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International interventions require unconventional approaches to modeling and 
analysis. According to Alberts et al. (2007, p. 5), the characteristics of intervention 
problems include:

 1. The number and diversity of the participants is such that

(a) There are multiple interdependent lines of management and control,
(b)  The objective functions of the participants conflict with one another or their 

components have significantly different weights, or
(c) The participants’ perceptions of the situation differ in important ways; and

 2. The effects space spans multiple domains and there is

(a) A lack of understanding of networked cause-and-effect relationships, and
(b)  An inability to predict effects that are likely to arise from alternative plans 

of action.

In such situations, analysts and planners need to follow a set of principles that are very 
different from those of situations with unified management structure, a clear objective 
and a situation understood by all, and an environment that has little adaptation and 
whose behavior is reliably predicted. First, they must be aware of the numerous arenas 
and domains involved in complex adaptive systems. Second, because of the lack of 
predictability in complex systems, planners must take steps to produce agile plans.

Effective computational models hold the promise of enabling planners to explore 
the deep dynamics of complex situations, and to explore effects across a wider 
range of candidate policies or plans. By evaluating a wide range of plans across a 
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variety of situations, analysts and planners can achieve more agile and robust 
strategies that account for the uncertainties in knowledge of the actual situation. 
Bankes has described this goal of plan robustness as follows:

A level set provides much more information than does a single optimal policy. Combining 
this idea with that of policy landscapes, the computer can be used to discover policies that 
are robust across multiple scenarios or alternative models, and to identify and graphically 
depict sets of policies with satisfactory robustness (Bankes 2002).

Computational models and simulations will specifically allow analysis and plan-
ning teams to address the two principles by encouraging the rigorous analysis of 
complex international actions by explicit modeling in the following ways:

First by structural analysis, the process of decomposing the situation into fundamental 
components and their interactions, and quantifying the relationships between components,

Second, by the dynamic analysis of the behavior of the system of interconnected systems, 
using simulation to gain familiarity with the interaction between systems; this includes the 
analysis of sensitivity of the systems to key factors.

Next, by exploratory analysis of the effects (anticipated and unanticipated) of a range of 
potential actions by a variety of parties and groups using computational simulations.

This chapter introduces the modeling and simulation technologies available to 
represent complex situations: the political, military, economic, social, information, 
and infrastructure (PMESII) states of systems and the effects of diplomatic, infor-
mation, military and economic (DIME) actions on those systems. First, the methods 
of explicitly representing complex situations are described, illustrating the methods 
to translate the tacit knowledge of subject matter experts’ (SMEs) mental models 
to explicit conceptual models and then to computational models. Second,1 We 
introduce the means by which these models can be applied to represent systems in 
which physical elements dominate (e.g., infrastructure, etc.) and systems in which 
nonphysical elements dominate (e.g., the human, social and cultural factors that 
dominate political, social and economic systems). Then, we explain the uses of 
these models to estimate the system state, hidden relationships, variables, uncer-
tainties, and dependencies.

The alternative methods of implementing static computational models and dynamic 
simulations are described, introducing the application and appropriate roles for 
discrete event, system dynamic, Markov, Bayesian and agent-based modeling 
implementations. The composition of integrated simulations using these alternative 
modeling approaches is described. Next, the chapter describes the use of modeling 
technology to perform exploratory analysis to determine the effects of our actions, 
to develop effective and acceptable courses of action, and to perform assessments 
of the models in situ. The chapter concludes with an overview of the issues of 

1 We use the term “tacit” in the general sense defined by Michael Polanyi (1891–1976) in The Tacit 
Dimension, “we can know more than we can tell”: a prelogical phase of knowing that has not been 
articulated. Therefore, it is not explicit knowledge that has been codified. Tacit knowledge 
includes sensory information, perceptions, and the higher-level conceptions that attempt to make 
sense of them.
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model validations, describing approaches to verification, validation, and accreditation 
in the context of uncertainty and exploratory analysis.

1  Representing Situations

Analysts have long sought efficient methods to describe, with precision, the makeup 
of complex economic, political, and military situations. Situation Assessment (also 
called political analysis) is the process used by analysts to identify the key actors 
(individual leaders, organizations, or aggregate population segments) involved in 
political competition or conflict over resources, policy, or other aspects of power. The 
actor’s interests and goals, roles, constraints, abilities, behaviors, and lines of influ-
ence to other actors are identified. In addition, the context of the situation (e.g., eco-
nomic environment, political landscape, cultural-social setting) is described. The 
process is generally a static enumeration of the situation at a point in time and is 
generally reported in narrative form with supporting tabular data, where appropriate. 
(For a detailed list of the elements of a comprehensive situation assessment, see 
Covey et al. 2005, p. 45). Consider, for example, the typical narrative situation assess-
ments of Iraq in three documents with significant influence on the U.S. policy:

•	 Prospects for Iraq’s Stability: A Challenging Road Ahead, National Intelligence 
Estimate, ODNI, January 2007. The unclassified judgments in this national 
intelligence estimate include three pages of narrative assessment, followed by a 
half-page judgment on three “security paths” or adverse trajectories that could 
occur if violence does not subside (ODNI 2007).
James A. Baker, III, and Lee H. Hamilton, •	 The Iraq Study Group Report, NY: 
Vintage, 2006. This report includes a 30-page narrative assessment, followed by 
a 3-page projection of the consequences of a continued decline in security in 
Iraq. This assessment preceded a 60-page analysis of alternative courses of 
action and recommendations (Baker and Hamilton 2006).

•	 Stabilizing Iraq: An Assessment of the Security Situation, Statement for the Record 
by David M. Walker Comptroller General of the United States, GAO-06-1094T, 
Sept. 11, 2006. This document, supporting congressional testimony, includes an 
18-page narrative assessment, supported by two graphs of violent incident trends 
and two tables of data on Iraqi security force readiness (Walker et al. 2006).

In each case, the analysis enumerates the major factors and the interrelations between 
the factors and provides a narration of possible scenarios (i.e., the dynamics of alter-
native outcomes). This process of decomposition (breaking apart, or factoring) iden-
tifies the component parts (or subsystems) and their interconnections to allow the 
situation to be more easily understood, analyzed, and described. It also allows indi-
vidual factors (e.g., politics, economics) to be described in greater detail.

