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Abstract

Mining chemical compounds in silico has drawn increasing attention from both
academia and pharmaceutical industry due to its effectiveness in aiding the drug
discovery process. Since graphs are the natural representation for chemical com-
pounds, most of the mining algorithms focus on mining chemical graphs. Chem-
ical graph mining approaches have many applications in the drug discovery pro-
cess that include structure-activity-relationship (SAR) model construction and
bioactivity classification, similar compound search and retrieval from chemical
compound database, target identification from phenotypic assays, efc. Solving
such problems in silico through studying and mining chemical graphs can pro-
vide novel perspective to medicinal chemists, biologist and toxicologist. More-
over, since the large scale chemical graph mining is usually employed at the early
stages of drug discovery, it has the potential to speed up the entire drug discov-
ery process. In this chapter, we discuss various problems and algorithms related
to mining chemical graphs and describe some of the state-of-the-art chemical
graph mining methodologies and their applications.
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1. Introduction

Labeled graphs (either topological or geometric) have been a promising ab-
straction to capture the characteristics of datasets arising in many fields such as
the world wide web, social networks, biology, and chemistry ([9], [13], [30],
[49]). The vertices of these graphs correspond to the entities in the objects and
the edges correspond to the relations between them. This graph-based repre-
sentation can directly capture many of the sequential, topological, geometric,
and other relational characteristics of such datasets. For example, in the do-
main of the world wide web and social networks the entire set of objects and
their relations are represented via a single large graph ([13]). In biology, ob-
jects to be mined are represented either as a single large graph (e.g., metabolic
and signaling pathways) or via separate graphs (e.g., protein structures) ([65],
[30], [33]). In chemistry, each object to be mined is represented via a separate
graph (e.g., molecular graphs) ([49]).

Graph mining over the above representations has found applications in the
domain of web data analysis such as the analysis of XML documents and we-
blogs, web searches, web document analysis ezc([9]). Graph mining is also
being used in social sciences for the analysis of social networks that help un-
derstand social phenomenon and group behavior([13]). In the domain of tradi-
tional sciences like biology and chemistry, graph mining has found numerous
important applications. For example, in biology graphs can be used to directly
model the key topological and geometric characteristics of protein molecules.
Vertices in these graphs will correspond to different amino acids. The edges
will correspond to the connections of amino acids in the protein’s backbone or
the non-covalent bonds(i.e., contact points) in the 3D structure. Mining these
graph patterns provides important insights into protein structure and function (
[22], [3D.

In chemistry, graphs can be used to directly model the key topological and
geometric characteristics of chemical structures. Vertices in these graphs cor-
respond to different atoms and the edges correspond to bonds that connect
atoms ([29]). Mining on a set of chemical compounds or molecules helps in
understanding the key characteristics of a set molecules for a given process
(such as toxicity and biological activity) and has become the primary applica-
tion area of chemical graph mining ([49], [40]). The typical applications per-
formed on chemical structures include mining sub-structures in a given set of
ligands ([40]), mining databases to retrieve other relevant compounds, cluster-
ing of chemical compounds based on common sub-structures, and predicting



Trends in Chemical Graph Data Mining 583

compound bioactivity by classification, regression and ranking techniques ([2],
[28]).

Most of the mining algorithms operate on the assumption that the proper-
ties and biological activity of a chemical compound are related to its structure
([2], [28]). This assumption is widely referred to as the structure-activity-
relationship principle or simply SAR. Hansch ([17]) demonstrated that the bi-
ological activity of a chemical compound can be mathematically expressed
as a function of its physiochemical properties, which led to the development
of quantitative methods for modeling structure-activity relationships (QSAR).
Since that work, many different approaches have been developed for building
such structure-activity-relationship (SAR) models. All of these models are de-
rived using some notion of structural similarity between chemical compounds.
The similarity is determined using a similarity function over a descriptor-space
representation, and the descriptor-space is most commonly generated from
chemical graphs. These models have become an essential tool for predicting
biological activity from the structural properties of a molecule.

The rest of this chapter will review some of the current trends in chemical
graph mining and modeling. It will highlight some of the techniques that exist
and that were recently developed for representing chemical compounds, build-
ing classification models, retrieving compounds from databases, and identify-
ing the proteins that the compounds will bind to. The chapter concludes by
outlining some of the future research directions in this field.

2. Topological Descriptors for Chemical Compounds

Descriptor-based representations of chemical compounds are used exten-
sively in cheminformatics, as they represent a convenient and computationally
efficient way to capture key characteristics of the compounds’ structures ([2],
[28]). Such representations have extensive applications to similarity search
and various structure-driven prediction problems for activity, toxicity, absorp-
tion, distribution, metabolism and excretion ([2]). Many of these descriptors
are derived by mining structural patterns from a set of molecular graphs of the
chemical compounds. Such descriptors include topological descriptors derived
directly from the topology of molecular graphs and 2D/3D pharmacophore de-
scriptors that describe the critical atoms/atom groups that are highly likely to
be involved in protein-ligand binding ([7], [32], [55], [28]). In the rest of this
section we review some of the topological descriptors that are used extensively
to represent chemical compounds and analyze their different properties. This
includes both a set of time-tested descriptors as well as recently developed
descriptors that have shown promising results.
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2.1 Hashed Fingerprints (FP)

Hash fingerprints are generally used to encode the 2D structural characteris-
tics of a chemical compound into a fixed bit vector and are used extensively for
various tasks in chemical informatics. These fingerprints are typically gener-
ated by enumerating all cycles and linear paths up to a given number of bonds
and hashing each of these cycles and paths into a fixed bit-string ([7], [4], [51],
[20]). The specific bit-string that is generated depends on the number of bonds,
the number of bits that are set, the hashing function, and the length of the bit-
string. The key property of these fingerprint descriptors is that they encode
a very large number of sub-structures into a compact representation. Many
variants of these fingerprints exist, some use predefined structural fragments in
conjunction with the fingerprints, for example, Unity fingerprints ([51]), oth-
ers count the number of times a bit position is set, for example, hologram (
[20]). However, a recent study has shown that the performance of most of
these fingerprints is comparable ([26]).

