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         Regional anesthesia, although technically challenging in 
 neonates, has wide ranging benefi ts. Effective pain relief after 
surgery plays a signifi cant role in the surgical outcome. Most 
major surgery is performed within the fi rst few days of life—
a time when critical physiological transitions are  taking place. 
The challenge is to provide safe and effective analgesia [ 1 ,  2 ]. 

 Although it may not be possible to completely eliminate 
postoperative pain, particularly in spontaneously breathing 
neonates, much can be done to reduce the intensity of pain. 
Traditionally intravenous morphine or other opioids are 
used, but these mandate ventilatory support and close moni-
toring in a neonatal intensive or similar high care unit. 
In contrast, regional anesthesia comes closest to achieving 
complete analgesia in both ventilated and spontaneously 
breathing neonates [ 1 – 4 ]. 

 Most regional blocks are placed during general anesthesia 
to ensure an immobile patient [ 5 ]. In certain situations, 
 however, spinals [ 6 ], epidurals [ 7 ], caudal catheters [ 8 ,  9 ] 
and peripheral nerve blocks [ 10 ,  11 ] have been placed in 
“awake” neonates. However sedation or conversion to gen-
eral anesthesia is generally required for major abdominal 
surgery [ 7 ,  8 ,  12 ]. 

 Specialized equipment is required to perform regional 
anesthesia in neonates [ 2 ,  13 ]. Portable high-frequency ultra-
sound has improved our ability to place epidurals and periph-
eral nerve blocks safely. Neonates are ideal subjects for 
ultrasound-guided blocks [ 14 ,  15 ] given that most peripheral 
nerves are superfi cial and the nerves and surrounding struc-
tures can be readily defi ned. Even the spinal cord can be 
visualized in neonates, since the ossifi cation of the vertebrae 
is limited [ 14 ,  15 ]. Despite these innovations, overall experi-
ence with major blocks in neonates remains relatively  limited 
(Table  15.1 ).

      Risks and Benefi ts 

    Before implementing any new pain management strategy, 
the risks and benefi ts must be carefully evaluated to avoid 
putting the neonate at increased risk [ 1 ,  2 ]. Potential benefi ts 
of regional anesthesia must be weighed against the individ-
ual practitioner’s ability to perform the technique success-
fully as well as the ability of the healthcare staff on the ward 
or in the intensive care unit to manage continuous infusions 
of local anesthetics and/or opioids safely. 

  Benefi ts:   Surgically induced pain causes a spectrum of 
autonomic, hormonal metabolic, immunologic/infl ammatory 
and neurobehavioral sequelae, many of which have associated 
detrimental effects [ 2 ,  16 – 22 ]. Acute pain can also have 
negative physiological consequences that include impairment 
of respiratory effort and systemic and pulmonary 
vasoconstriction that negatively infl uences compromised 
organ function [ 2 ,  15 – 19 ,  23 ].  

 In the late 1980s, Anand et al. fi rst demonstrated that neo-
nates, including preterm infants, are capable of mounting both 
hormonal and metabolic stresses in response to surgery [ 16 ]. 
They demonstrated that opioids inhibit the stress response to 
surgery. The stress response varies directly with the degree of 
surgical stress [ 2 ,  16 ], even after minor surgery. Moreover, 
severe stress may be pathological and could contribute to 
increased postoperative morbidity and mortality. Extreme cate-
cholamine responses are associated with the worst outcome [ 2 , 
 17 ]. Regional anesthesia appears to inhibit the hormonal stress 
response more effectively than opioids [ 18 ,  20 ,  21 ]. 

 Neonates, and in particular preterm infants, exposed to 
the deleterious effects of pain are also at risk of impaired 
neurodevelopment and altered pain sensitivity [ 24 – 29 ]. 
Long-term effects may include emotional, behavioral and 
learning disabilities. In theory, regional anesthesia may avoid 
or, when used in combination with anesthesia, reduce the 
neurotoxicity associated with general anesthetics in neonates 
and young infants [ 26 – 30 ]. 
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 There are additional advantages to combining regional 
with general anesthesia [ 2 ,  4 ,  14 ,  31 ,  32 ]. Neonates, as a 
group, are at greater risk for adverse sequelae under general 
anesthesia given their immature organ systems (cardiovas-
cular, central nervous, and respiratory) that are sensitive to 
the depressant effects of anesthetic agents. Neonatal myocar-
dial function is particularly sensitive to both inhaled 
and intravenous anesthetics. When combined with general 
 anesthesia, regional anesthesia provides profound analgesia 
with minimal hemodynamic effects, even in those with 
 congenital heart disease [ 3 ,  32 ,  34 – 44 ]. A successful block 
allows reduced concentrations of inhalational agents to be 
used [ 3 ,  4 ,  32 ], thereby attenuating the severity of cardiovas-
cular and respiratory depression [ 3 ] and may facilitate 
a faster recovery. Furthermore, inhalational agents have a 
reciprocal protective effect in that they increase the threshold 
of local anesthetic toxicity [ 45 ]. 

 Regional anesthesia also reduces the requirement for 
muscle relaxants by providing motor relaxation. Neuraxial 
blockade facilitates the reduction of gastroschisis [ 43 ], 
omphalocele and diaphragmatic hernia [ 32 ,  41 ] by providing 
analgesia and relaxation of the abdominal musculature 

independent of the mode of ventilation [ 4 ,  6 ,  32 ,  34 ]. Caudal 
blocks have been used to reduce incarcerated inguinal her-
niae before surgery [ 40 ]. 

 Neuraxial anesthesia may stimulate respiration and alter 
respiratory mechanics [ 46 ,  47 ]. The effects of neuraxial 
blockade on ventilation depend on the level and intensity of 
the block, as well as the clinical scenario. Neuraxial block-
ade may diminish abdominal and intercostal muscle activity, 
particularly in the compliant chest wall of neonates. On the 
other hand, it may improve diaphragmatic activity and excur-
sion, thus offsetting a loss of accessory muscle function [ 33 –
 35 ,  37 ]. The ventilatory response to CO 2  is also improved, 
resulting in more effi cient ventilation and maintenance of 
normocarbia [ 46 ,  47 ,  50 ,  51 ]. The pain relief provided by 
epidural analgesia improves ventilatory mechanics [ 34 ,  43 , 
 47 ] and reduces the need for and duration of assisted or con-
trolled ventilation after major abdominal or thoracic surgery 
[ 4 ,  34 ,  48 – 51 ]. As a consequence, ventilator-associated mor-
bidity and mortality is reduced [ 41 ,  48 – 51 ]. 

 Spinal anesthesia was reintroduced into pediatric anes-
thetic in the mid-1980s in an effort to reduce the respiratory 
complications, especially apnea, after surgery in preterm 

      Table 15.1    Neonatal epidural risk based on data accumulated from publications worldwide   

 Author  Number of institutions  Number cases  Complications  References 

 Murrell (1992)  Sydney, Australia 1  20  0  [ 33 ] 
 Van Niekerk (1990)  Utrecht, Netherlands 1  20  V 1  [ 146 ] 
 Bosenberg (1998, 2005)  South Africa 2     240,11,35  DP 1,C 1, V 1  [ 32 ,  41 ,  83 ] 
 ADARPEF (1994)  France, Belgium, Italy 38  43  0  [ 60 ] 
    Yamashita (1992–2002)  Japan 1  950  DP 7  [ 62 ] 
 Webster (1993)  Ontario, Canada1  18  V 2  [ 175 ] 
 Williams (1995)  Vermont 1  17 with spinal  0  [ 34 ] 
 Courreges (1996)  France 1  45  0  [ 67 ] 
 Tobias (1996)  Columbia, USA 1  25  0  [ 89 ] 
 Hasan (1994)  London 1  12  0  [ 65 ] 
 Vas (1999, 2001,2003)  Bombay 1  20  0  [ 66 ] 
 National UK audit (2010)  UK 21  529  C 1 DE 3  [ 58 ] 
 Frawley (2000)  Melbourne, Australia 1  50 with spinal  0  [ 233 ] 
 Somri (2007)  Israel 1  24 with spinal  0  [ 8 ] 
 Valairucha (2002)  Boston 1  115 caudal cath  A-1  [ 149 ] 
 Krishnan (2006)  Birmingham 1  20  0  [ 49 ] 
 Willschke (2007)  South Africa 1  85,20  0  [ 14 ] 
 Raghavan (2008)  Birmingham 1  22  0  [ 43 ] 
 Schenkman (2009)  Israel 1  44  V 5M1  [ 50 ] 
 Kost-Byerly (2002–2007)  Baltimore, USA 1  23  0  [ 152 ] 
 Bailey (2001–2002)  Philadelphia, USA 1  28 caudal cath  0  [ 183 ] 
 PRAN (2007–2010)  USA 8  72  DP 2  [ 5 ] 
 ADARPEF (2010)  France, Tunis, Quebec, Swiss, Belgium 45  46  DP 1  [ 60 ] 
 Willschke et al (2011)  Vienna 1  20  0  [ 7 ] 
  Total   ~99 institutions  2594  DP11 DE 3 C2 V 9M 1 

