D 0 for k � n � 1, we obtain the recurrence relation

An;k D.k C 1/An�1;k C .n� k/An�1;k�1 .1 � k � n � 1/ I (3.5)

An;0 D 1 .n � 0/ I An;k D 0 .k � n/
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so that eachAn.t/ is a polynomial with positive integral coefficients. The first values
of the coefficients An;k , called Eulerian numbers, are shown in the next table.

kD 0 1 2 3 4 5 6

nD1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1

In summary, the Eulerian polynomials An.t/ D
n
P

kD0
An;kt

k .n � 0/ are defined

by the following relations which we restate here collectively for clarity. In doing so,
we retain the equation numbers already assigned for these relations:

A0.t/ D 1I An.t/ D
n�1
X

kD0

 

n

k

!

Ak.t/.t � 1/n�1�k .n � 1/I (2.7)

m
X

iD1
int i D

n
X

lD1
.�1/nCl

 

n

l

!

tmC1An�l .t/
.t � 1/n�lC1m

l C .�1/n t.t
m � 1/

.t � 1/nC1An.t/; (2.8)

form � 1, n � 0;

X

n�0
An.t/

un

nŠ
D t � 1
t � exp.u.t � 1// I (3.1)

An.t/

.1 � t/nC1 D
X

j�0
tj .j C 1/n .n � 0/I (3.2)

A0.t/ D 1; An.t/ D .1C .n � 1/t/An�1.t/C t.1 � t/ �DAn�1.t/ .n � 1/I (3.3)

An;k D .k C 1/An�1;k C .n � k/An�1;k�1 .1 � k � n � 1/; (3.4)

An;0 D 1 .n � 0/ I An;k D 0 .k � n/I

An;k D
P

0�i�k
.�1/i .k � i C 1/n

 

nC 1
i

!

.0 � k � n � 1/I (3.5)

xn D P

0�k�n�1

 

x C k
n

!

An;k .n � 0/: (3.6)
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The last two relations are easy to establish. For the first one make use of (3.2),
starting with An.t/.1 � t/�.nC1/. For the second, called Worpitzky identity, simply
calculate the coefficient of tk in .1� t/nC1Pn�0 tn.j C1/n. As mentioned earlier,
the first three relations (2.7), (2.8), and (3.1) are due to Euler. The fourth relation
(3.2) must also be attributed to him, as he used it for t D �1 in a second memoir
[6] to give a sense to the divergent series

P

j .�1/j .j C 1/m. The second (2.8) is
fundamental for the next calculation involving tangent numbers. It seems to have
been forgotten in today’s studies.

4 A Relation with the Tangent Numbers

The tangent numbers T2n�1 .n � 1/ are defined as the coefficients of the Taylor
expansion of tan u:

tan u D
X

n�1

u2n�1

.2n � 1/ŠT2n�1

D u

1Š
1C u3

3Š
2C u5

5Š
16C u7

7Š
272C u9

9Š
7936C u11

11Š
353792C � � �

But, starting with (1.6), the generating function for the Genocchi numbers G2n
.n � 1/ can be evaluated as follows:

X

n�1

u2n

.2n/Š
G2n D

X

n�1

.iu/2n

.2n/Š
.�1/nG2n

D 2iu

eiu C 1 � iu D iu.1� eiu/

1C eiu
D u tan.u=2/:

Hence,
X

n�1

u2n

.2n/Š
G2n D u tan.u=2/ D

X

n�1

u2n

22n�1.2n� 1/ŠT2n�1;

and then

nT2n�1 D 22n�2G2n D 22n�1.22n � 1/B2n .n � 1/: (4.1)

The first values of the tangent numbers T2n�1 .n � 1/, compared with the Genocchi
numbers, are shown in the next table.

n 1 2 3 4 5 6 7
G2n 1 1 3 17 155 2073 38227
T2n�1 1 2 16 272 7936 353.792 22.368.256
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In the exponential generating function (3.1) for the Eulerian polynomials An.t/,
replace t by �1 and u by iu with i D p�1. We get:

X

n�0
An.�1/.iu/

n

nŠ
D 2

1C e�2iu
:

Hence

X

n�1
in�1An.�1/un

nŠ
D 1

i

� 2

1C e�2iu
� 1

�

D 1

i

1 � e�2iu

1C e�2iu
D tan u

D
X

n�1
T2n�1

u2n�1

.2n � 1/Š :

Accordingly,

A2n.�1/ D 0; A2n�1.�1/ D .�1/n�1T2n�1 .n � 1/: (4.2)

With t D �1 identity (2.8) becomes

m
X

kD1
kn.�1/k D .�1/mC1

n
X

kD0

 

n

k

!

Ak.�1/
2kC1

mn�k C .�1/An.�1/
2nC1

:

When n D 2p � 2 we get:

m
X

kD1
k2p.�1/kD.�1/mC1m

2p

2
C

p
X

kD1

 

2p

2k � 1

!

.�1/mCk T2k�1
22k

m2p�2kC1: (4.3)

Using the relation nT2n�1 D 22n�2G2n .n � 1/, this can be rewritten in terms of
the Genocchi numbers as:

m
X

kD1
k2p.�1/k D .�1/mC1m

2p

2
C

p
X

kD1

 

2p

2k � 1

!

.�1/mCkG2k
4k

m2p�2kC1: (4.4)

When n D 2p C 1 � 1 we get:

m
X

kD1
k2pC1.�1/k

D .�1/mC1m
2pC1

2
C
pC1
X

kD1

 

2p C 1
2k � 1

!

.�1/mCk T2k�1
22k

m2p�2kC2

C .�1/pC1T2pC1
22pC2

; (4.5)
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so that in terms of the Genocchi numbers

m
X

kD1
k2pC1.�1/k

D .�1/mC1m
2pC1

2
C
pC1
X

kD1

 

2p C 1
2k � 1

!

.�1/mCkG2k
4k

m2p�2kC2

C .�1/pC1 G2pC2
4.p C 1/ : (4.6)

Both identities (4.4) and (4.6) were established by Euler. This achieves the proof of
Theorem 1.1.

5 The Carlitz q-Eulerian Polynomials

Recall the traditional q-ascending factorial defined for each ring element! and each
variable q by

.!I q/k WD
(

1; if k D 0I
.1 � !/.1 � !q/ � � � .1 � !qk�1/; if k � 1I

.!I q/1 WD
Y

k�0
.1 � !qk/I

the q-binomial coefficients

"

n

k

#

q

WD .qI q/n
.qI q/k .qI q/n�k .0 � k � n/

and the q-analogs of integers and factorials

Œn�q WD .qI q/n
.1 � q/n D 1C q C q

2 C � � � C qn�1I
Œn�Šq WD Œn�q Œn � 1�q � � � Œ1�q :

As lim
q!1.t I q/nC1 D .1� t/

nC1 and lim
q!1Œj C1�q D j C1, definition (2.10) suggests

that a new sequence of polynomials An.t; q/, called the q-Eulerian polynomials,
can be defined by the identity

An.t; q/

.t I q/nC1 D
X

j�0
tj .Œj C 1�q/n .n � 0/; (5.1)
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as was done by Carlitz [2] in his seminal paper, thereby entering the q-series
environment initiated by Heine [13]. Also see Gasper and Rahman [12].

By analogy with the Eulerian polynomials, we can replace the infinite series
(5.1) by a finite sum and try to express the left-hand side as a linear combination
of fractions Ak.t; q/=.t I q/kC1 .0 � k � n/. From (5.1), we get:

m
X

jD1
tj .Œj �q/

n D
m�1
X

kD0
tkC1.Œk C 1�q/n

D t
X

j�0
tjC1.Œj C 1�q/n �

X

j�0
tmC1Cj .ŒmC 1C j �q/n

D t An.t; q/
.t I q/nC1 � t

mC1X

j�0
tj .1C q C � � � C qj C qjC1 C � � � C qjCm/n

D t An.t; q/
.t I q/nC1
� tmC1

X

j�0
tj

n
X

kD0

 

n

k

!

.1C q C � � � C qj /k.qjC1 C � � � C qjCm/n�k

D t An.t; q/
.t I q/nC1 � t

mC1X

j�0
tj

n
X

kD0

 

n

k

!

Œj C 1�kq q.jC1/.n�k/Œm�n�kq

D t An.t; q/
.t I q/nC1 � t

mC1
n
X

kD0

 

n

k

!

qn�kŒm�n�kq

X

j�0
.tq.n�k//j Œj C 1�kq :

This establishes the identity

m
X

jD1
tj .Œj �q/

n D t An.t; q/
.t I q/nC1 � t

mC1
n
X

kD0

 

n

k

!

qn�k Œm�n�kq

Ak.tq
n�k ; q/

.tqn�kI q/kC1 ; (5.2)

apparently new, that q-generalizes (2.11). Naturally, both definitions (5.1) and (5.2)
for the polynomialsAn.t; q/ are equivalent.

Other equivalent definitions can be derived as follows. Starting with (5.1), we
can express An.t; q/ as a polynomial in t as follows:

An.t; q/

.t I q/nC1 D
X

j�0
tj .Œj C 1�q/n D

X

j�0
tj
�1 � qjC1

1 � q
�n

D 1

.1 � q/n
X

j�0
tj .1 � qjC1/n 1

.1 � q/n
X

j�0
tj

n
X

kD0

 

n

k

!

.�1/kqjkCk

D 1

.1 � q/n
n
X

kD0

 

n

k

!

.�1/kqk
X

j�0
.tqk/j D 1

.1 � q/n
n
X

kD0

 

n

k

!

.�1/kqk
1 � tqk ;
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so that

An.t; q/ D 1

.1 � q/n
n
X

kD0

 

n

k

!

.�1/kqk.t I q/k .tqkC1I q/n�k : (5.3)

By examining (5.3), we can see that An.t; q/ is a polynomial in t of degree at
most equal to .n � 1/ since the coefficient of tn in An.t; q/ must be equal to

� 1

.1 � q/n
n
X

kD0

 

n

k

!

.�1/k.�1/nC1qn.nC1/=2

D � .�1/
nC1qn.nC1/=2

.1 � q/n
n
X

kD0

 

n

k

!

.�1/k D 0:

To see thatAn.t; q/ is a polynomial both in t and q, we can use identity (5.3) and
write

.1 � q/An.t; q/ D
n
X

kD0

 

n

k

!

.�1/kqk .t I q/k
.1 � q/n�1 .tq

kC1I q/n�kI

.1 � tqn/An�1.t; q/ D
n�1
X

kD0

 

n � 1
k

!

.�1/kqk .t I q/k
.1 � q/n�1 .tq

kC1I q/n�k :

Hence

.1 � q/An.t; q/� .1 � tqn/An�1.t; q/

D
n�1
X

kD1

 

n � 1
k � 1

!

.�q/k .t I q/k
.1 � q/n�1 .tq

kC1I q/n�k C .�q/n .t I q/n
.1 � q/n�1

D
n�2
X

jD0

 

n � 1
j

!

.�q/jC1 .1 � t/.tqI q/j
.1 � q/n�1 .tqqjC1I q/n�1�j

� q.1 � t/.�q/n�1 .tqI q/n�1
.1 � q/n�1

D �q.1 � t/
n�1
X

jD0

 

n � 1
j

!

.�q/j .tqI q/j
.1 � q/n�1 .tqq

jC1I q/n�1�j

and consequently

.1 � q/An.t; q/ D .1 � tqn/An�1.t; q/ � q.1 � t/An�1.tq; q/: (5.4)
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With An.t; q/ WD
n�1
P

jD0
tj An;j .q/ we deduce from (5.4) that the coefficientsAn;j .q/

satisfy the recurrence

An;j .q/ D Œj C 1�q An�1;j .q/C qj Œn � j �q An�1;j�1.q/: (5.5)

This shows that each polynomial An.t; q/ is a polynomial in t; q with positive inte-
gral coefficients.

The first values of the polynomialsAn.t; q/ are reproduced in the following table:

A0.t; q/ DA1.t; q/ D 1IA2.t; q/ D 1C tqIA3.t; q/ D 1C 2tq.q C 1/C t 2q3I
A4.t; q/ D 1C tq.3q2 C 5q C 3/C t 2q3.3q2 C 5q C 3/C t 3q6I
A5.t; q/ D 1C tq.4q3 C 9q2 C 9q C 4/C t 2q3.6q4 C 16q3 C 22q2 C 16q C 6/

C t 3q6.4q3 C 9q2 C 9q C 4/C t 4q10:

Finally, from the identity 1=.t I q/nC1 D P

j�0
�

nCj
n

	

q
tj , we get

n�1
X

iD0
An;i .q/ t

i
X

j�0

"

nC j
n

#

q

tj D
X

k�0
.Œk C 1�q/ntk;

and obtain for each k the formula à la Worpitzky

n�1
X

iD0
An;i .q/

"

k C n � i
n

#

q

D .Œk C 1�q/n: (5.6)

Surprisingly, it took another twenty years to Carlitz [3] to construct a full combina-
torial environment for the polynomialsAn.t; q/ he introduced in 1954.

6 A Detour to Combinatorics

In contemporary combinatorics, the following integral-valued statistics for permu-
tations have been widely used. For each permutation � D �.1/�.2/ � � ��.n/ of
12 � � �n define:

exc� WD #fi W 1 � i � n; �.i/ > igI
des� WD #fi W 1 � i � n � 1; �.i/ > �.i C 1/gI
maj� WD

X

�.i/>�.iC1/
i I

inv� WD #f��.i/; �.j /� W i < j; �.i/ > �.j /gI
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called number of excedances, number of descents, major index, and inversion num-
ber, respectively. Those four statistics can also be defined for each permutation with
repetitions (“multiset”).

For r � 1 and each sequence mD .m1; m2; : : : ; mr/ of nonnegative inte-
gers, let R.m/ denote the class of all

�

m1C


Cmr

m1;:::;mr

�

permutations of the multiset
1m12m2 � � � rmr . It was already known and proved by MacMahon [15] that “exc”
and “des,” on the one hand, “maj” and “inv,” on the other hand, were equidistributed
on each class R.m/, accordingly on each symmetric group Sm.

However, we had to wait for Riordan [19] for showing that ifAn;k is defined to be
the number of permutations � from Sn having k descents (i.e., such that des � D k),
then An;k satisfies recurrence (3.4):

An;k D .k C 1/An�1;k C .n � k/An�1;k�1 .1 � k � n � 1/I
An;0 D 1 .n � 0/I An;k D 0 .k � n/:

This result provides the following combinatorial interpretations for the Eulerian
polynomials:

An.t/ D
X

�2Sn

t exc� D
X

�2Sn

tdes� ;

the second equality being due in fact to MacMahon! The latter author [15, p. 97, and
p. 186] knew how to calculate the generating function for the classesR.m/ by “exc”
by using his celebrated Master Theorem, but did not make the connection with the
Eulerian polynomials. A thorough combinatorial study of those polynomials was
made in the monograph [10] in 1970.

In 1974, Carlitz [3] completes his study of his q-Eulerian polynomials by show-
ing that

An.t; q/ D
X

�2Sn

tdes�qmaj� .n � 0/:

As “inv” has the same distribution over Sn as “maj,” it was very tantalizing to
make a full statistical study of the pair .des; inv/. Let eq.u/ WD P

n�0
un=.qI q/n be

the (first) q-exponential. First, a straightforward calculation leads to the identity

1C
X

n�1
t An.t/

un

nŠ
D 1 � t
1 � t exp..1 � t/u/ :

In the above fraction, make the substitution exp.u/ eq.u/ and express the fraction
thereby transformed as a q-series:

X

n�0
invAn.t; q/

un

.qI q/n D
1 � t

1 � t eq..1 � t/u/ :
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The new coefficients invAn.t; q/ are to be determined. They were characterized by
Stanley [21] who proved the identity:

invAn.t; q/ D t
X

�2Sn

tdes�qinv� .n � 1/:

Now rewrite the exponential generating function for the Eulerian polynomials
An.s/ (see (3.1)) as

X

n�0
An.s/

un

nŠ
D .1 � s/ exp u

exp.su/� s exp u
:

In the right-hand side, make the substitutions s  sq, exp.u/  eq.u/. Again,
express the fraction thereby transformed as a q-series:

X

n�0
excAn.s; q/

un

.qI q/n D
.1 � sq/eq.u/

eq.squ/� sq eq.squ/
:

The combinatorial interpretation of the coefficients excAn.s; q/ was found by
Shareshian and Wachs [20] in the form

excAn.s; q/ D
X

�2Sn

sexc�qmaj� .n � 0/:

A further step can be made by calculating the exponential generating function for
the polynomialsAn.s; t; q/ WD P

�2Sn

sexc� tdes�qmaj� .n � 0/, as was done in [7]:

X

n�0
An.s; t; q/

un

.t I q/nC1 D
X

r�0
tr

.1 � sq/.usqI q/r
..uI q/r � sq.usqI q/r/.1 � uqr/

:

Identities (4.2) that relate the evaluations of Eulerian polynomials at t D �1
to tangent numbers can also be carried over to a q-environment. This gives rise to
a new family of q-analogs of tangent numbers using the combinatorial model of
doubloons (see [8, 9].)

Following Reiner [17,18], Eulerian polynomials attached to other groups than the
symmetric group have been defined and calculated, in particular for Weyl groups.
What is needed is the concept of descent, which naturally occurs as soon as the
notions of length and positive roots can be introduced. The Eulerian polynomials
for Coxeter groups of spherical type have been explicitly calculated by Cohen [4],
who gave the full answer to a question raised by Hirzebruch [14], who on the other
hand, pointed out the relevance of Euler’s memoir [6] to contemporary Algebraic
Geometry.
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[21] Stanley, Richard P. Binomial posets, Möbius inversion, and permutation enumeration,

J. Combin. Theory Ser. A, vol. 20, 1976, 336–356.



Crystal Symmetry Viewed as Zeta Symmetry II

Shigeru Kanemitsu and Haruo Tsukada

Dedicated to the memory of Professor Alladi Ramakrishnan

Summary In this paper, we continue our previous investigations on applications
of the Epstein zeta-functions. We shall mostly state the results for the lattice zeta-
functions, which can be immediately translated into those for the corresponding
Epstein zeta-functions. We shall take up the generalized Chowla–Selberg (integral)
formula and state many concrete special cases of this formula.
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formula � Zeta-function of a crystal

1 Introduction

In our previous papers [17–19], we have developed the theory of the Epstein zeta-
functions with emphasis on its ample applications to crystal symmetries in two
aspects.

The first is the Madelung constants associated to ionic crystals as in [18], where
we first gave their precise definition (before this, the constants had been treated
empirically as given a priori). The main contributions are [18, Theorem 1] (Mellin–
Barnes type formula) and [18, Theorem 2] (generalized Chowla–Selberg formula)
from which we may deduce most of the preceding results for the Madelung con-
stants. However, in [18] we gave only a small portion of these consequences, and it
is the purpose of this paper to assemble more substantial amount of concrete exam-
ples scattered in literature (or generalizations thereof).
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We recall that as is described on [18, pp. 114–115], the (generalized) Chowla–
Selberg formula being a consequence of [18, Theorem 1], rests, in the long run, on
the Mellin–Barnes integral formula

.1C x/�s D 1

2�i

Z

.c/

�.s � z/ �.z/

�.s/
x�zdz (1.1)

for x > 0, 0 < c < � D Re s.
This seems to have been used effectively by Hardy [13] for the first time (which

was elucidated fully in [17]), then by Berndt [1, 2], the latter being one of the main
contributions to the theory of the Epstein zeta-functions.

It is to be noted that the Mellin–Barnes integrals have been extensively used
in another context related to the mean square of Dirichlet L-functions notably by
Katsurada and Matsumoto (cf. e.g., [20, 22]). Then finally, Terras [25] has taken up
the method to treat the case of general lattices. We refer to [23] for a general theory
of Mellin–Barnes integrals. Terras also mentions the Madelung constants and in
book form they also appear in [12, 12, 16].

The second aspect is the incomplete gamma function expansion for the perturbed
Epstein zeta-function, known as the Ewald expansion in other disciplines [10, 25]
in the spirit of (Kuz’min-Linnik-) Lavrik [21], which was successively applied to
the elucidation of the screened Coulomb potential first studied by Hautot [14] and
then extensively by Chaba–Pathria [4, 5] among others. In [18, Sect. 3], we have
expounded this second aspect rather fully.

However, we have not stated the results on the lattice zeta-functions themselves,
which correspond to those on the Epstein zeta-functions (cf. [18, p. 106, ll.4–5
from below]). In view of this, we shall state in this paper those results on lat-
tice zeta-functions, which have their counterparts for the Epstein zeta-functions.
The main result we shall use is the generalized Chowla–Selberg formula (The-
orem 2 below), which we state as a counterpart of Theorem 1 below on the
K-Bessel expansion for the decomposition of a lattice into sublattices. We remark
that our Theorem 2 itself is a generalizaion of the corresponding previous results (cf.
e.g., [25]).

Notation. Z, R, and C signify the rational integers, the real numbers, and the
complex numbers, respectively. For a lattice L, L ˝ R means an extension of the
coefficient ring (from Z to R) and Hom.L;R/ is the space of all homomorphisms
from L to R.

2 Lattice Zeta-Function

Let L be a lattice, i.e., a free Abelian group of finite rank (n, say) with biadditive
form . ; /L. Let L0 denote the dual lattice of L: L0 D Hom.L;Z/. Then for lat-
tice elements p; q with real coefficients, p 2 L ˝ R, q 2 L0 ˝ R, we introduce
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the completed lattice zeta-function ƒ.L; p; q; s/ by the Dirichlet series absolutely
convergent for � > n

2
:

ƒ.L; p; q; s/ D �.s/

�s

X

x2L
xCp¤0

e2 iq.x/

.x C p; x C p/sL˝R

; (2.1)

where we understand the meaning of q.x/ through isomorphisms

L0 ˝ R Š Hom.L;R/ Š HomR.L˝ R;R/:

Let e1; : : : ; en be a basis of L, L D Ze1˚ � � � ˚Zen. Let � denote the extension
to R

n of the canonical isomorphism

�0 W Zn �! L; x D �0.a/;

for a D .a1; : : : ; an/ i.e.

� W Rn �! L˝ R; x D �.a/ D a1e1 C � � � C anen;

for a D .a1; : : : ; an/ 2 R
n.

The associated Gram matrix is then defined by

Y D

0

B

@

.e1; e1/L � � � .e1; en/L
:::

: : :
:::

.en; e1/L � � � .en; en/L

1

C

A :

Then we have
.�.a/; �.a//L˝R D Y Œa�:

Let M D .e1; : : : ; en/. Then we have

�.a/ DM a; Y D tMM:

If we define g;h 2 Z
n by p D �.g/ and q.x/ D q ı �.a/ D h � a .a 2 R

n/, then

ƒ.L; p; q; s/ D �.s/

�s

X

a2Z
n

aCg¤o

e2 iqı�.a/

.�.aC g/; �.aC g//sL˝R

D �.s/

�s

X

a2Z
n

aCg¤o

e2 ih
a

Y ŒaC g�s
;
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whence

Proposition 1. Under the above notation, we have

ƒ.L; p; q; s/ D ƒ.Y; g;h; s/:

Hence, whenever we speak about a lattice zeta-function, we may do well with
the corresponding Epstein zeta-function with the Gram matrix.

Example 1. (i) The simple cubic (s.c.) structure, NaCl (Sodium Chloride). In this

case we have Z
3DZ

0

@

1

0

0

1

A˚ Z

0

@

0

1

0

1

A˚ Z

0

@

0

0

1

1

A with Gram matrix ID
0

@

1 0 0

0 1 0

0 0 1

1

A.

The zeta-function is

Z.Z3; 0; 0; s/ D Z.I; o; o; s/ D
X

a2Z
3

a¤o

1

jaj2s : (2.2)

(ii) The body centered cubic (b.c.c) structure, CsCl (Caesium Chloride). The face
centered cubic (f.c.c.) structure, aka A3. ZnS (Zincblende) structure (diamond).
CaF2 (Fluorite) structure. For details on these and their diagrams, cf. [18].

3 Results on Lattice Zeta-Functions

Invoking the functional equation [18, (1.10)]

ƒ.Y; g;h; s/ D e�2 ig
h
pjY j ƒ

�

Y �1;h;�g;
n

2
� s
�

; (3.1)

for the RHS of the formula in Proposition 1, we immediately deduce

Proposition 2. (Functional equation for the zeta function of a lattice)
For p 2 L˝ R; q 2 L0 ˝ R, we have

ƒ.L; p; q; s/ D e�2 iq.p/

Vol
�

L˝ R=L

� ƒ
�

L0; q;�p; n
2
� s
�

;

(where L0 D Hom.L;Z/, L0 ˝R Š Hom.L;R/ Š HomR.L˝ R;R/).

In [18], we deduced a Bessel series expansion ([18, Theorem 1]) for the Epstein
zeta-functionƒ.Y; g;h; s/ from the functional equation thereof on appealing to the
Mellin–Barnes integral [18, (2.35)]. In the same way, we may deduce a Bessel series
expansion for the (perturbed) lattice zeta-function ƒ.Y; p; q; s/, which, however,
from the point of view of the modular relation principle, is a natural manifestation
of the functional equation ([18, Theorem 1]):
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Proposition 3.

�.s/

�s

X

x2L

e2 iq.x/

..x C p; x C p/L˝R C b/s

D 2

Vol
�

L˝R=L

�

X

y2L0

yCq¤0

e�2 i .yCq/.p/
r

.y C q; y C q/L0˝R

b

s�n
2

�Ks�n
2

�

2
p

.y C q; y C q/L0˝R b �
�

C ı.q/ 1

Vol
�

L˝ R=L

�

�
�

s � n
2

�

�s�n
2

1

bs�n
2

(3.2)

for Re s > n
2

, where

ı.q/ D
�

1 q 2 L0
0 q … L0 .q 2 L0 ˝ R/

and

Ks.z/ D 1

2

Z 1

0

e�
1
2

z.tC 1
t /ts�1dt; Re s > �1

2
; j arg zj < �

4

signifies the modified Bessel function of the second kind.

Corresponding to a block decomposition ([18, p. 116]) of the matrix Y associated
to the lattice L, we have a decomposition of L:

L D L1 ˚ L2
(L1; L2 are sublattices of L), where the decomposition is not necessarily orthogo-
nal. Therefore, we take the orthogonal complement .L1 ˝ R/? of L1˝R in L˝R

and introduce the projections

�
k
1 W L2 ˝ R! L1 ˝ R

the orthogonal projection to L1 ˝ R and

�?1 W L2 ˝ R! .L1 ˝ R/?

the orthogonal projection to .L1 ˝ R/?.
Under this setting, we have a counterpart of [18, Theorem 2] (which we restate

as Theorem 2 below).
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Theorem 1. (The generalized Chowla–Selberg formula)

ƒ.L; .p1; p2/; .q1; q2/; s/

D ı.p2/ e�2 iq2.p2/ƒ.L1; p1; q1; s/

C ı.q1/ 1

Vol
�

L1 ˝ R=L1

� ƒ
�

�?1 L2; �?1 .p2/; q2 ı �?1
�1
; s � n

2

�

C 2 e�2 iq1.p1/

Vol
�

L1 ˝ R=L1

�

X

y2L0

1

yCq1¤0

X

x2L2

xCp2¤0

e2 i.�y.p1/Cq2.x//e�2 i.yCq1/ık

1
.xCp2/

�
v

u

u

t

.y C q1; y C q1/L0

1
˝R

�

�?1 .x C p2/; �?1 .x C p2/
�

?

1
L2˝R

s�n
2

�Ks�n
2

�

2
q

.y C q1; y C q1/L0

1
˝R

�

�?1 .x C p2/; �?1 .x C p2/
�

?

1
L2˝R

�
�

D ı.p2/ e�2 iq.p/ 1

Vol
�

L1 ˝ R=L1

� ƒ
�

L01; q1;�p1;
n

2
� s
�

C ı.q1/ 1

Vol
�

L1 ˝ R=L1

� ƒ
�

�?1 L2; �?1 .p2/; q2 ı �?1
�1
; s � n

2

�

C 2 e�2 iq2.p2/

Vol
�

L1 ˝ R=L1

�

X

y2L0

1
Cq1

y¤0

X

x2L2Cp2

x¤0

e2 i.�y.p1/Cq2.x//e�2 iyık

1
.x/

�
v

u

u

t

.y; y/L0

1
˝R

�

�?1 .x/; �?1 .x/
�

?

1
L2˝R

s�n
2

�Ks�n
2

�

2
q

.y; y/L0

1
˝R

�

�?1 .x/; �?1 .x/
�

?

1
L2˝R

�
�

: (3.3)
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Theorem 2. (The generalized Chowla–Selberg type formula for matrices

cf. [18, Theorem 2], [25, Example 4, p. 208]) Let Y D
 

A B
tB C

!

be a block

decomposition with A an n � n matrix and B an n �m matrix and let g D
�

g1
g2

�

;

h D
�

h1
h2

�

; g1;h1 2 Z
n; g2;h2 2 Z

m be the corresponding block decompositions

of vectors. Set
D D C � tBA�1B:

Then under the above notation, we have

ƒ.Y; g;h; s/

D ı.g2/ e�2 ig2 
h2ƒ.A; g1;h1; s/C ı.h1/ 1
pjAj ƒ

�

D; g2;h2; s � n
2

�

C 2e�2 ig1
h1

pjAj
X

a2Z
n

aCh1¤o

X

b2Z
m

bCg2¤o

e2 i.�g1
aCh2 
b/e�2 iA�1B.bCg2/
.aCh1/

�
s

A�1ŒaC h1�
DŒbC g2�

s�n
2

Ks�n
2

�

2
p

A�1ŒaC h1�DŒbC g2� �
�

; (3.4)

where

ı.g/ D
�

1 g 2 Z
n

0 g … Z
n .g 2 R

n/:

We shall use only the following two special cases of Theorem 2, Corollary 1
being Theorem 2 with n D 1; s D 1.s � n

2
D 1

2
/.

Corollary 1.

ƒ.Y; g;h; 1/

D ı.g2/ e�2 ig2
h2ƒ.A; g1; h1; 1/C ı.h1/ 1p
A
ƒ

�

D; g2;h2;
1

2

�

C e�2 ig1h1

p
A

X

a2Z

aCh1¤0

X

b2Z
m

bCg2¤o

e2 i.�g1aCh2 
b/e�2 i 1
A
B.bCg2/.aCh1/

� 1
p

DŒbC g2�
exp

�

� 2p
A
jaC h1j

p

DŒbC g2� �
�

: (3.5)
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Corollary 2. (n D 2;m D 1; s D 1
2

)

ƒ

�

Y; g;h;
1

2

�

D ı.g2/ e�2 ig2h2 ƒ

�

A; g1;h1;
1

2

�

C ı.h1/
1p
A
ƒ

� jY j
jAj ; g2; h2;�

1

2

�

C e�2 ig1
h1

pjAj
X

a2Z
2

aCh1¤0

X

b2Z

bCg2¤0

e2 i.�g1 
aCh2b/e�2 iA�1B.bCg2/
.aCh1/

� 1
p

A�1ŒaC h1�
exp

 

�2
pjY j
pjAj

p

A�1ŒaC h1� j b C g2 j�
!

; (3.6)

where the first term may also be written as

ı.g2/ e�2 ig2h2
e�2 i g1
h1

pjAj ƒ

�

A�1;h1;�g1;
1

2

�

:

Proof. Theorem 2 with n D 2;m D 1; s D 1
2
; .s � n

2
D �1

2
/ reads

ƒ

�

Y; g;h;
1

2

�

D ı.g2/ e�2 ig2h2 ƒ

�

A; g1;h1;
1

2

�

C ı.h1/
1

pjAj ƒ
�

D;g2; h2;�1
2

�

C 2 e�2 ig1
h1

pjAj
X

a2Z
2

aCh1¤0

X

b2Z

bCg2¤0

e2 i.�g1
aCh2b/e�2 iA�1B.bCg2/
.aCh1/

�
s

DŒb C g2�
A�1ŒaC h1�

1
2

K� 1
2

�

2
p

A�1ŒaC h1�DŒb C g2� �
�

:

SubstitutingD D jY jjAj and appealing to the formula

K 1
2
.z/ D K� 1

2
.z/ D

r

�

2z
e�z; (3.7)

this leads to the assertion. The last passage is a consequence of the functional equa-
tion (3.1), thereby completing the proof. ut

At this point, we shall assign an exact meaning of the electrostatic energy of
a crystal X, thereby giving a precise definition of the Madelung constants. Cf. for
more details, [18, p. 103]. Adopting the empirical formula for the crystal structure X,

X D CnC
An�
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where C signifies a cation of electric charge CNCe and A an anion of electric
charge�N�e with e designating the elementary electric charge, and making a usual
convention nCNC D n�N�. We adopt a coordinate system such that the shortest
distance r between the ions is equal to 1. We denote by SCC, respectively by SC�,
the coordinates of cations, respectively those of anions with respect to a coordinate
system with a cation at the origin. Dually, let S�C, respectively, S�� denote the
coordinates of cations, respectively, those of anions, with respect to a coordinate
system with an anion at the origin.

Then the electrostatic energy of the crystal X may be expressed as

UX D 1

2
.nCUC C n�U�/

where

UC D 1

4�"0

X

x2SCC

x¤0

N 2C e2
q

x21 C x22 C x23 r
� 1

4�"0

X

x2SC�

NCN� e2
q

x21 C x22 C x23 r
;

and similarly for U�. But in ordinary sense, the series that appear here are divergent,
and so we adopt zeta-regularization.

For S D SCC; SC�; S�C; S��, we introduce the zeta-function of S by

ZS .s/ D
X

x2S
x¤0

1
�

x21 C x22 C x23
�s

for � large enough. Defining the zeta function of the crystal X by

ZX.s/ D nC
2
ZSC�

.s/� n�
2
ZSCC

.s/C n�
2
ZS�C

.s/� nC
2
ZS��

.s/;

we define the associated Madelung constant by

MX D ZX

�

1

2

�

;

whereby we define the electrostatic energy of the crystal X by

UX D � 1

4�"0

NCN�e2

r
MX;

where 1
4"0

D c2 � 10�7 with c designating the speed of light.
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4 Applications

As applications of Theorem 2, we give the following, in addition to [18,
Corollary 2].

Corollary 3. (An analogue of Hautot’s formula 1) Let I D
0

@

1 0 0

0 1 0

0 0 1

1

A and

c0 D

0

B

@

1
2
1
2
1
2

1

C

A. Then

Z

�

I; o; c0;
1

2

�

D 3ƒ .B1; o; c0; 1/

D ��
2
C 6p2

1
X

b1D1

1
X

b2D0

.�1/b1Cb2

q

b21 C b22
csch

�
q

2b21 C 2b22 �
�

;

where B1 D
0

@

1 0 0

0 2 0

0 0 2

1

A is the Gram matrix associated to the lattice

L1 D Z

0

@

1

0

0

1

A˚ Z

0

@

0

1

1

1

A˚ Z

0

@

0

1

�1

1

A

Proof. We introduce two lattices accompanyingL1:

L2 D Z

0

@

0

1

0

1

A˚ Z

0

@

1

0

1

1

A˚ Z

0

@

�1
0

1

1

A

and

L3 D Z

0

@

0

0

1

1

A˚ Z

0

@

1

1

0

1

A˚ Z

0

@

1

�1
0

1

A

with Gram matrices B2 D
0

@

2 0 0

0 1 0

0 0 2

1

A and B3 D
0

@

2 0 0

0 2 0

0 0 1

1

A ; respectively.

We also recall the body-centered cubic (b. c. c.) lattice

Lb D Z

0

@

�1
1

1

1

A˚ Z

0

@

1

�1
1

1

A˚ Z

0

@

1

1

�1

1

A
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with its Gram matrix B D
0

@

3 �1 �1
�1 3 �1
�1 �1 3

1

A ([18, p. 108]).

We note that

L1 [L2 [ L3 D Z
3; L1 \L2 D L2 \ L3 D L1 \ L3 D Lb : (4.1)

Since

ƒ
�

Bj ; o; c0; s
�

D �.s/

�s

X

a2Z
3

a¤0

.�1/a1Ca2Ca3

Bj Œa�s
D �.s/

�s

X

a2Lb

a¤0

1

I Œa�s
C �.s/

�s

X

a2Lj�Lb

�1
I Œa�s

;

D ƒ.B; o; o; s/� �.s/
�s

X

a2Lj�Lb

1

I Œa�s
; .j D 1; 2; 3/;

we infer that

3ƒ .B1; o; c0; s/

D ƒ.B1; o; c0; s/Cƒ.B2; o; c0; s/Cƒ.B3; o; c0; s/
D 3ƒ .B; o; o; s/

��.s/
�s

X

a2L1�Lb

1

I Œa�s
� �.s/

�s

X

a2L2�Lb

1

I Œa�s
� �.s/

�s

X

a2L3�Lb

1

I Œa�s

D 3ƒ .B; o; o; s/� �.s/
�s

X

a2Z3�Lb

1

I Œa�s

D 4ƒ .B; o; o; s/�ƒ.I; o; o; s/ (4.2)

we have

ƒ

�

I; o; c0;
1

2

�

D 4ƒ .B; o; o; 1/�ƒ.I; o; o; 1/ D 3ƒ .B1; o; c0; 1/ : (4.3)

Now we apply Theorem 2 (or Corollary 2) to ƒ.B1; o; c0; 1/ for the

decomposition B1 D
0

@

1 0 0

0 2 0

0 0 2

1

A to obtain
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ƒ.B1; o; c0; 1/ D ƒ
�

1; 0;
1

2
; 1

�

C
X

b2Z
2

b¤o

X

a2Z

.�1/b1Cb2

q

2b21 C 2b22
exp

�

�2
ˇ

ˇ

ˇ

ˇ

aC 1

2

ˇ

ˇ

ˇ

ˇ

q

2b21 C 2b22 �
�

:

(4.4)

The sum over a can be seen to be csch

�
q

2b21 C 2b22 �
�

(cf. [18, p. 116]), while

the first term on the right is the value at s D 1 of 2
�

21�2s � 1� 	.2s/, which is�2

6
.

Altogether we may rewrite (4.4) as

ƒ.B1; o; c0; 1/ D ��
6
C2p2

1
X

b1D1

1
X

b2D0

.�1/b1Cb2

q

b21 C b22
csch

�
q

2b21 C 2b22 �
�

(4.5)

Substituting (4.5) into (4.3) concludes the assertion. ut
Corollary 4. (An analogue of Hautot’s formula 2) In the previous notation, we have

Z .I; o; c0; 1/ D �� C 6
X

b2Z
2

b¤o

1
q

b21 C 2b22
csch

�
q

b21 C 2b22 �
�

Proof. We shall first prove that

ƒ

0

B

@I; o;

0

B

@

1
2
1
2

0

1

C

A; s

1

C

A D ƒ
0

@

1

2
C; o;

0

@

1
2

0

0

1

A; s

1

A ; (4.6)

where 1
2
C D

0

B

@

1
2

0 0

0 1
2

0

0 0 1

1

C

A is the Gram matrix associated to the lattice L4 D

Z

0

B

@

1
2
1
2

0

1

C

A ˚ Z

0

B

@

1
2

�1
2

0

1

C

A ˚ Z

0

@

0

0

1

1

A. The lattice L3 D Z

0

@

0

0

1

1

A ˚ Z

0

@

1

1

0

1

A ˚ Z

0

@

1

�1
0

1

A

introduced in the proof of Corollary 3 is the kernel of the homomorphism f W Z3 !
f�1; 1g ; f .a/ D .�1/a1Ca2 : Hence

ƒ

0

B

@I; o;

0

B

@

1
2
1
2

0

1

C

A; s

1

C

A

D �.s/

�s

X

a2Z
3

a¤o

f .a/
I Œa�s

D �.s/

�s

X

a2L3

a¤o

1

I Œa�s
C �.s/

�s

X

a2Z3�L3

�1
I Œa�s

: (4.7)



Crystal Symmetry Viewed as Zeta Symmetry II 287

On the other hand, if we define g W L4 ! Z by

g

0

B

@b1

0

B

@

1
2
1
2

0

1

C

AC b2

0

B

@

1
2

�1
2

0

1

C

AC b3
0

@

0

0

1

1

A

1

C

A D .�1/b1 C .�1/b2 ;

then Im.g/ D f�2; 0; 2g and

fx 2 L4 j g.x/ D 2g

D

8

ˆ

<

ˆ

:

b1

0

B

@

1
2
1
2

0

1

C

AC b2

0

B

@

1
2

�1
2

0

1

C

AC b3
0

@

0

0

1

1

A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1; b2 2 2Z

9

>

=

>

;

D L3;

fx 2 L4 j g.x/ D �2g

D

8

ˆ

<

ˆ

:

b1

0

B

@

1
2
1
2

0

1

C

AC b2

0

B

@

1
2

�1
2

0

1

C

AC b3
0

@

0

0

1

1

A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1; b2 2 2ZC 1

9

>

=

>

;

D Z
3 �L3;

whence

ƒ

0

B

@

1

2
C; o;

0

B

@

1
2

0

0

1

C

A; s

1

C

ACƒ

0

B

@

1

2
C; o;

0

B

@

0
1
2

0

1

C

A; s

1

C

A

D �.s/

�s

X

b2Z
3

b¤o

.�1/b1 C .�1/b2

�

1
2
C Œb�

�s D �.s/

�s

X

x2L4

g.x/

I Œx�s

D �.s/

�s

X

a2L3

a¤o

2

I Œa�s
C �.s/

�s

X

a2Z3�L3

�2
I Œa�s

: (4.8)

Comparing (4.7) and (4.8) yields

ƒ

0

B

@I; o;

0

B

@

1
2
1
2

0

1

C

A; s

1

C

A D 1

2
ƒ

0

@

1

2
C; o;

0

@

1
2

0

0

1

A; s

1

AC 1

2
ƒ

0

@

1

2
C; o;

0

@

0
1
2

v0

1

A; s

1

A ;

but since

ƒ

0

@

1

2
C; o;

0

@

1
2

0

0

1

A; s

1

A D ƒ

0

B

@

1

2
C; o;

0

B

@

0
1
2

0

1

C

A; s

1

C

A ;

we conclude (4.6).
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Hence by (4.6), (4.7), and the scaling property

ƒ.cY; g;h; s/ D c�sƒ.Y; g;h; s/ ; c > 0; (4.9)

we find that

ƒ

�

I; o; c0;
1

2

�

D 3ƒ

0

B

@

1

2
C; o;

0

B

@

1
2

0

0

1

C

A; 1

1

C

A D 6ƒ

0

B

@C; o;

0

B

@

1
2

0

0

1

C

A; 1

1

C

A : (4.10)

Applying Theorem 2 (Corollary 1) for the decompositionC D
0

@

1 0 0

0 1 0

0 0 2

1

A as in the

proof of (4.4), we conclude that

ƒ

0

@C; o;

0

@

1
2

0

0

1

A; 1

1

A D ��
6
C
X

b2Z
2

b¤o

1
q

b21 C 2b22
csch

�
q

b21 C 2b22 �
�

:

Substituting this in (4.10) completes the proof. ut
Corollary 5. (An analogue of the Benson–Mackenzie formula)

Z

�

I; o; o;
1

2

�

D �

3
C 4 	

�

1

2

�

ˇ

�

1

2

�

C 8
1
X

a1D1

1
X

a2D0

1
q

a21 C a22
1

exp

�

2

q

a21 C a22 �
�

� 1

D �� C 12�
1
X

a1D1

1
X

a2D0

�

csch

�
q

a21 C a22 �
��2

:

D � 2:83729747948 : : :

Proof. As in [18, p. 115] we may write

Z .I; o; o; s/ D
X

a2Z
3

a¤o

1

I Œa�s
D
X

a2Z
3

a¤o

a21 C a22 C a23
�

a21 C a22 C a23
�sC1

D 3
X

b2Z

b¤0

0

@b2
X

a2Z2

1

.I2Œa�C b2/sC1

1

A
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for � > 3
2

. Then Theorem 2 gives

Z .I; o; o; s/

D 3
X

b2Z

b¤0

0

B

B

@

b2
2 �sC1

�.s C 1/
X

a2Z
2

a¤o

r

I2Œa�
b2

s

Ks

�

2
p

I2Œa� b2 �
�

Cb2 �sC1

�.s C 1/
�.s/

�s
1

b2s

1

C

C

A

D 6 �sC1

�.s C 1/
X

a2Z2

X

b2Z

b¤0

b2

r

I2Œa�
b2

s

Ks

�

2
p

I2Œa� b2 �
�

C 3�

s

X

b2Z

b¤0

1

b2s�2
;

the last term being 6
s
	.2s � 2/. Hence, in particular,

Z

�

I; o; o;
1

2

�

D 6 �
3
2

�.3
2
/

X

a2Z2

X

b2Z

b¤0

b2

r

I2Œa�
b2

1
2

K 1
2

�

2
p

I2Œa� b2 �
�

C 12� 	.�1/

D 6�
X

a2Z2

X

b2Z

b¤0

j b j exp
�

�2pI2Œa� j b j�
�

� �

on using 	.�1/ D �B2

2
D � 1

12
and (3.7).

In view of
1
X

nD1
n rn D r

.1 � r/2

for jr j < 1, the first series sums to

12�
X

a2Z2

exp
�

�2pI2Œa� �
�

�

1 � exp
�

�2pI2Œa� �
��2

;

which is immediately seen to be the second term on the right of desired identity. ut
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Example 2. We have yet another identity in contrast to the one in Corollary 5.

Z

�

I; o; o;
1

2

�

D �

3
C 4 	

�

1

2

�

ˇ

�

1

2

�

C 8
1
X

a1D1

1
X

a2D0

1
q

a21 C a22
1

exp

�

2

q

a21 C a22 �
�

� 1
;

where ˇ.s/ D L.s; �4/, �4 meaning the primitive Dirichlet character modulo 4.

Proof. By Corollary 2,

ƒ

�

Y; o; o;
1

2

�

D ƒ
�

A; o; o;
1

2

�

C 1
pjAj ƒ

� jY j
jAj ; 0; 0;�

1

2

�

C 1
pjAj

X

a2Z
2

a¤o

X

b2Z

b¤0

cos
�

2A�1B � a b ��
p

A�1Œa�
exp

 

�2
pjY j
pjAj

p

A�1Œa� jbj�
!

;

which further becomes by the scaling property and the last line in Corollary 2,

1
pjAj ƒ

�

A�1; o; o;
1

2

�

C
pjY j
3 jAj �

C 1
pjAj

X

a2Z
2

a¤o

X

b2Z

b¤0

cos
�

2A�1B � a b ��
p

A�1Œa�
exp

 

�2
pjY j
pjAj

p

A�1Œa� jbj�
!

;

where we substituted the valueƒ.1; 0; 0; 1
2
/ D �1

2
�.1

2
/	.�1/ D 

3
.

Specializing Y to be I , we get

ƒ

�

I; o; o;
1

2

�

D ƒ
��

1 0

0 1

�

; o; o;
1

2

�

C �

3
C
X

a2Z
2

a¤o

X

b2Z

b¤0

1
p

I2Œa�
exp

�

�2pI2Œa� jbj�
�

:

The inner series of the last term

X

a2Z
2

a¤o

1
X

bD1

2
p

I2Œa�
exp

�

�2pI2Œa� �
�b

is a geometric series, and so it amounts to the last series in our corollary. Finally it

suffices to note the identity ƒ

��

1 0

0 1

�

; o; o; s
�

D 4	.s/ˇ.s/: ut
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Positive Homogeneous Minima for a System
of Linear Forms

Srinivasacharya Raghavan

Dedicated to the memory of Professor Alladi Ramakrishnan

Summary An upper bound for the “positive homogeneous minimum” for n
linearly independent linear forms in n real variables in terms of their determinant is
obtained.

Mathematics Subject Classification (2000) 11H46, 11H50, 11J20

Key words and phrases Homogeneous minima � Systems of linear forms �
Inhomogeneous minima �Wood’s conjecture �Minkowski’s conjecture

For real irrational¨with bounded even partial quotients in its simple continued frac-
tion expansion and unbounded odd partial quotients, the inequality 0< xy�¨y2 < ©
is solvable in integers x, y for any given © > 0, while the same is not true of the in-
equality �© < xy � ¨y2 < 0. Consider two real linear forms L1.x, y/ WD x � ¨y
and L2.x, y/ WD y; in the standard notation [6], their homogeneous minimum de-
noted byMH is just the infimum of the absolute value abs L1.x; y/ L2.x; y/ of the
product L1.x; y/ L2.x; y/ taken over pairs of integers (x, y) different from (0, 0).
The positive minimum MP ((0, 0)) is defined as the infimum of L1.x; y/ L2.x; y/
taken over pairs of integers (x, y) for which L1.x; y/ and L2.x, y/ are both > 0;
likewise, the negative minimum MN ((0, 0)) is the infimum of L1.x, y/L2.x, y/
over all pairs of integers (x, y/ such that L1.x, y/ L2.x, y/ < 0. For the two homo-
geneous linear forms L1 and L2, we note that “MH D 0” and MP ..0; 0// D 0 but
MN ..0; 0// is not 0! Hence positive or negative minima seem to be of interest on
their own!

More generally, for n WD rC 2 s in N, with non-negative integral r and s, let
L1, L2, . . . , Lr , LrC1, LrC2, . . . , LrCs , LrCsC1, LrCsC2, . . . ,LrC2s be n linearly
independent linear forms in n real variables x1, x2, . . . , xn; havingD > 0 as the ab-
solute value of their determinant; let us assume further thatL1,L2, . . . , Lr have real
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coefficients and LrC1, LrC3, . . . , LrC2s�1 have complex coefficients while the s
formsLrC2,LrC4, . . . ,LrC2s are just the complex conjugates respectively ofLrC1,
LrC3, . . . , LrC2s�1. One defines their homogeneous minimum MH as the infimum
of the absolute value of the product L1(x)L2(x) . . . Ln(x) taken over all integral
n-tuples x D .x1, x2, . . . , xn/ different from the zero n-tuple 0 WD .0; 0; : : : ; 0/. For
a given n-tuple a WD .a1, a2, . . . , an/ with real a1, a2, . . . , ar and complex arC1,
arC3, . . . , arC2sC1 having precisely arC2, arC4, . . . , arC2s as their respective com-
plex conjugates, the inhomogeneous minimum MI (a) is defined as the infimum of
the absolute value of the product .L1(x)Ca1/ (L2(x)Ca2/. . . (Ln(x) C an) taken
over all integral n-tuples x D (x1, x2, . . . ,xn) not equal to 0 and finally the in-
homogeneous minimum MI as the supremum of MI .a/ taken over all n-tuples a
as described above. Analogously, the inhomogeneous positive minima MP (a) and
MP are defined (cf. [2, 6]) imposing the additional conditions L1(x) C a1 > 0,
L2 .x/C a2 > 0, . . .Lr (x) C ar > 0. It is well-known that D/MH is bounded be-
low by a constant (>1) depending only on n. For s D 0; Minkowski’s celebrated
conjecture states that MI is bounded above by D=2n towards which Chebotarev’s
(in 1934) was the first contribution with 2n=2 in lieu of 2n; as of now, the valid-
ity of the conjecture stands upheld for all n < 7, thanks to a galaxy of eminent
mathematicians including Landau, Mordell, Davenport, Birch, Swinnerton-Dyer,
Dyson, Skubenko, Bambah and Woods, and finally McMullen (whose result in 2005
leading to the confirmation of Minkowski’s conjecture for n D 6 was kindly high-
lighted by the referee in the interest of the present author). Recently, the work on
Woods’ Conjecture for n D 7 by R.J. Hans-Gill, M. Raka, and R. Sehmi taken
with McMullen’s 2005 result has led to the confirmation of Minkowski’s conjecture
for n D 7.

The focus of this note is, however, on lower bounds (if any) for D/MP (0).
The case of MP or even of MP .a/ for any individual n-tuple a in the form
prescribed above (say e.g., ao WD (1=2, 1=2,. . . ,1=2/ is ruled out in view of the
following interesting example that we were privileged to learn in person from
Professor J. W. S. Cassels (cf. [4, 5]) (given in the notation above): If Li .x/ D
xi .1 � i � r/; LrC2j�1.x/ D xrC2j�1 C .

p� 1/ ©xrC2j .1 � j � s/ with © > 0
and n WD r C 2 s so that D D (2©/s, one finds that MI .ao/=D > 1=.2nCs©s/
and is thus unbounded as © tends to 0 (the same being true of MP (ao/=D clearly
and noting too that MH D 0). Following Davenport’s result “MI < c0 (n/D” (for
s D 0, with c0 .n/ WD (n2n�1.nŠ/.n�1/=2�.1Cn=2/=.�.1=2//n/n, we have Barnes’
estimate “MIMH

s=.n�s/ < c1 (n/Dn=.n�s/” for a constant c1 (n/ depending only
on n, Davenport’s refinements and further work of Rieger [6] (cf. a complete bibli-
ography in the excellent article [1]) invariably requiring that MH be non-zero; one
asks if there exists any upper bound for other relevant minima purely in terms of D
without such a condition on MH . Pursuing ideas of Siegel and Davenport (also of
Barnes), Rieger [6] inter alia recovered Chalk’s upper bound [2] for MP =D (viz:
when s D 0). Baffled somewhat by exclusion of the case “s > 0” and driven by
an urge to stay away from a condition such as “MH is not 0”, it may be of some
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interest to seek, in the case “s >0”, an upper bound (in view of the specific example
above, neither for MP nor for MP (a) with general a but only) for MP (0)/D as in
the following main result of this note.

Theorem. Given n linearly independent linear forms L1, L2, . . . . , Lr , LrC1,
LrC2, . . . , LrCs , LrCsC1, LrCsC2, . . . ,LrC2s as above in x1, x2, . . . , xn; with
D > 0 as the absolute value of the determinant, we have for the positive inho-
mogeneous minimum MP .0/ the upper bound c D where c WD .2n �.1 C n=2/=
.�.1=2//n/n C 1 (n.n!).n�1/=2/n.

Proof. If MP .0/D 0; there is nothing to prove. Following a method devised by
Siegel (for MI in the case sD 0), “modified” then by Davenport [3] (and adapted
in [6] by Rieger) to obtain other upper bounds for MI , let us take the pos-
itive definite quadratic form Q.x/ WD L1(x)2 C L2(x)2 C � � � � � CLr (x)2 C
(abs LrC1(x))2 C � � � � C(abs (Ln(x))2 D L1(x)2 C L2(x)2 C � � � � � Lr (x)2 C 2(abs
LrC1(x))2 C � � � � C2(abs LrC2s�1(x))2 D K1(x)2 C K2(x)2 C � � � � � Kr (x)2 C
KrC1(x)2 C KrC2(x)2 C � � � C KrC2s�1(x)2 C Kn.x/2 where abs Lk(x) for real
n-tuples x denotes (its) absolute value and where we have rewritten Li (x) as
Ki (x) for i D 1, 2, � � � r and defined KrCj (x) WDp2<LrCj (x) and KrCjC1
(x) WDp2=LrCj (x) for j D 1,3,. . . ,2s�1: Linking the Minkowski successive min-
ima t1 � t2 ���� � �� tn with the determinant� WD D2 ofQ, we have the well-known
inequalities

D � pt1pt2 : : :ptn � cnD where cn WD 2n�. 1C n=2/=.�.1=2//n: (1)

For non-zero real x with Q (x) < tn, there exist real numbers a1, a2,. . . ., an
not all 0 such that a1K1.x/ C a2K2(x)C � � � C anKn(x)D 0. With the notation
abs as above, we can assume (after suitably permuting 1, 2, : : : ; n if neces-
sary) that 0 < abs an� abs ai for 1 � i � n. We have then Kn (x)2D ((a1
K1(x)C � � �Can�1Kn�1(x))/an/2 � .n–1) (K1(x)2 C � � �CKn�1(x)2/ in view of
the Cauchy-Schwarz inequality; therefore, (K1(x)2 C � � � C Kn�1(x)2/ � Q

(x)=n. If, in addition, x satisfies the condition Q(x) < tn�1, one has a simi-
lar linear relation b1 K1(x) C b2K2(x)C� � � C bn�1Kn�1(x) D 0 with 0 < abs
bn�1 � abs bi for i D 1, 2, . . . , n�1 (after a suitable permutation of the
indices) leading to the inequality K1(x)2 C � � � C Kn�2(x)2 � Q(x)/(n.n�1)).
Proceeding in this manner, given any non-zero integral x, there exists h such that
K1(x)2 C � � � C Kh(x)2 � th=.n.n � 1/� � �.h C 1)). In particular, for any non-zero
integral x, abbreviatingKi (x)2 as K2

i for all i , we have

K1
2=t1 C � � � CKn2=tn � 1=nŠ: (2)

In other words, for a suitable permutation �.1/, �.2/; : : : ; �.n/ of 1; 2; : : : n, such
that for all integral x ¤ 0; we have

R.x/ WD K1.x/2=t�.1/ C � � � CKn.x/2=t�.n/ � 1=nŠ: (3)
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If the successive minima of R(x) are s1 � s2 � � � � � sn, then by (2), s1 � 1/n! and
so, in view of (1), we have

p
s1Cps2C� � �Cpsn � npsn � n .nŠ/.n�1/=2ps1ps2 � � �psn � n .nŠ/.n�1/=2cn:

(4)
Let x.j / for j D 1; 2; : : :; n be an integral vector (chosen once for all) at which R
assumes the value sj ; writing L� briefly for L� (x.j // and for 1 � l � s, defining
u�.rCl/ WD min (t�.rC2l�1/, t�.rC2l//, we clearly have (1=n!) � sj D R(x.j // D
L1

2/t�.1/ C � � � C Lr 2/t�.r/C 2 abs LrC12/u�.rC1/C2 abs LrC32/u�.rC2/ C � � � �
C2abs L 2

rC2s�1 /u�.rCs/. For 1� j � n, 1� i � r and for 1� k, l � s, we
thus obtain the estimates

.Li .x
.j ///2 � sj t�.i/; .abs LrC2k�1.x.j ///2 � sj u�.rCk/;

.LrC2l .x.j ///4 � s2j t�.rC2l�1/t�.rC2l/: (5)

We note that, for any fixed given linear form Li , at least one of the n numbers
Li (x.1//; : : : ; Li (x.n// must be non-zero. Consequently, for 1 � l � n, i WD abs
Li (x.1//Cabs Li (x.2// C � � �Cabs Li (x.n// is always positive. Indeed, since the
(n, n/ matrix (Li (x.j /// has non-zero determinant, there exists a permutation ¡ of
f1, 2, . . . ,ng such that the productL1(x.�.1///L2(x.�.2///. . . Ln(x.�.n/// is non-zero.
Therefore, for 1 � i � n, i WD Cabs Li (x.1//C abs Li (x.2//C � � �C abs Li (x.n//
is always positive. Now there do exist real numbers ˜1, ˜2, . . . , ˜n satisfying the
system of n linear equationsLi (x.1//˜1C Li (x.2//˜2C � � � CLi (x.n//˜n D i /2
for i D 1; 2, . . . . . , n. We take y1, y2, . . . , yn in Z such that �1=2 � ˜j � yj <1/ 2
and define x = y1 x.1/ C y2 x.2/ C � � � C yn x.n/. Note first that for i D 1; 2,. . . . .,
n=Li (x.1//˜1 Li (x.2//˜2C� � �CLi (x.n//˜n/ necessarily equals 0; furtherLi (x)D
i /2�.Li (x.1//˜1�y1/Li (x.2//˜2�y2/C� � � ��CLi (x.n//˜n�yn//which (on duly
omitting indices k with Li (xk/ D 0Š) can be rewritten as abs Li (x.1//.1=2�sgnLi
(x.1//.˜1 � y1// C � � � � C abs Li (x.n//.1=2�((Li (x.n///abs Li (x.n///˜n � yn//.
Since in addition we have also (1=2 � .˜k � yk// > 0, (1=2C .˜k � yk// � 0 under
the given circumstances, we see that for i D 1; 2; : : : : ; r , Li (x) > 0. Moreover,
abs Li (x)� i � pt�.i/ (

p
s1 C ps2 C � � � C psn/. In view of (1), (4), and (5),

we have

abs.L1.x/L2.x/: : : : :Ln.x// � .t�.1/t�.2/� � � � t�.n/1=2.ps1 Cps2 C � � �psn/n
� cnnC1.n.nŠ/.n�1/=2/nD DW cD

and the theorem is finally proved. ut

Remark. One may note that the bound (involving just D and no higher power
thereof) given by Theorem above is in accord with the (best possible) bound (for
the case s D 0) due to Chalk [2]. Let us keep in view (for non-zero s/, Cassels’
example above. Taking then both s andMH to be non-zero (or simplyMH to be 1),
it is natural for one, on the other hand, to regard the Theorem (albeit with explicit
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constants) as a simple special case of Rieger’s results (5), (6) on page 127 of [6]
but that way one ends up only with a bound involving D raised to a power higher
than 1, in general. We may also point out that with such a result not available earlier,
we were forced to require the algebraic number field K (featuring in Propositions
2–4 and the (main) Theorem of the paper: Values of Quadratic Forms”, Comm. Pure
Appl. Math. 30(1977), 273–281) to be totally real.
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the Dirichlet series in the orbit of the zeta function are related to it by algebraic
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1 Introduction

This paper is concerned with group actions on the space of analytic Dirichlet se-
ries. A formal Dirichlet series is a series of the form

P1
nD1 ann�s , where fang1nD1

is a sequence of complex numbers and s is formal variable. Such series form an
algebra DŒŒs�� under the operations of termwise addition and scalar multiplication
and multiplication defined by Dirichlet convolution:

 1
X

nD1
ann
�s
! 1

X

nD1
bnn
�s
!

D
1
X

nD1

0

@

X

ijDn
aibj

1

A n�s : (1)
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It is well-known that this algebra, sometimes called the algebra of arithmetic
functions, is isomorphic with the algebra of formal power series in a countably
infinite set of variables. The analytic Dirichlet series, those which converge for
some complex value of the variable s, form a subalgebra Dfsg, shown in [2] to be a
local, non-noetherian unique factorization domain. As a vector space, we can iden-
tify DŒŒs�� with the space of sequences and Dfsg with the subspace of sequences
satisfying a certain polynomial growth condition. It is important for our purposes
that the space of sequences is the dual E� of a space E of countable dimension,
since the linear operators on Dfsg of interest to us are induced from operators on
E . We take E to be the space of columns, indexed by positive integers, which have
only finitely many nonzero entries. In the standard basis of E , endomorphisms act-
ing on the left are represented by column-finite matrices with rows and columns
indexed by the positive integers. They act on E� by right multiplication. The endo-
morphisms of E which preserve Dfsg in their right action form a subalgebra DR.
There is a natural embedding of Dfsg into DR mapping a series to the multipli-
cation operator defined by convolution with the series. The Riemann zeta function
	.s/ D P1

nD1 n�s , Re.s/ > 1, is mapped to the divisor matrix D D .di;j /i;j2N,
defined by

di;j D
(

1; if i divides j ,

0 otherwise.

It is also of interest to study noncommutative subalgebras of DR or nonabelian
subgroups of DR� which contain D. In [8], it was shown that hDi could be em-
bedded as the cyclic subgroup of index 2 in an infinite dihedral subgroup of DR�.
Given a group G, the problem of finding a subgroup of DR� isomorphic with G
and containing D is equivalent to the problem of finding a matrix representation of
G into DR� in which some group element is represented by D.

As a reduction step for this general problem, it is desirable to transform the di-
visor matrix into a Jordan canonical form. Since DR is neither closed under matrix
inversion nor similarity, such a reduction is useful only if the transition matrices
belong to DR�. We show explicitly (Lemma 4.5 and Theorem 4.8 ) that D can be
transformed to a Jordan canonical form by matrices in DR� with integer entries.

The remainder of the paper is devoted to the group G D SL.2;Z/. We con-
sider the problem of constructing a representation � W G ! DR� such that the
standard unipotent element T D �

1 1
0 1

�

is represented by D and such that an el-
ement of order 3 acts without fixed points. The precise statement of the solution
of this problem is Theorem 3.1 below. Roughly speaking, the result on the Jordan
canonical form reduces the problem to one of constructing a representation of G in
which T is represented by a standard infinite Jordan block. In the simplified prob-
lem, the polynomial growth condition on the matrices representing group elements
becomes a certain exponential growth condition and the fixed-point-free condition
is unchanged. The construction is the content of Theorem 5.1. Since the group G
has few relations, it is relatively easy to define matrix representations satisfying the
growth and fixed-point-free conditions and with T acting indecomposably. How-
ever, the growth condition is not in general preserved under similarity and it is a
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more delicate matter to find such a representation for which one can prove that the
matrix representing T can be put into Jordan form by transformations preserving
the growth condition.

As we have indicated, the construction of the representation � involves making
careful choices and we do not know of an abstract characterization of � as a matrix
representation. The CG-module affording � can, however, be characterized as the
direct sum of isomorphic indecomposable modules where the isomorphism type of
the summands is uniquely determined up to CG-isomorphism by the indecompos-
able action of T and the existence of a filtration by standard 2-dimensional modules
(Theorem 8.1). Although � is just one among many matrix representations ofG into
DR� which satisfy our conditions, we proceed to examine the orbit of 	.s/ under
�.G/. We find (Theorem 10.3) that one series '.s/ in this orbit is related to 	.s/ by
the cubic equation

.	.s/� 1/'.s/2 C 	.s/'.s/ � 	.s/.	.s/� 1/ D 0: (2)

We also show (Theorem 9.1) that, as a consequence of relations in the image of the
group algebra, the other series in the orbit belong to C.	.s/; '.s//.

The cubic equation may be rewritten as:

�'.s/ D .	.s/� 1/.'.s/2 C '.s/� 	.s//: (3)

The second factor on the right is a unit in Dfsg, so ' and 	.s/ � 1 are associate ir-
reducible elements in the factorial ring Dfsg. The fact that there is a cubic equation
relating 	.s/ and an associate of 	.s/ � 1 should be contrasted with the classical
theorem of Ostrowski [5], which states that 	.s/ does not satisfy any algebraic
differential-difference equation.

