
Chapter 15

A SURVEY OF GRAPH MINING FOR
WEB APPLICATIONS

Debora Donato
Yahoo! Research
Avd Diagonal 177, Barcelona, Spain

debora@yahoo-inc.com

Aristides Gionis
Yahoo! Research
Avd Diagonal 177, Barcelona, Spain

gionis@yahoo-inc.com

Abstract Graph structures provide a general framework for modeling entities and their
relationships, and they are routinely used to describe a wide variety of data such
as the Internet, the web, social networks, metabolic networks, protein-interaction
networks, food webs, citation networks, and many more. In recent years, there
has been an increasing amount of literature on studying properties, models, and
algorithms for graph data. In this chapter we provide a brief overview of graph-
mining algorithms for web and social-media applications. We review a wide
range of algorithms, such as those for estimating reputation and popularity of
items in a network, mining query logs and performing query recommendations.
The main goal of the chapter is to provide the reader with an understanding of
how graph structural mining algorithms can be exploited in the context of web
applications. This highlights the challenges of, and provides an understanding of
the power of graph mining in the context of web and social-media applications.

Keywords: Graph Mining, Link Mining, Web Mining, Social Network Analysis, World
Wide Web, Query-Log Mining, Query Recommendation

© Springer Science+Business Media, LLC 2010

C.C. Aggarwal and H. Wang (eds.), Managing and Mining Graph Data,
Advances in Database Systems 40, DOI 10.1007/978-1-4419-6045-0_15,

455

456 MANAGING AND MINING GRAPH DATA

1. Introduction

Graph mining has been widely used to study relationships among various
types of entities. Real-world graphs are also referred to as networks, and the
interactions between the entities represented in the networks are modeled as
links. The problems of studying the properties of real-world networks, design-
ing algorithms for mining such networks, and developing applications on top
of network data has been of increasing interest in the past few years. This has
led to the birth of a very active area of scientific research, which is known as
analysis of complex networks [7, 16, 55].

One of the most pervasive properties of real-world networks is the emer-
gence of power-law distributions that tend to characterize many of networks
statistical properties [6, 26]. Power laws have intrigued the interest of re-
searchers, who have proposed various models that attempt to explain the pres-
ence of power-law distributions in real graphs. For examples of such models,
see [6, 25, 40].

In this chapter, we deviate from the classical exposition of properties and
generative models for complex networks, and we focus on graph-mining ap-
plications that appear in the context of the web and social-media. Such graphs
include data that model the interaction of users in a social network. For ex-
ample, this may correspond to comments of users in a blog, user activity in a
question-answering portal, or query-log data that summarize the interaction of
users with a search engine. Understanding the structure of such graphs, mod-
eling the complex interactions between entities, and designing algorithms for
leveraging the latent knowledge (also known as the wisdom of the crowds) in
those graphs introduces new challenges in the field of graph mining. One im-
portant difference with networks that have been previously studied, is that in
social-media and web-usage graphs the links represent many different types of
interactions and activities among nodes. For instance in a question-answering
portal, users ask questions, answer questions for other users, vote for favorite
answers, interesting questions, assign answers to categories of a hierarchy, and
much more. Hence graphs from such applications are characterized by having
different types of nodes and high degree of heterogeneity in the types of in-
teractions among nodes. Consequently, algorithms and methodologies widely
applied in the web and other complex networks have to be adapted to this new
multifaceted scenario, which allows for the different meanings that are implic-
itly or explicitly captured by each link.

This chapter is organized as follows. In Section 2 we briefly introduce mea-
sures and algorithms that have been extensively used as basic tools for graph
mining. Then we focus on two different areas of graph mining in the context
of social-media and web applications. In Section 3, we review techniques for
identifying items of high quality in social-media networks. We discuss two

A Survey of Graph Mining for Web Applications 457

concrete examples: (1) predicting the number of citations of authors in a bib-
liographic data set, and (2) finding high-quality items in a question answering
system. In both cases, the examples rely on adapting link-mining algorithms
for computing authoritativeness scores in linked environments. In Section 4
we discuss algorithms for mining graph structures that represented information
collected in the query logs of search engines. We first discuss various graph
representations of query logs, and then discuss how to use these representa-
tions in order to perform the task of query recommendation. The conclusions
are presented in Section 5.

2. Preliminaries

An undirected graph G = (V,E) consists of a set of nodes V , also called
vertices, and a set E of pairs of distinct nodes, which are called edges or arcs.
A directed graph, or digraph, is distinguished from the undirected version by
the fact that its edges are ordered pairs of nodes. In an undirected graph, the
degree of a node is the number of edges incident to it. For a directed graph,
we define the in-degree and the out-degree of a node to be the number of in-
coming and out-going edges, respectively.

In an undirected graph G, a set of nodes S forms a connected component
(CC), if for every pair of nodes u, v ∈ S there exists a path from u to v (which
is also a path from v to u). In a directed graph G, a set of nodes S forms
a strongly connected component (SCC), if for every pair of nodes u, v ∈ S,
there exists a (directed) path from u to v, and a path from v to u. A set of
nodes S forms a weakly connected component (WCC), if and only if the set
S is a connected component in the undirected graph Gu that is obtained by
ignoring the directionality of the edges in G.

Power laws and scale-free networks. Power-law distributions ubiquitously
characterize real-world networks. We say that a discrete random variable X
follows a power-law distribution if the probability distribution is defined for
each discrete value k as follows:

Pr[X = k] ∝ k−

The value is called the exponent of the power-law. We assume that ≥ 0.
Detailed surveys on power laws may be found in [45] and [46].

If a random variable X follows a power-law distribution, then we know that
the conditional probability Pr[X ≥ k ∣ X ≥ m] is the same as Pr[X ≥ k].
In other words, conditioning on the size does not yield any additional infor-
mation. For this reason, networks that have attributes that follow a power-law
distribution are also called scale-free networks.

Degree and Assortativeness. The degree of the nodes of a graph can be of
great interest in social-media applications. The out-degree of a node might

458 MANAGING AND MINING GRAPH DATA

provide an indication of its capacity to influence his neighbors. This prop-
erty is called expansiveness [58]. On the other hand, the in-degree is the most
straightforward measure for the popularity of each node in the network. Com-
plex networks exhibit large variance in the values of their degrees: very few
nodes have the capacity of attracting a large fraction of links while the largest
majority of nodes are connected to the network by few in-coming and out-
going links.

Significant insight on the nature of the graph can be obtained by measuring
the correlation between the degrees of adjacent vertexes [47]. This is also re-
ferred to as assortative mixing. Complex networks can be divided into three
types based on the value of their mixing coefficient r: (i) disassortative if
r < 0; (ii) neutral if r ≈ 0; and (iii) assortative if r > 0. An alternative
way to identify assortative or disassortative network is by using the average
degree E[knn(k)] of a neighboring vertex of a vertex with degree k [47]. As
k increases, the expectation E[knn(k)] increases for an assortative network
and decreases for a disassortative one. In particular, a power-law equation
E[knn(k)] ≈ k− is satisfied, where is negative for an assortative network
and positive for a disassortative one [49]. Social networks such as friendship
networks are mostly assortative mixed, but technological and biological net-
works tend to be disassortative [62]. “Assortative mating” is a well-known so-
cial phenomenon that captures the likelihood that marriage partners will share
common background characteristics, whether it is income, education, or so-
cial status. In online activity networks such as question-answering portals and
newsgroups, the degree correlation provides information about user tendency
to provide help. Such kind of networks are neutral or slightly disassortative:
active users are prone to contribute without considering the expertise or the
involvements of the users searching for help [63, 20].

Centrality and prestige. A key issue in social network analysis is the identi-
fication of the most important or prominent nodes. The measure of centrality
captures whether a node is involved in a high number of ties regardless the di-
rectionality of the edges. Various definitions of centrality have been suggested.
For instance, the closeness centrality is just the degree of a node eventually
normalized by the number of all nodes V in the network. Two alternative mea-
sures of centrality are the distance centrality and the betweenness centrality.
The closeness centrality Dc of a node u is the average distance of u to the rest
of the nodes in the graph:

Dc(u) =
1

∣V ∣ − 1

∑

v ∕=u

d(u, v),

where d(u, v) is the shortest-path distance between u and v. Similarly, the
betweenness centrality ℬc of a node u is the average number of shortest paths

A Survey of Graph Mining for Web Applications 459

that pass through u:

ℬc(u) =
∑

s ∕=u ∕=t

�st(u)

�st
,

where �st(u) is the number of shortest paths from the node s to the node t that
pass through node u, and �st is the total number of shortest paths from s to t.

