
Chapter 7

EXACT AND INEXACT GRAPH MATCHING:
METHODOLOGY AND APPLICATIONS

Kaspar Riesen
Institute of Computer Science and Applied Mathematics, University of Bern
Neubr-uckstrasse 10, CH-3012 Bern, Switzerland

riesen@iam.unibe.ch

Xiaoyi Jiang
Department of Mathematics and Computer Science, University of M-unster
Einsteinstrasse 62, D-48149 M-unster, Germany

xjiang@math.uni-muenster.de

Horst Bunke
Institute of Computer Science and Applied Mathematics, University of Bern
Neubr-uckstrasse 10, CH-3012 Bern, Switzerland

bunke@iam.unibe.ch

Abstract Graphs provide us with a powerful and flexible representation formalism which
can be employed in various fields of intelligent information processing. The
process of evaluating the similarity of graphs is referred to as graph matching.
Two approaches to this task exist, viz. exact and inexact graph matching. The
former approach aims at finding a strict correspondence between two graphs
to be matched, while the latter is able to cope with errors and measures the
difference of two graphs in a broader sense. The present chapter reviews some
fundamental concepts of both paradigms and shows two recent applications of
graph matching in the fields of information retrieval and pattern recognition.

Keywords: Exact and Inexact Graph Matching, Graph Edit Distance, Information Retrieval
by means of Graph Matching, Graph Embedding via Graph Matching

© Springer Science+Business Media, LLC 2010

C.C. Aggarwal and H. Wang (eds.), Managing and Mining Graph Data,
Advances in Database Systems 40, DOI 10.1007/978-1-4419-6045-0_7,

217

218 MANAGING AND MINING GRAPH DATA

1. Introduction

After many years of research, the fields of pattern recognition, machine
learning and data mining have reached a high level of maturity [4]. Power-
ful methods for classification, clustering, information retrieval, and other tasks
have become available. However, the vast majority of these approaches rely
on object representations given in terms of feature vectors. Such object repre-
sentations have a number of useful properties. For instance, the dissimilarity,
or distance, of two objects can be easily computed by means of the Euclidean
distance. Moreover, a large number of well-established methods for data min-
ing, information retrieval, and related tasks in intelligent information process-
ing are available. Recently, however, a growing interest in graph-based object
representation can be observed [16]. Graphs are powerful and universal data
structures able to explicitly model networks of relationships between substruc-
tures of a given object. Thereby, the size as well as the complexity of a graph
can be adopted to the size and complexity of a particular object (in contrast to
vectorial approaches where the number of features has to be fixed beforehand).

Yet, after the initial enthusiasm induced by the “smartness” and flexibility of
graph representations in the late seventies, a number of problems became evi-
dent. First, working with graphs is unequally more challenging than working
with feature vectors, as even basic mathematic operations cannot be defined
in a standard way, but must be provided depending on the specific applica-
tion. Hence, almost none of the common methods for data mining, machine
learning, or pattern recognition can be applied to graphs without significant
modifications.

Second, graphs suffer from of their own flexibility. For instance, computing
the distances of a pair of objects, which is an important task in many areas,
is linear in the number of data items in the case where vectors are employed.
The same task for graphs, however, is much more complex, since one cannot
simply compare the sets of nodes and edges, which are generally unordered
and of different size. More formally, when computing graph dissimilarity or
similarity one has to identify common parts of the graphs by considering all of
their subgraphs. Regarding that there are O(2n) subgraphs of a graph with n
nodes, the inherent difficulty of graph comparisons becomes obvious.

Despite adverse mathematical and computational conditions in the graph
domain, various procedures for evaluating proximity, i.e. similarity or dissimi-
larity, of graphs have been proposed in the literature [15]. The process of evalu-
ating the similarity of two graphs is commonly referred to as graph matching.
The overall aim of graph matching is to find a correspondence between the
nodes and edges of two graphs that satisfies some, more or less, stringent con-
straints. That is, by means of the graph matching process similar substructures
in one graph are mapped to similar substructures in the other graph. Based on

Exact and Inexact Graph Matching: Methodology and Applications 219

this matching, a dissimilarity or similarity score can eventually be computed
indicating the proximity of two graphs.

Graph matching has been the topic of numerous studies in computer sci-
ence over the last decades. Roughly speaking, there are two categories of tasks
in graph matching, viz. exact matching and inexact matching. In the former
case, for a matching to be successful, it is required that a strict correspondence
is found between the two graphs being matched, or at least among their sub-
parts. In the latter approach this requirement is substantially relaxed, since also
matchings between completely non-identical graphs are possible. That is, in-
exact matching algorithms are endowed with a certain tolerance to errors and
noise, enabling them to detect similarities in a more general way than the exact
matching approach. Therefore, inexact graph matching is also referred to as
error-tolerant graph matching.

For an extensive review of graph matching methods and applications, the
reader is referred to [15]. In this chapter, basic notations and definitions are in-
troduced (Sect. 2) and an overview of standard techniques for exact as well as
error-tolerant graph matching is given (Sect. 3 and 4). In Sect. 3, dissimilarity
models derived from graph isomorphism, subgraph isomorphism, and maxi-
mum common subgraph are discussed for exact graph matching. In Sect. 4,
inexact graph matching and in particular the paradigm of edit distance applied
to graphs is discussed. Finally, two recent applications of graph matching are
reviewed. First, in Sect. 5 an algorithmic framework for information retrieval
based on graph matching is described. This approach is based on both exact
and inexact graph matching procedures and aims at querying large database
graphs. Secondly, a graph embedding procedure based on graph matching is
reviewed in Sect. 6. This framework aims at an explicit embedding of graphs in
real vector spaces, which establishes access to the rich repository of algorith-
mic tools for classification, clustering, regression, and other tasks, originally
developed for vectorial representations.

2. Basic Notations

Various definitions for graphs can be found in the literature, depending upon
the considered application. It turns out that the definition given below is suffi-
ciently flexible for a large variety of tasks.

Definition 7.1 (Graph). Let LV and LE be a finite or infinite label alphabet
for nodes and edges, respectively. A graph g is a four-tuple g = (V,E, �, �),
where

V is the finite set of nodes,

E ⊆ V × V is the set of edges,

� : V → LV is the node labeling function, and

220 MANAGING AND MINING GRAPH DATA

(a) (b) (c)

a b

c

d

e f

g

(d)

Figure 7.1. Different kinds of graphs: (a) undirected and unlabeled, (b) directed and unlabeled,
(c) undirected with labeled nodes (different shades of gray refer to different labels), (d) directed
with labeled nodes and edges.

� : E → LE is the edge labeling function.

The number of nodes of a graph g is denoted by ∣g∣, while G represents the
set of all graphs over the label alphabets LV and LE .

Definition 7.1 allows us to handle arbitrarily structured graphs with uncon-
strained labeling functions. For example, the labels for both nodes and edges
can be given by the set of integers L = {1, 2, 3, . . .}, the vector space L = ℝn,
or a set of symbolic labels L = {�, �, , . . .}. Given that the nodes and/or
the edges are labeled, the graphs are referred to as labeled graphs. Unlabeled
graphs are obtained as a special case by assigning the same label " to all nodes
and edges, i.e. LV = LE = {"}.

Edges are given by pairs of nodes (u, v), where u ∈ V denotes the source
node and v ∈ V the target node of a directed edge. Commonly, the two nodes
u and v connected by an edge (u, v) are referred to as adjacent. A graph is
termed complete if all pairs of nodes are adjacent. Directed graphs directly cor-
respond to the definition above. In addition, the class of undirected graphs can
be modeled by inserting a reverse edge (v, u) ∈ E for each edge (u, v) ∈ E
with identical labels, i.e. �(u, v) = �(v, u). In Fig. 7.1 some graphs (di-
rected/undirected, labeled/unlabeled) are shown.

Definition 7.2 (Subgraph). Let g1 = (V1, E1, �1, �1) and g2 =
(V2, E2, �2, �2) be graphs. Graph g1 is a subgraph of g2, denoted by
g1 ⊆ g2, if

(1) V1 ⊆ V2,

(2) E1 ⊆ E2,

(3) �1(u) = �2(u) for all u ∈ V1, and

(4) �1(e) = �2(e) for all e ∈ E1.

By replacing condition (2) in Definition 7.2 by the more stringent condition

(2’) E1 = E2 ∩ V1 × V1,

g1 becomes an induced subgraph of g2. If g2 is a subgraph of g1, graph g1 is
called a supergraph of g2.

Exact and Inexact Graph Matching: Methodology and Applications 221

(a) (b) (c)

Figure 7.2. Graph (b) is an induced subgraph of (a), and graph (c) is a non-induced subgraph of
(a).

Obviously, a subgraph g1 is obtained from a graph g2 by removing some
nodes and their incident, as well as possibly some additional, edges from
g2. For g1 to be an induced subgraph of g2, some nodes and only their in-
cident edges are removed from g2, i.e. no additional edge removal is allowed.
Fig. 7.2(b) and 7.2(c) show an induced and a non-induced subgraph of the
graph in Fig. 7.2(a), respectively.

