
Chapter 2

GRAPH DATA MANAGEMENT AND MINING: A
SURVEY OF ALGORITHMS AND APPLICATIONS

Charu C. Aggarwal
IBM T. J. Watson Research Center
Hawthorne, NY 10532, USA

charu@us.ibm.com

Haixun Wang
Microsoft Research Asia
Beijing, China 100190

haixunw@microsoft.com

Abstract Graph mining and management has become a popular area of research in re-
cent years because of its numerous applications in a wide variety of practical
fields, including computational biology, software bug localization and computer
networking. Different applications result in graphs of different sizes and com-
plexities. Correspondingly, the applications have different requirements for the
underlying mining algorithms. In this chapter, we will provide a survey of dif-
ferent kinds of graph mining and management algorithms. We will also discuss
a number of applications, which are dependent upon graph representations. We
will discuss how the different graph mining algorithms can be adapted for differ-
ent applications. Finally, we will discuss important avenues of future research
in the area.

Keywords: Graph Mining, Graph Management

1. Introduction

Graph mining has been a popular area of research in recent years because
of numerous applications in computational biology, software bug localization
and computer networking. In addition, many new kinds of data such as semi-

© Springer Science+Business Media, LLC 2010

C.C. Aggarwal and H. Wang (eds.), Managing and Mining Graph Data, 13
Advances in Database Systems 40, DOI 10.1007/978-1-4419-6045-0_2,

14 MANAGING AND MINING GRAPH DATA

structured data and XML [8] can typically be represented as graphs. A detailed
discussion of various kinds of graph mining algorithms may be found in [58].

In the graph domain, the requirement of different applications is not very
uniform. Thus, graph mining algorithms which work well in one domain may
not work well in another. For example, let us consider the following domains
of data:

Chemical Data: Chemical data is often represented as graphs in which
the nodes correspond to atoms, and the links correspond to bonds be-
tween the atoms. In some cases, substructures of the data may also
be used as individual nodes. In this case, the individual graphs are
quite small, though there are significant repetitions among the differ-
ent nodes. This leads to isomorphism challenges in applications such as
graph matching. The isomorphism challenge is that the nodes in a given
pair of graphs may match in a variety of ways. The number of possible
matches may be exponential in terms of the number of the nodes. In
general, the problem of isomorphism is an issue in many applications
such as frequent pattern mining, graph matching, and classification.

Biological Data: Biological data is modeled in a similar way as chemi-
cal data. However, the individual graphs are typically much larger. Fur-
thermore, the nodes are typically carefully designed portions of the bio-
logical models. A typical example of a node in a DNA application could
be an amino-acid. A single biological network could easily contain thou-
sands of nodes. The sizes of the overall database are also large enough
for the underlying graphs to be disk-resident. The disk-resident nature
of the data set often leads to unique issues which are not encountered
in other scenarios. For example, the access order of the edges in the
graph becomes much more critical in this case. Any algorithm which is
designed to access the edges in random order will not work very effec-
tively in this case.

Computer Networked and Web Data: In the case of computer net-
works and the web, the number of nodes in the underlying graph may be
massive. Since the number of nodes is massive, this can lead to a very
large number of distinct edges. This is also referred to as the massive
domain issue in networked data. In such cases, the number of distinct
edges may be so large, that they may be hard to hold in the available stor-
age space. Thus, techniques need to be designed to summarize and work
with condensed representations of the graph data sets. In some of these
applications, the edges in the underlying graph may arrive in the form of
a data stream. In such cases, a second challenge arises from the fact that
it may not be possible to store the incoming edges for future analysis.
Therefore, the summarization techniques are especially essential for this

Graph Data Management and Mining: A Survey of Algorithms and Applications 15

case. The stream summaries may be leveraged for future processing of
the underlying graphs.

XML data: XML data is a natural form of graph data which is fairly
general. We note that mining and management algorithms for XML
data are also quite useful for graphs, since XML data can be viewed as
labeled graphs. In addition, the attribute-value combinations associated
with the nodes makes the problem much more challenging. However,
the research in the field of XML data has often been quite independent
of the research in the graph mining field. Therefore, we will make an
attempt in this chapter to discuss the XML mining algorithms along with
the graph mining and management algorithms. It is hoped that this will
provide a more integrated view of the field.

It is clear that the design of a particular mining algorithm depends upon the ap-
plication domain at hand. For example, a disk-resident data set requires careful
algorithmic design in which the edges in the graph are not accessed randomly.
Similarly, massive-domain networks require careful summarization of the un-
derlying graphs in order to facilitate processing. On the other hand, a chemical
molecule which contains a lot of repetitions of node-labels poses unique chal-
lenges to a variety of applications in the form of graph isomorphism.

In this chapter, we will discuss different kinds of graph management and
mining applications, along with the corresponding applications. We note that
the boundary between graph mining and management algorithms is often not
very clear, since many kinds of algorithms can often be classified as both. The
topics in this chapter can primarily be divided into three categories. These
categories discuss the following:

Graph Management Algorithms: This refers to the algorithms for
managing and indexing large volumes of the graph data. We will present
algorithms for indexing of graphs, as well as processing of graph queries.
We will study other kinds of queries such as reachability queries as well.
We will study algorithms for matching graphs and their applications.

Graph Mining Algorithms: This refers to algorithms used to extract
patterns, trends, classes, and clusters from graphs. In some cases, the
algorithms may need to be applied to large collections of graphs on the
disk. We will discuss methods for clustering, classification, and frequent
pattern mining. We will also provide a detailed discussion of these algo-
rithms in the literature.

Applications of Graph Data Management and Mining: We will study
various application domains in which graph data management and min-
ing algorithms are required. This includes web data, social and computer
networking, biological and chemical data, and software bug localization.

16 MANAGING AND MINING GRAPH DATA

This chapter is organized as follows. In the next section, we will discuss a
variety of graph data management algorithms. In section 3, we will discuss
algorithms for mining graph data. A variety of application domains in which
these algorithms are used is discussed in section 4. Section 5 discusses the
conclusions and summary. Future research directions are discussed in the same
section.

2. Graph Data Management Algorithms

Data management of graphs has turned out to be much more challenging
than that for multi-dimensional data. The structural representation of graphs
has greater expressive power, but it comes at a cost. This cost is in terms of
the complexity of data representation, access, and processing, because inter-
mediate operations such as similarity computations, averaging, and distance
computations cannot be naturally defined for structural data in as intuitive a
way as is the case for multidimensional data. Furthermore, traditional rela-
tional databases can be efficiently accessed with the use of block read-writes;
this is not as natural for structural data in which the edges may be accessed in
arbitrary order. However, recent advances have been able to alleviate some of
these concerns at least partially. In this section, we will provide a review of
many of the recent graph management algorithms and applications.

2.1 Indexing and Query Processing Techniques

Existing database models and query languages, including the relational model
and SQL, lack native support for advanced data structures such as trees and
graphs. Recently, due to the wide adoption of XML as the de facto data ex-
change format, a number of new data models and query languages for tree-like
structures have been proposed. More recently, a new wave of applications
across various domains including web, ontology management, bioinformatics,
etc., call for new data models, languages and systems for graph structured data.

Generally speaking, the task can be simple put as the following: For a query
pattern (a tree or a graph), find graphs or trees in the database that contain or are
similar to the query pattern. To accomplish this task elegantly and efficiently,
we need to address several important issues: i) how to model the data and the
query; ii) how to store the data; and iii) how to index the data for efficient query
processing.

Query Processing of Tree Structured Data. Much research has been
done on XML query processing. On a high level, there are two approaches
for modeling XML data. One approach is to leverage the existing relational
model after mapping tree structured data into relational schema [169]. The
other approach is to build a native XML database from scratch [106]. For

Graph Data Management and Mining: A Survey of Algorithms and Applications 17

instance, some works starts with creating a tree algebra and calculus for XML
data [107]. The proposed tree algebra extends the relational algebra by defining
new operators, such as node deletion and insertion, for tree structured data.

SQL is the standard access method for relational data. Much efforts have
been made to design SQL’s counterpart for tree structured data. The criteria
are, first expressive power, which allows users the flexibility to express queries
over tree structured data, and second declarativeness, which allows the system
to optimize query processing. The wide adoption of XML has spurred stan-
dards body groups to expand the SQL specification to include XML processing
functions. XQuery [26] extends XPath [52] by using a FLWOR1 structure to ex-
press a query. The FLWOR structure is similar to SQL’s SELECT-FROM-WHERE
structure, with additional support for iteration and intermediary variable bind-
ing. With path expressions and the FLWOR construct, XQuery brings SQL-like
query power to tree structured data, and has been recommended by the World
Wide Web Consortium (W3C) as the query language for XML documents.

For XML data, the core of query processing lies in efficient tree pattern
matching. Many XML indexing techniques have been proposed [85, 141, 132,
59, 51, 115] to support this operation. DataGuide [85], for example, pro-
vides a concise summary of the path structure in a tree-structured database.
T-index [141], on the other hand, indexes a specific set of path expressions.
Index Fabric [59] is conceptually similar to DataGuide in that it keeps all la-
bel paths starting from the root element. Index Fabric encodes each label path
to each XML element with a data value as a string and inserts the encoded
label path and data value into an index for strings such as the Patricia tree.
APEX [51] uses data mining algorithms to find paths that appear frequently in
query workload. While most techniques focused on simple path expressions,
the F+B Index [115] emphasizes on branching path expressions (twigs). Nev-
ertheless, since a tree query is decomposed into node, path, or twig queries,
joining intermediary results together has become a time consuming operation.
Sequence-based XML indexing [185, 159, 186] makes tree patterns a first
class citizen in XML query processing. It converts XML documents as well as
queries to sequences and performs tree query processing by (non-contiguous)
subsequence matching.

Query Processing of Graph Structured Data. One of the common char-
acteristics of a wide range of nascent applications including social networking,
ontology management, biological network/pathways, etc., is that the data they
are concerned with is all graph structured. As the data increases in size and
complexity, it becomes important that it is managed by a database system.

There are several approaches to managing graphs in a database. One pos-
sibility is to extend a commercial RDBMS engine to support graph structured
data. Another possibility is to use general purpose relational tables to store

18 MANAGING AND MINING GRAPH DATA

graphs. When these approaches fail to deliver needed performance, recent re-
search has also embraced the challenges of designing a special purpose graph
database. Oracle is currently the only commercial DBMS that provides internal
support for graph data. Its new 10g database includes the Oracle Spatial net-
work data model [3], which enables users to model and manipulate graph data.
The network model contains logical information such as connectivity among
nodes and links, directions of links, costs of nodes and links, etc. The logical
model is mainly realized by two tables: a node table and a link table, which
store the connectivity information of a graph. Still, many are concerned that the
relational model is fundamentally inadequate for supporting graph structured
data, for even the most basic operations, such as graph traversal, are costly to
implement on relational DBMSs, especially when the graphs are large. Recent
interest in Semantic Web has spurred increased attention to the Resource De-
scription Framework (RDF) [139]. A triplestore is a special purpose database
for the storage and retrieval of RDF data. Unlike a relational database, a triple-
store is optimized for the storage and retrieval of a large number of short state-
ments in the form of subject-predicate-object, which are called triples. Much
work has been done to support efficient data access on the triplestore [14, 15,
19, 33, 91, 152, 182, 195, 38, 92, 194, 193]. Recently, the semantic web com-
munity has announced the billion triple challenge [4], which further highlights
the need and urgency to support inferencing over massive RDF data.

A number of graph query languages have been proposed since early 1990s.
For example, GraphLog [56], which has its roots in Datalog, performs infer-
encing on rules (possibly with negation) about graph paths represented by reg-
ular expressions. GOOD [89], which has its roots in object-oriented databases,
defines a transformation language that contains five basic operations on graphs.
GraphDB [88], another object-oriented data model and query language for
graphs, performs queries in four steps, each carrying out operations on sub-
graphs specified by regular expressions. Unlike previous graph query lan-
guages that operate on nodes, edges, or paths, GraphQL [97] operates directly
on graphs. In other words, graphs are used as the operand and return type of all
operations. GraphQL extends the relational algebraic operators, including se-
lection, Cartesian product, and set operations, to graph structures. For instance,
the selection operator is generalized to graph pattern matching. GraphQL is re-
lationally complete and the nonrecursive version of GraphQL is equivalent to
the relational algebra. A detailed description of GraphQL and a comparison of
GraphQL with other graph query languages can be found in [96].

With the rise of Semantic Web applications, the need to efficiently query
RDF data has been propelled into the spotlight. The SPARQL query lan-
guage [154] is designed for this purpose. As we mentioned before, a graph
in the RDF format is described by a set of triples, each corresponding to an
edge between two nodes. A SPARQL query, which is also SQL-like, may con-

Graph Data Management and Mining: A Survey of Algorithms and Applications 19

sist of triple patterns, conjunctions, disjunctions, and optional patterns. A triple
pattern is syntactically close to an RDF triple except that each of the subject,
predicate and object may be a variable. The SPARQL query processor will
search for sets of triples that match the triple patterns, binding the variables in
the query to the corresponding parts of each triple [154].

Another line of work in graph indexing uses important structural charac-
teristics of the underlying graph in order to facilitate indexing and query pro-
cessing. Such structural characteristics can be in the form of paths or frequent
patterns in the underlying graphs. These can be used as pre-processing filters,
which remove irrelevant graphs from the underlying data at an early stage. For
example, the GraphGrep technique [83] uses the enumerated paths as index
features which can be used in order to filter unmatched graphs. Similarly, the
GIndex technique [201] uses discriminative frequent fragments as index fea-
tures. A closely related technique [202] leverages on the substructures in the
underlying graphs in order to facilitate indexing. Another way of indexing
graphs is to use the tree structures [208] in the underlying graph in order to
facilitate search and indexing.

The topic of query processing on graph data has been studied for many
years, still, many challenges remain. On the one hand, data is becoming in-
creasingly large. One possibility of handling such large data is through paral-
lel processing, by using for example, the Map/Reduce framework. However,
it is well known that many graph algorithms are very difficult to be paral-
lelized. On the other hand, graph queries are becoming increasingly compli-
cated. For example, queries against a complex ontology are often lengthy,
no matter what graph query language is used to express the queries. Further-
more, when querying a complex graph (such as a complex ontology), users
often have only a vague notion, rather than a clear understanding and defini-
tion, of what they query for. These call for alternative methods of expressing
and processing graph queries. In other words, instead of explicitly express-
ing a query in the most exact terms, we might want to use keyword search to
simplify queries [183], or using data mining methods to semi-automate query
formation [134].

2.2 Reachability Queries

Graph reachability queries test whether there is a path from a node v to
another node u in a large directed graph. Querying for reachability is a very
basic operation that is important to many applications, including applications
in semantic web, biology networks, XML query processing, etc.

Reachability queries can be answered by two obvious methods. In the first
method, we traverse the graph starting from node v using breath- or depth-first
search to see whether we can ever reach node u. The query time is O(n+m),

20 MANAGING AND MINING GRAPH DATA

where n is the number of nodes and m is the number of edges in the graph.
At the other extreme, we compute and store the edge transitive closure of the
graph. With the transitive closure, which requires O(n2) storage, a reachability
query can be answered in O(1) time by simply checking whether (u, v) is in
the transitive closure. However, for large graphs, neither of the two methods is
feasible: the first method is too expensive at query time, and the second takes
too much space.

Research in this area focuses on finding the best compromise between the
O(n +m) query time and the O(n2) storage cost. Intuitively, it tries to com-
press the reachability information in the transitive closure and answer queries
using the compressed data.

Spanning tree based approaches. Many approaches, for example [47,
176, 184], decompose a graph into two parts: i) a spanning tree, and ii) edges
not on the spanning tree (non-tree edges). If there is a path on the spanning
tree between u and v, reachability between u and v can be decidedly easily.
This is done by assigning each node u an interval code (ustart, uend), such that
v is reachable from u if and only if ustart ≤ vstart ≤ uend. The entire tree can
be encoded by performing a simple depth-first traversal of the tree. With the
encoding, reachability check can be done in O(1) time.

