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Abstract How does the Web look? How could we tell an “abnormal” social network
from a “normal” one? These and similar questions are important in many fields
where the data can intuitively be cast as a graph; examples range from computer
networks, to sociology, to biology, and many more. Indeed, any M : N relation
in database terminology can be represented as a graph. Many of these ques-
tions boil down to the following: “How can we generate synthetic but realistic
graphs?” To answer this, we must first understand what patterns are common in
real-world graphs, and can thus be considered a mark of normality/realism. This
survey gives an overview of the incredible variety of work that has been done
on these problems. One of our main contributions is the integration of points of
view from physics, mathematics, sociology and computer science.
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1. Introduction

Informally, a graph is set of nodes, pairs of which might be connected by
edges. In a wide array of disciplines, data can be intuitively cast into this for-
mat. For example, computer networks consist of routers/computers (nodes)
and the links (edges) between them. Social networks consist of individuals
and their interconnections (business relationships, kinship, trust, etc.) Pro-
tein interaction networks link proteins which must work together to perform
some particular biological function. Ecological food webs link species with
predator-prey relationships. In these and many other fields, graphs are seem-
ingly ubiquitous.

The problems of detecting abnormalities (“outliers”) in a given graph, and of
generating synthetic but realistic graphs, have received considerable attention
recently. Both are tightly coupled to the problem of finding the distinguishing
characteristics of real-world graphs, that is, the “patterns” that show up fre-
quently in such graphs and can thus be considered as marks of “realism.” A
good generator will create graphs which match these patterns. Patterns and
generators are important for many applications:

Detection of abnormal subgraphs/edges/nodes: Abnormalities should
deviate from the “normal” patterns, so understanding the patterns of nat-
urally occurring graphs is a prerequisite for detection of such outliers.

Simulation studies: Algorithms meant for large real-world graphs can
be tested on synthetic graphs which “look like” the original graphs. For
example, in order to test the next-generation Internet protocol, we would
like to simulate it on a graph that is “similar” to what the Internet will
look like a few years into the future.

Realism of samples: We might want to build a small sample graph that
is similar to a given large graph. This smaller graph needs to match the
“patterns” of the large graph to be realistic.

Graph compression: Graph patterns represent regularities in the data.
Such regularities can be used to better compress the data.

Thus, we need to detect patterns in graphs, and then generate synthetic graphs
matching such patterns automatically.

This is a hard problem. What patterns should we look for? What do such
patterns mean? How can we generate them? Due to the ubiquity and wide
applicability of graphs, a lot of research ink has been spent on this problem, not
only by computer scientists but also physicists, mathematicians, sociologists
and others. However, there is little interaction among these fields, with the
result that they often use different terminology and do not benefit from each
other’s advances. In this survey, we attempt to give an overview of the main
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Symbol Description

N Number of nodes in the graph
E Number of edges in the graph
k Degree for some node

< k > Average degree of nodes in the graph
CC Clustering coefficient of the graph

CC(k) Clustering coefficient of degree-k nodes

 Power law exponent: y(x) ∝ x−

t Time/iterations since the start of an algorithm

Table 3.1. Table of symbols

ideas. Our focus is on combining sources from all the different fields, to gain
a coherent picture of the current state-of-the-art. The interested reader is also
referred to some excellent and entertaining books on the topic [12, 81, 35].

The organization of this chapter is as follows. In section 2, we discuss graph
patterns that appear to be common in real-world graphs. Then, in section 3, we
describe some graph generators which try to match one or more of these pat-
terns. Typically, we only provide the main ideas and approaches; the interested
reader can read the relevant references for details. In all of these, we attempt to
collate information from several fields of research. Table 3.1 lists the symbols
we will use.

2. Graph Patterns

What are the distinguishing characteristics of graphs? What “rules” and
“patterns” hold for them? When can we say that two different graphs are simi-
lar to each other? In order to come up with models to generate graphs, we need
some way of comparing a natural graph to a synthetically generated one; the
better the match, the better the model. However, to answer these questions, we
need to have some basic set of graph attributes; these would be our vocabulary
in which we can discuss different graph types. Finding such attributes will be
the focus of this section.

What is a “good” pattern? One that can help distinguish between an actual
real-world graph and any fake one. However, we immediately run into several
problems. First, given the plethora of different natural and man-made phe-
nomena which give rise to graphs, can we expect all such graphs to follow any
particular patterns? Second, is there any single pattern which can help differ-
entiate between all real and fake graphs? A third problem (more of a constraint
than a problem) is that we want to find patterns which can be computed effi-
ciently; the graphs we are looking at typically have at least around 105 nodes
and 106 edges. A pattern which takes O(N3) or O(N2) time in the number of
nodes N might easily become impractical for such graphs.
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The best answer we can give today is that while there are many differ-
ences between graphs, some patterns show up regularly. Work has focused
on finding several such patterns, which together characterize naturally occur-
ring graphs. A large portion of the literature focuses on two major properties:
power laws and small diameters. Our discussion will address both of these
properties. For each pattern, we also give the computational requirements for
finding/computing the pattern, and some real-world examples of that pattern.
Definitions are provided for key ideas which are used repeatedly. Next, we
will discuss other patterns of interest, both in static snapshots of graphs and
in evolving graphs. Finally, we discuss patterns specific to some well-known
graphs, like the Internet and the WWW.

2.1 Power Laws and Heavy-Tailed Distributions

While the Gaussian distribution is common in nature, there are many cases
where the probability of events far to the right of the mean is significantly
higher than in Gaussians. In the Internet, for example, most routers have a
very low degree (perhaps “home” routers), while a few routers have extremely
high degree (perhaps the “core” routers of the Internet backbone) [43]. Power-
law distributions attempt to model this.

We will divide the following discussion into two parts. First, we will dis-
cuss “traditional” power laws: their definition, how to compute them, and real-
world examples of their presence. Then, we will discuss deviations from pure
power laws, and some common methods to model these.

“Traditional” Power Laws.

Definition 3.1 (Power Law). Two variables x and y are related by a power
law when:

y(x) = Ax− (3.1)

where A and  are positive constants. The constant  is often called the power
law exponent.

Definition 3.2 (Power Law Distribution). A random variable is distributed
according to a power law when the probability density function (pdf) is given
by:

p(x) = Ax− ,  > 1, x ≥ xmin (3.2)

The extra  > 1 requirement ensures that p(x) can be normalized. Power laws
with  < 1 rarely occur in nature, if ever [66].

Skewed distributions, such as power laws, occur very often. In the Internet
graph, the degree distribution follows such a power law [43]; that is, the count
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Figure 3.1. Power laws and deviations: Plots (a) and (b) show the in-degree and out-degree
distributions on a log-log scale for the Epinions graph (an online social network of 75, 888 people
and 508, 960 edges [34]). Both follow power-laws. In contrast, plot (c) shows the out-degree
distribution of a Clickstream graph (a bipartite graph of users and the websites they surf [63]),
which deviates from the power-law pattern.

ck of nodes with degree k, versus the degree k, is a line on a log-log scale. The
eigenvalues of the adjacency matrix of the Internet graph also show a similar
behavior: when eigenvalues are plotted versus their rank on a log-log scale
(called the scree plot), the result is a straight line. A possible explanation of
this is provided by Mihail and Papadimitriou [61]. The World Wide Web graph
also obeys power laws [51]: the in-degree and out-degree distributions both
follow power-laws, as well as the number of the so-called “bipartite cores”
(≈ communities, which we will see later) and the distribution of PageRank
values [23, 73]. Redner [76] shows that the citation graph of scientific literature
follows a power law with exponent 3. Figures 3.1(a) and 3.1(b) show two
examples of power laws.

The significance of a power law distribution p(x) lies in the fact that it decay
only polynomially quickly as x → ∞, instead of exponential decay for the
Gaussian distribution. Thus, a power law degree distribution would be much
more likely to have nodes with a very high degree (much larger than the mean)
than the Gaussian distribution. Graphs exhibiting such degree distributions are
called scale-free graphs, because the form of y(x) in Equation 3.1 remains
unchanged to within a multiplicative factor when the variable x is multiplied
by a scaling factor (in other words, y(ax) = by(x)). Thus, there is no special
“characteristic scale” for the variables; the functional form of the relationship
remains the same for all scales.

Computation issues:. The process of finding a power law pattern can be
divided into three parts: creating the scatter plot, computing the power law
exponent, and checking for goodness of fit. We discuss these issues below,
using the detection of power laws in degree distributions as an example.

Creating the scatter plot (for the degree distribution): The algorithm for cal-
culating the degree distributions (irrespective of whether they are power laws
or not) can be expressed concisely in SQL. Assuming that the graph is repre-
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sented as a table with the schema Graph(fromnode, tonode), the code for
calculating in-degree and out-degree is given below. The case for weighted
graphs, with the schema Graph(fromnode, tonode, weight), is a simple
extension of this.

SELECT outdegree, count(*)

FROM

(SELECT count(*) AS outdegree

FROM Graph

GROUP BY fromnode)

GROUP BY outdegree

SELECT indegree, count(*)

FROM

(SELECT count(*) AS indegree

FROM Graph

GROUP BY tonode)

GROUP BY indegree

Computing the power law exponent This is no simple task: the power law
could be only in the tail of the distribution and not over the entire distribution,
estimators of the power law exponent could be biased, some required assump-
tions may not hold, and so on. Several methods are currently employed, though
there is no clear “winner” at present.

1 Linear regression on the log-log scale: We could plot the data on a log-
log scale, then optionally “bin” them into equal-sized buckets, and fi-
nally find the slope of the linear fit. However, there are at least three
problems: (i) this can lead to biased estimates [45], (ii) sometimes the
power law is only in the tail of the distribution, and the point where the
tail begins needs to be hand-picked, and (iii) the right end of the distri-
bution is very noisy [66]. However, this is the simplest technique, and
seems to be the most popular one.

2 Linear regression after logarithmic binning: This is the same as above,
but the bin widths increase exponentially as we go towards the tail. In
other words, the number of data points in each bin is counted, and then
the height of each bin is then divided by its width to normalize. Plotting
the histogram on a log-log scale would make the bin sizes equal, and the
power-law can be fitted to the heights of the bins. This reduces the noise
in the tail buckets, fixing problem (iii). However, binning leads to loss of
information; all that we retain in a bin is its average. In addition, issues
(i) and (ii) still exist.

3 Regression on the cumulative distribution: We convert the pdf p(x) (that
is, the scatter plot) into a cumulative distribution F (x):

F (x) = P (X ≥ x) =
∞∑

z=x

p(z) =

∞∑

z=x

Az− (3.3)
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The approach avoids the loss of data due to averaging inside a histogram
bin. To see how the plot of F (x) versus x will look like, we can bound
F (x):

∫ ∞

x
Az−dz < F (x) < Ax− +

∫ ∞

x
Az−dz

⇒ A

 − 1
x−(−1) < F (x) < Ax− +

A

 − 1
x−(−1)

⇒ F (x) sim x−(−1) (3.4)

Thus, the cumulative distribution follows a power law with exponent
( − 1). However, successive points on the cumulative distribution plot
are not mutually independent, and this can cause problems in fitting the
data.