Matrices resembling finite truncations of the divisor matrix were studied by
Redheffer in [6]. For each natural number n, he considered the matrix obtained
from the upper left n � n submatrix of D by setting each entry in the first column
equal to 1. Research on Redheffer’s matrices has been motivated by the fact that
their determinants are the values of Mertens’ function, which links them directly to
the Riemann Hypothesis. (See [1, 11], and [10].)

2 Basic Definitions and Notation

Let N denote the natural numbers f1; 2; : : :g and C the complex numbers. Let E be
the free C-module with basis fengn2N. With respect to this basis, the endomorphism
ring EndC.E/ acting on the left ofE becomes identified with the ring A of matrices
A D .ai;j /i;j2N, with complex entries, such that each column has only finitely
many nonzero entries. The dual space E� becomes identified with the space CN

of sequences of complex numbers, with f 2 E� corresponding to the sequence
.f .en//n2N. We will write .f .en//n2N as f and f .en/ as f .n/ for short.
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In this notation, the natural right action of EndC.E/ onE� is expressed as a right
action of A on CN by

.fA/.n/ D
X

m2N

am;nf .m/; f 2 CN; A 2 A:

(The sum has only finitely many nonzero terms.)
Let DS be the subspace of CN consisting of the sequences f for which there exist

positive constants C and c such that for all n, jf .n/j � Cnc . A sequence f lies
in DS if and only if the Dirichlet series

P

n f .n/n
�s converges for some complex

number s, which gives a canonical bijection between DS and the space Dfsg of
analytic Dirichlet series. Let DR be the subalgebra of A consisting of all elements
which leave DS invariant.

A sufficient condition for membership in DR is provided by the following
lemma, whose proof is straightforward.

Lemma 2.1. Let A D .ai;j /i;j2N 2 A. Suppose that there exist positive constants
C and c such that the following hold.

(i) ai;j D 0 whenever i > Cj c .
(ii) For all i and j we have jai;j j � Cj c .

Then A 2 DR. Furthermore, the set of all elements of A which satisfy these condi-
tions, where the constants may depend on the matrix, is a subring of DR.

We let DR0 denote the subring of DR defined by the lemma. If
P

n2N f .n/n�s 2
Dfsg, then its multiplication operator has matrix with .i; ni/ entries equal to f .n/
for all i and n and all other entries zero, so the multiplication operators form a
commutative subalgebra of DR0.

Remarks 2.2. There exist elements of DR which do not satisfy the hypotheses of
Lemma 2.1. An example is the matrix .ai;j /i;j2N defined by

ai;j D
8

<

:

1

jj 2 ; if i D j j ,

0; otherwise.

There are invertible matrices in DR0 whose inverses are not in DR. For example,
the matrix .bi;j /i;j2N, given by

bi;j D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; if i > j ,

1; if i D j ,

�1 if i < j
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is obviously in DR0, while its inverse, given by

b0i;j D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; if i > j ,

1; if i D j ,

2j�i�1 if i < j

is not in DR.

3 An Action of SL.2 ; Z/ on Dirichlet Series

The groupG D SL.2;Z/ is generated by the matrices

S D



0 �1
1 0

�

; and T D



1 1

0 1

�

: (4)

These matrices satisfy the relations

S4 D .ST /6 D 1; S2 D .ST /3 (5)

which, as is well known, form a set of defining relations for SL.2;Z/ as an abstract
group.

With the above definitions, we can state one of our principal results.

Theorem 3.1. There exists a representation � W SL.2;Z/! A� with the following
properties.

(a) The underlying CSL.2;Z/-module E has an ascending filtration

0 D E0 � E1 � E2 � � � �
of CSL.2;Z/-submodules such that for each i 2 N, the quotient module
Ei=Ei�1 is isomorphic to the standard 2-dimensional CSL.2;Z/-module.

(b) �.T / D D.
(c) �.Y / is an integer matrix for every Y 2 SL.2;Z/.
(d) �.SL.2;Z// � DR0.

The facts needed for the proof of Theorem 3.1 are established in the following
sections and the proof is completed in Sect. 6.

4 A Jordan Form of the Divisor Matrix

For m, k 2 N, let

Ak.m/ D f.m1; m2; : : : ; mk/ 2 .N n f1g/k j m1m2 � � �mk D mg

and let ˛k.m/ D jAk.m/j.
The following properties of these numbers follow from the definitions.
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Lemma 4.1. (a) ˛k.1/ D 0.

(b) ˛k.m/ D 0 if m < 2k and ˛k.2k/ D 1.
(c)

.	.s/� 1/k D
1
X

mD2k

˛k.m/

ms
:

By considering the first k�1 entries of elements ofAk.m/, we see that for k > 1,
we have

˛k.m/ D
0

@

X

d jm
˛k�1.d/

1

A� ˛k�1.m/: (6)

Induction yields the following formula.

Lemma 4.2.

k�1
X

iD1
.�1/k�1�i

X

d jm
˛i .d/ D ˛k.m/C .�1/k˛1.m/: (7)

Lemma 4.3. There exists a constant c such that ˛k.m/ � mc for all k and m.

Proof. We choose c with 	.c/D2. We proceed by induction on k. Since ˛1.m/�1,
the result is true when k D 1. Suppose for some k we have that for all m,

˛k.m/ � mc :

Then by (6) we have

˛kC1.m/ �
X

d jm
1<d<m

˛k.m=d/ � mc
X

d jm
1<d<m

d�c � mc.	.c/ � 1/ D mc;

which completes the inductive proof. ut
Remark 4.4. Since 	.2/ D �2=6, the constant c can be chosen from the real interval
.1; 2/.

Let J D .Ji;j /i;j2N be the matrix defined by

Ji;j D
(

1; if j 2 fi; 2ig;
0 otherwise:

Let Z D .˛.i; j //i;j2N be the matrix described in the following way. The odd
rows have a single nonzero entry, equal to 1 on the diagonal. Let i D 2kd with d
odd. Then the i th row of Z is equal to the d th row of .D � I /k .
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Lemma 4.5. The matrix Z has the following properties:

(a) ˛.i; j / D ıi;j , if i is odd.
(b) If i D d2k, where d is odd and k � 1, then

˛.i; j / D
(

˛k.j=d/ if d j j ,

0 otherwise.

(c) ˛.im; jm/ D ˛.i; j / wheneverm is odd.
(d) Z is upper unitriangular.
(e) ZDZ�1 D J .
(f) Z 2 DR0.

Moreover, Z is the unique matrix satisfying (a) and (e).

Proof. Part (a) is by definition. Part (b) follows from Lemma 4.1(c) upon multiply-
ing by the Dirichlet series with one term d�s. Part (c) is a special case of (b). Part (d)
also follows from (b). Part (f) is then immediate from Lemma 4.3. In the equation

Z.D � I / D .J � I /Z (8)

the nth row of each side is equal to the 2nth row of Z. This proves (e) since Z is
invertible by (d). To prove the last statement we see that if (e) holds then by (8) we
have for all i and k 2 N,

X

j jk
j<k

˛.i; j / D ˛.2i; k/;

which determinesZ uniquely since the rows with odd index are specified by (a).
ut

Our aim is to determine Z�1 explicitly.
For each prime p and each integerm, let vp.m/ denote the exponent of the high-

est power of p which dividesm and let v.m/ DPp vp.m/.

Lemma 4.6. We have for all m 2 N,

v.m/
X

kD1
.�1/k˛k.m/ D

(

.�1/v.m/; if m is squarefree andm > 1;

0 otherwise.

Proof. The case m D 1 is trivial. Suppose m D p
�1

1 p
�2

2 � � �p�r
r , with 1, 2,. . . ,

r � 1 and r � 1. In the ring of formal power series CŒŒt1; : : : ; tr �� in r indetermi-
nates, we set

y D 1

.1 � t1/.1 � t2/ � � � .1 � tr / � 1

D
X

.n1;:::;nr /2.N[f0g/r
˛1.p

n1

1 � � �pnr
r /t

n1

1 � � � tnr
r : (9)
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Then for k � 1

yk D
X

.n1;:::;nr /2.N[f0g/r
˛k.p

n1

1 � � �pnr
r /t

n1

1 � � � tnr
r : (10)

Then we have

r
Y

iD1
.1 � ti / � 1 D �y

1C y
D
X

k2N

.�1/kyk

D
X

.n1;:::;nr /2.N[f0g/r

"

X

k2N

.�1/k˛k.pn1

1 � � �pnr
r /

#

t
n1

1 � � � tnr
r : (11)

The lemma follows by equating the coefficients of monomials. ut
Remark 4.7. The above proof is similar to the argument in [4], p. 21, used to show
that

P

k.�1/k˛k.m/=k is equal to 1=h if m is the h-th power of a prime, and zero
otherwise. The lemma has also the following enumerative proof, based on another
combinatorial interpretation of the sets Ak.m/. From the above factorization of m,
let  be the partition of n defined by the i . Let N D f1; : : : ; ng and let F� be the
set of functions h W N ! fp1; : : : ; prg such that jh�1.pi /j D i for i D 1,. . . ,r .
The symmetric group Sn acts transitively on the right of F� by the rule .h�/.y/ D
h.�.y//, y 2 N , � 2 Sn. The stabilizer S� of the function mapping the first 1
elements to p1, the next 2 elements to p2, etc. is isomorphic to S�1

� S�2
� � � � �

S�r
. A k-decomposition of n is a k-tuple .n1; : : : ; nk/ of integers ni � 1 such

that n1 C n2 C � � � C nk D n. Let … D f�1; : : : �n�1g be the set of fundamental
reflections, with �i D .i; i C 1/. The subgroupWK of Sn generated by a subset K
of … is called a standard parabolic subgroup of rank jKj. Given a k-decomposition
.n1; : : : ; nk/ of n, we have a set decomposition ofN into subsetsN1 D f1; : : : ; n1g,
N2 D fn1 C 1; : : : ; n1 C n2g, . . . , Nk D fn1 C � � � C nk�1 C 1; : : : ; ng. The
stabilizer of this decomposition is a standard parabolic subgroup of rank n � k and
this correspondence is a bijection between k-decompositions and standard parabolic
subgroups of rank n � k.

For each pair ..n1; : : : ; nk/; h/ consisting of a k-decomposition and a func-
tion h 2 F�, we obtain an element .m1; : : : ; mk/ 2 Ak.m/ by setting mi D
Q

j2Ni
h.j /. Every element of Ak.m/ arises in this way and two pairs define the

same element of Ak.m/ if and only if the k-decompositions are equal and the corre-
sponding functions are in the same orbit under the action of the parabolic subgroup
of the k-decomposition.

Thus, we have

˛k.m/ D jAk.m/j D
X

K�…
jKjDn�k

jfWK-orbits on F�gj:
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The number of WK-orbits on F� can be expressed as the inner product of
permutation characters, so

˛k.m/ D
X

K�…
jKjDn�k

h1Sn

WK
; 1
Sn

S�
i:

Now, it is a well-known fact [7] that

X

K�…
.�1/jKj1Sn

WK
D �;

where � is the sign character. Hence,

n
X

kD1
.�1/k˛k.m/ D .�1/n

*

X

K�…
.�1/jKj1Sn

WK
; 1
Sn

S�

+

D .�1/nh�; 1Sn

S�
i

D .�1/nh�; 1iS�

D
(

.�1/n; if  D 1n;
0; otherwise.

Let X be the diagonal matrix with .i; i/ entry equal to .�1/v2.i/, for i 2 N.

Theorem 4.8. Z�1 D XZX . In particular, Z�1 2 DR0.

Proof. If i is odd then the i th row of Z is zero except for 1 in the i th column, so
the same holds forXZX . By the last assertion of Lemma 4.5 it is sufficient to show
that

D.XZX/ D .XZX/J
or, equivalently,

.XDX/Z D Z.XJX/:
The matrices XDX D .d 0i;j /i;j2N and XJX D .c0i;j /i;j2N are given by

d 0i;j D
(

.�1/v2.i/Cv2.j /; if i j j ;
0 otherwise:

; c0i;j D

8

ˆ

ˆ

<

ˆ

ˆ

:

1; if j D i ;
�1; if j D 2i;
0 otherwise:

Thus, we must show that

X

m�1
.�1/v2.m/˛.im; j / D

(

˛.i; j /; if j is odd,

˛.i; j / � ˛.i; j=2/; if j is even.
(12)
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It is sufficient to consider the case i D 2k , for k � 1, by Lemma 4.5(c). In this case,
the left hand side of (12) can be rewritten as

X

d jj
d odd

v.j /�k�v.d/
X

eD0
.�1/e˛.2kCe; j=d/ D .�1/k

X

d jj
d odd

v.j=d/
X

rDk
.�1/r˛.2r ; j=d/:

(13)

Suppose that we can prove for all j , that

.�1/k
X

d jj

v.j=d/
X

rDk
.�1/r˛.2r ; j=d/ D ˛.2k ; j /: (14)

Then we will have proved (12) if j is odd. If j is even, we note that d is a divisor
of j=2 if and only if 2d is an even divisor of j so that (14) implies

˛.2k ; j=2/ D .�1/k
X

d j.j=2/

v..j=2/=d/
X

rDk
.�1/r˛.2r ; .j=2/=d/

D .�1/k
X

d 0jj
d 0 even

v.j=d 0/
X

rDk
.�1/r˛.2r ; j=d 0/:

Thus, from (13) we see that (12) also follows from (14) when j is even. It remains
to prove (14). We can assume j > 1, by Lemma 4.1(a). Lemma 4.6, applied to the
left hand side of (14), yields

.�1/k�1 C .�1/k�1
X

d jj

 

k�1
X

rD1
.�1/r˛r .j=d/

!

(15)

because the total contribution from the squarefree case of Lemma 4.6 is

.�1/k
X

d jj
j=d squarefree
j=d>1

.�1/v.j=d/ D .�1/k�1:

We can rewrite (15) as

.�1/k�1 C
k�1
X

rD1
.�1/k�1�r

X

d jj
˛r .d/;

which, by Lemma 4.2 is equal to ˛k.j /. This proves (14). ut
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5 Construction of Representations

Let J1 be the “infinite Jordan block”, indexed by N � N, defined by

.J1/i;j D
(

1; if j D i or j D i C 1,

0 otherwise.

In the following theorem, T and S are the generators of SL.2;Z/ defined in (4).

Theorem 5.1. There exists a representation � W SL.2;Z/! A� with the following
properties.

(a) Let Ei be the subspace of E spanned by fe1; : : : ; e2i g, i 2 N. Then

0 D E0 � E1 � E2 � � � �

is a filtration of CSL.2;Z/-modules and for each i 2 N the quotient module
Ei=Ei�1 is isomorphic to the standard 2-dimensional CSL.2;Z/-module.

(b) �.T / D J1.
(c) �.Y / is an integer matrix for every Y 2 SL.2;Z/.
(d) There is a constant C such that for all i and j we have j�.S/i;j j � 2Cj .

Later we will show (Theorem 8.1) that there is a unique CSL.2;Z/-module with a
filtration by standard modules and such that T acts indecomposably and unipotently
on every T -invariant subspace.

We define a sequence of integers fbngn�0 recursively by1

b0 D b1 D 1; bn C
X

i;j�1
iCjDn

bibj D 0 for all n � 2. (16)

Let CŒŒt �� denote the ring of formal power series over C and let g.t/ 2 CŒŒt �� be
defined by

1C g.t/ D
1
X

kD0
bkt

k :

Then the recurrence relations satisfied by the bi can be stated as the equation

g.t/2 C g.t/ D t: (17)

Thus,

g.t/ D �1C
p
1C 4t
2

;

1 As J-P. Serre has pointed out to us, this is the sequence of Catalan numbers, up to signs.
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where the positive square root is taken since g.t/ has no constant term. By Taylor
expansion we obtain

bm D .�1/m�1
m

 

2m � 2
m � 1

!

; .m � 2/; b1 D b0 D 1: (18)

Let

B0 D T; B1 D



0 1

1 1

�

; Bi D



0 bi
bi 0

�

; .i � 2/

and define

J̃ =

B0 B1 B2 B3 . . .
0 B0 B1 B2 . . .
0 0 B0 B1 . . .
0 0 0 B0 . . .
...

...
...

...
. . .

,

QS D diag.S; S; : : :/;

QR D � QS QJ :
For any ringR, letMn.R/ denote the ring of n�nmatrices overR. Let U denote

the ring of matrices of the form

U =

X(0) X(1) X(2) X(3) . . .
0 X(0) X(1) X(2) . . .
0 0 X(0) X(1) . . .
0 0 0 X(0) . . .
...

...
...

...
. . .

, (19)

where, for all n � 0,

X .n/ D
2

4

x
.n/
1;1 x

.n/
1;2

x
.n/
2;1 x

.n/
2;2

3

5 2M2.C/

and the X .n/ are repeated down the diagonals. For example, QS , QJ , and QR all belong
to U . The center Z.U/ consists of those matrices in which the submatrices X .n/

are all scalar matrices. The map CŒŒt �� ! Z.U/ sending
P

n�0 antn to the matrix
with X .n/ D anI , for all n � 0, is a C-algebra isomorphism, and extends to a
CŒŒt ��-algebra isomorphism

” W U !M2.CŒŒt ��/; U 7!



x1;1.t/ x1;2.t/

x2;1.t/ x2;2.t/

�

; (20)
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where

xi;j .t/ D
1
X

nD0
x
.n/
i;j t

n; i , j 2 f1; 2g.

We have:

”. QS/ D



0 �1
1 0

�

; ”. QJ / D



1 1C g.t/
g.t/ 1C t

�

; ”. QR/ D



g.t/ 1C t
�1 �1 � g.t/

�

:

(21)

Lemma 5.2. (a) QS2 D �I .

(b) QR2 C QRC I D 0.
(c) There exists a representation �1 of G such that �1.S/ D QS and �1.T / D QJ .

Proof. Part (a) is obvious and (b) is easy to check by direct computation using (21)
and (17). By (a) and (b), the elements QS and QJ satisfy the defining relations (5) for
SL.2;Z/, so (c) holds. ut

The representation �1 satisfies all the conditions of Theorem 5.1 except for (b).
To complete the proof of Theorem 5.1, we shall conjugate this representation by an
upper unitriangular integer matrix P such that P QJP�1 D J1. In order to check
that P QSP�1 satisfies condition (d) of Theorem 5.1, we will need to compute P and
its inverse explicitly.

5.1 Transforming QJ into Jordan Form

A matrix P such that P QJP�1 D J1 can be found by following the usual method
for computing Jordan blocks. Thus, for n 2 N, we define the nth row of P to be the
first row of . QJ � I /n�1, setting . QJ � I /0 D I . Then P is upper unitriangular, hence
invertible, and from its definition, P satisfies the equivalent equation

P. QJ � I / D .J1 � I /P:

We now compute the entries of P explicitly. In order to do this, we use the
isomorphism ” of (20). Let QH D ”. QJ � I /. Then

QH D



0 1C g.t/
g.t/ t

�

:

It is easy to compute the powers of QJ � I by diagonalizing QH . Since g.t/2 C
g.t/ D t , the characteristic polynomial of QH is �.x/ D x2 � tx � t . Let 1
and 2 be the roots of this polynomial in some extension field and for n � 0, let
hn D .nC11 � nC12 /=.1 � 2/ be the complete symmetric polynomial of degree
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n in two variables, evaluated at .1; 2/. Then hn is a polynomial in the coefficients
of �.x/, so it is a polynomial in t . We have h0 D 1 and h1 D t . A straightforward
computation shows that, for n � 2,

QHn D



thn�2 .1C g.t//hn�1
g.t/hn�1 hn

�

: (22)

It follows from (22) and the equation g.t/2 C g.t/ D t that the polynomials hn
satisfy the recurrence

hn D thn�1 C thn�2; .n � 2/; h0 D 1; h1 D t:

By inspection, the solution is

hn D
b n

2
c

X

rD0

 

n � r
r

!

tn�r :

Thus, we can compute the entries of P as coefficients of the powers of t in the top
rows of the QHn. For ` � 3 and s � 0, we have

p`;2sC1 D coefficient of ts in th`�3

D
 

s � 1
` � s � 2

!

;

p`;2sC2 D coefficient of ts in .1C g.t//h`�2

D
bsC1� `

2 c
X

kD0
bk

 

s � k
`C k � s � 2

!

:

(23)

Remark 5.3. Here and elsewhere, we employ the convention for binomial coeffi-
cients that

�

a
b

� D 0 unless a � b � 0.

We now turn to the computation of P�1. Suppose a matrixQ D .qi;j /i;j2N satisfies
the two conditions

QJQ D QJ1 and q1;j D ı1;j : (24)

The first condition implies that PQ commutes with J1 and the second that
.PQ/1;j D ı1;j , from which it follows that PQ D I and Q D P�1. We find
a matrixQ satisfying (24) by first finding a matrix A such that

. QJ � I /A D A.J1 � I / (25)
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and then modifying it. To computeA, we must first enlarge the ring U . LetbU denote
the set of matrices of the form

W =

. . . X (m) X(m+1) X(m+2) X(m+3) . . .

. . . (m−1) X(m) X(m+1) X(m+2) . . .

. . . X(m−1) X(m) X(m+1) . . .

. . . X(m−2) X(m−1) X(m) . . .

. . . . . .. . .. . .. . .. . .

,
X

(m−3)X

(m−2)X

where the blocks X .m/ 2 M2.C/, for m 2 Z, are repeated down the diagonals and
have the property that for some m0 2 Z, which may depend on W , X .m/ D 0

whenever m < m0. We shall refer to the two columns of W headed by X .m/ as
the Œm; 1� column and the Œm; 2� column, respectively. For W 2 bU and m 2 Z, we
denote byW.m/ the submatrix ofW whose first column is the Œm; 1� column ofW .
To be concise, we can write W D .X .m//m2Z, since the top row determines the
whole matrix. A product is defined as follows. Let W 0 D .Y .m//m2Z 2 bU . Then
WW 0 D .Z.m//m2Z, where

Z.m/ D
X

iCjDm
X .i/Y .j /:

This product can be computed as an ordinary matrix product as follows. Letm0 and
n0 be chosen such that X .m/ D 0 for all m < m0 and Y .n/ D 0 for all n < n0.
ThenWW 0 is obtained from the ordinary matrix productW.m0/W 0.n0/ by adjoin-
ing columns of zeros to the left and declaring the first column of W.m0/W 0.n0/
to be the Œm0 C n0; 1� column of the new matrix. The answer is independent of
the choice of m0 and n0, due to the diagonal pattern of elements of bU . Together
with the usual vector space structure on matrices, the above product makes bU into
a C-algebra. The subset of elements W 2 bU such that X .m/ D 0 for all m < 0

forms a subalgebra isomorphic to the algebra U defined in (19). Let C..t// denote
the field of formal Laurent series, the field of fractions of CŒŒt ��. The center Z.bU/
consists of the elements in which all the submatricesX .m/ are scalar. The map send-
ing the Laurent series

P

n ant
n to the element .X .m//m2Z such that X .m/ D amI

for all m, is an isomorphism of C..t// with Z.bU/. This extends to an isomorphism
of C..t//-algebras

b” W bU !M2.C..t///;

which is the unique extension of the isomorphism (20).
Now, the element QJ � I is invertible in bU , since QH D b”. QJ � I / has determi-

nant�t . We defineA D .ai;j /i;j2N by columns. For n 2 N, we set the nth column of
A equal to the Œ0; 1� column of . QJ �1/�.n�1/. ThenA satisfies (25), by construction.
To compute the entries of A, we invert QH and its powers (22) to obtain

. QH/�1 D �t�1



t �.1C g.t//
�g.t/ 0

�
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and

. QH/�n D .�1/nt�n



hn �.1C g.t//hn�1
�g.t/hn�1 thn�2

�

; n � 2:

Then we read off the coefficients of the appropriate powers of t in the first columns.
The first two columns of A are given by

ai;1 D ıi;1; i 2 N;

a1;2 D �1; a2;2 D 1; ai;2 D 0; i � 3: (26)

For m � 3 and s � 0, we have

a2sC1;m D coefficient of t�s in .�1/m�1t�.m�1/hm�1

D .�1/m�1
 

m � s � 1
s

!

a2sC2;m D coefficient of t�s in .�1/mt�.m�1/g.t/hm�2

D .�1/m
bm

2 c�s
X

kD1
bk

 

m � s � k � 1
s C k � 1

!

:

(27)

Let QDAJ1D.qi;j /i;j2N. We check that Q has the properties (24). Since
QJADAJ1, it is clear that QJQ D QJ1. We have

qi;j D
(

ai;j ; if j D 1,

ai;j C ai;j�1; if j � 2.
(28)

Since a1;m D .�1/m�1, it follows that q1;j D ı1;j . Thus,Q D P�1.
Finally, the entries of Q are obtained by applying (28) to (26) and (27). Thus,

qi;1 D ıi;1 and qi;2 D ıi;2, for i 2 N. For m � 3 and s � 0, we have

q2sC1;m D .�1/m�1
 

m � s � 2
s � 1

!

q2sC2;m D .�1/m
bm

2 c�s
X

kD1
bk

 

m � s � k � 2
s C k � 2

!

:

(29)

Lemma 5.4. For all i and j , we have jqi;j j � 23j and jpi;j j � 22j .

Proof. The bound jbkj � 22k�2 for k � 1 follows from (18). It is then elementary
to verify the bounds of the lemma from the formulae (23) and (29). ut
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Proof of Theorem 5.1 We define

�.Y / D P�1.Y /P�1; Y 2 SL.2;Z/:

From its construction, � satisfies conditions (a), (b), and (c) of Theorem 5.1. It
follows from Lemma 5.4 that �.S/ D P QSP�1 satisfies (d). ut

6 Proof of Theorem 3.1

The matrix Z�1 studied in Sect. 4 is the transition matrix from the basis fengn2N

of E to a new basis fe0ngn2N. The linear transformation represented by the divisor
matrixD in the basis fengn2N is represented by J in the basis fe0ngn2N.

Since N DSd oddfd2k�1 j k 2 Ng we have a decomposition

E D
M

d odd

E.d/;

where E.d/ is the subspace of E spanned by the elements e0
d2k�1 , k 2 N.

We consider the isomorphisms

�d W E ! E.d/; ek 7! e0
d2k�1 :

For each odd number d , let A.d/ be the subring of A consisting of matrices
whose entries ai;j are zero unless i and j both belong to the set fd2k�1 j k 2 Ng.

The above isomorphisms induce isomorphisms

 d W A! A.d/:

and a homomorphism

 W A!
Y

d odd

A.d/ � A;  .A/ D . d .A//d odd

We have

 .J1/ D J:
Now for A 2 A, we have  .A/i;j D 0 unless there exists an odd number d and k,
` 2 N with .i; j / D .d2k�1; d2`�1/, in which case  .A/i;j D Ak;`.

Let � be the representation given by Theorem 5.1 and let �.S/ D .sk;`/k;`2N.
By Theorem 5.1(a), sk;` D 0 if k > ` C 1. This means  .�.S//i;j D 0 if
i > 2j . By Theorem 5.1(d), there exists a constant C such that jsk;`j � 2C`, for all
k and `, which implies that j .�.S//i;j j � 2C jC , for all i and j . We conclude that
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 .�.S// 2 DR0. Since  .�.T // D J , it follows that  .�.SL.2;Z/// � DR0.
Finally, the representation

� W SL.2;Z/! A�; Y 7! Z�1 .�.Y //Z

satisfies all of the conditions of Theorem 3.1. The proof of Theorem 3.1 is now
complete. ut
Remarks 6.1. By a closer examination of the proof, we can strengthen the conclu-
sions of Theorem 3.1 in the following ways. First, we have actually constructed the
subgroup of DR�0 isomorphic to the direct product of copies of SL.2;Z/ (indexed
by the odd numbers) with the representation � conjugate to the diagonal embedding.
Also part (d) can be sharpened to state that for Y 2 SL.2;Z/ we have �.Y /i;j D 0
whenever i > 2j .

7 Extending Representations to GL.2 ; Z/

Let

W D
�

0 1

1 0

�

:

We have
W 2 D 1; WSW D S�1; WRW D R�1: (30)

The relations (30) and (5) together form a set of defining relations for GL.2;Z/ D
hSL.2;Z/;W i.

In the following lemma, the isomorphism ” is defined in (20) and the matrices
”. QS/ and ”. QR/ are from (21).

Lemma 7.1. Let

W.t/ D 1p
t2 C 4t C 1


 �t 2g.t/C 1
2g.t/C 1 t

�

:

Then W.t/ is, up to a sign, the unique element of GL.2;CŒŒt ��/ such that

(i) W.t/2 D 1.
(ii) W.t/”. QS/W.t/ D ”. QS/�1

(iii) W.t/”. QR/W.t/ D ”. QR/�1
(iv) W.0/ D W .

Proof. The proof is straightforward, by matrix calculations inM2.CŒŒt ��/, using the
relation (17).

Lemma 7.2. For i ,j 2 f1; 2g, let wi;j .t/ D P1
nD0 rntn. Then there exists a con-

stant C , such that jrnj � 2Cn.
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Proof. We consider those power series
P1
nD0 sntn with real coefficients for which

there exists a constant D, which may depend on the series, such that jsnj � 2Dn.
We observe that the product of two such series has the same property. Since g.t/ has
this property and since t2C4tC1 D .tC .2Cp3//.tC .2�p3//, we are reduced
to proving the bound for the Taylor series, centered at 0, of f .t/ D .tCa/� 1

2 , where
a > 0. We have

f .n/.t/ D .�1/n 1 � 3 � 5 � � � .2n � 1/
2n

.t C a/� .2nC1/
2 ;

Hence,
ˇ

ˇ

ˇ

ˇ

ˇ

f .n/.0/

nŠ

ˇ

ˇ

ˇ

ˇ

ˇ

D 1

22n

 

2n

n

!

a�
.2nC1/

2 � 1p
a

�

1

a

�n

:

ut
Proposition 7.3. The representation � W SL.2;Z/ ! DR�0 can be extended to
GL.2;Z/.

Proof. Set QW D ”�1.W.t//. Then by Lemma 7.1, the group generated by QS , QR, and
QW is isomorphic to GL.2;Z/ and we can extend the representation �1 from SL.2;Z/

to GL.2;Z/ by setting �1.W / D QW . Hence we can also extend the representations
� and � by setting �.W / D P�1.W /P

�1 and �.W / D Z�1 .�.W //Z. Then
Lemma 7.2 and Lemma 5.4 imply that �.GL.2;Z// � DR0. ut
Remark 7.4. Note that �1.W /, �.W /, and �.W / are not integral matrices.

8 Uniqueness of M1

Let S and T be the generators of G D SL.2;Z/ as given in (4). Let V denote the
standard 2-dimensional CG-module.

We shall call a CG-module T -indecomposable module if T acts indecom-
posably and unipotently on every T -invariant subspace. One example is the
CG-module, which we shall denote by M1, defined by the representation � of
Theorem 5.1.

Theorem 8.1. M1 is the unique T -indecomposable CG-module which has an as-
cending filtration fMngn2N in which every quotientMn=Mn�1 is isomorphic to V .

Some lemmas are needed for the proof of Theorem 8.1.
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Lemma 8.2. Ext1CG.V; V / Š C.

Proof. Suppose we have a module extension M of V by itself and let � W G !
GL.M/ denote the representation. Since the cyclic group hST i of order 6 acts
semisimply, we may choose a basis of M such that

�.ST / D



ST 0

0 ST

�

and �.S/ D



S z.S/
0 S

�

;

for some 2 � 2 matrix z.S/. Since �.S/2 D �I , we have z.S/S C Sz.S/ D 0, so

z.S/ D



a b

b �a
�

for some a, b 2 C.
By a further change of basis, we can reduce to

�.S/ D

2

6

6

4

0 �1 a 0

1 0 0 �a
0 0 0 �1
0 0 1 0

3

7

7

5

;

while leaving �.ST / unchanged. Thus, dim Ext1CG.V; V / � 1. Lastly, if a ¤ 0 then
�.T / D ��.S/�.ST / acts indecomposably.

Lemma 8.3. For each natural number n there is, up to isomorphism, a unique
T -indecomposable CG-module M.n/ of length n and having all composition fac-
tors isomorphic to V .

Proof. We already have existence of such a module, as a submodule of M1. We
prove by induction that Ext1CG.V;M.k// Š C. The case k D 1 is Lemma 8.2. We
apply HomCG.V;�/ to the short exact sequence

0!M.k � 1/!M.k/! V ! 0:

The long exact sequence of cohomology is:

0!HomCG.V;M.k � 1//! HomCG.V;M.k//! HomCG.V; V /

!Ext1CG.V;M.k � 1//! Ext1CG.V;M.k//! Ext1CG.V; V /!

The desired conclusion follows by induction and Lemma 8.2. ut
Lemma 8.4. Let M , M 0 be isomorphic to M.n/ and let N , N 0 be their maximal
CG-submodules. Then any CG-isomorphism from N to N 0 can be extended to an
isomorphism from M to M 0.
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Proof. We argue by induction on n, the case n D 1 being trivial. We assume n > 1.
By Lemma 8.3, N 0 has, for each k � n � 1, a unique submodule N 0.k/ Š M.k/

of length k and these are all the submodules of N 0. Let  W N ! N 0 be a given
isomorphism. Choose any isomorphism � WM !M 0. Replacing � by a scalar mul-
tiple, we can assume that ˛ WD �jN �  2 HomCG.N;N

0/ is not an isomorphism,
so it has a nonzero kernel K . Hence ˛ induces an isomorphism N=K ! N 0.k/ for
some k < n�1. By induction, this isomorphism may be extended to an isomorphism
ˇ WM=K ! N 0.k C 1/. The induced map ˇ W M ! N 0.k C 1/ is an extension of
˛. Thus,  extends to � � ˇ, which is an isomorphism, since N 0.k C 1/ ¨ M 0. ut
Proof of Theorem 8.1. Let M1 and M 01 be modules satisfying the conditions of
Theorem 8.1. Then the submodulesMn andM 0n in their respective filtrations are iso-
morphic with M.n/. By Lemma 8.4, we can define isomorphisms �n W Mn ! M 0n
recursively for n 2 N so that �nC1 extends �n. We can therefore define � WM1 !
M 01 as follows. Each m 2 M1. belongs to Mn for some n. By the extension prop-
erty, �n.m/ does not depend on n, so we can define a map � by �.m/ D �n.m/,
which is easily seen to be an isomorphism. ut

9 Dirichlet Series in the SL.2 ; Z/-Orbit of �.s/

We may identify DS with Dfsg and consider the action of SL.2;Z/ on analytic
Dirichlet series via �. We denote the Dirichlet series with one term 1�s simply by
1. We have 1:�.T / D 	.s/. We set '.s/ WD 1:�.�S/ and write

'.s/ WD
1
X

nD1
ann
�s ;

where an D �.�S/1;n. We denote the abscissae of conditional and absolute conver-
gence of '.s/ by �c and �a, respectively.

Let C.	.s/; '.s// be the subfield of the field of meromorphic functions of the
half-plane Re.s/ > max.1; �c/ generated by the functions 	.s/ and '.s/. It will be
shown below that the Dirichlet series in the orbit 1:�.SL.2;Z// all converge in this
half-plane and that the analytic functions they define belong to C.	.s/; '.s//. Let
ZG denote the integral group ring. The representation � extends uniquely to a ring
homomorphism from ZG to A, which we will denote by � also. The kernel of this
homomorphism contains the 2-sided ideal Q generated by the elements S C S�1
and RCR�1 � 1. Since R D ST , we have the relation

TS D 1C ST �1

in ZG=Q. It follows that ZG=Q and hence �.ZG/ is generated as an abelian group
by the images of the elements Tm and STm, m 2 Z.

Theorem 9.1. The Dirichlet series in the common SL.2;Z/-orbit of 1, 	.s/, and
'.s/ all converge for Re.s/ > max.1; �c/, and belong to the additive subgroup of
C.	.s/; '.s// generated by the elements 	.s/m and '.s/	.s/m, m 2 Z.
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Proof. We first note that 	.s/ has no zeros in the half-plane Re.s/ > max.1; �c/
and that 1

�.s/
DP1

nD1 �.n/n�s , converges absolutely there. Here, � is the Möbius
function. In this half-plane, we have 1:�.Tm/ D 1:Dm D 	.s/m and 1:�.STm/ D
1:�.S/�.Tm/ D �'.s/	.s/m, for every m 2 Z. The theorem now follows from the
discussion preceding it. ut

10 The Cubic Equation Relating �.s/ and '.s/

Let N0 D N [ f0g be the set of nonnegative integers.

Lemma 10.1. We have

an D �.�S/1;n D ˛1.n/C
X

`�4
.�1/`˛`�1.n/

b `
2
c

X

kD2
bk

 

` � k � 2
k � 2

!

:

(See Sect. 4 and formula (16) for the definitions of ˛k.n/ and bk .)

Proof. This is computed directly from the general formula for �:

�.�S/ D Z�1 .P�1.�S/P�1/Z:

We recall the following information.

(a) The matrix �1.�S/ is the block-diagonal matrix with the 2 � 2 block �S D
�

0 1�1 0
�

repeated along the main diagonal. (Lemma 5.2)
(b) The first rows of Z�1 and P are equal to the first row of the identity matrix.

(Lemma 4.5 and Sect. 5.1.)
(c) For A D .ai;j /i;j2N, we have  .A/i;j D 0 unless there exist k, ` 2 N and

an odd number d such that .i; j / D .2k�1d; 2`�1d/, in which case  .A/i;j D
ak;`. (Sect. 6.)

(d) From formula (29), the entries in the second row of P�1 D .qk;`/ are given by
q2;1 D 0, q2;2 D 1 and for ` � 3,

q2;` D .�1/`
b `

2
c

X

kD2
bk

 

` � k � 2
k � 2

!

: (31)

(e) The entries of the matrix Z D .˛.i; j //i;j2N satisfy the equation ˛.2r ; j / D
˛r .j /, for r 2 N. (Lemma 4.5.)

By (b), the first row of �.�S/ is obtained by multiplying the first row of
 .P�1.�S/P�1/ with Z. By (c), the only nonzero entries in the first row of
 .P�1.�S/P�1/ are the entries .P�1.�S/P�1/1;2`�1 D .P �1.�S/P�1/1;` for
` 2 N. Then by (b) and (a),

.P �1.�S/P�1/1;` D .�1.�S/P�1/1;` D q2;`: (32)
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Hence, by (e) and (d),

an D
X

`2N

q2;`˛.2
`�1; n/

D ˛1.n/C
X

`�3
q2;`˛`�1.n/; (33)

and the lemma follows since q2;3 D 0, by (d). ut
Let � D fp1; : : : ; prg be a finite set primes and let t1,. . . , tr be indeterminates.

We will be interested in the formal power series

F� D
X

.n1;:::;nr /2Nr
0

ap1
n1p2

n2 


pr
nr t

n1

1 � � � tnr
r :

Let

y D 1

.1 � t1/.1 � t2/ � � � .1 � tr / � 1 D
X

.n1;:::;nr /2Nr
0

˛1.p
n1

1 � � �pnr
r /t

n1

1 � � � tnr
r :

Then for ` � 1

y` D
X

.n1;:::;nr /2Nr
0

˛`.p
n1

1 � � �pnr
r /t

n1

1 � � � tnr
r :

Then we have

�y
1C y D

X

`2N

.�1/`y`

D
X

.n1;:::;nr /2Nr
0

"

X

`2N

.�1/`˛`.pn1

1 � � �pnr
r /

#

t
n1

1 � � � tnr
r : (34)

Set

f� D
X

.n1;:::;nr /2N0

X

`2N

.�1/`˛`�1.p1n1p2
n2 � � �pr nr /

b `
2
c

X

kD2
bk

 

` � k � 2
k � 2

!

t
n1

1 � � � tnr
r

D
X

`2N

b `
2
c

X

kD2
bk.�1/`

 

` � k � 2
k � 2

!

y`�1

D
X

k�2

2

4

X

`�2k
.�1/`

 

` � k � 2
k � 2

!

y`�1
3

5 bk:
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By Lemma 10.1,

F� D y C f�:
For k � 2 we set

Ck D
X

`�2k
.�1/`

 

` � k � 2
k � 2

!

y`�1

so that

f� D
X

k�2
bkCk:

Next we consider, for k 2 N n f1g, the generalized binomial coefficients

pk.x/ D .x � k � 2/.x � k � 3/ � � � .x � 2k C 1/
.k � 2/Š

as polynomials in x of degree k � 2.

Remark 10.2. Note that pk.`/ D
�

`�k�2
k�2

�

for ` an integer � 2k but, for example,
when `�k�2 is a negative integer, the value pk.`/may be nonzero, while our con-
vention concerning binomial coefficients (Remark 5.3) would say that

�

`�k�2
k�2

� D 0.

In order to find C2 and C3, we shall evaluate

cCk D
X

`2N

.�1/`pk.`/y`:

For k D 2, we have p2.`/ D 1, so cC2 D �y
1Cy by (34). Hence

C2 D �1
1C y �

3
X

`D1
.�1/`y`�1 D �1

1C y C 1 � y C y
2 D y3

1C y : (35)

For k D 3, we have p3.`/ D ` � 5, so

cC3 D
X

`2N

.�1/``y` � 5
X

`2N

.�1/`y`

D
� �y
1C y C

y2

.1C y/2
�

C 5 y

1C y
D 4y

1C y C
y2

.1C y/2 ; (36)
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where the second equality is obtained by applying the operator y d
dy to the first and

second members of (34). Therefore,

C3 D 4

1C y C
y

.1C y/2 � Œ.�1/p3.1/C p3.2/y � p3.3/y
2 C p3.4/y3�

D 4

1C y C
y

.1C y/2 � 4C 3y � 2y
2 C y3

D y5

.1C y/2 : (37)

Suppose k � 3. We have

Ck D y2k�1 C
X

`�2kC1
.�1/`

 

` � k � 2
k � 2

!

y`�1

D y2k�1C
X

`�2kC1
.�1/`

 

` � 1 � k � 2
k � 2

!

y`�1C
X

`�2kC1
.�1/`

 

` � 1 � k � 2
k � 3

!

y`�1:

Set

A D
X

`�2kC1
.�1/`

 

` � 1 � k � 2
k � 2

!

y`�1; B D
X

`�2kC1
.�1/`

 

` � 1 � k � 2
k � 3

!

y`�1:

In A, set `0 D ` � 1 and in B , set k0 D k � 1. Then

A D �yCk; B D y2Ck�1 � y2k�1

Thus,

Ck D y2k�1 CAC B D y2k�1 � yCk C y2Ck�1 � y2k�1 D �yCk C y2Ck�1:

Therefore,

Ck D y2

1C yCk�1; with C2 D y3

1C y
so

Ck D y2k�1

.1C y/k�1 :

Hence
CkCk0

CkCk0

D y2.kCk0/�2

.1C y/kCk0�2 :
.1C y/kCk0�1

y2.kCk0/�1 D 1C y
y

:

f 2� D
0

@

X

k�2
bkCk

1

A

2

D
X

k;k0�2
bkbk0CkCk0

.1C y/
y
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Then, from the definition (16) of the bk ,

y

1C y f
2
� D

X

K�4

 

K�2
X

kD2
bkbK�k

!

CK

D
X

K�4
.�bK � 2bK�1/CK

D �
X

K�2
bKCK C b2C2 C b3C3 � 2 y2

1C y
X

L�3
bLCL

D �f� � C2 C 2C3 � 2y2

1C y f� �
2y2

1C yC2

D �
�

1C 2y2

1C y
�

f� � y3

1C y C
2y5

.1C y/2 �
2y2

1C y :
y3

1C y :

Therefore, we have

yf 2� C .1C y C 2y2/f� C y3 D 0: (38)

Since F� D f� C y, this yields

yF 2� C .1C y/F� � y.1C y/ D 0: (39)

Set

P.z;w/ D zw2 C .1C z/w � z.1C z/ (40)

The discriminant �.z/ is equal to .1 C z/2 C 4z2.1 C z/. Set c D minfjej
j e 2 C and �.e/ D 0g. Then there is a formal power series u D P1

nD0 ”nzn such
that P.z; u/ D 0 and u defines an analytic function in fz 2 C j jzj < cg. Now

the roots of �.z/ are �1 and e,e D �1˙p�15
8

. Since jej D 1
2

, it follows that u
converges for jzj < 1

2
. Applied to (39), we see that if ti take complex values with

jQr
iD1 1

1�ti � 1j < 1
2

, the power series F� converges. In particular for s 2 C with
sufficiently large real part, we have convergence when we set the ti D p�si . If we
denote by N� the set of natural numbers for which every prime factor belongs to�,
and define

'�.s/ D
X

n2N�

ann
�s ; and 	�.s/ D

X

n2N�

n�s ; (41)

we obtain the equation

.	�.s/ � 1/'�.s/2 C 	�.s/'�.s/� 	�.s/.	�.s/ � 1/ D 0: (42)
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Initially, we know that this equation holds for s with sufficiently large real part.
The Dirichlet series 	�.s/ and '�.s/ converge absolutely in the half-plane Re.s/ >
max.1; �a/, where both 	.s/ and '.s/ converge absolutely. It is then a general prop-
erty of Dirichlet series that they converge uniformly on compact subsets of this
half-plane, defining analytic functions there. Then, by the principle of analytic con-
tinuation, the equation (42) holds in this half-plane. If we take � to be the set of
the first r primes and allow r to increase, the resulting sequences of analytic func-
tions 	�.s/ and '�.s/ defined in the above half-plane converge to 	.s/ and '.s/,
respectively.

Theorem 10.3. In the half plane Re.s/ > max.1; �c/, we have

.	.s/� 1/'.s/2 C 	.s/'.s/ � 	.s/.	.s/� 1/ D 0: (43)

Proof. The validity of this algebraic relation for Re.s/ > max.1; �a/ is immedi-
ate from the foregoing discussion. Since 	.s/ and '.s/ represent analytic functions
throughout the half-plane Re.s/ > max.1; �c/, the relation is valid on this larger
region by the principle of analytic continuation. ut
Remark 10.4. Since �.s/ defines an analytic function in Re.s/ > �c , it follows
that 	.s/ � 1 cannot be equal to any root of �.z/ for s in this half-plane. By
Theorem 11.6 (C) of [9], 	.s/ takes on every nonzero value in Re.s/ > 1. Therefore,
�c > 1. A sharper bound follows from [3], which proves the existence of a constant
C � 1:764 such that the closure M.�/ of the set of values of � log 	.� C it/ ,
t 2 R, is bounded by a convex curve when � < C , and a ring-shaped domain be-
tween two convex curves when � > C . From this, it follows by computation that

	.s/ D 7˙p�15
8

for some s with Re.s/ arbitrarily close to 1.8, so �c � 1:8. We also

know from the results of [9], p. 300, that 	.s/ never takes the value �7˙
p�15
8

when
Re.s/ > 1:92.

Remark 10.5. A slight modification of the discussion above shows that (42) holds
for an arbitrary set � of primes, again for Re.s/ > �a.

The function 	.s/ can be extended to a meromorphic function in the whole com-
plex plane, whose only singularity is a simple pole at s D 1. Then (43) defines
analytic continuations of '.s/ along arcs in the plane which do not pass through

s D 1 or the branch points
n

s j 	.s/ D 0 or 7˙
p�15
8

o

, with the exception that one

of the two branches at each point s with 	.s/ D 1 has a simple pole there. By [3],
we know that there is a constant C � 1:764 such that 	.s/ ¤ 1 for all s with
Re.s/ > C .

10.1 Some Generalizations

In the discussion following (40), we could equally well have substituted
ti D M.pi /p

�s
i , where M is any bounded, completely multiplicative complex
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function of the natural numbers, such as a Dirichlet character. In that case, if
we set

	M .s/ D
1
X

nD1
M.n/n�s ; 'M .s/ D

1
X

nD1
anM.n/n

�s ; (44)

the same reasoning shows that 	M .s/ and 'M .s/ are related by (43), just as 	.s/ and
'.s/ are, in a suitable half-plane.

We can also extend our discussion to number fields. For this purpose, a neces-
sary remark is that, by Lemma 10.1, the coefficient an in '.s/ depends only on the
partition  W e1 � e2 � � � � er � 1 defined by the exponents ei which occur in the
prime factorization of n, in that if n and n0 define the same partition then an D an0 .
We write a� for this common value.

Let K be a number field. The factorization of an ideal g of its ring of integers
o into prime ideals determines a partition , so we may set ag D a�. With these
notations, our previous discussion up to (40) remains valid if the set � is taken to
be a finite set fP1;P2; : : : ;Prg of prime ideals in o, instead of rational primes.
Then, in the paragraph following (40), if we substitute ti D N.Pi/

�s , we deduce,
as before, that the Dedekind zeta function of K ,

	K.s/ D
X

g

N.g/�s (45)

is related to the Dirichlet series

'K.s/ D
X

g

agN.g/
�s (46)

by the cubic relation (43), in the appropriate half-plane.

11 A Functional Equation for '.s/

The classical functional equation for 	.s/ can be written as

	.1� s/ D a.s/	.s/; (47)

where a.s/ D �.s=2/�s=2

�..1�s/=2/�.1�s/=2 .
If we apply this to (43) with s replaced by .1 � s/ and then eliminate 	.s/ from

the resulting equation, using (43), a functional equation relating '.s/ and '.1 � s/
is obtained. Let

G.a; x; y/ D a4x4 � a3x2.x2 C x C 1/.y2 C y C 1/
C a2Œx2.y2 C y C 1/2 C y2.x2 C x C 1/2 � 2x2y2�
� ay2.x2 C x C 1/.y2 C y C 1/C y4: (48)

Then G.a; x; y/ is irreducible in CŒa; x; y� and G.a.s/; '.s/; '.1 � s// D 0.



The Divisor Matrix, Dirichlet Series, and SL(2, Z) 327

Acknowledgments We thank Peter Sarnak for some helpful discussions and for bringing [4] to
our attention.

References

[1] Barrett, Wayne W. ; Jarvis, Tyler J. Spectral properties of a matrix of Redheffer.Directions in
matrix theory (Auburn, AL, 1990). Linear Algebra Appl. 162/164 (1992), 673–683.
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Proof of Conjecture of Alladi Ramakrishnan
on Circulants

Michel Waldschmidt

Dedicated to the memory of Professor Alladi Ramakrishnan

Summary In the course of studying a higher dimensional generalization of the
Pythagorean equation and its connections to the Lorentz transformation, Alladi
Ramakrishnan made a conjecture on a determinant of a certain circulant matrix and
published it in his paper Pythagoras to Lorentz via Fermat. This conjecture was
proved by the author in a letter to Alladi Ramakrishnan. That letter is reproduced
here with a note by the Editor explaining the background.
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Introductory Note by Editor

Professor Alladi Ramakrishnan was intellectually active until the very end. Indeed,
even in his retirement, he often came back to the Lorentz transformation in Special
Relativity and provided new derivations and interpretations. This note concerns a
conjecture he made on the value of a determinant of a certain circulant matrix in
his paper Pythagoras to Lorentz via Fermat. Although Alladi Ramakrishnan made
these observations on such circulants prior to 2000, the note [3] was published only
in 2003 as part of a collection of his papers on relativity in his book on that subject.
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Ramakrishnan wrote the celebrated Pythagorean equation in the form

a2 � b2 D c2 (1)

and viewed the left hand side of (1) as the determinant of the 2 � 2 matrix
�

a b

b a

�

(2)

He thought of the famous Fermat equation as

an � bn D cn:
However, as a physicist, he was more interested in equations that had integer solu-
tions, and thus looked at ways to generalize (1) to an equation in n-dimensions that
had integer solutions.

Alladi Ramakrishnan’s view of the left hand side of (1) as the determinant of the
matrix in (2) led him to a new proof of the Pythagorean theorem on right triangles,
and a new interpretation of the Lorentz transformation (see [1]). This also motivated
him to consider the 3 � 3 circulant matrix

0

@

a b c

b c a

c a b

1

A (3)

and its determinant
a3 C b3 C c3 � 3abc

and led him to a cubic extension of (1), namely

a3 C b3 C c3 � 3abc D d 3; (4)

and its link with a cubic analogue of the Lorentz transformation he proposed. The
generalization of (1) that Alladi Ramakrishnan considered was the n � n circulant
matrix

Cn D

0

B

B

B

B

B

B

@

a1 a2 � � � an�1 an
an a1 � � � an�2 an�1
:::

:::
: : :

:::
:::

:::
: : :

:::

a2 a3 � � � an a1

1

C

C

C

C

C

C

A

(5)

and its determinant replacing the left hand side of (1). On the one hand, Ramakrish-
nan studied its properties in terms of continuous variables ai , and on the other hand,
he determined [3] integer solutions of

jCnj D bn; (6)
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where jAj denotes the determinant of a matrix A. In this regard, he conjectured that
if n D 2mC 1 is odd, and the elements of Cn are

a1 D N Cm; a2 D N Cm � 1; :::; an D N �m; (7)

then
jC2mC1j D N.2mC 1/2m: (8)

He noted in [1] that when n D 2m, the evaluation of Cn is not as elegant, but
conjectured that with certain suitable choices one can get

jC2mj D N 2m: (9)

In the letter dated June 8, 2000, Michel Waldschmidt proves these conjectures of
Alladi Ramakrishnan and this letter containing the proof is attached.

In 1999, Ramakrishnan [2] showed that circulant matrices with determinant unity
transform n variables in such a way that the determinant of the circulant formed by
the variables is invariant, and proposed this as the generalization of the two variable
Lorentz invariant to n variables. In [3], Ramakrishnan observed that his conjec-
tures are equivalent to stating that there are an infinite number of circulants of any
dimension with rational elements having determinant unity. Ramakrishnan noted
in [3] that the determinant of a circulant is the product of its eigenvalues each of
which is a linear combination of 1; !; !2; :::; !n�1, where ! is a primitive n-th root
of unity. In his fundamental work on L-Matrices, Ramakrishnan repeatedly used
matrices with entries as the n-th roots of unity. Thus, his familarity with the proper-
ties of such matrices led him to consider (6) as an interesting generalization of the
Pythagorean equation.

Krishnaswami Alladi
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Dear Professor Alladi Ramakrishnan,

I am pleased to tell you that the conjectures you stated in your paper “Pythagoras to
Lorentz” are true.
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More precisely, for k a positive integer, denote by Ck.z1; : : : ; zk/ the circulant
matrix

0

B

B

B

B

B

B

@

z1 z2 � � � zk�1 zk
zk z1 � � � zk�2 zk�1
:::

:::
: : :

:::
:::

:::
: : :

:::

z2 z3 � � � zk z1

1

C

C

C

C

C

C

A

and by Pk.z/ the polynomial

detCk.z; z � 1; : : : ; z� k C 1/:

Then

Pk.z/ D kk�1
�

z � k � 1
2

�

: (1)

In particular, if k D 2mC 1 is odd then

P2mC1.mC n/ D .2mC 1/2mn:

Further, for k D 2m even,

detC2m.nCm; nCm � 1; : : : ; nC 1; n � 1; : : : ; n �m/ D c.m/n; (2)

where c.m/ depends only on m.

Here are the proofs.
The first remark is that if A D �

aij
�

1�i;j�n is a n � n square matrix, the
polynomial

P.z/ D det.zC aij
�

1�i;j�n
can be written as,

P.z/ D czC det.A/ (3)

with a constant c. This is easily checked by replacing each row but the first one by
its difference with the first one, and then expanding with minors on the first row.1

Next for k D 2m, consider the circulant

C2m.m;m� 1; : : : ; 1;�1; : : : ;�mC 1;�m/:

1 As pointed out by C. Levesque in March 2009, subtracting each column (starting from the second
one) from the first one yields the coefficient kk�1.
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The sum of all rows (as well as the sum of all columns) is 0. Hence

detC2m.m;m� 1; : : : ; 1;�1; : : : ;�mC 1;�m/ D 0: (4)

It is plain that (3) and (4) imply (2). They also imply

Pk.z/ D ck
�

z � k � 1
2

�

; (5)

with some constant ck depending only on k, but we are going to reprove this result
(and compute ck) by another way.

It is well-known (and easy to prove) that

detCk.z1; : : : ; zk/ D
Y

�

.z1 C 	z2 C � � � C 	k�1zk/ D
Y

�

k�1
X

iD0
	i ziC1;

where 	 ranges over the k-th roots of unity. Hence

Pk.z/ D
Y

�

k�1
X

iD0
	i .z � i/:

Now
k�1
X

iD0
	i D

(

k for 	 D 1;
0 for 	 6D 1;

and we derive (5) with

ck D k
Y

� 6D1

k�1
X

iD0
.�i/	i D .�1/k�1k

Y

� 6D1

k�1
X

iD0
i	i :

The sum
k�1
X

iD0
i	i D 	 C 2	2 C � � � C .k � 1/	k�1

is the value at the point 	 of zf 0.z/, where f 0 is the derivative of the polynomial

f .z/ D 1C zC � � � C zk�1 D zk � 1
z � 1 �

Since

f 0.z/ D kzk�1

z � 1 �
zk � 1
.z � 1/2 ;
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for 	 satisfying 	k D 1 and 	 6D 1 we have

	f 0.	/ D k

	 � 1 �

Now
Y

� 6D1
.	 � 1/

is nothing else than the resultant of the two polynomials z � 1 and f .z/, hence

Y

� 6D1
.	 � 1/ D .�1/k�1f .1/ D .�1/k�1k:

Therefore,

Y

� 6D1

k�1
X

iD0
i	i D

Y

� 6D1

k

	 � 1 D
kk�1

.�1/k�1f .1/ D .�1/
k�1kk�2 and ck D kk�1:

This completes the proof of (1).

Michel Waldschmidt
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Branching Random Walks

K.B. Athreya

Dedicated to the memory of Professor Alladi Ramakrishnan

Summary A branching random walk is a branching tree such that with each line
of descent a random walk is associated. This paper provides some results on the
asymptotics of the point processes generated by the positions of the nth generation
individuals. An application to the photon–electron energy cascade is also given.
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1 Introduction

The author would like to thank Professor Alladi Krishnaswami for the invitation to
contribute a paper to this volume dedicated to the memory of his father Professor
Alladi Ramakrishnan. Professor Ramakrishnan was one of the pioneers with
Professors Bhabha and Heitler to work on nuclear cascades. The stochastic model
they used is an example of a branching random walk, the subject of the present
paper. On a personal note, I learnt a few years ago from Professor Ramakrishnan
that he was a student of my father Shri T. A. Balasundaram Iyer at the well-known
P. S. High School in Mylapore, Madras (Chennai, now), India during the thirties.
Also, Professor Ramakrishnan and I used to meet often at the Madras Music Festival
at the Music Academy in Chennai during the second half of December. We shared
a deep interest in carnatic music, the classical music of south India.
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2 Branching Random Walks

Let fpj gj�0 be a probability distribution, i.e., pj � 0, 8j � 0 and
1
X

jD0
pj D 1.

Let f�ni W 1 � i < 1; 0 � n < 1g be a family of independent and identically
distributed random variables (i.i.d. r.v.s) with distributionP.�11 D j / D pj , j � 0.
Let Z0 be a negative integer valued random variable. Let

ZnC1 D
Zn
X

iD1
�ni ; n � 0: (2.1)

This sequence fZngn�0 is called a Galton–Watson branching process with offspring
distribution fpj gj�0. Since the family f�ni W 1 � i < 1; 0 � n < 1g is i.i.d.,
fZngn�0 is a Markov chain. Its state space is NC 	 f0; 1; 2; : : :g and transition
function is

pij D P
 

i
X

rD1
�1r D j

!

for all i � 0; j � 0:

The recurrence relation (2.1) is to be interpreted as follows. All the Zn individ-
uals in the nth generation produce offspring independently of each other, the i th
one producing �ni offspring, 1 � i � Zn, and their total is ZnC1, the size of the
.nC 1/th generation. If Z0 D 1, then there is a unique probability measure on the
family tree initiated by this ancestor. If Z0 D k > 1, then each of these k ancestors
initiates a family tree and these are i.i.d. random trees.

Now, on this family tree impose the following movement structure. If an individ-
ual is located at x in R, the real line and produces k children, then these k children
move to x C Xkj , 1 � j � k where for each k, .Xk1; Xk2; : : : ; Xkk/ is a random
vector with a joint distribution �k on Rk . The random vector .Xk1; Xk2; : : : ; Xkk/
is stochastically independent of the history up to that generation as well as the move-
ment of the offspring of other individuals.

Let 	n 	 fxni W 1 � i � Zng be the positions of the Zn individuals of the nth
generation. For each n � 0, 	n is a a collection of random numbers of random points
on R, i.e., a point process. The sequence of pairs of fZn; 	ngn�0 is called branching
random walk. The probability distribution of this process is completely specified by

(1) The offspring distribution fpj gj�0
(2) The family of probability measures f�kgk�1
(3) The initial population size Z0, and
(4) The locations 	0 	 fx0i ; 1 � i � Z0g of the initial ancestors

It is clear that f	ngn�0 is also a Markov chain whose state space is the set of all
finite subsets of R.

The problem of interest is what happens to the point process 	n as n ! 1. In
particular, we could ask what happens to the spatial distribution of points of 	n. That
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is, if Zn.x/ is the number of points in 	n that are less than or equal to x, how does

Zn.x/ behave as n!1? Does there exist xn such that the proportion
Zn.xn/

Zn
has

a nontrivial limit as n!1?
The sequence fZngn�0 has been well-studied. (See Harris [6], Athreya and Ney

[1], Jargers [7, 8], Mode [9].) A summary of the main results is given in Sect. 3.
It is clear that the movement along any one line of descent is that of a classi-

cal random walk. Thus, if Xki are identically distributed with mean � and finite
variance �2, then the location of an individual of the nth generation should be ap-
proximately Gaussian (by the central limit theorem. See Feller [5], Athreya and
Lahiri [4].) with mean n� and variance n�2. This suggests that if Zn ! 1 as

n ! 1 and if xn D �
p
nx C n�, then

Zn.xn/

Zn
could have ˆ.x/, the standard

N.0; 1/ c.d.f., as its limit. This turns out to be true and is the main result of this
paper. There are extensions to the case where X11 has infinite variance. The proof
of our main result needs the following result from branching processes. It says that
if two individuals are chosen at random from the nth generation and if �n denotes
the generation number of their last common ancestor, then in a growing population
�n converges to a proper random variable in distribution. That is, the last common
ancestor should have been born way at the beginning of the tree.

In the next section, we review some basic results from branching processes.
The fourth section has the main result and the result on branching processes men-
tioned above. The fifth section treats the photon–electron energy cascade studied by
Bhabha, Heitler, and Ramakrishnan. The final section outlines some open questions.

3 Results on Branching Processes

For the sequence fZngn�0, the following two results are well-known. (See Athreya
and Ney [1].)

Theorem 3.1. Let 0 < m D
1
X

jD1
jpj <1. Let P.Z0 <1/ D 1. Then

(i) m � 1) P.Zn ! 0 as n!1/ D 1
(ii) m > 1) P.Zn ! 0 as n ! 1jZ0 D 1/ D q < 1, where q is the unique

root of s D f .s/, 0 � s < 1, f .s/ D
1
X

jD1
pj s

j , and

P.Zn !1 as n!1jZ0 D 1/ D 1 � q;

and for any k > 1,

P.Zn ! 0 as n!1jZ0 D k/ D qk:
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Remark 1. The branching process fZngn�0 is called subcritical, critical, or super-
critical according as m <,D or > 1.

Theorem 3.2. (i) Let 0 < m < 1. Let P.Z0 <1/ D 1. Then, as n!1, 8j � 1,

P.Zn D j jZn > 0/! bj ;

1
X

jD1
bj D 1

and B.s/ D
1
X

jD1
bj s

j , 0 � s � 1, is the unique solution of the functional

equation

B.s/ D mB.s/C .1 �m/; 0 � s � 1

such that B.0/ D 0 and B.1/ D 1.

(ii) Let m D 1,
1
X

jD1
j 2pj <1. Then, as n!1, 80 < x <1,

P

�

0 <
Zn

n
< x

ˇ

ˇ

ˇ

ˇ

Zn > 0

�

! 1 � e�
2x

�2 ;

where �2 D
1
X

jD1
j 2pj � 1.

(iii) Letm>1. Then

�

Wn 	 Zn

mn



n�0
is a nonnegative martingale and lim

n!1Wn D W
exists w.p.1. Further,

1
X

jD1
j log jpj <1) E.W jZ0 D 1/ D 1 and P.W D 0jZ0 D 1/ D q

1
X

jD1
j log jpj D 1) P.W D 0jZ0 D 1/ D 1:

Theorem 3.3. Let 1 < m 	
1
X

jD1
jpj <1, p0 D 0 and

1
X

jD1
j.log j /pj <1. Pick

two individuals from the nth generation. Let �n be the generation number of their
last common ancestor. Then, for j � 0,

lim
n!1P.�n D j / D bj exists
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and

1
X

jD1
bj D 1:

That is, �n converges in distribution to a proper random variable � .

Proof. A more general result is available in Athreya [2]. For completeness, a proof
is given here: For 1 � j <1,

P.�n < j/ D E
 P

i1¤i2 Z
.j /
n�j;i1Z

.j /
n�j;i2

Zn.Zn � 1/

!

; (3.1)

where fZ.j /
k;i
W k � 0g is the branching process initiated by the i th individual in the

j th generation and the summation is over 1 � i1; i2 � Zj . By Theorem 3.2, (iii),
there exists i.i.d. r.v.s fWigi�1 such that

lim
n!1

Z
.j /
n�j;i
mn�j

	 Wi exists w.p.1

and

lim
n!1

Zn

mn
D 1

mj

Zj
X

iD1
Wi :

Thus, the sum on the right side of (3.1) converges w.p.1 to
P

i1¤i2;1�i1<i2�Zj
Wi1Wi2

�

PZj

iD1Wi
�2

:

By the bounded convergence theorem, it follows that

lim
n!1P.�n < j/ 	 E�.Zj /

exists for each j � 1 where

�.k/ 	 E
 

1 �
Pk
iD1W 2

i
�Pk

iD1Wi
�2

!

