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The Achilles’ heel of societal models, nearly universally, is their inability to convey 
their computational results to the human user. Data sets can be enormous and 
diverse, the uncertainties large and subtle, the dependencies complex and convo-
luted, and the products of the estimates often obscure and insubstantial and, 
therefore, difficult to convey and contrast. This chapter is about making the 
“invisible” visible.

Recognizing the diverse roles played by visualization, we divide them here into 
two categories. First is interactive data or information visualization, which is 
defined as the graphical expression of large amounts of data to enable efficient 
human perception and comprehension (Card et al. 1999). Second is visual analytics, 
which is the joining of interactive visualization with analytical reasoning and 
computational methods in order to derive and convey insight from massive, 
dynamic, ambiguous, and often conflicting data (Thomas and Cook 2005). 
This chapter pays equal attention to the two categories.

The chapter begins by introducing mental models and explaining why it is 
so important that they be made visible. Next, it turns to the challenges faced 
in understanding complex behavior, and indicates how effective visualization 
can help. The chapter then delves into the challenges associated with groups 
of diverse users, diverse model types, and disparate model authoring schemes, 
and again indicates the important role that visualization can play. Having 
uncovered the issues, the chapter presents a case study involving a large suite 
of PMESII models and discusses how (some of) the aforementioned challenges 
were successfully attacked. The chapter concludes with a set of tips for aspiring 
visualizers.

D. Jonker (*) 
Oculus Info Inc, 2 Berkeley Street, Suite 600, Toronto ON, M5A 4J5, Canada 
e-mail: david.jonker@oculusinfo.com

Chapter 10
Visualization and Comprehension

David Jonker and William Wright 



286 D. Jonker and W. Wright

1  Models and Visualizations

1.1  The Importance of Mental Models

Analysts using PMESII models to gain insight into a complex geopolitical situation 
apply prior and tacit knowledge of experts to the task. In discussions with other 
experts, and with research, this “conceptual model” of the situation evolves. The 
visualization of these conceptual models aids the experts in sharing, testing, and 
evolving their concepts. In addition, the computer–human interface for computational 
PMESII models should be expressed in terms similar to these conceptual models, or 
linked to them, in order to maximize the usability of the PMESII tools in supporting 
and extending human expert knowledge. The effective communication of concepts 
requires that the conveyance aligns well with the receiving analyst’s mental model.

The problem of mental model relation is a relatively new one. Computational meth-
ods and models in the realms of engineering, physics, and finance have seen few chal-
lenges in this area. Although they are applied to everything from weather forecasting 
to portfolio performance estimation, it has nearly always been possible to depict the 
outputs in terms of tangible, measurable observables, things that relate well with our 
mental models. The output of physical or financial models, for instance, is visualized 
using a simulated enactment of physical behavior, or tabulated spreadsheet charts. 
These are forms consistent with the real-world experiences of these phenomena and 
are, therefore, a natural representation for communication and comprehension.

The situation with social and political models is different. The subjects of primary 
modeling interest here are attributes such as satisfaction, attitudes, beliefs, goals, and 
cultural identity, things that cannot always be directly observed. Thus, there is no 
obvious or natural way of depicting them. Furthermore, the field is relatively young; 
therefore, there are few standards.

A case in point can be found in game-theoretical models. These have been used 
in economics, psychology, and sociology to model and understand attributes such 
as trust and reputation (Mui et al. 2001) and trust development over time (Axelrod 
1987). However, few attempts have been made to visualize these interactions 
beyond the mathematical models themselves (Fig. 1). There are no standards, no 
precedents, and no common procedures for visualization of such models.

Another example is visual anthropology, in which emphasis is placed on creating 
a visual record of cultural interactions and leaving it to the analyst to interpret them 
(Collier and Collier 1986). No attempt is made at formulating an underlying visual 
expression. McCormick summarizes the state of affairs quite well with his observa-
tion that to visualize sociopolitical systems and their relationships to other social 
science domains such as economics and security requires “a method for seeing the 
unseen” (McCormick et al. 1987).

In the relatively short history of applying computational approaches toward the 
societal modeling, little emphasis has been placed on creating or adapting visual rep-
resentations for such models. In fact, a survey of modeling and simulation applications 
reveals sets of time series graphs, often devoid of context, narrative, and summary, 
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which do not tend to map well to the users’ conceptual constructs or mental models 
(Card et al. 1999; Sears and Jacko 2007).

To compensate for this gap, during model initiation and results analysis, human 
technical interpreters are often introduced between the model and the subject matter 
expert (SME). These interpreters view model results, translate them into summaries, 
and sometimes even draw preliminary conclusions. This is undesirable. The dis-
tancing of SMEs and decision-makers from the computational results not only 
impacts timelines and workloads, but also introduces the distinct possibility that the 
quality and accuracy of conclusions will be degraded. This diminishes the power of 
the models to explore issues and extend knowledge for the SME.

