
Chapter 5

GRAPH INDEXING

Xifeng Yan
Department of Computer Science
University of California at Santa Barbara

xyan@cs.ucsb.edu

Jiawei Han
Department of Computer Science
University of Illinois at Urbana-Champaign

hanj@cs.uiuc.edu

Abstract Advanced database systems face a great challenge arising from the emergence
of massive, complex structural data in bioinformatics, chem-informatics, busi-
ness processes, etc. One of the most important functions needed in these areas
is efficient search of complex graph data. Given a graph query, it is desirable
to retrieve relevant graphs quickly from a large database via efficient graph in-
dices. This chapter gives an introduction to graph substructure search, approx-
imate substructure search and their related graph indexing techniques, particu-
larly feature-based graph indexing.

Keywords: Frequent pattern, graph index, graph query, similarity search

1. Introduction

Development of scalable methods for analyzing large graph data sets, in-
cluding graphs built from chemical structures and biological networks, poses
great challenges. At the core of many graph analysis applications, lies a com-
mon and critical problem: how to efficiently search graphs.

Given a graph database D = {G1, G2, . . . , Gn} and a graph query Q, graph
search returns a query answer set DQ = {G∣M(Q,G) = 1, G ∈ D}, where
M is a boolean function. M could be a function testing graph isomorphism
(full structure search), subgraph isomorphism (substructure search), approxi-

© Springer Science+Business Media, LLC 2010

C.C. Aggarwal and H. Wang (eds.), Managing and Mining Graph Data, 161
Advances in Database Systems 40, DOI 10.1007/978-1-4419-6045-0_5,

162 MANAGING AND MINING GRAPH DATA

mate match (full structure similarity search), and subgraph approximate match
(substructure similarity search). It is inefficient to perform a sequential scan
on a graph database and check each graph to find answers to a query graph.
Sequential scan is costly because one has to not only access the whole graph
database but also check (sub)graph isomorphism. It is known that subgraph
isomorphism is an NP-complete problem [8]. Therefore, high performance
graph indexing is needed to quickly prune graphs that obviously violate the
query requirement.

The problem of graph search has been addressed in different domains since
it is a critical problem for many applications. In content-based image retrieval,
Petrakis and Faloutsos [25] represented each graph as a vector of features and
indexed graphs in a high dimensional space using R-trees. Shokoufandeh et
al. [29] indexed graphs by a signature computed from the eigenvalues of adja-
cency matrices. Instead of casting a graph to a vector form, Berretti et al. [2]
proposed a metric indexing scheme which organizes graphs hierarchically ac-
cording to their mutual distances. The SUBDUE system developed by Holder
et al. [17] uses minimum description length to discover substructures that com-
press graph data and represent structural concepts in the data. In 3D protein
structure search, algorithms using hierarchical alignments on secondary struc-
ture elements [21], or geometric hashing [35], have already been developed.
There are other literatures related to graph retrieval that we are not going to
enumerate here.

In semistructured/XML databases, query languages built on path expres-
sions become popular. Efficient indexing techniques for path expression were
initially introduced in DataGuide [13] and 1-index [23]. A(k)-index [20] pro-
poses k-bisimilarity to exploit local similarity existing in semistructured data-
bases. APEX [7] and D(k)-index [5] consider the adaptivity of index structure
to fit the query load. Index Fabric [9] represents every path in a tree as a string
and stores it in a Patricia trie. For more complicated graph queries, Shasha
et al. [28] extended the path-based technique to do full scale graph retrieval,
which is also used in the Daylight system [18]. Srinivasa et al. [30] built in-
dices based on multiple vector spaces with different abstract levels of graphs.

This chapter introduces feature-based graph indexing techniques that facili-
tate graph substructure search in graph databases with thousands of instances.
Nevertheless, similar techniques can also be applied to indexing single massive
graphs.

2. Feature-Based Graph Index

Definition 5.1 (Substructure Search). Given a graph database D =
{G1, G2, . . . , Gn} and a query graph Q, substructure search is to find all the
graphs that contain Q.

Graph Indexing 163

Substructure search is one kind of basic graph queries, observed in many
graph-related applications. Feature-based graph indexing is designed to an-
swer substructure search queries, which consists of the following two major
steps:

Index construction: It precomputes features from a graph database and
builds indices based on these features. There are various kinds of features
that could be used, including node/edge labels, paths, trees, and subgraphs.
Let F be a feature set for a given graph database D. For any feature f ∈ F ,
Df is the set of graphs containing f , Df = {G∣f ⊆ G,G ∈ D}. We define
a null feature, f∅, which is contained by any graph. An inverted index is built
between F and D: Df could be the ids of graphs containing f , which is similar
to inverted index in document retrieval [1].

Query processing: It has three substeps: (1) Search, which enumerates all
the features in a query graph, Q, to compute the candidate query answer set,
CQ =

∩
f Df (f ⊆ Q and f ∈ F); each graph in CQ contains all of Q’s

features. Therefore, DQ is a subset of CQ. (2) Fetching, which retrieves the
graphs in the candidate answer set from disks. (3) Verification, which checks
the graphs in the candidate answer set to verify if they really satisfy the query.
The candidate answer set is verified to prune false positives.

The Query Response Time of the above search framework is formulated as
follows,

Tsearcℎ + ∣CQ∣ ∗ (Tio + Tiso test), (5.1)

where Tsearcℎ is the time spent in the search step, Tio is the average I/O time
of fetching a candidate graph from the disk, and Tiso test is the average time
of checking a subgraph isomorphism, which is conducted over query Q and
graphs in the candidate answer set.