A different concept for identifying important nodes is the measure of pres-
tige, which exclusively considers the capacity of the node to attract incoming
links, and ignores the capacity of initiating any outgoing ties. The basic intu-
ition behind the prestige definition is the idea that a link from node u to node
v denotes endorsement. In its simplest form, the prestige of a node is defined
to be its in-degree, but there are other alternative definitions of prestige [58].
This concept is also at the core of a number of link analysis algorithms, an
issue which we will explore in the next section.

2.1 Link Analysis Ranking Algorithms

PageRank. Although we can view the existence of a link between two
pages as an endorsement of authority from the former to the latter, the in-
degree measure is a rather superficial way to examine page authoritativeness.
This is because such a measure can easily be manipulated by creating spam
pages which point to a particular target page in order to improve its authority. A
smarter method of assigning authority score to a node is by using the PageRank
algorithm [48], which uses the authoritative information of both the source and
target page in an iterative way in order to determine the rank. The PageRank
algorithm models the behavior of a “random surfer” on the Web graph. The
surfer essentially browses the documents by following hyperlinks randomly.
More specifically, the surfer starts from some node arbitrarily. At each step the
surfer proceeds as follows:

With probability � an outgoing hyperlink is selected randomly from the
current document, and the surfer moves to the document pointed by the
hyperlink.

With probability 1 − � the surfer jumps to a random page chosen ac-
cording to some distribution. This distribution is typically chosen to be
the uniform distribution.

The value Rank(i) of a node i (called the PageRank value of node i) is the frac-
tion of time that the surfer spends at node i. Intuitively, Rank(i) is a measure
of the importance of node i.

PageRank is expressed in matrix notation as follows. Let N be the number
of nodes of the graph and let n(j) be the out-degree of node j. We define the
square matrix M as one in which the entry Mij = 1

n(j) if there is a link from

460 MANAGING AND MINING GRAPH DATA

node j to node i. We define the square matrix
[
1
N

]
of size N × N that has

all entries equal to 1
N . This matrix models the uniform distribution of jumping

to a random node in the graph. The vector Rank stores the PageRank values
that are computed for each node in the graph. A matrix M ′ is then derived
by adding transition edges of probability 1−�

N between every pair of nodes to
include the case of jumping to a random node of the graph.

M ′ = �M + (1− �)
[
1

N

]

Since the PageRank algorithm computes the stationary distribution of the ran-
dom surfer, we have M ′Rank = Rank. In other words, Rank is the princi-
pal eigenvector of the matrix M ′, and thus it can be computed by the power-
iteration method [15].

The notion of PageRank has inspired a large body of research on design-
ing improved algorithms for more efficient computation of PageRank [24,
54, 36, 42], and for providing alternative definitions that can be used to ad-
dress specific issues in search, such as personalization [27], topic-specific
search [12, 32], and spam detection [8, 31].

One disadvantage of the PageRank algorithm is that while it is superior to a
simple indegree measure, it continues to be prone to adversarial manipulation.
For instance, one of the methods that owners of spam pages use to boost the
ranking of their pages is to create a large number of auxiliary pages and hyper-
links among them, called link-farms, which result in boosting the PageRank
score of certain target spam pages [8].

HITS. The main intuition behind PageRank is that authoritative nodes are
linked to by other authoritative nodes. The Hits algorithm, proposed by Jon
Kleinberg [38], introduced a double-tier paradigm for measuring authority. In
the Hits framework, every page can be thought of as having a hub and an
authority identity. There is a mutually reinforcing relationship between the
two: a good hub is a page that points to many good authorities, while a good
authority is a page that is pointed to by many good hubs.

In order to quantify the quality of a page as a hub and as an authority, Klein-
berg associated every page with a hub and an authority score, and he proposed
the following iterative algorithm: Assuming n pages with hyperlinks among
them, let h and a denote n-dimensional hub and authority score vectors. Let
also W be an n × n matrix, whose (i, j)-th entry is 1 if page i points to page
j and 0 otherwise. Initially, all scores are set to 1. The algorithm iteratively
updates the hub and authority scores sequentially one after the other and vice-
versa. For a node i, the authority score of node i is set to be the sum of the hub
scores of the nodes that point to i, while the hub score of node i is the author-
ity score of the nodes pointed by i. In matrix-vector terms this is equivalent

A Survey of Graph Mining for Web Applications 461

to setting h = Wa and a = W Th. A normalization step is then applied, so
that the vectors h and a become unit vectors. The vectors a and h converge to
the principal eigenvectors of the matrices W TW and WW T , respectively. The
vectors a and h correspond to the right and left singular vectors of the matrix
W .

Given a user query, the Hits algorithm determines a set of relevant pages
for which it computes the hub and authorities scores. Kleinberg’s approach
obtains such an initial set of pages by submitting the query to a text-based
search engine. The pages returned by the search engine are considered as a
root set, which is consequently expanded by adding other pages that either
point to a page in the root set or are pointed by a page in the root set.

Kleinberg showed that additional information can be obtained by using more
eigenvectors, in addition to the principal ones. Those additional eigenvectors
correspond to clusters or distinct topics associated with the user query. One
important characteristic of the Hits algorithm is that it computes page scores
that depend on the user query: one particular page might be highly authorita-
tive with respect to one query, but not such an important source of information
with respect to another query. On the other hand, it is computationally ex-
pensive to compute eigenvectors for each query. This makes the algorithm
computationally demanding. In contrast, the authority scores computed by the
PageRank algorithm are not query-sensitive, and thus, they can be computed
in a preprocessing stage.

3. Mining High-Quality Items

Online expertise-sharing communities have recently become extremely pop-
ular. The online media that allow the spread of this enormous amount of
knowledge can take many different forms: users are sharing their knowledge
in blogs, newsgroups, newsletters, forums, wikis, and question/answering por-
tals. Those social-media environments can be represented as graphs with nodes
of different types and with various types of relations among nodes. In the rest
of the section we describe particular characteristics of the graphs arising in
social-media environments, and their importance in driving the graph-mining
process.

There are two main factors that differentiate social media from the tradi-
tional Web: (i) content-quality variance and (ii) interaction multiplicity. Dif-
ferently from the traditional Web, in which the content is mediated by pro-
fessional publishers, in social-media environments the content is provided by
users. The massive contribution of users to the system leads to a high variance
in the distribution of the quality of available content. With everyone able to
create content and share any single opinion and thought, Thus the problem of
determining items of high quality in an environment of excessive content is

462 MANAGING AND MINING GRAPH DATA

(a) Single Item: (b) Double Item: (c) Multiple Items:
Single Relation Model Double Relation Model Multiple Relation Model

Figure 15.1. Relation Models for Single Item, Double Item and Multiple Items

one of the most important issues to be solved. Furthermore, filtering out and
ranking relevant items is more complex than in other domains.

The second aspect that must be considered is the wide variety of types of
nodes, of relations among such nodes, and of interactions among users. For
instance, the PageRank and HITS algorithms considers a simple graph model
with one type of nodes (documents) and one type of edges (hyperlinks), see
Figure 15.1(a).

On the other hand, social media are characterized by much more hetero-
geneous and rich structure, with a wide variety of user-to-document relation
types and user-to-user interactions. In Figure 15.1(b) is shown the structure of
a citation network as CiteSeer [21]. In this case, nodes can be of two types:
author and article. Edges can also be of two types, is-an-author-of be-
tween a node of type author and a node of type article, and cites between
two nodes of type article.

A more complex structure can be found in a question-answering portal, such
as Yahoo! Answers [61], a graphical representation of which is shown in Fig-
ure 15.1(c). The main types of nodes are the following:

user, representing the users registered with the system; they can act as
askers or answerers, and can vote or comment questions and answers
provided by other users,
question, representing the questions asked by the users,
answer, prepresenting the answers provided by the users.

Potential interesting research questions to ask for this type of application are
the following: (i) find items of high-quality, (ii) predict which items will be-
come successful in the future (assuming a dynamic environment), (iii) identify
experts on a particular topic.

As in the case of other social-media applications, the variance of content
quality in Yahoo! Answers is very high. According to Su et al. [56], the number
of correct answers to specific questions varies from 17% to 45%, meanwhile

A Survey of Graph Mining for Web Applications 463

the number of questions with at least one good answer is between 65% and
90%.

When a higher number of nodes and relations are involved, the features that
can be exploited for developing successful ranking algorithms become notably
more complex. Algorithms based on single-item models may still be profitably
used, provided that the underlying multi-graphs can be projected on a single
dimension. The results obtained at each projection provide a multifaceted set
of features that can be profitably used for tuning automatic classifiers able to
discern high-quality items, or to identify experts.

In the rest of this chapter we detail a methodology for mining multi-item
multi-relation graphs for two particular study cases. In the first case we de-
scribe the methodology presented in [18] for predicting successful items in a
co-citation network, while in the second case we report the work of Agichtein
et al. [2] for determining high-quality items in a question-answering portal.