Modeling technology is now allowing us to go beyond these static enumerations 
and narrative descriptions of potential scenarios and effects, even as analysts (who 
seek to understand a situation) and planners (who develop approaches to change the 
situation to achieve an objective) are seeking more breadth of enumeration and 
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depth in dynamic analysis. A planner identified the need for more effective means 
of analysis and planning:

Analytical tools have improved dramatically. Unfortunately, questions over effects-based 
[approaches to] operations persist: the adequacy of intelligence, the lack of cultural sensi-
tivity, the risk of studying inputs rather than outputs, and the need for models to account 
for cognitive, cultural, political, and social factors. These are serious questions, and their 
solutions are not obvious (Meilinger 2004, p. 122).

Solutions would include a rigorous process to decompose and represent the 
behavior of a real-world system, S (e.g., a regional political-military competition 
between states, a single nation-state, a provincial insurgency, or the stabilization of 
a major urban area), which comprise interdependent physical and nonphysical (e.g., 
social, economic) contributing elements with behaviors in component models, 
m, and interactions, i, in a composite model, M, such that:

(Completeness) The decomposed set of m and i, once composed into M, can be shown to 
achieve a measurable level of coverage, C, of the elements and behaviors of S to represent 
a specified level of causal granularity, G.

(Behavioral Specificity) The component models and interactions between models in M can 
be specified to achieve an aggregate level of G, and the dynamic behavior of M can achieve 
a specified degree of the behavior of S.

(Descriptive causality) The level of G can be related to specific causes and effects 
 achievable in M and observable in S.

Note that this challenge presumes decomposability of S to some degree; if all elements at 
the finest granularity are independent in some significant degree, then decomposition at a 
higher level is not possible (Table 1).

A representative process of decomposing a situation into PMESII elements and 
then interacting computational models proceeds by decomposing the situation into 
key elements (or systems) and their interactions and then composing models that 
represent the situation by these elements and their interactions. The process pro-
ceeds in the following steps (Fig. 1):

 1. Describe the situation informally by discussion with SMEs who can enumerate 
the key elements (actors and systems), their relationships and interactions, the 
critical factors of influence, and the behaviors of these elements. These discus-
sions are often in narrative form (stories), and the quantification process requires 
careful translation of the SMEs’ qualitative narratives into conceptual models. 
In this step, it is also critical to recognize if there are multiple concepts (hypoth-
eses) of how a situation operates. For example, one group of SMEs may believe 
that a nation is driven by its underground economy and external influence, but 
another group may believe that it is driven by the official economy and internal 
cultural factors. In these cases, it may be necessary to maintain both models: 
two hypotheses that may be used to evaluate plans, in order to develop robust 
plans that can address either of the two views of how the country operates.

 2. Identify the Elements, Relationships, and Systems. From the initial discussions, 
guided by the typical PMESII factors, develop conceptual representations 
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Table 1 Representative PMESII elements and aspects

Elements Qualitative aspects Quantitative aspects

Political Intent; public opinions of political 
leadership (via polls)

Leadership strength
Organizations, parties, groups, 

factions and relationships
Values, motivations, goals, activities

Leadership power, ability, stability, 
coherence, external support, 
diplomatic strength

Power structure; national, provincial, 
city governments

Regulations, policies
Military Will; intent, resolve

Cohesion; readiness
Traditional military order of battle; 

units of force. Physical assets
Physical networks, lines of 

communications
Economic Public confidence

Financial outlook
Government ownership, participation; 

forms of commercial activity
Wealth distribution, relationships with 

factions
Illegal economic activities

GDP; GDP growth
Inflation
Trade balance (import, export, 

capital inflow)
Construction; public finance; debt
Economic status of population 

elements, shortages, subsidies
Social Culture: languages, religions; social, 

ethnic/tribal, backgrounds and 
relationships

Demographics of attitudes and 
perceptions; historical context, 
customs

Culturally based perceptions, 
temperaments

Social outlook

Security/law and order (includes 
crime and criminal organizations)

Public health; mortality rates, 
disease rates

Demographics presence, distribution 
in city and environs

Information Messages; time of dissemination, 
location if relevant

Medium (includes electronic, print, 
speeches/harangues, person- 
to-person); authority/legitimacy 
of source (from outsider point-
of-view); intended audience(s), 
perceived legitimacy of source

Message contents; events, activities
Assertions, declarations, threats, 

directions/imperatives; opinions, 
stated or implied perceptions

Broadcasting/publishing/website 
organizations

Local, foreign (including US) media 
channels

Transmission sites locations, media 
traffic; political orientation, role

Media, volume, bandwidth, coverage
Content originators (political/social 

groups, writers, producers)

Infrastructure Public utility service satisfaction;  
heat, light, water, sewer

Public transportation efficiency, 
availability

Manufacturing production
Manufacturing transportation 

efficiency (rail)

Electrical power production
Water, sewer
Transportation efficiency factors
Manufacturing production
Gas, petroleum production, flow 

rates, efficiency
Telecommunications bandwidth, 

coverage
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(generally, tabular lists of elements and graphical depictions of relationships) 
of the major elements; review these with SMEs and refine until the SMEs agree 
that these conceptual models represent the structure of the situation. Also rep-
resent the major dynamics of the situation (e.g., “legitimate economy will go 
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up as the illegitimate economy goes down and corruption is reduced”) and 
confirm these major behavioral factors with SMEs.

 3. Develop Component Models of System Structure That Will Produce Expected 
Behaviors. The component models of PMESII subsystems (e.g., the legitimate 
and illegitimate, or underground economy subsystem models) are created and 
tested to produce the behavior expected by the SMEs. The models are evaluated 
for a range of behaviors, using historical data when available, and by the SMEs 
to compare model behavior to SME-expected behaviors.

 4. Compose the Component Models into a Metamodel. Finally, the models are 
 composed (integrated) into a unified model of models; the interconnections 
between models (e.g., the agricultural impact on the legitimate economy and the 
drug-crop interconnections with the illegitimate economy, and their interactions) 
make up, in fact, a model in its own right. This metamodel of interconnections 
will produce large-scale system behaviors that are not inherent in the indepen-
dent models, producing effects that emerge from the interaction of the models. 
At this stage, the measures of systems performance (metrics) that characterize 
the situation must be defined and checked to verify that the model can be com-
pared to the real situation; this will also aid in the identification of means in the 
real world that can be used to compare model results to real-world situation 
dynamics.