  Caudal catheters are included 
  DP  dural puncture,  V  intravascular,  S  total spinal,  B  bloody tap,  DE  drug error,  H  hypotension,  C  convulsion,  M  meningitis,  A  aberrant presacral 
placement  
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and ex-preterm infants. The impact on the outcomes from 
anesthesia was signifi cant [ 6 ,  35 ,  52 ,  53 ]. As a result, spinal 
anesthesia and, more recently, caudal epidural analgesia 
have been advocated for high-risk neonates at risk for peri-
operative apnea after surgery [ 1 ,  3 ,  52 ]. The ex-preterm 
infants of today differ from those of the 1980s. Improvements 
in neonatal intensive care and ventilation strategies as well as 
surfactant have reduced the incidence and severity of bron-
chopulmonary dysplasia. Recent evidence investigating the 
perioperative risk of apnea in preterm infants anesthetized 
with the current inhalational agents (sevofl urane, desfl urane) 
and remifentanil or receiving regional anesthesia for surgery 
failed to establish the superiority of one technique over the 
other [ 52 ,  54 ]. 

 Regional anesthesia may have salutary effects on gastro-
intestinal function. It enhances the early return of gastroin-
testinal motility [ 44 ,  55 ,  56 ], particularly after gastroschisis 
repair [ 21 ,  43 ]. In necrotizing enterocolitis, the vasodilatory 
effects of autonomic blockade may improve splanchnic per-
fusion [ 32 ,  55 ], while opioids increase intestinal smooth 
muscle tone that may increase the risk of anastomotic leaks 
[ 55 ]. Lastly, oral feeding may resume earlier and speed 
recovery after minor surgery in the presence of a regional 
block [ 6 ,  34 ,  52 ,  53 ]. 

 The immunosuppressive effect of regional anesthesia is 
attenuated compared with that reported with opioids [ 20 ,  21 , 
 56 ]. Local anesthetics, but not opioids, stimulate natural 
killer cells, which play an important role in nonspecifi c cel-
lular mediated and antitumor immunity [ 22 ,  56 ]. Local anes-
thetics (bupivacaine) also confer antimicrobial action and 
inhibit bacterial growth [ 56 ]. 

 Lastly, the economic benefi ts of regional anesthesia 
include a reduction in the anesthetic costs, fewer days in the 
neonatal intensive care, earlier discharge, and more effi cient 
use of the ward nurse’s time. However, to realize these 
 benefi ts, the staff must be trained to care for neonates with 
epidural infusions and other regional blocks. 

  Risks:   The effi cacy of regional anesthesia in neonates is not 
in dispute, but where opinions differ is in the ability to safely 
perform regional anesthesia in neonates [ 31 ]. Some consider 
the risks of regional anesthesia too great for routine use by 
individuals who do not have the requisite expertise [ 31 ,  44 ]. 
Although the risks associated with opioid and epidural 
analgesia in children are similar [ 57 ,  58 ], the risks associated 
with epidural analgesia and peripheral nerve blocks in 
neonates are less clear. The numbers of neonates in published 
surveys are relatively small in comparison with the numbers 
of children and adults [ 58 – 67 ]. The aggregate of published 
series from approximately 99 institutions yielded only one 
serious complication, meningitis, in the 2,594 published cases 
[ 50 ] (Table  15.1 ). Complications, as rare as they are, usually 
occur early “at the end of the needle,” i.e., when the 

anesthesiologist is still present. For example, the risk of a 
dural puncture is approximately 1:250, and convulsions 
1:1,250 in neonates (Table  15.1 ). Every effort should be made 
to eliminate drug errors, a feature in the UK audit [ 58 ]. 
Anecdotal reports of spinal cord injuries bear testimony that 
these unfortunate disasters can occur, although infrequently 
[ 68 ]. It is generally recommended that neonatal epidural 
blocks should only be performed by those with the technical 
expertise despite the advent of ultrasound that may further 
reduce the risks [ 69 ].   

    Anatomical Considerations (Table  15.2 ) 

    Recent ultrasound studies have demonstrated that the conus 
medullaris (terminal end of the spinal cord) lies between L1 
and L2 in the majority of neonates including preterm infants 
[ 14 ,  72 ]. The conus is not fi xed but moves with changes in 
body position [ 73 ], although rarely does it extend beyond 
L3. A conus that extends caudally beyond L3 suggests a teth-
ered cord [ 14 ,  72 – 75 ]. The dural sac usually terminates 
between S2 and S4, but maybe lie within millimeters of the 
sacral hiatus [ 14 ,  75 ]. 

 The shape of the vertebral column develops over the fi rst 
year of postnatal life. At birth, the vertebral column has a 
single shallow anteriorly concave curve extending from the 
C1 to L5. A secondary cervical curve appears when head 
control is achieved, usually by 6 months, and the lumbar 
curve develops with weight bearing, by ~1 year. In neonates, 
the spinous processes are parallel and horizontal facilitating 
a midline approach to the epidural space at all levels. The 
largest intervertebral spaces are found between T12–L1 and 
L5–S1, respectively. 

 The sacrum is narrower and fl atter, ossifi cation is incom-
plete, and the vertebrae are separate facilitating sacral 
 intervertebral epidural blocks. Sacral dimples or pits may 
refl ect an occult spina bifi da, which should be excluded 
using ultrasound, CT or MRI before attempting a neuraxial 
block. 

 A posterior midline approach to the epidural space in neo-
nates is regarded as the safest approach for several reasons. 
With a triangular spinal canal, the widest aspect of the epi-
dural space is the midline where the epidural veins and arter-
ies are less dense [ 75 ]. The epidural space is narrow 
(0.9–2.4 mm; median 1.5 mm) [ 14 ,  76 ] and less compliant, 
while the ligamentum fl avum is thinner, is less dense and 
offers less resistance to the advancing epidural needle than in 
adults. Pressures generated during the passage of an epidural 
needle through the ligamentum fl avum range from 35 to 
105 mmHg (mean 70 mm) and the epidural pressures range 
from 1 to 10 mmHg [ 77 ]. 

 Epidural fat consists of spongy gelatinous lobules with 
distinct spaces and offers minimal resistance to the passage 
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of local anesthetic and an epidural catheter. The epidural 
veins have no valves and connect directly with intracranial 
veins. As a consequence, foreign material such as air or 
drugs inadvertently injected into the epidural veins can reach 
the brain without impediment. 

 The effective concentration of local anesthetics in neo-
nates is less than in older children as the nerves in the former 
are thinner and less myelinated than those in the latter. The 
nerve trunks to the lower limbs are not fully myelinated until 
the second year of life. The degree of myelination infl uences 
the pharmacodynamic effects of local anesthetics. 

 The CSF volume in neonates <1.5 kg, 4 ml/kg, is rela-
tively large compared with that in adults and older children, 
2 ml/kg. CSF production in neonates, 0.35 ml/min, is also 
greater than that in adults. This explains, in part, why neo-
nates require proportionately larger doses of local anesthetic 
for spinal block than older children. 

 In terms of peripheral nerve blocks in neonates, it is impor-
tant to appreciate that the muscle layers of the thoracic and 
abdominal wall are thinner, less well defi ned, and more compli-
ant than in older children. The sciatic nerve divides within the 
popliteal fossa [ 78 ], the ilioinguinal and iliohypogastric nerves 
lie 3–5 mm medial to the anterior superior iliac spine [ 79 ], and 
the musculocutaneous nerve is easily included in an axillary 
block because of its proximity to the divisions [ 80 ] (Fig.  15.1 ).   

    Pharmacological Differences 

 The pharmacological differences in neonates vary with ges-
tational age-related changes in body fl uid compartments, 
plasma protein concentrations, distribution of cardiac output 
and the functional maturity of liver and kidneys [ 81 ]. Other 
contributing factors include less body fat (15 % body weight) 
and skeletal mass (25 % body weight), a proportionally 
larger brain and liver and greater cardiac output and regional 
blood fl ow to vessel-rich organs resulting in more rapid 
uptake of drugs. 