4 Maximum-Likelihood Estimator (MLE): This chooses a value of the power
law exponent  such that the likelihood that the data came from the cor-
responding power law distribution is maximized. Goldstein et al [45]
find that it gives good unbiased estimates of .

5 The Hill statistic: Hill [48] gives an easily computable estimator, that
seems to give reliable results [66]. However, it also needs to be told
where the tail of the distribution begins.

6 Fitting only to extreme-value data: Feuerverger and Hall [44] propose
another estimator which is claimed to reduce bias compared to the Hill
statistic without significantly increasing variance. Again, the user must
provide an estimate of where the tail begins, but the authors claim that
their method is robust against different choices for this value.

7 Non-parametric estimators: Crovella and Taqqu [31] propose a non-
parametric method for estimating the power law exponent without re-
quiring an estimate of the beginning of the power law tail. While there
are no theoretical results on the variance or bias of this estimator, the
authors empirically find that accuracy increases with increasing dataset
size, and that it is comparable to the Hill statistic.

Checking for goodness of fit The correlation coefficient has typically been used
as an informal measure of the goodness of fit of the degree distribution to a
power law. Recently, there has been some work on developing statistical “hy-
pothesis testing” methods to do this more formally. Beirlant et al. [15] derive
a bias-corrected Jackson statistic for measuring goodness of fit of the data to
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a generalized Pareto distribution. Goldstein et al. [45] propose a Kolmogorov-
Smirnov test to determine the fit. Such measures need to be used more often in
the empirical studies of graph datasets.

Examples of power laws in the real world. Examples of power law degree
distributions include the Internet AS1 graph with exponent 2.1 − 2.2 [43], the
Internet router graph with exponent sim 2.48 [43, 46], the in-degree and out-
degree distributions of subsets of the WWW with exponents 2.1 and 2.38−2.72
respectively [13, 54, 24], the in-degree distribution of the African web graph
with exponent 1.92 [19], a citation graph with exponent 3 [76], distributions
of website sizes and traffic [2], and many others. Newman [66] provides a
comprehensive list of such work.

Deviations from Power Laws.

Informal description. While power laws appear in a large number of
graphs, deviations from a pure power law are sometimes observed. We discuss
these below.

Detailed description. Pennock et al. [75] and others have observed devia-
tions from a pure power law distribution in several datasets. Two of the more
common deviations are exponential cutoffs and lognormals.

Exponential cutoffs Sometimes, the distribution looks like a power law over
the lower range of values along the x-axis, but decays very fast for higher val-
ues. Often, this decay is exponential, and this is usually called an exponential
cutoff:

y(x = k) ∝ e−k/�k− (3.5)

where e−k/� is the exponential cutoff term and k− is the power law term.
Amaral et al. [10] find such behaviors in the electric power-grid graph of South-
ern California and the network of airports, the vertices being airports and the
links being non-stop connections between them. They offer two possible ex-
planations for the existence of such cutoffs. One, high-degree nodes might
have taken a long time to acquire all their edges and now might be “aged”,
and this might lead them to attract fewer new edges (for example, older actors
might act in fewer movies). Two, high-degree nodes might end up reaching
their “capacity” to handle new edges; this might be the case for airports where
airlines prefer a small number of high-degree hubs for economic reasons, but
are constrained by limited airport capacity.

Lognormals or the “DGX” distribution Pennock et al. [75] recently found
while the whole WWW does exhibit power law degree distributions, subsets of
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the WWW (such as university homepages and newspaper homepages) deviate
significantly. They observed unimodal distributions on the log-log scale. Sim-
ilar distributions were studied by Bi et al. [17], who found that a discrete trun-
cated lognormal (called the Discrete Gaussian Exponential or “DGX” by the
authors) gives a very good fit. A lognormal is a distribution whose logarithm
is a Gaussian; it looks like a truncated parabola in log-log scales. The DGX
distribution extends the lognormal to discrete distributions (which is what we
get in degree distributions), and can be expressed by the formula:

y(x = k) =
A(�, �)

k
exp

[
−(ln k − �)2

2�2

]
k = 1, 2, . . . (3.6)

where � and � are parameters andA(�, �) is a constant (used for normalization
if y(x) is a probability distribution). The DGX distribution has been used to fit
the degree distribution of a bipartite “clickstream” graph linking websites and
users (Figure 3.1(c)), telecommunications and other data.

Examples of deviations from power laws in the real world Several data sets
have shown deviations from a pure power law [10, 75, 17, 62]: examples in-
clude the electric power-grid of Southern California, the network of airports,
several topic-based subsets of the WWW, Web “clickstream” data, sales data
in retail chains, file size distributions, and phone usage data.

2.2 Small Diameters

Informal description:. Travers and Milgram [80] conducted a famous ex-
periment where participants were asked to reach a randomly assigned target
individual by sending a chain letter. They found that for all the chains that
completed, the average length of such chains was six, which is a very small
number considering the large population the participants and targets were cho-
sen from. This leads us to believe in the concept of “six degrees of separation”:
the diameter of a graph is an attempt to capture exactly this.

Detailed description. Several (often related) terms have been used to
describe the idea of the “diameter” of a graph:

Expansion and the “hop-plot”: Tangmunarunkit et al. [78] use a well-
known metric from theoretical computer science called “expansion,”
which measures the rate of increase of neighborhood with increasing
ℎ. This has been called the “hop-plot” elsewhere [43].

Definition 3.3 (Hop-plot). Starting from a node u in the graph, we find
the number of nodes Nℎ(u) in a neighborhood of ℎ hops. We repeat this
starting from each node in the graph, and sum the results to find the total
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Figure 3.2. Hop-plot and effective diameter This is the hop-plot of the Epinions graph [34, 28]. We
see that the number of reachable pairs of nodes flattens out at around 6 hops; thus the effective
diameter of this graph is 6.

neighborhood size Nℎ for ℎ hops (Nℎ =
∑

uNℎ(u)). The hop-plot is
just the plot of Nℎ versus ℎ.

Effective diameter or Eccentricity: The hop-plot can be used to calculate
the effective diameter (also called the eccentricity) of the graph.

Definition 3.4 (Effective diameter). This is the minimum number of
hops in which some fraction (say, 90%) of all connected pairs of nodes
can reach each other [79].

Figure 3.2 shows the hop-plot and effective diameter of an example
graph.

Characteristic path length: For each node in the graph, consider the
shortest paths from it to every other node in the graph. Take the average
length of all these paths. Now, consider the average path lengths for all
possible starting nodes, and take their median. This is the characteristic
path length [25].

Average diameter: This is calculated in the same way as the characteris-
tic path length, except that we take the mean of the average shortest path
lengths over all nodes, instead of the median.

While the use of “expansion” as a metric is somewhat vague2, most of the
other metrics are quite similar. The advantage of eccentricity is that its defini-
tion works, as is, even for disconnected graphs, whereas we must consider only
the largest component for the characteristic and average diameters. Character-
istic path length and eccentricity are less vulnerable to outliers than average
diameter, but average diameter might be the better if we want worst case anal-
ysis.

A concept related to the hop-plot is that of the hop-exponent:
Faloutsos et al. [43] conjecture that for many graphs, the neighborhood sizeNℎ
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grows exponentially with the number of hops ℎ. In other words, Nℎ = cℎℋ

for ℎ much less than the diameter of the graph. They call the constant ℋ the
hop-exponent. However, the diameter is so small for many graphs that there
are too few points in the hop-plot for this premise to be verified and to calculate
the hop-exponent with any accuracy.

Computational issues. One major problem with finding the diameter is
the computational cost: all the definitions essentially require computing the
“neighborhood size” of each node in the graph. One approach is to use re-
peated matrix multiplications on the adjacency matrix of the graph; however,
this takes asymptotically O(N2.88) time and O(N2) memory space. Another
technique is to do breadth-first searches from each node of the graph. This
takes O(N +E) space but requires O(NE) time. Another issue with breadth-
first search is that edges are not accessed sequentially, which can lead to terrible
performance on disk-resident graphs. Palmer et al. [71] find that randomized
breadth-first search algorithms are also ill-suited for large graphs, and they pro-
vide a randomized algorithm for finding the hop-plot which takesO((N+E)d)
time and O(N) space (apart from the storage for the graph itself), where N is
the number of nodes, E the number of edges and d the diameter of the graph
(typically very small). Their algorithm offers provable bounds on the quality
of the approximated result, and requires only sequential scans over the data.
They find the technique to be far faster than exact computation, and providing
much better estimates than other schemes like sampling.

Examples in the real world. The diameters of several naturally occur-
ring graphs have been calculated, and in almost all cases they are very small
compared to the graph size. Faloutsos et al. [43] find an effective diameter of
around 4 for the Internet AS level graph and around 12 for the Router level
graph. Govindan and Tangmunarunkit [46] find a 97%-effective diameter of
around 15 for the Internet Router graph. Broder et al. [24] find that the av-
erage path length in the WWW (when a path exists at all) is about 16 if we
consider the directions of links, and around 7 if all edges are considered to be
undirected. Albert et al. [8] find the average diameter of the webpages in the
nd.edu domain to be 11.2. Watts and Strogatz [83] find the average diameters
of the power grid and the network of actors to be 18.7 and 3.65 respectively.
Many other such examples can be found in the literature; Tables 1 and 2 of [7]
and table 3.1 of [65] list some such work.

2.3 Other Static Graph Patterns

Apart from power laws and small diameters, some other patterns have been
observed in large real-world graphs. These include the resilience of such
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graphs to random failures, and correlations found in the joint degree distri-
butions of the graphs. Additionally, we observe structural patterns in the edge
weights in static snapshots of graphs. We will explore these topics below.

Resilience.

Informal description. The resilience of a graph is a measure of its ro-
bustness to node or edge failures. Many real-world graphs are resilient against
random failures but vulnerable to targeted attacks.

Detailed description. There are at least two definitions of resilience:

Tangmunarunkit et al. [78] define resilience as a function of the number
of nodes n: the resilience R(n) is the “minimum cut-set” size within
an n-node ball around any node in the graph (a ball around a node
X refers to a group of nodes within some fixed number of hops from
node X). The “minimum cut-set” is the minimum number of edges that
need to be cut to get two disconnected components of roughly equal
size; intuitively, if this value is large, then it is hard to disconnect the
graph and disrupt communications between its nodes, implying higher
resilience. For example, a 2D grid graph has R(n) ∝ √n while a tree
has R(n) = 1; thus, a tree is less resilient than a grid.

Resilience can be related to the graph diameter: a graph whose diam-
eter does not increase much on node or edge removal has higher re-
silience [71, 9].

Computation issues. Calculating the “minimum cut-set” size is NP-hard,
but approximate algorithms exist [49]. Computing the graph diameter is also
costly, but fast randomized algorithms exist [71].

Examples in the real world. In general, most real-world networks appear
to be resilient against random node/edge removals, but are susceptible to tar-
geted attacks: examples include the Internet Router-level and AS-level graphs,
as well as the WWW [71, 9, 78].

Patterns in weighted graphs.

