
Chapter 6

GRAPH REACHABILITY QUERIES:
A SURVEY

Jeffrey Xu Yu
The Chinese University of Hong Kong, China

yu@se.cuhk.edu.hk

Jiefeng Cheng
The Chinese University of Hong Kong, China

jfcheng@se.cuhk.edu.hk

Abstract There are numerous applications that need to deal with a large graph, including
bioinformatics, social science, link analysis, citation analysis, and collaborative
networks. A fundamental query is to query whether a node is reachable from
another node in a large graph, which is called a reachability query. In this sur-
vey, we discuss several existing approaches to process reachability queries. In
addition, we will discuss how to answer reachability queries with the shortest
distance, and graph pattern matching over a large graph.

Keywords: Graph, Reachability, Coding, Graph Pattern Matching.

1. Introduction

Graph structured data is enjoying an increasing popularity as web technol-
ogy and archiving techniques advance. Numerous emerging applications need
to work with graph-like data due to its expressive power to handle complex re-
lationships among objects. Instances include navigation behavior analysis for
web usage mining [3], web site analysis [22], and biological network analysis
for life science [33]. In addition, RDF allows users to explicitly describe se-
mantic resources in graphs [6]. Querying and analyzing graph structured data
becomes important. As a major standard for representing data on the World-
Wide-Web, XML provides facilities for users to view data as graphs with two

© Springer Science+Business Media, LLC 2010

C.C. Aggarwal and H. Wang (eds.), Managing and Mining Graph Data, 181
Advances in Database Systems 40, DOI 10.1007/978-1-4419-6045-0_6,

182 MANAGING AND MINING GRAPH DATA

different links, the parent-child links (document-internal links) and reference
links (cross-document links), where the cross-document links are supported
by value matching using ID/IDREF in XML. XLink (XML Linking Language)
[19] and XPointer (XML Pointer Language) [20] provide more facilities for
users to manage their complex data as graphs and integrate data effectively.
The dominance of graphs in real-world applications demands new graph data
management so that users can access graph data effectively and efficiently.

Graph reachability (or simply reachability) queries, to test whether there is
a path from a node v to another node u in a large directed graph, have being
studied [1, 24, 17, 28–30, 23, 13, 34, 32, 9, 14, 5, 26, 25, 10] and are deemed
to be a very basic type of graph queries for many applications. Consider a se-
mantic network that represents people as nodes in the graph and relationships
among people as edges in the graph. There are needs to understand whether
two people are related for security reasons [2]. On biological networks, where
nodes are either molecules, or reactions, or physical interactions of living cells,
and edges are interactions among them, there is an important question to “find
all genes whose expressions are directly or indirectly influenced by a given
molecule” [33]. All those questions can be mapped into reachability queries.
The needs of such a reachability query can be also found in XML when two
types of links (document-internal links and cross-document links) are treated
the same. Recently, [8, 12, 35] studied graph matching problem on large
graph data, where nodes in a match are connected by reachability relation-
ships. Reachability queries are so common that fast processing is mandatory.

Reachability Queries: Let G = (V,E) be a large directed graph that has n
nodes and m edges. A reachability queries is denoted as u ↝ v, where u and
v are two nodes in G. Here, u ↝ v returns true if and only if there is a di-
rected path in the directed graph G from u to v. In other words, let TC be the
edge transitive closure of graph G, u ↝ v is true if and only if (u, v) ∈ TC .
We call such a pair (u, v) a connection. Note: TC can be very large for a
large and dense graph G. A reachability query over a directed graph G can be
answered over a corresponding directed acyclic graph (DAG) of the graph G
based on strongly connected components. Two nodes, u and v, are said to be
in a strongly connected component, if and only if both u ↝ v and v ↝ u are
true. And in a strongly connected component, for every two nodes, u and v,
u ↝ v and v ↝ u are true. Given a directed graph G(V,E), its strongly con-
nected components, C1, C2, ⋅ ⋅ ⋅ , can be efficiently identified in O(n+m) time
[18]. A DAG of the graph G, denoted G′, can be constructed as follows. First,
a strongly connected component Ci in G is replaced by a representative node
v in G′. Second, all the edges between the nodes in the strongly connected
component Ci are removed while all incoming edges and outgoing edges of Ci

will be represented as incoming edges and outgoing edges of the representative
node v in G′. A reachability query, u ↝ v, over G can be processed over the

Graph Reachability Queries: A Survey 183

Table 6.1. The Time/Space Complexity of Different Approaches [25]

Query Time Index Construction Time Index size

Transitive Closure [31] O(1) O(nm) O(n2)
Tree+SSPI [8] O(m− n) O(n+m) O(n+m)
GRIPP [32] O(m− n) O(n+m) O(n+m)
Dual-Labeling [34] O(1) O(n+m+ t3) O(n+ t2)
Tree Cover [1] O(log n) O(nm) O(n2)
Chain Cover [9] O(log k) O(n2 + kn

√
k) O(nk)

Path-Tree Cover [26] O(log2 k′) O(mk′) or O(nm) O(nk′)
2-Hop Cover [17] O(m1/2) O(n3 ⋅ ∣TC∣) O(nm1/2)
3-Hop Cover [25] O(log n+ k) O(kn2 ⋅ ∣Con(G)∣) O(nk)

DAG G′ by checking whether the corresponding strongly connected compo-
nent, where v resides, is reachable from the corresponding strongly connected
components, where u resides. In the following, without otherwise specified,
we assume G is a DAG.

There are two possible approaches to process a reachability query, u ↝ v,
in a graph G. It can be processed as to traverse from u to v using breadth- or
depth-first search over the graph G on demand, when a reachability query is
issued. It incurs high cost as O(n + m) time. On the other hand, it can be
processed as to check whether (u, v) exists in the edge transitive closure of the
graphG, TC , by precomputing and maintaining the edge transitive closure TC
on disk. It results in high storage consumption in O(n2). The two approaches
are infeasible. The former requires too much time in querying and the latter
requires too much space.

In the literature, many approaches have been proposed to reduce the space
consumption, and at the same time answer reachability queries efficiently. Re-
call that by precomputing and maintaining the edge transitive closure TC of
G, it can answer a reachability query in O(1) time at the expense of O(n2)
space. Here, the edge transitive closure TC servers as an index to be used to
answer reachability queries. The existing approaches attempt to increase the
query processing time marginally in the range of O(1) and O(n +m), where
O(1) is the query time using the edge transitive closure TC and O(n +m) is
the query time using breadth- or depth-first search, by constructing an index
that can significantly reduce the space consumption. For example, some ap-
proaches construct an index based on a spanning tree of the graph G plus some
additional information to maintain reachability information over the graph G,
and some construct an index that compresses the edge transitive closure TC .
On this direction, the time of spending on constructing an index becomes an
important issue too.

Table 6.1 shows a summary on the time/space complexity of different ap-
proaches [25]. Given a graph G(V,E). Let n = ∣V ∣ and m = ∣E∣. Simon

184 MANAGING AND MINING GRAPH DATA

proposes an algorithm to compute the edge transitive closure for a DAG, G, in
O(nm) time [31]. In other words, the time to construct an index based on the
edge transitive closure of G is in O(nm) time, and the index size is in O(n2)
space, in the worst case. With the edge transitive closure constructed, the query
time is constant O(1).

In [8], Chen et al. propose an index by utilizing a spanning tree of the graph
G. It takes O(n+m) time to construct an index in O(n+m) size. Given two
nodes u and v in G, it can answer u ↝ v in O(1) time if there is a path from
u to v in the spanning tree, using a simple predicate, denoted P(,), between
the codes (or labels) assigned to nodes over the spanning tree. We will discuss
different encoding schema that assign codes (or labels) to nodes in G later in
detail in this survey, and use codes and labels interchangeably. Let the codes
for u and v be code(u) and code(v). If the predicate P(code(u), code(v)) is
true, then u ↝ v is true. However, because the codes are assigned based on
the connections over the spanning tree of the graph G, it does not mean that
u ↝ v is false if P(code(u), code(v)) is false. There are edges in G that do
not appear in the spanning tree. Chen et al. use an additional data structure
called SSPI (Surrogate&Surplus Predecessor Index) to answer a reachability
query in run time, which takes O(m− n) time in the worst case. We call this
approach Tree+SSPI. Like [8], a spanning tree of a graph G is also used in
[32]. In [32], Trißl and Leser build an index, called GRIPP (GRaph Indexing
based on Pre- and Postorder numbering), using a spanning tree of the graph
G. Trißl and Leser discuss traversal strategies using the proposed GRIPP. The
time and space complexities are the same to Tree+SSPI.

Wang et al. propose a dual-labeling approach in [34] for sparse graphs based
on the observation that the majority of large graphs in real applications are
sparse. It implies that the number of edges in the graph G that do not appear
in a spanning tree of G is small. Let tree edges denote the edges that appear
in the spanning tree, and non-tree edges denote the edges that do not appear in
the spanning tree but appear in G. Let t be the number of such non-tree edges.
Wang et al. consider to use a tree coding scheme (also called labeling) for
tree edges and a graph coding (also called graph labeling) scheme for non-tree
edges for sparse graphs where t ≪ n. It handles the edge transitive closure
over non-tree edges. The dual-labeling approach achieves O(1) query time
with an index of size O(n+ t2) that is constructed in O(n+m+ t3) time.

Agrawal et al. in [1] study a tree cover approach to assign labels to nodes
in a DAG. In brief, if a node u can reach a node v, then u can reach any nodes
in the subtree rooted at v. Agrawal et al. propose an optimal tree cover that
maximally compresses the edge transitive closure. The index size is O(n2) in
the worst case, but in practice, it can compress edge transitive closure which
results in an even better compression rate than a chain cover [24, 9] which we

Graph Reachability Queries: A Survey 185

will discuss next. The time complexity for index construction isO(nm). It can
construct an index for a large graph efficiently. The query time is O(log n).

Jagadish in [24] proposes a chain cover approach. The chain cover is to
decompose a graph G into pairwise disjoint chains. A chain is more general
than a path. Consider a path a→ b→ c→ d in G, where x→ y represents a
directed edge in G. The path can be considered as a chain itself, a↝ b↝ c↝
d, where x↝ y represents y is reachable from x. The path can be decomposed
into two pairwise disjoint chains, a ↝ c and b ↝ d. Both a ↝ c and b ↝ d
are not paths. Like the tree cover, if a node u can reach a node v, then u
can reach any nodes in the chain from the position of the node v. Jagadish
proposes an algorithm in O(n3) to find the minimal number of chains, in G.
The number of chains for G is called the width of G, denoted by k. Based on
the chain cover, an index in O(nk) size can be constructed. The query time
is O(log k). In [9], Chen and Chen propose a new approach that can further
reduce the time complexity of constructing the index based on the chain over
to O(n2 + kn

√
k).