3.1 Prediction of Successful Items in a Co-citation
Network

Predicting the impact that a book or an article might have on readers is of
great interest for publishers and editors for the purpose of planning market-
ing campaigns or deciding the number of copies to print. This problem was
addressed in [18], where the authors present a methodology to estimate the
number of citations that an article will receive, which is one measure of impact
in a scientific community. The data was extracted by the large collection of
academic articles made publicly available by CiteSeer [21] through an Open
Archives Initiative (OAI) interface.

The two main objects in bibliometric networks are authors and papers. A
bibliographic network can be modeled by a graph G = (Va ∪ Vp, Ea ∪ Ec),
where (i) Va represents the set of authors, (ii) Vp represents the set of the pa-
pers, (iii) Ea ⊆ Va × Vp represents the edges that express which author has
written which paper, and (iv) Ec ⊆ Vp × Vp represents the edges that ex-
press which paper cites which. To model the dynamics of the citation network,
different snapshots can be considered, with Gt = (Vt,a ∪ Vt,p, Ea,t ∪Et,c) rep-
resenting the snapshot at time t. The set of edges Ea,t and Ec,t can also be
represented by matrices Pa,t and Pc,t respectively.

One way to model the network is by assigning a dual role to each author: in
one role, an author produces original content (i.e., as authorities in the Klein-
berg model. In the other role, an author provides an implicit evaluation of other
authors (i.e., as a hub) with the use of citations. Fujimura and Tanimoto [29]
present an algorithm, called EigenRumor, for ranking object and users when
they act in this dual role. In their framework, the authorship relation Pa,t is
called information provisioning, while the citation relation Pc,t is called infor-

464 MANAGING AND MINING GRAPH DATA

mation evaluation. One of the main advantages of the EigenRumor algorithm
is that the relations implied by both information provisioning and information
evaluation are used to address the problem of correctly ranking items produced
by sources that have been proven to be authoritative, even if the items them-
selves have not still collected a high number of in-links. The EigenRumor
algorithm has been proposed in order to overcome the problem of algorithms
like PageRank, which tend to favor items that have been present in the network
for a period of time long enough to accumulate many links.

For the task of predicting the number of citations of a paper, Castillo et
al. [18] use supervised learning methods that rely on features extracted from
the co-citation network. In particular, they propose to exploit features that
determine popularity, and then to train a classifier. Three different types of
features are extracted: (1) a priori author-based features, (2) a priori link-
based features, and (3) a posteriori features.

A priori author-based features. These features capture the popularity
of previous papers of the same authors. At time t, the past publication
history of a given author a can be expressed in terms of:

(i) Total number of citations Ct(a) received by the author i from all the
papers published before time t.

(ii) Total number of papers Mt(a) published by the author a before
time t

Mt(a) = ∣ {p∣(a, p) ∈ Ea ∧ time(p) < t} ∣.

(iii) Total number of coauthors At(a) for papers published before time
t

At(a) = ∣
{
a′∣(a′, p) ∈ Ea ∧ (a, p) ∈ Ea ∧ time(p) < t ∧ a′ ∕= a

}
∣

Given that one paper can have multiple authors, the previous three kinds
of features are aggregated. For each, we consider the maximum, the
average and the sum over all the co-authors of each paper.

A priori link-based features. These features are based on the intuition
that mutual reinforcement characterizes the relation between citing and
cited authors: good authors are probably aware of the best previous arti-
cles written in a certain field, and hence they tend to cite the most rele-
vant of them. As mentioned previously, the EigenRumor algorithm [29]
can be used for ranking objects and users.

The reputation score of a paper p is denoted by r(p). The authority and
the hub values of the author a are denoted by at(a) and ht(a) respec-
tively. The EigenRumor algorithm is formalized as follows:

A Survey of Graph Mining for Web Applications 465

– r = P T
a,tat expresses the fact that good papers are likely to be

written by good authors,
– r = P T

c,tht expresses the fact that good papers are likely to be cited
by good authors,

– at = Pa,tr expresses the fact that good authors usually write good
papers,

– ht = Pc,tr expresses the fact that good authors usually cite good
papers.

Combining the previous equations with a mixing parameter �, gives the
following formula for the score vector:

r = �P T
a,tat + (1− �)P T

c,tht.

A posteriori features. These features are simply used to count the num-
ber of citations of a paper at the end of a few time intervals that are much
shorter than the target time for the prediction that has to be made.

With respect to the case in which only a posteriori citations are used, a
priori information about the authors helps in predicting the number of citations
it will receive in the future. It is worth noting that a priori information about
authors degrades quickly. When the features describing the reputation of an
author are calculated at a certain time, and re-used without taking into account
the last papers the author has published, the predictions tend to be much less
accurate. These results are even more interesting if the reader considers that
many other factors can be taken into consideration. For instance, the venue
where the paper was published is related to the content of the paper itself.

3.2 Finding High-Quality Content in Question-Answering
Portals

Yahoo! Answer is one of the largest question-answering portals, where users
can issue question and find answers. Questions are the central elements. Each
question has a life cycle. After it is “opened”, it can receive answers. When
the person who has asked the question is satisfied by an answer or after the
expiration of an automatic timer, the question is considered “closed”, and can
not receive any other answers. However, the question and the answers can
be voted on by other users. The question is “resolved” once a best answer is
chosen. Because of its extremely rich set of user-document relations, Yahoo!
Answers has recently been the subject of much research [1, 2, 11]. In [2], the
authors focus on the task of finding high quality items in social networks and
they use Yahoo! Answers as cases of study. The general approach is similar to
the one used in the previous case for predicting successful items in co-citation
networks, i.e., exploiting features that are correlated with quality in social me-
dia and then training a classifier to select and weight features for this task. In

466 MANAGING AND MINING GRAPH DATA

(a) Features for Inferring Answer Quality

(b) Features for Inferring Question Quality

Figure 15.2. Types of Features Available for Inferring the Quality of Questions and Answers

the remainder of this section, the features for quality classification are consid-
ered. As in the previous case, three different types of features are used: (1)
intrinsic content quality features, (2) link-based (or relation-based) features,
and (3) content usage statistics.

Intrinsic content quality features. For text-based social media the in-
trinsic content quality is mainly related with the text quality. This can be
measured using lexical, syntactic and semantic features.

Lexical features include word length, word and phrase frequencies, and
the average number of syllables in the words.

All the word n-grams up to length 5 that appear in the documents more
than 3 times are used as syntactic features.

Semantic features try to capture (1) the visual quality of the text (i.e., ig-
nored capitalization rules, excessive punctuation, spacing density,etc.),
(2)semantic complexity (i.e., entropy of word length, readability mea-

A Survey of Graph Mining for Web Applications 467

sures [30, 43, 37], etc.) and (3) grammaticality (i.e., features that try to
capture the correctness of grammatical forms, etc).

In the QA domain, additional features are required to explicitly model
the relationship between the question and the answer. In [2] such a rela-
tion was modeled using the KL-divergence between the language mod-
els of the two texts, their non-stopword overlap, the ratio between their
lengths, and other similar features.

Link-based features. As mentioned earlier, Yahoo! Answers is charac-
terized by nodes of multiple types (e.g., questions, answers and users)
and interactions with different semantics (e.g., “answers”, “votes for”,
“gives a star to”, “gives a best answer”), that are modeled using a com-
plex multiple-node multiple-relations graph. Traditional link-analysis
algorithms, including HITS and PageRank, are proven to still be use-
ful for quality classification whether applied to the projections obtained
from the graph G considering one type of relation at the time.

Answer features. In Figure 15.2(a), the relationship data related to a
particular answer are shown. These relationships form a tree, in which
the type “Answer” is the root. Two main subtrees start from the answer
being evaluated: one related to the question Q being answered, and the
other related to the user U contributing the answer.

By following paths through the question subtree, it is also possible to
derive features QU about the questioner, or features QA concerning the
other answers to the same question. By following paths through the user
subtree, we can derive features UA from the answers of the user, features
UQ from questions of the user, features UV from the votes of the user, and
features UQA from answers received to the user’s questions.

Question features. Figure 15.2(b) represents user relationships around
a question. Again, there are two subtrees: one related to the asker of
the question, and the other related to the answers received. The types
of features on the answers subtree are: features A directly from the an-
swers received and features AU from the answerers of the question being
answered. The types of features on the user subtree are the same as the
ones above for evaluating answers.

Implicit user-user relations To apply link-analysis algorithms, it is nec-
essary to consider the user-user graph. This is the graph G = (V,E) in
which the set of vertices V is composed of the set of users and the set
E = Ea∪Eb∪Ev∪Es∪E+∪E− represents the relationships between
users as follows:

– Ea represents the answers: (u, v) ∈ Ea if user u has answered at
least one question asked by user v.

