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Abstract

iosurfactant (BS)/bioemulsifier (BE) produced by varied microorganisms exemplify immense
B structural/functional diversity and consequently signify the involvement of particular mo-

lecular machinery in their biosynthesis. The present chapter aims to compile information
on molecular genetics of BS/BE production in microorganisms. Polymer synthesis in Acinetobacter
species is controlled by an intricate operon system and its further excretion being controlled by
enzymes. Quorum sensing system (QSS) plays a fundamental role in rthamnolipid and surfactin
synthesis. Depending upon the cell density, signal molecules (autoinducers) of regulatory pathways
accomplish the biosynthesis of BS. The regulation of serrawettin production by Serratia is believed
to be through non ribosomal peptide synthetases (NRPSs) and N-acylhomoserine lactones (AHLs)
encoded by QSS located on mobile transposon. This regulation is under positive as well as nega-
tive control of QSS operon products. In case of yeast and fungi, glycolipid precursor production
is catalyzed by genes that encode enzyme cytochrome P450 monooxygenase. BS/BE production
is dictated by genes present on the chromosomes. This chapter also gives a glimpse of recent bio-
technological developments which helped to realize molecular genetics of BS/BE production in
microorganisms. Hyper-producing recombinants as well as mutant strains have been constructed
successfully to improve the yield and quality of BS/BE. Thus promising biotechnological advances
have expanded the applicability of BS/BE in therapeutics, cosmetics, agriculture, food, beverages
and bioremediation etc. In brief, our knowledge on genetics of BS/BE production in prokary-
otes is extensive as compared to yeast and fungi. Meticulous and concerted study will lead to an
understanding of the molecular phenomena in unexplored microbes. In addition to this, recent
promising advances will facilitate in broadening applications of BS/BE to diverse fields. Over the
decades, valuable information on molecular genetics of BS/BE has been generated and this strong
foundation would facilitate application oriented output of the surfactant industry and broaden its
use in diverse fields. To accomplish our objectives, interaction among experts from diverse fields likes
microbiology, physiology, biochemistry, molecular biology and genetics is indispensable.

Introduction

Enormous structural and functional diversity are implicated in biosurfactant (BS)/bioemul-
sifiers (BE) produced by microorganisms. BS/BE possesses remarkable applications in diverse
fields. With the need for green chemicals, their study is becoming imperative. Therefore, BS/BE
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studies have been focused on by large number of researchers. However, commercial production
of these compounds is quite expensive. Use of cheaper and renewable substrates is a necessity.'”
However, a great deal of monetary input is required in purification processes.” Thus, it represents
two faces of a coin; so to overcome this dilemma and subsequently economize and commercialize
BS production a better understanding at molecular level is mandatory.

Literature survey illustrates that detailed studies of BS/BE production have been carried out
in Acinetobacter, Pseudomonas, Bacillus, Servatia, Candida spp. BS producing microbes from dif-
ferent resources, viz., fresh water, soil, marine, oil wells and industrial efluents have been studied
extensively.”® Among these natural resources, marine environment is attracting interest from many
researchers due to its vastness and novelty with respect to products that can be obtained.”” However,
this survey clearly illustrates that the maximum reports are focused on rhamnolipid and surfactin
production from Pseudomonas and Bacillus spp. respectively. Few researchers have reviewed the
enormous data generated on BS/BE production in microorganisms, briefing molecular biological
aspects.>®!*1%19 However, it is important to note that, before and after Sullivan’s review® on mo-
lecular genetics of BS not a single review is devoted exclusively to molecular biology of synthesis
BS in microorganisms. A gap of ~10 years indicates that a compilation of molecular mechanisms
involved in BS/BE production is essential. Enormous molecular and biotechnological develop-
ments have taken place in this decade and therefore, our understanding on the present topic has
improved greatly. Therefore, present review is focused at compiling valuable developments in
this area. To the best of our knowledge, this chapter would give comprehensive information on
molecular genetics of BS/BE production in microorganisms.

