
Chapter 4

QUERY LANGUAGE AND ACCESS METHODS
FOR GRAPH DATABASES∗

Huahai He∗

Google Inc.
Mountain View, CA 94043, USA

huahai@google.com

Ambuj K. Singh
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106, USA

ambuj@cs.ucsb.edu

Abstract With the prevalence of graph data in a variety of domains, there is an increas-
ing need for a language to query and manipulate graphs with heterogeneous
attributes and structures. We present a graph query language (GraphQL) that
supports bulk operations on graphs with arbitrary structures and annotated at-
tributes. In this language, graphs are the basic unit of information and each
query manipulates one or more collections of graphs at a time. The core of
GraphQL is a graph algebra extended from the relational algebra in which the
selection operator is generalized to graph pattern matching and a composition
operator is introduced for rewriting matched graphs. Then, we investigate ac-
cess methods of the selection operator. Pattern matching over large graphs is
challenging due to the NP-completeness of subgraph isomorphism. We address
this by a combination of techniques: use of neighborhood subgraphs and pro-
files, joint reduction of the search space, and optimization of the search order.
Experimental results on real and synthetic large graphs demonstrate that graph
specific optimizations outperform an SQL-based implementation by orders of
magnitude.
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1. Introduction

Data in multiple domains can be naturally modeled as graphs. Examples
include the Semantic Web [32], GIS, images [3], videos [24], social networks,
Bioinformatics and Cheminformatics. Semantic Web standardizes informa-
tion on the web as a graph with a set of entities and explicit relationships. In
Bioinformatics, graphs represent several kinds of information: a protein struc-
ture can be modeled as a set of residues (nodes) and their spatial proximity
(edges); a protein interaction network can be similarly modeled by a set of
genes/proteins (nodes) and physical interactions (edges). In Cheminformatics,
graphs are used to represent atoms and bonds in chemical compounds.

The growing heterogeneity and size of the above data has spurred interest
in diverse applications that are centered on graph data. Existing data mod-
els, query languages, and database systems do not offer adequate support for
the modeling, management, and querying of this data. There are a number of
reasons for developing native graph-based data management systems. Con-
sidering expressiveness of queries: we need query languages that manipulate
graphs in their full generality. This means the ability to define constraints
(graph-structural and value) on nodes and edges not in an iterative one-node-
at-a-time manner but simultaneously on the entire object of interest. This also
means the ability to return a graph (or a set of graphs) as the result and not just
a set of nodes. Another need for native graph databases is prompted by effi-
ciency considerations. There are heuristics and indexing techniques that can
be applied only if we operate in the domain of graphs.

1.1 Graphs-at-a-time Queries

Generally, a graph query takes a graph pattern as input, retrieves graphs from
the database which contain (or are similar to) the query pattern, and returns the
retrieved graphs or new graphs composed from the retrieved graphs. Examples
of graph queries can be found in various domains:

Find all heterocyclic chemical compounds that contain a given aromatic
ring and a side chain. Both the ring and the side chain are specified as
graphs with atoms as nodes and bonds as edges.

Find all protein structures that contain the �-�-barrel motif [5]. This
motif is specified as a cycle of � strands embraced by another cycle of �
helices.
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Given a query protein complex from one species, is it functionally con-
served in another species? The protein complex may be specified as a
graph with nodes (proteins) labeled by Gene Ontology [14] terms.

Find all instances from an RDF (Resource Description Framework [26])
graph where two departments of a company share the same shipping
company. The query graph (of three nodes and two edges) has the con-
straints that nodes share the same company attribute and the edges are
labeled by a “shipping” attribute. Report the result as a single graph with
departments as nodes and edges between nodes that share a shipper.

Find all co-authors from the DBLP dataset (a collection of papers rep-
resented as small graphs) in a specified set of conference proceedings.
Report the results as a co-authorship graph.

As illustrated above, there is an increasing need for a language to query and
manipulate graphs with heterogeneous attributes and structures. The language
should be native to graphs, general enough to meet the heterogeneous nature of
real world data, declarative, and yet implementable. Most importantly, a graph
query language needs to support the following feature.

Graphs should be the basic unit of information. The language should
explicitly address graphs and queries should be graphs-at-a-time, taking
one or more collections of graphs as input and producing a collection of
graphs as output.

1.2 Graph Specific Optimizations

A graph query language is useful only if it can be efficiently implemented.
This is especially important since one encounters the usual bottlenecks of sub-
graph isomorphism. As graphs are special cases of relations, graph queries
can still be reduced to the relational model. However, the general-purpose re-
lational model allows little opportunity for graph specific optimizations since
it breaks down the graph structures into individual relations. Let us consider
a simple example as follows. Figure 4.1 shows a graph query and a graph
where each node has a single label as its attribute (nodes with the same label
are distinguished by subscripts).

Consider an SQL-based approach to the sample graph query. The graph in
the database can be modeled in two tables. Table V(vid, label) stores the set
of nodes1 where vid is the node identifier. Table E(vid1, vid2) stores the set of
edges where vid1 and vid2 are end points of each edge. The graph query can
then be expressed as an SQL query with multiple joins:

1For convenience, the terms “vertex” and “node” are used interchangeably in this chapter.



128 MANAGING AND MINING GRAPH DATA

P

A

B

A1

B1C1 B2

G

C C2

A2

Figure 4.1. A sample graph query and a graph in the database

SELECT V1.vid, V2.vid, V3.vid

FROM V AS V1, V AS V2, V AS V3,

E AS E1, E AS E2, E AS E3

WHERE V1.label = ’A’ AND V2.label = ’B’ AND V3.label = ’C’

AND V1.vid = E1.vid1 AND V1.vid = E3.vid1

AND V2.vid = E1.vid2 AND V2.vid = E2.vid1

AND V3.vid = E2.vid2 AND V3.vid = E3.vid2

AND V1.vid <> V2.vid AND V1.vid <> V3.vid

AND V2.vid <> V3.vid;

A

B C

V1

V2 V3

E1

E2

E3

Join on
V1.vid = E1.vid1

Figure 4.2. SQL-based implementation

As can be seen in the above example, although the graph query can be ex-
pressed by an SQL query, the global view of graph structures is lost. This pre-
vents pruning of the search space that utilizes local or global graph structural
information. For instance, nodes A2 and C1 in G can be safely pruned since
they have only one neighbor. Node B2 can also be pruned after A2 is pruned.
Furthermore, the SQL query involves many join operations. Traditional query
optimization techniques such as dynamic programming do not scale well with
the number of joins. This makes SQL-based implementations inefficient.

1.3 GraphQL

This chapter presents GraphQL, a graph query language in which graphs are
the basic unit of information from the ground up. GraphQL uses a graph pat-
tern as the main building block of a query. A graph pattern consists of a graph
structure and a predicate on attributes of the graph. Graph pattern matching
is defined by combining subgraph isomorphism and predicate evaluation. The
core of GraphQL is a bulk graph algebra extended from the relational algebra
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in which the selection operator is generalized to graph pattern matching and a
composition operator is introduced for rewriting matched graphs. In terms of
expressive power, GraphQL is relationally complete and is contained in Data-
log [28]. The nonrecursive version of GraphQL is equivalent to the relational
algebra.

The chapter then describes efficient processing of the selection operator
over large graph databases (either a single large graph or a large collection
of graphs). We first present a basic graph pattern matching algorithm, and then
apply three graph specific optimization techniques to the basic algorithm. The
first technique prunes the search space locally using neighborhood subgraphs
or their profiles. The second technique performs global pruning using an ap-
proximation algorithm called pseudo subgraph isomorphism [17]. The third
technique optimizes the search order based on a cost model for graphs. Exper-
imental study shows that the combination of these three techniques allows us
to scale to both large queries and large graphs.