;

where fWigi�1 are i.i.d. distributed as

W 	 lim
n!1

Zn

mn
with Z0 D 1:
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Now we show that lim
k!1

�.k/ D 0.

By Theorem 3.2 (iii), under the hypothesis
1
X

jD1
j.log j /pj <1, EW <1. This

implies

lim
x!1xP.W > x/ D 0:

Now, if

Mn D max
1�i�nWi ;

then

P.Mn � n�/ D
�

P.W1 � n�/
�n

D �

1� P.W1 > n�/
�n

D
�

1 � nP.W1 > n�/
n

�n

:

Since 8� > 0, nP.W1 > n�/! 0 as n!1,

P.Mn � n�/! 1:

Also by the strong law of large numbers
Pn
iD1Wi
n

! 1 w.p.1:

Now,

Pk
iD1W 2

i
�Pk

iD1Wi
�2
� Mk

Sk
! 0 in probability

yielding lim
k!1

�.k/ D 0. ut

4 Branching Random Walks

Turning now to the branching random walk sequence f	ngn�0, it is clear from the
above two results that in the critical and subcritical cases, the population dies out
and hence 	n becomes the empty set for large n with probability one. So the case
of interest is primarily the supercritical case although we could consider the condi-
tional distribution of 	n conditioned on the event fZn > 0g.
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In the supercritical case, if we assume p0 D 0 then q D 0 and soZn !1w.p.1.
Now if we look at any one line of descent and the position of the individuals in that
line of descent, that forms an ordinary random walk with jump distribution F . This
suggests that if F has mean zero and finite variance, then the position of an individ-
ual in the nth generation should be approximately Gaussian. A result confirming to
this is the following.

Theorem 4.1. For each x 2 R, let Zn.x/ 	 ]fi W xni � xg when 	n D fxni W 1 �
i � Zng. Assume

(i) p0 D 0
(ii) 1 < m D

1
X

jD1
jpj <1

(iii) � 	
Z

R

xdF.x/ D 0, and

(iv) �2 D
Z

R

x2dF.x/ <1

Let Yn be the position of an individual chosen at random (by simple random sam-
pling) from the nth generation. Then, for any y 2 R, as n!1,

(i)

Zn.
p
n�y/

Zn
! ˆ.y/ (4.1)

in mean square where ˆ.�/ is the standard normal distribution function given
by

ˆ.y/ 	
Z y

�1
1p
2�

e�
x2

2 dx; �1 < y <1:

(ii)

P.Yn �
p
n�y/! ˆ.y/ as n!1: (4.2)

Proof. Let 	n 	 fxni W 1 � i � Zng be the position of the Zn individuals of the
nth generation. Fix �1 < y <1. Let

ıni D
�

1; if xni � y�pn;
0; otherwise.

Then

Zn.y�
p
n/ D

Zn
X

iD1
ıni
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and

E

�

Zn.y�
p
n/

Zn

�

D E.ın1/ D P.xn1 � y�
p
n/ D P.Sn � y�

p
n � x01/;

where Sn D
n
X

iD1
�i , f�igi�1 are i.i.d. with distribution � , and x01 is the location

of the initial ancestor of the nth generation individual located at xni . By the central
limit theorem, for �1 < y <1,

P.Sn � y�
p
n � x01/! ˆ.y/ as n!1:

Next,

E

�

Zn.y�
p
n/

Zn

�2

D E
0

@

1

Z2n

Zn
X

i;jD1;i¤j
ıniınj

1

ACE
 

Zn
X

iD1
ıni

1

Z2n

!

:

Since 0 � 1

Z2n

Zn
X

iD1
ıni � 1

Zn
and Zn ! 1 w.p.1, then second term above goes to

zero. By symmetry considerations conditioned on the branching tree (but not the
random walk),

E

0

@

1

Z2n

Zn
X

i;jD1;i¤j
ıniınj

1

A D E
�

Zn.Zn � 1/
Z2n

ın1ın2

�

:

Let �n be the generation number of the last common ancestor of the individuals
In1 and In2 corresponding to xn1 and xn2, respectively.

Let x�n be the location of this common ancestor in the �nth generation. Then we
can write

xni D x�n C Yni ; i D 1; 2;

where Yni is the net displacement of the individual Ini from generation �n to n.
Clearly, Yn1 and Yn2 are independent. Thus,

E.ın1ın2j�n; x�n / D E.I.Yn1 � y�
p
n � x�n/I.Yn2 � y�

p
n � x�n/j�n; x�n /

D E.P.Sn��n � y�
p
n � x�n j�n; x�n //2;

where fSj gj�0 is a random walk independent of �n and x�n with step distribution�1.
By Theorem 3.3, �n converges in distribution to a proper random variable and

hence so does x�n .
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By the central limit theorem

P.Sn��n � y�
p
n � x�n j�n; x�n /! ˆ.y/ as n!1:

Now by the bounded convergence theorem

E.E.ın1ın2j�n; x�n //!
�

ˆ.y/
�2
:

Since Zn !1,
Z2n

Zn.Zn � 1/ ! 1 w.p.1. Thus,

E

�

1

Z2n

Zn
X

i;jD1;i¤j
ıniınj

�

! �

ˆ.y/
�2

as n!1:

This in turn yields

E

�

Zn.xn/

Zn

�2

! �

ˆ.y/
�2

as n!1:

Since E

�

Zn.xn/

Zn

�

! ˆ.y/ as n!1, we may conclude that

E

�

Zn.xn/

Zn
�ˆ.y/

�2

! 0

proving assertion (4.1).
Next, since

P.Yn � y�
p
n/ D E

�

Zn.xn/

Zn

�

;

assertion (4.2) follows. ut

5 Energy Cascades

Consider an elementary particle undergoing fission. Suppose we start with one par-
ticle with energyE0. Suppose

(i) It splits into a random number � of new particles with probability distribution
P.� D j / D pj , j � 0

(ii) If � D k, k�1, the energy E0 of the parent particle is distributed among the k
offspring particles asE0Yk1,E0Yk2,: : :,E0Ykk , where .Yk1; Yk2; : : : ; Ykk/ has
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a probability distribution �k over the simplex

� !
p D.p1; p2; : : : ; pk/ W pi � 0;

k
X

iD1
pi D 1



such that �k is a unchanged under permutation

(iii) 8k � 1, xk1 has a distribution independent of k, and
(iv) If � D 0, the fission stops

After n generations, let the energies of the Zn particles in the nth generation
be en1; en2; : : : ; enZn

, respectively. It is clear from (ii) that if x01 D logE0 and
xni D log eni , i � 1, n � 0 and 	n D .xn1; xn2; : : : ; xnZn

/, then .Zn; 	n/n�0 is a
branching random walk as described in Sect. 4. If

Zn.x/ D ]fi W eni � x; 1 � i � Zng

is the number of particles with energy less than or equal to x after n splits have
occurred, then by Theorem 4.1 the following holds.

Theorem 5.1. Let the family of distributions f�kgk�1 satisfies

(i) 8k � 1, �k is unchanged under permutation, i.e., P..Yk1; Yk2; : : : ; Ykk/ 2
A1 � A2 � � � � � Ak/ D P..Yki1 ; Yki2 ; : : : ; Ykik / 2 A1 � A2 � � � � � Ak/ for
every permutation .i1; i2; : : : ; ik/ of .1; 2; : : : ; k/

(ii) �k.Yk1 2 A/ 	 �.A/, A 2 B.R/, is independent of k
(iii) E logY11 D �, V.logY11/ D �2 <1, and

(iv) p0 D 0, 1 < m D
1
X

jD1
jpj <1 and

1
X

jD1
j.log j /pj <1

Let Zn.xn/ D ]fi W xni � xng be the number of elementary particles of the
nth generation with energy eni such that xni D log eni � n�Cpn�x. Then, for
8 �1 < x <1,

E

�

Zn.xn/

Zn
�ˆ.x/

�2

! 0 as n!1;

where

ˆ.x/ D 1p
2�

Z x

�1
e�

u2

2 du; �1 < x <1

is the standard N.0; 1/ c.d.f. and hence

Zn.xn/

Zn
! ˆ.x/ in probability as n!1
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and

Zn.xn/

mn
! ˆ.x/W in probability as n!1;

where W D lim
n!1

Zn

mn
as in Theorem 3.2.

6 Extensions and Open Problems

The model considered in Sect. 2 can be extended in many directions. We describe a
few of them below.

6.1 Non-Gaussian Limits

Suppose the displacement random variables X11 has no finite second moment.
AssumeX11 is in the domain of attraction of a stable law of order ˛ with 0 < ˛ � 2.
Then there exist an and bn such that

P.Sn � an C bnx/! F˛.x/; �1 < x <1
as n ! 1, where F˛.�/ is the c.d.f. of a stable law of order ˛. Now we can adapt
the argument of Theorem 4.1 to conclude that

(i)

Zn.an C bnx/
Zn

! F˛.x/; �1 < x <1

in mean square and hence in probability.
(ii)

Yn � an
bn

d�! G˛; as n!1;

where Yn is the position of a randomly chosen individual in the nth generation.

6.2 Continuous Time

Suppose now that each individual lives a random length of time with distribution
G.�/. Let Z.x; t/ be the number of individuals alive at time t with positions less
than or equal to x.
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It is known (Athreya [3]) that the generation number Nt of a randomly chosen
individual grows like t and

Nt

t
! 1

�˛
;

where �˛ D m
Z 1

0

xe�˛xdG.x/ and 0 < ˛ < 1 is the Malthusian parameter

defined by m
Z 1

0

e�˛xdG.x/ D 1.

A randomly chosen individual’s position is distributed as SNt
where fSngn�0 is

a random walk with jump distribution and Nt is a random variable independent of
fSngn�0.

An interesting conjecture is that if the displacement has finite second moment
then for some constant �

Zt

�

t
�˛
�C

q

t
�˛
x�
�

Zt

converges in mean square to ˆ.x/.

6.3 Critical Case

Ifm D 1, then the population dies out in finite time w.p.1. That is, w.p.1Zn D 0 for
some large n. (Theorem 3.2 (ii)) But under finite second moments conditioned on

nonextinction, i.e., fZn > 0g, Zn is of the order n and hence on this event
Zn.xn/

Zn
should converge in probability to some limit if xn ! 1 at an appropriate rate.
This needs to be established. A difficulty in this case is that the random time �n, the
generation number of the last common ancestor of two randomly chosen individuals
from those alive in the nth generation may grow like n. An extension of this to the
continuous case is also an interesting problem.

6.4 Multitype Case

The extension of Theorem 4.1 to the case when the underlying branching process is
a multitype one with displacement distribution dependent on the type is also an in-
teresting question. Here the supercritical and critical cases, discrete and continuous
time cases are all open.
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A Commentary on the Logistic Distribution

Malay Ghosh, Kwok Pui Choi, and Jialiang Li

Dedicated to the memory of Professor Alladi Ramakrishnan

Summary The paper provides a series representation of the logistic probability
density function in terms of differently scaled double exponential distributions with
terms of the series alternating in signs. This representation is used to calculate
moments, moment generating function, and characteristic function of a logistic dis-
tribution. The same representation is also used to derive the logistic distribution as
the scale mixture of a normal distribution.
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1 Introduction

The logistic distribution occupies a prominent role in the theory and practice of
statistics. One of the earliest applications was in biology to describe how species
populations grow in competition [18]. This distribution is also used in epidemiol-
ogy [19] to describe the spreading of epidemics, in psychology to describe learning
[19], and in technology to describe how new technologies diffuse and substitute
each other [10]. The distribution is pivotal in item response theory, for example,
in the very basic Rasch model [17, 21, 22], in categorical data analysis [3] and in
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case–control studies [7], a topic which has become the cornerstone in epidemiologic
research. Johnson et al. [14] devoted a whole chapter on logistic distributions, while
a large body of articles covering many facets of this distribution appeared in the
edited volume [6] entitled “Handbook of the Logistic Distribution.” In particular,
the logistic distribution may be used to model a latent variable for the binary out-
come data [5] and give rise to the well-known logistic regression model. The idea
of introducing the latent logistic variable is especially helpful for multilevel mixed-
effects logistic regression models. One of the several key definitions of variance
partitioning coefficients (VPC) for such sophisticated models depends explicitly
on the logistic distribution and uses the variance of a logistic variable as the level
one variance [12]. For example, the VPC for a two-level logistic regression model
log pij

1�pij
D xTij ˇ C bi , where i indicates clusters and j indicates observations with

a cluster, is given by

VPC D var.bi /

var.bi /C �2=3;

where var.bi / is the variance of the random intercept and �2=3 is the variance of
the standard logistic distribution. Unlike the unbounded variance parameter var.bi /,
the VPC parameter simply lies within .0; 1/ and is scale-free. Furthermore, the
computed VPC value provides an insight on the proportion of variation explained
at the cluster level (level two) and is therefore frequently reported in longitudinal
data analysis [11]. A tri-level version of the above VPC parameter has also been
introduced recently in the literature based on a similar construction [8, 20]. The
logistic distribution is indispensable for interpreting the variance parameters in
these problems. Understanding the properties for the logistic distribution is thus
meaningful and necessary.

Despite the popularity of the logistic distribution among both theoretical and
applied researchers, many aspects of this distribution are still unfamiliar to most
statisticians. As an example, we may cite the very important result of Andrews and
Mallows [2] that the logistic distribution is a scale mixture of a normal distribution.
Even the derivation of some of the basic results such as the variance, kurtosis, and
other parameters of interest have still not entered most statistical textbooks.

The purpose of this note is to give a series representation of the standard logistic
probability density function (pdf) in terms of several differently scaled double ex-
ponential distributions centered at zero with terms of the series alternating in signs.
This particular representation was somewhat implicit in Johnson et al. [14, p. 117]
while calculating the moments of a logistic distribution, but was never made explicit.
With this series representation, we will be able to provide fairly simple expressions
for moments, moment generating functions (mgf), and characteristic functions (cf)
from the corresponding results for the double exponential distribution. One of the
highlights of our approach is that contour integration is avoided altogether, espe-
cially for deriving the characteristic functions. Similar results for the normal, double
exponential, and t-family of distributions are available in [9].

Andrews and Mallows [2] showed how a standard logistic distribution could be
obtained as the scale mixture of a standard normal distribution, and provided also
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an explicit expression of the mixing distribution. They found the latter by inverting
a Laplace transform. In this note, we derive this distribution directly from the same
series representation by writing the double exponential distribution also as a scale
mixture of a normal distribution.

The main results are given in Sect. 2. Section 3 contains a summary of our results
and suggests some potential future research.

2 The Main Results

The standard logistic distribution has a pdf of the form

f .x/ D exp.�x/
.1C exp.�x//2 D

exp.�jxj/
.1C exp .�jxj//2 ; (1)

due to the symmetry of f around zero. With the expansion, .1C exp.�jxj//�2 D
P1
kD1 .�1/k�1k expŒ�.k � 1/jxj� for x ¤ 0, it is possible to rewrite (1) as

f .x/ D
1
X

kD1
.�1/k�1k exp.�kjxj/

D 2
1
X

kD1
.�1/k�1.k=2/ exp.�kjxj/; x ¤ 0: (2)

Noting that gk.x/ D .k=2/ exp.�kjxj/ is the pdf of a double exponential distribu-
tion with zero mean and scale parameter k�1, one gets the exact series representa-
tion. Direct application of ratio test shows that this series converges absolutely for
x ¤ 0. Indeed, this series converges uniformly for jxj > � for any � > 0.

The moments of the logistic distribution are easily obtained from (2). Due to
symmetry of f around zero, all the odd moments of f are zero. Write f D
h1 � h2 where h1.x/ WD 2

P1
kD1 2�1.2k � 1/ expŒ�.2k � 1/jxj� and h2.x/ WD

2
P1
kD1 k exp.�2kjxj/. An even moment is easily calculated as

E.X2m/ D 2
Z 1

0

x2mf .x/dx D 2
Z 1

0

x2mh1.x/dx � 2
Z 1

0

x2mh2.x/dx:

Note that, for m � 1,

2

Z 1

0

x2mh1.x/dx D 2

1
X

kD1
.2k � 1/

Z 1

0

x2m expŒ�.2k � 1/x� dx

D 2.2m/Š

1
X

kD1
.2k � 1/�2m
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and similarly

2

Z 1

0

x2mh2.x/dx D 2.2m/Š
1
X

kD1
.2k/�2m:

Therefore,

E.X2m/ D 2.2m/Š
1
X

kD1
.2k � 1/�2m � 2.2m/Š

1
X

kD1
.2k/�2m

D 2.2m/Š	.2m/� 4.2m/Š
1
X

kD1
.2k/�2m

D 2.2m/ŠŒ1� 2�.2m�1/�	.2m/; (3)

where 	.s/ DP1nD1 n�s is the well-known Riemann zeta function [1, p. 256].
In particular, var.X/ D E.X2/ D 2	.2/ D �2=3: Johnson et al. [14, p. 117]

also provided the expression in the last line of (3).
The mgf and cf can be deduced directly from (3). For jt j < 1, we have

E exp.tX/ D EŒexp.tX/C exp.�tX/�=2

D E
(

1C
1
X

nD1

t2nX2n

.2n/Š

)

D 1C
1
X

nD1

EX2n

.2n/Š
t2n

D 1C
1
X

nD1

Œ22n�1 � 1�	.2n/
22.n�1/

t2n

D 1C
1
X

nD1

.�1/n�12Œ22n�1 � 1�B2n�2n
.2n/Š

t2n

D �t

sin.�t/
;

where we used a known identity of Riemann zeta function and Bernoulli numbers in
the penultimate equality [6, p. 34], and Taylor expansion of t

sin.t/ in the last equality
[13, p. 35]. Recall that Bernoulli numbers Bn are given by the series expansion:

t

et � 1 D
1
X

nD0

Bn

nŠ
tn:

For example, B0 D 1; B1 D �1=2; B2 D 1=6; B4 D �1=30; : : : : Similarly,

E exp.itX/ D EŒexp.itX/C exp.�itX/�=2

D 1C
1
X

nD1
.�1/nEX

2n

.2n/Š
t2n
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D 1C
1
X

nD1
.�1/n Œ2

2n�1 � 1�	.2n/
22.n�1/

t2n

D 1 �
1
X

nD1

2Œ22n�1 � 1�B2n�2n
.2n/Š

t2n

D �t

sinh.�t/
[13, p. 35]:

We illustrate another use of the series representation, (2), of the logistic pdf to
derive a result of Andrews and Mallows [2]. To this end, first rewrite

.k=2/ exp.�kjxj/ D
Z 1

0

kr1=2p
2�

exp

�

�rk
2x2

2

�

exp
�� 1

2r

�

2r2
dr (4)

D
Z 1

0

�

vp
2�

exp

�

�v2x2

2

�

k2

v3
exp

�

� k
2

2v2

�

dv: (5)

To see (4), rewrite the right hand side of (4) as

.k=2/

Z 1

0

.2�r3/�1=2 expŒ� 1
2r
.r2k2x2 C 1/� dr

D .k=2/ exp.�kjxj/
Z 1

0

.2�r3/�1=2 expŒ� 1
2r
.rkjxj � 1/2� dr: (6)

Recognizing the above integrand as the pdf of an inverse Gaussian distribution
with mean .kjxj/�1 and scale parameter 1, (6) simplifies to .k=2/ exp.�kjxj/which
is the left hand side of (4). Using the substitution k

p
r D v, (5) follows from (4).

In view of (5), we have

h1.x/ D 2
1
X

kD1
2�1.2k � 1/ expŒ�.2k � 1/jxj�

D
Z 1

0

�

vp
2�

exp

�

�v2x2

2

�

"

2

1
X

kD1

.2k � 1/2
v3

exp

�

� .2k � 1/
2

2v2

�

#

dv

and

h2.x/ D
Z 1

0

�

vp
2�

exp

�

�v2x2

2

�

"

2

1
X

kD1

.2k/2

v3
exp

�

� .2k/
2

2v2

�

#

dv:

Hence

f .x/ D h1.x/ � h2.x/ D
Z 1

0

�

vp
2�

exp

�

�v2x2

2

�

g.v/dv;
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where

g.v/ D 2
1
X

kD1
.�1/k�1.k2=v3/ exp.�k2=.2v2//: (7)

Consequently, we see that X jV D v 
 N.0; v�2/ and the mixing pdf g.v/ of V .
This provides an alternative proof of a result in Andrews and Mallows [2] who
obtained it by inverting a Laplace transform. As also noted in Andrews and Mallows
[2], W D 1=.2V / has the Kolmogorov distribution with pdf [16, p.480]

h.w/ D 8w
1
X

kD1
.�1/k�1k2 exp.�2k2w2/:

3 Summary

The paper provides a series representation of the logistic pdf, the terms of the series
being differently scaled double exponential pdf and also alternating in signs. It will
be interesting to see whether a similar representation is available for the multivariate
logistic pdf.

The logistic distribution, indeed, appears in various statistical problems other
than the logistic regression mentioned earlier. In survival analysis, this distribution
is considered as a common parametric error distribution in an accelerated failure
time model [15, p. 37]. In practice, the instructive results we derive in this paper
may also benefit the analytic studies of lifetime data when the logistic distribution
approximates the data closely.
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Entropy and Cross Entropy: Characterizations
and Applications

C.R. Rao

Dedicated to the memory of Professor Alladi Ramakrishnan

Summary The paper provides an axiomatic setup for an entropy function as a
measure of diversity. A general definition of cross entropy is given and its use in
solving a variety of stochastic and nonstochastic optimization problems is men-
tioned. A method of deriving a cross entropy function associated with a given
entropy function is given.
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1 Introduction

Let P be a set of probability distributions defined on a measurable space .X ;B/.
Entropy of p 2 P , denoted by H.p/, was originally designed as a measure of
uncertainty of the outcomes of a probability distribution p, or how close p is to
uniform distribution. The most popular choice of H , known as Shannon entropy, is

H.p/ D
k
X

1

pi logpi (1.1)
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in the case of a multinomial distribution with k classes and cell probabilities
p1; : : : ; pk , and

H.p/ D �
Z

p.x/ logp.x/d� (1.2)

in the continuous case, where d� is the volume element in X .
The functions defined in (1.1) and (1.2) have been used in building models of

probability distributions for elementary particles in physics and in solving some
problems in communication theory. The same functions have been used as measures
of diversity by ecologists in discussing problems of differences in frequencies of
different species of animals inhabiting a locality. Some key references are [10, 12,
13, 15–19, 24].

While H.�/ is defined on P , there is another function C.pjq/ defined on P � P ,
called cross entropy, not necessarily symmetric, designed to examine how close a
probability distribution q is to a given distribution p. A well-known cross entropy
function is Kullback–Leibler [9] divergence

C.pjq/ D
X

pi log
pi

qi
; in the discrete case;

D
Z

p.x/ log
p.x/

q.x/
dv; in the continuous case: (1.3)

Cross entropy received numerous applications in solving complicated optimiza-
tion problems as described in [2, 8]. An interesting application of the cross-entropy
method is in estimating rare-events probability as discussed in [5].

In this paper, a general discussion of entropy and cross-entropy measures and
their characterizations, and possible applications are given.

This paper is dedicated to the memory of Professor Alladi Ramakrishnan who
not only made fundamental contributions to frontier areas of stochastic processes,
elementary particle physics, special theory of relativity, and matrix algebra but
also created a monument for himself by establishing the Institute of Mathematical
Sciences to promote basic research in key areas of science.

2 Entropy Functional

A strict definition ofH.�/ would depend on how uncertainty in prediction is defined
and loss in making predictions of outcomes as in [3, 23]. However, we can state
some general postulates.

A1 WH.p/ � 08p 2 P andD 0 if p is degenerate.

A2 WH.p C �q/ � H.p/ � �H.q/ D J.p; q W ;�/ � 0
for all p and q and  > 0;� > 0; C � D 1, and = 0 if p D q.
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While A1 requires H.�/ to be a nonnegative function, A2 implies that uncertainty
in a mixture of distributions is strictly greater than the average of the uncertainties
in each of the components if they are different, i.e., H.�/ is a strongly concave
function on P .

Dalton and Pielou postulated the following condition on H.�/, calling it a
diversity measure, when p is multinomial in k classes:

H.p1; : : : ; pi ; : : : ; pj ; : : : ; pk/ � H.p1; : : : ; pi C ı; : : : ; pj � ı; : : : ; pk/
for pi < pi C ı < pj � ı < pj

i.e., H.�/ increases if some part is transferred from a large pj to a smaller pi .
This condition is implied by the postulate A2 if H.�/ is a symmetric function of

p1; : : : ; pk as shown below. Consider two probability vectors

p D .p1; : : : ; pi ; : : : ; pj ; : : : ; pk/; (2.1)

q D .p1; : : : ; pj ; : : : ; pi ; : : : ; pk/: (2.2)

Then the i th and j th values in p C �q are

pi C �pj D pi C ı; pj C �pi D pj � ı; (2.3)

which give
 D 1 � ı=.pj � pi /; � D ı=.pj � pi /: (2.4)

Using  and � as in (2.4), the postulate A2 and the symmetryH.p/ D H.q/,

H.P/DH.p/C�H.q/ � H.pC�q/ D H.p1; : : : ; piCı; : : : ; pj�ı; : : : ; pk/:

This also demonstrates that a symmetric H.�/, under postulates A1 and A2, at-
tains the maximum value when all pi are equal.

Some examples of entropy functions in the case of multinomial distributions,
which have been used in various applications are as follows.

(1) �Ppi logpi , [24].

(2)
PP

dijpipj ; d11 D � � � D dkk , and the matrix .dik C djk � dij � dkk/; i;

j D 1; : : : ; k � 1 is nonnegative definite, Rao’s [18] quadratic entropy.

(3) 1 �Pp2i , Gini-Simpson [25].

(special case of 2 with dii D 08 i and dij D 1 for all i ¤ j ).

(4) .1 � ˛/�1 log
P

p˛i ; ˛ > 0, [21].

(5) .˛ � 1/�1.1 �Pp˛i /, [4].

(6)
h

1 �
�

P

p
1=�
i

��i

=.1 � 2��1/; � > 0;¤ 1; .� � entropy/.

(7) �Ppi logpi �P.1 � pi / log.1 � pi /, paired entropy.
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All these entropy functions satisfy the postulates A1 and A2 and all except 2
attain the maximum value when all pi are equal. It may be noted that the quadratic
entropy has a great potential for applications in statistics and ecology as shown in
[16, 17, 26].

In the continuous case, some entropy functions are as follows:

(1) � R p.x/ log.x/dv, Shannon.
(2)

R

K.x; y/p.x/p.y/dvxdvy , Rao’s quadratic entropy whereK is a conditionally
negative definite kernel, i.e.,

n
X

1

n
X

1

K.xixj /aiaj � 0

for any n and x1; : : : ; xn such that
P

ai D 0.

(3)
1

1 � ˛ log
R

p˛dv, Renyi.

2.1 Maximum Entropy Principle

Physicists used the principle of maximizing entropy in generating models for distri-
bution of particles such as molecules subject to certain kinematic restrictions. For
instance, a particle occupying a certain position in a phase space will have an energy
E whose average may be known giving the equation such as

Z

E.x/p.x/dv D c: (2.5)

If we choose Shannon entropy, the problem is to find p such that

�
Z

p.x/ logp.x/dv (2.6)

is a maximum subject to the condition (2.5). The solution [14, p. 173] is obtained as

p D ˛ exp.E/; (2.7)

which is known as Maxwell–Boltzmann distribution. For the use of (2.7) in build-
ing models such as Helly’s law for the equilibrium of sedimentation, Maxwell
distribution of velocities and angular distribution of areas of elementary mag-
nets in a magnetic field, the reader is referred to Joos [7], Jaynes [6], and Rao
[14, pp. 172–175].

If instead of Shannon entropy, we choose to maximize Renyi’s entropy

1

1 � ˛ log
Z

p˛dv;
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we obtain the distribution [14, p. 175] with maximum entropy subject to (2.5) as

p.x/ D .E.x/C �/1=.˛�1/; (2.8)

which provides a family of models to explain various physical phenomena as an
alternative to (2.7). Some comparison of the models (2.7) and (2.8) may be made
in different situations using observational data. It would also be of interest to build
models using other entropy functions.

3 Cross Entropy

3.1 Characterization

There are situations in statistical theory and optimization problems where the true
probability distribution p is not known but we use a surrogate distribution q for
analysis of observations drawn from p, or p is known but it is easy to generate
observations from q to estimate some quantities, such as probabilities of large de-
viations in p, by a technique known in statistics as importance sampling. In such
problems, to make a choice of q we need a measure of how close q is to p. Such
a measure is known as cross entropy and is indicated by C.pjq/. We suggest a few
postulates for the choice of C.pjq/.

B1 W C.pjq/ � 08p; q 2 P ;D 0 only if p D q;
B2 W C.p C �qjq/ � C.pjq/;  > 0;� > 0; C � D 1:

The postulate B2 is a natural requirement as the mixture p C �q has some com-
ponent of q which would make q closer to pC�q. Rao and Nayak [20] provide a
general choice of C.pjq/ based on a given entropy functionH.p/ with the smooth
differentiability property

H.p C �q/ �H.q/ D f .q; p � q/C o./; (3.1)

where f .q; p � q/; p; q 2P , is such that f .q; 0/ D 0 and f .q; ˛.p � q// D
f̨ .q; p � q/.

We may compute f .q; p � q/ as

lim
�!0

H .q C .p � q//�H.q/


: (3.2)

We then define

CH .pjq/ D f .q; p � q/CH.q/ �H.p/ (3.3)

as the cross-entropy of q with respect to p based on a given entropy functionH.�/.
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Consider for instance Shannon entropy, �Ppi logpi . Then

f .q; p � q/ D �
X

.pi � qi / logqi ; (3.4)

CH .p; q/ D f .q; p � q/CH.q/�H.p/
D
X

pi log
pi

qi
: (3.5)

Let us verify whether CH .pjq/ as defined in (3.3) satisfies the postulates B1 and
B2. Using concavity of H.�/

H .q C .p � q// > H.p/C �H.q/
H .q C .p � q//�H.q/


> .H.p/ �H.q// : (3.6)

Taking the limit as ! 0

f .q; p � q/ > H.p/ �H.q/;
CH .pjq/ D f .q; p � q/ �H.p/CH.q/ > 0; (3.7)

which provesB1. To prove B2, consider

CH .pjq/� CH .p C �qjq/ D � .f .q; p � q/CH.q/�H.p//
CH.p C �q/� H.p/ � �H.q/ � 0: (3.8)

Let us examine whether Kullback–Leibler divergence measure

CH .pjq/ D
X

pi log
pi

qi
(3.9)

satisfies the postulate B2.

CH .pjq/� CH .p C �qjq/ D
X




pi logpi � pi log qi C .pi C �qi / log qi

�.pi C �qi / log.pi C �qi /
�

D
X




�pi log
pi

qi
C pi logpi C �qi log qi

�.pi C �qi /log.pi C �qi /
�

� 0: (3.10)

3.2 Decomposition of H.�/

Let NP D 1P1 C � � � C mPm, where P1; : : : ; Pm are probability measures and
i � 08 i and

P

i D 1. Then

H. NP/ D
X

iH.Pi /C
X

iCH .Pi j NP /: (3.11)
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From (3.3)

CH .Pi j NP/ D f . NP ;Pi � NP /CH. NP /�H.Pi /
X

iCH .Pi j NP/ D
X

if . NP ;Pi � NP/CH. NP/ �
X

iH.Pi /

D f . NP ;
X

i .Pi � NP/CH. NP/ �
X

iH.Pi /

D H. NP /�
X

iH.Pi /;

which proves (3.11).

3.3 Some Applications of Cross Entropy

A comprehensive account of the use of cross entropy in solving complicated op-
timization problems, and estimation of probabilities of rare events is given in
[2, 5, 8, 22]. Some of the applications in statistics are the construction of classifi-
cation regions using Support Vector Machines as in [11] and iterative methods of
cluster analysis as in [8].

An example of how cross entropy is used is as follows. Suppose the problem is
that of estimating � D Ep Œˆ.x/�, the expectation of a functionˆ.x/ with respect to
a given probability distribution p.x/. For instance, if we want to find the probability
of x � a, we can express it as the expectation of the function Ix�a, where I is the
indicator function.

A general Monte Carlo technique of estimating � is to draw a sample x1; : : : ; xn
from p.x/ and estimate � by

O� D n�1
X

ˆ.xi /: (3.12)

Observing that
Z

ˆ.x/p.x/ dx D
Z

ˆ.x/
p.x/

q.x/
q.x/ dx (3.13)

and

� D Eq



ˆ.x/
p.x/

q.x/

�

; (3.14)

we may draw a sample .x0i ; : : : ; x0n/ from q and estimate � by

O� D n�1
X

ˆ.x0i /p.x0i /=q.x0i /: (3.15)

The best choice of q which reduces the variance of O� to zero is

q�.x/ D ˆ.x/p.x/

�
: (3.16)
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However, the solution depends on the unknown � . An alternative is to choose a
family of probability distributions indexed by a number of parameters

q.x; �/; � D .�1; : : : ; �s/ (3.17)

and estimate � by minimizing the cross entropy

CH .q
�.x/jq.x; �/; (3.18)

where q� is as determined in (3.16). If we are using KL divergence measure, the
problem reduces to

max
	

Z

q�.x/ log q.x; �/ dv: (3.19)

There are a number of ways of solving (3.19), analytically or algorithmically, de-
pending on the functional forms of q�.x/ and q.x; �/. Reference may be made to
[1, 22].

Up-to-date, cross entropy method has been used to solve a variety of optimiza-
tion problems arising in statistics, operations research, engineering, and finance. The
superiority of the CE method over other computational methods has been demon-
strated in the papers referred to above.
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Optimal Weights for a Class of Rank Tests
for Censored Bivariate Data

Samuel S. Wu, P.V. Rao, and Aparna Raychaudhuri

Dedicated to the memory of Professor Alladi Ramakrishnan

Summary The problem of testing equality of survival distributions on the basis
of paired censored survival data has received considerable attention in literature.
Some of the important statistics used for such purposes can be expressed as linear
combinations of two statistics, one based on uncensored pairs and the other based on
the censored pairs. Raychaudhuri and Rao (Nonparametric Statistics, 1996, 6, 1–11)
investigated properties of two classes of such statistics and derived expressions for
the optimal coefficients (weights) for the linear combination that will maximize
efficacy within each class. As the optimal weights depend upon the form of the
underlying survival and censoring distributions, statistics with optimal weights can
only be used with estimated weights. This article presents a method of estimating
optimal weights on the basis of an assumed model that specifies the distribution
of the difference between the observed survival times conditional on the censoring
pattern. The model, in addition to dispensing with the usual assumption that the
survival and censoring variables are independent, also permits a graphical check
of its lack of fit on the basis of observed data. The performance of statistics with
the estimated weights is evaluated by using two simulation studies – one with data
generated under the assumed model and the other assuming independence of the
survival and censoring times. Simulation results show that the optimal statistics with
estimated weights have good power properties in all cases considered, and that they
compare well with other commonly used tests for paired censored survival data.
An advantage of the tests with optimal weights is that, unlike their competitors,
these tests have demonstrated performance characteristics in some cases where the
assumption of independent censoring may not be justified.
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1 Introduction

In statistical literature survival times refer to the times to occurrences of an event in
a given population of individuals. In biomedical applications, the event of interest
could be the death from a disease or relapse of a symptom in a population of treated
patients. In engineering applications, survival times may represent the life lengths of
a particular type of aircraft engines. Survival times are encountered in a wide variety
of other applications such as sociology (duration of first employment) and insurance
(amounts of disability insurance claims). For obvious reasons survival times are also
referred to as lifetimes or failure times.

A special feature of survival times is that they are amenable to censoring. A
survival time is said to be right censored if the event of interest has not occurred
before the end of the observation period. For example, in a study of the relapse-free
time of treated patients, complete information about relapse time is not available
for subjects who do not relapse during the study period. All we know about such
subjects is that their relapse times are longer than their corresponding censoring
times–the lengths of time the subjects were under observation. Hence the two pieces
of information available about the survival time of an individual whose survival and
censoring times areX andC , respectively, are Y D min.X; C / and ı D I.X � C/,
where I.A/ is the indicator function ofA. Here Y is the observed survival time and ı
is its censoring status. If ı D 1, then the observed survival time is the actual survival
time. Otherwise, the actual survival time is longer than the observed survival time.

Let .X1i ; X2i /; i D 1; : : : ; n be independent bivariate survival times each dis-
tributed as a bivariate random variable .X1; X2/with continuous density .x1; x2/.
Let fCi W i D 1; : : : ; ng be an independent random sample of censoring times from
a continuous population. Suppose that the survival times are not observable be-
cause of right censoring and the observed data consist of (1) the observed times
.Y1i ; Y2i /, where Yki D min.Xki ; Ci /, and (2) the censoring pattern .ı1i ; ı2i /,
where ıki D I.Xki � Ci /, .i D 1; : : : ; nI k D 1; 2/.

Testing the null hypothesis,H0 W .x1; x2/ D  .x2; x1/, based on observed val-
ues of .Yki ; ıki / is an important problem in biomedical research. For example, when
times to responses to two drugs are measured on experimental units that are matched
on the basis of shared characteristics, censored paired responses of the type Yki and
ıki result if there is a possibility that the response times X1 and X2 within a pair
may be censored by a common censoring time. The null hypothesis that the response
times have a common distribution can be tested by testing H0.

The Florida Geriatric Research Program (FGRP) – a longitudinal study of the
elderly begun in 1975 in Dunedin, Florida provides an example of the need for
testingH0 on the basis of paired survival data. Over 6,500 ambulatory people at least
65 years of age have enrolled in FGRP and over 2,000 return each year for annual
screenings. The screenings include detailed assessment of symptoms and diseases,
as well as a SMAC-23 and blood pressure, heart rate, height and weight assessments.
If we define X1 and X2 as the ages at which a subject’s PCL13 (albumin) and
HGB (hemoglobin) values reached “abnormal” levels for the first time during the
observation period then the null hypothesisH0 can be interpreted as the hypothesis
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that, at any given age of the patient, the likelihood of first abnormal PCL13 is the
same as the likelihood of first abnormal HGB. In other words, testing H0 will help
answer the question “Which, if any, of the two abnormalities is likely to occur first?”
Let C denote the age at the most recent followup for a subject. A subject who does
not present with one or both of the abnormalities at age C has a censored value for
one or both of the Xi . Thus, if the age at the last observation is considered as the
censoring time for each subject then the data for testing H0 can be regarded as a
sample of paired survival data with a common censoring time.

There exist a number of procedures for testing H0. Among these are procedures
suggested by Woolson and Lachenbruch [1] who developed a family, C1, of score
statistics for testing H0. Popovich and Rao [2] proposed an alternative family of
statistics, C2, for the same problem.

Statistics in C1 or C2 can be represented as linear combinations

T D LuTu C LcTc (1)

where Lu and Lc are scalar coefficients (possibly random) and Tu and Tc are appro-
priately chosen statistics based on the uncensored and censored pairs, respectively.
Dabrowska [3] used a counting process representation to derive the asymptotic rel-
ative efficiencies (AREs) of the tests in C1. Raychaudhuri and Rao [5] assumed a
log-linear model and used Dabrowska’s approach to compare the efficacies of se-
lected statistics in each of these two classes to the efficacies of the corresponding
optimal statistics – statistics that maximize the efficacy within a class. On the ba-
sis of a simulation study, Raychaudhuri and Rao [4] concluded that the optimal
statistics can have high efficiencies that depend on the heaviness of censoring and
correlation between pairs.

Unfortunately, unlike the scores in the Woolson-Lachenbruch class of statistics,
the coefficients in the linear combination defining the optimal statistic depend on
the joint distribution of the survival and censoring times. Consequently, optimal
coefficients can be specified only if one is willing to assume a form for this joint
distribution.

In this article, we describe a method for determining the coefficients in the op-
timal statistics on the basis of assumptions that do not require specification of the
form of the joint distribution of Ci and .Y1i ; Y2i ; ı1i ; ı2i /. Let Zi D Y2i � Y1i .
Our approach assumes a model for the conditional distribution of the observed ab-
solute difference conditional on the censoring pattern of Xi . That is, we assume a
model for the conditional distribution of jZi j given the values of .ı1i ; ı2i /. As we
shall see, the appropriateness of the assumed model can be assessed on the basis of
observed data.

A brief description of the statistics in C1 and C2 with expressions of optimal
statistics is presented in Sect. 2. Estimators of the optimal coefficients are proposed
in Sect. 3, and Sect. 4 contains the results of a simulation study of the performance
of statistics with estimated optimal weights. A real data example is presented in
Sect. 5.
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2 Efficacies of Statistics in C1 and C2

The pair .Y1i ; Y2i / will be said to be doubly censored, singly censored, or uncen-
sored according as both in the pair are censored, exactly one in the pair is censored
or none in the pair is censored. Following Dabrowska [3], let

B1 D fi W Zi > 0; .Y1i ; Y2i / is an uncensored pairg;
B2 D fi W Zi < 0; .Y1i ; Y2i / is an uncensored pairg;
B3 D fi W Zi > 0; .Y1i ; Y2i / is a singly censored pairg;
B4 D fi W Zi < 0; .Y1i ; Y2i / is a singly censored pairg;
B5 D fi W .Y1i ; Y2i / is a doubly censored pairg;

and define the counting processes:

Nj .t/ D
n
X

iD1
I fjZi j � t; i 2 Bj g j D 1; 2; 3; 4:

Clearly, theNj .t/ count the occurrences of uncensored and singly censored absolute
differences in the interval .0; t �. For i D 1; 2; let Jiu.�/ and Jic.�/ be given score
functions defined on .0; 1/. Then the classes of statistics C1 and C2 introduced by
Woolson and Lachenbruch [1] and Popovich and Rao [2] can be represented in the
form of (1):

Ti D LiuTiu C LicTic; i D 1; 2; (2)

where

Tiu D
Z

Jiu.1 � OSi /d.N1 �N2/; and Tic D
Z

Jic.1 � OSi /d.N3 �N4/;

and OS1.t/ and OS2.t/ are the Kaplan-Meier [5] estimator of S.t/ D P.jX1�X2j > t/
based on fjZi j W i 2 [4jD1Bj g and fjZi j W i 2 [2jD1Bj g, respectively. Special cases
of (2) are:

1. L1u D L1c D 1 and J1u.v/ D J1c.v/ D 1, in which case, T1 reduces to the
Woolson-Lachenbruch sign statistic (WL sign statistic). In this case, the symbols
T1su and T1sc will be used to denote T1u and T1c , respectively.

2. L1u D L1c D 1 and J1u.v/ D v; J1c.v/ D 1=2.1C v/, in which case T1 reduces
to the Woolson-Lachenbruch Wilcoxon signed-rank statistic (WL Wilcoxon
signed rank statistic). In this case, the symbols T1wu and T1wc will denote T1u

and T1c , respectively.
3. When J2u.v/ D v, T2u reduces to the Wilcoxon signed rank statistic calculated

from the uncensored pairs. Hence, the symbol T2wu will be used to denote T2u in
this case. We will use the symbol T2wc to denote T2c . Note that T2c is the same
as T1sc in (2). Thus, T1sc and T2wc denote the same statistic.
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Efficacies of the statistics in C1 and C2 are derived in Dabrowska [3] and
Raychaudhuri and Rao [4]. For i D 1; 2, let fT �iu; T �icg denote the standardized
(underH0) versions of Tiu and Tic , respectively. Define ri D eiu

eic
, where eiu and eic

are the efficacies of T �iu and T �ic , respectively. Raychaudhuri and Rao [4] showed
that the linear combination

T �i D L�iuT �iu C L�icT �ic; (3)

where

L�iu D
r

ri

1C ri and L�ic D
s

1

1C ri ;
attains maximum efficacy in Ci .

Assuming a log-linear model for survival times, Raychaudhuri and Rao [4] de-
rived expressions for eiu and eic and used them to compare the asymptotic relative
efficiencies (AREs) of nine selected statistics. Three linear combinations of the two
statistics in each of the three pairs .T1su; T1sc/, .T1wu; T1wc/, and .T2wu; T2wc/ were
studied. The coefficients in the linear combinations were:

L�iu D
r

ri

1C ri L�ic D
r

1

1C ri ; (optimal weights)

L�iu D
1p
2
; L�ic D

1p
2
; (equal weights)

L�iu D
s

�2iu

�2iu C �2ic
; L�ic D

s

�2ic
�2iu C �2ic

; (proportional weights)

where �2iu and �2ic are the null variances of Tiu and Tic , respectively. In the sequel,
we shall use the symbols T1s�op, T1s�eq , T1s�pr , T1w�op, T1w�eq , T1w�pr , T2w�op,
T2w�eq , T2w�pr to denote these nine statistics.

Raychaudhuri and Rao [4] observed that the statistics in C2 perform as well as
those in C1 and that (1) the efficacy of the optimal statistic in C2 is higher than that
of the optimal statistic in C1, and (2) the statistics in C2 have the attractive property
that for small sample sizes, they can be used to perform conditional distribution-free
exact tests of H0.

3 Estimating Optimal Weights

The optimal weights can be estimated on the basis of the following model for the
conditional distributions of jZi j. Let h.t/ andH.t/ be the density and survival func-
tions of a continuous random variable symmetrically distributed with median 0 and
assume that

Pr
�jZi j � t j i 2 Bj

� D H.t�j C �j /
H.�j /

; j D 1; : : : 4; (4)
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where, for some �1 < � <1 and � > 0, �j D .�1/j� for j D 1; : : : 4, �j D 1

for j D 1; 2 and �j D � for j D 3; 4. Let

Fj .t W �j ; �j / D Pr
�jZi j � t; i 2 Bj

�

; j D 1; : : : 4:

Then Fj .0 W �j ; �j / D Pr.i 2 Bj / and (4) can be expressed as:

Fj .t W �j ; �j / D Fj .0 W �j ; �j /H.t�j C �j /
H.�j /

; j D 1; : : : 4: (5)

Equation (5) specifies a two parameter model for the conditional distribution of
jZi j conditional on i 2 Bj , j D 1; : : : ; 4. The parameter � can be interpreted as a
measure of the degree of location shift in the survival functions of X1 and X2. The
null hypothesis H0 implies F1.0 W �1; �1/ D F2.0 W �2; �2/ and F3.0 W �3; �3/ D
F4.0 W �4; �4/. In addition, if one of the commonly used symmetric densities:

h.t/ D 1

2
e�jt j; (double exponential);

h.t/ D 1p
2�

e� 1
2 t

2

; (normal)

h.t/ D e�t

.1C e�t /2
; (logistic)

(6)

is used in (5) then the null hypothesis H0 also implies � D 0. The parameter �
describes how censoring affects the distributions of Z. If � D 1, the conditional
distributions of censored and uncensored differences are the same.

In view of the wide variety of possible choices forH , the model in (5) provides a
simple structure that is flexible enough to represent a variety of joint distributions of
survival and censoring times. Indeed, the model (5) does not require the assumption
of independent censoring – that .X1; X2/ and C are independent. Thus, optimal
properties of tests under model (5) will hold as long as the conditional distributions
have the required form. Furthermore, a practical advantage of estimating optimal
weights using (5) is that the observed data can be used, as described in Appendix 1,
for a graphical check of the appropriateness of a selected H .

Let Nj be the number of elements in Bj , N D P5
jD1Nj , Ǫjr be as defined

in Appendix 1, and jZj.jr/, r D 1; : : : ; Nj , denote the ordered absolute Zs in Bj .
In Appendix 1 it is shown that if the model (5) is appropriate for the data then the
plots of

˚�

H�1. Ǫjr /; jZj.ir/
� W r D 1; : : : ; Nj

�

, j D 1; 2; 3; 4; should approxi-
mate two sets of parallel straight lines. The plot of points in B1 and B2 should be
parallel with intercepts � and �� and a common slope of 1. The plots of the points
in B3 and B4 should be parallel with intercepts � and �� and a common slope
equal to �.
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Furthermore, let g.�/ be a function with derivative g0.0/ at � D 0. It can be
shown (see Appendix 2) that if the assumption

F1.0 W �; �/
F2.0 W �; �/ D exp fg.�/ � g.0/g ; F3.0 W �; �/

F4.0 W �; �/ D exp f�C g.�/ � g.0/g ;
(7)

is added to the assumptions in (5), then the efficacy ratios to determine optimal
weights can be completely specified in terms of Fj D Fj .0 W 0; �j /, �, h.�/,
and g0.0/. Before proceeding further, it should be noted that F1.0W 	; �/

F2.0W 	; �/ and F3.0W 	; �/
F4.0W 	; �/

are the odds of observing a positiveZ with respect to a negativeZ given thatZ cor-
responds to an uncensored pair and a singly censored pair, respectively. Thus, the
conditions expressed in (7) is an assumption about the forms of the odds of observ-
ing a positive difference in the uncensored and censored pairs.

We propose estimating optimal weights as follows.

1. Estimate Fj with its unbiased estimator Nj =N .
2. Let Zj be the mean of the Zi in Bj . In Appendix 3, we use (5) to show that

E.Z1/ D �E.Z3/ and E.Z2/ D �E.Z4/: (8)

From (8), an intuitively reasonable estimator for � is

O� D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Z1

Z3
if N2 CN4 D 0 and minfN1; N3g > 0;

Z2

Z4
if N1 CN3 D 0 and minfN2; N4g > 0;

1

2

 

Z1

Z3
C Z2

Z4

!

if minfN1; N2; N3; N4g > 0;

1 otherwise.

(9)

3. Select an appropriate form of h.�/. Any symmetric density on .�1;1/ is a
possible choice for h.�/. Three such densities are described in (6). Sometimes, a
nonstandard version of h.�/ may be more suitable for describing the conditional
distributions of jZi j. The appropriateness of a selected h.�/ can be checked using
the graphical procedure described earlier.

4. Specify a value of g0.0/. As the optimal weights depend only on the derivative of
g.�/ at � D 0, the estimated optimal statistic remains the same for all g.�/ with
a given value of g0.0/. From (7), it follows that specifying g0.0/ is equivalent
to specifying the rate at which the odds of a positive Z in the censored and the
uncensored pairs change in the neighborhood of the null hypothesisH0 W � D 0.
Higher values of g0.0/ correspond to more severe departures fromH0.

5. Use the computing formulas in Appendix 2 to estimate optimal weights.
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4 Simulations

Two simulation studies were performed to evaluate the powers of linear rank tests
with optimal weights estimated as described in Sect. 3. In the first study, we com-
pared nine statistics, T1s�j , T1w�j , T2w�j ,j D eq; pr; op, resulting from using
equal weights, proportional weights or optimal weights in the linear combination
(3). We assumed that the Zi satisfy conditions (5) and (7).

The nine statistics in the first study utilize information in within pair differences,
whereas the Akritas [7,8] (AK) and paired Prentice-Wilcoxon [6,8] (PPW) statistics
utilize scores assigned to the pooled sample fX1i ; X2i W i D 1; : : : ng. In the second
study, we compared the powers of the statistics evaluated in the first study with the
powers of AK and PPW statistics. For the purpose of comparison with existing re-
sults, the second study was performed using conditions similar to those in Woolson
and O’Gorman [8], where the tests based on AK and PPW statistics were compared
to several tests for censored paired data.

In the first simulation, we estimated the size and power of the nine tests at .05
level based on 10,000 samples of sizes nD 40 and nD 100. The samples were
generated under different situations determined by the density h.�/, the parameters
� and �, and the censoring pattern. The three densities listed in (6) were used. For
the odds ratio in (7), we selected g.�/ D :6� (g0.0/ D :6), and estimated the size at
� D 0 and powers at � D :5; 1; 1:5; 2. Three values, � D :75; 1; 1:75, were included
in the study. As � < 1 implies that the mean and standard deviation of the null dis-
tribution of a censoredZ is larger than that of the corresponding uncensoredZ, the
value � D :75 was selected to represent this case. The value � D 1:75 was selected
to represent the case where a censored Z has smaller mean and standard deviation
than that of an uncensored Z. Two censoring patterns were investigated: (a) 30%
uncensored with Pr .i 2 B1 [ B2/ D :3, Pr .i 2 B3 [ B4/ D :6; and (b) 60% un-
censored with Pr .i 2 B1 [ B2/ D :6, Pr .i 2 B3 [ B4/ D :3. The following is a
summary of the conclusions from the results of the first study.

All nine statistics held their levels fairly well under all conditions investigated in
the study. Figure 1 shows the estimated levels under six different conditions.

Figure 2 provides a comparison of the powers under three distributions and two
censoring patterns when � D 1, � D 1:75, and n D 100. The differences between
powers exhibited similar patterns in all cases considered.

The tests based on sign statistics had substantially lower powers than the powers
of other tests. In every instance, the use of optimal weights increased power and the
test based on T1w�op had maximum power with the test based on T2W�op not too
far behind. Furthermore, all tests had maximum power when h.t/ was normal, with
the power of the corresponding test when h.t/ is logistic following close behind.
Also, an increase in the expected proportion of uncensored observations resulted in
an increase of the power of every test considered.

The effect of the value of � (an indicator of the difference between the distribu-
tions of the censored and uncensored Z’s) can be seen in Figure 3, where we show
the estimated powers for � D :75; 1; 1:75 at two alternative hypotheses: � D :5 and
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Figure 1 Estimated levels of .05-level tests (10,000 Simulations)

� D 1, when the expected proportion of uncensored pairs is 30%, the density is
logistic, and n D 100. It is clear that � has very little effect on the power of these
tests, implying that precise specification of � is not a critical issue in determining
optimal coefficients.
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Figure 2 Estimated powers for different censoring rates and h.
/ (10,000 simulations)

Figure 4 plots the powers of the nine tests under three distributions and two
sample sizes when � D 1; � D 1 and the expected proportion of uncensored pairs
equals 30%. The plotting symbols are the positions of the statistics in the horizontal
axes of the panels in Figures 2 or 3.



Optimal Weights for a Class of Rank Tests for Censored Bivariate Data 379

theta = 0.5
Logistic, 30% uncensored pairs, n=100

Statistics

P
ow

er
0.

25
0.

30
0.

35
0.

40
0.

45

T1S_eq T1S_pr T1S_op T1W_eq T1W_pr T1W_op T2W_eq T2W_pr T2W_op

nu=0.75

nu=1

nu=1.75

theta = 1
Logistic, 30% uncensored pairs, n=100

Statistics

P
ow

er
0.

75
0.

80
0.

85
0.

90
0.

95

T1S_eq T1S_pr T1S_op T1W_eq T1W_pr T1W_op T2W_eq T2W_pr T2W_op

nu=0.75

nu=1

nu=1.75

Figure 3 Estimated powers for different � and h.
/ (10,000 simulations)
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Figure 4 Estimated powers for different sample sizes and h.
/ (10,000 simulations)
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As one would expect, Figure 4 shows that the sample size has a big impact on
power. In addition, the heaviness of the tail of h.�/ also influences power. The nor-
mal distribution, which has the lightest tail among the three distributions considered,
corresponds to highest power. The lowest powers are typically associated with dou-
ble exponential, which has the heaviest tail among the three distributions studied.

In the second simulation, we compared the powers of AK and PPW tests un-
der three situations. For the first situation, the survival and censoring times were
generated using the additive model: X1;i D Ui C U200Ci ; X2;i D � C U100Ci C
U200Ci ; Ci D c.�/U300Ci ; i D 1; 2; : : : ; 100. The U ’s are independent identically
distributed exponential variates with mean one, and the constant c.�/ was chosen
so that we can expect 70% uncensored pairs. The U200Ci terms provide correlation
among the paired observations. For this model, X2;i � X1;i has a shifted double
exponential distribution with shift � .

The second situation utilized a multiplicative model, e.g., X1;i D ŒUiU200Ci �s ;
X2;i D exp.�/ŒU100CiU200Ci �s ; Ci D Œc.�/U300Ci �s ; where the U ’s are indepen-
dent identically distributed exponential variates with mean one. We used s D
p

2=var.logistic/ D :780, such that logX2;i � logX1;i has a logistic distribution
with location parameter � and variance 2.

For the third situation, we generated the survival and censoring times
under the model: X1;i DUiU200Ci ; X2;i DU100CiU200Ci ; Ci D U300Ci ; where
Ui ; U200Ci 
 Lognormal.0; 1/; U100Ci 
 Lognormal.�; 1/; U300Ci 
 Lognormal
.c.�/; 2/; and the constant c.�/ was chosen so that the expected proportion of
uncensored pairs equals 70%. In this situation logX2;i � logX1;i has a normal
distribution with location parameter � and variance 2.

Figure 5 shows the powers (estimated on the basis of 2,000 simulations) of ten
tests in each of the three situations described earlier.

In addition to the AK and PPW tests, the figure shows the powers of six tests
based on the statistics

˚

Tiw�j W i D 1; 2I j D eq; pr; op
�

. Because of their poor
performance in the first study, the second study did not include the three tests
based on sign statistics. Instead, two additional tests based on statistics with optimal
weights calculated using an incorrect h.�/ were evaluated. In Figure 5, these statis-
tics are denoted as Tiw�op�. The weights for these statistics were estimated using
logistic density in situation 1 and situation 3, and normal density in situation 2.

In every situation considered, there was very little difference between the powers
of the tests based on Tiw�op and Tiw�op�. Thus, it appears that the performance
of an optimal test does not depend heavily on the choice of a correct h.�/. Also,
the optimal tests performed as well as the AK and PPW tests. The fact that the
performance of the optimal tests when the data were generated using model (5)
is similar to their performance when data were generated assuming independent
censoring model, indicates that these tests may be preferable over AK and PPW
tests, particularly if model (5) fits the data well and there is reason to doubt the
independent censoring assumption.
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Figure 5 Estimated powers of statistics with optimal coefficients compared with AK and PPW
statistics (2,000 simulations)
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5 Example

In this section, we will illustrate the tests discussed in this paper with the FGRP data
on two variables – albumin level (PCL13) and hemoglobin level (HGB) – taken from
the SMAC-23 data. As in the introductory section, we defineX1 andX2 as the ages
at which a subject’s PCL13 and HGB values reached “abnormal” levels for the first
time during the observation period. The age at the last observation will be treated
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Figure 6 Q–Q plot for logistic density
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as the censoring time for each subject. We will assume the model in (5) and test the
null hypothesis that the probability distributions of the ages at which PCL13 and
HGB reached “abnormal” levels for the first time are identical against a two sided
alternative that the distributions are not the same. This will help answer the question
“Which, if any, of the two abnormalities is likely to occur first?”

In our dataset, there were 34, 40, 86, and 115 pairs in the sets B1; : : : ; B4,
respectively, so we estimate F1 and F3 by .12 and .31. Secondly, we estimate �

by 1
2

�

Z1

Z3
C Z2

Z4

�

D :65: To calculate an optimal statistic, one needs to select a

density h.�/. Figure 6 shows the Q–Q plot of a logistic distribution with location
parameter 5.6 and scale parameter 1.9. The s-shaped pattern for censored pairs
indicate a lack of fit of the model for the censored differences. However, since
the performances of the optimal tests are not very sensitive to correct choice of
h.�/, we decided that the selected logistic distribution is adequate for purpose of
illustrating the use of optimal tests. The calculated values of the optimal statistics
are T1W D 2:18, and T2W D 2:17, both correspond to a two-sided p-value of 0.03.
Hence, there was statistically significant evidence that the probability distributions
of the ages at which PCL13 and HGB reached “abnormal” levels for the first time
are not the same.

6 Conclusions

A model for conditional distributions of the absolute differences between randomly
right censored paired survival times is proposed for estimation of optimal coeffi-
cients for two classes of statistics considered by Raychaudhuri and Rao [4]. The
model has a simple structure and is flexible enough to represent a wide variety of
conditional distributions of the observed differences between censored pairs. Simu-
lation studies indicate that no single test is the best test in all situations considered,
but the tests with estimated weights compare well with such other recommended
tests as AK and PPW tests for paired censored survival data. An advantage of the
tests with estimated optimal weights is that the tests can be used in cases where
the assumption of independent censoring is questionable but the conditional model
seems reasonable.
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Appendix 1

Graphical Plots for Selecting H

Let jZj.jr/; r D 1; : : : ; Nj ; denote the ordered jZj’s in Bj . Using the
approximations,

Pr
�jZi j � jZj.jr/ j i 2 Bj

� :D Nj � r C 1
Nj C 1 ;

we have the relationships:

N1 � r C 1
N1 C 1

:D H.jZj.1r/�	/
H.�	/ r D 1; : : : ; N1;

N2 � r C 1
N2 C 1

:D H.jZj.2r/C	/
H.	/

r D 1; : : : ; N2;
N3 � r C 1
N3 C 1

:D H.�jZj.3r/�	/
H.�	/ r D 1; : : : ; N3;

N4 � r C 1
N4 C 1

:D H.�jZj.4r/C	/
H.	/

r D 1; : : : ; N4: (10)

Let

˛1r D N1 � r C 1
N1 C 1 H.��/;

˛2r D N2 � r C 1
N2 C 1 H.�/;

˛3r D N3 � r C 1
N3 C 1 H.��/;

˛4r D N4 � r C 1
N4 C 1 H.�/: (11)
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Then

H�1 .˛1r /
:D jZj.1r/ � � r D 1; : : : ; N1;

H�1 .˛2r /
:D jZj.2r/ C � r D 1; : : : ; N2;

H�1 .˛3r /
:D �jZj.3r/ � � r D 1; : : : ; N3;

H�1 .˛4r /
:D �jZj.4r/ C � r D 1; : : : ; N4: (12)

Thus, if we replace ˛jr in (12) with an appropriate estimator Ǫjr , the plots of
˚�

H�1. Ǫjr /; jZj.jr/
� W r D 1; : : : ; Nj

�

; j D 1; 2; 3; 4; can be used to check the
adequacy of the selected H .

The ˛jr ’s can be estimated by replacing � in (11) with an estimator O� . If the
density h.�/ has a monotone hazard function, that is if h.t/=H.t/ is monotone, then
it is easy to show that H.t C �/=H.�/ is a monotone function of � and it has
a uniquely defined inverse. Thus, each equation in (10) can be solved to obtain
a corresponding estimator O�jr . Any measure of the location of O�jr ’s (e.g. mean,
median, etc.) provides a reasonable estimator of � .

Appendix 2

Efficacy Ratios

This section provides the efficacy ratios needed for determining the optimal weights.
Let Fj .t/ D Fj .t W 0; �j / and fj .t/ D d

dt Fj .t/. Thus Fj .t/ and fj .t/ denote,
respectively, the null (� D 0) sub-survival and density functions of the jZi j in Bj .
Also, let Fj D Fj .0/, F.t/ D P4

jD1 Fj .t/, and k.t/ D g0.0/ � 2h.0/=H.0/ �
2h0.t/=h.t/. Then, for the model in (5), equations (4) and (6) in Raychaudhuri and
Rao [4] can be used to express the efficacy ratios as:

r1s D I1

I2
D F1

F3
r1w D I 24 I7

I 26 I5
r2w D 3I 23F3

I 22F1

where

I1 D
Z 1

0

k.t/f1.t/dt; I2 D
Z 1

0

k.t�/f3.t/dt;

I3 D
Z 1

0

k.t/




1 � F1.t/
F1

�

f1.t/dt; I4 D
Z 1

0

k.t/Œ1 � F.t/�f1.t/dt;

I5 D 2
Z 1

0

Œ1 � F.t/�2f1.t/dt; I6 D
Z 1

0

k.t�/Œ1 � 1
2
F.t/�f3.t/dt;

I7 D 2
Z 1

0

Œ1 � 1
2
F.t/�2f3.t/dt:
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The expression for k.t/ is derived based on Sect. 2.2 of Debrowska [3], which

implies that k.t/ D d
d	

n

f1� .t/
f2� .t/

o

j	D0, where fj	 .t/ D d
dtFj .t W �; �j /:

Therefore, under conditions (5) and (7), the integrals I1 : : : I7 can be expressed
as follows.

I1 D g0.0/F1;
I2 D g0.0/F3;
I3 D I1 � F1Œ˛=2C 2r2.1/�;
I4 D I1 � 2F1˛ŒF1r1.1/C F3r1.v/�C 4F1ŒF1r2.1/C F3r2.v/�;
I5 D 2F1 C 8F1ŒF 21 r3.1/C F 23 r3.v/�� 8F1ŒF1r1.1/CF3r1.v/�C 16F 21 F3r4.v/;
I6 D I2 � F3˛ŒF1r1.1=v/C F3r1.1/�C 2F3ŒF1r2.1=v/C F3r2.1/�;
I7 D 2F3 C 2F3ŒF 21 r3.1=v/C F 23 r3.1/�� 4F3ŒF1r1.1=v/C F3r1.1/�

C 4F1F 23 r4.1=v/;

where ˛ D g0.0/� 2h.0/=H.0/, �.t/ D h0.t/=h.t/, and

r1.v/ D
Z 1

0

H.tv/h.t/dt=H.0/2;

r2.v/ D
Z 1

0

�.t/H.tv/h.t/dt=H.0/2;

r3.v/ D
Z 1

0

H.tv/2h.t/dt=H.0/3;

r4.v/ D
Z 1

0

H.t/H.tv/h.t/dt=H.0/3:

Thus, the integrals I1 : : : I7 are easily evaluated once we determine rj .v/ for
j D 1; 2; 3; 4. Since the rj .v/ have the general form:

Z 1

0

A.t/h.t/dt D �
Z 1

0

AŒH�1fH.t/g�dH.t/ D
Z H.0/

0

AŒH�1.y/�dy;

a grid-search procedure can be used for rapid calculation of frj .v/ W j D 1; 2; 3; 4g.
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Appendix 3

Proof of (8)

We will establish the relationship: E
�

Z1
� D �E

�

Z3
�

. The proof of E
�

Z2
� D

�E
�

Z4
�

is similar.