 Neonates are at greater risk of drug toxicity than older 
children [ 2 ,  82 ]. Albumen and α 1 -acid glycoprotein concen-
trations in neonates are less than those in children [ 82 – 90 ], 
thus increasing the free fraction of the circulating drugs. 
Since local anesthetics are basic drugs, the reduced concen-
tration of α 1 -acid glycoprotein increases the free fraction of 
local anesthetics in blood. However, α 1 -acid glycoprotein is 
an acute phase protein and, as such, increases during acute 
illnesses and with surgical stress [ 83 ,  86 ]. This latter effect 
offsets the reduced concentration of α 1 -acid glycoprotein in 
neonates, offering some protective effect by attenuating the 
free fraction of the local anesthetic. In addition, a greater 
fraction of local anesthetic is excreted unchanged in the 
urine because of the reduced hepatic blood fl ow and  immature 

   Table 15.2    Important anatomical and physiological similarities and differences between neonate and adolescents (adults)   

 Anatomy  Neonate  Adolescents (adult) 

 Conus medullaris  L1–L2  L1 
 Dural sac  S2–S4  S2–S4 
 Intercristal line  L4  L4 
 Vertebral column  Concave C1–L5  Secondary curves 

 Mainly cartilaginous  Ossifi ed 
 Spinous processes  Lumbar more horizontal, parallel 

 Orientation T10–T12 similar to lumbar 
 Midline approach easy 

 Lumbar angled caudad 
 All thoracic spines angled caudad 

 Intervertebral space  Largest T12–L1; L5–S1 
 Ligamentum fl avum  Thinner, less dense  Thicker, fi brous 
 Epidural space  1–2 mm; less compliant Spongy 

gelatinous fat lobules 
 Compliant 
 Densely packed lobules fi brous strands 

 Sacrum  Flatter; less ossifi ed     Fully ossifi ed by 30 years 
 Nerves  Thinner less myelination 
 CSF volume     4 ml/kg  2 ml/kg 
 Physiology 
 Blood pressure  Stable  Hypotension 
 Pulse rate  Stable  Bradycardia 
 Respiratory  Diaphragmatic function improved, ventilatory 

response CO 2  enhanced 
 Similar 

 CNS  Cortical arousal reduced 
 Lower BIS 

 Similar 

 Endocrine  Inhibition stress response  Similar 
 GIT function  Earlier return  Similar 

  GIT is gastrointestinal track  
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cytochrome P450 (CYP) enzyme system [ 83 ,  88 ]. Plasma 
cholinesterase activity in neonates is 50 % that in adults, 
slowing the clearance of ester local anesthetics such as 
 chloroprocaine, from the blood. On balance, chloroprocaine 
is viewed as a safer local anesthetic in neonates than the 
amide anesthetics because its metabolism depends on only 
one enzyme [ 2 ,  35 ,  89 ]. 

 Vascularity of the injection site and regional blood fl ow 
infl uence the rate of uptake of local anesthetics. The rate of 
absorption and therefore the peak blood concentration is reduced 
by the addition of a vasoconstrictor. Epinephrine prolongs the 
duration of action of local anesthetics [ 91 ,  92 ] by up to 50 % in 
neonates [ 6 ,  91 – 93 ]. In the author’s experience the duration of 
caudal bupivacaine is virtually doubled by the addition of epi-
nephrine 1:400,000 (unpublished data). However, during con-
tinuous epidural infusions, the initial effect of epinephrine to 
prolong the duration of the block is minimal after 3 h [ 94 ]. 
Hence, epinephrine is recommended for one-shot caudal epi-
dural blocks and not for continuous infusions. 

 Lung function also plays an important role in modulating 
the duration of action of local anesthetics. Approximately 
60–80 % of an intravenous bolus of lidocaine is absorbed on 
the fi rst pass through the lungs. However, in neonates with 
right to left intracardiac shunts, the reduced uptake of local 
anesthetic by the lungs may increase the peak blood con-
centration by 100 % and, with it, the risk of local anesthetic 
toxicity [ 95 ]. 

 Little is known about the pharmacokinetics of longer- 
acting local anesthetics in neonates [ 2 ,  83 – 85 ,  88 ,  96 ]. Using 

anecdotal reports of toxicity after bupivacaine, the recom-
mended caudal/epidural infusion rates for bupivacaine for 
postoperative analgesia is 0.2 mg/kg/ h for neonates and 
infants less than 6 months of age and up to 0.4 mg/kg/h for 
infants >6 months of age. The plasma concentrations 
recorded in neonates were greater than those in infants, 
although the concentrations in both age groups were <2–3 μg/
ml the purported threshold for toxicity in humans [ 83 ,  88 , 
 96 ]. The plasma concentrations of bound bupivacaine accu-
mulate after a 48 h infusion in neonates and infants [ 96 ], 
whereas the concentrations of bound ropivacaine do not 
accumulate after infusions up to 72 h in duration [ 83 ]. Thus, 
ropivacaine appears to be the safer local anesthetic for epi-
dural infusions lasting 48–72 h in neonates [ 88 ,  89 ,  96 ].  

    Neuraxial Blockade 

    Spinal 

 Bainbridge described the fi rst spinal anesthetic performed 
on an infant in 1899, and early in the twentieth century, Lord 
H Tyrell Gray suggested that spinal anesthesia “would 
occupy an important place in the surgery of children in 
the future.” Although the popularity of spinal anesthesia 
waned as the safety of general anesthesia improved, these 
prophetic words may still be realized considering the current 
controversy regarding the neurotoxicity of general anesthet-
ics in neonates. The popularity of spinal anesthesia was 

  Fig. 15.1    Anatomical dissection of the axilla of a neonatal cadaver 
demonstrating the close relationship of the axillary artery and the cords 
and branches of the brachial plexus. The musculocutaneous branch is 
easily included even with small volumes of local anesthetic. Brachial 
plexus (j) and related structures within the axilla and at the root of the 

neck. Structures include the: (a) pectoralis major and (b) pectoralis 
minor muscles, (c) coracoid process, (d) coracobrachialis muscle, (e) 
axillary artery, (f) anterior and (g) middle scalene muscles, (h) common 
carotid artery, (i) vagus nerve, (k) clavicle       
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rekindled in the early 1980s when Abaijan proposed its use 
for ex-preterm infants undergoing inguinal hernia repair [ 6 ]. 
Currently, spinal anesthesia remains limited to selected 
 high-risk infants in whom general anesthesia may pose a 
major risk [ 97 ]. 

 Spinal anesthesia has been used alone or in combination 
with an epidural for a wide variety of surgeries including 
inguinal hernia repair, ligation of patent ductus arteriosus, 
pyloromyotomy, gastrostomy, gastroschisis [ 98 ], omphalo-
cele, exploratory laparotomy, lower abdominal surgery 
(colostomy, anoplasty, rectal biopsy, circumcision) menin-
gomyelocele repair or orthopedic surgery [ 6 ,  99 ,  100 ]. 

 The duration of action of spinal anesthesia in neonates is 
much less than it is in adults, despite the relatively larger 
doses used in the former. The duration of action appears to 
depend directly on age [ 93 ,  101 ,  102 ]. For practical purposes, 
an effective plane of surgical anesthesia after spinal block 
lasts up to ~40–60 min with bupivacaine, levobupivacaine 
[ 103 ,  104 ], and ropivacaine [ 104 ,  105 ]; up to 1.5 h with tetra-
caine plain, or 2 h with tetracaine with epinephrine [ 6 ,  93 ]; 
and up to 1 h after lidocaine 3 mg/kg with epinephrine [ 93 ]. 
Spinal anesthesia can be used to facilitate placement of an 
epidural block [ 8 ] in order to prolong the duration [ 8 ,  9 ]. 
Intrathecal clonidine (1 μg/kg) may also be used to perform 
surgery, although it is associated with more sedation and 
apnea than the local anesthetics [ 101 ,  103 ]. 

 Spinal anesthesia rarely produces signifi cant changes in 
heart rate or blood pressure in neonates, even with blockade 
to thoracic levels [ 6 ,  100 ]. Reduced cortical arousal caused 
by peripheral deafferentation [ 44 ,  106 ] or a decrease in cere-
bral blood fl ow [ 107 ] should be born in mind when addi-
tional sedatives are used [ 106 ]. The incidence of postoperative 
apnea in preterm neonates who received spinal anesthesia 
was less than that after general anesthesia, provided seda-
tives (e.g., midazolam 0.2 mg/kg, propofol 1 mg/kg) were 
avoided [ 6 ,  100 ,  108 ,  109 ]. 

