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Abstract In this chapter, we present a survey of algorithms for dense subgraph discovery.
The problem of dense subgraph discovery is closely related to clustering though
the two problems also have a number of differences. For example, the problem
of clustering is largely concerned with that of finding a fixed partition in the data,
whereas the problem of dense subgraph discovery defines these dense compo-
nents in a much more flexible way. The problem of dense subgraph discovery
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may wither be defined over single or multiple graphs. We explore both cases. In
the latter case, the problem is also closely related to the problem of the frequent
subgraph discovery. This chapter will discuss and organize the literature on this
topic effectively in order to make it much more accessible to the reader.

Keywords: Dense subgraph discovery, graph clustering

1. Introduction

In almost any network, density is an indication of importance. Just as some-
one reading a road map is interesting in knowing the location of the larger
cities and towns, investigators who seek information from abstract graphs are
often interested in the dense components of the graph. Depending on what
properties are being modeled by the graph’s vertices and edges, dense regions
may indicate high degrees of interaction, mutual similarity and hence collec-
tive characteristics, attractive forces, favorable environments, or critical mass.

From a theoretical perspective, dense regions have many interesting prop-
erties. Dense components naturally have small diameters (worst case shortest
path between any two members). Routing within these components is rapid.
A simple strategy also exists for global routing. If most vertices belong to
a dense component, only a few selected inter-hub links are needed to have a
short average distance between any two arbitrary vertices in the entire network.
Commercial airlines employ this hub-based routing scheme. Dense regions are
also robust, in the sense that many connections can be broken without splitting
the component. A less well-known but equally important property of dense
subgraphs comes from percolation theory. If a graph is sufficiently dense, or
equivalently, if messages are forwarded from one node to its neighbors with
higher than a certain probability, then there is very high probability of propa-
gating a message across the diameter of the graph [20]. This fact is useful in
everything from epidemiology to marketing.

Not all graphs have dense components, however. A sparse graph may have
few or none. In order to understand this issue, we first need to define a formal
notion of the words ‘dense’ and ‘sparse’. We will address this issue shortly.
A uniform graph is either entirely dense or not dense at all. Uniform graphs,
however, are rare, usually limited to either small or artificially created ones.
Due to the usefulness of dense components, it is generally accepted that their
existence is the rule rather than the exception in nature and in human-planned
networks [39].

Dense components have been identified in and have enhanced understanding
of many types of networks; among the best-known are social networks [53, 44],
the World Wide Web [30, 17, 11], financial markets [5], and biological sys-
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tems [26]. Much of the early motivation, research, and nomenclature regarding
dense components was in the field of social network analysis. Even before the
advent of computers, sociologists turned to graph theory to formulate models
for the concept of social cohesion. Clique, K-core, K-plex, and K-club are
metrics originally devised to measure social cohesiveness [53]. It is not sur-
prising that we also see dense components in the World Wide Web. In many
ways, the Web is simply a virtual implementation of traditional direct human-
human social networks.

Today, the natural sciences, the social sciences, and technological fields are
all using network and graph analysis methods to better understand complex
systems. Dense component discovery and analysis is one important aspect
of network analysis. Therefore, readers from many different backgrounds will
benefit from understanding more about the characteristics of dense components
and some of the methods used to uncover them.

In the next section, we outline the graph terminology and define the fun-
damental measures of density to be used in the rest of the chapter. Section 3
categorizes the algorithmic approaches and presents representative implemen-
tations in more detail. Section 4 expands the topic to consider frequently-
occurring dense components in a set of graphs. Section 5 provides examples
of how these techniques have been applied in various scientific fields. Section 6
concludes the chapter with a look to the future.

2. Types of Dense Components

Different applications find different definitions of dense component to be
useful. In this section, we outline the many ways to define a dense component,
categorizing them by their important features. Understanding these features
of the various types of components are valuable for deciding which type of
component to pursue.

2.1 Absolute vs. Relative Density

We can divide density definitions into two classes, absolute density and rel-
ative density. An absolute density measure establishes rules and parameter
values for what constitutes a dense component, independent of what is out-
side the component. For example, we could say that we are only interested
in cliques, fully-connected subgraphs of maximum density. Absolute density
measures take the form of relaxations of the pure clique measure.

On the other hand, a relative density measure has no preset level for what is
sufficiently dense. It compares the density of one region to another, with the
goal of finding the densest regions. To establish the boundaries of components,
a metric typically looks to maximize the difference between intra-component
connectedness and inter-component connectedness. Often but not necessarily,
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relative density techniques look for a user-defined number k densest regions.
The alert reader may have noticed that relative density discovery is closely
related to clustering and in fact shares many features with it.

Since this book contains another chapter dedicated to graph clustering, we
will focus our attention on absolute density measures. However, we will have
more so say about the relationship between clustering and density at the end of
this section.

2.2 Graph Terminology

Let G(V,E) be a graph with ∣V ∣ vertices and ∣E∣ edges. If the edges are
weighted, then w(u) is the weight of edge u. We treat unweighted graphs
as the special case where all weights are equal to 1. Let S and T be sub-
sets of V . For an undirected graph, E(S) is the set of induced edges on
S: E(S) = {(u, v) ∈ E ∣u, v ∈ S}. Then, HS is the induced subgraph
(S,E(S)). Similarly, E(S, T ) designates the set of edges from S to T . HS,T

is the induced subgraph (S, T,E(S, T )). Note that S and T are not necessarily
disjoint from each other. If S ∩ T = ∅, HS,T is a bipartite graph. If S and T
are not disjoint (possibly S = T = V ), this notation can be used to represent a
directed graph.

A dense component is a maximal induced subgraph which also satisfies
some density constraint. A component HS is maximal if no other subgraph
of G which is a superset of HS would satisfy the density constraints. Table
10.1 defines some basic graph concepts and measures that we will use to de-
fine density metrics.

Table 10.1. Graph Terminology

Symbol Description

G(V,E) graph with vertex set V and edge set E
HS subgraph with vertex set S and edge set E(S)
HS,T subgraph with vertex set S ∪ T and edge set E(S, T )
w(u) weight of edge u

NG(u) neighbor set of vertex u in G: {v∣ (u, v) ∈ E}
NS(u) only those neighbors of vertex u that are in S: {v∣ (u, v) ∈ S}

�G(u) (weighted) degree of u in G :
∑

v∈NG(u) w(v)

�S(u) (weighted) degree of u in S :
∑

v∈NS(u) w(v)

dG(u, v) shortest (weighted) path from u to v traversing any edges in G
dS(u, v) shortest (weighted) path from u to v traversing only edges in E(S)

We now formally define the density of S, den(S), as the ratio of the total
weight of edges in E(S) to the number of possible edges among ∣S∣ vertices.
If the graph is unweighted, then the numerator is simply the number of actual
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edges, and the maximum possible density is 1. If the graph is weighted, the
maximum density is unbounded. The number of possible edges in an undi-
rected graph of size n is

(
n
2

)
= n(n − 1)/2. We give the formulas for an

undirected graph; the formulas for a directed graph lack the factor of 2.

den(S) =
2∣E(S)∣
∣S∣(∣S∣ − 1)

denW (S) =
2
∑

u,v∈S w(u, v)

∣S∣(∣S∣ − 1)

Some authors define density as the ratio of the number of edges to the number

of vertices: ∣E∣
∣V ∣ . We will refer to this as average degree of S.