If the two nodes are not connected by any path on the spanning tree, we
need to check if there is a path that involves non-tree edges connecting the
two nodes. In order to do this, we need to build index structures in addition
to the interval code to speed up the reachability check. Chen et al. [47] and
Trißl et al. [176] proposed index structures for this purpose, and both of their
approaches achieve O(m − n) query time. For instance, Chen et al.’s SSPI
(Surrogate & Surplus Predecessor Index) maintains a predecessor list PL(u)
for each node u, which, together with the interval code, enables efficient reach-
ability check. Wang et al. [184] made an observation that many large graphs
in real applications are sparse, which means the number of non-tree edges is
small. The algorithm proposed based on this assumption answers reachability
queries in O(1) time using a O(n + t2) size index structure, where t is the
number of non-tree edges, and t≪ n.

Set covering based approaches. Some approaches propose to use simpler
data structures (e.g., trees, paths, etc) to “cover” the reachability information
embodied by a graph structure. For example, if v can reach u, then v can
reach any node in a tree rooted at u. Thus, if we include the tree in the index,
we cover a large set of reachability in the graph. We then use multiple trees
to cover an entire graph. Agrawal et al. [10]’s optimal tree cover achieves
O(log n) query time, where n is the number of nodes in the graph. Instead of
using trees, Jagadish et al. [105] proposes to decompose a graph into pairwise

Graph Data Management and Mining: A Survey of Algorithms and Applications 21

disjoint chains, and then use chains to cover the graph. The intuition of using
a chain is similar to using a tree: if v can reach u on a chain, then v can reach
any node that comes after u on that chain. The chain-cover approach achieves
O(nk) query time, where k is the number of chains in the graph. Cohen et al.
[54] proposed a 2-hop cover for reachability queries. A node u is labeled by
two sets of nodes, called Lin(u) and Lout(u), where Lin(u) are the nodes that
can reach u and Lout(u) are the ones that u can reach. The 2-hop approach
assigns the Lin and Lout labels to each node such that u can reach v if and
only if Lout(u)∩Lin(v) ∕= ∅. The optimal 2-hop cover problem of finding the
minimum size 2-hop cover is NP-hard. A greedy algorithm finds a 2-hop cover
iteratively. In each iteration, it picks the node w that maximizes the value of
S(Aw,w,Dw)∩TC′

∣Aw∣+∣Dw∣ , where S(Aw, w,Dw) ∩ TC ′ represents the new (uncovered)

reachability that a 2-hop cluster centered at w can cover, and ∣Aw∣ + ∣Dw∣ is
the cost (size) of the 2-hop cluster centered at w. Several algorithms have been
proposed to compute high quality 2-hop covers [54, 168, 49, 48] in a more
efficient manner. Many extensions to existing set covering based approaches
have been proposed. For example, Jin et al. [112] introduces a 3-hop cover
approach that combines the chain cover and the 2-hop cover.

Extensions to the reachability problem. Reachability queries are one
of the most basic building blocks for many advanced graph operations, and
some are directly related to reachability queries. One interesting problem is
in the domain of labeled graphs. In many applications, edges are labeled to
denote the relationships between the two nodes they connect. A new type
of reachability query asks whether two nodes are connected by a path whose
edges are constrained by a given set of labels [111]. In some other applications,
we want to find the shortest path between two nodes. Similar to the simple
reachability problem, the shortest path problem can be solved by brute force
methods such as Dijkstra’s algorithm, but such methods are not appropriate
for online queries in large graphs. Cohen et al extended the 2-hop covering
approach for this problem [54].

A detailed description of the strengths and weaknesses of various reacha-
bility approaches and a comparison of their query time, index size, and index
construction time can be found in [204].

2.3 Graph Matching

The problem of graph matching is that of finding either an approximate or
a one-to-one correspondence among the nodes of the two graphs. This corre-
spondence is based on one or more of the following structural characteristics
of the graph: (1) The labels on the nodes in the two graphs should be the same.
(2) The existence of edges between corresponding nodes in the two graphs

22 MANAGING AND MINING GRAPH DATA

should match each other. (3) The labels on the edges in the two graphs should
match each other.

These three characteristics may be used to define a matching between two
graphs such that there is a one-to-one correspondence in the structures of the
two graphs. Such problems often arise in the context of a number of different
database applications such as schema matching, query matching, and vector
space embedding. A detailed description of these different applications may
be found in [161]. In exact graph matching, we attempt to determine a one-
to-one correspondence between two graphs. Thus, if an edge exists between
a pair of nodes in one graph, then that edge must also exist between the cor-
responding pair in the other graph. This may not be very practical in real
applications in which approximate matches may exist, but an exact matching
may not be feasible. Therefore, in many applications, it is possible to define an
objective function which determines the similarity in the mapping between the
two graphs. Fault tolerant mapping is a much more significant application in
the graph domain, because common representations of graphs may have many
missing nodes and edges. This problem is also referred to as inexact graph
matching. Most variants of the graph matching problem are well known to be
NP-hard. The most common method for graph matching is that of tree-based
search techniques. In this technique, we start with a seed set of nodes which
are matched, and iteratively expand the neighborhood defined by that set. It-
erative expansion can be performed by adding nodes to the current node set,
as long as no edge constraints are violated. If it turns out that the current node
set cannot be expanded, then we initiate a backtracking procedure in which we
undo the last set of matches. A number of algorithms which are based upon this
broad idea are discussed in [60, 125, 180]. A survey of many of the classical
algorithms for graph matching may be found in [57].

The problem of exact graph matching is closely related to that of graph iso-
morphism. In the case of the graph isomorphism problem, we attempt to find
an exact one-to-one matching between nodes and edges of the two graphs. A
generalization of this problem is that of finding the maximal common sub-
graph in which we attempt to match the maximum number of nodes between
the two graphs. Note that the solution to the maximal common subgraph prob-
lem will also provide a solution to the problem of exact matching between two
subgraphs, if such a solution exists. A number of similarity measures can be
derived on the basis of the mapping behavior between two graphs. If the two
graphs share a large number of nodes in common, then the similarity is more
significant. A number of models and algorithms for quantifying and determin-
ing the common subgraphs between two graphs may be found in [34–37]. The
broad idea in many of these methods is to define a distance metric based on the
nature of the matching between the two graphs, and use this distance metric in
order to guide the algorithms towards an effective solution.

Graph Data Management and Mining: A Survey of Algorithms and Applications 23

Inexact graph matching is a much more practical model, because it accounts
for the natural errors which may occur during the matching process. Clearly, a
method is required in order to quantify these errors and the closeness between
the different graphs. A common technique which may be used to quantify these
errors is the use of a function such as the graph edit distance. The graph edit
distance determines the distance between two graphs by measuring the cost of
the edits required to transform one graph to the other. These edits may be node
or edge insertions, deletions or substitutions. An inexact graph matching is
one which allows for a matching between two graphs after a sequence of such
edits. The quality of the matching is defined by the cost of the corresponding
edits. We note that the concept of graph edit distance is closely related to that
of finding a maximum common subgraph [34]. This is because it is possible to
direct an edit-distance based algorithm to find the maximum common subgraph
by defining an appropriate edit distance.

A particular variant of the problem is when we account for the values of
the labels on the nodes and edges during the matching process. In this case,
we need to compute the distance between the labels of the nodes and edges
in order to define the cost of a label substitution. Clearly, the cost of the la-
bel substitution is application-dependent. In the case of numerical labels, it
may be natural to define the distances based on numerical distance functions
between the two graphs. In general, the cost of the edits is also application
dependent, since different applications may use different notions of similar-
ity. Thus, domain-specific techniques are often used in order to define the edit
costs. In some cases, the edit costs may even be learned with the use of sam-
ple graphs [143, 144]. When we have cases in which the sample graphs have
naturally defined distances between them, the edit costs may be determined as
values for which the corresponding distances are as close to the sample values
as possible.

The typical algorithms for inexact graph matching use combinatorial search
over the space of possible edits in order to determine the optimal matching
[35, 145]. The algorithm in [35] is relatively exhaustive in its approach, and
can therefore be computationally intensive in practice. In order to solve this
issue, the algorithms discussed in [145] explores local regions of the graph in
order to define more focussed edits. In particular, the work in [145] proposes
an important class of methods which are referred to as kernel functions. Such
methods are extremely robust to structural errors, and are therefore a useful
construct for solving graph matching problems. The broad idea is to incorpo-
rate the key ideas of the graph edit distance into kernel functions. Since kernel
machines are known to be extremely powerful techniques for pattern recogni-
tion, it follows that these techniques can then be leveraged to the problem of
graph matching. A variety of other kernel techniques for graph matching may
be found in [94, 81, 119]. The key kernel methods include convolution kernels

24 MANAGING AND MINING GRAPH DATA

[94], random walk kernels [81] and diffusion kernels [119]. In random walk
kernels [81], we attempt to determine the number of random walks between
the two graphs which have some labels in common. Diffusion kernels [119]
can be considered a generalization of the standard gaussian kernel in Euclidian
space.

The technique of relaxation labeling is another broad class of methods which
is often used for graph matching. Note that in the case of the matching prob-
lem, we are really trying to assign labels to the nodes in a graph. The specific
label for a node is drawn out of a discrete set of possibilities. This discrete
set of possibilities correspond to the matching nodes in the other graph. The
probability of matching is defined by Gaussian probability distributions. We
start off with an initial labeling based on the structural characteristics of the un-
derlying graph, and then successively improve the solution based on additional
exploration of structural information. Detailed descriptions of techniques for
relaxation labeling may be found in [76].

2.4 Keyword Search

In the problem of keyword search, we would like to determine small groups
of link-connected nodes which are related to a particular keyword. For exam-
ple, a web graph or a social network may be considered a massive graph, in
which each node may contain a large amount of text data. Even though key-
word search is defined with respect to the text inside the nodes, we note that
the linkage structure also plays an important role in determining the appropri-
ate set of nodes. It is well known the text in linked entities such as the web are
related, when the corresponding objects are linked. Thus, by finding groups
of closely connected nodes which share keywords, it is generally possible to
determine the qualitatively effective nodes. Keyword search provides a simple
but user-friendly interface for information retrieval on the Web. It also proves
to be an effective method for accessing structured data. Since many real life
data sets are structured as tables, trees and graphs, keyword search over such
data has become increasingly important and has attracted much research inter-
est in both the database and the IR communities.

Graph is a general structure and it can be used to model a variety of complex
data, including relational data and XML data. Because the underlying data
assumes a graph structure, keyword search becomes much more complex than
traditional keyword search over documents. The challenges lie in three aspects:

Query semantics. Keyword search over a set of text documents has very
clear semantics: A document satisfies a keyword query if it contains ev-
ery keyword in the query. In our case, the entire dataset is often consid-
ered as a single graph, so the algorithms must work on a finer granularity

Graph Data Management and Mining: A Survey of Algorithms and Applications 25

and return subgraphs as answers. We must decide what subgraphs are
qualified as answers.

Ranking strategy: For a given keyword query, it is likely that many
subgraphs will satisfy the query, based on the query semantics in use.
However, each subgraph has its own underlying graph structure, with
subtle semantics that makes it different from other subgraphs that sat-
isfy the query. Thus, we must take the graph structure into consideration
and design ranking strategies that find most meaningful and relevant an-
swers.

Query efficiency: Many real life graphs are extremely large. A major
challenge for keyword search over graph data is query efficiency, which,
to a large extent, hinges on the semantics of the query and the ranking
strategy.

Current approaches for keyword search can be classified into three cate-
gories based on the underlying structure of the data. In each category, we
briefly discuss query semantics, ranking strategies, and representative algo-
rithms.

Keyword search over XML data. XML data is mostly tree structured,
where each node only has a single incoming path. This property has signifi-
cant impact on query semantics and answer ranking, and it also provides great
optimization opportunities in algorithm design [197].

Given a query, which contains a set of keywords, the search algorithm re-
turns snippets of an XML document that are most relevant to the keywords.
The interpretation of relevant varies, but the most common practice is to find
smallest subtrees that contain the keywords.

It is straightforward to find subtrees that contain all the keywords. Let Li be
the set of nodes in the XML document that contain keyword ki. If we pick one
node ni from each Li, and form a subtree from these nodes, then the subtree
will contain all the keywords. Thus, an answer to the query can be represented
by lca(n1, ⋅ ⋅ ⋅ , nn), the lowest common ancestor of nodes n1, ⋅ ⋅ ⋅ , nn in the
tree, where ni ∈ Li.

Most query semantics are only interested in smallest answers. There are dif-
ferent ways to interpret the notion of smallest. Several algorithms [197, 102,
196] are based on the SLCA (smallest lowest common ancestor) semantics,
which requires that an answer (a least common ancestor of nodes that con-
tain all the keywords) does not have any descendent that is also an answer.
XRank [86] adopts a different query semantics for keyword search. In XRank,
answers consist of substrees that contain at least one occurrence of all of the
query keywords, after excluding the sub-nodes that already contain all of the

26 MANAGING AND MINING GRAPH DATA

query keywords. Thus, the set of answers based on the SLCA semantics is a
subset of answers qualified for XRank.

A keyword query may find a large number of answers, but they are not
all equal due to the differences in the way they are embedded in the nested
XML structure. Many approaches for keyword search on XML data, including
XRank [86] and XSEarch [55], present a ranking method. A ranking mech-
anism takes into consideration several factors. For instance, more specific
answers should be ranked higher than less specific answers. Both SLCA and
the semantics adopted by XRank signify this consideration. Furthermore, key-
words in an answer should appear close to each other, and closeness is inter-
preted as the the semantic distance defined over the XML embedded structure.

Keyword search over relational data. SQL is the de-facto query language
for accessing relational data. However, to use SQL, one must have knowledge
about the schema of the relational data. This has become a hindrance for po-
tential users to access tremendous amount of relational data.

Keyword search is a good alternative due to its ease of use. The challenges
of applying keyword search on relational data come from the fact that in a
relational database, information about a single entity is usually divided among
several tables. This is resulted from the normalization principle, which is the
design methodology of relational database schema.

Thus, to find entities that are relevant to a keyword query, the search al-
gorithm has to join data from multiple tables. If we represent each table as a
node, and each foreign key relationship as an edge between two nodes, then we
obtain a graph, which allows us to convert the current problem to the problem
of keyword search over graphs. However, there is the possibility of self-joins:
that is, a table may contain a foreign key that references itself. More generally,
there might be cycles in the graph, which means the size of the join is only
limited by the size of the data. To avoid this problem, the search algorithm
may adopt an upper bound to restrict the number of joins [103].

Two most well-known keyword search algorithm for relational data are DBX-
plorer [12] and DISCOVER [103]. They adopted new physical database de-
sign (including sophisticated indexing methods) to speed up keyword search
over relational databases. Qin et al [155], instead, introduced a method that
takes full advantage of the power of RDBMS and uses SQL to perform key-
word search on relational data.

Keyword search over graph data. Keyword search over large, schema-
free graphs faces the challenge of how to efficiently explore the graph structure
and find subgraphs that contain all the keywords in the query. To measure the
“goodness” of an answer, most approaches score each edge and node, and then
aggregate the scores over the subgraph as a goodness measure [24, 113, 99].

Graph Data Management and Mining: A Survey of Algorithms and Applications 27

Usually, an edge is scored by the strength of the connection, and a node is
scored by its importance based on a PageRank like mechanism.

Graph keyword search algorithms can be classified into two categories.
Algorithms in the first category finds matching subgraphs by exploring the
graph link by link, without using any index of the graph. Representative al-
gorithms in this category include BANKS [24] and the bidirectional search
algorithm [113]. One drawback of these approaches is that they explore the
graph blindly as they do not have a global picture of the graph structure, nor
do they know the keyword distribution in the graph. Algorithms in the other
category are index-based [99], and the index is used to control guide the graph
exploration, and support forward-jumps in the search.

2.5 Synopsis Construction of Massive Graphs

A key challenge which arises in many of the applications discussed below
is that the graphs they deal with are very large scale in nature. As a result,
the graph may be available only on disk. Most of the traditional graph mining
applications assume that the data is available in main memory. However, when
the graph is available on disk, applications which access the edges in random
order may be extremely expensive. For example, the problem of finding the
minimum-cut between two nodes is extremely efficient with the use of memory
resident algorithms, but it is extraordinarily expensive when the underlying
graphs are available on disk [7]. As a result algorithms need to be carefully
designed in order to reduce the disk-access costs. A typical technique which
may often be used is to design a synopsis construction technique [7, 46, 142],
which summarizes the graph in a much smaller space, but retains sufficient
information in order to effectively respond to queries.

