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Distributed Consensus-Based Cooperative
Spectrum Sensing in Cognitive Radio Mobile
Ad Hoc Networks

F. Richard Yu, Helen Tang, Minyi Huang, Peter Mason, and Zhiqiang Li

Abstract In cognitive radio mobile ad hoc networks (CR-MANETs), secondary
users can cooperatively sense the spectrum to detect the presence of primary users.
In this chapter, we propose a fully distributed and scalable cooperative spectrum
sensing scheme based on recent advances in consensus algorithms. In the proposed
scheme, the secondary users can maintain coordination based on only local informa-
tion exchange without a centralized common receiver. We use the consensus of sec-
ondary users to make the final decision. The proposed scheme is essentially based on
recent advances in consensus algorithms that have taken inspiration from complex
natural phenomena including flocking of birds, schooling of fish, swarming of ants,
and honeybees. Unlike the existing cooperative spectrum sensing schemes, there
is no need for a centralized receiver in the proposed schemes, which make them
suitable in distributed CR-MANETs. Simulation results show that the proposed
consensus schemes can have significant lower missing detection probabilities and
false alarm probabilities in CR-MANETs. It is also demonstrated that the proposed
scheme not only has proven sensitivity in detecting the primary user’s presence but
also has robustness in choosing a desirable decision threshold.

1.1 Introduction

Recently, there has been tremendous interest in the field of cognitive radio (CR),
which has been introduced in [1]. CR is an enabling technology that allows unli-
censed (secondary) users to operate in the licensed spectrum bands. This can help
to overcome the lack of available spectrum in wireless communications and achieve
significant improvements over services offered by current wireless networks. It is
designed to sense the changes in its surroundings, thus learns from its environment
and performs functions that best serve its users. This is a very crucial feature of CR
networks which allow users to operate in licensed bands without a license [2]. To
achieve this goal, spectrum sensing is an indispensable part in cognitive radio.
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There are three fundamental requirements for spectrum sensing. In the first place,
the unlicensed (secondary) users can use the licensed spectrum as long as the
licensed (primary) user is absent at some particular time slot and some specific
geographic location. However, when the primary user comes back into operation,
the secondary users should vacate the spectrum instantly to avoid interference with
the primary user. Hence, a first requirement of cognitive radio is that the continuous
spectrum sensing is needed to monitor the existence of the primary user. Also, since
cognitive radios are considered as lower priority and they are secondary users of
the spectrum allocated to a primary user, the second fundamental requirement is to
avoid the interference to potential primary users in their vicinity [3]. Furthermore,
primary user networks have no requirement to change their infrastructure for spec-
trum sharing with cognitive radios. Therefore, the third requirement is for secondary
users to be able to independently detect the presence of primary users.

Taking those three requirements into consideration, such spectrum sensing can be
conducted non-cooperatively (individually), in which each secondary user conducts
radio detection and makes decision by itself. However, the sensing performance for
one cognitive user will be degraded when the sensing channel experiences fading
and shadowing [4]. In order to improve spectrum sensing, several authors have
recently proposed collaboration among secondary users [3, 5–7], which means a
group of secondary users perform spectrum sensing by collaboration. As a result, it
shows that collaboration may enhance secondary spectrum access significantly [5].

Our research is focused on the distributed cooperative spectrum sensing (DCSS)
in cognitive radio and, more precisely, the distributed cooperative schemes of spec-
trum sensing in a Cognitive Radio Mobile Ad-hoc NETworks (CR-MANETs).

In the first place, at present, distributed cooperative detection problems are dis-
cussed in [6, 8–10]. In a typical wireless distributed detection problem, each sensor
or secondary user individually forms its own discrete messages based on its local
measurement and then reports to a fusion center via wireless reporting channels. In
certain models [10], however, there is, in general, no direct communication among
the sensors. A sensor may indirectly obtain information about other sensors, but this
is achieved by feedback from a common fusion center. Nevertheless, a centralized
fusion center may not be available in some CR-MANETs. Moreover, as indicated
in [11], gathering the entire received data at one place may be very difficult under
practical communication constraints. In addition, authors of [4] study the reporting
channels between the cognitive users and the common receiver. The results show
that there are limitations for the performance of cooperation when the reporting
channels to the common receiver are under deep fading.

Based on recent advances in consensus algorithms [12], we propose a new
scheme in distributed cooperative spectrum sensing called distributed consensus-
based cooperative spectrum sensing (DCCSS).

The main contributions of this work include as follows:

• We propose a consensus-based spectrum sensing scheme, which is a fully dis-
tributed and scalable scheme. Unlike many existing schemes [21, 22, 46], there
is no need for a common receiver to do data fusion and to reach the final decision.
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Since it is rare to have a centralized node in MANETs, in the proposed scheme,
a secondary user needs only to setup local interactions without centralized infor-
mation exchange.

• Unlike most decision rules, such as OR-rule or n-out-of-N, adopted in existing
spectrum sensing schemes, we use consensus from secondary users. The pro-
posed scheme has self-configuration and self-maintenance capabilities.

• Since the CR paradigm imposes human-like characteristics (e.g., learning, adap-
tation, and cooperation) in wireless networks, the bio-inspired consensus algo-
rithm used in this work can provide some insight into the design of future
CR-MANETs.

Extensive simulation results illustrate the effectiveness of the proposed scheme.
It is shown that the proposed scheme can have both lower missing detection proba-
bility and lower false alarm probability compared to the existing schemes. In addi-
tion, it is able to make better detection when secondary users undergo worse fading
(lower average SNR). Last but not the least, with the help of this scheme, a fixed
threshold is feasible, which can take active effect in different fading channels.

The rest of the chapter is organized as follows. Section 1.2 describes the
research background of this research, which includes spectrum sensing in cogni-
tive radios, cooperative spectrum sensing, and centralized/distributed cooperative
spectrum sensing. Section 1.3 presents system models, spectrum sensing model,
fixed/random graphs theories, and consensus notions. In Section 1.4, the distributed
consensus-based cooperative spectrum sensing scheme is proposed based on fixed
graphs, together with the network models. Going further, the distributed consensus-
based cooperative spectrum sensing scheme based on random graphs is described in
Section 1.5. In Section 1.6, the simulation results and discussions are presented.
Finally, we conclude this chapter in Section 1.7.

1.2 Background

This section is intended to cover the topics regarding the research background. They
include the introduction of cognitive radio, functionalities of cognitive radio, differ-
ences of individual spectrum sensing, and cooperative spectrum sensing, followed
by the introduction of centralized distributed cooperative spectrum sensing and dis-
tributed consensus-based cooperative spectrum sensing.

1.2.1 Introduction of Spectrum Sensing in Cognitive Radio

The idea of cognitive radio is first presented officially in an article by Joseph Mitola
and Gerald Q. Maguire, Jr. [13]. It is a novel approach in wireless communications
that Mitola later describe in his PhD dissertation as:

The point in which wireless Personal Digital Assistants (PDAs) and the related networks
are sufficiently computationally intelligent about radio resources and related computer-to-
computer communications to detect user communications needs as a function of use con-
text, and to provide radio resources and wireless services most appropriate to those needs.
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It is thought of as an ideal goal toward which a software-defined radio platform
should evolve: a fully reconfigurable wireless blackbox that automatically changes
its communication variables in response to network and user demands.