Important Aspects Pertaining to Biosurfactant Production

in Microorganisms

The mystery why microbes produce BS/BE is still unknown. Justifications include survival on
various hydrophobic substrates®' and desorption from the hydrophobic substrates allowing direct
contact with cell, thereby increasing the bioavailability of insoluble substrates.”” However, few
microbes produce BS/BE on water soluble substrates.”** Different biosynthetic pathways and
specific enzymes are involved.” Synthesis takes place by de novo pathway and/or assembly from
substrates.” Based on the four assumptions proposed by Syldatk and Wagner,* diagrammatic repre-
sentations for biosurfactant synthesis in microorganisms is given in Figure 1. Induction/repression
of BS/BE production are dependent on presence of carbon, nitrogen, phosphate, trace elements
and multivalent cations.””** BS/BE production is controlled by environmental parameters.”*
Literature survey suggests that complex pathways are involved in BS/BE production.”® BS/BE
producing microbes may harbour plasmids.*"** However, genes responsible for BS production
are located on chromosomal DNA.* Interacellular communication and production of enzymes,
pigments and BS occurs by QSS which depends on the production of diffusible signal molecules
termed autoinducers.” The regulatory machinery is different for different BS/BE producers.

Molecular Genetics of Biosurfactant Production in Bacteria

Acinetobacter Species

Acinetobacter spp. are ubiquitous in nature, being isolated from various sources like soil, mud,
marine water, fresh water, meat products etc.’*** and reported for production of BE. 3363940
Acinetobacter species are the most promising bacteria producing high molecular weight BS/BE.
The first description of the best known marine BE, now exploited commercially as ‘Emulsan’
appeared in 1972. This emulsifier is produced by A. calcoaceticus RAG-1, isolated from the
Mediterranean Sea. Emulsan produced by RAG-1 has a heteropolysaccharide backbone with a
repeating trisaccharide of N-acetyl-D-galactosamine, N-acetylgalactosamine uronic acid and an
unidentified N-acetyl amino sugar. Fatty acids (FA) are covalently linked to the polysaccharide
through o-ester linkages.** Different species of Acinetobacter are known to produce protein
polysaccharide complexes. Proteoglycan type bioemulsifier is produced by Acinetobacter junii
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Figure 1. Potential biosurfactant biosynthetic pathways in microorganisms: BS: Biosurfactant
molecule. Probable BS biosynthetic pathways operating in different microorganisms. Based
on Syldatk and Wagner (1987)* four assumptions.

SC14. This bioemulsifier is made up of protein (50.5%), polysaccharide (43%) and lipid in a
minor fraction (3.8%). 88.7% of the polysaccharide consisted of reducing sugars.**#! About
16% of patents on BS have been reported from Acinetobacter spp. alone,*® which indicates the
tremendous market potential of exopolysaccharide (EPS).

Emulsan

It is a complex polysaccharide (9.9 x 10°) produced by 4. calcoaceticus RAG-1 and stabilizes
oil-water emulsions efficiently.*#¢ In spite of structural complexity, researchers have succeeded in
identifying genes implicated in emulsan synthesis and emulsification phenomena. Polymer bio-
synthesis is accomplished by a single gene cluster of 27 kbp with 20 open reading frames (ORFs)
called as wee regulon which contains weeA to weeK genes that accomplish polymer biosynthesis.
Putative proteins encoded by the wee cluster have been tabulated by Nakar and Gutnick® in detail.
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These genes lead to the formation of polysaccharide containing amino sugars, with O-acyl- and
N-acyl-bound side chain of FA. Further addition of intermediates takes place as follows: WeeA
converts UDP-N-acetyl-D-glucosamine into UDP-N-acetylmannosamine. Consequently, WeeB
oxidizes the UDP-N-acetylmannosamine into UDP-N-acetylmannosaminuronic acid. This regulon
possess wzb and wzc genes which are responsible for biosynthesis of emulsan. Gene products Wzc
and Wzb were over expressed, purified and a bulk of polysaccharide was produced successfully.***
The WeeE or WeeF are possibly involved in formation of UDP- N-acetyl-L-galactosaminuronic acid.
The gene Wee] further catalyses the formation of diamino 2, 4-diamino-6-deoxy-D-glucosamine,
a component of the repeating unit, from UDP-4-keto-6-deoxy-D-glucosamine. The sequence of
WeeK is similar to dTDP-glucose 4, 6-dehydratase and therefore could possibly be responsible
for conversion of UDP-D-glucosamine into UDP-4-keto-6-deoxy-D-glucosamine. The overall
process is summarized in detail by Nesper, et al.*® The monomers gather on a lipid carrier on the
cytoplasmic face of the inner membrane. Subsequently, they are transferred by Wzx protein to the
periplasmic face of the membrane. Wzy polymerase further catalyzes the polymerization process.
Finally, lipid intermediates lead to the formation of a protein-polysaccharide complex which is
transported across the periplasm to the outer membrane. This assembly gets accumulated on cell
surface and is further excreted as polymer complex in the exterior.”