Jin et al. propose path-tree cover in [26] along the line of tree cover [1]. Jin
et al. decompose G into pairwise disjoint paths and build a tree over the paths
by treading a decomposed path as a node in the tree. Let k′ be the number of
pairwise disjoint paths in G. Two algorithms are proposed, namely, PTree-1
and PTree-2. Both construct an index in O(nk′) space. PTree-1 constructs
the index in O(nm) time, whereas PTree-2 constructs it in O(mk′) time. The
query time is in O(log2 k′).

Cohen et al. in [17] propose an index called 2-hop cover. A node, u, in a
graph G is assigned two sets of nodes, as its label, called Lin(u) and Lout(u).
Lin(u) contains a set of nodes that can reach u and Lout(u) contains a set of
nodes that u can reach. The labels assigned to nodes are done in a way to
ensure u ↝ v to be true if and only if Lout(u) ∩ Lin(v) ∕= ∅. It turns out
to be a set cover problem. Cohen et al. propose an approximate algorithm to
construct an index in O(nm1/2) space. The time complexity for constructing
such an index remains open. In [26], the conjecture isO(n3 ⋅∣TC∣) where ∣TC∣
is the size of the edge transitive closure of G. Several efficient algorithms are
proposed to compute 2-hop cover [29, 13, 14]. The 2-hop cover maintenance
is studied in [30, 5]. Jin et al. in [25] further study a new approach, called 3-
hop, that combines chain cover and 2-hop cover. The index construction time
is O(kn2.∣Con(G)∣. Here k is the number of pairwise disjoint paths in G, and
Con(G) is transitive closure contour of G defined in [25].

All the above are about how to answer reachability queries. Cohen et al. in
[17] and Schenkel et al. in [30] address the distance-aware 2-hop cover which
is to answer reachability queries with the shortest distance. Cheng and Yu in
[10] propose efficient algorithms to fast compute distance-aware 2-hop cover.

186 MANAGING AND MINING GRAPH DATA

The main difficult of computing distance-aware 2-hop cover is that it cannot
condense a general directed graph into a DAG.

Before we discuss different graph coding schema, we explain a tree coding
scheme for a tree. We call it single interval tree coding scheme in this survey.
Many graph coding schema make use of the similar ideas used in the single
interval tree coding scheme.

Single Interval Tree Coding Scheme: Let GS(V,E) be a tree. The single
interval tree coding scheme (or simply SIT coding scheme) assigns a node
u ∈ GS a code which is an interval, denoted sitcode(u) = [ustart, uend],
where ustart and uend are two numbers such that ustart < uend. The reach-
ability, u ↝ v, between two nodes, u and v, can be answered using the two
corresponding codes, sitcode(u) and sitcode(v), in constant time O(1). We
denote it as a predicate Psit(,)

Psit(sitcode(u), sitcode(v)) = ustart < vstart ∧ vend < uend

Then, u ↝ v is true if and only if Psit(sitcode(u), sitcode(v)) is true. The
codes can be assigned by traversing the tree GS . Here, for a node, u, the
ustart and uend are the preorder and postorder values in a depth-first traversal
of the tree. A counter is used with an initial value 0, and the counter value will
increase by 1 before it visits another node in the traversal. In the tree traversal,
a node will be visited twice. The ustart and uend of a node u are assigned to be
the counter values before and after all descendants of u have been traversed.

2. Traversal Approaches

In this section, we introduce two approaches, namely, Tree+SSPI [8] and
GRIPP [32]. Both approaches use the SIT coding scheme to assign codes to
nodes in a spanning tree of a graph G, and attempt to reduce the query pro-
cessing time in traversal using either additional data structures or processing
strategies. It is worth noting that Tree+SSPI [8] is proposed for pattern match-
ing in a general context, and can be used to answer reachability queries.

Let TS(VS , ES) be a spanning tree of a graph G(V,E). Here VS and ES

are sets of nodes and edges of the spanning tree TS . Note that VS = V and
ES ⊆ E. We use ES to denote the set of tree edges of the graph G, and
ER = E − ES to denote the set of non-tree edges of the graph G that do
not appear in ES . In addition, below in discussions of Tree+SSPI and GRIPP,
we assume that every node in G is assigned a code based on the SIT coding
scheme. Given a reachability query u↝ v, Tree+SSPI and GRIPP first check
whether the predicate Psit(sitcode(u), sitcode(v)) is true or not. If it is true,
then u ↝ v is true. Otherwise, Tree+SSPI and GRIPP need to take additional
actions to further check the reachability u↝ v, because u can reach v through
a combination of tree edges and non-tree edges. Below, we discuss the cases
that u↝ v cannot be answered simply using the SIT coding scheme.

Graph Reachability Queries: A Survey 187

r

B C D

A

E F G H

Node Start End Type

r 0 21 tree
A 1 20 tree
B 2 7 tree
E 3 4 tree
F 5 6 tree
C 8 9 tree
D 10 19 tree
G 11 14 tree
B′ 12 13 non-tree
H 15 18 tree
A′ 16 17 non-tree

Figure 6.1. A Simple Graph G (left) and Its Index (right) (Figure 1 in [32])

2.1 Tree+SSPI

In [8], in addition to the SIT codes assigned to nodes, Chen et al. use an-
other “space-economic” index, known as SSPI (Surrogate&Surplus Predeces-
sor Index), to maintain information that needs to be used at run time to check
reachability. The SSPI keeps a predecessor list for a node v in G, denoted as
PL(u). There are two types of predecessors. One is called surrogate, and the
other is called immediate surplus predecessor. The two types of predecessors
are explained in terms of the involvement of non-tree edges. Consider u ↝ v
that must visit some non-tree edges on the path from u to v. Assume that
(vx, vy) is the last non-tree edge on the path from u to v, then vy is a surrogate
predecessor of v if vy ∕= v and vx is an immediate surplus predecessor of v if
vy = v. SSPI can be constructed in a traversal of the spanning tree TS of the
graph G starting from the tree root. When a node v is visited, all its immedi-
ate surplus predecessors are added into PL(v). Also, all nodes in PL(u) are
added into PL(v), where u is the parent node of v in the spanning tree. It is
sufficient to answer reachability queries using both SIT coding scheme and the
SSPI.

To process a reachability query u ↝ v, assuming that the SIT codes used
return false when checking ustart < vstart ∧ vend < uend, Chen et al. design
a TwigStackD algorithm. The TwigStackD algorithm checks the reachability
via tree edges using run time stacks in traversing the spanning tree, and checks
reachability via possible non-tree edges, using a partial solution pool that main-
tains some popped nodes from run time stacks temporally. The SSPI is used to
answer which nodes can possibly reach a node v via non-tree edges.

2.2 GRIPP

Trißl and Leser in [32] use the SIT coding scheme in a different way. Instead
of using SSPI and run time stacks, Trißl and Leser focus on how to traverse the

188 MANAGING AND MINING GRAPH DATA

graph using the SIT codes. The graph dealt in [32] is a directed graph. We
explain it using the same example used in [32]. Figure 6.1 shows a simple
directed graph G on the left side and the GRIPP index table on the right side.
The solid arrows indicate tree edges in G, and dotted arrows indicate non-tree
edges in G. As shown in the GRIPP index table, a node in G is assigned with
one or more than one SIT codes depending on the number of incoming edges to
the node. The type in the GRIPP index table indicates the type of the incoming
edge based on which the node is assigned a SIT code. The nodes with a type
of non-tree in GRIPP index table are also called hop-nodes. Consider the node
A, its SIT code, sitcode(A) = [Astart, Aend] = [1, 20], is assigned when A is
traversed from/to r via the tree edge (r,A), and the duplication of A, a hop-
node, denoted A′, has a different SIT code [16, 17], which is assigned when
A is traversed from/to H via the non-tree edge (H,A). It can be understood
that a directed graph G is represented as a tree with node duplications. In other
words, all the hop-nodes, such as A′ and B′ in the GRIPP index table, are node
duplications and become the leaf nodes in such a tree.

Trißl and Leser in [32] study how to reduce the traversing time when pro-
cessing a reachability query. Consider D ↝ r. Based on SIT codes given in
the GRIPP index table, D can reach the nodes, G,H ,A′, and B′, whereA′ and
B′ are two hop-nodes, because, sitcode(D) = [10, 19], sitcode(G) = [11, 14],
sitcode(H) = [15, 18], sitcode(A′) = [16, 17], and sitcode(B′) = [12, 13].
It implies that via the two hop-nodes, A′ and B′, there exists possibility that
D ↝ r is true. Intuitively, it needs to hop to A and B to further traverse the
graph G. Suppose it traverses A via the hop-node A′ followed by traversing
B via the hop-node B′. First, when it picks up A to traverse, it can traverse
to A itself again, because A can reach H and then traverse to A via the hop-
node A′. In this case, it does not need to traverse to A second time, because it
cannot find any new possible reachability. Second, when it picks up B to tra-
verse, it cannot find any new possible reachability, because A can reach B via
tree edges and it has already explored all possible reachability via A that must
include all the possible reachability via B. Based on the idea behind, Trißl
and Leser study traversing order, pruning strategies, and and stop conditions.
Because finding the optimal traversing order is NP-complete, Trißl and Leser
propose some heuristics. For example, it attempts to traverse the giant strongly
connected component first.

3. Dual-Labeling

Wang et al. in [34] investigate a dual-labeling coding scheme for a graph
G. They use a SIT coding scheme to encode nodes that can be reached via tree
edges over a spanning tree of the graph G, and a new coding scheme to encode
nodes that can be possibly reached via non-tree edges. The codes assigned to

Graph Reachability Queries: A Survey 189

x

y

[0,11)

[1,5)

[2,5)

[5,11)

[6,9)

[9,11)

[3,4) [4,5) [7,8) [8,9) [10,11)

u

vw

Figure 6.2. Tree Codes Used in Dual-Labeling (Figure 2 in [34])

nodes based on the tree edges over a spanning tree are slightly different from
the SIT coding scheme used in GRIPP as seen in Figure 6.1. We also use the
same example used in [34] to explain the main ideas.

Wang et al. assign modified SIT codes to nodes over a spanning tree of the
graph G. We call it dual-tree code and denote it as dtcode(u) for u ∈ G, in
the form of [ustart, uend). An example is shown in Figure 6.2, where the solid
arrows form a spanning tree and the dotted arrows are non-tree edges inG. The
reachability u ↝ v over the spanning tree can be answered using dtcode(u)
and dtcode(v) if vstart ∈ dtcode(u) is true. We give a predicate Pdt(,) to test
whether u↝ v is true over the spanning tree.

