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Abstract

During the last years, several applications of biosurfactants with medical purposes have
been reported. Biosurfactants are considered relevant molecules for applications in
combating many diseases and as therapeutic agents due to their antibacterial, antifungal

and antiviral activities. Furthermore, their role as anti-adhesive agents against several pathogens 
illustrate their utility as suitable anti-adhesive coating agents for medical insertional materials lead-
ing to a reduction of a large number of hospital infections without the use of synthetic drugs and 
chemicals. Biomedical and therapeutic perspectives of biosurfactants applications are presented
and discussed in this chapter.

Introduction
Biosurfactants are microbial compounds that exhibit pronounced surface and emulsifying activi-

ties. These compounds comprise a wide range of chemical structures, such as glycolipids, lipopeptides,
polysaccharide-protein complexes, phospholipids, fatty acids and neutral lipids.1-7 Therefore, it is
reasonable to expect diverse properties and physiological functions for different groups of biosurfac-
tants. Comparing with chemical surfactants, these compounds have several advantages such as lower
toxicity, higher biodegradability and effectiveness at extreme temperatures or pH values.6-10 Although
these compounds present interesting features as compared with their chemical counterparts, many 
of the envisaged applications depend considerably on whether they can be produced economically.
Hence, much effort in process optimization and at the engineering and biological levels has been
carried out. Biosurfactants production from inexpensive waste substrates and low cost raw materials,
thereby decreasing their production cost,11-18 has been reported. Furthermore, these molecules can be 
tailor-made to suit different applications by changing the growth substrate or growth conditions.19-20

Most biosurfactants are considered secondary metabolites, though, some may play essential roles 
for the survival of the producing-microorganisms either through facilitating nutrient transport,
microbe-host interactions or as biocide agents.6 Biosurfactant roles include increasing the surface 
area and bioavailability of hydrophobic water-insoluble substrates, heavy metal binding, bacterial 
pathogenesis, quorum sensing and biofilm formation.21 An interface is any boundary between two dif-ff
ferent phases and microbial life may be more common at interfaces as evidenced by microbial biofilms,
surface films and aggregates. Given that, all microbial life is impacted by interfacial phenomena and
biosurfactants are a common mechanism by which microorganisms deal with interfacial challenges.6
Biosurfactants are amphipatic molecules with both hydrophilic and hydrophobic moieties that parti-
tion preferentially at the interface between fluid phases that have different degrees of polarity and 
hydrogen bonding, such as oil and water, or air and water interfaces. In addition to this behaviour,
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their diversity, environmentally friendly nature, suitability for large-scale production and selectivity, 
has driven most of the research in biosurfactants field for environmental applications.7,22-25 Legal
aspects such as stricter regulations concerning environmental pollution by industrial activities and
health regulations will also strongly influence the chances of biodegradable biosurfactants replacing 
their chemical counterparts.7,10,19,22-25

Regardless of the potential and biological origin of biosurfactants few studies were carried 
out on applications related to biomedical applications.11,26-30 Nevertheless, some biosurfactants 
have proven to be suitable alternatives to synthetic medicines and antimicrobial agents and may 
therefore be used as safe and effective therapeutic agents (Table 1).

The biosurfactants potential applications in the medical field, as well as their main mechanisms 
of interaction are discussed in this chapter.

Biomedical and Therapeutic Applications of Biosurfactants
As discussed above a broad range of chemical structures have been attributed to 

biosurfactants.1-2,4-5 Some of these biosurfactants were described for their potential as biological
active compounds and applicability in the medical field. Therefore, they are a suitable alternative
to synthetic medicines and antimicrobial agents and may be used as safe and effective therapeutic
agents.21,25 Recently, there has been an increasing interest in the effect of biosurfactants on hu-
man and animal cells and cell lines.28,42,83 Lipopeptides produced by Bacillus subtilis36 and Bacillus 
licheniformis,19,49-51 mannosylerythritol lipids produced by Candida antartica53 and rhamnolipids 
produced by Pseudomonas aeruginosa,33-34 have been shown to have antimicrobial activities.