468 MANAGING AND MINING GRAPH DATA

– Eb represents the best answers: (u, v) ∈ Eb if user u has provided
at least one best answer to a question asked by user v.

– Ev represents the votes for best answer: (u, v) ∈ Ev if user u has
voted for best answer at least one answer given by user v.

– Es represents the stars given to questions: (u, v) ∈ Ev if user u
has given a star to at least one question asked by user v.

– E+/E− represents the thumbs up/down: (u, v) ∈ E+/E− if user
u has given a “thumbs up/down” to an answer by user v.

For each graph Gx = (V,Ex), ℎx is the vector of hub scores on the ver-
tices V , ax the vector of authority scores, and px the vector of PageRank
scores. Moreover p′x is the vector of PageRank scores in the transposed
graph.

To classify these features in our framework, PageRank and authority
scores are assumed to be related mostly to in-links, while the hub score
deals mostly with out-links. For instance, let us consider ℎb. It is the hub
score in the “best answer” graph, in which an out-link from u to v means
that u gave a best answer to user v. Then, ℎb represents the answers of
users, and is assigned to the record (UA) of the person answering the
question.

Content usage statistics. Usage statistics such as the number of clicks
on the item and time spent on the item have been shown useful in the
context of identifying high quality web search results. These are com-
plementary to link-analysis based methods. Intuitively, usage statistics
measures are useful for social media content, but require different inter-
pretation from the previously studied settings.

In the QA settings, it is possible to exploit the rich set of metadata avail-
able for each question. This includes temporal statistics, e.g., how long
ago the question was posted, which allows us to give a better interpreta-
tion to the number of views of a question. Also, given that clickthrough
counts on a question are heavily influenced by the topical and genre cate-
gory, we also use derived statistics. These statistics include the expected
number of views for a given category, the deviation from the expected
number of views, and other second-order statistics designed to normal-
ize the values for each item type. For example, one of the features is
computed as the click frequency normalized by subtracting the expected
click frequency for that category, divided by the standard deviation of
click frequency for the category.

The conclusion of Agichtein et al. [2] from analyzing the above features, is
that many of the features are complementary and their combination enhances
the robustness of the classifier. Even though the analysis was based on a par-

A Survey of Graph Mining for Web Applications 469

ticular question-answering system, the ideas and the insights are applicable to
other social media settings, and to other emerging domains centered around
user contributed-content.

4. Mining Query Logs

A query log contains information about the interaction of users with search
engines. This information can be characterized in terms of the queries that
users make, the results returned by the search engines, and the documents that
users click in the search results. The wealth of explicit and implicit information
contained in the query logs can be a valuable source of knowledge for a large
number of applications. Examples of such applications include the following:

(i) analyzing the interests of users and their searching behavior,

(ii) finding semantic relations between queries (which terms are similar
to each other or which one is a specialization of another) allowing to
build taxonomies that are much richer than any human-built taxonomy,

(iii) improving the results provided by search engines by analysis of
the documents clicked by users and understanding the user information
needs,

(iv) fixing spelling errors and suggesting related queries,

(v) improving advertising algorithms and helping advertisers select bid-
ding keywords.

As a result of the wide range of applications which work with query-logs,
considerable research has recently been performed in this area. Many of these
papers discuss related problems such as analyzing query logs and on address-
ing various data-mining problems which work off the properties of the query-
logs. On the other hand, query logs contain sensitive information about users
and search-engine companies are not willing to release such data in order to
protect the privacy of their users. Many papers have demonstrated the secu-
rity breaches that may occur as a result of the release of query-log data even
after anonymization operations have been applied and the data appears to be
secure [34, 35, 41]. Nevertheless, some query log data that have been care-
fully anonymized have been released to the research community [22], and
researchers are working actively on the problem of anonymizing query logs
without destroying the utility of the released data. Recent advances on the
anonymization problem are discussed in Korolova et al. [39]. Because of
the wide range of knowledge embedded in query logs, this area is a central
problem for the entire research community, and is not restricted to researchers
working on problems related to search engines. Because of the natural ability

470 MANAGING AND MINING GRAPH DATA

to construct graph representations of query-log data, the graph mining area is
particularly related to problems associated with query-log mining. In the next
sections, we discuss graph representations of query log data, and consequently
we present techniques for mining and analyzing the resulting graph structures.

4.1 Description of Query Logs

Query log. A typical query log ℒ is a set of records ⟨qi, ui, ti, Vi, Ci⟩, where qi
is the submitted query, ui is an anonymized identifier for the user who submit-
ted the query, ti is a timestamp, Vi is the set of documents returned as results
to the query, and Ci is the set of documents clicked by the user. We denote by
Q, U , and D the set of queries, users, and documents, respectively. Thus, we
have qi ∈ Q, ui ∈ U , and Ci ⊆ Vi ⊆ D.

Sessions. A user query session, or just session, is defined as the sequence of
queries of one particular user within a specific time limit. More formally, if t�
is a timeout threshold, a user query session S is a maximal ordered sequence

S =
〈
⟨qi1 , ui1 , ti1⟩, . . . , ⟨qik , uik , tik⟩

〉
,

where ui1 = ⋅ ⋅ ⋅ = uik = u ∈ U , ti1 ≤ ⋅ ⋅ ⋅ ≤ tik , and tij+1 − tij ≤ t�, for all
j = 1, 2, . . . , k − 1. The typical timeout threshold used for splitting sessions
in query log analysis is t� = 30 minutes [13, 19, 50, 57].

Supersessions. The temporally ordered sequence of all the queries of a user
in the query log is called a supersession. Thus, a supersession is a sequence
of sessions in which consecutive sessions are separated by time periods larger
than t�.

Chains. A chain is a topically coherent sequence of queries of one user.
Radlinski and Joachims [53] defined a chain as “a sequence of queries with a
similar information need”. For instance, a query chain may contain the follow-
ing sequence of queries [33]: “brake pads”; “auto repair”; “auto body

shop”; “batteries”; “car batteries”; “buy car battery online”.
Clearly, all of these queries are closely related to the concept of car-repair.
The concept of chain is also referred to in the literature with the terms mis-
sion [33] and logical session [3]. Unlike the straightforward definition of a
session, chains involve relating queries based on an analysis of the user infor-
mation need. This is a very complex problem, since it is based on an analysis
of the information need, rather than in a crisp way, as in the case of a session.
We do not try to give a formal definition of chains here, since this is beyond
the scope of the chapter.

4.2 Query Log Graphs

Query graphs. In a recent paper about extracting semantic relations from
query logs, Baeza-Yates and Tiberi define a graph structure derived from the

A Survey of Graph Mining for Web Applications 471

query log. This takes into account not only the queries of the users, but also the
actions of the users (clicked documents) after submitting their queries [4]. The
analysis of the resulting graph captures different aspects of user behavior and
topic distributions of what people search in the web. The graph representation
introduced in [4] allows us to infer interesting semantic relationships among
queries. This can be used in many applications.

The basic idea in [4] is to start from a weighted query-click bipartite graph,
which is defined as the graph that has all distinct queries and all distinct doc-
uments as two partitions. We define an edge (q, u) between query q and doc-
ument d, if a user who has submitted query q has clicked on document d.
Obviously, d has to be in the result set of query q. The bipartite graph that
has queries and documents as two partitions is also called the click graph [23].
Baeza-Yates and Tiberi define the url cover uc(q) of a query q to be the set of
neighbor documents of q in the click graph. The weight w(q, d) of the edge
(q, d) is defined to be the fraction of the clicks from q to d. Therefore, we have∑

d∈uc(q) w(q, d) = 1. The url cover uc(q) can be viewed as a vector repre-
sentation for the query q, and we can then define the similarity between two
queries q1 and q2 to be the cosine similarity of their corresponding url-cover
vectors. This is denoted by cos(uc(q1),uc(q2)). The next step in [4] is to de-
fine a graph Gq among queries, where the weight between two queries q1 and
q2 is defined by their similarity value cos(uc(q1),uc(q2)).

Using the url cover of the queries, Baeza-Yates and Tiberi define the follow-
ing semantic relationship among queries:

Identical cover: uc(q1) = uc(q2). Those are undirected edges in the
graph Gq, which are denoted as red edges or edges of type I. These
imply that the two queries q1 and q2 are equivalent in practice.

Strict complete cover: uc(q1) ⊂ uc(q2). Those are directed edges,
which are denoted as green edges or edges of type II. These imply that
q1 is more specific than q2.

Partial complete cover: uc(q1) ∩ uc(q2) ∕= ∅ and none of the previous
two conditions are fulfilled. These are denoted as black edges or edges
of type III. They are the most common edges and exist due to multi-topic
documents or related queries, among other reasons.