2  Conceptual Modeling

In the preceding section, we used the general term model to refer to any abstract 
representation of a system, but we now distinguish among:

•	 Mental models of systems or phenomena that are understood (or believed to be 
understood to some degree) by the SMEs.

•	 Conceptual model representations of mental models that may be presented in a 
variety of narrative or graphical means to explicitly represent elements, relation-
ships, and causal functions of a system or phenomena.

•	 Computational models that implement the structure and causal behavior of a 
conceptual model in a computational form that allows the dynamic behavior of 
the modeled system to be simulated.

The process for representing a given situation, using the PMESII categories, 
proceeds from the tacit mental models of experts to computational models that 
allow analysts to explore the dynamics of interacting PMESII systems (Fig. 2). The 
process of abstraction – representing the real (concrete) world in qualitative struc-
tures and quantitative functional relationships – requires the capture of SMEs’ tacit 
knowledge of the particular PMESII systems of an area in explicit conceptual mod-
els. These models are first captured in narrative form, and in lists of enumerated 
actors, systems, and dependent interrelationships. From these lists, graphical structures 
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are created at a common level of granularity. An appropriate computational modeling 
paradigm (approach to modeling causality, e.g., Bayesian model of influence, Petri 
net model of a sequential process, system-dynamics model of process flows, agent-
based model of social behavior) is selected. The computational model is constructed 
and operated over a range of environments and perturbations to evaluate and refine 
its behavior relative to known behaviors in the real world.

The upward process in the figure illustrates how the results of computational 
experiments flow upward from computational model results to conceptual displays 
of the dynamics of conceptual model variables, in a form understandable to the 
modeler and analyst. The results of experimental simulation refine the analysts’ and 
SMEs’ mental models as results are questioned and are used to refine the models 
until confidence is built in the results and models become useful for exploring 
large-scale dynamics. The quantitative results can again be translated into narrative 
“stories” that describe potential outcomes of candidate actions.

It is important to distinguish between empirical modeling and the kinds of causal 
models that we apply in this chapter (Fig. 3). Empirical modeling refers to those 
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methods that represent a system or phenomenon based on the data produced from 
prior experience or experimentation. Generally, this involves quantitative methods 
of regression that seek to establish the functional relation between selected values 
of x and observed values of y (from which the most probable value of y can be 
predicted for any value of x). In the figure, the use of direct regression (path 1) can 
produce a functional model that can extrapolate future values as a function of the 
past. Causal modeling (paths 2 and 3 in the figure) seeks to induce the underlying 
causality (functional processes) of phenomena or systems and represent them 
explicitly. Such a causal model can then create representations of future behavior 
deductively from input variables, and the internal system behavior can be explicitly 
observed and compared to the real world.

Causal modeling often proceeds from the narrative model of an SME to a cor-
responding graphical causal model (example, Fig. 4) that represents the major ele-
ments (actors, systems, processes, etc.) and the structure (relationships between 
elements) of the model. The process for causal modeling often proceeds:

 1. SME is interviewed to describe the system and its major elements, the factors 
that influence its behavior, and the key relationships between elements. A narra-
tive description is developed, with a list of elements and relationships for review 
by the SME.

 2. The underlying empirical data is sought to develop the empirical basis for the 
current situation; the accepted theoretical basis is also sought to develop the 
relevant causal model.
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 3. A corresponding graphical (functional) model is developed and again described 
to the SME to refine the modeler’s understanding of the system. This may be a 
much different perspective of the same system the SME knows well, and the 
discussion may reveal more insight as the SME is asked to detail more explicitly 
the causal behavior, thus refining the conceptual model. (This process is the 
beginning of internal model validation: building confidence in the underlying 
theory on which the model is based.)

 4. A computational model of the system is developed and the behavior of the model 
over a range of conditions is recorded and presented to the SME to perform a 
comparison to known real-world behavior. Discrepancies between the model 
output and empirical data must be examined, explained, and the model refined 
until the model behavior compares to the real world sufficiently for its intended 
use. (This process is the beginning of external model validation: building confi-
dence by comparison of the model behavior to the SME’s empirical understand-
ing of real-world behavior and, if appropriate, historical cases.)

Of course, the preceding method is nothing more than an instance of the general 
procedure of the scientific method, which is based on hypothesis (model) building, 
prediction of behavior, and testing against empirical data.

Consider, for example, three approaches to decomposition of the primary systems 
that represent the competitive structure of an insurgency and counterinsurgency 
(COIN) and their representation in high-level (of abstraction) conceptual models 
(Fig. 5). The first decomposition is Manwaring and Fishel’s SWORD model that 
decomposes the competition into principal actors and their interrelationships using 
seven dimensions: (1) military actions of the intervening power, (2) support actions 
of the intervening power, (3) host-government legitimacy, (4) degree of outside sup-
port to insurgents, (5) actions against subversion, (6) host-country military actions, 
and (7) unity of effort (Manwaring and Fishel 1992, pp. 272–305).

Rule of law is enabled by the governance process that
establishes policy to fund the building of appropriate
capacity to maintain policing and the criminal justice
pipeline, comprised holding jails, courts, and prisons. 
The capacity building must include policies to maintain
funding, reduce corruption and, increase competence in
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While the SWORD model identifies key static indicators, further insight into the 
dynamic modeling requirements can be found in conceptual insurgency-COIN 
models developed by McCormick and Lynn (McCormick 1999; Lynn 2005) 
that describe the elements (entities) and relationships between insurgent and 
COIN forces (Fig. 5b). The essential elements (entities or actors) of both models 
include:

Insurgent Force(s): The leadership, combatants (guerillas), financers, and supporting •	
population that carries on the insurgent political message and a coordinated 
campaign of violence to undermine the legitimate government and demonstrate its 
inability to provide security and services.
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Government and COIN Force (s): The leadership, combatants (military), and •	
supporting population that endorses the current government, its political message 
and legitimacy. The government carries out a COIN campaign of information and 
action to support its legitimacy and demonstrate its ability to provide security and 
services to the population.
Civil Population includes elements that support the legitimate government, those •	
that support the insurgents, and the population in the middle for which both sides 
compete to prove legitimacy and gain support.
External supporting powers include those external parties (states, organizations, •	
etc.) that supply ideological, financial, material, or human resources to either 
side of the conflict.

