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Abstract Social networks have received dramatic interest in research and development.
In this chapter, we survey the very recent research development on privacy-
preserving publishing of graphs and social network data. We categorize the
state-of-the-art anonymization methods on simple graphs in three main cate-
gories: K-anonymity based privacy preservation via edge modification, prob-
abilistic privacy preservation via edge randomization, and privacy preservation
via generalization. We then review anonymization methods on rich graphs. We
finally discuss challenges and propose new research directions in this area.

Keywords: Anonymization, Randomization, Generalization, Privacy Disclosure, Social
Networks

© Springer Science+Business Media, LLC 2010 

C.C. Aggarwal and H. Wang (eds.), Managing and Mining Graph Data,
Advances in Database Systems 40, DOI 10.1007/978-1-4419-6045-0_14, 

421



422 MANAGING AND MINING GRAPH DATA

1. Introduction

Graphs and social networks are of significant importance in various appli-
cation domains such as marketing, psychology, epidemiology and homeland
security. The management and analysis of these networks have attracted in-
creasing interests in the sociology, database, data mining and theory commu-
nities. Most previous studies are focused on revealing interesting properties of
networks and discovering efficient and effective analysis methods [24, 37, 39,
5, 25, 7, 27, 14, 38, 6, 15, 23, 40, 36]. This chapter will provide a survey of
methods for privacy-preservation of graphs, with a special emphasis towards
social networks.

Social networks often contain some private attribute information about in-
dividuals as well as their sensitive relationships. Many applications of social
networks such as anonymous Web browsing require identity and/or relation-
ship anonymity due to the sensitive, stigmatizing, or confidential nature of
user identities and their behaviors. The privacy concerns associated with data
analysis over social networks have incurred the recent research. In particular,
privacy disclosure risks arise when the data owner wants to publish or share the
social network data with another party for research or business-related appli-
cations. Privacy-preserving social network publishing techniques are usually
adopted to protect privacy through masking, modifying and/or generalizing
the original data while without sacrificing much data utility. In this chapter, we
provide a detailed survey of the very recent work on this topic in an effort to
allow readers to observe common themes and future directions.

1.1 Privacy in Publishing Social Networks

In a social network, nodes usually correspond to individuals or other social
entities, and an edge corresponds to the relationship between two entities. Each
entity can have a number of attributes, such as age, gender, income, and a
unique identifier. One common practice to protect privacy is to publish a naive
node-anonymized version of the network, e.g., by replacing the identifying
information of the nodes with random IDs. While the naive node-anonymized
network permits useful analysis, as first pointed out in [4, 20], this simple
technique does not guarantee privacy since adversaries may re-identify a target
individual from the anonymized graph by exploiting some known structural
information of his neighborhood.

The privacy breaches in social networks can be grouped to three categories:
identity disclosure, link disclosure, and attribute disclosure. The identity dis-
closure corresponds to the scenario where the identity of an individual who
is associated with a node is revealed. The link disclosure corresponds to the
scenario where the sensitive relationship between two individuals is disclosed.
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The attribute disclosure denotes the sensitive data associated with each node is
compromised. Compared with existing anonymization and perturbation tech-
niques of tabular data, it is more challenging to design effective anonymization
techniques for social network data because of difficulties in modeling back-
ground knowledge and quantifying information loss.

1.2 Background Knowledge

Adversaries usually rely on background knowledge to de-anonymize nodes
and learn the link relations between de-anonymized individuals from the re-
leased anonymized graph. The assumptions of the adversary’s background
knowledge play a critical role in modeling privacy attacks and developing
methods to protect privacy in social network data. In [51], Zhou et al. listed
several types of background knowledge: attributes of vertices, specific link
relationships between some target individuals, vertex degrees, neighborhoods
of some target individuals, embedded subgraphs, and graph metrics (e.g., be-
tweenness, closeness, centrality).

For simple graphs in which nodes are not associated with attributes and links
are unlabeled, adversaries only have structural background knowledge in their
attacks (e.g., vertex degrees, neighborhoods, embedded subgraphs, graph met-
rics). For example, Liu and Terzi [31] considered vertex degrees as background
knowledge of the adversaries to breach the privacy of target individuals, the au-
thors of [20, 50, 19] used neighborhood structural information of some target
individuals, the authors of [4, 52] proposed the use of embedded subgraphs,
and Ying and Wu [47] exploited the topological similarity/distance to breach
the link privacy.

For rich graphs in which nodes are associated with various attributes and
links may have different types of relationships, it is imperative to study the im-
pact on privacy disclosures when adversaries combine attributes and structural
information together in their attacks. Re-identification with attribute knowl-
edge of individuals has been well-studied and resiting techniques have been
developed for tabular data (see, e.g., the survey book [1]). However, applying
those techniques directly on network data erases inherent graph structural prop-
erties. The authors, in [11, 8, 9, 49], investigated anonymization techniques for
different types of rich graphs against complex background knowledge.

As pointed out in two earlier surveys [30, 51], it is very challenging to model
all types of background knowledge of adversaries and quantify their impacts
on privacy breaches in the scenario of publishing social networks with privacy
preservation.
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1.3 Utility Preservation

An important goal of publishing social network data is to permit useful anal-
ysis tasks. Different analysis tasks may expect different utility properties to be
preserved. So far, three types of utility have been considered.

Graph topological properties. One of the most important applications
of social network data is for analyzing graph properties. To understand
and utilize the information in a network, researches have developed var-
ious measures to indicate the structure and characteristics of the network
from different perspectives [12]. Properties including degree sequences,
shortest connecting paths, and clustering coefficients are addressed in
[20, 45, 31, 19, 50, 46].

Graph spectral properties. The spectrum of a graph is usually defined as
the set of eigenvalues of the graph’s adjacency matrix or other derived
matrices. The graph spectrum has close relations with many graph char-
acteristics and can provide global measures for some network properties
[36]. Spectral properties are adopted to preserve utility of randomized
graphs in [45, 46].

Aggregate network queries. An aggregate network query calculates the
aggregate on some paths or subgraphs satisfying some query conditions.
One example is that the average distance from a medical doctor vertex to
a teacher vertex in a network. In [52, 50, 8, 11], the authors considered
the accuracy of answering aggregate network queries as the measure of
utility preservation.

In general, it is very challenging to quantify the information loss in
anonymizing social networks. For tabular data, since each tuple is usu-
ally assumed to be independent, we can measure the information loss of the
anonymized table using the sum of the information loss of each individual tu-
ple. However, for social network data, the information loss due to the graph
structure change should also be taken into account in addition to the informa-
tion loss associated with node attribute changes. In [52], Zou et al. used the
number of modified edges between the original graph and the released one
to quantify information loss due to structure change. The rationale of using
anonymization cost to measure the information loss is that a lower anonymiza-
tion cost indicates that fewer changes have been made to the original graph.

1.4 Anonymization Approaches

Similar to the design of anonymization methods for tabular data, the design
of anonymization methods also need take into account the attacking models
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and the utility of the data. We categorize the state-of-the-art anonymization
methods on simple network data into three categories as follows.

K-anonymity privacy preservation via edge modification. This approach
modifies graph structure via a sequence of edge deletions and additions
such that each node in the modified graph is indistinguishable with at
least K − 1 other nodes in terms of some types of structural patterns.

Edge randomization. This approach modifies graph structure by ran-
domly adding/deleting edges or switching edges. It protects against re-
identification in a probabilistic manner.

Clustering-based generalization. This approach clusters nodes and edges
into groups and anonymizes a subgraph into a super-node. The details
about individuals are hidden.

The above anonymization approaches have been shown as a necessity in ad-
dition to naive anonymization to preserve privacy in publishing social network
data.

