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Abstract Supervised learning on graphs is a central subject in graph data processing. In
graph classification and regression, we assume that the target values of a certain
number of graphs or a certain part of a graph are available as a training dataset,
and our goal is to derive the target values of other graphs or the remaining part
of the graph. In drug discovery applications, for example, a graph and its target
value correspond to a chemical compound and its chemical activity. In this chap-
ter, we review state-of-the-art methods of graph classification. In particular, we
focus on two representative methods, graph kernels and graph boosting, and we
present other methods in relation to the two methods. We describe the strengths
and weaknesses of different graph classification methods and recent efforts to
overcome the challenges.
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1. Introduction

Graphs are general and powerful data structures that can be used to repre-
sent diverse kinds of objects. Much of the real world data is represented not
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Figure 11.1. Graph classification and label propagation.

as vectors, but as graphs (including sequences and trees, which are specialized
graphs). Examples include biological sequences, semi-structured texts such
as HTML and XML, chemical compounds, RNA secondary structures, API
call graphs, etc. The topic of graph data processing is not new. Over the last
three decades, there have been continuous efforts in developing new methods
for processing graph data. Recently we have seen a surge of interest in this
topic, fueled partly by new technical advances, for example, development of
graph kernels [21] and graph mining [52] techniques, and partly by demands
from new applications, for example, chemical informatics. In fact, chemical
informatics is one of the most prominent fields that deal with large reposito-
ries of graph data. For example, NCBI’s PubChem has millions of chemical
compounds that are naturally represented as molecular graphs. Also, many
different kinds of chemical activity data are available, which provides a huge
test-bed for graph classification methods.

This chapter aims at giving an overview of existing graph classification
methods. The term “graph classification” can mean two different tasks. The
first task is to build a model to predict the class label of a whole graph (Fig-
ure 11.1, left). The second task is to predict the class labels of nodes in a
large graph (Figure 11.1, right). For clarity, we used the term to represent the
first task, and we call the second task “label propagation”[6]. This chapter
mainly deals with graph classification, but we will provide a short review of
label propagation in Section 5.

Graph classification tasks can either be unsupervised or supervised. Un-
supervised methods classify graphs into a certain number of categories by
similarity [47, 46]. In supervised classification, a classification model is con-
structed by learning from training data. In the training data, each graph (e.g., a
chemical compound) has a target value or a class label (e.g., biochemical activ-
ity). Supervised methods are more fundamental from a technical point of view,
because unsupervised learning problems can be solved by supervised methods
via probabilistic modeling of latent class labels [46]. In this chapter, we focus
on two supervised methods for graph classification: graph kernels and graph
boosting [40], which are similarity- and feature-based respectively. The two
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Figure 11.2. Prediction rules of kernel methods.

methods differ in many aspects, and a characterization of the difference of
these two methods would be helpful in characterizing other methods.

Kernel methods, such as support vector machines, construct a prediction
rule based on a similarity function between two objects [42]. Similarity func-
tions which satisfy a mathematical condition called positive definiteness are
called kernel functions. For example, in Figure 11.2, the similarity between
two objects is represented by a kernel function K(x, x′). The prediction func-
tion f(x) is a linear combination of x’s similarities to each training example
K(x, xi), i = 1, . . . , n. In order to apply kernel methods to graph data, it is
necessary to define a kernel function for graphs that can measure the similarity
between two graphs. It is natural to use the number of shared substructures in
two graphs as a similarity measure. However, the enumeration of subgraphs of
a given graph is NP-hard [12]. Therefore, one needs to use simpler substruc-
tures such as paths and trees. Graph kernels [21] are based on the weighted
counts of common paths. A clever recursive algorithm is employed to com-
pute the similarity without total enumeration of substructures.

One obvious drawback of graph kernels is that it is not clear which substruc-
tures have the biggest contribution to classification. For a new graph classified
by similarity, it is not always possible to know which part of the compound is
essential in classification. In many chemical applications, the users are inter-
ested not only in accurate prediction of biochemical activities, but also in the
mechanism creating the activities. This interpretation problem motivates us to
reexamine the approach of subgraph enumeration. Recently, frequent subgraph
enumeration algorithms such as AGM [18], Gaston [33] and gSpan [52] have
been proposed. They can enumerate all the subgraph patterns that appear more
than m times in a graph database. The threshold m is called minimum sup-
port. Frequent subgraph patterns are determined by branch-and-bound search
in a tree shaped search space (Figure 11.7). The computational time crucially
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depends on the minimum support parameter. For larger values of the support
parameter, the search tree can be pruned earlier. For chemical compound data-
sets, it is easy to mine tens of thousands of graphs on a commodity desktop
computer, if the minimum support is reasonably high (e.g., 10% of the num-
ber of graphs). However, it is known that, to achieve the best accuracy, the
minimum support has to be set to a small value (e.g., smaller than 1%) [51,
23, 16]. In such a setting, the graph mining becomes prohibitively inefficient,
because the algorithm creates millions of patterns. This also makes subsequent
processing very expensive. Graph boosting [40] progressively constructs the
prediction rule in an iterative fashion, and in each iteration only a few infor-
mative subgraphs are discovered. In comparison to the na-“ve method of using
frequent mining and support vector machines, the graph mining routine has to
be invoked multiple times. However, an additional search tree pruning con-
dition can speed up each call, and the overall time is shorter than the na-“ve
method.