The authors of [4] also define relaxed versions of the above concepts. In partic-
ular, they define �-red edges and �-green edges, when equality and inclusion
hold with a slackness factor of �.

The resulting graph is very rich and may lead to many interesting applica-
tions. The mining tasks can be guided both by the semantic relationships of the
edges as well as the graph structure. Baeza-Yates and Tiberi demonstrate an
application of finding multi-topic documents. The idea is that edges with low

472 MANAGING AND MINING GRAPH DATA

weight are most likely caused by multi-topic documents e.g., e-commerce sites
to which many different queries may lead. Thus, low-weight edges are con-
sidered as voters for the documents shared by the two corresponding queries.
Documents are sorted according to the number of votes they received: the more
votes a document gets, the more multitopical it is. Then the multi-topic docu-
ments may be removed from the graph (on a basis of a threshold value) and a
new graph of better quality can be computed.

As Baeza-Yates and Tiberi point out, the analysis described in their paper is
only the tip of the iceberg, and the potential number of applications of query
graphs is huge. For instance, in addition to the graph defined in [4], Baeza-
Yates [3] identifies five different types of graphs whose nodes are queries, and
an edge between two queries implies that: (i) the queries contain the same
word(s) (word graph), (ii) the queries belong to the same session (session
graph), (iii) users clicked on the same urls in the list of their results (url cover
graph), (iv) there is a link between the two clicked urls (url link graph) (v)
there are l common terms in the content of the two urls (link graph).

Random walks on the click graph. The idea of representing the query log
information as a bipartite graph between queries and documents (where the
edges are weighted according to the user clicks) has been extensively used
in the literature. Craswell and Szummer [23] study a random-walk model on
the click graph, and they suggest using the resulting probability distribution
of the model for ranking documents to queries. As mentioned in [23], query-
document pairs can be considered as “soft” (positive) relevance judgments.
These are however are noisy and sparse. The noise is due to the fact that users
judge from short summaries and might not click on relevant documents. The
sparsity problem is due to the fact that the users may not click on relevant
documents. When a large number of documents are relevant, users may click
on only a small fraction of them. The random-walk model can be used to
reduce the amount of noise and it also alleviates the sparseness problem. One
of the main benefits of the approach in [23] is that relevant documents to a
query can be ranked highly even if no previous user has clicked on them for
that query.

The click-graph can be used in many applications. Some of the applications
discussed by Craswell and Szummer in [23] are the following:

Query-to-document search. The problem is to rank relevant documents
for a given ad-hoc query. The click graph is used to find documents of
high quality and relevant documents for a query. Such documents may
not necessarily be easy to determine using pure content-based analysis.

Query-to-query suggestion. Given a query of a user, we want to find
other queries that the user might be interested in. The role of the click-

A Survey of Graph Mining for Web Applications 473

graph is determine other relevant queries in the “proximity” of the input
query. Examples of finding such related queries can be found in [9, 59].

Document-to-query annotation. The idea is that a query can be used
as a concise description of the documents that the users click for that
query, and thus queries can be used to represent documents. Studies have
shown that the use of such a representation can improve web search [60].
It can be used for other web mining applications [51].

Document-to-document relevance feedback. For this application, the
task is to find relevant documents for a given target document, and are
also relevant for a user.

The random walk on the click graph models a user who issues queries, clicks
on documents according to the edge weights of the graph. These documents
inspire the user to issue new queries, which in turn lead to new documents and
so on. More formally, we define G = (Q ∪ D,E) is the click graph, with Q
and D being the set of queries and documents. We define E being the set of
edges, the weight Cjk of an edge (j, k) is the number of clicks in the query
log between nodes j and k. The weights are then normalized to represent the
transition probabilities at the t-th step of the walk. The transition probabilities
are defined as follows:

Prt+1∣t[k ∣ j] =
{

(1− s) Cjk∑
i Cji

, if k ∕= j,

s, if k = j.

In other words, a self-loop is added at each node. The random walk is per-
formed by traversing the nodes of the click graph according to the probabilities
Prt+1∣t[k ∣ j].

Let A be the adjacency-matrix of the graph, whose (j, k)-th entry is
Prt+1∣t[k ∣ j]. Then, if qj is a unit vector with an entry equal to 1 at the j-th
position and all other entries equal to 0, the probability of a transition from
node j to node k in t steps is Prt∣0[k ∣ j] = [qjA

t]k. The notation [u]i refers
to the i-th entry of vector u. The random-walk models that are typically used
in the literature, such as PageRank and much more, consider forward walks,
and exploit the property that the resulting vector of visiting probabilities [qAt]
converges to a fixed distribution. This is the stationary distribution of the ran-
dom walk, as t→∞, and is independent of the vector of initial probabilities q.
The value [qAt]k, i.e., the value of the stationary distribution at the k-th node,
is usually interpreted as the importance of node k in the random walk, and it is
used as the score for ranking node k.

Craswell and Szummer consider the idea of running the random walk back-
wards. Essentially the question is which is the probability that the walk
started at node k given that after t steps is at node j. Bayes’ law gives

474 MANAGING AND MINING GRAPH DATA

Pr0∣t[k ∣ j] ∝ Prt∣0[j ∣ k] Pr0[k], where Pr0[k] is a prior of starting at node
k and it is usually set to the uniform distribution, i.e., Pr0[k] = 1/N . To
see the difference between forward and backward random walk, notice that
since the stationary distribution of the forward walk is independent from the
initial distribution, the limiting distribution of the backward random walk is
uniform. Nevertheless, according to Craswell and Szummer, running the walk
backwards for a small number of steps (before convergence) gives meaningful
differentiation among the nodes in the graph. The experiments in [23] confirm
that for ad-hoc search in image databases, the backward walk gives superior
precision results than the forward random walk.

Random surfer and random querier. While the classic PageRank algorithm
simulates a random surfer on the web, the random-walk on the click graph
simulates the behavior of a random querier: moving between queries and doc-
uments according to the clicks of the query log. Poblete et al. [52] observe that
searching and surfing the web are the two most common actions of web users,
and they suggest building a model that combines these two activities by means
of a random walk on a unified graph: the union of the hyperlink graph with the
click graph.

The random walk on the unified graph is described as follows: At each
step, the user selects to move at a random query or a random document with
probability 1−�. With probability �, the user makes a step, which can be one
of two types:

with probability 1− � the user follows a link in the hyperlink graph,

with probability � the user follows a link in the click graph.

The authors in [52] point out that combining the two graphs is beneficial, be-
cause the two graph structures are complementary and each of them can be
used to alleviate the shortcomings of the other. For example, using clicks is
a way to take into account user feedback, and this improves the robustness
of the hyperlink graph to the degrading effects of link-spam. On the other
hand, considering hyperlinks and browsing patterns increases the density and
the connectivity of the click graph, and the model takes into account pages that
users might visit after issuing particular queries.

The query-flow graph. We will now change the focus of the discussion to a
different type of graphs extracted from query logs. In all our previous discus-
sions, the graphs do not take into account the notion of time. In other words,
the timestamp information from the query logs is completely ignored. How-
ever, if one wants to reason about the querying patterns of users, and the ways
that user submit queries in order to achieve more complex information retrieval
goals, one has to include the temporal aspect in the analysis of query logs.

A Survey of Graph Mining for Web Applications 475

In order to capture the querying behavior of users, Boldi et al. [13] define
the concept of the query-flow graph. This is related to the discussion about
sessions and chains at the beginning of this section. The query-flow graph Gqf

is then defined to be directed graph Gqf = (V,E,w) where:

the set of nodes is V = Q∪{s, t}, i.e., the distinct set of queries Q sub-
mitted to the search engine and two special nodes s and t, representing a
starting state and a terminal state. These can be interpreted as the begin
and end of a chain;

E ⊆ V × V is the set of directed edges;

w : E → (0, 1] is a weighting function that assigns to every pair of
queries (q, q′) ∈ E a weight w(q, q′) representing the probability that q
and q′ are part of the same chain.