Another important metric is the diameter of S, diam(S). Since we have
given two different distance measures, dS and dG, we accordingly offer two
different diameter measures. The first is the standard one, in which we consider
only paths within S. The second permits paths to stray outside S, if it offers a
shorter path.

diam(S) = max{dS(u, v)∣ u, v ∈ S}
diamG(S) = max{dG(u, v)∣ u, v ∈ S}

2.3 Definitions of Dense Components

We now present a collection of measures that have been used to define dense
components in the literature (Table 10.2). To focus on the fundamentals, we
assume unweighted graphs. In a sense, all dense components are either cliques,
which represent the ideal, or some relaxation of the ideal. There relaxations
fall into three categories: density, degree, and distance. Each relaxation can be
quantified as either a percentage factor or a subtractive amount. While most of
there definitions are widely-recognized standards, the name quasi-clique has
been applied to any relaxation, with different authors giving different formal
definitions. Abello [1] defined the term in terms of overall edge density, with-
out any constraint on individual vertices. This offers considerable flexibility
in the component topology. Several other authors [36, 32, 33] have opted to
define quasi-clique in terms of minimum degree of each vertex. Li et al. [32]
provide a brief overview and comparison of quasi-cliques. In our table, when
the authorship of a specific metric can be traced, it is given. Our list is not
exhaustive; however, the majority of definitions can be reduced to some com-
bination of density, degree, and diameter.

Note that in unweighted graphs, cliques have a density of 1. Density-based
quasi-cliques are only defined for unweighted graphs. We use the term Kd-
clique instead of Mokken’s original name K-clique, because K-clique is al-
ready defined in the mathematics and computer science communities to mean
a clique with k vertices.
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Table 10.2. Types of Dense Components

Component Reference Formal definition Description

Clique ∃(i, j), i ∕= j ∈ S Every vertex connects to every other
vertex in S.

Quasi-Clique
(density-based)

[1] den(S) ≥ 
 S has at least 
∣S∣(∣S∣ − 1)/2 edges.
Density may be imbalanced within S.

Quasi-Clique
(degree-based)

[36] �S(u) ≥ 
 ∗ (k − 1) Each vertex has 
 percent of the possi-
ble connections to other vertices. Local
degree satisfies a minimum. Compare to
K-core and K-plex.

K-core [45] �S(u) ≥ k Every vertex connects to at least k other
vertices in S. A clique is a (k-1)-core.

K-plex [46] �S(u) ≥ ∣S∣ − k Each vertex is missing no more than k−
1 edges to its neighbors. A clique is a
1-plex.

Kd-clique [34] diamG(S) ≤ k The shortest path from any vertex to any
other vertex is not more than k. An or-
dinary clique is a 1d-clique. Paths may
go outside S.

K-club [37] diam(S) ≤ k The shortest path from any vertex to any
other vertex is not more than k. Paths
may not go outside S. Therefore, every
K-club is a K-clique.

Figure 10.1, a superset of an illustration from Wasserman and Faust [53],
demonstrates each of the dense components that we have defined above.

Cliques: {1,2,3} and {2,3,4}
0.8-Quasi-clique: {1,2,3,4} (includes 5/6 > 0.83 of possible edges)

2-Core: {1,2,3,4,5,6,7}
3-Core: none

2-Plex: {1,2,3,4} (vertices 1 and 3 are missing one edge each)

2d-Cliques: {1,2,3,4,5,6} and {2,3,4,5,6,7} (In the first component,
5 connects to 6 via 7, which need not be a member of the component)

2-Clubs: {1,2,3,4,5}, {1,2,3,4,6}, and {2,3,5,6,7}

2.4 Dense Component Selection

When mining for dense components in a graph, a few additional questions
must be addressed:



A Survey of Algorithms for Dense Subgraph Discovery 309

�

�

�

� �

�

�

Figure 10.1. Example Graph to Illustrate Component Types

1 Minimum size �: What is the minimum number of vertices in a dense
component S? I.e., ∣S∣ ≥ �.

2 All or top-N?: One of the following criteria should be applied.

Select all components which meet the size, density, degree, and
distance constraints.

Select the N highest ranking components that meet the minimum
constraints. A ranking function must be established. This can be
as simple as one of the same metrics used for minimum constraints
(size, density, degree, distance, etc.) or a linear combination of
them.

Select the N highest ranking components, with no minimum con-
straints.

3 Overlap: May two components share vertices?

2.5 Relationship between Clusters and Dense
Components

The measures described above set an absolute standard for what constitutes
a dense component. Another approach is to find the most dense components on
a relative basis. This is the domain of clustering. It may seem that clustering,
a thoroughly-studied topic in data mining with many excellent methodologies,
would provide a solution to dense component discovery. However, clustering
is a very broad term. Readers interested in a survey on clustering may wish to
consult either Jain, Murty, and Flynn [24] or Berkhin [8]. In the data mining
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community, clustering refers to the task of assigning similar or nearby items
to the same group while assigning dissimilar/distant items to different groups.
In most clustering algorithms, similarity is a relative concept; therefore it is
potentially suitable for relative density measures. However, not all clustering
algorithms are based on density, and not all types of dense components can be
discovered with clustering algorithms.

Partitioning refers to one class of clustering problem, where the objective
is to assign every item to exactly one group. A k-partitioning requires the
result to have k groups. K-partitioning is not a good approach for identifying
absolute dense components, because the objectives are at odds. Consider the
well-known k-Means algorithm applied to a uniform graph. It will generate k
partitions, because it must. However, the partitioning is arbitrary, changing as
the seed centroids change.

In hierarchical clustering, we construct a tree of clusters. Conceptually, as
well as in actual implementation, this can be either agglomerative (bottom-up),
where the closest clusters are merged together to form a parent cluster, or di-
visive (top-down), where a cluster is subdivided into relatively distant child
clusters. In basic greedy agglomerative clustering, the process starts by group-
ing together the two closest items. The pair are now treated as a single item,
and the process is repeated. Here, pairwise distance is the density measure,
and the algorithm seeks to group together the densest pair. If we use divisive
clustering, we can choose to stop subdividing after finding k leaf clusters. A
drawback of both hierarchical clustering and partitioning is that they do not
allow for a separate "non-dense" partition. Even sparse regions are forced to
belong to some cluster, so they are lumped together with their closest denser
cores.

Spectral clustering describes a graph as a adjacency matrix W , from which
is derived the Laplacian matrix L = D − W (unnormalized) or L = I −
D1/2WD−1/2(normalized), whereD is the diagonal matrix featuring each ver-
tex’s degree. The eigenvectors of L can be used as cluster centroids, with the
corresponding eigenvalues giving an indication of the cut size between clus-
ters. Since we want minimum cut size, the smallest eigenvalues are chosen
first. This ranking of clusters is an appealing feature for dense component
discovery.

None of these clustering methods, however, are suited for an absolute den-
sity criterion. Nor can they handle overlapping clusters. Therefore, some
but not all clustering criteria are dense component criteria. Most clustering
methods are suitable for relative dense component discovery, excluding k-
partitioning methods.
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3. Algorithms for Detecting Dense Components in a
Single Graph

In this section, we explore algorithmic approaches for finding dense com-
ponents. First we look at basic exact algorithms for finding cliques and quasi-
cliques and comment on their time complexity. Because the clique problem is
NP-hard, we then consider some more time efficient solutions. The algorithms
can be categorized as follows: Exact enumeration (Section 3.1), Fast Heuristic
Enumeration (Section 3.2), and Bounded Approximation Algorithms (Section
3.3). We review some recent works related to dense component discovery,
concentrating on the details of several well-received algorithms.