Pdt(dtcode(u), dtcode(v)) = vstart ∈ dtcode(u)

Note: it does not mean that u cannot reach v if Pdt(dtcode(u), dtcode(v)) is
false, because there exist other non-tree edges via which u can possibly reach
v. In [34], a non-tree edge (u′, v′) is represented as u′star → [v′start, v

′
end)

in a link table. Consider Figure 6.2, there are two non-tree edges, such that
9→ [6, 9) and 7→ [1, 5). The link table maintains the edge transitive closure
over the non-tree edges and therefore is also called a transitive link table. For
example, the existence of the two non-tree edges, 9 → [6, 9) and 7 → [1, 5),
in the transitive link table implies that 9 → [1, 5) exists in the transitive link
table. It is because the node with the dtcode [7, 8) can be reached from the
node with the dtcode [6, 9) and therefore the node with dtcode [9, 11) can
reach the node with dtcode [1, 5). Let t be the number of non-tree edges, the
transitive link table is in O(t2) space. A reachability query, u ↝ v, can be
answered using the transitive link table. Let dtcode(u) = [ustart, uend) and
dtcode(v) = [vstart, vend). Then, u ↝ v is true if it can find an entry, i →
[j, k), in the transitive link table such as i ∈ [ustart, uend) and vstart ∈ [j, k).
The former implies that u can reach the non-tree edge and the latter implies
that from the non-tree edge v can be reached.

190 MANAGING AND MINING GRAPH DATA

c

a

d

e f

g h

[1.8]

[1,4]

[1,3]

[1,1] [2,2]

[5,5]
[6,7]

[6,6]

b

(a) Tree Codes

c

a

d

e f

g h

[1.8]

[1,4]

[1,3]

[1,1] [2,2]

[5,5]
[6,7]

[6,6]

[1,4]
b

(b) Tree + Non-Tree Codes

Figure 6.3. Tree Cover (based on Figure 3.1 in [1])

In other to achieve O(1) time, Wang et. al propose a transitive link count
function (short for TLC function). As defined in Definition 1 in [34], the pro-
posed TLC function N(x, y) computes the number of links i → [j, k) in the
transitive link table that satisfy i ≥ x and y ∈ [j, k). Given two nodes, u
and v, where dtcode(u) = [ustart, uend) and dtcode(u) = [ustart, uend). As-
sume that Pdt(dtcode(u), dtcode(t)) is false. The following predicate Pdg(,)
is defined over the graph via possible non-tree edges.

Pdg(dtcode(u), dtcode(v)) = N(ustart, vstart)−N(uend, vstart) > 0

u ↝ v is true over the possible non-tree edges if and only if the predicate
Pdg(dtcode(u), dtcode(v)) is true. Therefore, u ↝ v is true if and only if
Pdt(dtcode(u), dtcode(v)) ∨ Pdg(dtcode(u), dtcode(v)) is true.

Intuitively, it requires to maintain the TLC function N(,) for every possible
node pairs in G, which results in O(n2) space. In order to reduce it to O(t2)
space, Wang et al. propose gridding and snapping techniques in [34]. Some
techniques to trade off time for space are also discussed in [34].

4. Tree Cover

As an early work, in 1989, Agrawal et al. proposed a tree cover code. It uses
multiple intervals to encode every node in a graph G. Consider a tree shown
in Figure 6.3(a). A node u is assigned an interval [ustart, uend], where uend is
the postorder in traversing the tree, and ustart is the smallest postorder in the
descendants of the subtree rooted at the node u. Like the other tree coding,
u↝ v is true over the tree, if and only if vend ∈ [ustart, uend] is true. Agrawal
et al. consider how to assign codes to nodes in DAG by inheriting codes from
a node v to another node u if there is a non-tree edge (u, v) in the graph G.
Consider the DAG shown in Figure 6.3(b). There are two additional non-tree
edges (d, b) and (d, e). The node d will inherit [1, 4] and [1, 3] from the nodes
b and e respectively. Because [1, 3] ⊆ [1, 4], d only needs to have an additional
interval [1, 4]. Therefore, the code for a node u in G, denoted as tccode(u) =

Graph Reachability Queries: A Survey 191

Algorithm 1 Find-Tree-Cover(G)

1: let G′ be a graph with an additional virtual root,
, that links to all nodes
in G that do not have any predecessors;

2: let L be the list of nodes in G′ following a topological order;
3: pred(
)← ∅;
4: for each node v on L do
5: for each pair of incoming edges (u, v) and (u′, v) do
6: if ∣pred(u)∣ > ∣pred(u′)∣ then
7: delete the edge (u′, v);
8: else
9: delete the edge (u, v);

10: end if
11: end for
12: pred(v)← {u} ∪ prev(u) for every incoming edge (u, v);
13: end for

{[ustart1 , uend1], [ustart2 , uend2], ⋅ ⋅ ⋅ }, where uend1 is the postorder when it
traverses the spanning tree. In other words, [ustart1 , uend1] is assigned to node
uwhen traversing the spanning tree of the graph G, and the others are inherited
from other nodes. Given the tree cover codes, u ↝ v is tree if and only if the
postorder of v (vend1) is in an interval of the node u. The predicate Ptc(,) is
given below.

Ptc(tccode(u), tccode(v)) =
⋁

i

(vend1 ∈ [ustarti , uendi])

The total number of intervals for all codes in G becomes a factor to mea-
sure the quality of the tree cover. The total number varies depending on the
selection of a spanning tree, known as tree cover, over the graph G. In [1],
Agrawal et al. propose an algorithm to find the optimal tree cover. As shown
in Algorithm 1, in order to achieve the optimal tree cover, for a node v, it re-
tains the edge from the immediate predecessor of v with the maximum number
of predecessors in the original DAG G, and delete the edges from the other
immediate predecessors of v.

In [1], the storage issues and the tree-cover maintenance issue when a graph
is updated are also discussed.

5. Chain Cover

Jagadish [24] proposes a chain cover coding scheme to answer a reachability
query on a DAG G. A chain cover of G is a set of pairwise disjoint chains,
C1, C2, ⋅ ⋅ ⋅ , Ck. Here, a chain Ci = vi1 ↝ vi2 ↝ ⋅ ⋅ ⋅ ↝ vik where vij is
a node in G and vij+1 is reachable from vij in G. The union of the nodes in

192 MANAGING AND MINING GRAPH DATA

Algorithm 2 Compute-Chain-Cover(G, {C1, C2, ⋅ ⋅ ⋅ , Ck})
Input: The DAG G, and a chain cover {C1, ⋅ ⋅ ⋅ , Ck}
Output: The chain cover code for every node in G

1: sort all nodes in G in topological order;
2: let every node vi in G unmarked;
3: while there are unmarked node vi in G that do not have unmarked imme-

diate successors do
4: chaincode(vi)← {(1,∞), (2,∞), ⋅ ⋅ ⋅ , (k,∞)};
5: let Li,x denote the x-th pair in chaincode(vi);
6: let suc(vi) denote the immediate successors of vi in G;
7: for every vj ∈ suc(vi) do
8: for l = 1 to k do
9: (l, pj,l)← Lj,l;

10: (l, pi,l)← Li,l;
11: if pj,1 ≤ pi,l then
12: Li,l ← (l, pj,l);
13: end if
14: end for
15: end for
16: mark vi;
17: end while
18: return the set of chaincode(vi) for every vi ∈ G;

all chains is the entire set of nodes in G, and the intersection of nodes in any
two chains is empty. The optimal chain cover of G is a chain cover of G that
contains the least number of chains among all possible chain covers of G.

Suppose the chain cover contains k chains, to answer the reachability
queries, each node vi ∈ G is assigned a code, denote chaincode(vi), which
is a list of pairs, {(1, pi,1), (2, pi,2), ⋅ ⋅ ⋅ , (k, pi,k)}. Each pair (j, pi,j) means
that the node vi can reach any nodes from the position pi,j in the j-th chain. If
vi cannot reach any node in the j-th chain, then pi,j = +∞. The chain cover
index contains chaincode(vi) for every node vi in G.

A reachability query va ↝ vd can be answered using a predicate Pc(,) such
that va ↝ vd is true if and only if va appears at the pa,j position in a chain Cj

and pd,j ≤ pa,j . In other words, va can reach vd in a chain Cj . All pairs in the
chain cover index for G can be indexed and stored using a B+-tree. Answering
a reachability query needs O(log(n)) time with O(n ⋅ k) space.

Given a chain cover C1, C2, ⋅ ⋅ ⋅ , Ck of a DAG G, Algorithm 2 shows how
to compute chaincode(vi) for every vi ∈ G. It visits every node in G in the
reverse of topological order (line 3). For each node visited, its chaincode(vi) is
updated using its immediate successors if the corresponding position in the l-th

Graph Reachability Queries: A Survey 193

chain, Cl, of an immediate successor is smaller than the current position vi has
in Cl. Let di be the out degree of node vi (the number of immediate successors
of vi). The time complexity of Algorithm 2 is O(

∑n
i=1(di ⋅ k)) = O(mk),

where m is the number of edges in G. It becomes important to make k as
small as possible. Below, we introduce two approaches that aim at computing
the optimal chain cover with the minimal k.

5.1 Computing the Optimal Chain Cover

Jagadish in [24] proposes a min-flow approach to compute the optimal chain
cover of a DAGG. The main idea is as follows. It constructs another graph H .
For every node vi ∈ G, it adds two nodes, xi and yi, in H and a directed edge
(xi, yi) in H . In other words, a node in G is represented as an edge in H . For
each edge (vi, vj) in G, it adds an edge (yi, xj) in H . A source node is added
into H that links to every node with in-degree 0 in H , and a sink node is added
that is linked by every node with out-degree 0 in H . Then, Jagadish proposes
to find the min-flow from the source node to the sink node such that every edge
(xi, yi) has a positive flow. It can be solved in time O(n3). Here, each flow
corresponds to a chain in G. In such a way, it can get the chain cover of G. If
a node may appear in several chains, it keeps one occurrence in any chain and
removes the other occurrences.

Chen and Chen in [9] propose an approach using bipartite matching. All
nodes in the DAGG are decomposed into several layers, V1, V2, ⋅ ⋅ ⋅ , Vℎ, where
ℎ is the length of the longest path in G. The layers can be constructed as
follows. V1 is the set of nodes with out-degree 0 in G, and Vi is the set of
nodes with out-degree 0 when the nodes in Vk, for 1 ≤ k < i are removed
from G. This can be done in O(m) time.