E
�

Z1
� D E .Zi j i 2 B1/ D 1

F1.0 W �1; �1/
Z 1

0

tdF1.t W �1; �1/

D 1

H.��/
Z 1

0

th.t � �/dt

D �2

H.��/
Z 1

0

uh.u� � �/du

D �E.Z3/:
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1 Introduction

Consider a sequence of independent Bernoulli random variables Yk where P.Yk D
1/ D 1�P.Yk D 0/ D 1=k for k � 1. We will call such a sequence as a Bern.1; 0/
sequence. Such a sequence notes the outcomes, “1” for a success and “0” for a
failure, in an experiment conducted over times k D 1; 2; : : :. Notice that there is
an infinite number of successes in the sequence, that is

P

k�1 Yk D 1 a.s. since
P

k�1EŒYk� D 1. However, the number,Z1, of consecutive pairs of successes, or
strings f11g, is a.s. finite since

E.Z1/ D
X

k�
EŒYkYkC1� D

X

k�1

1

k.k C 1/ D 1:

As an illustration of counting strings of the form f11g, we see that there are five
strings of the form f11g in the truncated sequence f01011101111g. What can one
say about the distribution of Z1?

Persi Diaconis, around 1996, surprisingly recognized that Z1 is distributed as a
Poisson random variable with mean 1! Several studies of Z1 and related counts
of other strings followed from this observation, which became the subject of
friendly mathematical conversation. In fact, we learned of the problem from Krishna
Athreya, who heard it during the course of a dinner at a conference.

This topic can be generalized. For m � 2, let Zm D P

k�1XkŒ
Qm�1
lD1 .1 �

XkCl/�XkCm, be the count of strings where a success is followed by exactly m � 1
failures before the next success, that is the number of strings of the form f1 0 : : : 0

„ƒ‚…

m�1
1g.

Analogous to Z1, all the countsZm form � 2 are finite a.s. Intriguingly, the counts
Z D fZmgm�1 turn out to be independent random variables, and the distribution of
Zm is Poisson with mean 1=m form � 1.

How to explain this phenomena, and how robust and relevant is it? Consider
the situation where the success probabilities are “perturbed” in certain ways, that is
when X1; X2; : : : are independent with Bernoulli distributions satisfying P.Xk D
1/ D a=.a C b C k � 1/ for a > 0, b � 0, and k � 1. We will call such a
Bernoulli sequence as a Bern.a; b/ sequence. In this case also, it turns out the joint
distribution of the counts Z can be described in terms of a mixture of Poisson vari-
ables. Interestingly, Bern.a; b/ sequences have been found to arise naturally in the
study of random permutations, record values, Bayesian nonparametrics, and species
allocation models.

However, for strings which are not of the form f10 : : : 01g, it seems that “nice”
distributional expressions for their counts may not be available even with respect
to sequence Bern.1; 0/. For instance, although the generating function for the count
W3 DPk�1XkXkC1XkC2, of three consecutive successes, i.e., of the string f111g,
can be found, its distribution is not known in a “closed form.” See [15] for more
details.
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As another independent Bernoulli sequence, consider Y1; Y2; : : : where Y1 	 1,
P.Yk D 1/ D a=.a C b C k � 2/ for k � 2 for a > 0, b � 0, which we call
Bern1.a; b/. This sequence appends a 1 to a Bern.a; b/ sequence, thereby picking up
an additional k-string corresponding to any leading 0’s in the Bern.a; b/ sequence.
Another interpretation of Bern1.a; b/ arises from the following observation. The
conditional distribution of the tail segment .Yn; YnC1; : : :/ in a Bern.a; b/ sequence
given Yn D 1 is Bern1.a; b C nC 2/.

It can be proved that the joint distribution of Z is sensitive to the value of b in a
Bern1.a; b/ sequence. Namely, when b � 1, the joint distribution is again a mixture
of Poisson variables, but is not when 0 � b < 1.

By now there are several different ways to find the joint distribution of Z D
fZmgm�1, for instance by using combinatorial techniques [1–4], generating func-
tions of moments [12, 17], Polya and Hoppe urns [7], and Poisson process em-
bedding [8–10]. The purpose of this note is to summarize existing results, and to
describe the last method in [10], the technique of using conditional marked Poisson
process models, through which the joint distribution of Z can be found for a large
class of Bernoulli sequences including all sequences studied before, in particular
Bern.a; b/, Bern1.a; b/, and dependent sequences.

The plan of the article is to give motivating examples in Sect. 2, and to detail the
technique of conditional marked Poisson processes in Sect. 3. In Sects. 4, 5, and 6,
this method is applied to find the joint distribution of Z when Y D Bern.a; b/,
when Y D Bern1.a; b/, and also when Y are some types of dependent Bernoulli
sequences. In the following, we rely on the exposition in [10, 17].

2 Examples

Bernoulli sequences arise naturally in several situations. We give four examples
below with respect to random permutations, Bayesian nonparametric statistics, pro-
duction failures, and record values.

Example 2.1. This example will show that the Bernoulli sequence Bern.1; 0/ arises
in the limit in the study of cycles in random permutations. Let Sn D f1; 2; : : : ; ng,
and consider the Feller algorithm to generate a permutation � W Sn ! Sn uniformly
among the nŠ choices (cf. [5]):

1. Draw an element uniformly from Sn, and call it �.1/. If �.1/ D 1, a 1-cycle is
completed. If �.1/ ¤ 1, make another draw uniformly from Sn nf�.1/g, and call
it �.�.1//. If �.�.1// D 1, a 2-cycle is completed. If �.�.1// ¤ 1, continue
drawing from Sn n f�.1/; �.�.1//g; : : : naming them �.�.�.1///, and so on,
until a cycle (of some length) is finished.

2. From the elements left in Sn n f�.1/; �.�.1//; : : : ; 1g after the first cycle is com-
pleted, follow the process in step 1with the smallest remaining number taking the
role of “1” to finish a second cycle. Repeat until all elements of Sn are exhausted.
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Let I .n/
k

be the indicator that a cycle is completed at the kth Feller draw from Sn.

A moment’s thought convinces us that fI .n/
k
gn
kD1 are independent Bernoulli random

variables with P.I .n/
k
D 1/ D 1=.n�kC1/ since, at time k and independent of the

past, exactly one choice from the remaining n�kC1members left in Sn completes
the cycle. Denote C .n/

k
as the number of k-cycles in � ,

C
.n/

k
D
(

I
.n/
1 C

Pn�1
iD1 I

.n/
i I

.n/
iC1 for k D 1

Qk�1
lD1

�

1 � I .n/
l

�

I
.n/

k
CPn�k

iD1 I
.n/
i

QiCk�1
lDiC1

�

1 � I .n/
l

�

I
.n/

iCk for 2�k�n:

Now let Y be the sequence Bern.1; 0/ where P.Yk D 1/ D 1=k for k � 1 so

that Yk
dD I .n/

n�kC1 in distribution, for 1 � k � n. Since Yn, and Yn�kC1
Qn
lDn�kC2

.1 � Yl/ for 2 � k � n all vanish in probability as n " 1, we can conclude, for

each k � 1, that limn!1 C .n/k

dD Zk in distribution.

Finally, as is well-known, the asymptotic cycle counts flimn C
.n/

k
gk�1 are dis-

tributed as independent Poisson random variables with respective means 1=k for

k � 1 (cf. [13]). Hence, Z
dD Q

k�1 Po.1=k/. See also [1, 2] for more discussion
with Ewens sampling formula.

Example 2.2. Consider the standard nonparametric inference problem of estimating
the unknown distribution function F from dataX1; X2; : : : which are independently
and identically distributed as F . In Bayesian inference, one would place a Dirichlet
priorD.˛/ onF . Here ˛ is a finite measure on R1 with a D ˛.R1/ > 0. Under these
circumstances, one can show that there will be repetitions among X1; X2; : : :. Let
ˇ1 D 1; ˇn D I.Xn 62 fX1; : : : ; X.n�1/g/ for n D 2; 3; : : :. Thus, ˇ D 1 if Xn is
different from X1; : : : ; X.n�1/ and zero other wise. It is well-known that ˇ1; ˇ2; : : :
are independent and P.ˇn D 1/ D a=.a C n � 1/ for n D 1; 2; : : : and thus
form a Bern.a; 0/ sequence. For details, see [6, 14]. This example is also relevant
in counting species among animals that are captured, and is part of the definition of
species allocation models.

Example 2.3. Suppose items are produced and examined routinely over time. Al-
ternatively, the item can be a long “chip” with successive spatial components. The
data consist of a Bernoulii sequence fY1; Y2; : : :g, where Yn D 1 means that there is
a flaw (and Yn D 0 means that there is no flaw) at time n or at the nth spatial com-
ponent. In practice, given improvements in production scheme or other attributes,
P.Yn D 1/ will go to 0 as n gets large. Isolated flaws do not signify failures. How-
ever, successive flaws like f11g, f101g; : : : signify failures of say of type 1; 2; : : :.
One would like to know the distribution of the number of failures of type 1; 2; : : :,
e.g., the distribution of the joint distribution Z.

Example 2.4. The following is another way to generate a Bern.1; 0/ sequence from
record values. Let fˇi gi�1 be independent, identically distributed (iid) UniformŒ0; 1�
random variables, and define Y1 D 1 and Yn D I.ˇn is a record/ D I.ˇn >

max.ˇ1; : : : ; ˇn�1//; n � 2. Rènyi’s theorem shows that fYngn�1 are independent
and P.Yn D 1/ D 1=n for n � 1, that is Y D Bern.1; 0/.
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3 Conditional Marked Poisson Process (CMPP)

To introduce the technique of conditional marked Poisson processes, let us further
examine Example 2.4 of Sect. 2, and derive in its context the joint distribu-
tion of the count vector Z associated with sequence Y D Bern.1; 0/. With the
same notations, define �1 D 1;X1 D ˇ1, �n D inffm W m > �n�1; ˇm >

X�n�1
g; Xn D ˇ�n for n � 2. Then, fXigi�1 are the record values among fˇi gi�1

and f�ngi�1 are the record times. Notice that the point process N on Œ0; 1� defined
by N.A/ D P

i�1 ıXi
.A/ is a nonhomogeneous Poisson process on Œ0; 1� with in-

tensity 1=.1� x/ (cf. [16]).
For each record value Xi , we can associate a Geometric.1 � Xi / variable Li ,

a mark, corresponding to the number of uniform random variables in fˇi gi�1 to
the next record. Then, by thinning decompositions, Zk D

P

i�1 I.Li D k/ D
P

i�1 ıXi
.Œ0; 1�/I.Li D k/ for k � 1 are independent Poisson variables with re-

spective means
R 1

0 .1 � x/�1xk�1.1 � x/dx D 1=k for k � 1.
The idea now is to reverse the discussion above, and starting from what

we call a conditional marked Poisson process (CMPP), which is slightly more
general than a marked Poisson process, we determine a Bernoulli sequence Y
and compute the corresponding joint distribution of Z through Poisson thinning
decompositions.

Conditional Marked Poisson Process Consider a sequence of random variables
.X;L/ D f.Xi ; Li /gi�0 on R�N where N D f1; 2; : : :g, and the point processN on
R given by N.A/DPi�1 ıXi

.A/. Let also g W R! Œ0;1/ be a probability density
function (pdf), and for each x 2 R r.x; �/; q.x; �/ W N ! Œ0; 1� be probability mass
functions, and x.�/ W R! Œ0;1/ be an intensity function.

Then, we say that .X;L/ forms a CMPP M.g; r; ; q/ if the following hold:

1. X0 has pdf g,
2. Conditional onX0 D x0,N is a nonhomogeneous Poisson process with intensity

function x0
.�/,

3. P.L0 D kjX/ D r.X0; k/ for k � 1, and
4. P.Ln D kjX; L0; L1; : : : ; Ln�1/ D q.Xn; k/ for k; n � 1.

Let L�0 D L0, and L�r D L�r�1 C Lr for r � 1. We now define a Bernoulli
sequence Y based on .X;L/ as follows: Yn D 1 if n is of the form L�r for some
r � 0, and Yn D 0 otherwise. A different way to say this is

Yn D
�

0; when n < L�0 ; or L�r < n < L�rC1 for r � 0
1; when n D L�r for some r � 0: (3.1)

In the Bernoulli sequence Y, there is a 1 W 1 correspondence between k-strings and
marks Ln D k, which signify a “1” followed by .k � 1/ “0”s and then succeeded
by a “1.” Thus, the count vector Z associated with Y is given by
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Zk D
X

n�1
I.Ln D k/; for k � 1: (3.2)

We note the zeroth mark L0 is not included in the above summation since any Yi
with i < L0 is part of an initial segment of zeros of the sequence not preceded by a
“1,” and so does not contribute to any k-string, for k � 1.

Theorem 3.1. Suppose
R

w.x/q.x; k/dx < 1 for all w 2 R and k � 1. Then,
the count vector Z associated with sequence Y, defined through CMPP .X;L/ D
M.g; r; ; q/, is distributed as follows. Given the value X0 D x0,

Z
dD
Y

k�1
Po

�Z

x0
.x/q.x; k/dx

�

:

Remark 3.2. The distribution of Z does not depend on the transition function r ,
consistent with the discussion of L0 before the theorem.

Proof of Theorem 3.1. Recall the count vector representation (3.2). Condi-
tional on X0 D x0, the point process M on R � N given by M.A � fkg/ D
P

i�1 ıXi
.A/I.Li D k/ is a Poisson process on R � N with intensity func-

tion x0
.x/q.x; k/ (cf. Proposition 4.10.1 (b) [16]). Hence, it follows that, given

X0 D x0, the variables M.R � fkg/ D P

n�1 I.Ln D k/ D Zk are independent
Poisson variables with respective means

R

x0
.x/q.x; k/dx, for k � 1. ut

4 The Sequence Bern.a; b/

We now give a CMPP model which produces a Bern.a; b/ sequence. Recall
that a sequence Y is a Bern.a; b/ sequence if Y1; Y2; : : : are independent and
P.Yk D 1/ D a=.aC b C k � 1/ for k D 1; 2; : : :. Denote, as usual, for ˛; ˇ > 0,
the Beta function

B.˛; ˇ/ D �.˛/�.ˇ/

�.˛ C ˇ/ : (4.1)

Let

1. Ng.x/ D xb�1.1� x/a�1=B.b; a/ on 0 < x < 1, the Beta.b; a/ pdf,
2. Nr.x; k/ D xk�1.1 � x/ for k � 1,
3. Nw.x/ D Œa=.1 � x/�I.w < x < 1/, and
4. Nq.x; k/ D xk�1.1 � x/ for k � 1.

We note the Poisson process in the above CMPP model with intensity Nw.�/ can
be generated in the following way. First, the point process formed by the record
values from an iid sequence of Beta.1; a/ random variables is a Poisson process
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with intensity a=.1� x/, the Beta.1; a/ failure rate (cf. [16] Proposition 4.11.1 (b)).

Next, we thin this process as follows. Let X0
dD Beta.b; a/, and fXigi�1 be

the record values from an iid sequence of Beta.1; a/ random variables, subject to
Xi > X0 for i � 1. Then, conditional on X0 D w, the point process NN defined
by NN.A/ D P

i�1 ıXi
.A/ is the desired Poisson process with intensity function

Nw.x/ D Œa=.1 � x/�I.w < x < 1/.

Proposition 4.1. The model .X;L/ D M. Ng; Nr; N; Nq/ produces an independent

Bernoulli sequence Y
dD Bern.a; b/ for a > 0 and b > 0 whose count vector

Z, conditional on the value x0 of a Beta.b; a/ random variable, is distributed as
Q

k�1 Po.a.1 � xk0 /=k/.
Remark 4.2. As a corollary, by taking b # 0, we recover the count vector distribu-

tion for Bern.a; 0/ as simply Z
dD Q

k�1 Po.a=k/. Note that .X0; L0/ ! .0; 1/ in
distribution as b # 0.

Proof of Proposition 4.1. The second part on the count vector distribution follows
from Theorem 3.1, noting for k � 1, that

Z 1

0

Nx0
.x/ Nq.x; k/dx D

Z 1

x0

axk�1dx D a.1 � xk0 /
k

: (4.2)

The first part is proved by showing that the finite dimensional distributions of the
Bernoulli sequence Y agree with those of a Bern.a; b/. Observe that the distribu-
tion of fYigi�1 given through (3.1) is uniquely determined by the probabilities of
cylinder sets of the form E D E.k0; : : : ; kn/,
E D .L0 D k0; L1 D k1; : : : ; Ln D kn/
D
�

Yt D 1 for t 2 fK0; K1; : : : ; Kng; and Yt D 0 otherwise for 1 � t � Kn
�

;

(4.3)

where k0; k1; : : : ; kn are positive integers andK0 D k0; K1 D K0C k1; : : : ; Kn D
Kn�1Ckn are their partial sums. The random variables fYng will form a Bern.a; b/
sequence if

P.E.k0; : : : ; kn// D
Kn
Y

iD1

b C i � 1
aC b C i � 1

n
Y

rD0

a

b CKr � 1: (4.4)

Let An D f0 < x0 < x1 < � � � < xn < 1g. We now use the Beta variables
representation given just above Proposition 4.1. Observe

P.E/ D
Z

An

Ng.x0/Nr.x0; k0/
n
Y

iD1

h

P.Xi 2 dxi jXi > xi�1/ Nq.xi ; ki /
i

dx0:
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Since P.Xi 2 dxi jXi > xi�1/ D a.1� xi /a�1=.1� xi�1/a dxi for 1 � i � n, we
have further that the last line equals

an

B.b; a/

Z

An

x
bCk0�2
0

n
Y

iD1
x
ki�1
i .1 � xn/adx0 : : : dxn

D B.b CKn � 1; aC 1/
B.b; a/

� an

Qn�1
sD0.b CKs � 1/

D a
QKn�2
rD0 .b C r/

QKn�1
rD0 .aC b C r/ �

an

Qn�1
sD0.b CKs � 1/

;

which is equal to the probability in (4.4). ut
We note following ideas based on Theorem 2.2 in [9] (Theorem 3.1 in this note).

Holst [8] shows that an alternate CMPP model based on iid exponential random
variables can also give rise to a Bern.a; b/ and yield the same results for Z.

5 The Sequence Bern1.a; b/

Recall Bern1.a; b/ is the independent Bernoulli sequence Y where P.Y1 D 1/ D 1
and P.Yk D 1/ D a=.a C b C k � 2/; k D 2; 3; : : :. We now construct a CMPP
model corresponding to Bern1.a; b/ sequence when a > 0; b > 1. Thus, the joint
distribution of strings Z in a Bern1.a; b/ sequence when a > 0; b > 1 can be written
as a certain mixture of Poissons.

Let a > 0 and b > 1. Define

1. g�.x/ D xb�2.1�x/a=B.b�1; aC1/ on 0 < x < 1, the Beta.b � 1; aC 1/ pdf,
2. r�.x; 1/ D 1,
3. �w.x/ D Œa=.1 � x/�I.w < x < 1/, and
4. q�.x; k/ D xk�1.1 � x/ for k � 1.

Note that the Poisson process in the above CMPP model with intensity � can be

generated, as in Proposition 4.1, by taking X0
dD Beta.b � 1; a C 1/, and fXigi�1

as the sequence of records from an iid sequence of Beta.1; a/ random variables,
subject to the condition X1 > X0.

Proposition 5.1. The CMPP model .X;L/ DM.g�; r�; �; q�/ produces an inde-

pendent Bernoulli sequence Y
dD Bern1.a; b/ for a > 0 and b > 1, and, conditional

on a Beta.b � 1; a C 1/ variable X0 D x0, the distribution of its count vector Z is
Q

k�1 Po.a.1 � xk0 /=k/.
Remark 5.2. As a corollary, by taking b # 1, we find the count vector distribution

for Bern1.a; 1/ to be simply Z
dD Q

k�1 Po.a=k/. [In fact, Bern1.a; 1/ coincides
with the sequence Bern.a; 0/ mentioned earlier in Remark 4.2.]
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Proof of Proposition 5.1. That the Bernoulli sequence Y defined from X;L is
Bern1.a; b/, and the associated counts Z are the desired mixture of Poissons fol-
lows from the same method as in Proposition 4.1. See [10] for details. ut

Although a CMPP model does not lead to a Bern1.a; b/ sequence for a > 0;

0 � b < 1, the distributions of the associated count vector Z can still be described
with direct calculations in terms of a recurrence relation. However, it can be shown
the distribution of Z is not a mixture of Poissons. For more specifics, see [10].

6 Dependent Bernoulli Sequences

The CMPP model given in Sect. 3 can also produce dependent Bernoulli sequences.
In all these cases, as a consequence of Theorem 3.1, the joint distribution of the
count vector Z are fully described as a mixture of Poisson variables.

We describe briefly two such examples.

Example 6.1. For a > 0 and b > 0, denotePa;b as the probability distribution of the
CMPP M. Ng; Nr; N; Nq/ described in Proposition 4.1 which gives rise to the Bernoulli
sequence Bern.a; b/. Let now rC.x; k/ D kxk�1.1 � x/2 for k � 1. Consider the
associated CMPP model M. Ng; rC; N; Nq/ with Ng; N; Nq the same as in Proposition 4.1.
Denote the probability measure under this model as PC D PC

a;b
.

Note that rC.x; k/ D kŒNr.x; k/ � Nr.x; k C 1/� where Nr.x; k/ D xk�1.1 � x/.
Recall the cylinder set E

defD E.k0; : : : ; kn/ from (4.3) where k0; k1; : : : ; kn are
positive integers, and K0; K1; : : : ; Kn their partial sums. It is easy to see that

PC.E/ D k0

h

Pa;b

�

E.k0; : : : ; kn/
�

� Pa;b
�

E.k0 C 1; k1; : : : ; kn/
�i

:

From this expression, the distribution of Y can be recovered, and shown with a
few calculations not to be an independent sequence, e.g., PC.Y1 D Y2 D 1/ ¤
PC.Y1 D 1/PC.Y2 D 1/. For details see [10].

However, by noting Remark 3.2, the count vectors under Pa;b and PC have the
same distribution

Q

k�1 Po.a.1 � xk0 /=k/.
Example 6.2. Let Y be the Bernoulli sequence Bern.1; 0/ generated by the CMPP
model based on .X;L/ discussed in Example 2.4 and Remark 4.2. Note that the
count vector Z does not change if one interchanges .X1; L1/ and .X2; L2/. More
precisely, let X�0 D X0; L

�
0 D L0; X

�
1 D X2; L

�
1 D L2; X

�
2 D X1; L

�
2 D L1,

and X�n D Xn; L
�
n D Ln for n D 3; 4; : : :. Then, as the counts are invariant under

such a switch, Z� D Z still has distribution
Q1
1 Po.1=k/. However, the underlying

Bernoulli sequence Y� generated by .X�;L�/ is no longer independent. Again, one
can show P.Y �1 D Y �2 D 1/ ¤ P.Y �1 D 1/P.Y �2 D 1/. Details can be found
in [10].
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7 Some Open Problems

We indicate two intriguing questions, although certainly many more can be
envisioned.

1. As indicated in the introduction, the generating function of W3, the count of
strings of the form f111g in Bern.a; b/ has been identified in the nice paper [15].
However, we do not have a good specification of the exact distribution. We know
even less about counts of strings of the form f1111g; f11111g, etc. although some
recursions are given in [15]. Can one say something more about these counts?

2. In an interesting paper [11], the following question is raised. Consider the se-
quence Bern.a; 0/. We know that the count Z1 of strings of the form f11g is
finite. Let N1 be the last n such that Yn�1Yn D 1. Is there a stopping time �
on Y such that P.� D N1/ is maximized among all stopping times? Hsiau [11]
constructs such a � and shows that it is of a threshold type, that is there is a t 2 N

such that � D minfn W n � t; Yn�1Yn D 1g. It will be interesting to answer this
question for Bernoulli sequences Bern.a; b/ and for other counts Z2; Z3; : : :.
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Storage Models for a Class of Master Equations
with Separable Kernels
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Summary We discuss a number of storage problems for a class of one-dimensional
master equations with separable kernels. For this class of problems, the integral
equation for the first overflow or first emptiness can be transformed exactly into
ordinary differential equations. Analysis is done with a generalised separable kernel.
Using imbedding method, closed form solutions are obtained for the first overflow
without or with emptiness in a given time. The first passage time for emptiness
without or with overflow in a given time is also obtained. The imbedding technique
is also used to study the expected amount of overflow in a given time. Diffusion
approximation for this model is also obtained using suitable statistical conditions.
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1 Introduction

There is a lot of literature connected with the studies of storage theory, queueing
theory, dam theory, risk theory, neuronal spike discharge activities, communica-
tion theory, etc. The problems met with in these fields can be analyzed by identical
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techniques. Moran [16] has initiated the studies of storage systems by working out
solutions for discrete time models. Further contributions in this field have been made
by Gani [9], Prabhu [22], and others. The content of an infinite dam with Poisson
inputs has been studied in considerable detail, and a survey of this interesting field
has been studied by Prabhu [23]. However, a storage model with finite boundaries
poses difficult problems. For Poisson inputs, Tackas [30] adopted the combinatorial
techniques to study the fluctuations of the content of a finite dam. The extension to
continuous time version of Moran’s discrete model was carried out by Maron [17]
and Downton [7] using a limiting method.

A systematic version of continuous time model has been formulated by Kendall
[15]. He has obtained an elegant result for the wet period of the dam. Cochen [5,10]
has made use of the Pollaczek [21] integral equation for various models of gen-
eral storage theory. A number of time-dependent results for some of these storage
models have been given by Saaty [27], Yeo [35], Chover and Yeo [3], Gover and
Muller [11], and many others. In all these cases, the input is a Poisson or renewal
process and the amount of input is governed by an independent and identically
distributed random variable. The concept of first passage densities for a compound
Poisson process and ideas of renewal theory and product densities are elaborated in
an excellent review in the Handbuch der Physik (Ramakrishnan [25]). The epochs
of inputs are assumed to constitute a stationary renewal point process as has been
used by Srinivasan [27] and Phatarfod [20]. The method of using backward integral
equation described by Bellman and Harris [1] has been used by Srinivasan [28].
Phatarfod has used the Wald [34] identity for studying the wet period of a finite dam.

Regarding the release policy, different models have been thought of. The release
has been considered as a deterministic process with a constant rate (Srinivasan [28]).
The general type of deterministic release of problems has been studied by Cinlar
and Pinsky [4]. The exponential release rule has been considered by Yeo [35] and
Vasudevan and Vittal [30, 31] for a finite dam model and Keilson and Mermin [14]
for studying short noise problems. First exit times for compound Poisson process
for certain type of positive and negative jumps have been studied by Pery et al. [18].
In another paper [19], they also derived results for the expected total discounted cost
of switching and maintaining extra capacity as well as the total expected discounted
loss of discharged services in queues. This type of modeling also has been applied
for the reception of light on the retina of eye when the light is switched on in a dark
room. Impulses are received in a Poisson manner and between impulses exponential
loss of light occurs while one can ‘see’ when the level of light on the retina reaches
a constant threshold k.

Karlin and Fabens [13] used the renewal process to permit certain interdepen-
dence between successive inputs for discrete time models in the theory of stationary
inventory models. In problems relating to the warehouse model, the demand for
the storage occurs in a Poisson manner by outputs governed by independent and
identically distributed random variables. When the storage falls below a certain
specified reorder level, its orders are received. They are not refused but kept on
record and filled in later. These have been described by Prabhu [23]. In insurance
problems, claims (outputs) are taken as random and the inputs as deterministic to
study the survival time (Cramer Herald [6]). In neurobiology, sequences of neuronal
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firings referred to as spike trains arise from the so-called spontaneous activity of
response of the neurons to external stimuli. Spike trains and the corresponding
internal histograms of spontaneous activity of a single neuron have been recorded
experimentally using electrodes (Redman and Lambard [26]). Many mathematical
and statistical models have been proposed to reproduce the neuronal activity to fit
the data. Details of theoretical models of single neurons are given in Feinberg [8],
Holden [12], Srinivasan and Sampath [29], and many others.

All these problems pose the same type of questions. The quantities of interest that
which are studied in these problems are similar to the computation of First Passage
Time Density for overflows or emptiness for a finite storage system. A search of
the literature reveals that there is enough scope for studying continuous time mod-
els with random inputs and random outputs with or without deterministic release.
The case of infinite depth dam with Poisson inputs and Poisson release has been
considered by Puri and Senthuria [24]. A finite dam model with Poisson inputs and
Poisson outputs and a deterministic release policy has been studied by Vasudevan
et al. [32].

In this contribution, we will be concerned with a finite storage system with Pois-
son inputs and Poisson outputs. The amounts of inputs and outputs are governed by
independent and identically distributed random variables with general distribution.
In Sect. 2, using the imbedding method [2] we derive the differential equation for
the first passage time density (FPTD) for overflow and the closed form solution in
terms of Laplace transform (LT) for FPTD. Here, we treatX D 0 and X D k as the
barriers of the finite storage system. Also, we treat X D 0 and X D k as absorbing
barriers.

In Sect. 3, we derive the result for FPTD for overflow treating X D 0 as a re-
flecting barrier. This means arbitrary emptiness is allowed before time t . In Sect. 4,
we study the expected amount of overflow in time t and without emptiness in this
period. In Sect. 5, we derived the result for the expected amount of overflow in time
t allowing arbitrary emptiness. In Sect. 6, we obtain the diffusion approximation for
the model.

2 First Passage Time for Overflow Without Emptiness

Consider a storage model with Poisson inputs and Poisson outputs. The input and
output sizes form a transition density function k.x; y/.

The model describing the process is

X.t/ D x C
N.t/
X

nD1
Zn (2.1)

where X.0/ D x is the initial level of the warehouse and N.t/ is the number of
inputs and outputs which occur in a Poisson process with intensity � . Here, Zn is
a sequence of independent and identical random variables with transition density
kŒx; y�.
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X.t/ is the level of the warehouse at time t . The storage is of finite capacity
X D k. This means the process X.t/ has two barriers X D 0 and X D k. We are
interested in finding the first passage time density for overflow before emptiness.

Define f .x; k; t/ as the probability that the overflow occurs for the first time
between time t and t C dt without emptiness occurring in the interval .0; t/.

Consider the dynamics of the process for f .x; k; t/ in the initial interval of time
dt . The following mutually exclusive pairwise events may occur.

(a) There is no random input or output.
(b) There is a random input or output but the level of the store reaches X < k.
(c) There is a random output so that the level of the store is X > k.

Considering the above possibilities for the initial interval of time dt the equation
of motion for the process is

f .x; k; t C dt/ D .1 � � dt/ f .x; k; t/C � dt

k
Z

x

k.x; y/ f .y; k; t/ dy

C � dt

x
Z

0

k.x; y/ f .y; k; t/ dy C ı.t/ � dt

1
Z

k

k.x; y/ dy: (2.2)

In the first and third integral on the right, y � x and in the second integral x � y.
Also, ı.t/ occurring with the last integral on the right is the Dirac delta function

and the third integral on the right corresponds to the event of crossing the level
X D k in the initial interval of time dt .

On proceeding to the limit as dt ! 0 in (2.2), we get results in the integral
equation

@f

@t
C �f D �

k
Z

x

k.x; y/ f .y; k; t/ dy C � ı.t/
1
Z

k

k.x; y/ dy

C �
x
Z

0

k.x; y/ f .y; k; t/ dy: (2.3)

Define the Laplace transform (LT) of f .x; k; t/ as

f .x; k; l/ D
1
Z

0

e�`t f .x; k; t/ dt:
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Taking the LT with respect to t , (2.3) becomes

.`C �/f D �

k
Z

x

k.x; y/ f .y; k; `/ dy

C �
1
Z

k

k.x; y/ dy C �
x
Z

0

k.x; y/ f .y; k; `/ dy: (2.4)

In the theory of Fredholm integral equations, separable kernels play a special role
in converting the integral equations to algebraic form. We now introduce a class of
kernels for which the master equation can be reduced to much simpler form and for
which the FPTD in one dimension is readily solvable.

Hence, we consider the kernel k.x; y/ as

k.x; y/ D
(

a.x/ b.y/ �.x/; y � x
b.x/ a.y/ �.x/; x � y: (2.5)

This form of kernel allows positive and negative jumps following asymmetric or
symmetric random walks.

The above form of k.x; y/ satisfies the balance equation

k.x; y/ �.y/ D k.y; x/ �.x/: (2.6)

The function �.x/ that appears in (2.5) is the normalizing function so that

1
Z

�1
k.x; y/ dx D 1: (2.7)

With this choice of k.x; y/ in (2.5), the integral equation (2.4) can be written as

.`C �/f D � a.x/
k
Z

x

b.y/ �.y/ f .y; k; `/ dy

C � b.x/
x
Z

0

a.y/ �.y/ f .y; k; `/ dy

C � a.x/
1
Z

k

b.y/ �.y/ dy (2.8)
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That is .`C �/f D aU C bV C aU1 (2.9)

where

U D �
x
Z

0

b.y/ �.y/ f .y; k; `/ dy

V D �
1
Z

k

a.y/ �.y/ f .y; k; `/ dy

U1 D �
1
Z

k

b.y/ �.y/ dy:

Differentiating twice with respect to x, (2.9) becomes

.`C �/f 0 D a0U C b0V C a0U1 (2.10)

D a0.U C U1/C b0V
.`C �/f 00 D a00.U C U1/C b00V � a0b�C b0a�: (2.11)

Eliminate U C U1 and V from (2.10) and (2.11)

b0.`C �/f 0 D ab0.U C U1/C bb0V (2.12)

b.`C �/f 0 D a0b.V C U1/C bb0V: (2.13)

Subtracting (2.13) from (2.12), we get

U C U1 D .`C �/.bf 0 � b0f /
a0b � ab0 : (2.14)

Similarly,

V D �.`C �/.af
0 � a0f /

a0b � ab0 : (2.15)

Using (2.14) and (2.15) in (2.11), we arrive at

.`C �/f 00 � .`C �/.a
00b0 � ab00/

a0b � ab0 f
0

C



.`C �/.a00b0 � b00a0/
a0b � ab0 � .ab0 � a0b/�

�

f D 0: (2.16)

In order to have a closed form solution for f .x; k; `/, we choose

a.x/ D e˛x

b.x/ D e�ˇx
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and

�.x/ D e.ˇ�˛/x : (2.17)

The differential equation (2.16) reduces to

.`C �/f 00 � .`C �/.˛ � ˇ/f 0 � `˛ f̌ D 0: (2.18)

The characteristic equation of (2.18) is

.`C �/m2 � .`C �/.˛ � ˇ/m � `˛ˇ D 0: (2.19)

The solution of the differential equation (2.18) with constant coefficients is

f .x; k; `/ D A.k; `/em1x C B.k; `/em2x ; (2.20)

where

m1; m2 D .`C �/.˛ � ˇ/˙p.`C �/2.˛ � ˇ/2 C 4`˛ˇ.`C �/
2.`C �/ : (2.21)

To determine A and B , we write down the imbedding equation (2.4) in the special
case of k.x; y/ given by (2.17) and substitute (2.20) in (2.5)

.`C �/f D �˛ˇ

˛ C ˇ e˛x
k
Z

x

e�˛y.Aem;y C ˇem2y/dy

C �˛ˇ

˛ C ˇ e�ˇx

x
Z

0

eˇy.Aem1y C Bem2y/dy C �˛ˇe˛x

˛ C ˇ

1
Z

k

e�˛ydy (2.22)

One can easily see that the coefficients of Aem1x and Bem2x vanish separately.
As the solution for f .x; k; `/ is true for all values of u in 0 � x � k, we arrive

at two conditions connecting A and B , namely

Aem1k

m1 � ˛ C
Bem2k

m2 � ˛ �
1

˛
D 0 (2.23)

Aem1k

m1 C ˇ C
Bem2k

m2 C ˇ D 0 (2.24)

Equation (2.20) together with (2.23) and (2.24) gives the closed form analytical
solution for the LT of f .u; k; t/.
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Special case: In the case of symmetric random walk, ˛ D ˇ D  (say), (2.19)
reduces to

.`C �/f 00 � 2` D 0 (2.25)

where

m1 D �m2 D 
s

`

`C � : (2.26)

Mean Passage time

The nth moment for the FPTD is given by

Tn.x/ D .�1/n dn

d`n
f .u; `/

ˇ

ˇ

ˇ

ˇ

`D0
: (2.27)

The differential equation for the nth moment is given by

�T 00n .x/ � nT 00n�1.x/C 2nTn�1.x/ D 0: (2.28)

This is obtained by using the Leibnitz theorem for the nth derivative of the product
of two functions with (2.24).

Noting that T0.x/ D 1, for the case n D 1,

T 001 D
�2
�

(2.29)

which is the differential equation derived by Vittal et al. [33]. The mean passage
time for overflow can easily be determined as in [33].

3 First Passage Time for Overflow with Arbitrary Number
of Emptiness

Here, our interest is in obtaining the first passage time density for overflow with
arbitrary number of emptiness. This means we are treating X D 0 as a reflecting
barrier. The analysis for this model is exactly the same as in the previous model but
for a change in the boundary condition to be incorporated in the imbedding equation
(2.4). Here, once the level of the store crosses X D 0 downward, it resets at X D 0
and starts the dynamics of the process from X D 0. Defining f1.x; k; t/ as the
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FPTD for overflow, treating X D 0 as a reflecting barrier and f 1.u; k; `/ as its LT,
we have

.`C �/f 1 D �
k
Z

x

k.x; y/ f 1.y; k; `/ dy C �
1
Z

k

k.x; y/ dy

C �
x
Z

0

k.x; y/ f 1.y; k; `/ dy C �
0
Z

�1
k.x; y/ dy: (3.1)

In the first two integrals y � x and with last two integrals x � y.
We arrive at the same differential equation (2.18) with f being replaced f 1. For

the choice of k.x; y/ given in (2.5), the general solution for f 1.x; k; `/ is

f 1.x; k; `/ D A1.k; `/em1x C B1.k; `/em2x : (3.2)

The equations for A1 and B1 are

A1em1k

m1 � ˛ C
B1em2k

m2 � ˛ �
1

˛
D 0 (3.3)

and

A1em1k

m1 C ˇ C
B1em2k

m2 C ˇ C
1

ˇ
D 0: (3.4)

Thus, f 1.x; k; `/ is completely determined by (3.2) together with (3.3) and (3.4).
It will be a straightforward procedure to determine mean passage time for over-

flow using (2.26).

4 Expected Amount of Overflow in a Given Time

Define S.x; k; t/ as the expected amount of overflow in time t assuming that there
is no emptiness of the store in time t .

The imbedding equation for S.x; k; t/ is

@S

@t
C �S D �

k
Z

x

k.x; y/ S.y; k; t/ dy C �ı.t/
1
Z

k

k.x; y/ .y � k/ dy

C �
1
Z

k

k.x; y/ dy � S.k; k; t/C �
x
Z

0

k.x; y/ S.y; k; t/ dy: (4.1)
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Here, we have to observe that the second integral on the RHS corresponds to the
excess overflow in the initial interval of time dt and the third integral takes care of
the process repeating from the restart level X D k.

Define

S.x; k; `/ D
1
Z

0

e�`tS.x; k; t/ dt: (4.2)

Taking the LT with respect to t , (4.1) gets converted to

.`C �/S D �

k
Z

x

k.x; y/ S.y; k; `/ dy C �
1
Z

k

k.x; y/ .y � k/ dy

C �
1
Z

k

k.x; y/ dy S.k; k; `/C �
x
Z

0

k.x; y/ S.y; k; `/ dy: (4.3)

Taking k.x; y/ as given in (2.5), we write the (4.3) as

.`C �/S D � a.x/
1
Z

x

b.y/ �.y/ S.y; k; `/ dy

C � a.x/
1
Z

k

b.y/ �.y/ .y � k/ dy

C � a.x/
1
Z

k

b.y/ �.y/ dy � S.k; k; `/

C � b.x/
x
Z

0

a.y/ �.y/ S.y; k; `/ dy: (4.4)

The differential equation for S.y; k; `/ is the same as (2.20) except f is being re-
placed by S . For the choice of a.x/; b.x/ and �.x/ as in (2.17), the differential
equation for S.x; k; `/ is

.`C �/@
2S

@x2
� .`C �/.˛ � ˇ/@S

@x
� `˛ˇS D 0 (4.5)

whose solution is

S.x; k; `/ D A2.k; `/em1x C B2.k; `/em2x (4.6)
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wherem1 and m2 are the roots of the equation

.`C �/m2 � .`C �/.˛ � ˇ/m � `˛ˇ D 0: (4.7)

As done in earlier sections to determine A2 and B2, substituting (4.6) in (4.4) and
using the choices of a.x/; b.x/, and �.x/ as taken earlier, we arrive at the equation

.`C �/S D �˛ˇ

˛ C ˇ e˛x
k
Z

x

ŒA2e.m1�˛/y C B2e.m2�˛/y � dy

C �˛ˇ

˛ C ˇ e˛x
1
Z

k

e�˛y.y � k/ dy

C �˛ˇ

˛ C ˇ e˛x
1
Z

k

e�˛y dy � .A2em1k C B2em2k/

C �˛ˇ

˛ C ˇ e�ˇx
x
Z

0

ŒA2e.m1C˛/y C B2e.m2C˛/� dy: (4.8)

This equation results in two independent conditions connecting A2 and B2 as

A2m1em1k

m1 � a C B2m2em2k

m2 � a C 1

˛
D 0 (4.9)

A2em1k

m1 C ˇ C
B2em2k

m2 C ˇ D 0: (4.10)

Equations (4.6), (4.9), and (4.10) give the complete closed form solution for
S.x; k; `/, the LT of the function giving the expected amount of overflow in
time t .

5 Expected Amount of Overflow Allowing Arbitrary
Number of Emptiness

Here, we treatX D 0 as a reflecting barrier. we already treatedX D k as a reflecting
barrier. Also here the procedure is exactly the same as in the last section but for the

additional term �
k
R

0

k.x; y/ dy � S1.0; k; `/ figuring in the (4.4). This only means

that after the process X.t/ crosses the level X D 0 in the initial interval of time dt
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and it restarts again from X D 0 to proceed to overflow between time t and t C dt .
S1.x; k; `/ is taken as the LT of S1.x; k; t/, the expected amount of overflow in
time t allowing arbitrary number of emptiness.

The solution for S1.x; k; `/ is

S1.x; k; `/ D A3.k; `/em1x CB3.k; `/ em2x (5.1)

subject to the conditions

A3m1

m1 � ˛ em1k C B3m2

m2 � ˛ em2k C 1

˛
D 0 (5.2)

and

Aem1k

m1 C ˇ C
Bem2k

m2 C ˇ C
1

ˇ
D 0: (5.3)

6 Diffusion Approximation

In all the earlier sections we considered, jumps in the level of warehouse are in both
the directions. If we impose certain statistical conditions on the jump size and jump
frequency, we obtain a diffusion equation. In our model, we take

a.x/ D e��x; b.x/ D e�x; and �.x/ D 

2
:

Then the statistical conditions to be imposed for the diffusion limit are

1. The average jump size is very small .!1/.
2. The number of occurrence of Poisson jumps is very large .� ! 1/ such that

lim
�!1

�!1
�

�2 D D whereD has the dimensions of a diffusion constant.

Let us define P.x; t/ as the probability for the position of the warehouse at time
t given that X.0/ D x. For a change, we arrive at the differential equation for the
free motion of the level of the process X.t/ by a different approach.

We split P.x; t/ as PC.x; t/ and P�.x; t/ such that

P.x; t/ D PC.x; t/C P�.x; t/: (6.1)

Here, PC.x; t/ is the probability for the level of the warehouse at any height
with an initial jump in the positive direction whenever it occurs, and P�.x; t/ the
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corresponding probability with the initial jump in the negative direction whenever it
occurs. The integro-differential equation for PC.x; t/ is

e��x
�

@PC

@t
C �PC

�

D �

2

1
Z

x

e��x P.y; t/ dy: (6.2)

Differentiating this with respect to x, we get

@2PC

@t@x
C � @P

C

@x
� 

�

@PC

@t
C �PC

�

D ��
2
P: (6.3)

The similar equation for P�.x; t/ is

@2P�

@t@x
C � @P

�

@x
C 

�

@P�

@t
C �P�

�

D �

2
P: (6.4)

Adding (6.3) and (6.4), we get

@2P

@t@x
C � @P

@x
� 

�

@PC

@t
� @P

�

@t

�

� �.PC � P�/ D 0: (6.5)

Subtracting (6.4) from (6.3), we get

�

@2PC

@t@x
� @

2P�

@t@x

�

C �
�

@PC

@x
� @P

�

@x

�

� 
�

@P

@t
C �P

�

D ��P: (6.6)

Differentiating (6.5) with respect to x,

@3P

@t@x2
C � @

2P

@x2
� 

�

@2PC

@t@x
� @

2P�

@t@x

�

� �
�

@PC

@x
� @P
@x

�

D 0: (6.7)

Multiplying (6.6) by  and adding it to (6.7), we arrive at

@3P

@t@x2
C � @

2P

@x2
� 2

�

@P

@t
C �P

�

� �2P D 0: (6.8)

Dividing by 2 and proceeding to the limit as  ! 1; � ! 0 such that �

�2 ! D,
we get the diffusion equation

D
@2P

@x2
D @P

@t
: (6.9)

Adopting to the same limiting procedure in the FPTD, we arrive at the FPTD to
reach the barrier X D k for the diffusion process.
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Conclusion: In conclusion, we point out that the central idea of this paper is to
show the imbedding approach of Richard Bellman works out elegantly to derive a
variety of results for a two-way jump Markov process with two barriers and with
separable kernels. We treated the cases of both the barriers as absorbing or both
reflecting and one barrier absorbing and the other reflecting. This technique is also
carried out to calculate the expected amount of overflow in the storage model. One
can easily note that the choice of the kernel decides the closed form analytical so-
lution for the FPTD and the expected amount of overflow. The FPTD for emptiness
is not exclusively treated in this work as the procedure will be totally similar to the
case of first overflow. If the kernel is chosen in the form

k.x; y/ D nC1

2nŠ
jx � yjne��jx�yj

we will arrive at a differential equation of order 2.nC 1/ in the cases we discussed
and in particular for the case n D 1, the differential equation is of order 4. This type
of kernel will be studied in a later paper.
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Image Registration
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Dedicated to the memory of Professor Alladi Ramakrishnan

Summary This paper presents a novel variational model for inverse consistent
deformable image registration. The proposed model deforms both source and target
images simultaneously, and aligns the deformed images in the way that the forward
and backward transformations are inverse consistent. To avoid the direct computa-
tion of the inverse transformation fields, our model estimates two more vector fields
by minimizing their invertibility error using the deformation fields. Moreover, to
improve the robustness of the model to the choice of parameters, the dissimilarity
measure in the energy functional is derived using the likelihood estimation. The ex-
perimental results on clinical data indicate the efficiency of the proposed method
with improved robustness, accuracy, and inverse consistency.
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Key words and phrases Image registration � Inverse consistent � Variational
method � Optimization

1 Introduction

Image registration is a very important subject that has been widely applied in med-
ical research and clinical applications. The task of image registration is to find a
transformation field that relates points in the source image to their correspond-
ing points in the target image. Deformable image registration allows localized
transformations, and is able to account for internal organ deformations. Therefore,
it has been increasingly used in health care to assist diagnosis and treatments.
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In particular, deformable image registration has become a critical technique for
image guided radiation therapy. It allows more precise tumor targeting and nor-
mal tissue preservation. A comprehensive review of image registration in radiation
therapy can be found in [Kes06].

A deformable image registration is called inverse consistent, if the correspon-
dence between two images is invariant to the order of the choice of source and
target. More precisely, let S and T be the source and target images, and h and g be
the forward and backward transformations, respectively, i.e.,

S ı h D T and T ı g D S;

then an inverse consistent registration satisfies hıg D id and gıh D id;where id is
the identity map. This can be illustrated by the following diagram with constraints
g D h�1; h D g�1:

S
g

�� T
h��

; (1)

where each of the two squares in (1) represents the domain on which the labeled
image is defined. By applying an inverse consistent registration, measurements, or
segmentations on one image can be precisely transferred to the other. In imaging
guided radiation therapy, the inverse consistent deformable registration technique
provides the voxel-to-voxel mapping between the reference phase and the test phase
in four-dimensional (4D) radiotherapy [LOCC06]. This technique is referred to
“automatic recontouring.”

Inverse consistent deformable image registration has been an active subject of
study in the literature. There has been a group of work developed in the con-
text of large deformation by diffeomorphic metric mapping, e.g. [HC03, JDJG04,
AGG06, BK07]. The main idea of this method is modeling the forward and back-
ward transformations as a one-parameter diffeomorphism group. Then, a geodesic
path connecting two images is obtained by minimizing an energy functional sym-
metric to the forward and backward transformations. This type of models produce a
very good registration results. However, it take long time to compute, because strong
regularization of the mappings are required.

Variational method is one of the popular approaches for inverse consistent
deformable image registration. This method minimizes an energy functional(s) sym-
metric to the forward and backward transformations, and in general, consists of
three parts: regularization of deformation fields, dissimilarity measure of the target
and deformed source images, and penalty of inverse inconsistency [CJ01, ADPS02,
RK06, ZJT06]. In [CJ01], Christensen and Johnson proposed to minimize the fol-
lowing coupled energy functionals with respect to h and g alternately:

(

E.h/ D Es.S ı h; T /C Er .u/C �kh � g�1k2L2.�/

E.g/ D Es.T ı g; S/C Er.v/C �kg � h�1k2L2.�/

; (2)
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where u and v are forward and backward deformation fields corresponding to h
and g, respectively, i.e., h.x/ D x C u.x/ and g.x/ D x C v.x/. The dissimilarity
measure Es and the regularization of the deformation field Er are defined by:

Es.S ı h; T / D kS ı h� T k2L2.�/
; Er .u/ D ka�uC br.div u/� cuk2

L2.�/

with positive constants a; b; c > 0. The last term in both energy functionals enforces
the inverse consistency of h and g. The solution .u; v/ to (2) is obtained by iteratively
solving a system of two evolution equations associated with their Euler-Lagrange
(EL) equations. This model gives considerably good results with parameters chosen
carefully. However, it needs to compute the inverse mappingsg�1 and h�1 explicitly
in each iteration, which is computationally intensive can cause cumulated numerical
errors in the estimation of inverse mappings.

The variational models developed in [ADPS02] and [ZJT06] have the same
framework as in [CJ01], but with different representations of Es , Er , and inverse
consistent constraints. In [ADPS02] and [ZJT06] the terms kh ı g.x/ � xk2

L2.�/

and kg ı h.x/ � xk2
L2.�/

are used in the energy functional to enforce the inverse
consistency. By using these terms the explicit computation of the inverse trans-
forms of h and g can be avoided during the process of finding optimal forward
and backward transformations. The similarity measure in [ZJT06] is mutual in-
formation for multimodal image registration. The Es.S ı h; T / in [ADPS02] is
kS ı h � T k2

L2.�/
=max jDT j. The regularization term Er .u/ in [ZJT06] is a func-

tion of Du, and that in [ADPS02] is a tensor based smoothing which is designed
to prevent the transformation fields from being smoothed across the boundaries of
features. In [YS05, YTSC08] the proposed models incorporated stochastic errors in
the inverse consistent constraints for both forward and backward transformations.

In [LHGC05], Leow et al. proposed a nonvariational approach that updates the
forward and backward transformations simultaneously by a force that reduces the
first two terms in E.h/ andE.g/ in (2) and preserves the inverse consistency. How-
ever, in order to simplify the computation this algorithm only takes linear order
terms in the Taylor expression to approximate the inverse consistent conditions for
updated transformation fields. As a consequence, the truncating errors can be accu-
mulated and exaggerated during iterations. This can lead to large inverse consistent
error, despite that it can produce a good matching quickly [ZC08].

In this paper we propose a novel variational model to improve the accuracy, ro-
bustness and efficiency of inverse consistent deformable registration. As an alternate
to the current framework of variational methods which finds the forward and back-
ward transformations that deform a source image S to match a target image T and
vice versa, we propose to deform S and T simultaneously, and let the registration
align the deformed source and deformed target images. It is clear that the disparity
between deformed S and deformed T is smaller than that between deformed S and
fixed T or deformed T and fixed S . Therefore, the deformation by the bidirectional
simultaneous deformations is in general smaller than the deformation by unidirec-
tional deformation that deforms S full way to T or T full way to S . As shown in
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Sect. 5, deforming S and T simultaneously leads to a faster and better alignment
than deforming S to the fixed T or vice versa. Let � and Q� represent the transfor-
mation fields such that S ı � matches T ı Q�. It is not difficult to verify that if �
and Q� are invertible, then the registrations from S to T , and T to S are inverse
consistent. To avoid the direct computation of the inverse transformations of � and
Q�, our model seeks for two additional deformation fields  , Q such that � and  
are inverse to each other, and the same for Q� and Q . Moreover, the registration pro-
cess enforces certain regularization of these four deformation fields, and aligns the
deformed S and deformed T . Then, the optimal inverse consistent transformations
from S to T , and T to S can be obtained simply by appropriate compositions of
these four transformations.

The idea of deforming S and T simultaneously has been adopted in the mod-
els where the forward or backward transformation is modeled as a one-parameter
diffeomorphism group [AGG06]. However, our model finds regularized invertible
deformation fields by minimizing the L2 norms of the deformation fields and in-
verse consistent errors rather than a one-parameter diffeomorphism group, whose
computational cost is very expensive and hence hinders its application in clinical
use. Moreover, our model allows parallel computations for all the deformation fields
to significantly reduce the computational time.

Furthermore, to improve the robustness of the model to noises and the choice
of the parameter  that balances the goodness of matching and smoothness of the
deformation fields (see the  in E.h/ and E.g/ of (2)), we adopt the maximum
likelihood estimate (MLE) that is able to accommodate certain degree of variability
in matching to improve the robustness and accuracy of the registration. By using
MLE, the ratio of weighting parameters on the sum of squared distance (SSD) of
the residue image S ı � � T ı Q� and the regularization term is not a fixed , but
=�2 (see (18) later). This results in a self-adjustable weighting factor that makes
the choice of  more flexible, and also speeds up the convergence to the optimal
deformation field.

The rest of the paper is organized as follows. In Sect. 2, we present a detailed de-
scription of the proposed model. The existence of solutions to the proposed model is
shown in Sect. 3. The calculus of variation and an outline of a fast algorithm for solv-
ing the proposed model numerically are provided in Sect. 4. In Sect. 5, we present
the experimental results on clinical data, and the application in auto recontouring.
The last section concludes the paper.

2 Proposed Method

Let S and T be the source and target images defined on �S and �T in R
d , respec-

tively. Note that, in real applications, �S and �T are usually fully overlapped. For
simplicity we assume that images S and T are real-valued functions with contin-
uous derivatives. Let j � j denote the absolute value (length) of a scaler (vector) in
Euclidean spaces, and k�k denote k�kL2.�/ henceforth. We also extend this notation
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to vector-valued functions whose components are in L2 or H 1: u D .u1; : : : ; ud />
with each component uj 2 H 1.�/, j D 1; : : : ; d; there is

kukH1.�/ ,
�kuk2 C kDuk2�1=2

and

kuk ,

0

@

d
X

jD1
kuj k2

1

A

1=2

; kDuk ,

0

@

d
X

jD1
kDuj k2

1

A

1=2

;

where

kuj k D
�Z

�

juj .x/j2dx

�1=2

and kDuj k D
�Z

�

jDuj .x/j2dx

�1=2

;

for j D 1; : : : ; d:

2.1 Motivation and Ideas of Proposed Method

In this paper, we propose a novel variational model for inverse consistent deformable
registration to improve its efficiency and robustness. Our idea differs from the cur-
rent framework which deforms source image S to target image T , or vice versa:
as an alternate, we propose to deform S and T simultaneously, and match both de-
formed images. This means that ideally we pursuit for a pair of half-way transforms
� W �S ! �M and Q� W �T ! �M such that S ı � D T ı Q�, where �M is the
region where S ı � and T ı Q� have overlap. To ensure the transformations from S

to T and T to S are inverse consistent, the transforms � and Q� are required to be
invertible (but not necessarily to be inverse to each other). Hence, our purpose is to
find the transformations � and Q� such that

S ı � D T ı Q�; �; Q� invertible: (3)

To avoid direct computation of inverses of � and Q� during iterations, we enforce the
invertibility of � and Q� by finding another two transformations W �M ! �S and
Q W �M ! �T such that

 ı � D id; � ı  D id;

Q ı Q� D id; Q� ı Q D id:
(4)

Once we obtained such  and Q , we can construct the objective full-way transfor-
mations h and g as follows,

h D � ı Q ; g D Q� ı  :
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It is easy to see that h and g satisfy the inverse consistent constraints hıg D gıh D
id. This idea is illustrated by the following diagram, where M is an intermediate
image.

M

 

����
��

��
��

��
�

Q 
���

��
��

��
��

��

S

�

��

g
�� T

Q�
��

h��

(5)

As by deforming S and T simultaneously the difference between deformed S and
deformed T at each iteration, in general, is smaller than that between deformed
S and fixed T , or deformed T and fixed S , the computational cost of deforming
both S and T is much less than the conventional one that deform S all the way to
T and T to S . In particular, if the underlying deformations of h and g are large,
deforming both S and T can make the each deformation of � and Q� in the proposed
model almost half smaller than that of h and g, and achieve a faster convergence
for the computation of � and Q�. Also, seeking  and Q along with � and Q� avoids
direct computation of inverse transformations in each iteration as that in (4), which
usually causes cumulated errors during iterations if using approximations of the
inverses.

Moreover, regularizing the deformation fields is very important to obtain physi-
cally meaningful and accurate registrations. Also, if the energy functional consists
of only dissimilarity measures and invertible constraints, it is ill-posed in general.
Therefore, we propose the following framework for deformable inverse consistent
registration:

min
�; Q�; ; Q 

R.�; Q�; ; Q /C dis.S ı �; T ı Q�/; s.t. condition (4) holds (6)

where R is a regularization operator of its arguments, dis.S ı �; T ı Q�/ measures
the dissimilarity between S ı � and T ı Q�.

2.2 Alternative Formulation of (4) Using Deformation Fields

Let the functions u, Qu, v and Qv represent the corresponding deformation fields of the
transformations �, Q�,  and Q , respectively. That is,

�.x/ D x C u.x/; Q�.x/ D x C Qu.x/;
 .x/ D x C v.x/; Q .x/ D x C Qv.x/: (7)
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Then, the constraints in (4) can be rewritten as:

uC v.x C u/ D vC u.x C v/ D 0;
QuC Qv.x C Qu/ D QvC Qu.x C Qv/ D 0: (8)

2.3 MLE Based Derivation for dis.S ı �; T ı Q�/

To improve the robustness of the algorithm for deformable image registration, we
use the negative log-likelihood of the residue image as a measure of mismatching.
Consider voxel intensities of the residue image defined by:

W.x/ , S ı �.x/� T ı Q�.x/; x 2 �M ;

as independent samples drawn from a Gaussian distribution of mean zero and vari-
ance �2 to be optimized (see remark later for the reason of this assumption), whose
probability density function (pdf) is denoted by P.�j�/. Then the likelihood of the
residual imageW.x/ can be computed as:

L.� jfW.x/; x 2 �g/ D
Y

x2�
P.W.x/j�/ D

Y

x2�

�

1p
2��

e�jSı��T ı Q�j2=2�2

�

:

(9)

Then, by writing the summation over all x 2 � as an integral over � the negative
log-likelihood function is given as follows:

kS ı � � T ı Q�k2=2�2 C j�j log
p
2��:

Omitting the constant� log
p
2� , we define the dissimilarity term as:

dis.S ı �; T ı Q�/ , kS ı � � T ı Q�k2=2�2 C j�j log �: (10)

which can be rewritten as our MLE fitting term F by using corresponding deforma-
tion fields u and Qu:

F.u; Qu; �/ , dis.S.x C u/; T .x C Qu//
D kS.x C u/� T .x C Qu/k2=2�2 C j�j log�: (11)

Remark 2.1. Let OP be the estimation of the pdf for the random variableX , W.x/,
x 2 �. We show later why it is reasonable to assume OP to be a Gaussian distribution
of zero mean and variance �2.

In fact, OP is a function in C0.R/, the space of all the continuous functions on
real line vanishing at infinity with the supreme norm. Let H0.R/ be the Hilbert
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space consisting of all linear combinations of �.xl ; x/ for finite many of xl 2 R,
where

�.xl ; x/ D
�

2��2
��1=2

e�.xl�x/2=2�2

; 8 x 2 R: (12)

Define an inner product on H0.R/ by:
*

m
X

iD1
ai�.xi ; �/;

n
X

jD1
bj �.yj ; �/

+

H0.R/

D
m
X

iD1

n
X

jD1
aibj �.xi ; yj /:

We claim that
H0.R/ is dense in C0.R/: (13)

In fact, if the claim (13) is not true, by Hahn-Banach theorem there exists a bounded
signed measure m in the dual space of C0.R/, such that

Z

R

OP dm ¤ 0; (14)

but
R

R
f dm D 0, for all f 2 H0.R/. In particular, for any x 2 R,

Z

R

�.x; y/dmy D 0;

where �.�; �/ is as in (12), and hence,
Z

R�R

�.x; y/dmxdmy D 0:

This implies m D 0, which contradicts (14). Therefore, the claim holds.
By this claim it is easy to see that

OP .z/ �
k
X

lD1
˛l�.xl ; z/ D

�

2��2
��1=2 k

X

lD1
˛le
�.xl�z/2=2�2

(15)

for some fxl I˛l gklD1. Since a good registration requires the intensities of the residue
imageW.x/ close to zero. Hence, in (15) the only dominate term in the sum should
be the one corresponding to xl D 0, and other terms are negligible. This means
that OP is approximately N .0; �2/, the Gaussian distribution with mean 0 and
variance �2.

2.4 Proposed Model

Based on the discussion earlier, we are ready to present the proposed model. We
define the regularization term R.�; Q�; ; Q / in (6) using their corresponding defor-
mation fields as

R.�; Q�; ; Q / D R.u; Qu; v; Qv/ , kDuk2 C kD Quk2 C kDvk2 C kDQvk2: (16)
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By plugging (16) and (11) into (6), and replacing the constraint in (6) by (8), the
proposed model can be written as:

min
u;Qu;v;Qv;�

R.u; Qu; v; Qv/C F.u; Qu; �/; s.t. condition (8) holds; (17)

where R.u; Qu; v; Qv/ and F.u; Qu; �/ are defined in (16) and (11), respectively.
To solve problem (17), we relax the equality constraints of inverse consistency,

and penalize their violation using quadratic functions, then write it as an uncon-
strained energy minimization problem

min
u;Qu;v;Qv;�

R.u; Qu; v; Qv/C F.u; Qu; �/C � .I.u; v/C I.Qu; Qv// ; (18)

where and I.u; v/ is the cost of inverse inconsistency of u and v:

I.u; v/ D Iv.u/C Iu.v/; (19)

with
Iv.u/ D kuC v.x C u/k2 and Iu.v/ D kvC u.x C v/k2: (20)

Similarly, we have I.Qu; Qv/. With sufficiently large �, solving (18) gives an approxi-
mation to the solution of (17).

The term F.u; Qu; �/ is from the negative log-likelihood of the residual image
(11). Minimizing this term forces the mean of the residue image to be zero, but al-
lows it to have a variance to accommodate certain variability. This makes the model
more robust to noise and artifacts, and less sensitive to the choice of the parameter
 than the model using the SSD, i.e., the squared L2-norm, of the residue image
as a dissimilarity measure as in (2). The parameter  balances the smoothness of
deformation fields and goodness of alignments, and affects the registration result
significantly. In the proposed model, the ratio of the SSD of the residue image over
the smoothing terms is =�2 rather than a prescribed . Since � is to be optimized,
and from its EL equation � is the standard deviation of the residue image. Therefore,
in the proposed model the weight on the matching term updates during iterations.
When the alignment gets better, � the standard deviation of the residue as shown in
(35) decreases, and hence the weight on the matching term automatically increases.
This self-adjustable feature of the weight not only enhances the accuracy of align-
ment but also makes the choice of  flexible, and results in a fast convergence.

As shown earlier, the final forward and backward transforms h and g can be
obtained by:

h D � ı Q D x C QvC u.x C Qv/ and g D Q� ı  D x C QuC v.x C Qu/:

Thus, the corresponding final full-way forward and backward deformation fields
Nu and Nv are given as:

Nu D QvC u.x C Qv/ and Nv D QuC v.x C Qu/; (21)
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respectively. Then the inverse consistent constraints (4) can be represented using
Nu; Nv as follows:

NuC Nv.x C Nu/ D NvC Nu.x C Nv/ D 0: (22)

3 Existence of Solutions

In this section we prove the existence of solutions .u; Qu; v; Qv; �/ to the proposed
model (18). For simplicity, we assume that both S and T defined on the same
domain �, which is simply connected, closed and bounded in R

d with Lipschitz
boundary @�. Also S; T 2 C 1.�/. As in reality, deformation field cannot be un-
bounded, we restrict u; Qu; v; Qv to be in a closed subset of L1.�/:

B ,
˚

u 2 L1.�/ W kukL1.�/ � B; B 2 RC only depends on �
�

Then, we seek solutions .u; Qu; v; Qv; �/ to the problem (18) in the spaces u; Qu; v; Qv 2
H 1.�/ \ B and � 2 RC. For short notations, we let w denote the quaternion
.u; Qu; v; Qv/. Then, we show the existence of solutions to the following minimization
problem:

min
.w;�/2.H1\B/�RC

E.w; �/ (23)

where
E.w; �/ D kDwk2 C F.w; �/C �I.w/

and F and I are defined correspondingly in (18) using the simplified notation
of w, i.e.,

kDwk2 D kDuk2 C kD Quk2 C kDvk2 C kDQvk2;
F .w; �/ D kS.x C u/� T .x C Qu/k2=�2 C j�j log�;

I.w/ D Iv.u/C Iu.v/C IQv.Qu/C IQu.Qv/:

and the terms on the right side of I.w/ are defined as in (20). The  and � are
prescribed positive constants.

Theorem 3.1. The minimization problem (23) admits solutions .w; �/ 2 �H 1 \ B
�

� RC.