  Complications:   Based on two large series [ 6 ,  100 ], the 
incidence of serious complications (nerve injury, meningitis, 
arachnoiditis) [ 110 ,  111 ] after spinal anesthesia is rare in 
neonates, but greater in neonates than older infants and 
children [ 109 ]. Failure rates for effective spinal anesthesia 
in neonates range from 5 % (in experienced hands) [ 6 ] to 
17 % (trainees) [ 6 ,  31 ,  108 ] with a bloody tap rate of 10 % 
[ 101 ]. Bradycardia (<100 bpm) and apnea can be treated 
with tactile stimulation, atropine 0.1 mg/kg, or ventilatory 
support as indicated. The incidence of bradycardia ranges 
from 1.2 to 1.8 % [ 6 ,  100 ]. The incidence of high spinal 
blockade (0.1–0.6 %), heralded by apnea but usually not 
associated with hypotension or bradycardia, has been 
associated with the administration of large doses of local 
anesthetics and early elevation of the legs when applying 
the electrocautery pad to the back or “top- ups” when the 

level is inadequate. Unilateral spinal blockade in neonates 
has also been described [ 112 ]. Blood plasma concentrations 
of bupivacaine after spinal administration are small (0.2–0.3 
mcg/ml) and unaffected by the addition of epinephrine [ 113 ].  

  Technique:   Using a sterile technique, a spinal anesthetic 
may be placed using a 25 ga or styletted 22 ga 1.5 in. spinal 
needle in the sitting or lateral decubitus position. 
Chlorhexidine in 70 % alcohol is currently recommended for 
skin preparation. The antiseptic should completely dry 
before inserting the spinal needle to preclude transfer 
of alcohol to the subarachnoid space. Spinal anesthesia is 
usually placed at L3–L4 or L4–L5. A prior ultrasound scan is 
useful to determine the exact location of the dural sac and to 
exclude any central nervous system or bony anomalies. Once 
free fl ow of CSF is obtained through the spinal needle, the 
local anesthetic can be administered using a 1 ml syringe. 
The onset of the block is refl ected by profound motor block 
in the lower extremities within seconds of completing the 
delivery of local anesthetic. Care should be taken to avoid 
positioning the infant head down, i.e., when applying the 
electrocautery pad on the back, before the block height has 
been set to avoid a high spinal block. Instead, the neonate 
should be logrolled to apply monitors and other devices.  

 If the neonates requires placating gentle stroking, sooth-
ing or dextrose water on a pacifi er is effective [ 114 ]. 
Intravenous sedation may be necessary in ~25 % of cases 
[ 6 ,  100 ], but it does increase the risk of perioperative 
apnea [ 100 ].

  Dose Guidelines 
  Hyperbaric tetracaine 0.5 %; 0.6–1 mg/kg  
  Isobaric bupivacaine or ropivacaine 0.5 %; 0.6–1 mg/kg  
  Hyperbaric lidocaine 3 mg/kg   

  Adjuvants 
  Epinephrine 5–10 mcg/kg prolongs the duration of action.  
  Clonidine 1 mcg/kg prolongs analgesia [ 102 ].     

    Caudal Block 

 Caudal analgesia is frequently used to provide analgesia for 
surgery below the umbilicus [ 39 ,  70 ,  71 ,  115 ]. The popular-
ity of caudal blockade stems from its simplicity, safety and 
effi cacy and is usually performed in combination with gen-
eral anesthesia [ 5 ]. Larger doses are required for upper 
abdominal surgery [ 116 ], but achieving this level of block-
ade is less predictable unless a caudal catheter is introduced. 
Caudal blocks are effective as the sole anesthetic, particu-
larly for ex-preterm infants undergoing inguinal hernia repair 
[ 117 ]. They have also been used to reduce incarcerated 
inguinal herniae [ 40 ], to improve compromised perfusion 
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after umbilical catheterization [ 118 ] and penile block [ 119 ] 
and to facilitate PICC line placement in extreme preterm 
infants [ 120 ]. 

  Anatomy:   The sacral hiatus is between the sacral cornu, two 
prominences that represent the remnants of the fi fth sacral 
arch, and extends to the fused arch of the fourth sacral 
vertebra. The sacrococcygeal membrane, an extension of the 
ligamentum fl avum, covers the sacral hiatus separating the 
caudal space from the subcutaneous tissue. Considerable 
variation in the sacral hiatal anatomy exists mainly due to 
incomplete posterior fusion of other sacral vertebrae. 
However, a few important surface landmarks can be used to 
enhance successful placement in both normal and abnormal 
sacra. The sacral hiatus virtually always lies at the apex of an 
inverted equilateral triangle whose base is a line between the 
posterior superior iliac spines (Figs.  15.2  and  15.3 ). The 
intersection of a line drawn from the patella through the 
greater trochanter (with the hips fl exed at 90°) with a line 
drawn down the vertebral column is another useful landmark 
(Fig.  15.3 ).    

  Technique:   Caudal block can be performed in the lateral 
decubitus position or prone knee-chest position—a useful 
position for an “awake” caudal block [ 121 ] (Fig.  15.2 ). 
Under sterile conditions a short-beveled needle, held 
between the thumb and index fi nger, is introduced at 
approximately 30–45° to the skin (i.e., with the bevel parallel 

to the skin) with the skin between the sacral cornua held taut 
by the thumb and index fi nger of the opposite hand. The 
needle is then advanced until it pierces the sacrococcygeal 
ligament [ 122 ] and a “give” is felt. The needle is now in the 
caudal space, which can be confi rmed by a loss of resistance. 
If the needle tip is extremely sharp, a “give” may not be felt; 
hence, most prefer to use a needle that is not extremely sharp. 
Penetration of the sacrococcygeal membrane just above a 
line between the sacral cornua carries a smaller incidence of 
bloody tap in the author’s experience. The dural sac lies 
within 5–10 mm of the sacral hiatus in the majority of 
neonates [ 14 ], and thus changing the angle and advancing 
the needle, as described in adults, is unnecessary as it may 
result in a dural puncture or bloody tap [ 38 ]. Using a 22 g IV 
cannula is popular [ 38 ,  123 ], but in the author’s experience, 
it carries a greater incidence of failure (subcutaneous 
injection) and bloody taps (see below).  

 After negative aspiration for blood and CSF, the required 
volume of local anesthetic can be injected. Aspiration 
should be gentle since strong negative pressure may cause 
the low-pressure epidural vessels to collapse before a posi-
tive aspiration test can be elicited [ 38 ]. In the event of a 
“bloody tap,” the needle should be redirected or removed 
and reinserted more cephalad. Local anesthetic injection 
should proceed with caution after a bloody tap considering 
the greater risk of an intravascular injection under these cir-
cumstances [ 124 ]. Ultrasound can be used to “visualize” the 
spread within the caudal epidural space [ 125 ]. 

 To provide a diverging opinion, the editor has always used 
a 22 g IV cannula for caudal block in neonates. In this 
approach, the skin is nicked with a “dull” needle down to 
the level of the subcutaneous tissue to introduce the IV 

  Fig. 15.2    Caudal block. The sacral hiatus lies at the apex of an equilat-
eral triangle with the line drawn between the posterior superior iliac 
spines as the base       

  Fig. 15.3    Caudal block. The knee-chest position may be used to facili-
tate placement of the caudal in awake neonates       
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catheter/needle into the subcutaneous tissue. This should 
minimize the risk of translocating epidermal tissue to the 
caudal space when the catheter/needle is advanced through 
an intact epidermis (see Complications below). The IV  cath-
eter/needle is then advanced through the nick. When the 
sacrococcygeal ligament is pierced, the catheter/needle is 
advanced 2–3 mm further, and the needle is transfi xed while 
the catheter is slid off into the caudal canal. If the needle had 
inadvertently pierced the bone of the sacrum during inser-
tion, the catheter would accordion rather than thread 
smoothly when it was advanced. This should ensure an inad-
vertent osseous cannulation did not occur. Once the needle is 
withdrawn, the remaining catheter is observed for either 
blood or clear CSF fl ashback. The editor does not aspirate 
the catheter at any time because if the catheter had pierced a 
vein, the vein would collapse when the catheter was aspi-
rated and no blood will be collected. If the catheter were in 
the bone, again nothing will be returned during aspiration. 
Lastly, if the catheter were in the subarachnoid space and the 
sac punctured, CSF will fl ow back immediately upon with-
drawal of the needle, before the catheter was aspirated. To 
ensure local anesthetic is injected into the caudal space and 
not subcutaneously, as the operator begins to inject local 
anesthetic into the cathe ter, the index fi nger of the free hand 
is gently placed over the sacrococcygeal ligament to detect a 
subcutaneous injection [ 99 ]. Although much debate has 
occurred with regard to the use of a test dose of drug and the 
determination of the location of the tip of the catheter, the 
editor treats the entire dose of local anesthetic to be adminis-
tered (usually 1 mL/kg of 0.125 % bupivacaine) as a test 
dose, infusing 1 mL at a time while monitoring the ECG for 
30–60 s before continuing. 