The following table (Table 10.3) gives an overview of the major algorithmic
approaches and lists the representative examples we consider in this chapter.

Table 10.3. Overview of Dense Component Algorithms

Algorithm Type Component Type Example Comments

Enumeration Clique [12]
Biclique [35]
Quasi-clique [33] min. degree for each vertex
Quasi-biclique [47]
k-core [7]

Fast Heuristic
Enumeration

Maximal biclique [30] nonoverlapping

Quasi-clique/biclique [13] spectral analysis
Relative density [18] shingling
Maximal quasi-biclique [32] balanced noise tolerance
Quasi-clique, k-core [52] pruned search; visual results with

upper-bounded estimates

Bounded Max. average degree [14] undirected graph: 2-approx.
Approximation directed graph: 2+�-approx.

Densest subgraph,
n ≥ k [4] 1/3-approx.
Subgraph of known
density � [3] finds subgraph with density

Ω(�/ logΔ)

3.1 Exact Enumeration Approach

The most natural way to discover dense components in a graph is to enu-
merate all possible subsets of vertices and to check if some of them satisfy the
definition of dense components. In the following, we investigate some algo-
rithms for discovering dense components by explicit enumeration.
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Enumeration Approach. Finding maximal cliques in a graph may be
straightforward, but it is time-consuming. The clique decision problem, decid-
ing whether a graph of size n has a clique of size at least k, is one of Karp’s
21 NP-Complete problems [28]. It is easy to show that the clique optimization
problem, finding a largest clique in a graph, is also NP-Complete, because the
optimization and decision problems each can be reduced in polynomial time
to the other. Our goal is to enumerate all cliques. Moon and Moser showed
that a graph may contain up to 3n/3 maximal cliques [38]. Therefore, even for
modest-sized graphs, it is important to find the most effective algorithm.

One well-known enumeration algorithm for generating cliques was pro-
posed by Bron and Kerbosch [12]. This algorithm utilizes the branch-and-
bound technique in order to prune branches which are unable to generate a
clique. The basic idea is to extend a subset of vertices, until the clique is max-
imal, by adding a vertex from a candidate set but not in a exclusion set. Let C
be the set of vertices which already form a clique, Cand be the set of vertices
which may potentially be used for extending C , and NCand be the set of ver-
tices which are not allowed to be candidates for C . N(v) are the neighbors of
vertex v. Initially, C and NCand are empty, and Cand contains all vertices
in the graph. Given C , Cand and NCand, we describe the Bron-Kerbosch
algorithm below. The authors experimentally observed O(3.14n), but did not
prove their theoretical performance.

Algorithm 6 CliqueEnumeration(C ,Cand,NCand)

if Cand = ∅ and NCand = ∅ then
output the clique induced by vertices C;

else
for all vi ∈ Cand do
Cand← Cand ∖ {vi};
callCliqueEnumeration(C∪{vi}, Cand∩N(vi), NCand∩N(vi));
NCand← NCand ∪ {vi};

end for
end if

Makino et al. [35] proposed new algorithms making full use of efficient
matrix multiplication to enumerate all maximal cliques in a general graph or
bicliques in a bipartite graph. They developed different algorithms for different
types of graphs (general graph, bipartite, dense, and sparse). In particular, for
a sparse graph such that the degree of each vertex is bounded by Δ ≪ ∣V ∣,
an algorithm with O(∣V ∣∣E∣) preprocessing time, O(Δ4) time delay (i.e, the
bound of running time between two consecutive outputs) and O(∣V ∣ + ∣E∣)
space is developed to enumerate all maximal cliques. Experimental results
demonstrate good performance for sparse graphs.
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Quasi-clique Enumeration. Compared to exact cliques, quasi-cliques
provide both more flexibility of the components being sought as well as more
opportunities for pruning the search space. However, the time complexity gen-
erally remains NP-complete. The Quick algorithm, introduced in [33], pro-
vided an illustrative example. The authors studied the problem of mining max-
imal degree-based quasi-cliques with size at least min size and degree of each
vertex at least ⌈
(∣V ∣−1)⌉. The Quick algorithm integrates some novel prun-
ing techniques based on degree of vertices with a traditional depth-first search
framework to prune the unqualified vertices as soon as possible. Those pruning
techniques also can be combined with other existing algorithms to achieve the
goal of mining maximal quasi-cliques.

They employ these established pruning techniques based on diameter, min-
imum size threshold, and vertex degree. Let NG

k (v) = {u∣distG(u, v) ≤ k}
be the set of vertices that are within a distance of k from vertex v, indegX(u)
denotes the number of vertices inX that are adjacent to u, and exdegX (u) rep-
resents the number of vertices in cand exts(X) that are adjacent to u. All ver-
tices are sorted in lexicographic order, then cand exts(X) is the set of vertices
after the last vertex in X which can be used to extend X. For the pruning tech-
nique based on graph diameter, the vertices which are not in ∩v∈XNG

k (v) can
be removed from cand exts(X). Considering the minimum size threshold,
the vertices whose degree is less than ⌈
(min size− 1)⌉ should be removed.

In addition, they introduce five new pruning techniques. The first two tech-
niques consider the lower and upper bound of the number of vertices that can
be used to extend current X. The first pruning technique is based on the upper
bound of the number of vertices that can be added to X concurrently to form a

-quasi-clique. In other words, given a vertex set X, the maximum number of
vertices in cand exts(X) that can be added into X is bounded by the minimal
degree of the vertices in X; The second one is based on the lower bound of
the number of vertices that can be added to X concurrently to form a 
-quasi-
clique. The third technique is based on critical vertices. If we can find some
critical vertices ofX, then all vertices in cand exts(X) and adjacent to critical
vertices are added into X. Technique 4 is based on cover vertex u which maxi-
mizes the size of CX(u) = cand exts(X)∩NG(u)∩ (∩v∈X∧(u,v)∋EN

G(v)).

Lemma 10.1. [33] Let X be a vertex set and u be a vertex in cand exts(X)
such that indegX (u) ≥ ⌈
 × ∣X∣⌉. If for any vertex v ∈ X such that
(u, v) ∈ E, we have indegX(v) ≥ ⌈
 × ∣X∣⌉, then for any vertex set Y
such that G(Y ) is a 
-quasi-clique and Y ⊆ (X ∪ (cand exts(X)∩NG(u)∩
(∩v∈X∧(u,v)∋EN

G(v)))), G(Y ) cannot be a maximal 
-quasi-clique.

From the above lemma, we can prune the CX(u) of cover vertex u from
cand exts(X) to reduce the search space. The last technique, the so-called
lookahead technique, is to check if X ∪ cand exts(X) is 
-quasi-clique. If
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so, we do not need to extend X anymore and reduce some computational cost.
See Algorithm Quick above.