The synopsis construction is typically defined through either node or edge
contractions. The key is to define a synopsis which retains the relevant struc-
tural property of the underlying graph. In [7], the algorithm in [177] is used in
order to collapse the dense regions of the graph, and represent the summarized
graph in terms of sparse regions. The resulting contracted graph still retains
important structural properties such as the connectivity of the graph. In [46],
a randomized summarization technique is used in order to determine frequent
patterns in the underlying graph. A bound has been proposed in [46] for de-
termining the false positives and false negatives with the use of this approach.
Finally, the technique in [142] also compresses graphs by representing sets of
nodes as super-nodes, and separately storing “edge corrections” in order to re-
construct the entire graph. A bound on the error has been proposed in [142]
with the use of this approach.

A closely related problem is that of mining graph streams. In this case,
the edges of the graph are received continuously over time. Such cases arise

28 MANAGING AND MINING GRAPH DATA

frequently in applications such as social networks, communication networks,
and web log analysis. Graph streams are very challenging to mine, because
the structure of the graph needs to be mined in real time. Therefore, a typical
approach is to construct a synopsis from the graph stream, and leverage it for
the purpose of structural analysis. It has been shown in [73] how to summarize
the graph in such a way that the underlying distances are preserved. Therefore,
this summarization can be used for distance-based applications such as the
shortest path problem. A second application which has been studied in the
context of graph streams is that of graph matching [140]. We note that this is
a different version of the problem from our discussion in an earlier section. In
this case, we attempt to find a set of edges in a single graph such that no two
edges share an end point. We desire to find a maximum weight or maximum
cardinality matching. The main idea in [140] is to always maintain a candidate
matching and update it as new edges come in. When a new edge arrives, the
process of inserting it may displace as many as two edges at its end points. We
allow an incoming edge to displace the edges at its endpoints, if the weight
of the incoming edge is a factor (1 +) of the outgoing edges. It has been
shown in [140] that this matching is within a factor (3+ 2 ⋅

√
2) of the optimal

matching.
Recently, a number of techniques have also been designed to create syn-

opses which can be used to estimate the aggregate structural properties of the
underlying graphs. A technique has been proposed in [61] for estimating the
statistics of the degrees in the underlying graph stream. The techniques pro-
posed in [61] use a variety of techniques such as sketches, sampling, hashing
and distinct counting. Methods have been proposed for determining the mo-
ments of the degrees, determining heavy hitter degrees, and determining range
sums of degrees. In addition, techniques have been proposed in [18] to perform
space-efficient reductions in data streams. This reduction has been used in or-
der to count triangles in the data stream. A particularly useful application in
graph streams is that of the problem of PageRank. In this problem, we attempt
to determine significant pages in a collection with the use of the linkage struc-
ture of the underlying documents. Clearly, documents which are linked to by
a larger number of documents are more significant [151]. In fact, the concept
of page rank can be modeled as the probability that a node is visited by a ran-
dom surfer on the world wide web. The algorithms designed in [151] are for
static graphs. The problem becomes much more challenging when the graphs
are dynamic, as is the case of social networks. A natural synopsis technique
which can be used for such cases is the method of sampling. In [166], it has
been shown how to use a sampling technique in order to estimate page rank for
graph streams. The idea is to sample the nodes in the graph independently and
perform random walks starting from these nodes. These random walks can be

Graph Data Management and Mining: A Survey of Algorithms and Applications 29

used in order to estimate the probability of the presence of a random surfer at
a given node. This is essentially equal to the page rank.

3. Graph Mining Algorithms

Many of the traditional mining applications also apply to the case of graphs.
As in the case of management applications, the mining applications are far
more challenging to implement because of the additional constraints which
arise from the structural nature of the underlying graph. In spite of these chal-
lenges, a number of techniques have been developed for traditional mining
problems such as frequent pattern mining, clustering, and classification. In
this section, we will provide a survey of many of the structural algorithms for
graph mining.

3.1 Pattern Mining in Graphs

The problem of frequent pattern mining has been widely studied in the con-
text of mining transactional data [11, 90]. Recently, the techniques for frequent
pattern mining have also been extended to the case of graph data. The main
difference in the case of graphs is that the process of determining support is
quite different. The problem can be defined in different ways depending upon
the application domain:

In the first case, we have a group of graphs, and we wish to determine
all patterns which support a fraction of the corresponding graphs [104,
123, 181].

In the second case, we have a single large graph, and we wish to deter-
mine all patterns which are supported at least a certain number of times
in this large graph [31, 75, 123].

In both cases, we need to account for the isomorphism issue in determining
whether one graph is supported by another. However, the problem of defin-
ing the support is much more challenging, if overlaps are allowed between
different embeddings. This is because if we allow such overlaps, then the anti-
monotonicity property of most frequent pattern mining algorithms is violated.

For the first case, where we have a data set containing multiple graphs, most
of the well known techniques for frequent pattern mining with transactional
data can be easily extended. For example, Apriori-style algorithms can be
extended to the case of graph data, by using a similar level-wise strategy of
generating (k + 1)-candidates from k-patterns. The main difference is that
we need to define the join process a little differently. Two graphs of size k
can be joined, if they have a structure of size (k − 1) in common. The size
of this structure could be defined in terms of either nodes or edges. In the
case of the AGM algorithm [104], this common structure is defined in terms of

30 MANAGING AND MINING GRAPH DATA

the number of common vertices. Thus, two graphs with k vertices are joined,
only if they have a common subgraph with at least (k − 1) vertices. A second
way of performing the mining is to join two graphs which have a subgraph
containing at least (k − 1) edges in common. The FSG algorithm proposed in
[123] can be used in order to perform edge-based joins. It is also possible to
define the joins in terms of arbitrary structures. For example, it is possible to
express the graphs in terms of edge-disjoint paths. In such cases, subgraphs
with (k+1)-edge disjoint paths can be generated from two graphs which have
k edge disjoint paths, of which (k − 1) must be common. An algorithm along
these lines is proposed in [181]. Another strategy which is often used is that
of pattern growth techniques, in which frequent graph patterns are extended
with the use of additional edges [28, 200, 100]. As in the case of frequent
pattern mining problem, we use lexicographic ordering among edges in order
to structure the search process, so that a given pattern is encountered only once.

For the second case in which we have a single large graph, a number of
different techniques may be used in order to define the support in presence of
the overlaps. A common strategy is to use the size of the maximum indepen-
dent set of the overlap graph to define the support. This is also referred to as
the maximum independent set support. In [124], two algorithms HSIGRAM
and VSIGRAM are proposed for determining the frequent subgraphs within a
single large graph. In the former case, a breadth-first search approach is used
in order to determine the frequent subgraphs, whereas a depth-first approach is
used in the latter case. In [75], it has been shown that the maximum indepen-
dent set measure continues to satisfy the anti-monotonicity property. The main
problem with this measure is that it is extremely expensive to compute. There-
fore, the technique in [31] defines a different measure in order to compute the
support of a pattern. The idea is to compute a minimum image based support of
a given pattern. For this case, we compute the number of unique nodes of the
graph to which a node of the given pattern is mapped. This measure continues
to satisfy the anti-monotonicity property, and can therefore be used in order to
determine the underlying frequent patterns. An efficient algorithm with the use
of this measure has been proposed in [31].

As in the case of standard frequent pattern mining, a number of variations
are possible for the case of finding graph patterns, such as determining maxi-
mal patterns [100], closed patterns [198], or significant patterns [98, 157, 198].
We note that significant graph patterns can be defined in different ways de-
pending upon the application. In [157], significant graphs are defined by trans-
forming regions of the graphs into features and measuring the corresponding
importance in terms of p-values. In [198], significant patterns are defined in
terms of arbitrary objective functions. A meta-framework has been proposed
in [198] to determine the significant patterns based on arbitrary objective func-
tions. One interesting approach to discover significant patterns is to build a

Graph Data Management and Mining: A Survey of Algorithms and Applications 31

model-based search tree or MbT[71]. The idea is to use divide and conquer
to mine the most significant patterns in a subspace of examples. It builds a
decision tree that partitions the data onto different nodes. Then at each node,
it directly discovers a discriminative pattern to further divide its examples into
purer subsets. Since the number of examples towards leaf level is relatively
small, this approach is able to examine patterns with extremely low global
support that could not be enumerated on the whole data set. For some graph
data sets which occur in drug discovery applications[71], it could mine signif-
icant graph patterns, which is very difficult for most other solutions. Since it
uses the divide and conquer paradigm, the algorithm is almost linearly scalable
with 1 −MinSupport and the number of examples[71]. The MbT technique
is not limited to graphs, but also applicable to item sets and sequences, and
mine pattern set is both small and significant.

One of the key challenges which arises in the context of all frequent pat-
tern mining algorithms is the massive number of patterns which can be mined
from the underlying database. This problem is particularly acute in the case
of graphs since the size of the output can be extremely large. One solution for
reducing the number of representative patterns is to report frequent patterns in
terms of orthogonality. A model called ORIGAMI has been proposed in [93]
which reports frequent graph patterns only if the similarity is below a threshold
�. Such patterns are also referred to as �-orthogonal patterns. A pattern set P
is said to be �-representative, if for every non-reported pattern g, at least one
pattern can be found in P for which the underlying similarity to g is at least
a threshold �. These two constraints address different aspects of the struc-
tural patterns. The method in [93] determines the set of all �-orthogonal and
�-representative patterns. An efficient algorithm has been proposed in [93] in
order to mine such patterns. The idea here is to reduce the redundancy in the
underlying pattern set so as to provide a better understanding of the reported
patterns.

Some particularly challenging variations of the problem arise in the context
of either very large data sets or very large data graphs. Recently, a technique
was proposed by [46], which uses randomized summarization in order to re-
duce the data set to a much smaller size. This summarization is then leveraged
in order to determine the frequent subgraph patterns from the data. Bounds are
derived in [46] on the false positives and false negatives with the use of such
an approach. Another challenging variation is when the frequent patterns are
overlaid on a very large graph, as a result of which patterns may themselves be
very large subgraphs. An algorithm called TSMiner was proposed in [110] to
determine frequent structures in very large scale graphs.

Graph pattern mining has numerous applications for a variety of applica-
tions. For example, in the case of labeled data, such pattern mining techniques
can be used in order to determine structural classification rules. For example,

32 MANAGING AND MINING GRAPH DATA

the technique in [205] uses this approach for the purpose of XML data classi-
fication. In this case, we have a data set consisting of multiple (XML) graphs,
each of which is associated with a class label. The method in [205] determines
the rules in which the left hand side is a structure and the right hand side is a
class label. This is used for the purposes of classification. Another application
of frequent pattern mining is studied in [121], in which these patterns are used
in order to create gBoost, which is a classifier designed as an application of
boosting. Frequent pattern mining has been found to be particularly useful in
the chemical and biological domain [28, 65, 101, 120]. Frequent pattern min-
ing techniques have been used to perform important functions in this domain
such as classification or determination of metabolic pathways.

Frequent graph pattern mining is also useful for the purpose of creating
graph indexes. In [201], the frequent structures in a graph collection are mined,
so that they can be used as features for an indexing process. The similarity of
frequent pattern membership behavior across graphs is used to define a rough
similarity function for the purpose of filtering. An inverted representation is
constructed on this feature based representation in order to filter out irrele-
vant graphs for the similarity search process. The technique of [201] is much
more efficient than other competitive techniques because of its feature based
approach. In general, frequent pattern mining algorithms are useful for any
application which can be defined effectively on the basis of aggregate charac-
teristics. In general graph pattern mining techniques have the same range of
applicability as they do for the case of vanilla frequent pattern mining.

3.2 Clustering Algorithms for Graph Data

In this section, we will discuss a variety of algorithms for clustering graph
data. This includes both classical graph clustering algorithms as well as algo-
rithms for clustering XML data. Clustering algorithms have significant appli-
cations in a variety of graph scenarios such as congestion detection, facility
location, and XML data integration [126]. Within the context of graph algo-
rithms, the clustering can be of two types:

Node Clustering Algorithms: In this case, we have one large graph,
and we attempt to cluster the underlying nodes with the use of a distance
(or similarity) value on the edges. In this case, the edges of the graph are
labeled with numerical distance values. These numerical distance values
are used in order to create clusters of nodes. A particular case is one in
which the presence of an edge refers to a similarity value of 1, whereas
the absence of an edge refers to a similarity value of 0. We note that the
problem of minimizing the inter-cluster similarity for a fixed number of
clusters essentially reduces to the problem of graph partitioning or the
minimum multi-way cut problem. This is also referred to as the prob-

Graph Data Management and Mining: A Survey of Algorithms and Applications 33

lem of mining dense graphs and pseudo-cliques. Recently, the problem
has also been studied in the database literature as that of quasi-clique
determination. In this problem, we determine groups of nodes which
are “almost cliques”. In other words, an edge exists between any pair of
nodes in the set with high probability. We will study the different classes
of node clustering algorithms in a different section.

Graph Clustering Algorithms: In this case, we have a (possibly large)
number of graphs which need to be clustered based on their underlying
structural behavior. This problem is challenging because of the need to
match the structures of the underlying graphs, and use these structures
for clustering purposes. Such algorithms are discussed both in the con-
text of classical graph data sets as well as semi-structured data. There-
fore, we will discuss both of these variations.

In the following subsections, we will discuss each of the above kinds of graph
clustering algorithms.

Node Clustering Algorithms. A number of algorithms for graph node
clustering are discussed in [78]. In [78], the graph clustering problem is re-
lated to the minimum cut and graph partitioning problems. In this case, it is
assumed that the underlying graphs have weights on the edges. It is desired to
partition the graph in such a way so as to minimize the weights of the edges
across the partitions. The simplest case is the 2-way minimum cut problem,
in which we wish to partition the graph into two clusters, so as to minimize
the weight of the edges across the partitions. This version of the problem is
efficiently solvable, and can be resolved by repeated applications of the maxi-
mum flow problem [13]. This is because the maximum flow between source s
and sink t determines the minimum s-t cut. By using different source and sink
combinations, it is also possible to find the global minimum cut. A second way
of determining a minimum cut is by using a contraction-based edge-sampling
approach. This is a probabilistic technique in which we successively sample
edges in order to collapse nodes into larger sets of nodes. By successively sam-
pling different sequences of edges and picking the optimum value [177], it is
possible to determine a global minimum cut. Both of the above techniques are
quite efficient and the time-complexity is polynomial in terms of the number
of nodes and edges. An interesting discussion of this problem may be found in
[78].

The multi-way graph partitioning problem is significantly more difficult,
and is NP-hard [80]. In this case, we wish to partition a graph into k > 2
components, so that the total weight of the edges whose ends lie in different
partitions is minimized. A well known technique for graph partitioning is the
Kerninghan-Lin algorithm [116]. This classical algorithm is based on a hill-

34 MANAGING AND MINING GRAPH DATA

climbing (or more generally neighborhood-search technique) for determining
the optimal graph partitioning. Initially, we start off with a random cut of the
graph. In each iteration, we exchange a pair of vertices in two partitions, to see
if the overall cut value is reduced. In the event that the cut value is reduced,
then the interchange is performed. Otherwise, we pick another pair of vertices
in order to perform the interchange. This process is repeated until we converge
to a optimal solution. We note that this optimum may not be a global optimum,
but may only be a local optimum of the underlying data. The main variation in
different versions of the Kerninghan-Lin algorithm is the policy which is used
for performing the interchanges on the vertices. We note that the use of more
sophisticated strategies allows a better improvement in the objective function
for each interchange, but also requires more time for each interchange. This is
a natural tradeoff which may work out differently depending upon the nature
of the application at hand. We note that the problem of graph partitioning is
studied widely in the literature. A detailed survey may be found in [77].