2.2 Maccs Keys (MK)

Molecular Design Limited (MDL) has created the key based fingerprints
Maccs Keys ([32]) based on pattern matching of a chemical compound struc-
ture to a pre-defined set of structural fragments. These fragments have been
identified by domain experts ([10]) to be important for bioactivity of chemical
compounds. The original set of descriptors consists of 166 structural frag-
ments and each such fragment becomes a key and occupies a fixed position in
the descriptor space. This approach relies on pre-defined rules to encapsulate
the essential molecular descriptors a-priori and does not learn them from the
chemical dataset. This descriptor space is notably different from fingerprint
based descriptor space. Unlike fingerprints, no folding (hashing) is performed
on the sub-structures.

2.3 Extended Connectivity Fingerprints (ECFP)

Molecular descriptors and fingerprints based on the extended connectivity
concept have been described by several authors ([42], [19]). The earliest con-
cept of such a descriptor-space was described in [59]. Recently, these finger-
prints have been popularized by their implementation within Pipeline Pilot (
[11]). These fingerprints are generated by first assigning some initial label to
each atom and then applying a Morgan type algorithm ([34]) to generate the
fingerprints. Morgan’s algorithm consists of [ iterations. In each iteration, a
new label is generated and assigned to each atom by combining the current
labels of the neighboring atoms (i.e, connected via a bond). The union of
the labels assigned to all the atoms over all the [ iterations are used as the
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descriptors to represent each compound. The key idea behind this descriptor
generation algorithm is to capture the topology around each atom in the form
of shells whose radius ranges from 1 to . Thus, these descriptors can capture
rather complex topologies. The value for [ is a user supplied parameter and
typically ranges from two to six.

24 Frequent Subgraphs (FS)

A number of methods have been proposed in recent years to mine frequently
occurring subgraphs (sub-structures) in a chemical graph database ([37], [61],
[27]). Frequent subgraphs of a chemical graph database D are defined as
all subgraphs that are present in at least 0 (0 < |D|) of compounds of the
database, where o is the absolute minimum frequency requirement (also called
absolute minimum support constraint). These frequent subgraphs can be used
as descriptors for the compounds in that database. A descriptor space formed
out of frequently occurring subgraphs depends on the value of o. Therefore,
the descriptor space can change for a particular problem instance if the value
of ¢ is changed. An advantage of such a descriptor space is that it can create
descriptors suitable for a given dataset. Moreover, the substructures mined con-
sist of arbitrary sizes and topologies. A potential disadvantage of this method
is that it is unclear how to select a suitable value of o for a given problem. A
very high value will fail to discover important subgraphs whereas a very low
value will result in combinatorial explosion of frequent subgraphs.

2.5 Bounded-Size Graph Fragments (GF)

Recently, a new descriptor space, Graph Fragments (GF), has been devel-
oped consisting of sub-structures or fragments that exist in a compound library
([55]). Graph Fragments of a chemical graph database D are defined as all con-
nected subgraphs present in every chemical graph of D that has a size of less
than or equal to the user supplied parameter [. Therefore, GF descriptor space
is a subset of the FS descriptor space generated using a absolute minimum sup-
port threshold of 1. However, instead of the minimum support threshold used
in generating FS, the user supplied parameter [ is used to control the combina-
torial complexity of the fragment generation process for GF and put an upper
bound on the size of fragments generated. An efficient algorithm to generate
the GF descriptors for a library of compounds is described in [55].

2.6 Comparison of Descriptors

A careful analysis of the descriptor spaces described in the previous sec-
tion illustrate four dimensions along which these schemes compare with each
other and represent some of the choices that have been explored in designing
fragment-based or fragment-derived descriptors for chemical compounds. Ta-



586 MANAGING AND MINING GRAPH DATA

Table 19.1. Design choices made by the descriptor spaces.

Previously developed descriptors

Generation Topological Complexity Precise Complete Coverage

FP dynamic Low No Yes
MK static Low to High Yes Maybe
ECFP  dynamic Low to High Maybe Yes
FS dynamic Low to High Yes Maybe
GF dynamic Low to High Yes Yes

FP refers to the hashed fingerprints, MK to Maccs keys, ECFP to extended connectivity fingerprints, FS to
frequent subgraphs, and GF to graph fragments.