Algorithm 7 Quick(X, cand exts(X), 
,min size)

find the cover vertex u of X and sort vertices in cand exts(X);
for all v ∈ cand exts(X)− CX(u) do

apply minimum size constraint on ∣X∣+ ∣cand exts(X)∣;
apply lookahead technique (technique 5) to prune search space;
remove the vertices that are not in NG

k (v);
Y ← X ∪ {u};
calculate the upper bound and lower bound of the number vertices to be
added to Y in order to form 
-quasi-clique;
recursively prune unqualified vertices (techniques 1,2);
identify critical vertices of Y and apply pruning (technique 3);
apply existing pruning techniques to further reduce the search space;

end for
return 
-quasi-cliques;

K-Core Enumeration. For k-cores, we are happily able to escape
NP -complete time complexity; greedy algorithms with polynomial time exist.
Batagelj et al. [7] developed a efficient algorithm running in O(m) time, based
on the following observation: given a graph G = (V,E), if we recursively
eliminate the vertices with degree less than k and their incident edges, the re-
sulting graph is a k-core. The algorithm is quite simple and can be considered
as a variant of [29]. This algorithm attempts to assign each vertex with a core
number to which it belongs. At the beginning, the algorithm places all vertices
in a priority queue based on minimim degree. For each iteration, we eliminate
the first vertex v (i.e, the vertex with lowest degree) from the queue. After then,
we assign the degree of v as its core number. Considering v’s neighbors whose
degrees are greater than that of v, we decrease their degrees by one and reorder
the remaining vertices in the queue. We repeat such procedure until the queue
is empty. Finally, we output the k-cores based on their assigned core numbers.

3.2 Heuristic Approach

As mentioned before, it is impractical to exactly enumerate all maximal
cliques, especially for some real applications like protein-protein interaction
networks which have a very large number of vertices. In this case, fast heuris-
tic methods are available to address this problem. These methods are able to
efficiently identify some dense components, but they cannot guarantee to dis-
cover all dense components.
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Shingling Technique. Gibson et al. [18] propose an new algorithm based
on shingling for discovering large dense bipartite subgraphs in massive graphs.
In this paper, a dense bipartite subgraph is considered a cohesive group of
vertices which share many common neighbors. Since this algorithm utilizes
the shingling technique to convert each dense component with arbitrary size
into shingles with constant size, it is very efficient and practical for single large
graphs and can be easily extended for streaming graph data.

We first provide some basic knowledge related to the shingling technique.
Shingling was firstly introduced in [11] and has been widely used to esti-
mate the similarity of web pages, as defined by a particular feature extraction
scheme. In this work, shingling is applied to generate two constant-size finger-
prints for two different subsets A andB from set S of a universe U of elements,
such that the similarity of A and B can be computed easily by comparing fin-
gerprints of A and B, respectively. Assuming � is a random permutation of
the elements in the ordered universe U which contains A and B, the probabil-
ity that the smallest element of A and B is the same, is equal to the Jaccard
coefficient. That is,

Pr[�−1(mina∈A{�(a)}) = �−1(minb∈B{�(b)})] =
∣A ∩B∣
∣A ∪B∣

Given a constant number c of permutations �1, ⋅ ⋅ ⋅ , �c of U , we generate a
fingerprinting vector whose i-th element is mina∈A�i(a). The similarity be-
tween A and B is estimated by the number of positions which have the same
element with respect to their corresponding fingerprint vectors. Furthermore,
we can generalize this approach by considering every s-element subset of en-
tire set instead of the subset with only one element. Then the similarity of
two sets A and B can be measured by the fraction of these s-element subsets
that appear in both. This actually is an agreement measure used in information
retrieval. We say each s-element subset is a shingle. Thus this feature extrac-
tion approach is named the (s, c) shingling algorithm. Given a n-element set
A = {ai, 0 ≤ i ≤ n} where each element ai is a string, the (s, c) shingling
algorithm tries to extract c shingles such that the length of each shingle is exact
s. We start from converting each string ai into a integer xi by a hashing func-
tion. Following that, given two random integer vectors R,S with size c, we
generate a n-element temporary set Y = {yi, 0 ≤ i ≤ n} where each element
yi = Rj × xi + Sj . Then the s smallest elements of Y are selected and con-
catenated together to form a new string y. Finally, we apply a hash function
on string y to get one shingle. We repeat such procedure c times in order to
generate c shingles.

Remember that our goal is to discover dense bipartite subgraphs such that
vertices in one side share some common neighbors in another side. Figure
10.2 illustrates a simple scenario in a web community where each web page
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Figure 10.2. Simple example of web graph

Figure 10.3. Illustrative example of shingles

in the upper part links to some other web pages in the lower part. We can de-
scribe each upper web page (vertex) by the list of lower web pages to which it
links. In order to put some vertices into the same group, we have to measure
the similarity of the vertices which denotes to what extent they share common
neighbors. With the help of shingling, for each vertex in the upper part, we can
generate constant-size shingles to describe its outlinks (i.e, its neighbors in the
lower part). As shown in Figure 10.3, the outlinks to the lower part are con-
verted to shingles s1, s2, s3, s4. Since the size of shingles can be significantly
smaller than the original data, much computational cost can be saved in terms
of time and space.

In the paper, Gibson et al. repeatedly employ the shingling algorithm for
converting dense component into constant-size shingles. The algorithm is a
two-step procedure. Step 1 is recursive shingling, where the goal is to exact
some subsets of vertices where the vertices in each subset share many com-
mon neighbors. Figure 10.4 illustrates the recursive shingling process for a
graph (Γ(V ) is the outlinks of vertices V ). After the first shingling process,
for each vertex v ∈ V , its outlinks Γ(v) are converted into a constant size of
first-level shingles v′. Then we can transpose the mapping relation E0 to E1 so
that each shingle in v′ corresponds to a set of vertices which share this shingle.
In other words, a new bipartite graph is constructed where each vertex in one
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Figure 10.4. Recursive Shingling Step

part represents one shingle, and each vertex in another part is the original ver-
tex. If there is a edge from shingle v′ to vertex v, v′ is one of the shingles for
v’s outlinks generated by shingling. From now on, V is considered as Γ(V ′).
Following the same procedure, we apply shingling on V ′ and Γ(V ′). After
the second shingling process, V is converted into a constant-size V

′′

, so-called
second-level shingles. Similar to the transposition in the first shingling pro-
cess, we transpose E1 to E2 and obtain many pairs < v′′,Γ(v′′) > where v′′

is second-level shingles and Γ(v′′) are all the first-level shingles that share a
second-level shingle. Step 2 is clustering, where the aim is to merge first-level
shingles which share some second-level shingles. Essentially, merges a num-
ber of biclique subsets into one dense component. Specifically, given all pairs
< v′′,Γ(v′′) >, a traditional algorithm, namely UnionFind, is used to merge
some first-level shingles in Γ(V ′′) such that any two first-level shingles at least
share one second-level shingle. To the end, we map the clustering results back
to the vertices of the original graph and generate one dense bipartite subgraph
for each cluster. The entire algorithm is presented in Algorithm DiscoverDens-
eSubgraph.