Boldi et al. suggest a machine learning method for building the query-flow
graph. First, given a query log ℒ, it is assumed that it has been split into a
set of sessions S = {S1, . . . , Sm}. Two queries q, q′ ∈ Q are tentatively con-
nected with an edge if there is at least one session in S in which q and q′ are
consecutive. Then, for the tentative edges, the weights w(q, q′) are learned us-
ing a machine learning algorithm. If the weight of an edge is estimated to be
0, then the edge is removed. The features used to learn the weights w(q, q′)
include textual features (such as the cosine similarity, the Jaccard coefficient,
and size of intersection between the queries q and q′, computed on on sets
of stemmed words and on character-level 3-grams), session features (such as
the number of sessions in which the pair (q, q′) appears, the average session
length, the average number of clicks in the sessions, the average position of
the queries in the sessions, etc.), and time-related features (such as the aver-
age time difference between q and q′ in the sessions in which (q, q′) appears).
Several of those features have been used in the literature for the problem of
segmenting a user session into logical sessions [33]. For learning the weights
w(q, q′), Boldi et al. use a rule-based model and 5 000 labeled pairs of queries
as training data. Boldi et al. argue that the query-flow graph is a useful con-
struct that models user querying patterns and can be used in many applications.
One such application is that of query recommendations.

Another interesting application of the query-flow graph is segmenting and
assembling chains in user sessions. In this particular application, one compli-
cation is that there is not necessarily some timeout constraint in the case of
chains. Therefore, as an example, all the queries of a user who is interested in
planning a trip to a far-away destination and web searches for tickets, hotels,
and other tourist information over a period of several weeks should be grouped
in the same chain. Additionally, for the queries composing a chain, it is not
required to be consecutive. Following the previous example, the user who is

476 MANAGING AND MINING GRAPH DATA

planning the far-away trip may search for tickets in one day, then make some
other queries related to a newly released movie, and then return to trip planning
the next day by searching for a hotel. Thus, a session may contain queries from
many chains. Conversely, a chain may contain queries from many sessions.

In [13] the problem of finding chains in query logs is modeled as an As-
symetric Traveling Salesman Problem (ATSP) on the query-flow graph. The
formal definition of the chain-finding problem is the following: Let S =
⟨q1, q2, . . . , qk⟩ be the supersession of one particular user. We assume that
a query-flow graph has been built by processing a query log that includes S.
Then, we define a chain cover of S to be a partition of the set {1, . . . , k} into
subsets C1, . . . , Cℎ. Each set Cu = {iu1 < ⋅ ⋅ ⋅ < iuℓu} can be thought of as a
chain Cu = ⟨s, qiu1 , . . . , qiuℓu , t⟩, which is associated with probability

Pr[Cu] = Pr[s, qiu1] Pr[qiu1 , qiu2] . . .Pr[qiuℓu−1
, qiuℓu

] Pr[qiuℓu
, t],

We would like to find a chain cover maximizing Pr[C1] . . .Pr[Cℎ].
The chain-finding problem is then divided into two subproblems: session

reordering and session breaking. The session reordering problem is to ensure
that all the queries belonging to the same search session are consecutive. Then,
the session breaking problem is much easier as it only needs to deal with non-
intertwined chains.

The session reordering problem is formulated as an instance of the ATSP:
Given the query-flow graph Gqf with edge weights w(q, q′), and given the
session S = ⟨q1, q2, . . . qk⟩, consider the subgraph of Gqf induced by
S. This is defined as the induced subgraph GS = (V,E, ℎ) with nodes
V = {s, q1, . . . , qk, t}, edges E, and edge weights ℎ defined as ℎ(qi, qj) =
− logmax{w(qi, qj), w(qi, t)w(s, qj)}. The maximum of the previous expres-
sion is taken over the options of splitting and not splitting a chain. For more
details about the edge weights of GS , see [13]. An optimal ordering is a per-
mutation � of ⟨1, 2, . . . k⟩ that maximizes the expression

k−1∏

i=1

w(q�(i), q�(i+1)).

This problem is equivalent to that of finding a Hamiltonian path of minimum
weight in this graph.

Session breaking is an easier task, once the session has been re-ordered.
It corresponds to the determination of a series of cut-off points in the re-
ordered session. One way of achieving this is by determining a threshold �
in a validation dataset, and then deciding to break a reordered session when-
ever w(q�(i), q�(i+1)) < �.

A Survey of Graph Mining for Web Applications 477

4.3 Query Recommendations

As the next topic of graph mining for web applications and query-log anal-
ysis, we discuss the problem of query recommendations. Even though the
problem statement does not involve graphs, many approaches in the literature
work by exploring the graph structures induced from query logs. Examples of
such graphs were discussed in the previous section.

The application of query recommendation takes place when search engines
offer not only document results but also alternative queries in response to the
queries they receive from their users. The purpose of those query recommen-
dations is to help users locate information more effectively. Indeed, it has been
observed over the past years that users are looking for information for which
they do not have sufficient knowledge [10], and thus they may not be able to
specify their information needs precisely. The recommendations provided by
search engines are typically queries similar to the original one, and they are
obtained by analyzing the query logs.

Many of the algorithms for making query recommendations are based on
defining similarity measures among queries, and then recommending the most
popular queries in the query log among the similar ones to a given query. For
computing query similarity, Wen et al. [59] suggest using distance functions
based on (i) the keywords or phrases of the query, (ii) string matching of
keywords, (iii) the common clicked documents, and (iv) the distance of the
clicked documents in some pre-defined hierarchy. Another similarity measure
based on common clicked documents was proposed by Beeferman et al. [9].
Baeza-Yates et al. [5] argue that the distance measures proposed by the previ-
ous methods have practical limitations, because two related queries may output
different documents in their answer sets. To overcome these limitations, they
propose to represent queries as term-weighted vectors obtained by aggregating
the term-weighted vectors of their clicked documents. Association rule mining
has also been used to discover related queries in [28]. The query log is viewed
as a set of transactions, where each transaction represents a session in which a
single user submits a sequence of related queries in a time interval.

Next we review some of the query recommendation methods that are based
on graph structures.

Hitting time. Mei et al. [44] propose a query recommendation method, which
is based on the proximity of the queries on the click graph. Recall that the click
graph is the bipartite graph that has queries and documents as two partitions,
and the weight of an edge w(q, u) indicates the number of times that document
d has been clicked when query q was submitted. The main idea is based on
the concept of structural proximity of specific nodes. When the user submits
a query, the corresponding node is located in the click graph, and other rec-
ommendations are queries that are located in the proximity of the query node.

478 MANAGING AND MINING GRAPH DATA

For a meaningful notion of distance between nodes in the click graph, Mei et
al. suggest to use the notion of hitting time. The hitting time from a node u to a
node v in a graph G is the expected number of steps taken when v is visited for
a first time in a random walk starting from u. Hitting time captures not only
nodes that are connected by short paths in the graph but also nodes that are
connected by many paths. Therefore, it is a robust distance measure between
graph nodes.

In addition, Mei et al. [44] propose an adaptation of their method that can
provide personalized query suggestions. The idea is to adjust the weights of
the edges of the click graph so that they can better model the preferences of
the user for whom we want to provide a recommendation. Mei et al. observe
that models for personalized web search provide estimates of a probability that
a user clicks on a certain document. Thus, any personalized algorithm for
web search can be combined with their hitting-time method in order to provide
personalized recommendations.

Topical query decomposition. A different aspect of query recommendation
is addressed by Bonchi et al. [14], who try to overcome a common limitation
of many query recommendation algorithms. This limitation is that many of
the recommendations are very similar to each other. Instead Bonchi et al. for-
mulate a new problem, which they call topical query decomposition. In this
new framework, the goal is to find a set of queries that cover different as-
pects of the original query. The intuition is that such a set of diverse queries
can be more useful in cases when the query is too short (and thus imprecise
and ambiguous), and it is hard to receive good recommendations based on the
query-content only.

The problem statement of topical query decomposition is based again on the
click graph. In particular, let q be a query and D(q) be the result set of q, i.e.,
the neighbor nodes of q in the click graph. We denote with Q(q) the maximal
set of queries pi, where for each pi, the set D(pi) has at least one document in
common with the documents returned by q. In other words, we have

Q(q) = {pi∣⟨pi,D(pi)⟩ ∈ ℒ ∧ D(pi) ∩D(q) ∕= ∅}.
The goal is to compute a cover, i.e., selecting a sub-collection C ⊆ Q(qi) such
that it covers almost all of D(qi). As stated before, the queries in C should
represent coherent, conceptually well-separated set of documents: they should
have small overlap, and they should not cover too many documents outside
D(qi).

Bonchi et al. propose two different algorithms for the problem of topical
query decomposition. The first algorithm is a top-down approach, based on
set covering. Starting from the queries in Q(q), this approach tries to handle
the problem as a special instance of the weighted set covering problem. The
weight of each query in the cover is given by its internal topical coherence, the

A Survey of Graph Mining for Web Applications 479

fraction of documents in D(q), the number of documents it retrieves that are
not in D(q), as well as its overlap with other queries in the solution. The sec-
ond algorithm is a bottom-up approach, based on clustering. Starting with the
documents in D(q), this approach tries to build clusters of documents which
are compact in the topics space. Since the resulting clusters are not necessarily
document sets associated with queries existing in the query log, a second phase
is needed. In this phase, the clusters found in the first phase are “matched” to
the sets that correspond to queries in the query log.