Algorithm 3 shows how to find the optimal chain cover based on the layers.
The main idea of Algorithm 3 is as follows. In each successive layers, it finds
the maximum matching for the bipartite graph induced by the nodes in the two
layers (line 1-4). For some unmatched node v, it adds a virtual node v′ in the
top of the two successive layer, in order to be further matched by nodes in the
unseen upper layers (line 5-9). A potential edge (u, v′) for some u ∈ Vi+2 is
added, if and only if there is an edge from u to a node x ∈ Vi+1 and there
is an alternating path from x to v′. A path is alternating with respect to Mi

if and only if its edges alternately appear in Ei ∖ Mi and Mi, where Mi is
the maximum matching of the bipartite graph and Ei is the bipartite graph in
the i-th iteration. Then, in line 10-13, each virtual node is resolved using the
alternating paths by removing the virtual nodes, transferring the edges in the
alternating paths, and adding the new edge from u to x as discussed above. An
example for resolving a virtual node v′ by an alternating path is illustrated in
Figure 6.4. The optimal chain cover can be computed in time O(n2 + kn

√
k)

194 MANAGING AND MINING GRAPH DATA

Algorithm 3 Optimal-Chain-Cover(G, {V1, V2, ⋅ ⋅ ⋅ , Vℎ})
Input: a DAG G, and the layers V1, ⋅ ⋅ ⋅ , Vℎ
Output: The optimal chain cover C1, ⋅ ⋅ ⋅ , Ck

1: V ′
1 ← V1;

2: for i = 1 to ℎ− 1 do
3: V ′

i+1 ← Vi+1;
4: Mi ← maximum matching of the bipartite graph induced by V ′

i and
V ′
i+1;

5: for all unmatched node v ∈ V ′
i in Mi do

6: create a virtual node v′ in G;
7: V ′

i+1 ← V ′
i+1 ∪ {v′};

8: Mi ←Mi ∪ (v′, v);
9: create potential edges (u, v′) for some u ∈ Vi+2;

10: end for
11: end for
12: CH ←M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mℎ;
13: for i = 1 to ℎ− 1 do
14: for all virtual node v′ ∈ V ′

i do
15: resolve v′ from CH using alternating paths in Mi;
16: end for
17: end for
18: return CH;

b

a

u

x

c v’

v

(b) Alternating Path

b

a

u

x

c

v

(a) Before Resoving

b

a

u

x

c v’

v

(c) After Resolving

Figure 6.4. Resolving a virtual node

where n is the number of nodes in G and k is the number of chains in the
optimal chain cover (known as the width of G).

6. Path-Tree Cover

Jin et al. in [26] propose a path-tree cover coding scheme to answer a reach-
ability query on a DAG G(V,E).

First, the graph G(V,E) is decomposed into a set of pairwise disjoint paths,
P1, P2, ⋅ ⋅ ⋅ , Pk′ . Here, a path Pi = vi1 → vi2 → ⋅ ⋅ ⋅ → vik where vij → vij+1

is an edge in G. A path cover consists of k′ paths such that (a) the union of

Graph Reachability Queries: A Survey 195

the nodes in all the paths is the entire set of nodes in G and (b) the intersection
of two paths is empty. The optimal path cover of G is a path cover of G that
contains the least number of paths among all possible path covers of G. Such
optimal path cover can be obtained using Simon’s algorithm in [31].

Second, let Pi and Pj be two paths computed in the path cover. There may
exist edges from some nodes in Pi to some nodes in Pj , denoted as EPi→Pj ,
which is a subset of the edges in G. Some edges in EPi→Pj can be eliminated
losslessly. For example, suppose Pi = w and Pj = u → v, and assume
EPi→Pj consists of two edges from Pi to Pj , {w → u,w → v}. Then w → v
can be eliminated, because there is a path w → u → v that can answer the
reachability query w ↝ v. The similar can be done if there are edges from Pj

to Pi in reverse order. The edge elimination in this way is lossless because it
does not lose any reachability information. Let E′

Pi→Pj
be a subset of EPi→Pj

after edge elimination. Jin et al. show that all edges in E′
Pi→Pj

are in parallel.

Furthermore, Jin et al. use a single weighted edge from Pi to Pj , in order to
represent how many nodes in Pi can reach a node in Pj . Based on the weighted
edges from Pi to Pj , a weighted path-graph GP (V,E) is constructed. Here,
V is a set of nodes representing paths, P1, P2, ⋅ ⋅ ⋅ , Pk′ , computed in the path
cover, and E is a set of edges (Pi, Pj) with a weight, if E′

Pi→Pj
∕= ∅.

Third, based on the path-graph GP (V,E), Jin et al. construct a spanning
tree TP (V,E), called path-tree, with two criteria: MaxEdgeCover and Min-
PathIndex. The former means to cover as many edges in G as possible, and
the latter means to reduce the size of a resulting path-tree cover as much as
possible. The path tree is computed using the algorithm presented in [16, 21].

Finally, a path-tree cover code, ptcode(u), is assigned to node u ∈ G based
on the path-tree TP . The ptcode(u) = ((ustart, uend), (ux, uy)) consists of
two pairs. The first pair is the interval [ustart, uend], like SIT code, assigned
to the path Pi where u resides uniquely, because a node represents a path in
TP . The second pair (ux, uy) is used to record the position of the node u in the
path Pi. A reachability query, u ↝ v is answered to be true, if the predicate
Ppt(ptcode(u), ptcode(v)) is true, such as [vstartvend] ⊂ [ustart, uend]∧ux <
vx ∧ uy < uy . It is important to note that it does not mean u ↝ v is false if
Ppt(ptcode(u), ptcode(v)) is false, because the path-tree cover code and the
predicate are both defined over the path-tree TP . There may exist edges that
cannot be fully covered by the path-tree.

The path-tree cover coding scheme is different from the tree cover [1] and
the chain cover [24, 9]. Both tree cover and chain cover coding schema answer
reachability queries only using the predicates, Ptc(,) and Pc(,), respectively.
On the other hand, the path-tree cover coding scheme cannot answer reachabil-
ity queries only using the predicate Ppt(,). The path-tree cover coding scheme
shares similarity with the dual-labeling [34], and aims at covering as many
non-tree edges as possible. Jin et al. in [26] show that the path-tree cover is

196 MANAGING AND MINING GRAPH DATA

superior over the optimal tree cover [1] and optimal chain cover [24] in terms
of the compression ability.

7. 2-HOP Cover

Cohen et al. propose a 2-hop cover in [17] for a graph G. In a 2-hop cover,
a node in G is assigned to a 2-hop code, 2hopcode(u) = (Lin(v), Lout(v)),
where Lin(v) and Lout(v) are subsets of the nodes in G. Based on the 2-
hop cover, a reachability query u ↝ v is to be answered true if and only if
P2ℎop(2hopcode(u), 2hopcode(v)) is true.

P2ℎop(2hopcode(u), 2hopcode(v)) = Lout(u) ∩ Lin(v) ∕= ∅

The main idea behind 2-hop cover coding scheme is to compress the edge
transitive closure of G. Let TC(G) be the edge transitive closure of G. A
pair (u, v) in TC(G) indicates that u ↝ v is true in G. Consider a node w
in G as a center. All the ancestors of w, denoted as ancs(w), can reach w,
and w can reach any of its descendants, denoted as desc(w). In other words,
ancs(w) is the set of nodes {u} if (u,w) ∈ TC(G) and desc(w) is the set
of nodes {v} if (w, v) ∈ TC(G). Let Aw ⊆ ancs(w) ∪ {w} and Dw ⊆
desc(w) ∪ {w}. A complete bipartite graph, called a 2-hop cluster, is denoted
S(Aw, w,Dw), with the center w. A 2-hop cluster S(Aw, w,Dw) indicates
that every node, u in Aw can reach any node v in Dw, or u ↝ v is true for
every u ∈ Aw and v ∈ Dw. Given a cluster S(Aw, w,Dw), it implies that if
w is added into Lout(u) for every u ∈ Aw and is added into Lin(v) for every
v ∈ Dw, the reachability information presented by the complete bipartite graph
S(Aw, w,Dw) is completely preserved, because u ↝ v is true if and only if
Lout(u)∩Lin(v) ∕= ∅. A S(Aw, w,Dw) compactly represents ∣Aw∣ ⋅ ∣Dw∣ − 1
pairs in TC(G) in total with a space cost of ∣Aw∣ + ∣Dw∣. A 2-hop cover is a
set of 2-hop clusters that completely covers the edge transitive closure TC(G).

The optimal 2-hop cover problem is to find the minimum size 2-hop cover,
which is proved to be NP-hard [17]. Based on the greedy algorithm for mini-
mum set cover problem [27], Cohen et al. give an approximation algorithm to
get a nearly optimal 2-hop cover which is larger than the optimal one at most
O(log n).

Algorithm 4 illustrates the ideas [17]. It computes the edge transitive closure
TC(G) (line 1). Let TC ′ be TC(G) (line 2). In every iteration, it finds a
2-hop cluster S(Aw, w,Dw) that has the maximum ratio, (∣S(Aw, w,Dw) ∩
TC ′∣)/(∣Aw ∣+ ∣Dw∣), among all possible 2-hop clusters. Here, TC ′ is used to
indicate the set of pairs in TC(G) that are not covered by any 2-hop clusters
computed yet. After identifying the S(Aw, w,Dw) with the maximum ratio in
the current iteration, it removes all the pairs (u, v) from TC ′ if u ∈ Aw and
v ∈ Dw (line 5). In line 6-7, it updates 2-hop cover codes.

Graph Reachability Queries: A Survey 197

Algorithm 4 2Hop-Cover(G)

1: compute the edge transitive closure TC(G) of G;
2: TC ′ ← TC(G);
3: while TC ′ ∕= ∅ do
4: find the max S(Aw, w,Dw);
5: remove all the pairs in TC ′ that are covered by S(Aw, w,Dw);
6: add w into Lout(u) if u ∈ Aw;
7: add w into Lin(v) if v ∈ Dw;
8: end while

0

3 8 12

1

11

4 5

9

(a) G↓(V↓, E↓)

1

3 8 12

0

4 5

9

11

(b) G↑(V↑, E↑)

Figure 6.5. A Directed Graph, and its Two DAGs, G↓ and G↑ (Figure 2 in [13])

The computational cost is high as can be seen in Algorithm 4. First, it needs
to compute the edge transitive closure. Second, it needs to rank all 2-hop
clusters S(Aw, w,Dw) based on (∣S(Aw, w,Dw) ∩ TC ′∣)/(∣Aw ∣ + ∣Dw∣) in
every iteration. Third, it is difficult to compute 2-hop cover for a large graph.

7.1 A Heuristic Ranking

Schenkel et al. in [29] propose a heuristic ranking to avoid to recom-
pute and rank all (∣S(Aw, w,Dw) ∩ TC ′∣)/(∣Aw ∣ + ∣Dw∣) for all possible
centers S(Aw, w,Dw) in every iteration. The idea is as follows. It com-
putes all ∣S(Aw, w,Dw) ∩ TC ′∣/(∣Aw ∣ + ∣Dw∣), for all nodes in G. Initially,
TC ′ = TC(G). Let dw denote ∣S(Aw, w,Dw) ∩ TC ′∣/(∣Aw∣ + ∣Dw∣). It
initially maintains all the pairs of (w, dw) in a priority queue. The first is with
the max ratio dw value. In every iteration, it picks up the first (w, dw) and
recomputes d′w = ∣S(Aw, w,Dw)∩TC ′∣/(∣Aw∣+ ∣Dw∣), if dw > d′w, the pair
(w, d′w) is enqueued into the priority queue. It repeats until it picks a node w
such that dw = d′w. In practice, Schenkel et al. find that it only needs to repeat
2-3 times in every iteration on average.