GraphQL has a number of distinct features:

1 Graph structures and structural operations are described by the notion
of formal languages for graphs. This notion is useful for manipulating
graphs and is the basis of the query language (Section 2).

2 A graph algebra is defined along the line of the relational algebra. Each
graph algebraic operator manipulates graphs or sets of graphs. The
graph algebra generalizes the selection operator to graph pattern match-
ing and introduces a composition operator for rewriting matched graphs.
In terms of expressive power, the graph algebra is relationally complete
and is contained in Datalog (Section 3.3).

3 An efficient implementation of the selection operator over large graphs is
presented. Experimental results on large real and synthetic graphs show
that graph specific optimizations outperform an SQL-based implemen-
tation by orders of magnitude (Sections 4 and 5).

2. Operations on Graph Structures

In order to define graph patterns and operations on graph structures, we need
a formal way to describe graph structures and how they can be combined into
new graph structures. As such we extend the notion of formal languages [20]
from the string domain to the graph domain. The notion deals with graph
structures only. Description of attributes on graphs will be discussed in the
next section.

In existing formal languages (e.g., regular expressions, context-free lan-
guages), a formal grammar consists of a finite set of terminals and nonter-
minals, and a finite set of production rules. A production rule consists of a
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nonterminal on the left hand side and a sequence of terminals and nontermi-
nals on the right hand side. The production rules are used to derive strings of
characters. Strings are the basic units of information.

In a formal language for graphs, the basic units are graph structures instead
of strings. The nonterminals, called graph motifs, are either simple graphs or
composed of other graph motifs by means of concatenation, disjunction, or
repetition. A graph grammar is a finite set of graph motifs. The language of
a graph grammar is the set of all graphs derivable from graph motifs of that
grammar.

A simple graph motif represents a graph with constant structure. It consists
of a set of nodes and a set of edges. Each node, edge, or graph is identified by
a variable if it needs to be referenced elsewhere. Figure 4.3 shows a simple
graph motif and its graphical representation.

e1

e2

e3

v1

v3v2

graph G1 {
node v1, v2, v3;
edge e1 (v1, v2);
edge e2 (v2, v3);
edge e3 (v3, v1);

}

Figure 4.3. A simple graph motif

A complex graph motif consists of one or more graph motifs by concatena-
tion, disjunction, or repetition. In the string domain, a string connects to other
strings implicitly through its head and tail. In the graph domain, a graph may
connect to other graphs in a structural way. These interconnections need to be
explicitly specified.

2.1 Concatenation

A graph motif can be composed of two or more graph motifs. The con-
stituent motifs are either left unconnected or concatenated in one of two ways.
One way is to connect nodes in each motif by new edges. Figure 4.4(a) shows
an example of concatenation by edges. Graph motif G2 is composed of two
motifs G1 of Figure 4.3. The two motifs are connected by two edges. To avoid
name conflicts, alias names of G1 are used.

The other way of concatenation is to unify nodes in each motif. Two edges
are unified automatically if their respective end nodes are unified. Figure 4.4(b)
shows an example of concatenation by unification.

Concatenation is useful for defining Cartesian product and join operations
on graphs.



Query Language and Access Methods for Graph Databases 131

2.2 Disjunction

A graph motif can be defined as a disjunction of two or more graph motifs.
Figure 4.5 shows an example of disjunction. In graph motif G4, two anony-
mous graph motifs are declared (comprising of node v3 or nodes v3 and v4).
Only one of them is selected and connected to the rest ofG4. In disjunction, all
the constituent graph motifs should have the same “interface” to the outside.

2.3 Repetition

A graph motif may be defined by itself to derive recursive graph structures.
Figure 4.6(a) shows the construction of a path and a cycle. In the base case,
the path has two nodes and one edge. In the recurrence step, the path contains
itself as a member, adds a new node v1 which connects to v1 of the nested
path, and exports the nested v2 so that the new path has the same “interface.”
The keyword “export” is equivalent to declaring a new node and unifying it
with the nested node. Graph motif Cycle is composed of motif Patℎ with an
additional edge that connects the end nodes of the Patℎ.

Recursions in the graph domain are not limited to paths and cycles. Fig-
ure 4.6(b) illustrates an example where the repetition unit is a graph motif.
Motif G5 contains an arbitrary number of motif G1 and a root node v0. The
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graph G2 {
graph G1 as X;
graph G1 as Y;
edge e4 (X.v1, Y.v1);
edge e5 (X.v3, Y.v2);

}
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graph G3 {
graph G1 as X;
graph G1 as Y;
unify X.v1, Y.v1;
unify X.v3, Y.v2;

}

v3

v1(v1)

v3 (v2)

(a) (b)

Figure 4.4. (a) Concatenation by edges, (b) Concatenation by unification

graph G4 {
node v1, v2;
edge e1 (v1, v2);

   {
node v3;
edge e2 (v1, v3);
edge e3 (v2, v3);

   } | {
node v3, v4;
edge e2 (v1, v3);
edge e3 (v2, v4);
edge e4 (v3, v4);

   };
}
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Figure 4.5. Disjunction
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declaration recursively contains G5 itself and a new G1, with G1.v1 connected
to v0, where v0 is exported from the nested G5. The first resulting graph con-
sists of node v0 alone, the second consists of node v0 connected to G1 through
edge e1, the third consists of node v0 connected to two instances of G1 through
edge e1, and so on.

e1 G1

graph Path {
graph Path;
node v1;
edge e1 (v1, Path.v1);
export Path.v2 as v2;

} | {
node v1, v2;
edge e1 (v1, v2);

}

e1 e1

graph G5 {
graph G5;

   graph G1;
   export G5.v0 as v0;
   edge e1 (v0, G1.v1);
} | { node v0 }

v0

… ...
e1

e2

e3

v1

v3v2

e1

e2

e3

v1

v3v2

(a) (b)

graph Cycle {
   graph Path;

edge e1 (Path.v1, 
    Path.v2);

}

e1 v2v1v1

Path

Figure 4.6. (a) Path and cycle, (b) Repetition of motif G1

3. Graph Query Language

This section presents the GraphQL query language. We first describe the
data model. Next, we define graph patterns and graph pattern matching. We
then present a graph algebra and its bulk operators which is the core of the
graph query language. Finally, we illustrate the syntax of the graph query
language through an example.

3.1 Data Model

Graphs in the real world contain not only graph structural information, but
also attributes on nodes and edges. In GraphQL, we use a tuple, a list of name
and value pairs, to represent the attributes of each node, edge, or graph. A tuple
may have an optional tag that denotes the tuple type. Tuples are annotated to
the graph structures so that the representations of attributes and structures are
clearly separate. Figure 4.7 shows a sample graph that represents a paper (the
graph has no edges). Node v1 has two attributes “title” and “year”. Nodes v2
and v3 have a tag “author” and an attribute “name”.

graph G <inproceedings> {
node v1 <title=”Title1”, year=2006>;
node v2 <author name=”A”>;
node v3 <author name=”B”>; 

};

Figure 4.7. A sample graph with attributes

In the relational model, tuples are the basic unit of information. Each alge-
braic operator manipulates collections of tuples. A relational query is always
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equivalent to an algebraic expression which is a combination of the operators.
A relational database consists of one or more tables (relations) of tuples.

In GraphQL, graphs are the basic unit of information. Each operator takes
one or more collections of graphs as input and generates a collection of graphs
as output. A graph database consists of one or more collections of graphs.
Unlike the relational model, graphs in a collection do not necessarily have
identical structures and attributes. However, they can still be processed in a
uniform way by binding to a graph pattern.

The GraphQL data model is similar to the TAX model [22] as for XML. In
TAX, trees are the basic unit and the operators work on collections of trees.
Trees in a collection have similar but not identical structures and attributes.
This is captured by a pattern tree.