The above citation originates from the following fact. On one hand, the grow-
ing number of wireless standards is occupying more and more naturally limited
frequency bandwidth for exclusive use as licensed bands. However, large part of
licensed bands is unused for what concerns a large amount of both time and space:
even if a particular range of frequencies is reserved for a standard, at a particular
time and at a particular location it could be found free. The Federal Communica-
tion Commission (FCC) estimates that the variation of use of licensed spectrum
ranges from 15 to 85%, whereas according to Defence Advance Research Projects
Agency (DARPA) only the 2% of the spectrum is in use in United States at any
given moment. It is then clear that the solution to these problems can be found
dynamically looking at spectrum as a function of time and space.

With the high demand of bit transmission rate for 4G or IMT-advanced high-
speed wireless applications, there are several approaches to increase the system
capacity as stated in the following equation:

C = n · B · log2(1+ SNR) (1.1)

The first approach is using MIMO to increase n, so that capacity may have a
gain proportionally. The second approach is trying to increase SNR. The third one is
focusing on the bandwidth. Cognitive radio is among the third category and thrives
to fully utilize the frequency.

1.2.1.1 Functionalities of Cognitive Radios

The main functionalities of cognitive radios are [14]

• Spectrum Sensing (SS): Detecting the unused spectrum and sharing it without
harmful interference with other users, it is an important requirement of the cog-
nitive radio network to sense spectrum holes and detecting primary users is the
most efficient way to detect spectrum holes. Spectrum sensing techniques can be
classified into three categories:

– Transmitter detection: cognitive radios must have the capability to determine
if a signal from a primary transmitter is locally present in a certain spectrum,
there are several approaches proposed:

• Matched filter detection
• Energy detection
• Cyclostationary feature detection

– Cooperative detection: refers to spectrum sensing methods where information
from multiple cognitive radio users is incorporated for primary user detection.

– Interference-based detection.



1 Distributed Consensus-Based Cooperative Spectrum Sensing in Cognitive Radio . . . 7

• Spectrum Management (SMa): Capturing the best available spectrum to meet
user communication requirements. Cognitive radios should decide on the best
spectrum band to meet the quality of service requirements over all available spec-
trum bands, therefore spectrum management functions are required for cognitive
radios, these management functions can be classified as spectrum analysis and
spectrum decision.

• Spectrum Mobility (SMo): Defined as the process when a cognitive radio user
exchanges its frequency of operation. Cognitive radio networks target to use the
spectrum in a dynamic manner by allowing the radio terminals to operate in
the best available frequency band, maintaining seamless communication require-
ments during the transition to better spectrum.

• Spectrum Sharing (SSh): Providing the fair spectrum scheduling method, which
is one of the major challenges in open spectrum usage in the spectrum sharing. It
can be regarded to be similar to generic media access control MAC problems in
existing systems.

1.2.1.2 Individual and Cooperative Spectrum Sensing

Spectrum sensing can be conducted either non-cooperatively (individually), in
which each secondary user conducts radio detection and makes decision by itself,
or cooperatively, in which a group of secondary users perform spectrum sensing by
collaboration. No matter in which way, the common topology of such a cognitive
radio network can be depicted as in Fig. 1.1. Individual spectrum sensing is con-
ducted by secondary users on its own, and each user has a local observation and
a local decision accordingly. Thus, in Fig. 1.1, each secondary user performs the
spectrum sensing locally and no communication is between one another nor is the
common receiver (fusion center). In such a condition, cognitive radio sensitivity can
only be improved [6] by enhancing radio RF front-end sensitivity, exploiting digital
signal processing gain for specific primary user signal, and network cooperation
where users share their spectrum sensing measurements. However, if the sensing
channels are facing deep fading or shadowing, then affected individuals will not be
able to detect the presence of the primary user, which leads to missing detection
failure.

In order to improve the performance of spectrum sensing, several authors have
recently proposed cooperation among secondary users [2, 4, 5, 15]. Cooperative
spectrum sensing has been proposed to exploit multi-user diversity in sensing pro-
cess. It is usually performed in three successive stages: sensing, reporting and
broadcasting. In the sensing stage, every cognitive user performs spectrum sens-
ing individually. This can be shown as in Fig. 1.1, where secondary users try to
collect the signal of interest through sensing channels. In the reporting stage, all the
local sensing observations are reported to a common receiver via reporting channels
(see Fig. 1.1) and the latter will make a final decision on the absence or the presence
of the primary user. Finally, the final decision is broadcasted via broadcast channels
to all the secondary users concerned, which include not only the ones involved into
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Fig. 1.1 A typical cognitive
radio network
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the sensing stage but also those that do not have sensing capabilities but want to
participate into the spectrum sharing stage.

There are several advantages offered by cooperative spectrum sensing over the
non-cooperative ones [5, 11, 16–22]. If a secondary user is in the condition of
deep shadowing and fading, it is very difficult for a secondary user to distinguish
a white space from a deep shadowing effect. Therefore, a non-cooperative spectrum
sensing algorithm may not work well in this case, and a cooperative scheme can
solve the problem by sharing the spectrum sensing information among secondary
users. Moreover, because of the hidden terminal problem, it is very challenging for
single cognitive radio sensitivity to outperform the primary user receiver by a large
margin in order to detect the presence of primary users. For this reason, if secondary
users spread out in the spatial distance, and any one of them detects the presence of
primary users, then the whole group can gain benefit by collaboration.

Ghasemi and Sousa [5] quantify the performance of spectrum sensing in fad-
ing environments and study the effect of cooperation. The simulation results in [5]
indicate that significant performance enhancements can be achieved through coop-
eration. Ganesan and Li [16] study the possibility to forward the signal with higher
SNR to the one on the boundary of decidability region of the primary user. The
performance is evaluated under correlated shadowing and user compromise in [11].
When the exchange of observations from all secondary users to the common receiver
is not applicable, Peh and Liang [17] show that it is still worth doing by coop-
erating a certain number of users with relatively higher SNR. Moreover, in [18], a
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linear-quadratic (LQ) fusion strategy is designed with the consideration of the corre-
lation between the nodes. In order to further reduce the computational complexity,
Quan et al. [19] propose a heuristic approach so as to develop an optimal linear
framework during cooperation. Sensing-throughput tradeoff is analyzed in [20] for
both multiple mini-slots and multiple secondary users cooperative sensing.

1.2.1.3 Centralized Cooperative Spectrum Sensing

Although some research activities have been conducted in cooperative spectrum
sensing, most of them use a common receiver (fusion center) to do data fusion for
the final decision whether or not the primary user is present. However, a common
receiver may not be available in some CR-MANETs. Moreover, as indicated in [11],
gathering the entire received data at one place may be very difficult under practical
communication constraints. In addition, Sun et al. [4] study the reporting channels
between the cognitive users and the common receiver. The results show that there
are limitations for the performance of cooperation when the reporting channels to
the common receiver are under deep fading. In summary, the use of a centralized
fusion center in CR-MANETs may have the following problems (see Fig. 1.1):

• Every secondary user needs to join/establish the connection with the common
receiver, which requires a network protocol to implement.