In the following, we first focus on simple graphs in Section 2 to 5. Specifi-
cally, we revisit existing attacks on naive anonymized graphs in Section 2, K-
anonymity approaches via edge modification in Section 3, edge randomization
approaches in Section 4, and clustering-based generalization approaches in
Section 5 respectively. We then survey the recent development of anonymiza-
tion techniques for rich graphs in Section 6. Section 7 is dedicated to other pri-
vacy issues in online social networks in addition to those on publishing social
network data. We give conclusions and point out future directions in Section
8.

1.5 Notations

A network G(V,E) is a set of n nodes connected by a set of m links, where
V denotes the set of nodes and E ⊆ V × V is the set of links. The network
considered here is binary, symmetric, and without self-loops. A = (aij)n×n is
the adjacency matrix of G: aij = 1 if node i and j are connected and aij = 0
otherwise. The degree of node i, di, is the number of the nodes connected to
node i, i.e., di =

∑
j aij , and d = {d1, . . . , dn} denotes the degree sequence.

The released graph after perturbation is denoted by G̃(Ṽ , Ẽ). Ã = (ãij)n×n is

the adjacency matrix of G̃, and d̃i and d̃ are the degree and degree sequence of

G̃ respectively.
Note that, for ease of presentation, we use the following pairs of terms inter-

changeably: “graph” and “network”, “node” and “vertex”, “edge” and “link”,
“entity” and “individual”, “attacker” and “adversary”.
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2. Privacy Attacks on Naive Anonymized Networks

The practice of naive anonymization replaces the personally identifying in-
formation associated with each node with a random ID. However, an adversary
can potentially combine external knowledge with the observed graph structure
to compromise privacy, de-anonymize nodes, and learn the existence of sensi-
tive relationships between explicitly de-anonymized individuals.

2.1 Active Attacks and Passive Attacks

In [24], Backstrom et al. presented two different types of attacks on
anonymized social networks.

Active attacks. An adversary chooses an arbitrary set of target individ-
uals, creates a small number of new user accounts with edges to these
target individuals, and establishes a highly distinguishable pattern of
links among the new accounts. The adversary can then efficiently find
these new accounts together with the target individuals in the released
anonymized network.

Passive attacks. An adversary does not create any new nodes or edges.
Instead, he simply constructs a coalition, tries to identify the subgraph
of this coalition in the released network, and compromises the privacy
of neighboring nodes as well as edges among them.

The active attack is based on the uniqueness of small subgraphs embedded
in the network. The constructed subgraph H by the adversary needs to satisfy
the following three properties in order to make the active attack succeed:

There is no other subgraph S in G such that S and H are isomorphic.

H is uniquely and efficiently identifiable regardless of G.

The subgraph H has no non-trivial automorphisms.

It has been shown theoretically that a randomly generated subgraph H
formed by O(

√
log n) nodes can compromise the privacy of arbitrarily target

nodes with high probability for any network. The passive attack is based on
the observation that most nodes in real social network data already belong to a
small uniquely identifiable subgraph. A coalition X of size k is initiated by one
adversary who recruits k − 1 of his neighbors to join the coalition. It assumes
that the users in the coalition know both the edges amongst themselves (i.e., the
internal structure of H) and the names of their neighbors outside X. Since the
structure of H is not randomly generated, there is no guarantee that it can be
uniquely identified. The primary disadvantage of the passive attack in practice,
compared to the active attack, is that it does not allow one to compromise the
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privacy of arbitrary users. The adversaries can adopt a hybrid semi-passive at-
tack: they create no new accounts, but simply create a few additional out-links
to target users before the anonymized network is released. We refer readers
to [24] for more details on theoretical results and empirical evaluations on a
real social network with 4.4 million nodes and 77 million edges extracted from
LiveJoural.com.

2.2 Structural Queries

In [19], Hay et al. studied three types of background knowledge to be used
by adversaries to attack naively-anonymized networks. They modeled adver-
saries’ external information as the access to a source that provides answers
to a restricted knowledge query Q about a single target node in the original
graph. Specifically, background knowledge of adversaries is modeled using
the following three types of queries.

Vertex refinement queries. These queries describe the local structure
of the graph around a node in an iterative refinement way. The weakest
knowledge query, ℋ0(x), simply returns the label of the node x; ℋ1(x)
returns the degree of x; ℋ2(x) returns the multiset of each neighbors’
degree, and ℋi(x) can be recursively defined as:

ℋi(x) = {ℋi−1(z1),ℋi−1(z2), ⋅ ⋅ ⋅ ,ℋi−1(zdx)}

where z1, ⋅ ⋅ ⋅ , zdx are the nodes adjacent to x.

Subgraph queries. These queries can assert the existence of a subgraph
around the target node. The descriptive power of a query is measured by
counting the number of edges in the described subgraph. The adversary
is capable of gathering some fixed number of edges focused around the
target x. By exploring the neighborhood of x, the adversary learns the
existence of a subgraph around x representing partial information about
the structure around x.

Hub fingerprint queries. A hub is a node in a network with high degree
and high betweenness centrality. A hub fingerprint for a target node x,
ℱi(x), is a description of the node’s connections to a set of designated
hubs in the network where the subscript i places a limit on the maximum
distance of observable hub connections.

The above queries represent a range of structural information that may be
available to adversaries, including complete and partial descriptions of node’s
local neighborhoods, and node’s connections to hubs in the network.

Vertex refinement queries provide complete information about node degree
while a subgraph query can never express ℋi knowledge because subgraph
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queries are existential and cannot assert exact degree constraints or the absence
of edges in a graph. The semantics of subgraph queries seem to model realistic
adversary capabilities more accurately. It is usually difficult for an adversary
to acquire the complete detailed structural description of higher-order vertex
refinement queries.

2.3 Other Attacks

In [34], Narayanan and Shmatikov assumed that the adversary has two types
of background knowledge: aggregate auxiliary information and individual aux-
iliary information. The aggregate auxiliary information includes an auxiliary
graph Gaux(Vaux, Eaux) whose members overlap with the anonymized target
graph and a set of probability distributions defined on attributes of nodes and
edges. These distributions represent the adversary’s (imperfect) knowledge of
the corresponding attribute values. The individual auxiliary information is the
detailed information about a very small number of individuals (called seeds) in
both the auxiliary graph and the target graph.

After re-identifying the seeds in target graph, the adversaries immediately
get a set of de-anonymized nodes. Then, by comparing the neighborhoods
of the de-anonymized nodes in the target graph with the auxiliary graph, the
adversary can gradually enlarge the set of de-anonymized nodes. During this
propagation process, known information such as probability distributions and
mappings are updated repeatedly to reduce the error. The authors showed that
even some edge addition and deletion are applied independently to the released
graph and the auxiliary graph, their de-anonymizing algorithm can correctly
re-identify a large number of nodes in the released graph.

To protect against these attacks, researchers have developed many different
privacy models and graph anonymization methods. Next, we will provide a
detailed survey on these techniques.

3. K-Anonymity Privacy Preservation via Edge
Modification

The adversary aims to locate the vertex in the network that corresponds to
the target individual by analyzing topological features of the vertex based on
his background knowledge about the individual. Whether individuals can be
re-identified depends on the descriptive power of the adversary’s background
knowledge and the structural similarity of nodes. To quantify the privacy
breach, Hey et al. [19] proposed a general model for social networks as fol-
lows:

Definition 14.1. K-candidate anonymity. A node x is K-candidate anony-
mous with respect to a structure query Q if there exist at least K − 1 other
nodes in the graph that match query Q. In other words, ∣candQ(x)∣ ≥ K
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where candQ(x) = {y ∈ V ∣Q(y) = Q(x)}. A graph satisfies K-candidate
anonymity with respect to Q if all the nodes are K-candidate anonymous with
respect to Q.