The candidate graphs are usually scattered around the entire disk. Thus, Tio
is the I/O time of fetching a block on a disk (assume a graph can be accom-
modated in one disk block). The value of Tiso test does not change much for
a given query. Therefore, the key to improve the query response time is to
minimize the size of the candidate answer set as much as possible. When a
database is so large that the index cannot be held in main memory, Tsearcℎ will
affect the query response time.

Since all the features in the index contained by a query are enumerated, it is
important to maintain a compact feature set in the memory. Otherwise, the cost
of accessing the index may be even greater than that of accessing the database
itself.

2.1 Paths

One solution to substructure search is to take paths as features to index
graphs: Enumerate all the existing paths in a database up to amaxL length and

164 MANAGING AND MINING GRAPH DATA

use them as features to index, where a path is a vertex sequence, v1, v2, . . . , vk ,
s.t., ∀1 ≤ i ≤ k − 1, (vi, vi+1) is an edge. It uses the index to identify graphs
that contain all the paths (up to the maxL length) in the query graph.

This approach has been widely adopted in XML query processing. XML
query is one kind of graph query, which is usually built around path expres-
sions. Various indexing methods [13; 23; 9; 20; 7; 28; 5] have been developed
to process XML queries. These methods are optimized for path expressions
and tree-structured data. In order to answer arbitrary graph queries, Graph-
Grep and Daylight systems were proposed in [28; 18]. All of these methods
take path as the basic indexing unit; we categorize them as path-based in-
dexing. The path-based approach has two advantages: (1) Paths are easier to
manipulate than trees and graphs, and (2) The index space is predefined: All
the paths up to themaxL length are selected. In order to answer tree- or graph-
structured queries, a path-based approach has to break query graphs into paths,
search each path separately for the graphs containing the path, and join the
results. Since the structural information could be lost when query graphs are
decomposed to paths, likely many false positive candidates will be returned.
In addition, a graph database may contain millions of different paths if it is
large and diverse. These disadvantages motivate the search of new indexing
features.

2.2 Frequent Structures

A straightforward approach of extending paths is to involve more compli-
cated features, e.g., all of substructures extracted from a graph database. Un-
fortunately, the number of substructures could be even more than the number
of paths, leaving an exponential index structure in practice. One solution is to
set a threshold of substructures’ frequency and only index those frequent ones.

Definition 5.2 (Frequent Structures). Given a graph database D =
{G1, G2, . . . , Gn} and a graph structure f , the support of f is defined as
sup(f) = ∣Df ∣, whereas Df is referred as f ’s supporting graphs. With a
predefined threshold min sup, f is said to be frequent if sup(f) ≥ min sup.

Frequent structures could be used as features to index graphs. Given a query
graph Q, if Q is frequent, the graphs containing Q can be retrieved directly
since Q is indexed. Otherwise, we sort all Q’s subgraphs in the support de-
creasing order: f1, f2, . . . , fn. There must exist a boundary between fi and
fi+1 where ∣Dfi ∣ ≥ min sup and ∣Dfi+1

∣ < min sup. Since all the frequent
structures with minimum support min sup are indexed, one can compute the
candidate answer set CQ by

∩
1≤j≤iDfj , whose size is at most ∣Dfi ∣. For

many queries, ∣Dfi ∣ is close to min sup. Therefore, the cost of verifying CQ is
minimal when min sup is low.

Graph Indexing 165

Unfortunately, for low support queries (i.e., queries whose answer set is
small), the size of candidate answer set CQ is related to the setting of min sup.
If min sup is set too high, CQ might be very large. If min sup is set too low, it
could be difficult to generate all the frequent structures due to the exponential
pattern space.

Should a uniform min sup be enforced for all the frequent structures? In
order to reduce the overall index size, it is appropriate to have a low minimum
support on small structures (for effectiveness) and a high minimum support on
large structures (for compactness). This criterion of selecting frequent struc-
tures for effective indexing is called size-increasing support constraint.

Definition 5.3 (Size-increasing Support). Given a monotonically nonde-
creasing function, (l), structure f is frequent under the size-increasing sup-
port constraint if and only if ∣Df ∣ ≥ (size(f)), and (l) is a size-increasing
support function.

0 5 10
0

5

10

15

20

fragment size (edges)

su
pp

or
t(

%
)

Θ

θ

(a) Exponential

0 5 10
0

5

10

15

20

fragment size (edges)

su
pp

or
t(

%
)

Θ

θ

(b) Piecewise-linear

Figure 5.1. Size-increasing Support Functions

Figure 5.1 shows two size-increasing support functions: exponential and
piecewise-linear. One could select size-1 structures with a minimum support
� and larger structures with a higher support until we exhaust structures up to
the size of maxL with a minimum support Θ.

The size-increasing support constraint will select and index small structures
with low minimum supports and large structures with high minimum supports.

166 MANAGING AND MINING GRAPH DATA

This method has two advantages: (1) the number of frequent structures so
obtained is much smaller than that using a low uniform support, and (2) low-
support large structures could be well indexed by their smaller subgraphs. The
first advantage also shortens the mining process when graphs have big struc-
tures in common.

2.3 Discriminative Structures

Among similar structures with the same support, it is often sufficient to
index only the smallest common substructures since more query graphs may
contain these structures (higher coverage). That is to say, if f ′, a supergraph of
f , has the same support as f , it will not be able to provide more information
than f if both are selected as indexing features. That is, f ′ is not more discrim-
inative than f . This concept can be extended to a collection of subgraphs.

Definition 5.4 (Redundant Structure). Structure x is redundant with respect
to a feature set F if Dx is close to

∩
f∈F∧f⊆xDf .