GRASP Algorithm. As mentioned in Table 10.2, Abello et al. [1] were
one of the first to formally define quasi-dense components, namely 
-cliques,
and to investigate their discovery. They utilize a existing framework known
as a Greedy Randomized Adaptive Search Procedure (GRASP). Their paper
makes two major contributions. First, they propose a novel evaluation measure
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Algorithm 8 DiscoverDenseSubgraph(c1 , s1, c2, s2)

apply recursive shingling algorithms to obtain first- and second-level shin-
gles;
let S =< s,Γ(s) > be first-level shingles;
let T =< t,Γ(t) > be second-level shingles;
apply clustering approach to get the clustering result C in terms of first-level
shingles;
for all C ∈ C do

output ∪s∈CΓ(s) as a dense subgraph;
end for

on potential improvement of adding a new vertex to a current quasi-clique.
This measure enables the construction of quasi-cliques incrementally. Second,
a semi-external memory algorithm incorporating edge pruning and external
breath first search traversal is introduced to handle very large graphs. The basic
idea is to decompose a large graph into several small components, then process
each of them using GRASP. In the following, we concentrate our efforts on
discussing the first point and its usage in GRASP. Interested readers can refer
to [1] for the details of the second algorithm.

GRASP is a multi-start iterative process, with two steps per iteration, ini-
tial construction and local optimization. The initial construction step aims to
produce a feasible solution for subsequent processing. For local optimization,
we examine the neighborhood of the current solution in terms of the solution
space, and try to find a better local solution. A comprehensive survey of the
GRASP approach can be found in [41]. In this paper, Abello et al. proposed a
incremental algorithm to build a maximal 
-clique, which serves as the initial
feasible solution in GRASP. Before we move to the algorithm, we first define
the potential of a vertex set R as

�(R) = ∣E(R)∣ − 

(
∣R∣
2

)

and the potential of R with respect to a disjoint vertices set S to be

�S(R) = �(S ∪R)
Furthermore, considering a graph G = (V,E) and a 
-clique induced by ver-
tices set S ⊂ V , we call a vertex x ∈ (V ∖S) a �-vertex with respect to S if and
only if the graph induced by S ∪ {x} is a 
-clique. Then, the set of 
-vertices
with respect to S is denoted as N
(S). Given this, the incremental algorithm
tries to add a good vertex in N
(S) into S. To facilitate our discussion, a
potential difference of a vertex y ∈ N
(S) ∖ {x} is defined to be

�S,x(y) = �S∪{x}({y}) − �S({y})
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The above equation can also expressed as

�S,x(y) = deg(x)∣S + deg(y)∣{x} − 
(∣S∣+ 1)

where deg(x)∣S is the degree of x in the graph induced by vertex set S. This
equation implies that the potential of y which is a 
-neighbor of x does not
decrease when x is included in S. Here the 
-neighbors of vertex x are the
neighbors of x with deg(x)∣S greater than 
∣S∣. The total effect caused by
adding vertex x to current 
-clique S is

ΔS,x =
∑

y∈N
(S)∖{x}
�S,x(y) = ∣N
({x})∣ + ∣N
(S)∣(deg(x)∣S − 
(∣S∣+ 1))

We see that the vertices with a large number of 
-neighbors and high degree
with respect to S are preferred to be selected. A greedy algorithm to build
a maximal 
-clique is outlined in Algorithm DiscoverMaximalQuasi-Clique.
The time complexity of this algorithm is O(∣S∣∣V ∣2), where S the vertex set
used to induce a maximal 
-clique.

Algorithm 9 DiscoverMaximalQuasi-clique(V,E, 
)


∗ ← 1, S∗ ← ∅;
select a vertex x ∈ V and add into S∗;
while 
∗ ≥ 
 do
S ← S∗;
if N
∗(S) ∕= ∅ then

select x ∈ N
∗(S);
else

if N (S) ∖ S = ∅ then
return S;

end if
select x ∈ N (S) ∖ S;

end if
S∗ ← S ∪ {x};

∗ ← 2∣E(S∗)∣/(∣S∗∣(∣S∗∣ − 1));

end while
return S;

Then applying GRASP, a local search procedure tries to improve the gen-
erated maximal 
-clique. Generally speaking, given current 
-clique induced
by vertex set S, this procedure attempts to substitute two vertices within S
with one vertex outside S in order to improve aforementioned ΔS,x. GRASP
guarantees to obtain a local optimum.
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Visualization of Dense Components. Wang et al. [52] combine theoret-
ical bounds, a greedy heuristic for graph traversal, and visual cues to develop
a mining technique for clique, quasi-clique, and k-core components. Their ap-
proach is named CSV for Cohesive Subgraph Visualization. Figure 10.5 shows
a representative plot and how it is interpreted.

Traversal Order

C
_s

ee
n(

v i
)

k

Contains w connected vertices with 
degree � k.
May contain a clique of size ������k,w).

w

Figure 10.5. Example of CSV Plot

A key measure in CSV is co-cluster size CC(v, x), meaning the (estimated)
size of the largest clique containing both vertices v and x. Then, C(v) =
max{CC(v, x),∀x ∈ N(v)}.

At the top level of abstraction, the algorithm is not difficult. We maintain a
priority queue of vertices observed so far, sorted by C(v) value. We traverse
the graph and draw a density plot by iterating the following steps:

1 Remove the top vertex from the queue, making this the current vertex v.

2 Plot v.

3 Add v’s neighbors to the priority queue.

Now for some details. If this is the i-th iteration, plot the point (i, Cseen(vi)),
where Cseen(vi) is the largest value of C(vi) observed so far. We say "seen so
far" because we may not have observed all of v neighbors yet, and even when
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we have, we are only estimating clique sizes. Next, some neighbors of v may
already be in the queue. In this case, update their C values and reprioritize.
Due to the estimation method described below, the new estimate is no worse
that the previous one.

Since an exact determination of CC(v, x) is computationally expensive,
CSV takes several steps to efficiently find a good estimate of the actual clique
size. First, to reduce the clique search space, the graph’s vertices and edges are
pre-processed to map them to a multi-dimensional space. A certain number of
vertices are selected as pivot points. Then each vertex is mapped to a vector:
v →M(v) = {d(v, p1), ⋅ ⋅ ⋅ , d(v, pp)}, where d(v, pi) is the shortest distance
in the graph from v to pivot pi. The authors prove that all the vertices of a
clique map to the same unit cell, so we can search for cliques by searching
individual cells.

Second, CSV further prunes the vertices within each occupied cell. Do the
following for each vertex v in each occupied cell: For each neighbor x of v,
identify the set of vertices Y which connect to both v and x. Construct the
induced subgraph S(v, x, Y ). If there is a clique, it must be a subgraph of S.
Sort Y by decreasing order of degree in S. To be in a k-clique, a vertex must
have degree ≥ k − 1. Consequently, we step through the sorted Y list and
eliminate the remainder when the threshold �S(yi) < i − 1 is reached. The
size of the remaining list is an upper bound estimate for C(v) and CC(v, x).
With relatively minor modification, the same general approach can be used for
quasi-cliques and k-cores.

The slowest step in CSV is searching the cells for pseudo-cliques, with over-
all time complexity O(∣V ∣2log∣V ∣2d). This becomes exponential when the
graph is a single large clique. However, when tested on two real-life datasets,
DBLP co-authorship and SMD stock market networks, d << ∣V ∣, so perfor-
mance is polynomial.