For elimination of this gap tool builders need to provide a means for easily 
interacting with and communicating information regarding a modeled situation 
directly to the decision-makers. The expert decision-makers need to be able to use 
the model tools to express the pertinent factors of the situation as they see them and 
then see the model results in the same terms. The modeling environment should be 
able to present the insights provided by the models, in forms consistent with domain 
SMEs’ mental models.

Despite repeated appeals for support in this area, progress thus far has been 
relatively limited. Orford and coworkers (1999), for instance, provide a review of 
approaches and techniques across a variety of social science disciplines and find 
that adaptation of visualization techniques is for the most part limited to fields with 
strong ties to the physical sciences, for instance, geography.

Fig. 1 Bayesian model visualization means little to the nonspecialist
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However, progress is being made in the area known as conceptual social modeling. 
Conceptual models, similar to computational models, visually express aspects of  
a situation, but without the quantitative formulas and values required to simulate 
behavior under different conditions. As a result, conceptual modeling tools and 
techniques provide useful reference examples for visualizing a situation, albeit 
without going so far as to provide the ability to visualize change in that situation 
over time due to either the natural course of events or the effects of an intervention.

One such class of conceptual modeling tool is link analysis. Applications such as 
Analyst’s Notebook™ (i2 Inc., Fig. 2) and VisuaLinks™ (Visual Analytics Inc.)1 
provide capabilities for building and maintaining diagrammatic visual representations 
that help acquire a rapid snapshot of key actors, interactions, and communications. 
These applications see heavy usage in the law enforcement, intelligence, and military 
communities, where they are employed to build visual maps of connections (e.g., 
transactions, phone calls, “is-related-to” relations, etc.) between various organizations, 
people, and concepts.

Link analysis tools tend to provide a meaningful snapshot of current reality, 
perceived or otherwise, but they do not generally provide capabilities for considering 

Fig. 2 Analyst’s Notebook provides conceptual modeling using link analysis

1 i2 Analyst’s Notebook is a trademark of i2 Inc. VisualLinks is a trademark of Visual Analytics Inc.
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alternative or dynamic realities. An example of a tool that attempts to support the 
analysis of alternative social and political realities is nSpace (Fig. 3). nSpace 
includes integrated tools for system information gathering and analysis (Jonker 
et al. 2005; Wright et al. 2006) and the nSpace Sandbox (r) component2 that allows 
analysts to conceptualize and evaluate alternative hypotheses. Links to original 
source evidence in the analysis provide a means to verify or re-evaluate evidence 
and assumptions.

A component missing from many conceptual modeling implementations is that of 
time. Few tools actually support analysis of how a situation evolves over time. 
Animation, while a seemingly logical solution, provides a poor means of visualizing 
change over time. Underlying this shortcoming are human limitations in the ability for 
visual memory. Human visual perception is strong; human visual memory is weak.

Human perception of change over time tends to be improved when change is 
displayed simultaneously instead of sequentially (Wickens and Hollands 2000; 
Parasuraman and Mouloua 1987). GeoTime Configurable Spaces ™3 exploits the 
advantage of this phenomenon (Kapler et al. 2008). It extends established two-
dimensional (2D) X, Y forms of expressing conceptual models by adding a third 
visual dimension for time in the Z dimension (Fig. 4). This makes it possible 

Fig. 3 nSpace helps rapid exploration of data

2 nSpace Sandbox (r) is a trademark of Oculus Info Inc.
3 GeoTime Configurable Spaces ™is a trademark of Oculus Info Inc.
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to visualize a social network of entities on a 2D plane, with communication and 
transaction events between those entities represented in time above that plane in 3D 
space (Fig. 5).

Another good example is the commercial game known as SimCity™ (Maxis, 
Electronic Arts). The player’s objective in SimCity is to manage a city. Exogenous 
events occur throughout the game, some at random and some scheduled specifically 
to present challenges, and as the state of the city evolves, the player adjusts parameters 
in order to improve or stabilize the city’s health. Health is gauged in terms of 
numerical metrics and is visualized in terms of graphics and tables. A neighbor-
hood displayed in bright red, for example, indicates to the game player a current 
undesirable (as defined by the game) state in that region that may require further 
investigation. Events are presented to the user in a scrolling bulletin fashion as they 
occur and accumulate in list form for detailed examination. SimCity offers a diverse 
model of geopolitical growth over time and allows the user to explore many types 
of scenarios (Fig. 6). Since its purpose is to simulate experience in real time rather 
than to analyze it, the game neither attempts to address visualization of the causes 
and structural systems underlying behavior, nor does it generally include the 
dimension of time in its displays.