3. Exact Graph Matching

The aim in exact graph matching is to determine whether two graphs, or at
least part of them, are identical in terms of structure and labels. A common
approach to describe the structure of a graph is to define the adjacency matrix
A = (aij)n×n of graph g = (V,E, �, �) (∣g∣ = n). In this matrix the entry aij
is equal to 1 if there is an edge (vi, vj) ∈ E connecting the i-th node vi ∈ V
with the j − tℎ node vj ∈ V , and 0 otherwise.

Generally, for the nodes (and also the edges) of a graph there is no unique
canonical order. Thus, for a single graph with n nodes, n! different adjacency
matrices exist, since there are n! possibilities to order the nodes of g. Con-
sequently, for checking two graphs for structural identity, we cannot simply
compare their adjacency matrices. The identity of two graphs g1 and g2 is
commonly established by defining a function, termed graph isomorphism, that
maps g1 to g2.

Definition 7.3 (Graph Isomorphism). Let us consider two graphs denoted by
g1 = (V1, E1, �1, �1) and g2 = (V2, E2, �2, �2) respectively. A graph isomor-
phism is a bijective function f : V1 → V2 satisfying

(1) �1(u) = �2(f(u)) for all nodes u ∈ V1
(2) for each edge e1 = (u, v) ∈ E1, there exists an edge

e2 = (f(u), f(v)) ∈ E2

such that �1(e1) = �2(e2)

(3) for each edge e2 = (u, v) ∈ E2, there exists an edge

e1 = (f−1(u), f−1(v)) ∈ E1

222 MANAGING AND MINING GRAPH DATA

(a) (b) (c)

Figure 7.3. Graph (b) is isomorphic to (a), and graph (c) is isomorphic to a subgraph of (a). Node
attributes are indicated by different shades of gray.

such that �1(e1) = �2(e2)

Two graphs are called isomorphic if there exists an isomorphism between them.

Obviously, isomorphic graphs are identical in both structure and labels. That
is, a one-to-one correspondence between each node of the first graph and each
node of the second graph has to be found such that the edge structure is pre-
served and node and edge labels are consistent.

Unfortunately, no polynomial runtime algorithm is known for the problem
of graph isomorphism [25]. That is, in the worst case, the computational com-
plexity of any of the available algorithms for graph isomorphism is exponential
in the number of nodes of the two graphs. However, since most scenarios en-
countered in practice are often different from the worst case, and furthermore,
the labels of both nodes and edges very often help to substantially reduce the
complexity of the search, the actual computation time can still be manageable.
Polynomial algorithms for graph isomorphism have been developed for spe-
cial kinds of graphs, such as trees [1], ordered graphs [38], planar graphs [34],
bounded-valence graphs [45], and graphs with unique node labels [18].

Standard procedures for testing graphs for isomorphism are based on tree
search techniques with backtracking. The basic idea is that a partial node
matching, which assigns nodes from the two graphs to each other, is itera-
tively expanded by adding new node-to-node correspondences. This expan-
sion is repeated until either the edge structure constraint is violated or node
or edge labels are inconsistent. In this case a backtracking procedure is ini-
tiated, i.e. the last node mappings are iteratively undone until a partial node
mapping is found for which an alternative extension is possible. Obviously, if
there is no further possibility for expanding the partial node matching without
violating the constraints, the algorithm terminates indicating that there is no
isomorphism between the considered graphs. Conversely, finding a complete
node-to-node correspondence without violating any of the structure or label
constraints proves that the investigated graphs are isomorphic. In Fig. 7.3 (a)
and (b) two isomorphic graphs are shown.

A well known, and despite its age still very popular, algorithm implementing
the idea of a tree search with backtracking for graph isomorphism is described
in [89]. A more recent algorithm for graph isomorphism, also based on the
idea of tree search, is the VF algorithm and its successor VF2 [17]. Here the

Exact and Inexact Graph Matching: Methodology and Applications 223

basic tree search algorithm is endowed with an efficiently computable heuris-
tic which substantially reduces the search time. In [43] the tree search method
for isomorphism is sped up by means of another heuristic derived from Con-
straint Satisfaction. Other algorithms for exact graph matching, which are not
based on tree search techniques, are Nauty [50], and decision tree based tech-
niques [51], to name just two examples. The reader is referred to [15] for an
exhaustive list of exact graph matching algorithms developed since 1973.

Closely related to graph isomorphism is subgraph isomorphism, which can
be seen as a concept describing subgraph equality. A subgraph isomorphism
is a weaker form of matching in terms of requiring only that an isomorphism
holds between a graph g1 and a subgraph of g2. Intuitively, subgraph isomor-
phism is the problem to detect if a smaller graph is identically present in a
larger graph. In Fig. 7.3 (a) and (c), an example of subgraph isomorphism is
given.

Definition 7.4 (Subgraph Isomorphism). Let g1 = (V1, E1, �1, �1) and
g2 = (V2, E2, �2, �2) be graphs. An injective function f : V1 → V2 from
g1 to g2 is a subgraph isomorphism if there exists a subgraph g ⊆ g2 such that
f is a graph isomorphism between g1 and g.

The tree search based algorithms for graph isomorphism [17, 43, 89], as well
as the decision tree based techniques [51], can also be applied to the subgraph
isomorphism problem. In contrast with the problem of graph isomorphism,
subgraph isomorphism is known to be NP-complete [25]. As a matter of fact,
subgraph isomorphism is a harder problem than graph isomorphism as one has
not only to check whether a permutation of g1 is identical to g2, but we have to
decide whether g1 is isomorphic to any of the subgraphs of g2 with equal size
as g1.

The process of graph matching primarily aims at identifying corresponding
substructures in the two graphs under consideration. Through the graph match-
ing procedure an associated similarity or dissimilarity score can be easily in-
ferred. In view of this, graph isomorphism as well as subgraph isomorphism
provide us with a basic similarity measure, which is 1 (maximum similarity)
for (sub)graph isomorphic, and 0 (minimum similarity) for non-isomorphic
graphs. Hence, two graphs must be completely identical, or the smaller graph
must be identically contained in the other graph, to be deemed similar. Con-
sequently, the applicability of this graph similarity measure is rather limited.
Consider a case where most, but not all, nodes and edges in two graphs are
identical. The rigid concept of (sub)graph isomorphism fails in such a situa-
tion in the sense of considering the two graphs to be totally dissimilar. Due to
this observation, the formal concept of the largest common part of two graphs
is established.

224 MANAGING AND MINING GRAPH DATA

(a) (b) (c)

Figure 7.4. Graph (c) is a maximum common subgraph of graph (a) and (b).

Definition 7.5 (Maximum common subgraph). Let g1 = (V1, E1, �1, �1)
and g2 = (V2, E2, �2, �2) be graphs. A common subgraph of g1 and g2,
cs(g1, g2), is a graph g = (V,E, �, �) such that there exist subgraph isomor-
phisms from g to g1 and from g to g2. We call g a maximum common subgraph
of g1 and g2, mcs(g1, g2), if there exists no other common subgraph of g1 and
g2 that has more nodes than g.

A maximum common subgraph of two graphs represents the maximal part
of both graphs that is identical in terms of structure and labels. In Fig. 7.4(c)
the maximum common subgraph is shown for the two graphs in Fig. 7.4(a)
and (b). Note that, in general, the maximum common subgraph is not uniquely
defined, that is, there may be more than one common subgraph with a maxi-
mal number of nodes. A standard approach to computing maximum common
subgraphs is based on solving the maximum clique problem in an association
graph [44, 49]. The association graph of two graphs represents the whole set
of possible node-to-node mappings that preserve the edge structure and labels
of both graphs. Finding a maximum clique in the association graph, that is, a
fully connected maximal subgraph, is equivalent to finding a maximum com-
mon subgraph. In [10] the reader can find an experimental comparison of algo-
rithms for maximum common subgraph computation on randomly connected
graphs.

Graph dissimilarity measures can be derived from the maximum common
subgraph of two graphs. Intuitively speaking, the larger a maximum common
subgraph of two graphs is, the more similar are the two graphs. For instance,
in [12] such a distance measure is introduced, defined by

dMCS (g1, g2) = 1− ∣mcs(g1 , g2)∣
max{∣g1∣, ∣g2∣}

(7.1)

Note that, whereas the maximum common subgraph of two graphs is not
uniquely defined, the dMCS distance is. If two graphs are isomorphic, their
dMCS distance is 0; on the other hand, if two graphs have no part in common,
their dMCS distance is 1. It has been shown that dMCS is a metric and produces
a value in [0, 1].

A second distance measure which has been proposed in [94], based on the
idea of graph union, is

Exact and Inexact Graph Matching: Methodology and Applications 225

(a) (b) (c)

Figure 7.5. Graph (a) is a minimum common supergraph of graph (b) and (c).

dWGU (g1, g2) = 1− ∣mcs(g1 , g2)∣
∣g1∣+ ∣g2∣ − ∣mcs(g1, g2)∣

By “graph union” it is meant that the denominator represents the size of
the union of the two graphs in the set-theoretic sense. This distance measure
behaves similarly to dMCS . The motivation of using graph union in the denom-
inator is to allow for changes in the smaller graph to exert some influence on
the distance measure, which does not happen with dMCS . This measure was
also demonstrated to be a metric and creates distance values in [0, 1].