3.2 Graph Patterns

A graph pattern is the main building block of a graph query. Essentially,
it consists of a graph motif and a predicate on attributes of the motif. The
graph motif specifies constraints on graph structures and the predicate specifies
constraints on attributes. A graph pattern is used to select graphs of interest.

Definition 4.1. (Graph Pattern) A graph pattern is a pair P = (ℳ,ℱ), where
ℳ is a graph motif and ℱ is a predicate on the attributes of the motif.

The predicate ℱ is a combination of boolean or arithmetic comparison ex-
pressions. Figure 4.8 shows a sample graph pattern. The predicate can be
broken down to predicates on individual nodes or edges, as shown on the right
side of the figure.

graph P {
node v1;
node v2;

} where v1.name=”A”
and v2.year>2000;

or

graph P {
node v1 where name=”A”;
node v2 where year>2000;

};

Figure 4.8. A sample graph pattern

Next, we define the notion of graph pattern matching which generalizes
subgraph isomorphism with evaluation of the predicate.

Definition 4.2. (Graph Pattern Matching) A graph pattern P(ℳ,ℱ) is
matched with a graph G if there exists an injective mapping �: V (ℳ) →
V (G) such that i) For ∀ e(u, v) ∈ E(ℳ), (�(u), �(v)) is an edge in G, and
ii) predicate ℱ�(G) holds.

A graph pattern is recursive if its motif is recursive (see Section 2.3). A
recursive graph pattern is matched with a graph if one of its derived motifs is
matched with the graph.
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Mapping Φ:
Φ(P.v1) → G.v2
Φ(P.v2) → G.v1

Figure 4.9. A mapping between the graph pattern in Figure 4.8 and the graph in Figure 4.7

Figure 4.9 shows an example of graph pattern matching between the pattern
in Figure 4.8 and the graph in Figure 4.7.

If a graph pattern is matched to a graph, the binding between them can be
used to access the graph (either graph structural information or attributes on
the graph). As a graph pattern can match many graphs, this allows us to access
a collection of graphs uniformly even though the graphs may have heteroge-
nous structures and attributes. We use a matched graph to denote the binding
between a graph pattern and a graph.

Definition 4.3. (Matched Graph) Given an injective mapping � between a pat-
tern P and a graph G, a matched graph is a triple ⟨�,P, G⟩ and is denoted by
�P(G).

Although a matched graph is formally defined by a triple, it has all charac-
teristics of a graph. Thus, all terms and conditions that apply to a graph also
apply to a matched graph. For example, a collection of matched graphs is also
a collection of graphs. As such it can match another graph pattern, resulting in
another collection of matched graphs (two levels of bindings).

A graph pattern can match a graph in multiple places, resulting in multiple
bindings (matched graphs). This is considered further when we discuss the
selection operator in Section 3.3.0.

3.3 Graph Algebra

We define a graph algebra along the lines of the relational algebra. This al-
lows us to inherit the solid foundation and experience of the relational model.
All relational operators have their counterparts or alternatives in the graph al-
gebra. These operators are defined directly on graphs since graphs are now the
basic units of information. In particular, the selection operator is generalized
to graph pattern matching; a composition operator is introduced to generate
new graphs from matched graphs.

Selection (�). A selection operator � takes a graph pattern P and a collec-
tion of graphs C as arguments, and produces a collection of matched graphs as
output. The result is denoted by �P(C):

�P(C) = {�P(G) ∣ G ∈ C}
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A graph database may consist of a single large graph, e.g., a social network.
A single large graph and a collection of graphs are treated in the same way. A
collection of graphs is a special case of a single large graph, whereas a single
large graph is considered as many inter-connected or overlapping small graphs.
These small graphs are captured by the graph pattern of the selection operator.

A graph pattern can match a graph many times. Thus, a selection could
return many instances for each graph in the input collection. We use an option
“exhaustive” to specify whether it should return one or all possible mappings
between the graph pattern and the graph. Whether one or all mappings are
required depends on the application.

Cartesian Product (×) and Join (⊳⊲). A Cartesian product operator takes
two collections of graphs C andD as input, and produces a collection of graphs
as output. Each graph in the output collection is composed of a graph from C
and another from D. The constituent graphs are unconnected:

C × D = { graph { graph G1, G2; } ∣ G1 ∈ C, G2 ∈ D}

As in the relational algebra, the join operator in the graph algebra can be
defined by a Cartesian product followed by a selection:

C ⊳⊲P D = �P(C × D)

In a valued join, the join condition is a predicate on attributes of the con-
stituent graphs. The constituent graphs are unconnected in the resultant graph.
No new graph structures are generated. Figure 4.10 shows an example of val-
ued join.

graph {
graph G1, G2;

} where G1.id = G2.id;

Figure 4.10. An example of valued join

In a structural join, the constituent graphs can be concatenated by edges or
unification. New graph structures are generated in the resultant graph. This is
specified through a composition operator which is described next.

Composition (!). Composition operators are used to generate new graphs
from existing (matched) graphs. In order to specify the composition operators,
we introduce the concept of graph templates.

Definition 4.4. (Graph Template) A graph template T consists of a list of for-
mal parameters which are graph patterns, and a template body which is defined
by referring to the graph patterns.
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Once actual parameters (matched graphs) are given, a graph template is in-
stantiated to a real graph. This is similar to invoking a function: the template
body is the function body; the graph patterns are the formal parameters; the
matched graphs are the actual parameters. The resulting graph can be denoted
by TP1..Pk

(G1, ..., Gk).

TP = graph {
node v1 <label=P.v1.name>;
node v2 <label=P.v2.title>;
edge e1 (v1, v2);

   }

TP (G) = graph {
node v1 <label=”A”>;
node v2 <label=”Title1”>;
edge e1 (v1, v2);

      }

(a) (b)

Figure 4.11. (a) A graph template with a single parameter P , (b) A graph instantiated from the
graph template. P and G are shown in Figure 4.8 and Figure 4.7.

Figure 4.11 shows a sample graph template and a graph instantiated from
the graph template. P is the formal parameter of the template. The template
body consists of two nodes constructed from P and an edge between them.
Given the actual parameter G, the template is instantiated to a graph.

Now we can define the composition operator. A primitive composition op-
erator ! takes a graph template TP with a single parameter, and a collection of
matched graphs C as input. It produces a collection of instantiated graphs as
output:

!TP (C) = {TP(G) ∣ G ∈ C}

Generally, a composition operator allows two or more collections of graphs
as input. This can be expressed by a primitive composition operator and a
Cartesian product operator, the latter of which combines multiple collections
of graphs into one:

!TP1,P2
(C1, C2) = !TP (C1 × C2),

where P = graph { graph P1, P2; }.

Other operators. Projection and Renaming, two other operators of the re-
lational algebra, can be expressed using the composition operator. The set op-
erators (union, difference, intersection) can also be defined easily. In terms of
expressive power, the five basic operators (selection, Cartesian product, primi-
tive composition, union, and difference) are complete. Other operators and any
algebraic expressions can be expressed as combinations of these five operators.

Algebraic laws are important for query optimization as they provide equiv-
alent transformations of query plans. Since the graph algebra is defined along
the lines of the relational algebra, laws of relational algebra carry over.
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3.4 FLWR Expressions

We adopt the FLWR (For, Let, Where, and Return) expressions in
XQuery [4] as the syntax of our graph query language. The query syntax is
shown in Appendix 4.A. We illustrate the syntax through an example.

graph P {
node v1 <author>;
node v2 <author>;

} where P.booktitle=”SIGMOD”;
C:= graph {}; 
for P exhaustive in doc(“DBLP”) 
let C:= graph {

graph C;
node P.v1, P.v2;

    edge e1 (P.v1, P.v2);
unify P.v1, C.v1 where P.v1.name=C.v1.name;
unify P.v2, C.v2 where P.v2.name=C.v2.name;

}

Figure 4.12. A graph query that generates a co-authorship graph from the DBLP dataset

Figure 4.12 shows an example that generates a co-authorship graph C from
a collection of papers. The query states that any pair of authors in a paper
should appear in the co-authorship graph with an edge between them. The
graph pattern P matches a pair of authors in a paper. The for clause selects
all such pairs from the data source. The let clause places each pair in the
co-authorship graph and adds an edge between them. The unifications ensure
that each author appears only once. Again, two edges are unified automatically
if their end nodes are unified.