Due to complex nature of exopolymers, genetic studies remained at a nascent level for a long
period. However, with the advent of recent technologies and innovations, bioengineering of BE
producing microorganisms has become possible. Complex polysaccharide backbone of emulsan
was altered by modifying the culture conditions for 4. venetianus RAG-1.4°"3 The emulsan
structure was modified by transposon mutagenesis of FA moiety. Analysis of various factors viz.,
yield, FA content, molecular weight and emulsification behavior demonstrated that parent strain
yielded high emulsan as compared to mutant strain. The factors are dependent on the type of FA
supplemented during the production process. However, cloning and sequencing of mutants with
enhanced emulsifying activity indicated that they were involved in biosynthesis of emulsan. The
presence and composition of long chain FAs on the polysaccharide backbone influenced emul-
sification behaviour. Such studies are highly significant and open newer avenues for applications
of amphiphiles in diverse fields.>* Based on similar kind of studies, an interesting U.S. patent
(20040265340) on “Emulsan adjuvant immunization formulations” was filed by Kaplan, et al.**
The emulsan analog and mutants of A. calcoaceticus RAG-1 were produced in presence of differ-
ent FA sources. Different molecular tools have been employed to modify and improve quality of

emulsan produced by Acinetobacter spp. (Table 1).

Apoemulsan

It is an extracellular, polymeric lipoheteropolysaccharide produced by A. venetianus RAG-1.
Purified deproteinized emulsan (apoemulsan, 103 kDa) consists of D-galactosamine, L-galac-
tosamine uronic acid (pKa, 3.05) and a diamino, 2-desoxy 7-acetylglucosamine.* It retained
emulsifying activity towards certain hydrocarbon substrates but was unable to emulsify relatively
nonpolar, hydrophobic, aliphatic materials.®*¢* It is now known that polymers are synthesized from
Wzy pathway. However, there also appears a differing report which claims that the process is based
on presence of polysaccharide-copolymerase (PCP).¢ However, recently Dams-Kozlowska and
Kaplan®® proved that synthesis of this polymer was dependant on Wzy pathway where, PCP protein
controlled the length of the polymer. This was proved by inducing defined point mutations in the
proline-glycine-rich region of apoemulsan PCP protein (Wzc). Five of the eight mutants produced
higher weight BE than the wild type while four had modified biological properties. This study
demonstrated the functional effect of Wzc modification on molecular weight of polymer and the
genetic system controlling apoemulsan polymerization. It has been suggested that emulsifying
activity and release of polymer is mediated via esterase gene esz (34.5 kD). A study carried out by
Leahy in 1993, proved that lipase is responsible for enhanced emulsification properties. Lipase
negative mutants exhibited less emulsification activity. The gene esz has been cloned and over ex-
pressed in E. co/i BL21 (DE3) behind the phage T7 promoter with His tag system.® Further Alon
and Gutnick,” also showed that esz gene encodes protein that is located on the outer membrane.
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The same gene was sequenced and expressed in E. coli. High amount of esterase was found to be
associated when cell was grown in presence of nitrogen. Variants resistant to cetyl trimethyl am-
monium bromide (CTAB) showed enhanced emulsan production.* Site directed mutagenesis
revealed that esterase-defective mutants could not release emulsan. Mutant proteins defective were
capable of enhancing apoemulsan-mediated emulsifying activity. Bach, et al® carried out studies
on emulsan from A. venetianus RAG-1. It was seen that apoemulsan and esterase are essential for
the formation of stable oil-water emulsions.’***