ble 19.1 summarizes the characteristics of these descriptor spaces along the
four dimensions. The first dimension is associated with whether the frag-
ments are determined directly from the dataset at hand or they have been pre-
identified by domain experts. The fragments of Maccs keys have been deter-
mined a priori whereas all other descriptors are determined directly from the
dataset. The advantage of a priori approach is that it can capture domain knowl-
edge. However, due to the fixed set of fragments identified a priori it might not
adapt to the characteristics for a particular dataset. The second dimension is
associated with the topological complexity of the actual fragments. Schemes
like fingerprints use simple topologies consisting of paths and cycles. Descrip-
tors such as extended connectivity fingerprints, frequent subgraphs and graph
fragments allow topologies with arbitrary complexity. Topologically complex
fragments along with simple ones might enrich the descriptor space. The third
dimension is associated with whether or not the fragments are being precisely
represented in the descriptor space. Most schemes generate descriptors that are
precise in the sense that there is a one-to-one mapping between the fragments
and the dimensions of the descriptor space. In contrast, due to the hashing ap-
proach, descriptors such as fingerprints and extended connectivity fingerprints
lead to imprecise representations (i.e., many fragments can map to the same
dimension of the descriptor space). Depending on the number of these many-
to-one mappings, these descriptors can lead to representations with varying
degree of information loss. Finally, the fourth dimension is associated with the
ability of the descriptor space to cover all or nearly all of the dataset. Descriptor
spaces created from fingerprints, extended connectivity fingerprints, and graph
fragments are guaranteed to contain fragments or hashed fragments from each
one of the compounds. On the other hand, descriptor spaces corresponding to
Maccs keys and frequent sub-structures may lead to a descriptor-based repre-
sentation of the dataset in which some of the compounds have no or a very
small number of descriptors. A descriptor space that covers all the compounds
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Table 19.2. SAR performance of different descriptors.
Datasets fp ECFP MK FS GF

NCI1 030 032 029 027 033
NCI109 027 032 024 026 032
NCI123 025 027 024 0.23 0.27
NCI145 030 035 028 030 0.37
NCI167 0.06 0.06 0.04 0.06 0.07
NCI220 033 028 026 0.21 0.29
NCI33 026 031 026 025 033
NCI330 034 036 031 024 0.36
NCI41 025 036 028 030 0.36
NCI147 026 031 026 024 031
NCI81 027 028 025 024 0.28
NCI83 026 031 026 025 031

The numbers correspond to the ROC'’5 values of SVM-based SAR models for
twelve screening assays obtained from NCI. The ROC'5¢ value is the area under
the receiver operating characteristic curve (ROC) up to the first 50 false positives.
These values were computed using a 5-fold cross-validation approach. The de-
scriptors being evaluated are: graph fragments (GF) ([55]), extended connectivity
fingerprints (ECFP) ([28]), Chemaxon’s fingerprints (fp) (Chemaxon Inc.) ([4]),
Maccs keys (MK) (MDL Information Systems Inc.) ([32]), and frequent subgraphs
(FS) (I8D).

of a dataset has the advantage of encoding some amount of information for
every compound.

The qualitative comparison of the descriptors along the lines discussed
above is shown in Table 19.1. This table shows that unlike other descriptors,
GF descriptors satisfy all the key properties described earlier such as dynamic
generation, complex topology, precise representation, and complete cover-
age. For example, unlike path-based structural descriptors (fp) and extended-
connectivity fingerprints, they are guaranteed to have a one-to-one mapping
between a fragment and a dimension in the descriptor space. Moreover, unlike
fingerprints, they impose no limit on the complexity of the descriptor’s struc-
tures ([55]) and unlike Maccs Keys, the descriptors are dynamically generated
from the dataset at hand. Lastly, unlike FS, which may suffer from partial cov-
erage, this descriptor space is ensured to have 100% coverage by eliminating
the minimum support criterion and generating all fragments. Therefore, GF
descriptors allow for better representation of the underlying compounds and
they are expected to show better performance in the context of SAR based
classification and retrieval approaches.

A quantitative comparison in Table 19.2 shows classification results from a
recent study ([55]) using the NCI datasets obtained from the PubChem Project
([39]). These results empirically show that the GF descriptor space achieves
a performance that is either better or comparable to that achieved by currently
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used descriptors, indicating that the above mentioned properties are important
to capture the compounds’ structural characteristics.

3. Classification Algorithms for Chemical Compounds

Numerous approaches have been developed for building classifying mod-
els for various classes of interest (e.g., active/inactive, toxic/non-toxic, efc).
Depending on the class of interest, these models are often called structure-
activity-relationship (SAR) or structure-property-relationship (SPR) models.
Over the years, these approaches have evolved from the initial regression-based
techniques used by Hansch ([17]), to methods that utilize complex statisti-
cal model estimation procedures ([24], [28], [42], [2]). Among them, meth-
ods based on Support Vector Machines (SVM) ([52]) have recently become
very popular as they have been shown to produce highly accurate SAR and
SPR models for a wide-range of problems ([14], [57], [25], [24], [55], [15]).
Two broad classes of SVM-based methods have been developed. The first
operate on the descriptor-space representation of the chemical compounds,
whereas the second use various graph kernels that operate directly on the com-
pounds’ molecular graphs. However, despite their differences, the absolute
performance achieved by these methods is often comparable, and no winning
methodology has emerged.

3.1 Approaches based on Descriptors

The descriptor-space based approaches first represent each chemical com-
pound as a high-dimensional (frequency) vector based on the set of descrip-
tors that they contain (e.g., hashed fingerprints, graph fragments, etc) and then
utilize various vector-space-based kernel functions to determine the similarity
between the various compounds ([8], [49], [55], [57], [14]). Such functions in-
clude linear, radial basis function, Tanimoto coefficient, and Min-Max kernel
([49], [55]). The performance of these kernels has been extensively evaluated
with each other and the results have showed that the Tanimoto coefficient (also
known as the extended Jacquard similarity) and the Min-Max kernels are often
among the best performing schemes ([49], [55]). The Tanimoto coefficient is
defined as

M
E TiYi
i=1
M )
> (@F +y7 — iy

i=1

ICTC(X7 Y) -

3.1
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and the Min-Max kernel is defined as

M .
> min(zi, ;)

Kam (X,Y) = ——, (3.2)

> max(zi, y;)

i=1
where the terms x; and y; are the values along the it" dimension of the M
dimensional X and Y vectors, respectively.