  Complications:   The incidence of all complications after 
caudal/epidural blocks in neonates is threefold greater than 
in infants and eightfold greater than in children [ 126 ]. The 
two most common complications reported were a local skin 
infection and drug error [ 127 ]. Dural puncture and subsequent 
injection may lead to a total spinal and respiratory arrest 
(apnea). Systemic toxicity may be heralded by EKG (ST 
segment elevation and peaked T waves) changes, arrhythmia, 
cardiovascular collapse or convulsions after accidental 
intravascular or sacral intraosseous injection (incidence 
0.4 %) [ 128 ]. Intrapelvic, intraosseous, and intravascular 
injections [ 129 ,  130 ] are very rare with proper technique. 
Urinary retention is not a substantive concern in neonates. 
Nerve injury and neurological defi cits have not been reported 
in neonates. Inclusion dermoid tumors have been reported, 
but only anecdotally. The risk of introducing nucleated 
epidermal cells from stratum spinosum during caudal block 
is small and is similar with 22 g hollow needles and styletted 
22 g caudal block needles [ 131 – 133 ].  

  Dosage:   Many formulae have been proposed for the volume 
of local anesthetic required for a caudal block based on the 
neonate’s weight, age, and length [ 115 ,  124 ,  134 – 137 ]. The 
most practical is that suggested by Armitage [ 124 ]:

   0.5 ml/kg of local anesthetic for sacrolumbar dermatomes  
  1.0 ml/kg for lumbar thoracic dermatomes (subumbilical)  
  1.25 ml/kg for mid-thoracic dermatomes (upper abdominal)     
 Bupivacaine 0.125–0.25 % [ 138 ], ropivacaine 0.1–0.2 % 

[ 139 – 143 ], levobupivacaine 0.25 % [ 142 ], and chloropro-
caine 3 % [ 35 ,  89 ] are effective. The duration of analgesia 
depends upon the dose and specifi c local anesthetic admin-
istered, the use of epinephrine, the site of surgery and 
whether a continuous catheter is used [ 35 ,  71 ]. Increasing 
the concentration of local anesthetic does not offer 
additional advantage but may increase the incidence of 
side effects (e.g., motor blockade) and/or complications. 
Clonidine (1 μg/kg) has been used to prolong the duration of 
analgesia about several hours [ 144 ] but is associated with an 
increased risk of sedation and apnea, particularly with a 
dose of 2 μg/kg [ 145 ].  

    Caudal Catheter Techniques 

 A catheter can be introduced via the sacral hiatus in neonates 
to prolong the duration of caudal block [ 9 ,  35 ] and to access 
the sacral, lumbar, or thoracic nerve roots [ 4 ,  146 – 160 ]. 
This technique was developed before the introduction 
of pediatric epidural needles. Specialized equipment is not 
required [ 4 ], and the risk of dural puncture or spinal cord 
injury may be less than with lumbar epidural placement in 
less- experienced hands [ 4 ,  147 ]. 

  Technique:   An 18 or 20G IV cannula, Crawford needle or 
specifi cally designed kits [ 147 ,  148 ] can be used to access 
the caudal space. A 20–24G epidural catheter that passes 
easily through the cannula is measured against the neonate’s 
back to the dermatome level of the planned surgical incision. 
This predetermined length can then be introduced gently into 
the caudal/epidural space (Fig.  15.4 ). Flexion or extension of 
the infant’s spine [ 4 ,  50 ], fl ushing the catheter with saline [ 4 , 
 147 ] or twisting/rolling the catheter in the operator’s fi ngers 
[ 4 ,  50 ] can be used to advance the catheter. Thin (24G) 
fl exible catheters may curl in the sacrolumbar epidural space 
and fail to reach their target dermatome. This problem can be 
overcome by using styletted catheters, although they can be 
expensive [ 152 ,  154 ,  155 ]. Attempts to feed the catheter 
against resistance are potentially harmful. It is important not 
to force the catheter should resistance be encountered, as the 
catheter tip may impinge on a nerve root or puncture a blood 
vessel rather than advance. It may also puncture the dura 
and pass up the subdural or subarachnoid space. Instead of 
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forcing a catheter to advance, it may be necessary to 
administer larger volumes of local anesthetic to achieve the 
desired level of blockade. The choice between single- and 
multi- orifi ce catheters is moot, since the latter function as 
single orifi ce catheters (perfusing the proximal orifi ce in all 
instances) at the small infusion rates used in epidural 
infusions [ 156 ].   

 Accurate placement of epidural catheters depends on the facili-
ties available. Several techniques including epidurography [ 4 ,  146 , 
 149 ,  161 ], fl uoroscopy, electrocardiography [ 154 ,  155 ,  162 ], nerve 
stimulation [ 159 ,  160 ], and ultrasonography [ 125 ,  150 ,  157 ,  163 ] 
may be used. Electrical stimulation with wired epidural catheters 
allows real-time adjustment of the catheter level but requires spe-
cifi cally designed equipment. In the author’s experience of more 
than 500 infants, 20 g nylon catheters (Portex ® ) may be threaded 
to within one vertebral body of the preselected level in the epidural 
space. Diffi culties have been described reaching the desired der-
matome level in preterm infants and when a Tuohy needle is used 
[ 9 ,  146 ]. The curve of a Tuohy needle may cause the catheter to 
curl if the lumen is not properly aligned within the caudal space. 

  Complications:   These include failure to position the catheter 
at the desired level, dural puncture, intravascular placement 
[ 50 ,  153 ], bacterial colonization of the catheter tip (20–30 %) 
[ 99 ,  164 ,  165 ], and one reported case of meningitis [ 50 ]. Careful 
aseptic technique with chlorhexidine, rather than Proviodine, 
for all catheter techniques carries a lower risk of colonization 

[ 166 ]. However, colonization has not been shown to progress 
to abscess formation in the central nervous system. Tunneling 
catheters subcutaneously away from the diaper area may 
further reduce the risk of prolonged infusions [ 164 ,  165 ].  

  Dosage:   For single dosing, 0.5–0.75 ml/kg 0.25 % 
bupivacaine or 0.2 % ropivacaine depending on the number 
of dermatomes required to be blocked [ 4 ].  

 Since neonates are not ambulatory, these concentrations 
will not impair discharge because of lower extremity weak-
ness. Previous studies in children demonstrated that for 
0.175 % bupivacaine with epinephrine, 0.7–1.3 ml/kg pro-
vided similar analgesia and discharge times after inguinal 
hernia surgery [ 167 ]. For ropivacaine, 1 ml/kg of a 0.25 % 
solution achieved a block to T11 with a time to fi rst analgesia 
of 6 h. However, a 0.15 % solution of ropivacaine in a vol-
ume of 1.5 ml/kg achieved a block to T7 and time to fi rst 
analgesia of 9 h [ 168 ]. 

 For continuous epidural infusions for postoperative 
pain, 0.2–0.25 mg/kg/h bupivacaine is recommended to 
prevent toxic blood concentrations for 48 h [ 96 ]. This 
may be administered as 0.2 ml/kg/h of a 0.1 % bupiva-
caine solution. Ropivacaine dosing should be 0.2 mg/
kg/h of a 0.1 % solution. In contrast to bupivacaine, ropi-
vacaine does not accumulate as the duration of infusion 
increases [ 23 ].  

    Lumbar and Thoracic Epidural 

 Lumbar epidural is indicated for lower abdominal, pelvic 
and lower limb surgery, whereas a thoracic epidural is indi-
cated for upper abdominal or thoracic surgery [ 169 ], par-
ticularly in poor-risk patients with respiratory disabilities 
[ 170 ]. Experience with these epidural techniques in neo-
nates is limited [ 32 ,  50 ,  51 ,  58 ,  83 ,  171 ]. Few dermatomes 
are involved in the transverse abdominal incision favored 
by pediatric surgeons and thus can be easily covered by an 
accurately placed epidural. Epidural placement is usually 
performed in an anesthetized child, although it can also be 
performed with sedation [ 7 ] or after initial spinal blockade 
when indicated [ 8 ]. In view of the potential risk of spinal 
cord trauma, thoracic epidurals should only be performed 
by experienced providers familiar with epidurals in 
neonates. 