Informal description. Edges in a graph often have edge weights. For
instance, the size of packets transferred in a computer network, or length of
phone calls (in seconds) in a phone-call network. These edge weights often
follow patterns, as described in [59] and [5].
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Detailed description. The first pattern we observe is the Weight Power
Law (WPL). Let E(t), W (t) be the number of edges and total weight of a
graph, at time t. They, they follow a power law

W (t) = E(t)w

where w is the weight exponent.
The weight exponent w ranges from 1.01 to 1.5 for the real graphs studied

in [59], which included blog graphs, computer network graphs, and political
campaign donation graphs, suggesting that this pattern is universal to real so-
cial network-like graphs.

In other words, the more edges that are added to the graph, superlinearly
more weight is added to the graph. This is counterintuitive, as one would
expect the average weight-per-edge to remain constant or to increase linearly.

We find the same pattern for each node. If a node i has out-degree outi, its
out-weight outwi exhibits a “fortification effect”– there will be a power-law
relationship between its degree and weight. We call this the Snapshot Power
Law (SPL), and it applies to both in- and out- degrees.

Specifically, at a given point in time, we plot the scatterplot of the in/out
weight versus the in/out degree, for all the nodes in the graph, at a given time
snapshot. Here, every point represents a node and the x and y coordinates are
its degree and total weight, respectively. To achieve a good fit, we bucketize
the x axis with logarithmic binning [64], and, for each bin, we compute the
median y.

Examples in the real world. We find these patterns apply in several real
graphs, including network traffic, blogs, and even political campaign dona-
tions. A plot of WPL and SPL may be found in Figure 3.3.

Several other weighted power laws, such as the relationship between the
eigenvalues of the graph and the weights of the edges, may be found in [5].

Other metrics of measurement. We have discussed a number of patterns
found in graphs, many more can be found in the literature. While most of the
focus regarding node degrees has fallen on the in-degree and the out-degree
distributions, there are “higher-order” statistics that could also be considered.
We combine all these statistics under the term joint distributions, differentiat-
ing them from the degree-distributions which are the marginal distributions.
Some of these statistics include:

In and out degree correlation The in and out degrees might be indepen-
dent, or they could be (anti)correlated. Newman et al. [67] find a positive
correlation in email networks, that is, the email addresses of individuals
with large address books appear in the address books of many others.
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organization supports, the superlinearly-more money it donates, and similarly, the more donations
a candidate gets, the more average amount-per-donation is received. Inset plots on (c) and (d)
show iw and ow versus time. Note they are very stable over time.

However, it is hard to measure this with good accuracy. Calculating this
well would require a lot of data, and it might be still be inaccurate for
high-degree nodes (which, due to power law degree distributions, are
quite rare).

Average neighbor degree We can measure the average degree dav(i)
of the neighbors of node i, and plot it against its degree k(i). Pastor-
Satorras et al. [74] find that for the Internet AS level graph, this gives a
power law with exponent 0.5 (that is, dav(i) ∝ k(i)−0.5).

Neighbor degree correlation We could calculate the joint degree distri-
butions of adjacent nodes; however this is again hard to measure accu-
rately.

2.4 Patterns in Evolving Graphs

The search for graph patterns has focused primarily on static patterns, which
can be extracted from one snapshot of the graph at some time instant. Many
graphs, however, evolve over time (such as the Internet and the WWW) and
only recently have researchers started looking for the patterns of graph evolu-
tion. Some key patterns have emerged:

Densification Power Law: Leskovec et al. [58] found that several real
graphs grow over time according to a power law: the number of nodes
N(t) at time t is related to the number of edges E(t) by the equation:

E(t) ∝ N(t)� 1 ≤ � ≤ 2 (3.7)

where the parameter � is called the Densification Power Law exponent,
and remains stable over time. They also find that this “law” exists for
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Figure 3.4. The Densification Power Law The number of edges E(t) is plotted against the number
of nodes N(t) on log-log scales for (a) the arXiv citation graph, (b) the patents citation graph, and
(c) the Internet Autonomous Systems graph. All of these grow over time, and the growth follows a
power law in all three cases [58].

several different graphs, such as paper citations, patent citations, and the
Internet AS graph. This quantifies earlier empirical observations that the
average degree of a graph increases over time [14]. It also agrees with
theoretical results showing that only a law like Equation 3.7 can maintain
the power-law degree distribution of a graph as more nodes and edges
get added over time [37]. Figure 3.4 demonstrates the densification law
for several real-world networks.

Shrinking Diameters: Leskovec et al. [58] also find that the effective di-
ameters (definition 3.4) of graphs are actually shrinking over time, even
though the graphs themselves are growing. This can be observed after
the gelling point– before a certain point a graph is still building to nor-
mal properties. This is illustrated in Figure 3.5(a)– for the first few time
steps the diameter grows, but it quickly peaks and begins shrinking.

Component Size Laws As a graph evolves, a giant connected component
forms: that is, most nodes are reachable to each other through some
path. This phenomenon is present both in random and real graphs. What
is also found, however, is that once the largest component gels and edges
continue to be added, the sizes of the next-largest connected components
remain constant or oscillating. This phenomenon is shown in Figure 3.5,
and discussed in [59].

Patterns in Timings: There are also several interesting patterns regarding
the timestamps of edge additions. We find that edge weight additions to
a graph are bursty: over time, edges are not added to the overall graph
uniformly over time, but are uneven yet self-similar [59]. We illustrate
this in Figure 3.6. However, in the case of many graphs, timeliness of
a particular node is important in its edge additions. As shown in [56],
incoming edges to a blog post decay with a surprising power-law expo-
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Figure 3.6. Timing patterns for a network of blog posts. (a) shows the entropy plot of edge
additions, showing burstiness. The inset shows the addition of edges over time. (b) describes the
decay of post popularity. The horizontal axis indicates time since a post’s appearance (aggregated
over all posts), while the vertical axis shows the number of links acquired on that day.

nent of -1.5, rather than exponentially or linearly as one might expect.
This is shown in Figure 3.6.

These surprising patterns are probably just the tip of the iceberg, and there may
be many other patterns hidden in the dynamics of graph growth.

2.5 The Structure of Specific Graphs

While most graphs found naturally share many features (such as the small-
world phenomenon), there are some specifics associated with each. These
might reflect properties or constraints of the domain to which the graph be-
longs. We will discuss some well-known graphs and their specific features
below.

The Internet. The networking community has studied the structure of
the Internet for a long time. In general, it can be viewed as a collection of
interconnected routing domains; each domain is a group of nodes (such routers,
switches etc.) under a single technical administration [26]. These domains can
be considered as either a stub domain (which only carries traffic originating or
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Core
Layers

Hanging nodes

Figure 3.7. The Internet as a “Jellyfish” The Internet AS-level graph can be thought of as a core,
surrounded by concentric layers around the core. There are many one-degree nodes that hang
off the core and each of the layers.

terminating in one of its members) or a transit domain (which can carry any
traffic). Example stubs include campus networks, or small interconnections of
Local Area Networks (LANs). An example transit domain would be a set of
backbone nodes over a large area, such as a wide-area network (WAN).

The basic idea is that stubs connect nodes locally, while transit domains
interconnect the stubs, thus allowing the flow of traffic between nodes from
different stubs (usually distant nodes). This imposes a hierarchy in the In-
ternet structure, with transit domains at the top, each connecting several stub
domains, each of which connects several LANs.

Apart from hierarchy, another feature of the Internet topology is its apparent
Jellyfish structure at the AS level (Figure 3.7), found by Tauro et al. [79]. This
consists of:

A core, consisting of the highest-degree node and the clique it belongs
to; this usually has 8–13 nodes.

Layers around the core. These are organized as concentric circles around
the core; layers further from the core have lower importance.

Hanging nodes, representing one-degree nodes linked to nodes in the
core or the outer layers. The authors find such nodes to be a large per-
centage (about 40–45%) of the graph.

The World Wide Web (WWW). Broder et al. [24] find that the Web graph
is described well by a “bowtie” structure (Figure 3.8(a)). They find that the
Web can be broken in 4 approximately equal-sized pieces. The core of the
bowtie is the Strongly Connected Component (SCC) of the graph: each node
in the SCC has a directed path to any other node in the SCC. Then, there is
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the IN component: each node in the IN component has a directed path to all
the nodes in the SCC. Similarly, there is an OUT component, where each node
can be reached by directed paths from the SCC. Apart from these, there are
webpages which can reach some pages in OUT and can be reached from pages
in IN without going through the SCC; these are the TENDRILS. Occasionally,
a tendril can connect nodes in IN and OUT; the tendril is called a TUBE in this
case. The remainder of the webpages fall in disconnected components. A
similar study focused on only the Chilean part of the Web graph found that
the disconnected component is actually very large (nearly 50% of the graph
size) [11].

Dill et al. [33] extend this view of the Web by considering subgraphs of the
WWW at different scales (Figure 3.8(b)). These subgraphs are groups of web-
pages sharing some common trait, such as content or geographical location.
They have several remarkable findings:

1 Recursive bowtie structure: Each of these subgraphs forms a bowtie of
its own. Thus, the Web graph can be thought of as a hierarchy of bowties,
each representing a specific subgraph.

2 Ease of navigation: The SCC components of all these bowties are tightly
connected together via the SCC of the whole Web graph. This provides
a navigational backbone for the Web: starting from a webpage in one
bowtie, we can click to its SCC, then go via the SCC of the entire Web to
the destination bowtie.

3 Resilience: The union of a random collection of subgraphs of the Web
has a large SCC component, meaning that the SCCs of the individual
subgraphs have strong connections to other SCCs. Thus, the Web graph
is very resilient to node deletions and does not depend on the existence
of large taxonomies such as yahoo.com; there are several alternate paths
between nodes in the SCC.

We have discussed several patterns occurring in real graphs, and given some
examples. Next, we would like to know, how can we re-create these patterns?
What sort of mechanisms can help explain real-world behaviors? To answer
these questions we turn to graph generators.

3. Graph Generators

Graph generators allow us to create synthetic graphs, which can then be
used for, say, simulation studies. But when is such a generated graph “realis-
tic?” This happens when the synthetic graph matches all (or at least several) of
the patterns mentioned in the previous section. Graph generators can provide
insight into graph creation, by telling us which processes can (or cannot) lead
to the development of certain patterns.
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Figure 3.8. The “Bowtie” structure of the Web: Plot (a) shows the 4 parts: IN, OUT, SCC and
TENDRILS [24]. Plot (b) shows Recursive Bowties: subgraphs of the WWW can each be consid-
ered a bowtie. All these smaller bowties are connected by the navigational backbone of the main
SCC of the Web [33].

Graph models and generators can be broadly classified into five categories:

1 Random graph models: The graphs are generated by a random process.
The basic random graph model has attracted a lot of research interest
due to its phase transition properties.

2 Preferential attachment models: In these models, the “rich” get “richer”
as the network grows, leading to power law effects. Some of today’s
most popular models belong to this class.

3 Optimization-based models: Here, power laws are shown to evolve when
risks are minimized using limited resources. This may be particularly
relevant in the case of real-world networks that are constrained by geog-
raphy. Together with the preferential attachment models, optimization-
based models try to provide mechanisms that automatically lead to power
laws.