Proof. For .w; �/ 2 �H 1 \ B
��RC,E.w; �/ is bounded below. Hence, there exists

a minimizing sequence f.wk; �k/g1kD1 �
�

H 1 \ B
�� RC such that

lim
k!1

E.wk ; �k/ D inf
.H1\B/�RC

E.w; �/:

Therefore, fkDwkkg1kD1 are uniformly bounded. Along with wk 2 B we know that
fwkg1kD1 is a bounded sequence in H 1. By the weak compactness of H 1 and the
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fact that H 1 is precompact in L2, there exists a convergent subsequence, which is
still denoted by fwkg1kD1, and a function Ow 2 H 1, such that

wk * Ow weakly in H 1; (24)

wk ! Ow strongly in L2; and a.e. in �: (25)

Moreover, since E.wk ; �k/ ! 1 if �k ! 0 or1, there is a constant C > 0 such
that f�kg1kD1 are bounded below and above by 1=C and C , respectively. Hence,
there is a subsequence of f�kg1kD1 and a scaler O� 2 RC, without changing the
notation for the subsequence we have

�k ! O� 2 RC: (26)

From the weak lower semicontinuity of norms and (24), we know

kD Owk2 � lim
k!1

kDwkk2: (27)

Also, as I.w/ � 8B for any w 2 H 1 \ B and wk ! Ow a.e. in �, we get, by
dominant convergence theorem, that

lim
k!1

I.wk/ D I. Ow/: (28)

By the same argument with the smoothness of S and T , the convergence of f�kg1kD1,
and the fact that wk ! Ow a.e. in �, we can also have

lim
k!1

F.wk; �k/ D F. Ow; O�/ (29)

Combining (27), (28) with (29), we obtain that

E. Ow; O�/ � lim
k!1

E.wk ; �k/ D inf
.H1\B/�RC

E.w; �/:

Furthermore, because fwkg1kD1 � B � L1.�/, we know

wk *
w� Ow weakly* in L1

and hence Ow 2 B. Therefore, . Ow; O�/ 2 �H 1 \ B
� � RC. Hence

E. Ow; O�/ D inf
.H1\B/�RC

E.w; �/:

which implies that . Ow; O�/ is a solution to the minimization problem (23). ut
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4 Numerical Scheme

In this section, we provide the numerical scheme for solving (18). As the compo-
sitions in the inverse consistency constraints Iu.v/ and Iv.u/ bring a difficulty in
getting an explicit form of the EL equations for the deformation fields and their in-
verses, in our computation, instead of directly solving (18), we solve the following
two coupled minimization problems alternately:

8

<

:

min
u;Qu
Ev;Qv;� .u; Qu/

min
v;Qv
Eu;Qu.v; Qv/

(30)

where

Ev;Qv;� .u; Qu; �/ D kDuk2 C kD Quk2 C F.u; Qu; �/C � .Iv.u/C IQv.Qu// (31)

and
Eu;Qu.v; Qv/ D kDvk2 C kDQvk2 C � .Iu.v/C IQu.Qv// : (32)

By taking first variation with respect to u; Qu; v; Qv, we get the EL equations:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

��uC 

�2
Wu;QuDS.x C u/C � hI CDv.x C u/; uC v.x C u/i D 0

��vC � hI CDu.x C v/; vC u.x C v/i D 0
��Qu � 

�2
Wu;QuDT.x C Qu/C � hI CDQv.x C Qu/; QuC Qv.x C Qu/i D 0

��QvC � hI CD Qu.x C Qv/; QvC Qu.x C Qv/i D 0

;

(33)

in �, with free Neumann boundary conditions for each of them on @�:

hDu; ni D hD Qu; ni D hDv; ni D hDQv; ni D 0; on @�; (34)

where Wu;Qu , S.x C u/� T .x C Qv/, I is the identity matrix of size d , and n is the
outer normal of @�. Also, the first variation of � gives

� D kS.x C u/� T .x C Qu/k=j�j1=2: (35)

The solution to the EL equations (33) can be obtained by finding the stationary
solution to the evolution equations associated with the EL equations. In numerical
implementation, we use semi-implicit discrete form of the evolution equations. The
additive operator splitting (AOS) scheme was applied to solve the problem faster
[WtHRV98]. An alternative way of AOS to solve the semi-implicit discrete evo-
lution equation in this case can be obtained by applying discrete cosine transforms
(DCT) to diagonalize the Laplace operator with the assumption that the deformation
fields have symmetric boundary condition, which is compatible with (34).
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In two-dimensional (2D) case, the semi-implicit discrete form of (33) with fixed
step sizes �u; �v for the evolution equations of u.kC1/ as:

u.kC1/i;j � u.k/i;j
�u

D �i;ju.kC1/ �Di;j
�

F
�

u.k/; Qu.k/; � .k/
�

C �Iv.k/

�

u.k/
��

;

(36)
and v.kC1/ as

v.kC1/i;j � v.k/i;j
�v

D �i;j v.kC1/ � �Di;jIu.k/

�

v.k/
�

; (37)

where �i;j and Di;j represent the discrete Laplacian and gradient operators at the
pixel indexed by .i; j /, respectively. The 3D case is a simple analog with one more
subscript in indices. Similarly, we have the discrete evolution equation for Qu and
Qv with the two components within each of the three pairs .u; Qu/, .v; Qv/ and .S; T /
switched in (36) and (37). With AOS scheme being applied, the computation for
each update of u involves of solving d tridiagonal systems whose computational
costs are linear in N , where N is the total number of pixels in S (or T ). Also, in
each iteration of updating u and v, there needs 2.dC1/ interpolations with sizeN . It
is important to point out that, in each iteration, the computations of u; Qu; v; Qv can be
carried out in parallel. We summarize icDIR in Algorithm 1, where the maximum
inverse consistency error (ICE) ıc is defined by:

ıc D max
x
fjNuC Nv.x C Nu/j; jNvC Nu.x C Nv/jg ; (38)

and Nu and Nv are the final full-way deformation fields shown in (21). That is, it
measures the maximum ICE of deformations obtained by quaternion .u; Qu; v; Qv/.
The parameter � in (18) may increase during iterations to ensure smaller ICE. In
each inner loop with fixed �, the computation is terminated when the mean of

Algorithm 1 Inverse Consistent Deformable Image Registration (icDIR)
Input S , T , and �u; �v; ; � > 0; � D 0:5; ıc D 1. Initialize .u.0/; Qu.0/; v.0/; Qv.0//D 0, k D 0.
while ıc � � do

repeat
fAll terms in .u.kC1/; Qu.kC1/; v.kC1/; Qv.kC1// can be calculated in parallelg
Calculate .u.kC1/; v.kC1// using (36) and (37).
Calculate .Qu.kC1/ ; Qv.kC1// using (36) and (37) with .u.kC1/; v.kC1// replaced by
.Qu.kC1/; Qv.kC1//.
update �.kC1/ by (35).
k kC 1

until convergence
return .u; Qu; v; Qv/�
.u; Qu; v; Qv/ .u; Qu; v; Qv/�; � 2�.
Compute Nu and Nv using (21) and then ıc using (38).

end while
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CC.S.x C Nu/; T / and CC.T .x C Nv/; S/ converges. We set a stopping tolerance
�D 0:5 and terminate the whole computation once ıc is lower than �, in which case
the maximum ICE is less than half of the grid size between two concatenate pix-
els/voxels and hence the inverse consistency is exactly satisfied with respect to the
original resolution of the images.

5 Experimental Results

In this section, we present the experimental results of proposed model using
algorithm 1 (icDIR). All implementations involved in the experiments were coded
in Matlab v7.3 (R2006b), except the Thomas tridiagonal solver, which was coded
in CCC. We used build-in functions interp2/interp3 of Matlab with default
settings for interpolations. All Computations were performed on a Linux (version
2.6.16) workstation with Intel Core 2 CPU at 1.86GHz and 2GB memory.

We first test the accuracy of registration and auto recontouring of the proposed
algorithm on a clinical data set of 100 2D-prostate MR images. Each image, called
a phase, is a 2D image of dimension 288�192 that focuses on the prostate area. The
first phase is used as a source image S , as shown in Figure 1(a). The boundaries of
the regions of interests (ROI) in S were delineated by contours and superimposed
by medical experts, as enlarged and shown in Figure 4(a). The rest 99 phases were
considered as targets. In this experiment we applied the proposed model (18) with
parameters .; �; �/ set to be .0:05; 0:2; 0:05/ to S and T s. For demonstration, we
only showed the result using the 21st phase as T , as depicted in Figure 1(b). The de-
formed T and deformed S , i.e., T .xC Nv/ and S.xC Nu/, are shown in the Figure 1(c)
and 1(d), respectively, where Nu and Nv are defined in (21) using the optimal .u; Qu; v; Qv/
obtained by model (18). The errors of the alignments, jT .xCNv/�S j and jS.xCNu/�
T j, on the squared area (shown in Figure 1(a)) are displayed in Figure 2(a) and 2(c),
respectively. With comparison to the original error jS � T j shown in Figure 2(b),
we can see the errors of alignments are significantly reduced. This indicates that the
proposed registration model (18) has high accuracy in matching two images.

The final optimal forward and backward deformation fields Nu and Nv are displayed
by applying them to a domain of regular grids, shown in Figure 3(a) and 3(c), re-
spectively. Furthermore, to validate the accurate inverse consistency obtained by our
model (18), we applied Nu C Nv.x C Nu/ on a domain with regular grids, and plotted
the resulting grids in Figure 3(b). The resulting grids by NvC Nu.x C Nv/ had the same
pattern so we omitted it here. From Figure 3(b), we can see that the resulting grids
are the same as the original regular grids. This indicates that the inverse consistent
constraints Nu C Nv.x C Nu/ D Nv C Nu.x C Nv/ D 0 are well preserved. We also com-
puted the maximum ICE ıc using Nu; Nv and (38) and the result was 0:46. The mean
ICE .kNuC Nv.x C Nu/k C kNvC Nu.x C Nv/k/ =2j�j versus the number of iterations is
plotted in Figure 5, which shows the inverse consistency is preserved during the
registration. These imply that the proposed algorithm provides an accurate inverse
consistent registration.
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Source image S Target image T

Deformed T Deformed S

Figure 1 Inverse consistent registration result by proposed model (18). (a) source image S .
(b) target image T . (c) deformed T , i.e., T .x C Nv/. (d) deformed S , i.e., S.x C Nu/

An accurate inverse consistent registration can transform segmentations from one
image to another accurately. One of the applications is auto recontouring, that de-
forms the expert’s contours from a planning image to new images during the course
of radiation therapy. In this experiment, we had expert’s contours superimposed on
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jS.x C Nu/� T j jS � T j jT .x C Nv/� S j
Figure 2 Residue image (in the square area shown in Figure 1(a)) obtained by proposed model
(18). (a) jS.x C Nu/� T j. (b) initial jS � T j. (c) jT .x C Nv/� S j

a

Nu

b

NuC Nv.x C Nu/

c

v

Figure 3 Deformation fields obtained by proposed model (18) in the zoomed-in area applied on
regular grid with half of original resolution of images. (a) Nu. (b) NuC Nv.xC Nu/, which demonstrates
the inverse consistency is well preserved. (c) Nv

the source image S as shown in Figure 4(a). Then by applying the deformation field
Nu on this contours we get the deformed contours on the target image T as shown in
Figure 4(b). The accuracy in auto recontouring is evident.

The second experiment was aimed to test the efficiency of the proposed model
(18) in registering 3D images. We applied (18) to a pair of 3D chest CT images of
dimension 64 � 83 � 48 taken from the same subject but at different periods. The
parameters .; �; �/ were set to be .:05; :1; :004/. The registration was performed
in 3D, but for demonstration, we only show the corresponding axial (xy plane with
z D 33), sagittal (yz plane with x D 25), and coronal (zx plane with y D 48) slices.
The registration results are plotted in Figures 5, 6 and 7, respectively. In each figure,
the images in the upper row are S and T , respectively, and the images in the middle
row are deformed T and S , i.e., T .x C Nv/ and S.x C Nu/, respectively. The bottom
row shows the residual images jS.x C Nu/ � T j, jS � T j and jT .x C Nv/ � S j. The
mean of CC.S.x C Nu/; T / and CC.T .x C Nv/; S/ reached 0:998 after 50 iterations,
and the mean of inverse consistency errors was 0:015. The results show the high
accuracy of proposed model (18) and the well preserved inverse consistency.
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Original Contour on S Re-contouring on T

Figure 4 Auto recontouring result using the deformation field Nu obtained by proposed model (18).
Images are zoomed-ins of the square area shown in Figure 1(a). (a) S with initial contours on ROIs
(drawn by medical expert). (b) T with recontouring on ROIs by applying deformation field Nu to
the initial contours

Figure 5 Registration result of proposed model (18) applied to 3D chest CT image. This figure
shows the z D 33 slice at axial direction. Upper left: S . Upper right: T , Middle left: deformed T ,
i.e., T .xCNv/. Middle right: deformed S , i.e., S.xCNu/. Bottom left: residue image jS.xCNu/�T j.
Bottom middle: initial residue image jS � T j. Bottom right: residue image jT .x C Nv/� S j



436 Y. Chen and X. Ye

Figure 6 Registration result of proposed model (18) applied to 3D chest CT image. This figure
shows the x D 25 slice at sagittal direction. Upper left: S . Upper right: T , Middle left: deformed T ,
i.e., T .xCNv/. Middle right: deformed S , i.e., S.xCNu/. Bottom left: residue image jS.xCNu/�T j.
Bottom middle: initial residue image jS � T j. Bottom right: residue image jT .x C Nv/� S j
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Figure 7 Registration result of proposed model (18) applied to 3D chest CT image. This figure
shows the y D 48 slice at coronary direction. Upper left: S . Upper right: T , Middle left: deformed
T , i.e., T .xCNv/. Middle right: deformed S , i.e., S.xCNu/. Bottom left: residue image jS.xCNu/�
T j. Bottom middle: initial residue image jS � T j. Bottom right: residue image jT .x C Nv/� S j

The third experiment was aimed to compare the effectiveness of model (18)
with the following conventional full-way inverse consistent deformable registration
model:

min
u;v;�u;�v

kDuk2 C kDvk2 C J.u; v; �u; �v/C � .Iv.u/C Iu.v// ; (39)

where u and v are forward and backward deformation fields, respectively, and the
term J is defined by:

J.u; v; �u; �v/ D kS.x C u/� T k2=2�2u C kT .x C v/� Sk2=2�2v C j�j log�v�v:

The comparison is made on the efficiency and accuracy of matching, as well as
the preservation of inverse consistency. The accuracy of matching is measured by
correlation coefficients (CC) between the target image and deformed source image
with the optimal forward and backward deformations obtained by model (39) and
proposed model (18), respectively. Recall that for any two images S and T both
with N pixels, the CC of S and T is defined by:
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CC.S; T / D
PN
iD1.Si � S/.Ti � T /

q

PN
iD1.Si � S/2

PN
iD1.Ti � T /2

;

where Si and Ti are the intensities at the i th pixels of S and T , respectively, S and
T are the mean intensities of S and T , respectively. The maximum value of CC
is 1, in which case S and T are (positively) linearly related. In this experiment we
applied models (39) and (18) to the images in the first experiment shown in Figure 1
with the same parameters .; �; �/ to be .:05; :2; :05/. In Figure 5, we plotted the
CC obtained by model (39) and proposed model (18) at each iteration. One can
observed that the CC obtained by model (18) is higher and increases faster than
model (39). This demonstrates that proposed model (18) is more efficient than the
conventional full-way model. The reason is that the disparity between deformed S
and deformed T is smaller than that between deformed S and fixed T or deformed
T and fixed S . When S and T are deformed simultaneously, the two directional
deformation fields are not necessarily to be large even if the underlying deformation
field is large, which usually makes it difficult for the full-way based registration
model to reach a satisfactory alignment in short time.

The last experiment is aim to test the robustness of the model to noises and the
choice of the parameter  with the use of MLE based approach (11) for measuring
the goodness of matching. The images S and T in Figure 1 with additive Gaussian
noises (standard deviation is 3% of largest intensity value of S ) were used in this
experiment. The CC between S and T before registration is CC.S; T / D 0:901. We
applied model (18) with � to be updated/optimized by its EL equation (35), and �
to be set � D 1, that is the same as using SSD as similarity measure, respectively,
to the noise data mentioned earlier. We proceeded the registration with various val-
ues of , but kept other parameters fixed. Then the numbers of iterations (Iter) for
convergence and the final CC were recorded and shown in Table 1. One can see that
while  decreases, the accuracy of model (18) using fixed � reduces as the final
CC become much smaller, and it also takes much longer time for the algorithm to
converge. On the other hand, with � being updated (whose computational cost is
extremely cheap) model (18) can obtain good matching in much less iterations for a
large range of . This shows that model with MLE fitting is much less sensitive to
noise and the choice of , and can achieve fast and accurate results compared with
the model using SSD to measure mismatching (Figures 8 and 9).

Table 1 Number of
iterations used for
convergence and the final CC
obtained by proposed model
with � updated/fixed

Update � Fix �
 CC Iter CC Iter

1e2 0.962 48 0.955 89
1e1 0.962 97 0.946 420
1e0 0.960 356 0.933 1762

For a large range of , updating � in each iteration
consistently leads to faster convergence and higher
accuracy
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Figure 8 CC in each
iteration obtained by full-way
model (39) and proposed
model (18). Proposed model
(18) gives quick matching
with better accuracy, as CC
by model (18) increase much
faster and can reach higher
limits than that by full-way
model (39)
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Figure 9 Mean of inverse consistent errors (ICE) of the final deformation fields obtained by using
full-way model (39) and proposed model (18). The value is much smaller than the size of grid
between concatenate pixels, which shows that the inverse consistency is preserved
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A Statistical Model for the Quark
Structure of the Nucleon

V. Devanathan and S. Karthiyayini

Dedicated to the memory of Professor Alladi Ramakrishnan

Summary The deep inelastic scattering experiments reveal that the nucleon is a
composite object consisting of quarks and gluons. Treating them as Fermi and Bose
gases, statistical distribution functions are used to describe their momentum dis-
tributions in the rest frame. When transformed to the infinite momentum frame,
they yield quark and gluon distribution functions. A thermodynamical bag model
is proposed to obtain realistic distribution functions that yield correctly the nucleon
structure functions. By including the spin degree of freedom in the Fermi statis-
tical distribution functions, the quark spin distribution functions and the polarized
nucleon structure functions are obtained.
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1 Introduction

The deep inelastic scattering of leptons (electrons or muons) on nucleon clearly
indicates that the nucleon is a composite object consisting of point particles known
as partons. These partons are quarks which interact among themselves by exchange
of bosons known as gluons.
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The constituent quark model completely explains the static properties of the
nucleon such as its mass, spin and magnetic moment. The dynamical properties
of the nucleon as observed in Deep Inelastic Scattering (DIS) of leptons are not well
understood, especially when there is a large energy transfer. It is the purpose of this
article to discuss a statistical model for the nucleon that can explain both the static
and dynamical properties of the nucleon in a coherent manner.

The deep inelastic cross section is expressed in terms of the nucleon structure
functions. In the parton model of the nucleon, the DIS cross section can be expressed
as the incoherent sum of elastic lepton–quark cross sections, and hence it depends
on the quark distribution functions. Thus the deep inelastic scattering experiments
give valuable information on the quark distribution functions. The statistical model
that is proposed for the nucleon yields the quark distribution functions that compare
favourably well with the experimental results obtained from deep inelastic scattering
experiments.

At present, there is no rigorous theory to deduce these parton distribution func-
tions. Only certain parametrized forms [1–9] are available in literature for the parton
distribution functions. As the nucleon is found to consist of quarks and gluons, one
can use the statistical distribution functions to find the momentum distribution of
these quarks and gluons. Using these statistical distribution functions, several sta-
tistical models have been proposed by various authors [10–14] but the one that is
discussed here is that of Devanathan et al. [15–19]. This model has an inbuilt mech-
anism by which sea quarks and gluons are produced copiously in the small x region.
This is a distinguishing feature of this model whereas the other models do not give
any physical picture for the production of sea quarks and gluons in the small x
region.

First, let us briefly discuss the DIS of leptons and the kinematic variables that de-
scribe such a scattering. If we choose the Lorentz invariant quantities as kinematic
variables, then we can study the event in any frame of reference – laboratory frame
in which the nucleon is at rest or the infinite momentum frame (IMF) in which the
nucleon momentum is extremely large. In IMF, one should expect the momentum
of the composite object (nucleon) should be equal to the sum of the momenta of the
constituents (quarks and gluons). The Bjorken variable x which is considered as the
inelasticity parameter is now interpreted as the fraction of the momentum carried by
quarks in IMF. The DIS experiments indicate that only 45% of the nucleon momen-
tum is carried by the quarks and the missing momentum (55%) is attributed to the
gluons which do not participate in the electromagnetic or weak interaction.

The DIS experiments with polarized leptons and polarized target indicate that
only 30% of the nucleon spin is accounted by the quark spins. This has come to be
known as the proton spin puzzle. Now, it is fairly accepted that the orbital angular
momentum of the quarks and gluons account for the balance of the proton spin.

The statistical model that is proposed here is an attempt to answer some of the
questions that came up during the study of DIS.

1. The constituent quark model completely describes the static properties of the nu-
cleon but fails miserably to explain the dynamic properties such as DIS nucleon
structure functions.
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Is it possible to develop a model which explains both the static and dynamic
properties?

2. The Bjorken variable x which has been initially introduced to describe a specific
kinematic configuration of DIS, acquires two nice physical interpretations:
(a) The Bjorken variable x can be considered as the inelasticity parameter.

x D 1 W Elastic scattering

x < 1 W Inelastic scattering

x D 0 W Extreme limit of inelasticity

(b) In IMF, x is interpreted as the fraction of the momentum carried by the quark.
Since x is a Lorentz invariant quantity, is there any interplay between these two
physical interpretations of x?

3. At x D 1, only three valence quarks are present and at small x, a large number
of sea quarks and gluons are seen besides the valence quarks. If we consider the
nucleon as a MIT bag consisting of quark–gluon gas, then only valence quarks
are seen at temperature T D 0 but a large number of sea quarks and gluons are
produced at large T .
Since x and T show similar features, is it possible to establish a connection
between x and T ?

4. The invariant mass W of the final hadronic state depends upon x and it is a
measure of the energy transfer to the nucleon in DIS.
Can the invariant mass W of the final hadronic state be used to obtain the tem-
perature of the MIT bag that is used to represent the nucleon and thus establish
a connection between x and T ?

5. The nucleon structure function F2.x/ vanishes as x ! 1 and shows a steep rise
as x ! 0.
Is it possible to explain this asymptotic behaviour of F2.x/ by postulating a ther-
modynamical bag model for the nucleon with temperature T ! 0 as x ! 1 and
T steeply increasing as x ! 0?

As it is the deep inelastic scattering of leptons that reveals much of the quark
structure of the nucleon, let us start with a brief review of DIS. Then, following
Devanathan et al. [15–19], we shall treat the nucleon as a MIT bag consisting
of quarks and gluons. Treating them as Fermi gas and Bose gas and using their
relevant statistical distribution functions, equations of state for the nucleon are
obtained and solved self-consistently. Transformation of the Fermi and Bose sta-
tistical distribution functions to the infinite momentum frame yields the quark and
gluon distribution functions. The nucleon structure functions are calculated using
the quark distribution functions and compared with the results obtained from DIS
experiments. If the spin degree of freedom is included in the Fermi statistical distri-
bution function then one can obtain the quark spin distribution function and obtain
the polarized nucleon structure functions.
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2 Deep Inelastic Scattering of Leptons

Let us briefly discuss the DIS of leptons (electrons or muons) and the kinematic
variables that describe such a scattering [20]. In DIS, only the scattered lepton is
observed and not the hadronic final state (Figure 1). So, the DIS is characterized
by the kinematic variables E 0, the energy of the scattered lepton and � , the angle
of scattering. Instead of E 0 and � , it is more convenient to describe DIS by the
variablesQ2.D �q2/ and x, where q2 is the square of the four-momentum transfer
and x is the Bjorken variable.

At high energies, the square of the four-momentum transfer is:

q2 D k2 C k02 � 2k � k0 D m2l Cm2l � 2.EE 0 � k � k0/
D �2EE 0.1 � cos �/ D �4EE 0 sin2.�=2/; (1)

neglecting the mass ml of the lepton which is negligible when compared to its
energy. Thus,

Q2 D �q2 D 4EE 0 sin2.�=2/ (2)

x D Q2

2p � q D
Q2

2M�
; (3)

whereM denotes the mass of the nucleon and � D E 0�E the energy transfer to the
nucleon in the laboratory system. Thus, we choose the Lorentz invariant quantities
Q2 and x as the kinematic variables. The invariant mass W of the final hadronic
state is given by:

W 2 D .p C q/2 D p2 C 2p:q C q2 D M 2 C 2M� �Q2

D M 2 CQ2

�

1

x
� 1

�

: (4)
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Figure 1 Deep inelastic scattering of lepton on proton. k; k0; p; p0 are four-momenta and q de-
notes the four-momentum transfer. E and E 0 denote the energies of the incident and scattered
lepton in the laboratory. The final hadronic state h.p0/ is not observed and the invariant mass of
the final hadronic state is denoted by W
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It can be seen from (4), that W D M if x D 1 and W increases rapidly with the
decrease of x. Thus, the Bjorken variable x can be considered as the inelasticity
parameter. The Bjorken variable x D 1 denotes the elastic scattering and x <1
denotes the inelastic scattering. The study of small x region is of great interest and
offers a big challenge to the understanding of the experimental results in this region.

The DIS cross section of electrons or muons can be expressed in terms of two
structure functions F1.x;Q2/ and F2.x;Q2/. These structure functions are almost
found to be independent of Q2 and this is known as Bjorken scaling. Besides, there
exists a relation between these two structure functions in the limit Q2; � !1

F2.x;Q
2/ D 2xF1.x;Q2/ (5)

and this is known as Callon–Gross relation. Using the scaling approximation and
the Callon–Gross relation, the DIS cross section can be written as:

d2�lN
dxdy

D ME

2�

�

e2

q2

�2
�

1 � y C 1
2
y2
�

F2.x/; (6)

where

y D q:p

k:p
D M�

ME
D �

E
: (7)

The Parton Model

In the parton model, the lepton–nucleon cross section can be expressed as the in-
coherent sum of elastic lepton–quark cross sections. Figure 2 depicts the elastic
scattering of lepton on quark. To gain an insight into the quark structure of the nu-
cleon, let us consider the kinematics of the lepton–quark scattering.

P 2 D P 02 D m2q; (8)
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Figure 2 Elastic scattering of lepton by quark. k; k0; P; P 0 are four-momenta and q denotes the
four-momentum transfer. P 2 D P 02 D m2

q
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wheremq is the quark mass. The four-momentum transfer is given by:

P 0 � P D k � k0 D q; (9)

from which it follows

P 02 C P 2 � 2P 0:P D q2;

2P 2 � 2.P C q/:P D q2;

q2 C 2q:P D 0: (10)

From (3) and (10), the Bjorken variable x is given by:

x D � q2

2q:p
D q:P

q:p
: (11)

If one chooses a frame in which the nucleon has infinite momentum, then the four
momenta P and p become parallel since any transverse three-momentum of the
quark can be neglected. Then from (11), we obtain

P� D xp�: (12)

The Bjorken variable x has been initially introduced to define a specific kinematical
configuration of DIS. It has been interpreted later as the inelasticity parameter and
now, in the infinite momentum frame (IMF), it acquires a new physical meaning as
the fraction of the nucleon momentum carried by the quark. The interplay between
these two definitions of x leads to a new interpretation of the nucleon structure
function.

Nucleon Structure Functions

Let us now express the lepton–nucleon cross section as an incoherent sum of elastic
lepton–quark cross sections. If f .x/ is the quark distribution function of a given
flavour, then

d2�lN D
X

f

f .x/dx d�lf ; (13)

where d�lf denotes the lepton–quark cross section.

d2�lf
dy

D ME

2�

�

ef e

q2

�2

x
�

1 � y C 1
2
y2
�

; (14)

where ef denotes the charge of the quark of flavour f and e is the unit charge.
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From (6), (13) and (14), we deduce an expression for the nucleon structure
function in terms of the quark distribution functions f .x/.

F2.x/ D
X

f

�ef

e

�2

xf .x/: (15)

Quark Distribution Functions

Restricting our considerations to light quarks u; d and s, we need to consider only
the following quark distribution functions:

u.x/; Nu.x/; d.x/; Nd.x/; s.x/; Ns.x/:

In the infinite momentum frame (IMF), u.x/dx is interpreted as the probability of
finding the u quark carrying a fraction of momentum lying between x and x C dx
of the total nucleon momentum. So, the proton can be described by the following
set of equations:

Z 1

0

Œu.x/ � Nu.x/�dx D 2 (16)

Z 1

0

Œd.x/ � Nd.x/�dx D 1 (17)

Z 1

0

Œs.x/ � Ns.x/�dx D 0 (18)

The range of x integration is from 0 to 1. A similar description can be given for the
neutron. Because of the isospin invariance, the distribution functions for neutron are
related to those of proton. The following nomenclature is used.

u.x/ D x distribution of u quark in a proton
D x distribution of d quark in a neutron

d.x/ D x distribution of d quark in a proton
D x distribution of u quark in a neutron

s.x/ D x distribution of s quark in a proton or neutron

Similar definitions are used for Nu.x/; Nd.x/ and Ns.x/.
Using (15), we can now write down the nucleon structure functions in terms of

the quark distribution functions.

proton W F p2 .x/ D x



4

9
.u.x/C Nu.x//C 1

9
.d.x/C Nd.x/C s.x/C Ns.x//

�

: (19)

neutron W F n2 .x/ D x



4

9
.d.x/C Nd.x//C 1

9
.u.x/C Nu.x/C s.x/C Ns.x//

�

: (20)
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The Gottfried Sum Rule (GSR) can be written in terms of the quark distribution
functions.

GSR D
Z 1

0

1

x
.F

p
2 .x/ � F n2 .x//dx

D 1

3

Z 1

0

.u.x/C Nu.x/ � d.x/� Nd.x//dx

D 1

3
C 2

3

Z 1

0

.Nu.x/ � Nd.x//dx: (21)

If Nu.x/ D Nd.x/, then GSR = 1/3. The new muon collaboration experiment yields a
value

GSR D 0:240˙ 0:016:
This implies that the contribution from Nd.x/ is more than the contribution from
Nu.x/. This theory predicts qualitatively this feature and it is evident from the perusal
of Table 1 and Figure 5.

3 The Statistical Model of the Nucleon

The deep inelastic scattering of leptons on nucleons indicates that the nucleon con-
sists of three valence quarks, sea quarks and gluons, confined within a small volume.

Proton: u u d C quark–antiquark pairs C gluons
(Valence quarks) (Sea quarks)

Neutron: u d d C quark–antiquark pairs C gluons
(Valence quarks) (Sea quarks)

Based on this observation, let us develop a statistical model for the nucleon. It is a
MIT bag consisting of quark–gluon gas, for which the Fermi distribution function
is used for describing the quarks and the Bose distribution function for describing
the gluons. Treating the quarks as particles of zero rest mass, the number density of
u-quarks with momentum lying between p and p C dp at temperature T is given
by the Fermi distribution function [15–20].

nu.p/ D g

.2�/3
1

e.���u/=T C 1 ; (22)

where � is the energy and �u the chemical potential of the u-quark. The degeneracy
factor g is 6 which is the number of degrees of freedom (3 due to colour and 2 due
to spin) available for each flavour of quarks. Similar equations can be written for
the d -quarks and the antiquarks. The chemical potential for the d -quark �d is, in
general, different from that of u-quark. The chemical potential for the antiquark is
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of opposite sign to the chemical potential of the quark. With this observation, we
can write down the distributions functions for d -quarks and antiquarks.

nd .p/ D 6

.2�/3
1

e.���d /=T C 1; (23)

nNu.p/ D 6

.2�/3
1

e.�C�u/=T C 1 ; (24)

n Nd .p/ D
6

.2�/3
1

e.�C�d /=T C 1 ; (25)

Given the distribution functions, we can obtain the number density (number per
unit volume) of each flavour of quarks by integration over the momentum.

nu D
Z

nu.p/d3p; nd D
Z

nd .p/d
3p; (26)

nNu D
Z

nNu.p/d3p; n Nd D
Z

n Nd .p/d
3p; (27)

For the proton, the number of u valence quarks is 2 and the number of d valence
quarks is 1. If V is the volume of proton, then

.nu � nNu/V D 2I .nd � n Nd /V D 1: (28)

For the gluons, there is no number conservation and hence the chemical poten-
tial for the gluon is zero. The number density of the gluons is given by the Bose
distribution function.

ng.p/ D 16

.2�/3
1

e�=T � 1: (29)

The degeneracy factor for the gluons is 16, of which 8 is due to the colour degree of
freedom and 2 due to the transverse components of spin.

In a similar way, one can find the energy density "q of each flavour of quarks
and antiquarks (u, d , Nu and Nd ) and calculate their contributions to the total energy
density. As we have assumed zero rest mass for the quarks, the energy of the quark
" is numerically equal to its momentum p in the natural units („ D c D 1).

"qD
Z

6

.2�/3
p

e.p��q/=T C 1d3p; " NqD
Z

6

.2�/3
p

e.pC�q/=T C 1d3p; qDu; d:

(30)

For the gluons, the energy density is

"g D
Z

16

.2�/3
p

ep=T � 1d3p; (31)

The energy density due to all the quarks and gluons is the sum.

" D "u C "d C "Nu C " Nd C "g : (32)
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Now, we are in a position to write down the equations of state for the proton.

".T /V C BV D W; (33)

nu � nNu D 2=V D �uT
2 C �3u=�2; (34)

nd � n Nd D 1=V D �dT 2 C �3d=�2; (35)

P D .1=3/".T / � B D 0: (36)

The energy density ".T / is given by1

".T / D "u C "Nu C "d C " Nd C "g

D 3

4�2
.�4u C �4d /C

3

2
T 2.�2u C �2d /C

37

30
�2T 4; (37)

and it is a function of temperature. So, this bag model describes the nucleon not only
in the ground state (T D 0) but also in the excited states at higher temperature. So,
it can be truly described as the thermodynamical bag model of the nucleon. The bag
constant is denoted by B and the volume of the bag by V . The mass of the nucleon
M in the thermodynamical bag model corresponds to T D 0 and W denotes the
mass of the excited nucleon at some finite temperature T . Equation (36) arises from
the pressure balance condition or the energy minimization condition with respect to
the bag volume.

Let us consider the ground state of the nucleon which corresponds to T D 0.
Given the mass of the nucleon (M D 938:4 MeV), we can determine all the
other four quantities by solving the four equations (33) – (36), using any numer-
ical method such as the Newton-Raphson method.

�u D 335:9MeV; �d D 266:6MeV; B1=4 D 145:68MeV; R D 0:985 fm:

(38)

It is remarkable that this naive approach yields correctly the nucleon radius R. As-
suming the value of the bag constant2 B , one can determine W;�u; �d ; V at any

1 For the derivation of (34), (35) and (37), the reader is referred to: V. Devanathan, Ch. 14, Nuclear
Physics, Narosa Publishing House, New Delhi, India and Alpha Science International, Oxford,
UK. (2006)
2 The bag constant is known to decrease as the temperature increases

B D B0Œ1� .T=Tc/
4�;

where B0 is a bag constant corresponding to T D 0 and Tc is the critical temperature determined
from the pressure balance equation (36) by imposing the condition that the chemical potential
vanishes at the critical temperature:

Tc D .90B0=37�
2/1=4 � 102:6 MeV:
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higher temperature by solving the equations of state. As it is possible to extend the
study to higher temperatures by this method, this is known as the thermodynamical
bag model (TBM).

At T D 0, only three valance quarks are observed and as the temperature is
increased, more and more sea quarks (quark–antiquark pairs) are produced. This re-
sults in the increase of the mass of the nucleon as well as its volume (vide Figure 3).

This picture has a remarkable similarity with the features noticed in DIS. At
x D 1, only three valence quarks are observed and as x ! 0, more and more sea
quarks are detected in the nucleon (vide Figure 4).

The thermodynamical bag model has been used extensively by Devanathan
and his collaborators [15–19] to investigate the quark distribution functions and
the nucleon structure functions observed in deep inelastic scattering of leptons
on nucleons. They have also used the thermodynamical bag model to study the
nucleon–nucleon potential in terms of the quarks [21] and the static properties of
hadrons [22]. It is observed that the thermodynamical bag model offers a clear
insight into the transition of static properties of the nucleon into its dynamical prop-
erties, as observed in deep inelastic scattering of leptons.

T D 0
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High T

.nu � nNu/V D 2

.nd � n Nd /V D 1

Figure 3 Proton: At T D 0, proton consists of only three valence quarks but at high temperature,
a large number of sea quarks are observed along with valence quarks

Large x (x � 1)
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Small x (x � 0)

Nu �NNu D 2

Nd �N Nd D 1

Figure 4 Quark structure of proton: At large x, only three valence quarks are observed but at
small x, a large number of sea quarks are observed along with valence quarks
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Statistical Distribution Functions in IMF

The statistical distribution functions (22)–(25) and (29) when transformed to the
infinite momentum frame yields the quark distribution functions. This has been done
by Cleymans and Thews, Mac and Ugaz [10, 11] and Devanathan et al. [15–19].
We give here only the final results.

u.x/ D 2A lnŒ1C expf.�u � 1
2
xM/=T g�; (39)

d.x/ D 2A lnŒ1C expf.�d � 1
2
xM/=T g�; (40)

Nu.x/ D 2A lnŒ1C expf.��u � 1
2
xM/=T g�; (41)

Nd.x/ D 2A lnŒ1C expf.��d � 1
2
xM/=T g�; (42)

g.x/ D �16
3
A lnŒ1 � expf� 1

2
.xM=T /g�; (43)

with

A D 3M 2VxT

4�2
: (44)

The distribution functions given by (39)–(43) depend on the parameters T; V; �u

and �d . These are not free parameters. The invariant mass W of the final hadronic
state is determined for a given value of x using (4) and taking it as the mass of the
excited nucleon, all the parameters are obtained by solving the equations of state
(33)–(36) of the nucleon as given in Table 1.

The distribution functions for the u and d quarks are depicted in Figure 5 for
the proton using a set of parameters, so obtained. It is seen that u quarks dominate
over the d quarks whereas for the antiquarks, the opposite feature is observed. The
dominance of the Nd quarks over the Nu quarks – a feature so essential for the expla-
nation of the Gottfried Sum Rule (GSR) – comes out naturally in this formalism.

Table 1 Table showing the dependence of temperature T , bag radius R and chemical potentials
�u and �d on the Bjorken variable x along with the quark distribution functions for the proton in
DIS (Q2 D 4 Gev2)

x W (MeV) T (MeV) R (fm) �u (MeV) �d (MeV) xu.x/ xd.x/ x Nu.x/ x Nd.x/
0.15 4854 85.7 2.1275 50.1 25.7 0.442 0.306 0.085 0.130
0.20 4110 85.5 2.0057 59.3 30.7 0.530 0.337 0.070 0.117
0.30 3197 84.9 1.8297 76.7 40.6 0.559 0.301 0.035 0.069
0.40 2623 84.2 1.6958 94.2 51.2 0.468 0.216 0.014 0.032
0.50 2209 83.1 1.5805 113.2 63.5 0.345 0.136 0.005 0.012
0.60 1883 81.6 1.4722 135.2 78.9 0.235 0.080 0.001 0.004
0.70 1611 79.0 1.3622 162.6 100.0 0.153 0.043 0.000 0.001
0.80 1371 74.0 1.2414 200.6 132.2 0.093 0.021 0.000 0.000
0.90 1151 61.1 1.1025 259.4 187.6 0.042 0.006 0.000 0.000
0.95 1045 45.9 1.0347 298.1 226.6 0.012 0.001 0.000 0.000
1.00 938 0.0 0.9849 335.9 266.6 0.000 0.000 0.000 0.000
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d.x/

Nd.x/
Nu.x/

Figure 5 The quark distribution functions u.x/; d.x/; Nu.x/; Nd.x/ as a function of x, obtained
using the parameters given in Set 1

This feature is observed because the chemical potential �u is greater than �d as a
consequence of two valence u quarks and one valence d quark for the proton.

Since the quark distribution functions have been obtained by transforming the
Fermi distribution functions from the rest frame to the infinite momentum frame, it
is expected that their integrals should yield the total number of quarks of a particular
flavour. For instance

Nu D
Z

nu.p/d
3p D

Z 1

0

u.x/dx; (45)

where Nu denotes the total number of u quarks. Similar expressions can be written
for Nd ; NNu and N Nd . These relations have been verified by numerical integration for
a given set of parameters T; V; �u and �d . Calculations done with the following two
sets of parameters are presented in Table 2.

Set 1: T D 84.9 MeV, V D 25.69 fm3, �u D 76.7 MeV, �d D 40.6 MeV.
Set 2: T D 85.9 MeV, V D 51.02 fm3, �u D 39.9 MeV, �d D 20.3 MeV.

In Table 2, it is shown that the number of quarks of a particular flavour obtained by
performing the integration in the rest frame or in the IMF is essentially the same
for the proton yielding the value 2 for the u valence quarks (N V

u ) and 1 for the d
valence quark (N V

d
). In IMF, the values are slightly less since the distribution func-

tions extend to a small extent beyond the physical region x D 1 due to the neglect of
second-order terms in the transformation of the Fermi statistical distribution func-
tion from the rest frame to the IMF. If the upper limit of the integration is increased
slightly beyond x D 1, we obtain once again the correct number of valence quarks.
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Table 2 Number of quarks (expectation values) of a particular flavour
obtained by performing the integration in the rest frame and in the IMF
for two different sets of parameters

Set 1 Set 2
Number of quarks Rest frame IMF Rest frame IMF

Nu 2.482 2.398 3.502 3.384
NNu 0.482 0.468 1.502 1.455
NV

u D Nu �NNu 2.000 1.930 2.000 1.929
Nd 1.721 1.666 2.859 2.765
N Nd 0.721 0.700 1.859 1.800
NV
d D Nd �N Nd 1.000 0.966 1.000 0.965

0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

x

u.x/

M D 3:5 GeV

M D 2:5 GeV

M D 1:5 GeV

M D 0:9364 GeV

Figure 6 The quark distribution function u.x/ as a function of x for different values of nucleon
mass M

This ensures the correctness of the quark distribution function obtained by trans-
formation of the Fermi statistical distribution function from the rest frame to the
infinite momentum frame.

The quark distribution functions (39)–(42) in IMF involve the mass M whereas
the Fermi statistical distribution functions (22)–(25) do not depend explicitly onM .
The effect of changingM in the quark distribution function is investigated and pre-
sented in Figure 6. It is found that as the value of M is increased, the curve shifts
towards the lower values of x but the areas enclosed by the curve remains a con-
stant and is equal to the number of quarks of that flavour. This is a very important
observation and this has suggested to us the thermodynamical bag model to obtain
the parton distribution functions of the correct asymptotic behaviour.
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4 The Thermodynamical Bag Model

The parton distribution functions (39)–(43) involve the parameters T; V; �u and �d
which are obtained by solving the equations of state of the nucleon bag for a given
massW of the excited nucleon which depends on the Bjorken variable x. The quark
distribution functions calculated with a fixed set of parameters do not exhibit the cor-
rect asymptotic behaviour and a new approach has been developed by Devanathan
et al. [15–19] by treating the parameters as functions of the Bjorken variable x
and normalizing the distribution function so obtained by using one or two free pa-
rameters. A single parameter is found to be sufficient to obtain quark distribution
functions which compare favourably well with the experimental results for values
of x > 0:15. The resulting parton distribution functions are shown in Figure 7. They
exhibit the correct asymptotic behaviour. They vanish as x ! 1 because T ! 0.
For the study of smaller x region, the mass of the nucleon M in (39)–(43) is to be
replaced by W and additional parameters have to be used to normalize the quark
distribution functions so as to yield Nu �NNu D 2 and Nd �N Nd D 1.

Such a procedure is justified because the differential cross section for the DIS can
be written as the scalar product of leptonic tensor L�� and hadronic tensorW�� .

d2�.E;E 0; �/
d˝dE 0


 L��W�� : (46)
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Figure 7 Weighted quark and gluon distribution functions xu.x/; xd.x/; x Nu.x/; x Nd.x/ and
xg.x/ obtained using the thermodynamical bag model for Q2 D 4GeV2
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The hadronic tensor arises from the hadronic current–current interaction.

W�� 

X

h

hpjJ ��jhihjJ�jpi; (47)

where the summation is over all the possible final hadronic states h of invariant
massW . The hadronic tensor, in turn, is expressed in terms of the nucleon structure
functions, which, in turn, is expressed in terms of the quark distribution functions.
If one attempts to deduce the quark distribution function from the Fermi distribu-
tion function, in some way the excitation of the target nucleon to the final hadronic
state and its subsequent deexcitation should be incorporated in the phenomenolog-
ical model. This is what is done in the thermodynamical bag model by identifying
W with the mass of the excited nucleon and normalizing the distribution functions
so obtained to yield the experimentally observed value 0.45 for the fraction of the
momentum carried by the quarks by using a single parameter �.Q2/. The distri-
bution functions so obtained are shown in Figure 7. The proton structure function
F2.x/ calculated using the quark distribution functions is given in Figure 8. The
dotted line curve gives the contribution of valence quarks alone to F2.x/. The thin
line curve indicates a steep rise in the small x region due to increase in the proton
mass as envisaged in TBM.
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Figure 8 Proton structure function F2.x/ as a function of x along with the experimental data
[23–25]. The dotted curve depicts the contribution of valence quarks alone. The thin line curve
indicates the steep rise in the small x region due to increase in proton mass M as envisaged in
TBM. (Q2 D 4 GeV2)
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5 The Nucleon Spin

The deep inelastic scattering experiments with polarized leptons on polarized pro-
ton yield valuable information on the polarized nucleon structure functions and the
quark spin distribution functions. The experimental data implied that only a small
fraction of the proton spin is carried by the quarks. This startling result has come to
be known as the proton spin puzzle and referred to as the spin crisis.

In the parton model, the nucleon spin structure function can be expressed in terms
of the quark spin distribution functions.

g1.x/ D 1

2

X

i

e2i Œ.q
"
i .x/C Nq"i .x// � .q#i .x/C Nq#i .x//�; (48)

where ei is the charge of the quark (antiquark) of flavour i and q"i .x/. Nq"i .x// is the
quark (antiquark) distribution function of momentum fraction x, having the helicity
parallel to that of the nucleon and q#i .x/. Nq#i .x// is that with helicity antiparallel to
that of the nucleon. Restricting our considerations to u and d quarks only, let us
write down explicitly the proton and neutron spin structure functions

g
p
1 .x/ D

1

2




4

9
f.u".x/C Nu".x// � .u#.x/C Nu#.x//g

C 1
9
f.d".x/C Nd".x// � .d#.x/C Nd#.x//g

�

; (49)

gn1 .x/ D
1

2




1

9
f.u".x/C Nu".x// � .u#.x/C Nu#.x//g

C 4
9
f.d".x/C Nd".x// � .d#.x/C Nd#.x//g

�

; (50)

with the usual notation

dn.x/ D up.x/ D u.x/I un.x/ D dp.x/ D d.x/: (51)

The integrals of the proton and neutron spin functions �p1 and �n1 have special
significance since their difference is the Bjorken Sum Rule (BSR), obtained from
general considerations and hence considered sacrosanct.

�
p
1 D

Z 1

0

g
p
1 .x/ dxI �n1 D

Z 1

0

gn1 .x/ dx: (52)

BSR D �p1 � �n1 D
1

6

gA

gV

�

1 � ˛.Q
2/

�

�

; (53)

where gA and gV denote the weak interaction axial vector and vector coupling con-

stants and the multiplicative factor
�

1 � ˛.Q2/


�

is the perturbative QCD correction

factor.
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Following exactly the procedure used for obtaining the unpolarized nucleon
structure functions, we can now obtain the polarized nucleon structure functions.
Including the spin degree of freedom in the Fermi distribution functions, the num-
ber densities of u and Nu quarks with spin up and spin down can be written as

n"u D
g

8�2

Z

d3p

expŒ.p � �u � 1
2
�u/=T �C 1: (54)

n#u D
g

8�2

Z

d3p

expŒ.p � �u C 1
2
�u/=T �C 1: (55)

n
"
Nu D

g

8�2

Z

d3p

expŒ.p C �u � 1
2
�u/=T �C 1: (56)

n
#
Nu D

g

8�2

Z

d3p

expŒ.p C �u C 1
2
�u/=T �C 1 : (57)

The multiplicative factor g denotes the colour degeneracy (g D 3) and the additional
factor �u is the spin parameter. A similar set of equations can be written for d quarks
for which the chemical potential is �d and the spin parameter is �d . The energy
densities can also be written in a similar way assuming the quarks to be of zero rest
mass.

The Lagrangian multipliers T;�u; �d ; �u and �d are determined from the con-
straints on energy, particle number and the spin of the system. For the proton, the
following equations of state determine the Lagrangian multipliers.

".T /V C BV D W; (58)

V Œ.n"u C n#u /� .n"Nu C .n#Nu /� D 2; (59)

V Œ.n
"
d
C n#

d
/� .n"Nd C .n

#
Nd /� D 1; (60)

V Œ.n"u C n#Nu /� .n#u C .n#Nu /� D a; (61)

V Œ.n
"
d
C n"Nd /� .n

#
d
C .n#Nd /� D b; (62)

P D .1=3/".T / � B D 0: (63)

Using the Fermi distribution functions, (59)–(62) can be written in terms of
�u; �d ; �u; �d .

V

2�2

�

2�2�uT
2 C 2�3u C 3

2
�u�

2
u

	 D 2 (64)

V

2�2

�

2�2�dT
2 C 2�3d C 3

2
�d�

2
d

	 D 1 (65)

V

2�2

�

�2�uT
2 C 3�u�

2
u C �3u =4

	 D a (66)

V

2�2

�

�2�dT
2 C 3�d�2u C �3d=4

	 D b (67)
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The total energy density ".T / is given by:

".T / D .""u C "#u C ""Nu C "#Nu /C .""d C "#d C ""Nd C "
#
Nd /C "g :

D 37

30
�2T 4 C 3

2
T 2.�2u C �2d C 1

4
�2u C 1

4
�2d /

C 3

4�2

�

�4u C �4d C 1
16
�4u C 1

16
�4d C 3

2
�2u�

2
u C 3

2
�2d�

2
d

�

(68)

Given W and B , the other six quantities T; V; �u; �d ; �u; �d can be determined
uniquely by solving the earlier equations. The quantities a and b denote the separate
spin contributions from the u and d quarks. If a C b D 1, then the entire nucleon
spin will be accounted by the quarks. Close [26] argues that for the proton, the spin
contribution from u quarks is 4

3
(a D 4

3
/ and from d quarks is �1

3
(b D �1

3
), such

that aC b D 1. The nucleon spin structure functions gp1 and gn1 , obtained from DIS
experiments with polarized leptons on polarized targets, agree remarkably well with
this theoretical study for the values of the spin parameters a D 1:1 and b D �0:7.
That means that only 40% of the nucleon spin is accounted for by the quark spins,
since aC b D 0:4.

By boosting the Fermi distribution functions (54)–(57) to the IMF, we obtain the
quark spin distribution functions u".x/; u#.x/; Nu".x/; Nu#.x/.

u".x/ D A lnŒ1C expŒ.�u C 1
2
�u � 1

2
xM/=T �; (69)

u#.x/ D A lnŒ1C expŒ.�u � 1
2
�u � 1

2
xM/=T �; (70)

Nu".x/ D A lnŒ1C expŒ.��u C 1
2
�u � 1

2
xM/=T �; (71)

Nu#.x/ D A lnŒ1C expŒ.��u � 1
2
�u � 1

2
xM/=T �; (72)

with

A D 3M 2VxT

4�2
:

Similar expressions are obtained for the quark spin distribution functions d".x/;
d#.x/; Nd".x/; Nd#.x/, by replacing the chemical potential by �d and the spin
parameter by �d .

A Consistency Check

Since the quark spin distribution functions (69)–(72) are obtained by transforming
the Fermi distribution functions (54)–(57) to the IMF, it is expected that their in-
tegrals should yield the total number of quarks of a particular flavour and helicity.

N "u D
Z

n"u .p/d3p D
Z 1

0

u".x/dx: (73)
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This has been verified by numerical integration. It is also observed that the Fermi
distribution function nu.p/ in the rest frame does not involve the nucleon mass M
but the quark distribution function u".x/ in IMF depends on the massM . The quark
distribution function u".x/ shifts towards the smaller values of x for higher values
of M as observed in Figure 6. But the integral

Z 1

0

u".x/dx

is independent of M . This is an important observation since the nucleon mass M
has to be replaced by W for small values of x

Further, it is observed that the exponential function in the quark spin distribution
functions (69)–(72) is much larger than 1 and hence the quark distribution functions
obey a simple additive law.

u.x/ D u".x/C u#.x/: (74)

d.x/ D d".x/C d#.x/: (75)

Nu.x/ D Nu".x/C Nu#.x/: (76)
Nd.x/ D Nd".x/C Nd#.x/: (77)

Nucleon Spin Structure Functions

The nucleon spin structure functions gp1 .x/ and gn1 .x/ are obtained from (49) and
(50). The parameters T; V; �u; �d ; �u; �d are obtained by solving the equations
of state (58)–(63). Since the quark distribution functions calculated with a fixed
set of parameters do not satisfy the correct asymptotic behaviour, a new approach
known as the thermodynamical bag model has been developed by Devanathan et al.
[15–19]. In this model, the parameters are treated as functions of the Bjorken vari-
able x and the distribution functions so obtained have to be renormalized to yield the
number of valence quarks. This renormalization procedure is to include the structure
of the hadronic current in the quark distribution functions. A remarkable agreement
is obtained with the experimental data [27, 28] by Devanathan and McCarthy (DM)
[18,19] and they are presented in Table 3. The nucleon spin structure functions cal-

Table 3 Comparison of the
theoretical calculations
(Q2 D 3GeV2) of
Devanathan and McCarthy
with the experimental data
on spin observables

DM (Theoretical
calculation) Experimental data

�
p
1 0:134 0:129˙ 0:004˙ 0:010
�n1 �0:033 �0:033˙ 0:008˙ 0:013
BSR 0:168 0:162˙ 0:024
�u 0:685 0:821˙ 0:034
�d �0:320 �0:437˙ 0:035
�s 
 
 
 �0:098˙ 0:037
�q 0:365 0:287˙ 0:104
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Figure 9 The graph xgp1 .x/ vs x at Q2 D 3 GeV2. The solid curve represents the theoretical
calculation and the experimental data are from the E143 collaboration

Figure 10 The graph gp1 .x/=F
p
1 .x/ vs x at Q2 D 3 GeV2. The solid curve represents the theo-

retical calculation [DM] and the experimental data are from the E143 collaboration

culated in this model are shown in Figures 9–11 along with the experimental data
[27, 28]. This model calculation yields the Bjorken sum rule correctly. The strange
quarks have not been included in this calculation, the inclusion of which will only
increase the number of equations of state defining the nucleon bag and will involve
a greater numerical effort to assess their contribution.
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Figure 11 The graph xgn1 .x/ vs x at Q2 D 3 GeV2. The solid curve represents the theoretical
calculation [DM] and the experimental data are from the E142 collaboration

6 Conclusion

The statistical model that is discussed in this article does not involve any free
parameters. All the parameters have been determined by solving the equations of
state of the nucleon considered as a MIT bag consisting of quarks and gluons. By
boosting the statistical distribution functions, so obtained, to the infinite momentum
frame (IMF), we obtain the quark distribution functions. These quark distribution
functions are not realistic and they do not fit in with the experimental data. Taking
explicitly the dependence of the quark distribution functions on the Bjorken vari-
able x, renormalized quark distribution functions are obtained using a parameter
�.x/ to obtain realistic quark distribution functions for x > 1:5. To obtain fit with
experimental data in small x region, the nucleon mass M is to be replaced by the
invariant mass W of the final hadronic state and renormalized by using one more
parameter. However this parameter is not absolutely free, as it is constrained by
the condition that the realistic quark distribution function so obtained should yield,
when integrated, the number of valence quarks in the nucleon. Both the unpolar-
ized and polarized quark distribution functions and the unpolarized and polarized
nucleon structure functions are obtained and they compare admirably well with the
available experimental data. The small x region has not been studied in detail in this
model but the steep rise in the structure function, observed experimentally, in the
small x region, is adequately explained by this model. In conclusion, it is reiterated
that the statistical model, discussed here, is a QCD inspired model and it gives a
clear physical insight into the dynamical properties of the nucleon that are observed
in DIS.
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1 Introduction

Extensive studies on Clifford algebra, its generalizations, and their physical ap-
plications were made for about a decade starting from 1967, under the name of
L-Matrix Theory, by Alladi Ramakrishnan and his collaborators at The Institute
of Mathematical Sciences (MATSCIENCE) including me, his Ph.D student during
1971–1976. When I joined MATSCIENCE in August 1971, as a student, the book
[1], containing all the results of their papers on the subject, up to then, was getting
ready to be released; I had participated in the final stage of proof reading of the
book. Chandrasekaran had just completed his Ph.D. thesis on the topic [2]. Sub-
sequently, I started my thesis work on the same topic under the guidance of Alladi
Ramakrishnan. I had also the guidance of Ranganathan, Santhanam, and Vasudevan,
senior faculty members of the institute, who had also started their scientific careers
under the guidance of Alladi Ramakrishnan and had contributed largely to the de-
velopment of L-matrix theory. In my Ph.D. thesis [3] I had studied certain group
theoretical aspects of generalized Clifford algebras (GCAs) and their physical appli-
cations. After my Ph.D. work also, I have applied the elements of GCAs in studies of
certain problems in quantum mechanics and quantum groups. Here, I would like to
outline some aspects of GCAs and their applications essentially based on my work.

A generalized Clifford algebra (GCA) can be presented, in general, as an algebra
having a basis with generators fej jj D 1; 2; : : : ; ng satisfying the relations:

ej ek D !jkekej ; !jkel D el!jk ; !jk!lm D !lm!jk ;

e
Nj

j D 1; !
Nj

jk
D !

Nk

jk
D 1; 8 j; k; l;m D 1; 2; : : : ; n: (1.1)

In any irreducible matrix representation, relevant for physical applications, one
will have

!jk D !�1kj D e2 i�jk=Njk ; Njk D g.c.d .Nj ; Nk/;

j; k D 1; 2; : : : ; n (1.2)

where �jks are integers. Consequently, one can write

!jk D e2 itjk= ON ; tkj D �tjk ; ON D l.c.m ŒNjk �;

j; k D 1; 2; : : : ; n: (1.3)

Thus, any GCA can be characterized by an integer ON and an antisymmetric integer
matrix

T D

0

B

B

B

B

B

B

B

@

0 t12 t13 : : : t1n

�t12 0 t23 : : : t2n

�t13 �t23 0 : : : t3n
:::

:::
:::

: : :
:::

�t1n �t2n �t3n : : : 0

1

C

C

C

C

C

C

C

A

: (1.4)
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In the following we shall study the representation theory of GCAs and physical
applications of some special cases of these algebras.

2 Projective Representations of Finite Abelian Groups
and GCAs

GCAs arise in the study of projective, or ray, representations of finite abelian
groups. Let us consider the finite abelian group G Š ZN1

˝ ZN2
˝ : : : ˝ ZNn

with fcm1

1 c
m2

2 : : : c
mn
n g as its generic element where the generators fcj g satisfy the

relations

cj ck D ckcj ; c
Nj

j D 1; j D 1; 2; : : : ; n: (2.1)

A projective representationD.G/ of a group G is defined as

D.gj /D.gk/ D '.gj ; gk/D.gjgk/; '.gj ; gk/ 2 C; 8 gj ; gk 2 G; (2.2)

where the given factor set f'.gj ; gk/g is such that

'.gj ; gk/'.gjgk ; gl / D '.gj ; gkgl /'.gk; gl /; 8 gj ; gk ; gl 2 G; (2.3)

and

'.E; gj / D '.gj ; E/ D 1; 8 gj 2 G; (2.4)

with E as the identity element of G. For an abelian group, (2.2) implies:

D.gj /D.gk/ D '.gj ; gk/D.gjgk/ D '.gj ; gk/D.gkgj /

D '.gj ; gk/

'.gk ; gj /
D.gk/D.gj /; 8 gj ; gk 2 G; (2.5)

or,

D.gj /D.gk/ D �'.gj ; gk/D.gk/D.gj /; (2.6)

with

�'.gj ; gk/ D '.gj ; gk/

'.gk ; gj /
; 8 gj ; gk 2 G: (2.7)

Using (2.2) it is easy to see that we can write

D
�

…n
jD1c

mj

j

�

D �
�

…n
jD1c

mj

j

�

˚

…n
jD1D.cj /mj

�

; (2.8)
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with

�
�

…n
jD1c

mj

j

�

D …n
jD1…

mj

pjD1'
�

cj ;…
n�j
lD0 c

Nj�pj

j c
mj Cl

jCl
��1

: (2.9)

From this it follows that

D
�

c
Nj

j

�

D �
�

c
Nj

j

�

D.cj /
Nj D I; 8 j D 1; 2; : : : ; n:; (2.10)

where

�
�

c
Nj

j

�

D …
Nj

pjD1'
�

cj ; c
Nj�pj

j

��1
: (2.11)

Let us now define

ej D �
�

c
Nj

j

�1=Nj

D.cj /; 8 j D 1; 2; : : : ; n: (2.12)

Then, it is found that the required representations satisfying (2.2–2.7), for the given
factor set, are immediately obtained from (2.8–2.9) once the ordinary representa-
tions of fej jj D 1; 2; : : : ; ng are found such that

ej ek D !
.'/

jk
ekej ; !

.'/

jk
el D el!

.'/

jk
; !

.'/

jk
!
.'/

lm
D !

.'/

lm
!
.'/

jk
;

e
Nj

j D 1;
�

!
.'/

jk

�Nj D
�

!
.'/

jk

�Nk D 1; with !
.'/

jk
D �'.cj ; ck/;

8 j; k; l;m D 1; 2; : : : ; n: (2.13)

Comparing (2.13) with (1.1) it is clear that the problem of finding the projective
representations of any finite abelian group for any given factor set reduces to the
problem of finding the ordinary representations of a generalized Clifford algebra
defined by (1.1).

3 Representations of GCAs

Let us now consider a GCA associated with a specific antisymmetric integer matrix
T as in (1.4) and an integer ON . The T -matrix can be related to its skew-normal form
T by a transformation as follows :

T D
�

0 t1
�t1 0

�

˚ � � � ˚
�

0 ts
�ts 0

�

˚On�2s ;

T D UT QU .˙mod: ON/; (3.1)
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where On�2s is an .n�2s/�.n�2s/ null matrix,U D Œujk � is a unimodular integer
matrix with jujk j � ON , and QU is the transpose of U . For any given antisymmetric
integer matrix T it is possible to get the skew normal form T and the corresponding
U -matrix explicitly by a systematic procedure (see, e.g., [4]). Now, let f�j jj D
1; 2; : : : ; ng be a set of elements satisfying the commutation relations

�2j�1�2j D e2 itj = ON �2j �2j�1; j D 1; 2; : : : ; s;
�k�l D �l�k otherwise: (3.2)

It is clear that this set of relations generate a GCA corresponding to T as its
T -matrix. It is straightforward to verify that if we construct fej jj D 1; 2; : : : ; ng
from f�j jj D 1; 2; : : : ; ng through a product transformation [3, 5]

ej D �j �uj1

1 �
uj 2

2 : : : �
ujn
n ; 8 j D 1; 2; : : : ; n; (3.3)

where
�

ujk
	 D U and f�j jj D 1; 2; : : : ; ng are complex numbers, then, in view of

(3.1),

ej ek D e2 itjk= ON ekej ; 8 j; k D 1; 2; : : : ; n:; (3.4)

as required in (1.1)–(1.3); the complex numbers f�j g are normalization factors
which are to be chosen such that

e
Nj

j D 1; 8 j D 1; 2; : : : ; n: (3.5)

Now, let the matrix representations of f�j jj D 1; 2; : : : ; 2sg be given by:

�1 D I ˝ I ˝ I ˝ � � � ˝ I ˝ A1;
�2 D I ˝ I ˝ I ˝ � � � ˝ I ˝ B1;
�3 D I ˝ I ˝ I ˝ � � � ˝ A2 ˝ I;
�4 D I ˝ I ˝ I ˝ � � � ˝ B2 ˝ I;

:::

�2s�1 D As ˝ I ˝ I ˝ � � � ˝ I ˝ I;
�2s D Bs ˝ I ˝ I ˝ � � � ˝ I ˝ I; (3.6)

where

AjBj D !�jj BjAj ;
with !j D e2 i=Nj ; Nj D ON=.g.c.d..tj ; ON//;
�j D tj =.g.c.d.tj ; ON//; j D 1; 2; : : : ; s; (3.7)
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and I s are identity matrices of appropriate dimensions. As f�kjk D 2s C 1; 2s C
2; : : : ; ng commute among themselves and also with all other fej jj D 1; 2; : : : ; 2sg
they are represented by unimodular complex numbers which can be absorbed in the
normalization factors f�j g in (3.3). This shows that if the matrix representations
of all As and Bs satisfying (3.7) are known, then the problem of representation of
the given GCA is solved. Explicitly, one has, apart from multiplicative normalizing
phase factors,

ej 
 Auj.2s�1/
s B

uj.2s/
s ˝ Auj.2s�3/

s�1 B
uj.2s�2/

s�1 ˝ : : :˝ Auj1

1 B
uj 2

1 ;

8 j D 1; 2; : : : ; n: (3.8)

Note that !
�j
j s in (3.7) are primitive roots of unity. Thus, the representation theory

of any GCA depends essentially on the central relation

AB D !BA; (3.9)

where ! is a nontrivial primitive root of unity. If ! is a primitive N th root of unity
then the normalization relations for A and B can be

AjN D I; BkN D I; where j; k D 1; 2; : : : : (3.10)

The central relation (3.9) determines the representation of A and B uniquely up to
multiplicative phase factors and the normalization relation (3.10) fixes these phase
factors. For more details on projective representions of finite abelian groups and
their relation to GCAs, and other different approaches to GCAs, see [6]–[13].