A number of variations of these descriptor-based approaches have also been
developed. One of them, which is applicable when the descriptor spaces con-
tain a very large number of dimensions, involves the use of various feature se-
lection techniques to reduce the effective dimensionality of the descriptor space
by retaining only those descriptors that are over-represented in some classes (
[8], [311, [58]). Another variation, which is designed for descriptor spaces that
contain descriptors of different sizes, calculates a different similarity value for
the descriptors belonging to each of the different sizes and then combines them
to yield a single similarity value ([55]). This approach ensures that each indi-
vidual size contributes equally to the overall similarity score and that the score
is not unnecessarily dominated by the large-size descriptors, which are often
more abundant.

3.2 Approaches based on Graph Kernels

The approaches based on graph kernels determine the similarity of two
chemical compounds by directly comparing their molecular graphs without
having to generate an intermediate descriptor-based representation ([47], [49],
[40], [33]). A number of graph kernels have been developed and used in the
context of building SAR and SPR models. This includes approaches that mea-
sure the similarity between two molecular graphs as the size of their maximum
common subgraph ([41]), by using powers of adjacency matrices ([40]), by cal-
culating Markov random walks on the underlying graphs ([40]), and by using
weighted substructure matching between two graphs ([33]). For instance, the
kernels based on powers of adjacency matrices count shared labelled sequences
(paths) between two chemical graphs. Markov random walk kernels also com-
pute the matches generated by walks (paths) on the two chemical compounds.
However, as the name suggests, the match is derived by markov random walks
on the two graphs. Note that the above two kernels are similar in flavor to
path-based descriptor-space similarity described earlier. Weighted substruc-
ture matching kernel assigns weights based on the number of embeddings of
a common substructure found in the two chemical graphs. In this approach,
a substructure of size [ is centered around an atom and consists of all atoms
and bonds that can be reached by a path of length [ via this atom. This kernel
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is similar in flavor to the extended connectivity fingerprints (ECFP) described
earlier. However, in the case of this kernel function, no explicit descriptor-
space is generated.

4. Searching Compound Libraries

Searching large databases of chemical compounds, often referred to as com-
pound libraries, in order to identify compounds that share the same bioac-
tivity (i.e., they bind to the same protein or class of proteins) with a certain
query compound is arguably the most widely used operation involving chem-
ical compounds and an essential step towards the iterative optimization of a
compound’s binding affinity, selectivity, and other pharmaceutically relevant
properties. This search is usually performed against different libraries (e.g.,
corporate library, libraries of commercially available compounds, libraries of
patented compounds, etc) and provide key information that can be used to iden-
tify other more potent compounds and to guide the synthesis of small-scale
libraries around the initial query compounds.

Depending on the initial properties of the query compound and the goal of
the iterative optimization process, there are two distinct types of operations
that the database search mechanisms needs to support. The first is the standard
rank-retrieval operation whose goal is to identify compounds that are similar
to the query in terms of their bioactivity. The second is the scaffold-hopping
operation whose goal is to identify compounds that are similar to the query
in terms of their bioactivity but their structures are different from that of the
query (different scaffolds). This latter operation is used when the query com-
pound has some undesirable properties such as toxicity, bad ADME (absorp-
tion, distribution, metabolism and excretion), or may be promiscuous ([18],
[45]). Since these properties are often shared by the compounds that have very
similar structures, it is important to identify as many chemical compounds as
possible that not only show the desired activity for the biomolecular target but
also have different structures (come from diverse chemical classes or chemo-
types) ([64], [18], [48]). Furthermore, scaffold-hopping is also important from
the point of view of un-patented chemical space. Many important lead com-
pounds and drug candidates have already been patented. In order to find new
therapies and offer alternative treatments it is important for a pharmaceuti-
cal company to discover novel leads significantly different from the existing
patented chemical space.

The solution to the ranked-retrieval operation relies on the well known fact
that the chemical structure of a compound relates to its activity (SAR). As such,
effective solutions can be devised that rank the compounds in the database
based on how structurally similar they are to the query. However, for scaffold-
hopping, the compounds retrieved must be structurally sufficiently similar to
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possess similar bioactivity but at the same time must be structurally dissimilar
enough to be a novel chemotype. This is a much harder operation than simple
ranked-retrieval as it has the additional constraint of maximizing dissimilarity
that runs counter to the relationship between the structure of a compound and
its activity.

The rest of this section describes two sets of techniques for performing
the ranked-retrieval and scaffold-hopping operations. The first are inspired
by advances in automatic relevance feedback mechanism and use techniques
such as the automatic query expansion to identify structurally different com-
pounds from the query. The second measure the similarity between the query
and a compound by taking into account additional information beyond their
structure-based similarities. This indirect way of measuring similarity en-
ables the retrieval of compounds that are structurally different from the query
but at the same time possess the desired bioactivity. The indirect similarities
are derived by analyzing the similarity network formed by the query and the
database compounds. These indirect similarity based techniques operate on
the descriptor-space representation of the compounds and are independent of
the selected descriptor-space.

4.1 Methods Based on Direct Similarity

Many methods have been proposed for ranked-retrieval and scaffold-
hopping that directly operate on the underlying descriptor space representa-
tion. These direct similarity based methods can be divided into two groups.
The first contains methods that rely on better designed descriptor-space rep-
resentations, whereas the second contains methods that are not specific to any
descriptor-space representation but utilize different retrieval strategies to im-
prove the overall performance.