A similar distance measure [7] which is not normalized to the interval [0, 1]
is:

dUGU (g1, g2) = ∣g1∣+ ∣g2∣ − 2 ⋅ ∣mcs(g1, g2)∣
Fernandez and Valiente [21] have proposed a distance measure based on

both the maximum common subgraph and the minimum common supergraph

dMMCS (g1, g2) = ∣MCS(g1, g2)∣ − ∣mcs(g1, g2)∣
where MCS(g1, g2) is the minimum common supergraph of graphs g1 and g2,
which is the complimentary concept of minimum common subgraph.

Definition 7.6 (Minimum common supergraph). Let g1 = (V1, E1, �1, �1)
and g2 = (V2, E2, �2, �2) be graphs. A common supergraph of g1 and g2,
CS(g1, g2), is a graph g = (V,E, �, �) such that there exist subgraph isomor-
phisms from g1 to g and from g2 to g. We call g a minimum common supergraph
of g1 and g2, MCS(g1, g2), if there exists no other common supergraph of g1
and g2 that has less nodes than g.

In Fig. 7.5(a) the minimum common supergraph of the graphs in Fig. 7.5(b)
and (c) is given. The computation of the minimum common supergraph can be
reduced to the problem of computing a maximum common subgraph [11].

The concept that drives the distance measure above is that the maximum
common subgraph provides a “lower bound” on the similarity of two graphs,
while the minimum supergraph is an “upper bound”. If two graphs are identi-
cal, then both their maximum common subgraph and minimum common super-
graph are the same as the original graphs and ∣g1∣ = ∣g2∣ = ∣MCS(g1, g2)∣ =
∣mcs(g1, g2)∣, which leads to dMMCS (g1, g2) = 0. As the graphs become

226 MANAGING AND MINING GRAPH DATA

more dissimilar, the size of the maximum common subgraph decreases, while
the size of the minimum supergraph increases. This in turn leads to increasing
values of dMMCS (g1, g2). For two graphs with an empty maximum common
subgraph, the distance will become ∣MCS(g1, g2)∣ = ∣g1∣+ ∣g2∣. The distance
dMMCS (g1, g2) has also been shown to be a metric, but it does not produce val-
ues normalized to the interval [0, 1], unlike dMCS or dWGU . We can also create
a version of this distance measure which is normalized to [0, 1] as follows:

dMMCSN (g1, g2) = 1− ∣mcs(g1, g2)∣∣MCS(g1, g2)∣

Note that, because of ∣MCS(g1, g2)∣ = ∣g1∣ + ∣g2∣ − ∣mcs(g1, g2)∣, dUGU

and dMMCS are identical. The same is true for dWGU and dMMCSN .
The main advantage of exact graph matching methods is their stringent def-

inition and solid mathematical foundation. This advantage may turn into a dis-
advantage, however, because in exact graph matching for finding two graphs
g1 and g2 to be similar, it is required that a significant part of the topology
together with the corresponding node and edge labels in g1 and g2 have to be
identical. In fact, this constraint is too rigid in some applications. For this rea-
son, a large number of error-tolerant, or inexact, graph matching methods have
been proposed, dealing with a more general graph matching problem than the
one of (sub)graph isomorphism.

4. Inexact Graph Matching

Due to the intrinsic variability of the patterns under consideration and the
noise resulting from the graph extraction process, it cannot be expected that
two graphs representing the same class of objects are completely, or at least to
a large part, identical in their structure. Moreover, if the node or edge label al-
phabet L is used to describe non-discrete properties of the underlying patterns,
e.g. L ⊆ ℝn, it is most probable that the actual graphs differ somewhat from
their ideal model. Obviously, such noise crucially hampers the applicability
of exact graph matching techniques, and consequently exact graph matching is
rarely used in real-world applications.

In order to overcome this drawback, it is advisable to endow the graph
matching framework with a certain tolerance to errors. That is, the match-
ing process must be able to accommodate the differences of the graphs by
relaxing –to some extent– the underlying constraints. In the first part of this
section the concept of graph edit distance is introduced to exemplarily illus-
trate the paradigm of inexact graph matching. In the second part, several other
approaches to inexact graph matching are briefly discussed.

Exact and Inexact Graph Matching: Methodology and Applications 227

g1 g2

Figure 7.6. A possible edit path between graph g1 and graph g2 (node labels are represented by
different shades of gray).

4.1 Graph Edit Distance

Graph edit distance [8, 71] offers an intuitive way to integrate error-
tolerance into the graph matching process and is applicable to virtually all types
of graphs. Originally, edit distance has been developed for string matching [93]
and a considerable amount of variants and extensions to the edit distance have
been proposed for strings and graphs. The key idea is to model structural vari-
ation by edit operations reflecting modifications in structure and labeling. A
standard set of edit operations is given by insertions, deletions, and substitu-
tions of both nodes and edges. Note that other edit operations, such as merging
and splitting of nodes [2], can be useful in certain applications. Given two
graphs, the source graph g1 and the target graph g2, the idea of graph edit dis-
tance is to delete some nodes and edges from g1, relabel (substitute) some of
the remaining nodes and edges, and insert some nodes and edges in g2, such
that g1 is finally transformed into g2. A sequence of edit operations e1, . . . , ek
that transform g1 into g2 is called an edit path between g1 and g2. In Fig. 7.6
an example of an edit path between two graphs g1 and g2 is given. This edit
path consists of three edge deletions, one node deletion, one node insertion,
two edge insertions, and two node substitutions.

Let Υ(g1, g2) denote the set of all possible edit paths between two graphs
g1 and g2. Clearly, every edit path between two graphs g1 and g2 is a model
describing the correspondences found between the graphs’ substructures. That
is, the nodes of g1 are either deleted or uniquely substituted with a node in g2,
and analogously, the nodes in g2 are either inserted or matched with a unique
node in g1. The same applies for the edges. In [58] the idea of fuzzy edit paths
was reported where both nodes and edges can be simultaneously mapped to
several nodes and edges. The optimal fuzzy edit path is then determined by
means of quadratic programming.

To find the most suitable edit path out of Υ(g1, g2), one introduces a cost
for each edit operation, measuring the strength of the corresponding operation.
The idea of such a cost is to define whether or not an edit operation represents
a strong modification of the graph. Clearly, between two similar graphs, there
should exist an inexpensive edit path, representing low cost operations, while
for dissimilar graphs an edit path with high costs is needed. Consequently, the
edit distance of two graphs is defined by the minimum cost edit path between
two graphs.

228 MANAGING AND MINING GRAPH DATA

Definition 7.7 (Graph Edit Distance). Let g1 = (V1, E1, �1, �1) be the
source and g2 = (V2, E2, �2, �2) the target graph. The graph edit distance
between g1 and g2 is defined by

d(g1, g2) = min
(e1,...,ek)∈Υ(g1,g2)

k∑

i=1

c(ei),

where Υ(g1, g2) denotes the set of edit paths transforming g1 into g2, and c
denotes the cost function measuring the strength c(e) of edit operation e.

The definition of adequate and application-specific cost functions is a key
task in edit distance based graph matching. Prior knowledge of the graphs’ la-
bels is often inevitable for graph edit distance to be a suitable proximity mea-
sure. This fact is often considered as one of the major drawbacks of graph
edit distance. Yet, contrariwise, the possibility to parametrize graph edit dis-
tance by means of the cost function crucially amounts for the versatility of this
dissimilarity model. That is, by means of graph edit distance it is possible to
integrate domain specific knowledge about object similarity, if available, when
defining the costs of the elementary edit operations. Furthermore, if in a partic-
ular case prior knowledge about the labels and their meaning is not available,
automatic procedures for learning the edit costs from a set of sample graphs
are available as well [55, 56].

The overall aim of the cost function is to favor weak distortions over strong
modifications of the graph. Hence, the cost is defined with respect to the un-
derlying node or edge labels, i.e. the cost c(e) is a function depending on the
edit operation e. Typically, for numerical node and edge labels the Euclidean
distance can be used to model the cost of a particular substitution operation on
the graphs. For deletions and insertions of both nodes and edges, often a con-
stant cost �node/�edge is assigned. We refer to this cost function as Euclidean
Cost Function.

The Euclidean cost function defines substitution costs proportional to the
Euclidean distance of two respective labels. The basic intuition behind this
approach is that the further away two labels are, the stronger is the distortion
associated with the corresponding substitution. Note that any node substitution
having a higher cost than 2 ⋅ �node will be replaced by a composition of a dele-
tion and an insertion of the involved nodes (the same accounts for the edges).
This behavior reflects the basic intuition that substitutions should be favored
over deletions and insertions to a certain degree.