Biological Activity
Glycolipids

Glycolipids are the most common group of biosurfactants of which the most effective regard-
ing surface active properties are the trehalose lipids obtained from Mycobacterium and related 
bacteria, the rhamnolipids obtained from Pseudomonas sp. and the sophorolipids obtained from 
yeasts. Otto and coworkers12 described the production of sophorose lipids using deproteinized 
whey concentrate as substrate by a two-stage process. Several antimicrobial, immunological and 
neurological properties have been attributed to mannosylerythritol lipid (MEL), a yeast glycolipid
biosurfactant, produced from vegetable oils by Candida strains.62,84 Kitamoto et al53 showed that 
MEL exhibits antimicrobial activity particularly against Gram-positive bacteria. Isoda et al54 in-
vestigated the biological activities of seven extracellular microbial glycolipids including MEL-A, 
MEL-B, polyol lipid, rhamnolipid, sophorose lipid and succinoyl trehalose lipid STL-1 and STL-3. 
Except for rhamnolipid, all the other tested glycolipids induced cell differentiation instead of cell
proliferation in the human promyelocytic leukaemia cell line HL60. These glycolipids induced
the human myelogenous leukaemia cell line K562 and the human basophilic leukaemia cell 
line Ku812 to differentiate into monocytes, granulocytes and megakaryocytes. STL and MEL
differentiation-inducing activity was attributed to a specific interaction with the plasma membrane 
instead of a simple detergent-like effect.

In addition, the effects of several kinds of microbial extracellular glycolipids on neutrite initiation
in PC12 cells were investigated.55 The PC12 cell line derived from a rat pheochromocytoma, provides 
a relatively simple and homogeneous system for studying various aspects of neuronal differentiation, 
because PC12 cells can survive and proliferate without requiring the presence of neutrotrophic fac-
tors. A significant neutrite outgrowth was observed as a consequence of the addition of MEL-A, 
MEL-B and sophorose lipid (SL) to PC12 cells. MEL-A increased acetylcholinesterase activity to an
extent similar to nerve growth factor (NGF). MEL-A induced neutrite outgrowth after treatment of 
PC12 cells with an anti-NGF receptor antibody that obstructed the NGF action. It was shown that
MEL-A and NGF induce differentitation of PC12 cells through different mechanisms. Moreover, 
MEL was found to induce the outgrowth of neutrites, enhance the activity of acetylcholinesterase 
and increase the levels of galactosylceramide from PC12 pheochromocytoma cells.56
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Glycolipids have also been implicated with growth arrest, apoptosis and the differentiation of 
mouse malignant melanoma cells.57-58 Exposure of B16 cells to MEL resulted in the condensation 
of the chromatin, DNA fragmentation and sub-G1 arrest (the sequence of events of apoptosis). 
Furthermore, MEL was reported to markedly inhibit the growth of mouse melanoma B16 cells in 
a dose-dependent manner. Moreover, MEL exposure stimulated the expression of differentiation 
markers of melanoma cells, such as tyrosinase activity and the enhanced production of melanin,
which is an indication that MEL triggered both apoptotic and cell differentiation programs.
In addition, exposure of PC12 cells to MEL enhanced the activity of acetylcholinesterase and
interrupted the cell cycle at the G1 phase, with resulting outgrowth of neutrites and partial cel-
lular differentiation.59 MEL has been implicated in the induction of neuronal differentiation in
PC12 cells and therefore provides the basis for the use of glycolipids as therapeutical agents for 
cancer treatment. Nevertheless, further studies of the molecular basis of the signalling cascade
that follows exposure of PC12 cells to MEL may ultimately lead to a better understanding of 
the processes that result in the outgrowth of neutrites and the commitment to differentiation
of PC12 cells.