A closely related problem is that of dense subgraph determination in mas-
sive graphs. This problem is frequently encountered in large graph data sets.
For example, the problem of determining large subgraphs of web graphs was
studied in [82]. In this paper, a min-hash approach was used to determine the
shingles which represent dense subgraphs. The broad idea is to represent the
outlinks of a particular node as sets. Two nodes are considered similar, if they
share many outlinks. Thus, consider a node A with an outlink set SA and a
node B with outlink set SB . Then the similarity between the two nodes is
defined by the Jaccard coefficient, which is defined as SA∩SB

SA∪SB
. We note that

explicit enumeration of all the edges in order to compute this can be compu-
tationally inefficient. Rather, a min-hash approach is used in order to perform
the estimation. This min-hash approach is as follows. We sort the universe of
nodes in a random order. For any set of nodes in random sorted order, we deter-
mine the first node First(A) for which an outlink exists from A to First(A).
We also determine the first node First(B) for which an outlink exists from B
to First(B). It can be shown that the Jaccard coefficient is an unbiased esti-
mate of the probability that First(A) and First(B) are the same node. By
repeating this process over different permutations over the universe of nodes,
it is possible to accurately estimate the Jaccard Coefficient. This is done by
using a constant number of permutations c of the node order. Thus, for each
node, a fingerprint of size c can be constructed. By comparing the fingerprints
of two nodes, the Jaccard coefficient can be estimated. This approach can be
further generalized with the use of every s element set contained entirely with
SA and SB . By using different values of s and c, it is possible to design an al-
gorithm which distinguishes between two sets that are above or below a certain
threshold of similarity.

Graph Data Management and Mining: A Survey of Algorithms and Applications 35

The overall technique in [82] first generates a set of c shingles of size s
for each node. The process of generating the c shingles is extremely straight-
forward. Each node is processed independently. We use the min-wise hash
function approach in order to generate subsets of size s from the outlinks at
each node. This results in c subsets for each node. Thus, for each node, we
have a set of c shingles. Thus, if the graph contains a total of n nodes, the total
size of this shingle fingerprint is n× c× sp, where sp is the space required for
each shingle. Typically sp will be O(s), since each shingle contains s nodes.
For each distinct shingle thus created, we can create a list of nodes which
contain it. In general, we would like to determine groups of shingles which
contain a large number of common nodes. In order to do so, the method in
[82] performs a second-order shingling in which the meta-shingles are created
from the shingles. Thus, this further compresses the graph in a data structure
of size c × c. This is essentially a constant size data structure. We note that
this group of meta-shingles has the the property that they contain a large num-
ber of common nodes. The dense subgraphs can then be extracted from these
meta-shingles. More details on this approach may be found in [82].

A related problem is that of determining quasi-cliques in the underlying
data. Quasi-cliques are essentially relaxations on the concept of cliques. In the
case of a clique, the subgraph induced on a set of nodes is complete. On the
other hand, in the case of a -quasi-clique, each vertex in that subset of nodes
has a degree of at least ⋅k, where is a fraction, and k is the number of nodes
in that set. The first work on determining -quasi-cliques was discussed in [5],
in which a randomized algorithm is used in order to determine a quasi-clique
with the largest size. A closely related problem is that of finding frequently
occurring cliques in multiple data sets. In other words, when multiple graphs
are obtained from different data sets, some dense subgraphs occur frequently
together in the different data sets. Such graphs help in determining impor-
tant dense patterns of behavior in different data sources. Such techniques find
applicability in mining important patterns in graphical representations of cus-
tomers. The techniques are also helpful in mining cross-graph quasi-cliques in
gene expression data. A description of the application of the technique to the
problem of gene-expression data may be found in [153]. An efficient algorithm
for determining cross graph quasi-cliques was proposed in [148].

Classical Algorithms for Clustering XML and Graph Data. In this sec-
tion, we will discuss a variety of algorithms for clustering XML and graph data.
We note that XML data is quite similar to graph data in terms of how the data
is organized structurally. In has been shown in [8, 63, 126, 133] that the use of
this structural behavior is more critical for effective processing. There are two
main techniques used for clustering of XML documents. These techniques are
as follows:

36 MANAGING AND MINING GRAPH DATA

Structural Distance-based Approach: This approach computes struc-
tural distances between documents and uses them in order to compute
clusters of documents. Such distance-based approaches are quite gen-
eral and effective techniques over a wide variety of non-numerical do-
mains such as categorical and string data. It is therefore natural to ex-
plore this technique in the context of graph data. One of the earliest
work on clustering tree structured data is the XClust algorithm [126],
which was designed to cluster XML schemas for efficient integration of
large numbers of Document Type Definitions (DTDs) of XML sources.
It adopts the agglomerative hierarchical clustering method which starts
with clusters of single DTDs and gradually merges the two most simi-
lar clusters into one larger cluster. The similarity between two DTDs is
based on their element similarity, which can be computed according to
the semantics, structure, and context information of the elements in the
corresponding DTDs. One of the shortcomings of the XClust algorithm
is that it does not make full use of the structure information of the DTDs,
which is quite important in the context of clustering tree-like structures.
The method in [45] computes similarity measures based on the structural
edit-distance between documents. This edit-distance is used in order to
compute the distances between clusters of documents.

Another clustering technique which falls in this general class of meth-
ods is the S-GRACE algorithm. The main idea is to use the element-
subelement relationships in the distance function rather than the sim-
ple use of the tree-edit distance as in [45]. S-GRACE is a hierarchical
clustering algorithm [133]. In [133], an XML document is converted
to a structure graph (or s-graph), and the distance between two XML
documents is defined according to the number of the common element-
subelement relationships, which can capture better structural similarity
relationships than the tree edit distance in some cases [133].

Structural Summary Based Approach: In many cases, it is possible
to create summaries from the underlying documents. These summaries
are used for creating groups of documents which are similar to these
summaries. The first summary-based approach for clustering XML doc-
uments was presented in [63]. In [63], the XML documents are modeled
as rooted ordered labeled trees. A framework for clustering XML docu-
ments by using structural summaries of trees is presented. The aim is to
improve algorithmic efficiency without compromising cluster quality.

A second approach for clustering XML documents is presented in [8],
and is referred to as XProj. This technique is a partition-based algorithm.
The primary idea in this approach is to use frequent-pattern mining algo-
rithms in order to determine the summaries of frequent structures in the

Graph Data Management and Mining: A Survey of Algorithms and Applications 37

data. The technique uses a k-means type approach in which each cluster
center comprises a set of frequent patterns which are local to the partition
for that cluster. The frequent patterns are mined using the documents as-
signed to a cluster center in the last iteration. The documents are then
further re-assigned to a cluster center based on the average similarity
between the document and the newly created cluster centers from the lo-
cal frequent patterns. In each iteration the document-assignment and the
mined frequent patterns are iteratively re-assigned, until the cluster cen-
ters and document partitions converge to a final state. It has been shown
in [8] that such a structural summary based approach is significantly su-
perior to a similarity function based approach as presented in [45]. The
method is also superior to the structural approach in [63] because of
its use of more robust representations of the underlying structural sum-
maries.

3.3 Classification Algorithms for Graph Data

Classification is a central task in data mining and machine learning. As
graphs are used to represent entities and their relationships in an increasing
variety of applications, the topic of graph classification has attracted much
attention in both academia and industry. For example, in pharmaceutics and
drug design, we are interested to know the relationship between the activity of
a chemical compound and the structure of the compound, which is represented
by a graph. In social network analysis, we study the relationship between
the health of a community (e.g., whether it is expanding or shrinking) and its
structure, which again is represented by graphs.

Graph classification is concerned with two different but related learning
tasks.

Label Propagation. A subset of nodes in a graph are labeled. The task
is to learn a model from the labeled nodes and use the model to classify
the unlabeled nodes.

Graph classification. A subset of graphs in a graph dataset are labeled.
The task is to learn a model from the labeled graphs and use the model
to classify the unlabeled graphs.

Label Propagation. The concept of label or belief propagation [174, 209,
210] is a fundamental technique which is used in order to leverage graph struc-
ture in the context of classification in a number of relational domains. The
scenario of label propagation [44] occurs in many applications. As an exam-
ple, social network analysis is being used as a mean for targeted marketing.
Retailers track customers who have received promotions from them. Those
customers who respond to the promotion (by making a purchase) are labeled

38 MANAGING AND MINING GRAPH DATA

as positive nodes in the graph representing the social network, and those who
do not respond are labeled as negative. The goal of target marketing is to
send promotions to customers who are most likely to respond to promotions.
It boils down to learning a model from customers who have received promo-
tions and predicting the responses of other potential customers in the social
network. Intuitively, we want to find out how existing positive and negative
labels propagate in the graph to unlabeled nodes.

Based on the assumption that “similar” nodes should have similar labels,
the core challenge for label propagation lies in devising a distance function
that measures the similarity between two nodes in the graph. One common
approach of defining the distance between two nodes is to count the aver-
age number of steps it takes to reach one node from the other using a ran-
dom walk [119, 178]. However, it has a significant drawback: it takes O(n3)
time to derive the distances and O(n2) space to store the distances between
all pairs. However, many graphs in real life applications are sparse, which
reduces the complexity of computing the distance [211, 210]. For example,
Zhou et al [210] introduces a method whose complexity is nearly linear to the
number of non-zero entries of the sparse coefficient matrix. A survey of label
propagation methods can be found in [179].

Kernel-based Graph Classification Methods. Kernel-based graph classi-
fication employs a graph kernel to measure the similarity between two labeled
graphs. The method is based on random walks. For each graph, we enumerate
its paths, and we derive probabilities for such paths. The graph kernel com-
pares the set of paths and their probabilities between the two graphs. A random
path (represented as a sequence of node and edge labels) is generated via a ran-
dom walk: First, we randomly select a node from the graph. During the next
and each of the subsequent steps, we either stop (the path ends) or randomly
select an adjacent node to continue the random walk. The choices we make
are subject to a given stopping probability and a node transition probability.
By repeating the random walks, we derive a table of paths, each of which is
associated with a probability.

In order to measure the similarity between two graphs, we need to measure
the similarity between nodes, edges, and paths.

Node/Edge kernel. An example of a node/edge kernel is the identity
kernel. If two nodes/edges have the same label, then the kernel returns
1 otherwise 0. If the node/edge labels take real values, then a Gaussian
kernel can be used instead.

Path kernel. A path is a sequence of node and edge labels. If two paths
are of the same length, the path kernel can be constructed as the product

Graph Data Management and Mining: A Survey of Algorithms and Applications 39

of node and edge kernels. If two paths are of different lengths, the path
kernel simply returns 0.

Graph kernel. As each path is associated with a probability, we can
define the graph kernel as the expectation of the path kernel over all
possible paths in the two graphs.

The above definition of a graph kernel is straightforward. However, it is
computationally infeasible to enumerate all the paths. In particular, in cyclic
graphs, the length of a path is unbounded, which makes enumeration impos-
sible. Thus, more efficient approaches are needed to compute the kernel. It
turns out that the definition of the kernel can be reformulated to show a nested
structure. In the case of directed acyclic graphs the nodes can be topologi-
cally ordered such that there is no path from node j to i if i < j, the kernel
can be redefined as a recursive function, and dynamic programming can han-
dle this problem in O(∣X ∣ ⋅ ∣X ′∣), where X and X ′ are the set of nodes in the
two graphs. In the case of cyclic graphs, the kernel’s feature space (label se-
quences) is possibly infinite because of loops. The computation of cyclic graph
kernel can still be done with linear system theory and convergence properties
of the kernel.

Boosting-based Graph Classification Methods. While the kernel-based
method provides an elegant solution to graph classification, it does not explic-
itly reveal what graph features (substructures) are relevant for classification.
To address this issue, a new approach of graph classification based on pattern
mining is introduced. The idea is to perform graph classification based on a
graph’s important substructures. We can create a binary feature vector based
on the presence or absence of a certain substructure (subgraph) and apply an
off-the-shelf classifier.

Since the entire set of subgraphs is often very large, we must focus on a
small subset of features that are relevant. The most straightforward approach
for finding interesting features is through frequent pattern mining. However,
frequent patterns are not necessarily relevant patterns. For instance, in chem-
ical graphs, ubiquitous patterns such as C-C or C-C-C are frequent, but have
almost no significance in predicting important characteristics of chemical com-
pounds such as activity, toxicity, etc.

Boosting is used to automatically select a relevant set of subgraphs as fea-
tures for classification. LPBoost (Linear Program Boost) learns a linear dis-
criminant function for feature selection. To obtain an interpretable rule, we
need to obtain a sparse weight vector, where only a few weights are nonzero.
It was shown [162] that graph boosting can achieve better accuracy than graph
kernels, and it has the advantage of discovering key substructures explicitly at
the same time.

40 MANAGING AND MINING GRAPH DATA

The problem of graph classification is closely related to that of XML clas-
sification. This is because XML data can be considered an instance of rich
graphs, in which nodes and edges have features associated with them. Con-
sequently, many of the methods for XML classification can also be used for
structural graph classification. In [205], a rule-based classifier (called XRules)
was proposed in which we associate structural features on the left-hand side
with class labels on the right-hand side. The structural features on the left-
hand side are determined by computing the structural features in the graph
which are both frequent and discriminative for classification purposes. These
structural features are used in order to construct a prioritized list of rules which
are used for classification purposes. The top-k rules are determined based on
the discriminative behavior and the majority class label on the right hand side
of these k rules is reported as the final result.

Other Related Work. The problem of node classification arises in a num-
ber of different application contexts such as relational data classification, social
network classification, and blog classification. A technique has been proposed
in [138], which uses link-based similarity for node-classification in the context
of relational data. This approach constructs link features from the underlying
structure and uses them in order to create an effective model for classifica-
tion. Recently, this technique has also been used in the context of link-based
classification of blogs [23]. However, all of these techniques use link-based
methods only. Since many of these techniques arise in the context of text data,
it is natural to examine whether such content can be used in order to improve
classification accuracy. A method to perform collective classification of email
speech acts has been proposed in [39]. It has been shown that the analysis
of relational aspects of emails (such as emails in a particular thread) signifi-
cantly improves the classification accuracy. It has also been shown in [206]
that the use of graph structures during categorization improves the classifica-
tion accuracy of web pages. Another work [25] discusses the problem of label
acquisition in the context of collective classification.

3.4 The Dynamics of Time-Evolving Graphs

Many networks in real applications arise in the context of networked enti-
ties such as the web, mobile networks, military networks, and social networks.
In such cases, it is useful to examine various aspects of the evolution dynam-
ics of typical networks, such as the web or social networks. Thus, this line of
research focusses on modeling the general evolution properties of very large
graphs which are typically encountered. Considerable study has been devoted
to that of examining generic evolution properties which hold across massive
networks such as web networks, citation networks and social networks. Some
examples of such properties are as follows:

Graph Data Management and Mining: A Survey of Algorithms and Applications 41

Densification: Most real networks such as the web and social networks con-
tinue to become more dense over time [129]. This essentially means that these
networks continue to add more links over time (than are deleted). This is a
natural consequence of the fact that much of the web and social media is a
relatively recent phenomenon for which new applications continue to be found
over time. In fact most real graphs are known to exhibit a densification power
law, which characterizes the variation in densification behavior over time. This
law states that the number of nodes in the network increases superlinearly with
the number of nodes over time, whereas the number of edges increases super-
linearly over time. In other words, if n(t) and e(t) represent the number of
edges and nodes in the network at time t, then we have:

e(t) ∝ n(t)� (2.1)

The value of the exponent � lies between 1 and 2.
Shrinking Diameters: The small world phenomenon of graphs is well known.
For example, it was shown in [130] that the average path length between two
MSN messenger users is 6.6. This can be considered a verification of the
(internet version of the) widely known rule of “six degrees of separation” in
(generic) social networks. It was further shown in [129], that the diameters
of massive networks such as the web continue to shrink over time. This may
seem surprising, because one would expect that the diameter of the network
should grow as more nodes are added. However, it is important to remember
that edges are added more rapidly to the network than nodes (as suggested by
Equation 2.1 above). As more edges are added to the graph it becomes possible
to traverse from one node to another with the use of a fewer number of edges.

While the above observations provide an understanding of some key aspects
of specific aspects of long-term evolution of massive graphs, they do not pro-
vide an idea of how the evolution in social networks can be modeled in a com-
prehensive way. A method which was proposed in [131] uses the maximum
likelihood principle in order to characterize the evolution behavior of massive
social networks. This work uses data-driven strategies in order to model the
online behavior of networks. The work studies the behavior of four different
networks, and uses the observations from these networks in order to create a
model of the underlying evolution. It also shows that edge locality plays an im-
portant role in the evolution of social networks. A complete model of a node’s
behavior during its lifetime in the network is studied in this work.