Both models also represent the basic relationships between these entities by simple 
arrows that describe the interactions between key actors. The graphical representa-
tions of the conceptual models distinguish the actors (leaders or elites, organiza-
tions or institutions, and population groups) and the relations between the actors. 
In both models, government and insurgents compete for population support, and 
the competition is conducted across the many relationships that exist between the 
parties (political, military, economic, etc.). The U.S. Army’s Field Manual for 
COIN acknowledges the value of narrative insurgency models of history and 
a conceptual modelmaking process for understanding the COIN environment 
(US Army 2006, p. 1–4, para. 1–76 and p. 4–3, para. 4–9).

3  Computational Modeling

Computational models include a wide range of models that compute output functions 
as a result of inputs. Computational models include the computation of complex yet 
static functions (such as a computer spreadsheet) or dynamic simulations that imple-
ment models as they operate over time. Simulation tools provide a means for analysts 
and planners to be immersed in the modeled structure, dynamic behavior and 
responses (effects) to courses of action; simulation provides a tool for experimenta-
tion and exploration of behavior.

The modeler may choose from a variety of computational approaches to imple-
ment the component models and to compose them into an integrated model. The 
primary computational modeling approaches to simulate processes over time 
(Table 2) are distinguished by three characteristics:

The method used to move the model through time: Time-continuous functions may be 
represented in time-discrete steps (time-sampled), and the simulation proceeds to compute 
all functions and interactions in a time-discrete (incremental step-by-step) fashion; in this 
case, the unit of simulation progress is a time clock, and all models apply a uniform time 
constant to represent processes that occur within the time step. Alternatively, the unit of 
progress in the simulation may be chosen to be discrete events; event-based simulations 
increment from event to event by event triggers that represent the causal propagation from 
any given event to any other event-producing processes.
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The approach to deal with process functions and functional interrelationships: The number 
of functions (N), functional complexity (C), their interrelationships (R), and the relative 
autonomy of functions (A) that characterize a model distinguish the models that are rela-
tively compact system-process models (e.g., system-dynamics models in which N, C, R, A 
attributes are low, high, low, low, respectively) and highly interactive models (e.g., agent-
based models in which N, C, R, A attributes are high, low, high, high, respectively).

Table 2 Representative modeling and simulation tools (Waltz 2006)

Simulation 
approach Description and characteristics

Example commercial  
simulation tools

General 
causal 
modeling

Static Bayes networks represent chains of 
actions to effect nodes and resulting 
effects; Dynamic Bayes nets add a 
representation of complex states, 
and transitions at nodes to represent 
the aggregate dynamics of a causal 
networks

Example tools: 
Netica™(Norsys); 
Bayes Net Toolbox for 
Matlab™(MathWorks)

Discrete-event 
simulation

Simulate event-based systems using 
queuing models of queue-servers, 
Petri nets, Markov, and other models 
that define nodes, links, and resources 
to simulate process interactions, 
synchronization, and scheduling of 
discrete events

Example tools: Matlab® 
SimuLink® and SimEvents® 
(MathWorks); (Ptolemy) 
University of California at 
Berkeley; FlexSim Software 
(FlexSim); SIMAN (Systems 
SIMAN Modeling Corp.), 
ProModel (ProModel Corp.), 
and GPSS/H (Wolverine 
Software)

Discrete-time 
simulation

Time-based simulation of continuous 
or time-discrete processes defined 
by differential equations; represent 
continuous processes by state-machine 
simulation of all processes for each 
discrete-time increment

Example tools: ExtendSim™ 
(Imagine That Inc.)

System 
dynamics 
simulation

System dynamics flow models are based 
on the principle of stock accumulation 
and depletion, representing the flow 
of resources to accumulate “stock” 
variables. System dynamics causal 
models account for positive and 
negative feedback across processes 
and represent nonlinear behavior

Example tools: iThink™(ISEE 
Systems); PowerSim Studio 
(Powersim Software); 
Vensim® (Ventana)

Agent-based 
simulation

Agents represent interacting autonomous 
rational cognitive actors, their goals, 
beliefs and autonomous behavior to 
study social behavior of individuals, 
groups or populations. Goal-seeking 
adaptation produces realistic emergent 
behavior not predictable from the 
underlying models

Example tools: Power Structure 
Toolkit (Soar Technology); 
DyNet (Carnegie Melon 
University); RePast 
(University of Chicago’s 
Social Science Research); 
SWARM (Santa Fe Institute), 
SOAR (University of 
Michigan)



28 E. Waltz

The approach to deal with uncertainty: The uncertainty in inputs to the model and uncertainty 
in the internal model functions themselves influence the uncertainty in simulation outputs. 
The models may directly represent and propagate uncertainty throughout the model 
(e.g., Bayesian networks use probabilities to propagate uncertainty) or a deterministic 
model may be used to represent uncertainty by varying input or internal variables in a 
controlled manner (e.g., by being sampled from a distribution) across many simulations to 
assess the effects of uncertainty. This approach is called Monte Carlo simulation.

For each model category, there exist commercially available model-building tools that 
allow the modeler to develop, test, and validate models with available empirical data 
(see Table 2 for representative commercial tools). The characteristics of the major 
computational modeling approaches are summarized in the following paragraphs.

General Causal Models: A fundamental interest in modeling is the representation 
of the causal relationships between entities or events. (One event, the cause A, must 
be prior to or simultaneous with another event, the effect B.) Models of causality 
are represented by directed acyclic graphs that represent events as nodes and edges 
(or links) as the causal relationship. From this simple representation, a number of 
sophisticated model implementations can be created:

Influence Models: Directed graphs that represent functional relationships (influences) 
between variables are called influence diagrams and are computed as influence models. 
Such models are often used in decision modeling, and the graph proceeds from 
decision nodes (alternatives that can be chosen by a decision-maker) and indepen-
dent variable nodes (deterministic or probabilistic variables) to the dependent objec-
tive node: the function influence by decisions and variables that is to be optimized. 
In simulations, these models may be used to represent the effects of the decisions of 
rational human decision-makers seeking to optimize an objective.