4 Tensor-based models: Because many patterns in real graphs are self-
similar, one can generate realistic graphs by using self-similar mecha-
nisms through tensor multiplication.

5 Internet-specific models As the Internet is one of the most important
graphs in computer science, special-purpose generators have been de-
veloped to model its special features. These are often hybrids, using
ideas from the other categories and melding them with Internet-specific
requirements.

We will discuss graph generators from each of these categories in this sec-
tion. This is not a complete list, but we believe it includes most of the key ideas
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Figure 3.9. The Erd-os-R«enyi model The black circles represent the nodes of the graph. Every
possible edge occurs with equal probability.

from the current literature. For each group of generators, we will try to provide
the specific problem they aim to solve, followed by a brief description of the
generator itself and its properties, and any open questions. We will also note
variants on each major generator and briefly address their properties. While we
will not discuss in detail all generators, we provide citations and a summary.

3.1 Random Graph Models

Random graphs are generated by picking nodes under some random prob-
ability distribution and then connecting them by edges. We first look at the
basic Erd-os-R«enyi model, which was the first to be studied thoroughly [40],
and then we discuss modern variants of the model.

The Erd-os-R«enyi Random Graph Model.

Problem being solved. Graph theory owes much of its origins to the
pioneering work of Erd-os and R«enyi in the 1960s [40, 41]. Their random graph
model was the first and the simplest model for generating a graph.

Description and Properties. We start with N nodes, and for every pair of
nodes, an edge is added between them with probability p (as in Figure 3.9).
This defines a set of graphs GN,p, all of which have the same parameters
(N, p).

Degree Distribution The probability of a vertex having degree k is

pk =

(
N

k

)
pk(1− p)N−k ≈ zke−z

k!
with z = p(N − 1) (3.8)
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For this reason, this model is often called the “Poisson” model.

Size of the largest component Many properties of this model can be solved ex-
actly in the limit of largeN . A property is defined to hold for parameters (N, p)
if the probability that the property holds on every graph in GN,p approaches 1
as N →∞. One of the most noted properties concerns the size of the largest
component (subgraph) of the graph. For a low value of p, the graphs in GN,p

have low density with few edges and all the components are small, having an
exponential size distribution and finite mean size. However, with a high value
of p, the graphs have a giant component with O(N) of the nodes in the graph
belonging to this component. The rest of the components again have an ex-
ponential size distribution with finite mean size. The changeover (called the
phase transition) between these two regimes occurs at p = 1

N . A heuristic
argument for this is given below, and can be skipped by the reader.

Finding the phase transition point Let the fraction of nodes not belonging to
the giant component be u. Thus, the probability of random node not belonging
to the giant component is also u. But the neighbors of this node also do not
belong to the giant component. If there are k neighbors, then the probability
of this happening is uk. Considering all degrees k, we get

u =

∞∑

k=0

pku
k

= e−z
∞∑

k=0

(uz)k

k!
(using Eq 3.8)

= e−zeuz = ez(u−1) (3.9)

Thus, the fraction of nodes in the giant component is

S = 1− u = 1− e−zS (3.10)

Equation 3.10 has no closed-form solutions, but we can see that when z < 1,
the only solution is S = 0 (because e−x > 1− x for x ∈ (0, 1)). When z > 1,
we can have a solution for S, and this is the size of the giant component. The
phase transition occurs at z = p(N−1) = 1. Thus, a giant component appears
only when p scales faster than N−1 as N increases.

1P (k) ∝ k−2.255/ ln k; [18] study a special case, but other values of the exponent  may be possible with
similar models.
2Inet-3.0 matches the Internet AS graph very well, but formal results on the degree-distribution are not
available.
3 = 1 + 1

�
as k → ∞ (Eq. 3.16)
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Tree-shaped subgraphs Similar results hold for the appearance of trees of dif-
ferent sizes in the graph. The critical probability at which almost every graph
contains a subgraph of k nodes and l edges is achieved when p scales as N z

where z = −k
l [20]. Thus, for z < −3

2 , almost all graphs consist of isolated

nodes and edges; when z passes through −3
2 , trees of order 3 suddenly appear,

and so on.

Diameter Random graphs have a diameter concentrated around logN/ log z,
where z is the average degree of the nodes in the graph. Thus, the diameter
grows slowly as the number of nodes increases.

Clustering coefficient The probability that any two neighbors of a node are

themselves connected is the connection probability p = <k>
N , where < k > is

the average node degree. Therefore, the clustering coefficient is:

CCrandom = p =
< k >

N
(3.11)

Open questions and discussion. It is hard to exaggerate the importance
of the Erd-os-R«enyi model in the development of modern graph theory. Even
a simple graph generation method has been shown to exhibit phase transitions
and criticality. Many mathematical techniques for the analysis of graph prop-
erties were first developed for the random graph model.

However, even though random graphs exhibit such interesting phenomena,
they do not match real-world graphs particularly well. Their degree distribu-
tion is Poisson (as shown by Equation 3.8), which has a very different shape
from power-laws or lognormals. There are no correlations between the de-
grees of adjacent nodes, nor does it show any form of “community” structure
(which often shows up in real graphs like the WWW). Also, according to Equa-
tion 3.11, CCrandom

<k> = 1
N ; but for many real-world graphs, CC

<k> is independent
of N (See figure 9 from [7]).

Thus, even though the Erd-os-R«enyi random graph model has proven to be
very useful in the early development of this field, it is not used in most of
the recent work on modeling real graphs. To address some of these issues, re-
searchers have extended the model to the so-called Generalized Random Graph
Models, where the degree distribution can be set by the user (typically, set to
be a power law).

Analytic techniques for studying random graphs involve generating func-
tions. A good reference is by Wilf [85].

Generalized Random Graph Models. Erd-os-R«enyi graphs result in a
Poisson degree distribution, which often conflicts with the degree distributions
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of many real-world graphs. Generalized random graph models extend the basic
random graph model to allow arbitrary degree distributions.

Given a degree distribution, we can randomly assign a degree to each node
of the graph so as to match the given distribution. Edges are formed by ran-
domly linking two nodes till no node has extra degrees left. We describe
two different models below: the PLRG model and the Exponential Cutoffs
model. These differ only in the degree distributions used; the rest of the graph-
generation process remains the same. The graphs thus created can, in gen-
eral, include self-graphs and multigraphs (having multiple edges between two
nodes).

The PLRG model One of the obvious modifications to the Erd-os-R«enyi model
is to change the degree distribution from Poisson to power-law. One such
model is the Power-Law Random Graph (PLRG) model of Aiello et al. [3]
(a similar model is the Power Law Out Degree (PLOD) model of Palmer and
Steffan [72]). There are two parameters: � and �. The number of nodes of
degree k is given by e�/k� .

By construction, the degree distribution is specifically a power law:

pk ∝ k−� (3.12)

where � is the power-law exponent.
The authors show that graphs generated by this model can have several pos-

sible properties, based only on the value of �. When � < 1, the graph is al-
most surely connected. For 1 < � < 2, a giant component exists, and smaller
components are of size O(1). For 2 < � < �0 sim 3.48, the giant component
exists and the smaller components are of size O(logN). At � = �0, the
smaller components are of size O(logN/ log logN). For � > �0, no giant
component exists. Thus, for the giant component, we have a phase transition
at � = �0 = 3.48; there is also a change in the size of the smaller components
at � = 2.

The Exponential cutoffs model Another generalized random graph model is
due to Newman et al. [69]. Here, the probability that a node has k edges is
given by

pk = Ck−e−k/� (3.13)

where C,  and � are constants.
This model has a power law (the k− term) augmented by an exponential

cutoff (the e−k/� term). The exponential cutoff, which is believed to be present
in some social and biological networks, reduces the heavy-tail behavior of a
pure power-law degree distribution. The results of this model agree with those
of [3] when �→∞.
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Analytic expressions are known for the average path length of this model,
but this typically tends to be somewhat less than that in real-world graphs [7].

Apart from PLRG and the exponential cutoffs model, some other related
models have also been proposed, a notable model generalization being dot-
product models [70]. Another important model is that of Aiello et al. [4], who
assign weights to nodes and then form edges probabilistically based on the
product of the weights of their end-points. The exact mechanics are, however,
close to preferential attachment, and we will discuss later.

Similar models have also been proposed for generating directed and bipartite
random graphs. Recent work has provided analytical results for the sizes of the
strongly connected components and cycles in such graphs [30, 37]. We do not
discuss these any further; the interested reader is referred to [69].

Open questions and discussion. Generalized random graph models retain
the simplicity and ease of analysis of the Erd-os-R«enyi model, while removing
one of its weaknesses: the unrealistic Poisson degree distribution. However,
most such models only attempt to match the degree distribution of real graphs,
and no other patterns. For example, in most random graph models, the proba-
bility that two neighbors of a node are themselves connected goes as O(N−1).
This is exactly the clustering coefficient of the graph, and goes to zero for
large N ; but for many real-world graphs, CC

<k> is independent of N (See fig-
ure 9 from [7]). Also, many real world graphs (such as the WWW) exhibit
the existence of communities of nodes, with stronger ties within the commu-
nity than outside; random graphs do not appear to show any such behavior.
Further work is needed to accommodate these patterns into the random graph
generation process.

3.2 Preferential Attachment and Variants

Problem being solved. Generalized random graph models try to model the
power law or other degree distribution of real graphs. However, they do not
make any statement about the processes generating the network. The search for
a mechanism for network generation was a major factor in fueling the growth
of the preferential attachment models, which we discuss below.

Basic Preferential Attachment. In the mid-1950s, Herbert Simon [77]
showed that power law tails arise when “the rich get richer.” Derek Price
applied this idea (which he called cumulative advantage) to the case of net-
works [32], as follows. We grow a network by adding vertices over time. Each
vertex gets a certain out-degree, which may be different for different vertices
but whose mean remains at a constant value m over time. Each outgoing edge
from the new vertex connects to an old vertex with a probability proportional
to the in-degree of the old vertex. This, however, leads to a problem since all
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Figure 3.10. The Barab«asi-Albert model New nodes are added; each new node prefers to connect
to existing nodes of high degree. The dashed lines show some possible edges for the new node,
with thicker lines implying higher probability.

nodes initially start off with in-degree zero. Price corrected this by adding a
constant to the current in-degree of a node in the probability term, to get

P (edge to existing vertex v) =
k(v) + k0∑
i(k(i) + k0)

where k(i) represents the current in-degree of an existing node i, and k0 is a
constant.

A similar model was proposed by Barab«asi and Albert [13]. It has been a
very influential model, and formed the basis for a large body of further work.
Hence, we will look at the Barab«asi-Albert model (henceforth called the BA
model) in detail.

Description of the BA model. The BA model proposes that structure
emerges in network topologies as the result of two processes:

1 Growth: Contrary to several other existing models (such as random
graph models) which keep a fixed number of nodes during the process
of network formation, the BA model starts off with a small set of nodes
and grows the network as nodes and edges are added over time.

2 Preferential Attachment: This is the same as the “rich get richer” idea.
The probability of connecting to a node is proportional to the current
degree of that node.