Another possible line of work in this domain is to study methods for char-
acterizing the evolution of specific graphs. For example, in a social network, it
may be useful to determine the newly forming or decaying communities in the
underlying network [9, 16, 50, 69, 74, 117, 131, 135, 171, 173]. It was shown
in [9] how expanding or contracting communities in a social network may be
characterized by examining the relative behavior of edges, as they are received

42 MANAGING AND MINING GRAPH DATA

in a dynamic graph stream. The techniques in this paper characterize the struc-
tural behavior of the incremental graph within a given time window, and uses
it in order to determine the birth and death of communities in the graph stream.
This is the first piece of work which studies the problem of evolution in fast
streams of graphs. It is particularly challenging to study the stream case, be-
cause of the inherent combinatorial complexity of graph structural analysis,
which does not lend itself well to the stream scenario.

The work in [69] uses statistical analysis and visualization in order to pro-
vide a better idea of the changing community structure in an evolving social
network. A method in [171] performs parameter-free mining of large time-
evolving graphs. This technique can determine the evolving communities in
the network, as well as the critical change-points in time. A key property of
this method is that it is parameter-free, and this increases the usability of the
method in many scenarios. This is achieved with the use of the MDL principle
in the mining process. A related technique can also perform parameter-free
analysis of evolution in massive networks [74] with the use of the MDL prin-
ciple. The method can determine which communities have shrunk, split, or
emerged over time.

The problem of evolution in graphs is usually studied in the context of clus-
tering, because clusters provide a natural summary for understanding both
the underlying graph and the changes inherent during the evolution process.
The need for such characterization arises in the context of massive networks,
such as interaction graphs [16], community detection in social networks [9,
50, 135, 173], and generic clustering changes in linked information networks
[117]. The work by [16] provides an event based framework, which provides
an understanding of the typical events which occur in real networks, when
new communities may form, evolve, or dissolve. Thus, this method can pro-
vide an easy way of making a quick determination of whether specific kinds
of changes may be occurring in a particular network. A key technique used
by many methods is to analyze the communities in the data over specific time
slices and then determine the change between the slices to diagnose the nature
of the underlying evolution. The method in [135] deviates from this two-step
approach and constructs a unified framework for the determination of commu-
nities with the use of a best fit to a temporal-smoothness model. The work in
[50] presents a spectral method for evolutionary clustering, which is also based
on the temporal-smoothness concept. The method in [173] studies techniques
for evolutionary characterization of networks in multi-modal graphs. Finally, a
recent method proposed in [117] combines the problem of clustering and evo-
lutionary analysis into one framework, and shows how to determine evolving
clusters in a dynamic environment. The method in [117] uses a density-based
characterization in order to construct nano-clusters which are further leveraged
for evolution analysis.

Graph Data Management and Mining: A Survey of Algorithms and Applications 43

A different approach is to use association rule-based mining techniques [22].
The algorithm takes a sequence of snapshots of an evolving graph, and then at-
tempts to determine rules which define the changes in the underlying graph.
Frequently occurring sequences of changes in the underlying graph are con-
sidered important indicators for rule determination. Furthermore, the frequent
patterns are decomposed in order to study the confidence that a particular se-
quence of steps in the past will lead to a particular transition. The probability
of such a transition is referred to as confidence. The rules in the underlying
graph are then used in order to characterize the overall network evolution.

Another form of evolution in the networks is in terms of the underlying flow
of communication (or information). Since the flow of communication and in-
formation implicitly defines a graph (stream), the dynamics of this behavior
can be very interesting to study for a number of different applications. Such
behaviors arise often in a variety of information networks such as social net-
works, blogs, or author citation graphs. In many cases, the evolution may take
the form of cascading information through the underlying graphs. The idea
is that information propagates through the social network through contact be-
tween the different entities in the network. The evolution of this information
flow shares a number of similarities with the spread of diseases in networks.
We will discuss more on this issue in a later section of this paper. Such evolu-
tion has been studied in [128], which studies how to characterize the evolution
behavior in blog graphs.

4. Graph Applications

In this section, we will study the application of many of the aforementioned
mining algorithms to a variety of graph applications. Many data domains
such as chemical data, biological data, and the web are naturally structured as
graphs. Therefore, it is natural that many of the mining applications discussed
earlier can be leveraged for these applications. In this section, we will study
the diverse applications that graph mining techniques can support. We will
also see that even though these applications are drawn from different domains,
there are some common threads which can be leveraged in order to improve
the quality of the underlying results.

4.1 Chemical and Biological Applications

Drug discovery is a time consuming and extremely expensive undertak-
ing. Graphs are natural representations for chemical compounds. In chemical
graphs, nodes represent atoms and edges represent bonds between atoms. Bi-
ology graphs are usually on a higher level where nodes represent amino acids
and edges represent connections or contacts among amino acids. An important
assumption, which is known as the structure activity relationship (SAR) princi-

44 MANAGING AND MINING GRAPH DATA

ple, is that the properties and biological activities of a chemical compound are
related to its structure. Thus, graph mining may help reveal chemical and biol-
ogy characteristics such as activity, toxicity, absorption, metabolism, etc. [30],
and facilitate the process of drug design. For this reason, academia and phar-
maceutical industry have stepped up efforts in chemical and biology graph
mining, in the hope that it will dramatically reduce the time and cost in drug
discovery.

Although graphs are natural representations for chemical and biology struc-
tures, we still need a computationally efficient representation, known as de-
scriptors, that is conducive to operations ranging from similarity search to var-
ious structure driven predictions. Quite a few descriptors have been proposed.
For example, hash fingerprints [2, 1] are a vectorized representation. Given a
chemical graph, we create a a hash fingerprint by enumerating certain types
of basic structures (e.g., cycles and paths) in the graph, and hashing them into
a bit-string. In another line of work, researchers use data mining methods to
find frequent subgraphs [150] in a chemical graph database, and represent each
chemical graph as a vector in the feature space created by the set of frequent
subgraphs. A detailed description and comparison of various descriptors can
be found in [190].

One of the most fundamental operations on chemical compounds is similar-
ity search. Various graph matching algorithms have been employed for i) rank-
retrieval, that is, searching a large database to find chemical compounds that
share the same bioactivity as a query compound; and ii) scaffold-hopping, that
is, finding compounds that have similar bioactivity but different structure from
the query compound. Scaffold-hopping is used to identify compounds that are
good “replacement” for the query compound, which either has some undesir-
able properties (e.g., toxicity), or is from the existing patented chemical space.
Since chemical structure determines bioactivity (the SAR principle), scaffold-
hopping is challenging, as the identified compounds must be structurally sim-
ilar enough to demonstrate similar bioactivity, but different enough to be a
novel chemotype. Current approaches for similarity matching can be classified
into two categories. One category of approaches perform similarity matching
directly on the descriptor space [192, 170, 207]. The other category of ap-
proaches also consider indirect matching: if a chemical compound c is struc-
turally similar to the query compound q, and another chemical compound c′ is
structurally similar to c, then c′ and q are indirect matches. Clearly, indirect
macthing has the potential to indentify compounds that are functionally similar
but structurally different, which is important to scaffold-hopping [189, 191].

Another important application area for chemical and biology graph mining
is structure-driven prediction. The goal is to predict whether a chemical struc-
ture is active or inactive, or whether it has certain properties, for example, toxic
or nontoxic, etc. SVM (Support Vector Machines) based methods have proved

Graph Data Management and Mining: A Survey of Algorithms and Applications 45

effective for this task. Various vector space based kernel functions, including
the widely used radial basis function and the Min-Max kernel [172, 192], are
used to measure the similarity between chemical compounds that are repre-
sented by vectors. Instead of working on the vector space, another category
of SVM methods use graph kernels to compare two chemical structures. For
instance, in [160], the size of the maximum common subgraph of two graphs
is used as a similarity measure.

In late 1980’s, the pharmaceutical industry embraced a new drug discovery
paradigm called target-based drug discovery. Its goal is to develop a drug that
selectively modulates the effects of the disease-associated gene or gene product
without affecting other genes or molecular mechanisms in the organism. This
is made possible by the High Throughput Screening (HTS) technique, which
is able to rapidly testing a large number of compounds based on their binding
activity against a given target. However, instead of increasing the productivity
of drug design, HTS slowed it down. One reason is that a large number of
screened candidates may have unsatisfactory phenotypic effects such as toxity
and promiscuity, which may dramatically increase the validation cost in later
stage drug discovery [163]. Target Fishing [109] tackles the above issues by
employing computational techniques to directly screen molecules for desirable
phenotype effects. In [190], we offer a detailed description of various such
methods, including multi-category Bayesian models [149], SVM rank [188],
Cascade SVM [188, 84], and Ranking Perceptron [62, 188].

4.2 Web Applications

The world wide web is naturally structured in the form of a graph in which
the web pages are the nodes and the links are the edges. The linkage structure
of the web holds a wealth of information which can be exploited for a variety
of data mining purposes. The most famous application which exploits the link-
age structure of the web is the PageRank algorithm [29, 151]. This algorithm
has been one of the key secrets to the success of the well known Google search
engine. The basic idea behind the page rank algorithm is that the importance
of a page on the web can be gauged from the number and importance of the
hyperlinks pointing to it. The intuitive idea is to model a random surfer who
follows the links on the pages with equal likelihood. Then, it is evident that
the surfer will arrive more frequently at web pages which have a large num-
ber of paths leading to them. The intuitive interpretation of page rank is the
probability that a random surfer arrives at a given web page during a random
walk. Thus, the page rank essentially forms a probability distribution over web
pages, so that the sum of the page rank over all the web pages sums to 1. In
addition, we sometimes add teleportation, in which we can transition any web
page in the collection uniformly at random.

46 MANAGING AND MINING GRAPH DATA

Let A be the set of edges in the graph. Let �i denote the steady state proba-
bility of node i in a random walk, and let P = [pij] denote the transition matrix
for the random-walk process. Let � denote the teleportation probability at a
given step, and let qi be the ith value of a probability vector defined over all the
nodes which defines the probability that the teleportation takes place to node
i at any given step (conditional on the fact that teleportation does take place).
For the time-being, we assume that each value of qi is the same, and is equal
to 1/n, where n is the total number of nodes. Then, for a given node i, we can
derive the following steady-state relationship:

�i =
∑

j:(j,i)∈A
�j ⋅ pji ⋅ (1− �) + � ⋅ qi (2.2)

Note that we can derive such an equation for each node; this will result in a
linear system of equations on the transition probabilities. The solutions to this
system provides the page rank vector �. This linear system has n variables,
and n different constraints, and can therefore be expressed in n2 space in the
worst-case. The solution to such a linear systems requires matrix operations
which are at least quadratic (and at most cubic) in the total number of nodes.
This can be quite expensive in practice. Of course, since the page rank needs
to be computed only once in a while in batch phase, it is possible to implement
it reasonably well with the use of a few carefully designed matrix techniques.
The PageRank algorithm [29, 151] uses an iterative approach which computes
the principal eigenvectors of the normalized link matrix of the web. A descrip-
tion of the page rank algorithm may be found in [151].

We note that the page-rank algorithm only looks at the link structure during
the ranking process, and does not include any information about the content of
the underlying web pages. A closely related concept is that of topic-sensitive
page rank [95], in which we use the topics of the web pages during the ranking
process. The key idea in such methods is to allow for personalized teleporta-
tion (or jumps) during the random-walk process. At each step of the random
walk, we allow a transition (with probability �) to a sample set S of pages
which are related to the topic of the search. Otherwise, the random walk con-
tinues in its standard way with probability (1−�). This can be easily achieved
by modifying the vector q = (q1 . . . qn), so that we set the appropriate com-
ponents in this vector to 1, and others to 0. The final steady-state probabilities
with this modified random-walk defines the topic-sensitive page rank. The
greater the probability �, the more the process biases the final ranking towards
the sample set S. Since each topic-sensitive personalization vector requires
the storage of a very large page rank vector, it is possible to pre-compute it in
advance only in a limited way, with the use of some representative or authori-
tative pages. The idea is that we use a limited number of such personalization
vectors q and determine the corresponding personalized page rank vectors �

Graph Data Management and Mining: A Survey of Algorithms and Applications 47

for these authoritative pages. A judicious combination of these different per-
sonalized page rank vectors (for the authoritative pages) is used in order to
define the response for a given query set. Some examples of such approaches
are discussed in [95, 108]. Of course, such an approach has limitations in terms
of the level of granularity in which it can perform personalization. It has been
shown in [79] that fully personalized page rank, in which we can precisely bias
the random walk towards an arbitrary set of web pages will always require at
least quadratic space in the worst-case. Therefore, the approach in [79] ob-
serves that the use of Monte-Carlo sampling can greatly reduce the space re-
quirements without sufficiently affecting quality. The work in [79] pre-stores
Monte-Carlo samples of node-specific random walks, which are also referred
to as fingerprints. It has been shown in [79] that a very high level of accuracy
can be achieved in limited space with the use of such fingerprints. Subsequent
recent work [42, 87, 175, 21] has built on this idea in a variety of scenarios,
and shown how such dynamic personalized page rank techniques can be made
even more efficient and effective. Detailed surveys on different techniques for
page rank computation may be found in [20].

Other relevant approaches include the use of measures such as the hitting
time in order to determine and rank the context sensitive proximity of nodes.
The hitting time between node i to j is defined as the expected number of hops
that a random surfer would require to reach node j from node i. Clearly, the
hitting time is a function of not just the length of the shortest paths, but also the
number of possible paths which exist from node i to node j. Therefore, in order
to determine similarity among linked objects, the hitting time is a much better
measurement of proximity as compared to the use of shortest-path distances. A
truncated version of the hitting time defines the objective function by restrict-
ing only to the instances in which the hitting time is below a given threshold.
When the hitting time is larger than a given threshold, the contribution is sim-
ply set at the threshold value. Fast algorithms for computing a truncated variant
of the hitting time are discussed in [164]. The issue of scalability in random-
walk algorithms is critical because such graphs are large and dynamic, and we
would like to have the ability to rank quickly for particular kinds of queries. A
method in [165] proposes a fast dynamic re-ranking method, when user feed-
back is incorporated. A related problem is that of investigating the behavior of
random walks of fixed length. The work in [203] investigates the problem of
neighborhood aggregation queries. The aggregation query can be considered
an “inverse version” of the hitting time, where we are fixing the number of
hops and attempting to determine the number of hits, rather than the number of
hops to hit. One advantage of this definition is that it automatically considers
only truncated random walks in which the length of the walk is below a given
threshold ℎ; it is also a cleaner definition than the truncated hitting time by
treating different walks in a uniform way. The work in [203] determines nodes

48 MANAGING AND MINING GRAPH DATA

that have the top-k highest aggregate values over their ℎ-hop neighbors with
the use of a Local Neighborhood Aggregation framework called LONA. The
framework exploits locality properties in network space to create an efficient
index for this query.

Another related idea on determining authoritative ranking is that of the hub-
authority model [118]. The page-rank technique determines authority by using
linkage behavior as indicative of authority. The work in [118] proposes that
web pages are one of two kinds:

Hubs are pages which link to authoritative pages.

Authorities are pages which are linked to by good hubs.

A score is associated with both hubs and authorities corresponding to their
goodness for being hubs and authorities respectively. The hubs scores affect
the authority scores and vice-versa. An iterative approach is used in order to
compute both the hub and authority scores. The HITS algorithm proposed in
[118] uses these two scores in order to compute the hubs and authorities in the
web graph.

Many of these applications arise in the context of dynamic graphs in which
the nodes and edges of the graph are received over time. For example, in the
context of a social network in which new links are being continuously created,
the estimation of page rank is inherently a dynamic problem. Since the page
rank algorithm is critically dependent upon the behavior of random walks, the
streaming page rank algorithm [166] samples nodes independently in order to
create short random walks from each node. This walks can then be merged to
create longer random walks. By running several such random walks, the page
rank can be effectively estimated. This is because the page rank is simply the
probability of visiting a node in a random walk, and the sampling algorithm
simulates this process well. The key challenge for the algorithm is that it is
possible to get stuck during the process of random walks. This is because the
sampling process picks both nodes and edges in the sample, and it is possible
to traverse an edge such that the end point of that edge is not present in the node
sample. Furthermore, we do not allow repeated traversal of nodes in order to
preserve randomness. Such stuck nodes can be handled by keeping track of the
set S of sampled nodes whose walks have already been used for extending the
random walk. New edges are sampled out of both the stuck node and the nodes
in S. These are used in order to extend the walk further as much as possible. If
the new end-point is a sampled node whose walk is not in S, then we continue
the merging process. Otherwise, we repeat the process of sampling edges out
of S and all the stuck nodes visited since the last walk was used.