• Some secondary users need a kind of relay routes to reach the common receiver
if they are far away from the latter.

• Communication errors or packet drops can affect the performance of such a net-
work if more users have worse reporting channels (e.g., Rayleigh Fading) to reach
the common receiver.

• There should be a reliable wireless broadcast channel for the common receiver to
inform each of every user once there is a decision made.

• The current centralized network does not fit for the average calculation of all
the estimated sensing energy levels, because it requires the common receiver to
correctly receive all the local estimated sensing results. Otherwise, the decision
precision cannot be guaranteed.

1.2.2 Mobile Ad Hoc Networks

In recent years, MANETs have become a popular subject because of their self-
configuration and self-organization capabilities. Each device in a MANET is free
to move independently in any direction and will therefore change its links to other
devices frequently. Wireless nodes can establish a dynamic network without the
need of a fixed infrastructure. A node can function both as a network router for rout-
ing packets from the other nodes and as a network host for transmitting and receiving
data. MANETs are particular useful when a reliable fixed or mobile infrastructure is
not available. Instant conferences between notebook PC users, military applications,
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emergency operations, and other secure-sensitive operations are important applica-
tions of MANETs due to their quick and easy deployment.

1.2.2.1 Self-Organization of MANETs

Due to the lack of centralized control, MANETs nodes cooperate with each other to
achieve a common goal [23]. The major activities involved in self-organization are
neighbor discovery, topology organization, and topology reorganization. Through
periodically transmitting beacon packets or promiscuous snooping on the chan-
nels, the activities of neighbors can be acquired. Each node in MANETs main-
tains the topology of the network by gathering the local or entire network infor-
mation. MANETs need to update the topology information whenever the networks
change such as participation of new node, failure of node, and links. Therefore,
self-organization is a continuous process that has to adapt to a variety of changes or
failures.

1.2.3 Distributed Consensus-Based Cooperative Spectrum
Sensing Scheme

In this work, we will present a distributed consensus-based cooperative spectrum
sensing scheme without using a common receiver. Our scheme is based on recent
advances in consensus algorithms [12], or more precisely, bio-inspired mechanisms,
which have become important approaches to handle complex communication net-
works [24–26]. An important motivational background of this area is initially related
to the study of complex natural phenomena including flocking of birds, schooling
of fish, and swarming of ants and honeybees (see the survey [27]). The investigation
of such biological systems has generated fundamental insights into understanding
the relation between group decision making at the higher level and the individual
animals’ communication at the lower level [28–32], and in fact consensus seeking
in animal colonies is vital for group survival [32]. Such collective animal behavior
has motivated many effective yet simple control algorithms for the coordination of
multi-agent systems in engineering. Recently, consensus problems have played a
crucial role in spacial distributed control models [12, 33], wireless sensor networks
[34], and stochastic seeking with noise measurement [35]. Since these algorithms
are usually constructed based on local communication of neighboring agents, they
have low implementation complexity and good robustness, and the overall system
may still function when local failure occurs.

The main highlights of this scheme are as follows:

• It is a fully distributed and scalable scheme. Unlike the existing schemes [21, 22,
46], there is no need for a common receiver to do the data fusion for the final
decision. A secondary user only needs to set up neighborhood with those users
having desired channel characteristics, such as Line of Sight ones, or even with
probabilistic link failures.
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• Unlike most decision rules, such as OR-rule or 1-out-of-N, adopted in the existing
schemes, we use the consensus of secondary users to make the final decision.
Therefore, the proposed scheme can leverage the detection results among users
in a severe wireless fading networks.

• The proposed spectrum sensing scheme uses a consensus algorithm to cope with
two underlying network models, one with fixed bidirectional graphs and one with
random graphs.

Our consensus-based approach is different from those used in distributed/
decentralized detection problems [8–10, 36]. In a typical distributed detection prob-
lem [8, 9, 36], each sensor individually forms its own discrete messages based on
its local measurement and then reports to a fusion center, and there is in general
no direct communication among the sensors. In certain models [10], a sensor may
indirectly obtain information about other sensors, but this is achieved by feedback
from a common fusion center.

1.3 Secondary Users Network Modeling

This section is organized in the following order. First, a network topology in dis-
tributed consensus-based cooperative spectrum sensing is presented. Then, the local
spectrum sensing model is discussed in details. At last, the network model and con-
sensus notions are presented.

1.3.1 Network Topology in Distributed Consensus-Based
Cooperative Spectrum Sensing

As shown in Fig. 1.2, no common receiver is necessary compared with Fig. 1.1, and
secondary users are communicating with each other via communication channels
that are in good radio coverage of each of secondary users. Secondary users that are
far away from each other do not have direct communication channels due to poor
radio signal quality.

There are two stages in the proposed cognitive radio consensus schemes. In the
first stage, secondary users use a spectrum sensing model to make measurements
about primary users at the beginning of detection. This is done via sensing chan-
nels in Fig. 1.2. We denote the local measurement of user i as Yi . In the second
stage, secondary users establish communication links with their own neighbors to
locally exchange information among them, and then calculate the obtained data so
as to make a local decision whether primary users are around. The above process in
the second stage is done iteratively. At the initial time instant k = 0, each user
i sets xi (0) = Yi as the initial value of the local state variable. Next, at time
k = 0, 1, 2, . . . , according to the real-time network topology (or local wireless
neighborhood), users mutually transmit and receive their states and then use local
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Fig. 1.2 A topology of
distributed consensus-based
cooperative spectrum sensing

P

Boundary of decodability of P

S

S

S

Sensing Channels
Communication Channels

Primary usersP

Secondary usersS

S

computation rules to generate updated states xi (k + 1). Those iterations are done
repeatedly until all the individual states xi (k) converge toward a common value x∗.

Before we introduce the detailed algorithms used in our consensus scheme, the
common spectrum sensing model used in the first stage and the network model used
in the second stage are to be presented, followed by the formal definition of the
spectrum sensing consensus scheme.

1.3.2 The Spectrum Sensing Model

In the first stage, secondary users make measurements about primary users at the
beginning of each time slot. Three kinds of methods are widely used for spectrum
sensing [6]: matched filter, energy detector, and cyclostationary feature detector.

• Matched Filter
The optimal way for any signal detection is a matched filter [37], since it
maximizes received signal-to-noise ratio. However, a matched filter effectively
requires demodulation of a primary user signal. This means that cognitive radio
has a priori knowledge of primary user signal at both PHY and MAC layers,
e.g., modulation type and order, pulse shaping, and packet format. Such infor-
mation might be pre-stored in CR memory, but the cumbersome part is that
for demodulation it has to achieve coherency with primary user signal by per-
forming timing and carrier synchronization, even channel equalization. This is
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still possible since most primary users have pilots, preambles, synchronization
words, or spreading codes that can be used for coherent detection. For examples:
TV signal has narrowband pilot for audio and video carriers; CDMA systems
have dedicated spreading codes for pilot and synchronization channels; OFDM
packets have preambles for packet acquisition. The main advantage of matched
filter is that due to coherency it requires less time to achieve high processing gain
[38]. However, a significant drawback of a matched filter is that a cognitive radio
would need a dedicated receiver for every primary user class.