In other studies, four analogs of STL-3 at their critical micelle concentration were evaluated for
their ability to inhibit growth and induce differentiation of HL60 human promyelocytic leukaemia 
cells.85 It was found that the effect of STL-3 and its analogs on HL60 cells was dependent on the
hydrophobic moiety of STL-3. Furthermore, a high binding-affinity of MEL towards human im-
munoglobulin G (HIgG) was shown by Im et al.86 They suggested the possibility of using MEL-A 
as an alternative ligand for immunoglobulins. In subsequent studies they evaluated the potential of 
MEL (-A, -B and -C) attached to PHEMA beads (poly(2-hydroxyethyl methacrylate)), for bind-
ing, affinity to HIgG.87 Of these three composite compounds, those bearing MEL-A exhibited the 
highest binding capacity to HIgG. More significantly, the bound HIgG was efficiently recovered 
(approximately 90%) under significantly mild elution conditions, with phosphate buffer at pH 7, 
indicating a great potential of the glycolipids as an affinity ligand material. Other researchers also
demonstrated that MEL-A assembled monolayers would be useful as noble affinity ligand system
for various immunoglobulins.64-65 Inoh et al88-89 reported that MEL-A significantly increased the
efficiency of gene transfection mediated by cationic liposomes with a cationic cholesterol derivative.
Among the cationic liposomes tested, the liposome bearing cholesteryl-3�-carboxyamindoethylene-
N-hydroxyethylamine and MEL-A showed the best efficiency for delivery of plasmids encoding NN
luciferase (�GL3) into the target cells (NIH3T3, COS-7 and HeLa). The properties, produc-
tion and applications of MEL were widely studied by Kitamoto and coworkers90 and by Ueno
et al,60-61 particularly the exceptional interfacial properties and differentiation-inducing activities 
of MEL. They also focused on the excellent biological and self-assembling actions of MEL and
examined the effect of MEL-A on the gene transfection using cationic liposomes. These results 
were also demonstrated by other researchers that studied the transfection efficiency in human 
cervix carcinoma HeLa cells66 and the potential of these liposomes as vectors for herpes simplex
virus thymidine kinase gene therapy.63

The succinoyl-trehalose lipid produced by Rhodococcus erythropolis has also been reported to 
inhibit HSV and influenza virus.67-68 The deficiency of pulmonary surfactant which is responsible 
for respiration failure in premature infants91 may be corrected through the isolation of genes for 
protein molecules of this surfactant and cloning in bacteria for possible fermentative production
and use in medical application.33 Sano et al92 demonstrated the different actions of pulmonary 
surfactant protein A upon distinct serotypes of LPS which is the major constituent of the outer
membrane of Gram-negative bacteria.

Lipopeptides
Several features and biological activities have been reported for lipopeptides, mainly for iturin

A and surfactin. They have been described as antibiotics, antiviral and antitumor agents, immu-
nomodulators or specific toxins and enzyme inhibitors. Ahimou et al5 reported that lipopeptide
profile and bacterial hydrophobicity vary greatly with the producing strains, iturin A being the 
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only lipopeptide type produced by all B. subtilis strains. Surfactin was found to be more efficient
than iturin A in modifying the B. subtilis surface hydrophobic character. Morikawa et al1 identi-
fied and characterized a biosurfactant, arthrofactin, produced by Arthrobacter species, whichr
was found to be seven times more effective than surfactin. Jenny and coworkers49 determined
the structural analysis and characterized surface activities of biosurfactants produced by B.
licheniformis, while several researchers described their continuous production.50,93 Yakimov and
coworkers51 demonstrated the antibacterial activity of lichenysin A, a biosurfactant produced
by B. licheniformis that favourably compares to others surfactants. More recently Grangemard
et  al52 reported the chelating properties of lichenysin, which might explain the membrane 
disrupting effect of lipopeptides.

In another study, Carrillo and its collaborators94 proposed a molecular mechanism of membrane 
permeabilization by surfactin, which may explain surfactin induced pore formation underlying the
antibiotic and haemolytic action of these lipopeptides. This study also suggested that the membrane 
barrier properties are likely to be damaged in the areas where surfactin oligomers interact with 
the phospholipids, at concentrations much below the onset for solubilisation. Such properties can
cause structural fluctuations that may well be the primary mode of the antibiotic action of this 
lipopeptide. Surfactin type peptides that can rapidly act on membrane integrity rather than other 
vital cellular processes may perhaps constitute the next generation of antibiotics. Lipopeptide
surfactin has been found to interact with artificial and biomembrane systems, for example bacterial
protoplasts or enveloped viruses.36 Several biological activities have been attributed to surfactin
including the induction of ion channels formation in lipid bilayer membranes,40 the inhibition of 
fibrin clot formation and haemolysis,39 the inhibition of cyclic adenosine monophosphate (cAMP), 
the inhibition of platelet and spleen cytosolic phospholipase A2 (PLA2)95 and antimicrobial, 
antiviral and antitumor activity against Ehrlich’s ascite carcinoma cells.38,95 According to the differ-
ences in their amino acid sequences, different types of surfactins (A, B and C) have been identified.
Surfactin C was found to enhance the activation of prourokinase (plasminogen activator) and the
conformational change in plasminogen, leading to increased fibrinolysis in vitro and in vivo.96 The 
plasminogen-plasmin system is involved in blood clot dissolution, as well as in a variety of physi-
ological and pathological processes requiring localized proteolysis. In a rat pulmonary embolism 
model, surfactin C increases plasma clot lyses when injected in combination with prourokinase.83

The results gathered in this study point to the possible use of surfactin in thrombolytic therapy 
related to pulmonary, myocardial and cerebral disorders.