Another application commonly encountered in the context of graph mining
is the analysis of query flow logs. We note that a common way for many users
to navigate on the web is to use search engines to discover web pages and then

Graph Data Management and Mining: A Survey of Algorithms and Applications 49

click some of the hyperlinks in the search results. The behavior of the resulting
graphs can be used to determine the topic distributions of interest, and semantic
relationships between different topics.

In many web applications, it is useful to determine clusters of web pages
or blogs. For this purpose, it is helpful to leverage the linkage structure of the
web. A common technique which is often used for web document clustering
is that of shingling [32, 82]. In this case, the min-hash approach is used in
order to determine densely connected regions of the web. In addition, any of
a number of quasi-clique generation techniques [5, 148, 153] can be used for
the purpose of determination of dense regions of the graph.

Social Networking. Social networks are very large graphs which are de-
fined by people who appear as nodes, and links which correspond to communi-
cations or relationships between these different people. The links in the social
network can be used to determine relevant communities, members with partic-
ular expertise sets, and the flow of information in the social network. We will
discuss these applications one by one.

The problem of community detection in social networks is related to the
problem of node clustering of very large graphs. In this case, we wish to
determine dense clusters of nodes based on the underlying linkage structure
[158]. Social networks are a specially challenging case for the clustering prob-
lem because of the typically massive size of the underlying graph. As in the
case of web graphs, any of the well known shingling or quasi-clique gener-
ation methods [5, 32, 82, 148, 153] can be used in order to determine rele-
vant communities in the network. A technique has been proposed in [167]
to use stochastic flow simulations for determining the clusters in the underly-
ing graphs. A method for determining the clustering structure with the use of
the eigen-structure of the linkage matrix in order to determine the community
structure is proposed in [146]. An important characteristic of large networks is
that they can often be characterized by the nature of the underlying subgraphs.
In [27], a technique has been proposed for counting the number of subgraphs
of a particular type in a large network. It has been shown that this charac-
terization is very useful for clustering large networks. Such precision cannot
be achieved with the use of other topological properties. Therefore, this ap-
proach can also be used for community detection in massive networks. The
problem of community detection is particularly interesting in the context of
dynamic analysis of evolving networks in which we try to determine how the
communities in the graph may change over time. For example, we may wish
to determine newly forming communities, decaying communities, or evolving
communities. Some recent methods for such problems may be found in [9,
16, 50, 69, 74, 117, 131, 135, 171, 173]. The work in [9] also examines this
problem in the context of evolving graph streams. Many of these techniques

50 MANAGING AND MINING GRAPH DATA

examine the problem of community detection and change detection in a single
framework. This provides the ability to present the changes in the underlying
network in a summarized way.

Node clustering algorithms are closely related to the concept of centrality
analysis in networks. For example, the technique discussed in [158] uses a
k-medoids approach which yields k central points of the network. This kind
of approach is very useful in different kinds of networks, though in different
contexts. In the case of social networks, these central points are typically key
members in the network which are well connected to other members of the
community. Centrality analysis can also be used in order to determine the
central points in information flows. Thus, it is clear that the same kind of
structural analysis algorithm can lead to different kinds of insights in different
networks.

Centrality detection is closely related to the problem of information flow
spread in social networks. It was observed that many recently developed viral
flow analysis techniques [40, 127, 147] can be used in the context of a variety
of other social networking information flow related applications. This is be-
cause information flow applications can be understood with similar behavior
models as viral spread. These applications are: (1) We would like to determine
the most influential members of the social network; i.e. members who cause
the most flow of information outwards. (2) Information in the social behavior
often cascades through it in the same way as an epidemic. We would like to
measure the information cascade rate through the social network, and deter-
mine the effect of different sources of information. The idea is that monitoring
promotes the early detection of information flows, and is beneficial to the per-
son who can detect it. The cascading behavior is particularly visible in the
case of blog graphs, in which the cascading behavior is reflected in the form of
added links over time. Since it is not possible to monitor all blogs simultane-
ously, it is desirable to minimize the monitoring cost over the different blogs,
by assuming a fixed monitoring cost per node. This problem is NP-hard [127],
since the vertex-cover problem can be reduced to it. The main idea in [128]
is to use an approximation heuristic in order to minimize the monitoring cost.
Such an approach is not restricted to the blog scenario, but it is also applica-
ble to other scenarios such as monitoring information exchange in social net-
works, and monitoring outages in communication networks. (3) We would like
to determine the conditions which lead to the critical mass necessary for un-
controlled information transmission. Some techniques for characterizing these
conditions are discussed in [40, 187]. The work in [187] relates the structure of
the adjacency matrix to the transmissibility rate in order to measure the thresh-
old for an epidemic. Thus, the connectivity structure of the underlying graph
is critical in measuring the rate of information dissemination in the underlying

Graph Data Management and Mining: A Survey of Algorithms and Applications 51

network. It has been shown in [187] that the eigenstructure of the adjacency
matrix can be directly related to the threshold for an epidemic.

Other Computer Network Applications. Many of these techniques can
also be used for other kinds of networks such as communication networks.
Structural analysis and robustness of communication networks is highly de-
pendent upon the design of the underlying network graph. Careful design of
the underlying graph can help avoid network failures, congestions, or other
weaknesses in the overall network. For example, centrality analysis [158] can
be used in the context of a communication network in order to determine criti-
cal points of failure. Similarly, the techniques for flow dissemination in social
networks can be used to model viral transmission in communication networks
as well. The main difference is that we model viral infection probability along
an edge in a communication network instead of the information flow probabil-
ity along an edge in a social network.

Many reachability techniques [10, 48, 49, 53, 54, 184] can be used to de-
termine optimal routing decisions in computer networks. This is also related
to the problem of determining pairwise node-connectivity [7] in computer net-
works. The technique in [7] uses a compression-based synopsis to create an
effective connectivity index for massive disk-resident graphs. This is useful in
communication networks in which we need to determine the minimum number
of edges to be deleted in order to disconnect a particular pair of nodes from one
another.

4.3 Software Bug Localization

A natural application of graph mining algorithms is that of software bug
localization. Software bug localization is an important application from the
perspective of software reliability and testing. The control flow of programs
can be modeled in the form of call-graphs. The goal of software bug localiza-
tion techniques is to mine such call graphs in order to determine the bugs in
the underlying programs. Call graphs are of two types:

Static call graphs can be inferred from the source code of a given pro-
gram. All the methods, procedures and functions in the program are
nodes, and the relationships between the different methods are defined
as edges. It is also possible to define nodes for data elements and model
relationships between different data elements and edges. In the case of
static call graphs, it is often possible to use typical examples of the struc-
ture of the program in order to determine portions of the software where
atypical anamolies may occur.

Dynamic call graphs are created during program execution, and they
represent the invocation structure. For example, a call from one pro-

52 MANAGING AND MINING GRAPH DATA

cedure to another creates an edge which represents the invocation re-
lationship between the two procedures. Such call graphs can be ex-
tremely large in massive software programs, since such programs may
contain thousands of invocations between the different procedures. In
such cases, the difference in structural, frequency or sequence behav-
ior of successful and failing invocations can be used to localize soft-
ware bugs. Such call graphs can be particularly useful in localizing bugs
which are occasional in nature and may occur in some invocations and
not others.

We further note that bug localization is not exhaustive in terms of the kinds
of errors it can catch. For example, logical errors in a program which are
not a result of the program structure, and which do not affect the sequence or
structure of execution of the different methods cannot be localized with such
techniques. Furthermore software bug localization is not an exact science.
Rather, it can be used in order to provide software testing experts with possible
bugs, and they can use this in order to make relevant corrections.

An interesting case is one in which different program executions lead to
different structure, sequence and frequency of executions which are specific
to failures and successes of the final program execution. These failures and
successes may be a result of logical errors, which lead to changes in structure
and frequency of method calls. In such cases, the software bug-localization
can be modeled as a classification problem. The first step is to create call
graphs from the executions. This is achieved by tracing the program executions
during the testing process. We note that such call graphs may be huge and
unwieldy for use with graph mining algorithms. The large sizes of call-graphs
creates a challenge for graph mining procedures. This is because graph mining
algorithms are often designed for relatively small graphs, whereas such call
graphs may be huge. Therefore, a natural solution is to reduce the size of the
call graph with the use of a compression based approach. This naturally results
in loss of information, and in some cases, it also results in an inability to use
the localization approach effectively when the loss of information is extensive.

The next step is to use frequent subgraph mining techniques on the train-
ing data in order to determine those patterns which occur more frequently in
faulty executions. We note that this is somewhat similar to the technique often
utilized in rule-based classifiers which attempt to link particular patterns and
conditions to specific class labels. Such patterns are then associated with the
different methods and are used in order to provide a ranking of the methods and
functions in the program which may possibly contain bugs. This also provides
a causality and understanding of the bugs in the underlying programs.

We note that the compression process is critical in providing the ability to
efficiently process the underlying graphs. One natural method for reducing the
size of the corresponding graphs is to map multiple nodes in the call graph

Graph Data Management and Mining: A Survey of Algorithms and Applications 53

into a single node. For example, in total reduction, we map every node in
the call node which corresponds to the same method onto one node in the
compressed graph. Thus, the total number of nodes in the graph is at most
equal to the number of methods. Such a technique has been used in [136] in
order to reduce the size of the call graph. A second method which may be used
is to compress the iteratively executed structures such as loops into a single
node. This is a natural approach, since an iteratively executed structure is one
of the most commonly occurring blocks in call graphs. Another technique is
to reduce subtrees into single nodes. A variety of localization strategies with
the use of such reduction techniques are discussed in [67, 68, 72].

Finally, the reduced graphs are mined in order to determine discriminative
structures for bug localization. The method in [72] is based on determining dis-
criminative subtrees from the data. Specifically, the method finds all subtrees
which are frequent to failing executions, but are not frequent in correct execu-
tions. These are then used in order to construct rules which may be used for
specific instances of classification of program runs. More importantly, such
rules provide an understanding of the causality of the bugs, and this under-
standing can be used in order to support the correction of the underlying errors.

The above technique is designed for finding structural characteristics of the
execution which can be used for isolating software bugs. However, in many
cases the structural characteristics may not be the only features which may
be relevant to localization of bugs. For example, an important feature which
may be used in order to determine the presence of bugs is the relative fre-
quency of the invocation of different methods. For example, invocations which
have bugs may call a particular method more frequently than others. A natural
way to learn this is to associate edge weights with the call graph. These edge
weights correspond to the frequency of invocation. Then, we use these edge
weights in order to analyze the calls which are most relevant to discriminating
between correct and failing executions. A number of methods for this class of
techniques is discussed in [67, 68].

We note that both structure and frequency are different aspects of the data
which can be leveraged in order to perform the localization. Therefore, it
makes sense to combine these approaches in order to improve the localization
process. The techniques in [67, 68] create a score for both the structure-based
and frequency-based features. A combination of these scores is then used for
the bug localization process. It has been shown [67, 68] that such an approach
is more effective than the use of either of the two features.

Another important characteristic which can be explored in future work is to
analyze the sequence of program calls, rather than simply analyzing the dy-
namic call structure or the frequency of calls of the different methods. Some
initial work [64] in this direction shows that sequence mining encodes excel-
lent information for bug localization even with the use of simple methods.

54 MANAGING AND MINING GRAPH DATA

However, this technique does not use sophisticated graph mining techniques
in order to further leverage this sequence information. Therefore, it can be a
fruitful avenue for future research to incorporate sequential information into
the graph mining techniques which are currently available.

Another line of analysis is the analysis of static source code rather than the
dynamic call graphs. In such cases, it makes more sense to look particular
classes of bugs, rather than try to isolate the source of the execution error.
For example, neglected conditions in software programs [43] can create fail-
ing conditions. For example, a case statement in a software program with a
missing condition is a commonly occurring bug. In such cases, it makes sense
to design domain-specific techniques for localizing the bug. For this purpose,
techniques based on static program-dependence graphs are used. These are
distinguished from the dynamic call graphs discussed above, in the sense that
the latter requires execution of the program to create the graphs, whereas in this
case the graphs are constructed in a static fashion. Program dependence graphs
essentially create a graphical representation of the relationships between the
different methods and data elements of a program. Different kinds of edges
are used to denote control and data dependencies. The first step is to determine
conditional rules [43] in a program which illustrates the program dependen-
cies which are frequently occurring in a project. Then we search for (static)
instantiations within the project which violate these rules. In many cases, such
instantiations could correspond to neglected conditions in the software pro-
gram.

The field of software bug localization faces a number of key challenges.
One of the main challenges is that the work in the field has mostly focussed on
smaller software projects. Larger programs are a challenge, because the corre-
sponding call graphs may be huge and the process of graph compression may
lose too much information. While some of these challenges may be alleviated
with the development of more efficient mining techniques for larger graphs,
some advantages may also be obtained with the use of better representations at
the modeling level. For example, the nodes in the graph can be represented at a
coarser level of granularity at the modeling phase. Since the modeling process
is done with a better level of understanding of the possibilities for the bugs (as
compared to an automated compression process), it is assumed that such an
approach would lose much less information for bug localization purposes. A
second direction is to combine the graph-based techniques with other effective
statistical techniques [137] in order to create more robust classifiers. In future
research, it should be reasonable to expect that larger software projects can be
analyzed only with the use of such combined techniques which can make use
of different characteristics of the underlying data.

Graph Data Management and Mining: A Survey of Algorithms and Applications 55

5. Conclusions and Future Research

In this chapter, we presented a survey of graph mining and management
applications. We also provide a survey of the common applications which
arise in the context of graph mining applications. Much of the work in recent
years has focussed on small and memory-resident graphs. Much of the fu-
ture challenges arise in the context of very large disk-resident graphs. Other
important applications are designed in the context of massive graphs streams.
Graph streams arise in the context of a number of applications such as social
networking, in which the communications between large groups of users are
captured in the form of a graph. Such applications are very challenging, since
the entire data cannot be localized on disk for the purpose of structural analysis.
Therefore, new techniques are required to summarize the structural behavior
of graph streams, and use them for a variety of analytical scenarios. We expect
that future research will focus on the large-scale and stream-based scenarios
for graph mining.

Notes
1. FLWOR is an acronym for FOR-LET-WHERE-ORDER BY-RETURN.

References

[1] Chemaxon. Screen, Chemaxon Inc., 2005.

[2] Daylight. Daylight Toolkit, Daylight Inc, Mission Viejo, CA, USA, 2008.

[3] Oracle Spatial Topology and Network Data Models 10g Release
1 (10.1) URL: http://www.oracle.com/technology/products/spatial
/pdf/10g network model twp.pdf

[4] Semantic Web Challenge. URL: http://challenge.semanticweb.org/

[5] J. Abello, M. G. Resende, S. Sudarsky, Massive quasi-clique detection.
Proceedings of the 5th Latin American Symposium on Theoretical Infor-
matics (LATIN) (Cancun, Mexico). 598-612, 2002.

[6] S. Abiteboul, P. Buneman, D. Suciu. Data on the web: from relations to
semistructured data and XML. Morgan Kaufmann Publishers, Los Altos,
CA 94022, USA, 1999.

[7] C. Aggarwal, Y. Xie, P. Yu. GConnect: A Connectivity Index for Massive
Disk-Resident Graphs, VLDB Conference, 2009.

[8] C. Aggarwal, N. Ta, J. Feng, J. Wang, M. J. Zaki. XProj: A Framework
for Projected Structural Clustering of XML Documents, KDD Conference,
2007.

[9] C. Aggarwal, P. Yu. Online Analysis of Community Evolution in Data
Streams. SIAM Conference on Data Mining, 2005.

56 MANAGING AND MINING GRAPH DATA

[10] R. Agrawal, A. Borgida, H.V. Jagadish. Efficient Maintenance of Tran-
sitive Relationships in Large Data and Knowledge Bases, ACM SIGMOD
Conference, 1989.

[11] R. Agrawal, R. Srikant. Fast algorithms for mining association rules in
large databases, VLDB Conference, 1994.

[12] S. Agrawal, S. Chaudhuri, G. Das. DBXplorer: A system for keyword-
based search over relational databases. ICDE Conference, 2002.

[13] R. Ahuja, J. Orlin, T. Magnanti. Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, Englewood Cliffs, NJ, 1992.

[14] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis. On Stor-
ing Voluminous RDF Description Bases. In WebDB, 2001.