The rest of this chapter is organized as follows. In Section 2, we will ex-
plain graph kernels, and review its recent extensions for graph classification.
In Section 3, we will discuss graph boosting and other methods based on ex-
plicit substructure mining. Applications of graph classification methods are
reviewed in Section 4. Section 5 briefly presents the label propagation tech-
niques. We conclude the chapter in Section 6.

2. Graph Kernels

We consider a graph kernel as a similarity measure for two graphs whose
nodes and edges are labeled (Figure 11.3). In this section, we present the
most fundamental kernel called the marginalized graph kernel [21], which is
based on graph paths. Recently, different versions of graph kernels have been
proposed using different substructures. Examples include cyclic paths [17] and
trees [29].

The proposed graph kernel is based on the idea of random walking. For the
labeled graph shown in Figure 11.3a, a label sequence is produced by travers-
ing the graph. A representative example is as follows:

(A, c,C, b,A, a,B), (2.1)

The vertex labels A,B,C,D and the edge labels a, b, c, d appear alternately.
By repeating random walks with random initial and end points, it is possible
to obtain the probabilities for all possible walks (Figure 11.3b). The essential
idea of the graph kernel is to derive a similarity measure of two graphs by
comparing their probability tables. It is computationally infeasible to perform
all possible random walks. Therefore, we employ a recursive algorithm which
can estimate the underlying probabilities. The node and edge labels are either
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Figure 11.3. (a) An example of labeled graphs. Vertices and edges are labeled by uppercase
and lowercase letters, respectively. By traversing along the bold edges, the label sequence (2.1)
is produced. (b) By repeating random walks, one can construct a list of probabilities.

discrete symbols or vectors. In the latter case, it is necessary to define node
kernels and edge kernels to specify the similarity of vectors.

Before describing technical details, we formally define a labeled graph. Let
ΣV denote the set of vertex labels, and ΣE the set of edge labels. Let X be
a finite nonempty set of vertices, v be a function v : X → ΣV . Let ℒ be
a set of vertex pairs that denote edges, and e be a function e : ℒ → ΣE .
(We assume that there are no multiple edges from one vertex to another.) Then
G = (X , v,ℒ, e) is a labeled graph with directed edges. Our task is to construct
a kernel function k(G,G′) between two labeled graphs G and G′.

2.1 Random Walks on Graphs

We extract features (labeled sequences) from a graph G by performing ran-
dom walks. At the first step, we sample a node x1 ∈ X from an initial proba-
bility distribution ps(x1). Subsequently, at the ith step, the next vertex xi ∈ X
is sampled subject to a transition probability pt(xi∣xi−1), or the random walk
ends at node xi−1 with probability pq(xi−1). In other words, at the ith step, we
have:

∣X ∣∑

k=1

pt(xk∣xi−1) + pq(xi−1) = 1 (2.2)

that is, at each step, the probabilities of transitions and termination sum to 1.
When we do not have any prior knowledge, we can set the initial probability

distribution ps to be the uniform distribution, the transition probability pt to be
a uniform distribution over the vertices adjacent to the current vertex, and the
termination probability pq to be a small constant probability.

From the random walk, we obtain a sequence of vertices called a path:

x = (x1, x2, . . . , xℓ), (2.3)

where ℓ is the length of x (possibly infinite). The final probability of obtaining
path x is the product of the probabilities that the path starts with x1, transits
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from xi−1 to xi for each i, and finally terminates with xl:

p(x∣G) = ps(x1)

ℓ∏

i=2

pt(xi∣xi−1)pq(xℓ).

Let us define a label sequence as sequence of alternating vertex labels and edge
labels:

h = (ℎ1, ℎ2, . . . , ℎ2ℓ−1) ∈ (ΣV ΣE)
ℓ−1ΣV .

Associated with a path x, we obtain a label sequence

hx = (vx1 , ex1,x2 , vx2 , ex2,x3 , . . . , vxℓ
).

which is a sequence of alternating vertex and edge labels. Since multiple ver-
tices (edges) may have the same label, multiple paths may map to one label
sequence. The probability of obtaining a label sequence h is thus the sum of
the probabilities of each path that emits h. This can be expressed as

p(h∣G) =
∑

x

�(h = hx) ⋅
(
ps(x1)

ℓ∏

i=2

pt(xi∣xi−1)pq(xℓ)

)
,

where � is a function that returns 1 if its argument holds, 0 otherwise.

2.2 Label Sequence Kernel

We now define a kernel kz between two label sequences h and h′. The
sequence kernel is defined based on kernels for vertex labels and edge labels.