Alasan

The polymer produced by 4. radioresistens KA53 is designated as ‘Alasan’ and finds significant
application in bioremediation.”” Alasan is an alanine containing complex heteropolysaccharide
and protein polymer that stabilizes oil in water emulsions in n-alkanes with chain length 10 or
higher and alkyl aromatics, liquid paraffin, soyabean, coconut oil and crude oils.” The proteins of
alasan have been identified as AlnA, AlnB and AlnC. One of the alasan protein (AlnA) of 45 kDa
exhibiting highest emulsification activity was purified”"”* and denoted high sequence homology
to an OmpA-like protein from Acinetobacter spp.” Four hydrophobic regions in AlnA forming
specific structure on the surface of hydrocarbon are responsible for surface activity.”>”* The AlnB
protein exhibited strong homology to perioxiredoxins (family of thiol—specific antioxidant en-
zymes). It was proposed that all three proteins may be released as a complex with AlnA entering
the oil phase and Alnb forming a compact shell around the hydrocarbon, thereby forming stable
emulsions.” A. calcoaceticus RAS7 grown on crude oil sludge possesses three plasmids, one of
which pSR4, a 20 kb fragment was found to be essential for growth and emulsification of crude
oil in liquid culture.”

Biodispersan

It is an extracellular, anionic polysaccharide produced by A. calcoaceticus A2 which acts as
a dispersing agent for water-insoluble solids.”””* It is nondialyzable, with an average molecular
weight of 51,400 and contains four reducing sugars, namely, glucosamine, 6-methylaminohexose,
galactosamine uronic acid and an unidentified amino sugar.”® Rich protein was also secreted
along with the extracellular polysaccharide. Protein defective mutants produced equal/enhanced
biodispersion as compared to the parent strain.>

Exopolysaccharide (EPS)

A. calcoaceticus BD4, BD413 produces EPS with rhamnose and glucose.*® EPS production
is mediated by proteins like Ptk (protein tyrosine kinases) and was also found in A. jobnsonii.
These proteins encode for virulence factors and may serve as a target for the development of new
antibiotics.*!

Psendomonas Species

Glycolipid BS production was first discovered by Jarvis and Johnson in 1949.8 They reported
production of an acidic, crystalline glycolipid L-rhamnose and /- B-hydroxydecanoic acid from
P. aeruginosa. This compound was found to be quite similar to a compound of polymer and
higher rhamnose-hydroxyacid ratio which was isolated previously by Bergstrom, et al.** Later,
Hauser and Karnovsky®! demonstrated the biosynthetic pathway for rhamnolipid production in
Pseudomonas spp. Burger, et al®® and Lang and Wagner,* demonstrated that P, aeruginosa synthe-
sizes mono as well as di-thamnolipid. Similarly, P. aeruginosa synthesizes different thamnolipid
derivatives which include 3-(3-hydroxyalkanoyloxy-) alcanoic acid (HAA), mono-rhamnolipid
(r-rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate)®” " and di-rhamnolipid (L-rhamno-
syl-L-rthamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate).” Details of different intermediates
have been accounted by Pamp and Tolker-Nielsen.”

However, studies on regulatory mechanisms came very late with the work of Ochnser, et al***”
and Latifi, et al”> who proposed the involvement of quorum sensing system (QSS) for rhamnolipid
biosynthesis in Pseudomonas spp. Various components involved in rhamnolipid biosynthesis are
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Figure 2. Rhamnolipid synthesis in Pseudomonas spp. by two quorum sensing system: Pictorial
representation of two quorum sensing system (QSS) present at different regions of Pseudomonas
spp. chromosome. Thick black bold arrows: Genes on chromosome of Pseudomonas; Black
arrows: Protein synthesis from gene; Dotted oval indicates inactive regulatory protein;
Continuous oval: Active complex of regulatory protein and autoinducer.'*72°