Three types of queries (vertex refinement queries, subgraph queries, and
hub fingerprint queries) were presented and evaluated on the naive anonymized
graphs. In [20], Hay et al. studied an edge randomization technique that modi-
fies the graph via a sequence of random edge deletions followed by edge addi-
tions. In [19] Hay et al. presented a generalization technique that groups nodes
into super-nodes and edges into super-edges to satisfy the K-anonymity. We
will introduce their techniques in Section 4.1 and 5 in details respectively.

Several methods have been investigated to prevent node re-identification
based on the K-anonymity concept. These methods differ in the types of the
structural background knowledge that an adversary may use. In [31], Liu and
Terzi assumed that the adversary knows only the degree of the node of a target
individual. In [50], Zhou and Pei assumed one specific subgraph constructed
by the immediate neighbors of a target node is known. In [52], Zou et al.
considered all possible structural information around the target and proposed
K-automorphism to guarantee privacy under any structural attack.

3.1 K-Degree Generalization

In [31], Liu and Terzi pointed out that the degree sequences of real-world
graphs are highly skewed, and it is usually easy for adversaries to collect the
degree information of a target individual. They investigated how to modify a
graph via a set of edge addition (and/or deletion) operations in order to con-
struct a new K-degree anonymous graph, in which every node has the same
degree with at least K − 1 other nodes. The authors imposed a requirement
that the minimum number of edge-modifications is made in order to preserve
the utility. The K-degree anonymity property prevents the re-identification of
individuals by the adversaries with prior knowledge on the number of social
relationships of certain people (i.e., vertex background knowledge).

Definition 14.2. K-degree anonymity. A graph G(V,E) is K-degree anony-
mous if every node u ∈ V has the same degree with at least K − 1 other
nodes.

Problem 1. Given a graph G(V,E), construct a new graph G̃(Ṽ , Ẽ) via a set
of edge-addition operations such that 1) G̃ isK-degree anonymous; 2)V = Ṽ ;
and 3) Ẽ ∩ E = E.

The proposed algorithm is outlined below.
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1 Starting from the degree sequence d of the original graph G(V,E), con-
struct a new degree sequence d̃ that is K-anonymous and the L1 dis-
tance, ∥d̃ − d∥1 is minimized.

2 Construct a new graph G̃(Ṽ , Ẽ) such that dG̃ = d̃, Ṽ = V , and Ẽ = E

(or Ẽ ∩ E ≈ E in the relaxed version).

The first step is solved by a linear-time dynamic programming algorithm
while the second step is based on a set of graph-construction algorithms given
a degree sequence. The authors also extended their algorithms to allow for si-
multaneous edge additions and deletions. Their empirical evaluations showed
that the proposed algorithms can effectively preserve the graph utility (in terms
of topological features) while satisfying the K-degree anonymity.

3.2 K-Neighborhood Anonymity

In [50], Zhou and Pei assumed that the adversary knows subgraph con-
structed by the immediate neighbors of a target node. The proposed greedy
graph-modification algorithm generalizes node labels and inserts edges until
each neighborhood is indistinguishable to at least K − 1 others.

Definition 14.3. K-neighborhood anonymity. A node u is K-neighborhood
anonymous if there exist at least K − 1 other nodes v1, . . . , vK−1 ∈ V
such that the subgraph constructed by the immediate neighbors of each node
v1, ⋅ ⋅ ⋅ , vK−1 is isomorphic to the subgraph constructed by the immediate
neighbors of u. A graph satisfies K-neighborhood anonymity if all the nodes
are K-neighborhood anonymous.

The definition can be extended from the immediate neighbor to the d-
neighbors (d > 1) of the target vertex, i.e., the vertices within distance d to
the target vertex in the network.

Problem 2. Given a graph G(V,E), construct a new graph G̃(Ṽ , Ẽ) satisfy-
ing the following conditions: 1) G̃ is K-neighborhood anonymous; 2)V = Ṽ ;
3) Ẽ ∩E = E; and 4) G̃ can be used to answer aggregate network queries as
accurately as possible.

The simple case of constructing a K-neighborhood anonymous graph satis-
fying condition 1-3) was shown as NP-hard [50]. The proposed algorithm is
outlined below.

1 Extract the neighborhoods of all vertices in the network. A neighbor-
hood component coding technique, which can represent the neighbor-
hoods in a concise way, is used to facilitate the comparisons among
neighborhoods of different vertices including the isomorphism tests.
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2 Organize vertices into groups and anonymize the neighborhoods of ver-
tices in the same group until the graph satisfies K-anonymity. A heuris-
tic of starting with vertices with high degrees is adopted since these ver-
tices are more likely to be vulnerable to structural attacks.

In [50], Zhou and Pei studied social networks with vertex attributes infor-
mation in addition to the unlabeled network topology. The vertex attributes
form a hierarchy. Hence, there are two ways to anonymize the neighborhoods
of vertices: generalizing vertex labels and adding edges. In terms of utility,
it focuses on using anonymized social networks to answer aggregate network
queries.

3.3 K-Automorphism Anonymity

Zou et al. in [52] adopted a more general assumption: the adversary can
know any subgraph around a certain individual �. If such a subgraph can be
identified in the anonymized graph with high probability, user � has a high

identity disclosure risk. The authors aimed to construct a graph G̃ so that for

any subgraph X ⊂ G, G̃ contains at least K subgraphs isomorphic to X. We
first give some definitions introduced in [52]:

Definition 14.4. Graph isomorphism and automorphism. Given two graphs
G1(V1, E1) and G2(V2, E2), G1 is isomorphic to G2 if there exists a bijective
function f : V1 → V2 such that for any two nodes u, v ∈ V1, (u, v) ∈ E1 if
and only if (f(u), f(v)) ∈ E2. If G1 is isomorphic to itself under function f ,
G1 is an automorphic graph, and f is called an automorphic function of G1.

Definition 14.5. K-automorphic graph. Graph G is a K-automorphic graph
if 1) there exist K − 1 non-trivial automorphic functions of G, f1, . . . , fK−1;
and 2) for any node u, fi(u) ∕= fj(u) (i ∕= j).

If the released graph G̃ is a K-automorphic graph, when the adversary tries
to re-identify node u through a subgraph, he will always get at least K dif-

ferent subgraphs in G̃ that match his subgraph query. With the second con-
dition in Definition 14.5, it is guaranteed that the probability of a successful
re-identification is no more than 1

K . The second condition in Definition 14.5
is necessary to guarantee the privacy safety. If it is violated, the worst case
is that for a certain node u and any i = 1, 2, . . . ,K − 1, fi(u) ≡ u, and the

adversary can then successfully re-identify node u in G̃. For example, consider
a l-asteroid graph in which a central node is connected by l satellite nodes and
the l satellite nodes are not connected to each other. This l-asteroid graph has
at least l automorphic functions. However the central node is always mapped
to itself by any automorphic function. Condition 2 prevents such cases from
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happening in the released graph G̃. The authors then considered the following
problem:

Problem 3. Given the original graph G, construct graph G̃ such that E ⊆ Ẽ
and G̃ is a K-automorphic graph.

The following steps briefly show the framework of their algorithm:

1 Partition graph G into several groups of subgraphs {Ui}, and each group
Ui contains Ki ≥ K subgraphs {Pi1, Pi2, . . . , PiKi} where any two
subgraphs do not share a node or edge.

2 For each Ui, make Pij ∈ Ui isomorphic to each other by adding edges.

Then, there exists function f
(i)
s,t (⋅) under which Pis is isomorphic to Pit.

3 For each edge (u, v) across two subgraphs, i.e. u ∈ Pij and v ∈ Pst

(Pij ∕= Pst), add edge
(
f
(i)
j,�j(r)

(u), f
(s)
t,�t(r)

(v)
)

, where �j(r) = (j + r)

mod K, r = 1, 2, . . . ,K − 1.