Other Heuristic Approaches. We give a brief overview of three addi-
tional heuristic approaches. Li et al. [32] studied the problem of discovering
dense bipartite subgraphs with so-called balanced noise tolerance, meaning
that each vertex in one part is allowed no more than a certain number or a cer-
tain percentage of missing edges to the other part. This definition can avoid
the density skew found within density-based quasi-cliques. Li et al. observed
that their type of maximal quasi-biclique cannot be trivially expanded from
traditional maximal bicliques. Some useful properties such as bounded clo-
sure and the fixed point property are utilized to develop an efficient algorithm,
� − CompleteQB, for discovering maximal quasi-bicliques with balanced
noise tolerance. Given a bipartite graph, the algorithm looks for maximal
quasi-bicliques where the number of vertices in each part exceeds a specified
value ms ≥ �. Two cases are considered. If ms ≥ 2�, the problem is con-
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verted into the problem to find exact maximal �-quasi bicliques that has been
well discussed in [47]. On the other hand, if ms < 2�, a depth-first search for
�-tolerance maximal quasi-bicliques whose vertex size is between ms and 2�
is conducted to achieve the goal.

A spectral analysis method [13] is used to uncover the functionality of a
certain dense component. To begin, the similarity matrix for a protein-protein
interaction network is defined, and the corresponding eigenvalues and eigen-
vectors are calculated. In particular, each eigenvector with positive eigenvalue
is identified as a quasi-clique, while each eigenvector with negative eigenvalue
is considered a quasi-biclique. Given these dense components, a statistical
test based on p-value is applied to measure whether a dense component is en-
riched with proteins from a particular category more than would be expected
by chance. Simply speaking, the statistical test ensures that the existence of
each dense component is significant with respect to a specific protein category.
If so, that dense component annotated with the corresponding protein function-
ality.

Kumar et al. [30] focus on enumerating emerging communities which have
little or no representation in newsgroups or commercial web directories. They
define an (i, j) biclique, where the number of vertices in each part are i and j,
respectively, to be the core of interested communities. Therefore, this paper
aims to extract a non-overlapping maximal set of cores for interested com-
munities. A stream-based algorithm combining a set of pruning techniques
is presented to process huge raw web data and eventually generate the appro-
priate cores. Some open problems like how to automatically extract semantic
information and organize them into a useful structure are also discussed.

3.3 Exact and Approximation Algorithms for Discovering
Densest Components

In this section, we focus on the problem of finding the densest components,
i.e., the quasi-cliques with the highest values of gamma. We first look at
exact solutions, utilizing max-flow/min-cut related algorithms. To reach faster
performance, we then consider several greedy approximation algorithms that
guarantee. These bounded-approximation algorithms are able to efficiently
handle the large graphs and obtain guaranteed reasonable results.

Exact Solution for Discovering Densest Subgraph. We first consider
density of a graph defined as its average degree. Using this definition, Gold-
berg [19] showed that the problem of finding the densest subgraph can be ex-
actly reduced to a sequence of max-flow/min-cut problems. Given a value g,
algorithm constructs a network and finds a min-cut on it. The resulting sizes
tell us whether there is a subgraph with density at least g. Given a graph G
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with n vertices and m edges, the construction of its corresponding cut network
are as follows:

1 Add two vertices source s and sink t to undirected G;

2 Replace each undirected edge with two directed edges with capacity 1
such that each endpoint is the source and target of those two edges, re-
spectively;

3 Add directed edges with capacity m from s to all vertices in G, and add
directed edges with capacity m + 2g − di from all vertices in G to t,
where di is the degree of vertex vi in the original graph.

We apply the max-flow/min-cut algorithm to decompose the vertices of the
new network into two non-overlapping sets S and T , such that s ∈ S and
t ∈ T . Let Vs = S ∖ {s}. Goldberg proved that there exists a subgraph with
density at least g if Vs ∕= ∅. The following theorem formally presents this
result:

Theorem 10.2. Given S and T which are generated by the algorithm for max-
flow min-cut problem, if Vs ∕= ∅, then there is no subgraph with density D such
that g ≤ D. If Vs = ∅, then there exists a subgraph with density D such that
g ≥ D.

The remaining issue is to enumerate all possible values of density and apply
the max-flow/min-cut algorithm for each value. Goldberg observed that the
difference between any two subgraphs is no more than 1

n(n−1) . Combined

with binary search, this observation provides a effective stop criteria to reduce
the search space. The sketch of the entire algorithm is outlined in Algorithm
FindDensestSubgraph.

Greedy Approximation Algorithm with Bound. In [14], Charikar
describes exact and greedy approximation algorithms to discover subgraphs
which can maximize two different notions of density, one for undirected graphs
and one for directed graphs. The density notion utilized for undirected graphs
is the average degree of the subgraph, such that density f(S) of the subset S

is ∣E(S)∣
∣S∣ . For directed graphs, the criteria first proposed by Kannan and Vinay

[27] is applied. That is, given two subsets of vertices S ⊆ V and T ⊆ V , the

density of subgraph HS,T is defined as d(S, T ) = ∣E(S,T )∣√
∣S∣∣T ∣

. Here, S and T are

not necessarily disjoint. This paper studies the optimization problem of dis-
covering a subgraph Hs induced by a subset S with maximum f(S) or HS,T

induced by two subsets S and T with maximum d(S, T ), respectively.
The author shows that finding a subgraph HS in undirected graph with max-

imum f(S) is equivalent to solving the following linear programming (LP)
problem:
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Algorithm 10 FindDensestSubgraph(G)

mind← 0;maxd← m;
Vs ← ∅;
while maxd−mind ≥ 1

n(n−1) do

g ← maxd+mind
2 ;

Construct new network as we have mentioned;
Generate S and T utilizing max-flow min-cut algorithm;
if S = {s} then
maxd← g;

else
mind← g;
Vs ← S − {s};

end if
end while
return subgraph induced by Vs;

(1) max
∑

ij xij
(2) ∀ij ∈ E xij ≤ yi
(3) ∀ij ∈ E xij ≤ yj
(4)

∑
i yi ≤ 1

(5) xij , yi ≥ 0
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From a graph viewpoint, we assign each vertex vi with weight
∑

j xij , and

min(yi, yj) is the threshold for the weight of all edges (vi, vj) incident to
vertex vi. Then xij can be considered as the weight of edge (vi, vj) which
vertex vi distributes. Weights are normalized so that the sum of threshold for
edges incident to vertex vi,

∑
i yi, is bounded by 1. In this sense, finding

the optimal solution of
∑

ij xij is equivalent to finding a set of edges such that
the weights of their incident vertices mostly distribute to them. Charikar shows
that the optimality of the above LP problem is exactly equivalent to discovering
the densest subgraph in a undirected graph.

Intuitively, the complexity of this LP problem depends highly on the num-
ber of edges and vertices in the graph (i.e., the number of inequality con-
straints in LP). It is impractical for large graphs. Therefore, Charikar pro-
poses an efficient greedy algorithm and proves that this algorithm produces a
2-approximation for f(G). This greedy algorithm is a simple variant of [29].
Let S is a subset of V and HS is its induced subgraph with density f(HS).
Given this, we outline this greedy algorithm as follows:

1 Let S be the subset of vertices, initialized as V ;

2 Let HS be the subgraph induced by vertices S;

3 For each iteration, eliminate the vertex with lowest degree in HS from S
and recompute its density;

4 For each iteration, measure the density ofHS and record it as a candidate
for densest component

Similar techniques are also applied to finding the densest subgraph in a di-
rected graph. The greedy algorithm for directed graphs takes O(m+ n) time.
According to the analysis, Charikar claims that we have to run the greedy al-
gorithm for O( logn� ) values of c in order to get a 2 + � approximation, where
c = ∣S∣/∣T ∣ and S, T are two subset of vertices in the graph.