represented diagrammatically in Figure 2. Two QSS regulating rhamnolipid synthesis are present
on two different regions of chromosome.”* Formation of mono and di-rhamnolipids is mediated
through two different transferases viz., thamnosyltransferase I and II. Rhamnolipid synthesis is
coupled with nitrogen limitations to the cell.” Phosphate limiting conditions are found to enhance
BS biosynthesis.” Detailed studies have been reported on rhamnosyltransferase I, which contains
four genesviz., 7hIA, vhiB, 7hIR, rhlL. Plasmids encoding four genes are sufficient to produce rham-
nolipid in heterologous hosts.” Genes #h/A, 5B are located upstream while 75/R, 7hil are located
downstream of the structural genes (Fig. 2). The rA/A and 7h/B genes code for active rhamnosyl-
transferase [ and are transcribed together as a bicistronic RNA.##%7 Structural proteins are encoded
by 75/B and present in the periplasm. Inner membrane proteins required for synthesis, transport
or solubilization of rhamnosyltransferase are encoded on 7A/A.%" In first QSS, genes 7hlA, vhIB are
positively regulated by rhIR. Transcriptional activator and autoinducer are encoded by 74/R and
rhl] respectively. Two signal molecules viz., N-butanoyl-Lhomoserine (PAI-2) and hexanoyl-L-ho-
moserine lactone are produced by 74/I. Transcriptional activator produced by 75/R binds to autoin-
ducer PAI-2 and this active complex causes transcriptional activation of 75/A and 7//B that encode
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rhamnosyltransferase I. The second QSS contains two genes namely ZzsR and /as1.7%% In this system
autoinducer is encoded by /asI namely N-(3-oxododecanoyl)-l-homoserine-Lactone (PAI-1) RhIR
regulatory protein requires autoinducers N-butyryl-HSL and N-(3-oxohexanoyl)-HSL autoin-
ducer for its activity."” Induction of second QSS occurs by cyclic AMP levels as indicated by the
presence of /asR promoter region of both lux-box and binding consensus sequence for cyclic AMP
receptor protein.'” The transcription of 7A/R system is positively regulated by /as system.”*'%2 The
bl system is posttranslationally controlled by /as system by hindrance of PAI-2 by PAI-1 from
binding to RhIR. This situation is created till enough PAI-2 and/or PAI-1 are produced to create
blockage effect.”® Figure 2 illustrates the regulation of thamnolipid synthesis in Psexdomonas spp.
It is proved that rhIR expression is strongly influenced by environmental factors and is partially
LasR-independent under certain culture conditions. Different regulatory proteins viz. Vir sigma
factor 054 and RhlIR itself regulates expression of rhIR.'®

The 7h/I negative mutant is unable to produce rhamnolipid on its own. However, addition
of synthetic N-acylhomoserine lactone (signal molecule) initiates BS production by mutant.
Holden, et al'* carried out studies to find out whether the BS genes are expressed in unsaturated
porous media contaminated with hexadecane and play role in biodegradation process. For this
purpose, the gfp reporter gene was integrated with either the promoter region of pra, which
encodes for the emulsifying PA protein and/or to the promoter of the transcriptional activator
rhIR. It was found that GFP was produced in culture, which indicated that the 7A/R and pra
genes are both transcribed in unsaturated porous media. The gfp expression was localized at the
hexadecane-water interface. Other interesting studies carried out by Pamp and Tolker-Nielsen®
demonstrated the BS produced by P. aeruginosa has additional role in structural biofilm develop-
ment. Genetic evidence showed that mutant deficient in 75/4 lack the ability to synthesize BS
and could not form microcolonies. This indicates significant role of 75/4 in BS biosynthesis and
biofilm development. The protein AlgR2 responsible for regulation of nucleoside diphosphate ki-
nase also down regulates rhamnolipid production in P. zeruginosa.'”® Lequette and Greenberg'®
in 2005, worked on identifying the role of QSS responsible for rhamnolipid biosynthesis on
biofilm architecture. They introduced a 7h/4-g/p fusion into a neutral site in the P. aeruginosa
genome and highlightened the activity of 75/4B promoter in thamnolipid-producing biofilms.
Campos-Garci’A, et al'” identified a new gene /G which is a homologue of the f2bG gene
encoding NADPH-dependent -ketoacyl acyl carrier protein (ACP) reductase. This is neces-
sary for synthesis of FA. This gene 7h/C is obligatory for synthesis of b-hydroxy acid moiety of
rhamnolipids and partly contributes to production of poly-B-hydroxyalkanoate (PHA). This
study proved that different pathways are involved in synthesis of FA moiety of rhamnolipids
than those for general FA synthetic pathways.