After the modification, for any node u, suppose u ∈ Pij , define fr(⋅) as

fr(u) = f
(i)
j,�j(r)

(u), r = 1, . . . ,K − 1. Then, fr(u), r = 1, . . . ,K − 1, are

K − 1 non-trivial automorphic functions of G̃, and for any s ∕= t, fs(u) ∕=
ft(u), which guarantees the K-automorphism.

To better preserve the utility, the authors expected that the above algorithm
introduces the minimal number of fake edges, which implies that subgraphs
within one group Ui should be very similar to each other (so that Step 2 only
introduces a small number of edges), and there are few edges across different
subgraphs (so that Step 3 will not add many edges). This depends on how the
graph is partitioned. If G is partitioned into fewer subgraphs, there are fewer
crossing edges to be added. However, fewer subgraphs imply that the size of
each subgraph is large, and more edges within each subgraph need to be added
in Step 2. The authors proved that to find the optimal solution is NP-complete,
and they proposed a greedy algorithm to achieve the goal.

In addition to proposing the K-automorphism idea to protect the graph un-
der any structural attack, the authors also studied an interesting problem with
respect to privacy protection over dynamic releases of graphs. Specially, the
requirements of social network analysis and mining demand releasing the net-
work data from time to time in order to capture the evolution trends of these
data. The existing privacy-preserving methods only consider the privacy pro-
tection in “one-time” release. The adversary can easily collect the multiple
releases and identify the target through comparing the difference among these
releases. Zou et al. [52] extended the solution of K-automorphism by publish-
ing the vertex ID set instead of single vertex ID for the high risk nodes.
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4. Privacy Preservation via Randomization

Besides K-anonymity approaches, randomization is another widely adopted
strategy for privacy-preserving data analysis. Additive noise based randomiza-
tion approaches have been well investigated in privacy-preserving data mining
for numerical data (e.g., [3, 2]). For social networks, two edge-based random-
ization strategies have been commonly adopted.

Rand Add/Del: randomly add k false edges followed by deleting k true
edges. This strategy preserves the total number of edges in the original
graph.

Rand Switch: randomly switch a pair of existing edges (t, w) and (u, v)
(satisfying edge (t, v) and edge (u,w) do not exist in G) to (t, v) and
(u,w), and repeat this process for k times. This strategy preserves the
degree of each vertex.

The process of randomization and the randomization parameter k are as-
sumed to be published along with the released graph. By using adjacency
matrix, the edge randomization process can be expressed in the matrix form

Ã = A+E, where E is the perturbation matrix: E(i, j) = E(j, i) = 1 if edge
(i, j) is added, E(i, j) = E(j, i) = −1 if edge (i, j) is deleted, and 0 oth-
erwise. Naturally, edge randomization can also be considered as an additive-
noise perturbation. After the randomization, the randomized graph is expected
to be different from the original one. As a result, the node identities as well as
the true sensitive or confidential relationship between two nodes are protected.

In this section, we first discuss why randomized graphs are resilient to struc-
tural attacks and how well randomization approaches can protect node identity
in Section 4.1. Notice that the randomization approaches protect against re-
identification in a probabilistic manner, and hence they cannot guarantee that
the randomized graphs satisfy K-anonymity strictly.

There exist some scenarios that node identities (and even entity attributes)
are not confidential but sensitive links between target individuals are confiden-
tial and should be protected. For example, in a transaction network, an edge
denoting a financial transaction between two individuals is considered confi-
dential while nodes corresponding to individual accounts is non-confidential.
In these cases, data owners can release the edge randomized graph without re-
moving node annotations. We study how well the randomization approaches
protect sensitive links in Section 4.2.

An advantage of randomization is that many features could be accurately
reconstructed from the released randomized graph. However, distribution re-
construction methods (e.g., [3, 2]) designed for numerical data could not be
applied on network data directly since the randomization mechanism in social
networks (based on the positions of randomly chosen edges) is much different
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from the additive noise randomization (based on random values for all entries).
We give an overview of low rank approximation based reconstruction methods
in Section 4.3.

Edge randomization may significantly affect the utility of the released ran-
domized graph. We survey some randomization strategies that can preserve
structural properties in Section 4.4.

4.1 Resilience to Structural Attacks

  attacker−1

  attacker−2

  α

  β

H G

    u

  v

  s

  t

H G̃

(a) The Original Graph (b) The Released Graph

Figure 14.1. Resilient to subgraph attacks

Recall that in both active attacks and passive attacks [4], the adversary needs
to construct a highly distinguishable subgraph H with edges to a set of target
nodes, and then to re-identify the subgraph and consequently the targets in the
released anonymized network. As shown in Figure 14.1(a), attackers form an
subgraph H in the original graphG, and attacker 1 and 2 send links to the target
individuals � and �. After randomization using either Rand Add/Del or Rand
Switch, the structure of subgraph H as wellG is changed. The re-identifiability

of the subgraph H from the randomized released graph G̃ may significantly
decrease when the magnitude of perturbation is medium or large. Even if the
subgraph H can still be distinguished, as shown in Figure 14.1(b), link (u, s)

and (v, t) in G̃ can be false links. Hence node s and t do not correspond to
target individuals � and �. Furthermore, even individuals � and � have been
identified, the observed link between � and � can still be a false link. Hence,
the link privacy can still be protected. In summary, it is more difficult for the
adversary to breach the identity privacy and link privacy.

Similarly for structural queries [20], because of randomization, the adver-
sary cannot simply exclude from those nodes that do not match the structural
properties of the target. Instead, the adversary needs to consider the set of all

possible graphs implied by G̃ and k. Informally, this set contains any graph Gp

that could result in G̃ under k perturbations from Gp, and the size of the set is
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(
m
k

)((n2)−m

k

)
. The candidate set of a target node includes every node y if it is a

candidate in some possible graph. The probability associated with a candidate
y is the probability of choosing a possible graph in which y is a candidate.
The computation is equivalent to compute a query answer over a probabilistic
database and is likely to be intractable.

We would emphasize that it is very challenging to formally quantify identity
disclosure in the presence of complex background knowledge of adversaries
(such as embedded subgraphs or graph metrics). Ying et al. [44] quantified
the risk of identity disclosure (and link disclosure) when adversaries adopt one
specific type of background knowledge (i.e., knowing the degree of target in-
dividuals). The node identification problem is that given the true degree d� of
a target individual �, the adversary aims to discover which node in the ran-

domized graph G̃ corresponds to individual �. However, it is unclear whether
the quantification of disclosure risk can be derived for complex background
knowledge based attacks.

4.2 Link Disclosure Analysis

Note that link disclosure can occur even if each vertex is K-anonymous.
For example, in a K-degree anonymous graph, nodes with the same degree
can form an equivalent class (EC). For two target individuals � and �, if every
node in the EC of individual � has an edge with every node in the EC of �,
the adversary can infer with probability 100% that an edge exists between the
two target individuals, even if the adversary may not be able to identify the
two individuals within their respective ECs. In [48], L. Zhang and W. Zhang
described an attacking method in which the adversary estimates the probability
of existing link (i, j) through the link density between the two equivalence
classes. The authors then proposed a greedy algorithm aiming to reduce the
probabilities of link disclosure to a tolerance threshold � via a minimum series
of edge deletions or switches.

In [45–47], the authors investigated link disclosure of edge-randomized
graphs. They focused on networks where node identities (and even entity at-
tributes) are not confidential but sensitive links between target individuals are
confidential. The problem can be regarded as, compared to not releasing the

graph, to what extent releasing a randomized graph G̃ jeopardizes the link
privacy. They assumed that adversaries are capable of calculating posterior
probabilities.