Each graph in
∩

f∈F∧f⊆xDf contains all x’s subgraphs in the feature set

F . If Dx is close to
∩

f∈F∧f⊆xDf , it implies that the presence of structure
x in a graph can be predicted well by the presence of its subgraphs. Thus,
x should not be used as an indexing feature since it does not provide new
benefits to pruning if its subgraphs are being indexed. In such case, x is a
redundant structure. In contrast, there are structures that are not redundant,
called discriminative structures.

Let f1, f2, . . . , and fn be the indexing structures. Given a new structure x,
the discriminative power of x can be measured by

Pr(x∣f'1 , . . . , f'm), f'i ⊆ x, 1 ≤ 'i ≤ n. (5.2)

Eq. (5.2) shows the probability of observing x in a graph given the presence
of f'1 , . . . , and f'm . Discriminative ratio, , is defined as 1/Pr(x∣f'1 , . . . ,
f'm), which could be calculated by the following formula:

 =
∣∩iDf'i

∣
∣Dx∣

, (5.3)

whereDx is the set of graphs containing x and
∩

iDf'i
is the set of graphs con-

taining the features belonging to x. In order to mine discriminative structures, a
minimum discriminative ratio min is selected; those structures whose discrim-
inative ratio is at least min are retained as indexing features. The structures
are mined in a level-wise manner, from small size to large size. The concept of
indexing discriminative frequent structures, called gIndex, was first introduced
by Yan et al. [36]. gIndex is able to achieve better performance in comparison
with path-based methods.

Graph Indexing 167

For a feature x ⊆ Q, the operation, CQ = CQ ∩ Dx could reduce the
candidate answer set by intersecting the id lists of CQ and Dx. One inter-
esting question is how to reduce the number of intersection operations. In-
tuitively, if a query Q has two structures, fx ⊂ fy, then CQ

∩
Dfx

∩
Dfy

= CQ
∩
Dfy . Thus, it is not necessary to intersect CQ with Dfx . Let

F (Q) be the set of discriminative structures contained in the query graph
Q, i.e., F (Q) = {fx∣fx ⊆ Q ∧ fx ∈ F}. Let Fm(Q) be the set of
structures in F (Q) that are not contained by other structures in F (Q), i.e.,
Fm(Q) = {fx∣fx ∈ F (Q),∄fy, s.t., fx ⊂ fy ∧ fy ∈ F (Q)}. The structures in
Fm(Q) are called maximal discriminative structures. In order to calculate CQ,
one only needs to perform intersection operations on the id lists of maximal
discriminative structures.

2.4 Closed Frequent Structures

Graph query processing that applies feature-based graph indices often re-
quires a post verification step that finds true answers from a candidate answer
set. If the candidate answer set is large, the verification step might take a long
time to finish. Fortunately, a query graph having a large answer set is likely
a frequent graph, which can be very efficiently processed using the frequent
structure based index without any post verification. If the query graph is not a
frequent structure, the candidate answer set obtained from the frequent struc-
ture based index is likely small; hence the number of candidate verifications
should be minimal. Based on this observation, Cheng et al. [6] investigated the
issue arising from frequent structure based indexing. As discussed before, the
number of frequent structures could be exponential, indicating a huge index,
which might not fit into main memory. In this case, the query performance
will be degraded, since graph query processing has to access disks frequently.
Cheng et al. [6] proposed using �-Tolerance Closed Frequent Subgraphs (�-
TCFGs) to compress the set of frequent structures. Each �-TCFG can be re-
garded as a representative supergraph of a set of frequent structures. An outer
inverted-index is built on the set of �-TCFGs, which is resident in main mem-
ory. Then, an inner inverted-index is built on the cluster of frequent structures
of each �-TCFG, which is resident in disk. Using this two-level index structure,
many graph queries could be processed directly without verification.

2.5 Trees

Zhao et al. [38] analyzed the effectiveness and efficiency of paths, trees, and
graphs as indexing features from three aspects: feature size, feature selection
cost, and pruning power. Like paths and graphs, tree features can be effectively
and efficiently used as indexing features for graph databases. It was observed
that the majority of frequent graph patterns discovered in many applications

168 MANAGING AND MINING GRAPH DATA

are tree structures. Furthermore, if the distribution of frequent trees and graphs
is similar, likely they will share similar pruning power.

Since tree mining can be performed much more efficiently than graph min-
ing, Zhao et al. [38] proposed a new graph indexing mechanism, called
Tree+Δ, which first mines and indexes frequent trees, and then on-demand
selects a small number of discriminative graph structures from a query, which
might prune graphs more effectively than tree features. The selection of dis-
criminative graph structures is done on-the-fly for a given query. In order to
do so, the pruning power of a graph structure is estimated approximately by its
subtree features with upper/lower bounds. Given a query, Tree+Δ enumerates
all the frequent subtrees of Q up to the maximum size maxL. Based on the
obtained frequent subtree feature set ofQ, T (Q), it computes the candidate an-
swer set, CQ, by intersecting the supporting graph set of t, for all t ∈ T (Q). If
Q is a non-tree cyclic graph, it obtains a set of discriminative non-tree features,
F . These non-tree features, f , may be cached already in previous search. If
not, Tree+Δ will scan the graph database and build an inverted index between
f and graphs in D. Then it intersects CQ with the supporting graph set Df .

GCoding [39] is another tree-based graph indexing approach. For each node
u, it extracts a level-n path tree, which consists of all n-step simple pathes from
u in a graph. The node is then encoded with eigenvalues derived from this local
tree structure. If a query graph Q is a subgraph of a graph G, for each vertex
u in Q, there must exist a corresponding vertex u′ in G such that the local
structure around u in Q should be preserved around u′ in G. There is a partial
order relationship between the eigenvalues of these two local structures. Based
on this property, GCoding could quickly prune graphs that violate the order.