We assume two kernel functions, kv(v, v
′) and ke(e, e

′), are readily defined
between vertex labels and edge labels. We constrain both kernels to be non-
negative1. An example of a vertex label kernel is the identity kernel, that is, the
kernel return 1 if the two labels are the same, 0 otherwise. It can be expressed
as:

kv(v, v
′) = �(v = v′) (2.4)

where �(⋅) is a function that returns 1 if its argument holds, and 0 otherwise.
The above kernel (2.4) is for labels of discrete values. If the labels are defined
in ℝ, then the Gaussian kernel can be used as a natural choice [42]:

kv(v, v
′) = exp(− ∥ v − v′ ∥2 /2�2), (2.5)

Edge kernels can be defined in the same way as in (2.4) and (2.5).
Based on the vertex label and the edge label kernels, we defome the kernel

for label sequences. If two sequences h and h′ are of the same length, or

1This constraint will play an important role in proving the convergence of our kernel.
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ℓ(h) = ℓ(h′), then the sequence kernel is defined as the product of the label
kernels:

kz(h,h
′) = kv(ℎ1, ℎ

′
1)

ℓ∏

i=2

ke(ℎ2i−2, ℎ
′
2i−2)kv(ℎ2i−1, ℎ

′
2i−1). (2.6)

If the two sequences are of different length, or ℓ(h) ∕= ℓ(h′), then the sequence
kernel returns 0, that is, kz(h,h

′) = 0.
Finally, our label sequence kernel is defined as the expectation of kz over

all possible h ∈ G and h′ ∈ G′.

k(G,G′) =
∑

h

∑

h′

kz(h,h
′)p(h∣G)p(h′∣G′). (2.7)

Here, p(h∣G)p(h′∣G′) is the probabilty that h and h′ occur in G and G′,
respectively, and kz(h,h

′) is their similarity. This kernel is valid, as it is de-
scribed as an inner product of two vectors p(h∣G) and p(h′∣G′).

2.3 Efficient Computation of Label Sequence Kernels

The label sequence kernel (2.7) defined above can be expanded as follows:

k(G,G′) =
∑∞

ℓ=1

∑
h

∑
h′ kv(ℎ1, ℎ

′
1)×(∏ℓ

i=2 ke(ℎ2i−2, ℎ
′
2i−2)kv(ℎ2i−1, ℎ

′
2i−1)

)
×

(∑
x
�(h = hx) ⋅

(
ps(x1)

∏ℓ
i=2 pt(xi∣xi−1)pq(xℓ)

))
×

(∑
x′ �(h = hx′) ⋅

(
ps(x

′
1)
∏ℓ

i=2 pt(x
′
i∣x′i−1)pq(x

′
ℓ)
))

.

The straightforward enumeration of all terms to compute the sum has a pro-
hibitive computational cost. In particular, for cyclic graphs, it is infeasible to
perform this computation in an enumerative way, because the possible length of
a sequence spans from 1 to infinity. Nevertheless, there is an efficient method
to compute this kernel as shown below. The method is based on the observation
that the kernel has the following nested structure.
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k(G,G′) = lim
L→∞

L∑

ℓ=1

(2.8)

∑

x1,x′
1

s(x1, x
′
1)×

⎛
⎝∑

x2,x′
2

t(x2, x
′
2, x1, x

′
1)×

⎛
⎝∑

x3,x′
3

t(x3, x
′
3, x2, x

′
2)×

⋅ ⋅ ⋅ ×
∑

xℓ,x
′
ℓ

t(xℓ, x
′
ℓ, xℓ−1, x

′
ℓ−1)q(xℓ, x

′
ℓ)

⎞
⎠ ⋅ ⋅ ⋅

⎞
⎠

where

s(x1, x
′
1) = ps(x1)p

′
s(x

′
1)kv(vx1 , v

′
x′
1
),

q(xℓ, x
′
ℓ) = pq(xℓ)p

′
q(x

′
ℓ)

t(xi, x
′
i, xi−1, x

′
i−1) = pt(xi∣xi−1)p

′
t(x

′
i∣x′i−1)kv(vxi , v

′
x′
i
)ke(exi−1xi , ex′

i−1x
′
i
)

Intuitively, (2.8) computes the expectation of the kernel function over all
possible pairs of paths of the same length l. Consider one of such pairs:
(x1, ⋅ ⋅ ⋅ , xℓ) in G and (x′1, ⋅ ⋅ ⋅ , x′ℓ) in G′. Here, ps, pt, and pq denote the
initial, transition, and termination probability of nodes in graph G, and p′s, p′t,
and p′q denote the initial, transition, and termination probability of nodes in
graph G′. Thus, s(x1, x

′
1) is the probability-weighted similarity of the first

elements in the two paths, q(xℓ, x
′
ℓ) is the probability that the two paths end

with xℓ and x′ℓ, and t(xi, x
′
i, xi−1, x

′
i−1) is the probability-weighted similarity

of the ith node pair and edge pair in the two paths.

Acyclic Graphs. Let us first consider the case of acyclic graphs. In an
acyclic graph, if there is a directed path from vertex x1 to x2, then there is
no directed path from vertex x2 to x1. It is well known that vertices of a
directed, acyclic graph can be numbered in a topological order2 such that every
edge from a vertex numbered i to a vertex numbered j satisfies i < j (see
Figure 11.4).