In [45], Ying and Wu investigated the link privacy under randomization
strategies (Rand Add/Del and Rand Switch). The adversary’s prior belief about
the existence of edge (i, j) (without exploiting the released graph) can be
calculated as P (aij = 1) = 2m

n(n−1) , where n is the number of nodes and

m is the number of edges. For Rand Add/Del, with the released graph and
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perturbation parameter k, the posterior belief when observing ãij = 1 is

P (aij = 1∣ãij = 1) = m−k
m .

An attacking model, which exploits the relationship between the probability
of existence of a link and the similarity measure values of node pairs in the
released randomized graph, was presented in [47]. Proximity measures have
been shown to be effective in the classic link prediction problem [28] (i.e., pre-
dicting the future existence of links among nodes given a snapshot of a current
graph). The authors investigated four proximity measures (common neigh-
bors, Katz measure, Adamic/Adar measure, and commute time) and quantified
how much the posterior belief on the existence of a link can be enhanced by
exploiting those similarity values derived from the released graph which is ran-
domized by the Rand Add/Del strategy. The enhanced posterior belief is given
by

P (aij = 1∣ãij = 1, m̃ij = x) =
(1− p1)�x

(1− p1)�x + p2(1− �x)
where p1 =

k
m denotes the probability of deleting a true edge, p2 =

k

(n2)−m
de-

notes the probability of adding a false edge, m̃ij denotes the similarity measure

between node i and j in G̃, and �x = P (aij = 1∣m̃ij = x) denotes the propor-
tion of true edges in the node pairs with m̃ij = x. The maximum likelihood
estimator (MLE) of �x can be calculated from the randomized graph.

The authors further theoretically studied the relationship among the prior
beliefs, posterior beliefs without exploiting similarity measures, and the en-
hanced posterior beliefs with exploiting similarity measures. One result is
that, for those observed links with high similarity values, the enhanced pos-
terior belief P (aij = 1∣ãij = 1, m̃ij = x) is significantly greater than
P (aij = 1∣ãij = 1) (the posterior belief without exploiting similarity mea-
sures). Another result is that the sum of the enhanced posterior belief (with
exploiting similarity measures) approaches to m, i.e.,

∑

i<j

P (aij = 1∣ãij , m̃ij)→ m as n→∞,

while the sum of the prior beliefs and the sum of posterior beliefs (without
exploiting similarity measures) over all node pairs equal to m. Notice that
it is more desirable to quantify the probability of existing true link (i, j) via

comprehensive information of G̃, i.e., P (aij = 1∣G̃). However, this is very
challenging.

A different attacking model was presented in [46]. It is based on the distri-
bution of the probability of existence of a link across all possible graphs in the
graph space G implied by G and k. If many graphs in G have an edge (i, j), the
original graph is also very likely to have the edge (i, j). Hence the proportion
of graphs with edge (i, j) can be used to denote the posterior probability of



A Survey of Privacy-Preservation of Graphs and Social Networks 437

existence of edge (i, j) in the original graph. More details will be provided in
Section 4.4.0.

4.3 Reconstruction

Recall that the edge randomization process can be written in the matrix form

Ã = A + E, where A (Ã) is the adjacency matrix of the original (random-
ized) graph and E is the perturbation matrix. In the setting of randomizing
numerical data, a data set U with m records of n attributes is perturbed to

Ũ by an additive noise data set V with the same dimensions as U . In other

words, Ũ = U + V . Distributions of U can be approximately reconstructed

from the perturbed data Ũ using distribution reconstruction approaches (e.g.,
[3, 2]) when some a-priori knowledge (e.g., distribution, statistics etc.) about
the noise V is available. Specifically, Agrawal and Aggawal [2] provided
an expectation-maximization (EM) algorithm for reconstructing the distribu-
tion of the original data from perturbed observations. However, it is unclear
whether similar distribution reconstruction methods can be derived for net-
work data. This is because 1) it is hard to define distribution for network data;
and 2) the randomization mechanism for network data is based on the positions
of randomly chosen edges rather than the independent random additive values
for all entries for numerical data.

In [41], Wu et al. investigated the use of low rank approximation methods to
reconstruct structural features from the graph randomized via Rand Add/Del.
Let �i (�̃i) beA’s (Ã’s) i-th largest eigenvalue in magnitude whose eigenvector

is xi (x̃i). Then, the rank l approximations of A and Ã are respectively given
by:

Al =

l∑

i=1

�ixix
T
i and Ãl =

l∑

i=1

�̃ix̃ix̃
T
i .

By choosing a proper l, Wu et al. [41] showed that Ãl can preserve the
major information of the original graph and filter out noises added in the rest
dimensions. This is because real-world data is usually highly correlated in
a low dimensional space while the randomly added noise is distributed (ap-

proximately) equally over all dimensions. In Ãl, those entries close to 1 are
more likely to have true edges while those entries close to 0 are less likely
to have edges. They simply derived the reconstructed graph Â by setting the

2m largest off-diagonal entries in Ãl as 1, and 0 otherwise. Empirical evalua-
tions showed that more accurate features can be reconstructed via the low rank
approximation even when the magnitude of additive noise k equals to 0.8m.

Note that the low rank approximation has been well investigated as a point-
wise reconstruction method in the numerical setting. A spectral filtering based
reconstruction method was first proposed in [22] to reconstruct original data
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values from the perturbed data. Similar methods (e.g., PCA based reconstruc-
tion method [21], SVD based reconstruction method [17]) were also investi-
gated. All methods exploited spectral properties of the correlated data to re-
move the noise from the perturbed one. Preliminary results [41] showed that
the accuracy of the reconstructed individual data (i.e., edge entries of the ad-
jacency matrix) using the low rank approximation is not as good as that of the
reconstructed numerical data.

We would emphasize that reconstruction methods on purely randomized
graphs need further investigations so that more accurate analysis can be con-
ducted on reconstructed graphs while individual privacy can be preserved. It is
our conjecture that it is very hard, if not impossible, to figure out reconstruc-
tion methods on the released data randomized using K-anonymity schemes.
This is because in K-anonymity based modification schemes, modified edge
entries are not randomly chosen. For example, the K-degree scheme examines
the degree sequence of nodes and chooses a subset of nodes (that violates the
K-degree anonymity property) for edge modification.

4.4 Feature Preserving Randomization

Edge randomization may significantly affect the utility of the released ran-
domized graph. To preserve utility, certain aggregate characteristics (a.k.a.,
feature) of the original graph should remain basically unchanged or at least
some properties can be reconstructed from the randomized graph. However,
as shown in [45], many topological features are lost due to randomization. In
this section, we summarize randomization strategies that can preserve struc-
tural properties. We would emphasize that it is very challenging to quantify
disclosures since the process of feature preserving strategies or generalization
strategies is more complicated than that of randomization strategies.

Instead of randomizing the original graph via Add/Del or Switch, researchers
also considered the problem of directly generating synthetic graphs given a
set of features. We refer interested readers to a recent survey [10] and the
references wherein for more details.

Spectrum Preserving Randomization. In [45], Ying and Wu presented a
randomization strategy that can preserve the spectral properties of the graph.
The spectra of graph matrices have close relations with many important topo-
logical properties such as diameter, presence of cohesive clusters, long paths
and bottlenecks, and randomness of the graph [36]. The authors aimed to
preserve the data utility by preserving two important eigenvalues during the
randomization: the largest eigenvalue of the adjacency matrix and the second
smallest eigenvalue of the Laplacian matrix.

The authors showed that pure randomization tends to move the eigenvalues
toward one direction, and the randomized eigenvalues can be significantly dif-
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ferent from the original values. The two proposed algorithms, Spctr Add/Del
and Spctr Switch, selectively pick up those edges that can increase (or decrease)
the target eigenvalue by examining the eigenvector values of the nodes involved
in the randomization, and apply the randomizing operation, which guarantees
the randomized eigenvalues do not move far from the original value. Their em-
pirical evaluations showed that the proposed algorithms can keep the spectral
features as well as many topological features close to the original ones even
when the magnitude of randomization is large.