The bottom line is that while some relevant precedents can be found in conceptual 
modeling and in the realm of computer games, little has been done in the world of 
PMESII modeling to express models and simulation results visually in ways that are 
compatible with an expert’s mental model. In our experience, when we ask an expert 

Fig. 4 GeoTime represents events within an X, Y, T coordinate space in which the X and Y planes 
represent geographic space, and the Z-axis represents temporal space
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to describe visually their understanding of a complex societal situation, the result is 
likely to be a diagram of shapes, arrows, and words, and almost certainly not a series 
of charts and graphs. If the visual language used in conceptual models and in simula-
tion games may serve as useful precedents in addressing this problem, the gap that 
must be bridged is the integration of time and causality into these vocabularies.

1.2  Explaining Complex Model Behavior

Another shortcoming in current visual vocabularies is the visual techniques for 
expressing model behavior. When analysts are unable to assure themselves that 
they understand the causal relationships and interactions associated with simulated 
events, they are unable to assign confidence in their observations and projections. 
A lack of insight into causes can also handicap analysts’ ability to respond to 

Fig. 5 Temporal view of activity in a social network in GeoTime. Note the summary network 
image on the ground plane, with constituent activity as events above in the time Z-axis
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projections with effective mitigating strategies. In turn, analysts are limited in their 
ability to support decision-makers.

In the case of societal behaviors, calibration is rarely possible. The factors 
involved in a situation are not only immensely complex but also ever-changing and 
often immeasurable. Even when measurement is physically or conceptually possible, 
it is often not viable due to political or cost considerations. As a result, societal 
models are not likely to become precisely tuned instruments of exact forecasting. 
They will remain, rather, repositories into which human experts may collectively 
“encode” their understanding of the society’s behavioral structure and dynamics, 
albeit on a scale that is not limited by one person’s mental capacity.

Accepting that PMESII simulation results will likely never be worthy of blind 
trust, the question remains: how does one go about assessing confidence in the 
results? How can a system help to build (or temper) confidence in observations that 
have not been anticipated through unaided human reasoning? One approach is to 
provide capabilities for analysts to explore a model until they are able to ascertain the 
cause of nonintuitive results. Once the causes of a computed result are understood, 
the analysts may decide whether it is the model that is representing a situation incor-
rectly or too simplistically, or whether it is the analysts who are reading a situation 
incorrectly or too simplistically. Either way, a basis is provided on which to judge the 
result and respond accordingly. In the former situation, the analysts may make note 

Fig. 6 SimCity 3000 allows fine control over a geo-political simulation, visually characterizing 
civic health on a map at a single point in time
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of future areas for improvement of the model and in the short term take steps to work 
around the shortcoming, while in the latter case, they may benefit from an improved 
situational understanding and adjust their strategies to make them more effective.

Insights into model behavior help to explain unexpected results and frame con-
clusions. Today, however, there are few robust methods for visualizing the causes 
behind model behavior. One of the more common strategies used is to display cause 
and effect chains using nodes and links. This technique is seen almost exclusively 
with causal models such as Bayesian networks. In other modeling paradigms, the 
causes of an effect are often more complex, with many factors contributing in vari-
ous ways and to various degrees over time. In these cases, often no explanation is 
offered for behavior other than the one given by an expert intimately familiar with 
the model.

One technical development in societal modeling that holds promise for more 
intuitive visualization of the model structure and behavior is that of agent-based 
simulations. Visualization of the structure and behavior of agent-based simulations 
may intrinsically be more natural, due to their structural similarities to traditional 
social networks and the potential for reduction of behavior to the “decisions” of 
individual agents.

1.3  Accommodating Diverse Users

Analysis of intervention effects brings together people with knowledge of the 
diplomatic, military, aid, and nongovernmental organization (NGO) agencies 
involved, as well as those who have expertise in the humanities, economics, military, 
national policy, social sciences, and technical aspects of modeling. These stakeholders 
and analysts come with their own expectations, work styles, and doctrines. Consequently, 
designing the human–computer interface for a tool to be employed by such a broad 
user community can be a complex and inherently conflicted endeavor.

A key challenge for a user interface designed for this environment is to accom-
modate different methodologies and preferences within a collaborative process. 
Moreover, the process and the tools provided must meet the needs of professional 
social scientists and modelers as well as experienced and pragmatic leaders. These 
challenges have been explored in Computer Supported Cooperative Work (Neale 
et al. 2004), although it focuses on methods to overcome differences in group work 
in time and space rather than differences due to diversity of background, objectives, 
language, terminology, and experience.

Computer-supported collaboration can be distributed or co-located, synchronous 
or asynchronous, each with their own challenges. Asynchronous-distributed col-
laboration, for example, will have difficulties in communicating workflow and 
intent, while synchronous-co-located collaborators will encounter difficulties with 
shared screen space and interaction methods. Metrics have been proposed for evaluating 
these systems that combine coordination, communication, work coupling, and con-
textual factors into an activity awareness model (Fig. 7).
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Although research from this field has been slow to reach mainstream analysis 
applications, SharePoint™ (a Microsoft product), InfoWorkSpace (an Ezenia prod-
uct), wikis, and social-networking sites are excellent steps in the right direction. 
Consider, for instance, the InfoWorkSpace (IWS) tool, used extensively by the mili-
tary. IWS provides shared white boards, bulletin boards, chat, and shared views, all 
based on a common physical office metaphor. Although this approach has become 
a de facto standard, Swanson et al. (2004) demonstrated that there were a number 
of areas in which IWS fell seriously short of the effectiveness of face-to-face 
collaboration.