[15] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis. The
ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases.
In SemWeb, 2001.

[16] S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for
characterizing the evolutionary behavior of interaction graphs. ACM KDD
Conference, 2007.

[17] R. Baeza-Yates, A Tiberi. Extracting semantic relations from query logs.
ACM KDD Conference, 2007.

[18] Z. Bar-Yossef, R. Kumar, D. Sivakumar. Reductions in streaming algo-
rithms, with an application to counting triangles in graphs. ACM SODA
Conference, 2002.

[19] D. Beckett. The Design and Implementation of the Redland RDF Appli-
cation Framework. WWW Conference, 2001.

[20] P. Berkhin. A survey on pagerank computing. Internet Mathematics,
2(1), 2005.

[21] P. Berkhin. Bookmark-coloring approach to personalized pagerank com-
puting. Internet Mathematics, 3(1), 2006.

[22] M. Berlingerio, F. Bonchi, B. Bringmann, A. Gionis. Mining Graph-
Evolution Rules, PKDD Conference, 2009.

[23] S. Bhagat, G. Cormode, I. Rozenbaum. Applying link-based classifica-
tion to label blogs. WebKDD/SNA-KDD, pages 97–117, 2007.

[24] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti, S. Sudarshan. Key-
word searching and browsing in databases using BANKS. ICDE Confer-
ence, 2002.

[25] M. Bilgic, L. Getoor. Effective label acquisition for collective classifica-
tion. ACM KDD Conference, pages 43–51, 2008.

Graph Data Management and Mining: A Survey of Algorithms and Applications 57

[26] S. Boag, D. Chamberlin, M. F. Fern«andez, D. Florescu, J. Robie,
J. Sim«eon. XQuery 1.0: An XML query language. URL: W3C,
http://www.w3.org/TR/xquery/, 2007.

[27] I. Bordino, D. Donato, A. Gionis, S. Leonardi. Mining Large Networks
with Subgraph Counting. IEEE ICDM Conference, 2008.

[28] C. Borgelt, M. R. Berthold. Mining molecular fragments: Find- ing Rel-
evant Substructures of Molecules. ICDM Conference, 2002.

[29] S. Brin, L. Page. The Anatomy of a Large Scale Hypertextual Search
Engine, WWW Conference, 1998.

[30] H.J. Bohm, G. Schneider. Virtual Screening for Bioactive Molecules.
Wiley-VCH, 2000.

[31] B. Bringmann, S. Nijssen. What is frequent in a single graph? PAKDD
Conference, 2008.

[32] A. Z. Broder, M. Charikar, A. Frieze, M. Mitzenmacher. Syntactic
clustering of the web, WWW Conference, Computer Networks, 29(8–
13):1157–1166, 1997.

[33] J. Broekstra, A. Kampman, F. V. Harmelen. Sesame: A Generic Archi-
tecture for Storing and Querying RDF and RDF Schema. In ISWC Confer-
ence, 2002.

[34] H. Bunke. On a relation between graph edit distance and maximum com-
mon subgraph. Pattern Recognition Letters, 18: pp. 689–694, 1997.

[35] H. Bunke, G. Allermann. Inexact graph matching for structural pattern
recognition. Pattern Recognition Letters, 1: pp. 245–253, 1983.

[36] H. Bunke, X. Jiang, A. Kandel. On the minimum common supergraph of
two graphs. Computing, 65(1): pp. 13–25, 2000.

[37] H. Bunke, K. Shearer. A graph distance metric based on the maximal
common subgraph. Pattern Recognition Letters, 19(3): pp. 255–259, 1998.

[38] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, K.
Wilkinson. Jena: implementing the Semantic Web recommendations. In
WWW Conference, 2004.

[39] V. R. de Carvalho, W. W. Cohen. On the collective classification of email
"speech acts". ACM SIGIR Conference, pages 345–352, 2005.

[40] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, C. Faloutsos. Epidemic
thresholds in real networks. ACM Transactions on Information Systems
and Security, 10(4), 2008.

[41] D. Chakrabarti, Y. Zhan, C. Faloutsos R-MAT: A Recursive Model for
Graph Mining. SDM Conference, 2004.

[42] S. Chakrabarti. Dynamic Personalized Pagerank in Entity-Relation
Graphs, WWW Conference, 2007.

58 MANAGING AND MINING GRAPH DATA

[43] R.-Y. Chang, A. Podgurski, J. Yang. Discovering Neglected Conditions in
Software by Mining Dependence Graphs. IEEE Transactions on Software
Engineering, 34(5):579–596, 2008.

[44] O. Chapelle, A. Zien, B. Sch-olkopf, editors. Semi-Supervised Learning.
MIT Press, Cambridge, MA, 2006.

[45] S. S. Chawathe. Comparing Hierachical data in external memory. Very
Large Data Bases Conference, 1999.

[46] C. Chen, C. Lin, M. Fredrikson, M. Christodorescu, X. Yan, J. Han, Min-
ing Graph Patterns Efficiently via Randomized Summaries, VLDB Confer-
ence, 2009.

[47] L. Chen, A. Gupta, M. E. Kurul. Stack-based algorithms for pattern
matching on dags. VLDB Conference, 2005.

[48] J. Cheng, J. Xu Yu, X. Lin, H. Wang, P. S. Yu. Fast Computing of Reach-
ability Labelings for Large Graphs with High Compression Rate, EDBT
Conference, 2008.

[49] J. Cheng, J. Xu Yu, X. Lin, H. Wang, P. S. Yu. Fast Computation of
Reachability Labelings in Large Graphs, EDBT Conference, 2006.

[50] Y. Chi, X. Song, D. Zhou, K. Hino, B. L. Tseng. Evolutionary spectral
clustering by incorporating temporal smoothness. KDD Conference, 2007.

[51] C. Chung, J. Min, K. Shim. APEX: An adaptive path index for XML
data. In SIGMOD Conference, 2002.

[52] J. Clark, S. DeRose. XML Path Language (XPath). URL: W3C,
http://www.w3.org/TR/xpath/, 1999.

[53] E. Cohen. Size-estimation Framework with Applications to Transitive
Closure and Reachability, Journal of Computer and System Sciences, v.55
n.3, p.441-453, Dec. 1997.

[54] E. Cohen, E. Halperin, H. Kaplan, U. Zwick. Reachability and Distance
Queries via 2-hop Labels, ACM Symposium on Discrete Algorithms, 2002.

[55] S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv. XSEarch: A semantic search
engine for XML. VLDB Conference, 2003.

[56] M. P. Consens, A. O. Mendelzon. GraphLog: a visual formalism for real
life recursion. In PODS Conference, 1990.

[57] D. Conte, P. Foggia, C. Sansone, M. Vento. Thirty Years of Graph Match-
ing in Pattern Recognition. International Journal of Pattern Recognition
and Artificial Intelligence, 18(3): pp. 265–298, 2004.

[58] D. Cook, L. Holder. Mining Graph Data, John Wiley & Sons Inc, 2007.

[59] B. F. Cooper, N. Sample, M. Franklin, G. Hjaltason, M. Shadmon. A fast
index for semistructured data. In VLDB Conference, pages 341–350, 2001.

Graph Data Management and Mining: A Survey of Algorithms and Applications 59

[60] L.P. Cordella, P. Foggia, C. Sansone, M. Vento. A (Sub)graph Isomor-
phism Algorithm for Matching Large Graphs. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 26(20): pp. 1367–1372, 2004.

[61] G. Cormode, S. Muthukrishnan. Space efficient mining of multigraph
streams. ACM PODS Conference, 2005.

[62] K. Crammer Y. Singer. A new family of online algorithms for category
ranking. Journal of Machine Learning Research., 3:1025–1058, 2003.

[63] T. Dalamagas, T. Cheng, K. Winkel, T. Sellis. Clustering XML Docu-
ments Using Structural Summaries. Information Systems, Elsevier, Jan-
uary 2005.

[64] V. Dallmeier, C. Lindig, A. Zeller. Lightweight Defect Localization for
Java. In Proc. of the 19th European Conf. on Object-Oriented Program-
ming (ECOOP), 2005.

[65] M. Deshpande, M. Kuramochi, N. Wale, G. Karypis. Frequent
Substructure-based Approaches for Classifying Chemical Compounds.
IEEE Transactions on Knowledge and Data Engineering, 17: pp. 1036–
1050, 2005.

[66] E. W. Dijkstra. A note on two problems in connection with graphs. Nu-
merische Mathematik, 1 (1959), S. 269-271.

[67] F. Eichinger, K. B-ohm, M. Huber. Improved Software Fault Detection
with Graph Mining. Workshop on Mining and Learning with Graphs,
2008.

[68] F. Eichinger, K. B-ohm, M. Huber. Mining Edge-Weighted Call Graphs
to Localize Software Bugs. PKDD Conference, 2008.

[69] T. Falkowski, J. Bartelheimer, M. Spilopoulou. Mining and Visualizing
the Evolution of Subgroups in Social Networks, ACM International Con-
ference on Web Intelligence, 2006.

[70] M. Faloutsos, P. Faloutsos, C. Faloutsos. On Power Law Relationships of
the Internet Topology. SIGCOMM Conference, 1999.

[71] W. Fan, K. Zhang, H. Cheng, J. Gao. X. Yan, J. Han, P. S. Yu O. Ver-
scheure. Direct Mining of Discriminative and Essential Frequent Patterns
via Model-based Search Tree. ACM KDD Conference, 2008.

[72] G. Di Fatta, S. Leue, E. Stegantova. Discriminative Pattern Mining in
Software Fault Detection. Workshop on Software Quality Assurance, 2006.

[73] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J. Zhang. Graph Dis-
tances in the Data-Stream Model. SIAM Journal on Computing, 38(5): pp.
1709–1727, 2008.

[74] J. Ferlez, C. Faloutsos, J. Leskovec, D. Mladenic, M. Grobelnik. Moni-
toring Network Evolution using MDL. IEEE ICDE Conference, 2008.

60 MANAGING AND MINING GRAPH DATA

[75] M. Fiedler, C. Borgelt. Support computation for mining frequent sub-
graphs in a single graph. Workshop on Mining and Learning with Graphs
(MLG’07), 2007.

[76] M.A. Fischler, R.A. Elschlager. The representation and matching of pic-
torial structures. IEEE Transactions on Computers, 22(1): pp 67–92, 1973.

[77] P.-O. Fjallstrom. Algorithms for Graph Partitioning: A Survey, Linkoping
Electronic Articles in Computer and Information Science, Vol 3, no 10,
1998.

[78] G. Flake, R. Tarjan, M. Tsioutsiouliklis. Graph Clustering and Minimum
Cut Trees, Internet Mathematics, 1(4), 385–408, 2003.

[79] D. Fogaras, B. R«acz, K. Csalog«any, T. Sarl«os. Towards scaling fully per-
sonalized pagerank: Algorithms, lower bounds, and experiments. Internet
Mathematics, 2(3), 2005.

[80] M. S. Garey, D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness,W. H. Freeman, 1979.

[81] T. Gartner, P. Flach, S. Wrobel. On graph kernels: Hardness results and
efficient alternatives. 16th Annual Conf. on Learning Theory, pp. 129–143,
2003.

[82] D. Gibson, R. Kumar, A. Tomkins, Discovering Large Dense Subgraphs
in Massive Graphs, VLDB Conference, 2005.

[83] R. Giugno, D. Shasha, GraphGrep: A Fast and Universal Method for
Querying Graphs. International Conference in Pattern recognition (ICPR),
2002.

[84] S. Godbole, S. Sarawagi. Discriminative methods for multi-labeled clas-
sification. PAKDD Conference, pages 22–30, 2004.

[85] R. Goldman, J. Widom. DataGuides: Enable query formulation and opti-
mization in semistructured databases. VLDB Conference, pages 436–445,
1997.

[86] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram. XRANK: ranked key-
word search over XML documents. ACM SIGMOD Conference, pages 16–
27, 2003.

[87] M. S. Gupta, A. Pathak, S. Chakrabarti. Fast algorithms for top-k person-
alized pagerank queries. WWW Conference, 2008.

[88] R. H. Guting. GraphDB: Modeling and querying graphs in databases. In
VLDB Conference, pages 297–308, 1994.

[89] M. Gyssens, J. Paredaens, D. van Gucht. A graph-oriented object
database model. In PODS Conference, pages 417–424, 1990.

[90] J. Han, J. Pei, Y. Yin. Mining Frequent Patterns without Candidate Gen-
eration. SIGMOD Conference, 2000.

Graph Data Management and Mining: A Survey of Algorithms and Applications 61

[91] S. Harris, N. Gibbins. 3store: Efficient bulk RDF storage. In PSSS Con-
ference, 2003.

[92] S. Harris, N. Shadbolt. SPARQL query processing with conventional re-
lational database systems. In SSWS Conference, 2005.

[93] M. Al Hasan, V. Chaoji, S. Salem, J. Besson, M. J. Zaki. ORIGAMI: Min-
ing Representative Orthogonal Graph Patterns. ICDM Conference, 2007.

[94] D. Haussler. Convolution kernels on discrete structures. Technical Report
UCSC-CRL-99-10, University of California, Santa Cruz, 1999.

[95] T. Haveliwala. Topic-Sensitive Page Rank, World Wide Web Conference,
2002.

[96] H. He, A. K. Singh. Query Language and Access Methods for Graph
Databases, appears as a chapter in Managing and Mining Graph Data, ed.
Charu Aggarwal, Springer, 2010.

[97] H. He, Querying and mining graph databases. Ph.D. Thesis, UCSB, 2007.

[98] H. He, A. K. Singh. Efficient Algorithms for Mining Significant Sub-
structures from Graphs with Quality Guarantees. ICDM Conference, 2007.

[99] H. He, H. Wang, J. Yang, P. S. Yu. BLINKS: Ranked keyword searches
on graphs. SIGMOD Conference, 2007.

[100] J. Huan, W. Wang, J. Prins, J. Yang. Spin: Mining Maximal Frequent
Subgraphs from Graph Databases. KDD Conference, 2004.

[101] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins, A. Trop-
sha. Mining Spatial Motifs from Protein Structure Graphs. Research in
Computational Molecular Biology (RECOMB), pp. 308–315, 2004.

[102] V. Hristidis, N. Koudas, Y. Papakonstantinou, D. Srivastava. Keyword
proximity search in XML trees. IEEE Transactions on Knowledge and
Data Engineering, 18(4):525–539, 2006.

[103] V. Hristidis, Y. Papakonstantinou. Discover: Keyword search in rela-
tional databases. VLDB Conference, 2002.

[104] A. Inokuchi, T. Washio, H. Motoda. An Apriori-based Algorithm for
Mining Frequent Substructures from Graph Data. PKDD Conference,
pages 13–23, 2000.

[105] H. V. Jagadish. A compression technique to materialize transitive clo-
sure. ACM Trans. Database Syst., 15(4):558–598, 1990.

[106] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan,
A. Nierman, S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana,
Y. Wu, C. Yu. TIMBER: A native XML database. In VLDB Journal,
11(4):274–291, 2002.

[107] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, K. Thompson. TAX:
A tree algebra for XML. DBPL Conference, 2001.

62 MANAGING AND MINING GRAPH DATA

[108] G. Jeh, J. Widom. Scaling personalized web search. In WWW, pages
271–279, 2003.

[109] J. L. Jenkins, A. Bender, J. W. Davies. In silico target fishing: Pre-
dicting biological targets from chemical structure. Drug Discovery Today,
3(4):413–421, 2006.

[110] R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, G. Agrawal. Discov-
ering Frequent Topological Structures from Graph Datasets. ACM KDD
Conference, 2005.

[111] R. Jin, H. Hong, H. Wang, Y. Xiang, N. Ruan. Computing Label-
Constraint Reachability in Graph Databases. Under submission, 2009.

[112] R. Jin, Y. Xiang, N. Ruan, D. Fuhry. 3-HOP: A high-compression in-
dexing scheme for reachability query. SIGMOD Conference, 2009.

[113] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai,
H. Karambelkar. Bidirectional expansion for keyword search on graph
databases. VLDB Conference, 2005.

[114] H. Kashima, K. Tsuda, A. Inokuchi. Marginalized Kernels between La-
beled Graphs, ICML, 2003.

[115] R. Kaushik, P. Bohannon, J. Naughton, H. Korth. Covering indexes for
branching path queries. In SIGMOD Conference, June 2002.