GString [19] combines three basic structures together: path, star, and cycle
for graph search. It first extracts all of cycles in a graph database and then finds
the star and path structures in the remaining dataset. The indexing methodol-
ogy of GString is different from the feature-based approach. It transforms
graphs into string representations and treats the substructure search problem as
a substring match problem. GString relies on suffix tree to perform indexing
and search.

2.6 Hierarchical Indexing

Besides the feature-based indexing methodology, it is also possible to or-
ganize graphs in a hierarchical structure to facilitate graph search. Close-tree
[15] and GDIndex [34] are two examples of hierarchical graph indexing.

Closure-tree organizes graphs hierarchically where each node in the hierar-
chical structure contains summary information about its descendants. Given
two graphs and an isomorphism mapping between them, one can take an ele-
mentwise union of the two graphs and obtain a new graph where the attribute

Graph Indexing 169

of vertices and edges is a union of their corresponding attribute values in the
two graphs. This union graph summarizes the structural information of both
graphs, and serves as their bounding box [15], akin to a Minimum Bounding
Rectangle (MBR) in traditional index structures. There are two steps to process
a graph query Q using the closure-tree index: (1) Traverse the closure tree and
prune nodes (graphs) based on a pseudo subgraph isomorphism; (2) Verify the
remaining graphs to find the real answers. The pseudo subgraph isomorphism
performs approximate subgraph isomorphism testing with high accuracy and
low cost.

GDIndex [34] proposes indexing the complete set of the induced subgraphs
in a graph database. It organizes the induced subgraphs in a DAG structure
and builds a hash table to cross-index the nodes in the DAG structure. Given a
query graph, GDIndex first identifies the nodes in the DAG structure that share
the same hash code with the query graph, and then their canonical codes are
compared to find the right answers. Unfortunately, the index size of GDIn-
dex could be exponential due to a large number of induced subgraphs. It was
suggested to place a limit on the size of indexed subgraphs.

3. Structure Similarity Search

A common problem in graph search is: what if there is no match or very few
matches for a given query graph? In this situation, a subsequent query refine-
ment process has to be taken in order to find the structures of interest. Unfor-
tunately, it is often too time-consuming for a user to manually refine the query.
One solution is to ask the system to find graphs that approximately contain the
query graph. This structure similarity search problem has been studied in var-
ious fields. Willett et al. [33] summarized the techniques of fingerprint-based
and graph-based similarity search in chemical compound databases. Raymond
et al. [27] proposed a three tier algorithm for full structure similarity search.
Nilsson[24] presented an algorithm for the pairwise approximate substructure
matching. The matching is greedily performed to minimize a distance func-
tion for two graphs. Hagadone [14] recognized the importance of substructure
similarity search in a large set of graphs. He used atom and edge labels to do
screening. Messmer and Bunke [22] studied the reverse substructure similarity
search problem in computer vision and pattern recognition. In [28], Shasha et
al. also extended their substructure search algorithm to support queries with
wildcards, i.e. don’t care nodes and edges. In the following discussion, we
will introduce feature-based graph indexing for substructure similarity search.

Definition 5.5 (Substructure Similarity Search). Given a graph database
D = {G1, G2, . . . , Gn} and a query graph Q, substructure similarity search
is to discover all the graphs that approximately contain Q.

170 MANAGING AND MINING GRAPH DATA

Definition 5.6 (Substructure Similarity). Given two graphs G and Q, if P is
the maximum common subgraph of G and Q, then the substructure similarity
between G and Q is defined by ∣E(P)∣

∣E(Q)∣ , and � = 1− ∣E(P)∣
∣E(Q)∣ is called relaxation

ratio.

Besides the common subgraph similarity measure, graph edit distance could
also be used to measure the similarity between two graphs. It calculates
the minimum number of edit operations (insertion, deletion, and substitution)
needed to transform one graph into another [3].

3.1 Feature-Based Structural Filtering

Given a relaxed query graph, there is a connection between structure-
based similarity and feature-based similarity, which could be used to leverage
feature-based graph indexing techniques for similarity search.

e1

e2 e3

(a) A Query

(a) fa (b) fb (c) fc

(b) A Set of Features

Figure 5.2. Query and Features

Figure 5.2(a) shows a query graph and Figure 5.2(b) depicts three structural
fragments. Assume that these fragments are indexed as features in a graph
database. Suppose there is no match for this query graph in a graph database.
Then a user may relax one edge, e.g., e1, e2, or e3, through a deletion oper-
ation. No matter which edge is relaxed, the relaxed query graph should have
at least three embeddings of these features. That is, the relaxed query graph
may miss at most four embeddings of these features in comparison with the
seven embeddings in the original query graph: one fa, two fb’s, and four fc’s.
According to this constraint, graphs that do not contain at least three embed-
dings of these features could be safely pruned. This filtering concept is called
feature-based structural filtering. In order to facilitate feature-based filtering,

Graph Indexing 171

an index structure is developed, referred to feature-graph matrix [12; 28]. Each
column of the feature-graph matrix corresponds to a target graph in the graph
database, while each row corresponds to a feature being indexed. Each entry
records the number of the embeddings of a specific feature in a target graph.