Another example of a system for collaboration is the U.S. Army’s Command 
Post of the Future (CPOF). This system provides distributed situation awareness 
and planning capabilities. CPOF provides an environment in which different disciplines 
and perspectives can work productively together. An essential reason for this success 
is CPOF’s ability to visualize people’s work in progress and to make this intermediate 
product easily available to others. CPOF work products include real-time situation 
monitoring on maps, analyses on maps, plans, and analysis using interactive charts 
and tables.

However, CPOF relies on a similarity of purpose and background in its community 
of users. Standard symbology and graphics, pervasive in the military, are an example 
of the common visual expressions used to support the exchange of information. 
Integrated PMESII models, on the contrary, must support political, social, economic, 
health professionals, justice, and law enforcement as well as military agencies– a truly 
diverse community. For this reason, PMESII visualization must be able to support dif-
ferent vocabularies, disciplines, and methodologies.
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1.4  The Challenge of Heterogeneous Models

In modeling, effects of interventions, political, social, economic, and security aspects 
of a situation are intertwined. Therefore, diverse models from different disciplines 
must operate in an integrated fashion. However, modeling paradigms vary widely 
from domain to domain. Whereas an agent-based model may be the natural choice 
for modeling key actors in a situation, a system dynamics model may be the best 
choice for an economic model. And the diversity does not end there. Even within 
the same problem domain, there may be multiple instances of each type of model, 
applied to different subregions, subgroups, and time delineations. This diversity 
vastly complicates user interface design.

To discuss the resulting user interface challenges, it is necessary to first describe 
what model integration entails. If models of different types are to be integrated 
generically, such that one can affect another during simulation without possessing 
knowledge of the other’s technical implementation, then a common technical lan-
guage for expressing behavior must be established.

There are two common approaches to this problem. The first is to express and 
link behavior in the form of discrete and intermittent causal events. The second is 
to express and link behavior in the form of continuous scalar values over time. In 
the former option, noncausal models must be adapted to produce logical events at 
scalar thresholds, while in the latter, causal models must be adapted to produce 
scalar changes based on logical events. Note that an implication of either adaptation 
is that time between cause and effect must be resolved in some way for models 
which may not otherwise account for time.

Since scalar values offer a greater level of precision by representing any 
degree of change, at any point in time, it is often advisable to integrate models 
at this level so as not to handicap model classes that are able to work together at 
this level of granularity. Another potential advantage of this approach is that in 
a generic system of models, often less semantic interpretation is required for one 
model to “understand” the nature of a behavior produced by another model if the 
behavior is quantitative in nature. In addition, there is the assurance that adopt-
ing the scalar value approach does not preclude the translation or aggregation of 
scalar values to nonquantitative yet significant logical events for user consump-
tion of simulated effects.

The homogenizing effect of a solution that dynamically integrates heteroge-
neous models into a single abstracted supermodel presents a significant challenge. 
Because the structure and properties of models vary so greatly, much texture and 
detail can be lost in the abstraction process.

Simply putting the onus on models to supply their own visualizations for display 
in the user interface is problematic for both users and model developers. The lack 
of consistency and visibility across models, as well as the reliance on modeling 
technology experts to supply visualization techniques and technology (an area of 
modeling that has traditionally been underdeveloped) often leads to poor results. 
Effective model integration at the end-user level requires a unified user interface.
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Designing a unified user interface is inherently difficult. If the system is to be 
truly open to all models to be plugged in with minimal effort, and the variety of 
models is limitless, then there is typically little design that can be accomplished in 
advance for each model’s integration. In many cases, given not much more than a 
large, abstract, unified set of labeled numbers that may change completely from 
situation to situation, the user must be able to construct meaningful visualizations 
on the fly; to reassemble the mental model as it were, with the supporting narrative 
that went into the development of these models.

Numerous tool kits offer capabilities to construct a “mash-up” of charts and 
graphs for dashboard-style analytics, including Cognos Visualizer™ and, more 
recently, the Google™ Visualization API. However, these are designed for tech-
nical staffs to use in creating data-driven report templates for end users, and not 
for end users to create supermodel inquiry and to monitor model execution 
results. Thus, there is a large capability gap in the extension of these techniques 
to nontechnical users. The needed capability, the ideal tool for constructing 
model visualization on the fly, would be one with the flexibility and ease of nar-
rative and graphical expression provided by a story-based report-building tool 
(Eccles et al. 2007).