Optimal algorithms for computing the edit distance of graphs g1 and g2 are
typically based on combinatorial search procedures that explore the space of
all possible mappings of the nodes and edges of g1 to the nodes and edges
of g2 [8]. A major drawback of those procedures is their computational com-
plexity, which is exponential in the number of nodes of the involved graphs.

Exact and Inexact Graph Matching: Methodology and Applications 229

Consequently, the application of optimal algorithms for edit distance compu-
tations is limited to graphs of rather small size in practice.

To render graph edit distance computation less computationally demanding,
a number of suboptimal methods have been proposed. In some approaches, the
basic idea is to perform a local search to solve the graph matching problem, that
is, to optimize local criteria instead of global, or optimal ones [57, 80]. In [40],
a linear programming method for computing the edit distance of graphs with
unlabeled edges is proposed. The method can be used to derive lower and
upper edit distance bounds in polynomial time. Two fast but suboptimal al-
gorithms for graph edit distance computation are proposed in [59]. The au-
thors propose simple variants of a standard edit distance algorithm that make
the computation substantially faster. In [20] another suboptimal method has
been proposed. The basic idea is to decompose graphs into sets of subgraphs.
These subgraphs consist of a node and its adjacent nodes and edges. The graph
matching problem is then reduced to the problem of finding a match between
the sets of subgraphs. In [67] a method somewhat similar to the method de-
scribed in [20] is proposed. However, while the optimal correspondence be-
tween local substructures is found by dynamic programming in [20], a bipartite
matching procedure [53] is employed in [67].

4.2 Other Inexact Graph Matching Techniques

Several other important classes of error-tolerant graph matching algorithms
have been proposed. Among others, algorithms based on Artificial Neural
Networks, Relaxation Labeling, Spectral Decompositions, and Graph Kernels
have been reported.

Artificial Neural Networks. One class of error-tolerant graph matching
methods employs artificial neural networks. In two seminal papers [24, 81] it
is shown that neural networks can be used to classify directed acyclic graphs.
The algorithms are based on an energy minimization framework, and use some
kind of Hopfield network [84]. Hopfield networks consist of a set of neurons
connected by synapses such that, upon activation of the network, the neuron
output is fed back into the network. By means of an iterative learning pro-
cedure the given energy criterion is minimized. Similar to the approach of
relaxation labeling (see below), compatibility coefficients are used to evaluate
whether two nodes or edges constitute a successful match.

In [83] the optimization procedure is stabilized by means of a Potts MFT
network. In [85] a self-organizing Hopfield network is introduced that learns
most of the network parameters and eliminates the need for specifying them a
priori. In [52, 72] the graph neural network is crucially extended such that also
undirected and acyclic graphs can be processed. The general idea is to repre-
sent the nodes of a graph in an encoding network. In this encoding network

230 MANAGING AND MINING GRAPH DATA

local transition functions and local output functions are employed, expressing
the dependency of a node on its neighborhood and describing how the output
is produced, respectively. As both functions are implemented by feedforward
neural networks, the encoding network can be interpreted as a recurrent neural
network.

Further examples of graph matching based on artificial neural networks can
be found in [37, 73, 101]

Relaxation Labeling. Another class of error-tolerant graph matching
methods employs relaxation labeling techniques. The basic idea of this partic-
ular approach is to formulate the graph matching problem as a labeling prob-
lem. Each node of one graph is to be assigned to one label out of a discrete
set of possible labels, specifying a matching node of the other graph. Dur-
ing the matching process, Gaussian probability distributions are used to model
compatibility coefficients measuring how suitable each candidate label is. The
initial labeling, which is based on the node attributes, node connectivity, and
other information available, is then refined in an iterative procedure until a suf-
ficiently accurate labeling, i.e. a matching of two graphs, is found. Based on
the pioneering work presented in [22], the idea of relaxation labeling has been
refined in several contributions. In [30, 41] the probabilistic framework for
relaxation labeling is endowed with a theoretical foundation. The main draw-
back of the initial formulation of this technique, viz. the fact that node and
edge labels are used only in the initialization of the matching process, is over-
come in [14]. A significant extension of the framework is introduced in [97]
where a Bayesian consistency measure is adapted to derive a graph distance.
In [35] this method is further improved by taking also edge labels into account
in the evaluation of the consistency measure. The concept of Bayesian graph
edit distance, which in fact builds up on the idea of probabilistic relaxation, is
presented in [54]. The concept has also been successfully applied to special
kinds of graphs, such as trees [87].

Spectral Methods. Spectral methods build a further class of graph match-
ing procedures [13, 47, 70, 78, 90, 98]. The general idea of this approach is
based on the following observation. The eigenvalues and the eigenvectors of
the adjacency or Laplacian matrix of a graph are invariant with respect to node
permutation. Hence, if two graphs are isomorphic, their structural matrices
will have the same eigendecomposition. The converse, i.e. deducing from the
equality of eigendecompositions to graph isomorphism, is not true in general.
However, by representing the underlying graphs by means of the eigendecom-
position of their structural matrix, the matching process of the graphs can be
conducted on some features derived from their eigendecomposition. The main
problem of spectral methods is that they are rather sensitive towards structural

Exact and Inexact Graph Matching: Methodology and Applications 231

errors, such as missing or spurious nodes. Moreover, most of these methods
are purely structural, in the sense that they are only applicable to unlabeled
graphs, or they allow only severely constrained label alphabets.

Graph Kernel. Kernel methods were originally developed for vectorial
representations, but the kernel framework can be extended to graphs in a very
natural way. A number of graph kernels have been designed for graph match-
ing [26, 57]. A seminal contribution is the work on convolution kernels, which
provides a general framework for dealing with complex objects that consist
of simpler parts [32, 95]. Convolution kernels infer the similarity of complex
objects from the similarity of their parts.

A second class of graph kernels is based on the analysis of random walks in
graphs. These kernels measure the similarity of two graphs by the number of
random walks in both graphs that have all or some labels in common [5, 27].
In [27] an important result is reported. It is shown that the number of matching
walks in two graphs can be computed by means of the product graph of two
graphs, without the need to explicitly enumerate the walks. In order to han-
dle continuous labels the random walk kernel has been extended in [5]. This
extension allows one to also take non-identically labeled walks into account.

A third class of graph kernels is given by diffusion kernels. The kernels of
this class are defined with respect to a base similarity measure which is used to
construct a valid kernel matrix [42, 79, 92]. This base similarity measure only
needs to satisfy the condition of symmetry and can be defined for any kind of
objects.

Miscellaneous Methods. Several other error-tolerant graph matching
methods have been proposed in the literature, for instance, graph matching
based on the Expectation Maximization algorithm [46], on replicator equa-
tions [61], and on graduated assignment [28]. Random walks in graphs [29,
69], approximate least-squares and interpolation theory algorithms [91], and
random graphs [99] have also been employed for error-tolerant graph match-
ing.

5. Graph Matching for Data Mining and Information
Retrieval

The use of graphs and graph matching has become a promising approach in
data mining and related areas [16]. In fact, querying graph databases has a long
tradition and dates back to the time when the first algorithms for subgraph iso-
morphism detection became available. Yet, the use of conventional subgraph
isomorphism in graph based data mining implicates severe limitations. First
of all, the underlying database graph often includes a rather large number of
attributes, some of which might be irrelevant for a particular query. The second

232 MANAGING AND MINING GRAPH DATA

person(Ina, Rangel,
rangel@mail.com)

e-mail(Slides,
10/4/00, 2K)

person(John, Arnold,
arnold@mail.com)

(a) Query graph

person(Ina, Rangel,
-)

e-mail(X, Y, -)

person(John, Arnold,
arnold@mail.com)

(b) Query graph with variables and don’t care
symbols

person(Ina,
rangel@mail.com)

e-mail(Slides,
10/4/00, 2K)

person(John, Arnold,
arnold@mail.com)

person(Jennifer, Fraser,
fraser@mail.com)

e-mail(Paper,
11/4/00, 5K)

e-mail(Deadline,
8/4/00, 1K)

(c) Database graph

Figure 7.7. Query and database graphs.

restriction arises from the limited answer format provided by conventional sub-
graph isomorphism which is only able to check whether or not a query graph
is embedded in a larger database graph. Thirdly, subgraph isomorphism in its
original mode does not allow constraints that may be imposed on the attributes
of a query to model restrictions or dependencies.

The generalized subgraph isomorphism retrieval procedure described in [6]
overcomes these three restrictions. First, the approach offers the possibility to
mask out attributes in queries. To this end, don’t care values are introduced for
attributes that are irrelevant. Secondly, to make the retrieval of more specific
information from the database graph possible than just a binary decision yes
or no, variables are used. By means of these variables, one is able to retrieve
values of specific attributes from the database graph. Thirdly, the concept of
constrained variables, for example, variables that can assume only values from
a certain interval, allows one to define more specific queries.