3.2 Feature Miss Estimation

fa fb(1) fb(2) fc(1) fc(2) fc(3) fc(4)

e1 0 1 1 1 0 0 0

e2 1 1 0 0 1 0 1

e3 1 0 1 0 0 1 1

Figure 5.3. Edge-Feature Matrix

In order to calculate the maximum feature misses for a given relaxation
ratio, we introduce edge-feature matrix that builds a map between edges and
features for a query graph. In this matrix, each row represents an edge while
each column represents an embedding of a feature. Figure 5.3 shows the matrix
built for the query graph in Figure 5.2(a) and the features shown in Figure
5.2(b). All of the embeddings are recorded. For example, the second and the
third columns are two embeddings of feature fb in the query graph. The first
embedding of fb covers edges e1 and e2 while the second covers edges e1 and
e3. The middle edge does not appear in the edge-feature matrix if a user prefers
retaining it. We say that an edge ei hits a feature fj if fj covers ei.

The feature miss estimation problem is formulated as follows: Given a
query graph Q and a set of features contained in Q, if the relaxation ratio
is �, what is the maximum number of features that can be missed? In fact,
it is the maximum number of columns that can be hit by k rows in the edge-
feature matrix, where k = ⌊� ⋅ ∣G∣⌋. This is a classic maximum coverage (or
set k-cover) problem, which has been proved NP-complete. The optimal so-
lution that finds the maximal number of feature misses can be approximated
by a greedy algorithm [16]. The greedy algorithm first selects a row that hits
the largest number of columns and then removes this row and the columns
covering it. This selection and deletion operation is repeated until k rows are
removed. The number of columns removed by this greedy algorithm provides
a way to estimate the upper bound of feature misses. Although the bound de-
rived by the greedy algorithm cannot be improved asymptotically, it is possible
to improve the greedy algorithm in practice by exhaustively searching the most
selective features [37].

172 MANAGING AND MINING GRAPH DATA

3.3 Frequency Difference

Once the upper bound of feature misses is obtained, it could be used to prune
graphs. Let f1, f2, . . . , fn be the indexing features. Given a target graph G
and a query graph Q, let u = [u1, u2, . . . , un]

T and v = [v1, v2, . . . , vn]
T be

their corresponding feature vectors, where ui and vi are the frequencies (i.e.,
the number of embeddings) of feature fi in graphs G and Q. Figure 5.4 shows
the two feature vectors u and v. As mentioned before, for any feature set,
the corresponding feature vector of a target graph can be obtained from the
feature-graph matrix directly without scanning the graph database.

Target Graph G

Query Graph Q

u1

u2

u3

u4

u5

v1

v2

v3
v4

v5

f1 f2 f3 f4 f5

Figure 5.4. Frequency Difference

Eq. (5.4) calculates frequency difference of fi between the query graph and
the target graph,

r(ui, vi) =

{
0, if ui ≥ vi,
vi − ui, otℎerwise.

(5.4)

For the feature vectors shown in Figure 5.4, r(u1, v1) = 0; the extra embed-
dings from the target graph are not taken into account. The summed frequency
difference of each feature in G and Q is written as d(G,Q). Eq. (5.5) sums up
all the frequency differences,

d(G,Q) =

n∑

i=1

r(ui, vi). (5.5)

Suppose the query can be relaxed with k edges and the upper bound of allowed
feature misses is then estimated using the greedy algorithm mentioned before.
If d(G,Q) is greater than that bound, it can be concluded that G does not con-
tain Q within k edge relaxations. For this case, it is not necessary to perform
any complicated structure comparison between G and Q. Since all the com-
putations are done on the preprocessed information in the indices, the filtering
process is fast.

Graph Indexing 173

3.4 Feature Set Selection

Though a bit counter-intuitive, using all the features together will not nec-
essarily give the optimal solution; in some cases, it even deteriorates the
performance rather than improving it. Given a query graph Q, let F =
{f1, f2, . . . , fm} be the set of features included in Q, and dkF the maximal
number of features missed in F after Q is relaxed (either relabeled or deleted)
with k edges. Relabeling and deleting an edge e in Q have the same ef-
fect: the features containing e are broken. Let u = [u1, u2, . . . , um]T and
v = [v1, v2, . . . , vm]T be the feature vectors built from a target graph G in
the graph database and a query graph Q based on a chosen feature set F . Let
ΓF = {G∣d(G,Q) > dkF}, which is the set of graphs pruned from the database
by the feature set F . It is obvious that, for any feature set F , the greater the
cardinality of ΓF , the better.

In general, a candidate graph G passing a filter should satisfy the following
inequality,

r(u1, v1) + r(u2, v2) + . . .+ r(un, vn) ≤ dkF . (5.6)

Let P be the maximum common subgraph of G and Q. Vector u′ =
[u′1, u

′
2, . . . , u

′
n]

T is its feature vector. If G contains Q within the relaxation
ratio, P should contain Q within the relaxation ratio as well, i.e.,

r(u′1, v1) + r(u′2, v2) + . . .+ r(u′n, vn) ≤ dkF . (5.7)

Since for any feature fi, ui ≥ u′i, we have

r(ui, vi) ≤ r(u′i, vi),
n∑

i=1

r(ui, vi) ≤
n∑

i=1

r(u′i, vi).

Inequality (5.7) is stronger than Inequality (5.6). Assume that Inequality (5.7)
does not hold for graph P , and there exists a feature fi such that its frequency
in P is too small to keep Inequality (5.7) true. However, Inequality (5.6) could
still hold for graph G, if the misses of fi is compensated by more occurrences
of other features inG. This phenomenon is called feature conjugation. Feature
conjugation likely takes place since the filtering does not distinguish the misses
of individual features, but a collection of features. Due to feature conjuga-
tion, some graphs might not be pruned by the feature-based structural filtering
method.

Definition 5.7 (Selectivity). Given a graph database D, a query graphQ, and
a feature f , the selectivity of f is defined by its average frequency difference
within D and Q, written as �f (D,Q). �f (D,Q) is equal to the average of
r(u, v), where u is a variable denoting the frequency of f in a graph belonging
to D, v is the frequency of f in Q, and r is defined in Eq. (5.4).