Figure 4.13 shows a running example of the query. The DBLP collection
consists of two graphs G1 and G2. The pair of author nodes (A, B) is first
chosen and an edge is inserted between them. The pair (C, D) is chosen next
and the (C, D) subgraph is inserted. When the third pair (A, C) is chosen,
unification ensures that the old nodes are reused and an edge is added between
existing A and C. The processing of the fourth pair adds one more edge and
completes the execution.

The query can be translated into a recursive algebraic expression:

C = �J(!�
P,C

(�P (“DBLP”), {C}))

where �P (“DBLP”) corresponds to the for clause, �
P,C

is the graph tem-
plate in the let clause, and J is a graph pattern for the join condition:
P.v1.name = C.v1.name & P.v2.name = C.v2.name. The algebraic ex-
pression turns out to be a structural join that consists of three primitive opera-
tors: Cartesian product, primitive composition, and selection.
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A B1

Iteration Mapping Co-authorship 
graph C

3

4

2

Φ(P.v1) → G1.v1
Φ(P.v2) → G1.v2

A BΦ(P.v1) → G2.v1
Φ(P.v2) → G2.v2

Φ(P.v1) → G2.v1
Φ(P.v2) → G2.v3

Φ(P.v1) → G2.v2
Φ(P.v2) → G2.v3

DBLP:graph G1 {   node v1 <author name=”A”>;   node v2 <author name=”B”>;};
graph G2 {   node v1 <author name=”C”>;   node v2 <author name=”D”>;   node v3 <author name=”A”>;};

C D

A B

C D

A B

C D

Figure 4.13. A possible execution of the Figure 4.12 query

3.5 Expressive Power

We now discuss the expressive power of GraphQL. We first show that the
relational algebra (RA) is contained in GraphQL.

Theorem 4.5. (RA ⊆ GraphQL) For any RA expression, there exists an equiv-
alent GraphQL algebra expression.

Proof: We can represent a relation (tuple) in GraphQL using a graph that has a
single node with attributes as the tuple. The primitive operations of RA (selec-
tion, projection, Cartesian product, union, difference) can then be expressed in
GraphQL. The selection operator can be simulated using a graph pattern with
the given predicate as the selection condition. For projection, one rewrites
the projected attributes to a new node using the composition operator. Other
operations (product, union, difference) are straightforward as well. □

Next, we show that GraphQL is contained in Datalog. This is proved by
translating graphs, graph patterns, and graph templates into facts and rules of
Datalog.
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Theorem 4.6. (GraphQL ⊆ Datalog) For any GraphQL algebra expression,
there exists an equivalent Datalog program.

Proof: We first translate all graphs of the database into facts of Datalog. Fig-
ure 4.14 shows an example of the translation. Essentially, we rewrite each
variable of the graph as a unique constant string, and then establish a con-
nection between the graph and each node and edge. Note that for undirected
graphs, we need to write an edge twice to permute its end nodes.

graph G <attr1=value1> {
node v1, v2, v3;
edge e1(v1, v2);

};

graph(‘G’).
node(‘G’, ‘G.v1’).
node(‘G’, ‘G.v2’).
node(‘G’, ‘G.v3’).
edge(‘G’, ‘G.e1’, ‘G.v1’, ‘G.v2’).
edge(‘G’, ‘G.e1’, ‘G.v2’, ‘G.v1’).
attribute(‘G’, ‘attr1’, value1).

Figure 4.14. The translation of a graph into facts of Datalog

For each graph pattern, we translate it into a rule of Datalog. Figure 4.15
gives an example of such translation. The body of the rule is a conjunction
of the constituent elements of the graph pattern. The predicate of the graph
pattern is written naturally. It can then be shown that a graph pattern matches a
graph if and only if the corresponding rule matches the facts that represent the
graph.

Subsequently, one can translate the graph algebraic operations into Datalog
in a way similar to translating RA into Datalog. Thus, we can translate any
GraphQL algebra expression into an equivalent Datalog program. □

graph P {
node v2, v3;
edge e1(v3, v2);

} where P.attr1 > value1;

Pattern(P, V2, V3, E1):-
   graph(P),
   node(P, V2),
   node(P, V3),
   edge(P, E1, V3, V2),
   attribute(P, ‘attr1’, Temp),
   Temp > value1.

Figure 4.15. The translation of a graph pattern into a rule of Datalog

It is well known that nonrecursive Datalog (nr-Datalog) is equivalent to
RA. Consequently, the nonrecursive version of GraphQL (nr-GraphQL) is also
equivalent to RA.

Corollary 4.7. nr-GraphQL ≡ RA.
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4. Implementation of the Selection Operator

We now discuss efficient implementation of the selection operator. Other
graph algebraic operators can find their counterpart implementations in rela-
tional databases, and future research opportunities are open for graph specific
optimizations.

Generally, graph databases can be classified into two categories. One cat-
egory is a large collection of small graphs, e.g., chemical compounds. The
selection operator returns a subset of the collection as answers. The main chal-
lenge in this category is to reduce the number of pairwise graph pattern match-
ings. A number of graph indexing techniques have been proposed to address
this challenge [17, 34, 40]. Graph indexing plays a similar role for graph data-
bases as B-trees for relational databases: only a small number of graphs need
to be accessed. Scanning of the whole collection of graphs is not necessary.

In the second category, the graph database consists of one or a few very large
graphs, e.g., protein interaction networks, Web information, social networks.
Graphs in the answer set are not readily present in the database and need to be
constructed from the single large graph. The challenge here is to accelerate the
graph pattern matching itself. In this chapter, we focus on the second category.

We first describe the basic graph pattern matching algorithm in Section 4.1,
and then discuss accelerations to the basic algorithm in Sections 4.2, 4.3, and
4.4. We restrict our attention to nonrecursive graph patterns and in-memory
processing. Recursive graph pattern matching and disk-based access methods
remain as future research directions.

4.1 Graph Pattern Matching

Graph pattern matching is essentially an extension of subgraph isomorphism
with predication evaluation (Definition 4.2). Algorithm 4.1 outlines the basic
graph pattern matching algorithm.

The predicate of graph pattern P is rewritten as predicates on individual
nodes ℱu’s and edges ℱe’s. Predicates that cannot be pushed down, e.g.,
“u1.label = u2.label”, remain in the graph-wide predicate ℱ . For each node
u in pattern P, there is a set of candidate matched nodes in G with respect to
ℱu. These nodes are called feasible mates of node u and is denoted by Φ(u):

Definition 4.8. (Feasible Mates) The feasible mates Φ(u) of node u is the set
of nodes in graph G that satisfies predicate Fu:

Φ(u) = {v∣v ∈ V (G),ℱu(v) = true}.

The feasible mates of all nodes in the pattern define the search space of
graph pattern matching:
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Definition 4.9. (Search Space) The search space of a graph pattern matching
is defined as the product of feasible mates for each node of the graph pattern:

Φ(u1)× ..× Φ(uk),

where k is the number of nodes in the graph pattern.