Bayesian Network Models: These models can represent probabilistic causation, 
allowing an effect to be probabilistically related to a cause. The models permit 
effects to be represented by conditional probabilities; for example, P(B|A) repre-
sents the probability of the occurrence of the effect B, under the condition that  
A occurred. Bayesian networks allow the calculation of the propagation of proba-
bilities across complex directed acyclic graphs to compute posterior probabilities, 
as a function of prior and computed conditional probabilities (Pearl 2000).

General Discrete Event Models: In these causal models, a system’s behavior is 
represented as a sequence of events in which the triggering of each event can be deter-
mined by external conditions or conditioned by the state of other events. These 
models are implemented as simulation tools that represent systems in which 
the state evolves at discrete points in time (events) rather than continuously as in 
time-discrete models. Discrete-event models readily represent processes with 
transaction, flows, delays, and queues; they are well suited to traffic, production, 
inventories, and movement of commodities (Banks et al. 2004).

Markov Models: These models represent the dynamic of systems by their states, 
the state-transition probabilities that move the system from state to state, and the 
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available information to observe the state. A Markov model represents a system 
with the state directly observable, and a Hidden Markov Model represents a 
system in which the state is not directly observable (although it may be partially 
observable or inferred from variables related to the state). These models are used 
to model systems that move from discrete state to state in their operation.

Petri Network Models: These network models represent interactive and distributed 
processes, modeling the communication, synchronization of messages and processes, and 
sharing of resources across distributed processes. Models are represented in a directed 
graphical notation that represents communication flow and the flow of process activities, 
represented by tokens being passed across the network. (When the tokens take on value, 
the nets are referred to as Colored Petri nets.) These models are applied to representing 
political policy processes that follow legislative sequences, logistic processes, communi-
cation distributed computing (network) processes, and commodity delivery processes.

Discrete Time Models: Many models are implemented to operate in discrete time 
steps, in which the simulation unit is a fixed time interval (as opposed to discrete 
event simulations in which the simulation units are events that may have varying 
time intervals). Processes represented in differential equations are well suited to 
direct implementation as time-discrete models that are updated at the Dt interval. 
The general causal models previously described are often implemented as discrete-
time simulations, as well as the models that follow.

System Dynamics Models: The fundamental principle in representing systems in 
this model form is the dynamic flow of critical “stocks” in the system modeled; 
stocks are accumulated or depleted over time (the “flow” of capital or stock). Stocks 
can refer to material entities (e.g., crops harvested, children born, steel produced) or 
more immaterial entities (shares of securities owned, financial capital invested, 
human or intellectual capital, etc.). In this modeling paradigm, the modeler must 
identify the key stocks that represent the fundamental flow dynamics of the system. 
For an insurgency organization model, for example, the stocks may be financial 
capital, insurgent fighters, and weapons; the flows are a function of donations-
expenditures for weapons, recruitment and attrition of insurgent fighters, and weap-
ons purchased-weapons consumed or expended, respectively. Once the fundamental 
stock and flows are defined, the functions that influence the flows are modeled to 
“throttle” the accumulation and depletion of stocks. These functional relationships 
allow the modeler to represent critical time delays, queues, and feedback loops that 
provide positive reinforcement (growth) or negative reinforcement (balancing) 
behaviors. The completed model provides a simulation of the time-dynamic behav-
ior of the system, the changing level of the critical stocks that describe the system, 
and the effects of initial conditions and the time delay and feedback functions. The 
models can readily simulate nonlinear systems and can simulate general equilibrium 
behavior that is exhibited by economic, production and social systems, as well as the 
conditions that disturb such stability. Numerous modeling tools allow the model to 
be created graphically and simulated rapidly, using a standard system dynamics 
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graphical formalism. The graphical symbols are compiled onto ordinary differential 
equations that represent the flows and conditioning parameters that represent the 
time delays and feedback loops that couple the differential equations. For a compre-
hensive overview of system-dynamics models, see Sterman (2000).

Agent-Based Models: These models represent the interaction of a network of 
autonomous actors, interacting with an awareness of their environment and indi-
vidually operating by an internal behavior (goal-directed, able to cooperate or 
compete with other actors). The actors in real life may represent leaders, organiza-
tions or the aggregate behavior of population groups, and they are represented by 
software agents that perceive their environment (e.g., sociopolitical, economic, 
security, or other aspects), reason about the situation compared to their interests and 
goals, perform decision-making, and then act in the environment to respond to the 
situation. Agent-based simulations are described as generative because they auton-
omously generate behavior as a result of the interaction between agents, generating 
equilibrium as well as the emergence of higher order (complex) behaviors, not 
predictable in the behaviors of the individual actors. These simulations uniquely 
allow the modeler to represent individual and group decision-making to simulate 
the effects of interactions between large numbers of actors in a dynamic environ-
ment. In particular, models that employ agents with relatively modest rules can 
produce relatively complex behaviors, due to the high level of interactions within 
the network of agents. The models are most often applied to political and social 
modeling (e.g., political power struggles over policy positions and social interac-
tions between groups or groups and elites), as well as modeling economies, logis-
tics, and transportation behaviors, and the spread of disease. Because they explicitly 
represent the decision-making of individuals or groups, they are well suited for the 
study of organizations. Tools for creating agent-based models include NetLogo 
(Northwestern University), Swarm (Santa Fe Institute), and Power Structure Toolkit 
(Soar Technology). For an overview of agent-based models, see Epstein and Axtell 
(1996) and Axelrod (1997).

Hybrid simulations: Because each modeling approach has a particular strength, it 
may be appropriate to implement a simulation that integrates (or composes) differ-
ent types of models to apply the advantages of each. This is often the case when 
modeling situations in which the interactions of political and social systems, eco-
nomic systems, and physical systems (computer systems, production, infrastruc-
ture, transportation) must be represented. The next paragraphs describe the 
approaches to model composition to develop hybrid simulations.

4  Model Composition

Once a major system (e.g., an unstable or failing state) has been decomposed into 
component subsystem models (e.g., PMESII), the analysis of effects across mul-
tiple models requires that the individual models be composed into an overall 
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system for analysis. This issue of integrating diverse component models into a 
composite model has long been a challenge to the modeling community (Davis and 
Anderson 2004). Consider the two alternative approaches to composition of multiple 
models.