174 MANAGING AND MINING GRAPH DATA

There are three general feature set selection principles. The first principle
is to select a large number of features. If only a small number of features
are selected, the maximum allowed feature misses may become very close to∑n

i=1 vi. In that case, the filtering algorithm loses its pruning power. The sec-
ond one is to make sure features cover the entire query graph. If most of the
features cover several common edges, the relaxation of these edges will make
the maximum allowed feature misses too big. The third one is to separate fea-
tures with different selectivity. Low selective features deteriorate the potential
filtering power from high selective ones due to frequency conjugation.

The above three criteria are not consistent with each other. For example, if
all the features in a query graph are used, the second and the third principles
will be violated since features often are concentrated in the center of a graph.
On the other hand, one cannot use the most selective features alone because
a query graph might not have enough highly selective features. The task of
feature set selection is to make a trade-off among these principles. In practice,
using a single filter with all the features included is not expected to perform
well. Yan et al. [37] introduced a multi-filter strategy: Multiple filters are
constructed and applied sequentially, where each filter uses a subset of features.
This strategy was demonstrated to outperform a single filter based approach.

3.5 Structures with Gaps

The graph indexing methods introduced so far only consider connected sub-
graphs in a graph database. SAGA [31] proposes using fragments that do not
always correspond to connected subgraphs and allows gaps in the indexing
fragments.

The indexing unit in SAGA is a set of k nodes from the graphs in a database,
where k is a user specified parameter, and is usually a small number. However,
it could be expensive to enumerate all possible k-node sets in a large graph
database. SAGA puts a limit on the diameter of each k-node set. If any pair of
nodes in a k-node set are too far apart, this fragment does not correspond to a
meaningful substructure, thus is not worth indexing. For a k-node set {v1, v2,
. . ., vk}, if any two nodes vi and vj satisfy d(vi, vj) ≤ dmax, where dmax is a
diameter limit, SAGA connects the two nodes by a pseudo edge. Only those
fragments that form a connected graph with the original edges or the newly
introduced pseudo edges are indexed. Because of the pseudo edges, SAGA
could index fragments with gaps.

The matching process of SAGA has three steps. The first step is to find
small hits. In this step, the query graph is broken into small fragments and the
graph index is probed to find database fragments that are similar to the query
fragments. The second step is to assemble small hits retrieved in the first step
to formulate larger matches. In this step, the small hits are first grouped by

Graph Indexing 175

the database graph IDs and two neighbor hits are connected with each other
to formulate a hit-compatible graph. This graph will tell which hits could be
merged together to form a potential large match for the given query graph. The
third step examines each candidate match and produces a set of real matches.
SAGA allows users to specify a threshold to control the percentage of gap
nodes in the subgraph match.

Different from Grafil [37] and SAGA [31], TALE [32] employs a new
graph indexing method, called NH-Index (Neighborhood Index) for approx-
imate subgraph matching of large query graphs efficiently. Instead of indexing
various kinds of subgraphs in a graph database, NH-Index only considers the
neighborhood structure of each node in a graph. Therefore, the number of in-
dexing structures in NH-Index is equal to the number of nodes in the database,
which is much smaller than the number of features used in many feature-based
indexing methods. TALE also has an innovative matching paradigm for query-
ing large graphs. Unlike the existing graph matching tools that treat every
node in a graph equally, TALE distinguishes nodes by their importance in a
graph structure. The algorithm first probes the NH-Index to match the impor-
tant nodes in a query graph, and then progressively extends the matches by
enclosing satisfiable nearby nodes of the matched nodes. TALE was applied to
two real biological datasets and was able to produce meaningful results in both
cases [32].

4. Reverse Substructure Search

In contrast to substructure search (Definition 5.1) which finds all graphs
that contain a query graph, reverse substructure search finds all graphs that are
contained by a query graph. Reverse substructure search finds applications in
chem-informatics, pattern recognition [11] (visual surveillance, face recogni-
tion), cyber security (virus signature detection [10]), information management
(user-interest mapping [26]), etc. For example, in chemistry, a descriptor is
a set of atoms with designated bonds that has certain properties of chemical
reactions. Given a new molecule, identifying “descriptor" structures can help
researchers to understand its possible properties. In computer vision, attributed
relational graphs (ARG) [11] are used to model images by transforming them
into spatial entities such as points, lines, and shapes. ARG also connects these
spatial entities (nodes) together with their mutual relationships (edges) such
as distances, using a graph representation. The graph models of basic objects
such as humans, animals, cars, airplanes, are built first. A recognition sys-
tem could then query these models to identify objects, or perform large-scale
video search for specific models if the key frames of videos are represented by
ARGs. Such a system can also be used to automatically recognize and classify
objects in technical drawings.

176 MANAGING AND MINING GRAPH DATA

Definition 5.8 (Reverse Substructure Search). Given a graph
database D = {G1, G2, . . . , Gn} and a graph query Q, find all graphs Gi in
D, s.t., Q ⊇ Gi.

Reverse substructure search has its unique characteristics. The pruning strat-
egy employed in substructure search has inclusion logic: Given a query graph
Q and a database graph G ∈ D, if a feature f ⊆ Q and f ∕⊆ G, then Q ∕⊆ G.
That is, if feature f is in Q then the graphs not having f are pruned. The in-
clusion logic prunes graphs using features contained in the query graph. On
the contrary, reverse substructure search has an exclusion logic: If a feature
f ⊈ Q and f ⊆ G, then Q ⊉ G. That is, if feature f is not in Q then the
graphs having f are pruned.