• Energy Detector
One approach to simplify matched filtering approach is to perform non-coherent
detection through energy detection. This sub-optimal technique has been exten-
sively used in radiometry. There are several drawbacks of energy detectors that
might diminish their simplicity in implementation. First, a threshold used for pri-
mary user detection is highly susceptible to unknown or changing noise levels.
Even if the threshold would be set adaptively, presence of any in-band inter-
ference would confuse the energy detector. Furthermore, in frequency selective
fading it is not clear how to set the threshold with respect to channel notches. Sec-
ond, energy detector does not differentiate between modulated signals, noise, and
interference. Since, it cannot recognize the interference, it cannot benefit from
adaptive signal processing for canceling the interferer. Furthermore, spectrum
policy for using the band is constrained only to primary users, so a cognitive user
should treat noise and other secondary users differently. Lastly, an energy detec-
tor does not work for spread spectrum signals: direct sequence and frequency
hopping signals, for which more sophisticated signal processing algorithms need
to be devised. In general, we could increase detector robustness by looking into
a primary signal footprint such as modulation type, data rate, or other signal
feature.

• Cyclostationary Feature Detection
Modulated signals are in general coupled with sine wave carriers, pulse trains,
repeating spreading, hoping sequences, or cyclic prefixes which result in built-in
periodicity. Even though the data is a stationary random process, these mod-
ulated signals are characterized as cyclostationary, since their statistics, mean
and autocorrelation, exhibit periodicity. This periodicity is typically introduced
intentionally in the signal format so that a receiver can exploit it for: parameter
estimation such as carrier phase, pulse timing, or direction of arrival. This can
then be used for detection of a random signal with a particular modulation type
in a background of noise and other modulated signals.

In summary, Matched filter is optimal theoretically, but it needs the prior knowl-
edge of the primary system, which means higher complexity and cost to develop
adaptive sensing circuits for different primary wireless systems. Energy detection is
suboptimal, but it is simple to implement and does not have too much requirement
on the position of primary users. Cyclostationary feature detection can detect the
signals with very low SNR, but it still requires some prior knowledge of the primary
user [4].
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Fig. 1.3 Block diagram of an
energy detector X(t) H0 or H1BPF (.)2 ∫T
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In this chapter, we consider the modeling scenario where the prior knowledge
of the primary user is unknown. For implementation simplicity, an energy detec-
tion spectrum sensing method [5] is used. Fig. 1.3 shows the block diagram of an
energy detector. The input band pass filter (BPF) selects the center frequency fs

and the bandwidth of interest W . This filter is followed by a squaring device and
subsequently an integrator over a period of T . The output Y of the integrator is
the received energy at the secondary user and its distribution depends on whether
the primary user signal is present or not. The goal of spectrum sensing is to decide
between the following two hypotheses:

x(t) =
{

n(t), H0

h · s(t)+ n(t), H1
(1.2)

where x(t) is the signal received by the secondary user, s(t) is the primary user’s
transmitted signal, n(t) is the additive white Gaussian noise (AWGN), and h is the
amplitude gain of the channel. We also denote by γ the signal-to-noise ratio (SNR).
The output of integrator in Fig. 1.3 is Y , which serves as the decision statistic. Fol-
lowing the work of [39], Y has the following form:

Y =
{
χ2

2T W , H0

χ2
2T W (2γ ), H1

(1.3)

where χ2
2T W and χ2

2T W (2γ ) denote random quantities with central and non-central
chi-square distributions, respectively, each with 2T W degrees of freedom and a
non-centrality parameter of 2γ for the latter distribution. For simplicity we assume
that the time-bandwidth product, T W , is an integer number, which is denoted by m.

Under Rayleigh fading, the gain h is random, and the resulting SNR γ would
have an exponential distribution, so in this case the distribution of the output energy
depends on the average SNR (γ ). When the primary user is absent, Y is still dis-
tributed according to χ2

2T W . When the primary user is present, Y may be denoted as
the sum of two independent random variables [40, 41]:

Y = Yχ + Ye, H1, (1.4)

where the distribution of Yχ is χ2
2T W−2 and Ye has an exponential distribution with

parameter 2(γ + 1).
As a summary, after T seconds, each secondary user i detects the energy and gets

the measurement Yi ∈ R
+.
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1.3.3 The Network Model and Consensus Notions

In the second stage, secondary users establish communication links with its neigh-
bors to locally exchange information among them. In our scheme, the network
formed by the secondary users can be described by a standard graph model. For
simplicity, this can be represented by an undirected graph (to be simply called a
graph) G = (N , E) [42] consisting of a set of nodes {i = 1, 2, . . . , n} and a set of
edges E ⊂ N × N . Denote each edge as an unordered pair (i, j). Thus, if two
secondary users are connected by an edge, it means they can mutually exchange
information. A path in G consists of a sequence of nodes i1, i2, . . . , il , l ≥ 2, such
that (im, im+1) ∈ E for all 1 ≤ m ≤ l − 1. The graph G is connected if any two
distinct nodes in G are connected by a path. For convenience of exposition, we often
refer node i as secondary user i . The two names, secondary user and node, will be
used interchangeably. The secondary user j (resp., node j) is a neighbor of user
i (resp., node i) if ( j, i) ∈ E , where j �= i . Denote the neighbors of node i by
Ni = { j |( j, i) ∈ E} ⊂ N . The number of elements in Ni is denoted by |Ni | and
called the degree of node i .

Throughout this chapter, the analysis is for undirected graphs, because we only
deal with good duplex wireless links by which two adjacent nodes can estab-
lish communication (being connected) with each other. That is, the graph G
is connected, and the information exchange between two neighboring nodes is
bidirectional.

The Laplacian of the graph G is defined as L = (li j )n×n , where

li j =

⎧⎪⎪⎨
⎪⎪⎩
|Ni |, if j = i

−1, if j ∈ Ni

0, otherwise

(1.5)

The matrix L defined by (1.5) is positive semi-definite. Further, if G is a connected
undirected graph, then rank(G) = n − 1 (see, e.g., [27]).

Since the cooperative spectrum sensing problem is viewed as a consensus prob-
lem where the users locally exchange information regarding their individual detec-
tion outcomes before reaching an agreement, we give the formal mathematical
definition of consensus as follows.

The underlying network turns out to consist of secondary users reaching a con-
sensus via local communication with their neighbors on a graph G = (N , E).

For the n secondary users distributed according to the graph model G, we assign
them a set of state variables xi , i ∈ N . Each xi will be called a consensus variable,
and in the cooperative spectrum sensing context, it is essentially used by node i for
its estimate of the energy detection. By reaching consensus, we mean the individual
states xi asymptotically converge to a common value x∗, i.e.,

xi (k)→ x∗ as k →∞ (1.6)
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for each i ∈ N , where k is the discrete time, k = 0, 1, 2, . . . , and xi (k) is updated
based on the previous states of node i and its neighbors.

The special cases with x∗ = Ave(x) = (1/n)
∑n

i=1 xi (0), x∗ = maxn
i=1 xi (0),

and x∗ = minn
i=1 xi (0) are called average-consensus, max-consensus, and min-

consensus, respectively. It is worth mentioning that the existing spectrum sensing
algorithm with the OR-rule can be viewed as a form of max-consensus. This chapter
is intended to propose a cooperative spectrum sensing scheme in the framework of
average consensus.