A variant of this approach is presented in [25]. Jin et al. developed an
approximation algorithm for discovering the densest subgraph by introducing
a new notion of rank subgraph. The rank subgraph can be defined as follows:

Definition 10.3. (Rank Subgraph) [25]. Given an undirected graph G =
(V,E) and a positive integer d, we remove all vertices with degree less than d
and their incident edges from G. Repeat this procedure until no vertex can be
eliminated and form a new graph Gd. Each vertex in Gd is adjacent to at least
d vertices in Gd. If Gd has no vertices, it is denoted G∅. Given this, construct
a subgraph sequence G ⊇ G1 ⊇ G2 ⋅ ⋅ ⋅ ⊇ Gl ⊃ Gl+1 = G∅, where Gl ∕= G∅
and contains at least l + 1 vertices. Define l as the rank of the graph G, and
Gl as the rank subgraph of G.
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Lemma 10.4. Given an undirected graph G, let Gs be the densest subgraph
of G with density d(Gs) and Gl be its rank subgraph with density d(Gl). Then,
the density of Gl is no less than half of the density of Gs:

d(Gl) ≥
d(Gs)

2

The above lemma implies that we can use the rank subgraph Gl with highest
rank ofG to approximate its densest subgraph. This technique is utilized to de-
rive a efficient search algorithm for finding densest subgraphs from a sequence
of bipartite graphs. The interested reader can refer to [25] for details.

Other Approximation Algorithms. Anderson et al. [4] consider the prob-
lem of discovering dense subgraphs with lower bound or upper bound of size.
Three problems including dalks, damks and dks are formulated. In detail,
dalks is the abbreviation for Densest-At-Least-K subgraph problem aiming at
extracting an induced subgraph with highest average degree among all sub-
graphs with at least k vertices. Similarly, damks looks for the Densest At-
Most-K subgraph and dks seeks the densest subgraph with exactly k vertices.
Clearly, both dalks and damks are relaxed versions of dks. Anderson et al.
show that daks is approximately as hard as dks which has been proven to
be NP-Complete. More importantly, an effective 1/3-approximation algorithm
based on core decomposition of a graph is proposed for dalks. This algorithm
runs in O(m + n) and O(m + n log n) time for unweighted and weighted
graphs, respectively.

We describe the algorithm for dalks as follows. Given a graph G = (V,E)
with n vertices and a lower bound of size k, let Hi be the subgraph induced by
i vertices. At the beginning, i is initialized with n and Hi is the original graph
G. Then, we remove the vertex vi with minimum weighted degree from Hi

to form Hi−1. Next, we update its corresponding total weight W (Hi−1) and
density d(Hi−1). We repeat this procedure and get a sequence of subgraphs
Hn,Hn−1, ⋅ ⋅ ⋅ ,H1. Finally, we choose the subgraph Hk with maximal density
d(Hk) as the resulting dense component.

Anderson [3] develops a local search algorithm to find a dense bipartite
subgraph near a specified starting vertex in a bipartite graph. Specifically, for
any bipartite subgraph with K vertices and density � (the definition of density
is identical to the definition in [27]), the proposed algorithm guarantees to
generate a subgraph with density Ω(�/ log Δ) near any starting vertex v where
Δ is the maximum degree in the graph. The time complexity of this algorithm
is O(ΔK2) which is independent of the size of graph, and thus has potential
to be scaled for large graphs.
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4. Frequent Dense Components

The dense component discovery problem can be extended to consider a
dataset consisting of a set of graphs D = {G1, ⋅ ⋅ ⋅ , Gn}. In this case, we
have two criteria for components: they must be dense and they must occur
frequently. The density requirement can be any of our earlier criteria. The
frequency requirement says that a component satisfies a minumum support
threshold; that is, it appears in at least a certain number of graphs. Obviously,
if we say that we find the same component in different graphs, there must be
a correspondence of vertices from one graph to another. If the graphs have
exactly the same vertex sets, then we call this a relation graph set.

Many authors have considered the broader problem of frequent pattern min-
ing in graphs [50, 23, 31]; however, not until recently has there been a clear
focus on patterns defined and restricting by density. Several recent papers have
looked into discovery methods for frequent dense subgraphs. We take a more
detailed look at some of these papers.

4.1 Frequent Patterns with Density Constraints

One approach is to impose a density constraint on the patterns discovered
by frequent pattern mining. In [55], Yan et al. use the minumum cut clustering
criterion: a component must have an edge cut less than or equal to k. Note
that this is equivalent to a k-core criterion. Furthermore, each frequent pattern
must be closed, meaning it does not have any supergraph with the same support
level. They develop two approaches, pattern growth and pattern reduction. In
pattern growth, begin with a small subgraph (possibly a single vertex) that
satisfies both the frequency and density requirements but may not be closed.
The algorithm incrementally adds adjacent edges until the pattern is closed. In
pattern reduction, initialize the working set P1 to be the first graph G1. Update
the working set by intersecting its edge set with the edges of the next graph:

Pi = Pi−1 ∩GI = (V,E(Pi−1) ∩ E(GI))

This removes any edges that do not appear in both input graphs. Decompose
Pi into k-core subgraphs. Recursively call pattern reduction for each dense
subgraph. Record the dense subgraphs that survive enough intersections to be
considered frequent.

The greedy removal of edges at each iteration quickly reduces the working
set size, leading to fast execution time. The trade-off is that we prune away
edges that might have contributed to a frequent dense component. The con-
sequence of edge intersection is that we only find components whose edges
happen to appear in the first min support graphs. Therefore, a useful heuris-
tic would be to order the graphs by decreasing overall density. In [55], they
find that pattern reduction works better when targeting high connectivity but a
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low support threshold. Conversely, pattern growth works better when targeting
high support but only modest connectivity.

4.2 Dense Components with Frequency Constraint

Hu et al. [22] take a different perspective, providing a simple meta-algorithm
on top of an existing dense component algorithm. From the input graphs,
which must be a relation graph set, they derive two new graphs, the Sum-
mary Graph and the Second-Order Graph. The Summary Graph is Ĝ =
(V, Ê), where an edge exists if it appears in at least k graphs in D. For
the Second-Order Graph, we transform each edge in D into a vertex, giving
us F = (V × V,EF ). An edge joins two vertices in F (equivalent to two
edges in G) if they have similar support patterns in D. An edge’s support
pattern is represented as the n-dimensional vector of weights in each graph:
w(e) = {wG1(e), ⋅ ⋅ ⋅ , wGn(e)}. Then, a similarity measure such as Eu-
clidean distance can be used to determine whether two vertices in F should
be connected.

Given these two secondary graphs, the problem is quite simple to state: find
coherent dense subgraphs, where a subgraph S qualifies if its vertices form a
dense component in Ĝ and if its edges form a dense component in F . Density
in Ĝmeans that the component’s edges occur frequently, when considering the
whole relation graph set D. Density in F ensures that these frequent edges are
coherent, that is, they tend to appear in the same graphs.

To efficiently find dense subgraphs, Hu uses a modified version of Hartuv
and Shamir’s HCS mincut algorithm [21]. Because Hu’s approach converts
any n graphs into only 2 graphs, it scales well with the number of graphs. A
drawback, however, is the potentially large size of the second-order graph. The
worst case would occur when all n graphs are identical. Since all edge support
vectors would be identical, the second order graph would become a clique of
size ∣E∣ with O(∣E∣2) edges.