While postintegration visualization assembly can go a long way toward recapturing 
the theory and narrative aspects of a model for the benefit of other users (the “big 
picture”), the loss of visibility into other, more detailed aspects is not as easily regained 
in this way. If a user cannot audit the evidence behind a conclusion made in model 
development, it becomes difficult to assess a level of confidence in that model.

For this reason, a capability in the system whereby model assertions can be 
tagged in a consistent way with evidentiary document references, comments, dates, 
and sources can be useful in making this information generally available to the end 
user for the purposes of validation. Unfortunately, many of today’s model editors 
do not provide capabilities for easily capturing this information such that it could 
be provided to a system. While not always practical or possible, the most efficient 
and thorough means of capturing this information for display would be to provide 
capabilities for authoring models in intuitive and visual ways from within the 
integrated system itself.

1.5  Model Authoring

Development of societal models involves knowledge of both the domain of interest 
and the appropriate modeling paradigms and systems. Currently, the latter requires 
trained technical expertise in specialized and relatively complex simulation tools. 
The parameters that govern a computational model and the tools used to configure 
them are often incomprehensible to the political or social science expert. As a 
result, they must rely on technical staff for this expertise and become separated 
from the construction of the models conceptualized by them. This is problematic. 
By divorcing experts from their models and their models’ products, we introduce 
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the possibility of invalid translation from theory to code and of misinterpretation of 
results from models.

Accordingly, a key challenge for user interface designers – one that is not even 
close to being met – is to develop methods that enable the SMEs to own and direct 
the model-authoring process. In particular, the SME must be able to author and 
interactively manipulate models in an intuitive, visual manner that closely aligns 
with his or her mental model.

In addition to these expert-driven “top-down” approaches, “bottom-up” machine 
learning approaches attempt to infer models automatically from raw data. Bayesian 
and neural networks can represent many complex systems, and dynamic versions 
of these algorithms can model processes over time (Antunes and Oliveira 2001). 
The difficulty of these approaches is often the opposite of that of expert-crafted 
models; the resulting models and predictions may not be transparent to the users of 
these models.

2  Technical Approaches: A Case Study

To illustrate some of the challenges and approaches involved in designing user 
interfaces for international intervention analysis, we now consider a specific case. 
The following study focuses on the user interface built for the COMPOEX system 
(Kott and Corpac 2007; Waltz 2008). Developed around the aforementioned nSpace 
framework, this visualization system was designed by the authors of this chapter.

2.1  Expressing Mental Models

A key objective of COMPOEX was to develop approaches for communicating the 
details of complex simulations to SMEs and decision-makers. It did not fully suc-
ceed in this endeavor, but it did make significant progress. One of these successes 
entailed the conceptualization and design of a set of constructs known as forms and 
panels. Forms are graphical building blocks such as event timelines, graph frame-
works, node and link diagrams, geospatial maps, and flow diagrams. Panels are 
groups of forms populated with data and arranged so as to explain or summarize a 
situation. Panels are created via a drag-drop process and can be developed by SMEs 
without the support of software personnel or technicians. The process entails drag-
ging elements and variables of interest into forms and arranging the forms into 
panels to fit problem-specific information needs. Using forms and panels, a user is 
able to rapidly build a live visual window into the modeled world and tailor it to the 
topics of interest. When the user then saves the assembled panel, the detailed form 
of presentation is maintained, but the data displayed in the panel remain live and 
updated as the model produces new data (Fig. 8).

To facilitate shared understanding when collaboratively conceptualizing or visu-
alizing a problem, we developed a common visual language of expression. Modeled 
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entities such as people, places, and organizations can be rendered using a common 
symbology. To help users from a variety of backgrounds, we designed intuitive 
icons crafted specifically for rapid identification of key archetypes such as political, 
military, criminal, media, and social groups, among others (Fig. 9).

The common visual language developed for this system also includes time series 
state graphs and entity attribute thumbnails (Fig. 10). Time series graphs may be 
dragged into any of the visual frameworks in order to display the state of key named 
indicators. Entity attribute thumbnails permit a user to visualize common entity 
properties, such as sociopolitical power, across an entire panel, simply by dragging 
the property of interest into the panel’s graphic legend. In this display option, small 
thumbnail charts appear to the left of each entity in either time series or scaled pie 
chart form, depending on the number of properties being visualized.

To accommodate the need to communicate information at higher levels of sum-
mation, and to navigate the information efficiently, varying levels of detail and 

Fig. 8 Forms provide a variety of frameworks for expression

Fig. 9 Example elements of a common language of expression
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aggregation are applied throughout the system. Outcomes of simulations are avail-
able for display at a summary level, and users are able to view lower levels of 
details for further information. For instance, a computational method of detecting 
significant effects from scalar data in a simulation result permits users to plot a 
summary of all effects as discrete event nodes on a timeline together with descrip-
tive labels (Fig. 11). Hovering over an effect in the timeline provides further 
details in the form of a tooltip, and double-clicking the effect permits users to 
display a time series graph depicting the detailed behavior in relation to previous 
behaviors.