[116] B.W. Kernighan, S. Lin. An efficient heuristic procedure for partitioning
graphs, Bell System Tech. Journal, vol. 49, Feb. 1970, pp. 291-307.

[117] M.-S. Kim, J. Han. A Particle-and-Density Based Evolutionary Cluster-
ing Method for Dynamic Networks, VLDB Conference, 2009.

[118] J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment.
Journal of the ACM, 46(5):pp. 604–632, 1999.

[119] R.I. Kondor, J. Lafferty. Diffusion kernels on graphs and other discrete
input spaces. ICML Conference, pp. 315–322, 2002.

[120] M. Koyuturk, A. Grama, W. Szpankowski. An Efficient Algorithm for
Detecting Frequent Subgraphs in Biological Networks. Bioinformatics,
20:I200–207, 2004.

[121] T. Kudo, E. Maeda, Y. Matsumoto. An Application of Boosting to Graph
Classification, NIPS Conf. 2004.

[122] R. Kumar, P Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, E.
Upfal. The Web as a Graph. ACM PODS Conference, 2000.

[123] M. Kuramochi, G. Karypis. Frequent subgraph discovery. ICDM Con-
ference, pp. 313–320, Nov. 2001.

[124] M. Kuramochi, G. Karypis. Finding frequent patterns in a large sparse
graph. Data Mining and Knowledge Discovery, 11(3): pp. 243–271, 2005.

Graph Data Management and Mining: A Survey of Algorithms and Applications 63

[125] J. Larrosa, G. Valiente. Constraint satisfaction algorithms for graph pat-
tern matching. Mathematical Structures in Computer Science, 12(4): pp.
403–422, 2002.

[126] M. Lee, W. Hsu, L. Yang, X. Yang. XClust: Clustering XML Schemas
for Effective Integration. CIKM Conference, 2002.

[127] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, N. S.
Glance. Cost-effective outbreak detection in networks. KDD Conference,
pp. 420–429, 2007.

[128] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, M. Hurst. Cascad-
ing Behavior in Large Blog Graphs, SDM Conference, 2007.

[129] J. Leskovec, J. Kleinberg, C. Faloutsos. Graphs over time: Densification
laws, shrinking diameters and possible explanations. ACM KDD Confer-
ence, 2005.

[130] J. Leskovec, E. Horvitz. Planetary-Scale Views on a Large Instant-
Messaging Network, WWW Conference, 2008.

[131] J. Leskovec, L. Backstrom, R. Kumar, A. Tomkins. Microscopic Evolu-
tion of Social Networks, ACM KDD Conference, 2008.

[132] Q. Li, B. Moon. Indexing and querying XML data for regular path
expressions. In VLDB Conference, pages 361–370, September 2001.

[133] W. Lian, D.W. Cheung, N. Mamoulis, S. Yiu. An Efficient and Scalable
Algorithm for Clustering XML Documents by Structure, IEEE Transac-
tions on Knowledge and Data Engineering, Vol 16, No. 1, 2004.

[134] L. Lim, H. Wang, M. Wang. Semantic Queries in Databases: Problems
and Challenges. CIKM Conference, 2009.

[135] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, B. L. Tseng. FacetNet: A frame-
work for analyzing communities and their evolutions in dynamic networks.
WWW Conference, 2008.

[136] C. Liu, X. Yan, H. Yu, J. Han, P. S. Yu. Mining Behavior Graphs for
“Backtrace” of Noncrashing Bugs. SDM Conference, 2005.

[137] C. Liu, X. Yan, L. Fei, J. Han, S. P. Midkiff. SOBER: Statistical
Model-Based Bug Localization. SIGSOFT Software Engineering Notes,
30(5):286–295, 2005.

[138] Q. Lu, L. Getoor. Link-based classification. ICML Conference, pages
496–503, 2003.

[139] F. Manola, E. Miller. RDF Primer. W3C, http://www.w3.org/TR/rdf-
primer/, 2004.

[140] A. McGregor. Finding Graph Matchings in Data Streams. APPROX-
RANDOM, pp. 170–181, 2005.

64 MANAGING AND MINING GRAPH DATA

[141] T. Milo and D. Suciu. Index structures for path expression. In ICDT
Conference, pages 277–295, 1999.

[142] S. Navlakha, R. Rastogi, N. Shrivastava. Graph Summarization with
Bounded Error. ACMSIGMOD Conference, pp. 419–432, 2008.

[143] M. Neuhaus, H. Bunke. Self-organizing maps for learning the edit costs
in graph matching. IEEE Transactions on Systems, Man, and Cybernetics,
35(3) pp. 503–514, 2005.

[144] M. Neuhaus, H. Bunke. Automatic learning of cost functions for graph
edit distance. Information Sciences, 177(1), pp 239–247, 2007.

[145] M. Neuhaus, H. Bunke. Bridging the Gap Between Graph Edit Distance
and Kernel Machines. World Scientific, 2007.

[146] M. Newman. Finding community structure in networks using the eigen-
vectors of matrices. Physical Review E, 2006.

[147] M. E. J. Newman. The spread of epidemic disease on networks, Phys.
Rev. E 66, 016128, 2002.

[148] J. Pei, D. Jiang, A. Zhang. On Mining Cross-Graph Quasi-Cliques, ACM
KDD Conference, 2005.

[149] Nidhi, M. Glick, J. Davies, J. Jenkins. Prediction of biological targets for
compounds using multiple-category bayesian models trained on chemoge-
nomics databases. J Chem Inf Model, 46:1124–1133, 2006.

[150] S. Nijssen, J. Kok. A quickstart in frequent structure mining can make
a difference. Proceedings of SIGKDD, pages 647–652, 2004.

[151] L. Page, S. Brin, R. Motwani, T. Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Technical report, Stanford Digital
Library Technologies Project, 1998.

[152] Z. Pan, J. Heflin. DLDB: Extending relational databases to support Se-
mantic Web queries. In PSSS Conference, 2003.

[153] J. Pei, D. Jiang, A. Zhang. Mining Cross-Graph Quasi-Cliques in Gene
Expression and Protein Interaction Data, ICDE Conference, 2005.

[154] E. Prud’hommeaux and A. Seaborne. SPARQL query language for
RDF. W3C, URL: http://www.w3.org/TR/rdf-sparql-query/, 2007.

[155] L. Qin, J.-X. Yu, L. Chang. Keyword search in databases: The power of
RDBMS. SIGMOD Conference, 2009.

[156] S. Raghavan, H. Garcia-Molina. Representing web graphs. ICDE Con-
ference, pages 405-416, 2003.

[157] S. Ranu, A. K. Singh. GraphSig: A scalable approach to mining signifi-
cant subgraphs in large graph databases. ICDE Conference, 2009.

[158] M. Rattigan, M. Maier, D. Jensen. Graph Clustering with Network Sruc-
ture Indices. ICML, 2007.

Graph Data Management and Mining: A Survey of Algorithms and Applications 65

[159] P. R. Raw, B. Moon. PRIX: Indexing and querying XML using pr-ufer
sequences. ICDE Conference, 2004.

[160] J. W. Raymond, P. Willett. Maximum common subgraph isomorphism
algorithms for the matching of chemical structures. J. Comp. Aided Mol.
Des., 16(7):521–533, 2002.

[161] K. Riesen, X. Jiang, H. Bunke. Exact and Inexact Graph Matching:
Methodology and Applications, appears as a chapter in Managing and
Mining Graph Data, ed. Charu Aggarwal, Springer, 2010.

[162] H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. GBoost:
A mathematical programming approach to graph classification and regres-
sion. Machine Learning, 2008.

[163] F. Sams-Dodd. Target-based drug discovery: is something wrong? Drug
Discov Today, 10(2):139–147, Jan 2005.

[164] P. Sarkar, A. Moore, A. Prakash. Fast Incremental Proximity Search in
Large Graphs, ICML Conference, 2008.

[165] P. Sarkar, A. Moore. Fast Dynamic Re-ranking of Large Graphs, WWW
Conference, 2009.

[166] A. D. Sarma, S. Gollapudi, R. Panigrahy. Estimating PageRank in Graph
Streams, ACM PODS Conference, 2008.

[167] V. Satuluri, S. Parthasarathy. Scalable Graph Clustering Using Stochas-
tic Flows: Applications to Community Discovery, ACM KDD Conference,
2009.

[168] R. Schenkel, A. Theobald, G. Weikum. Hopi: An efficient connection
index for complex XML document collections. EDBT Conference, 2004.

[169] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, J. F.
Naughton. Relational databases for querying XML documents: Limita-
tions and opportunities. VLDB Conference, 1999.

[170] N. Stiefl, I. A. Watson, K. Baumann, A. Zaliani. Erg: 2d pharmacophore
descriptor for scaffold hopping. J. Chem. Info. Model., 46:208–220, 2006.

[171] J. Sun, S. Papadimitriou, C. Faloutsos, P. Yu. GraphScope: Parameter
Free Mining of Large Time-Evolving Graphs, ACM KDD Conference,
2007.

[172] S. J. Swamidass, J. Chen, J. Bruand, P. Phung, L. Ralaivola, P. Baldi.
Kernels for small molecules and the prediction of mutagenicity, toxicity
and anti-cancer activity. Bioinformatics, 21(1):359–368, 2005.

[173] L. Tang, H. Liu, J. Zhang, Z. Nazeri. Community evolution in dynamic
multi-mode networks. ACM KDD Conference, 2008.

[174] B. Taskar, P. Abbeel, D. Koller. Discriminative probabilistic models for
relational data. In UAI, pages 485–492, 2002.

66 MANAGING AND MINING GRAPH DATA

[175] H. Tong, C. Faloutsos, J.-Y. Pan. Fast random walk with restart and its
applications. In ICDM, pages 613–622, 2006.

[176] S. TrißI, U. Leser. Fast and practical indexing and querying of very large
graphs. SIGMOD Conference, 2007.

[177] A. A. Tsay, W. S. Lovejoy, D. R. Karger. Random Sampling in Cut,
Flow, and Network Design Problems, Mathematics of Operations Re-
search, 24(2):383-413, 1999.

[178] K. Tsuda, W. S. Noble. Learning kernels from biological networks by
maximizing entropy. Bioinformatics, 20(Suppl. 1):i326–i333, 2004.

[179] K. Tsuda, H. Saigo. Graph Classification, appears as a chapter in Man-
aging and Mining Graph Data, Springer, 2010.

[180] J.R. Ullmann. An Algorithm for Subgraph Isomorphism. Journal of the
Association for Computing Machinery, 23(1): pp. 31–42, 1976.

[181] N. Vanetik, E. Gudes, S. E. Shimony. Computing Frequent Graph Pat-
terns from Semi-structured Data. IEEE ICDM Conference, 2002.

[182] R. Volz, D. Oberle, S. Staab, and B. Motik. KAON SERVER : A Se-
mantic Web Management System. In WWW Conference, 2003.

[183] H. Wang, C. Aggarwal. A Survey of Algorithms for Keyword Search on
Graph Data. appears as a chapter in Managing and Mining Graph Data,
Springer, 2010.

[184] H. Wang, H. He, J. Yang, J. Xu-Yu, P. Yu. Dual Labeling: Answering
Graph Reachability Queries in Constant Time. ICDE Conference, 2006.

[185] H. Wang, S. Park, W. Fan, P. S. Yu. ViST: A Dynamic Index Method for
Querying XML Data by Tree Structures. In SIGMOD Conference, 2003.

[186] H. Wang, X. Meng. On the Sequencing of Tree Structures for XML
Indexing. In ICDE Conference, 2005.

[187] Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos. Epidemic Spreading
in Real Networks: An Eigenvalue Viewpoint, SRDS, pp. 25-34, 2003.

[188] N. Wale, G. Karypis. Target identification for chemical compounds us-
ing target-ligand activity data and ranking based methods. Technical Re-
port TR-08-035, University of Minnesota, 2008.

[189] N. Wale, G. Karypis, I. A. Watson. Method for effective virtual screen-
ing and scaffold-hopping in chemical compounds. Comput Syst Bioinfor-
matics Conf, 6:403–414, 2007.

[190] N. Wale, X. Ning, G. Karypis. Trends in Chemical Graph Data Mining,
appears as a chapter in Managing and Mining Graph Data, Springer, 2010.

[191] N. Wale, I. A. Watson, G. Karypis. Indirect similarity based methods for
effective scaffold-hopping in chemical compounds. J. Chem. Info. Model.,
48(4):730–741, 2008.

Graph Data Management and Mining: A Survey of Algorithms and Applications 67

[192] N. Wale, I. A. Watson, G. Karypis. Comparison of descriptor spaces for
chemical compound retrieval and classification. Knowledge and Informa-
tion Systems, 14:347–375, 2008.

[193] C. Weiss, P. Karras, A. Bernstein. Hexastore: Sextuple Indexing for Se-
mantic Web Data Management. In VLDB Conference, 2008.

[194] K. Wilkinson. Jena property table implementation. In SSWS Conference,
2006.

[195] K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds. Efficient RDF
storage and retrieval in Jena2. In SWDB Conference, 2003.

[196] Y. Xu, Y. Papakonstantinou. Efficient LCA based keyword search in
XML data. EDBT Conference, 2008.

[197] Y. Xu, Y.Papakonstantinou. Efficient keyword search for smallest LCAs
in XML databases. ACM SIGMOD Conference, 2005.

[198] X. Yan, J. Han. CloseGraph: Mining Closed Frequent Graph Patterns,
ACM KDD Conference, 2003.

[199] X. Yan, H. Cheng, J. Han, P. S. Yu. Mining Significant Graph Patterns
by Scalable Leap Search, SIGMOD Conference, 2008.

[200] X. Yan, J. Han. Gspan: Graph-based Substructure Pattern Mining.
ICDM Conference, 2002.

[201] X. Yan, P. S. Yu, J. Han. Graph indexing: A frequent structure-based
approach. SIGMOD Conference, 2004.

[202] X. Yan, P. S. Yu, J. Han. Substructure similarity search in graph
databases. SIGMOD Conference, 2005.

[203] X. Yan, B. He, F. Zhu, J. Han. Top-K Aggregation Queries Over Large
Networks, IEEE ICDE Conference, 2010.

[204] J. X. Yu, J. Cheng. Graph Reachability Queries: A Survey, appears as a
chapter in Managing and Mining Graph Data, Springer, 2010.

[205] M. J. Zaki, C. C. Aggarwal. XRules: An Effective Structural Classifier
for XML Data, KDD Conference, 2003.

[206] T. Zhang, A. Popescul, B. Dom. Linear prediction models with graph
regularization for web-page categorization. ACM KDD Conference, pages
821–826, 2006.

[207] Q. Zhang, I. Muegge. Scaffold hopping through virtual screening using
2d and 3d similarity descriptors: Ranking, voting and consensus scoring.
J. Chem. Info. Model., 49:1536–1548, 2006.

[208] P. Zhao, J. Yu, P. Yu. Graph indexing: tree + delta >= graph. VLDB
Conference, 2007.

[209] D. Zhou, J. Huang, B. Sch-olkopf. Learning from labeled and unlabeled
data on a directed graph. ICML Conference, pages 1036–1043, 2005.

68 MANAGING AND MINING GRAPH DATA

[210] D. Zhou, O. Bousquet, J. Weston, B. Sch-olkopf. Learning with local and
global consistency. Advances in Neural Information Processing Systems
(NIPS) 16, pages 321–328. MIT Press, 2004.

[211] X. Zhu, Z. Ghahramani, J. Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. ICML Conference, pages 912–
919, 2003.

	Chapter 2 GRAPH DATA MANAGEMENT AND MINING: ASURVEYOF ALGORITHMS AND APPLICATIONS
	1. Introduction
	2. Graph Data Management Algorithms
	2.1 Indexing and Query Processing Techniques
	2.2 Reachability Queries
	2.3 Graph Matching
	2.4 Keyword Search
	2.5 Synopsis Construction of Massive Graphs

	3. Graph Mining Algorithms
	3.1 Pattern Mining in Graphs
	3.2 Clustering Algorithms for Graph Data
	3.3 Classification Algorithms for Graph Data
	3.4 The Dynamics of Time-Evolving Graphs

	4. Graph Applications
	4.1 Chemical and Biological Applications
	4.2 Web Applications
	4.3 Software Bug Localization

	5. Conclusions and Future Research
	References