Query recommendations based on the query-flow graph. Boldi et al. [13]
investigate the alternative approach of finding query recommendations using
the query-flow graph instead of the click graph. A random walk approach
is used in the this case, as in the approach of Mei et al. [44]. However, in
this case, the recommended queries are selected on the basis of a PageRank
measure instead of hitting time. We also allow teleportation (or jumps) to
specific nodes during the random walks in order to bias the walk towards these
nodes. In particular, given the query q, the method computes the PageRank
values of a random walk on the query-flow graph where the teleportation is
always at the node of the graph that corresponds to query q. In this way, queries
that are close to q in the graph are favored to be selected as recommendations.
The advantage of using the query-flow graph instead of the click graph is that
the method favors as recommendations for q queries q′ that follow q in actual
user sessions. Thus, it is likely that q′ are natural continuations of q in an
information seeking task performed by users.

Boldi et al. [13] explore various alternatives to that of using random walk
on the query-flow graph for the query recommendation problem. One inter-
esting idea is to use normalized PageRank. Here, if sq(q

′) is the PageRank
score for query q′ on a random walk with teleportation to the original query
q, instead of using the pure random-walk score sq(q

′), they consider the ra-
tio ŝq(q

′) = sq(q
′)/r(q′) where r(q′) is the absolute random-walk score of

q′ (i.e., the one computed using a uniform teleportation vector). The intuition
behind this normalization is to avoid recommending very popular queries (like
“ebay”) that may easily get high PageRank scores even though they are not
related with the original query. The experiments in [13] showed that in most
cases ŝq(q

′) produces rankings that are more reasonable, but sometimes tend
to boost by too much the scores with low absolute value r(q′). To use a bigger
denominator, they also tried dividing with

√
r(q′), which corresponds to the

geometric mean between sq(q
′) and ŝq(q

′).
Another interesting variant of the query-recommendation framework of

Boldi et al. is providing recommendations that depend not only on the last
query input by the user, but on some of the last queries in the user’s history.
This approach may help to alleviate the data sparsity problem. This is because
the current query may be rare, but among the previous queries there might be

480 MANAGING AND MINING GRAPH DATA

queries for which we have enough information in the query flow graph. Basing
the recommendation on the user’s query history may also help to solve ambigu-
ous queries, as we have more informative suggestions based on what the user
is doing during the current session. To take the recent queries of the user into
account, one has to modify the random walk, in order to perform the telepor-
tation into the set of last queries, instead of only the one last query. For more
details on the method and various examples of recommendations see [13].

Using both the click graph and session data. Finally, we discuss the query-
recommendation approach of Cao et al. [17], which uses both the click graph
and session data. As in the previous case of Boldi et al., the algorithm of Cao
et al. has the advantage that it provides recommendations that are based on the
few last queries of the user. The proposed algorithm has two steps. In the first
step, the algorithm uses the click-graph in order to clusters all the queries of the
query log. In particular, two queries are represented by the vector of neighbor
documents in the click graph, and then the queries are clustered based on the
Euclidean distance of their representation vectors. A simple greedy clustering
algorithm is proposed that can scale to very large query-log data. In the second
step, user sessions are processed and each query is represented by the cluster
center that was assigned to during the first clustering step. The intuition of
representing queries by their cluster center is to address the problem that two
queries might have the same search intent. Thus, the authors in [17] prefer to
work with “query concepts” rather than individual queries. Then frequent se-
quential patterns are mined from the user sessions. For each frequent sequence
of query concepts cs = c1 . . . cl, the concept cl is used as a candidate concept
for the sequence c′s = c1 . . . cl−1. A ranked list of candidate concepts c for
c′s is then built based on the occurrences of the concepts c following c′s in the
same session; the more occurrences c has, the higher c is ranked. In practice,
it is only needed to keep the representative queries of the top-k (e.g., k = 5)
candidate concepts. These representative queries are called the candidate rec-
ommendations for the sequence c′s and can be used for query recommendation,
when c′s is observed online.

5. Conclusions

In this chapter we reviewed elements of mining graphs in the context of
web applications. We focused on graphs arising in social networks, social me-
dia, and query logs. We discussed modeling issues and we presented specific
problems in those areas, such as estimating the reputation and the popularity
of items in a network, mining query logs, and performing query recommenda-
tions. Understanding the structure of graphs appearing in those applications,
modeling the complex interactions between entities, and designing algorithms
for leveraging the latent knowledge introduces new challenges in the field of

A Survey of Graph Mining for Web Applications 481

graph mining. Classic graph-mining algorithms such as those involving ran-
dom walks can provide a starting point. However, they often need to be ex-
tended and adapted in order to capture the requirements and complexities of
the data models and the applications at hand.

References

[1] Lada A. Adamic, Jun Zhang, Eytan Bakshy, and Mark S. Ackerman.
Knowledge sharing and yahoo answers: everyone knows something. In
Proceedings of the 17th international conference on World Wide Web
(WWW), 2008.

[2] Eugene Agichtein, Carlos Castillo, Debora Donato, Aristides Gionis, and
Gilad Mishne. Finding high quality content in social media, with an appli-
cation to community-based question answering. In Proceedings of ACM
WSDM, pages 183–194, Stanford, CA, USA, February 2008. ACM Press.

[3] Ricardo Baeza-Yates. Graphs from search engine queries. In Theory and
Practice of Computer Science (SOFSEM), 2007.

[4] Ricardo Baeza-Yates and Alessandro Tiberi. Extracting semantic relations
from query logs. In Proceedings of the 13th ACM international conference
on Knowledge discovery and data mining (KDD), 2007.

[5] Ricardo A. Baeza-Yates, Carlos A. Hurtado, and Marcelo Mendoza. Query
recommendation using query logs in search engines. In Current Trends in
Database Technology – EDBT Workshops, 2004.

[6] A. L. Barabasi and R. Albert. Emergence of scaling in random networks.
Science, 286:509–512, 1999.

[7] Albert-Laszlo Barabasi. Linked: How Everything Is Connected to Every-
thing Else and What It Means for Business, Science, and Everyday Life.
Plume Books, April 2002.

[8] L. Becchetti, C. Castillo, D. Donato, R. Baeza-Yates, and S. Leonardi.
Link analysis for web spam detection. ACM Transactions on the Web
(TWEB), 2(1):1–42, February 2008.

[9] Doug Beeferman and Adam Berger. Agglomerative clustering of a search
engine query log. In Proceedings of the 6th ACM international conference
on Knowledge discovery and data mining (KDD), 2000.

[10] Nicholas J. Belkin. The human element: helping people find what they
don’t know. Communications of the ACM, 43(8), 2000.

[11] Jiang Bian, Yandong Liu, Ding Zhou, Eugene Agichtein, and Hongyuan
Zha. Learning to recognize reliable users and content in social media with
coupled mutual reinforcement. In Proceedings of the 18th international
conference on World Wide Web (WWW), 2009.

482 MANAGING AND MINING GRAPH DATA

[12] P. Boldi, R. Posenato, M. Santini, and S. Vigna. Traps and pitfalls of
topic-biased pagerank. In Proceedings of the 4th International Workshop
on Algorithms and Models for the Web-Graph (WAW), 2008.

[13] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, Aris-
tides Gionis, and Sebastiano Vigna. The query-flow graph: model and
applications. In Proceeding of the 17th ACM conference on Information
and knowledge management (CIKM), 2008.

[14] Francesco Bonchi, Carlos Castillo, Debora Donato, and Aristides Gionis.
Topical query decomposition. In Proceedings of the 14th ACM interna-
tional conference on Knowledge discovery and data mining (KDD), 2008.

[15] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engines. Computer Networks and ISDN Systems, 30(1–7):107–117,
1998.

[16] Guido Caldarelli. Scale-Free Networks. Oxford University Press, 2007.

[17] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen,
and Hang Li. Context-aware query suggestion by mining click-through
and session data. In Proceeding of the 14th ACM international conference
on Knowledge discovery and data mining (KDD), 2008.

[18] Carlos Castillo, Debora Donato, and Aristides Gionis. Estimating the
number of citations of a paper using author reputation. In String Process-
ing and Information Retrieval Symposium (SPIRE), 2007.

[19] L. Catledge and J. Pitkow. Characterizing browsing behaviors on the
world wide web. Computer Networks and ISDN Systems, 6, 1995.

[20] Hyunwoo Chun, Haewoon Kwak, Young H. Eom, Yong Y. Ahn, Sue
Moon, and Hawoong Jeong. Comparison of online social relations in vol-
ume vs interaction: a case study of cyworld. In Proceedings of the 8th
ACM SIGCOMM conference on Internet measurement (IMC), 2008.