Till the year 2001, it was obvious that, rhamnosyltransferase 1 (RhIAB) catalyses the synthesis
of mono-rhamnolipid from dTDP-I-thamnose and B-hydroxydecanoyl-p-hydroxydecanoate,
whereas di-thamnolipid is produced from mono-rhamnolipid and dTDP-I-thamnose. For the
first time, Rahim, et al’ in 2001, reported dependance of di-rhamnolipid synthesis on rhamno-
syltransferase gene. Gene 75/C encode for thamnosyltransferase which catalyses di-rhamnolipid
(I-rhamnose-l-thamnose-B-hydroxydecanoyl-B-hydroxydecanoate) production in P. aeruginosa.
RhIC is a protein consisting of 325 amino acids (35.9 kDa). The rh/C gene is located in an operon
with an upstream gene (PA1131) of unknown function. A 6**-type promoter for the PA1131-75/C
operon was identified and a single transcriptional start site was mapped. Biological role of RhIC
was confirmed by insertional mutagenesis studies and allelic replacement. Inhibition of QSS was
demonstrated by work with mutants. Deletion mutants, complementation studies and northern
blot analysis on P. aeruginosa strain PR1-E4: a /asR deletion mutant revealed that overproduction
of the P. aeruginosa DksA homologue down regulated transcription of the autoinducer synthase
gene 7h/] thereby inhibiting QSS.'%

Pseudomonas species are known to produce different types of BS viz., rthamnolipids, cyclic
lipopeptides- putisolvins, lipopolysaccharide. Two types of cyclic lipopeptides (putisolvins I
and II) are produced by P. putida PCL1445, which possess surfactant activity and also plays
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significant role in biofilm formation and degradation. Mutants from Tn5/ux.AB library of strain
PCL1627 defective in BS production contained transposon inserted in a dzaK homologue located
downstream of grpE and upstream of dza/ indicating positive regulation of these genes in BS
synthesis. Two-component signaling system GacA/GacS was involved in BS synthesis.'®” Studies
on co-existence of Burkholderia cepacia and P. aeruginosa in lungs of cystic fibrosis (CF) patients
as mixed biofilms correlated the formation of biofilms to cep-regulated BS production.'?
Generally hydrocarbon utilizing microbes produce BS. P. aeruginosa degrades hexadecane only
if it can produce rhamnolipid.’*""""'"> Mutated Psendomonas spp. produce low rhamnolipid BS."#11¢
Whereas, thamnolipid defective mutants grow very poorly on hydrocarbons.!"” Pictorial representa-
tion is given in Figure 3. Ability of hydrocarbon uptake can be improved by addition of BS in the
growth medium. This concept was proved by various studies viz., Koch, et al' constructed a transpo-
son TN5-GM induced mutant of P. aeruginosa PG201 which could not grow on minimal medium
with hexadecane. It was found that the same culture grew well with rhamnolipid supplementation.
Al-Tahhan, etal'” showed that emulsifier makes the cell surface more hydrophobic through release
of lipopolysaccharide (LPS). P. aeruginosa grew well on paraffin in presence of emulsifier in the
production medium. All these observations clearly suggest role of BS/BE in survival of microbes on
hydrophobic substrates. Natural or chemical mutations are employed to improve quality and yield of
BS/BE from microorganisms.*' In the year 1995, Igbal, et al'*” demonstrated hyper—production of
BS, high biodegradation and emulsification of crude oil by an EBN-8 a gamma ray induced mutant
of P. aeruginosa. The same mutant produced 4.1 and 6.3 of rhamnolipids (g/L) when grown on
hexadecane and paraffin oil respectively.'® Another gamma ray induced P. putida 300-B mutant
gave high yield of thamnolipid (4.1 gI™') on soybean waste frying oil as carbon source and glucose
as growth initiator over the wild type strain.'?' A research team of Koch, et al'** constructed a lac-
tose utilizing strain of P. aeruginosa by insertion of E. colilac Y genes. Two reporter systems, lacZY
and lux4B, were incorporated into chromosome of P. aeruginosa UG2. This recombinant strain
could utilize lactose and produced BS efficiently. Similar studies were also carried out by Flemming,
et al.’® Their work proved to be efficient in sensitive detection and quantitative enumeration of P.
aeruginosa UG2Lr (spontaneous rifampin-resistant derivative) using supportive data from antibiotic
resistance, bioluminescence and PCR analyses. Ochsner, et al”” constructed recombinant strains of
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P.putidaand P. fluorescence by knocking down genes responsible for pathogenicity thereby produce
harmless BS producing stains. This is the best example of application of molecular knowledge in
producing biotechnologically improved stains.