Although they empirically showed that the spectrum preserving approach
can achieve similar privacy protection as the random perturbation approach,
however, they did not derive the formula of the protection measure for either
Spctr Add/Del or Spctr Switch since the number of false edges in the random-
ization cannot be explicitly expressed.

Markov Chain based Feature Preserving Randomization. The degree
sequence and topological features are of great importance to the graph struc-
ture. One natural idea is that it can better preserve the data utility if the released

graph G̃ preserves the original degree sequence and a certain topological fea-
ture, such as transitivity or average shortest distance. In [46, 18], the authors
investigated switch based randomization algorithms that can preserve various
properties of a real social network in addition to a given degree sequence.

To preserve data utility, data owners may want to preserve some particular
feature S within a precise range in the released graph. All the graphs that
satisfy the degree sequence d and the feature constraint S form a graph space
Gd,S (or Gd if no feature constraint). Starting with the original graph, series of
switches form a Markov chain that can explore the graph space Gd,S . Ying and
Wu [46] proposed an algorithm that can generate any graph in Gd,S with equal
probability, and Hanhijarvi et al. [18] proposed an algorithm that generates a
graph whose feature is close to the original value with high probability.

One concern on the privacy is that the feature constraint may reduce the
graph space and increase the risk of privacy disclosure. In [46], Ying and
Wu also studied how adversaries exploit the released graph as well as feature
constraints to breach link privacy. The adversary can calculate the posterior
probability of existence of a certain link by exploiting the graph space Gd,S . If
many graphs in the graph space have link (i, j), the original graph is also very
likely to have link (i, j), and hence the adversary’s posterior belief about link
(i, j) is given by

P [G(i, j) = 1∣Gd,S] =
1

∣Gd,S∣
∑

Gt∈Gd,S

Gt(i, j).

The attacking model works as follows: knowing the degree sequence d

and the feature constraint S, the adversary generates N samples Gt ∈ Gd,S
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(t = 1, 2, . . . , N ) via the Markov chain that starts with the released graph

G̃ and converges to the uniform stationary distribution over the graph space.
Then, P [G(i, j) = 1∣Gd,S] can be simply estimated by 1

N

∑N
t=1Gt(i, j). The

adversary can take the node pairs with highest posterior beliefs as candidate
links. This attacking model works because the convergence of the Markov
chain does not depend on the initial point. Their evaluations showed that some
feature constraints can significantly enhance the adversary’s attacking accu-
racy and the extent to which a feature constraint jeopardizes link privacy varies
for different graphs.

5. Privacy Preservation via Generalization

To preserve privacy, both K-anonymity and randomization approaches
modify the graph structure by adding/deleting edges and then release the de-
tailed graph. Different from the above two approaches, generalization ap-
proaches can be essentially regarded as grouping nodes and edges into parti-
tions called super-nodes and super-edges. The idea of generalization has been
well adopted in anonymizing tabular data. For social network data, the gen-
eralized graph, which contains the link structures among partitions as well as
the aggregate description of each partition, can still be used to study macro-
properties of the original graph.

In [19], Hay et al. applied structural generalization approaches that groups
nodes into clusters, by which privacy details about individuals can be hid-
den properly. To ensure node anonymity, they proposed to use the size of a
partition as a basic guarantee against re-identification attacks. Their method
obtains a vertex K-anonymous super-graph by aggregating nodes into super-
nodes and edges into super-edges, such that, each super-node represents at least
K nodes and each super-edge represents all the edges between nodes in two
super-nodes. Because only the edge density is published for each partition, it
is impossible for the adversary to distinguish between individuals in partition.
Note that more than one partition may be consistent with a knowledge query
about target individual x. Hence, the size of a partition is used to provide a
conservative guarantee against re-identification and there exists an improved
bound on the size of candidate sets.

To retain utility, the partitions should fit the original network as closely as
possible given the anonymity condition. The proposed method estimates fit-
ness via a maximum likelihood approach. The likelihood is defined as one
over the size of possible worlds implied by the partition. For any generaliza-
tion G, the number of edges in the super-node X is denoted as c(X,X), the
number of edges between X and Y is denoted as c(X,Y ), the set of possible
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worlds that are consistent with G is denoted byW(G) whose size is given by:

∣W(G)∣ =
∏

X∈V

(1
2 ∣X∣(∣X∣ − 1)

c(X,X)

) ∏

X,Y ∈V

( ∣X∣∣Y ∣
c(X,Y )

)

The likelihood for a graph g ∈ W(G) is then 1/∣W(G)∣. The partitioning of
nodes is chosen so that the generalized graph satisfies privacy constraints and
maximizes the utility (1/∣W(G)∣).

Their algorithm searches the approximate optimal partitioning, using sim-
ulated annealing [35]. Starting with a single partition containing all nodes,
the algorithm proposes a change of state by splitting a partition, merging two
partitions, or moving a node to a different partition. The movement from one
partition to next valid partition is always accepted if it increases the likelihood
and accepted with some probability if it decreases the likelihood. Search ter-
minates when it reaches a local maximum.

The authors evaluated the effectiveness of structural queries on real net-
works from various domains and random graphs. Their results showed that
networks are diverse in their resistance to attacks: social and communication
networks tend to be more resistant than some random graph models (Erdos-
Renyi and power-law graphs) would suggest, and hubs cannot be used to re-
identify many of their neighbors.

One problem of this generalization approach is that since the released net-
work only contains a summary of structural information about the original net-
work (e.g., degree distribution, path lengths, and transitivity), users have to
generate some random sample instances of the released network. As a result,
uncertainty may arise in the later analysis since the samples come from a large
number of possible worlds.

6. Anonymizing Rich Graphs

Real social network sources usually contain much richer information in ad-
dition to the simple graph structure. For example, in an online social network,
the main entities in the data are individuals whose profiles can list lots of de-
mographic information, such as age, gender and location, as well as other sen-
sitive personal data, such as political and religious preferences, relationship
status, etc. Between users, there are many different kinds of interactions such
as friendship and email communication. Interactions can also involve more
than two participants, e.g., many users can play a game together. Bhagat et al.
[8] referred to the connections formed in the social networks as rich interaction
graphs. Various queries on the network data are not simply about properties of
the entities in the data, or simply about the pattern of the link structure in the
graph, but rather on their combination. Thus it is important for the anonymiza-
tion to mask the associations between entities and their interactions.



442 MANAGING AND MINING GRAPH DATA

Notice that for rich social networks, a K-anonymous social network may
still leak privacy. For example, if all nodes in a K-anonymous group are asso-
ciated with some sensitive information, the adversary can derive that sensitive
attribute of target individuals. Mechanism analogous to l-diversity [33] can
be applied here. Several rich graph data models, which may contain labeled
vertices/edges in addition to the structural information associated with the net-
work, have been investigated in the privacy-preserving network analysis.

6.1 Link Protection in Rich Graphs

In [49], Zheleva et al. considered a graph model, in which there are multi-
ple types of edges but only one type of nodes. Edges are classified as either
sensitive or non-sensitive. The problem of link re-identification is defined as
inferring sensitive relationships from non-sensitive ones. The goal is to attain
privacy preservation of the sensitive relationships, while still producing useful
anonymized graph data. They proposed to use the number of removed non-
sensitive edges to measure the utility loss. Several graph anonymization strate-
gies were proposed, including the removal of all sensitive edges and/or some
non-sensitive edges, and the cluster-edge anonymization. In the cluster-edge
anonymization approach, all the anonymized nodes in an equivalence class are
collapsed into a single super-node and a decision is made on which edges to
be included the collapsed graph. One feasible way is to separately publish the
number of edges of each type between two equivalence classes.