According to the exclusion logic, given a graph database D, the best index-
ing features are those subgraphs contained by lots of graphs in D, but unlikely
contained by a query graph. This kind of subgraph features are called con-
trast features. There is a connection between contrast subgraphs and their
frequency: Both infrequent and very frequent subgraphs are likely not con-
trastive, and thus not useful for indexing. Therefore, one can apply frequent
graph pattern mining and select those contrast subgraphs. The number of con-
trast subgraphs could be huge; most of them are very similar to each other.
Since the index performance is determined by a set of indexing features, rather
than individual ones, it is important to find a set of contrast subgraphs that col-
lectively perform well. Chen et al. [4] developed a redundancy-aware selection
mechanism, cIndex, to sort out a set of distinctive contrast subgraphs that can
maximize the pruning performance for a set of query graphs. cIndex has a
flat index structure, where each feature is tested sequentially against queries.
Based on cIndex, cIndex-BottomUp and cIndex-TopDown were developed to
support hierarchical indexing models that could further improve the pruning
capability.

The bottom-up hierarchical index builds indices layer by layer starting from
the bottom-level original graphs in a database. Figure 5.5(a) shows a bottom-
up hierarchical index where the itℎ-level index ℐi is built by applying cIndex
to features in the (i− 1)tℎ-level index ℐi−1. For example, the first-level index
ℐ1 is built on the original graph database by cIndex. Once this is done, the
features in ℐ1 can be regarded as another graph database, where cIndex can
be executed again to form a second-level index ℐ2. Following this manner,
one can continue building higher-level indices until the pruning gain becomes
zero. This method is called cIndex-BottomUp. Note that in a bottom-up index,
features on the itℎ-level must be subgraphs of features on the (i−1)tℎ-level. In
Figure 5.5(a), subgraph relationships are shown as edges. For example, f1 is a
subgraph of f2, which is in turn a subgraph of f3. Given a query graph Q, if
f1 ∕⊆ Q, then the tree covered by f1 need not be examined due to the exclusion
logic. Since the index on each level will save some isomorphism tests for the

Graph Indexing 177

... Original Graph Database

First Level Index

Second Level Index

graph

f1

f2

g1 g2 g3 gn

Third Level Index

f3

...

(a) Bottom-up

f1

f2 f2'
not containedcontained

(b) Top-down

Figure 5.5. cIndex

graphs it indexes, it is obvious that cIndex-BottomUp should outperform the
flat index of cIndex.

The top-down hierarchical index first puts f1, the feature with the highest
pruning power, at the top of the hierarchy (Figure 5.5(b)). Given a query graph
Q, if f1 is contained by Q, f2 is further tested against Q; if f1 is not contained
by Q, all the graphs indexed by f1 are pruned, and then the second feature f ′2
is tested for the remaining graphs. In a flat index built by cIndex, f2 and f ′2 are
forced to be the same: No matter whether f1 is contained byQ or not, the same
second feature will be examined next. However, in a top-down index, they can
be different. As shown in [4], cIndex-TopDown achieved the best performance
due to its differentiating index structure.

5. Conclusions

Graph indexing is one of the emerging important tasks in graph database
management and graph data mining. It is fundamental to many graph related
applications, especially when an application involves large scale graph data-
bases. In this chapter, we introduced the concepts of substructure search, ap-
proximate substructure search, and feature-based graph indexing methods that
mine and index a compact set of discriminative and selective structure features
for fast graph retrieval. These methods are going to significantly improve the

178 MANAGING AND MINING GRAPH DATA

performance of advanced graph applications such as graph classification and
clustering.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM
Press/Addison-Wesley, 1999.

[2] S. Beretti, A. Bimbo, and E. Vicario. Efficient matching and indexing of
graph models in content based retrieval. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 23:1089–1105, 2001.

[3] H. Bunke and G. Allermann. Inexact graph matching for structural pattern
recognition. Pattern Recognition Letters, 1(4):245–253, 1983.

[4] C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang, and X. Gu. Towards graph
containment search and indexing. In Proc. of 2007 Int. Conf. on Very Large
Data Bases (VLDB’07), pages 926 – 937, 2007.

[5] Q. Chen, A. Lim, and K. W. Ong. D(k)-Index: An adaptive structural
summary for graph-structured data. In Proc. of 2003 ACM-SIGMOD Int.
Conf. Management of Data (SIGMOD’03), pages 134–144, 2003.

[6] J. Cheng, Y. Ke, W. Ng, and A. Lu. FG-Index: Towards verification-free
query processing on graph databases. In Proc. of 2007 ACM Int. Conf. on
Management of Data (SIGMOD’07), pages 857 – 872, 2007.

[7] C. Chung, J. Min, and K. Shim. APEX: An adaptive path index for xml
data. In Proc. of 2002 ACM Int. Conf. on Management of Data (SIG-
MOD’02), pages 121–132, 2002.

[8] S. Cook. The complexity of theorem-proving procedures. In Proc. of
the 3rd ACM Symp. on Theory of Computing (STOC’71), pages 151–158,
1971.

[9] B. Cooper, N. Sample, M. Franklin, G. Hjaltason, and M. Shadmon. A fast
index for semistructured data. In Proc. of 2001 Int. Conf. on Very Large
Data Bases (VLDB’01), pages 341–350, 2001.

[10] Y. Fang, , R. Katz, and T. Lakshman. Gigabit rate packet pattern-
matching using TCAM. In Proc. of the 12th IEEE Int. Conf. on Network
Protocols (ICNP’04), pages 174–183, 2004.

[11] K. Fu. A step towards unification of syntactic and statistical pattern
recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence,
8(3):398–404, 1986.

[12] R. Giugno and D. Shasha. GraphGrep: A fast and universal method for
querying graphs. pages 112–115, 2002.