Since there are no directed paths from vertex j to vertex i if i < j, we can
employ dynamic programming to achieve our goal. Given that both G and G′

2Topological sorting of graph G can be done in O(∣X ∣+ ∣ℒ∣) [7].
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are directed acyclic graphs, we can rewrite (2.8) into the following:

k(G,G′) =
∑

x1.x′
1
s(x1, x

′
1)q(x1, x

′
1) + limL→∞

∑L
ℓ=2

∑
x1,x′

1
s(x1, x

′
1)×(∑

x2>x1,x′
2>x′

1
t(x2, x

′
2, x1, x

′
1)
(∑

x3>x2,x′
3>x′

2
t(x3, x

′
3, x2, x

′
2)×(

⋅ ⋅ ⋅
(∑

xℓ>xℓ−1,x
′
ℓ>x′

ℓ−1
t(xℓ, x

′
ℓ, xℓ−1, x

′
ℓ−1)q(xℓ, x

′
ℓ)
))
⋅ ⋅ ⋅
)
.

(2.9)
The first term corresponds to paths of length 1, and the second term corre-
sponds to paths longer than 1. We define r(⋅, ⋅) as follows:

r(x1, x
′
1) := q(x1, x

′
1) + limL→∞

∑L
ℓ=2

(∑
x2>x1,x′

2>x′
1
t(x2, x

′
2, x1, x

′
1)×(

⋅ ⋅ ⋅
(∑

xℓ>xℓ−1,x
′
ℓ>x′

ℓ−1
t(xℓ, x

′
ℓ, xℓ−1, x

′
ℓ−1)q(xℓ, x

′
ℓ)
))
⋅ ⋅ ⋅
)
,

(2.10)
We can rewrite (2.9) as the follows:

k(G,G′) =
∑

x1,x′
1

s(x1, x
′
1)r(x1, x

′
1).

The merit of defining (2.10) is that we can exploit the following recursive equa-
tion.

r(x1, x
′
1) = q(x1, x

′
1) +

∑

j>x1,j′>x′
1

t(j, j′, x1, x′1)r(j, j
′). (2.11)

Since all vertices are topologically ordered, r(x1, x
′
1) can be efficiently com-

puted by dynamic programming (Figure 11.5) for all x1 and x′1. The worst-case
time complexity of computing k(G,G′) is O(c ⋅ c′ ⋅ ∣X ∣ ⋅ ∣X ′∣) where c and c′

are the maximum out-degree of G and G′, respectively.
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Figure 11.4. A topologically sorted directed acyclic graph. The label sequence kernel can be
efficiently computed by dynamic programming running from right to left.

Figure 11.5. Recursion for computing r(x1, x′
1) using recursive equation (2.11). r(x1, x′

1) can be
computed based on the precomputed values of r(x2, x′

2), x2 > x1, x′
2 > x′

1.

General Directed Graphs. For cyclic graphs, nodes cannot be topologi-
cally sorted. This means that we cannot employ a one-pass dynamic program-
ming algorithm for acyclic graphs. However, we can obtain a recursive form
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of the kernel like (2.11), and reduce the problem to solving a system of simul-
taneous linear equations.

Let us rewrite (2.8) as

k(G,G′) = lim
L→∞

L∑

ℓ=1

∑

x1,x′
1

s(x1, x
′
1)rℓ(x1, x

′
1), (2.12)

where

r1(x1, x
′
1) := q(x1, x

′
1)

and

rℓ(x1, x
′
1) :=

⎛
⎝∑

x2,x′
2

t(x2, x
′
2, x1, x

′
1)

⎛
⎝∑

x3,x′
3

t(x3, x
′
3, x2, x

′
2)×

⎛
⎝⋅ ⋅ ⋅

⎛
⎝∑

xℓ,x
′
ℓ

t(xℓ, x
′
ℓ, xℓ−1, x

′
ℓ−1)q(xℓ, x

′
ℓ)

⎞
⎠
⎞
⎠ ⋅ ⋅ ⋅

⎞
⎠

for ℓ ≥ 2

Replacing the order of summation in (2.12), we have the following:

k(G,G′) =
∑

x1,x′
1

s(x1, x
′
1) lim

L→∞

L∑

ℓ=1

rℓ(x1, x
′
1)

=
∑

x1,x′
1

s(x1, x
′
1) lim

L→∞
RL(x1, x

′
1), (2.13)

where

RL(x1, x
′
1) :=

L∑

ℓ=1

rℓ(x1, x
′
1).

Thus we need to compute R∞(x1, x
′
1) to obtain k(G,G′).

Now let us restate this problem in terms of linear system theory [38]. The
following recursive relationship holds between rk and rk−1 (k ≥ 2):

rk(x1, x
′
1) =

∑

i,j

t(i, j, x1, x
′
1)rk−1(i, j). (2.14)
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Using (2.14), the recursive relationship for RL also holds as follows:

RL(x1, x
′
1) = r1(x1, x

′
1) +

L∑

k=2

rk(x1, x
′
1)

= r1(x1, x
′
1) +

L∑

k=2

∑

i,j

t(i, j, x1, x
′
1)rk−1(i, j)

= r1(x1, x
′
1) +

∑

i,j

t(i, j, x1, x
′
1)RL−1(i, j). (2.15)

Thus,RL can be perceived as a discrete-time linear system [38] evolving as the
time L increases. Assuming that RL converges (see [21] for the convergence
condition), we have the following equilibrium equation:

R∞(x1, x
′
1) = r1(x1, x

′
1) +

∑

i,j

t(i, j, x1, x
′
1)R∞(i, j). (2.16)

Therefore, the computation of the kernel finally requires solving simultaneous
linear equations (2.16) and substituting the solutions into (2.13).