1.4 Distributed Consensus-Based Cooperative Spectrum Sensing
in Fixed Graphs

In this chapter, let us assume the secondary users have established duplex wireless
connections with their desired neighbors, and the connections remain working until
the consensus is reached. This kind of topology is called as a fixed graph. Based on
this assumption, we are going to propose the spectrum sensing consensus algorithm
as follows.

1.4.1 The Consensus Algorithm

We denote for user i , its measurement Yi at time k = 0 by xi (0) = Yi ∈ R
+. The

state update of the consensus variable for each secondary user occurs at discrete
time k = 0, 1, 2, . . . , which is associated with a given sampling period. From
k = 0, 1, 2, . . . , the iterative form of the consensus algorithm can be stated as
follows [27]:

xi (k + 1) = xi (k)+ ε
∑
j∈Ni

(x j (k)− xi (k)) (1.7)

where

0 < ε < (max
i
|Ni |)−1 � 1/Δ (1.8)

The number Δ is called the maximum degree of the network.
This algorithm can be written in the vector form:

x(k + 1) = P x(k) (1.9)

where P = I − εL. Notice that the upper bound in (1.8) for ε ensures that P is
a stochastic matrix, and in fact one can further show that P is ergodic when G is
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connected1. Since G is an undirected graph, all row sums and column sums of L
are equal to zero. Hence P is a doubly stochastic matrix (i.e., P is a nonnegative
matrix and all of its row sums and column sums are equal to one).

We also point out that (1.9) uses only a particular construction of the coefficient
matrix for the consensus algorithm, which is based on the graph Laplacian L. As
long as each node has the prior knowledge of an upper bound of the maximum
degree Δ of the network, the iteration may be implemented and there is no neces-
sity for neighboring nodes to exchange information regarding the network structure.
Also, it is possible to construct P in other forms. An alternative choice of P may be
based on the so-called Metropolis weights [34] by taking

p̃i j =

⎧⎪⎪⎨
⎪⎪⎩

1
1+max{di ,d j } if ( j, i) ∈ E,
1−∑

j∈Ni
p̃i j if i = j,

0 otherwise

where di = |Ni | is the degree of node i . If G is a connected graph and we define
P̃ = ( p̃i j )n×n , then P̃ is an ergodic doubly stochastic matrix. When P̃ is used in
(1.9) in place of P , the state average will still be preserved as an invariant during the
iterations and our convergence analysis below is still valid. Notice that when P̃ is
used in the consensus algorithm, it is only required that any two neighboring nodes
report to each other their degrees, and the knowledge of the maximum degree of the
network is no longer needed.

We cite a theorem concerning the convergence property of the consensus
algorithm.

Theorem 1 (see, e.g., [27]) Consider a network of secondary users,

xi (k + 1) = xi (k)+ ui (k) (1.10)

with topology G applying the distributed consensus algorithm (1.7), where ui (k) =
ε
∑

j∈Ni
(x j (k)− xi (k)), 0<ε<1/Δ, and Δ is the maximum degree of the network.

Let G be a connected undirected graph. Then

1. A consensus is asymptotically reached for all initial states;
2. P is doubly stochastic, and an average consensus is asymptotically reached with

the limit x∗ = (1/n)
∑n

i=1 xi (0) for the individual states.

According to Theorem 1, if we choose ε such that 0 < ε < 1/Δ, then an aver-
age consensus is ensured and the final common value x∗ = (1/n)

∑n
i=1 xi (0)

1 For some network topologies, it is possible to have an ergodic matrix P = I−εL when ε = 1/Δ.
For instance, if ε is taken as 1/Δ and meanwhile it is ensured that P has at least one positive
diagonal entry, then it can be shown that P is an ergodic stochastic matrix.
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will be the average of the initial vector x(0), or equivalently, the average of
Y T = {Y1,Y2, . . . ,Yn}, which has been obtained during the energy detection stage.

Finally, by comparing the average-consensus result x∗ with a pre-defined thresh-
old λ based on Fig. 1.3, every secondary user i gets the final data fusion locally:

Decision H =
{

1, x∗ > λ

0, otherwise
(1.11)

1.4.2 Performance of the Consensus Algorithm

It is quite apparent that the convergence rate is yet another interesting issue in eval-
uating the performance of the spectrum sensing consensus algorithm. This is due
to the fact that secondary users must continuously detect the presence of primary
users and back up as soon as possible on recognizing such incident. From this point
of view, the speed of reaching a consensus is the key in the design of the network
topology as well as the analysis of the performance of a consensus algorithm for
a given spectrum sensing network. For the connected undirected graph G, the
above algorithm can ensure exponential convergence rate, where the error can be
parameterized in the form O(e−δt ) with the exponent δ > 0. To have some bound
estimate for the parameter δ, we first recall that P = I − εL. Since L is a positive
semi-definite matrix, denote its n eigenvalues by

0 = λ1 < λ2 ≤ . . . ≤ λn . (1.12)

Here λ2 > 0 since the undirected graph G is connected which ensures that the rank
of L is equal to n−1 ([43]). The second smallest eigenvalue λ2 of L is usually called
the algebraic connectivity of the undirected graph G. Then the second largest abso-
lute value of the eigenvalues of P is determined as α(ε) = max{|1−ελ2|, |1−ελn|},
which can be verified to satisfy α(ε) < 1. By using standard results in nonnegative
matrix theory (see, e.g., [44]), we can obtain an upper bound for δ. In fact, we can
take δ as any value in the interval (0,− lnα(ε)). We also remark that similar conver-
gence rate estimates can be carried out when general weight matrices in averaging
are used.

Since P has a unit eigenvalue, we see that the difference between the first two
largest absolute values of the eigenvalues of P is given as g(ε) = 1 − α(ε), which
is customarily called the spectral gap of P . In general, the greater is g(ε), the
greater is the upper bound − lnα(ε) for the exponent δ, and the faster is the con-
vergence of the consensus algorithm. In practical implementations, it is desirable to
choose a suitable value for ε to increase the spectral gap g(ε) while P is ensured
to be ergodic. We will discuss the convergence rate in the simulation part of this
chapter.
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1.5 Distributed Consensus-Based Cooperative Spectrum Sensing
in Random Graphs

In the previous section, it has been assumed that any two neighboring nodes can
reliably exchange data at all times. Hence the network topology remains unchanged
during the overall time period of interest. This kind of network modeling may not
be accurate in certain situations. For example, fading of wireless signals can cause
packet errors, which will result in wireless link failures for that period. Furthermore,
even under LOS channels, moving objects between neighboring nodes may tem-
porarily affect signal reception. For the above reasons, in this chapter, we consider
a more realistic inter-node communication model with random link failures. Unlike
the previous model, which is based on fixed bidirectional graphs, the new model is
based on random graphs. Nevertheless, similar to the previous fixed topology sce-
nario, for the random graph-based modeling below, we still consider bidirectional
links when two nodes can communicate.