  Technique:   Using a sterile technique, the skin should be 
punctured to facilitate smooth insertion of a 19 or 20 g 
Tuohy needle. A midline approach is preferred since the 
epidural space is widest at this point and the epidural 
vessels less dense. The interspace chosen should be as 
close to the dermatome of the surgical incision as possible. 

  Fig. 15.4    A predetermined length of catheter can be introduced into the 
epidural space to the desired level via the sacral hiatus. An epidurogram 
or ultrasound can be used to confi rm placement. In this epidurogram, 
contrast fi lled the caudal catheter, which was introduced at the sacral 
hiatus (lower arrow), and threaded up to the L1 level (upper arrow)       
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The needle angulation depends on the level of epidural 
puncture and is greatest in the mid- thoracic region. Below 
this level, a more perpendicular approach can be used 
since the spinous processes in the lumbar region are 
almost horizontal when the back is fl exed [ 172 ,  173 ] 
(Fig.  15.5 ). T12–L1 and L1–L2 interspaces are the largest 
and most easily palpable. The skin-epidural distance 
ranges from 5 to 12 mm depending on the gestational age 
and weight [ 32 ]. Ultrasound can be used to measure this 
distance [ 14 ].   

 Both air and saline have been advocated for the loss of 
resistance test to identify the epidural space [ 173 ,  174 ]. 
Saline is more popular according to a recent survey [ 174 ], 
although air is perhaps more sensitive [ 32 ,  172 ]. Using air 
for loss of resistance often results in the injection of air into 
the epidural space, and this maneuvre could cause an air 
embolus or rarely intra-arterial air embolus, specifi cally in 
the artery of Adamkiewicz, leading to paralysis. A “drip and 
tube” method has also been used successfully [ 62 ]. 

 A catheter should be introduced at least 2 cm into the epi-
dural space for continuous infusion or intermittent “top-ups” 
depending on whether an open tip or closed tip catheter is 
used [ 156 ]. This is best done after the “test dose” has 
“opened” the epidural space to facilitate the passage of the 
catheter [ 4 ,  147 ]. The length of catheter introduced into 
the epidural space is important: too much length increases 
the risk of a unilateral blockade, whereas too little could 
cause a failed block or increased local anesthetic leakage. 
Ultrasound can confi rm correct catheter placement [ 157 ]. 

  Complications:   No serious complications, except dural 
puncture, have been reported in large published series [ 23 , 
 32 ,  50 ,  51 ,  58 ,  83 ,  171 ,  175 ] (Table  15.1 ) Anecdotal case 

reports of spinal cord injury and air embolism bear testimony 
to the potential for disaster [ 176 ].  

  Dosing Guidelines:   An initial bolus dose of 0.5 ml/kg 
followed by an infusion of 0.1 ml/kg/h 0.2 % ropivacaine or 
bupivacaine provided satisfactory analgesia [ 32 ,  83 ,  177 ]. 
One study recommended 0.6 ml/kg as the optimal bolus dose 
for abdominal surgery [ 178 ]. A smaller initial bolus of 
0.33 ml/kg 0.25 % bupivacaine or 0.2 % ropivacaine is 
required for thoracic epidurals [ 179 ]. In the author’s 
experience, larger volumes of up to 0.5 ml/kg may be 
required in small infants.  Top-up  doses should be half the 
original volume.   

    Sacral Epidural Block 

 Busoni described two approaches to the sacral epidural space 
[ 180 ,  181 ]. The  sacral intervertebral block  [ 169 ,  182 ] is pos-
sible in neonates since the sacral vertebrae are not fused. 
This block is particularly useful in neonates in whom the 
sacral hiatus cannot be identifi ed and thus a caudal approach 
is not possible, e.g., obese neonates or high anorectal malfor-
mations with associated sacral abnormalities [ 182 ]. The 
 modifi ed Taylor approach  [ 151 ,  181 ] between L5 and S1 is 
possible because of the large space between spinous process 
of the fi fth lumbar vertebra and the rudimentary spinous pro-
cess of the fi rst sacral vertebra. These approaches have less 
risk of spinal cord damage or dural puncture [ 14 ,  75 ]. 
Furthermore, indwelling catheters with continuous infusions 
at these sites are less likely to become contaminated because 
of the greater distance from the anus [ 181 ]. 

  Technique:   The posterior superior iliac spines are identifi ed 
with the neonate in the lateral decubitus position and with 
the hips fl exed. A line between the posterior superior iliac 
spines bisects the second sacral vertebral arch (S2). The 
largest sacral intervertebral space (S2–S3) is easily identifi ed 
0.5–1.0 cm caudad to this line. The L5–S1 interspace is 
located 0.5–1.0 cm cephalad of this line and is also easily 
palpable provided the overlying sacral fat pad is not thick. In 
this case, an epidural needle can be introduced to contact 
bone and then “walked” cephalad or caudad on the sacral 
vertebra till the interspace is identifi ed. 

 After skin preparation, the skin should be punctured to 
facilitate insertion of the 19 or 20 g Tuohy needle. No fl exion 
is required since the spinous processes of the sacrum are 
rudimentary. The epidural space can be identifi ed using a 
“loss of resistance” technique. The Tuohy needle can then be 
inclined to facilitate threading the catheter.  

  Dosing Guidelines:   These are the same as those described 
for caudal block.   

  Fig. 15.5    The epidural needle can be introduced almost vertically to 
the skin in neonates when the back is fl exed in the lateral decubitus 
position. Loss of resistance to air is considered more sensitive for 
detecting the 1–2 mm wide epidural space       
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    Continuous Epidural Infusions 

 Postoperative analgesia can be maintained using intermittent 
“top-ups” [ 4 ,  32 ] or continuous infusions of local anesthetic 
[ 32 ,  33 ,  35 ,  83 ,  88 ,  89 ,  96 ,  142 ,  183 ,  186 ]. As signifi cant hypo-
tension is unlikely, swings in blood pressure—a problem in 
adults—are not a feature in neonates. Intermittent “top-ups” 
are therefore a useful alternative when infusion pumps cannot 
deliver small hourly volumes of local anesthetics accurately. 

 A recent survey failed to reach a consensus on the selection 
of local anesthetic agent or concentration in clinical practice 
[ 184 ,  185 ]. Dosage guidelines suggested by Berde for racemic 
bupivacaine (i.e., 0.2 mg/kg/h for neonates and infants under 3 
months) have proven to be safe and effective for both ropiva-
caine and bupivacaine [ 58 ,  83 ,  88 ,  96 ,  186 ]. Berde reported no 
complications with this dosing guideline in more than 1,400 
children [ 186 ]. No complications were recorded in over 500 
neonates, ranging from 0.5 to 5 kg, in this author’s unpub-
lished experience. 

 Desparmet used a smaller loading dose 0.5 ml/kg 0.25 % 
bupivacaine followed 30 min later by a similar infusion dose 
of 0.08 ml/kg/h using a volumetric infusion pump [ 187 ] 
(Table  15.3 ). For simplifi cation, ease of calculation and an 
adequate volume to ensure a complete block, an infusion of 
0.1 ml/kg/h, works well in the author’s experience provided 
the catheter tip lies close to the dermatome of the surgical 
incision. Meignier used a smaller infusion rate 0.06 ml/kg/h 
for thoracic epidurals [ 188 ] (Table  15.3 ). For neonates <2 kg, 
the author reduces the concentration of local anesthetic, i.e., 
0.1 % ropivacaine or bupivacaine.

   For practical purposes once a particular infusion rate has 
been selected, regular assessment of the level of blockade, as 
well as an assessment of the degree of motor blockade should 
be performed. Adjustments to the infusion rate should be 
made as necessary (Table  15.3 ). If the maximal infusion rate 
is reached and the child still remains agitated, a manual “top-
 up” with lidocaine (avoiding toxic doses of local anesthetic) 
is an option to determine whether the caudal/epidural block 
can be salvaged. If the block remains inadequate, then a 
 systemic opioid or epidural adjuvants can be considered. 

A check of the insertion site for signs of infection should also 
be included in the regular assessment.  