Graph Indexing 179

[13] R. Goldman and J. Widom. Dataguides: Enabling query formulation and
optimization in semistructured databases. In Proc. of 1997 Int. Conf. on
Very Large Data Bases (VLDB’97), pages 436–445, 1997.

[14] T. Hagadone. Molecular substructure similarity searching: Efficient re-
trieval in two-dimensional structure databases. J. Chem. Inf. Comput. Sci.,
32:515–521, 1992.

[15] H. He and A. Singh. Closure-Tree: An index structure for graph queries.
In Proc. of 2006 Int. Conf. on Data Engineering (ICDE’06), 2006.

[16] D. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS
Publishing, MA, 1997.

[17] L. Holder, D. Cook, and S. Djoko. Substructure discovery in the sub-
due system. In Proc. of AAAI’94 Workshop on Knowledge Discovery in
Databases (KDD’94), pages 169–180, 1994.

[18] C. James, D. Weininger, and J. Delany. Daylight Theory Manual Version
4.82. Daylight Chemical Information Systems, Inc, 2003.

[19] H. Jiang, H. Wang, P. Yu, and S. Zhou. GString: A novel approach for
efficient search in graph databases. In Proc. of 2007 Int. Conf. on Data
Engineering (ICDE’07), pages 566–575, 2007.

[20] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local
similarity for efficient indexing of paths in graph structured data. In Proc.
of 2002 Int. Conf. on Data Engineering (ICDE’02), pages 129–140, 2002.

[21] T. Madej, J. Gibrat, and S. Bryant. Threading a database of protein cores.
Proteins, 3-2:289–306, 1995.

[22] B. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph
isomorphism detection. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 20:493–504, 1998.

[23] T. Milo and D. Suciu. Index structures for path expressions. Lecture
Notes in Computer Science, 1540:277–295, 1999.

[24] N. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, Palo
Alto, CA, 1980.

[25] E. Petrakis and C. Faloutsos. Similarity searching in medical image data-
bases. Knowledge and Data Engineering, 9(3):435–447, 1997.

[26] M. Petrovic, H. Liu, and H. Jacobsen. G-ToPSS: Fast filtering of
graph-based metadata. In Proc. of 2005 Int. Conf. on World Wide Web
(WWW’05), pages 539–547, 2005.

[27] J. Raymond, E. Gardiner, and P. Willett. Rascal: Calculation of graph
similarity using maximum common edge subgraphs. The Computer Jour-
nal, 45:631–644, 2002.

180 MANAGING AND MINING GRAPH DATA

[28] D. Shasha, J. Wang, and R. Giugno. Algorithmics and applications of
tree and graph searching. In Proc. of the 21th ACM Symp. on Principles of
Database Systems (PODS’02), pages 39–52, 2002.

[29] A. Shokoufandeh, S. Dickinson, K. Siddiqi, and S. Zucker. Indexing us-
ing a spectral encoding of topological structure. In Proc. of IEEE Int. Conf.
on Computer Vision and Pattern Recognition (CVPR’99), pages 2491–
2497, 1999.

[30] S. Srinivasa and S. Kumar. A platform based on the multi-dimensional
data model for analysis of bio-molecular structures. In Proc. of 2003 Int.
Conf. Very Large Data Bases (VLDB’03), pages 975–986, 2003.

[31] Y. Tian, R. McEachin, C. Santos, D. States, and J. Patel. SAGA: A sub-
graph matching tool for biological graphs. Bioinformatics, 23:232–239,
2007.

[32] Y. Tian and J. Patel. TALE: A tool for approximate large graph matching.
Proc. of 2008 Int. Conf. on Data Engineering (ICDE’08), pages 963–972,
2008.

[33] P. Willett, J. Barnard, and G. Downs. Chemical similarity searching. J.
Chem. Inf. Comput. Sci., 38:983–996, 1998.

[34] D. Williams, J. Huan, and W. Wang. Graph database indexing using struc-
tured graph decomposition. In Proc. of 2007 Int. Conf. on Data Engineer-
ing (ICDE’07), pages 976–985, 2007.

[35] H. Wolfson and I. Rigoutsos. Geometric hashing: An introduction. IEEE
Computational Science and Engineering, 4:10–21, 1997.

[36] X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based
approach. In Proc. of 2004 ACM-SIGMOD Int. Conf. on Management of
Data (SIGMOD’04), pages 335–346, 2004.

[37] X. Yan, P. S. Yu, and J. Han. Substructure similarity search in graph
databases. In Proc. of 2005 ACM-SIGMOD Int. Conf. on Management of
Data (SIGMOD’05), pages 766 – 777, 2005.

[38] P. Zhao, J. Yu, and P. Yu. Graph indexing: tree + delta >= graph. In Proc.
of 2007 Int. Conf. on Very Large Data Bases (VLDB’07), pages 938–949,
2007.

[39] L. Zou, L. Chen, J. Yu, and Y. Lu. A novel spectral coding in a large
graph database. In Proc. of the 11th Int. Conf. on Extending Database
Technology (EDBT’08), pages 181–192, 2008.

	Chapter 5 GRAPH INDEXING
	1. Introduction
	2. Feature-Based Graph Index
	2.1 Paths
	2.2 Frequent Structures
	2.3 Discriminative Structures
	2.4 Closed Frequent Structures
	2.5 Trees
	2.6 Hierarchical Indexing

	3. Structure Similarity Search
	3.1 Feature-Based Structural Filtering
	3.2 Feature Miss Estimation
	3.3 Frequency Difference
	3.4 Feature Set Selection
	3.5 Structures with Gaps

	4. Reverse Substructure Search
	5. Conclusions
	References