Now let us restate the above discussion in the language of matrices. Let s,
r1, and r∞ be ∣X ∣ ⋅ ∣X ′∣ dimensional vectors such that

s = (⋅ ⋅ ⋅ , s(i, j), ⋅ ⋅ ⋅ )⊤
r1 = (⋅ ⋅ ⋅ , r1(i, j), ⋅ ⋅ ⋅ )⊤
r∞ = (⋅ ⋅ ⋅ , R∞(i, j), ⋅ ⋅ ⋅ )⊤

Let the transition probability matrix T be a ∣X ∣∣X ′∣ × ∣X ∣∣X ′∣ matrix,

[T ](i,j),(k,l) = t(i, j, k, l).

Equation (2.13) can be rewritten as

k(G,G′) = rT∞s (2.17)

Similarly, the recursive equation (2.16) is rewritten as

r∞ = r1 + T r∞.

The solution of this equation is

r∞ = (I − T )−1r1.

Finally, the matrix form of the kernel is

k(G,G′) = (I − T )−1r1s. (2.18)
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Computing the kernel requires solving a linear equation or inverting a matrix
with ∣X ∣∣X ′∣ × ∣X ∣∣X ′∣ coefficients. However, the matrix I − T is actually
sparse because the number of non-zero elements of T is less than c⋅c′ ⋅∣X ∣⋅∣X ′∣
where c and c′ are the maximum out degree of G and G′, respectively. There-
fore, we can employ efficient numerical algorithms that exploit sparsity [3]. In
our implementation, we employed a simple iterative method that updates RL

by using (2.15) until convergence starting from R1(x1, x
′
1) = r1(x1, x

′
1).

2.4 Extensions

Vishwanathan et al. [50] proposed a fast way to compute the graph kernel
based on the Sylvestor equation. Let AX , AY and B denote M ×M , N ×N
and M × N matrices, respectively. They have used the following equation to
speed up the computation.

(AX ⊗AY )vec(B) = vec(AXBAY )

where ⊗ corresponds to the Kronecker product (tensor product) and vec is the
vectorization operator. The left hand side requires O(M2N2) time, while the
right hand side requires only O(MN(M + N)) time. Notice that this trick
(“vec-trick”) has recently been used in link prediction tasks as well [20].

A random walk can trace the same edge back and forth many times (“tot-
tering”), which could be harmful for similarity measurement. Mahe et al. [28]
presented an extension of the kernel without tottering and applied it success-
fully to chemical informatics data.

3. Graph Boosting

Frequent pattern mining techniques are important tools in data mining [14].
Its simplest form is the classic problem of itemset mining [1], where frequent
subsets are enumerated from a series of sets. The original work on this topic is
for transactional data, and since then, researchers have applied frequent pattern
mining to other structured data such as sequences [35] and trees [2]. Every pat-
tern mining method uses a search tree to systematically organize the patterns.
For general graphs, there are technical difficulties about duplication: it is possi-
ble to generate the same graph with different paths of the search tree. Methods
such as AGM [18] and gspan [52] solve this duplication problem by pruning
the search nodes whenever duplicates are found.

The simplest way to apply such pattern mining techniques to graph classi-
fication is to build a binary feature vector based on the presence or absence
of frequent patterns and apply an off-the-shelf classifier. Such methods are
employed in a few chemical informatics papers [16, 23]. However, they are
obviously suboptimal because frequent patterns are not necessarily useful for
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Figure 11.6. Feature space based on subgraph patterns. The feature vector consists of binary
pattern indicators.

classification. In chemical data, patterns such as C-C or C-C-C are frequent,
but have almost no significance.

To discuss pattern mining strategies for graph classification, let us first
define the binary classification problem. The task is to learn a prediction
rule from training examples {(Gi, yi)}ni=1, where Gi is a training graph and
yi ∈ {+1,−1} is its associated class label. Let P be the set of all patterns, i.e.,
the set of all subgraphs included in at least one training graph, and d := ∣P∣.
Then, each graph Gi is encoded as a d-dimensional vector

xi,p =

{
1 if p ⊆ Gi,
−1 otherwise,

This feature space is illustrated in Figure 11.6.
Since the whole feature space is intractably large, we need to obtain a set

of informative patterns without enumerating all patterns (i.e., discriminative
pattern mining). This problem is close to feature selection in machine learn-
ing. The difference is that it is not allowed to scan all features. As in feature
selection, we can consider the following three categories in discriminative pat-
tern mining methods: filter, wrapper and embedded [24]. In filter methods,
discriminative patterns are collected by a mining call before the learning algo-
rithm is started. They employ a simple statistical criterion such as information
gain [31]. In wrapper and embedded methods, the learning algorithm chooses
features via minimization of a sparsity-inducing objective function. Typically,
they have a high dimensional weight vector and most of these weights coverage
to zero after optimization. In most cases, the sparsity is induced by L1-norm
regularization [40]. The difference between wrapper and embedded methods
are subtle, but wrapper methods tend to be based on heuristic ideas by reducing
the features recursively (recursive feature elimination)[13]. Graph boosting is
an embedded method, but to deal with graphs, we need to combine L1-norm
regularization with graph mining.
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3.1 Formulation of Graph Boosting