The approach to knowledge mining and information retrieval proposed
in [6] is based on the idea of specifying a query by means of a query graph,
which can be used to extract information from a large database graph. In con-
trast with Definition 7.1, the graphs employed are defined in a more general
way. Rather than using just a single label, each node in a graph is labeled by
a type and some attributes. The same accounts for the edges. In Fig. 7.7 (a)
an example of a query graph is shown. In this illustration nodes are of the
type person and labeled with the person’s first and second name, and e-mail
address. Edges are of the type e-mail and labeled with the e-mail’s subject, the
date, and the size. Note that in general there may occur nodes as well as edges
of different type in the same graph.

Exact and Inexact Graph Matching: Methodology and Applications 233

Query graphs are more general than common graphs in the sense that don’t
care symbol and variables may occur as the values of attributes on the nodes
and edges. The purpose of the variables is to define those attributes whose
values are to be returned as an answer to a query (we will come back to this
point later). In Fig. 7.7 (b) an example of a query graph with variables (X,Y)
and don’t care symbols (−) is given. According to this query, we are partic-
ularly interested in the subject (X) and the date (Y) of an e-mail sent from
John Arnold to Ina Rangel. As we do not care about the size of the e-mail and
we do not know the e-mail address of Ina Rangel, two don’t care symbols are
used. Variables may also occur in a query because they may be used to express
constraints on one or several attribute values. A constraint on a set of variables
occurring in a query graph is a condition on one or several variables that eval-
uates to true or false if we assign a concrete attribute value to each variable.
For instance, the query in Fig. 7.7 (b) can be augmented by the constraint that
the e-mail in question was sent between October 1 and October 3 (formally
9/31/00 < Y < 10/4/00).

Once the query graph has been constructed by the user, it is matched against
a database graph. The process of matching a query graph to a database graph
essentially means that we want to find out whether there exists a subgraph
isomorphism from the query to the database graph. Obviously, as the query
graph may include don’t care symbols and variables, we need a more general
notion of subgraph isomorphism than the one provided in Definition 7.4. Such
a generalized subgraph isomorphism between a query and a database graph is
referred to as a match, i.e., if a query graph q matches a database graph G, we
call the injective function f a match between q and G. Note that for given q
and G and a given set of constraints over the variables in q, there can be zero,
one, or more than one matches.

For a match we require each edge of the query graph being included in the
database graph. A node, u, can be mapped, via injective function f , only
to a node of the same type. If the (type, attribute)-pair of a node u of the
query graph includes an attribute value xi, then it is required that the same
value occur at the corresponding position in the (type, attribute)-pair of the
node f(u) in the database graph. Don’t care symbols occurring in the (type,
attribute)-pair of a node u will match any attribute value at the corresponding
position in the (type, attribute)-pair of node f(u). Similarly, unconstrained
variables match any attribute value at their corresponding position in f(u). In
case there exist constraints on a variable in the query graph, the attribute values
at the corresponding positions in f(u) must satisfy these constraints.

By means of variables we indicate which attribute values are to be returned
by our knowledge mining system as an answer to a query. Therefore, the an-
swer to a query can be no, if there is no such structure as the query graph
contained as a substructure in the database graph, or yes if the query graph

234 MANAGING AND MINING GRAPH DATA

exists (at least once) as a substructure in the database graph and the query
graph does not contain any answer variables. In the case where answer vari-
ables are defined in the query graph and one or several matches are found an
individual answer is generated for each match fj . An answer is of the form
X1 = x′1, . . . ,Xn = x′n where X1, . . . ,Xn are the answer variables occurring
in the query and x′i are the values of the attributes in the database graph that
correspond to the variables Xi under match fj . Obviously, there is a match
between the query graph in Fig. 7.7 (b) and the database graph in Fig. 7.7 (c).
Hence, the variables are linked by X = Slides and Y = 10/4/00.

The proposed system described so far does not return any information from
the database graph whenever no match is found. However, in some cases this
behavior may be undesirable. Let us consider, for instance, a query graph that
contains spurious attribute values or edges which do not occur in the underly-
ing database graph. The graph matching framework presented so far merely
returns the answer no as it finds no match in the database graph. However,
we can easily endow the graph isomorphism framework with a certain toler-
ance to errors. To this end one can use graph edit distance. In cases when no
perfect match of the query graph to the database graph is possible, the query
is minimally modified such that a match becomes possible. The well-founded
possibility of augmenting the data mining framework with some tolerance to
errors definitely accounts for the power of this particular procedure based on
graph matching.

In [6] an algorithmic procedure is described for finding matches between a
query q and a database graph G. This procedure checks two given graphs, q
and G, whether there exists a match from q to G by constructing all possible
mappings f : V1 → V2. This matching algorithm is of exponential complexity.
However, as the underlying query graphs are typically limited in size and due
to the fact that the attributes and constraints limit the potential search space for
a match significantly, the computational complexity of this algorithm is usually
still manageable, as shown in the experiments reported in [6].

For applications where large query graphs occur a novel approximate ap-
proach for querying graph databases has been introduced in [86]. This algo-
rithm proceeds as follows. First, a number of important nodes from the query
graph are selected. The importance of the nodes can be measured, for in-
stance, by their degree. Using the label, the degree, and information about a
node’s local neighborhood, the most important nodes are matched against the
database graph nodes. Clearly, by means of this procedure each node from the
query graph may be mapped to several database nodes and vice versa. Given a
quality criterion for the individual node mappings, a bipartite optimization pro-
cedure can be applied resulting in a one-to-one correspondence between query
nodes and database nodes. The node pairs returned by the bipartite matching
procedure serve us as anchor points of the complete matching. Based on these

Exact and Inexact Graph Matching: Methodology and Applications 235

anchor points, the initial graph match is iteratively extended. For each node
that has already been mapped to a database node, its nearby nodes (nodes that
are at most two hops away) are tried to be mapped to database nodes. This
extension is repeated until no more nodes can be added to the match. Clearly,
in contrast with the method described in [6] this procedure is suboptimal in
the sense of finding subgraphs in the database graph that are similar, but not
necessarily equal, to the query graph. In exchange, a graph matching frame-
work applicable to very large query graphs (hundreds to thousands of nodes
and edges) is established.

6. Vector Space Embeddings of Graphs via Graph
Matching

Classification and clustering of objects are common tasks in intelligent in-
formation processing. Classification refers to the process of assigning an un-
known input object to one out of a given set of classes, while clustering refers
to the process of dividing a set of given objects into homogeneous groups.
A vast number of algorithms for classification [19] and clustering [100] have
been proposed in the literature. Almost all of these algorithms have been de-
signed for object representations given in terms of feature vectors. This means
that there exists a severe lack of algorithmic tools for graph classification and
clustering. This lack is mainly due to the fact that some of the basic opera-
tions needed in classification as well as clustering are not available for graphs.
In other words, while it is possible to define graph dissimilarity measures via
specific graph matching procedures, this is often not sufficient for standard al-
gorithms in intelligent information processing. In fact, graph distance based
pattern recognition is basically limited to nearest-neighbor classification and
k-medians clustering [57].

A promising direction to overcome this severe limitation is graph embed-
ding into vector spaces. Basically, such an embedding of graphs establishes
access to the rich repository of algorithmic tools developed for vectorial repre-
sentations. In [47], for instance, features derived from the eigendecomposition
of graphs are studied. Another idea deals with string edit distance applied to
the eigensystem of graphs [96]. This procedure results in distances between
graphs which are used to embed the graphs into a vector space by means of
multidimensional scaling. In [98] the authors turn to the spectral decomposi-
tion of the Laplacian matrix of a graph. They show how the elements of the
spectral matrix of the Laplacian can be used to construct symmetric polyno-
mials. In order to encode graphs as vectors, the coefficients of these polyno-
mials are used as graph features. Another approach for graph embedding has
been proposed in [70]. The authors use the relationship between the Laplace-

236 MANAGING AND MINING GRAPH DATA

Beltrami operator and the graph Laplacian to embed a graph in a Riemannian
manifold.

The present section considers a new class of graph embedding procedures
which are based on dissimilarity representation and graph matching. Originally
the idea was proposed in [60] in order to map feature vectors into dissimilar-
ity spaces. Later it was generalized to string based object representation [82]
and to the domain of graphs [62]. Graphs from a given problem domain are
mapped to vector spaces by computing the distance to some predefined proto-
type graphs. The resulting distances can be used as a vectorial representation
of the considered graph.

Formally, assume we have a set of sample graphs, T = {g, . . . , gN} from
some graph domain G and an arbitrary graph dissimilarity measure d : G ×
G → ℝ. Note that T can be any kind of graph set. However, for the sake of
convenience we define T as a training set of given graphs. After selecting a set
of prototypical graphs P ⊆ T , we compute the dissimilarity of a given input
graph g to each prototype graph pi ∈ P. Note that g can be an element of
T or any other graph set S . Given n prototypes, i.e. P = {p1, . . . , pn}, this
procedure leads to n dissimilarities, d1 = d(g, p1), . . . , dn = d(g, pn), which
can be arranged in an n-dimensional vector (d1, . . . , dn).