Vollenbroich and coworkers36 showed that a surfactin treatment improved proliferation rates 
and lead to changes in the morphology of mammalian cells that had been contaminated with my-
coplasma. Furthermore, the low cytotoxicity of surfactin to mammalian cells allowed specific inac-
tivation of mycoplasmas without significant damaging effects on cell metabolism.42,43 Additionally, 
surfactin and surfactin analogs have been reported as antiviral agents, namely it was demonstrated
a significant inhibitory effect of pumilacidin on herpes simplex virus 1 (HSV-1)44 and an inhibi-
tory activity against H�, K�-ATPase and protection against gastric ulcers in vivo. The potential of 
surfactin against human immunodeficiency virus 1 (HIV-1) was reported by Itokawa et al.41 The
antiviral action of surfactin was suggested to be due to physicochemical interactions between the 
membrane-active surfactant and the virus lipid membrane, which causes permeability changes and 
at higher concentrations leads finally to the disintegration of the mycoplasma membrane system
by a detergent effect.37 Furthermore, surfactin was found to be active against Semliki Forest virus,
herpes simplex virus, suid herpes virus, vesicular stomatitis virus, simian immunodeficiency virus,
feline calicivirus and murine encephalomyocarditis virus.37

Moreover, Kim and coworkers95 demonstrated that surfactin is a selective inhibitor for cytosolic
PLA2 and a putative anti-inflammatory agent through the inhibitory effect produced by direct
interaction with cytosolic PLA2 and that inhibition of cytosolic PLA2 activity may suppress 
inflammatory responses.

Another lipopeptide, iturin A, produced by B. subtilis was reported to have effective antifungals
properties5,46 which affects the morphology and membrane structure of yeast cells. This lipopeptide 
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was shown to pass through the cell wall and disrupt the plasma membrane with the formation of 
small vesicles and the aggregation of intramembranous particles. Iturin also passes through the 
plasma membrane and interacts with the nuclear membrane and probably with membranes of other 
cytoplasmic organelles. This lipopeptide has been proposed as an effective antifungal agent for
profound mycosis.47 Other members of the iturin group, including bacillomycin D and bacillomycin 
Lc were also found to have antimicrobial activity against Aspergillus flavus, but the different lipid 
chain length apparently affected the activity of the lipopeptide against other fungi.97 Thus, the 
members of the iturin-like biosurfactant group are considered alternative antifungal agents.

Possible applications of biosurfactants as emulsifying aids for drug transport to the infection 
site, for supplementing pulmonary surfactant and as adjuvants for vaccines were suggested by 
Kosaric.98 Mittenbuhler et al48 showed that bacterial lipopeptides constitute powerful nontoxic 
and nonpyrogenic immunological adjuvants when mixed with conventional antigens. A marked 
enhancement of the humoral immune response was obtained with the low molecular mass antigens 
iturin AL, herbicolin A and microcystin (MLR) coupled to poly-l-lysine (MLR-PLL) in rabbits 
and in chickens. Conjugates of lipopeptide—Th-cell epitopes also constituted effective adjuvants 
for the in vitro immunization of either human mononuclear cells or mouse B cells with MLR-PLL 
and result in a significantly increased yield of antibody-secreting hybridomas.

Other Biosurfactants
Nielsen and coworkers99 reported viscosinamide, a cyclic depsipeptide, as a new antifungal

surface active agent produced by Pseudomonas fluorescens and with different properties as com-
pared to the biosurfactant viscosin, known to be produced from the same species and to have 
antibiotic activity.100 Massetolides A-H, also cyclic depsipeptides, were isolated from Pseudomonas
species, derived from a marine habitat and found to exhibit in vitro antimicrobial activity against
Mycobacterium tuberculosis and Mycobacterium avium-intracellulare.31