1.5.1 Random Graph Modeling of the Network Topology

Before characterizing random connectivity of the network of all secondary users, let
us first introduce a fixed undirected graph G = (N , E)which describes the maximal
set of communication links when there is no link failure. Due to the random link
failures, at time k the inter-user communication is described by a subgraph of G
denoted by G(k) = (N , E(k)) where E(k) ⊂ E ; the edge ( j, i) ∈ E(k) if and only
if nodes j and i can communicate at time k where ( j, i) ∈ E . Thus, the (undirected)
graph G(k) is generated as the outcome of random link failures. Note that an edge
( j, i) never appears in G(k) if it is not an edge of G. The neighbor set of node
i is Ni (k) = { j |( j, i) ∈ E(k)} at time k. The number of elements in Ni (k) is
denoted by |Ni (k)|. At time k ≥ 0, the adjacency matrix of G(k) is defined as
A(k) = (α j i (k))1≤ j,i≤|N |, where α j i (k) = 1 if ( j, i) ∈ E(k), and α j i (k) = 0
otherwise. It is clear that the graph G(k) is completely characterized by the random
matrix A(k).

Concerning the statistical properties of link failures, we assume that for all links
(each associated with an edge in the graph G) fail independently with the same
probability p ∈ (0, 1). For notational simplicity we use the same parameter p to
model the failure probability. The generalization of the modeling and analysis to
link-dependent failure probabilities is straightforward.

1.5.2 The Algorithm with Random Graphs

For the random link failure-prone model, the two spectrum sensing stages intro-
duced in the previous chapter are still applicable. In the first stage, each node
performs the radio detection and computes the measurements according to (1.2).
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During the second stage, at time k each node exchanges states information with its
neighbors and performs the corresponding computation to generate its state update
xi (k + 1). Let Δ be the maximum degree of the graph G and take ε ∈ (0, 1/Δ).

The state of user i ∈ N is updated by the rule

xi (k + 1) = xi (k)+ ε
∑

j∈Ni (k)

[x j (k)− xi (k)] (1.13)

where ε is a pre-determined constant step size. If Ni (k) = ∅ (empty set), (1.13)
reduces to xi (k + 1) = xi (k).

Theorem 2 Under the independent link failure assumption, the algorithm (1.13)
ensures average-consensus, i.e., limk→∞ xi (k) = (1/n)

∑n
j=1 x j (0) for all i ∈ N ,

with probability 1. If, in addition, E |x(0)|2 < ∞ and x(0) is independent of the
sequence of adjacency matrices A(k), k = 0, 1, . . . , then each xi (k) converges to
(1/n)

∑n
j=1 x j (0) in mean square with an exponential convergence rate.

Proof We can write the algorithm (1.13) in the vector form

x(k + 1) = [I − εL(k)]x(k)

where L(k) is the Laplacian of the graph G(k). For a vector z = (z1, . . . , zn)
T,

denote the Euclidean norm |z| = (∑n
i=1 z2

i

)1/2
. For any given sample point, we can

show that M(k) = I − εL(k) is a symmetric aperiodic stochastic matrix so that
it has all its eigenvalues within the interval (−1, 1] (see, e.g., [44]), and therefore
M(k) determines a paracontracting map [34, 45] in the sense M(k)z �= z if and
only if |M(k)z| < |z|. For M(k), we denote its fixed point subspace H(M(k)) =
z ∈ R

n|M(k)z = z}.
By the assumption on the independent link failures, we see that with probabil-

ity 1, G(k) = G for an infinite number of times k. Let 	 denote the underlying
probability sample space. Thus, after excluding a set A0 of zero probability, for
all ω ∈ 	\A0, G(k) = G infinitely often with the associated Laplacian being
L(k) = L. Hence, for each ω ∈ 	\A0, x(k) converges to a point in the space
H(I − εL) = {z ∈ R

n|Lz = 0} when k → ∞. Furthermore, z ∈ R
n|Lz = 0} =

span{1n} since G is a connected undirected graph.
On the other hand, it is straightforward to check that (1/n)

∑n
j=1 x j (k) remains

as a constant since M(k) is a doubly stochastic matrix (i.e., nonnegative matric with
all row sums and column sums equal to 1). Now it follows that each xi (k) converges
to (1/n)

∑n
j=1 x j (0) with probability one, as k →∞.

We continue to analyze mean square convergence. Since E |x(0)|2 < ∞ and
supi∈N ,k≥0 |xi (k)| ≤ maxi∈N |xi (0)| ≤ |x(0)|, by the probability 1 convergence of
xi (k), it follows from dominated convergence results in probability theory that xi (k)
also converges to (1/n)

∑n
j=1 x j (0) in mean square.

Now, we proceed to give an estimation of the mean square convergence rate
within the random network model. Denote Ave(x(0)) = (1/n)

∑n
j=1 x j (0). It is

straightforward to show that
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x(k + 1)− Ave(x(0))1n =
[

I − (1/n)1n1T
n

]
[I − εL(k)][x(k)− Ave(x(0))1n]

(1.14)

≡ B(k)[x(k)− Ave(x(0))1n] (1.15)

In fact, for each ω ∈ 	, by the eigenvalue distribution of the matrices (1/n)1n1T
n

and L(k), we can show that BT(k)B(k), and subsequently E[BT (k)B(k)], have n
real eigenvalues on the interval [0, 1]. We use a contradiction argument to show
that the largest eigenvalue ρ of E[BT (k)B(k)] is less than 1. Suppose ρ = 1 for
E[BT (k)B(k)]; then there exists a real-valued vector x �= 0 such that

xT E[BT (k)B(k)]x = xT x (1.16)

By the fact xT [BT (k)B(k)]x ≤ xT x, the equality (1.16) leads to

xT [BT (k)B(k)]x = xT x (1.17)

with probability 1. On the other hand, by the link failure assumption, there exists a
set A1 ⊂ 	 such that P(A1) > 0 and for each ω ∈ A1, the associated matrix value
B(k) = I − εL. Without the loss of generality, we can assume A1 has been chosen
in such a manner that for any ω ∈ A1 (1.17) also holds.

By noticing the fact that for any z ∈ R
n ,

zT [BT (k)B(k)]z ≤ zT (I − εL)2z ≤ zT z (1.18)

we obtain from (1.17) that

xT (I − εL)2x = xT x (1.19)

Hence, (1.19) implies that x is the eigenvector of I − εL associated with the eigen-
value 1, which further implies that x ∈ span{1n}. Denote x = c1n where c is
a constant. By substituting x = c1n into the left hand side of (1.17), we obtain
xT [BT (k)B(k)]x = 0 for each ω ∈ 	, which contradicts with (1.17) and the fact
x �= 0. Hence, we conclude that the largest eigenvalue ρ of E[BT (k)B(k)] is in the
interval [0, 1).

Finally, by elementary calculation we obtain the convergence rate estimate

E |x(k)− Ave(x(0))1n|2 ≤ ρk E |x(0)− Ave(x(0))1n|2 (1.20)

�
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In fact, we have the simplified expression:

BT (k)B(k) = [I − εL(k)]
[

I − (1/n)1n1T
n

]2 [I − εL(k)]
= [I − εL(k)]

[
I − (1/n)1n1T

n

]
[I − εL(k)]

= [I − εL(k)]2 − (1/n)1n1T
n

and therefore, ρ is also given as the largest eigenvalue of the positive semi-definite
matrix E[I − εL(k)]2 − (1/n)1n1T

n .