The difference between the cluster-edge anonymization approach and the
generalization approach in [19] is that the former aggregates edges by type to
protect link privacy while the latter clusters vertices to protect node identities.

In [9], Campan and Truta considered an undirected graph model, in which
edges are not labeled but vertices are associated with some attributes including
identifier, quasi-identifier, and sensitive attributes. Those identifier attributes
such as name and SSN are removed while the quasi-identifier and the sensitive
attributes as well as the graph structure are released. To protect privacy in net-
work data, they adopted the K-anonymity model for both the quasi-identifier
attributes and the quasi-identifier relationship homogeneity. The goal is that
any two nodes from any cluster are indistinguishable based on either their re-
lationships or their attributes.

For structural anonymization, they proposed an edge generalization based
method that does not insert or remove edges from the network data. They per-
form social network data clustering followed by anonymization through clus-
ter collapsing. Specifically, the method first partitions vertices into clusters
and attaches the structural description (i.e., the number of nodes and the num-
ber of edges) to each cluster. From the privacy standpoint, an original node
within such a cluster is indistinguishable from other nodes. Then all vertices
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in the same cluster are made uniform with respect to the quasi-identifier at-
tributes and the quasi-identifier relationship. This homogenization is achieved
by using generalization, for both the quasi-identifier attributes and the quasi-
identifier relationship. All vertices in the same cluster are collapsed into one
single vertex (labeled by the number of vertices and edges in the cluster) and
edges between two clusters are collapsed into a single edge (labeled with the
number of edges between them). The method takes into account the informa-
tion loss due to both the attribute generalization and the changes of structural
properties. Users can tune the process to balance the tradeoff between preserv-
ing more structural information and preserving more vertex attribute informa-
tion.

6.2 Anonymizing Bipartite Graphs

Cormode et al. [11] studied a particular type of network data that can be
modeled as bipartite graphs – there are two types of entities, and an associ-
ation only exists between two entities of different types. One example is the
pharmacy (customers buy products). The association between two nodes (e.g.,
who bought what products) is considered to be private and needs to be pro-
tected while properties of some entities (e.g., product information or customer
information) are public.

Their anonymization method can preserve the graph structure exactly by
masking the mapping from entities to nodes rather than masking or altering
the graph structure. As a result, analysis principally based on the graph struc-
ture is correct. Privacy is ensured in this approach because given a group of
nodes, there is a secret mapping from these nodes to the corresponding group
of entities. There is no information published that would allow an adversary to
learn, within a group, which node corresponds to which entity.

They evaluated the utility using three types of aggregate queries with in-
creasing complexity for the bipartite graphs:

Type 0 - Graph structure only: compute an aggregate over all neighbors
of nodes in V that satisfy some Pn (i.e., predicates over solely graph
properties of nodes), such as the average number of products bought by
each customer.

Type 1 - Attribute predicate on one side only: compute an aggregate for
nodes in V satisfying Pa (i.e., predicates over attributes of the entities),
such as the average number of products for NJ customers.

Type 2 - Attribute predicate on both sides: compute an aggregate for
nodes in V satisfying Pa and nodes in W satisfying P ′

a, such as the total
number of OTC products bought by NJ customers.
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6.3 Anonymizing Rich Interaction Graphs

In [8], Bhagat et al. adopted a flexible representation of rich interaction
graphs which is capable of encoding multiple types of interactions between
entities. Interactions involving large number of participants are represented by
a hypergraph, denoted by G(V, I,E). V is the node set. Each entity v ∈ V has
a hidden identifier u and a set of properties. Each entity in I is an interaction
between/among a subset of entities in V . E is the set of hyperedges: for v ∈ V
and i ∈ I , an edge (v, i) ∈ E represents node v participates in interaction i.
One simple example of a hypergraph is shown in Figure 14.2(a).
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email-2

friend-2

blog-1

u1: 49, F, CA – v1

u2: 35, F, NC – v2
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(a) Original Graph (b) Anonymized Graph (c) Partitioning Approach

Figure 14.2. The interaction graph example and its generalization results

The authors assumed that adversaries know part of the links and nodes in
the graph. They presented two types of anonymization techniques based on the
idea of grouping nodes in V into several classes. The authors pointed out that
merely grouping nodes into several classes can not guarantee the privacy. For
example, consider the case where the nodes within one class form a complete
graph via a certain interaction. Then, once the adversary knows the target is
in the class, he can be sure that the target must participate in the interaction.
The authors provided a safety condition, called class safety to ensure that the
pattern of links between classes does not leak information: each node cannot
have interactions with two (or more) nodes from the same group.

Their algorithm is briefly summarized as follows:

1 Sort the nodes according to attribute values.

2 Group the nodes in V into groups {Ci} that satisfy the class safety prop-
erty and ∣Ci∣ ≥ s.

3 For node v ∈ Cj , replace the true identifier of v by a label list l(v)
containing t ≤ s identifiers, l(v) = {u1, u2, . . . , ut}. l(v) contains the
true identifier of v, and ∀ui ∈ l(v)⇒ ui ∈ Cj .

After modification, graph G and the label lists are released. Figure 14.2(b)
shows a special case where s = t for the label list. In Figure 14.2(b), node v1
has interactions with v3 through an email and the friendship. This is allowed in
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the class safety property, as it allows two nodes to share multiple interactions,
but prohibits a node having multiple friends in the same class. The authors also
showed that the label lists are structured to ensure that the true identity cannot
be inferred. Hence, the above procedures can greatly reduce the probability
that an adversary can learn about other nodes and interactions through known
nodes and interactions.

Note that the released graph contains the full topological structure of the
original graph, some structural attacks such as the active attack and passive
attack [4] can be applied here to de-anonymize the nodes in V . However, the
adversary cannot further obtain the attributes of the target, for the attributes of
those nodes within the same class are mixed together, which is similar to the
anatomy approach [42] for the tabular database.

To prevent identity disclosure, the authors further proposed a solution, called
partitioning approach, which groups edges in the anonymized graph and only
releases the number of interactions between two groups, as illustrated in Figure
14.2(c). This method describes the number of interactions at the level of classes
rather than nodes. The authors proved that this procedure guarantees that the
adversary can correctly guess which nodes participate in the unknown links
with probability at most 1

s .
In term of the utility, the authors focused on the accuracy of aggregate

queries on the graph data. They observed that if the nodes within one class
have the same attribute values, the results of some queries can still be accurate,
for the nodes of the class are either all included or all excluded in the result.
Based on this idea, the proposed algorithms first sort all the nodes according
to their attribute values, and then partition the nodes into classes that satisfy
the class safety property. After partition, nodes within one class may not have
exactly the same attribute values due to the class safety restriction, but they
still have similar attribute values. The authors empirically showed that when
the sorting order is appropriate, the query results based on the modified graph
are not much different from the results based on the original graph.

6.4 Anonymizing Edge-Weighted Graphs

Beyond the ongoing privacy-preserving social network analysis which
mainly focuses on un-weighted social networks, in [32, 13], the authors studied
the situations in which the network edges as well as the corresponding weights
are considered to be private.

In [13], Das et al. considered the problem of anonymizing the weights of
edges in the social network. The authors proposed a framework to re-assign
weights to edges so that a certain linear property of the original graph can
be preserved in the anonymized graph. A linear property is the property that
can be expressed by a specific set of linear inequalities of edge weights. If
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the newly assigned edge weights also satisfy the set of linear inequalities, the
corresponding linear property is also preserved. Then, finding new weight for
each edge is a linear programming problem. The authors discussed two linear
properties in details, single source shortest paths and all pairs shortest paths,
and proposed the algorithms that can efficiently construct the corresponding
linear inequality sets. Their empirical evaluations showed that the proposed
algorithms can considerably improve the edge k-anonymity of the modified
graph, which prevents the adversary to identify an edge by its weight.