Precursors and degeneration products of sphingolipids biosurfactants were found to inhibit
the interaction of Streptococcus mitis with buccal epithelial cells and of Staphylococcus aureus with 
nasal mucosal cells.101 Gram-positive Bacillus pumilis cells were found to produce pumilacidin A, 
B, C, D, E, F and G which exhibited antiviral activity against herpes simplex virus 1 (HSV-1), 
inhibitory activity against H�, K�-ATPase and were found to be protective against gastric ulcers44

probably through inhibiting microbial activity contributing to these ulcers.
Although there is an increasing potential for the application of biosurfactants in the biomedi-

cal field, some of these molecules may constitute a risk for humans. For instance, P. aeruginosa
is a bacterium responsible for severe nosocomial infections, life-threatening infections in im-
munocompromised persons and chronic infections in cystic fibrosis patients; thus rhamnolipids
have to be well-investigated prior to such uses. P. aeruginosa strain’s virulence depends on a large
number of cell-associated and extracellular factors.102-104 Cell-to-cell signalling systems control
the expression and allow a coordinated, cell-density-dependent production of many extracellular 
virulence factors. The possible role of cell-to-cell signalling in the pathogenesis of P. aeruginosa
infections and a rationale for targeting cell-to-cell signalling systems in the development of new 
therapeutic approaches was discussed by Van Delden and Iglewski.102 Synthesis of rhamnolipids 
is regulated by a very complex genetic regulatory system that also controls different P. aeruginosa
virulence-associated traits.34 The possible application of rhamnolipids in the pharmaceutical in-
dustry is still being studied by some researchers.35,105 The cosmetic and health care industries use
large amounts of surfactants for a wide variety of products including insect repellents, antacids, 
acne pads, contact lens solutions, hair colour and care products, deodorants, nail care products, 
lipstick, eye shadow, mascara, toothpaste, denture cleaners, lubricated condoms, baby products,
foot care products, antiseptics, shaving and depilatory products.8 Biosurfactants are known to
have advantages over synthetic surfactants such as low irritancy or anti-irritating effects and 
compatibility with skin. Rhamnolipids in particular are being used as cosmetic additives and
have been patented to make some liposomes and emulsions,103-104 both of which are important
in the cosmetic industry.
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Anti-Adhesive Activity
Biosurfactants have been found to inhibit the adhesion of pathogenic organisms to solid 

surfaces or to infection sites, thus prior adhesion of biosurfactants to solid surfaces of implant
materials might constitute a new and effective means of combating colonization by pathogenic 
microorganisms.21 Precoating vinyl urethral catheters by running the surfactin solution through
them before inoculation with media resulted in a decrease of the amount of biofilm formed by 
Salmonella typhimurium, Salmonella enterica, Escherichia coli and Proteus mirabilis.106 Given the 
importance of opportunistic infections with Salmonella species, including urinary tract infections
of AIDS patients, these results have great potential for practical applications.

A role for biosurfactants as defence weapons in post adhesion competition with other strains 
or species has to date been suggested only for biosurfactants released by S. mitis strains against 
Streptococcus mutans adhesion74-75 and for biosurfactants released by lactobacilli against adhesion 
of uropathogens.77-78 The biosurfactant surlactin,79 produced by several Lactobacillus isolates, was 
suggested as a suitable anti-adhesive coating for catheter materials. The role of Lactobacillusff  species 
in the female urogenital tract as a barrier to infection is of considerable interest.107 These organisms
are believed to contribute to the control of vaginal microbiota by competing with other micro-
organisms for adherence to epithelial cells and by producing biosurfactants. There are reports of 
inhibition of biofilm formation by uropathogens and yeast on silicone rubber with biosurfactants
produced by Lactobacillus acidophilus.108-109 Heinemann and coworkers showed that Lactobacillus 
fermentum RC-14 releases surface-active components that can inhibit adhesion of uropathogenic
bacteria, including Enterococcus faecalis.110 Velraeds et al80 also reported on the inhibition of adhe-
sion of pathogenic enteric bacteria by a biosurfactant produced by a Lactobacillus strain and later
showed that the biosurfactant caused an important, dose-related inhibition of the initial deposition 
rate of E. coli and other bacteria adherent on both hydrophobic and hydrophilic substrata.76