Using these principles, the BA model generates an undirected network as
follows. The network starts with m0 nodes, and grows in stages. In each
stage, one node is added along with m edges which link the new node to m
existing nodes (Figure 3.10). The probability of choosing an existing node as
an endpoint for these edges is given by

P (edge to existing vertex v) =
k(v)∑
i k(i)

(3.14)
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where k(i) is the degree of node i. Note that since the generated network is
undirected, we do not need to distinguish between out-degrees and in-degrees.
The effect of this equation is that nodes which already have more edges con-
necting to them, get even more edges. This represents the “rich get richer”
scenario.

There are a few differences from Price’s model. One is that the number of
edges per new node is fixed at m (a positive integer); in Price’s model only
the mean number of added edges needed to be m. However, the major differ-
ence is that while Price’s model generates a directed network, the BA model
is undirected. This avoids the problem of the initial in-degree of nodes being
zero; however, many real graphs are directed, and the BA model fails to model
this important feature.

Properties of the BA model. We will now discuss some of the known
properties of the BA model. These include the degree distribution, diameter,
and correlations hidden in the model.

Degree distribution The degree distribution of the BA model [36] is given by:

pk ≈ k−3

for large k. In other words, the degree distribution has a power law “tail” with
exponent 3, independent of the value of m.

Diameter Bollob«as and Riordan [22] show that for largeN , the diameter grows
as O(logN) for m = 1, and as O(logN/ log logN) for m ≥ 2. Thus, this
model displays the small-world effect: the distance between two nodes is, on
average, far less than the total number of nodes in the graph.

Correlations between variables Krapivsky and Redner [52] find two corre-
lations in the BA model. First, they find that degree and age are positively
correlated: older nodes have higher mean degree. The second correlation is in
the degrees of neighboring nodes, so that nodes with similar degree are more
likely to be connected. However, this asymptotically goes to 0 as N →∞.

Open questions and discussion. The twin ideas of growth and preferential
attachment are definitely an immense contribution to the understanding of net-
work generation processes. However, the BA model attempts to explain graph
structure using only these two factors; most real-world graphs are probably
generated by a slew of different factors. The price for this is some inflexibility
in graph properties of the BA model.

The power-law exponent of the degree distribution is fixed at  = 3, and
many real-world graphs deviate from this value.
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The BA model generates undirected graphs only; this prevents the model
from being used for the many naturally occurring directed graphs.

While Krapivsky and Redner show that the BA model should have cor-
relations between node degree and node age (discussed above), Adamic
and Huberman [1] apparently find no such correlations in the WWW.

The generated graphs have exactly one connected component. How-
ever, many real graphs have several isolated components. For example,
websites for companies often have private set of webpages for employ-
ees/projects only. These are a part of the WWW, but there are no paths
to those webpages from outside the set. Military routers in the Internet
router topology are another example.

The BA model has a constant average degree of m; however, the average
degree of some graphs (such as citation networks) actually increases over
time according to a Densification Power Law [14, 58, 37]

The diameter of the BA model increases as N increases; however, many
graphs exhibit shrinking diameters.

Also, further work is needed to confirm the existence or absence of a commu-
nity structure in the generated graphs.

While the basic BA model does have these limitations, its simplicity and
power make it an excellent base on which to build extended models. In fact,
the bulk of graph generators in use today can probably trace their lineage back
to this model. In the next few sections, we will look at some of these extensions
and variations; as we will see, most of these are aimed at removing one or the
other of the aforementioned limitations.

Variants on Preferential Attachment.

Initial attractiveness. While the BA model generates graphs with a power
law degree distribution, the power law exponent is stuck at  = 3. Dorogovt-
sev et al. [36, 35] propose a simple one-parameter extension of the basic model
which allows  ∈ [2,∞). Other methods, such as the AB model described
later, also do this, but they require more parameters. In initial attractiveness,
an extra “initial attractiveness” parameter is added which governs the proba-
bility of “young” sites gaining new edges. Adjusting this parameter will vary
the degree distribution, adding significant flexibility to the BA model.

Internal edges and Rewiring. Albert and Barab«asi [6] proposed another
method to add flexibility in the power law exponent. In the original BA model,
one node and m edges are added to the graph every iteration. Albert and
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Figure 3.11. The edge copying model New nodes can choose to copy the edges of an existing
node. This models the copying of links from other peoples’ websites to create a new website.

Barab«asi decouple this addition of nodes and edges, and also extend the model
by introducing the concept of edge rewiring. Starting with a small set of m0

nodes, the resulting model (henceforth called the AB model) combines 3 pro-
cesses: adding internal edges, removing/reconnecting (“rewiring”) edges, and
adding new nodes with some edges. This model exhibits either a power-law or
exponential degree distribution, depending on the parameters used.

Edge Copying Models. Several graphs show community behavior, such as
topic-based communities of websites on the WWW. Kleinberg et al. [51] and
Kumar et al. [54] try to model this by using the intuition that most webpage
creators will be familiar with webpages on topics of interest to them, and so
when they create new webpages, they will link to some of these existing topical
webpages. Thus, most new webpages will enhance the “topical community”
effect of the WWW.

The Kleinberg [51] generator creates a directed graph. In this generator,
nodes are independently created and deleted in each distribution, and edges
incident on deleted nodes are also removed. Also, edges may be added to or
deleted from existing nodes. Then, there is the key edge copying mechanism,
where a node may copy edges from another node. An illustration is shown
in Figure 3.11. This is similar to preferential attachment because the pages
with high-degree will be linked to by many other pages, and so have a greater
chance of getting copied.

Kumar et al. [54] propose a very similar model. However, there are some
important differences. Whenever a new node is added, only one new edge is
added. The copying process takes place when head or tail of some existing
edge gets chosen as the endpoint of the new edge. This model may serve to
create “communities” as there may be important nodes on each “topic”.

This and similar models by analyzed by Kumar et al. [53]. In-degree distri-
bution of Kleinberg’s model follows a power law, and both in-and out-degree
of Kumar et al.’s model follow power laws.

The Kleinberg model [51] generates a tree; no “back-edges” are formed
from the old nodes to the new nodes. Also, in the model of Kumar et al. [54],



Graph Mining: Laws and Generators 97

a fixed fraction of the nodes have zero in-degree or zero out-degree; this might
not be the case for all real-world graphs (see Aiello et al. [4] for related issues).
However, the simple idea of copying edges can clearly lead to both power
laws as well as community effects. “Edge copying” models are, thus, a very
promising direction for future research.

Modifying the preferential attachment equation. Chen et al. [29] had
found the AB model somewhat lacking in modeling the Web. Specifically, they
found that the preference for connecting to high-degree nodes is stronger than
that predicted by linear preferential attachment. Bu and Towsley [25] attempt
to address this issue.

The AB model [6] is changed by removing the edge rewiring process, and
modifying the linear preferential attachment equation of the AB model to show
higher preference for nodes with high degrees (as in [29]). This is called the
GLP (Generalized Linear Preference) model. The degree distribution follows
a power law. Also, they also find empirically that the clustering coefficient
for a GLP graph is much closer to that of the Internet than the BA, AB and
Power-Law Random Graph (PLRG [3]) models.

Others such as Krapivsky and Redner [52] have studied non-linear prefer-
ential attachment, finding this tended to produce degree decay faster than a
power law.

Modeling increasing average degree. The average degree of several real-
world graphs (such as citation graphs) increases over time [37, 14, 58], accord-
ing to a Densification Power Law. Barab«asi et al. [14] attempt to modify the
basic BA model to accommodate this effect. In the model, a new edge chooses
both its endpoints by preferential attachment. The number of internal nodes
added per iteration is proportional to the the current number of nodes in the
graph. Thus, it leads to the phenomenon of accelerated growth: the average
degree of the graph increases linearly over time.

However, the analysis of this model shows that it has two power-law
regimes. The power law exponent is  = 2 for low degrees, and  = 3 for
high degrees. In fact, over a long period of time, the exponent converges to
 = 2.

Node fitness measures. The preferential attachment models noted above
tend to have a correlation between the age of a node and its degree: higher
the age, more the degree [52]. However, Adamic and Huberman find that this
does not hold for the WWW [1]. There are websites which were created late
but still have far higher in-degree than many older websites. Bianconi and
Barab«asi [18] try to model this. Their model attaches a fitness parameter to
each node, which does not change over time. The idea is that even a node
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which is added late could overtake older nodes in terms of degree, if the newer
node has a much higher fitness value.

The authors analyze the case when the fitness parameters are drawn ran-
domly from a uniform [0, 1] distribution. The resulting degree distribution is
a power law with an extra inverse logarithmic factor. For the case where all
fitness values are the same, this model becomes the simple BA model.

Having a node’s popularity depend on its “fitness” intuitively makes a lot of
sense. Further research is needed to determine the distribution of node fitness
values in real-world graphs.

Generalizing preferential attachment. The BA model is undirected. A
simple adaptation to the directed case is: new edges are created to point from
the new nodes to existing nodes chosen preferentially according to their in-
degree. However, the out-degree distribution of this model would not be a
power law. Aiello et al. [4] propose a very general model for generating di-
rected graphs which give power laws for both in-degree and out-degree distri-
butions. A similar model was also proposed by Bollob«as et al. [21]. The work
shows that even a very general version of preferential attachment can lead to
power law degree distributions. Further research is needed to test for all the
other graph patterns, such as diameter, community effects and so on.

PageRank-based preferential attachment. Pandurangan et al. [73] found
that the PageRank [23] values for a snapshot of the Web graph follow a power
law. They propose a model that tries to match this PageRank distribution of
real-world graphs, in addition to the degree distributions. They modify the
basic preferential attachment mechanism by adding a PageRank-based pref-
erential attachment component– not only do edges preferentially connect to
high degree nodes, but also high PageRank nodes. They empirically show that
this model can match both the degree distributions as well as the PageRank
distribution of the Web graph. However, closed-form formulas for the degree
distributions are not provided for this model. The authors also found that the
plain edge-copying model of Kumar et al. [54] could also match the PageR-
ank distribution (in addition to the degree distributions) without specifically
attempting to do so. Thus, this work might be taken to be another alternative
model of the Web.

The Forest Fire model. Leskovec et al. [58] develop a preferential-
attachment based model which matches the Densification Power Law and the
shrinking diameter patterns of graph evolution, in addition to the power law de-
gree distribution. A node chooses an ambassador node uniformly at random,
and then links recursively to the ambassador node’s neighbors.
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This creates preferential linking without explicitly assigning such probabil-
ity. This method is similar to the edge copying model discussed earlier because
existing links are “copied” to the new node v as the fire spreads. This leads to
a community of nodes, which share similar edges.

The Butterfly model. Most preferential-attachment based models will
form a single connected component, when, in real graphs, there are many
smaller components that evolve and occasionally join with each other. Mc-
Glohon et al. [59] develop a model that addresses this. Like in the Forest Fire
model, there is an ambassador mechanism. However, there is no guarantee of
linkage, so a node may become isolated and form its own new component for
other nodes to join to. Additionally, instead of a single ambassador, a node may
choose multiple ambassadors. This will allow components to join together.

The Butterfly model empirically produces power laws for both in- and out-
degree, as well as reproducing the Densification Power Law and shrinking
diameter. Furthermore, it reproduces oscillating patterns of the next-largest
connected components mentioned earlier.