Algorithm 4.1: Graph Pattern Matching

Input: Graph Pattern P, Graph G
Output: One or all feasible mappings �P(G)

foreach node u ∈ V (P) do1

Φ(u)← {v∣v ∈ V (G),ℱu(v) = true}2

// Local pruning and retrieval of Φ(u) (Section 4.2)3

end4

// Reduce Φ(u1)× ..× Φ(uk) globally (Section 4.3)5

// Optimize search order of u1, .., uk (Section 4.4)6

Search(1);7

void Search(i)8

begin9

foreach v ∈ Φ(ui), v is free do10

if not Check(ui, v) then continue;11

�(ui)← v;12

if i < ∣V (P)∣ then Search(i + 1);13

else if ℱ�(G) then14

Report � ;15

if not exhaustive then stop;16

end17

end18

boolean Check(ui, v)19

begin20

foreach edge e(ui, uj) ∈ E(P), j < i do21

if edge e′(v, �(uj)) ∕∈ E(G) or not ℱe(e
′) then22

return false;23

end24

return true;25

end26

Algorithm 4.1 consists of two phases. The first phase (lines 1–4) retrieves
the feasible mates for each node u in the pattern. The second phase (Lines
7–26) searches over the product Φ(u1) × .. × Φ(uk) in a depth-first manner
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for subgraph isomorphism. Procedure Search(i) iterates on the itℎ node to
find feasible mappings for that node. Procedure Check(ui, v) examines if ui
can be mapped to v by considering their edges. Line 12 maps ui to v. Lines
13–16 continue to search for the next node or if it is the last node, evaluate the
graph-wide predicate. If it is true, then a feasible mapping � : V (P)→ V (G)
has been found and is reported (line 15). Line 16 stops searching immediately
if only one mapping is required.

The graph pattern and the graph are represented as a vertex set and an edge
set, respectively. In addition, adjacency lists of the graph pattern are used to
support line 21. For line 22, edges of graph G can be represented in a hashtable
where keys are pairs of the end points. To avoid repeated evaluation of edge
predicates (line 22), another hashtable can be used to store evaluated pairs of
edges.

The worst-case time complexity of Algorithm 4.1 is O(nk) where n and k
are the sizes of graph G and graph pattern P , respectively. This complexity
is a consequence of subgraph isomorphism that is known to be NP-hard. In
practice, the running time depends on the size of the search space.

We now consider possible ways to accelerate Algorithm 4.1:

1 How to reduce the size of Φ(ui) for each node ui? How to efficiently
retrieve Φ(ui)?

2 How to reduce the overall search space Φ(u1)× ..× Φ(uk)?

3 How to optimize the search order?

We present three techniques that respectively address the above questions.
The first technique prunes each Φ(ui) individually and retrieves it efficiently
through indexing. The second technique prunes the overall search space by
considering all nodes in the pattern simultaneously. The third technique applies
ideas from traditional query optimization to find the right search order.

4.2 Local Pruning and Retrieval of Feasible Mates

Node attributes can be indexed directly using traditional index structures
such as B-trees. This allows for fast retrieval of feasible mates and avoids a
full scan of all nodes. To reduce the size of feasible mates Φ(ui)’s even further,
we can go beyond nodes and consider neighborhood subgraphs of the nodes.
The neighborhood information can be exploited to prune infeasible mates at an
early stage.

Definition 4.10. (Neighborhood Subgraph) Given graph G, node v and radius
r, the neighborhood subgraph of node v consists of all nodes within distance
r (number of hops) from v and all edges between the nodes.
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Node v is a feasible mate of node ui only if the neighborhood subgraph of
ui is sub-isomorphic to that of v (with ui mapped to v). Note that if the radius
is 0, then the neighborhood subgraphs degenerate to nodes.

Although neighborhood subgraphs have high pruning power, they incur a
large computation overhead. This overhead can be reduced by representing
neighborhood subgraphs by their light-weight profiles. For instance, one can
define the profile as a sequence of the node labels in lexicographic order. The
pruning condition then becomes whether a profile is a subsequence of the other.

P

A

B

A1

B1C1 B2

G

C C2

A2

Figure 4.16. A sample graph pattern and graph
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graphs of radius 1 Profiles

B1
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ABBC

B2

A2
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B2C2
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Search space

Retrieve by nodes:
{A1, A2} X {B1, B2} X {C1, C2}

Retrieve by neighborhood 
subgraphs:
{A1} X {B1} X {C2}

Retrieve by profiles of 
neighborhood subgraphs:
{A1} X {B1, B2} X {C2}

Figure 4.17. Feasible mates using neighborhood subgraphs and profiles. The resulting search
spaces are also shown for different pruning techniques.

Figure 4.16 shows the sample graph pattern P and the database graph G
again for convenience. Figure 4.17 shows the neighborhood subgraphs of ra-
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dius 1 and their profiles for nodes ofG. If the feasible mates are retrieved using
node attributes, then the search space is {A1, A2} × {B1, B2} × {C1, C2}. If
the feasible mates are retrieved using neighborhood subgraphs, then the search
space is {A1}×{B1}×{C2}. Finally, if the feasible mates are retrieved using
profiles, then the search space is {A1} × {B1, B2} × {C2}. These are shown
in the right side of Figure 4.17.

If the node attributes are selective, e.g., many unique attribute values, then
one can index the node attributes using a B-tree or hashtable, and store the
neighborhood subgraphs or profiles as well. Retrieval is done by indexed ac-
cess to the node attributes, followed by pruning using neighborhood subgraphs
or profiles. Otherwise, if the node attributes are not selective, one may have
to index the neighborhood subgraphs or profiles. Recent graph indexing tech-
niques [9, 17, 23, 34, 36, 39–42] or multi-dimensional indexing methods such
as R-trees can be used for this purpose.

4.3 Joint Reduction of Search Space

We reduce the overall search space iteratively by an approximation algo-
rithm called Pseudo Subgraph Isomorphism [17]. This prunes the search space
by considering the whole pattern and the space Φ(u1)× ..×Φ(uk) simultane-
ously. Essentially, this technique checks for each node u in pattern P and its
feasible mate v in graph G whether the adjacent subtree of u is sub-isomorphic
to that of v. The check can be defined recursively on the depth of the adjacent
subtrees: the level l subtree of u is sub-isomorphic to that of v only if the level
l − 1 subtrees of u’s neighbors can all be matched to those of v’s neighbors.
To avoid subtree isomorphism tests, a bipartite graph ℬu,v is defined between
neighbors of u and v. If the bipartite graph has a semi-perfect matching, i.e.,
all neighbors of u are matched, then u is level l sub-isomorphic to v. In the
bipartite graph, an edge is present between two nodes u′ and v′ only if the level
l − 1 subtree of u′ is sub-isomorphic to that of v′, or equivalently the bipar-
tite graph ℬu′,v′ at level l − 1 has a semi-perfect matching. A more detailed
description can be found in [17].

Algorithm 4.2 outlines the refinement procedure. At each iteration (lines
3–20), a bipartite graph ℬu,v is constructed for each u and its feasible mate
v (lines 5–9). If ℬu,v has no semi-perfect matching, then v is removed from
Φ(u), thus reducing the search space (line 13).