Effect summaries are also available in the aforementioned forms for users who 
prefer a geographic or conceptual context. In these forms, thumbnail pie charts 
(Fig. 12) are used to indicate the number and nature (beneficial, undesirable) of 
effects on each entity (a region or an industry, for example). Double-clicking the 
effect thumbnail displayed beside any of the entities in this context invokes a 
detailed list of individual effects. These techniques provide effective interactive 
methods for a user to visualize the bigger picture as well as to explore more detailed 
information.

Another objective of COMPOEX was to develop methods for assessing, capturing, 
and visualizing uncertainty within inputs and outputs. After experimenting with 
several approaches and finding them impractical, we evolved an approach whereby 
the user may choose to assert a hypothetical behavior that overrides the model-
computed behavior for a certain subset of phenomena. The user then reruns the 
simulation to compare the detailed impact of modified assumptions. These assumptions 

Fig. 10 Entity attribute thumbnails characterize power over time
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Fig. 12 Effect summaries on a map characterize localized impact of actions

Fig. 11 The effect timeline summarizes actions and resultant effects over time
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are visually flagged with warnings. This technique proved to be an important 
capability, enabling an SME to set aside a disagreement with the model and con-
tinue to make effective use of the results.

The challenges in providing methods for the user to express actions that the 
system could simulate led to the development of a design principle referred to in 
this case study as “actions, effects, and desired effects anywhere.” Using this principle, 
users can express desired effects and invoke actions from any context or view of the 
situation. For instance, when viewing a graph of a key economic indicator in a 
geographic context, a user can define a desired effect by simply drawing the desired 
change on the graph and moving on from there to a list of suggested actions for 
achieving that effect. This method significantly helped to ease the burden of com-
municating a conceptualized action to the modeling system.

Another important principle revolved around the need for planners to be able to 
compare and see change. Experience demonstrated that even subtle changes in the 
environment can be important at times, so a level of granularity is required whereby 
these changes can be detected and clearly displayed. Time-series graphs, with multiple 
instances and consistent scales, all displayed in context, became an important tool in 
the system for analyzing detailed differences. Several simulation runs (with different 
actions or assumptions) are overlaid on each graph for easy comparison (Fig. 13).

Fig. 13 Multiple results are shown together so differences can be seen clearly
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For summaries of simulation results, change difference algorithms detect and 
highlight areas of significant change across the entire supermodel to guide detailed 
inspection by SMEs. Focusing on significant change helped improve the communi-
cation of effects of a plan simulation by eliminating information of lesser interest.

The provision of annotation capabilities satisfies another important principle. 
The users’ ability to record their assumptions, thoughts, and observations as they 
worked has proved to be an important tool in framing and communicating a user’s 
thinking and conclusions. This has enabled team members to brief decision-makers 
directly from the live application, with the ability to view lower levels of detail to 
answer questions.

2.2  Insights into Model Behavior

The models’ inner logic should be transparent and comprehensible to a nonspecialist 
user. When something unexpected is observed in a model-computed result, it must 
be possible for analysts to rapidly view details and determine the sources of the sur-
prise. Failure to provide such a capability can lead to misperceptions or the outright 
rejection of the model results. Since model authors will not always be available 
to explain the behavior of a model, analysts or decision-makers must be able to 
develop their trust in the model through effective interaction with the model and its 
visualization capability.

In our user interface, a causal investigation function provides cause-effect trans-
parency via a view into model influences (Fig. 14). For any model behavior, this 
function displays downstream influenced behaviors (to the right). By dragging a 
behavior graph from the left or right into the middle, a user can follow the chain of 
influence downstream or upstream to “follow ripples in the pond” and to locate root 
causes. The display of both influence relationships and behaviors enables users not 
only to see that a relationship exists but also to observe the detailed nature of that 
relationship by comparing the pattern and degree of effects.

A second level of detail is provided in the system for investigating the logic behind 
model behavior. This involves providing a hyperlink above the variable of interest in 
the causal view that, when clicked, displays a detailed written document describing 
the theory behind the model responsible for that behavior. These documents are prepared 
by the model authors and include references used in their research.

These functions provide a useful first step but do not go far enough. The above 
system needs improvement in, for example, the ability to trace many steps of variable 
interactions and to distinguish causal from correlative relationships as easily as in 
conceptual models. Thus, more work is required in this area, and corresponding 
efforts are ongoing.

In addition to the generic approaches for investigating behavior applied to the 
collection of all models, specialized extensions are provided for a particularly 
important model type of interest, which display key structures and properties of that 
model. For the agent-based Power Structure model, which models the power and 
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influence of key actors in the situation, the system shows relationships in the form 
of an interactive social network diagram. Positive or negative influence is indicated 
in this treatment using an arrowhead symbology (Fig. 15).