Deviations from power laws.

Problem being solved. Pennock et al. [75] find that while the WWW
as a whole might exhibit power-law degree distributions, subgraphs of web-
pages belonging to specific categories or topics often show significant devia-
tions from a power law. They attempt to model this deviation from power-law
behavior.

Description and properties. Their model is similar to the BA model,
except for two differences:

Internal edges The m new edges added in each iteration need not be
incident on the new node being added that iteration. Thus, the new edges
could be internal edges.

Combining random and preferential attachment Instead of pure prefer-
ential attachment, the endpoints of new edges are chosen according to
a linear combination of preferential attachment and uniform random at-
tachment. The probability of a node v being chosen as one endpoint of
an edge is given by:

p(v) = �
k(v)

2mt
+ (1− �) 1

m0 + t
(3.15)

Here, k(v) represents the current degree of node v, 2mt is the total num-
ber of edges at time t, (m0 + t) is the current number of nodes at time
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t, and � ∈ [0, 1] is a free parameter. To rephrase the equation, in order
to choose a node as an endpoint for a new edge, we either do prefer-
ential attachment with probability �, or we pick a node at random with
probability (1− �).

One point of interest is that even if a node is added with degree 0, there is
always a chance for it to gain new edges via the uniform random attachment
process. The preferential attachment and uniform attachment parts of Equa-
tion 3.15 represent two different behaviors of webpage creators (according to
the authors):

The preferential attachment term represents adding links which the cre-
ator became aware of because they were popular.

The uniform attachment term represents the case when the author adds a
link because it is relevant to him, and this is irrespective of the popularity
of the linked page. This allows even the poorer sites to gain some edges.

Degree distribution The authors derive a degree distribution function for this
model:

P (k) ∝ (k + c)−1− 1
� (3.16)

where c is a function ofm and �. This gives a power-law of exponent (1+1/�)
in the tail. However, for low degrees, it deviates from the power-law, as the
authors wanted.

Power-law degree distributions have shown up in many real-world graphs.
However, it is clear that deviations in this do show up in practice. This is
one of the few models we are aware of that specifically attempt to model such
deviations, and as such, is a step in the right direction.

Open questions and discussion. This model can match deviations from
power laws in degree distributions. However, further work is needed to test for
other graph patterns, like diameter, community structure and such.

Implementation issues. Here, we will briefly discuss certain implementa-
tion aspects. Consider the BA model. In each iteration, we must choose edge
endpoints according to the linear preferential attachment equation. Naively,
each time we need to add a new edge, we could go over all the existing nodes
and find the probability of choosing each node as an endpoint, based on its cur-
rent degree. However, this would take O(N) time each iteration, and O(N2)
time to generate the entire graph. A better approach [65] is to keep an array:
whenever a new edge is added, its endpoints are appended to the array. Thus,
each node appears in the array as many times as its degree. Whenever we must
choose a node according to preferential attachment, we can choose any cell of
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the array uniformly at random, and the node stored in that cell can be consid-
ered to have been chosen under preferential attachment. This requires O(1)
time for each iteration, and O(N) time to generate the entire graph; however,
it needs extra space to store the edge list.

This technique can be easily extended to the case when the preferential at-
tachment equation involves a constant �, such as P (v) ∝ (k(v) − �) for the
GLP model. If the constant � is a negative integer (say, � = −1 as in the AB
model), we can handle this easily by adding ∣�∣ entries for every existing node
into the array. However, if this is not the case, the method needs to be modified
slightly: with some probability �, the node is chosen according to the sim-
ple preferential attachment equation (like in the BA model). With probability
(1 − �), it is chosen uniformly at random from the set of existing nodes. For
each iteration, the value of � can be chosen so that the final effect is that of
choosing nodes according to the modified preferential attachment equation.

Summary of Preferential Attachment Models. All preferential attach-
ment models use the idea that the “rich get richer”: high-degree nodes attract
more edges, or high-PageRank nodes attract more edges, and so on. This sim-
ple process, along with the idea of network growth over time, automatically
leads to the power-law degree distributions seen in many real-world graphs.
As such, these models made a very important contribution to the field of graph
mining. Still, most of these models appear to suffer from some limitations:
for example, they do not seem to generate any “community” structure in the
graphs they generate. Also, apart from the work of Pennock et al. [75], little
effort has gone into finding reasons for deviations from power-law behaviors
for some graphs. It appears that we need to consider additional processes to
understand and model such characteristics.

3.3 Optimization-based generators

Most of the methods described above have approached power-law de-
gree distributions from the preferential-attachment viewpoint: if the “rich get
richer”, power-laws might result. However, another point of view is that power
laws can result from resource optimizations. There may be a number of con-
straints applied to the models– cost of connections, geographical distance, etc.
We will discuss some models based on optimization of resources next.

The Highly Optimized Tolerance model.

Problem being solved:. Carlson and Doyle [27, 38] have proposed an
optimization-based reason for the existence of power laws in graphs. They say
that power laws may arise in systems due to tradeoffs between yield (or profit),
resources (to prevent a risk from causing damage) and tolerance to risks.
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Description and properties:. As an example, suppose we have a for-
est which is prone to forest fires. Each portion of the forest has a different
chance of starting the fire (say, the dryer parts of the forest are more likely to
catch fire). We wish to minimize the damage by assigning resources such as
firebreaks at different positions in the forest. However, the total available re-
sources are limited. The problem is to place the firebreaks so that the expected
cost of forest fires is minimized.

In this model, called the Highly Optimized Tolerance (HOT) model, we have
n possible events (starting position of a forest fire), each with an associated
probability pi(1 ≤ i ≤ n) (dryer areas have higher probability). Each event
can lead to some loss li, which is a function of the resources ri allocated for
that event: li = f(ri). Also, the total resources are limited:

∑
i ri ≤ R for

some given R. The aim is to minimize the expected cost

J =

{∑

i

pili ∣ li = f(ri),
∑

i

ri ≤ R
}

(3.17)

Degree distribution: The authors show that if we assume that cost and resource

usage are related by a power law li ∝ r�i , then, under certain assumptions
on the probability distribution pi, resources are spent on places having higher
probability of costly events. In fact, resource placement is related to the prob-
ability distribution pi by a power law. Also, the probability of events which
cause a loss greater than some value k is related to k by a power law.

The salient points of this model are:

high efficiency, performance and robustness to designed-for uncertain-
ties

hypersensitivity to design flaws and unanticipated perturbations

nongeneric, specialized, structured configurations, and

power laws.

Resilience under attack: This concurs with other research regarding the vul-
nerability of the Internet to attacks. Several researchers have found that while
a large number of randomly chosen nodes and edges can be removed from the
Internet graph without appreciable disruption in service, attacks targeting im-
portant nodes can disrupt the network very quickly and dramatically [71, 9].
The HOT model also predicts a similar behavior: since routers and links are
expected to be down occasionally, it is a “designed-for” uncertainty and the
Internet is impervious to it. However, a targeted attack is not designed for, and
can be devastating.
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Figure 3.12. The Heuristically Optimized Tradeoffs model A new node prefers to link to existing
nodes which are both close in distance and occupy a “central” position in the network.

Newman et al. [68] modify HOT using a utility function which can be used
to incorporate “risk aversion.” Their model (called Constrained Optimization
with Limited Deviations or COLD) truncates the tails of the power laws, low-
ering the probability of disastrous events.

HOT has been used to model the sizes of files found on the WWW. The
idea is that dividing a single file into several smaller files leads to faster load
times, but increases the cost of navigating through the links. They show good
matches with this dataset.

Open questions and discussion. The HOT model offers a completely
new recipe for generating power laws; power laws can result as a by-product
of resource optimizations. However, this model requires that the resources be
spread in an globally-optimal fashion, which does not appear to be true for
several large graphs (such as the WWW). This led to an alternative model by
Fabrikant et al. [42], which we discuss next.

Modification: The Heuristically Optimized Tradeoffs model. Fab-
rikant et al. [42] propose an alternative model in which the graph grows as
a result of trade-offs made heuristically and locally (as opposed to optimally,
for the HOT model).

The model assumes that nodes are spread out over a geographical area. One
new node is added in every iteration, and is connected to the rest of the net-
work with one link. The other endpoint of this link is chosen to optimize
between two conflicting goals: (1) minimizing the “last-mile” distance, that is,
the geographical length of wire needed to connect a new node to a pre-existing
graph (like the Internet), and, (2) minimizing the transmission delays based on
number of hops, or, the distance along the network to reach other nodes. The
authors try to optimize a linear combination of the two (Figure 3.12). Thus, a
new node i should be connected to an existing node j chosen to minimize

�.dij + ℎj (j < i) (3.18)



104 MANAGING AND MINING GRAPH DATA

where dij is the distance between nodes i and j, ℎj is some measure of the
“centrality” of node j, and � is a constant that controls the relative importance
of the two.

The authors find that the characteristics of the network depend greatly on the
value of �, and may be a single hub or have an exponential degree distribution,
but for a range of values power-law degree distribution results.

As in the Highly Optimized Tolerance model described before (Subsec-
tion 3.3.0), power laws are seen to fall off as a by-product of resource op-
timizations. However, only local optimizations are now needed, instead of
global optimizations. This makes the Heuristically Optimized Tradeoffs model
very appealing.

Other research in this direction is the recent work of Berger et al. [16], who
generalize the Heuristically Optimized Tradeoffs model, and show that it is
equivalent to a form of preferential attachment; thus, competition between op-
posing forces can give rise to preferential attachment, and we already know
that preferential attachment can, in turn, lead to power laws and exponential
cutoffs.

Incorporating Geographical Information. Both the random graph
and preferential attachment models have neglected one attribute of many real
graphs: the constraints of geography. For example, it is easier (cheaper) to
link two routers which are physically close to each other; most of our social
contacts are people we meet often, and who consequently probably live close
to us (say, in the same town or city), and so on. In the following paragraphs,
we discuss some important models which try to incorporate this information.

The Small-World Model.

Problem being solved. The small-world model is motivated by the ob-
servation that most real-world graphs seem to have low average distance be-
tween nodes (a global property), but have high clustering coefficients (a local
property). Two experiments from the field of sociology shed light on this phe-
nomenon.

Travers and Milgram [80] conducted an experiment where participants had
to reach randomly chosen individuals in the U.S.A. using a chain letter be-
tween close acquaintances. Their surprising find was that, for the chains that
completed, the average length of the chain was only six, in spite of the large
population of individuals in the “social network.” While only around 29% of
the chains were completed, the idea of small paths in large graphs was still a
landmark find.

The reason behind the short paths was discovered by Mark Granovetter [47],
who tried to find out how people found jobs. The expectation was that the job
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Figure 3.13. The small-world model Nodes are arranged in a ring lattice; each node has links to
its immediate neighbors (solid lines) and some long-range connections (dashed lines).

seeker and his eventual employer would be linked by long paths; however, the
actual paths were empirically found to be very short, usually of length one or
two. This corresponds to the low average path length mentioned above. Also,
when asked whether a friend had told them about their current job, a frequent
answer of the respondents was “Not a friend, an acquaintance”. Thus, this
low average path length was being caused by acquaintances, with whom the
subjects only shared weak ties. Each acquaintance belonged to a different so-
cial circle and had access to different information. Thus, while the social graph
has high clustering coefficient (i.e., is “clique-ish”), the low diameter is caused
by weak ties joining faraway cliques.