Among the first set of methods, 2D descriptors described in Section 2 such
as path-based fingerprints (fp), dictionary based keys (MACCS) and more re-
cently Extended Connectivity fingerprints (ECFP) as well as Graph Fragments
(GF) have all been successfully applied for the retrieval problem([55]). How-
ever, for scaffold-hopping, pharmacophore based descriptors such as ErG (
[48]) have been shown to outperform 2D topology based descriptors ([48],
[64]). Lastly, descriptors based on 3D structure or conformations of the
molecule have also been applied successfully for scaffold-hopping ([64], [45]).

The second set of methods include the turbo search based schemes ([18])
which utilize ideas from automatic relevance feedback mechanism ([1]). The
turbo search techniques operate as follows. Given a query ¢, they start by
retrieving the top-k compounds from the database. Let A be the (k + 1)-size
set that contains ¢ and the top-k£ compounds. For each compound ¢ € A, all
the compounds in the database are ranked in decreasing order based on their
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similarity to ¢, leading to k + 1 ranked lists. These lists are combined to obtain
the final similarity of each compound with respect to the initial query. Similar
methods based on consensus scoring, rank averaging, and voting have also
been investigated ([64]).

4.2 Methods Based on Indirect Similarity

Recently, a set of techniques to improve the scaffold-hopping performance
have been introduced that are based on measuring the similarity between the
query and a compound by taking into account additional information beyond
their descriptor-space-based representation ([54], [56]). These methods are
motivated by the observation that if a query compound ¢ is structurally similar
to a database compound c¢; and ¢; is structurally similar to another database
compound c;, then ¢ and ¢; could be considered as being similar or related
even though they may have zero or very low direct similarity. This indirect
way of measuring similarity can enable the retrieval of compounds that are
structurally different from the query but at the same time, due to associativity,
possess the same bioactivity properties with the query.

The set of techniques developed to capture such indirect similarities are
inspired by research in the fields of information retrieval and social network
analysis. These techniques derive the indirect similarities by analyzing the net-
work formed by a k-nearest-neighbor graph representation of the query and the
database compounds. The network linking the database compounds with each
other and with the query is determined by using a k-nearest-neighbor (NG) and
a k-mutual-nearest-neighbor (MG) graph. Both of these graphs contain a node
for each of the compounds as well as a node for the query. However, they differ
on the set of edges that they contain. In the k-nearest-neighbor graph there is
an edge between a pair of nodes corresponding to compounds ¢; and c;, if ¢;
is in the k-nearest-neighbor list of ¢; or vice-versa. In the k-mutual-nearest-
neighbor graph, an edge exists only when ¢; is in the k-nearest-neighbor list
of ¢; and c; is in the k-nearest-neighbor list of ¢;. As a result of these defini-
tions, each node in NG will be connected to at least k£ other nodes (assuming
that each compound has a non-zero similarity to at least k£ other compounds),
whereas in MG, each node will be connected to at most & other nodes.

Since the neighbors of each compound in these graphs correspond to some
of its most structurally similar compounds and due to the relation between
structure and activity (SAR), each pair of adjacent compounds will tend to have
similar activity. Thus, these graphs can be considered as network structures for
capturing bioactivity relations.

A number of different approaches have been developed for determining the
similarity between nodes in social networks that take into account various topo-
logical characteristics of the underlying graphs ([50], [13]).For the problem of
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scaffold-hopping, the similarity between a pair of nodes is determined as a
function of the intersection of their adjacency lists ([54], [56]), which takes
into account all two-edge paths connecting these nodes. Specifically, the simi-
larity between ¢; and c¢; with respect to graph G is given by

adjg(ci) Nadjg(c))
adjg(ci) Uadjg(cj)’

where adj;(c;) and adjg(c;) are the adjacency lists of ¢; and ¢; in G, respec-
tively.

This measure assigns a high similarity value to a pair of compounds if both
are very similar to a large set of common compounds. Thus, compounds that
are part of reasonably tight clusters (i.e., a set of compounds whose struc-
tural similarity is high) will tend to have high indirect similarities as they will
most likely have a large number of common neighbors. In such cases, the indi-
rect similarity measure re-enforces the existing high direct similarities between
compounds. However, the indirect similarity between a pair of compounds c;
and c¢; can also be high even if their direct similarity is low. This can hap-
pen when the compounds in adjs(c;) N adjg(c;) match different structural
descriptors of ¢; and c;. In such cases, the indirect similarity measure is capa-
ble of identifying relatively weak structural similarities, making it possible to
identify scaffold-hopping compounds.

Given the above graph-based indirect similarity measures, various strategies
can be employed to retrieve compounds from the database. Three such strate-
gies are discussed below. The first corresponds to that used by the standard
ranked-retrieval method, whereas the other two are inspired by information re-
trieval methods used for automatic relevance feedback ([1]) and are specifically
designed to improve the scaffold-hopping performance.

isimg(ci, Cj) = (4-1)

Best-Sim Retrieval Strategy.  This is the most widely used retrieval strat-
egy and it simply returns the compounds that are the most similar to the query.
Specifically, if A is the set of compounds that have been retrieved thus far, then
the next compound c,,¢,; that is selected is given by

Cnext = arg max{isim(c;, q)}. (4.2)

c;eED—A
This compound is added to A, removed from the database, and the overall
process is repeated until the desired number of compounds has been retrieved

([56D.

Best-Sum Retrieval Strategy. This retrieval strategy incorporates addi-
tional information from the set of compounds retrieved thus far (set A). Specif-
ically, the compound selected, c¢;,¢.¢, is the one that has the highest average
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similarity to the set A U {q}. That is,

Cnext = arg max{isim(c;, AU {q})}. (4.3)
c,eD—A

The motivation behind this approach is that due to SAR, the set A will con-
tain a relatively large number of active compounds. Thus, by modifying the
similarity between ¢ and a compound c to also include how similar c is to the
compounds in the set A, a similarity measure that is re-enforced by A’s active
compounds is obtained ([56]). This enables the retrieval of active compounds
that are similar to the compounds present in A even if their similarity to the

query is not very high; thus, enabling scaffold-hopping.