198 MANAGING AND MINING GRAPH DATA

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Figure 6.6. Reachability Map

w tccode(w) for w ∈ G↓ tccode(w) forw ∈ G↑

po↓(w) I↓(w) po↑(w) I↑(w)

0 9 [1,9] 4 [4,4]

1 1 [1,1],[3,3] 3 [1,5]

3 6 [1,6] 5 [4,5]

4 2 [2,2] 9 [4,5],[9,9]

5 5 [3,5] 6 [4,6]

8 7 [1,1],[3,3],[7,7] 1 [1,1],[4,4]

9 4 [3,4] 7 [4,7]

11 3 [3,3] 8 [1,8]

12 8 [1,1],[3,3],[8,8] 2 [2,2],[4,4]

Table 6.2. A Reachability Table for G↓ and G↑

7.2 A Geometrical-Based Approach

Cheng et al. in [13] propose a geometrical-based approach that does not
need to compute the edge transitive closure of TC(G) directly, and speeds up
the computing of max ratio of the 2-hop clusters using an R-tree, in particular
for a large dense graph G.

First, instead of computing the edge transitive closure TC(G), Cheng et al.
compute tree cover [1], because in practice the tree cover algorithm in [1] is
very fast. The tree cover codes are used to compute 2-hop cover. Consider
Figure 6.5(a) which shows a DAG G↓(V↓, E↓). Suppose it needs to assign
2-hop codes to the graph shown in Figure 6.5(a). Cheng et al. compute the
tree cover codes for G↓(V↓, E↓), and compute the tree cover codes for another
corresponding graph G↑(V↑, E↑), which is a graph that by changing every edge
(u, v) ∈ G↓ to (v, u). The Table 6.2 shows the tccode(w) for the node w in

Graph Reachability Queries: A Survey 199

G↓ and G↑. In particular, po↓(w) and po↑(w) indicate the postorder of w, and
I↓(w) and I↑(w) indicate the intervals of w, in G↓ and G↑, respectively.

Second, based on the tree cover codes, Cheng et al. construct a 2-
dimensional reachability map, a node w is mapped onto the (xw, yw) posi-
tion in the reachability map as (po↓(w), po↑(w)). The reachability information
u ↝ v is mapped onto 2-dimensional reachability map, (xv, yu). If u ↝ v is
true, then (xv, yu) = 1, otherwise (xv , yu) = 0. Therefore, the same reachabil-
ity information, that a 2-hop cluster S(Aw, w,Dw) represents, is represented
as a number of rectangles in the 2-dimensional reachability map.

With the assistance of the 2-dimensional reachability map, Cheng et al. find
the max S(Aw, w,Dw) in line 4 of Algorithm 4 as to find the max cover-
age of rectangles, which can be done using an R-tree. It is important to note
that Cheng et al. in [13] try to maximize ∣S(Aw, w,Dw) ∩ TC ′∣ instead of
∣S(Aw, w,Dw) ∩ TC ′∣/(∣Aw∣+ ∣Dw∣). Both are set cover problems.

7.3 Graph Partitioning Approaches

In this section, we discuss three graph partitioning approaches used in com-
puting a 2-hop cover for a large graph G.

A Flat Partitioning Approach. Schenkel et al. propose a flat partitioning
approach in [29] to compute 2-hop cover in three steps. First, it partitions the
graph G into k subgraphs G1, G2, ⋅ ⋅ ⋅ , Gk depending on the available mem-
ory M . Second, it computes the edge transitive closure and the 2-hop cover for
each subgraph Gi, for 1 ≤ i ≤ k, using Algorithm 4 with the heuristic rank-
ing discussed in the previous subsection. Third, it merges the k 2-hop covers
computed for the k subgraphs, G1, G2, ⋅ ⋅ ⋅ , Gk , by dealing with the edges that
cross subgraphs. It is called a cover joining step, and the cover joining yields
a 2-hop cover for the entire graph G. The cover joining is done as follows.
Suppose the 2-hop covers for all k subgraphs are computed. Let (u, v) be a
cross-partition edge where u ∈ Gi and v ∈ Gj and Gi ∕= Gj . Schenkel
et al. compute the 2-hop cover for G by encoding all reachability via (u, v)
according to the following two operations.

For all a ∈ ancs(u), Lout(a)← Lout(a) ∪ {u}, and

For all d ∈ desc(v) ∪ {v}, Lin(d)← Lin(d) ∪ {u}.

It means that, 2-hop clusters, (ancs(u), u, desc(u)), for all cross-partition
edges (u, v), are covered mandatorily to encode G. The compression rate of
TC(G) using the flat partitioning decreases. As reported in [29, 30], the cover
joining becomes the bottleneck of the whole processing. Schenkel et al. in [30]
propose an effective and efficient approach for the third step of cover joining,
using a skeleton graph (SG).

200 MANAGING AND MINING GRAPH DATA

w
Aw

Dw

(a) Unbalanced

w

Aw

Dw

(b) Balanced

Figure 6.7. Balanced/Unbalanced S(Aw, w,Dw)

A skeleton graph is constructed at the partition-level. Suppose a graph
G(V,E) is partitioned into k subgraphs G1(V1, E1), G2(V2, E2), ⋅ ⋅ ⋅ ,
Gk(Vk, Ek). Here, V = ∪ki=1Vi and Vi∩Vj = ∅ if i ∕= j. E = EC ∪ (∪ki=1Ei)
where Ei ∩ Ej = ∅ if i ∕= j and EC is the set of cross-partition edges
E∖(∪ki=1Ei). The skeleton graph GS(VS , ES) is constructed as follows. Here,
VS is a set of nodes u if u appears in a cross-partition edge in EC . ES contains
all the cross-partition edges EC , and in addition contains edges that explicitly
indicate whether two cross-partition edges are connected via some paths in a
subgraph. Consider a subgraph Gi, and let (vi, vj) and (vk, vl) be any two
cross-partition edges such that vj and vk as nodes appear in Gi. There will
be an edge (vj , vk) in ES if vj ↝ vk is true in Gi. Schenkel et al. compute
a 2-hop cover for GS using Algorithm 4 with the heuristic ranking. At this
stage, for a node u ∈ G that does not appear in any cross-partition edges,
u has a 2hopcode(u) which is computed in Gi where u resides. For a node
u ∈ G that appears in cross-partition edges, it has two 2-hop cover codes. One
is computed because it appears in a subgraph Gi, 2hopcode(u). The other
is the one computed in the skeleton graph GS , denoted 2hopcode′(u). Let
2hopcode(u) = (Lin(u), Lout(u)) and 2hopcode′(u) = (L′

in(u), L
′
out(u)).

The final 2-hop cover code is computed by augmenting the 2-hop cover
code computed for Gi using the 2-hop cover code computed over the skeleton
graph. Let (u, v) be a cross-partition edge, where u ∈ Gi and v ∈ Gj , and let
V (Gi) and V (Gj) denote the sets of nodes in Gi and Gj . It is done using the
following two operations.

For all a ∈ ancs(u) ∩ V (Gi), Lout(a)← Lout(a) ∪ L′
out(u), and

For all d ∈ desc(v) ∩ V (Gj), Lin(d)← Lin(d) ∪ L′
in(v).

The skeleton graph gives a global picture over the 2-hop cover and can com-
press the edge transitive closure effectively.

A Hierarchical Partitioning Approach. Cheng et al. in [14] consider the
quality of the partitioning. The partitioning divides a large graph into smaller
graphs and computes the 2-hop cover code for the large graph by augmenting

Graph Reachability Queries: A Survey 201

..............

..............
Ec

Vw

GA

GD

(a) Node-Oriented

..............

..............

Vw

GA

GD

(b) Edge-Oriented

Figure 6.8. Bisect G into GA and GD (Figure 6 in [14])

the 2-hop cover codes for smaller graphs. The main issue in the flat partition-
ing [29, 30] is to find a way to compute 2-hop cover codes for a large graph
with the limited memory. Because it is not easy to find an optimal partition-
ing of graphs, Schenkel et al. take a simple approach. For a DAG graph G,
it can start from the top or the bottom (refer to G↓ in Figure 6.5) to extract a
subgraph that can be held in memory, and repeats it until the entire graph is
decomposed into a set of smaller graphs. Consider a node w appearing in a
cross-partition edge. The node w has potential power to compress the edge
transitive closure effectively, because many nodes in one subgraph may con-
nect to many nodes in another subgraph via the node w. However, there are two
cases as illustrated in Figure 6.7. The flat partitioning may result a partitioning
that result in many unbalanced 2-hop clusters S(Aw, w,Dw) (Figure 6.7(a)).
Cheng et al. attempt to partition a graph that results in balanced 2-hop clusters
S(Aw, w,Dw) (Figure 6.7(b)). Recall S(Aw, w,Dw) uses ∣Aw∣+ ∣Dw∣ space
to compress ∣Aw∣ ⋅ ∣Dw∣ − 1 entries in the edge transitive closure. Cheng et al.
show that the compression rate (∣Aw∣ ⋅ ∣Dw∣ − 1)/(∣Aw ∣+ ∣Dw∣) is maximum
when ∣Aw∣ = ∣Dw∣.

Cheng et al. in [14] propose a hierarchical partitioning approach to partition
a large graph G into two subgraphs, GA and GD , repeatedly in a top-down
fashion. It repeats if a subgraph cannot be held in memory in such a manner.

The key idea presented in [14] is to select a set of centers, Vw =
{w1, w2, ⋅ ⋅ ⋅ }, as a cut to partition a graph G. Note that the set of centers
implies a set of 2-hop clusters, S(Aw1 , w1,Dw1), S(Aw2 , w2,Dw2), ⋅ ⋅ ⋅ . Sup-
pose that G is partitioned into GA and GD . There exist a set of edges (u, v)
where u ∈ GA and v ∈ GD. Let EC denote such a set of edges. Cheng et al.
propose a node-oriented and an edge-oriented approach to identify Vw where
wi ∈ Vw is selected from the set of nodes appearing in EC . As illustrated in
Figure 6.8(a), in the node-oriented approach, it selects a set of nodes in EC

as Vw. As illustrated in Figure 6.8(b), in the edge-oriented approach, it treats
edges as virtual nodes and identify Vw. The set of Vw is computed as to find the

202 MANAGING AND MINING GRAPH DATA

minimum 2-hop cover to cover reachability cross GA and GD from the nodes
appearing in EC . It is important to note that reachability between the two sub-
graphs, GA and GD, are completely covered by the set of 2-hop clusters using
the set of nodes Vw. Based on Vw, Cheng et al. extract an induced subgraph
of GA, denoted G⊤, which does not include any nodes in Vw, and extract an
induced subgraph of GD , denoted G⊥, which does not include any nodes in
Vw. Both G⊤ and G⊥ are treated as G in the next steps to bisect.