4 The Clifford Algebra

Hamilton’s quaternion, generalizing the complex number, is given by:

q D q01C q1iC q2jC q3k; (4.1)

where fq0; q1; q2; q3g are real numbers, 1 is the identity unit, and fi; j; kg are imagi-
nary units such that

ij D �ji; jk D �kj; ki D �ik;

i2 D j2 D k2 D �1; (4.2)

and

ij D k; jk D i; ki D j: (4.3)
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It should be noted that the relations in (4.3) are not independent of the commutation
and normalization relations (4.2); to see this, observe that ijk commutes with each
one of the imaginary units fi; j; kg and hence ijk 
 1. The ‘geometric algebra’ of
Clifford [14] has the generating relations

�j �k D ��k�j ; for j ¤ k
�2j D �1; 8 j; k D 1; 2; : : : ; n; (4.4)

obtained by generalizing (4.2). This is what has become the Clifford algebra defined
by the generating relations

ej ek D �ekej ; for j ¤ k;
e2j D 1; 8 j; k D 1; 2; : : : ; n; (4.5)

which differ from (4.4) only in the normalization conditions, and evolved into the
GCA (1.1). Thus, the Clifford algebra (4.5) corresponds to (1.1) with the choice

!jk D �1; Nj D 2; 8 j; k D 1; 2; : : : ; n; (4.6)

associated with the T -matrix

T D

0

B

B

B

B

B

B

B

@

0 1 1 : : : 1

�1 0 1 : : : 1

�1 �1 0 : : : 1

:::
:::

:::
: : :

:::

�1 �1 �1 : : : 0

1

C

C

C

C

C

C

C

A

: (4.7)

and

ON D 2: (4.8)

The corresponding skew normal form is

T D
�

0 1

�1 0

�

˚
�

0 1

�1 0

�

˚ � � � ˚
�

0 1

�1 0

�

„ ƒ‚ …

m times

; (4.9)

when n D 2m. When n D 2mC 1,

T D
�

0 1

�1 0

�

˚
�

0 1

�1 0

�

˚ � � � ˚
�

0 1

�1 0

�

„ ƒ‚ …

m times

˚ 0: (4.10)
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In this case the U -matrices are

U D

0

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 : : : 0 0 1 0

0 0 0 0 : : : 0 0 0 1

0 0 0 0 : : : 1 0 �1 1

0 0 0 0 : : : 0 1 �1 1
:::

:::
:::

:::
: : :

:::
:::

:::
:::

1 0 �1 1 : : : �1 1 �1 1

0 1 �1 1 : : : �1 1 �1 1

1

C

C

C

C

C

C

C

C

C

C

A

; (4.11)

for n D 2m;

and

U D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 : : : 0 0 1 0 0

0 0 0 0 : : : 0 0 0 1 0

0 0 0 0 : : : 1 0 �1 1 0

0 0 0 0 : : : 0 1 �1 1 0
:::

:::
:::

:::
: : :

:::
:::

:::
:::

:::

1 0 �1 1 : : : �1 1 �1 1 0

0 1 �1 1 : : : �1 1 �1 1 0

�1 1 �1 1 : : : �1 1 �1 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

; (4.12)

for n D 2mC 1;

such that

T D UT QU .˙mod:2/: (4.13)

Now, equation (3.2) becomes in this case, for both n D 2m and n D 2mC 1,

�2j�1�2j D ��2j �2j�1; j D 1; 2; : : : ; m;
�k�l D �l�k; otherwise; (4.14)

with the matrix representations

�1 D I ˝ I ˝ I ˝ � � � ˝ I ˝A1;
�2 D I ˝ I ˝ I ˝ � � � ˝ I ˝B1;
�3 D I ˝ I ˝ I ˝ � � � ˝ A2 ˝ I;
�4 D I ˝ I ˝ I ˝ � � � ˝ B2 ˝ I;

:::

�2m�1 D Am ˝ I ˝ I ˝ � � � ˝ I ˝ I;
�2m D Bm ˝ I ˝ I ˝ � � � ˝ I ˝ I; (4.15)
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where

Aj D �1 D
�

0 1

1 0

�

; Bj D �3 D
�

1 0

0 �1
�

;

8 j D 1; 2; : : : ; m: (4.16)

In the case of n D 2m C 1, as �2mC1 commutes with all other �j s it can be just
taken to be 1. The matrices �1 and �3 are the well known first and the third Pauli
matrices, respectively, and the second Pauli matrix is given by:

�2 D i�1�3 D
�

0 �i
i 0

�

: (4.17)

Then, in view of (3.8) and (4.11, 4.12), the required representations of (4.5) are
given in terms of the Pauli matrices by:

e1 D �1 ˝ I ˝ � � � ˝ I ˝ I;
e2 D �3 ˝ I ˝ � � � ˝ I ˝ I;
e3 D �2 ˝ �1 ˝ I ˝ � � � ˝ I ˝ I;
e4 D �2 ˝ �3 ˝ I ˝ � � � ˝ I ˝ I

:::

e2m�1 D �2 ˝ �2 ˝ � � � ˝ �2 ˝ �1;
e2m D �2 ˝ �2 ˝ � � � ˝ �2 ˝ �3;

e2mC1 D �2 ˝ �2 ˝ � � ��2 ˝ �2: (4.18)

Note that this representation is Hermitian and unitary. One can show that this is
an irreducible representation. Also it should be noted that the earlier representation
matrices are defined only upto multiplication by˙1 because e2j D 1 for all j .

Let us now write down the generators of the first four Clifford algebras:

C .2/ W e.2/1 D �1; e
.2/
2 D �3;

C .3/ W e.3/1 D �1; e
.3/
2 D �3; e

.3/
3 D �2;

C .4/ W e.4/1 D �1 ˝ I; e.4/2 D �3 ˝ I;
e
.4/
3 D �2 ˝ �1; e.4/4 D �2 ˝ �3;

C .5/ W e.5/1 D �1 ˝ I; e.5/2 D �3 ˝ I;
e
.5/
3 D �2 ˝ �1; e.5/4 D �2 ˝ �3; e.5/5 D �2 ˝ �2; (4.19)

where the superscript indicates the number of generators in the corresponding alge-
bra. The dimension of the irreducible representation of the Clifford algebra with
2m, or 2m C 1, generators is 2m. One can show that for the algebra with an
even number of generators there is only one unique irreducible representation up to
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equivalence. In the case of the algebra with an odd number of generators there are
two inequivalent irreducible representations where the other representation is given
by multiplying all the matrices of the first representation by �1. These statements
form Pauli’s theorem on Clifford algebra.

An obvious irreducible representation of the identity and the three imaginary
units of Hamilton’s quaternion algebra (4.2, 4.3) is given by:

1 D I; i D �i�1; j D �i�3; k D i�2: (4.20)

From the above it is clear that, as Clifford remarked [14], the geometric algebra,
or the Clifford algebra, is a compound of quaternion algebras the units of which
are commuting with one another. Actually, (3.2) and (3.3) correspond precisely
to Clifford’s original construction of geometric algebra starting with commuting
quaternion algebras; matrix representations and realization of commuting quater-
nion algebras in terms of direct products did not exist at that time. Later, obviously
unaware of Clifford’s work, Dirac [15] used the same procedure to construct his
four matrices f˛x; ˛y ; ˛z; ˇg, building blocks of his relativistic theory of electron
and other spin-1=2 particles, starting with the three Pauli matrices f�1; �2; �3g. The
Dirac matrices are given by:

˛x D �1 ˝ �1; ˛y D �1 ˝ �2; ˛z D �1 ˝ �3; ˇ D �3 ˝ I; (4.21)

which can be shown to be equivalent to the representation of C .4/ given earlier;
as already mentioned, C .4/ has only one inequivalent irreducible representation.
Clifford algebra is basic to the theory of spinors, theory of fermion fields, Onsager’s
solution of the two dimensional Ising model, etc. For detailed accounts of Clifford
algebra and its various physical applications see, e.g., [16]–[18].

5 Alladi Ramakrishnan’s L-Matrix Theory and � -Operation

Representation theory of Clifford algebra has been expressed by Alladi
Ramakrishnan [1] in a very nice framework called the L-matrix theory. Let

L.2mC1/./ D
2mC1
X

jD1
j e

.2mC1/
j ; (5.1)

called an L-matrix, be associated with a .2m C 1/-dimensional vector
 D .1; 2; : : : ; 2mC1/. It follows that

�

L.2mC1/./
�2 D

0

@

2mC1
X

jD1
2j

1

A I D jjjj2I; (5.2)
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where I is the 2m � 2m identity matrix. Thus, L2 represents the square of the norm,
or the length, of the vector . In other words, L is a square root of

P

2j linear
in fj g.

From (4.19) observe that

e
.5/
1 D e.3/1 ˝ I; e

.5/
2 D e

.3/
2 ˝ I;

e
.5/
3 D e.3/3 ˝ e.3/1 ; e

.5/
4 D e

.3/
3 ˝ e.3/2 ; e

.5/
5 D e

.3/
3 ˝ e.3/3 : (5.3)

Thus, one can write

L.5/./ D
5
X

jD1
j e

.5/
j

D e
.3/
1 ˝ 1I C e.3/2 ˝ 2I C e.3/3 ˝

�

3e
.3/
1 C 4e.3/2 C 5e.3/3

�

;

(5.4)

i.e., L.5/ can be obtained from L.3/ by replacing 1, 2, and 3 by 1I , 2I ,
and L.3/.3; 4; 5/, respectively. From (4.18) it is straightforward to see that
this procedure generalizes : an L.2mC3/ can be obtained from an L.2mC1/ by
replacing .1; 2; : : : ; 2m/, respectively, by .1I; 2I; : : : ; 2mI /, and 2mC1
by L.3/.2mC1; 2mC2; 2mC3/. This procedure is called �-operation by Alladi
Ramakrishnan. It can be shown that the induced representation technique of group
theory takes this form in the context of Clifford algebra [19]. Actually, in this prce-
dure any one of the parameters of L.2mC1/ can be replaced by an L.3/ and the
remaining parameters fj g can be replaced, respectively, by fj I g with suitable
relabelling. As we shall see later this �-operation generalizes to the case of GCAs
with ordered !-commutation relations.

Another interesting result of Alladi Ramakrishnan is on the diagonalization of an
L-matrix. An L.2mC1/-matrix of dimension 2m obeys

�

L.2mC1/
�2 D

2mC1
X

jD1
2j I D ƒ2I; (5.5)

and hence has .ƒ;�ƒ/ as its eigenvalues each being 2m�1-fold degenerate. In
general, let us call the matrix e.2mC1/2 , or e.2m/2 , as ˇ:

ˇ D
�

I 0

0 �I
�

; (5.6)

where I is the 2m�1-dimensional identity matrix. Thus, the diagonal form of L is
ƒˇ. Then, from the relation

L.LCƒˇ/ D ƒ2I C Lƒˇ D .LCƒˇ/ƒˇ; (5.7)
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it follows that .LCƒˇ/ is the matrix diagonalizingL and the columns of .L C ƒˇ/
are the eigenvectors of L. Note that an L.2m/-matrix, of dimension 2m, can be
treated as an L.2mC1/-matrix with one of the s as zero.

Let us now take a HermitianL./-matrix where all the -parameters are real. As
ˇ D e2 anticommutes with all the other ej s we get

.LCƒˇ/2 D 2ƒ2I Cƒ.Lˇ C ˇL/ D 2ƒ.ƒC 2/I: (5.8)

Hence

U D LCƒˇ
p

2ƒ.ƒC 2/
(5.9)

is Hermitian and unitary (U D U � D U�1) and is such that

U�1LU D ƒˇ: (5.10)

Thus, the columns of U are normalized eigenvectors of the Hermitian L. This re-
sult has been applied [1] to solve in a very simple manner Dirac’s relativistic wave
equation [15],

i„@ .Er; t/
@t

D



�i„c
�

˛x
@

@x
C ˛y @

@y
C ˛z

@

@z

�

Cmc2ˇ
�

 .Er; t/;
(5.11)

where  .Er; t/ is the 4-component spinor associated with the free spin-1=2 particle.

6 Dirac’s Positive-Energy Relativistic Wave Equation

Students of Alladi Ramakrishnan got excellent training as professional scientists.
He emphasized that the students should master any topic of research by studying the
works of the leaders in the field and should communicate with their peers whenever
necessary. In this connection, I would like to recall proudly an incident.

Following a suggestion of Santhanam, my fellow junior student Dutt and I started
studying a paper of Dirac [20] in which he had proposed a positive-energy relativis-
tic wave equation:

i„@
� Oq .Er; t I q1; q2/

	

@t

D



�i„c
�

˛0x
@

@x
C ˛0y

@

@y
C ˛0z

@

@z

�

Cmc2ˇ0
�

� Oq .Er; t I q1; q2/
	

;

(6.1)
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Œ Oq � being a 4-component column matrix with elements . Oq1 ; Oq2 ; Oq3 ; Oq4 /
where

� Oqj ; Oqk
	 D �ˇ0jk ; j; k D 1; 2; 3; 4; (6.2)

and

ˇ0 D �2 ˝ I; ˛0x D ��1 ˝ �3; ˛0y D �1 ˝ �1; ˛0z D �3 ˝ I: (6.3)

Unlike the standard relativistic wave equation for the electron (5.11) which has both
positive and negative (antiparticle) energy solutions, the new Dirac equation (6.1)
has only positive energy solutions. Further, more interestingly, this positive-energy
particle would not interact with an electromagnetic field. Around November 1974,
Dutt and I stumbled upon an equation which had only negative-energy solutions.
Our negative-energy relativistic wave equation was exactly the same as Dirac’s
positive-energy equation (6.1) except only for a slight change in the commutation
relations of the internal variables . Oq1; Oq2; Oq3; Oq4/ in the equation ; instead of (6.2),
we took

� Oqj ; Oqk
	 D ˇ0jk ; j; k D 1; 2; 3; 4: (6.4)

When I told Alladi Ramakrishnan about this he told us that we could not meddle
with Dirac’s work and keep quiet. He suggested that I should write to Dirac and get
his opinion on our work. I wrote to Dirac who was in The Florida State University
at that time. I received a letter from him within a month! His reply was : “Dear Ja-
gannathan, The equation you propose would correctly describe a particle with only
negative-energy states. It would be the correct counterpart of the positive-energy
equation, but of course it would not have any physical application. Yours sincerely,
P. A. M. Dirac.” Immediately, Alladi Ramakrishnan forwarded our paper for rapid
publication [21].

So far, no one has found any application for Dirac’s positive-energy equation.
Attempts to modify it so that these positive-energy particles could interact with elec-
tromagnetic field have not succeeded. May be, these positive-energy Dirac particles
and their negative-energy antiparticles constitute the dark matter of our universe.

7 GCAs with Ordered !-Commutation Relations

We shall now consider a GCA (1.1) with ordered !-commutation relations, i.e.,

ej ek D !ekej ; ! D e2 i=N ; 8 j < k;
eNj D 1; j; k D 1; 2; : : : ; n: (7.1)
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The associated T -matrix has elements

tjk D
8

<

:

1; for j < k;
0; for j D k;

�1; for j > k;
(7.2)

and ON D N . This is exactly same as for the Clifford algebra except for the value
of ON . So, the treatment of representation theory of this GCA is along the same
lines as for the Clifford algebra: T matrix is the same as in (4.7) for any n and
T and U matrices are the same as in (4.9) and (4.11) for n D 2m and (4.10) and
(4.12) for n D 2m C 1, respectively. The only difference is that in the case of
Clifford algebra A�1j D Aj and B�1j D Bj for any j , where as now A�1j D AN�1j

and B�1j D BN�1j for any j . Thus, in view of (3.8) and (4.11, 4.12), the required
representations of (7.1) are given by:

e1 D A˝ I ˝ � � � ˝ I ˝ I;
e2 D B ˝ I ˝ � � � ˝ I ˝ I;
e3 D �A�1B ˝ A˝ I ˝ � � � ˝ I ˝ I;
e4 D �A�1B ˝ B ˝ I ˝ � � � ˝ I ˝ I;
e5 D �2A�1B ˝ A�1B ˝ A˝ I ˝ � � � ˝ I;
e6 D �2A�1B ˝ A�1B ˝ B ˝ I ˝ � � � ˝ I;

:::

e2m�1 D �m�1A�1B ˝ A�1B ˝ � � � ˝ A�1B ˝ A;
e2m D �m�1A�1B ˝ A�1B ˝ � � � ˝ A�1B ˝ B;

e2mC1 D �mA�1B ˝ A�1B ˝ � � �A�1B ˝A�1B; (7.3)

where � D !.NC1/=2 and

A D

0

B

B

B

B

B

@

0 1 0 : : : 0

0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

1 0 0 : : : 0

1

C

C

C

C

C

A

; (7.4)

B D

0

B

B

B

B

B

@

1 0 0 : : : 0

0 ! 0 : : : 0

0 0 !2 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : !N�1

1

C

C

C

C

C

A

; (7.5)
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N �N unitary matrices, obeying

AB D !BA; AN D BN D I: (7.6)

The matrices A and B in (7.4) and (7.5), respectively, provide the only irreducible
representation for the relation (7.6) [22]. It can also be shown that the GCA C.n/N
defined by (7.1) has only one Nm-dimensional irreducible representation, as given
by (7.3) without e2mC1, when n D 2m and there are N inequivalent irreducible
representations of dimension Nm (differing from (7.3) only by multiplications by
powers of !) when n D 2m C 1 (see, e.g., [23, 24]). This is the generalization of
Pauli’s theorem for the GCA (7.1). WhenN D 2 it is seen thatA D �1,B D �3, and
the representation (7.3) becomes the representation (4.18) of the Clifford algebra.

From the structure of the representation (7.3) it is clear that the �-operation pro-
cedure should work in this case also. Let the n-dimensional vector
 D f1; 2; : : : ; ng be associated with an L-matrix defined by:

L.n/ D
n
X

jD1
j e

.n/
j (7.7)

Then, from the commutation relations (7.1) it follows that

�

L.n/
�N D

0

@

n
X

jD1
Nj

1

A I: (7.8)

Thus, the N -th root of
Pn
jD1 Nj is given by L.n/ which is linear in j s. This fact

helps linearize certain N -th order partial differential operators using the GCA [6]
similar to the way Clifford algebra helps linearize certain second order partial dif-
ferential operators (e.g., Dirac’s linearization of OH 2 D �„2c2r2Cm2c4 to get his
relativistic Hamiltonian OH D �i„c.˛x@=@xC˛y@=@yC˛z@=@z/Cmc2ˇ). Now, it
can be easily seen [1] that L.2mC3/ is obtained fromL.2mC1/ by the �-operation: re-
place .1; 2; : : : ; 2m/ in L.2mC1/ by .1I; 2I; : : : ; 2mI /, respectively, where I
is the N -dimensional identity matrix, and 2mC1 by L.3/.2mC1; 2mC2; 2mC3/.

From the above it is clear that the matrices A and B in (7.4) and (7.5), respec-
tively, obeying the relation (7.6), play a central role in the study of GCAs. If we
want to have two matrices Aj and Bj obeying

AjBj D e2 ij=NBjAj ; g.c.d.j;N / D 1; (7.9)

then, Aj is same as A in (7.4) and Bj is given by B in (7.5) with ! replaced by
!j , upto multiplicative factors which are to be determined by the required normal-
ization relations like (3.10). In the following we shall outline some of the physical
applications of the matrices A and B .
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One approach to study the representation theory of the GCA with ordered
!-commutation relations (7.1) is to study the vector, or the ordinary, representa-
tions of the group

G W
n

!j0e
j1

1 e
j2

2 : : : e
jn
n jj0; j1; j2; : : : jn D 0; 1; 2; : : : N � 1

o

: (7.10)

This group has been called a generalized Clifford group (GCG) and the study of
its representation theory involves interesting number theoretical aspects ([23, 24]).
Particularly, by studying the representations of the lowest order GCG generated by
A, B , and ! one can show that A and B have only one irreducible representation as
given by (7.4) and (7.5). Study of spin systems defined on a GCG also involves very
interesting number theoretical problems [25]. Alladi Ramakrishnan and collabora-
tors used the L-matrix theory for studying several topics like idempotent matrices,
special unitary groups arising in particle physics, algebras derived from polynomial
conditions, Duffin-Kemmer-Petiau algebra, and para-Fermi algebra (for details see
[1]). They studied essentially the GCA with ordered !-commutation relations (7.1).
The more general GCAs (1.1) were studied later in ([3,5,13,23,24]). In gauge field
theories Wilson operators and ’t Hooft operators satisfy commutation relations of
the form in (7.6) and the corresponding algebra is often called the ’t Hooft-Weyl
algebra (see, e.g., [26]). For the various other physical applications of GCAs see,
e.g., ([27, 28]).

8 Weyl-Schwinger Unitary Basis for Matrix Algebra
and Alladi Ramakrishnan’s Matrix Decomposition Theorem

Heisenberg’s canonical commutation relation between position and momentum
operators of a particle, the basis of quantum mechanics, is

Œ Oq; Op� D i„: (8.1)

Weyl [22] wrote it in exponential form as:

ei� Op=„ei� Oq=„ D ei��=„ei� Oq=„ei� Op=„; (8.2)

where the parameters � and � are real numbers, and studied its representation as the
large N limit of the relation :

AB D !BA; ! D e2 i=N : (8.3)

Note that the Heisenberg-Weyl commutation relation (8.2) takes the form (8.3) when
��=„ D 2�=N . Weyl established that the relation (8.3), subject to the normalization
condition

AN D BN D I; (8.4)
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has only one irreducible representation as given in (7.4) and (7.5). Analysing the
large N limits of A and B , he showed that the the relation (8.2), or equivalently
the Heisenberg commutation relation (8.1), has the unique (upto equivalence) irre-
ducible representation given by the Schrödinger representation

Oq .q/ D q .q/; Op .q/ D �i„ d

dq
 .q/; for any  .q/: (8.5)

This result, or the Stone-von Neumann theorem obtained later by a more rigor-
ous approach, is of fundamental importance for physics because it establishes the
uniqueness of quantum mechanics. Thus, Weyl viewed quantum kinematics as an
irreducible Abelian group of unitary ray rotations in system space.

Following the earlier approach to quantum kinematics Weyl gave his correspon-
dence rule for obtaining the quantum operator Of . Oq; Op/ for a classical observable
f .q; p/ :

Of . Oq; Op/ D 1

2�

Z 1

�1

Z 1

�1
d�d� g.�; �/ei.� OqC� Op/;

g.�; �/ D 1

2�

Z 1

�1

Z 1

�1
dqdp f .q; p/e�i.�qC�p/: (8.6)

The fact that the set of N 2 linearly independent unitary matrices fAkB l jk; l D
0; 1; 2; : : : ; .N � 1/g forms a basis for the N � N -matrix algebra is implicit in this
suggestion that any quantum operator corresponding to a classical observable can
be written as a linear combination of the unitary operators fei.� OqC� Op/g.

Schwinger [29] studied in detail the role of the matrices A and B in quantum
mechanics and hence the set fAkB l jk; l D 0; 1; 2; : : : ; .N � 1/g is often called
Schwinger’s unitary basis for matrix algebra. Let us write an N �N matrix M as:

M D
N�1
X

k;lD0
�klA

kB l : (8.7)

From the structure of the matrices A and B it is easily found that

Tr
h

.AkB l/�.AmBn/
i

D Nıkmıln: (8.8)

Hence,

�kl D 1

N
Tr
h

.AkB l/�M
i

D Tr
h

B�lA�kM
i

: (8.9)

Alladi Ramakrishnan wrote (8.7) equivalently as:

M D
N�1
X

k;lD0
cklB

kAl ; (8.10)
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and expressed the coefficients fcklg in a very nice form [1] :

C D S�1R; (8.11)

C D

0

B

B

B

B

B

B

B

B

@

c00 c01 c02 : : : c0;N�1
c10 c11 c12 : : : c1;N�1
c20 c21 c22 : : : c2;N�1
:::

:::
:::

: : :
:::

cN�2;0 cN�2;1 cN�2;2 : : : cN�2;N�1
cN�1;0 cN�1;1 cN�1;2 : : : cN�1;N�1

1

C

C

C

C

C

C

C

C

A

; (8.12)

S�1 D 1

N

0

B

B

B

B

B

B

B

B

@

1 1 1 : : : 1

1 !�1 !�2 : : : !�.N�1/
1 !�2 !�4 : : : !�2.N�1/
:::

:::
:::

: : :
:::

1 !�.N�2/ !�2.N�2/ : : : !�.N�2/.N�1/
1 !�.N�1/ !�2.N�1/ : : : !�.N�1/.N�1/

1

C

C

C

C

C

C

C

C

A

; (8.13)

R D

0

B

B

B

B

B

B

B

B

@

M00 M01 M02 : : : M0;N�1
M11 M12 M13 : : : M10

M22 M23 M24 : : : M21

:::
:::

:::
: : :

:::

MN�2;N�2 MN�2;N�1 MN�2;0 : : : MN�2;N�3
MN�1;N�1 MN�1;0 MN�1;1 : : : MN�1;N�2

1

C

C

C

C

C

C

C

C

A

: (8.14)

Note that S�1 is the inverse of the Sylvester, or the finite Fourier transform, matrix.
He called (8.10)–(8.14) as a matrix decomposition theorem. Comparing (8.7) and
(8.10) it is clear that �kl D !�klclk .

9 Finite-Dimensional Wigner Function

Let N D 2� C 1 and choose

A D

0

B

B

B

B

B

@

0 1 0 : : : 0

0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

1 0 0 : : : 0

1

C

C

C

C

C

A

; (9.1)
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and

B D

0

B

B

B

B

B

B

B

B

@

!�� 0 0 : : : 0 0

0 !��C1 0 : : : 0 0

0 0 !��C2 : : : 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 : : : !��1 0

0 0 0 : : : 0 !�

1

C

C

C

C

C

C

C

C

A

; (9.2)

where ! D e2 i=.2�C1/. Note that AB D !BA and A2�C1 D B2�C1 D I . Let us
now write a 2� C 1-dimensional matrixM as:

M D
�
X

k;lD��
vkl!

kl=2BkAl ; (9.3)

where

vkl D 1

2� C 1Tr
h

!�kl=2A�lB�kM
i

: (9.4)

If the matrix M is to be Hermitian, i.e.,M � D M , then the condition to be satisfied
is that v�

kl
D v�k;�l .

LetW D .wkl /, with k; l D ��;��C1; : : : ; ��1; �, be a real matrix and define
the finite-dimensional Fourier transform

v�� D 1

2� C 1
�
X

k;lD��
wkl!

��k��l : (9.5)

We have

v��� D v��;��: (9.6)

Hence, the matrix

H D
�
X

�;�D��
v�;�!

��=2B�A�

D 1

2� C 1
�
X

�;�D��

�
X

k;lD��
wkl!

��k��lC.��=2/B�A� (9.7)

is Hermitian. This property, that to every real matrixW there is associated a unique
Hermitian matrix H , is the basis of the Weyl correspondence (8.6). For a given
Hermitian matrix H the associated real matrix W is obtained from (9.7) as:

wkl D Tr
h

!�kC�l�.��=2/A��B��H
i

: (9.8)
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In the large � limit this provides the converse of the Weyl rule (8.6) for obtaining
the classical observable corresponding to a quantum operator or the Wigner trans-
form of a quantum operator; in particular, the Wigner phase-space quasiprobability
distribution function can be obtained as the limiting case of (9.8) corresponding to
the choice ofH as the quantum density operator [3]. Thus, the formula (9.8) can be
viewed as an expression of the finite-dimensional Wigner function corresponding to
the case when H is a finite-dimensional density matrix. For more details on finite-
dimensional, or discrete, Wigner functions, which are of current interest in quantum
information theory, see, e.g., [30].

10 Finite-Dimensional Quantum Canonical Transformations

As seen earlier, the relation (7.6) has a unique representation for A and B as given
by (7.4) and (7.5). Let us take N to be even and make a transformation

A �! A0 D !�kl=2AkB l ; B �! B 0 D !�mn=2AmBn; (10.1)

where .k; l;m; n/ can be in general taken to be nonnegative integers in Œ0; N � 1�,
and require

A0B 0 D !B 0A0; A0N D B 0N D I: (10.2)

This implies that we should have

kn � lm D 1.mod/:N; (10.3)

and the factors!�kl=2 and !�mn=2 ensure thatA0N D B 0N D I . The uniqueness of
the representation requires that there should be a definite solution to the equivalence
relation

SA D A0S; SB D B 0S: (10.4)

Substituting the explicit matrices for A and B from (7.4) and (7.5) it is straightfor-
ward to solve for S . We get

Sxy D !�.nx2�2xyCky2/=2m; x; y D 0; 1; 2; : : : ; N � 1: (10.5)

From the association, following Weyl,

A �! ei� Op=„; B �! ei� Oq=„; (10.6)

it follows that in the limit of N �!1 the finite-dimensional transformation (10.1)
becomes the linear canonical transformation of the pair . Oq; Op/,

Oq0 D nOqC mOp; Op0 D lOqC kOp: (10.7)
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By taking the corresponding limit of the matrix S in (10.5) one gets the unitary
transformation corresponding to the quantum linear canonical transformation (10.7)
([3, 31]) (for details of the quantum canonical transformations see [32]).

11 Magnetic Bloch Functions

For an electron of charge �e and mass m moving in a crystal lattice under the
influence of an external constant homogeneous magnetic field the stationary state
wavefunction corresponding to the energy eigenvalue E satisfies the Schrödinger
equation

OH .Er/ D E .Er/;
OH D 1

2m

� EOp C e EA
�2 C V.Er/; (11.1)

where EOp is the momentum operator�i„ Er, V.Er/ is the periodic crystal potential, and
EA D 1

2
. EB � Er/ is the vector potential of the magnetic field EB . In the absence of the

magnetic field the Hamiltonian is invariant under the group of lattice translations
and as a consequence the corresponding wavefunction takes the form of a Bloch
function :

 EBD0.Er/ D
X

ER
e�i EK
 ERu.Er C ER/; (11.2)

where f ERg is the set of all lattice vectors and EK is a reciprocal lattice vector within
a Brillouin zone. This is the basis of the band theory of solids. In the presence
of a magnetic field the Hamiltonian OH is not invariant under the lattice translation
group. Now, the invariance group is the so-called magnetic translation group with its

generators given by, apart from some phase factors,
n

�j D eiEaj 
. OEp�e EA/jj D 1; 2; 3
o

where Eaj s are the primitive lattice vectors. These generators obey the algebra :

�j �k D e�ie EB 
Eaj�Eak=„�k�j ; j; k D 1; 2; 3; (11.3)

a GCA! We can obtain the irreducible representations of this algebra in terms of A
and B matrices. Once the inequivalent irreducible representations of the magnetic
translation group are known, using the standard group theoretical techniques we
can construct the symmetry-adapted basis functions for the Schrödinger equation
(11.1). This leads to a generalization of the Bloch function (11.2), the magnetic
Bloch function, given by:

 .Er/ D
X

ER
e�i

h

. EKC e
2„

EB�Er/
 ERC�. ER/
i

u.Er C ER/; (11.4)
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where

�.n1Ea1Cn2Ea2Cn3Ea3/ D e

2„
EB �.n1n2Ea1�Ea2Cn1n3Ea1�Ea3Cn2n3Ea2�Ea3/: (11.5)

If the term �. ER/ is dropped from this expression then it reduces to the well known
form proposed by Peierls (for more details see ([31,33,34]) and references therein).
Understanding the dynamics of a Bloch electron in a magnetic field is an important
problem of condensed matter physics with various practical applications.

12 Finite-Dimensional Quantum Mechanics

Following are the prophetic words of Weyl [22]: The kinematical structure of a
physical system is expressed by an irreducible Abelian group of unitary ray rotations
in system space. ..... If the group is continuous this procedure automatically leads
to Heisenberg’s formulation. ..... Our general principle allows for the possibility
that the Abelian rotation group is entirely discontinuous, or that it may even be a
finite group. ..... But the field of discrete groups offers many possibilities which we
have not yet been able to realize in Nature; perhaps, these holes will be filled by
applications to nuclear physics.

Keeping in mind the earlier statement of Weyl and the later work of Schwinger
[29], a finite-dimensional quantum mechanics was developed by Santhanam and
collaborators. Following Weyl, let us make the association

A �! ei� Op=„; B �! ei� Oq=„: (12.1)

Now if we interpret the finite dimensional matrices A and B as corresponding to
finite-dimensional momentum and position operators, say, P and Q, respectively,
with finite discrete spectra, then, the corresponding system will have confinement
purely as a result of its kinematical structure. The matricesP andQ can be obtained
by taking the logarithms of A and B . The commutation relation between P and Q
was first calculated by Santhanam and Tekumalla [35] (Tekumalla was my senior
fellow student at our institute). Further work by Santhanam ([36]–[40]) along these
lines resulted in the study of the Hermitian phase operator in finite dimensions as a
precursor to the currently well known Pegg-Barnett formalism (see, e.g., [41]).

Later, we developed a formalism of finite-dimensional quantum mechanics
(FDQM) ([42]–[44]) in which we studied the solutions of the Schrödinger equation
with finite-dimensional matrix Hamiltonians obtained by replacing the position and
momentum operators by finite-dimensional matricesQ and P . In [44] I interpreted
quark confinement as a kinematic confinement as a consequence of its Weylian
finite-dimensional quantum mechanics. Recently, dynamics of wave packets has
been studied within the formalism of FDQM [45].
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13 GCAs and Quantum Groups

Experience of working on GCAs helped me later in my work on quantum groups. An
n� n linear transformation matrixM acting on the noncommutative n-dimensional
Manin vector space and its dual is a member of the quantum group GLq.n/ if its
noncommuting elements mjk satisfy certain commutation relations. For example,
the elements of a 2 � 2 quantum matrix belonging to GLq.2/,

M D
�

m11 m12
m21 m22

�

; (13.1)

have to satisfy the commutation relations

m11m12 D q�1m12m11; m11m21 D q�1m21m11;
m12m22 D q�1m22m12; m21m22 D q�1m22m21;
m12m21 D m21m12; m11m22 �m22m11 D .q�1 � q/m12m21: (13.2)

Some of these relations are already GCA-like, or Heisenberg-Weyl-like. It was
shown in ([46, 47]) that, in general, all the commutation relations of GLq.n/ can
be formulated in a similar form and hence the representations of these elements
can be found utilising the representation theory of the Heisenberg-Weyl relations.
Extending these ideas further, we developed in [48] a systematic scheme for con-
structing the finite and infinite dimensional representations of the elements of the
quantum matrices of GLq.n/, where q is a primitive root of unity, and discussed
the explicit results for GLq.2/, GLq.3/, and GLq.4/. In this work we essentially
used the product transformation technique ([3,5]) developed in the context of repre-
sentation theory of GCAs. In [49] we extended this formalism to the two-parameter
quantum group GLp;q.2/ and the two-parameter quantum supergroupGLp;q.1j1/.

14 Conclusion

To summarize, I have reviewed here some aspects of GCAs and their physical ap-
plications, mostly related to my own work. I learnt about it in the school of Alladi
Ramakrishnan and it has been useful to me throughout my academic career so far.
I would like to conclude with the following remark on GCAs by Alladi Ramakrish-
nan [50]:

The structure is too fundamental to be unnoticed, too consistent to be ignored,
and much too pretty to be without consequence.

Acknowledgement I dedicate this article, with gratitude, to the memory of my teacher Professor
Alladi Ramakrishnan under whose guidance I started my scientific career at MATSCIENCE, The
Institute of Mathematical Sciences, Chennai.
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.p; q/-Rogers-Szegö Polynomial
and the .p; q/-Oscillator

Ramaswamy Jagannathan and Raghavendra Sridhar

Dedicated to the memory of Professor Alladi Ramakrishnan

Summary A .p; q/-analog of the classical Rogers-Szegö polynomial is defined by
replacing the q-binomial coefficient in it by the .p; q/-binomial coefficient corre-
sponding to the definition of .p; q/-number as Œn�p;q D .pn�qn/=.p�q/. Exactly
like the Rogers-Szegö polynomial is associated with the q-oscillator algebra, the
.p; q/-Rogers-Szegö polynomial is found to be associated with the .p; q/-oscillator
algebra.
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1 Introduction

The q-oscillator algebra plays a central role in the physical applications of quan-
tum groups (for a review of quantum groups and their applications, see, e.g., [1–3]).
It was used [4–7] to extend the Jordan-Schwinger realization of the sl.2/ algebra
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in terms of harmonic oscillators to the q-analogue of the universal enveloping
algebra of sl.2/, namely,Uq.sl.2//. In order to extend this q-oscillator realization of
Uq.sl.2// to the two-parameter quantum algebra Up;q.gl.2//, the .p; q/-oscillator
algebra was introduced in [8] (see also [9, 10]).

Heine’s q-number, or the basic number,

Œn�q D 1 � qn
1 � q ; (1.1)

is well known in the mathematics literature. The .p; q/-oscillator necessitated the
introduction of the .p; q/-number, or the twin-basic number,

Œn�p;q D pn � qn
p � q ; (1.2)

a natural generalization of the q-number, such that

lim
p!1Œn�p;q �! Œn�q : (1.3)

With the introduction of this .p; q/-number, the essential elements of the
.p; q/-calculus, namely, .p; q/-differentiation, .p; q/-integration, and the .p; q/-
exponential, were also studied in [8]. This led to a more detailed study of
.p; q/-hypergeometric series and .p; q/-special functions [11–13]. Meanwhile,
the .p; q/-binomial coefficients, .p; q/-Stirling numbers, and the .p; q/-binomial
theorem for noncommutative operators were studied [14, 15] in the analysis of
certain physical problems. Interestingly, in the same year 1991 the .p; q/-number
was introduced in the mathematics literature in connection with set partition statis-
tics [16]. A very general formalism of deformed hypergeometric functions has been
developed in [17]. Some applications of .p; q/-hypergeometric series in the context
of two-parameter quantum groups can be found in [18, 19].

It is noted in [4] that the classical Rogers-Szegö polynomials provide a basis
for a coordinate representation of the q-oscillator. Several aspects of this close
connection between the q-oscillator algebra and the Rogers-Szegö polynomials,
and the related continuous q-Hermite polynomials, have been analyzed in de-
tail later (see [20–24]). In this paper, after a brief review of the known connec-
tion between the Rogers-Szegö polynomial and the q-oscillator, we shall define
a .p; q/-Rogers-Szegö polynomial and show that it is connected with the .p; q/-
oscillator.

As explained below in Sect. 4, it is not possible to rewrite a .p; q/-hypergeometric
series, or a .p; q/-analog of a q-function, as a regular q-hypergeometric series or a
q-function routinely by rescaling the independent variable. Particularly, this is not
possible in the case of the .p; q/-Rogers-Szegö polynomial considered here.
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2 Harmonic Oscillator

The harmonic oscillator is associated with the creation (or raising) operator OaC, the
annihilation (or lowering) operator Oa�, and the number operator On satisfying the
algebra

Œ On; OaC� D OaC; Œ On; Oa�� D �Oa�; Œ Oa�; OaC� D 1; (2.1)

where
h OA; OB

i

stands for the commutator OA OB � OB OA. Note that

On D OaC Oa�: (2.2)

Let

hn.x/ D .1C x/n;  n.x/ D 1p
nŠ
hn.x/: (2.3)

It follows that

d

dx
 n.x/ D

p
n n�1.x/; (2.4)

.1C x/ n.x/ D
p
nC 1 nC1.x/; (2.5)

.1C x/ d

dx
 n.x/ D n n.x/; (2.6)

d

dx
..1C x/ n.x// D .nC 1/ n.x/: (2.7)

Thus, it is clear that the set f n.x/jn D 0; 1; 2; : : :g forms a basis for the following
Bargmann-Fock realization of the oscillator algebra (2.1):

OaC D .1C x/; Oa� D d

dx
; On D .1C x/ d

dx
: (2.8)

It is to be noted that (2.5) and (2.6) are, respectively, the recurrence relation and the
differential equation for  n.x/.

Let
n

Oa.1/� ; O.a/.1/C ; On.1/
o

and
n

Oa.2/� ; Oa.2/C ; On.2/
o

be two sets of oscillator operators

each satisfying the algebra (2.1) and commuting with each other. Then, for the
generators of sl.2/ satisfying the Lie algebra,

Œx0; xC� D xC; Œx0; x�� D �x�; Œx�; xC� D 2x0; (2.9)

one has the Jordan-Schwinger realization

xC D Oa.1/C Oa.2/� ; x� D Oa.2/C Oa.1/� ; x0 D 1

2

�

On.1/ � On.2/
�

: (2.10)
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3 q-Oscillator and the Rogers-Szegö Polynomial

When U.sl.2//, the universal enveloping algebra of sl.2/, is q-deformed, the result-
ing Uq.sl.2// has generators fX�; XC; X0g satisfying the algebra

ŒX0; XC� D XC; ŒX0; X�� D �X�;
X� CX� � q�1X�XC D 1 � q2X0

1 � q D Œ2X0�q : (3.1)

The q-oscillator is associated with the annihilation operator OA�, creation
operator OAC, and the number operator ON satisfying the algebra

h ON; OA�
i

D � OA�;
h ON; OAC

i

D OAC; OA� OAC � q OAC OA� D 1: (3.2)

It should be noted that in this case ON ¤ OAC OA�. Instead, we have

OAC OA� D 1 � q ON
1 � q D

h ON
i

q
; (3.3)

and

OA� OAC D 1 � q ONC1
1 � q D

h ON C 1
i

q
; (3.4)

Now, let
n OA.1/� ; O.A/.1/C ; ON .1/

o

and
n OA.2/� ; OA.2/C ; ON .2/

o

be two sets of q-oscillator op-

erators each satisfying the algebra (3.2) and commuting with each other. Then,
taking

XC D OA.1/C q� ON
.2/=2 OA.2/� ; X� D OA.2/C q� ON

.2/=2 OA.1/� ; X0D 1
2

� ON .1/ � ON .2/
�

;

(3.5)

we get a Jordan-Schwinger-type realization of the Uq.sl.2// (3.1).
Now, we have to recall some definitions from the theory of q-series. The q-shifted

factorial is defined as

.aI q/n D
�

1; for n D 0;
Qn�1
kD0.1 � aqk/; for n D 1; 2; : : : : (3.6)

The q-binomial coefficient is defined by




n

k

�

q

D .qI q/n
.qI q/k.qI q/n�k : (3.7)
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For more details on q-series, see [25]. With the definition

Œ0�qŠ D 1; Œn�q Š D Œn�q Œn � 1�q : : : Œ2�q Œ1�q ; for n D 1; 2; : : : ; (3.8)

we have



n

k

�

q

D Œn�q Š

Œk�q ŠŒn � k�q Š (3.9)

and

lim
q!1




n

k

�

q

D nŠ

kŠ.n � k/Š D
�

n

k

�

: (3.10)

The Rogers-Szegö polynomial is defined as

Hn.xI q/ D
n
X

kD0




n

k

�

q

xk : (3.11)

This can be naturally expected to be related to the basis of a realization of the
q-oscillator since

lim
q!1Hn.xI q/ D hn.x/; (3.12)

and the q-oscillator becomes the ordinary oscillator in the limit q ! 1.
To exhibit the relation between Hn.xI q/ and the q-oscillator, we shall closely

follow [22], although our treatment is slightly different. Let us define

 n.xI q/ D 1
p

Œn�q Š
Hn.xI q/ D 1

p

Œn�q Š

n
X

kD0




n

k

�

q

xk : (3.13)

The Jackson q-difference operator is defined by

ODqf .x/ D f .x/ � f .qx/
.1 � q/x : (3.14)

It is straightforward to see that

ODq n.xI q/ D
q

Œn�q n�1.xI q/: (3.15)

The q-binomial coefficients obey the recurrence relation




nC 1
k

�

q

D



n

k

�

q

C



n

k � 1
�

q

� .1 � qn/



n � 1
k � 1

�

q

: (3.16)

From this it follows that  n.xI q/ satisfies the recurrence relation

q

ŒnC 1�q nC1.xI q/ D .1C x/ n.xI q/ � x.1 � q/
q

Œn�q n�1.xI q/: (3.17)
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Using (3.15) we can write this relation as

h

.1C x/ � .1 � q/x ODq
i

 n.xI q/ D
q

ŒnC 1�q nC1.xI q/: (3.18)

Thus, it is seen from (3.15) and (3.18) that the set of polynomials f n.xI q/jn D
0; 1; 2; : : :g provides a basis for a realization of the q-oscillator algebra (3.2) as
follows. Let us define the number operator ON formally as

ON n.xI q/ D n n.xI q/: (3.19)

Note that ODnC1
q  n.xI q/ D 0; (3.20)

and ODm
q  n.xI q/ ¤ 0 for any m < nC 1. Then,

OA� n.xI q/ D ODq n.xI q/ D
q

Œn�q n�1.xI q/; (3.21)

OAC n.xI q/ D
h

.1C x/ � .1 � q/x ODq
i

 n.xI q/

D
q

ŒnC 1�q nC1.xI q/; (3.22)

OAC OA� n.xI q/ D Œn�q n.xI q/ D Œ ON �q n.xI q/; (3.23)

OA� OAC n.xI q/ D ŒnC 1�q n.xI q/ D Œ ON C 1�q n.xI q/: (3.24)

From this one can easily verify that the relations in (3.2) are satisfied by
f OAC; OA�; ON g. It may be noted that these relations (3.21)–(3.24) are the
q-generalizations of the harmonic oscillator relations (2.4)–(2.7) to which they
reduce in the limit q ! 1. Substituting the explicit expressions for OAC and OA� in
(3.23), we get the q-differential equation for  n.xI q/ (or Hn.xI q/; see [22]):

�

.1 � q/x OD2
q � .1C x/ ODq C Œn�q

�

 n.xI q/ D 0; (3.25)

which reduces to (2.6) in the limit q ! 1.

4 .p; q/-Oscillator and the .p; q/-Rogers-Szegö Polynomial

A genuine two-parameter quantum deformation exists only forU.gl.2// and not for
U.sl.2//. The two-parameter deformation of U.gl.2// leads to Up;q.gl.2// which
is generated by f OX0; OXC; OX�g satisfying the commutation relations

h OX0; OXC
i

D OXC;
h OX0; OX�

i

D � OX�;

OXC OX� � .pq/�1 OX� OXC D p2
OX0 � q2 OX0

p � q D Œ2 OX0�p;q; (4.1)
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and a central element OZ , which we shall ignore for the present purpose. Here, Œ �p;q
is as defined in (1.2).

To get an oscillator realization of the algebra (4.1), we need the .p; q/-oscillator
algebra defined by

h ON ; OAC
i

D OAC;
h ON ; OA�

i

D � OA�; OA� OAC � q OAC OA� D p ON ; (4.2)

where f OAC; OA�; ON g are, respectively, the creation, annihilation, and number oper-
ators. In this case,

OAC OA� D p
ON � q ON
p � q D Œ ON �p;q; OA� OAC D p

ONC1 � q ONC1
p � q D Œ ON C 1�p;q:

(4.3)

Note the symmetry of this relation under the exchange of p and q. So, the last
relation in (4.2) can also be taken, equivalently, as

OA� OAC � p OAC OA� D q ON : (4.4)

The .p; q/-oscillator unifies several special cases of q-oscillators, including the
q-fermion oscillator [26]. Now, we shall show that a .p; q/-deformation of the
Rogers-Szegö polynomial can be used for a realization of the .p; q/-oscillator al-
gebra exactly in the same way as the classical Rogers-Szegö polynomial is used for
a realization of the q-oscillator algebra as seen above. To this end we proceed as
follows.

First, let us recall some essential elements of the .p; q/-series (for more details,
see [12, 13]). The .p; q/-shifted factorial is defined by

.a; bIp; q/n D
�

1; for n D 0;
Qn�1
kD0.apk � bqk/; for n D 1; 2; : : : : (4.5)

Note that
.a; bIp; q/n D anpn.n�1/=2.b=aI q=p/n: (4.6)

In view of this, it is not possible to rewrite a .p; q/-hypergeometric series, or
a .p; q/-analog of a q-function, routinely as a q=p-hypergeometric series or a
q=p-function, with the same or a rescaled independent variable, unless the factors
depending on a and p in the numerator and the denominator cancel in each term,
or are such that the uncanceled factor in each term is of the same power as the
independent variable. The .p; q/-binomial coefficient is defined by




n

k

�

p;q

D .p; qIp; q/n
.p; qIp; q/k.p; qIp; q/n�k : (4.7)
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With the definition

Œ0�p;q Š D 1; Œn�p;q Š D Œn�p;q Œn � 1�p;q : : : Œ2�p;qŒ1�p;q ; for n D 1; 2; : : : ;
(4.8)

we have



n

k

�

p;q

D Œn�p;q Š

Œk�p;q ŠŒn � k�p;q Š (4.9)

and

lim
p!1




n

k

�

p;q

D



n

k

�

q

: (4.10)

Let us now define the .p; q/-Rogers-Szegö polynomial as

Hn.xIp; q/ D
n
X

kD0




n

k

�

p;q

xk ; (4.11)

and take

 n.xIp; q/ D 1
p

Œn�p;q Š
Hn.xIp; q/ D 1

p

Œn�p;q Š

n
X

kD0




n

k

�

p;q

xk : (4.12)

Note that 


n

k

�

p;q

D pk.n�k/



n

k

�

q=p

; (4.13)

and the presence of the factor p�k2
makes it impossible to rescale x in any way

and hence rewrite the .p; q/-Rogers-Szegö polynomial Hn.xIp; q/ as a regular
Rogers-Szegö polynomial (3.11). Recalling the definition of the .p; q/-difference
operator [8],

ODp;qf .x/ D f .px/ � f .qx/
.p � q/x ; (4.14)

it is seen that
ODp;q n.xIp; q/ D

q

Œn�p;q n�1.xIp; q/: (4.15)

The .p; q/-analog of (3.16) is given by




nC 1
k

�

p;q

D pk



n

k

�

p;q

Cpn�kC1



n

k � 1
�

p;q

�.pn�qn/



n� 1
k � 1

�

p;q

: (4.16)

For a detailed study of the .p; q/-binomial coefficients, see [27]. This identity (4.16)
leads to the following recurrence relation for  n.xIp; q/:

q

ŒnC 1�p;q nC1.xIp; q/ D  n.pxIp; q/C xpn n.p�1xIp; q/
�x.p � q/

q

Œn�p;q n�1.xIp; q/: (4.17)
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To obtain a realization of the .p; q/-oscillator algebra in the basis provided
by f n.xIp; q/ j n D 0; 1; 2; : : :g, let us proceed as follows. As before, define the
number operator ON formally as

ON n.xIp; q/ D n n.xIp; q/: (4.18)

Note that
ODnC1
p;q  n.xIp; q/ D 0; (4.19)

and ODm
p;q n.xIp; q/ ¤ 0 for any m < n C 1. Then, with the scaling operator

defined by

O�sf .x/ D f .sx/; (4.20)

it readily follows from (4.15) and (4.17) that we can write

OA� n.xIp; q/ D ODp;q n.xIp; q/ D
q

Œn�p;q n�1.xIp; q/; (4.21)

OAC n.xIp; q/ D
�

O�p C x O�p�1p
ON � x.p � q/ ODp;q

�

 n.xIp; q/

D
q

ŒnC 1�p;q nC1.xIp; q/; (4.22)

OAC OA� n.xIp; q/ D Œn�p;q n.xIp; q/ D Œ ON �p;q .xIp; q/; (4.23)

OA� OAC n.xIp; q/ D ŒnC 1�p;q n.xIp; q/ D Œ ON C 1�p;q n.xIp; q/; ;(4.24)

which generalize the corresponding results (3.21)–(3.24) for the q-oscillator; when
p ! 1, (4.21)–(4.24) reduce to (3.21)–(3.24). It is straightforward to verify that
the realizations of f OA�; OAC; ON g in (4.18), (4.21), and (4.22) satisfy the required
relations of the .p; q/-oscillator algebra (4.2). Using (4.21) and (4.22) in (4.23), we
get the .p; q/-differential equation satisfied by  n.xIp; q/ as

h

.p � q/x OD2
p;q �

� O�p C pn�1x O�p�1

� ODp;q C Œn�p;q
i

 n.xIp; q/ D 0; (4.25)

which reduces to (3.25) in the limit p ! 1.

5 Conclusion

Let us conclude with a few remarks.

By choosing different values for p and q, one can study different special cases
of  n.xIp; q/. This is particularly important since there exists many versions
of q-oscillators that are special cases of the .p; q/-oscillator. For example, the
q-oscillator originally used in connection with Uq.su.2// [4–7], and more popular
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in the physics literature, corresponds to the choice p D q�1. From the above, it is
clear that this oscillator can be realized through the polynomials

Hn.xI q�1; q/ D
n
X

kD0




n

k

�

q2

q�k.n�k/xk : (5.1)

It may be emphasized again that although Hn.xI q�1; q/ is a function with only a
single q-parameter, it cannot be rewritten as a regular Rogers-Szegö polynomial.

In [22], the raising and lowering operators for the Steiltjes-Wigert polynomial
have been obtained using the fact that this polynomial is just the Rogers-Szegö poly-
nomial with q replaced by q�1 and it has been shown that these raising and lowering
operators of the Steiltjes-Wigert polynomial provide a realization of the single-
parameter deformed oscillator with q replaced by q�1. Now, it is clear that one
can study the .p; q/-Steiltjes-Wigert polynomials similarly by replacing p and q,
respectively, by p�1 and q�1 in the above formalism. Thus, the .p; q/-Steiltjes-
Wigert polynomial is given by

Gn.xIp; q/ D Hn.xIp�1; q�1/ D
n
X

kD0




n

k

�

p;q

.pq/�k.n�k/xk ; (5.2)

which becomes the usual Steiltjes-Wigert polynomial in the limit p ! 1.
The continuous q-Hermite polynomial is defined as

Hn.cos � jq/ D e�in	Hn.e
2i	 I q/: (5.3)

It is clear that one can define the continuous .p; q/-Hermite polynomial in an anal-
ogous way as

Hn.cos � jp; q/ D e�in	Hn.e2i	 Ip; q/: (5.4)

This has already been suggested in [13] without any further study. It should be
worthwhile to study the .p; q/-Rogers-Szegö polynomial, the .p; q/-Steiltjes-
Wigert polynomial, and the continuous .p; q/-Hermite polynomial in detail.
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Rethinking Renormalization

John R. Klauder

Summary As applied to quantum theories, the program of renormalization is suc-
cessful for ‘renormalizable models’ but fails for ‘nonrenormalizable models’. After
some conceptual discussion and analysis, an enhanced program of renormalization
is proposed that is designed to bring the ‘nonrenormalizable models’ under control
as well. The new principles are developed by studying several, carefully chosen,
soluble examples, and include a recognition of a ‘hard-core’ behavior of the interac-
tion and, in special cases, an extremely elementary procedure to remove the source
of all divergences. Our discussion provides the background for a recent proposal for
a nontrivial quantization of nonrenormalizable scalar quantum field models, which
is briefly summarized as well.

Dedication It is a pleasure to dedicate this article to the memory of Prof. Alladi
Ramakrishnan who, besides his own important contributions to science, played a
crucial role in the development of modern scientific research and education in his
native India. Besides a number of recent informative discussions during his yearly
visits to the University of Florida, the present author had the pleasure much earlier
of hosting Prof. Alladi during his visit and lecture at Bell Telephone Laboratories.
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Introduction

Renormalization has been a very successful paradigm for dealing with an important
class of quantum theories. Its basic principles are easily stated: The parameters of a
classical theory are different from those of a quantum theory because of additional
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self interaction that arises in a quantum theory. In practical terms, the interacting
system is commonly treated as a perturbation of a free system, and the power series
in the nonlinear coupling often displays divergent terms that need to be canceled and
counterterms of a suitable nature are introduced to do just this. If a finite number
of distinct counterterms can be found so that every term in the power series ex-
pansion is rendered finite, then the theory is called renormalizable, and many such
theories have had highly successful applications and in several cases have led to
astonishingly accurate predictions when compared to experimental measurements.
This aspect of the program of renormalization is considered to be a resounding suc-
cess and deservedly so. It is natural of course that a successful program such as
renormalization has also been proposed to study a wider class of theories than its
proponents originally intended, and this is indeed the case. A certain family of field
theories fall into the class of being “nonrenormalizable”, an attribute that asserts that
the procedures usually ascribed to the program of renormalization are unsuccessful
in dealing with certain model problems. If such examples were confined to esoteric
models with no potential application to the real world, it would be permissible to ig-
nore those models that are classified as nonrenormalizable. But that is not the case.
The most famous example corresponds to the Einstein gravitational field for which
the general consensus is that quantum gravity is perturbatively nonrenormalizable.
Since the standard procedures of renormalization have failed for such an important
case, there have been proposed elaborate alternative theories that entail additional
fields or degrees of freedom that are designed to produce a theory that is term-by-
term finite within a perturbation analysis. Superstring theory is one such program,
and N D 8 supergravity is another. In so doing, these alternative theories have in-
troduced additional fields, which, thanks to the differing properties of fermions and
bosons can lead to cancellations among the old, divergent contributions of the origi-
nal theory and well chosen, new, divergent contributions from the carefully selected
additional fields. This general approach is sufficiently broad that it would seem to
cover all possible situations regarding how interactions and auxiliary counterterms
can appear and interact with each other. However, there is one important class of
models that is in practice not covered by the preceding characterization. Admittedly,
it is not obvious where one should look if such an overlooked class of examples is to
be found. A clue to the overlooked class emerges if we recall that the traditional pro-
cedures of regularization and renormalization entail the implicit assumption that if
the perturbative interaction is reduced in strength, say by the usual device of reduc-
ing the value of the associated coupling constant, then, in the limit that the coupling
constant vanishes and the effect of the interaction is formally eliminated, the re-
sulting theory in the limit of a vanishing coupling constant is identical to the free
theory with which one started. Stated otherwise, and perhaps more directly, this is
the implicit assumption that the set of interacting theories defined as the set that
is produced for all nonzero (typically positive) values of the coupling constant is
such that as the coupling constant goes to zero, the limit of that set of interacting
theories is the free theory itself, i.e., the interacting theories are continuously con-
nected to the free theory. This highly natural, implicit assumption covers a lot of the
important cases but it certainly does not cover all possibilities some of which may
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have some ultimate physical relevance. It is an important feature of this paper that
we focus on these outlier model theories, which are typically nonrenormalizable
models.

Overview of the Present Paper

The features ascribed to the renormalization program are not limited to quantum
field theory but also arise in quantum mechanical analogues. As such, one can gain
real insight into the distinction among super renormalizable, strictly renormalizable,
and nonrenormalizable models. A common feature of the latter theories is the oc-
currence of a hard-core potential. From a (Euclidean) functional integral viewpoint,
the nonlinear interaction acts partially as a hard core projecting out certain paths that
would otherwise appear in the free theory. This fact – which we believe is a defining
characteristic for a large class of nonrenormalizable interactions – means that an
interacting theory is not continuously connected to the free theory as the coupling
constant is reduced to zero. This property of the quantum theory is also seen in the
classical theory itself by the fact that, generally speaking, the set of solutions of the
interacting classical theory does not reduce to the set of solutions that characterizes
the free solutions. This aspect will be illustrated for particle systems as well as field
systems.

The full dynamics of a classical system involves the action functional and its
stationary variation to derive the equations of motion. In a (Euclidean) functional
integral formalism, the classical action again plays an important role in the quantum
dynamics. Regularization is essential in order to give a functional integral meaning,
and it is customary to use a lattice approximation for the time for particle mechanics
or for spacetime for field models. The lattice action induces a lattice Hamiltonian
operator and in turn a lattice ground state for that Hamiltonian. It is natural that a
model can be characterized by either the action, the Hamiltonian, or the ground state.
It is important to remark that we focus heavily on the ground state in our analysis.
When we take up the discussion of field problems, we will present an argument that
shows an important role that the ground state plays.

However, before dealing with fields, we wish to illustrate how the issue of renor-
malization arises in elementary one dimensional examples.

One Dimensional Example

Consider a classical system for a single, phase space, degree of freedom .p; q/ with
a classical Hamiltonian given by

H�.p; q/ D 1
2
.p2 C q2/C jqj�˛:
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For any ˛ > 0, it follows, just from energy considerations, that the motion of the
particle can never be such as to reach the origin q D 0 let alone pass through the
value q D 0. This situation holds for all values of the coupling constant  > 0,
and as a consequence, as  ! 0, the set of classical solutions of the interacting
theory do not correspond to the set of classical solutions of the free theory, namely,
that of the free harmonic oscillator given by q.t/ D A cos.t � a/. Specifically, for
any choice of the amplitude A and the phase a there will be for every solution of
the free theory a time t for which the solution vanishes and even crosses the line
q D 0. In contrast, the solutions of the interacting theory for which  > 0, all
pass by continuity to solutions not of the free theory but to those which are rectified
in the sense that they are of the form q.t/ D ˙jA cos.t � a/j and are all strictly
different over time from the usual free theories. We give the name pseudofree to the
name of the theory, different from the free theory, to which the interacting theory
is continuously connected as the nonlinear coupling constant goes to zero. Clearly,
if one reintroduces the interaction starting from the pseudofree theory, the form
of the new solutions is indeed continuously connected to that of the pseudofree
theory.

The easiest way to characterize the pseudofree quantum theory is by its Hamilto-
nian which is the same as that of the free harmonic oscillator augmented by Dirichlet
boundary conditions at x D 0. If one were contemplating a perturbation series rep-
resentation of the interacting solution, that power series should not be about the
free theory (to which the interacting solutions are not continuously connected!) but
rather about the pseudofree theory.

Regarding the quantization of such a model, there are some surprises that can
arise. For example, when 0 < ˛ < 1, it follows that the interacting quantum solution
is in fact continuously connected to the free quantum theory unlike the situation for
the classical case. For ˛ > 2, on the other hand, there is no modification of the theory
that can be made to prevent the theory from passing to a pseudofree theory as the
parameter ! 0. In other words, for ˛ > 2, the interacting quantum theory passes
to a pseudofree theory with a set of eigenfunctions and eigenvalues that are generally
different from those that characterize the free theory. What happens in the interval
1 � ˛ � 2 is quite interesting and to some extent open to different conclusions.
With an eye toward maintaining a continuous connection of the interacting theories
to the free theory, it is possible to choose a regularized form for the interaction,
namely, a set of potentials of the form V�.q; / that have the property that as � ! 0,
the regularized potentials

V�.q; /! jqj�˛; q ¤ 0:

These regularized forms of the potential are rather strictly constrained and they
involve polynomial contributions in the coupling constant . It is not difficult to
determine the general form of the regularized potential simply on the basis of di-
mensional arguments. In particular, the dimensions of the Hamiltonian are those
of the first term p2, and taking Planck’s constant „ D 1 for the present time, the
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dimensions are that of L�2 where L denotes the dimension of length. With the reg-
ularization parameter � > 0 entering initially in the interaction as

jqj�˛ ! .jqj C �/�˛ ;
it follows that the dimension of �, like q, is L. In order that the interaction terms
have the right dimensions, i.e., L�2, it follows that the dimension of  is that of
L˛�2. For regularization terms we restrict ourselves to terms of the form

kj 
j ��pj ı.q/;

where ı.q/ is a Dirac delta function. With kj chosen as an unknown dimension-
less factor, and since ı.q/ has dimensions L�1, it follows that the power pj D
1 � .2 � ˛/j in order to ensure that the regularization terms above each have the
desired dimension of the Hamiltonian, namely L�2. Hence the regularized form of
the potential is given by

V�.q; / D .jqj C �/�˛ �
J
X

jD1
kj 

j �.2�˛/j�1 ı.q/:

The factor J denotes the upper limit of the sum which occurs whenever .2 � ˛/�1
is nonintegral and .2�˛/J < 1 < .2�˛/.J C1/ for then all further regularization
terms vanish as � ! 0. In this case further analysis shows that the factors kj are
given by k1 D 2=.˛ � 1/ and then

kj D � 1

Œ1 � j.2 � ˛/�
j�1
X

qD1
kj�q kq I

if instead, .2 � ˛/�1 D J is an integer, then the last factor kJ involves a natural
logarithm; see [1]. For ˛ D 2, J D 1, and all pj D 1. For all ˛ � 2 such a series
provides a regularized potential for which the interacting theory is continuously con-
nected to the free theory as ! 0. It is noteworthy that when ˛ < 2 a finite series of
counterterms, each with a diminishing divergence (i.e., pjC1 < pj ), provides the
proper regularized potential, a property similar to that encountered when dealing
with super renormalizable quantum field theories. When ˛ D 2 an infinite series of
counterterms, all of equal divergence (i.e., pjC1 D pj ), leads to a suitable regular-
ized potential, a property similar to that of so-called strictly renormalizable quantum
field theories. For ˛ > 2, on the other hand, there is no regularized potential that
leads to an interacting theory that is continuously connected to the free theory. Of
course, the proposed regularization terms based simply on dimensionality do not
know this fact, and it may be said that they do their best to signal their inability to
provide a solution to the problem by the fact that when ˛ > 2, the term-by-term di-
vergence actually increases (i.e., pjC1 > pj ), and moreover, pj !1 as j !1,
a property which is reminiscent of the behavior of nonrenormalizable quantum field
theories.
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A Brief Summary

We have discussed this simple quantum mechanical model in some detail in order
to show what kind of singular behavior is possible even in quantum mechanics. In
particular, we observe that for ˛ < 1, there is no anomalous behavior in the quan-
tum theory although there is anomalous classical behavior. For 1 � ˛ � 2, it can be
arranged that there is no anomalous quantum behavior although there always will
be anomalous classical behavior. The price to pay for this good quantum behavior is
the introduction of regularized quantum terms that entail a power series in the cou-
pling constant . For ˛ > 2, on the other hand, there is no escaping the anomalous
quantum behavior no matter how one tries to regularize the quantum theory.