The ability to view actor properties in the application, such as their goals and 
role in the conflict, provides important narrative background information and clues 
as to their behavior.

2.3  User-Authored Narrative

The COMPOEX system relies on a modeling and simulation backplane that provides 
generic integration of heterogeneous models (Waltz 2008). At its core is a state 
vector consisting of scalar variables that models can both read from and write to at 
simulated time intervals. Models developed or gathered for a particular situation are 
integrated by plugging their inputs and outputs into the state vector. The homoge-
nized state vector of potentially tens of thousands of variables, time series of named 
values produced by the collection of models, is available to the user interface that 
must use the data to produce meaningful visualizations.

Fig. 14 Causal explanation provides insight into behavior
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One of the challenges of producing meaningful visualization in this context is the 
loss of texture and detail that can occur when integrating an abstract and diverse set 
of models. The problem is that while quantitative values produced by the model are 
readily available, the mental model or thinking that went into the design of the model 
is not. Compounding the challenge is the sheer volume of information available. The 
absence of data to express the conceptual aspects that go into the building of a model 
is not a problem unique to COMPOEX. Computational model interfaces today are 
almost universally highly technical; they are not designed for sense-making.

To overcome this shortcoming, in our interfaces, users are given the ability to 
assemble and organize panels with live data from simulations and add layers of 
meaning and narrative expression for the human user. Through arrangement and 
annotation with words, links, images, and other visual elements, a conceptual model 
can be expressed and shared, with live computational elements (Fig. 16).

2.4  Model Authoring by Decision-Makers

Model-authoring tools are most effective in the hands of the domain SME: the 
individual who possesses the detailed mental conception of the situation being 
modeled. While layering conceptual model aspects with computational data after 
the fact does help, the ideal solution would be to capture the mental model at the 
time when the computational model is being crafted. Unfortunately, this facility is 
absent from the vast majority of computational model-building tools, and the 

Fig. 15 Power and influence. Positive (arrowhead) and negative arrows (“X” head) indicate the 
type of relationship
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degree of technical knowledge required to use these building tools presents a 
significant barrier for the SME.

Accordingly, a tool that proved particularly useful was the Power Structure 
model builder. SMEs and analysts (users without model-building skills) used this 
tool to create key actors, define their goals, and suggest how they influenced each 
other in the real-world environment being modeled. A targeted development effort 
produced both the principal constructs of the model and the user interface for the 
model in a way that closely fits the way an SME might think about these aspects of 
the situation.

The COMPOEX user interface provides visual exploration of the properties 
of the model, such as influence networks of actors, their roles, and their goals, in 
the larger context of the situation. In addition, users have editing capabilities that 
enable direct and intuitive model authoring in this context (Fig. 17), tied into 
the full suite of features provided for information gathering, research, and embed-
ding of evidence and supporting narrative within model entities and relationships. 
By providing these capabilities, new levels of transparency and control enable 
SMEs to author models directly; however, much work is yet to be done.

In addition to the precedents it provides in addressing particular challenges, the 
COMPOEX case study serves to emphasize the importance of a number of key 
principles for the visualization of computational models in the social sciences. 
These are summarized in the following Practical Tips.

Fig. 16 Layers of narrative expression improve communication of information
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3  Practical Tips

Look for ways to streamline the process of inputting intervention actions. •	
Consider using system intelligence to translate or interpret the actions that a user 
wishes to take, or to suggest actions that might be appropriate for a desired 
effect.
Provide end users who are not expert modelers with the means to author and •	
manipulate models, using a language of expression that fits the users’ mental 
model. Likewise, streamline model output by finding methods of expression that 
are natural to the way that domain experts conceptualize a situation.
Use the simplest, most universal, and most accessible visual language. Account •	
for the fact that methodologies and associated terminology can vary widely 
between user communities and change frequently.
Provide means to present varying levels of detail and aggregation of computed •	
data. Enable users to provide rich summary-level information to decision-makers, 
and, when appropriate, enable senior leaders to interact with the tools directly.
Characterize intervention effects in summary form, indicating for instance the •	
degree, potential desirability, scope, and nature of the effects, and enable analysts 
to perform comparisons without relying on visual memory.

Fig. 17 Editing model of an actor’s goals in the Sandbox
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Recognize that time is a critically important dimension in analyzing PMESII •	
effects. Thus, when possible, provide tools for interpreting the temporal 
sequence and spacing of the effects, and for examining short- and long-term 
effects.
Consider permitting users to annotate computational results with descriptions, •	
diagrams, and illustrations to communicate situations, actions, and anticipated 
effects.
When possible, allow users to see the inner workings of a model by presenting •	
the model’s basic elements and the relationships among these elements.
Develop capabilities that assist in understanding simulation outcomes – what •	
chain of causes led to a particular effect – and in quickly diagnosing and under-
standing model operations.
Expect and encourage a healthy level of skepticism from users and design •	
computer-user interactions that are able to accommodate users’ disagreements 
with the model.