Description and properties. Watts and Strogatz [83] independently came
up with a model with these characteristics: it has high clustering coefficient
but low diameter . Their model (Figure 3.13), which has only one parameter
p, consists of the following: begin with a ring lattice where each node has a set
of “close friendships”. Then rewire: for each node, each edge is rewired with
probability p to a new random destination– these are the “weak ties”.

Distance between nodes, and Clustering coefficient For p = 0 the graph re-
mains a ring lattice, where both clustering coefficient and average distance
between nodes are high. For p = 1, both values are very low. For a range
of values in between, the average distance is low while clustering coefficient
is high– as one would expect in real graphs. The reason for this is that the
introduction of a few long-range edges (which are exactly the weak ties of
Granovetter) leads to a highly nonlinear effect on the average distance L. Dis-
tance is contracted not only between the endpoints of the edge, but also their
immediate neighborhoods (circles of friends). However, these few edges lead
to a very small change in the clustering coefficient. Thus, we get a broad range
of p for which the small-world phenomenon coexists with a high clustering
coefficient.
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Figure 3.14. The Waxman model New nodes prefer to connect to existing nodes which are closer
in distance.

Degree distribution All nodes start off with degree k, and the only changes to
their degrees are due to rewiring. The shape of the degree distribution is similar
to that of a random graph, with a strong peak at k, and it decays exponentially
for large k.

Open questions and discussion. The small-world model is very successful
in combining two important graph patterns: small diameters and high cluster-
ing coefficients. However, the degree distribution decays exponentially, and
does not match the power-law distributions of many real-world graphs. Ex-
tension of the basic model to power law distributions is a promising research
direction.

Other geographical models.

The Waxman Model. While the Small World model begins by constrain-
ing nodes to a local neighborhood, the Waxman model [84] explicitly builds
the graph based on optimizing geographical constraints, to model the Internet
graph.

The model is illustrated in Figure 3.14. Nodes (representing routers) are
placed randomly in Cartesian 2-D space. An edge (u, v) is placed between
two points u and v with probability

P (u, v) = � exp
−d(u, v)
L�

(3.19)

Here, � and � are parameters in the range (0, 1), d(u, v) is the Euclidean dis-
tance between points u and v, and L is the maximum Euclidean distance be-
tween points. The parameters � and � control the geographical constraints.
The value of � affects the edge density: larger values of � result in graphs with
higher edge densities. The value of � relates the short edges to longer ones: a
small value of � increases the density of short edges relative to longer edges.
While it does not yield a power-law degree distribution, it has been popular in
the networking community.
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The BRITE generator. Medina et al. [60] try to combine the geographical
properties of the Waxman generator with the incremental growth and prefer-
ential attachment techniques of the BA model. Their graph generator, called
BRITE, has been extensively used in the networking community for simulating
the structure of the Internet.

Nodes are placed on a square grid, with some m links per node. Growth
occurs either all at once (as in Waxman) or incrementally (as in BA). Edges
are wired randomly, preferentially, or combined preferential and geographical
constraints as follows: Suppose that we want to add an edge to node u. The
probability of the other endpoint of the edge being node v is a weighted pref-
erential attachment equation, with the weights being the the probability of that
edge existing in the pure Waxman model (Equation 3.19)

P (u, v) =
w(u, v)k(v)∑
iw(u, i)k(i)

(3.20)

where w(u, v) = � exp
−d(u, v)
L�

as in Eq. 3.19

The emphasis of BRITE is on creating a system that can be used to generate
different kinds of topologies. This allows the user a lot of flexibility, and is one
reason behind the widespread use of BRITE in the networking community.
However, one limitation is that there has been little discussion of parameter
fitting, an area for future research.

Yook et al. Model. Yook et al. [87] find two interesting linkages between
geography and networks (specifically the Internet): First, the geographical dis-
tribution of Internet routers and Autonomous Systems (AS) is a fractal, and
is strongly correlated with population density. Second, the probability of an
edge occurring is inversely proportional to the Euclidean distance between the
endpoints of the edge, likely due to cost of physical wire (which dominates
over administrative cost for long links). However, in the Waxman and BRITE
models, this probability decays exponentially with length (Equation 3.19).

To remedy the first problem, they suggest using a self-similar geographical
distribution of nodes. For the second problem, they propose a modified version
of the BA model. Each new node u is placed on the map using the self-similar
distribution, and adds edges to m existing nodes. For each of these edges, the
probability of choosing node v as the endpoint is given by a modified prefer-
ential attachment equation:

P (node u links to existing node v) ∝ k(v)�

d(u, v)�
(3.21)

where k(v) is the current degree of node v and d(u, v) is the Euclidean distance
between the two nodes. The values � and � are parameters, with � = � = 1
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giving the best fits to the Internet. They show that varying the values of � and
� can lead to significant differences in the topology of the generated graph.

Similar geographical constraints may hold for social networks as well: in-
dividuals are more likely to have friends in the same city as compared to other
cities, in the same state as compared to other states, and so on recursively.
Watts et al. [82] and (independently) Kleinberg [50] propose a hierarchical
model to explain this phenomenon.

PaC - utility based. Du et al. proposed an agent-based model “Pay and
Call” or PaC, where agents make decisions about forming edges based on a
perceived “profit” of an interaction. Each agent has a “friendliness” parameter.
Calls are made with some “emotional dollars” cost, and agents may derive
some benefit from each call. If two “friendly” agents interact, there is a higher
benefit than if one or both agents are “unfriendly”. The specific procedures
are detailed in [39]. PaC generates degree, weight, and clique distributions as
found in most real graphs.

3.4 Tensor-based

The R-MAT (Recursive MATrix) graph generator. We have seen that
most of the current graph generators focus on only one graph pattern – typically
the degree distribution – and give low importance to all the others. There is also
the question of how to fit model parameters to match a given graph. What we
would like is a tradeoff between parsimony (few model parameters), realism
(matching most graph patterns, if not all), and efficiency (in parameter fitting
and graph generation speed). In this section, we present the R-MAT generator,
which attempts to address all of these concerns.

Problem being solved. The R-MAT [28] generator tries to meet several
desiderata:

The generated graph should match several graph patterns, including but
not limited to power-law degree distributions (such as hop-plots and
eigenvalue plots).

It should be able to generate graphs exhibiting deviations from power-
laws, as observed in some real-world graphs [75].

It should exhibit a strong “community” effect.

It should be able to generate directed, undirected, bipartite or weighted
graphs with the same methodology.

It should use as few parameters as possible.

There should be a fast parameter-fitting algorithm.
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Figure 3.15. The R-MAT model The adjacency matrix is broken into four equal-sized partitions,
and one of those four is chosen according to a (possibly non-uniform) probability distribution. This
partition is then split recursively till we reach a single cell, where an edge is placed. Multiple such
edge placements are used to generate the full synthetic graph.

The generation algorithm should be efficient and scalable.

Description and properties. The R-MAT generator creates directed
graphs with 2n nodes and E edges, where both values are provided by the
user. We start with an empty adjacency matrix, and divide it into four equal-
sized partitions. One of the four partitions is chosen with probabilities a, b, c, d
respectively (a + b + c + d = 1), as in Figure 3.15. The chosen partition
is again subdivided into four smaller partitions, and the procedure is repeated
until we reach a simple cell (=1 × 1 partition). The nodes (that is, row and
column) corresponding to this cell are linked by an edge in the graph. This
process is repeated E times to generate the full graph. There is a subtle point
here: we may have duplicate edges (i.e., edges which fall into the same cell in
the adjacency matrix), but we only keep one of them when generating an un-
weighted graph. To smooth out fluctuations in the degree distributions, some
noise is added to the (a, b, c, d) values at each stage of the recursion, followed
by renormalization (so that a+ b+ c+ d = 1). Typically, a ≥ b, a ≥ c, a ≥ d.

Degree distribution There are only 3 parameters (the partition probabilities a,
b, and c; d = 1 − a − b − c). The skew in these parameters (a ≥ d) leads
to lognormals and the DGX [17] distribution, which can successfully model
both power-law and “unimodal” distributions [75] under different parameter
settings.

Communities Intuitively, this technique is generating “communities” in the
graph:

The partitions a and d represent separate groups of nodes which corre-
spond to communities (say, “Linux” and “Windows” users).

The partitions b and c are the cross-links between these two groups;
edges there would denote friends with separate preferences.
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The recursive nature of the partitions means that we automatically
get sub-communities within existing communities (say, “RedHat” and
“Mandrake” enthusiasts within the “Linux” group).

Diameter, singular values and other properties We show experimentally that
graphs generated by R-MAT have small diameter and match several other cri-
teria as well.

Extensions to undirected, bipartite and weighted graphs The basic model
generates directed graphs; all the other types of graphs can be easily gener-
ated by minor modifications of the model. For undirected graphs, a directed
graph is generated and then made symmetric. For bipartite graphs, the same
approach is used; the only difference is that the adjacency matrix is now rect-
angular instead of square. For weighted graphs, the number of duplicate edges
in each cell of the adjacency matrix is taken to be the weight of that edge. More
details may be found in [28].

Parameter fitting algorithm Given some input graph, it is necessary to fit the
R-MAT model parameters so that the generated graph matches the input graph
in terms of graph patterns.

We can calculate the expected degree distribution: the probability pk of a
node having outdegree k is given by

pk =
1

2n

(
E

k

) n∑

i=0

(
n

i

)[
�n−i(1− �)i

]k [
1− �n−i(1− �)i

]E−k

where 2n is the number of nodes in the R-MAT graph, E is the number of
edges, and � = a + b. Fitting this to the outdegree distribution of the input
graph provides an estimate for � = a+ b. Similarly, the indegree distribution
of the input graph gives us the value of b + c. Conjecturing that the a : b and
a : c ratios are approximately 75 : 25 (as seen in many real world scenarios),
we can calculate the parameters (a, b, c, d).

Chakrabarti et al. showed experimentally that R-MAT can match both
power-law distributions as well as deviations from power-laws [28], using
a number of real graphs. The patterns matched by R-MAT include both in- and
out-degree distributions, “hop-plot” and “effective diameter”, singular value
vs. rank plots, “Network value” vs. rank plots, and “stress” distribution. Au-
thors also compared R-MAT fits to those achieved by AB, GLP, and PG mod-
els.

Open questions and discussion. While the R-MAT model shows promise,
there has not been any thorough analytical study of this model. Also, it seems
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that only 3 parameters might not provide enough “degrees of freedom” to
match all varieties of graphs; extensions of this model should be investigated.
A step in this direction is the Kronecker graph generator [57], which general-
izes the R-MAT model and can match several interesting patterns such as the
Densification Power Law and the shrinking diameters effect in addition to all
the patterns that R-MAT matches.