Field Theory Analog – A Brief Detour

We claim there is an analog with the above story for quantum mechanics that plays
out in quantum field theory as well. For sufficiently weak perturbations, the inter-
action can be renormalized so that the resultant interacting theory is continuously
connected to the free theory as the coupling constant is reduced to zero; this is
the situation that applies to super renormalizable and possibly to strictly renor-
malizable theories. For sufficiently strong perturbations, the interaction cannot be
renormalized so that the interacting theory is continuously connected to the free
theory. Instead, for such strong perturbations, the interacting theories are connected
to an appropriate pseudofree theory. Later, we will bolster the argument that this is
the situation which should apply to nonrenormalizable theories. To make this leap
of faith from a singular family of classical problems and their associated quantum
problems to a wide class of quantum field theories, it will be helpful to develop a
primary principle that captures the essence of the singular nature of the interaction
that leads to either a continuous connection with the original free theory or instead
leads to a continuous connection with a pseudofree theory.

Path Integral Formulation

The principle we adopt to describe the appearance of pseudofree theories is that
of a hard-core interaction. The concept behind this principle is most simply
appreciated in a functional integral representation of the associated quantum system.
This analysis works for either a real time or an imaginary time functional integral,
and for its better mathematical structure, we shall choose the latter form. For the
quantum mechanical problem that we have so far been discussing, the associated
imaginary time (Euclidean) functional integral is given by

N
Z

e
�
R

f 1
2
Œ Px2Cx2�C�V.x/gdt Dx:
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Although the Brownian-like paths x.t/ that enter this functional integral have a
nowhere defined (i.e., divergent) derivative – a feature that is surely unlike the clas-
sical theory – it is noteworthy that the distinction between the behavior for ˛ < 2

and ˛ > 2 can nevertheless be won by simple classical arguments. For classical
paths consider the following simple inequality

jx.t2/ � x.t1/j D j
Z t2

t1

Px.t/ dtj � jt2 � t1j1=2

Z t2

t1

Px2.t/ dt

�1=2

:

Assuming a finite value for the kinetic energy, it follows, for some K <1, that

jx.t2/ � xt1j�˛ � K jt2 � t1j�˛=2:

Setting x.t2/ D 0, the location of the singularity, we see that

Z

jx.t/j�˛ dt � K
Z

jt j�˛=2 dt:

This inequality implies that for ˛ > 2 the integral over the interaction term diverges,
while for ˛ < 2 that is not necessarily the case. When the integral over the interac-
tion diverges, the contribution of that path is projected out (by the factor e�1) for
any positive value of the coupling constant. And as the coupling constant is reduced
to zero, the contribution of that path is never restored leading to the exclusion of that
path in the definition of the pseudofree theory. For the quantum mechanical prob-
lem previously discussed, this means that whenever ˛ > 2, the contribution of all
paths that reach or cross the axis x D 0 are projected out of the functional integral;
that is the meaning of the statement that the interaction acts in part like a hard core.
Our simple argument involving the inequality derived from classical paths does not
have anything to say about what happens for ˛ < 2, but that does not diminish its
importance for the region ˛ > 2.

Before proceeding, let us restate some important issues that arose in our analysis
of the one dimensional quantum problem as discussed above. The model we studied
had a clearly defined free theory (with  	 0) which is just the usual harmonic
oscillator. The free propagator (in imaginary time for convenience) is readily given
by the sum

hx00; T jx0; 0i D
1
X

nD0
hn.x

00/ e�.nC1=2/T hn.x0/;

where the set of functions fhn.x/g1nD0 are the Hermite functions defined by the
generating function

exp.�s2 C 2sx � 1
2
x2/ D �1=4

1
X

nD0
.nŠ/�1=2 .s

p
2/n hn.x/:
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In the present case the pseudofree theory (denoted by a prime 0) has a propagator
defined by the expression

hx00; T jx0; 0i0 D �.x00x0/
1
X

nD0
hn.x

00/ e�.nC1=2/T Œhn.x0/ � hn.�x0/�;

where the function �.u/ D 1 if u > 0 and �.u/ D 0 if u < 0. It is the latter
expression that incorporates the hard core, projecting out all those paths in the free
harmonic oscillator propagator that reach or cross the value x D 0. Note well: It is
the pseudofree theory to which the interacting theories are continuously connected
as the coupling constant is reduced to zero. It is the pseudofree theory around which
a meaningful perturbation theory for the singular perturbation can be constructed.
From the point of view of a Euclidean functional integral, if one attempted to expand
a partially hard core interaction about the free theory, this would lead to a series
composed of ever more divergent expressions. Regularization of that series would
serve to render those terms finite but it would also falsely imply that the interacting
theory was continuously connected to the free theory because the regularized power
series would reduce to the free theory when the coupling constant is reduced to
zero. This property of the regularized perturbation series is entirely erroneous and
misleading.

Moreover, the seed of the discontinuous nature of the perturbation about the free
theory is already evident in the classical theory itself. This situation holds because
the classical solutions of the interacting theory already do not reduce to the solutions
of the classical free theory as ! 0. Instead they pass to the classical solutions of
the pseudofree theory as noted above. This result has the important consequence
that an indelible imprint of the fact that one could be dealing with a discontinuous
perturbation (of the free theory) can be determined from an analysis of the classical
interacting theory itself! The nature of such an analysis is not too difficult; it rests
on the determination that the set of solutions of the interacting theory for arbitrarily
small coupling constant is not equivalent to the set of solutions of the free theory
itself.

The criterion that a classical pseudofree theory be different from the classical free
theory is necessary for a quantum pseudofree theory to be different from a quantum
free theory. However, the one dimensional example with 0 < ˛ < 1 demonstrates
that such a criterion is not sufficient to ensure that the quantum theory also involves
a pseudofree theory different from the free theory.

Shifting the Singularity from x D 0 to x D c

Suppose, instead of the singularity being at x D 0, we moved it to the point x D c,
where without loss of generality we can assume that c > 0. This means that our ba-
sic potential is jx � cj�˛ . We now briefly summarize the main changes that occur.
First, the classical story. In this case, the free solution given by q.t/ D A cos.t � a/
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may remain unchanged if the overall classical energy is sufficiently small, which
occurs when jAj � c. When jAj > c, two solutions are possible, one of the
form q.t/ D maxŒA cos.t � a/; c� with the phase a adjusted so that the classi-
cal path continues to obey the equation of motion. The second path is given by
q.t/ D minŒA cos.t � a/; c� with the phase again adjusted so that the classical path
solves the equation of motion. The quantum theory for this case is such that the
pseudofree theory is defined by the harmonic oscillator Hamiltonian augmented by
Dirichlet boundary conditions at x D c. As a consequence, the eigenfunctions and
eigenvalues of the free harmonic oscillator are almost never relevant in the con-
struction of the pseudofree Hamiltonian. The same conclusions would be drawn
from an analysis of the Euclidean functional integral formulation of the quantum
theory. For ˛� 2, a regularized potential qualitatively similar to that discussed be-
fore, should be suitable to define an interaction that is continuously connected to
the free theory. For ˛ >2, however, no regularized form of the potential leads to in-
teracting theories that are continuously connected to the free theory as the coupling
constant passes to zero. Any perturbation analysis of the interacting theory when
˛ >2 must take place about the pseudofree theory. It is noteworthy in this exam-
ple that as c!1 the classical solutions all tend to those of the free theory. It is
also true that as c!1, the pseudofree quantum theory passes to the free quantum
theory.

A Remark on Higher Dimensional Examples

Although these facts have been illustrated for a comparatively simple one-
dimensional classical/quantum model, it is not difficult to imagine analogous
situations in higher dimensional mechanical systems that lead to a corresponding
behavior. For example, a two-dimensional configuration space may have a singular
potential of the form .x2 C y2/�˛. However, this example does not lead to a dis-
continuous perturbation since, although there are Brownian motion paths that pass
through the singular point x D y D 0 and which therefore need to be discarded, the
set of such paths is only of measure zero. To achieve a discontinuous perturbation,
one would need a singularity of co-dimension one such as offered by the potential
j.x2Cy2/� 1j�˛, for example. There is a rich set of examples of this sort, but we
shall not dwell on them for we are after still bigger game, namely, those that arise
for an infinite number of variables!

Classical and Quantum Field Theory

Until now, we have seen simple models for which the interacting theory is not con-
tinuously connected to the free theory as the coupling constant is reduced to zero. In
the classical regime, such a situation can be seen by comparing the set of solutions
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allowed by the free classical theory with the set of solutions allowed by the pseudo-
free classical theory. In those cases where the set of solutions of the pseudofree
classical theory is a proper subset of the set of solutions of the free classical theory,
we have a genuine situation where the interacting theory has left an indelible imprint
on the classical theory as the coupling constant is reduced to zero. When it comes to
an analysis of the associated quantum theories, however, the classical results offer
only a partial guide. In certain cases, the interacting quantum theory is continuously
connected to the free theory, and thus there is no distinct pseudofree quantum theory,
even though the classical pseudofree and free theories differ from one another; for
example, this is the case for the one dimensional model when 0 < ˛ < 1. In such a
case, it is natural that a quantum perturbation series about the free theory would be
the proper choice. However, there is still another option, and this is the one to which
we wish to draw attention, namely when the pseudofree quantum theory is distinct
from the free quantum theory. It is for such situations that the interacting quantum
theory is not continuously connected to the free quantum theory as the coupling
constant is reduced toward zero. It is in such cases that a perturbation series of the
interaction taken about the free theory would be wrong while a perturbation series
about the pseudofree theory would be the proper choice; for example, this is the case
for the one dimensional models when ˛ > 2.

Focus on the Ground State

We aim to carry these concepts from one dimensional systems to field theoretic
systems. Functional integral formulations entail regularization such as that offered
by a lattice.

Consider the spacetime lattice formulation of a general problem phrased
as a scalar field theory. Let �k denote the field value at the lattice point
k D .k0; k1; k2; : : : ; ks/, where kj 2 f0;˙1;˙2; : : :g 	 Z, k0 refers to the
(future) temporal direction, and the remaining kj , 1 � j � s, denote the s spatial
directions; for a quantum mechanical problem, s D 0. Assume that spacetime is
replaced by a periodic, hypercubic lattice with L points on an edge and Ls 	 N 0
lattice points in a spatial slice.

In this section we first wish to argue that moments of expressions of interest in the
full spacetime distribution can be bounded by suitable averages of related quantities
in the ground state distribution. In particular, let the full spacetime average on a
lattice be given by

h Œ†k0
F.�; a/a�p i 	M

Z

Œ†k0
F.�; a/a�p e�I.�;a;„/ …k d�k;

where I is the lattice action, †k0
denotes a summation over the temporal di-

rection k0 only, and F.�; a/ is an expression that depends only on fields �k
at a fixed value of k0. For example, one may consider F.�; a/ D †0

k
�4
k
as or
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F.�; a/ D †0
k;l
�k;l �k�l a

2s , for some c-number kernel �k;l , etc., where the
primed sum implies summation over a spatial slice at fixed k0. It follows that

h Œ†k0
F.�; a/a�p i D †k0;:::;k0

ap hF.�1; a/ � � �F.�p; a/i;

where each �j refers to the fields at Euclidean time “k0 D j ”. A straightforward
inequality shows that

jhF.�1; a/ � � �F.�p; a/ij � jhF.�1; a/p i � � � hF.�p; a/p ij1=p:

Finally, for sufficiently large N 0.bas/, we note that

hF.�; a/p i D
Z

F.�; a/p ‰.�/2…0kd�k ;

namely, an average in the ground state distribution. The argument behind the last
equation is as follows. Quite generally,

hF.�; a/p i DMP

l

Z

h�jlie�El T hl j�iF.�; a/p …0k d�k ;

where we have used the resolution of unity 1D R j�ih�j…0
k
d�k for states for which

O�.x/j�i D �.x/j�i, as well as the eigenvectors jli and eigenvalues El for which
Hjli D El jli. For asymptotically large T , it follows that only the (unique) ground
state contributes, and the former expression becomes

hF.�; a/p i D
Z

F.�; a/p jh�j0ij2…0k d�k;

now with M D 1, which is just the expression given above.
In summary, for a finite, hypercubic lattice with periodic boundary conditions, we

have derived an important result: If the sharp time average of ŒF .�; a/�p is finite,
then it follows that the spacetime average of Œ†k0

F.�; a/a�p is also finite.

Ultralocal Scalar Quantum Fields

As we have done before, we want to illustrate the existence of a pseudofree quantum
field theory distinct from any free quantum field theory by means of a straightfor-
ward and soluble example. The example we have in mind is the so-called ultralocal
scalar quantum field theory. This model has been rigorously solved previously, and
its most complete story can be found in Chap. 10 of [1]. We start with a brief
summary of this model based on that rigorous, nonperturbative analysis. Later we
show how a simple and natural argument arrives at a completely satisfactory solution
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as well. The advantage of having this simple, alternative argument is that it can be
generalized to realistic, relativistically covariant model quantum field theories.

The classical Hamiltonian for a scalar ultralocal field theory with a quartic non-
linear interaction is given by

H D R f 1
2
Œ�.t; x/2 Cm20�.t; x/2�C g0�.t; x/4 g d sx:

Here, s is the number of spatial dimensions which is one less than the number n of
spacetime dimensions, s D n�1. Note well the absence of spatial derivatives in this
expression. Clearly this is not a relativistic model; rather it is a mathematical model
that will teach us a great deal when it is successfully quantized.

Initially, we note that there are many functions �.t; x/ such that

R

Œ P�.t; x/2 Cm20�.t; x/2 � dtd sx <1; R

�.t; x/4 dtd sx D 1;

a fact which implies that there is a classical pseudofree theory distinct from the
classical free theory. This is an important preliminary remark as we try to determine
the status of the quantum theory.

However, let us first make a few remarks about the classical properties of such
models.

Classical Features

The classical equations of motion for this model are given by

R�.t; x/Cm20�.t; x/C 4g0�.t; x/3 D 0:

Indeed, the variable x is strictly a spectator variable in this equation, and we can
relegate it to a subsidiary role simply by rewriting the equation of motion as

R�x.t/Cm20�x.t/C 4g0�x.t/3 D 0;

which shows the equation of motion is simply that of an independent anhar-
monic oscillator at each point of space. Its solution is given by �.t; x/ 	 �x.t/,
where the latter function is based on the initial data, e.g., �.0; x/ 	 �x.0/ and
P�.0; x/ 	 P�x.0/, two functions of x which may be taken to be continuous in x, but
need not be so.

Indeed, thanks to the independence of the solution for distinct x values, one may
readily discretize this model by replacing the spatial continuum by a hypercubic
spatial lattice with a lattice spacing a and L sites on each edge, which leads to a
spatial volume give by V 0 	 .La/s 	 N 0as . To begin, we may replace the classical
Hamiltonian by a lattice regularized version given by

Hreg DP0kf 12 Œ�k.t/2 Cm20�k.t/2�C g0�k.t/4 g as;
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where k 2 Z
s ; this expression is nothing but a Riemann sum approximation to the

integral given above, and it will converge to the former with x D lim ka, as the lat-
tice spacing a converges to zero. This regularized Hamiltonian gives rise to the
regularized equations of motion

R�k.t/Cm20�k.t/C 4g0�k.t/3 D 0;

and even this set of discrete equations of motion converge to the continuum form of
the equation of motion as a! 0 and ka! x.

Free Ultralocal Field Theory

An important limiting case arises when g0 D 0 which is the free theory given by
the free Hamiltonian

H0 D 1
2

R

Œ�.t; x/2 Cm20�.t; x/2 � d sx:

The associated free equations of motion are given by

R�.t; x/Cm20�.t; x/ D 0;

with a solution given in terms of the initial data �.0; x/ 	 �x.0/ and P�.0; x/ 	
P�x.0/, by the relation

�.t; x/ D �x.0/ cos.m0 t/Cm�10 P�x.0/ sin.m0 t/;

along with �.t; x/ D P�.t; x/, or specifically by

�.t; x/ D �m0�x.0/ sin.m0 t/C P�x.0/ cos.m0 t/:

The lattice regulated free Hamiltonian and the associated free solution is also easily
given by

H0 D 1
2

P0
kŒ�k.t/

2 Cm20�k.t/2 � as ;
as well as

�k.t/ D �k.0/ cos.m0 t/Cm�10 P�k.0/ sin.m0 t/ ;

�k.t/ D �m0�k.0/ sin.m0 t/C P�k.0/ cos.m0 t/:

The free model is therefore nothing but an infinite number of identical harmonic os-
cillators all with the same angular frequencym0! Clearly, as a! 0 and ka!x, the
regularized solutions �k.t/ and �k.t/ converge to the continuum solutions �.t; x/
and �.t; x/.
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Quantum Theory – First Look

We start the discussion of the quantum theory with the free theory. We promote the
classical field at time t D 0 (and then suppress the time argument) to an operator
field �.x/ ! O�.x/ as well as promote the classical momentum �.x/ ! O�.x/,
subject to the canonical commutation relation (in units where „ D 1)

Œ O�.x/; O�.y/� D iı.x � y/:
The free quantum Hamiltonian H0 is then written as

H0 D 1
2

R

ŒW O�.x/2 Cm20 O�.x/2 W� d sx;
where, as usual, the notation W . �/ W denotes normal ordering (all creation operators to
the left of all annihilation operators). We denote by j00i the nondegenerate ground
state of H0 for which H0 j00i D 0 holds, thanks to the normal ordering which
removes the (infinite) zero-point energy.

An important relation that characterizes the ground state eigenstate is the expec-
tation functional

E0.f / 	 h00jei
R O�.x/f .x/dsx j00i D e�.1=4m0/

R

f.x/2 dsx :

Indeed, the structure of this functional as the exponential of a local integral of f .x/
is dictated by the fact that the temporal development of the operators at any point
x is ultralocal, i.e., the temporal development at x is completely independent of the
time development at a different spatial point x0. This behavior carries over to the
case of the interacting ultralocal model as well, and one expects that whatever the
full Hamiltonian operator H is, and whatever the associated ground state j0i is, for
which Hj0i D 0 holds, the ground state expectation functional has the form

E.f / D h0jei
R O�.x/f .x/dsx j0i D e�

R

LŒf.x/� dsx ;

for some suitable choice of the function LŒu�.
A canonical representation for the function LŒu� is readily determined. We focus

on those cases that are even functionsLŒ�u� D LŒu�, which are then real and satisfy
LŒ0� D 0 and otherwise LŒu� � 0. Let f .x/ 	 p��.x/, where ��.x/ 	 1 if
x 2 � and zero otherwise; moreover, as a modest abuse of notation, we also set
R

��.x/ d
sx D � as well. Thus

h0jei
R O�.x/f .x/dsx j0i D e��LŒp� 	

Z

cos.p/ d��./;

where we have made use of the symmetry of LŒu�, and the fact that for each � > 0

we are dealing with a characteristic function (Fourier transform of a probability
measure ��). Thus,

LŒp� D lim
�!0 �

�1 R Œ1 � cos.p/� d��./:
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Based on this expression, and assuming convergence, it is clear that the most general
function LŒu� is given by the relation

LŒu� D au2 C R
�¤0Œ1 � cos.u/� d�./;

where a � 0 and �./ is a nonnegative measure such that

R

�¤0Œ
2=.1C 2/� d�./ <1:

The free model solution obtained above is one for which aD 1=.4m0/ and � D 0.
Let us assume hereafter that aD 0 and � ¤ 0. Observe that it is possible that

R

�¤0d�./ D1;

and in fact this will be the case for the solutions of interest to us because we insist
that the spectrum of the field operator O�.x/ is absolutely continuous, and thus for
any� > 0, it is necessary that

lim
p!1 e��LŒp � D 0:

For simplicity in what follows, we assume that the measure �./ is absolutely
continuous, and we respect that assumption by setting

d�./ D c./2 d;

where c./ is known as the “model function”. It has been found that the choice of
the model function completely characterizes the ultralocal model under considera-
tion, and, importantly, apart from the free model, all nonlinear ultralocal models are
described by the situation where a D 0 and the model function c./ > 0 [1].

Model Function

To ensure that the model function c./ has a suitable singularity at  D 0, we focus
our attention on model functions of the form

c./ D .b/1=2 e
�y.�/=2

jj� ;

where y.0/ D 0, � D 1=2, and b is a positive constant with dimensions L�s .
[Remark: Other � values in the range 1=2 < � < 3=2, which are discussed in [1],
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can be obtained by suitable, invertible, changes of variables from the case where
� D 1=2.] As a consequence, it follows that

E.p/ 	 h0jeip Q j0i
D e�.b�/

R

Œ1�cos.p �/� e�y.�/

j�j
d�

' .b�/
Z

cos.p /
e�y.�/

jj1�2b� d;

where Q 	 R O�.x/��.x/ d sx and the last relation holds when 0 < b�  1.
Observe that the prefactor b� in the last expression is an approximate normalization
factor (and an asymptotically correct one!) for the ground state distribution.

This latter form of the expectation function for a single degree of freedom readily
extends to an infinite set of such fields, with p D fpkg now, such that

E�.p/ D Q0k



.b�/

Z

cos.pk �k/
e�y.�k /

j�kj1�2b� d�k
�

:

Let us consider†kpk��.x � ka/, where here we have in mind that ��.x/ denotes
a small hypercubic cell around the origin of area � D as . As � D as ! 0 and
†kpk��.x � ka/! f .x/, it follows that

lim
�!0E�.p/ D E.f / D h0je

i
R O�.x/f .x/dsx j0i

D expf�bR d sx R Œ1 � cos.f .x//� e�y.�/ d=jjg:

This last relation allows us to identify the regularized ground state of a general
ultralocal theory as given (with „ temporarily restored) by the expression

‰.�/ 	Q0k .b�/1=2
e�y.�k ;a;„/=2„

j�kj1=2�b�
	Q0k‰k.�k/:

Given that this expression represents the ground state, it then follows that the regu-
larized Hamiltonian is given by

H� DP0k



� 1
2
„2 @2
@�2
k

a�s C 1
2
„2 1
‰k.�k/

@2‰k.�k/

@�2
k

a�s
�

	 �1
2

P0
k„2 @

2

@�2
k

a�s C V.�/;

where, for the choice of ‰.�/ given above,

V.�/ 	P0k Œ18y0.�k; a;„/2 � 1
4
„y00.�k; a;„/C 1

2
„�r y0.�k; a;„/ ��1k

C1
2
„2�r.�r C 1/ ��2k � I
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here
�r 	 1

2
� b� D 1

2
� bas :

Consider the pseudofree ultralocal case for which

y.�k; a;„/ D m0�2k as :

For this choice, it follows that

Vpf .�/ 	 1
2

P0
k Œm

2
0�

2
k
as � „m0.1 � 2�r/C „2�r.�r C 1/��2k a�s �:

Given the Hamiltonian for this case we can immediately determine the lattice
action for this pseudofree ultralocal model. In particular, it follows that

Ipf D
P

kf 12 Œ.�k# ��k/2an�2Cm20�2k anC„2 .12 �bas/.32 �bas/a�2s��2k an �g:

In this expression the factor k# signifies the next lattice point advanced by one unit
in the time direction, i.e., if k D .k0; k1; : : : ; ks/ then k# D .k0 C 1; k1; : : : ; ks/.
Note well that any constant term (zero point energy) in the Hamiltonian cancels out
with a similar term in the normalization factor in the functional integral and need
not be included in the lattice action. Observe that the classical limit for which „ ! 0

accompanied by the continuum limit leads to the classical (Euclidean) action for the
free ultralocal model.

Interacting Ultralocal Models

Drawing on the foregoing analysis of the pseudofree ultralocal model, we may give
a brief discussion of interacting ultralocal models. The quartic interaction in the
lattice action leads to a lattice Hamiltonian of the form

H D �1
2
„2P0k @

2

@�2
k

C V.�/;

where

V.�/ DP0k Œ 12m20�2k as C 0�4k as C 1
2
„2�r.1C �r /��2k a�s � � E:

The constant E is chosen so that the ground state ‰.�/ fulfills H‰.�/D 0.
Unfortunately, the form of the expression y.�; a;„/ that is part of the ground
state function is unknown, but it surely has the property that as 0 ! 0, then
y.�; a;„/!m0�

2as appropriate to the pseudofree model. Stated otherwise, the
quartic interacting theory is continuously connected to the pseudofree model as
advertised.
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Although we can not analytically describe the ground state for the quartic ultralo-
cal model, we can, as another example, choose a nonquadratic form for y.�; a;„/
and see to what interacting model it belongs. For example, let us consider

y.�; a;„/ D m0�2as C g0�4as ;
which leads to the potential

V.�/ DP0

k
1
2
fm2

0�
2
k
C 4m0g0�

4
k
C 4g20�6k � 1

2
„Œm0.1 � 2�r/C 2g0.2�r � 3/�2k�

C„2�r .1C �r/��2
k gas:

Evidently this choice describes a model with a mixed quadratic, quartic, and
sixth order potential. The first three terms – those without „ as a coefficient – survive
in the classical limit as „ ! 0. Again, as the nonlinear coupling g0 ! 0, it follows
that this interacting model is continuously connected to the pseudofree model.

Another Route to Quantize Ultralocal Models

Let us now derive the pseudofree ultralocal model by an alternative argument. First,
we recognize the free model and its ground state on a regularizing lattice as given by

‰0.�/ D
p
K e
� 1
2
m0†

0

k
�2

k
as

;

which gives rise to the ground state expectation functional

E0.f / D lim
�!0 K

Z

ei†
0

k
pk�k a

s�m0†
0

k
�2

k
as

…0kd�k

D e�.1=4m0/
R

f.x/2 dsx :

Perturbations in the mass for example would involve expressions of the form

Ip.m0/ 	 K
Z

Œ†0k�
2
k a

s �p e�m0†
0

k
�2

k
as

…0kd�k ;

for which the result is clearly divergent in the continuum limit where the number
N 0 of spatial lattice points diverges. It is instructive to see just where that N 0 fac-
tor originates, and to do so we pass to hyper-spherical coordinates defined by the
expressions

�k 	 ��k ; � � 0 ; �1 � �k � 1 ;
�2 	 †0k�2k ; 1 D †0k�2k :

In terms of these variables, it follows that

Ip.m0/ D 2K
Z

Œ�2as �p e�m0�
2 as

�N
0�1d� ı.1�†0k�2k/…0kd�k :
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For large N 0, this integral may be estimated by steepest descent methods as

Ip.m0/ D O..N 0=m0/p/ I0.m0/:

Moreover, in a perturbation calculation of I1.m0/ about I1.1/ (say) it follows that

I1.m0/ D I1.1/� ım0I2.1/C 1
2
ım0

2I3.1/� � � � ;

where ım0 	 m0 � 1. Clearly this series is divergent as N 0 ! 1, i.e., in the
continuum limit. Note well that N 0 makes an explicit appearance in this series only
in the factor �N

0�1 that arises from the measure …0
k
d�k put into hyper-spherical

coordinates.
To eliminate those divergences we need to eliminate that appearance of the factor

N 0. The only way to eliminate that factor is to change the ground state from that of
the free system to that of the pseudofree system that takes account of the hard core.
To attack the hard core directly is difficult and has so far not been a productive
direction to follow. But, and here is the main point of this discussion: To eliminate
the factor N 0 that arises from the field measure it suffices to ensure that the
ground state distribution for the pseudofree theory is such that

‰2pf .�/ / ��.N
0�R/ e�m0†

0

k
�2

k
as

for some finite parameter R.
For the ultralocal model, we shall more explicitly choose a ground state for the

pseudofree model of the form

‰pf .�/ D K 0…0kj�kj�.1�R=N
0/=2 e

�1
2
m0�

2
k
as

;

which leads to the desired form and respects the ultralocal symmetry of the model.
How do we chooseR? We require that this expression have an acceptable continuum
limit, which we study by examining the characteristic function for the ground state
distribution, i.e.,

Epf .f / D lim
a!0…

0
kK
R

eipk�k a
s�m0�

2
k
as j�kj�.1�R=N 0/…0kd�k

D lim
a!0…

0
kf1 �K

R

Œ1 � eipk�k a
s

� e�m0�
2
k
as j�kj�.1�R=N 0/…0kd�kg:

The only way to achieve a meaningful continuum limit is, first, (effectively) choose
m0 D .bas/m, where b is an arbitrary positive parameter with dimensions of L�s ,
which, after a change of variables (�k ! a�sk), yields to leading order,

Epf .f / D lim
a!0…

0
kf1�K

R

Œ1 � eipk�k � e�bm�2
k jkj�.1�R=N 0/…kdkg;
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and, second, choose K D c .bas/ [which fixes R to be R D 2c.bas/N 0], and thus

Epf .f / D e�c b
R

dsx
R

f1�cosŒf .x/��g e�b m�2
d�=j�j:

Normally, the dimensionless factor c has been chosen as c D 1 or c D 1
2

, but any
positive value is acceptable.

It is of fundamental importance to observe that we have derived a correct version
of the pseudofree ultralocal model by the simple act of choosing the pseudofree
ground state distribution to cancel the unwanted factor N 0, the very factor that
causes the divergences in the first place, and then to ensure as meaningful a con-
tinuum limit as possible. This simple act ensures that all the moments of interest
are now finite and no infinities arise whatsoever. Since this action has the effect
of cancelling all divergences, it acts in all necessary ways as would the presumed
hard core. In particular, the so-defined, divergence-free interacting theory does not
pass continuously to the free theory but instead it passes to an alternative theory,
namely, the pseudofree theory. That kind of limiting behavior is the biggest clue
to the fact that the interaction acts as a (partial) hard core. Does the simple act of
removing the offending factor N 0 accurately correspond to including the effects of
the hard core? In fact, it really doesn’t matter if the elimination of the factor N 0 is
an accurate realization of the hard core; the putative “hard core” has already ren-
dered an important service by refocussing our attention beyond those counter terms
that are suggested by perturbation theory. Additionally, the study of the soluble ul-
tralocal models has helped us clarify the question of whether removing the factor
N 0 corresponds to accounting for the hard core. Specifically, the solution obtained
from a rigorous viewpoint is identical to the one obtained by the supremely simple
prescription of choosing a suitable pseudofree model that eliminates the offending
factor N 0. In this sense, the removal of the cause of the divergences, i.e., the factor
N 0, has rendered the theory finite in all respects, and since the result completely
agrees with the rigorously obtained result, we are certainly entitled to assert that the
removal of the factor N 0 has accounted for the presence of the hard core in the case
of ultralocal models.

We shall see that this breathtakingly elementary procedure, coupled with a judi-
cious choice of further details of the pseudofree model, will provide a divergence-
free formulation of additional examples of nonrenormalizable models, formulations
that would be difficult to arrive at by any other means. It is reasonable that the pro-
cedure to eliminate the source of divergences caused by the measure should apply
to other models which, in some sense, are “close” to ultralocal models. It is also rea-
sonable to expect that traditional nonrenormalizable models are good candidates on
which to try a similar approach to deal with otherwise uncontrollable divergences.

Relativistic Models

The classical (Euclidean) action for covariant, quartic self interacting scalar fields is
given by

I D R f 1
2
Œ.r�.x//2 Cm20�.x/2�C 0�.x/4g dnx;
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for an n-dimensional spacetime. To discuss the classical side of the pseudofree sit-
uation, we recall a classical Sobolev-type inequality (see, e.g., [1]) given by

fR �.x/4 dnx g1=2 � cR Œ.r�.x//2 Cm20�.x/2� dnx;

which for n � 4 holds with c D 4=3 and for n � 5, requires that c D 1. This
result implies that for n � 5, there are fields �.x/ for which the free part of the
classical action is finite but for which the quartic interaction diverges. These are just
the conditions under which a classical pseudofree theory different from the classical
free theory exists. Thus it is possible when n � 5 that the quantum theory also has
a pseudofree theory different from its free theory.

We recall that a lattice regularized form of the Euclidean functional integral with
only two free parameters (m0 and 0) has been shown to pass to a (generalized)
free theory in the continuum limit [2]; thus a richer variety of renormalization coun-
terterms is required to avoid triviality. Since, for n � 5 the quantum theories are
perturbatively nonrenormalizable leading to a perturbation series composed of in-
finitely many distinct counterterms, such an approach does not resolve the problem.
Our goal is to show that an unconventional counterterm suggested by what is needed
to remove the source of the divergences can lead to a satisfactory resolution of all
problems with the relativistic models. To that end we now turn our attention to a
very different sort of lattice regularized functional integral formulation for self in-
teracting relativistic scalar fields.

In particular, relativistic interacting scalar models admit an analogous treatment
to that of the ultralocal models, and in our present discussion we follow reference
[3]. In begin with, let us introduce a lattice action defined by the expression

I.�; a;„/ 	 1
2

P

k .�k� � �k/2 an�2 C 1
2
m20
P

k�
2
k
an

C0Pk�
4
k a

n C 1
2
„2PkFk.�/an ;

where there is an implicit summation over all n nearest neighbors in the positive
sense symbolized by the notation k�, and where the nonclassical counterterm is

Fk.�/ 	 1

4

�

N 0 � 1
N 0

�2

a�2s
P0

r; t

Jr;kJt;k�
2
k

Œ†0
l
Jr; l �

2
l
�Œ†0mJt;m�2m�

�1
2

�

N 0 � 1
N 0

�

a�2s
P0

t

Jt;k

Œ†0mJt;m�2m�

C
�

N 0 � 1
N 0

�

a�2s
P0

t

J 2
t;k
�2
k

Œ†0mJt;m�2m�2
:

Here,

Jk; l 	 1

2s C 1 ık; l2fk[knng;
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where ık;l is a Kronecker delta. This latter notation means that an equal weight
of 1=.2s C 1/ is given to the 2s C 1 points in the set composed of k and its 2s
nearest neighbors in the spatial sense only; Jk; l D 0 for all other points in that
spatial slice. [Specifically, we define Jk; l D 1=.2s C 1/ for the points l D k D
.k0; k1; k2; : : : ; ks/, l D .k0; k1 ˙ 1; k2; : : : ; ks/, l D .k0; k1; k2 ˙ 1; : : : ; ks/,. . . ,
l D .k0; k1; k2; : : : ; ks ˙ 1/.] This definition implies that †0

l
Jk; l D 1.

For the ultralocal model, the analog of the constants Jk; l is the Kronecker delta,
i.e., ık; l . In that case it was important to respect the physics of the ultralocal model
with no interaction between fields at distinct (lattice) points. For the relativistic mod-
els, on the other hand, there is indeed communication between spatially neighboring
points and we can use that fact to provide a lattice-symmetric, regularized form of
the denominator factor. Moreover, the lack of integrability at �k D 0, for each
k, which was critical for the ultralocal models to ensure that the ground state be-
comes a generalized Poisson distribution in the continuum limit, is exactly what is
not wanted in the case of the relativistic models. This latter fact is ensured by the
factors Jk; l as chosen.

We first focus on our choice of the pseudofree model in the relativistic case,
which is chosen somewhat differently than in the ultralocal case. Specifically,
we define the generating function for the lattice regularized, covariant pseudofree
model by

Spf .h/ DMpf

Z

expŒZ�1=2†khk�k an=„ � 1
2

P

k .�k� � �k/2an�2=„
�1
2
„PkFk.�/an�…k d�k I

here,Z denotes the so-called field strength renormalization constant to be discussed
below. Associated with this choice of the pseudofree generating function is the
lattice Hamiltonian for the pseudofree model, which (with the zero point energy
subtracted) reads

Hpf D �12 „2 a�s
P0
k
@2

@�2
k

C 1
2

P0
k .�k� � �k/2as�2 C 1

2
„2P0kFk.�/ as �E0:

Lastly, we introduce the expression for the pseudofree ground state

‰pf .�/ D
p
K

e�†
0

k;l
�kAk�l �l a

2s=2„�W.� a.s�1/=2=„1=2/=2

…0
k
Œ†0
l
Jk;l �

2
l
�.N

0�1/=4N 0
;

which, in effect, was chosen first, and then the lattice Hamiltonian and the lattice
action were derived from it. We discuss the (unknown) functionW below; however,
we observe here that the other factors in‰pf .�/ properly account for both the large
field and small field behavior of the ground state.

In the next section we discuss the continuum limit, and in doing so we are again
guided by the discussion in [3].
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Continuum Limit

Before focusing on the limit a ! 0 and L ! 1, we note several important facts
about ground-state averages of the direction field variables f�kg. First, we assume
that such averages have two important symmetries: (i) averages of an odd number
of �k variables vanish, i.e.,

h�k1
� � ��k2pC1

i D 0;

and (ii) such averages are invariant under any spacetime translation, i.e.,

h�k1
� � ��k2p

i D h�k1Cl � � ��k2pCli

for any l 2 Z
n due to a similar translational invariance of the lattice Hamilto-

nian. Second, we note that for any ground-state distribution, it is necessary that
h�2
k
i D 1=N 0 for the simple reason that †0

k
�2
k
D 1. Hence, jh�k�l ij � 1=N 0

as follows from the Schwarz inequality. Since h Œ†0
k
�2
k
�2i D 1, it follows that

h�2
k
�2
l
i D O.1=N 02/. Similar arguments show that for any ground-state distribution

h�k1
� � ��k2p

i D O.1=N 0p/;

which will be useful almost immediately.

Field Strength Renormalization

For fhkg a suitable spatial test sequence, we insist that expressions such as

Z

Z�p Œ†0khk�k a
s �2p ‰pf .�/

2…0k d�k

are finite in the continuum limit. Due to the intermediate field relevance of the factor
W in the pseudofree ground state, an approximate evaluation of the integral will be
adequate for our purposes. Thus, we are led to consider
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Z
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s �2p
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�kAk�l �l a
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0�1/=2N 0
…0kd�k

' 2K0
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Jk;l �

2
l
�.N

0�1/=2N 0
d� ı.1�†0k�2k/…0k d�k;
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where K0 is the normalization factor when W is dropped. Our goal is to use this
integral to determine a value for the field strength renormalization constant Z. To
estimate this integral we first replace two factors with � variables by their appropri-
ate averages. In particular, the quadratic expression in the exponent is estimated by

�2†0k;l �kAk�l �l a
2s ' �2†0k;lN 0 �1Ak�l a2s / �2N 0a2s a�.sC1/;

and the expression in the integrand is estimated by

Œ†0khk �k a
s �2p ' N 0 �p Œ†0khk a

s �2p :

The integral over � is then estimated by first rescaling the variable �2! �2=

.N 0as�1=„/, which then leads to an overall integral estimate proportional to

Z�p ŒN 0as�1��p N 0�p Œ†0khk a
s �2p I

at this point, all factors of a are now outside the integral. For this result to be mean-
ingful in the continuum limit, we are led to chooseZ D N 0 �2a�.s�1/. However,Z
must be dimensionless, so we introduce a fixed positive quantity q with dimensions
of an inverse length, which allows us to set

Z D N 0 �2 .qa/�.s�1/:

Mass and Coupling Constant Renormalization

A power series expansion of the mass and coupling constant terms lead to the ex-
pressions h Œm20†k�2kan �p i and h Œ0†k�4kan �p i for p� 1, which we treat together
as part of the larger family governed by h Œg0;r †k�2rk an �p i for integral r � 1. Thus
we consider
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2s=„
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2
l
�.N

0�1/=2N 0
d� ı.1 �†0k�2k/…0kd�k :

The quadratic exponent is again estimated as

�2†0k;l �kAk�l �l a
2s / �2N 0a2s a�.sC1/;
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while the integrand factor

Œ†0k�
2r
k �

p ' N 0pN 0�rp :

The same transformation of variables used above precedes the integral over �, and
the result is an integral, no longer depending on a, that is proportional to

g
p
0;rN

0�.r�1/p asp=N 0rpa.s�1/rp:

To have an acceptable continuum limit, it suffices that

g0;r D N 0.2r�1/ .qa/.s�1/r�s gr ;

where gr may be called the physical coupling factor. Moreover, it is noteworthy that
Zr g0;r D ŒN 0 .qa/s��1 gr , for all values of r , which for a finite spatial volume
V 0 D N 0as leads to a finite nonzero result for Zr g0;r . It should not be a surprise
that there are no divergences for all such interactions because the source of all di-
vergences has been neutralized!

We may specialize the general result established above to the two cases of interest
to us. Namely, when r D 1 this last relation implies thatm20 D N 0 .qa/�1m2, while
when r D 2, it follows that 0 D N 03 .qa/s�2. In these cases it also follows that
Zm20 D ŒN 0 .qa/s ��1m2 and Z20 D ŒN 0 .qa/s ��1, which for a finite spatial
volume V 0 D N 0as leads to finite nonzero results forZm20 andZ20, respectively.

Conclusion

For covariant scalar nonrenormalizable quantum field models, we have shown that
the choice of a nonconventional counterterm, but one that is still nonclassical, leads
to a formulation for which a perturbation analysis of both the mass term and the
nonlinear interaction term, expanded about the appropriate pseudofree model, are
term-by-term finite.

Coupled with the discussion for the ultralocal models, it is evident that the present
analysis would suggest a related formulation for so-called Diastrophic Quantum
Field Theories introduced by the author in [4]. These models are distinguished by
the fact that they can be viewed as fully relativistic models modified so that some
(but not all) of the spatial derivatives are dropped; thus these models lie, in a certain
sense, between the relativistic and ultralocal models.

It is also hoped that some of these ideas may have relevance in one or more
formulations of quantum gravity, such as, for example, in the program of Affine
Quantum Gravity introduced by the author; see [5].
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Summary A number of features of living systems, reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal
organization; asymmetry in interactions and organization; quantum coherent phe-
nomena; to name some, can have a natural accounting via physical interactions,
which we therefore seek to incorporate by expanding the horizons of “chemistry-
only” approaches to the origins of life. It is suggested that the magnetic “face” of the
minerals from the inorganic world, recognized to have played a pivotal role in initi-
ating Life, may throw light on some of these issues. A magnetic environment in the
form of rocks in the Hadean Ocean could have enabled the accretion and therefore
an ordered confinement of super-paramagnetic colloids within a structured phase.
A moderate H-field can help magnetic nanoparticles to not only overcome thermal
fluctuations but also harness them. Such controlled dynamics brings in the possi-
bility of accessing quantum effects, which together with frustrations in magnetic
ordering and hysteresis (a natural mechanism for a primitive memory) could throw
light on the birth of biological information which, as Abel argues, requires a com-
bination of order and complexity. This scenario gains strength from observations
of scale-free framboidal forms of the greigite mineral, with a magnetic basis of as-
sembly. And greigite’s metabolic potential plays a key role in the mound scenario of
Russell and coworkers-an expansion of which is suggested for including magnetism.
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1 Introduction

Life’s hierarchical control structure is a sequence of constraints, each limiting the
scope of the preceding level for stepwise harnessing of the physico-chemical laws
governing its lowest rung. But the limiting “boundary conditions” are themselves
extraneous; they cannot be formally derived from these laws. Furthermore, the
higher-level operating principles depend on, but are not reducible to, those of the
lower ones [127]. Next, the origins of purpose permeating across biology [67],
as well as information associated with function, are among the most fundamen-
tal of questions in biology [80]. Indeed, the structure-function relationship, where
rate-dependent equations representing measurement associated with biostructures
are linked to rate-independent constraints associated with bioinformation, is viewed
as an epistemological complementarity [123]. According to Pattee, “epistemic op-
erations like observation, detection, recognition, measurement, and control as the
essential type of function” demarcate living from non-living organizations. The
chances of an organism’s survival are crucially dependent on its ability to improve
its control strategies that in turn depend on its recognition of environmental patterns.
Hence, “To qualify as a measuring device it must have a function, and the most
primitive concept of function implies improving fitness of an organism.” Pattee’s
famous “semantic closure principle” places a heavy responsibility on the observer
who should at minimum be an organization that can construct the measuring device
and use the results of measurement for its very survival [124]. This scenario seems to
be a far cry from the objective (observer-independent) physical laws characterized
by Universality and Invariance Principles. And it is indeed a tall order to explain
from these “classical” premises the emergence of subjective (observer-dependent)
biological infrastructure making measurements for survival. But Pattee recognizes
that unlike classical theory, Quantum theory is not constrained by observer – in-
dependence and promptly invokes Wheeler to make his point: “No elementary
quantum phenomenon is a phenomenon until it is a recorded phenomenon (i.e.,
the results of a measurement).” Indeed, the puzzle is really about how the “Cy-
bernetic cut” [1] could have been crossed using mere physicodynamics, leading
to the emergence of a nonphysical (not governed by chance or necessity) mind
from physicality that established controls over the same. We further ask whether
this mystery could somehow be related to the idea of life having originated in an
inorganic world-an idea which has met considerable acceptance. The compelling
link to iron (FeS) clusters in early evolved enzymes (and across species in a range
of crucial roles, e.g., catalytic, electron transfer, structural), with exhalates on the-
Hadean ocean floor, is based on the close resemblance of these clusters with greigite
(Fe5NiS8) [62,138]. Not only are these clusters seen as playing a key role in the ori-
gins of metabolism, where geochemical gradients were harnessed, but also, for long
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mineral crystal surfaces have, and continue to be seen as scaffolds, thanks to their
chemical-information storing/transferring potential, leading to the other-replicating
– wing of Life [6, 14, 20, 33, 42, 49]. But in these approaches, a number of features:
reversible interactions, weak bonds, gel-sol transitions, cellular connected fractal
organization, asymmetry in interactions and organization, to name some, and which
are difficult to address using chemical interactions alone, are seen as later arrivals,
i.e., upon achievement of complexity in the pre-biotic “soups.” Here again, the path,
as to how complexity could have been entrained to lead to Life-like features of today,
remains far from being understood. Then, in addition to chemistry, could physical
properties of inorganic matter have also acted as a scaffold for onward transmis-
sion of several common physical features (see below) typical of living systems? To
that end, we note that dynamically ordered forms of matter, like framboids, regard-
less of chemical structure, are the result of physical forces, including magnetism
(see Sect. 4).

Now, magnetism has myriad manifestations at different scales – quantum to cos-
mological [153]. (The repeated appearance of fractal themes is compelling – from
magnetic critical phenomena to finer length scales where quasiparticle behavior in a
magnetic field can be explained by fractional quantum numbers [48, 64]; Farey se-
ries elements, Fn; Hausdorf dimension h [28]. And, there are ubiquitous magnetic
influences across kingdoms : navigation sensing in bacteria, algae, protists, bees,
ants, fishes, dolphins, turtles, and birds [72, 172]; field effects on growth patterns,
differentiation, orientation of plants and fungi [47]; ferromagnetic elements in tis-
sues [74], etc. (In fact, magnetite (Fe3O4, a magnetic mineral) – biomineralization,
the most ancient matrix-mediated system, is thought to have served as an ances-
tral template for exaptation [73]. Indeed, new inputs of quantum events underlying
biophenomena like magnetoreception [75] reveal the importance of magnetism in
biological systems of today. Most importantly, its vital role in the science of informa-
tion technology persuades us to turn to this enveloping science for any mechanisms
beyond the limits of physicochemical principles that could have helped bridge the
gap from inanimate matter to life.

In this mini survey

(1) We give a brief summary of the relevance of quantum searches in biology and
therefore to the origin-of-life problem (Sect. 2.1). We briefly review spin and
magnetic models offering insights into the emergence of life, leading up to our
proposal (Sects. 2.2–4).

(2) We survey various biophenomena with analogies to magnetic ones in general as
well as topological similarities with our magnetism-based proposal in particular
(Sects. 3.1–9), and ask whether magnetism could have helped to pave the way
for a takeoff from non-life to life.

(3) We briefly review framboids, where conflicting physical forces usher in dy-
namic order. Here, the mineral greigite’s magnetic properties underlie its
framboid-forming capacity (Sect. 4).

(4) We outline the mound scenario of Russell and coworkers, with rich metabolism
potential, where greigite forms in a colloidal environment. A possible scenario
for a magnetic reproducer is drawn (Sect. 5).



532 G. Mitra-Delmotte and A.N. Mitra

2 Quantum Searches and the Origins of Life

A brief introduction on quantum searches in biology is followed by their implica-
tions in the origin of life. A possible physical system enhancing the propensity of
such searches is then suggested.

2.1 Quantum Searches and Biology

Outstanding biological-search examples can be seen in biological evolution itself,
with divergences symbolized by tree nodes; the clonal Darwinian-like phase in the
adaptive immune system; brain connections and protein folding. The efficiency of
quantum searches over classical ones has prompted the idea that they could have
been used by Nature who usually is found to take the cleverest among available op-
tions, as illustrated by certain Extremum Principles of Classical physics (Hamilton,
Fermat, Maupertius). For instance, in a database of dimension d , a quantum search
gives a square root speedup over its classical counterpart – also valid for the re-
spective nested versions [21]. In a typical scenario, challenges interrupting the
networking phase are seen as forcing the biosystem to seek help from a co-existing
quantum domain, e.g., a search prompted by a “crisis” in the form of a depleted
nutrient could lead the adaptive system to a new pathway for succor. Now, quantum
coherence in the set of elements on the affected front could help skirt frustrations
in local minima as can happen in a classical search. This access to the wave-
property enables a superposition of states and allows a “holistic” decision. Thus
in the face of crises, halted networked interactions in a subsystem would prompt
the formation of a “quantum decision front.” This would be constantly checked or
“measured” by the rest of the system. A fruitful interaction with one chosen path
would mean a simultaneous collapse of the quantum superposition of alternative
paths [96].

Today, clear signatures of quantum processing in biology are coming in [40],
aided by femtosecond laser-based 2D spectroscopy and coherent control ap-
proaches, showing how phase relationships in nanostructures modulate the course of
bioreactions [106]. As to decoherence evading mechanisms, the role of a gel-state;
quasicrystalline order; [51, 66]; are among proposed order-maintaining mecha-
nisms in a wet environment, while “screening effect,” or “cocooning” structural
mechanisms are seen as providing insulation against interactions with the environ-
ment [29, 30, 119] (see also Sect. 3.9). Indeed, it seems that Nature has quietly been
using these strategies all along, i.e., leading to creation of biological language itself,
as the Grover-Patel search numbers match those used by Nature! Using Grover’s
quantum search method for a marked item in an unsorted database, Patel [119] hit
upon the base-pairing logic of nucleic acids in transcription and translation as an
excellent quantum search algorithm – a directed walk through a superposition of all
possibilities – resulting in a twofold increase in sampling efficacy over its classical
counterpart (which at best permits a random walk). Prompted by these insights,
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Al-Khalili and McFadden [5] point out that a quantum search would have been
far more efficient than a random one for picking out the self-replicator from the
primordial soup comprising a dynamic combinatorial library of compounds linked
together, say by reversible reactions. But what plausible ingredients could have
facilitated such a quantum-assisted leap?

2.2 Spin and Magnetic Systems for the Origin of Life

Hypothesizing a quantum-mediated process for the transition from non-life to life,
Davies [31] proposes that information could have its origins in quantum objects such
as spins, whose orientations offer a natural discretization mechanism of genetic in-
formation, and which in turn may have been embodied by physical structures in
some natural system. Although this would initially be copying bits (no associated
phase information so initially no issues of decoherence evasion), the possibility of
coherence in this inherently quantum system endows it with a potential for conduct-
ing a quantum search for the quantum replicator. Furthermore, he points out that
in this envisioned scenario, the collapse of the quantum superposition of states of
living and non-living ones to the low probability state of “life” cannot be due to
the quantum system’s own doing. Instead it must have been the result of an envi-
ronmental interaction, serving as a measuring device, thus implying a key role for
the environment (cf. [178]). Again, an origin-of-life model based on spin-ordering
(a variant of the Ising spin glass) was proposed by Anderson [9], which was albeit
prompted from another angle – the correspondence between the complexity due to
the impact of frustration in magnetically disordered systems and bio-processes, such
as protein-folding [61, 155] (see Sect. 3.1). Then again, Breivik [17] demonstrated
that self-ordering of ferromagnetic objects (
3 mm) with reproduction of magnetic
templates could be manipulated via dynamic interaction with environmental tem-
perature fluctuations, thereby significantly also connecting information encoded in
nucleic acids with non-chemically linked aperiodic polymers. This is because a
magnetically packed array is naturally aperiodic (see Sect. 3.8), hence satisfying
Schroedinger’s [150] vision of aperiodic surfaces as efficient information-holders,
in contrast to a periodic crystal lattice with strongly correlated elements. This
magnetic mechanism for propagating information also agrees with Dyson’s [38]
suggestion that “physical reproduction” preceded chemical replication in the ori-
gins of life, the latter being identified with a specific chemical copying process.
And interestingly, his use of a magnetic analogy for states, obeying the Boltzmann
probability distribution, gels with the kinetic aspects of biological reactions [129].

All of these compels us to ask whether magnetism could have empowered the
initial conditions for traversing the bridge dividing life from non-life, by providing
simultaneously a scaffold for interactions and connections, where physical repre-
sentations would allow for higher level abstractions, not of the isolated system but
rather in the context of its penetrating environment playing an active role in its
decision-making. We have recently proposed [103, 104] that an external field in the
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form of magnetic rocks could have enabled accretion of newly forming, magnetic
nanoparticles on the Hadean Ocean floor, because of field-induced aggregates have
been observed in magnetic fluids showing deviations from ideal behavior.

2.3 Ferrofluids; Field-Induced Structures

Ferrofluids are colloidal single-domain magnetic nanoparticles (
10 nm) in non-
magnetic liquids that can be controlled by moderate H-fields (
tens of milliTesla)
[110]. The relevance of these dispersions to natural locations has been considered
only rarely, e.g., see [171], perhaps due to their synthetic origins; nevertheless, their
amazing properties lead to myriad applications, including ratchet behavior [39]. On
the one hand dilute dispersions display ideal single-phase behavior due to prohibited
(chemical) interparticle contacts, thanks to synthetic coatings. On the other hand,
in the present context we look at the interactions between the magnetic particles
although the carrier remains in the liquid state. Such deviations from ideal mag-
netization behavior can show up on increasing particle concentrations that can be
understood in terms of H-field-induced inter-particle interactions leading to inter-
nal structure formation [22, 135] and manifesting in dense phases – a milder phase
transition than to the solid-crystalline one. The structure of hydrated, heterogenous
aggregates would depend on factors such as the strength of the applied field, the
nature of the ferrofluid, etc [110, 176, 177]. Li et al. [85] have pointed out the dis-
sipative nature of the field-induced aggregates [157] that break up in response to
thermal effects upon removal of field. In their gas-like compression model, the total
magnetic energy of ferrofluids obtained from an applied field: WT D WM C WS ;
where WM D �0MHV and WS D �T�S are the magnetized and the structur-
ized energies, respectively, V is the volume of the ferrofluid sample and �S is the
entropic change due to the microstructure transition of the ferrofluid. An assumed
equivalence of WT (zero interparticle interactions), with the Langevin magnetized
energyWL D �0MHV necessitates to a correction in the magnetization, in terms of
the entropy change. Hence, these colloidal systems are well equipped to analyze the
interplay between competing factors -dipolar interactions, thermal motion, screen-
ing effects, etc. leading to the emergence of magnetically structured phases [122].

2.4 Structured Magnetic Phases; Life-Like Dynamics

On analogous lines to ferrofluids, magnetic rocks providing a surface field strength

 tens of milli-Tesla would have turned any newly forming magnetic particle sus-
pension into tiny magnets, leading to the emergence of magnetically structured
phases (MSPs). We come to a suggested scenario in Sect. 5. Here, the magnetic
entropy property of super-paramagnetic particles offer a ready basis for interchange
with the Brownian hits from the surroundings for harnessing this energy, analogous
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to complex biological soft matter, while the external magnetic environment plays
a key role in controlling their dynamics. Furthermore, we suggested [104] that the
presence of charge on particles would permit only the tiny sized particles (carry-
ing one/two units of charge) to diffuse through layers of the magnetically accreted
charged layers in response to a non-equilibrium source – a gentle gradient of flux
lines (assuming a non-homogeneous H-field from rocks). Non-equilibrium energy
driven diffusion of tiny particles (ligand-carrying or otherwise) through the mag-
netically ordered phase in a close-to-equilibrium manner shows the possibility of
controlled dynamics in a confined system.

The connections between field-induced structures of magnetic nanoparticles and
biophenomena bring out their ramifications for fluctuation-generated order from
dissipative structures as envisaged decades ago [109]. Note that a magnetic envi-
ronment exerts control on spin states and hence on spin-selective chemical reactions
(see [18]). The possibility of yet another magnetic control is via magnetically sensi-
tive reactions whose rates are sensitive to orientations of reactants [170]. Separation
of complex mixtures forming at the origins of life would have also been facilitated
by magnetic mechanisms, acting in an orthogonal non-interfering manner.

3 “The Importance of Being Magnetic”

We now look at some general features of biological systems with similarity to mag-
netic phenomena, also comparing dynamics in biology vis-a-vis our proposal of a
nanoscale assembly controllable by a magnetic environment.

3.1 Confinement, Connectivity, Frustration-Complexity

Self-ordering phenomena [109] show how spontaneous order can emerge from inan-
imate matter, leading to connected components (confined). But the high algorithmic
compressibility of order and patterns that can be explained in terms of physical
laws would simultaneously make it difficult to generate the complexity (high in-
formation carrying capacity) underlying biology [2]. In Shannon’s terminology, the
information carrying capacity of a 1D-string is at its maximum when there are no
correlations between its components, i.e., when it is a random sequence. A combi-
nation of the two-order and unpredictability – might be a better way to understand
this paradox of biological complexity [2]. Now, frustrations in magnetically con-
nected systems are well known in literature (see also Sects. 2.2, 4.5). Their presence
naturally introduce the element of uncertainty in the midst of long-range correla-
tions. We therefore suggest that a confined system due to magnetic connections, as
in our proposal, has the combination for addressing such complexity in the origins
of life.
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3.2 Nested Hierarchy, Cooperative Dynamics

Biological structures appear as nested organizations based on coherent feedback
through a lattice of interacting, spatially oriented units; self and non-self interac-
tions underlie their cooperative dynamics [87]. And as noted by Min et al. [102],
the characteristics of dynamically self-assembled nano-structures with bottom-up
complexity, formed by dissipating energy, depend on the constituent particle size,
shape, hardness, and composition, apart from their sensitivity to (control by) exter-
nal fields; this approach was used in generating systems with hierarchial complexity
via an interplay of magnetic and hydrodynamic interactions [50] (see also Sect. 4).
In this connection recall some facets of magnetism in common with those of
self-organizing systems: emergence of global order from local interactions, orga-
nizational closure, hierarchy, downward causation, distributed control underlying
robustness, bifurcations via boundary conditions, non-linearity due to feedback,
etc [57]. Their relevance can be gauged from the insights of Bak and Chen [11]:
long-range spatiotemporal correlations (via a non-dimensional scale factor) are the
hallmark of self-similarity, manifest as self-organized criticality in natural dynam-
ical systems. Again, Selvam [151] proposed a coherence preservation mechanism
via self-similar structures with quasicrystalline order as iterative principles – the
main tools for handling non-linear dynamics of perturbations for evolving nested
order that connect the microscopic and macroscopic realms with scale-free struc-
tures arising out of deterministic chaos. This brings us to Tagore’s couplet:

Amra shobai raja amader ei rajar rajottey, noiley moder rajar shoney milbey ki
shottey – Tagore

(We are all kings in our King’s kingdom, else how do we get along with Him.)

3.3 Polar Cell-Organization and Structures

On higher scales, the directionality of biochemical processes gets derived from the
asymmetric structure of biomolecules and their association into consequently po-
larized assemblies with increasing complexity [52]. The cytoskeleton, at least in
eukaryotes, is organized via transmitted internal or external spatial cues, reflecting
the polar organization of the cell [35]. We also note that some fundamental biolog-
ical structures form from asymmetric monomers. For instance, the directionality
of nucleic acid polymers stems from the asymmetry of template-based aligning
monomers. The cytoskeletal family of proteins provides another outstanding ex-
ample. The past two decades revealed how analogous functions are carried out by
bacterial homologues of eukaryotic cytoskeletal proteins. Actually, the highly con-
served FtsZ, barring a few exceptions, is found across all eubacteria and archaea.
Despite its low sequence identity to tubulin, its eukaryotic homologue, the two pro-
teins not only share the same fold but also follow similar self-assembly patterns,
forming protofilaments. The longitudinal contact of the assembling monomers is in
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a head-to-tail fashion. The other crucial eukaryotic cytoskeletal protein – actin –
also shows a distinct asymmetry. It forms double-helical thin filaments composed
of two strands. Within these, actin assembles in a head-to-tail manner, similar to
its bacterial homologues [99]. Indeed, another association between the cytoskeletal
network and percolation systems [161] recalls the long-range connectivity of mag-
netism (e.g., magnetic percolation clusters forming fractal networks [63]. Again, the
diamagnetic anisotropy of planar peptide bonds permits their oriented self-assembly
in a magnetic field, seen for fibrous biostructures [159, plus ref].

3.4 Reversible Gel-Sol Transitions

A far cry from organelles floating in sacs, the cytoplasm appears to have rich
structure irrespective of species, with increasingly reported associations of mobile
proteins with defined, albeit transient, locations [52]. Again, “site-dipoles” have
been proposed for resolving the apparent contradiction between the seemingly ran-
dom molecular movements and the correlated orientations in assemblies. Thus, the
co-operativity among water molecules occupying the site-dipole field surrounding
a solute in MD simulations, manifested in coherent patterns (
14Ao) that lasted
about 300 ps, even as individual molecules randomly moving in and out of the
sites, rapidly lost their orientational memory [58]. Indeed, the cell is viewed as a
gel; reversible gel-sol phase transitions underlie its dichotomy that can be accessed
via subtle environmental variations leading to finite structural changes [162]. Like
hydrated cross-linked polymer gels, the cytoplasm thus exhibits excluded volume
effects and sizeable electrical potentials. Biomolecules like proteins and ions play
a critical role in structuring of intracellular water [23, 24]. This capacity to lie on
the border between liquid and gel states underlies life’s ability to make the most of
fluidity of the liquid state as well as long range order of the more solid gel phase,
enabling self-assembly of softmatter. Now, in the origins of life, unlike a chemi-
cally bonded thermally formed gel, a magnetic gel has the potential of reverting
to its colloidal components just like colloid–gel transitions pointed out in living
systems [162].

3.5 Reversible Interactions; Weak Bonds

The sensitivity of biomolecular machines to thermal noise is a rather intriguing phe-
nomenon. And, they have evidently learnt to harness these, thanks to the continuous
nature of the energy landscape connecting different states. Again, the interconvert-
ibility between different states is permitted due to the use of weak interactions (Van
der Waal’s, H-bonds, hydrophobic, etc), used for their temporary maintenance. Sig-
nificantly, the Berry’s phase-like periodic cycles [8] shown by biomolecular motors
reveal different trajectories for two half cycles (with different binding capacities in
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forward and backward directions) that can be understood in terms of their internal
degrees of freedom. How could such complexity of biological macromolecules have
arisen from simple matter, e.g., small molecules with a few discreet energy states,
present at the dawn of Life? This is because these very features underlie the ef-
ficiency of biological machines that are being increasingly viewed as microscopic
systems governed by the fluctuation-dissipation theorem (in the linear regime). The
variations in total Gaussian-distributed energy of a macroscopic system with N par-
ticles, relative to the average value, are of the orderN�1=2. Thus, fluctuations would
be negligible for macroscopic systems, but they would be relevant for microscopic
ones, and also when the total energy of the system is 
kBT .

Next, in small systems in equilibrium or non-equilibrium steady states, the be-
havior remains unchanged in time, although a constant input of energy is required
for the latter, operating away from equilibrium. No net heat transfer occurs in the
former, with equal probabilities of absorbing/releasing heat from bath. However, the
probability ratio differs from one for nonequilibrium steady state systems that dis-
sipate heat on the average. And heat, being an extensive quantity, the probability of
its absorption becomes exponentially smaller with increasing system size. On the
other hand, for microscopic systems like biomolecular machines driven by rectified
thermal fluctuations, this Maxwell-Demon-like probability can be significant [19].
This has been very succinctly phrased in a recent review [54] as follows: “These
engines have one foot in the equilibrium camp and another in the world of fluc-
tuations and non-equilibrium.” Indeed, Jaryznski [65] showed that the average of
the exponential of the energy of a microscopic system, pulled quickly away from
equilibrium (instead of the simple average) works out to have the same value as
the equilibrium energy change corresponding to a slow version of the same. This
prediction was experimentally verified by Bustamante et al. [19], where the result
remained unaffected upon changing the applied shearing force. In this proposal, dif-
fusion of tiny particles driven by non-equilibrium energy, via infinitesimal changes
in their relative orientations through the magnetically ordered phase in a close-
to-equilibrium manner shows the possibility of controlled dynamics analogous to
ATP-driven biomolecular motors (see [104]). Here, the source of non-equilibrium
energy is none other than the gentle gradient of flux lines, thanks to a rock magnetic
field (non-homogeneous).

3.6 Kinetic Barriers; Records of Constraints via Hysteresis

A major difference in the dynamics of life’s processes lies in the shift of the role
of thermodynamics from a directing force in regular chemical reactions to one of
supporting the kinetics [129]. In fact, biology teems with examples of chemical
reactions that are thermodynamically allowed but await help for going across the
kinetic barrier-an intermediate state requiring energy of activation (Ea), with the
reaction rate primarily dictated by the Boltzmann factor (exp(�Ea/kT)). Catalytic
enzymes bring down the barrier by enabling the appropriate relative positioning of
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the reactants for reaction to occur. In the Hadean, rigid mineral crystals could have
acted likewise, although it is difficult to see how entire metabolic cycles of disparate
reactions could have been catalyzed on the same surface [115]. On the other hand,
field-energy transfer through a network of magnetic templates within the structured
phase [104] offers an alternative scenario for enabling the juxtaposition required
for not only one but also an array of reactions, by harnessing thermal fluctuations
to orient substrates diffusing into and binding to the templates (cf. [120] oscillator
inspired catalytic mechanism for each reaction, see also Sect. 3.9).