Bacillus Species

Surfactin is a cyclic lipopeptide BS produced by Bacillus spp. The first report on surfactin
production dates back almost to 4.5 decades. Arima, et al'** were the pioneer researchers who
reported production of surfactin from Bacillus species. Surfactin the most effective BS reducing
surface tension efficiently (72-27 dynes/cm)'?>'*¢ has low CMC (critical micelle concentration)
value and finds potential applications in biotechnology and medicine. It is important to note
that more than 70% of research on BS is accounted for Bacillus spp. alone. Surfactin production,
structure, enzymes involved in biosynthesis, organization and genetics of production has been
reviewed in great detail.”® Due to great potential of surfactin and its diverse applications, it became
necessary to study the underlying genetic mechanisms. However, the advent of these studies was not
until 1988. Kluge, et al'”” laid the foundation for molecular studies by proposing a non ribosomal
mechanism of surfactin synthetase. A brief summary of genetic machinery involved in surfactin
synthesis is tabulated in Table 2.

Surfactin contains 3-hydroxyl FA, usually f-hydroxytetradecanoic acid, synthesized by a 27 kb
srfA4 operon. It is under regulation of QSS. First QSS involves nonribosomal peptide synthetases
with four open reading frames (ORFs) in the s7fA operon.'*'% Operon s7fA catalyses three multi-
functional enzymes for surfactin synthesis.'! (Cosmina, et al 1993). These modular building blocks
are called as surfactin synthetases encoded by s7£4, s7/B and s7fC. The s7fA locus plays a key role in
surfactin production; Nakano and coworkers!# isolated s7fA locus by cloning the DNA flanking
stfA::Tn917 insertions followed by chromosome walking. This region was an operon (>25 kb)
and the gene s7f4 codes for template enzymes while; another gene Sfp located downstream of the
srfA operon encodes for 4'- phosphopantotheinyl transferase. This gene product modifies enzymes
to their functional forms for their transcription.'#*1% Study on Tn917lac mutations confirmed
that surfactin production required both the intact 5" as well as 3" end of s7£4. The 5’ region was
responsible for sporulation and competence for DNA uptake along with surfactin production and
contains 20,535 bp. This region contains s7f4 promoter and two ORFs s7£44 and s7£4B encoding
surfactin synthetase [ and II. The 5744 contains three amino acid activating domains for Glu, Val
and Leu, while s7/4B peptide synthesizing domain contains domains for activating Val, Asp and
D-Leu. Gene s7fC contains activating regions for Leu'"** and encodes thioesterase Type I motif
responsible for termination of peptide.’*!