    Epidural Adjuvants 

 Few adjuvants have been used extensively in neonates despite 
the variety used in older children [ 183 ,  189 ,  190 ]. Most of 
these additives have been investigated in inguinal surgery as 
the model to evaluate their effi cacy and risk/benefi t ratio. 
Whether these fi ndings can be extrapolated to major abdomi-
nal or thoracic surgery is debatable. The potential risk seems 
unjustifi ed for relatively minor surgery since oral or rectal 
analgesia with less risk appear equally effective. 

 Epidural fentanyl carries a signifi cant dose-dependent 
risk of respiratory depression without substantial analgesic 
benefi t [ 183 ]. Moreover, it causes urinary retention, pruritus 
and ileus. Nausea, vomiting, and pruritus are diffi cult to 
assess in neonates and preterm infants but may be expressed 
as irritability and being fussy and “unsettled.” When admin-
istered via a thoracic epidural, fentanyl is absorbed systemi-
cally and acts on the central nervous system. In the lumbar 
region, fentanyl probably acts locally as well as systemically. 
Clonidine has been used as an adjuvant for caudal or epidural 
infusions in neonates. At the recommended bolus dose 
(0.5–1 mcg/kg) or infusion rate (<0.1 mcg/kg/h), the hemo-
dynamic effects are limited. Clonidine provides synergistic 
analgesia and, unlike epidural opioids, produces little or 
no ileus, nausea and vomiting, pruritus, or urinary retention. 
Even at doses that cause sedation, the respiratory drive with 
clonidine is better preserved than with opioids.   

    Ultrasound Imaging of Spinal Cord 

 Incomplete ossifi cation of the posterior elements of the spi-
nal canal in neonates allows accurate ultrasound evaluation 
of spinal cord structures using high frequency 7–12 MHz 
linear array transducer probes [ 74 ,  75 ,  158 ,  159 ,  191 ,  192 ]. 
The best acoustic views are obtained in preterm infants. 

     Table 15.3    Regimens for continuous epidural infusions used in neonates   

 Drug  Dose (mg kg h)  Additive  Ages  Site  Author  References 

 Bupivacaine  0.2  Neonate  Berde  [ 186 ] 
 Bupiv 0.2 %  0.1  Neonate  L,T  Bosenberg  [ 32 ,  48 ] 
 Bupiv 0.2 %  0.1  Neonate  Larsson  [ 96 ] 
 Bupiv 0.1 %  0.2  F 1 μg ml  Neonate, infant  L  Murrell  [ 33 ] 
 Bupiv 0.125 %  0.2–0.3  Neonate–4 m  L  Wolf  [ 138 ] 
 Bupiv 0.125–0.25 %  0.25  Neonate–6 year  L,T  Luz   
 Bupiv 0.2 %  0.2  Neonate infant  L  Meignier   
 Bupiv 0.2 %  0.2  Neonate infant  L  Schenkman  [ 50 ] 
 Ropivacaine 0.2 %  0.1–0.2  Neonate–1 year  L,T  Bosenberg  [ 83 ] 

   L  Lumbar epidural,  T  thoracic epidural,  F  fentanyl  

15 Regional Anaesthesia



412 A. Bosenberg



413

Information about the anatomical relationships of the spinal 
cord, dura mater, and epidural space (size, depth) can be 
applied effectively [ 74 ,  75 ,  193 ]. The skin-epidural 
depth can be measured and serve as a guide at which loss of 
resistance can be expected. The exact location of the conus 
can also be determined [ 74 ,  193 ]. 

 In axial scans (Fig.  15.6a ), the spinal cord is a hypoechoic 
(black) oval structure with a central hyperechoic (white) area 
representing the base of the invaginated paramedian sulcus. 
The hypoechoic spinal cord tapers to the conus medullaris. 
At this level, the rest of the vertebral canal is fi lled with mul-
tiple small rounded hyperechoic structures representing the 
cauda equina seen in cross section. The dura mater forms a 
hyperechoic (white) ring bordering the spinal canal; the pia 
mater is a hyperechoic ring surrounding the spinal cord. The 
cerebrospinal fl uid is hypoechoic. The paraspinous muscles 
appear as an ovoid hypoechoic structures either side of the 
midline.  

 In sagittal longitudinal scans (Fig.  15.6b ) the spinal cord 
elements are bounded by the pia appearing as hyperechoic 
parallel lines that converge at the conus. The cord is homoge-
neously hypoechoic with a central hyperechoic line (central 
sulcus). The dura mater is the hyperechoic line closely 
applied to the bony elements. The spinous processes can be 
identifi ed by the “sawtooth” effect at regular intervals above 
the spinal canal and its contents. 

 Using real-time imaging, ultrasound can be used to verify 
the correct placement of a Tuohy needle, the injection of local 
anesthetic and the position of the catheter within the epidural 
space [ 157 ,  191 ,  193 ]. The epidural space in neonates ranges 
from 1 to 3 mm in depth [ 14 ]. The lengths of the 19G (Portex ® ) 
or 20G (Arrow ® ) Tuohy needle orifi ces are 2 and 3 mm, 
respectively. This suggests that dural tenting must occur at the 
time of either needle placement or epidural catheter insertion 
when epidurals are placed in neonates and infants. Ultrasound 
can also be used to determine the position of the catheter tip 
introduced via the sacral hiatus [ 157 ,  191 ]. 

 Anatomical abnormalities [ 192 ,  195 ], particularly in 
those neonates with vertebral anomalies, unusual pits 
(Fig.  15.7 ) or tufts of hair suggesting an underlying spina 
bifi da, can be identifi ed using ultrasound. Anatomical abnor-
malities of the spinal cord (e.g., syrinx, diastematomyelia) 
can also be identifi ed using ultrasound [ 192 ,  195 ].   

    Peripheral Nerve Blocks 

 Every peripheral nerve block can be performed in neonates 
[ 10 ,  11 ,  194 ,  196 – 204 ] to provide analgesia postsurgery and 
for sympathetic blockade to facilitate PICC line placement 
[ 10 ,  11 ,  201 ] or as part of the management of vascular com-
plications [ 10 ,  11 ,  194 ,  198 ,  203 ,  204 ]. Nerve blocks can 
been placed using anatomical landmarks, a nerve stimulator 
[ 200 ], or ultrasound guidance [ 15 ,  197 ,  200 ] and are almost 
always placed during anesthesia, or awake, in selected 
cases. Ultrasound guidance is most accurate particularly 

  Fig. 15.6    (a) Cadaveric dissection of lumbar spine with four vertebrae 
identifi ed: Thoracic 12, and Lumbar 1, 2 and 3, dura opened and CE 
identifying cauda equina. Note conus medullaris ending at L2 (Photo 
and dissection by A van Schoor, Ph.D). (b) Axial ultrasound images of 
the spine corresponding to three levels of the spinal cord in the dissec-
tion. From top to bottom:  thoracic spine, conus medullaris and cauda 

equina as depicted by arrows. (c & d) The depth of the epidural space 
can be measured prior to placement. Abnormalities and  normal variants 
of relevant anatomy can be excluded prior to epidural placement. (d) 
Sagittal longitudinal ultrasound image of spinal cord in a 1kg neonate. 
The distance from the skin to epidural space is shown as 4.5mm and the 
CSF depth to spinal cord is 1.2mm         

  Fig. 15.7    Skin dimples or pits may indicate underlying spina bifi da or 
cord abnormalities. Ultrasonography can be used to exclude these 
anomalies prior to caudal or epidural placement       
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when purely sensory nerves are blocked [ 200 ]. Peripheral 
nerves in neonates are less myelinated and thus reduced local 
anesthetic concentrations can be used successfully. For prac-
tical purposes a dose 0.1–0.2 ml/kg is suffi cient to block 
most peripheral nerves. 

  Axillary blocks  have been used to provide vasodilatation 
to facilitate PICC line placement [ 10 ,  11 ,  201 ] or for limb 
salvage after misadventures with arterial catheterization 
[ 198 ,  202 ]. Greater concentrations speed the onset of block-
ade and provide motor block useful for PICC line placement 
in awake neonates [ 11 ], whereas reduced concentrations are 
suitable for sympathectomy and analgesia. Dose guidelines: 
0.5–1.0 ml 0.125–0.5 % bupivacaine depending on the aim. 
A  stellate ganglion block , using a paratracheal approach 
onto Chassaignac’s tubercle at the cricoid level, has also 
been used for this purpose [ 203 ,  204 ]. 