4  Summary

Data visualization expresses data in concise and elemental graphical formats. Information 
visualization uses higher-level organizational structures in the graphic forms. Visual 
analytics combines visualization with analysis and further computation to derive 
meaning from large datasets. Typically, social science data has few features that can be 
depicted in physical form; consequently, Subject Matter Experts (SMEs) are often left 
to analyze and interpret a display of computational model output in complex, nonintui-
tive forms. This is inefficient and is a source of potential error. Conceptual models, 
which describe relationships qualitatively rather than quantitatively, have seen progress 
in visualization, e.g., link analysis and tools with additional dimensions, such as time. 
Several challenges are particularly strong in PMESII modeling visualization. Because 
PMESII models involve significant uncertainty, better visualization approaches are 
needed to depict uncertainty and causal relationships. Another challenge involves the 
need to provide sufficient accessibility and adaptability to accommodate a wide range 
of intervention partners and organizations, with standard symbols, vocabularies, and 
protocols. There is the need to integrate models from multiple social science domains 
operating as one system and user interface, and the need to capture and present the 
underlying theory and evidence behind the models. The COMPOEX user interface is 
a relevant case study. Key constructs and principles of this interface include forms 
(templates) for the display of model data including timelines, graph frameworks, link 
diagrams and geospatial maps; user-created panels that can combine and spatially 
arrange groups of forms to convey meaning; a common visual language, levels of 
summary and drill-down, tools for uncertainty and for detecting changes in outcomes. 
A causal investigation function is also provided, as well as capabilities for visual anno-
tation, markup, and hyperlink references at both the summary and detail level within 
large and complex societal models.
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5  Resources

VisualComplexity.com http://www.visualcomplexity.com/vc/index.cfm?domain=Social%20
Networks

Connectedness http://connectedness.blogspot.com/
Datawocky blog, 2008. Report on interview with Russel Norwig of Google research. http://anand.

typepad.com/datawocky/2008/05/are-human-experts-less-prone-to-catastrophic-errors-than-
machine-learned-models.html (as found on March 11, 2009)

Bertin, J. (2001). Matrix Theory of Graphics. Information Design Journal, 10(1), 5–19.
Bertin, J. (1983). Semiology of Graphics, Diagrams, Networks, Maps. University of Wisconsin 

Press.
Cohen, M.D., March, J.G. & Olsen, J.P. (1972). A Garbage Can Model of Organizational Choice. 

Administrative Science Quarterly, 17(1), 1–25.
Eick, S. & G. Wills, (1995). High Interaction Graphics, European Journal of Operational 

Research, 84 (445–459).
Epstein, J. M. (1999). Agent-Based Computational Models and Generative Social Science. 

Complexity, 4(5), 41–60.
Freeman, L. C. (2000). Visualizing Social Networks. Journal of Social Structure, 1(1).
Harris, R. L. (1996). Information Graphics. Management Graphics.
Hearst, M. (1999). User Interfaces and Visualization. In R. Baeza-Yates & B. Ribeiro-Neto, Modern 

Information Retrieval (Chapter 10). Addison-Wesley-Longman.
Herman, D. (1999). Spatial Cognition in Natural-Language Narratives, Proceedings of the AAAI 

Fall Symposium on Narrative Intelligence.
Mullet, K. & Sano, D. (1995). Designing Visual Interfaces: Communication Oriented Techniques. 

Mountain View, CA. SunSoft Press/Prentice Hall.
Larkin, J. & Simon, H. (1987). Why a Diagram is (Sometimes) Worth Ten Thousand Words., 

Cognitive Science, 11(1), 65–99.
Scholtz, J. (2006). Beyond Usability: Evaluation Aspects of Visual Analytic Environments. In 

IEEE Symposium on Visual Analytics Science and Technology (pp. 145–150).
Tufte, E. R. (1990). Envisioning Information. Cheshire, CT: Graphics Press.
Tufte, E.R. (1983). The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press.
Tufte, E. R. (1997). Visual Explanations: Images and Quantities, Evidence and Narrative. 

Cheshire, CT: Graphics Press.
W. S. Cleveland (1993). Visualizing Data. Hobart Press.
Ware, C. (2000). Information Visualization – Perception for Design. Morgan Kaufmann.
Wise, J. A., Thomas, J. J., Pennock, K., Lantrip, D., Pottier, M., Schur, A. & Crow, V. (1995). 

Visualizing the non-visual: spatial analysis and interaction with information from text docu-
ments. Information Visualization, IEEE Symposium on, 0:51+.

Wood, D. (1992). The Power of Maps. New York: Guilford Press.
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