7.4 2-Hop Cover Maintenance

A 2-hop cover is hard to compute. Schenkel et al. in [30] and Bramandia
et al. in [5] study the 2-hop cover maintenance problem to minimize the effort
of updating the 2-hop cover when updates occur, and avoid computing a 2-
hop cover from the beginning. There are four operations, insertion/deletion of
nodes/edges. It is straightforward to deal with insertions. Consider an insertion
of a new edge between an existing node and a new node v to G. A simple
solution is to insert S(ancs(v), v, desc(v)) into the 2-hop cover, i.e., inserting
v to the Lin and Lout of all nodes in desc(v) and ancs(v), respectively. The
deletion of nodes/edges becomes non-trivial, because a deletion of a node w
may affect the reachability u↝ v if w ∈ Lout(u) and w ∈ Lin(v). Removing
w from Lout(u) and Lin(v) may make u ↝ v to be wrongly answered as
false, because there may be other paths from u to v. The existing work focus
on deletion operations. In this article, we mainly discuss their approaches to
handle the deletion of an existing node. The similar idea can be applied to
handling the deletion of an existing edge.

Re-labeling a subgraph. When there is a deletion of an existing node,
Schenkel et al. in [30] compute a 2-hop cover L̂ of a subgraph Grel of G,
in order to reflect all the affected connections in G, due to the deletion of an
existing node v. The existing 2-hop cover L for the graph G, before updating,
will be updated to reflect all the affected connections by incorporating L̂. The
graph Grel(Vrel, Erel) is constructed as an induced graph of G, denoted as
G[Vrel]. The set of nodes, Vrel is computed as follows. First, it includes all
nodes in ancs(v) in Vrel, which is shown as the striped region in Figure 6.9a.
Second, it includes all nodes in desc(u) into Vrel if u ∈ ancs(v), which is
shown as the gray region in Figure 6.9a. Note that Grel represents all the
affected connections.

The 2-hop cover L̂ computed for Grel is used to update the 2-hop cover L
for the entire graph G as follows. It is obvious that all the connections (a, d),
that exist in G, need to be updated if a ∈ Vrel. Note that d ∈ Vrel in this case.
All Lout(a) for a ∈ Vrel are updated as to be L̂out(a). On the other hand, for a
connection (a, d) that exists in G where d ∈ Vrel, the node a may or may not

Graph Reachability Queries: A Survey 203

G

vv

ancs(v)

GREL

(a) Re-labeling a subgraph

a

G

v

Av

Dv

d

v'

Av'

Dv'

(b) Reserving alternative paths
Figure 6.9. Two Maintenance Approaches

exist in Vrel. If a ∈ Vrel, L̂in(d) are used to reflect all (a, d), because a and
d are both in Grel. For the latter case, it keeps Lin(d) ∖ Vrel, because such
(a, d) are not affected by the deletion of v and are encoded by previous 2-hop

clusters. Hence, Lin(d) is updated as (Lin(d) ∖ Vrel) ∪ L̂in(d).
A drawback of this approach is high maintenance cost, because Grel can

be as large as G itself. It means that the maintenance for the current 2-hop
cover degrades into the re-computation of a new 2-hop cover for the entire
graph. Bramandia et al. [4] show the 2-hop cover code maintenance using the
geometrical-based approach [13].

Reserving all alternative paths. Bramandia et al. in [5] propose u2-hop
that can work on a smaller set of affected connections online at the expense of
a large space. It considers all connections (a, d), where a ∈ ancs(v) and d ∈
desc(v), and modifies Lout(a) and Lin(d) by removing (i) v, (ii) nodes that are
on longer reachable from a or nodes that can not reach d any longer, due to the
deletion of the node v. The operation (i) is to exclude S(Av , v,Dv) from the
current 2-hop cover. The operation (ii) is to maintain S(Aw, w,Dw), where
w ∈ ancs(v) or w ∈ desc(v), by removing those nodes in Aw and Dw which
no longer connect to w. In order to maintain the 2-hop cover, it is important
to note that the succinct maintaining operations of [5] require redundancy in
the 2-hop cover. Such redundancy comes from the requirement that for any
connection (a, d) in G, it repeatedly encodes it with multiple 2-hop clusters
for all different alternative paths from a to d, as illustrated by Figure 6.9b.
The example shows that two alternative paths from a to d exist in G, and v
and v′ are contained in the two paths respectively. So both S(Av, v,Dv) and
S(Av′ , v

′,Dv′) need to be maintain to cover (a, d).
In details, in encoding (a, d) for all alternative paths from a to d, a set of

nodes W is used such that the removal of W disconnect all paths from a to d.
It constructs 2-hop clusters based on w ∈ W and any nodes that connect via

204 MANAGING AND MINING GRAPH DATA

w are included in Aw and Dw. And all w ∈ W are added into Lout(a) and
Lin(d). Upon the deletion of a node w, it can safely remove w from all Lout(a)
and Lin(d). It is because that if there is another path from a to d , there must
be another w′ ∈ W such that Lout(a) and Lin(d) both contain w′. Note that
the 2-hop cover compression ratio is in a relatively low priority in this regard.

8. 3-Hop Cover

Jin et al. in [25] propose a 3-Hop approach. Consider a transitive closure
matrix for a DAGG (Figure 6.10). Suppose there exists a chain cover ofGwith
k chains. Jin et al. show that the transitive closure matrix for G is a matrix of
k × k blocks where each block is a Pseudo-upper triangular matrix. It can be
done by ordering the nodes using their chain identifiers and then their positions
in the chains. Jin et al. use Con(G) to denote the set of pseudo-diagonal cells
for all the blocks in the transitive closure matrix (the circled cells shown in
Figure 6.10). It is easy to see that Con(G) is enough to derive the transitive
closure. Con(G) can be easily calculated using Algorithm 2.

C1

C1

C2

321 4 5

1

2

3

4

5

1 1 1

1 1

1

C2

6

6

1 1 1

1 1

1

1 1

1

111

1

1 1

1

Figure 6.10. Transitive Closure Matrix

Con(G) is already enough to answer a reachability query. But, the cost is
high, because the number of nodes in Con(G) can be large. Jin et al. encode
Con(G) using 3-hop cover codes. It is similar to the 2-hop cover codes. For
every node u, there is a list of “entry points” Lin(u) and a list of “exit points”
Lout(u). The difference between 2-hop and 3-hop is as follows. In a 2-hop
cover code, u can reach v if any only if Lout(u) ∩ Lin(v) ∕= ∅. But in a 3-hop
cover code, it allows a point in Lout(u) reach another point in Lin(v) via a
chain. Suppose that there is a chain ⋅ ⋅ ⋅ ↝ vi ↝ ⋅ ⋅ ⋅ ↝ vj ↝ ⋅ ⋅ ⋅ . Then,
u ↝ v is true if u can reach vi (1st hop), vi can reach vj (2nd hop), and
vj can reach v (3rd hop). The algorithm to compute the 3-hop cover codes is
similar to the algorithm to compute the 2-hop cover codes. The only difference

Graph Reachability Queries: A Survey 205

is that it needs to consider the set of pairs that can be encoded by each chain
rather than each node. The time complexity for the 3-hop cover construction
is O(k ⋅ n2 ⋅ ∣Con(G)∣).

Given a 3-hop cover coding scheme encoding for Con(G), it can answer
a reachability query u ↝ v as follows: In the first step, it collects a set of
entry points Lout(u) can reach on the intermediate chains. In the second step,
it collects a set of exit points which can reach v on the intermediate chains.
Finally, it checks whether an entry point can reach an exit point using the chain
ids and positions for nodes in the chain. The time complexity is O(log n+ k)
where n is the number of nodes in the graph G and k is the number of chains.

9. Distance-Aware 2-Hop Cover

The 2-hop cover coding schema discussed in the previous section can be
used to answer reachability queries, u ↝ v, but cannot be used to answer

distance queries, u
�
↝ v. A distance query u

�
↝ v is a reachability query

u ↝ v with the shortest distance �. In other words, it queries the shortest
distance from u to v if it is reachable. Cohen et al. in [17] address this problem.

Consider an edge-weighted directed graph G(E,V), where !(u, v) repre-
sents the distance over the edge (u, v) ∈ E. Let �(u, v) be the shortest distance
from a node u to a node v. A 2-hop cover code of u is a pair of Lin(u) and
Lout(u). Here, Lin(u) is a set of pairs {(u1, �(u1, u)), (u2, �(u2, u)), ⋅ ⋅ ⋅ },
and Lout(u) is a set of pairs {(v1, �(u, v1)), (v2, �(u, v2)), ⋅ ⋅ ⋅ }. A distance

query u
�
↝ v is answered as

min{�(u,w) + �(w, v)∣(w, �(u,w)) ∈ Lout(u) ∧ (w, �(w, v)) ∈ Lin(v)}

It is worth nothing that the distance-aware 2-hop cover needs to maintain the
additional shortest distance information.

Schenkel et al. in [30] discuss the distance-aware 2-hop cover. The algo-
rithms in [30] can be used to compute the distance-aware 2-hop cover. How-
ever, in addition to the bottleneck in the third step, it needs high overhead to
compute the shortest paths, and the resulting 2-hop cover can be unnecessar-
ily large. Consider Figure 6.11. There is a subgraph Gi in which the node
a is an ancestor of the nodes x1, x2, ⋅ ⋅ ⋅ , xd in the subgraph Gi that appear
in the cross-partition edges. As a result, all nodes, x1, x2, ⋅ ⋅ ⋅ , xd, appear in
the skeleton graph. Assume that there is a 2-hop cluster, S(Aw, w,Dw), in
the skeleton graph, that contains all x1, x2, ⋅ ⋅ ⋅ , xd in Aw. In computing the
distance-aware 2-hop cover for G by augmenting the distance-aware 2-hop
cover computed for the skeleton graph, it needs to identify the shortest path
from a to w (Figure 6.11). There may exist many unnecessary pairs in the
resulting distance-aware 2-hop cover such that �(a, x) + �(x,w) > �(a,w).

206 MANAGING AND MINING GRAPH DATA

w

Dw

Aw

Gi

x1 xd...
x2

a

A 2-hop cluster in PSG

Figure 6.11. The 2-hop Distance Aware Cover (Figure 2 in [10])

Cheng and Yu in [10] discuss a new DAG-based approach and focus on two
main issues.