In [32], Liu et al. also proposed two randomization strategies aiming to pre-
serve the shortest paths in the weighted social network. The first one, which
is easier to implement, is the Gaussian randomization multiplication strategy.
The algorithm multiplies the original weight of each edge by an i.i.d. Gaussian
random variable with mean 1 and variance �2. In the original graph, if the
total weight of the shortest path between two nodes is much smaller than that
of the second shortest path, the strategy can preserve the original shortest path
with high probability. The authors further proposed the second strategy which
can preserve a set of the target shortest paths or even all the shortest paths in
the graph. The authors pointed out that all edges can be divided into three
categories: the all-visited edge which belongs to all shortest paths, the non-
visited edge which belongs to no shortest path, and the partially-visited edge
which belongs to some but not all shortest paths. In order to preserve the target
shortest paths, one can then reduce the weight of all-visited edges, increase the
weight of non-visited edges, and perturb the weight of partially-visited edges
within a certain range. The weight sum of a target shortest path is changed and
is probably not the same as the original one, but the difference is minimized by
the proposed greedy perturbation algorithm.

In both works of [13] and [32], the authors did not apply addition, deletion
or generalization process to links or nodes. They only adjusted the weights
of each links. However, their algorithms can be incorporated with some other
graph modification algorithms.

7. Other Privacy Issues in Online Social Networks

We have restricted our discussion to the problem of privacy-preserving so-
cial network publishing so far. In this section, we give an overview about
recent studies on other privacy issues in the real online social networks such as
Facebook and MySpace.

7.1 Deriving Link Structure of the Entire Network

In [26], Korolova et al. considered a particular threat in which an adver-
sary subverts user accounts to gain information about local neighborhoods in
the network and pieces them together to build a global information about the
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social graph. It considered the case where no underlying graph is released,
and, in fact, the owner of the network would like to keep the entire structure
of the graph hidden from any one. The goal of the adversary is, rather than to
de-anonymize particular individuals from that graph, to compromise the link
privacy of as many individuals as possible. Specifically, the adversary deter-
mines the link structure of the graph based on the local neighborhood views of
the graph from the perspective of several non-anonymous users.

Analysis showed that the number of users that need to be compromised
in order to cover a constant fraction of the entire network drops exponentially
with increase in the lookahead parameter l provided by the network data owner.
Here a network has a lookahead l if a registered user can see all the links and
nodes incident to him within distance l from him. For example, l = 0 if a user
can see exactly who he links to; l = 1 if a user can see exactly the friends that
he links to as well as the friends that his friends link to.

Each time the adversary gains access to a user account, he immediately cov-
ers all nodes that are at distance no more than the lookahead distance l enabled
by the social network. In other words, he learns about all the edges incident
to these nodes. Thus by gaining access to the account of user u, an adversary
immediately covers all nodes that are within distance l of u. Additionally, he
learns about the existence of all nodes within distance l+1 from u. The authors
studied several attacking strategies shown as below.

Benchmark-Greedy: Among all users in the social network, pick the
next user to bribe as the one whose perspective on the network gives the
largest possible amount of new information. Formally, at each step the
adversary picks the node covering the maximum number of nodes not
yet covered.

Heuristically Greedy: Pick the next user to bribe as the one who can
offer the largest possible amount of new information, according to some
heuristic measure. For example, Degree-Greedy picks the next user to
bribe as the one with the maximum unseen degree, i.e., its degree minus
the number of edges incident to it already known by the adversary.

Highest-Degree: Bribe users in the descending order of their degrees.

Random: Pick the users to bribe at random.

Crawler: Similar to the Heuristically Greedy strategy, but choose the
next node to bribe only from the nodes already seen (within distance
l + 1 of some bribed node). One example is Degree-Greedy-Crawler
that picks, from all users already seen, the next user to bribe as the one
with the maximum unseen degree.
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Experiments on a 572, 949-node friendship graph extracted from Live-
Joural.com indicated that 1) Highest-Degree yields the best performance while
Random performs the worst; 2) in order to obtain 80% coverage of the graph
using lookahead 2, Highest-Degree needs to bribe 6, 308 users while it only
needs to bribe 36 users to obtain the same coverage using lookahead 3. The
authors suggested that as a general rule, the social network owners should re-
frain from permitting a lookahead higher than 2. Data owner may also want
to decrease their vulnerability of the social network by not showing the exact
number of connections that each user has, or by varying the lookahead avail-
able to users based on their trustworthiness.

7.2 Deriving Personal Identifying Information from
Social Networking Sites

Online network users often publish their profiles as well as their connec-
tions that contain vast amounts of personal and sometimes sensitive informa-
tion (e.g., photo, birth date, phone number, current residence, various inter-
ests, and their friends). Acquisti and Gross in [16] studied the privacy risk
associated with these networks. The user’s profile information can be used
to estimate a person’s social security number and exposes his/her to identity
theft. Their studies showed that only a small number of Facebook members
change the default privacy preferences. As a result, users expose themselves to
various physical and cyber risks, and make it extremely easy for third parties
to create digital dossiers of their behavior. Their study quantified patterns of
information revelation and inferred usage of privacy settings from actual field
data.

8. Conclusion and Future Work

We surveyed recent studies on anonymization techniques for privacy-
preserving publishing of social network data. The research and development
of privacy-preserving social network analysis is still in its early stage com-
pared with much better studied privacy-preserving data analysis for tabular
data. We revisited the naive anonymization approach and several structural
attacks which can be exploited on the naive anonymized graphs. We cate-
gorized the state-of-the-art anonymization methods on simple graphs in three
main categories: K-anonymity based privacy preservation via edge modifica-
tion, probabilistic privacy preservation via edge randomization, and privacy
preservation via generalization. We then review anonymization methods on
rich graphs. Since social network data is more complicated than tabular data,
privacy preservation in social networks is much more challenging than privacy
preservation in tabular data. While ideas and methods can be borrowed from
the well studied privacy preservation in tabular data, many serious efforts are
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greatly needed due to new challenges (see Section 1.2 and 1.3) associated with
the network data. We present a set of recommendations for future research in
this emerging area.

Develop privacy models for graphs and networks. Investigate how well
different strategies protect privacy (identity, link privacy, and attribute
privacy) when adversaries exploit various complex background knowl-
edge in their attacks. How to model various background knowledge and
quantify disclosures when complex attacks are used needs to be investi-
gated.

Since how to preserve utility in the released graph is an important issue
in privacy-preserving social network analysis, measures and methodolo-
gies need to be developed to quantify utility and information loss. It
is important to develop workload-aware metrics that adequately quan-
tify levels of information loss of graph data. Furthermore, various
anonymization strategies need to be evaluated in terms of the tradeoff
between privacy and utility.

Existing studies except [52] do not consider dynamic releases. Many ap-
plications of evolutionary networks and dynamic social network analysis
require publishing data periodically to support dynamic analysis. The
“one-time” released network data from existing annonymization meth-
ods cannot guarantee privacy when adversaries collect historical infor-
mation from multiple releases.

Distributed privacy-preserving social network analysis based on secure
multi-party computation [43]. Distributed privacy-preserving data anal-
ysis on tabular data has been well studied (e.g., [29]; refer to the book
[1] for surveys). However, distributed privacy-preserving social network
analysis has not been well reported in literature.

Create a benchmark graph data repository. Researchers can compare and
learn how different approaches work in terms of the privacy-utility trade-
off. The scalability issue needs to be studied and empirical evaluations
need to be conducted on large social networks.
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