Definition 7.8 (Graph Embedding). Let us assume a graph domain G is
given. If T = {g, . . . , gN} ⊆ G is a training set with N graphs and
P = {p1, . . . , pn} ⊆ T is a prototype set with n graphs, the mapping

'P
n : G → ℝn

is defined as the function

'P
n (g) = (d(g, p1), . . . , d(g, pn)),

where d(g, pi) is any graph dissimilarity measure between graph g and the i-th
prototype graph.

Obviously, by means of this definition we obtain a vector space where each
axis corresponds to a prototype graph pi ∈ P and the coordinate values of an
embedded graph g are the distances of g to the elements in P . In this way
we can transform any graph g from the training set T as well as any other
graph set S (for instance a validation or a test set of a classification problem),
into a vector of real numbers. In [65] this procedure is further generalized
towards Lipschitz embeddings [33]. Rather than singleton reference sets (i.e.
prototypes p1, . . . , pn), sets of prototypes P1, . . . ,Pn are used for embedding
the graphs via dissimilarities.

The embedding procedure proposed in [62] makes use of graph edit dis-
tance. Note, however, that any other graph dissimilarity measure can be used

Exact and Inexact Graph Matching: Methodology and Applications 237

as well. Yet, using graph edit distance allows us to deal with a large class
of graphs (directed, undirected, unlabeled, node and/or edge labels from any
finite or infinite domain). Furthermore, a high degree of robustness against
various graph distortions can be expected. Hence, in contrast with other graph
embedding techniques, where sometimes restrictions on the type of underly-
ing graph are imposed (e.g. [47, 70, 98]), this approach is distinguished by
a high degree of flexibility in the graph definition. Since the computation of
graph edit distance is exponential in the number of nodes for general graphs,
the complexity of this graph embedding is exponential as well. However, as
mentioned in Sect. 4, there exist efficient approximation algorithms for graph
edit distance computation with cubic time complexity (e.g. the procedure de-
scribed in [67]). Consequently, given n predefined prototypes the embedding
of one particular graph is established by means of n distance computations
with polynomial time.

Dissimilarity embeddings are closely related to kernel methods [75, 77]. In
the kernel approach objects are described by means of pairwise kernel func-
tions, while in the dissimilarity approach they are described by pairwise dis-
similarities. However, there is one fundamental difference between kernels and
dissimilarity embeddings. In the former method, the kernel values are inter-
preted as dot products in some implicitly existing feature space. By means of
kernel machines, the underlying algorithm is eventually carried out in this ker-
nel feature space. In the latter approach, the set of dissimilarities is interpreted
as a novel vectorial description of the object under consideration. Hence, no
implicit feature space, but an explicit dissimilarity space is obtained.

Obviously, the embedding paradigm established by mapping 'P
n : G → ℝn

constitutes a foundation for a novel class of graph kernels. One can define a
valid graph kernel � based on the graph embedding by computing the standard
dot product of two graph maps in the resulting vector space. Formally,

�⟨⟩(g1, g2) = ⟨'P
n (g1), '

P
n (g2)⟩ .

Note that this approach is very similar to the empirical kernel map described
in [88] where general similarity measures are turned into kernel functions. Of
course, not only the standard dot product can be used but any valid kernel
function defined for vectors. For instance an RBF kernel function

�RBF (g1, g2) = exp
(
−∣∣'P

n (g1)− 'P
n (g2)∣∣2

)

with > 0 can thus be applied to graph maps.
The selection of the n prototypes P = {p1, . . . , pn} is a critical issue since

not only the prototypes pi ∈ P themselves but also their number n affect the
resulting graph mapping 'P

n (⋅) and thus the performance of the corresponding
pattern recognition algorithm. A good selection of n prototypes seems to be

238 MANAGING AND MINING GRAPH DATA

crucial to succeed with the classification or clustering algorithm in the embed-
ding vector space. A first and very simple idea might be to use all available
training graphs from T as prototypes. Yet, two severe shortcomings arise with
such a plain approach. First, the dimensionality of the resulting vector space
is equal to the size N of the training set T . Consequently, if the training set
is large, the dimensionality of the feature vectors will be high, which possibly
leads to overfitting effects and compromises computational efficiency. Sec-
ondly, the presence of similar prototypes as well as outlier graphs in the train-
ing set T is most likely. Therefore, redundant, noisy, or irrelevant information
will be captured in the graph maps which in turn may harm the performance of
the underlying algorithms.

The selection of prototypes for graph embedding has been addressed in var-
ious papers [62, 64, 66, 68]. In [62], for instance, a number of prototype
selection methods are discussed. These selection strategies use some heuris-
tics based on the underlying dissimilarities in the original graph domain. The
basic idea of these approaches is to select prototypes from T that reflect the
distribution of the training set T or cover a predefined region of T in the best
possible way.

A severe shortcoming of such heuristic prototype selection strategies is that
the dimensionality of the embedding space has to be determined by the user.
In other words, the number of prototypes to be selected by a certain prototype
selection algorithm has to be experimentally defined by means of the target
algorithm on a validation set. In order to overcome this limitation, in [68],
various prototype reduction schemes [3] are adopted for the task of graph em-
bedding. In contrast with the heuristic prototype selection strategies, with these
procedures the number of prototypes n, i.e. the resulting dimensionality of the
vector space, is defined by an algorithmic procedure.

Another solution to the problem of noisy and redundant vectors with too
high dimensionality is offered by the following procedure. Rather than select-
ing the prototypes beforehand, the embedding is carried out first and then the
problem of prototype selection is reduced to a feature subset selection prob-
lem. That is, for graph embedding all available elements from the training set
are used as prototypes, i.e. we define P = T . Next, a huge number of differ-
ent feature selection strategies [23, 36, 39] can be applied to the resulting large
scale vectors eliminating redundancies and noise, finding good features, and
reducing the dimensionality. In [66], for instance, principal component analy-
sis (PCA) [39] and Fisher linear discriminant analysis (LDA) [23] are applied
to the vector space embedded graphs. Rather than traditional PCA, in [64],
kernel PCA [76] is used for feature transformation.

Regardless of the strategy actually employed for the task of prototype se-
lection, it has been experimentally shown that the general graph embedding
procedure proposed in [62] has great potential. Its performance in various

Exact and Inexact Graph Matching: Methodology and Applications 239

graph classification and clustering problems was evaluated and compared to
alternative methods, including various graph kernels [62–66]. The data sets
used in the experimental evaluation are publicly available1.

7. Conclusions

Due to the ability of graphs to represent properties of entities and binary
relations at the same time, a growing interest in graph-based object repre-
sentation in intelligent information processing can be observed. In the fields
of bioinformatics and chemoinformatics, for instance, graph based represen-
tations have been intensively used [5, 48]. Another field of research where
graphs have been studied with emerging interest is that of web content min-
ing [74]. Image classification is a further area of research where graph based
representation draws the attention [31]. Finally, we like to mention computer
network analysis, where graphs have been used to detect network anomalies
and predict abnormal events [9].

The concept of similarity or dissimilarity is an important issue in many
application domains. In case where graphs are employed as representation
formalism, various procedures for evaluating proximity, i.e. similarity or dis-
similarity, of graphs have been proposed [15]. The process of evaluating the
similarity of two graphs is commonly referred to as graph matching. Graph
matching has successfully been applied to various problems in pattern recog-
nition, computer vision, machine learning, data mining, and related fields.

In the case of exact graph matching, the graph extraction process is assumed
to be structurally flawless, i.e. the conversion of the underlying data into graphs
always proceeds without errors. Otherwise, if distortions are present, graph
and subgraph isomorphism detection are rather unsuitable, which seriously re-
stricts the applicability of exact graph matching algorithms.

Inexact methods, sometimes also referred to as error-tolerant methods, are
characterized by their ability to cope with errors, or non-corresponding parts,
in terms of structure and labels of graphs. Hence, in order for two graphs to
be positively matched, they need not be identical at all, but only similar. The
notion of graph similarity depends on the error-tolerant matching method that
is to be applied.

In this chapter we have given an overview of both exact and inexact graph
matching. The emphasis has been on the fundamental concepts and on two
recent applications. In the first application, it is shown how the concept of
subgraph isomorphism can be extended, such that a powerful and flexible in-
formation retrieval framework is established. This framework can be used to
retrieve information from large database graphs by means of query graphs. In

1(www.iam.unibe.ch/fki/databases/iam-graph-database)

240 MANAGING AND MINING GRAPH DATA

a further application it is shown how graphs can be embedded in vector spaces
by means of dissimilarities derived from graph edit distance or some other dis-
similarity measure. The crucial benefit of such a graph embedding is that it
instantly makes available all algorithmic tools originally developed for vecto-
rial object descriptions.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of
Computer Algorithms. Addison Wesley, 1974.

[2] R. Ambauen, S. Fischer, and H. Bunke. Graph edit distance with node
splitting and merging and its application to diatom identification. In
E. Hancock and M. Vento, editors, Proc. 4th Int. Workshop on Graph
Based Representations in Pattern Recognition, LNCS 2726, pages 95–106.
Springer, 2003.

[3] J.C. Bezdek and L. Kuncheva. Nearest prototype classifier designs: An
experimental study. Int. Journal of Intelligent Systems, 16(12):1445–1473,
2001.