The name ‘boosting’ comes from the fact that linear program boosting (LP-
Boost) is used as a fundamental computational framework. In chemical infor-
matics experiments [40], it was shown that the accuracy of graph boosting is
better than graph kernels. At the same time, key substructures are explicitly
discovered.

Our prediction rule is a convex combination of binary indicators xi,j , and
has the form

f(xi) =
∑

p∈P
�pxi,p, (3.1)

where � is a ∣P∣-dimensional column vector such that
∑

p∈P �p = 1 and
�p ≥ 0.

This is a linear discriminant function in an intractably large dimensional
space. To obtain an interpretable rule, we need to obtain a sparse weight vec-
tor �, where only a few weights are nonzero. In the following, we will present
a linear programming approach for efficiently capturing such patterns. Our
formulation is based on that of LPBoost [8], and the learning problem is rep-
resented as

min
�

∥�∥1 + �

n∑

i=1

[1− yif(xi)]+ , (3.2)

where ∥x∥1 =
∑n

i=1 ∣xi∣ denotes the ℓ1 norm of x, � is a regularization param-
eter, and the subscript “+” indicates positive part. A soft-margin formulation
of the above problem exists [8], and can be written as follows:

min
�,�,�

−�+ �

n∑

i=1

�i (3.3)

s.t. y⊤X� + �i ≥ �, �i ≥ 0, i = 1, . . . , n (3.4)∑

p∈P
�p = 1, �p ≥ 0,

where � are slack variables, � is the margin separating negative examples from
positives, � = 1

�n , � ∈ (0, 1) is a parameter controlling the cost of misclassifi-
cation which has to be found using model selection techniques, such as cross-
validation. It is known that the optimal solution has the following �-property:

Theorem 11.1 ([36]). Assume that the solution of (3.3) satisfies � ≥ 0. The
following statements hold:

1 � is an upper-bound of the fraction of margin errors, i.e., the examples
with

y⊤X� < �.
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2 � is a lower-bound of the fraction of the examples such that

y⊤X� < �.

Directly solving this optimization problem is intractable due to the large
number of variables in �. So we solve the following equivalent dual problem
instead.

min
u,v

v (3.5)

s.t.

n∑

i=1

uiyixi,p ≤ v, ∀p ∈ P (3.6)

n∑

i=1

ui = 1, 0 ≤ ui ≤ �, i = 1, . . . , n.

After solving the dual problem, the primal solution � is obtained from the La-
grange multipliers [8]. The dual problem has a limited number of variables, but
a huge number of constraints. Such a linear program can be solved by the col-
umn generation technique [27]: Starting with an empty pattern set, the pattern
whose corresponding constraint is violated the most is identified and added
iteratively. Each time a pattern is added, the optimal solution is updated by
solving the restricted dual problem. Denote by u(k), v(k) the optimal solution
of the restricted problem at iteration k = 0, 1, . . ., and denote by X̂(k) ⊆ P
the set at iteration k. Initially, X̂(0) is empty and u

(0)
i = 1/n. The restricted

problem is defined by replacing the set of constraints (3.6) with

n∑

i=1

u
(k)
i yixi,p ≤ v, ∀p ∈ X̂(k).

The left hand side of the inequality is called as gain in boosting literature. After
solving the problem, X̂(k) is updated to X̂(k+1) by adding a column. Several
criteria have been proposed to select the new columns [10], but we adopt the
most simple rule that is amenable to graph mining: We select the constraint
with the largest gain.

p∗ = argmax
p∈P

n∑

i=1

u
(k)
i yixi,p. (3.7)

The solution set is updated as X̂(k+1) ← X̂(k) ∪Xj∗ . In the next section, we
discuss how to efficiently find the largest gain in detail.

One of the big advantages of our method is that we have a stopping criterion
that guarantees that the optimal solution is found: If there is no p ∈ P such
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Figure 11.7. Schematic figure of the tree-shaped search space of graph patterns (i.e., the DFS
code tree). To find the optimal pattern efficiently, the tree is systematically expanded by rightmost
extensions.

that
n∑

i=1

u
(k)
i yixi,p > v(k), (3.8)

then the current solution is the optimal dual solution. Empirically, the patterns
found in the last few iterations have negligibly small weights. The number of
iterations can be decreased by relaxing the condition as

n∑

i=1

u
(k)
i yixi,p > v(k) + �, (3.9)

Let us define the primal objective function as V = −�+�∑n
i=1 �i. Due to the

convex duality, we can guarantee that, for the solution obtained from the early
termination (3.9), the objective satisfies V ≤ V ∗ + �, where V ∗ is the optimal
value with the exact termination (3.8) [8]. In our experiments, � = 0.01 is
always used.