An •	 analytic composition process runs models independently in time but consid-
ers the interaction effects by running model excursions to describe the effects of 
interdependencies. The results are composed by an external analysis of the inde-
pendent simulation dynamics and basing one model’s inputs on the results of 
others, but the models do not directly interact.
A •	 computational composition process integrates multiple component computer 
models of individual PMESII systems into a single metamodel (or metasimula-
tion) that describes a larger situation than any one component and synchronizes 
their interacting operations at the same run-time. When the components are of 
varying resolutions (or causal granularities), the metamodel is a multiresolution 
model (MRM). The composed MRM structure may represent a hierarchy of 
fine-granularity submodels that contribute upward to a lower-granularity model 
that integrates the results, or lower-granularity models may provide contextual 
information downward for finer-granularity models.

A computational composition of models has been performed in the system called 
COMPOEX (COnflict Modeling, Planning, and Outcomes EXperimentation). It is 
an example of a large-scale simulation framework that composes a diverse set of 
modeling paradigms into a single run-time metamodel (Fig. 6). The COMPOEX 
tool architecture (Fig. 6) includes:

A planning tool that organizes and schedules the injection of actions to models •	
along the simulation time sequence, and
An option exploration tool that hosts the integrated model and runs simulations •	
of the synchronized sets of composed models.

All models are plugged onto a “backplane” that represents the state vector of 
PMESII state variables. The models are stepped in time-discrete manner, generally 
in 1-week increments, simulating behavior over a 2–3 year period of time. 
Characterizing the integrated simulation as a finite state machine, the state vector 
is the memory that stores current state; the sequence of states for any given variable 
over 156 weeks of a 3-year simulation represents the behavior of the variable. 
A typical COMPOEX model may include well over 10,000 such state variables. 
The visualization service allows users to customize views of any of the variables and 
their relationships; it also detects and displays discrete effects that should be 
brought to the attention of the planner. It furthermore allows the user to trace 
causality within the simulation, allowing the user to trace the (upstream) variables 
on which an effect is dependent and the (downstream) variables that are dependent 
on the effect variable (Waltz 2008).

The model of power actors and relationships is at the core of the COMPOEX 
simulation, providing the major abstract dynamic within a virtual world of eco-
nomic, material services, media and sources of information exchange, physical 
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violence, and infrastructure. Power struggle behavior is included across the many 
composed models within the simulation environment. The COMPOEX approach to 
abstraction is based on two major partitions of the model:

Power Influence Network: Competing actors for power are represented in •	
agent-based models in which autonomous agents compete for power, repre-
sented as the abstract capital commodity in four dimensions (political, social, 
economic, and armed military). This network represents all human decision-
making, influence, and action. The operation of the agent-based actor simulation 
is described in more detail in Taylor et al. (2006).
Virtual World: The context within which the actors compete (or cooperate) for •	
power is represented by a set of interconnected process models, implemented by 
a variety of modeling paradigms (e.g., system dynamics, discrete time models, 
Bayesian networks). These models may represent aggregate human behavior 
(e.g., aggregate economics, production, large-scale population behavior), but do 
not represent the core competition for political power.

The structure of the composed power network and virtual world models (Fig. 7) 
illustrates the interaction between the actor net and the virtual world. The agent-
based actors perform goal-directed behavior to compete in the power struggle; each 
actor behaves to achieve political, social, economic, and armed power (capital) 
objectives relative to all other actors in the simulation (Waltz 2008).

Power
Influence-Flow
Network

Abstract stocks
Relative values

Conversion

Context
Virtual World

Explicit
commodities
Absolute values

Lines of influence between
actors allow the directional 

transfer of power (+/-); define 
the structure of the power net

Relative 
Power of
each Actor 

Political capital stock
Social capital stock
Economic capital stock
Armed capital stock

Power
Source
SRC

Power
Sink
SNK

Power
Source
SRC

Power
Source
SRC

Power
Sink
SNK

Virtual world models
(Economic, Services, Security, Commodities, etc.)

Fig. 7 Integrating the power structure competition and the virtual physical world
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A composed metamodel may be organized into multiple levels of causal granularity, 
such that lower (finer) levels of granularity produce results that influence higher 
(coarser) levels; the higher levels may also set contextual variables for the lower level 
models. Consider three typical levels of granularity in such simulations:

National or regional level: A top-level country-level model sets the context for •	
the lower-level models, representing country-level political policy, national 
power struggles and economic base.
Province: The overall behavior of individual provinces – political, social, •	
economy – representing the dynamics of the political power struggle, behavior 
of the social populations, and relations between provinces.
City: Major urban areas may be modeled individually (local political struggles, •	
economic powers, civil health services, infrastructure, etc.) and are aggregated 
upward to the province city level.

All models interact by exchanging variables at common time increments, across a 
common state vector of variables that represents the PMESII state of the system at 
any time increment; the MRM operates as a time-discrete state machine allowing 
models of various modeling paradigms (e.g., agent-based, Bayesian, Petri net, system 
dynamics) to plug and play on the PMESII state vector.

Large-scale computational PMESII models are excellent candidates for high-
performance computing implementation. Such highly-interactive models must be 
interpreted in the context of the uncertainty inherent in model parameters and 
system interactions, requiring behavioral uncertainty to be observed over large 
ensembles of runs (using Monte Carlo methods) that may be distributed across 
computing nodes on cluster before (1) analyzing the statistics of results to under-
stand aggregate behavioral dynamics and (2) mining all results to discover emer-
gent properties of the complex interactions interaction.

5  Exploring with Models

We are careful to distinguish two desired capabilities when we apply computational 
models of intervention situations to conduct analyses of internal dynamics and the 
effects of a potential plan of action:

•	 Prediction: the ability to foresee a specific, individual future event or scenario; 
generally, prediction refers to a high degree of accuracy of outcomes for specified 
model fidelity, resolution, and granularity.

•	 Anticipation: the ability to foresee a “landscape” of feasible futures, an “envelope” 
or “range” of many point predictions. This allows us to explore the range of dynamic 
behaviors, feasible events, and consequences, providing awareness of emergent situ-
ations that would surprise us if we had not simulated them.