Dairy S. thermophilus strains were found to be biosurfactant-producers and Busscher et al72-73

showed that this biosurfactant inhibited adhesion onto silicone rubber and growth of several 
bacterial and yeast strains isolated from explanted voice prostheses. Efforts in the development
of strategies to prevent the microbial colonization of silicone rubber voice prostheses have been
reported by Rodrigues et al.71,82 The ability of biosurfactants obtained from the probiotic strains, 
L. lactis 53 and S. thermophilus A, to inhibit adhesion of four bacterial and two yeast strains 
isolated from explanted voice prostheses to precoated silicone rubber was evaluated. The results 
obtained showed that the biosurfactants were effective in decreasing the initial deposition rates,
as well as the number of bacterial cells adhering after 4 h, for all microorganisms tested. Over 90%
reductions in the initial deposition rates were achieved for most of the bacterial strains tested. 
Recently, the authors also demonstrated that a rhamnolipid biosurfactant containing solution
may be useful for use as a biodetergent solution for prostheses cleaning, prolonging their lifetime
and directly benefiting laryngectomized patients. Gotek et al81 assessed the adhesive properties of 
several biosurfactant-producers Lactobacillus spp. strains to a monolayer of intestinal epithelium 
in vitro, represented by the Caco2 cell line. All tested Lactobacillus strains showed adhesion to 
Caco2 cells. A 50% reduction in the population of Klebsiella pneumoniae 2 cells adhering to the e
surface previously impregnated with a solution of biosurfactants synthesised by Lactobacillus casei
rhamnosus CCM 1825, after the 3-hour contact with the tested surface was also observed.

The role for surfactants in the defence against infection and inflammation in the human body 
is a well-known phenomenon. The pulmonary surfactant is a lipoprotein complex synthesized 
and secreted by the epithelial lung cells into the extracellular space, where it lowers the surface 
tension at the air-liquid interface of the lung and represents a key factor against infections and
inflammatory lung diseases.91

Antimicrobial Activity
The antimicrobial activity of several biosurfactants has been reported in the literature for many 

different applications.111 For instance, the antimicrobial activity of two biosurfactants obtained 
from probiotic bacteria, L. lactis 53 and S. thermophilus A, against a variety of bacterial and yeast 
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strains isolated from explanted voice prostheses was evaluated.70 In another study, Reid et al112-113

emphasized a possible probiotic role for the biosurfactant-producing lactobacilli in the restoration
and maintenance of healthy urogenital and intestinal tracts, conferring protection against pathogens 
and suggested a reliable alternative treatment and preventive regimen to antibiotics in the future. 
The first clinical evidence that probiotic lactobacilli can be delivered to the vagina following oral
intake was provided113 and although only a limited set of strains have any proven clinical effect
or scientific basis, there are sufficient data to suggest that this approach could provide a valuable 
alternative to antibiotic prophylaxis and treatment of infection. By the use of a rat model of surgical
implant infection, Gan et al114 determined that the probiotic strain, L. fermentum RC-14 and its 
secreted biosurfactant reduced infections associated with surgical implants, which are mainly caused
by S. aureus through inhibition of growth and reduction of adherence to surgical implants. A recent s
in vitro study of Lactobacillus plantarum 299v and L. rhamnosus GG showed that these probiotic
strains could inhibit the adhesion of E. coli to intestinal epithelial cells by stimulating epithelial 
expression of mucins.115 These strains however were also found to be biosurfactant producers.14

These observations generally indicated that biosurfactants might also contain signalling factors 

support the assertion of possible role in preventing microbial adhesion76,116 and their potential in 
developing anti-adhesion biological coatings for implant materials.32

Conclusion
Interest in the use of biosurfactants in the medical field has been increasing in the last years

as a result of many studies published on their unique features. Biosurfactants are not only useful
as antibacterial, antifungal and antiviral agents, but also have potential for use as major immuno-
modulatory molecules, adhesive agents and even in vaccines and gene therapy. They have been 
used for gene tranfection, as ligands for binding immunoglobulins, as adjuvants for antigens and 
also as inhibitors for fibrin clot formation and activators of fibrin clot lyses. Promising alterna-
tives to produce potent biosurfactants with altered antimicrobial profiles and decreased toxicity 
against mammalian cells may be exploited by genetic alteration of biosurfactants. Furthermore,
biosurfactants have the potential to be used as anti-adhesive biological coatings for biomaterials,
thus reducing hospital infections and use of synthetic drugs and chemicals. They may also be
incorporated into probiotic preparations to combat urogenital tract infections and pulmonary 
immunotherapy.

Regardless of the enormous potential of biosurfactants in this field, their use still remains 
limited, possibly due to their high production and extraction cost and lack of information on
their toxicity towards human systems. Further research on human cells and natural microbiota 
are required to validate the use of biosurfactants in several biomedical and health related areas. 
Nevertheless, there appears to be great potential for their use in the medical science arena waiting 
to be fully exploited.
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