3.2 Optimal Pattern Search

Our search strategy is a branch-and-bound algorithm that requires a canon-
ical search space in which a whole set of patterns are enumerated without du-
plication. As the search space, we adopt the DFS (depth first search) code
tree [52]. The basic idea of the DFS code tree is to organize patterns as a tree,
where a child node has a super graph of the parent’s pattern (Figure 11.7). A
pattern is represented as a text string called the DFS code. The patterns are
enumerated by generating the tree from the root to leaves using a recursive
algorithm. To avoid duplications, node generation is systematically done by
rightmost extensions.



354 MANAGING AND MINING GRAPH DATA

All embeddings of a pattern in the graphs {Gi}ni=1 are maintained in each
node. If a pattern matches a graph in different ways, all such embeddings are
stored. When a new pattern is created by adding an edge, it is not necessary
to perform full isomorphism checks with respect to all graphs in the database.
A new list of embeddings are made by extending the embeddings of the par-
ent [52]. Technically, it is necessary to devise a data structure such that the
embeddings are stored incrementally, because it takes a prohibitive amount of
memory to keep all embeddings independently in each node. As mentioned in
(3.7), our aim is to find the optimal hypothesis that maximizes the gain g(p).

g(p) =
n∑

i=1

u
(k)
i yixi,p. (3.10)

For efficient search, it is important to minimize the size of the actual search
space. To this aim, tree pruning is crucially important: Suppose the search tree
is generated up to the pattern p and denote by g∗ the maximum gain among the
ones observed so far. If it is guaranteed that the gain of any super graph p′ is
not larger than g∗, we can avoid the generation of downstream nodes without
losing the optimal pattern. We employ the following pruning condition.

Theorem 11.2. [30, 26] Let us define

�(p) = 2
∑

{i∣yi=+1,p⊆Gi}
u
(k)
i −

n∑

i=1

yiu
(k)
i .

If the following condition is satisfied,

g∗ > �(p), (3.11)

the inequality g(p′) < g∗ holds for any p′ such that p ⊆ p′.
The gBoost algorithm is summarized in Algorithms 12 and 13.

3.3 Computational Experiments

In [40], it is shown that graph boosting performs better than graph kernels
in classification accuracy in chemical compound datasets. The top 20 dis-
criminative subgraphs for a mutagenicity dataset called CPDB are displayed
in Figure 11.8. We found that the top 3 substructures with positive weights
(0.0672,0.0656, 0.0577) correspond to known toxicophores [23]. They corre-
spond to aromatic amine, aliphatic halide, and three-membered heterocycle,
respectively. In addition, the patterns with weights 0.0431, 0.0412, 0.0411
and 0.0318 seem to be related to polycyclic aromatic systems. Only from this
result, we cannot conclude that graph boosting is better in general data. How-
ever, since important chemical substructures cannot be represented in paths, it
would be reasonable to say that subgraph features are better in chemical data.
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Algorithm 12 gBoost algorithm: main part

1: X̂(0) = ∅, u(0)
i = 1/n, k = 0

2: loop
3: Find the optimal pattern p∗ based on u(k)

4: if termination condition (3.9) holds then
5: break
6: end if
7: X̂ ← X̂ ∪Xj∗

8: Solve the restricted dual problem (3.5) to obtain u(k+1)

9: k = k + 1
10: end loop

Algorithm 13 Finding the Optimal Pattern

1: Procedure Optimal Pattern

2: Global variables: g∗, p∗

3: g∗ = −∞
4: for p ∈ DFS codes with single nodes do
5: project(p)
6: end for
7: return p∗

8: EndProcedure
9:

10: Function project(p)
11: if p is not a minimum DFS code then
12: return
13: end if
14: if pruning condition (3.11) holds then
15: return
16: end if
17: if g(p) > g∗ then
18: g∗ = g(p), p∗ = p
19: end if
20: for p′ ∈ rightmost extensions of p do
21: project(p′)
22: end for
23: EndFunction

3.4 Related Work

Graph algorithms can be designed based on existing statistical frameworks
(i.e., mother algorithms). It allows us to use theoretical results and insights
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Figure 11.8. Top 20 discriminative subgraphs from the CPDB dataset. Each subgraph is shown
with the corresponding weight, and ordered by the absolute value from the top left to the bottom
right. H atom is omitted, and C atom is represented as a dot for simplicity. Aromatic bonds
appeared in an open form are displayed by the combination of dashed and solid lines.

accumulated in the past studies. In graph boosting, we employed LPboost as
a mother algorithm. It is possible to employ other algorithms such as partial
least squares regression (PLS) [39] and least angle regression (LARS) [45].

When applied to ordinary vectorial data, partial least squares regression ex-
tracts a few orthogonal features and perform least squares regression in the
projected space [37]. A PLS feature is a linear combination of original fea-
tures, and it is often the case that correlated features are summarized into a
PLS feature. Sometimes, the subgraph features chosen by graph boosting is
not robust against bootstrapping or other data perturbations, whereas the clas-
sification accuracy is quite stable. It is due to strong correlation among features
corresponding to similar subgraphs. The graph mining version of PLS, gPLS
[39], solves this problem by summarizing similar subgraphs into each feature
(Figure 11.9). Since only one graph mining call is required to construct each
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Figure 11.9. Patterns obtained by gPLS. Each column corresponds to the patterns of a PLS
component.

feature, gPLS can build the classification rule more quickly than graph boost-
ing.