Issue-1: It cannot obtain a DAG G′ for a directed graph G first, and
compute the distance-aware 2-hop cover for G based on the distance-
aware 2-hop cover computed for G′. In other words, it cannot represent
a strongly connected component (SCC) in G as representative node in
G′. It is because that a node w in a SCC on the shortest path from u to v
does not necessarily mean that every node in the SCC is on the shortest
path from u to v.

Issue-2: The cost of dynamically selecting the best 2-hop cluster, in an
iteration of the 2-hop cover program, cannot be reduced using the tree
cover codes and R-tree as discussed in [13], because such techniques
cannot handle distance information.

Cheng and Yu observe that if a 2-hop cluster, S(Aw, w,Dw), is computed to
cover all shortest paths containing the center node w, it can remove w from the
underneath graph G, because there is no need to consider again any shortest
paths via w any more.

Based on the observation, to deal with Issue-1, Cheng and Yu in [10] col-
lapse every SCC into DAG by removing a small number of nodes from the SCC
repeatedly until it obtains a DAG graph. To deal with Issue-2, when construct-
ing 2-hop clusters, Cheng and Yu propose a new technique to reduce the 2-hop
clusters by taking the already identified 2-hop clusters into consideration, to
avoid storing unnecessary all-pairs of shortest paths.

Cheng and Yu propose a two-step solution. In the first phase, it attempts to
obtain a DAG G↓ for a given graph G by removing a small number of nodes,

V̂Ci , from every SCC, Ci(VCi , ECi). In computing a SCC Ci(VCi , ECi), every

node, w ∈ V̂Ci is taken as a center, and S(Aw, w,Dw) is computed to cover

shortest paths for the graph G. Then, all nodes in V̂Ci will be removed, and

Graph Reachability Queries: A Survey 207

G[V \]Vc1
^

G

...
C2

C1

...

+

...

+

...

...

G[V \()]Vc1
^
Vc1
^

+

...G[V \()]Vc1
^
Vc1
^

......
Vw

G

T

GT

+

...

...

...

...

x2 Vc1
^

x1 Vc1
^ x2 Vc1

^

y1 Vc2
^ y2 Vc2

^

x1 Vc1
^

x1 Vc1
^ y1 Vc2

^

w1 Vw w2 Vw

x1 Vc1
^

...y1 Vc2
^

G

T

GT

(a) (b) (c)

(d)(e)

C2

Figure 6.12. The Algorithm Steps (Figure 3 in [10])

a modified graph is constructed as an induced subgraph of G(V,E), denoted

as G[V ∖ V̂Ci], with the set of nodes V ∖ V̂Ci . Figure 6.12(a) shows a graph
G with several SCCs. Figure 6.12(b)-(d) illustrate the main idea of collapsing
SCCs while computing 2-hop clusters. At the end, the original directed graph
G is represented as a DAG G′ plus a set of 2-hop clusters, S(Aw, w,Dw),

computed for every node, w ∈ V̂Ci . All shortest paths covered are the union of
the shortest paths covered by all 2-hop clusters, S(Aw, w,Dw), for every node,

w ∈ V̂Ci , and the modified DAG G′. In the second phase, for the obtained
DAG G↓, Cheng and Yu take the top-down partitioning approach to partition
the DAG G↓, based on the early work in [14]. Figure 6.12(d)-(e) show that the
graph can be partitioned hierarchically.

10. Graph Pattern Matching

In this section, we discuss several approaches to find graph patterns in
a large data graph. A data graph is a directed node-labeled graph GD =
(V,E,Σ, �). Here, V is a set of nodes, E is a set of edges (ordered pairs),
Σ is a set of node labels, and � is a mapping function which assigns each node,
vi ∈ V , a label lj ∈ Σ. Below, we use label(vi) to denote the label of node
vi. Given a label l ∈ Σ, the extent of l, denoted ext(l), is a set of nodes in
GD whose label is l. A graph pattern is a connected directed labeled graph
Gq = (Vq, Eq), where Vq is a subset of labels (Σ), and Eq is a set of edges
(ordered pairs) between two nodes in Vq. There are two types of edges. Let
A,D ∈ Vq. An edge (A,D) ∈ E(Gq) represents a parent/child condition,
denoted as A 7→ D, which identifies all pairs of nodes, vi and vj , such that
(vi, vj) ∈ GD , label(vi) = A, and label(vj) = D. An edge (A,D) ∈ E(Gq)

208 MANAGING AND MINING GRAPH DATA

represents a reachability condition, denoted as A↪→D, that identifies all pairs
of nodes, vi and vj , such that vi ↝ vj is true in GD , for label(vi) = A, and
label(vj) = D. A match in GD matches the graph pattern Gq if it satisfies all
the parent/child and reachability conditions conjunctively specified in Gq . A
graph pattern matching query is to find all matches for a query graph. In this
article, we focus on the reachability conditions, A↪→D, and omit the discus-
sions on parent/child conditions, A 7→ D. We assume that a query graph Gp

only consists of reachability conditions.

10.1 A Special Case: A↪→D

In this section, we introduce three approaches to processA↪→D over a graph
GD.

Sort-Merge Join. Wang et al. propose a sort-merge join algorithm in [36]
to process A↪→D over a directed graph using the tree cover codes [1]. Recall
that for a given node u, tccode(u) = {[ustart1 , uend1], [ustart2 , uend2], ⋅ ⋅ ⋅ },
where uend1 is the postorder when it traverses the spanning tree. We use
post(u) to denote the postorder of node u.

Let Alist and Dlist be two lists of ext(A) and ext(D), respectively. In
Alist, every node vi keeps all its intervals in the tccode(vi). In Dlist, every
node vj keeps its unique postorder post(v). Also, Alist is sorted on the inter-
vals [s, e] by the ascending order of s and then the descending order of e, and
Dlist is sorted by the postorder number in ascending order. The sort-merge
join algorithm evaluates A↪→D over GD by a single scan on Alist and Dlist
using the predicate Ptc(,). Wang et al. [36] propose a naive GMJ algorithm
and an IGMJ algorithm which uses a range search tree to improve the perfor-
mance of the GMJ algorithm.

Hash Join. Wang et al. also propose a hash join algorithm in [35] to process
A↪→D over a directed graph using the tree cover codes. Unlike the sort-merge
join algorithm, Alist is a list of pairs (val(u), post(u)) for all u ∈ ext(A).
Here, post(u) is the unique postorder of u, and val(u) is either a start or an
end of the intervals. Consider the node d in Figure 6.3(b), post(d) = 7, and
there are two intervals, [6, 7] and [1, 4]. In Alist, it keeps four pairs: (6, 7),
(7, 7), (1, 7), and (4, 7). Like the sort-merge join algorithm, Dlist keeps a list
of postorders post(v) for all v ∈ ext(D). Alist is sorted in ascending order of
val(a) values, and Dlist is sorted in ascending order of post(d) values. The
Hash Join algorithm, called HGJoin, is outline in Algorithm 5.

Join Index. Cheng et al. in [15] study a join index approach to process
A↪→D using a join index built on top of GD . The join index is built based on
the 2-hop cover codes. We explain it using the same example given in [15].

Graph Reachability Queries: A Survey 209

Algorithm 5 HGJoin(Alist, Dlist)

1: H ← ∅;
2: Output← ∅;
3: a← Alist.f irst;
4: d← Dlist.f irst;
5: while a ∕= Alist.last ∧ d ∕= Dlist.last do
6: if val(a) ≤ post(d) then
7: if post(a) /∈ H then
8: hash post(a) into H;
9: a← a.next;

10: else if val(a) < post(d) then
11: delete post(a) from H;
12: a← a.next;
13: else
14: for all post(a) in H do
15: append (post(a), post(d)) to Output;
16: end for
17: d← d.next;
18: end if
19: else
20: for all post(a) in H do
21: append (post(a), post(d)) to Output;
22: end for
23: d← d.next;
24: end if
25: end while
26: return Output;

a0

c0b2
b4b3

b5

b6

c1

d3d2

c2 d0d1 c3

d4d5

b0 b1

e4 e6 e7e5e3e1 e2

e0

Figure 6.13. Data Graph (Figure 1(a) in [12])

210 MANAGING AND MINING GRAPH DATA

A Ain Aout

a0 ∅ {c1, c3}

B Bin Bout

b0 ∅ {c1}
b1 ∅ {c3, b6}
b2 {a0, b0} {c1}
b3 {a0} {c2}
b4 {a0} {c2}
b5 {a0} {c3}
b6 {a0} {c3}

C Cin Cout

c0 {a0} ∅
c1 ∅ ∅
c2 {a0} ∅
c3 ∅ ∅

D Din Dout

d0 {a0, c0} ∅
d1 {a0, c0} ∅
d2 {c1} {c1}
d3 {c1} {c1}
d4 {c3} ∅
d5 {c3} ∅

E Ein Eout

e0 {a0, c2} ∅
e1 {c1} ∅
...

...
...

e7 {c1} ∅

(a) Five Lists

(A,B) {a0}

(A,E) {a0, c1}

(B,E) {c1, c2}

(B,D) {c1, c3}

(B,B) {b0, b6}

(A,C) {a0, c1, c3}

(B,C) {c1, c2, c3}

(C,D) {c0, c1, c3}

(A,D) {a0, c1, c3}

(C,C) {c0, c1, c2, c3}

(D,E) {c1}

(C,E) {c1, c2}

(D,C) {c1}

(D,D) {c1}

(b) W-table

a0

root

c0
c2

d0
d1

e0

..
.

b6

b2

 F T F T F T F T F T F T

b6

b6 b6

b1

c0 c0a0a0

c0 c1 c2

e0

c3

c3 c3

e0

b6
b5

b3
b4

a0

c1

c1

c2

c2

b0
b2

d2
d3

d4
d5

..
.

e7

e1

d2
d3

d0
d1

B Tree
+

(c) A Cluster-Based R-Join-Index

Figure 6.14. A Graph Database for GD (Figure 2 in [12])

Graph Reachability Queries: A Survey 211

Consider a graph GD (Figure 6.13). The 2-hop cover codes for all nodes in
GD are shown in Figure 6.14(a). It is a compressed 2-hop cover code which
removes v ↝ v from the 2-hop cover code computed. The predicate P2ℎop(,)
is slightly modified using the compressed 2-hop cover codes as follows.