Graph Generation by Kronecker Multiplication. The R-MAT genera-
tor described in the previous paragraphs achieves its power mainly via a form
of recursion: the adjacency matrix is recursively split into equal-sized quad-
rants over which edges are distributed unequally. One way to generalize this
idea is via Kronecker matrix multiplication, wherein one small initial matrix is
recursively “multiplied” with itself to yield large graph topologies. Unlike R-
MAT, this generator has simple closed-form expressions for several measures
of interest, such as degree distributions and diameters, thus enabling ease of
analysis and parameter-fitting.

Description and properties. We first recall the definition of the Kronecker
product.

Definition 3.5 (Kronecker product of matrices). Given two matrices
A = [ai,j] and ℬ of sizes n × m and n′ × m′ respectively, the Kronecker
product matrix C of dimensions (n ∗ n′)× (m ∗m′) is given by

C = A⊗ ℬ .
=

⎛
⎜⎜⎜⎝

a1,1ℬ a1,2ℬ . . . a1,mℬ
a2,1ℬ a2,2ℬ . . . a2,mℬ

...
...

. . .
...

an,1ℬ an,2ℬ . . . an,mℬ

⎞
⎟⎟⎟⎠ (3.22)

In other words, for any nodes Xi and Xj in A and Xk and Xℓ in ℬ, we have
nodes Xi,k and Xj,ℓ in the Kronecker product C, and an edge connects them iff
the edges (Xi,Xj) and (Xk,Xℓ) exist in A and ℬ. The Kronecker product of
two graphs is the Kronecker product of their adjacency matrices.

Let us consider an example. Figure 3.16(a–c) shows the recursive con-
struction of G ⊗ H , when G = H is a 3-node path. Consider node X1,2

in Figure 3.16(c): It belongs to the H graph that replaced node X1 (see Fig-
ure 3.16(b)), and in fact is the X2 node (i.e., the center) within this small H-
graph. Thus, the graph H is recursively embedded “inside” graph G.

The Kronecker graph generator simply applies the Kronecker product mul-
tiple times over. Starting with a binary initiator graph, successively larger
graphs are produced by repeated Kronecker multiplication. The properties of
the generated graph thereby depend on those of the initiator graph.

There are several interesting properties of the Kronecker generator which
are discussed in detail in [55]. Kronecker graphs have multinomial degree dis-
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(a) Graph G1 (b) Intermediate stage (c) Graph G2 = G1 ⊗G1
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of G1 of G2 = G1 ⊗G1

Figure 3.16. Example of Kronecker multiplication Top: a “3-chain” and its Kronecker product with
itself; each of the Xi nodes gets expanded into 3 nodes, which are then linked together. Bottom
row: the corresponding adjacency matrices, along with matrix for the fourth Kronecker power G4.

tributions, static diameter/effective diameter (if nodes have self-loops), multi-
nomial distributions of eigenvalues, and community structure. Additionally, it
provably follows the Densification Power Law.

Thanks to its simple mathematical structure, Kronecker graph generation al-
lows the derivation of closed-form formulas for several important patterns. Of
particular importance are the “temporal” patterns regarding changes in proper-
ties as the graph grows over time: both the constant diameter and the densifica-
tion power law patterns are similar to those observed in real-world graphs [58],
and are not matched by most graph generators.

While Kronecker multiplication allows several patterns to be computed an-
alytically, its discrete nature leads to “staircase effects” in the degree and spec-
tral distributions. A modification of the aforementioned generator avoids these
effects: instead of a 0/1 matrix, the initiator graph adjacency matrix is chosen
to have probabilities associated with edges. The edges are then chosen based
on these probabilities.

RTM: Recursive generator for weighted, evolving graphs. Akoglu et al.
[5] extend the Kronecker model to allow for multi-edges, or weighted edges.
To the initial adjacency matrix, another dimension, or mode, is added to repre-
sent time. Then, in each iteration the Kronecker tensor product of the graph is
taken. This will produce a growing graph that is self-similar in structure.

Since it shares many properties of the Kronecker generator, all static prop-
erties as well as densification are followed. Additionally, the weight additions
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over time will also be self-similar, as shown in real graphs in [59]. It was also
shown to mimic other patterns for weighted graphs, such as the Weight Power
Law and Snapshot Power Laws, as discussed in the previous section.

3.5 Generators for specific graphs

Generators for the Internet Topology. While the generators described
above are applicable to any graphs, some special-purpose generators have been
proposed to specifically model the Internet topology. Structural generators ex-
ploit the hierarchical structure of the Internet, while the Inet generator modifies
the basic preferential attachment model to better fit the Internet topology. We
look at both of these below.

Structural Generators.

Problem being solved. Work done in the networking community on the
structure of the Internet has led to the discovery of hierarchies in the topology.
At the lowest level are the Local Area Networks (LANs); a group of LANs
are connected by stub domains, and a set of transit domains connect the stubs
and allow the flow of traffic between nodes from different stubs. However, the
previous models do not explicitly enforce such hierarchies on the generated
graphs.

Description and properties. Calvert et al. [26] propose a graph gen-
eration algorithm which specifically models this hierarchical structure. The
general topology of a graph is specified by six parameters, which are the num-
bers of transit domains, stub domains and LANs, and the number of nodes
in each. More parameters are needed to model the connectivities within and
across these hierarchies. To generate a graph, points in a plane are used to rep-
resent the locations of the centers of the transit domains. The nodes for each
of these domains are spread out around these centers, and are connected by
edges. Now, the stub domains are placed on the plane and are connected to the
corresponding transit node. The process is repeated with nodes representing
LANs.

The authors provide two implementations of this idea. The first, called
Transit-Stub, does not model LANs. Also, the method of generating connected
subgraphs is to keep generating graphs till we get one that is connected. The
second, called Tiers, allows multiple stubs and LANs, but allows only one
transit domain. The graph is made connected by connecting nodes using a
minimum spanning tree algorithm.

Open questions and discussion. These models can specifically match
the hierarchical nature of the Internet, but they make no attempt to match any
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other graph pattern. For example, the degree distributions of the generated
graphs need not be power laws. Also, the models use many parameters but
provide only limited flexibility: what if we want a hierarchy with more than 3
levels? Hence, while these models have been widely used in the networking
community, the need modifications to be as useful in other settings.

Tangmunarunkit et al. [78] compare such structural generators against gen-
erators which focus only on power-law distributions. They find that even
though power-law generators do not explicitly model hierarchies, the graphs
generated by them have a substantial level of hierarchy, though not as strict
as with the generators described above. Thus, the hierarchical nature of the
structural generators can also be mimicked by other generators.

The Inet topology generator.

Problem being solved. Winick and Jamin [86] developed the Inet gen-
erator to model only the Internet Autonomous System (AS) topology, and to
match features specific to it.

Description and properties. Inet-2.2 generates the graph by the following
steps:

Each node is assigned a degree from a power-law distribution with an
exponential cutoff (as in Equation 3.13).

A spanning tree is formed from all nodes with degree greater than 1.

All nodes with degree one are attached to his spanning tree using linear
preferential attachment.

All nodes in the spanning tree get extra edges using linear preferential
attachment till they reach their assigned degree.

The main advantage of this technique is in ensuring that the final graph remains
connected.

However, they find that under this scheme, too many of the low degree nodes
get attached to other low-degree nodes. For example, in the Inet-2.2 topology,
35% of degree 2 nodes have adjacent nodes with degree 3 or less; for the
Internet, this happens only for 5% of the degree-2 nodes. Also, the highest
degree nodes in Inet-2.2 do not connect to as many low-degree nodes as the
Internet. To correct this, Winick and Jamin come up with the Inet-3 generator,
with a modified preferential attachment system.

The preferential attachment equation now has a weighting factor which uses
the degrees of the nodes on both ends of some edge. The probability of a degree
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i node connecting to a degree j node is

P (degree i node connects to degree j node) ∝ wj
i .j (3.23)

where wj
i =MAX

⎛
⎝1,

√(
log

i

j

)2

+

(
log

f(i)

f(j)

)2
⎞
⎠ (3.24)

Here, f(i) and f(j) are the number of nodes with degrees i and j respectively,
and can be easily obtained from the degree distribution equation. Intuitively,
what this weighting scheme is doing is the following: when the degrees i and j
are close, the preferential attachment equation remains linear. However, when
there is a large difference in degrees, the weight is the Euclidean distance be-
tween the points on the log-log plot of the degree distribution corresponding
to degrees i and j, and this distance increases with increasing difference in
degrees. Thus, edges connecting nodes with a big difference in degrees are
preferred.

Open questions and discussion. Inet has been extensively used in the
networking literature. However, the fact that it is so specific to the Internet AS
topology makes it somewhat unsuitable for any other topologies.

3.6 Graph Generators: A summary

We have seen many graph generators in the preceding pages. Is any gener-
ator the “best?” Which one should we use? The answer seems to depend on
the application area: the Inet generator is specific to the Internet and can match
its properties very well, the BRITE generator allows geographical considera-
tions to be taken into account, “edge copying” models provide a good intuitive
mechanism for modeling the growth of the Web along with matching degree
distributions and community effects, and so on. However, the final word has
not yet been spoken on this topic. Almost all graph generators focus on only
one or two patterns, typically the degree distribution; there is a need for gen-
erators which can combine many of the ideas presented in this subsection, so
that they can match most, if not all, of the graph patterns. R-MAT is a step in
this direction.

4. Conclusions

Naturally occurring graphs, perhaps collected from a variety of different
sources, still tend to possess several common patterns. The most common of
these are:

Power laws, in degree distributions, in PageRank distributions, in
eigenvalue-versus-rank plots and many others,
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Small diameters, such as the “six degrees of separation” for the US social
network, 4 for the Internet AS level graph, and 12 for the Router level
graph, and

“Community” structure, as shown by high clustering coefficients, large
numbers of bipartite cores, etc.

Graph generators attempt to create synthetic but “realistic” graphs, which
can mimic these patterns found in real-world graphs. Recent research has
shown that generators based on some very simple ideas can match some of
the patterns:

Preferential attachment Existing nodes with high degree tend to attract
more edges to themselves. This basic idea can lead to power-law degree
distributions and small diameter.

“Copying” models Popular nodes get “copied” by new nodes, and this
leads to power law degree distributions as well as a community structure.

Constrained optimization Power laws can also result from optimizations
of resource allocation under constraints.

Small-world models Each node connects to all of its “close” neighbors
and a few “far-off” acquaintances. This can yield low diameters and
high clustering coefficients.

These are only some of the models; there are many other models which add
new ideas, or combine existing models in novel ways. We have looked at
many of these, and discussed their strengths and weaknesses. In addition, we
discussed the recently proposed R-MAT model, which can match most of the
graph patterns for several real-world graphs.

While a lot of progress has been made on answering these questions, a lot
still needs to be done. More patterns need to be found; though there is prob-
ably a point of “diminishing returns” where extra patterns do not add much
information, we do not think that point has yet been reached. Also, typical
generators try to match only one or two patterns; more emphasis needs to be
placed on matching the entire gamut of patterns. This cycle between finding
more patterns and better generators which match these new patterns should
eventually help us gain a deep insight into the formation and properties of real-
world graphs.

Notes
1. Autonomous System, typically consisting of many routers administered by the same entity.

2. Tangmunarunkit et al. [78] use it only to differentiate between exponential and sub-exponential
growth
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