Note that Pattee’s perception of lifedynamics arising out of an irreducible
“whole”-internal interpretation of time-independent symbolic codes (DNA) by
their dynamical functional self-expressed constraints (proteins) – neatly subsumes
the debate of which branch of life-the metabolic or the replicator-first made its
appearance in the origins. Briefly, it may be recalled that constraints create specific
conditions for execution of physical laws in the dynamical system they cause their
local action, thanks to frozen degrees of freedom in their material structures. Their
formation, in turn, depends on records or memory-like preserved constraining con-
figurations, e.g., the dislocation of a growing crystal. And, although these do not
form as a consequence of the dynamics of the system in which they function (giving
them an elevated “status”), they can govern some dynamical events, by switching
on-off in a specific manner. In one scenario of such “entangled” emergence of
symbols and metabolism – a “protometabolic” system – where the information
specifying the network is distributed in its organization (a membrane-enclosed
recursive network of component production) evolves to a self-interpreted genome
through a stage dependent on non-symbolic records. This is crucially dependent on
the latter’s ability to act at two levels: as a memory to be expressed and as a way to
express this memory [41]. Now, the phenomenon of hysteresis in magnetic materials
provides a natural mechanism for the emergence of constraints in a magnetically or-
dered system. For example, for reactions catalyzed on the magnetic templates [104]
as above, the imprint of the bound product in terms of altered orientations of the
template particles would itself provide an “observing” mechanism for “recording”
(the product of) the reaction.

3.7 Self-Reproduction; Pre-Bio-Molecular Motors

Not only genetic information but also entire progeny are modeled on the “parent
template” that provides the precise spatial information for element organization and
patterns, at different levels of the intricately connected hierarchy [52]. Living sys-
tems use diverse modes for copying patterns of information : nucleic acids follow a
template basis for assembly, membranes grow by extension of existing ones, entire
structures can duplicate (e.g., spindle pole body or the dividing cell as a whole),
etc. [52]. Now, in contrast to the growth of mineral crystals (in traditional origin-
of-life models) restricted to a growing surface, field-assisted alignment of diffusing
tiny particles would occur through the “layers” of the accreted assembly, leading to
its inflation.
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Next, for ratchet-like effects, consider super-paramagnetic ligand-bound par-
ticles [100, 101], diffusing through the structured phase in an oriented manner
as a consequence of gentle change in flux lines, assuming that magnetic rocks
would have provided a non-homogeneous field. Now, two changes are expected
upon ligand binding: lowering of both rotational freedom and coercivity [165] on
the ligand-bound end. Thus, while unconstrained rotation of ligand-free particles
enables alignment and propagation of the “information” in the magnetic dipole-
ordered assembly (“reproduction” as above), ligand-binding aids diffusive passage.
The constituents of the structured phase- magnetically networked dipoles - are ex-
pected to locally perturb the H-field “seen” by the aligning and diffusing particles,
moving through its layers-the “templates” (Figure 1). Thus, alignment to consequent
template-partners would be alternated by dissociation from the template, in cycles.
Infinitesimal steps leading to these altered states would require
 kBT , hence could
be facilitated by Brownian hits. This way the main features of today’s biological
molecular motors: a non-equilibrium force applied close-to-equilibrium that could
reign-in Brownian noise, plus asymmetry (via an H-field gradient), can be recov-
ered [104], since no macroscopic thermal gradient runs these engines. Recall that
a “thermal gradient” was proposed by Feynman to circumvent the idea of “biased”
Brownian motion (based on structural anisotropy alone) which, despite a right mag-
nitude for driving nano-sized particles [125] is otherwise forbidden by the Second
Law of Thermodynamics. The evolution of these motors can perhaps be understood

Figure 1 Directed interactive diffusion of S-PP through MSP (with parallel correlations). MSP
represented in black; State 1/ State 2: lower/higher template-affinity states of the ligand (L)-bound
S-PP, in blue; green lines signify alignment in State 2; T.E. or thermal energy from bath; rock
H-field direction indicated on top of figure, see text
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in terms of non-magnetic “replacements” allowing the exit of such a magnetic sys-
tem from its geological confines [104]. Indeed, diffusing superparamagnetic units
through a viscous medium (due to interparticle magnetic dipolar forces) have a
striking parallel to the directed movement of biomolecular motors (in the transla-
tional, transcriptional, cytoskeletal assemblies) on aperiodic intracellular surfaces
that indicate an invariant topological theme for a ratchet mechanism, namely, move-
ment of a cargo loaded element on a template (representing a varying potential) that
harvests thermal fluctuations for dissociating its bound state and spends energy for
conformationally controlled directed binding, or an ionic gradient for direction [7].

3.8 Pre-RNA World; Transfer Reactions; Optical Activity

Both magnetic templates and the particles (free or chemical ligated) diffusing
through the phase are part of a magnetically connected network, and therefore
seem to have the potential to naturally provide topological correspondences to a
variety of biophenomena. For example, in the proposed RNA world, RNA played
the roles of both DNA and protein – let us call them RNA-sequential and RNA-
structural, respectively. Evidently, nature designed DNA for packaging information
efficiently, satisfying Shannon’s maximum entropy requirement (no correlations
across sequences). This leads to the “chicken-egg” conundrum, as the largely ran-
dom sequential information encoded in DNA is correlated via RNA with the high
degree of stereochemical information in proteins. Now in contrast to hard peri-
odic crystal lattices forged with chemical bonds, confining physical forces in an
accreted ensemble gives a natural access to aperiodic surfaces [17], (see Sect. 2.2).
We therefore point out that RNA-sequential has obvious parallels with aperiodic
layers of a magnetically structured phase hosting directed diffusion of ligand-bound
super-paramagnetic particles (above). These very “templates” seem like a primitive
translational machinery, where Wächtershäuser’s [167] “bucket brigade-like” trans-
fer reactions carried out by oriented particles play the key adaptor roles a la transfer
RNAs – the directed diffusion of the particle on an aperiodically packed surface
with no correlations (RNA-sequential-like), with the other, ligand-bound to com-
pounds rich in structural information. This “magnetic letters-like” scenario bears a
striking resemblance to the tRNA’s bringing the amino acids together for stringing
them up on the basis of the sequential information inscribed in the mRNA template.
And the maintenance of similar orientation, during diffusive migration (depending
upon the gradient of flux lines cutting through the magnetically structured phase,
i.e., forward/backward from N to S or S to N; see above) offers a natural mech-
anism for generating optical activity through symmetry-breaking. This is because
the solid-phase-like arrangement of ligands, from a racemic mixture (and bound to
diffusing-super-paramagnetic particles oriented to the magnetic-rock field) would
take place in the limited space between densely packed magnetic layers/templates
(cf. [95,166]). And, in the transfer reactions, this directional asymmetry of transport
of an oriented dipole due to a non-homogeneous external field has the potential to
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push the balance in favor of bond formation between juxtaposed activated units hav-
ing the same chirality close to the ligand-binding site. This is further aided by the
space constraints of such intralayer activity, where the optical activity of the first-
bound unit (the symmetry-breaking choice) would set the preferences for those of
the subsequently selected ones.

3.9 The Potential for a Quantum-Leap to Life

These non-trivial correspondences between biological and magnetic phenomena in
general and topological correspondences to our proposal in particular, prompt us to
push this interface between these apparently unrelated disciplines, to wonder why
the functional-approach-based selection of chemical molecules (where changes are
largely due to environmental fluctuations) would not have started from a magnetic
scaffold defining and dictating these functional/contextual requirements? Indeed,
the orientation of each (particle) moment can be viewed as an interpreting gauge
of its composite environment-external field (rocks); neighboring particle moments;
thermal fluctuations. It offers a “route” for capturing a “stable internal symbolic
representation of the environment” to borrow a phrase from Hoffmeyer [60]. So
could there have been a possible role of magnetism in endowing a system with con-
straints, non-creativity, no goals, with the potential to jump to a state with formal
processes of controls, learning and instructions, creativity (as in the extended ver-
sion of Pattee’s work drawn by Abel [1] – life as a bonafide natural programmer),
thus empowering the initial conditions for this leap? In this connection, it may be re-
called that using the metaphor of an arch of stones, Cairns–Smith had proposed that
the scaffold paving the way for “organic takeover” (the “arch”) may well have been
provided by clay minerals that were eventually disposed off. Indeed, this idea finds a
sort of echo in the suggestion of Patel [121], viz., the choice of carbon with its tetra-
hedral geometry provide the simplest discretization of the fundamental operations
of translation and rotation needed for processing structural information. (Rotations
in 3-D are not commutative, a fact of crucial importance in representing structural
information; in mathematical jargon this goes by the name of the SU(2) group of
Pauli matrices/quaternions). Of course “replacements” via quantum searches could
well have been biopolymers with capacity for classical searches that would have
been more robust against decoherence (cf. the classical wave algorithm proposed by
Patel [120]). According to Patel, vibrations and rotations of molecules being har-
monic oscillator modes, the catalyst like a mega oscillator can focus the energy of
many modes onto the reactant awaiting activation.

This brings us to an important feature accessible via magnetism, viz., a sound
entry point for quantum processing. The Matsuno group (2001) has reported the
coherent alignment of induced magnetic dipoles in ATP-activated actomyosin com-
plexes that was maintained over the entire filament even in the presence of thermal
agitations causing rapid decoherence. The energy of the dipole-dipole interaction
per monomeric unit of 1:1 � 10�22 Joule was found to be far below the thermal
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energy per degree of freedom at room temperature. This also can be extended to
magnetically aligned particles in a natural way. Work is currently in progress re-
garding the role of a magnetic environment in aiding coherence. This matches with
Abel’s [2] observation, “. . . an inanimate environment has no ability to program for
a potential function that does not yet exist. Yet selection for potential function is
exactly what genetic programming requires.” Thus, Abel projects life as a bona fide
programming system with discretized instructions. Now, the infinitesimal orienta-
tional changes of particles (associated moments) diffusing through the layers of the
assembly [104] offer yet another occasion for discretization of operations required
for processing structural information, e.g., choice of carbon polymers (see above).
Indeed, the implications of a ferrofluid network as an analog device can be seen in
the recent simulations by the Korenivski group [12, 117]. We therefore suggest that
these magnetic nano-particle assemblies could have been the soft–magnetic–matter
version of Cairns–Smith’s mineral scaffold that was replaced by organic matter.

Again, one can find an example of discretization in the biological currency ATP,
providing energy for coupling to biochemical reactions. Furthermore, in what is
seen as a temperature lowering mechanism enabling molecular motors to act as heat
engines, Matsuno and Paton [93] describe the gradual release of energy stored in
ATP by actomyosin ATPase, in a sequence of quanta Em over time intervals of
�tm. This underlies the huge order of magnitude discrepancy between the observed
time interval of hydrolysis of 1 molecule of ATP 
 10�2 s, and that calculated by
considering energy release of E D 5 � 10�3 erg (7 kcal/mol) from a singly emitted
quantum, or „=E � 2 � 10�15. The obtained values of Em 
 2:2 � 10�19 erg and
�tm � 4:5�10�9 s indicates therefore 2:2�106 number of coherent energy quanta
release during one cycle of energy release from a single ATP molecule. In Kelvin
scale, each energy quantum Em amounts to 1:6 � 10�3 K associated with the acto-
myosin complex. Here too we find that a mechanism enabling interchange between
the a system’s environmental temperature and its own entropy is provided by the
(anistropic) magnetocaloric effect (MCE) [159], which is the property of some mag-
netic materials to heat up when placed in an H-field and cool down when they are
removed (adiabatic). In fact, the heat capacity at the nano-scale turns out to be a few-
fold higher than that of bulk systems, thanks to MCE [78]. We have suggested [104]
that the exit of the “magnetic ancestor” from the confines of its magnetic environ-
ment may have been enabled upon coupling of its envisaged dynamics associated
with changes in gradient of flux lines, instead with ATP-the universal biological
currency (see Sect. 5.4; also Sects. 2.4, 3.5, 3.7).

In this scenario, biological phenomena with similarity to magnetic ones could be
considered as “distant cousins” of their “non-living” counterparts. Thus even quan-
tum processing is viewed as a legacy and not a product of adaptive evolution [34].
Note that magnetic ordering may stem from unpaired p – electron systems [113]
(not just 3d, 4f!). The “substitutes,” despite increasing complexity, would need to
pass on the legacy of multidimensional properties of the Ancestor possessed, espe-
cially phase information, e.g., DNA has positional information, with possible phase
signatures in its helical structure [79].
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4 Framboids and the Mineral Greigite

We shall now seek to expand the potential of mineral crystal theories by look-
ing for minerals that can enable magnetic effects, such as those outlined above.
This brings us to framboids ([171], see below) as these dynamically ordered ter-
restrial/extraterrestrial, microcrystal composites formed by structurally different
materials show the control of packing by physical forces.

4.1 Framboids; Importance of Physical Properties

In framboids, named after their framboise/raspberry-like patterns, nucleation of
clusters is followed by growth of individual nuclei into microcrystals. They have
been defined as microscopic spheroidal to sub-spheroidal clusters of equidimen-
sional and equimorphic microcrystals which suggest a homogenous nucleation
of the initial microcrystals. Other than the spherical framboids, a highly ordered
icosahedral type has been reported where this packing is maintained in its inter-
nal structure. The formational environment is evidently critical for the packing in
these varied forms. As pointed out by Ohfuji and Akai [111], D/d ratios of fram-
boids (framboid diameter D and microcrystal diameter d) dominated by irregular
or loosely packed cubic-cuboidal microcrystals are low compared to high corre-
sponding values observed for those composed of ordered densely packed octahedral
microcrystals. The narrow distribution of sizes and uniform growth of thousands
of crystals in framboids within a short time interval was attributed to a regulated
balance between rates of nucleation and of crystal growth, as in the La Mer and
Dinegar model [82]. Furthermore, the nucleation of a supersaturated solution by
the first-formed crystal triggers the separation of many crystals of the same size.
This liquid–solid-like phase transition is dependent on packing considerations of
hard-sphere-like microcrystals, whose ordering is an outcome of the interplay of
close-packing and repulsive forces (see [148]).

As noted by Sawlowicz [148], the framboidal texture is seen in a number of dif-
ferent minerals other than pyrite, i.e., copper and zinc sulfides, greigite, magnetite,
magnesioferrite, hematite, goethite, garnet, dolomite, opal, and even in phosphoric
derivatives of allophane. This suggests a similar mechanism of formation, despite
the structural differences. Studying their presence in sedimentary environments,
Sawlowicz [147] found pyrite framboids to be hierarchially structured over three
size-scales: microframboids, to framboids, to polyframboids. And since spheroidal
microframboids are formed of equant nanocrystals, he suggested (1993, 2000) the
formation of nano-framboids, comprising microcluster aggregations (
100 atoms),
by analogy with the 3-scale framboidal hierarchy. His observations leading to a
proposed formation mechanism center around the key role of the colloid-gel phase
leading to the fractal forms. Interestingly, exclusion of organic compounds, were
found to lead to simple framboids via an aggregation mechanism while experiments
with organic substance stabilized gel-droplets, framboids formed by particulation.
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This latter route is seen as important for generating the fractal complexity. Sim-
ilar scale free framboids of greigite that is ferrimagnetic (next), have also been
documented [128].

4.2 Framboidal Greigite

In framboids reported in sedimentary rocks more than 11,000 years old [134], the
central parts of the weakly magnetized framboids were found to have greigite mi-
crocrystals. Sections from these show that the pentagonal arrangement comprise a
central pentagonal domain with its sides connected to five rectangular/trapezoid-
like regions which are in turn connected via fan-shaped domains. The arrangement
pattern of these densely packed octahedral microcrystals linked edge to edge is
“lattice-like” (space filled) in the rectangular domains, whereas in the triangular
domains the triangles are formed by the (111) faces of the octahedral microcrystals
and the voids between them. Thus within these domains the individual faces of the
microcrystals do not make any contact. The icosahedral form is seen as generated by
stacking twenty tetrahedral sectors packed on three faces out of four, and connected
by their apexes at the center. Generally acknowledged as dynamically stable, this
form is known to have six 5-fold axes at each apex, and ten 3-fold axes at each face,
as can be seen in a number of naturally occuring structures from microclusters like
fullerene to some viruses [111]. Furthermore, in an investigation of apparent bio-
logically induced mineralization by symbiotically associating bacterial and archaeal
species, framboidal greigites have been obtained from Black Sea sediments that are
ordered clusters of octahedral crystals comprising Fe3S4-spinels (Essentially cubic
where sulfur forms a fcc lattice with 32 atoms in the unit cell, and Fe occupies 1/8
of the tetrahedral and 1/2 of the octahedral sites). Their size is restrained by their
icosahedral symmetry and under greater pressures at depths of 200 m, the diameters
are mostly 
 (2.1, 4.2, 6.3 or 8.4) �, with the two intermediate ones predominating.
The smallest of these are formed from 20 octahedral crystals (0.35�) positioned at
the apexes of an icosahedron and surrounding a 0.5� diameter vacancy that give rise
to 12 pentagonal depressions on the outside. Nested structures building up from this
smallest one lead to the higher sized clusters [128]. Subspheroidal pyrite-framboids,
due to curved polyhedron-like outer facets, probably reflect an internal icosahedral
microcrystal organization [111], which are classically forbidden crystallographic
symmetries [112].

4.3 Magnetic Interactions

Magnetic interactions turned out to have an overwhelming influence when Wilkin
and Barnes [171] included them in the standard DLVO treatment for interacting col-
loidal particles that considers attractive van der Waals and double-layer repulsive
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interactions, for modeling framboidal pyrite formation. This is based on the align-
ment of precursor greigite, under the influence of the weak geomagnetic field that
would help overcome the thermal energy of particles above a critical size. Ferrimag-
netic greigite has a saturation magnetization value Msat at 298 K ranging between
110 and 130 kA/m. On the basis of microscopic observations by Hoffmann [59]
of natural greigite crystals, < � meter – sized greigite can be roughly taken as
single-domain particles. Assuming a spherical geometry, the critical grain diameter
of constituent crystallites comprising the framboid interior dc D 2a, where a > 1,
is given by

dc D .6kBT=�0�Msat jH j/1=3 (1)

This result can be obtained from the inequality WWB > kBT where we define
WWB 	 �0MsatVH . Here kB is Boltzmann’s constant and �0 the permeability of
vacuum. When aligned parallel to weak geomagnetic field (
70�T), dc D 0:1�m.
Although framboids can form in varied environments and by other mechanisms
(see [112, 148]), this magnetic greigite-precursor mechanism can operate only up
to temperatures of 200ıC [171], e.g., sediments, in natural waters. Also, as pointed
out by Wilkin and Barnes [171], the effect of weak fields leads to spherical struc-
tures in ferrofluids (Sect. 2.3) in contrast to aspect ratios approaching infinity in
strong fields. They also noted the role of turbulence in facilitating the interplay of
opposing interactions.

4.4 Dynamic Ordering; Phyllotaxis; Quasiperiodicity

A characteristic pattern of icosahedral framboids – octahedral microcrystals, large
D/d ratio – has been attributed to a high initial nucleation rate and low growth rate
of microcrystals [111,112]. According to Sawlowicz [148], the interplay of surface-
minimizing forces with repulsive interactions lead to close-packed framboids, tend-
ing to polyhedrons. And, this is a ramification of anastrophic supramolecular orga-
nization, with its far-from-equilibrium conditions. Sure enough, the framboid mor-
phology is strongly remniscent of the ubiquitous phenomena of Phyllotaxis, from
subnano to cosmological scales [3, 36, 84]: Repulsive magnetic dipoles, galactic
structures, biostructures, from the molecular (proteins, DNA) to macroscopic levels
(myriad marine forms), proportions in morphological and branching patterns [36],
Benard convection cells, stress-driven self-assembly, bunched crystalline ion beams,
atmospheric flows, and flux lattices in layered superconductors. Phyllotactic pat-
terns are produced when the sequential accretion/deposition or appearance/growth
of elements is governed by an energy-minimized optimization of the main oppos-
ing forces: largest available space vs repulsive interactions. And in magnetically
accreted greigite framboids [171] too, a similar interplay of conflicting forces,
leads to raspberry-like phyllotactic patterns. This dynamic ordering via accretion
of magnetic crystals in the face of short-range repulsive forces does contrast with
the build-up of a conventional infinite crystalline lattice, where the nuclear surface
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acts as a template for copying a unit cell via local interactions. Rather, it is anal-
ogous to a scenario at nano-scales–one associated with the aperiodic, long range
order of systems known to form quasicrystals whose growth occurs by accretion of
pre-formed clusters in the liquid state by the growing nucleus [70]. Now, the rele-
vance to greigite concerns its natural preference for such order as evidenced from
observations of nested scale-free icosahedral greigite framboids [128]. These ob-
servations are intriguing in view of the known links between phyllotactic patterns
and quasiperiodic phases. For instance, the predominance of edge-to-edge contacts
between microcrystals comprising icosahedral greigite framboids [111, 134] limits
possible conduction pathways.

4.5 Magnetic Assemblies in the Laboratory; Long-Range Order?

Some insights into the above natural assemblies are offered by synthetic ones
driven via a different route of evaporation [4, 26, 156], also one under hydrother-
mal conditions [174]. Apart from external-field control, other physical properties of
nano-constituents: crystalline/colloidal state, geometry, susceptibility, coatings, etc,
are important criteria for clustering patterns [81, 126]. Next, in soft condensed mat-
ter studies, varied and unusual polyhedra have been seen in packing sequences of
colloidal polystyrene microspheres, illustrating how certain symmetries, including
fivefold rotational symmetry, can arise solely from compression and packing con-
straints. These can be explained by the use of a minimization principle – that of the
second moment of mass distribution wrt the center of mass (†imix2i ), instead of
the conventional volume (
r3) – optimizes the packing [89, review in 174]. Again,
the route to formation is another important aspect of assembly; there is no possibil-
ity of an internal sphere upon collapse in this evaporation-driven system that starts
from spherically packed particles bound to a continuous and smooth (2D) surface,
i.e., the droplet interface. This route would not apply to particles compressed via
magnetic dipolar forces as in scale-free greigite framboids, which is more like a
problem of packing spheres not only on the surface of a sphere (2d-space), but also
rather into a finite 3D space, as in some compounds, alloys, quasicrystals that have
long range order without periodicity. Recall that framboidal texture comes via op-
timized packing of microcrystals (see largeD=d ratios, Sect. 4.1). That structurally
different materials form framboids (Sect. 4.1) also reveal the important role of the
colloidal state where physical properties can be accessed, in contrast to the strong in-
fluence of chemical properties for packing in (periodic) crystals. An understanding
of icosahedral geometry in scale-free greigite framboids can be had from a study
of tesselation of spheres (number N ; radius a) packed on the surface of a large
sphere (radiusR). This shows that energy minimization would lead to buckling into
icosahedral forms, considering only small R=a ratios, as N 
 .R=a/2 [107]. This
in turn could bring in geometrical frustrations but studies on icosahedral magnetic
quasicrystals [86] show that geometrical constraints do not rule out the possibility
of long range magnetic order.
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Thus, we find that in the mineral inorganic world too, superimposed physical
interactions can dictate assembly organization. Furthermore, it is significant that
greigite, which is known to undergo accretion due to magnetic forces [171] and also
has a natural propensity for framboid formation [111, nested forms in 128], is also
strongly suspected for its “metabolic” potential (next).

5 Mound Scenario of Russell et al. and Greigite

In fact, the search for greigite forming on the Hadean Ocean floor led us to the
colloidal environment setting of Russell and coworkers where greigite forms across
gradients and that leads to a metabolically enriched scenario (next).

5.1 Mound Scenario of Russell et al.

The colloidal environment-based proposal of Russell et al. [138] envisages Life as
having emerged in moderate temperature hydrothermal systems, such as mild alka-
line seepage springs. Water percolating down through cracks in the hot ocean crusts
reacted exothermically with ferrous iron minerals, and returned in convective up-
drafts infused with H2, NH3, HCOO�, HS�, CH�3 ; this fluid (pH 
 10 � 120ıC)
exhaled into CO2, Fe2C bearing ocean waters (pH 
 5:5 � 20ıC) [137]. The in-
terface evolved gradually from a colloidal FeS barrier to a single membrane and
thence to more precipitating barriers of FeS gel membranes. Since fluids in alka-
line hydrothermal environments contain very little hydrogen sulfide, the entry of
bisulfide, likely to have been carried in alkaline solution on occasions where the
solution met sulfides at depth [142], was controlled. This was perhaps important for
a gradual build-up of scale-free clusters leading to the envisaged gel-environment.
(As pointed out by Sawlowicz [148] colloids often form more readily in dilute so-
lutions – suspension as a sol – than in concentrated ones where heavy precipitates
are likely to form). These barriers controlled the meeting of the two fluids, as they
enclosed bubbles entrapping the alkaline exhalate : an aggregate growing by hydro-
dynamic inflation. The forced entry of buoyant seeps may have led to chimney-like
protrusions. Furthermore, theoretical studies by Russell and Hall [141] show the
potential of the alkaline hydrothermal solution (expected to flow for at least 30,000
years) for dissolving sulfhydryl ions from sulfides in the ocean crust. The reaction
of these with ferrous iron in the acidulous Hadean ocean (derived from very hot
springs, [141]) is seen as having drawn a secondary ocean current with the Fe2C to-
ward the alkaline spring as a result of entrainment [91]. Hence at the growing front
of the mound, the production of daughter bubbles by budding would have been sus-
tained by a constant supply of newly precipitated FeS. Like cells, these mini FeS
compartments protected and concentrated the spectrum of energy-rich molecules,
borne out by harnessing important gradients across the mound (a true far-from-
equilibrium system, driven by energy released from geodynamic sources): redox,
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pH, and thermal gradients for electron transfers, primitive metabolism, and directed
diffusion, respectively [137]. See also Rickard and Luther [137] for an analysis of
the reducing power of FeS for synthesizing organics in this proposed scenario.

Experimental simulations of mound conditions using calculated concentrations
of ferrous iron and sulfide (20 mmoles of each) resulted in the formation of a simple
membrane. Using solutions with 5 to 20-fold greater concentrations (to make up for
their build-up in geological time) generated compartmentalized structures, shown in
Figure 2 where the chambers and walls are 
20 and 5�, respectively. These have
remarkable similarities to porous ones in retrieved Irish orebodies, shown in Fig-
ure 3, which had originally inspired the idea that the first compartments involved
in the emergence of life were of comparable structure (see [136, 139]). In fact,
even submarine mounds seen today are invariably porous [69, 90]. Also, the sul-
fide comprising what is now pyrite (FeS2) in the 350 million-year-old submarine
Irish deposits (Figure 3) was derived through bacterial sulfate reduction in some-

Figure 2 FeS compartments.
SEM photo of a freeze dried
section showing FeS
compartments formed on
injecting 0.5 M Na2S solution
into 0.5 M of FeCl2 [139].
Reproduced with kind
permission from M.J. Russell

Figure 3 FeS botryoids. Polished cross-section of the Tynagh iron sulfide botryoids. Kindly
provided by M.J. Russell, see text for details
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what alkaline and saline seawater while the iron was contributed by exhaling acidic
hydothermal solutions. On mixing, mackinawite (Fe(Ni)S) and greigite (Fe5NiS8)
would have precipitated to form inorganic membranes at the interface [138, 139].

5.2 Greigite Formation from FeS

Figure 2 shows laboratory simulated FeS compartments; the chambers and walls
are 
20 and 5�, respectively. According to Russell et al. [145], the permeable
membranes likely comprise (ferredoxin-like) greigite and mackinawite, and whose
metal and sulfide layers work for and against e� conduction, respectively. An in-
sight into this calls for a brief outline of iron sulfide transformations under wet and
moderate temperature conditions. Amorphous mackinawite (FeS.am/) is the first FeS
phase formed from aqueous S(-II) and Fe(II) at ambient temperatures, apparently via
two competing pathways governing the relative proportions of the two end-member
phase mixture. The long-range ordered phase with bigger crystalline domain size
and more compact lattice increases at the cost of sheet-like precipitated aqueous
FeS clusters [173].

Note that an FeS cluster can display two properties: (1) it can be regarded as a
multinuclear complex (where instead of a central atom, as in a complex, a system of
bonds connects each atom directly to its neighbors in the polyhedron); and (2) as an
embryo since it can develop to form the nucleus of the first condensed phase [132].
The formation of the latter gets initiated by statistical fluctuations in the density of
the initial parent phase (e.g., due to supersaturation) and its growth is favored by the
difference in chemical potentials between the parent and the new phase. Reviewing
aqueous FeS clusters in water environments, Rickard and Morse [132] suggested the
enhanced stability of some stoichiometries–stable magic number clusters – from
among the apparent continuum of stoichiometries of aqueous FeS clusters. This
ranges from Fe2S2 to Fe150S150, where the first condensed phase (FeSm, macki-
nawite) appears with a size and volume of 2 nm and 10 nm3, respectively. Although
molecular Fe2S2 is similar in structure to crystalline mackinawite, the Fe–Fe bond
lengths and Fe–S–Fe bond angles are seen to approach those of crystalline mack-
inawite, in tandem with increased size of molecular FeS clusters. The decrease in
degree of softness, or water loss, can be gauged from the relative density increase
over the smallest Fe2S2 cluster (�106), as the structure of hydrated clusters is be-
lieved to determine that of the first condensed phase. X-ray diffraction of the first
nano-precipitate shows a (lattice expanded) tetragonal mackinawite structure. That
the data fit well with other independent estimates is ascribed to the plate-like form
of FeSm. The quick transformation of disordered mackinawite to the ordered form
is followed by solid state transformation to the more stable but structurally congru-
ent greigite, with a 12% decrease in volume, involving a rearrangement of Fe atoms
in a close-packed, cubic array of S atoms. Furthermore, trace amounts of aldehy-
des are believed to bind to the FeS.am/ surface, initiating Fe(II) oxidation (S(-II)
unaffected); they also prevent the dissolution reaction, FeS.am/ to FeS.aq/ (aqueous
FeS complex), crucial for pyrite formation (in absence of aldehyde, S(-II) oxidized,
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Fe(II) unchanged), thus assisting in greigite formation at the cost of pyrite (perhaps
as in bacteria) [130]. Such a solid-state transformation of amorphous mackinawite
to greigite can be extended to FeS clusters – Rickard and Luther0 [131] suggest the
possibility of organic ligands stabilizing aqueous Fe(III)-bearing sulfide clusters, as
seen in similar (greigite-like) cubane forms in FeS proteins. Importantly, FeS mem-
branes formed in the laboratory show a 20 to 40-fold increased durability on adding
abiogenic organics. Diffusion controlled reactions would slow down with thickening
of aging/hardening of membranes [138].

5.3 The FeS Gel Environment and Framboids

As noted by Russell et al. [138], citing Kopelman [77], gels lie between liquid and
solid states with self-similar clusters, fractal on all scales (permitting diffusion con-
trol in heterogenous reactions, ubiquitous in biosystems). They suggested [143,144]
the nucleation of the FeS gel bubbles by iron sulfide: in vitro simulations of iron
sulfide chimneys demonstrated formation of macroscopic spherical shells 1–20 mm
across, while on a microscopic scale spherical, ordered aggregates of framboidal
pyrite about 5 micro meter in diameter were found in fossil hydrothermal chimneys
(see Figures 4a and 4b; [15, 16, 83]) that seemed to have grown inorganically from
the spherical shells of FeS gel. These framboidal sacks of periodic arrays within the
extensive reactive surfaces per unit volume of the chimneys could have offered ideal
experimental culture chambers and flow reactors well poised for origin-of-life ex-
periments [143]. Indeed, framboids have long been recognized for their fascinating

Figure 4a Framboids in
chimneys, small vent. Small
pyrite vent structure:
Reflected ore microscopy of
transverse section shows a
central area of empty black
spaces plus (grey) fine
framboidal pyrite, and a fine
euhedral authigenic rim
surrounded by baryte, with
minor pyrite
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Figure 4b Framboids in
chimneys, sheaves. Sheaf
system, formed from
coalescing rods of
anastamosing
microcrystalline pyrite. Black
areas are empty spaces;
central regions are framboidal
pyrite with an exterior of
crystalline pyrite. (Labeled
pictures given by Dr. Adrian
Boyce are reproduced with
his kind permission; Source:
Boyce et al. [15]; Boyce [16]:
Exhalation, sedimentation
and sulphur isotope
geochemistry of the
Silvermines ZnCPbCBa
deposits, County Tipperary,
Ireland; Boyce, Unpublished
Ph.D. thesis, University of
Strathclyde, Glasgow)

features, prompting speculations on their possible role in the origin of life, e.g.,
Sawlowicz [148] noted the bio-potential of constituent microcrystal surfaces, pres-
ence of catalytic metals, fractal structures, to name some.

The above observations of magnetically accreted framboidal greigite (Sect. 4.2)
and possibility of framboid assembly in colloidal environment lead us to think that
superparamagnetic greigite could have formed magnetic assemblies (in the presence
of magnetic rocks) as starting self-reproducing systems, besides being a precursor
for nucleic acids, proteins, lipids, etc., that could have been chosen as context-
based replacements. This could be significant, as it has long been recognized that
much of the path sketched from prebiotic chemistry to the RNA world (a widely
accepted hypothesis; see [116]) remains unchartered and for start points (see [152]),
there are suggestions of “physically” self-reproducing systems as having preceded
“chemically-copying” self-replicators [38]; autocatalytic reactions [68] and self-
replicating inorganic [20] or even a combination of organic and inorganic [114]
systems.

5.4 Field Estimate from W-B Model; Motor-Like Dynamics

We now come to the possibility of magnetic rocks which could further expand the
potential of the mound scenario as described above. The associated H-field with
rocks, needed for overcoming temperatures 
50 C in the mound, is estimated by
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extrapolating the Wilkin and Barnes (W-B) model (1997) for formation of fram-
boidal pyrite via the precursor greigite. When aligned parallel to weak geomagnetic
field (
70�T), it gives dc D 0:1 �m (see Sect. 4.3). Thus, a rock H-field for accret-
ing 10nm sized particles would have to be 1,000-fold higher. This also is of the same
order of magnitude
10 mT, seen for magnetite-based ferrofluids [110]. The satura-
tion magnetization of magnetite (Ms D 4:46 � 105 A/m) is about 3.5 times greater
than that of greigite; from this one expects proportionate values for the fluid sus-
ceptibility of a corresponding greigite suspension, building up slowly in the ocean
waters (see above). Also, the dipole–dipole interactions between negatively charged
greigite particles (as the pH is well above 3 under mound conditions [171]) is likely
to be aided by the screening effect due to ionic strength of natural waters [154].

Now, as the geomagnetic field did not even exist at 
4.1–4.2 Ga [55] (whereas
life is thought to have initiated at 
4.2–4.3 Ga [140, 141]), we look at local sources
for providing a magnetic field 
50–100 mT for enabling accretion of newly form-
ing greigite particles. (For example, the present geomagnetic field strength is too
weak to explain the magnetization mechanism of lodestones). To that end, a plau-
sible candidate (cf. [169]) could be isothermal remnant magnetism (acquired by
lightning, impact, etc) in say, meteoritic matter on its way to the Ocean floor. In
fact, Ostro and Russell have suggested plausible mechanisms for accumulation of
reducing meteoritic matter, around the base of the mound. Also, unlike today’s
conditions, the primitive crust was still extremely reducing when life is thought
to have emerged [133, 146], making the presence of ferromagnetic matter a likely
event. Further reinforcement of the local H-field would occur through the generation
of magnetic minerals like magnetite and awaruite [13, 37, 149] serpentinization of
Ocean Floor peridotites (for more details see [104]).

Here, magnetic rocks could have helped not only the accretion of greigite par-
ticles, but also gentle changing flux due to non-homogeneous field lines (expected
from rocks) could have gently moved incoming particles aligned to the field, i.e., in
the same orientation in either the forward or the backward (N–S or S–N) directions,
depending upon their position in the structured phase, and using thermal fluctua-
tions to drive ratchet-like effects (see Sect. 3). At the same time, such a magnetic
albeit locally confined ancestor, maintained close-to-equilibrium, would also have
the potential for coupling with non-equilibrium energy sources (such as pH or re-
dox gradient) - the “metabolic” wing of life-producing energy rich molecules [137].
This capacity of a magnetically controlled system to couple to different gradients,
e.g., thermal [10], was also needed to pave the way for complex energy transduc-
tion mechanisms. We have suggested [104] that the “innovative evolution” of a bio-
ratchet where coupling to non-equilibrium energy (in discrete packets) from energy-
rich molecules propelled close-to-equilibrium dynamics (driven so far by a gentle
H-field gradient), allowed the exit of the Ancestor from its geological location for
seeking out gradient-rich niches elsewhere. This in turn would have led to a progres-
sively decreasing functional dependence on iron sulfide. Nevertheless, the continued
presence of magnetic elements (e.g., structural roles) would offer a magnetic ba-
sis for the association of its “liberated” replacements as in the multicellular life
proposal [32]. The possibility of different “magnetic soups” close to the mound
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also converges well with the suggestions of Martin and Russell [92], Koonin and
Martin [76], of an initially confined universal ancestor diverging into replicating
systems, located separately on a single submarine seepage site (see Sect. 5.1), en
route to proto-branches of life. These reproducer-turned replicators could navigate
to different openings where survival criteria would induce variations. The transfer
of regulatory powers to the genes is likely to have been slow but progressive. In
the pre-Mendelian era, there was more plasticity in phenotype – genotype mapping,
gradually taking on a one-to-one basis with a decline in morphological plasticity –
yet another “robustness” enhancing strategy [108].

5.5 Enzyme Clusters and Natural Violarite Phases

Note that the composition of iron sulfide clusters found in enzymes, Fe5NiS8, lie
between FeNi2S4 and Fe3S4. Although a solid solution in this range has not been
observed in synthetic dry condition, high temperature experiments, it has been ob-
served in natural violarite (iron-nickel thiospinel) phases [163]. More recently, the
supergene oxidation of pentlandite (.Fe; Ni/9S8) to violarite (includes extensions
from Fe Ni2S4 toward both Fe3S4 and Ni3S4) was experimentally reproduced un-
der mild hydrothermal conditions [158]. The results show the feasibility of high
iron/nickel ratios in violarite forming under reducing mound conditions, despite
the suggested metastability of these compositions from bonding models. Iron is
believed to occur as low spin Fe2C in Fe Ni2S4 that exhibits metallic, Pauli para-
magnetic behavior. In contrast, the Mossbauer spectrum of Fe3S4 is attributed to
high-spin Fe3C in tetrahedral A and octahedral B sites and its electronic struc-
ture from molecular orbital calculations [164] reveal localized 3d electrons with
unpaired spins, coupled anti-ferromagnetically at lower temperatures. According to
Vaughan and Craig [163], the greater ionic character and larger number of elec-
trons in antibonding orbitals in Fe3S4 relative to Fe Ni2S4, could contribute to the
instability of intermediate compositions, despite their natural occurrence.

5.6 Coherence: Ferromagnetic–Ferroelectric Effects

The quest for co-existing (in same or locally different subspaces) ferroelectric
effects reinforcing the coherent (“dispersive,” non-dissipative) effects of ferromag-
netism arises out of interesting present-day biological observations. Frohlich [44,45]
proposed the emergence of a long range coherent state via alignment of dipoles in
cell membranes. Ordering of electric dipoles via interactions between structured
water and the interior of microtubular cavities brings in a dynamic role of ferro-
electricity as a frequency-dependent dielectric-constant �.!/, which gives a big
dispersive (non-dissipative) interaction (robust against thermal losses) for small
values of ! (since the factor �.!/ occurs in the denominator of the correspond-
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ing interaction) [94]. Apart from the importance of such coherent electric dipole
ordering alignment of actin monomers prior to ATP-activation, Hatori et al. [53] re-
port the coherent alignment of magnetic dipoles induced along the filament, by the
flow of protons released from ATP molecules during their hydrolysis (basically a
Maxwell displacement current-like dynamical effect). But in contrast to the similar
nature of magnetic ordering mechanisms conferring ferromagnetism via exchange
interactions of predominantly localized magnetic moments, a variety of ferroelec-
tric ordering mechanisms exist for different types of ferroelectrics, not all of which
are well understood. In fact, in materials their co-existence can range from being
mutually exclusive, such as due to incompatibility of d-electron criterion for mag-
netism with off-centering second-order Jahn–Teller effect, all the way to strongly
coupled giant magneto-resistance effects (includes non-oxidic ferrimagnetic semi-
conductor thiospinels FeCr2S4 and Fe0:5Cu0:5Cr2S4, that are Fe2C and Fe3C end
members of solid solution Fe1�xCxCr2S4.0 <;D x <;D 0:5/ [118]. While lat-
tice distortions with lowered symmetry reduce competing interactions [27, see also
43], an insight into the loss of inversion symmetry comes via the spin-orbit cou-
pling mechanism which gives the electric polarization P (
 e � Q), where e is
the spin rotation axis and Q is the wave vector of a spiral) induced upon transi-
tion to a spiral spin-density-wave state triggered by magnetic frustrations [105].
Apart from the spin-orbit coupling factor, a reduction of crystal symmetry (Fd3m
to non-centrosymmetric F N43m) in several spinel compounds, including FeCr2S4
was attributed to a displacement of cations [25, 98]. Similar off-centering was also
found in oxide spinels [25], e.g., magnetite Fe3O4. Additionally, a combination of
site-centered (extra holes or electrons on metal sublattice, e.g., Fe2C and Fe3C,
where anions do not play a role) and bond-centered (the alternation of short and
long bonds, in otherwise equivalent sites, lead to a bond-centered charge density
wave) charge-ordering was suggested for explaining the multiferroic behavior of
Fe3O4 below the Verwey transition at 120 K [71]. The co-operative co-existence
of ferroelectric and ferro-magnetic properties in these structural relatives of greig-
ite – due to a subtle interplay between charge, spin, orbital, and lattice degrees
of freedom [56] – raise the possibility of a similar profile for Fe3S4 or close rel-
atives found in enzymes, e.g., Fe5NiS8, for which no direct evidence is so far
available.

5.7 Preliminary Experimental Requirements

What is needed first is a robust model system to explore magnetic structure forma-
tion together with protocols for monitoring accompanying chemical reactions. Then,
the presence of magnetic rocks in the mound, represented by a surface magnetic
field strength (say, in the range 0–200 mT) needs to be checked for any magnetic
structure formation in different concentrations of newly forming greigite suspen-
sion. Here, the dispersity of newly forming greigite clusters whose size range would
be expected to closely resemble that of the FeS dispersion (Fe2S2 to Fe150S150)
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(see Sect. 5.2) [132]. It could be a reasonable approximation to mimic the build-up,
for fast-forwarding geo-time, by starting out with known (polydisperse) size ranges,
taking into account their initial magnetic susceptibility (along the lines of Wang
and Holm [168]). Furthermore, the “team-up” of FeS clusters with organics (see
also [131]) may well have deeper roots, as organics play important roles in sep-
arate aspects related to proposed magnetic assemblies, viz., (1) stabilize colloidal
membranes [138]; (2) facilitate particulation mechanism leading to fractal framboid
formation [147, 148]; (3) enable transformation to greigite in aqueous dispersed
FeS, at the cost of pyrite formation [130]; and (4) enable generation of metastable
phases intermediate between FeNi2S4 and Fe3S4 (similar to biological clusters), un-
der mild hydrothermal mound-like conditions [158]. Thus the inclusion/exclusion of
organics does need to be closely studied in experimental simulations.

6 Conclusions

The adaptive nature of biological systems and their fractal organization cry for a
coherent connection between their micro- and macroscopic domains. A physical
basis-the quantum mechanical spin – for linking the quantum-classical realms at the
very origins of life is suggested in this rudimentary study, rooted in the findings of
a spectrum of scientists (see bibliography). This in turn also helps to expand the
potential of crystal-based theories, and shows how Life-like dynamics could have
been brought about by the magnetic “face” of minerals. We propose that structured
phases with a magnetic basis for information-transfer, not too far from the mound
(Sect. 5.4), accumulated “metabolites” (mound-synthesized) riding in on diffusing
super-paramagnetic greigite particles. The evolution of complexity (biological soft
matter with internal degrees of freedom, asymmetry, organization, etc.) where chem-
istry was trained to replace magnetic effects, plus installation/maintenance of en-
ergy transduction mechanisms via energy-rich molecules for using non-equilibrium
sources elsewhere, could have led to the release of the Ancestor from its H-field
providing location. Now, as “Necessity is the mother of invention” could it be that
the “necessity” for independence from an increasingly hostile location brought on
the creation of such innovative mechanisms? This possibility seems intriguing in
the light of Patel’s findings, where quantum searches seem to be responsible for the
creation of biological language itself. Moreover, Russell et al. have argued that life’s
hatchery could have been busy by 3.8 Gyr, evolving fast enough for a branch to have
reached the ocean surfaces by 3.5 Gyr, as evidenced by photosynthetic signatures.
The gestation period of life had to have been less than the umbilical mound’s deliv-
ery of the formative hydrothermal solution, i.e., certainly less than 3 million years,
and probably less than 30,000 years [46]. Indeed, a magnetic start to Life could
provide the ingredients for an intelligent Ancestor, along the lines envisaged by
Lloyd [88] for a computing universe. Again, it seems to be a physically feasible em-
bodiment [103,104] of Paul Davies’s Q-Life proposal (2008), as also acknowledged
by him in Merali [97]. A magnetic basis of assembly could also offer robustness to
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an “open” system against interference from a decohering environment. On the other
hand, as evidence of quantum processing effects in biology trickles in, it appears that
Nature is equipped for tackling environmental intrusion. Sure enough, with regard
to Brownian noise, Nature seems to know how to not only overcome adversity, but
also instead put it to its advantage by harnessing it. At the other-macroscopic-end
too, elegant examples can be seen in the seed dispersal strategies that use this very
“intrusion” by the environment (wind, water, or even creatures). Thus, the environ-
ment apparently provides feedback to the adaptive living system, besides defining
“necessity” and acting as a “watch-dog” leading to new nodes in biological evo-
lution [96] (Sect. 2.1). Could it be that the paradigm of environment-decoherence
being a big obstacle against quantum processing events in biology, needs to be re-
viewed since environmental interference itself seems to be an active component of
Nature’s search technique?
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1 Quantum Mechanics

In quantum mechanics, it is reasonable to expect the motion of a wave packet to
agree with the motion of the corresponding classical particle whenever the poten-
tial energy changes by a small amount over the dimensions of the wave packet.
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If we mean by the “position” and the “momentum” vectors of the wave packet, their
expectation values, then we can show that the classical and the quantum motions
agree. This important result is known as the Ehrenfest theorem [1, 2]. To illustrate
this theorem, let us first consider non-relativistic quantum mechanics. We have the
Schrödinger equation

i„@ .Ex; t/
@t

D � „
2

2m
Er 2 .Ex; t/C V.Ex / .Ex; t/;

�i„@ .Ex; t/
�

@t
D � „

2

2m
Er 2 .Ex; t/� C V.Ex / .Ex; t/�; (1)

wherem is the mass of the particle and V.Ex / is the real potential.
We shall take the wave function  .Ex; t/ in (1) as normalized. Then the expecta-

tion value of the x-component of the position operator and its time derivative are

hxi D
Z

 � x  d�;

d

dt
hxi D

Z

 

d �

dt

!

x d� C
Z

 �x

�

d 

dt

�

d�: (2)

Using (1), it follows

d

dt
hxi D � i„

m

Z

 �
@

@x
 d� D 1

m
hpxi: (3)

Similarly, starting from hpxi D �i„ R  � @
@x
 d� , it is easy to find

d

dt
hpxi D

�

�@V.Ex /
@x

�

: (4)

From (2) and (4), we note that the classical equations of motion

dEx
dt
D Ep
m
I d Ep

dt
D �ErV.Ex / (5)

are satisfied by their expectation values in quantum mechanics. The wave packet
moves like a classical particle whenever the expectation value gives a good repre-
sentation of the classical variable. They provide an example of the correspondence
principle [1, 2].

In the case of relativistic quantum mechanics, the manipulations are a little less
direct. We consider the Dirac equation [3].

H D Ę � Ep C ˇm;
i„@ 
@t
D . Ę � Ep C ˇm/ ; (6)
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where Ę and ˇ are hermitian 4 � 4 matrices and  is a 4 � 1 column vector. We
shall set the velocity of light c to unity hereafter. By using the Heisenberg equation
of motion dx

dt D 1
i„ Œx;H�, it is seen that

Z

 �
dx

dt
 d� D

Z

 �˛x d�: (7)

First, we recall the plane wave solutions  .i/ [3] of the Dirac equation,
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corresponding to positive energy .E > 0/ spin-up, spin-down states and negative
energy .E < 0/ spin-up, spin-down states of the electron, respectively, px D Et �
Ep � Ex and p˙ D px ˙ ipy . These solutions satisfy  .i/

�
.x/ .j /.x/ D E

m
ıi;j

(i; j D 1; 2; 3; 4). Using these, we construct the wave packets

‰.E > 0/ D
2
X

iD1

Z

Ai . Ep / .i/d3p;

‰.E < 0/ D
4
X

iD3

Z

Ai . Ep / .i/d3p; (8)

and note
Z

‰�.E > 0/‰.E > 0/d3x D
Z

d3p
E

m
fjA1. Ep /j2 C jA2. Ep /j2g: (9)

Similar expression can be written for ‰.E < 0/. Using the explicit representation
of the ˛x matrix [3], we have
Z

‰�.E > 0/˛x‰.E > 0/d3x D
Z

d3p
�px

m

�

fjA1. Ep /j2 C jA2. Ep /j2g: (10)

From (7), (9), and (10), it follows d
dt hxi D hpx

m
i, showing the validity of the Ehren-

fest theorem. Further, we consider the Dirac particle in an external electromagnetic
field. Setting the vector potential as zero (for simplicity), the Dirac hamiltonian is

H D Ę � Ep C ˇm � e�; (11)
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where � is the scalar potential. Using the Heisenberg equation of motion for a
dynamical variable F , dF

dt D 1
i„ ŒF;H�, it follows that d Ep

dt D �Er.�e�/ and so

h d Ep
dt i D �h Er.�e�/i, showing the validity of the Ehrenfest theorem.

Thus in quantum mechanics, we see that the expectation values of the position
and the momentum operators satisfy the classical equations of motion. We would
like to extend this to quantum field theory.

2 Abelian Field Theory

We consider the lagrangian density for the electromagnetic field minimally coupled
to a source j�.x/ (Dirac current)

L D �1
4
F��F

�� C eA�.x/j�.x/; (12)

where A�.x/ is the electromagnetic field, e is the coupling strength, and

F�� D @�A� � @�A�: (13)

The corresponding classical equation (Euler–Lagrange equation) is

@�F
�� C ej � D 0: (14)

Equation (14) is the classical equation of motion and gives the Maxwell equations
with source.

It is well known that the manifestly covariant theory of massless vector field
is to be quantized with indefinite metric [4]. The impossibility of quantizing the
electromagnetic field with positive definite metric has been shown by Mathews,
Seetharaman, and Simon [5]. A physically meaningful theory is constructed by
introducing a “subsidiary condition,” which is a condition defining the physical sub-
space of the indefinite metric Hilbert space of the electromagnetic field. Here, we
follow the B-field formalism of Nakanishi [6]. In order to quantize the above la-
grangian, one has to fix the gauge. This is carried out by considering the coefficient
of the terms quadratic in A� in the action S D R

d4xL (after a partial integration).
This coefficient is the differential operator �g�� � @�@� . The two-point function
hA�.x/A�.y/i is governed by the above differential operator.

The Feynman propagator for the photon (quantized electromagnetic field) is the
inverse of this differential operator in the momentum space. As this differential oper-
ator is not invertible, the photon propagator is not defined. This difficulty is avoided
by choosing a gauge. We choose the covariant gauge @�A� D 0 and implement this
gauge fixing in the lagrangian by adding the “gauge fixing term” �1=2a.@�A�/2,
where a is a parameter. This modifies the coefficient of the terms quadratic in
A� in the action S as �g�� � @�@� C 1=a@�@� . This, in the momentum space
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is, �p2g�� C .1 � 1=a/p�p� , the inverse of which is �1=p2fg�� C a�1
p2 p�p�g,

which is the Feynman propagator for the photon in the covariant gauge.
We introduce the above covariant gauge fixing via B.x/, an auxiliary hermitian

scalar field, and consider the quantum lagrangian

L D �1
4
F��F

�� C B.x/@�A� C a

2
B2.x/C eA�.x/j�.x/; (15)

where a is a parameter. It is important to realize that the gauge fieldA�.x/ andB.x/
in (15) are operators, while the gauge field in (12) is a classical field. The quantum
equations of motion from (15) are

@�F
�� � @�B.x/ D �ej � ;

@�A� C aB.x/ D 0: (16)

Using the second equation to eliminate the B-field in the lagrangian, we recover
the gauge fixing term �1=2a.@�A�/2. By taking @� of the first equation and using
the conservation of the current j �.x/, namely, @�j �.x/ D 0, we see that B.x/
satisfies the equation of motion for a massless scalar field, admitting positive and
negative frequency solutions. Equation (16) can be considered to be the quantum
Maxwell equations, while (14) is the classical equation of motion. The fields in (16)
are operators and act on functions (states) in the indefinite, metric Hilbert space. For
this reason, this method of quantization is called “operator method of quantization.”
In order to ensure that physically meaningful degrees of freedom only contribute
(the longitudinal and the time-like photons are unphysical) to the observables, we
impose Gupta’s subsidiary condition on the photon states by

BC.x/j�i D 0; (17)

where the superscript C denotes the positive frequency part of B.x/. The physi-
cal subspace in the indefinite metric Hilbert space is defined in (17). The physical
subspace Vphys is the totality of the states j�i satisfying (17). Now consider the ex-
pectation value of the quantum equations of motion (16) between physical states
j�i defined in (17). They are

h�j@�F �� � @�B.x/C ej � j�i D 0I j�i 2 Vphys;

h�j@�A� C aB.x/j�i D 0: (18)

Using B� D .BC/� and (17), (18) becomes

h�j@�F �� C ej � j�i D 0I 8 j�i 2 Vphys;

h�j@�A�j�i D 0: (19)

Comparing (19) with (14), we see that the expectation value of the quantum equa-
tion of motion taken with the states in the physical subspace reproduces the classical
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equations of motion, generalizing the Ehrenfest theorem to Abelian quantum field
theory. Since the classical equation of motion is linear in A�.x/, one can sepa-
rate the positive and negative frequency parts and then the second equation above
gives @�AC� .x/j�i D 0, subsidiary operator condition of Gupta. This feature is not
shared by the non-Abelian theory as in this the classical equation of motion for the
non-Abelian gauge field is non-linear and a separation into positive and negative
frequency parts is not possible.

3 Non-Abelian Field Theory

As an example, we consider SU.3/ gauge theory relevant to Quantum Chromo
Dynamics (QCD), the gauge theory of the strong interactions of quarks. The classi-
cal lagrangian density is given by

LYM D �1
4
F a��F

��a C gAa� j�a; (20)

where j�a is the external source (color current of the quark);� and � are the Lorentz
indices; a, b, and c are the SU.3/ group indices; g is the coupling strength; and

F a�� D @�A
a
� � @�Aa� C gf abcAb�A

c
� : (21)

In the above, f abcs are the structure constants of SU.3/ and g is also the cou-
pling strength of the self-interaction of the non-Abelian gauge fields. The above
lagrangian is gauge invariant. This can be verified by using the infinitesimal gauge
transformation on the gauge field Aa�, namely,

Aa� ! Aa� CDab
� !

b ; !a 2 SU.3/;

Dab
� D @�ı

ab C gf acbAc�: (22)

Consider the first term in the lagrangian. Then it is found, using the Jacobi identity

f bcdf dae C f cadf dbe C f abdf dce D 0; (23)

that

ıgauge.F
��aF a��/ D 2gf acbF ��aF c�� !

b 	 0: (24)

The classical equations of motion from (20) are given by

Dab
� F

��b C gj�a D 0: (25)
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The operator Dab
� in (22) is called the covariant derivative in the adjoint

representation and using the Jacobi identity (23), it is found that the commuta-
tor ŒD�;D� �ab D �gf abqF

q
�� . Acting on (25) by Dca

� , using the commutator, it is
seen that

Dab
� j

�b D 0; (26)

i.e., the current j �a is covariantly conserved. As the source j�a is gauge invariant,
in the action integral, the second term in the lagrangian is invariant using (22) and
(26) after one partial integration. Thus the lagrangian in (20) is gauge invariant.

Using the covariant derivative, the classical equation of motion (22) can be
rewritten as

@�F
��a C gf acbAc�F

��b C gj �a D 0;

@�F
��a D �gJ �a; where

J �a 	 j �a C f acbAc�F
��b : (27)

The current J �a contains besides the matter contribution, the non-Abelian fields.
The non-Abelian fields themselves act as the source (like in gravity). By inspection,
we see that @�J �a D 0, i.e., the current J �a is ordinarily conserved.

An attempt to quantize (20) along the lines of the Abelian theory, i.e., “operator
method of quantization,” runs into difficulty. The auxiliary fields Ba.x/ in this case
do not satisfy �Ba.x/ D 0 due to the self-coupling property of the non-Abelian
fields. So it is not possible to write down the positive and negative frequency parts.
Furthermore the classical equations of motion are nonlinear. The proper method
is to use the “path integral approach.” For the reasons given in the Abelian field
theory, here also we need to fix the gauge to obtain the propagator for the gauge
fields Aa�.x/. Furthermore, in the “path integral method,” one integrates all possible
gauge field configurations. As the lagrangian (20) is gauge invariant, two gauge field
configurations related by gauge transformation will give the same lagrangian. This,
in the path integral, amounts to double counting in the space of gauge fields. This is
avoided by fixing the gauge and integrating over the space of gauge fields modulo
gauge fixing. We choose the covariant gauge Fa D @�Aa�.x/ D 0.

The above gauge fixing relation, however, does change by the gauge transfor-
mation and so the gauge variation of the gauge fixing relation is non-trivial in
the non-Abelian gauge theory. This, in the path integral approach, brings in the
Faddeev–Popov ghost (anti-commuting scalars) fields. Using the results from the
path integral approach [7], the lagrangian density for quantum non-Abelian theory
can be written as

L D �1
4
F a��F

��a � @�Ba Aa� C
˛

2
BaBa � i@� Nc a .Dab

� c
b/C gj a� A�a; (28)

where ˛ is a gauge parameter and cs are the ghost fields. They are hermitian

ca D .ca/� I Nc a D . Nc a/�; (29)

and the ghost fields ca and Nc a anti-commute.
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A comparison of (28) with (15) reveals that now we have (for SU.3/) eight
auxiliary fields Ba and a new term involving the Faddeev–Popov ghost fields. One
can also quantize the Abelian massless field by the above procedure (path integral
approach) and in that case, the ghosts decouple from the gauge fields. In contrast,
in (28), the fourth term contains coupling of the ghost fields with the gauge fields.
This is crucial. The second and the third terms in (28) are the gauge fixing part
and the fourth term is the Faddeev–Popov ghost part LFP. Using (29) and the anti-
commuting property of the ghost fields, it is seen that L�FP D LFP. The quantum
equations of motion following from (28) are as follows:

Dab
� F

��b D @�Ba � gj �a � igf abc.@� Nc b/cc ;
@�A

�a C ˛Ba D 0;
Dab
� .@

� Nc b/ D 0;
@�.D

�abcb/ D 0: (30)

Before considering the physical states, we recall that the quantum lagrangian
(28) is gauge fixed. So, we do not have the local gauge invariance in (28). However,
it was found by Becchi, Rouet, and Stora (BRS) [8] that (28) is invariant under
a special global transformation (First Global Transformation) involving Faddeev–
Popov ghosts. This BRS transformation is given by

ıAa� D Dab
� c

b D ŒiQ;Aa��;

ı D igcata  ;

ıBa D 0 D ŒiQ;Ba�;

ıca D �g
2
f abccbcc D fiQ; cag;

ı Nca D iBa D fiQ; Nc ag; (31)

whereQ is the BRS-chargeQ D R d3xfBa.Dab
� c

b/�@0BacaCig
2
f abc@0 Nc a cbccg

(see [7] for details). From (31), it is seen that ıF a�� D gf acbF c��c
b and the invari-

ance of (28) under (31) can be verified.
Although the local gauge invariance is explicitly broken by the gauge fixing,

(28) has global gauge symmetry. This global gauge transformation (Second Global
Transformation) given by

�Aa� D f abc�bAc�;

� i D �i.ta/ij �
a  j ;

� N i D i N j .ta/ji�a;
�Ba D f abc�bBc ;

�ca D f abc�bcc ;

� Nc a D f abc�b Nc c; (32)
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where �a is the global gauge parameter, generates the conserved Noether current

J a
� D f abcA�bF c�� C j a� C f abcAb�B

c � if abc Nc b.Dcd
� c

d /C if abc@� Nc b cc ;
D J a� C f abcAb�B

c � if abc Nc b
�

Dcd
� c

d
�

C if abc
�

@� Nc b
�

cc ; (33)

where in the last step we used the third relation in (27).
We now consider the first equation in (30) and rewrite that as

@�F
��a C gf acbAc�F

��b D @�Ba � gj �a � igf abc.@� Nc b/cc : (34)

This in view of (33) can be written as

@�F
��a C gJ �a D .D�acBc/� igf abc Nc b.D�cd cd /: (35)

The right side of (35) can be expressed, using the BRS transformations (31), as
�iı.D�ab Nc b/ and so (35) becomes

@�F
��a C gJ �a D fQ;D�ab Nc bg: (36)

This quantum equation of motion is to be compared with the classical equation of
motion (27). We note that J �a in (27) is replaced by J �a in (36) and the right side is
expressed as a BRS variation. Both J �a and J �a are ordinarily conserved. That the
quantum equation (34) can be written in the form (36) was first shown by Ojima [9].

The vector space for the non-Abelian gauge fields, on which the quantum equa-
tions act, is an indefinite metric space. A physical subspace of this is to be defined.
It was shown by Kugo and Ojima [10] that the physical space is defined by the
condition

Qj�i D 0: (37)

Taking the expectation value of (36) between the physical states and using (37), it
follows

h�j@�F ��a C gJ �aj�i D 0: (38)

This expression when compared with the classical equation of motion (27) shows
that the Ehrenfest theorem is not fully satisfied. The global conserved current J �a

differs from the conserved currentJ �a, as seen from (33). Now we consider (33) and
note that this difference is given by f abcAb�B

c�if abc Nc b.Dcd
� cd /Cif abc.@� Nc b/cc .

The first two terms can be expressed using (31) as ı.if abc NcbAc�/, noting that when
the BRS variation crosses the ghost field, it picks up a sign. So the first two terms can
be rewritten as f�Q;f abc Nc bAc�g and this when taken between the physical states
vanishes. Then, (38) becomes

h�j@�F ��a C gJ �a C if abc.@� Nc b/cc j�i D 0: (39)
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This still differs from the classical equation of motion by a term involving ghosts
only.

We now take up the quantum lagrangian (28) and note that it is invariant under
the scale transformation (Third Global Transformation)

ca ! e˛ca I Nc a ! e�˛ Nc a; (40)

with ˛ being a constant. This global transformation affects only the FP-ghost fields
in (28). The Noether current corresponding to this transformation is given by

J �gh D ı˛ca
@L

@.@�ca/
C ı˛ Nc a @L

@.@� Nc a/ ;

D i Nc a.D�abcb/� i.@� Nc a/ca; (41)

as ˛ is arbitrary. The corresponding conserved charge Qgh D .Qgh/
� is called the

FP-ghost charge generating the above scale transformation on the ghost fields, leav-
ing other fields invariant [7]. This is given by

ıghc
a D ŒiQgh; c

a� D ca I ıgh Nc a D ŒiQgh; Nc a� D �Nc a: (42)

Using the above, the third term in (39) can be written as

if abc.@� Nc b/cc D �1
2
ıgh.if

abc.@� Nc b/cc/;

D 1

2
ŒQgh; f

abc.@� Nc b/cc �; (43)

as ıgh when crosses a FP-ghost field picks up a sign.
We defined the physical subspace in (37) as the assembly of states in the in-

definite metric Hilbert space annihilated by the BRS-Charge. We now restrict the
physical subspace further by another subsidiary condition

Qghj�i D 0: (44)

Then, using (43) in the last term in (39) and in view of the further restriction (44)
on the physical states, (39) becomes

h�j@�F ��a C gJ �aj�i D 0; (45)

showing that the expectation value of the quantum equation of motion for the non-
Abelian gauge fields agrees with the classical equation of motion (27).

Now we examine the other quantum equations of motion in (30). The sec-
ond equation in (30), in view of the BRS-transformation (31), can be written as
@�A

�a C ˛fQ; Nc ag D 0, which when its expectation value between the physi-
cal states defined in (37) is taken gives h�j@�A�aj�i D 0, giving the gauge fixing
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condition. The third equation in (30), in view of the third global transformation (42),
is written as ŒiQgh; .D

ab
� .@

� Nc b//� D 0 and its expectation value taken between the
physical states vanishes on account of (44). The fourth equation in (30), using the
BRS-transformation (first global transformation), becomes ŒiQ; @�A�a� whose ex-
pectation value between the physical states vanishes on account of (37). This shows
the validity of the Ehrenfest theorem for the quantum non-Abelian theory. We have
made use of three global transformations to arrive at this conclusion.

4 Summary

The Ehrenfest theorem in quantum mechanics is shown to be satisfied in the quan-
tum field theory by suitably taking the physical subspace for the gauge fields. In the
Abelian quantum field theory, the one subsidiary condition on the physical states
of the photon is enough to show this. In the case of non-Abelian field theory, the
subsidiary condition (37) is not enough and one has to further restrict the physical
space by (44). Then the expectation value of the quantum equations of motion be-
tween the physical states satisfying (37) and (44) agrees with the classical equations
of motion, including the gauge fixing condition.
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