The algorithm has two implementation improvements on the refinement pro-
cedure discussed in [17]. First, it avoids unnecessary bipartite matchings. A
pair ⟨u, v⟩ is marked if it needs to be checked for semi-perfect matching (lines
2, 4). If the semi-perfect matching exists, then the pair is unmarked (lines
10–11). Otherwise, the removal of v from Φ(u) (line 13) may affect the exis-
tence of semi-perfect matchings of the neighboring ⟨u′, v′⟩ pairs. As a result,
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Algorithm 4.2: Refine Search Space

Input: Graph Pattern P, Graph G, Search space Φ(u1)× ..× Φ(uk),
level l

Output: Reduced search space Φ′(u1)× ..× Φ′(uk)

begin1

foreach u ∈ P, v ∈ Φ(u) do Mark ⟨u, v⟩;2

for i← 1 to l do3

foreach u ∈ P, v ∈ Φ(u), ⟨u, v⟩ is marked do4

//Construct bipartite graph ℬu,v5

NP(u), NG(v): neighbors of u, v;6

foreach u′ ∈ NP(u), v′ ∈ NG(v) do7

ℬu,v(u′, v′)←
{

1 if v′ ∈ Φ(u′);
0 otherwise.8

end9

if ℬu,v has a semi-perfect matching then10

Unmark ⟨u, v⟩;11

else12

Remove v from Φ(u);13

foreach u′ ∈ NP(u), v′ ∈ NG(v), v
′ ∈ Φ(u′) do14

Mark ⟨u′, v′⟩;15

end16

end17

end18

if there is no marked ⟨u, v⟩ then break;19

end20

end21

these pairs are marked and checked again (line 14). Second, the ⟨u, v⟩ pairs
are stored and manipulated using a hashtable instead of a matrix. This reduces
the space and time complexity from O(k ⋅n) to O(

∑k
i=1 ∣Φ(ui)∣). The overall

time complexity is O(l ⋅∑k
i=1 ∣Φ(ui)∣ ⋅ (d1d2 + M(d1, d2))) where l is the

refinement level, d1 and d2 are maximum degrees of P and G respectively,
and M() is the time complexity of maximum bipartite matching (O(n2.5) for
Hopcroft and Karp’s algorithm [19]).

Figure 4.18 shows an execution of Algorithm 4.2 on the example in Fig-
ure 4.16. At level 1, A2 and C1 are removed from Φ(A) and Φ(C), respec-
tively. At level 2, B2 is removed from Φ(B) since the bipartite graph ℬB,B2

has no semi-perfect matching (note that A2 was already removed from Φ(A)).
Whereas the neighborhood subgraphs discussed in Section 4.2 prune in-

feasible mates by using local information, the refinement procedure in Algo-
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Figure 4.18. Refinement of the search space

rithm 4.2 prunes the search space globally. The global pruning has a larger
overhead and is dependent on the output of the local pruning. Therefore, both
pruning methods are indispensable and should be used together.

4.4 Optimization of Search Order

Next, we consider the search order of Algorithm 4.1. The goal here is to find
a good search order for the nodes. Since the search procedure is equivalent to
multiple joins, it is similar to a typical query optimization problem [7]. Two
principal issues need to be considered. One is the cost model for a given search
order. The other is the algorithm for finding a good search order. The cost
model is used as the objective function of the search algorithm. Since the
search algorithm is relatively standard (e.g., dynamic programming, greedy
algorithm), we focus on the cost model and illustrate that it can be customized
in the domain of graphs.

Cost Model. A search order (a.k.a. a query plan) can be represented as a
rooted binary tree whose leaves are nodes of the graph pattern and each internal
node is a join operation. Figure 4.19 shows two examples of search orders.

We estimate the cost of a join (a node in the query plan tree) as the product
of cardinalities of the collections to be joined. The cardinality of a leaf node
is the number of feasible mates. The cardinality of an internal node can be
estimated as the product of cardinalities of collections reduced by a factor .
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A B C

(a) (b)

A C B

Figure 4.19. Two examples of search orders

Definition 4.11. (Result size of a join) The result size of join i is estimated by

Size(i) = Size(i.left)× Size(i.rigℎt) × (i)

where i.left and i.rigℎt are the left and right child nodes of i respectively,
and (i) is the reduction factor.

A simple way to estimate the reduction factor (i) is to approximate it by a
constant. A more elaborate way is to consider the probabilities of edges in the
join: Let ℰ(i) be the set of edges involved in join i, then

(i) =
∏

e(u,v)∈ℰ(i)
P (e(u, v))

where P (e(u, v)) is the probability of edge e(u, v) conditioned on u and v.
This probability can be estimated as

P (e(u, v)) =
freq(e(u, v))

freq(u) ⋅ freq(v)

where freq() denotes the frequency of the edge or node in the large graph.

Definition 4.12. (Cost of a join) The cost of join i is estimated by

Cost(i) = Size(i.left) × Size(i.rigℎt)

Definition 4.13. (Cost of a search order) The total cost of a search order Γ is
estimated by

Cost(Γ) =
∑

i∈Γ
Cost(i)

For example, let the input search space be {A1} × {B1, B2} × {C2}. If
we use a constant reduction factor , then Cost(A ⊳⊲ B) = 1 × 2 = 2,
Size(A ⊳⊲ B) = 2, Cost((A ⊳⊲ B) ⊳⊲ C) = 2 × 1 = 2. The total cost is
2 + 2. Similarly, the total cost of (A ⊳⊲ C) ⊳⊲ B is 1 + 2. Thus, the search
order (A ⊳⊲ C) ⊳⊲ B is better than (A ⊳⊲ B) ⊳⊲ C .
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Search Order. The number of all possible search orders is exponential in
the number of nodes. It is expensive to enumerate all of them. As in many
query optimization techniques, we consider only left-deep query plans, i.e.,
the outer node of each join is always a leaf node. The traditional dynamic
programming would take an O(2k) time complexity for a graph pattern of
size k. This is not scalable to large graph patterns. Therefore, we adopt a
simple greedy approach in our implementation: at join i, choose a leaf node
that minimizes the estimated cost of the join.

5. Experimental Study

In this section, we evaluate the performance of the presented graph pattern
matching algorithms on large real and synthetic graphs. The graph specific
optimizations are compared with an SQL-based implementation as described
in Figure 4.2. MySQL server 5.0.45 is used and configured as: storage en-
gine=MyISAM (non-transactional), key buffer size = 256M. Other parameters
are set as default. For each large graph, two tables V(vid, label) and E(vid1,
vid2) are created as in Figure 4.2. B-tree indices are built for each field of the
tables.

The presented graph pattern matching algorithms were written in Java and
compiled with Sun JDK 1.6. All the experiments were run on an AMD Athlon
64 X2 4200+ 2.2GHz machine with 2GB memory running MS Win XP Pro.

5.1 Biological Network

the real dataset is a yeast protein interaction network [2]. This graph consists
of 3112 nodes and 12519 edges. Each node represents a unique protein and
each edge represents an interaction between proteins.

To allow for meaningful queries, we add Gene Ontology (GO) [14] terms
to the proteins. The Gene Ontology is a hierarchy of categories that describes
cellular components, biological processes, and molecular functions of genes
and their products (proteins). Each GO term is a node in the hierarchy and
has one or more parent GO Terms. Each protein has one or more GO terms.
We use high level GO terms as labels of the proteins (183 distinct labels in
total). We index the node labels using a hashtable, and store the neighborhood
subgraphs and profiles with radius 1 as well.

Clique Queries. The clique queries are generated with sizes (number
of nodes) between 2 and 7 (sizes greater than 7 have no answers). For each
size, a complete graph is generated with each node assigned a random label.
The random label is selected from the top 40 most frequent labels. A total of
1000 clique queries are generated and the results are averaged. The queries
are divided into two groups according to the number of answers returned: low
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hits (less than 100 answers) and high hits (more than 100 answers). Queries
having no answers are not counted in the statistics. Queries having too many
hits (more than 1000) are terminated immediately and counted in the group of
high hits.

To evaluate the pruning power of the local pruning (Section 4.2) and the
global pruning (Section 4.3), we define the reduction ratio of search space as

(Φ,Φ0) =
∣Φ(u1)∣ × ..× ∣Φ(uk)∣
∣Φ0(u0)∣ × ..× ∣Φ0(uk)∣

where Φ0 refers to the baseline search space.
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Figure 4.20. Search space for clique queries
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Figure 4.21. Running time for clique queries (low hits)

Figure 4.20 shows the reduction ratios of search space by different methods.
“Retrieve by profiles” finds feasible mates by checking profiles and “Retrieve
by subgraphs” finds feasible mates by checking neighborhood subgraphs (Sec-
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tion 4.2). “Refined search space” refers to the global pruning discussed in Sec-
tion 4.3 where the input search space is generated by “Retrieve by profiles”.
The maximum refinement level ℓ is set as the size of the query. As can be seen
from the figure, the refinement procedure always reduces the search space re-
trieved by profiles. Retrieval by subgraphs results in the smallest search space.
This is due to the fact that neighborhood subgraphs for a clique query is actu-
ally the entire clique.