In graph boosting, it is necessary to set the regularization parameter � in
(3.2). Typically it is determined by cross validation, but there is a different
approach called “regularization path tracking”. When � = 0, the weight vector
converges to the origin. As � is increased continuously, the weight vector
draws a piecewise linear path. Because of this property, one can track the
whole path by repeating to jump to the next turning point. We combined the
tracking with graph mining in [45]. In ordinary tracking, a feature is added
or removed at each turning point. In our graph version, a subgraph to add or
remove is found by a customized gSpan search.

The examples shown above were for supervised classification. For unsuper-
vised clustering of graphs, the combinations with the EM algorithm [46] and
the Dirichlet process [47] have been reported.
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4. Applications of Graph Classification

Borgwardt et al. [5] applied the graph kernel method to classify protein 3D
structures. It outperformed classical alignment-based approaches. Karklin et
al. [19] built a classifier for non-coding RNAs employing a graph represen-
tation of RNAs. Outside biology and chemistry, Harchaoui and Bach [15]
applied graph kernels to image classification where each region corresponds to
a node and their positional relationships are represented by edges.

Traditionally, graph mining methods are mainly used for small chemical
compounds [28, 9]. However, new application areas are emerging. In im-
age processing [34], geometric relationships between points are represented as
edges. Software bug detection is an interesting area, where the relationships of
APIs are represented as directed graphs and anomalous patterns are detected to
identify bugs [11]. In natural language processing, the relationships between
words are represented as a graph (e.g., predicate-argument structures) and key
phrases are identified as subgraphs [26].

5. Label Propagation

In the previous discussion, the term graph classification means classifying
an entire graph. In many applications, we are interested in classifying the
nodes. For example, in large-scale network analysis for social networks and
biological networks, it is a central task to classify unlabeled nodes given a
limited number of labeled nodes (Figure 11.1, right). In FaceBook, one can
label people who responded to a certain advertisement as positive nodes, and
people who did not respond as negative nodes. Based on these labeled nodes,
our task is to predict other people’s response to the advertisement.

In earlier studies, diffusion kernels are used in combination with support
vector machines [25, 48]. The basic idea is to compute the closeness between
two nodes in terms of commute time of random walks between the nodes.
Though this approach gained popularity in the machine learning community,
a significant drawback is that the derived kernel matrix is dense. For large
networks, the diffusion kernel is not suitable because it takes O(n3) time and
O(n2) memory. In contrast, label propagation methods use simpler computa-
tional strategies that exploit sparsity of the adjacency matrix [54, 53]. The label
propagation method of Zhou et al.[53] is achieved by solving simultaneous lin-
ear equations with a sparse coefficient matrix. The time complexity is nearly
linear to the number of non-zero entries of the coefficient matrix [49], which is
much more efficient than the diffusion kernels. Due to its efficiency, label prop-
agation is gaining popularity in applications with biological networks, where
web servers should return the propagation result without much delay [32].
However, the classification performance is quite sensitive to methodological
details. For example, Shin et al. pointed out that the introduction of directional
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propagation can increase the performance significantly [43]. Also, Mostafavi
et al. [32] reported that their engineered version has outperformed the vanilla
version [53]. Label propagation is still an active research field. Recent ex-
tensions include automatic combination of multiple networks [49, 22] and the
introduction of probabilistic inference in label propagation [54, 44].

6. Concluding Remarks

We have covered the two different methods for graph classification. Graph
kernel is a similarity measure between two graphs, while graph mining meth-
ods can derive characteristic subgraphs that can be used for any subsequent
machine learning algorithms. We have the impression that so far graph kernels
are more frequently applied. Probably it is due to the fact that graph kernels are
easier to implement and currently used graph datasets are not so large. How-
ever, graph kernels are not suitable for very large data, because it takes O(n2)
time to derive the kernel matrix of n training graphs, which is very hard to
improve. Toward large scale data, graph mining methods seem more promis-
ing because it requires only O(n) time. Nevertheless, there remains much to
be done in graph mining methods. Existing methods such as gSpan enumer-
ate all subgraphs satisfying a certain frequency-based criterion. However, it
is often pointed out that, for graph classification, it is not always necessary
to enumerate all subgraphs. Recently, Boley and Grosskreutz proposed a uni-
form sampling method of frequent itemsets [4]. Such theoretically guaranteed
sampling procedures will certainly contribute to graph classification as well.

One fact that hinders the further popularity of graph mining methods
is that it is not common to make the code public in the machine learn-
ing and data mining community. We have made several easy-to-use code
available: SPIDER (http://www.kyb.tuebingen.mpg.de/bs/people/
spider/) contains codes for graph kernels and the gBoost package con-
tains codes for graph mining and boosting (http://www.kyb.mpg.de/bs/
people/nowozin/gboost/).
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