Best-Max Retrieval Strategy. A key characteristic of the retrieval strategy
described above is that the final ranking of each compound is computed by tak-
ing into account all the similarities between the compound and the compounds
in the set A. Since the compounds in A will tend to be structurally similar
to the query compound, this approach is rather conservative in its attempt to
identify active compounds that are structurally different from the query (i.e.,
scaffold-hops).

To overcome this problem, a retrieval strategy was developed ([56]) that is
based on the best-sum approach but instead of selecting the next compound
based on its average similarity to the set A U {q¢}, it selects the compound that
is the most similar to one of the compounds in A U {g}. That is, the next
compound is given by

Cnegt = argmax{ max isim(c;,¢;)}. 4.4)
c;eD—A ¢ €AU{q}

In this approach, if a compound c; other than ¢ has the highest similarity
to some compound ¢; in the database, ¢; is chosen as ¢+ and added to A
irrespective of its similarity to q. Thus, the query-to-compound similarity is
not necessarily included in every iteration as in the other schemes, allowing this
strategy to identify compounds that are structurally different from the query.

4.3 Performance of Indirect Similarity Methods

The performance of indirect similarity-based retrieval strategies based on
the NG as well as MG graph was compared to direct similarity based on
Tanimoto coefficient ([56]). The compounds were represented using differ-
ent descriptor-spaces (GF, ECFP, and ErG). The quantitative results showed
that indirect similarity is consistently, and in many cases substantially, bet-
ter than direct similarity. Figure 19.1 shows a part of the results in [56] which
compare MG based indirect similarity to direct Tanimoto coefficient (TM) sim-
ilarity searching using ECFP descriptors. It can be observed from the figure
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Figure 19.1. Performance of indirect similarity measures (MG) as compared to similarity search-
ing using the Tanimoto coefficient (TM).
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Tanimoto indicates the performance of similarity searching using the Tanimoto coefficient with extended
connectivity descriptors; MG indicates the performance of similarity searching using the indirect similarity
approach on the mutual neighbors graph formed using extended connectivity fingerprints.

that indirect similarity outperforms direct similarity for scaffold-hopping ac-
tive retrieval in all of six datasets that were tested. It can also be observed that
indirect similarity outperforms direct similarity for active compound retrieval
in all datasets except MAO. Moreover, the relative gains achieved by indirect
similarity for the task of identifying active compounds with different scaffolds
is much higher, indicating that it performs well in identifying compounds that
have similar biomolecule activity even when their direct similarity is low.

S. Identifying Potential Targets for Compounds

Target-based drug discovery, which involves selection of an appropriate tar-
get (typically a single protein) implicated in a disease state as the first step, has
become the primary approach of drug discovery in pharmaceutical industry (
[2], [46]). This was made possible by the advent of High Throughput Screen-
ing (HTS) technology in the late 1980s that enabled rapid experimental testing
of a large number of chemical compounds against the target of interest. HTS
is now routinely utilized to identify the most promising compounds (Aits) that
show desired binding/activity against a given target. Some of these compounds
then go through the long and expensive process of optimization, and eventu-
ally one of them may go to clinical trials. If clinical trails are successful then
the compound becomes a drug. HTS technology ushered in a new era of drug
discovery by reducing the time and money taken to find hits that will have a
high chance of eventually becoming a drug.

However, the increased number of candidate hits from HTS did not increase
the number of actual drugs coming out of the drug discovery pipeline. One of
the principal reasons for this failure is that the above approach only focuses on
the target of interest, taking a very narrow view of the disease. As such, it may
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lead to unsatisfactory phenotypic effects such as toxicity, promiscuity, and low
efficacy in the later stages of drug discovery ([46]). More recently, research
focus is shifting to directly screen molecules to identify desirable phenotypic
effects using cell-based assays. This screening evaluates properties such as tox-
icity, promiscuity and efficacy from the onset rather than in later stages of drug
discovery ([23], [46]). Moreover, toxicity and off-target effects are also a focus
of early stages of conventional target-based drug discovery ([5]). But from the
drug discovery perspective, target identification and subsequent validation has
become the rate limiting step in order to tackle the above issues ([12]). Targets
must be identified for the hits in phenotypic assay experiments and for sec-
ondary pharmacology as the activity of hits against all of its potential targets
sheds light on the toxicity and promiscuity of these hits ([5]). Therefore, the
identification of all likely targets for a given chemical compound, also called
Target Fishing ([23]), has become an important problem in drug discovery.

Computational techniques are becoming increasingly popular for target fish-
ing due to large amounts of data from high-throughput screening (HTS), mi-
croarrays, and other experiments ([23]). Given a compound, these techniques
initially assign a score to each potential target based on some measure of like-
lihood that the compound binds to the target. These techniques then select
as the compound’s targets either those targets whose score is above a cer-
tain cut-off or a small number of the highest scoring targets. Some of the
early target fishing methods utilized approaches based on reverse docking (
[5]) and nearest-neighbor classification ([35]). Reverse docking approaches
dock a compound against all the targets of interest and identify as the most
likely targets those that achieve the best binding affinity score. Note that these
approaches are applicable only for proteins with resolved 3D structure and as
such their applicability is somewhat limited. The nearest-neighbor approaches
rely on the structure-activity-relationship (SAR) principle and identify as the
most likely targets for a compound the targets whose nearest neighbors show
activity against. In these approaches the solution to the target fishing problem
only depends on the underlying descriptor-space representation, the similar-
ity function employed, and the definition of nearest neighbors. However, the
performance of these approaches has been recently surpassed by a new set
of model-based methods that solve the target fishing problem using various
machine-learning approaches to learn models for each one of the potential tar-
gets based on their known ligands ([36], [25], [53]). These methods are further
discussed in the subsequent sections.