[21] CiteSeer, http://citeseer.com.

[22] Nick Craswell, Rosie Jones, Georges Dupret, and Evelyne Viegas, edi-
tors. Workshop on Web Search Click Data (WSCD), held in conjunction
with WSDM, Barcelona, Spain, 2009.

[23] Nick Craswell and Martin Szummer. Random walks on the click graph.
In Proceedings of the 30th annual international ACM conference on Re-
search and development in information retrieval (SIGIR), 2007.

[24] G. M. Del Corso, A. Gulli, and F. Romani. Fast pagerank computation
via a sparse linear system. Internet Mathematics, 2(3), 2005.

[25] Alex Fabrikant, Elias Koutsoupias, and Christos Papadimitriou. Heuristi-
cally optimized trade-offs: A new paradigm for power laws in the internet.
In Proceedings of the 29th International Colloquium on Automata, Lan-
guages and Programming (ICALP), 2002.

A Survey of Graph Mining for Web Applications 483

[26] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-
law relationships of the internet topology. In Proceedings of the annual
ACM conference on Data Communication (SIGCOMM), 1999.

[27] D. Fogaras, B. R«acz, K. Csalog«any, and T. Sarl«os. Towards scaling fully
personalized pageRank: algorithms, lower bounds, and experiments. In-
ternet Mathematics, 2(3):333–358, 2005.

[28] Bruno M. Fonseca, Paulo Braz Golgher, Edleno Silva de Moura, Bruno
Pôssas, and Nivio Ziviani. Discovering search engine related queries using
association rules. Journal of Web Engineering, 2(4), 2004.

[29] Ko Fujimura and Naoto Tanimoto. The eigenrumor algorithm for calcu-
lating contributions in cyberspace communities. Trusting Agents for Trust-
ing Electronic Societies, pages 59–74, 2005.

[30] Robert Gunning. The technique of clear writing. McGraw-Hill, 1952.

[31] Z. Gy-ongyi, H. Garcia-Molina, and J. Pedersen. Combating Web spam
with TrustRank. In Proceedings of the 30th International Conference on
Very Large Data Bases (VLDB), pages 576–587, Toronto, Canada, August
2004. Morgan Kaufmann.

[32] T.H. Haveliwala. Topic-sensitive pagerank. In Proceedings of the
eleventh International World Wide Web Conference (WWW), Honolulu,
Hawaii, 2002.

[33] Rosie Jones and Kristina L. Klinkner. Beyond the session timeout: au-
tomatic hierarchical segmentation of search topics in query logs. In Pro-
ceedings of the 16th ACM conference on Conference on information and
knowledge management (CIKM), 2008.

[34] Rosie Jones, Ravi Kumar, Bo Pang, and Andrew Tomkins. I know what
you did last summer: query logs and user privacy. In Proceeding of the 16th
ACM conference on Information and knowledge management (CIKM),
2007.

[35] Rosie Jones, Ravi Kumar, Bo Pang, and Andrew Tomkins. Vanity fair:
privacy in querylog bundles. In Proceeding of the 17th ACM conference
on Information and knowledge management (CIKM), 2008.

[36] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Exploiting the
block structure of the web for computing pagerank. Technical report, Stan-
ford University, 2003.

[37] J. Peter Kincaid, Robert P. Fishburn, Richard L. Rogers, and Brad S.
Chissom. Derivation of new readability formulas for navy enlisted per-
sonnel. Technical Report Research Branch Report 8-75, Millington, Tenn,
Naval Air Station, 1975.

[38] Jon Kleinberg. Authoritative sources in a hyperlinked environment. Jour-
nal of ACM, 46(5), 1999.

484 MANAGING AND MINING GRAPH DATA

[39] Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and
Alexandros Ntoulas. Releasing search queries and clicks privately. In Pro-
ceedings of the 18th international conference on World Wide Web (WWW),
2009.

[40] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and
E. Upfal. Stochastic models for the web graph. In Proceedings of the 41st
Annual Symposium on Foundations of Computer Science (FOCS), 2000.

[41] Ravi Kumar, Jasmine Novak, Bo Pang, and Andrew Tomkins. On
anonymizing query logs via token-based hashing. In Proceedings of the
16th international conference on World Wide Web (WWW), 2007.

[42] A.N. Langville and C.D. Meyer. Updating pagerank with iterative aggre-
gation. In Proceedings of the 13th International World Wide Web Confer-
ence on Alternate track papers & posters (WWW), New York, NY, USA,
2004.

[43] G. Harry McLaughlin. SMOG grading: A new readability formula. Jour-
nal of Reading, 12(8):639–646, 1969.

[44] Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. Query suggestion
using hitting time. In Proceeding of the 17th ACM conference on Informa-
tion and knowledge management (CIKM), 2008.

[45] Michael Mitzenmacher. A brief history of generative models for power
law and lognormal distributions. Internet Mathematics, 1(2), 2003.

[46] M. Newman. Power laws, pareto distributions and zipf’s law. Contempo-
rary Physics, 2005.

[47] M. E. J. Newman and Juyong Park. Why social networks are different
from other types of networks. Physical Review E, 68(3):036122, Sep 2003.

[48] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank citation ranking: bringing order to the Web. Technical report,
Stanford Digital Library Technologies Project, 1998.

[49] Romualdo Pastor-Satorras, Alexei V«azquez, and Alessandro Vespignani.
Dynamical and correlation properties of the internet. Physical Review Let-
ters, 87(25):258701, Nov 2001.

[50] Benjamin Piwowarski and Hugo Zaragoza. Predictive user click models
based on click-through history. In Proceedings of the 16th ACM conference
on Conference on information and knowledge management (CIKM), 2007.

[51] Barbara Poblete and Ricardo Baeza-Yates. A content and structure web-
site mining model. In Proceedings of the 15th international conference on
World Wide Web (WWW), 2006.

[52] Barbara Poblete, Carlos Castillo, and Aristides Gionis. Dr. searcher and
mr. browser: a unified hyperlink-click graph. In Proceeding of the 17th

A Survey of Graph Mining for Web Applications 485

ACM conference on Information and knowledge management (CIKM),
2008.

[53] Filip Radlinski and Thorsten Joachims. Query chains: learning to rank
from implicit feedback. In Proceeding of the 11th ACM SIGKDD interna-
tional conference on Knowledge discovery in data mining, 2005.

[54] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating
pagerank on graph streams. In Proceedings of the 27th ACM Symposium
on Principles of Database Systems (PODS), 2008.

[55] Stephan H. Strogatz. Exploring complex networks. Nature,
410(6825):268–276, March 2001.

[56] Qi Su, Dmitry Pavlov, Jyh-Herng Chow, and Wendell C. Baker. Internet-
scale collection of human-reviewed data. In Proceedings of the 16th in-
ternational conference on World Wide Web (WWW), pages 231–240, New
York, NY, USA, 2007. ACM Press.

[57] Jaime Teevan, Eytan Adar, Rosie Jones, and Michael A. S. Potts. Infor-
mation re-retrieval: repeat queries in yahoo’s logs. In Proceedings of the
30th annual international ACM conference on Research and development
in information retrieval (SIGIR), 2007.

[58] Stanley Wasserman and Katherine Faust. Social Network Analysis: Meth-
ods and Applications. Cambridge University Press, 1994.

[59] Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang. Clustering user
queries of a search engine. In Proceedings of the 10th international con-
ference on World Wide Web (WWW), 2001.

[60] Gui-Rong Xue, Hua-Jun Zeng, Zheng Chen, Yong Yu, Wei-Ying Ma,
WenSi Xi, and WeiGuo Fan. Optimizing web search using web click-
through data. In Proceedings of the 13th ACM international conference on
Information and knowledge management (CIKM), 2004.

[61] Yahoo! Answers, http://answers.yahoo.com.

[62] Soon-Hyung Yook, Filippo Radicchi, and Hildegard Meyer-Ortmanns.
Self-similar scale-free networks and disassortativity, Jul 2005.

[63] Jun Zhang, Mark S. Ackerman, and Lada Adamic. Expertise networks in
online communities: structure and algorithms. In Proceedings of the 16th
international conference on World Wide Web (WWW), 2007.

	Chapter 15 A SURVEY OF GRAPH MINING FOR WEB APPLICATIONS
	1. Introduction
	2. Preliminaries
	2.1 Link Analysis Ranking Algorithms

	3. Mining High-Quality Items
	3.1 Prediction of Successful Items in a Co-citation Network
	3.2 Finding High-Quality Content in Question-Answering Portals

	4. Mining Query Logs
	4.1 Description of Query Logs
	4.2 Query Log Graphs
	4.3 Query Recommendations

	5. Conclusions
	References