[4] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2008.

[5] K. Borgwardt, C. Ong, S. Sch-onauer, S. Vishwanathan, A. Smola, and H.-
P. Kriegel. Protein function prediction via graph kernels. Bioinformatics,
21(1):47–56, 2005.

[6] A. Br-ugger, H. Bunke, P. Dickinson, and K Riesen. Generalized graph
matching for data mining and information retrieval. In P. Perner, editor,
Advances in Data Mining. Medical Applications, E-Commerce, Marketing,
and Theoretical Aspects, LNCS 5077, pages 298–312. Springer, 2008.

[7] H. Bunke. On a relation between graph edit distance and maximum com-
mon subgraph. Pattern Recognition Letters, 18:689–694, 1997.

[8] H. Bunke and G. Allermann. Inexact graph matching for structural pattern
recognition. Pattern Recognition Letters, 1:245–253, 1983.

[9] H. Bunke, P.J. Dickinson, M. Kraetzl, and W.D. Wallis. A Graph-Theoretic
Approach to Enterprise Network Dynamics, volume 24 of Progress in
Computer Science and Applied Logic (PCS). Birkh-auser, 2007.

[10] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento. A com-
parison of algorithms for maximum common subgraph on randomly con-
nected graphs. In T. Caelli, A. Amin, R. Duin, M. Kamel, and D. de Ridder,
editors, Structural, Syntactic, and Statistical Pattern Recognition, pages
85–106. Springer, 2002. LNCS 2396.

[11] H. Bunke, X. Jiang, and A. Kandel. On the minimum common super-
graph of two graphs. Computing, 65(1):13–25, 2000.

Exact and Inexact Graph Matching: Methodology and Applications 241

[12] H. Bunke and K. Shearer. A graph distance metric based on the maximal
common subgraph. Pattern Recognition Letters, 19(3):255–259, 1998.

[13] T. Caelli and S. Kosinov. Inexact graph matching using eigen-subspace
projection clustering. Int. Journal of Pattern Recognition and Artificial
Intelligence, 18(3):329–355, 2004.

[14] W.J. Christmas, J. Kittler, and M. Petrou. Structural matching in com-
puter vision using probabilistic relaxation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(8):749–764, 1995.

[15] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph
matching in pattern recognition. Int. Journal of Pattern Recognition and
Artificial Intelligence, 18(3):265–298, 2004.

[16] D. Cook and L. Holder, editors. Mining Graph Data. Wiley-Interscience,
2007.

[17] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph iso-
morphism algorithm for matching large graphs. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 26(20):1367–1372, 2004.

[18] P.J. Dickinson, H. Bunke, A. Dadej, and M. Kraetzl. Matching graphs
with unique node labels. Pattern Analysis and Applications, 7(3):243–254,
2004.

[19] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley-
Interscience, 2nd edition, 2000.

[20] M.A. Eshera and K.S. Fu. A graph distance measure for image analysis.
IEEE Transactions on Systems, Man, and Cybernetics (Part B), 14(3):398–
408, 1984.

[21] M.-L. Fernandez and G. Valiente. A graph distance metric combining
maximum common subgraph and minimum common supergraph. Pattern
Recognition Letters, 22(6–7):753–758, 2001.

[22] M.A. Fischler and R.A. Elschlager. The representation and matching of
pictorial structures. IEEE Trans. on Computers, 22(1):67–92, 1973.

[23] R.A. Fisher. The statistical utilization of multiple measurements. In An-
nals of Eugenics, volume 8, pages 376–386, 1938.

[24] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive
processing of data structures. IEEE Transactions on Neural Networks,
9(5):768–786, 1998.

[25] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman and Co., 1979.

[26] T. G-artner. Kernels for Structured Data. World Scientific, 2008.

[27] T. G-artner, P. Flach, and S. Wrobel. On graph kernels: Hardness results
and efficient alternatives. In B. Sch-olkopf and M. Warmuth, editors, Proc.
16th Annual Conf. on Learning Theory, pages 129–143, 2003.

242 MANAGING AND MINING GRAPH DATA

[28] S. Gold and A. Rangarajan. A graduated assignment algorithm for graph
matching. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 18(4):377–388, 1996.

[29] M. Gori, M. Maggini, and L. Sarti. Exact and approximate graph match-
ing using random walks. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 27(7):1100–1111, 2005.

[30] E.R. Hancock and J. Kittler. Discrete relaxation. Pattern Recognition,
23(7):711–733, 1990.

[31] Z. Harchaoui and F. Bach. Image classification with segmentation graph
kernels. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8, 2007.

[32] D. Haussler. Convolution kernels on discrete structures. Technical Report
UCSC-CRL-99-10, University of California, Santa Cruz, 1999.

[33] G. Hjaltason and H. Samet. Properties of embedding methods for sim-
ilarity searching in metric spaces. IEEE Trans. on Pattern Analysis ans
Machine Intelligence, 25(5):530–549, 2003.

[34] J.E. Hopcroft and J. Wong. Linear time algorithm for isomorphism of
planar graphs. In Proc. 6th Annual ACM Symposium on Theory of Com-
puting, pages 172–184, 1974.

[35] B. Huet and E.R. Hancock. Shape recognition from large image libraries
by inexact graph matching. Pattern Recognition Letters, 20(11–13):1259–
1269, 1999.

[36] A. Jain and D. Zongker. Feature selection: Evaluation, application, and
small sample performance. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 19(2):153–158, 1997.

[37] B. Jain and F. Wysotzki. Automorphism partitioning with neural net-
works. Neural Processing Letters, 17(2):205–215, 2003.

[38] X. Jiang and H. Bunke. Optimal quadratic-time isomorphism of ordered
graphs. Pattern Recognition, 32(17):1273–1283, 1999.

[39] I. Jolliffe. Principal Component Analysis. Springer, 1986.

[40] D. Justice and A. Hero. A binary linear programming formulation of
the graph edit distance. IEEE Trans. on Pattern Analysis ans Machine
Intelligence, 28(8):1200–1214, 2006.

[41] J. Kittler and E.R. Hancock. Combining evidence in probabilistic relax-
ation. Int. Journal of Pattern Recognition and Art. Intelligence, 3(1):29–
51, 1989.

[42] R.I. Kondor and J. Lafferty. Diffusion kernels on graphs and other dis-
crete input spaces. In Proc. 19th Int. Conf. on Machine Learning, pages
315–322, 2002.

Exact and Inexact Graph Matching: Methodology and Applications 243

[43] J. Larrosa and G. Valiente. Constraint satisfaction algorithms for
graph pattern matching. Mathematical Structures in Computer Science,
12(4):403–422, 2002.

[44] G. Levi. A note on the derivation of maximal common subgraphs of two
directed or undirected graphs. Calcolo, 9:341–354, 1972.

[45] E.M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. Journal of Computer and Systems Sciences, 25:42–65,
1982.

[46] B. Luo and E. Hancock. Structural graph matching using the EM algo-
rithm and singular value decomposition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(10):1120–1136, 2001.

[47] B. Luo, R. Wilson, and E.R. Hancock. Spectral embedding of graphs.
Pattern Recognition, 36(10):2213–2223, 2003.

[48] P. Mah«e, N. Ueda, and T. Akutsu. Graph kernels for molecular structures
– activity relationship analysis with support vector machines. Journal of
Chemical Information and Modeling, 45(4):939–951, 2005.

[49] J.J. McGregor. Backtrack search algorithms and the maximal common
subgraph problem. Software Practice and Experience, 12:23–34, 1982.

[50] B.D. McKay. Practical graph isomorphism. Congressus Numerantium,
30:45–87, 1981.

[51] B.T. Messmer and H. Bunke. A decision tree approach to graph and sub-
graph isomorphism detection. Pattern Recognition, 32:1979–1998, 1008.

[52] A. Micheli. Neural network for graphs: A contextual constructive ap-
proach. IEEE Transactions on Neural Networks, 20(3):498–511, 2009.

[53] J. Munkres. Algorithms for the assignment and transportation problems.
In Journal of the Society for Industrial and Applied Mathematics, vol-
ume 5, pages 32–38, March 1957.

[54] R. Myers, R.C. Wilson, and E.R. Hancock. Bayesian graph edit dis-
tance. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(6):628–635, 2000.

[55] M. Neuhaus and H. Bunke. Self-organizing maps for learning the edit
costs in graph matching. IEEE Transactions on Systems, Man, and Cyber-
netics (Part B), 35(3):503–514, 2005.

[56] M. Neuhaus and H. Bunke. Automatic learning of cost functions for
graph edit distance. Information Sciences, 177(1):239–247, 2007.

[57] M. Neuhaus and H. Bunke. Bridging the Gap Between Graph Edit Dis-
tance and Kernel Machines. World Scientific, 2007.

[58] M. Neuhaus and H. Bunke. A quadratic programming approach to the
graph edit distance problem. In F. Escolano and M. Vento, editors, Proc.