5.1 Model-based Methods For Target Fishing

Two different approaches have been employed to build models suitable for
target fishing. In the first approach, a separate SAR model is built for every
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target. For a given test compound, these models are used to obtain a score for
each target against this compound. The highest scoring targets are then con-
sidered as the most likely targets that this compound will bind to ([36], [53],
[23]). This approach is similar to the reverse docking approach described ear-
lier. However, the target scores for a compound are obtained from the models
built for each target instead of the docking procedure. The second approach
treats target fishing problem as an instance of the multilabel prediction prob-
lem and uses category ranking algorithms([6]) to solve this problem ([53]).

Bayesian Models for Target Fishing (Bayesian). This approach utilizes
multi-category bayesian models ([36]) wherein a model is built for every target
in the database using SAR data available for each target. Compounds that show
activity against a target are used as positives for that target and the rest of the
compounds are treated as negatives. The input to the algorithm is a training
set consisting of a set of chemical compounds and a set of targets. A model
is learned for every target given a descriptor-space representation of training
chemical compounds ([36]). For a new chemical compound whose targets have
to be predicted, an estimator score is computed for each target reflecting the
likelihood of activity against this target using the learned models. The target
can be ranked according to their estimator scores and the targets that get high
scores can be considered as the most likely targets for this compound.

SVM-based Method (SVM rank).  This approach for solving the ranking
problem builds for each target a one-versus-rest binary SVM classifier ([53]).
Given a test chemical compound c, the classifier for each target will then be
applied to obtain a prediction score. The ranking of the targets will be obtained
by simply sorting the targets based on their prediction scores. If there are N
targets in the set of targets 7 and f;(c) is the score obtained for the i* target,
then the final ranking 7 is obtained by

T* = argsort { fi(c)}, (5.1
TiE

where argsort returns an ordering of the targets in decreasing order of their
prediction scores f;(c). Note that this approach assumes that the prediction
scores obtained from the NV binary classifiers are directly comparable, which
may not necessarily be valid. This is because different classes may be of differ-
ent sizes and/or less separable from the rest of the dataset, indirectly affecting
the nature of the binary model that was learned, and consequently its prediction
scores. This SVM-based sorting method is similar to the approach proposed
by Kawai and co-workers ([25]).

Cascaded SVM-based Method (Cascade SVM). A limitation of the pre-
vious approach is that by building a series of one-vs-rest binary classifiers,
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Figure 19.2. Cascaded SVM Classifiers.

it does not explicitly couple the information on the multiple categories that
each compound belongs to during model training. As such it cannot capture
dependencies that might exist between the different categories. A promising
approach that has been explored to capture such dependencies is to formulate
it as a cascaded learning problem ([53], [16]). In these approaches, two sets of
binary one-vs-rest classification models for each category, referred to as L; and
Lo, are connected together in a cascaded fashion. The L; models are trained
on the initial inputs and their outputs are used as input, either by themselves
or in conjunction with the initial inputs, to train the Lo models. This cascaded
process is illustrated in Figure 19.2. During prediction time, the L; models are
first used to obtain predictions which are used as input to the Lo models which
produces the final predictions. Since the Ly models incorporate information
about the predictions produced by the L1 models, they can potentially capture
inter-category dependencies.

A two level SVM based method inspired by the above approach is described
in [53]. In this method, both the L; and Lo models consist of N binary one-
vs-rest SVM classifiers, one for each target in the set of targets 7. The L
models correspond exactly to the set of models built by the one-vs-rest method
discussed in the previous approach. The representation of each compound in
the training set for the Ly models consists of its descriptor-space based repre-
sentation and its output from each of the N L; models. Thus, each compound
c corresponds to an n + N dimensional vector, where n is the dimensionality
of the descriptor space. The final ranking 7 * of the targets for a test compound
will be obtained by sorting the targets based on their prediction scores from the
Ly models (f2(c)). That is,

T* = argsort {fZL2 (c)} , (5.2)

TZ‘ET

Ranking Perceptron Based Method (RP).  This approach is based on the
online version of the ranking perceptron algorithm proposed to learn a ranking
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function on a set of categories developed by Crammer and Singer ([6], [53]).
This algorithm takes as input a set of objects and the categories that they be-
long to and learns a function that for a given object c it ranks the different
categories based on the likelihood that ¢ binds to the corresponding targets.
During the learning phase, the distinction between categories is made only via
a binary decision function that takes into account whether a category is part
of the object’s categories (relevant set) or not (non-relevant set). As a result,
even though the output of this algorithm is a total ordering of the categories,
the learning is only dependent on the partial orderings induced by the set of
relevant and non-relevant categories.

The algorithm employed for target fishing extends the work of Crammer and
Singer by introducing margin based updates and extending the online version
to a batch setting([53]). It learns a linear model W that corresponds to a N X
n matrix, where N is the number of targets and n is the dimensionality of
the descriptor space. Thus, the above method can be directly applied on the
descriptor-space representation of the training set of chemical compounds.