Figure 4.21(a) shows the average processing time for individual steps under
varying clique sizes. The individual steps include retrieval by profiles, retrieval
by subgraphs, refinement, search with the optimized order (Section 4.4), and
search without the optimized order. The time for finding the optimized order is
negligible since we take a greedy approach in our implementation. As shown
in the figure, retrieval by subgraphs has a large overhead although it produces
a smaller search space than retrieval by profiles. Another observation is that
the optimized order improves upon the search time.

Figure 4.21(b) shows the average total query processing time in comparison
to the SQL-based approach on low hits queries. The “Optimized” processing
consists of retrieval by profiles, refinement, optimization of search order, and
search with the optimized order. The “Baseline” processing consists of re-
trieval by node attributes and search without the optimized order on the base-
line space. The query processing time in the “Optimized" case is improved
greatly due to the reduced search space.

The SQL-based approach takes much longer time and does not scale to large
clique queries. This is due to the unpruned search space and the large number
of joins involved. Whereas our graph pattern matching algorithm (Section 4.1)
is exponential in the number of nodes, the SQL-based approach is exponential
in the number of edges. For instance, a clique of size 5 has 10 edges. This
requires 20 joins between nodes and edges (as illustrated in Figure 4.2).

5.2 Synthetic Graphs

The synthetic graphs are generated using a simple Erdős-R«enyi [13] ran-
dom graph model: generate n nodes, and then generate m edges by randomly
choosing two end nodes. Each node is assigned a label (100 distinct labels in
total). The distribution of the labels follows Zipf’s law, i.e., probability of the
xtℎ label p(x) is proportional to x−1. The queries are generated by randomly
extracting a connected subgraph from the synthetic graph.

We first fix the size of synthetic graphs n as 10K, m = 5n, and vary the
query size between 4 and 20. Figure 4.22 shows the search space and pro-
cessing time for individual steps. Unlike clique queries, the global pruning
produces the smallest search space, which outperforms the local pruning by
full neighborhood subgraphs.
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(b) Time for individual steps

Figure 4.22. Search space and running time for individual steps (synthetic graphs, low hits)
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(b) Varying graph sizes (query size: 4)

Figure 4.23. Running time (synthetic graphs, low hits)

Figure 4.23 shows the total time with varying query sizes and graph sizes.
As can be seen, The SQL-based approach is not scalable to large queries,
though it scales to large graphs with small queries. In either case, the “Op-
timized” processing produces the smallest running time.

To summarize the experimental results, retrieval by profiles has much less
overhead than that of retrieval by subgraphs. The refinement step (Section 4.3)
greatly reduces the search space. The overhead of the search step is well com-
pensated by the extensive reduction of search space. A practical combination
would be retrieval by profiles, followed by refinement, and then search with
an optimized order. This combination scales well with various query sizes and
graph sizes. SQL-based processing is not scalable to large queries. Overall, the
optimized processing performs orders of magnitude better than the SQL-based
approach. While small improvements in SQL-based implementations can be
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achieved by careful tuning and other optimizations, the results show that query
processing in the graph domain has clear advantages.

6. Related Work

6.1 Graph Query Languages

A number of graph query languages have been historically available for
representing and manipulating graphs. GraphLog [12] represents both data and
queries graphically. Nodes and edges are labeled with one or more attributes.
Edges in the queries are matched to either edges or paths in the data graphs.
The paths can be regular expressions with possibly negation. A query graph
is a graph with a distinguished edge. The distinguished edge introduces a
new relation for nodes. The query graph can be naturally translated into a
Datalog program where the distinguished edge corresponds to a new predicate
(relation). A graphical query consists of one or more query graphs, each of
which can use predicates defined in other query graphs. The predicates among
them thus form a dependence graph of the graphical query. GraphLog queries
are graphical queries in which the dependence graph must be acyclic. In terms
of expressive power, GraphLog was shown to be equivalent to stratified linear
Datalog [28]. GraphLog does not provide any algebraic operations on graphs,
which is important for practical evaluation of queries.

In the category of object-oriented databases, GOOD [16] is a graph-oriented
object data model. GOOD models an object database instance by a directed la-
beled graph, where objects in the database and attributes on the objects are
both represented as nodes of the graph. GOOD does not distinguish between
atomic, composed and set objects. There are only printable nodes and non-
printable nodes. The printable nodes are used for graphical interfaces. As for
edges, there are only functional edges and non-functional edges. The func-
tional edges point to unique nodes in the graph. Both nodes and edges can
have labels, which are defined by an object database scheme. GOOD defines
a transformation language that contains five basic operations on graphs: node
addition and deletion, edge addition and deletion, and abstraction that groups
common nodes. These operations are defined using the notion of a pattern that
describes subgraphs embedded in the object database instance. The transfor-
mation language is used for both querying and updates. In terms of expressive
power, the transformation language can express operations on sets and recur-
sive functions.

GraphDB [15] is another object-oriented data model and query language
for graphs. In the GraphDB data model, the whole database is viewed as a
single graph. Objects in the database are strong-typed and the object types
support inheritance. Each object is associated with an object type and an ob-
ject identity. The object can have data attributes or reference attributes to other
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objects. There are three kinds of object classes: simple classes, linked classes,
and path classes. Objects of simple classes are nodes of the graph. Objects of
link classes are edges and have two additional references to source and target
simple objects. Objects of path classes have a list of references to node and
edge objects in the graph. A query consists of several steps, each of which cre-
ates or manipulates a uniform sequence of objects, a heterogeneous sequence
of objects, a single object, or a value of a data type. The uniform sequence
of objects have a common tuple type, whereas the heterogenous sequence may
belong to different object classes and tuple types. Queries are constructed in
four fundamental ways: derive, rewrite, union, and custom graph operations.
The derive statement is similar to the usual select...from...where statement, and
can be used to specify a subgraph pattern, which is formulated as a list of node
objects, edge objects, or either of them occurring in a path object. The rewrite
operation transforms a heterogenous sequence of objects into a new sequence.
The union operation transforms a heterogenous sequence into a uniform one
by taking the least common tuple type. The graph operations are user-defined,
e.g., shortest path search.

GOQL [35] also uses an object-oriented graph data model and is extended
from OQL. Similar to GraphDB, GOQL defines object types for nodes, edges,
paths, and graphs. As in OQL, GOQL uses the usual select...from...where
statement to specify queries. In addition, it uses temporal operators next, un-
til and connected to define path formulas. The path formulas can be used as
predicates on sequences and paths in the queries. For query processing, GOQL
translates queries into an object algebra (O-Algebra) with the extended tempo-
ral operators. PQL [25] is a pathway query language for biological networks.
The language extends SQL with path expressions and is implemented on top
of an RDBMS. In all these languages, the basic objects are nodes and edges
as in the object-oriented data model, and paths as extended by the respective
languages. Querying on graph structures are explicitly constructed from the
basic objects.

More recently, XML databases have been studied intensively for tree-based
data models and semistructured data. XML databases can be generally im-
plemented in two approaches: mapping to relational database systems [33] or
native XML implementations [21]. In the second approach, TAX [22] is a
tree algebra for XML that operates natively on trees. TAX uses a pattern tree
to match interesting nodes. The pattern tree consists of a tree structure and
a predicate on nodes of the tree. Tree pattern matching thus plays an impor-
tant role in XML query processing [1, 6]. GraphQL generalizes the idea of
tree patterns to graph patterns. Graph patterns is the main building block of
a graph query and graph pattern matching is an important part of graph query
processing. Both GraphQL and TAX generalize the relational algebraic opera-
tors, including selection, product, set operations. TAX has additional operators
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such as copy-and-paste, value updates, node deletion and insertion. GraphQL
can express these operations by the composition operator.