244 MANAGING AND MINING GRAPH DATA

6th Int. Workshop on Graph Based Representations in Pattern Recognition,
LNCS 4538, pages 92–102, 2007.

[59] M. Neuhaus, K. Riesen, and H. Bunke. Fast suboptimal algorithms for the
computation of graph edit distance. In Dit-Yan Yeung, J.T. Kwok, A. Fred,
F. Roli, and D. de Ridder, editors, Proc. 11.th int. Workshop on Strucural
and Syntactic Pattern Recognition, LNCS 4109, pages 163–172. Springer,
2006.

[60] E. Pekalska and R. Duin. The Dissimilarity Representation for Pattern
Recognition: Foundations and Applications. World Scientific, 2005.

[61] M. Pelillo. Replicator equations, maximal cliques, and graph isomor-
phism. Neural Computation, 11(8):1933–1955, 1999.

[62] K. Riesen and H. Bunke. Graph classification based on vector space
embedding. Int. Journal of Pattern Recognition and Artificial Intelligence,
2008. accepted for publication.

[63] K. Riesen and H. Bunke. Kernel k-means clustering applied to vector
space embeddings of graphs. In L. Prevost, S. Marinai, and F. Schwenker,
editors, Proc. 3rd IAPR Workshop Artificial Neural Networks in Pattern
Recognition, LNAI 5064, pages 24–35. Springer, 2008.

[64] K. Riesen and H. Bunke. Non-linear transformations of vector space
embedded graphs. In A. Juan-Ciscar and G. Sanchez-Albaladejo, editors,
Pattern Recognition in Information Systems, pages 173–186, 2008.

[65] K. Riesen and H. Bunke. On Lipschitz embeddings of graphs. In
I. Lovrek, R.J. Howlett, and L.C. Jain, editors, Proc. 12th International
Conference, Knowledge-Based Intelligent Information and Engineering
Systems, Part I, LNAI 5177, pages 131–140. Springer, 2008.

[66] K. Riesen and H. Bunke. Reducing the dimensionality of dissimilarity
space embedding graph kernels. Engineering Applications of Artificial
Intelligence, 22(1):48–56, 2008.

[67] K. Riesen and H. Bunke. Approximate graph edit distance computa-
tion by means of bipartite graph matching. Image and Vision Computing,
27(4):950–959, 2009.

[68] K. Riesen and H. Bunke. Dissimilarity based vector space embedding
of graphs using prototype reduction schemes. Accepted for publication in
Machine Learning and Data Mining in Pattern Recognition, 2009.

[69] A. Robles-Kelly and E.R. Hancock. String edit distance, random walks
and graph matching. Int. Journal of Pattern Recognition and Artificial
Intelligence, 18(3):315–327, 2004.

[70] A. Robles-Kelly and E.R. Hancock. A Riemannian approach to graph
embedding. Pattern Recognition, 40:1024–1056, 2007.

Exact and Inexact Graph Matching: Methodology and Applications 245

[71] A. Sanfeliu and K.S. Fu. A distance measure between attributed relational
graphs for pattern recognition. IEEE Transactions on Systems, Man, and
Cybernetics (Part B), 13(3):353–363, 1983.

[72] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G. Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks,
20(1):61–80, 2009.

[73] K. Sch-adler and F. Wysotzki. Comparing structures using a Hopfield-
style neural network. Applied Intelligence, 11:15–30, 1999.

[74] A. Schenker, H. Bunke, M. Last, and A. Kandel. Graph-Theoretic Tech-
niques for Web Content Mining. World Scientific, 2005.

[75] B. Sch-olkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

[76] B. Sch-olkopf, A. Smola, and K.-R. M-uller. Nonlinear component analy-
sis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319,
1998.

[77] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[78] A. Shokoufandeh, D. Macrini, S. Dickinson, K. Siddiqi, and S.W. Zucker.
Indexing hierarchical structures using graph spectra. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27(7):1125–1140, 2005.

[79] A. Smola and R. Kondor. Kernels and regularization on graphs. In Proc.
16th. Int. Conf. on Comptuational Learning Theory, pages 144–158, 2003.

[80] S. Sorlin and C. Solnon. Reactive tabu search for measuring graph simi-
larity. In L. Brun and M. Vento, editors, Proc. 5th Int. Worksho on Graph-
based Representations in Pattern Recognition, LNCS 3434, pages 172–
182. Springer, 2005.

[81] A. Sperduti and A. Starita. Supervised neural networks for the classifica-
tion of structures. IEEE Transactions on Neural Networks, 8(3):714–735,
1997.

[82] B. Spillmann, M. Neuhaus, H. Bunke, E. Pekalska, and R. Duin. Trans-
forming strings to vector spaces using prototype selection. In Dit-Yan Ye-
ung, J.T. Kwok, A. Fred, F. Roli, and D. de Ridder, editors, Proc. 11.th int.
Workshop on Strucural and Syntactic Pattern Recognition, LNCS 4109,
pages 287–296. Springer, 2006.

[83] P.N. Suganthan, E.K. Teoh, and D.P. Mital. Pattern recognition by graph
matching using the potts MFT neural networks. Pattern Recognition,
28(7):997–1009, 1995.

[84] P.N. Suganthan, E.K. Teoh, and D.P. Mital. Pattern recognition by ho-
momorphic graph matching using Hopfield neural networks. Image Vision
Computing, 13(1):45–60, 1995.

246 MANAGING AND MINING GRAPH DATA

[85] P.N. Suganthan, E.K. Teoh, and D.P. Mital. Self-organizing Hopfield
network for attributed relational graph matching. Image Vision Computing,
13(1):61–73, 1995.

[86] Y. Tian and J.M. Patel. Tale: A tool for approximate large graph matching.
In IEEE 24th International Conference on Data Engineering, pages 963–
972, 2008.

[87] A. Torsello and E. Hancock. Computing approximate tree edit distance
using relaxation labeling. Pattern Recognition Letters, 24(8):1089–1097,
2003.

[88] K. Tsuda. Support vector classification with asymmetric kernel function.
In M. Verleysen, editor, Proc. 7th European Symposium on Artifical Neural
Netweorks, pages 183–188, 1999.

[89] J.R. Ullmann. An algorithm for subgraph isomorphism. Journal of the
Association for Computing Machinery, 23(1):31–42, 1976.

[90] S. Umeyama. An eigendecomposition approach to weighted graph
matching problems. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 10(5):695–703, 1988.

[91] M.A. van Wyk, T.S. Durrani, and B.J. van Wyk. A RKHS interpolator-
based graph matching algorithm. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(7):988–995, 2003.

[92] J.-P. Vert and M. Kanehisa. Graph-driven features extraction from mi-
croarray data using diffusion kernels and kernel CCA. In Advances in Neu-
ral Information Processing Systems, volume 15, pages 1425–1432. MIT
Press, 2003.

[93] R.A. Wagner and M.J. Fischer. The string-to-string correction prob-
lem. Journal of the Association for Computing Machinery, 21(1):168–173,
1974.

[94] W.D. Wallis, P. Shoubridge, M. Kraetzl, and D. Ray. Graph distances
using graph union. Pattern Recognition Letters, 22(6):701–704, 2001.

[95] C. Watkins. Dynamic alignment kernels. In A. Smola, P.L. Bartlett,
B. Sch-olkopf, and D. Schuurmans, editors, Advances in Large Margin
Classifiers, pages 39–50. MIT Press, 2000.

[96] R. Wilson and E.R. Hancock. Levenshtein distance for graph spectral
features. In J. Kittler, M. Petrou, and M. Nixon, editors, Proc. 17th Int.
Conf. on Pattern Recognition, volume 2, pages 489–492, 2004.

[97] R.C. Wilson and E. Hancock. Structural matching by discrete relax-
ation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(6):634–648, 1997.

Exact and Inexact Graph Matching: Methodology and Applications 247

[98] R.C. Wilson, E.R. Hancock, and B. Luo. Pattern vectors from algebraic
graph theory. IEEE Trans. on Pattern Analysis ans Machine Intelligence,
27(7):1112–1124, 2005.

[99] A.K.C. Wong and M. You. Entropy and distance of random graphs with
application to structural pattern recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 7(5):599–609, 1985.

[100] R. Xu and D. Wunsch. Survey of graph clustering algorithms. IEEE
Transactions on Neural Networks, 16(3):645–678, 2005.

[101] Y. Yao, G.L. Marcialis, M. Pontil, P. Frasconi, and F. Roli. Combining
flat and structured representations for fingerprint classification with recur-
sive neural networks and support vector machines. Pattern Recognition,
36(2):397–406, 2003.

	Chapter 7 EXACT AND INEXACT GRAPH MATCHING:METHODOLOGY AND APPLICATIONS
	1. Introduction
	2. Basic Notations
	3. Exact Graph Matching
	4. Inexact Graph Matching
	4.1 Graph Edit Distance
	4.2 Other Inexact Graph Matching Techniques

	5. Graph Matching for Data Mining and Information Retrieval
	6. Vector Space Embeddings of Graphs via Graph Matching
	7. Conclusions
	References