  Femoral nerve blocks  have been used for PICC line place-
ment in the lower limbs, muscle biopsy [ 196 ], skin graft and 
clubfoot repair in infants [ 199 ]. Successful placement of 
local anesthetic just lateral to the femoral arterial pulse can 
be achieved using anatomical landmarks, nerve stimulation 
or ultrasound guidance. This block is relatively free of com-
plications, but the hip’s joint capsule deep to the artery may 
be entered. 

  Infraorbital Nerve Block:   Although neonatal cleft lip repair 
(cheiloplasty) remains controversial (and is no longer 
performed in many institutions because the cosmetic result 
is not as good as originally thought) [ 194 ], an infraorbital 
nerve block can provide excellent analgesia without 
respiratory depression [ 194 ,  205 ,  206 ]. This block may be 
particularly useful in infants in infants with airway anomalies 
airway anomalies that could be compromised if opiates are 
used for cleft lip repair [ 206 ]. 

 The infraorbital foramen is diffi cult to palpate in neonates 
and small infants. Two approaches have been described—a 
transcutaneous and an intraoral transmucosal approach. 
The nerve exits the infraorbital foramen, which is midway 
(15–17 mm) along a (30–34 mm) line drawn from the angle 
of the mouth to the midpoint of the palpebral fi ssure, approx-
imately 7–8 mm from the ala nasi [ 194 ]. The nerve can be 
blocked using a 27–30 g needle that is introduced perpen-
dicular to the skin down and passed through tissue to the 
bone, but not into the foramen. The intraoral approach relies 
on the ability to palpate the foramen. A needle may be intro-
duced through the alveolar mucosal margin beneath the pal-
pating fi nger. Both approaches provide analgesia with 
minimal risk of respiratory depression compared to fentanyl 
[ 205 ,  206 ].  Dosage : 0.5–1 ml 0.25–0.5 % bupivacaine [ 194 , 
 205 ], or ropivacaine, with 1:200,000 epinephrine.  

  Ilioinguinal Nerve Block:   can provide analgesia comparable 
to caudal blockade for inguinal herniotomy or orchidopexy 
[ 207 ,  208 ]. The ilioinguinal and iliohypogastric nerves lie 

between the transversus abdominis and internal oblique 
muscles, the former 2.2 mm and the latter 3.8 mm medial to 
the anterior superior iliac spine [ 80 ,  209 ]. Under sterile 
conditions, a needle can be introduced under ultrasound 
guidance in a medial to lateral direction, i.e., toward the iliac 
muscle and bone. In the absence of an ultrasound guide, the 
needle insertion distance (mm) is 0.6 × weight (kg) + 1.8 [ 209 ]. 
The muscle layers in neonates are thin and compliant. The risk 
of penetrating the peritoneal cavity is much greater than in 
children if the needle is not advanced with caution [ 210 ]. 

 When ultrasound is not available, the identifi cation of 
the “pop” as a short-beveled needle penetrates the external 
oblique aponeurosis. This “pop” can be facilitated by intro-
ducing the needle at an angle—the greater the angle the 
“thicker” the aponeurosis becomes. High plasma concen-
trations of local anesthetics have been reported [ 207 ,  210 ], 
although this block is relatively free of complications. 
 Transient femoral nerve block  [ 211 ,  212 ] and  colonic perfo-
ration  have been described [ 213 ].  Dosage : 0.1–0.2 ml/kg 
0.25–0.5 % bupivacaine or 0.2–0.5 % ropivacaine.  

  Transabdominal Plane (TAP):   block is becoming an 
increasingly popular alternative for intraoperative and early 
postoperative analgesia for selected upper (ileostomy closure) 
[ 214 ] or mid-abdominal procedures (colostomy) [ 215 ] 
involving the abdominal wall [ 214 – 219 ]. Under sterile 
conditions and using “in plane” ultrasound guidance, the 
lateral branch of the intercostal nerves can be blocked in the 
tissue plane between the internal oblique and transversus 
abdominis provided the spread of local anesthetic extends 
posterior to the midaxillary line. Hydrodissection of this tissue 
plane confi rms correct placement of a short-beveled needle 
introduced subcostally or above the iliac crest. The muscle 
layers are thin and compliant, and the risk of penetrating the 
peritoneal cavity, liver, or spleen is substantial if the needle is 
not advanced with caution (see Fig.  15.8 ).  Dose : 0.2–0.5 ml/
kg 0.25 bupivacaine or 0.2 % ropivacaine.   

  Intercostal Nerves:   can be blocked under direct vision at 
surgery or using ultrasound guidance to provide analgesia 
after thoracotomy or chest tube placement in both cyanotic 
and acyanotic neonates.  Dosage : 0.6 ml/kg (1.5 mg/kg) 
0.25 % bupivacaine with epinephrine [ 220 ]. Blood concen-
trations using this dose are variable, but no adverse events 
were noted [ 220 ]. Note that the uptake of local anesthetic 
from an intercostal block is the fastest of any site for regional 
anesthesia and the most likely to produce toxic blood 
concentrations of local anesthetic and briefest block. 
To prevent these effects, epinephrine should be used as an 
adjunct to the local anesthetic.  

  Paravertebral Block:   Direct placement of a catheter for 
continuous paravertebral block is technically diffi cult in 
neonates [ 222 ,  223 ]. Extrapleural paravertebral placement 
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  Fig. 15.8    Ultrasound images of the rectus sheath block through a com-
pliant abdominal wall. ( a ) Prior to application of any pressure with the 
probe or needle. ( b ) With minimal pressure during needle insertion, the 

abdominal wall and rectus muscles can be pushed dangerously close to 
the aorta and inferior vena cava       
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under direct vision immediately before chest closure is a 
viable alternative for management of post thoracotomy pain. 
After an initial bolus of 0.5 ml/kg 0.25 % bupivacaine, a 
continuous infusion of 0.2 ml/kg/h 0.125–0.25 % bupivacaine 
with epinephrine provides satisfactory analgesia.  

  Topical Anesthesia:   During the past two decades, there 
has been a substantial increase in the number and types 
of topical anesthetics [ 221 ]. Options for the prevention of 
neonatal pain associated with skin-breaking procedures 
were previously limited to injections of lidocaine. Topical 
anesthetics are now available as creams, gels, and a heat-
activated patch system [ 221 ]. The onset time varies for each 
modality and careful planning is needed to coincide with the 
peak effect. Indications range from peripheral IV placement, 
lumbar puncture, circumcision, and heel sticks.   

    Management of Local Anesthetic Toxicity 

 Neonates are more susceptible to local anesthetic toxicity 
because their blood concentration of alpha1 acid glycopro-
tein is less than that in older children, the elimination of local 
anesthetics is slower and the volume of local anesthetic 
required is greater [ 224 ,  225 ,  227 ]. Prevention is therefore 
better than cure since the management of local anesthetic 
toxicity in neonates may be diffi cult. A variety of drugs have 
been used with limited success in the past [ 226 ], although 
recent reports of successful management using 20 % lipid 
emulsion are encouraging [ 227 ,  228 ]. 

 Initial resuscitation should always proceed according to 
PALS guidelines, aiming at securing the airway, hyperventi-
lation (to reduce the free fraction by inducing respiratory 
alkalosis) and circulatory support. Lipid emulsion (20 % 
Intralipid®) should be given as soon as possible [ 228 ,  229 , 
 230 ]. An initial bolus of 1 ml/kg IV Intralipid® should be 
given over 1 min followed by up to two repeated boluses at 
3–5min intervals (for a total dose of 3 ml/kg), observing the 
electrocardiogram for a return to normal sinus rhythm. After 
3 ml/kg Intralipid® have been administered or cardiovas-
cular stability restored, the infusion rate should be reduced 
to 0.25 ml/kg/h infusion . Propofol or etomidate, formu-
lated in lipid emulsion, is not an appropriate substitute for 
Intralipid® particularly in the presence of cardiovascular 
collapse [ 230 ].  

    Conclusion 

 The benefi ts of regional anesthesia are signifi cant, but safety 
should remain our primary concern particularly with today’s 
high expectations and zero tolerance for morbidity after 
anesthesia. While most regional anesthetic technique are 
simple to perform, they should never be considered routine 

because of the risks involved [ 231 ]. Careful consideration of 
the indications and contraindications together with the set-
ting (day case or hospital) should infl uence the  decision. 
Continuous infusions and nerve blocks have limited dura-
tion. It is prudent to plan subsequent analgesia as part of a 
multimodal approach [ 232 ]. In general, the more peripheral 
the block, the lower the risk. Epidural anesthesia should be 
performed by, or under the guidance of, an experienced 
practitioner.     
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