Some of the recent interest in Semantic Web has spurred Resource De-
scription Framework (RDF) [26] and the accompanying SPARQL query lan-
guage [27]. This model describes a graph by a set of triples, each of which
describes an (attribute, value) pair or an interconnection between two nodes.
The SPARQL query language works primarily through a pattern which is a
constraint on a single node. All possible matchings of the pattern are returned
from the graph database. A general graph query language could be more pow-
erful by providing primitives for expressing constraints on the entire result
graph simultaneously.

Table 4.1. Comparison of different query languages

Language Basic unit Query style Semi-
structured

GraphQL graphs set-oriented yes

SQL tuples set-oriented no

TAX trees set-oriented yes

GraphLog nodes/edges logic pro. -

OODB (GOOD, nodes/edges navigational no
GraphDB, GOQL)

Table 4.1 outlines the comparison between GraphQL and other query lan-
guages. GraphQL is different from other query languages in that graphs are
chosen as the basic unit of information. This means graphs or sets of graphs are
used as the operands and return types in all graph operations. Graph structures
are thus preserved and carried over atomically. This is useful not only from a
user’s perspective but also for query optimizations that rely on graph structural
information. In comparison to SQL, GraphQL has a similar algebraic system,
but the algebraic operators are defined directly on graphs. In comparison to
OODB, GraphQL queries are declarative and set-oriented, whereas OODB ac-
cesses single objects in a navigational manner (i.e., using references to access
objects one after another in the object graph). With regard to data model and
representation, GraphQL is semistructured and does not cast strict and pre-
defined data types or schemas on nodes, edges, and graphs. In contrast, SQL
presumes a strict schema in order to store data. OODB requires objects (nodes
and edges) to be strong-typed. In comparison to XML databases, the main
difference lies in the underlying data model. GraphQL deals with the graph
(networked) data model, whereas XML databases deal with the hierarchical
data model.
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Graph grammars have been used previously for modeling visual languages
and graph transformations in various domains [30, 29]. Our work is different in
that our emphasis has been on a query language and database implementations.

6.2 Graph Indexing

Graph indexing is useful for graph pattern matching over a large collection
of small graphs. GraphGrep [34] uses enumerated paths as index features to
filter unmatched graphs. GIndex [40] uses discriminative frequent fragments
as index features to improve filtering rates and reduce index sizes. Closure-
tree [17] organizes graphs into a tree-based index structure using graph clo-
sures as the bounding boxes. GString [23] converts graph querying to sub-
sequence matching. TreePi [41] uses frequent subtrees as index features.
Williams et al. [39] decompose graphs and hash the canonical forms of the
resulting subgraphs. SAGA [36] enumerates fragments of graphs and answers
are generated by assembling hits of the query fragments. FG-index [9] uses
frequent subgraphs as index features. Frequent graph queries are answered
without verification and infrequent queries require only a small number of ver-
ifications. Zhao et al. [42] show that frequent tree-features plus a small num-
ber of discriminative graphs are better than frequent graph-features. While the
above techniques can be used as access methods for the case of a large collec-
tion of small graphs, this chapter addresses graph pattern matching for the case
of a single large graph.

Another line of graph indexing addresses reachability queries in large di-
rected graphs [8, 10, 11, 31, 37, 38]. In a reachability query, two nodes are
given and the answer is whether there exists a path between the two nodes.
Reachability queries correspond to recursive graph patterns which are paths
(Figure 4.6(a)). Indexing and processing of reachability queries are gener-
ally based on spanning trees with pre/post-order labeling [8, 37, 38] or 2-hop-
cover [10, 11, 31]. These techniques can be incorporated into access methods
for recursive graph pattern queries.

7. Future Research Directions

Physical Storage of Graph Data. Graphs in the real world are heteroge-
neous in both the structures and the underlying attributes. It is challenging to
store graphs on disks for efficient storage and fast retrieval. What is the ap-
propriate storage unit, nodes, edges, or graphs? In the category of a large col-
lection of small graphs, how to store graphs with various sizes to fixed-length
pages on disks? In the category of a single large graph, how to decompose
the large graph into small chunks and preserve locality? Traditional storage
techniques need to be re-considered, and new graph-specific heuristics might
be devised to address these questions.
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Implementation of Other Graph Operators. This chapter only addresses
implementation of the selection operator. Other operators, such as joins on two
collections of graphs, might be a challenge if the inter-graph join conditions
are not trivial. In addition, operators such as ordering (ranking), aggregation
(OLAP processing), are interesting research directions on their own.

Scalability to Very Large Graph Databases. The presented techniques
consider graphs with millions of nodes and edges, or millions of small graphs.
Graphs in some domains, such as Internet, social networks, are in the scale of
tera-bytes or even larger. Graphs at this scale cannot be processed by single
machines. Large-scale parallel and distributed schemes are needed for graph
storage and query processing.

8. Conclusion

We have presented GraphQL, a query language for graphs with arbitrary
attributes and sizes. GraphQL has a number of appealing features. Graphs are
the basic unit and graph structures are composable using the notion of formal
languages for graphs. We developed efficient access methods for the selection
operator using the idea of neighborhood subgraphs and profiles, refinement of
the overall search space, and optimization of the search order. Experimental
studies on real and synthetic graphs validated the access methods.

In summary, graphs are prevalent in multiple domains. This chapter has
demonstrated the benefits of working with native graphs for queries and
database implementations. Translations of graphs into relations are unnatu-
ral and cannot take advantage of graph-specific heuristics. The coupling of
graph-based querying and native graph-based databases produces interesting
possibilities from the point of view of expressiveness and implementation tech-
niques. We have barely scratched the surface and much more needs to be done
in matching characteristics of queries and databases to appropriate heuristics.
The results of this chapter are an important first step in this regard.
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Appendix: Query Syntax of GraphQL
Start ::= ( GraphPattern ";" | FLWRExpr ";" )* <EOF>

GraphPattern ::= "graph" [<ID>] [Tuple] "{"

MemberDecl *

"}" ["where" Expr]

MemberDecl ::= "node" NodeDecl ("," NodeDecl)* ";"
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| "edge" EdgeDecl ("," EdgeDecl)* ";"

| "graph" <ID> ( "," <ID> )* ";"

| "unify" Names "," Names ("," Names)* ";"

NodeDecl ::= [<ID>][Tuple] ["where" Expr]

EdgeDecl ::= [<ID>]"(" Names "," Names")" [Tuple] ["where" Expr]

Tuple ::= "<"[<ID>] (<ID>"="Literal)* ">"

FLWRExpr ::= "for" ( <ID> | GraphPattern )

["exhaustive"] "in" "doc" "(" string ")"

["where" Expr]

( "return" GraphTemplate |

"let" <ID> "=" GraphTemplate )

GraphTemplate ::= "graph" [<ID>] [TupleTemplate] "{"

TMemberDecl *

"}" | <ID>

TMemberDecl ::= "node" TNodeDecl ("," TNodeDecl)* ";"

| "edge" TEdgeDecl ("," TEdgeDecl)* ";"

| "graph" <ID> ( "," <ID> )* ";"

| "unify" Names "," Names ("," Names)* ["where" Expr] ";"

TNodeDecl ::= [<ID>][TupleTemplate]

TEdgeDecl ::= [<ID>]"("Names "," Names")"[TupleTemplate]

TupleTemplate ::= "<"[<ID>] (<ID>"="Expr)* ">"

Expr ::= Term ( Op Expr )*

Op ::= "|" | "&" | "+" | "-" | "*" | "/" |

"==" | "!=" | ">" | ">=" | "<" |"<="

Term ::= "(" Expr ")" | Literal | Names

Names ::= <ID> ("." <ID>)*

Literal ::= int | float | string
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