Finally, the prediction score for compound c¢; and target 7; is given by
(W;, ¢;), where W is the jth row of W, ¢; is the descriptor-space represen-
tation of the compound, and (-, -) denotes a dot-product operation. Therefore,
the predicted ranking for a test chemical compound c is given by

T* = argsort{ (W, c)}. (5.3)

T;€

SVM-+Ranking Perceptron-based Method (SVM+RP). A limitation of
the above ranking perceptron method over the SVM-based methods is that it
is a weaker learner as (i) it learns a linear model, and (ii) it does not provide
any guarantees that it will converge to a good solution when the dataset is not
linearly separable. In order to partially overcome these limitations a scheme
that is similar in nature to the cascaded SVM-based approach previously de-
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scribed was developed in which the Ly models are replaced by a ranking per-
ceptron ([53]). Specifically, /N binary one-vs-rest SVM models are trained,
which form the set of L; models. Similar to the cascade SVM method, the
representation of each compound in the training set for the Lo models con-
sists of its descriptor-space based representation and its output from each of
the N L; models. Finally, a ranking model W learned using the ranking per-
ceptron described in the previous section. Since the Lo model is based on the
descriptor-space based representation and the outputs of the L; models, the
size of Wis N x (n+ N).

5.2 Performance of Target Fishing Strategies

An extensive evaluation of the different Target Fishing methods was per-
formed recently ([53]) which primarily used the PubChem ([39]) database
to extract target-specific dose-response confirmatory assays. Specifically, the
ability of the five methods to identify relevant categories in the top-k ranked
categories was assessed in this work. The results were analyzed along this
direction because this directly corresponds to the use case scenario where a
user may want to look at top-k predicted targets for a test compound and fur-
ther study or analyze them for toxicity, promiscuity, off-target effects, path-
way analysis efc([53]). The comparisons utilized precision and recall metric
in top-k for each of the five schemes. as shown in Figures 19.3a) and 19.3b).
These figures show the actual precision and recall values in top-k by varying k
from one to fifteen.

These figures indicate that for identifying one of the correct categories or tar-
gets in the top 1 predictions, cascade SVM outperforms all the other schemes
in terms of both precision and recall. However, as k increases from one to fif-
teen, the precision and recall results indicate that the best performing scheme
is the SVM+Ranking Perceptron and it outperforms all other schemes for both
precision as well as recall. Moreover, these values in figure 19.3b) show that
as k increases from one to fifteen, both the ranking perceptron based schemes
(RP and SVM+RP) start performing consistently better that others in identify-
ing all the correct categories. The two ranking perceptron based schemes also
achieve average precision values that are better than other schemes in the top
fifteen (Figure 19.3a)).

6. Future Research Directions

Mining and retrieving chemical data for a single biomolecular target and
building SAR models on it has been traditionally used to predict as well as
analyze the bioactivity and other properties of chemical compounds and plays
a key role in drug discovery. However, in recent years the wide-spread use
of High-Throughput Screening (HTS) technologies by the pharmaceutical in-
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dustry has generated a wealth of protein-ligand activity data for large com-
pound libraries against many biomolecular targets. The data has been system-
atically collected and stored in centralized databases ([38]). At the same time,
the completion of the human genome sequencing project has provided a large
number of “druggable” protein targets ([44]) that can be used for therapeutic
purposes. Additionally, a large fraction of the protein targets that have or are
currently been investigated for therapeutic purposes are confirmed to belong
to a small number of gene families ([62]). The combination of these three
factors has led to the development of methods that utilize information that
goes beyond the traditional single biomolecular target’s chemical data analy-
sis. In recent years, the trend has been to integrate chemical data with protein
and genetic data (bioinformatics data) and analyze the problem over multiple
proteins or different protein families. Consequently, Chemogenomics ([43]),
Poly-Pharmacology ([38])and Target Fishing ([23]) have emerged as important
problems in drug discovery.

Another new direction that utilizes graph mining is network pharmacology.
A fundamental assumption in drug discovery that has been applied widely in
the past decades is the “one gene, one drug, on disease” assumption. How-
ever, the increasing failure in translating drug candidates into effective ther-
apies raises the challenges to this assumption. Recent studies show that the
modulating or effecting an individual gene or gene product has little effects on
disease network. For example, under laboratory conditions, many single-gene
knockouts by themselves exhibit little or no effects on phenotype and only
19% of genes were found to be essential across a number of model organisms
([63]). This robustness of phenotype can be understood in terms of redundant
functions and alternative compensatory signalling routes. In addition, large
scale functional genomics studies reveal the importance of polypharmacology,
which suggests that is, instead of focusing on drugs that are maximally selec-
tive against a single drug target, the focus should be to select the drug can-
didates that interact with multiple proteins that are essential in the biological
network. This new paradigm is refereed to as network pharmacology ([21]).

Graph mining has also been utilized to study the drug-target interaction net-
work. Such networks provide topological information between drug and tar-
get interactions that once explored may suggest novel perspective in terms of
drug discovery that is not possible by looking at drugs and targets in isolation.
Learning from drug-target interaction networks has been focused on predicting
drugs for targets that are novel, or that have only a few drugs known (7arget
Hopping). These methods tend to leverage the knowledge of both targets and
the drug simultaneously to obtain characteristics of drug-target interaction net-
works. Many of the learning methods utilize Support Vector Machine (SVM).
In this approach, novel kernels have been developed that relate drugs and tar-
gets explicitly. For example, Yamanish er al.([60]), developed profiles to repre-
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sent interactions between drugs and targets, and then used kernel regression to
the relationship among the interactions. Their framework enables predictions
of unknown drug-target interactions.

With the improvement in high throughput technologies in chemistry, ge-
nomics, proteomics, and chemical genetics, graph mining is set to play an
important role in the understanding of human disease and pursuit of novel ther-
apies for these diseases.
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