1.6 Simulation Results and Discussions

In this section, we present and discuss the simulation results of the distributed
consensus-based scheme.

1.6.1 Distributed Consensus-Based Cooperative Spectrum Sensing

1.6.1.1 Simulation Setup

In the simulations, we assume that all secondary users are experiencing i.i.d.
Rayleigh fading without spatial correlation. Each secondary user uses an energy
detector. We simulate the output Y of the energy detector directly in our simula-
tions. When the primary user is absent, Y is a random quantity with chi-square
distribution. When the primary user is present, Y may be denoted as the sum of two
independent random variables [40, 41]. The parameters of Y depend on the aver-
age SNR in the Rayleigh fading (see (1.3) and (1.4)). The simulations are done in
three test conditions. In the first condition, every user has the same average SNR(γ ),
which is 10 dB. In the second condition, each user has different average SNR(γ )
varying from 5 dB to 9 dB. In the third condition, each user has different average
SNR(γ ) varying from 5 dB to 15 dB. The relevant information of primary users,
such as the position, the moving direction and the moving velocity, is unknown to
the secondary users.

We compare the performance of the proposed scheme with that of an existing
OR-rule cooperative sensing scheme [21, 22, 46], which is better than AND-rule
and MAJORITY-rule in many cases of practical interest [22, 46]. In the OR-rule
cooperative sensing scheme, each secondary user makes local spectrum sensing
decision, which is a binary variable – a “one” denotes the presence of a primary
user, and a “zero” denotes its absence. Then, all of the local decisions are sent to a
data collector to sum up all local decision values. If the sum is greater than or equal
to 1, a primary user is believed to be present.

In the first stage of spectrum sensing, after time synchronization, every secondary
user performs energy detection with TW = 5 individually to get local measurement
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Fig. 1.4 Network topology
with 10 nodes in the
simulations. (a) A fixed graph
and (b) A random graph
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Yi at the selected center frequency fs and the bandwidth of interest W . To set up the
initial energy vector X(0), we set xi (0) = Yi .

In the second stage, the existing method and the proposed consensus algorithm
(1.7) are conducted based on fixed graph models, while the proposed consensus
algorithm (1.13) is run based on random graph models. For fixed graphs, the basic
requirement is to set up duplex wireless channels. In the simulations, we consider a
network topology with 10 secondary users that establish a graph, G = {N , E}, as
shown in Fig. 1.4a. For random graphs, we use the same set of nodes as in Fig. 1.4b,
but replace solid lines with dotted ones, which have probabilities of link failure of
40% (refer to Fig. 1.4b). The links in those figures stand for bidirectional wireless
links. With regard to link failure probabilities, they mean both directions will fail to
work in case of link failure. We also consider a network topology with 50 nodes in
the simulations, which is shown in Fig. 1.5. All of the 50 nodes are located randomly.
The links in the 50-node network have probabilities of failure of 40%.

1.6.1.2 Convergence of the Consensus Algorithm

Figs. 1.6a and 1.6b show the estimated primary user energy in the network with a
10-node fixed graph. We can observe that, although the initially sensed energy varies
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Fig. 1.5 Network topology
with 50 nodes in the
simulations

greatly due to their different wireless channel conditions for different secondary
nodes, a consensus will be reached after several iterations. The step size ε has effects
on the convergence rate of the consensus algorithm. According to (1.7) and (1.13), a
value should be selected for ε such that 0 < ε < Δ−1. Since the maximum number
of neighbors of a node in Figs. 1.4a and 1.4b is 5, Δ = 5. Then, 0 < ε < 0.2.

Here we provide some discussion about the choice of the parameter ε. First, given
the network topology, we may construct the associated Laplacian L as a 10 × 10
matrix. For reasons of space, L is not displayed. The eigenvalue of L are listed as
follows:

0, 0.3416, 0.8400, 1.4239, 2.0000, 2.0000, 3.0000, 3.1373, 4.9411, 6.3161
(1.21)

On the interval (0, 0.2), the spectral gap g(ε) may be shown to be

g(ε) = 1− 0.3416ε (1.22)

which monotonically decreases on (0, 0.2). We note that for this specific network
topology, when ε = 0.2, the resulting matrix P = I −εL is ergodic. On the interval
(0, 0.2] the spectral gap is maximized at ε = 0.2.

In below we select two values for ε, 0.1 and 0.19, in Fig. 1.6a and Fig. 1.6b,
respectively. We can see that the algorithm converges faster when ε = 0.19 than
that when ε = 0.1, which is due to the fact that ε = 0.19 corresponds to a larger
spectral gap g(0.19).

After about five iterations in Fig. 1.6b, the difference between the nodes is less
than 1 dB, which indicates that a consensus is achieved. Figure 1.7 shows the
estimated primary user energy in the network with a random graph when ε = 0.19.
Comparing Fig. 1.7 with Fig. 1.6b, we can see that the algorithm converges more
slowly in the random graph case due to the random link failure in the CR network.
In Fig. 1.7, after about 10 iterations, the difference between the nodes is less than 1
dB, which indicates that a consensus is achieved.
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Fig. 1.6 Convergence of the network with a 10-node fixed graph. (a) Fixed graph (ε = 0.1) and
(b) fixed graph (ε = 0.19)
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Fig. 1.7 Convergence of the network with a 10-node random graph (ε = 0.19)

Figure 1.8 shows the convergence performance for the 50-node network.
ε = 0.15 is used. We can observe that the algorithm converges more slowly in
the 50-node network compared to the 10-node network due to a larger number of
nodes. Nevertheless, after about 30 iterations, the difference between the nodes is
less than 1 dB, which indicates that a consensus is achieved.

In the rest of the simulations, we conduct the simulations in three scenarios. In
scenario one, under each of the three test conditions, the simulations are conducted
by using one of the existing methods and the proposed scheme, respectively. The
purpose of this scenario is to evaluate the performance of the proposed scheme in
terms of Pm (probability of missing detection) and Pf (probability of false alarm).
In scenario two, we focus on test condition one, and try to find the best detection
sensitivity for different algorithms. In scenario three, we also work on test condition
one and set a fixed detection threshold λ as stated in (1.11) to simulate the real
situation in practice.

1.6.1.3 Scenario One

We compare the performance of the proposed scheme with that of an existing OR-
rule cooperative sensing scheme [21, 22, 46]. Before the comparison, let us discuss
briefly the relationship between Pm (probability of missing detection)= 1 − Pd

(probability of detection) and Pf (probability of false alarm). The fundamental
tradeoff between Pm and Pf has different implications in the context of spectrum
sensing [5]. A high Pm will result in the missing detection of primary users with high
probability, which in turn increases the interference to primary users. On the other
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Fig. 1.8 Convergence of the network with a 50-node random graph (ε = 0.15)

hand, a high Pf will result in low spectrum utilization since false alarms increase
the number of missed opportunities (white spaces). As expected, Pf is independent
of γ since under H0 there is no primary signal.