Indeed, the results of computational experiments are, in fact, exploratory: lacking 
the specificity expected from physics-based model prediction of well-established 
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physical processes (e.g., prediction of the trajectory of the bullet). The PMESII 
modeling processes track currently available information to drive causal simulations 
to create an envelope or landscape of many feasible outcomes. The simulations 
 create an envelope of other parties’ decisions, actions, and effects, then estimate our 
courses of action and effects. Simulation tools allow analysts to explore predictive 
envelopes, not point predictions. The models of decision-making and physical 
activities are refined over time, and the accuracies of the predictive envelopes can be 
tracked over time to estimate their predictive performance.

The challenge of intervention modeling, then, is to create explicit models that, 
by exploration, will reveal assumptions, explicitly show interactions, and simulate 
complex dynamics of PMESII systems to help the user understand the critical insta-
bilities, potential domains of and emergent chaotic behaviors not expected by the 
tacit intuition of SMEs. Anticipating PMESII system of systems behavior requires 
a description of the behavior of humans with free will, organized in social net-
works, with varying beliefs, desires, motivations, perceptions, and goals. A realiz-
able PMESII prediction methodology confronts the challenge of explaining social 
systems that exhibit unknowable causality. Jervis has pointed out how the high 
degree of interaction between policymaking actors in such situations confounds 
analysis and causal prediction: (1) results of the system cannot be predicted from 
separate actions of individuals, (2) strategies of any actor depend upon the strate-
gies of others, and (3) the behaviors of interacting actors even change the environ-
ment in which they interact (Jervis 1997a, b).

Complexity is the emergent property of social system behavior, caused primarily 
by the interactions of its independent actors, rather than on the properties of the 
actors. This behavior cannot be predicted by models of the properties of the actor 
or by a linear combination of them. Some such linear systems exhibit responses that 
may have a predictable range of responses (to some degree) or not; other determin-
istic nonlinear systems exhibit such sensitivity to initial conditions that they exhibit 
behavior described as chaotic (Gleick 1988). The approach to studying such prob-
lems is not analytic (decomposition to reduce to a closed form solution); rather, it 
requires a synthetic approach, whereby representative models synthesize (simulate) 
behavior that may be compared to the observed world and refined to understand 
behavior in a more holistic manner.

6  Building Confidence in Models

PMESII models are not excluded from the necessity to provide a means for users 
to develop confidence in their validity in order to provide analytic value. Without 
user confidence in their faithful representation of reality and credible simulation 
of system behaviors, such models will fail to gain user acceptance, and users 
will return to the “tried and true” methods of situation analysis: oral discussion 
and the traditional enumeration of factors and narrative description of plausible 
scenarios.
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Model developers apply a process of confidence-building in the credibility of a 
model by evaluating the model against two criteria to determine how faithfully it 
represents reality, for the intended application:

•	 Internal criteria: Behavior of the model is consistent with a theory or under-
standing of phenomena or causality (i.e., the model is internally consistent with 
a coherent explanation of a system and its phenomena; this theory should be an 
accepted general theory of structure and behavior).

•	 External criteria: Behavior of the model output is consistent with observed 
real-world behavior (i.e., the model is consistent with at least one particular 
instance of such a system observed in the real world; it is preferable, of course, 
if the model can be shown to be consistent over a wide range of conditions, if 
such data are available).

The formal validation process determines the degree to which a model or simulation 
is an accurate representation of the real world from the perspective of the intended 
uses of the model or simulation (emphasis added). This definition focuses on 
the external criteria (DoD 1994). (The process is distinguished from verification, 
the process that precedes validation to evaluate the correctness of a model with 
respect to a certain formal specification of a theory, using the formal methods of 
testing, inspection, and reviewing.)

When considering validation of PMESII models, it is important to distinguish 
between those models that are used as a substitute for thinking and those that serve 
the purpose of stimulating deep thinking (Table 3). A fire-control computer, for 
example, uses physical kinematic models to compute ballistic trajectories in sup-
port of an artillery officer by eliminating the need for thinking about trigonometry. 
In contrast, the models described in this chapter are for analysts and planners and 
serve the purpose of aiding them to think deeply and broadly about the structure 
and dynamics of a situation and the effects of alternate actions. In this case, valida-
tion is not performed once and trusted thereafter. The very phenomena of social 
situations remain in flux, and the validation process must often be performed in 
situ, on a day-to-day basis. In the earlier case, gravity, ordnance mass, and the influ-
ence of other physical factors remain constant; in the case of models of human, 
social and cultural systems, the entities have free will and the modeler cannot count 
on a constant human behavior.

A recent RAND study described the basis of validation in such models, in which 
uncertainty in the model (e.g., application of a particular theory of social behavior 
and response to media appeals) and in the source data inputs (e.g., uncertainty in 
demographic data on tribal affiliations) is deep:

[Our conclusions] apply when the models or their data are more afflicted with uncertainty. 
For example, no one has a “correct” model of war with all its notorious complications, and, 
even if such a model existed, it would have large numbers of uncertain inputs. … In such 
cases, we believe that model validation should be construed quite differently than might be 
suggested by the usual definition of validity. A validation process might reasonably con-
clude by assessing the model and its associated databases as “valid for exploratory analy-
sis” or “valid, subject to the principal assumptions underlying the model, for exploratory 
analysis” (Bigelow and Davis 2003).
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Similarly, the National Research Council (NRC) has recognized that the techniques 
used to validate models in the physical sciences are not appropriate for modeling 
the behavior of individual, organizational, and societal (IOS) systems:

Verification, validation, and accreditation: These important functions often are made more 
difficult by expectations that verification, validation, and accreditation (V&V) – as it has 
been defined for the validation of models of physical systems – can be usefully applied to 
IOS models. … Current V&V concepts and practices were developed for the physical sciences, 
and we argue that different approaches are needed for IOS (individuals, organizations, and 
societies) models (Zacharias et al. 2008).

The RAND report by Bigelow and Davis (2003) on validation of multiresolution 
models concluded that comprehensibility, explainability, and uncertainty represen-
tation are the critical elements for such models:

The authors believe that when working within this troubled but common domain, it is par-
ticularly important for two criteria to be met in assessing a model (and its associated data):

The model should be •	 comprehensible and explainable, often in a way conducive 
to explaining its workings with a credible and suitable “story.”
The model and its data should deal effectively with uncertainty, possibly •	 massive 
uncertainty.