4.3 Enumerating Cross-Graph Quasi-Cliques

Pei et al. [40] consider the problem of finding so-called cross-graph quasi-
cliques, CGQC for short. They use the balanced quasi-clique definition. Given
a set of graphs D = {G1, ⋅ ⋅ ⋅ , Gn} on the same set of vertices U , correspond-
ing parameters 
1, ⋅ ⋅ ⋅ , 
n for the completeness of vertex connectivity, and a
minimum component size minS , they seek to find all subsets of vertices of
cardinality ≥ minS such that when each subset is induced upon graph Gi, it
will form a maximal 
i-quasi-clique.

A complete enumeration is #P -Complete. Therefore, they derive sev-
eral graph-theoretical pruning methods that will typically reduce the execution
time. They employ a set enumeration tree [43] to list all possible subsets of
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{ }

{ x } { y } { z }

{ xy } { xz } { yz }

{ xyz }

Figure 10.6. The Set Enumeration Tree for {x,y,z}

vertices, while taking advantage of some tree-based concepts, such as depth-
first search and sub-tree pruning. An example of a set enumeration tree is
shown in Figure 10.6. Below is a brief listing of some of the graph and tree
properties they utilize to prune the set of candidate components, followed by
the main algorithm, called Crochet.

1 Given 
 and graph size n, there exist upper bounds on the graph diameter
diam(G). For example, diam(G) ≤ n− 1 if 
 > 1

n−1 .

2 Define Nk(u) = vertices within a distance k of u.

3 Reducing vertices: If �(u) < 
i(minS − 1) or ∣Nk(u)∣ < (minS − 1),
then u cannot be in a CGQC.

4 Candidate projection: when traversing the tree, a child cannot be in a
CGQC if it does not satisfy its parent’s neighbor distance bounds Nki

Gi
.

5 Subtree pruning: apply various rules on minS , redundancy, monotonic-
ity.

5. Applications of Dense Component Analysis

In financial and economic analysis, dense components represent entities that
are highly correlated. For example, Boginski et al. define a market graph,
where each vertex is a financial instrument, and two vertices are connected
if their behaviors (say, price change over time) are highly correlated [9, 10].
A dense component then indicates a set of instruments whose members are
well-correlated to one another. This information is valuable both for under-
standing market dynamics and for predicting the behavior of individual instru-
ments. Density can also indicate strength and robustness. Du et al. [15] iden-
tify cliques in a financial grid space to assist in discovering price-value motifs.
Some researchers have employed bipartite and multipartite networks. Sim et
al. [47] correlates stocks to financial ratios using quasi-bicliques. Alkemade
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Algorithm 11 Crochet(G1, G2, 
1, 
2,mins)

1: for all graph Gi do
2: construct set enumeration tree for all possible vertex subsets of Gi;
3: ki ← upper bound diameter of complete 
i-quasi-complete graph inGi;
4: end for
5: apply Vertex and Edge Reduction to G1 and G2;
6: for all v ∈ V (G1), using DFS and highest-degree-child-first order do
7: recursive-mine ({v}, G1, G2);
8: end for
9:

10: Function recursive-mine(X,G1 , G2); {returns TRUE if still seeking
quasi-cliques in this branch}

11: Gi ← Gi(P ), P = {u∣u ∈ ∩v∈X,i=1,2N
ki
Gi
(v)} {Candidate Projection}

12: Gi ← Gi(P (X));
13: apply Vertex Reduction;
14: if a Subtree Pruning condition applies then return FALSE;
15: continue← FALSE;
16: for all v ∈ P (X)∖X, using DFS and highest-degree-child-first order do
17: continue← continue ∨ recursive-mine (X ∪ {v}, G1, G2);
18: end for
19: if (not continue) ∧ (Gi(X) is a 
i-quasi-complete graph) then
20: output X;
21: return TRUE;
22: else
23: return continue;
24: end if

et al. [2] finds edge density in a tripartite graph of producers, consumers, and
intermediaries to be an important factor in the dynamics of commerce.

In the first decade of the 21st century, the field that perhaps has shown
the greatest interest and benefitted the most from dense component analysis
is biology. Molecular and systems biologists have formulated many types of
networks: signal transduction and gene regulation networks, protein interac-
tion networks, metabolic networks, phylogenetic networks, and ecological net-
works. [26].

Proteins are so numerous that even simple organisms such as Saccha-
romyces cerevisiae, a budding yeast, are believed to have over 6000 [51]. Un-
derstanding the function and interrelationships of each one is a daunting task.
Fortunately, there is some organization among the proteins. Dense components
in protein-protein interaction networks have been shown to correlate to func-
tional units [49, 42, 54, 13, 6]. Finding these modules and complexes helps
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to explain metabolic processes and to annotate proteins whose functions are as
yet unknown.

Gene expression faces similar challenges. Microarray experiments can
record which of the thousands of genes in a genome are expressed under a
set of test conditions and over time. By compiling the expression results from
several trials and experiments, a network can be constructed. Clustering the
genes into dense groups can be used to identify not only healthy functional
classes, but also the expression pattern for genetic diseases [48].

Proteins interact with genes by activating and regulating gene transcription
and translation. Density in a protein-gene bipartite graph suggests which pro-
tein groups or complexes operate on which genes. Everett et al. [16] have
extended this to a tripartite protein-gene-tissue graph.

Other biological systems are also being modeled as networks. Ecological
networks, famous for food chains and food webs, are receiving new attention
as more data becomes available for analysis and as the effects of climate change
become more apparent.

Today, the natural sciences, the social sciences, and technological fields are
all using network and graph analysis methods to better understand complex
systems. Dense component discovery and analysis is one important aspect
of network analysis. Therefore, readers from many different backgrounds will
benefit from understanding more about the characteristics of dense components
and some of the methods used to uncover them.

6. Conclusions and Future Research

In this chapter, we presented a survey of algorithms for dense subgraph dis-
covery. This problem has been studied in the classical literature in the context
of the problem of graph partitioning. Subsequently, a number of techniques
have been designed for quasi-clique detection, as well as shingling approaches
for dense subgraph discovery. Many of the recent applications are designed
in the contexts of the web, social, communication and biological networks.
These networks have a number of properties, in that they are massive and often
dynamic in nature. This leads to a number of interesting problems for future
research:

In many large scale applications, the data is often disk-resident. This
leads to issues involving efficient processing of the underlying network.
This is because it is not possible to perform random access of the edges
in a disk-resident networks.

In applications such as the web and social networks, the domain of the
underlying graph may be massive. In many web, telecommunication,
biological and social networks, we may have millions of nodes in the
underlying graph. Consequently, the number of edges may range in the
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trillions. This may lead to storage issues, since the number of distinct
edges may not even be possible to store effectively on many desktop
machines.

A number of recent applications may lead to the streaming scenario in
which the edges in the graph are received incrementally over time at a
fast speed. This is the case in many large telecommunication and social
networks. In such cases, it may be extremely challenging to analyze the
underlying graph in real time to determine dense patterns.

The area of dense graph mining in massive graphs is still relatively unexplored
and represents a fertile area of future research for a number of different appli-
cations.
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