P2ℎop(2hopcode(u), 2hopcode(v)) = Lout(u) ∩ Lin(v) ∕= ∅ ∨ u ∈ Lin(v) ∨ v ∈ Lout(u)

A cluster-based join index for a data graph GD based on the 2-hop cover
computed,ℋ = {Sw1 , Sw2 , ⋅ ⋅ ⋅ }, where Swi = S(Awi , wi,Dwi) and all wi are
centers. It is a B+-tree in which its non-leaf blocks are used for finding a given
center wi. In the leaf nodes, for each center wi, its Awi and Dwi , denoted F-
cluster and T-cluster, are maintained. Awi’s F-cluster and T-cluster are further
divided into labeled F-subclusters/T-subclusters where every node, ai, in anA-
labeled F-subcluster can reach every node dj in a D-labeled T-subcluster, via
wi. Together with the cluster-based join index, it designs a W -table in which,
an entryW (X,Y) is a set of centers. A center wi will be included inW (A,B),
if wi has a non-empty A-labeled F-subcluster and a non-empty D-labeled T-
subcluster. It helps to find the centers, wi, in the cluster-based join index, that
have an A-labeled F-subcluster and a D-labeled T-subcluster. For the cluster-
based join index for GD (Figure 6.13) is shown in Figure 6.14(c), and the
W -table is shown in Figure 6.14(b). Consider A↪→B. The entry W (A,B)
keeps {a0}, which suggests that the answers can be only found in the clusters
at the center a0. As shown in Figure 6.14(c), the center a0 has an A-labeled F-
subcluster {a0}, and a B-labeled T-subcluster {b2, b3, b4, b5, b6}. The answer
is the Cartesian product between these two labeled subclusters. It can process
A↪→D queries efficiently.

Cheng et al in. [11] discuss performance issues between the sort-merge join
approach and the index approach.

10.2 The General Cases

Chen et al. in [8] propose a holistic based approach for graph pattern match-
ing. But, a query graph, Gq, is restricted to be a tree, which we introduce in
brief in Section 2. Their TwigStackD algorithm process a tree-shaped Gq in
two steps. In the first step, it uses Twig-Join algorithm in [7] to find all patterns
in the spanning tree of GD. In the second step, for each node popped out from
the stacks used in Twig-Join algorithm, TwigStackD buffers all nodes which
at least match a reachability condition in a bottom-up fashion, and maintains
all the corresponding links among those nodes. When a top-most node that
matches a reachability condition, TwigStackD enumerates the buffer pool and
outputs all fully matched patterns. TwigStackD performs well for very sparse
data graphs. But, its performance degrades noticeably when the GD becomes
dense, due to the high overhead of accessing edge transitive closures.

212 MANAGING AND MINING GRAPH DATA

Cheng et al. in [11, 12] consider A↪→D as a R-join (like �-join), and process
a graph pattern matching as a sequence of R-joins. The issue is how to select
join order. They propose a dynamic programming algorithm to determine the
R-join order in [11]. They also propose an R-join/R-semijoin approach in [12].
The basic idea is to divide the join-index based approach into two steps namely
filter and fetch. The filter steps shares the similarity with semijoin, and the
fetch step is to join. Cheng et al. study how to select R-join/R-semijoin order
by interleaving R-joins with R-semijoins, using dynamic programming in [12].

Wang et al. in [35] propose a query graph Gq based on the hash join
approach, and consider how to share the processing cost when it needs to
process several Alist and Dlist simultaneously. Wang et al. propose three
basic join operators, namely, IT-HGJoin, T-HGJoin, and Bi-HGJoin. The
IT-HGJoin processes a subgraph of a query with one descendant and multi-
ple ancestors, for example, A↪→D ∧ B↪→D. The T-HGJoin process a sub-
graph of a query with one ancestor and multiple descendants, for example,
A↪→C ∧ A↪→D. The Bi-HGJoin processes a complete bipartite subgraph
of a query with multiple ancestors and multiple descendants, for example
A↪→C∧A↪→D∧B↪→C∧B↪→D. A general query graph Gq will be processed
by a set of subgraph queries using IT-HGJoin, T-HGJoin, and Bi-HGJoin.

11. Conclusions and Summary

In this chapter, we presented a survey on reachability queries. We dis-
cussed several coding-based approaches using traversal, dual-labeling, tree
cover, chain cover, path-tree cover, 2-hop cover, and 3-hop cover approaches.
We also addressed how to support distance-aware queries such as to find the
shortest distance between two nodes in a large directed graph using the 2-hop
cover, and how to support graph pattern matching using the existing graph-
based coding schema. As future work, it becomes important how to use the
graph-based coding schema to support more real large graph-based applica-
tions.

References

[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of
transitive relationships in large data and knowledge bases. In Proceedings
of the 1989 ACM SIGMOD international conference on Management of
data (SIGMOD 1989), 1989.

[2] K. Anyanwu and A. Sheth. �-queries: enabling querying for semantic
associations on the semantic web. In Proceedings of the 12th international
conference on World Wide Web (WWW 2003), 2003.

Graph Reachability Queries: A Survey 213

[3] B. Berendt and M. Spiliopoulou. Analysis of navigation behaviour in web
sites integrating multiple information systems. The VLDB Journal, 9(1),
2000.

[4] R. Bramandia, J. Cheng, B. Choi, and J. X. Yu. Updating recursive XML
views without transitive closure. To appear in VLDB J., 2009.

[5] R. Bramandia, B. Choi, and W. K. Ng. On incremental maintenance of 2-
hop labeling of graphs. In Proceedings of the 17th international conference
on World Wide Web (WWW 2008), 2008.

[6] D. Brickley and R. V. Guha. Resource Description Framework (RDF)
Schema Specification 1.0. W3C Recommendation, 2000.

[7] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML
pattern matching. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data (SIGMOD 2002), 2002.

[8] L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms for pattern
matching on dags. In Proceedings of the 31nd international conference on
Very large data bases (VLDB 2005), 2005.

[9] Y. Chen and Y. Chen. An efficient algorithm for answering graph reach-
ability queries. In Proceedings of the 24th International Conference on
Data Engineering (ICDE 2008), 2008.

[10] J. Cheng and J. X. Yu. On-line exact shortest distance query process-
ing. In Proceedings of the 12th International Conference on Extending
Database Technology (EDBT 2009), 2009.

[11] J. Cheng, J. X. Yu, and B. Ding. Cost-based query optimization for multi
reachability joins. In Proceedings of the 12th International Conference on
Database Systems for Advanced Applications (DASFAA 2007), 2007.

[12] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang. Fast graph pattern
matching. In Proceedings of the 24th International Conference on Data
Engineering (ICDE 2008).

[13] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computation
of reachability labeling for large graphs. In Proceedings of the 10th In-
ternational Conference on Extending Database Technology (EDBT 2006),
2006.

[14] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computing reach-
ability labelings for large graphs with high compression rate. In Proceed-
ings of the 11th International Conference on Extending Database Technol-
ogy (EDBT 2008), 2008.

[15] J. Cheng, J. X. Yu, and N. Tang. Fast reachability query processing. In
Proceedings of the 11th International Conference on Database Systems for
Advanced Applications (DASFAA 2006), 2006.

214 MANAGING AND MINING GRAPH DATA

[16] Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph.
Science Sinica, 14:1396–1400, 1965.

[17] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and dis-
tance queries via 2-hop labels. In Proceedings of the 13th annual ACM-
SIAM symposium on Discrete algorithms (SODA 2002), 2002.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms. MIT Press, 2001.

[19] S. DeRose, E. Maler, and D. Orchard. XML linking language (XLink)
version 1.0. 2001.

[20] S. DeRose, E. Maler, and D. Orchard. XML pointer language (XPointer)
version 1.0. 2001.

[21] J. Edmonds. Optimum branchings. J. Research of the National Bureau
of Standards, 71B:233–240, 1967.

[22] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for
a web-site management system. SIGMOD Rec., 26(3), 1997.

[23] H. He, H. Wang, J. Yang, and P. S. Yu. Compact reachability labeling
for graph-structured data. In Proceedings of the 2005 ACM CIKM Inter-
national Conference on Information and Knowledge Management (CIKM
2005), pages 594–601, 2005.

[24] H. V. Jagadish. A compression technique to materialize transitive closure.
ACM Trans. Database Syst., 15(4):558–598, 1990.

[25] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-HOP: A high-compression in-
dexing scheme for reachability query. In Proceedings of the 2009 ACM
SIGMOD international conference on Management of data (SIGMOD
2009), 2009.

[26] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently answering reacha-
bility queries on very large directed graphs. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data (SIG-
MOD 2008), 2008.

[27] D. S. Johnson. Approximation algorithms for combinatorial problems. In
Proceedings of the 5th annual ACM symposium on Theory of computing
(STOC 1973), 1973.

[28] L. Roditty and U. Zwick. A fully dynamic reachability algorithm for
directed graphs with an almost linear update time. In Proceedings of the
36 annual ACM symposium on Theory of computing (STOC 2004), 2004.

[29] R. Schenkel, A. Theobald, and G. Weikum. Hopi: An efficient connec-
tion index for complex XML document collections. In Proceedings of the
9th International Conference on Extending Database Technology (EDBT
2004), 2004.

Graph Reachability Queries: A Survey 215

[30] R. Schenkel, A. Theobald, and G. Weikum. Efficient creation and in-
cremental maintenance of the HOPI index for complex XML document
collections. In Proceedings of the 21th International Conference on Data
Engineering (ICDE 2005), 2005.

[31] K. Simon. An improved algorithm for transitive closure on acyclic di-
graphs. Theor. Comput. Sci., 58(1-3):325–346, 1988.

[32] S. TrißI and U. Leser. Fast and practical indexing and querying of very
large graphs. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data (SIGMOD 2007), 2007.

[33] J. van Helden, A. Naim, R. Mancuso, , M. Eldridge, L. Wernisch,
D. Gilbert, and S. Wodak. Reresenting and analysing molecular and cellu-
lar function using the computer. Journal of Biological Chemistry, 381(9-
10), 2000.

[34] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual labeling: Answering
graph reachability queries in constant time. In Proceedings of the 22th
International Conference on Data Engineering (ICDE 2006), 2006.

[35] H. Wang, J. Li, J. Luo, and H. Gao. Hash-base subgraph query processing
method for graph-structured XML documents. Proceedings VLDB Endow-
ment, 1(1), 2008.

[36] H. Wang, W. Wang, X. Lin, and J. Li. Labeling scheme and structural
joins for graph-structured XML data. In Proceedings of the 7th Asia-
Pacific Web Conference on Web Technologies Research and Development
(APWeb 2005), 2005.

	Chapter 6 GRAPH REACHABILITY QUERIES:A SURVEY
	1. Introduction
	2. Traversal Approaches
	2.1 Tree+SSPI
	2.2 GRIPP

	3. Dual-Labeling
	4. Tree Cover
	5. Chain Cover
	5.1 Computing the Optimal Chain Cover

	6. Path-Tree Cover
	7. 2-HOP Cover
	7.1 A Heuristic Ranking
	7.2 A Geometrical-Based Approach
	7.3 Graph Partitioning Approaches
	7.4 2-Hop Cover Maintenance

	8. 3-Hop Cover
	9. Distance-Aware 2-Hop Cover
	10. Graph Pattern Matching
	10.1 A Special Case: A,→D
	10.2 The General Cases

	11. Conclusions and Summary
	References