Figures 1.9 and 1.10 show Pf vs. Pm . We can see that the proposed algorithm
has better performance than the existing OR-rule cooperative sensing scheme. The
numbers beside the curves are the corresponding thresholds λ in dB. In Fig. 1.9,
where each secondary user has the same average SNR 10 dB, if the threshold λ is
in the range of 11.4 to 12 dB, both Pf and Pm can simultaneously drop below the
probability of 10−2 for the proposed consensus algorithm in both fixed and random
graphs. Also, the results are the same between the fixed and random models. In
comparison, to reach the same goal, the existing OR-rule method must set λ to be
around 14.8 dB, which has far worse Pm (10−2 vs. 10−3) with regard to the same
Pf level (10−2).

In condition two, secondary users undergo different average SNR varying from
5 dB to 9 dB. In condition three, secondary users undergo different average SNR
varying from 5 dB to 15 dB. The similar results are demonstrated in Figs. 1.10
and 1.11 for conditions two and three, respectively.

1.6.2 Scenario Two

Next, we examine the performance of detection probabilities Pd to find out the sen-
sitivity in detecting the primary user’s presence. Figure 1.12 shows Pd (detection
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probability = 1 − Pm) vs. average SNR (γ̄ ) of secondary users. Condition one is
used in this scenario, and the simulation is performed when the average SNR varies
from 5 to 10 dB for all the nodes. The decision threshold, λ, is chosen so as to
keep Pf = 10−1. Time-bandwidth product, TW , is set to be 5, which is the same
as before. From Fig. 1.12, we see that the proposed scheme can have a significant
improvement in terms of the required average SNR for detection. In particular, if
the probability of detection is expected to be kept above 0.99 (or Pm < 10−2),
the existing spectrum sensing scheme requires γ̄ = 7.8 dB. This required average
SNR is higher than those in the proposed consensus scheme, both of which are
approximately 6.8 dB.

1.6.2.1 Scenario Three

In reality, it is unlikely to adjust the threshold λ on demand with regard to the dif-
ferent average SNR. Rather, a fixed threshold that can work in any γ̄ is much more
desirable. We can call it as threshold robustness. Therefore, in this scenario, we use
condition one and intend to set a pre-defined threshold λ by using (1.11) so as to
achieve a certain goal. In fact, there are three options when we choose such a goal
to keep missing detection probability (Pm) below a certain level, to keep false alarm
probability Pf around a certain level, or to keep both Pm and Pf as low as possible.

We first try to keep Pm below 10−2 when all the 10 users undergo the same γ
varying from 5 to 10 dB. Fig. 1.13a shows a fixed λ that lets Pm below 10−2 for the
average SNR ranging from 5 to 10 dB. As the result, the worst Pf decreases from
0.586 by using the existing method to 0.356 in both the random graph and the fixed
graph by using the proposed scheme.

The second option is to let Pf always around 10−1 when all the 10 users undergo
γ varying from 5 to 10 dB. The result is shown in Fig. 1.13b, where Pf keeps around
10−1. The proposed consensus algorithm has the better performance in terms of Pm ,
down from 0.161 in the existing method to 0.0527 in the proposed method.

In the third option, keep both Pm and Pf as low as possible. When determining a
threshold, we refer to Fig. 1.14a, which shows the worst case when all the 10 users
suffers γ = 5 dB. For the consensus scheme to have better missing detection per-
formance, the threshold chosen in the proposed scheme should be lower than that in
the OR-rule scheme. In Fig. 1.14a, we can see that, with the same missing detection
probability, the threshold is lower in the proposed scheme than that in the OR-rule
scheme. On the other hand, with this lower threshold, a better false alarm probability
can be achieved in the proposed scheme. The reason is that, when there is no primary
user, the output of the energy detector, Y , of each secondary user is a random quan-
tity with central chi-square distribution (see (1.2)). Since Y varies greatly, it is easy
for a secondary user to have a false alarm in the OR-rule scheme. By contrast, the
consensus scheme does not use the raw data Y to make decisions. Instead, it uses the
consensus among the secondary users to make decisions, thus it can remove some
randomness in the raw data Y . Therefore, the consensus scheme can have a better
false alarm probability than the OR-rule scheme with the same threshold. This can
be shown in Fig. 1.14a. From Fig. 1.14a, we can also observe that both missing
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Fig. 1.13 Results in simulation scenario three: Part One. (a) Missing detection probability (Pm)
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detection and false alarm probabilities are low when the threshold is round 11 dB
for the consensus scheme and when the threshold is around 13.6 dB for the OR-rule
scheme. In Fig. 1.14a, if we compare the performance of the consensus scheme
with a threshold 11 dB to that of the OR-rule scheme with a threshold 13.6 dB, we
can see that both missing detection and false alarm probabilities are lower in the
consensus scheme than those in the OR-rule scheme. We choose λ = 11 dB for the
proposed consensus algorithm and λ = 13.6 dB for the existing method to conduct
our numerical studies. Fig. 1.14b illustrates the result of such a fixed λ. It is seen
that both Pm and Pf have better performance for the proposed algorithm than those
of the existing method. Pm and Pf drops to a relatively low level. This highlights
the overall advantage in so-called threshold robustness for the proposed consensus
algorithm. That is, for a given λ, the proposed consensus algorithm can output less
Pm and Pf than those of the existing method. The algorithm works well in both fixed
graphs and random ones. Another observation in scenario three is, when the average
SNR rises, Pm drops for a given threshold λ, but Pf remains more or less at the same
level. This means, for a fixed λ, Pm is subject to the change of the average SNR. In
contrast, Pf is stable, because this parameter deals with the condition of H0, where
only the collective noises exist.

1.7 Conclusion

In this chapter, we have presented a fully distributed and scalable scheme for spec-
trum sensing based on recent advances in consensus algorithms. Cooperative spec-
trum sensing is modeled as a multi-agent coordination problem. Secondary users
can maintain coordination based on only local information exchange without a cen-
tralized receiver. Simulation results were presented to show the effectiveness of the
proposed consensus-based scheme. It is shown that both missing detection probabil-
ity and false alarm probability can be significantly reduced in the proposed scheme
compared to those in the existing schemes.

Also, as the real network topologies undergo random changes and the primary
user may randomly enter and leave the network, a protocol is necessary to quickly
decide when the consensus is considered to be practical reached. If the secondary
users cannot efficiently form a decision in finite steps, the energy measurements
obtained at the beginning may become obsolete. To address this finite time detection
issue, in implementations a certain toleration threshold may be used by the users.
A secondary user may stop the iteration if it finds the difference between the states
of each neighbor and itself has fallen below the threshold. The choice of threshold
depends on empirical studies. Our simulation indicates that the threshold may be
chosen to be around a fraction of 1 dB or close to 1 dB.

One limitation of the proposed scheme is that the choice of the step size ε

depends on the maximum number of neighbors of a node in the network. In other
words, each node needs to have the prior knowledge of an upper bound of the max-
imum degree of the network. To solve this problem, an alternative approach may
be used, which is based on so-called Metropolis weights [34]. This approach does
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not need the knowledge of the maximum degree of the network. Future work is in
progress in this direction. We also want to simplify the data format of detection
statistics from each secondary user to save the wireless bandwidth. In addition, as
energy detection does not work well for spread spectrum signals, other approaches
will be studied to deal with such networks.
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