Referring to the use of societal models (note that in this book the terms PMESII 
model and societal model are used interchangeably) to increase our understanding of 
complex system behavior, a pioneer of social modeling wisely noted: “The moral of 
the story is that models that aim to explore fundamental processes should be judged 
by their fruitfulness, not by their accuracy. For this purpose, realistic representation 
of many details is unnecessary and even counterproductive. … the intention is to 

Table 3 The roles of validation in modeling

Approach to the 
use of a model

Conventional modeling as a 
substitute for thinking

Unconventional modeling as a stimulus 
for thinking

Operational need Act quickly, react and 
respond (trust accuracy 
and automation)

Think hard and deep, reason, explore, 
discover (Insight; understanding)

Metaphor Black box: model as 
trustworthy tool to 
provide answers

Guide: model as a tool used to learn and 
plan for complex endeavors

User’s central value Accuracy of the model Usefulness (utility) of the modeling 
process

Validation Validation before use: trust 
in authority that reviewed 
validation and certified 
the model for a given use

Validation during use: construction-
comparison-refinement builds trust 
in representation

Ownership User is not the owner of the 
models

User is the owner of the model (user is 
creator, modifier, explorer)

Basis of validity Confidence in the model 
based on authority 
(Approved prior 
accreditation of 
validation process)

Confidence in the model developed and 
refined on a daily basis during use 
and refinement of models
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explore fundamental social processes … the interactions of adaptive agents typically 
lead to nonlinear effects that are not amenable to the deductive tools of formal math-
ematics.” (Axelrod 1997, p. 6).

7  Summary

Emerging analytic and planning tools allow analysts and planners to capture models 
of interventions and help anticipate their effects. We distinguish between mental 
models of systems or phenomena; conceptual model representations of elements, 
relationships, and causal functions; and computational models that implement a 
conceptual model and simulate the time-dynamic behavior of the modeled system. 
Empirical modeling represents relations between variables of a system or phenome-
non based on the data from experience or experimentation, e.g., via regression methods. 
Causal modeling explicitly represents underlying causality (functional processes) 
of phenomena and derives future behavior deductively from input variables. 
Computational simulations of interventions are developed by decomposing the politi-
cal, military, economic, social, information and infrastructure (PMESII) elements of 
a situation, and then representing them in component models. Modeling techniques 
for representing human-social systems include agent-based models, Bayesian net-
work models, time-discrete and event-discrete models, system dynamics models, and 
Markov and Petri models. A model composition framework is required to integrate 
diverse models. For example, the DARPA COMPOEX (COnflict Modeling, Planning, 
and Outcome EXperimentation) program developed a large-scale simulation framework 
and an associated PMESII model component library, and demonstrated an ability to 
compose a diverse set of modeling paradigms into a single run-time metamodel. 
Large PMESII models face the validation challenge of demonstrating that they repre-
sent the real world well enough to support their intended uses. The uses may include 
prediction, i.e., the ability to foresee a specific, individual future event or scenario; or 
anticipation, i.e., the ability to foresee a “landscape” of feasible futures. In particular, 
such tools can offer awareness of emergent situations that would surprise us if we had 
not simulated them. The tools can aid the validation process by permitting analysts to 
compare modeled behavior to situation data and to refine both their models and their 
understanding of the systems and phenomena they represent.

8  Resources

 1. US DOD M&S Organizations

 DoD Modeling and Simulation Coordination Office (M&SCO)  
http://www.msco.mil/

 Information Analysis Center (MSIAC) Modeling & Simulation  
http://www.dod-msiac.org/

http://www.msco.mil/
http://www.dod-msiac.org/
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 DoD Modeling and Simulation Resource Repository (MSRR)  
http://www.dod-msiac.org/

 DoD Standards Vetting Tool (DSVT)  
http://140.32.24.71/

DoD VV&A Documentation Tool (DVDT)  
http://dvdt.nmso.navy.mil

 2. US Military Services M&S Organizations

Army Modeling & Simulation Directorate  
http://www.ms.army.mil/

 Army Program Executive Office for Simulation, Training and Instrumentation 
(PEO STRI)  
http://www.peostri.army.mil/

Navy Modeling & Simulation Office (NMSO)  
https://nmso.navy.mil/

 Air Force Agency for Modeling & Simulation (AFAMS) (Public)  
http://www.afams.af.mil/
 Air Force Environment Scenario Generator (ESG)  
https://esg.afccc.af.mil/index.php,  
https://ine.aer.com/esgsite/

ESG Operational Test & Evaluation  
https://ine.aer.com/

 Marine Corps M&S Management Office (MCMSMO)  
https://www.mccdc.usmc.mil/MCMSMO/index.htm

 3. NATO M&S Organization

 NATO Modeling and Simulation Group (NMSG)  
http://www.rta.nato.int/panel.asp?panel = MSG

 Technical Cooperation Program (TTCP) – Joint Australia, Canada, New Zealand, 
the United Kingdom, and the United States  
http://www.dtic.mil/ttcp/

 4. Modeling and Simulation Society and its Journals

 JDMS: The Journal of Defense Modeling and Simulation: Applications, 
Methodology, Technology
 Simulation: Transactions of The Society for Modeling and Simulation 
International

 5. Modeling and Simulation Conferences

European Simulation Conference  
http://www.itec.co.uk/

 Flight Simulator Engineering & Maintenance Conference  
http://www.aviation-ia.com/fsemc/

http://www.dod-msiac.org/
http://140.32.24.71/
http://dvdt.nmso.navy.mil
http://www.ms.army.mil/
http://www.peostri.army.mil/
https://nmso.navy.mil/
http://www.afams.af.mil/
https://esg.afccc.af.mil/index.php
https://ine.aer.com/esgsite/
https://ine.aer.com/
https://www.mccdc.usmc.mil/MCMSMO/index.htm
http://www.rta.nato.int/panel.asp?panel<2009>=<2009>MSG
http://www.dtic.mil/ttcp/
http://www.itec.co.uk/
http://www.aviation-ia.com/fsemc/
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Winter Simulation Conference (WSC)  
http://www.wintersim.org/

 SISO Spring and Fall Simulation Interoperability Workshop  
http://www.sisostds.org/

 MODSIM Modeling and Simulation World  
http://www.modsimworld2008.com/
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