A third locus within s7£4 operon, the s7/B gene is required for surfactin production. srfB is also
necessary for expression of s7/4-lacZ and is identical to an early competence gene com.A. Surfactin
production is under ComA (SrfB)-dependent regulation operating at the transcriptional level.
srfA is positively regulated by product of s7fB.""'*8 Subsequently, StfD stimulates the initiation
process.'® However, release of surfactin is still unknown. There is an assumption that passive diffu-
sion releases surfactin across the cytoplasm membrane.”® Once the cell density attains a maximum
level, ComX get accumulated in the medium and interacts with membrane bound histidine kinase
ComP and the response regulator ComA."" Further, after phosphorylation, by ComP; ComA
binds to promoter s7fA and transcription begins. Competence stimulating factor (CSF), a signal
peptide influences s7fA expression.*>!¥152 It is transported across the membrane and interacts with
at least two different intracellular receptors depending upon its concentration. Mutation in ComA
inhibits development of competence indicating that, comA gene is responsible for expression of
srfand other com genes.!* In addition to all these proteins, ComR and SinR also influence s7fA
expression.'?® ComA is regulated positively as well as negatively by ComP under the control of the
ComX pheromone.'> The authors also suggested that srfexpression requires SpoOK and another,
as yet unidentified, extracellular factor under variable pH conditions. The gene spoOK codes for
an oligopeptide permease that functions in cell-density-dependent control of sporulation and
competence.'>*!> Thus molecular machinery ensures appropriate surfactin synthesis.
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Table 2. Genetic machinery involved in surfactin synthesis from Bacillus spp.

Operon/Genes/Operator/
Promoter/Protein Function Reference

Quorum sensing system |

srfAAM Amino acid activating domain for Glu, Leu, b-Leu 128,129
Expression of comS gene*
130
SIAC Encodes a thioesterase of a Type | motif 131
responsible for peptide termination
sfp Surfactin production 132
Sfp? Activation of surfactin synthetase by post 132
translational modification
Quorum sensing system Il
ComQ Maodification of comX to form signal peptide 133,134
ComX
ComP Gets autophosphorylated upon stimulation and
(Membrane bound protein) transfers its phosphate group to ComA
Phosphorylated ComA ComS  Binds comA-box and initiate transcription of 135
(located within and out of surfactin peptide synthetase, srfAA-AD operon
frame srfA gene) and comS Development of competence
ComX (Signal peptide) Controls expression of srfA and interaction with
e Membrane bound histidine kinase ComP
® Response regulator ComA
SpoOK (Oligopeptide Transfer of Competence stimulating factor (CSF) 136
permease) RapC through the cell membrane; Phosphotransferase
activity
ComR Enhances srfA expression posttranscriptionally 137
(Polynucleotide phosphorylase)
SinR Negatively controls srfA possibility by regulating 138

(Transcriptional regulator) comR

*: Multifunctional subunit of surfactin synthetase; *: Part of peptide synthetase; *: Embedded within
but out of frame with srfB.

The sfp locus plays a significant regulatory role at the transcriptional level. The sfp locus
from a producer strain B. subtilis ATCC 21332 was transferred to a standard B. subrilis 168
and further subjected to transposon mutagenesis. Studies suggested that, B. subtilis with a sfp°
genotype contains some genes required for surfactin synthesis; s/p locus responsible for surfactin
production alters the transcriptional regulation of s7/.'** A gsp gene with sequence homology to
sfp gene from Gramicidin operon of B. brevis complemented in trans, a defect in the sfp gene
and was able to initiate surfactin synthesis in a non producer strain B. subtilis JH642 with an sfp°
phenotype.'* Additionally, Sfp gene is also responsible for hydrocarbon degradation. sfp gene
was successfully integrated in chromosome of B. subtilis to enhance bioavailability of hydrophobic
liquids.”” Sequencing of sfp gene revealed 100% sequence homology to amino acid sequence
reported earlier by Nakano, et al.'** A research team of Morikawa, et al"*® worked on cloning and
nucleotide sequencing of regulator gene in B. pumilis. Studies indicated that out of three large
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OREFs (ORF1,2,3), ORF3 was essential for surfactin synthesis. Additionally, production of anti-
microbial substances or other secondary metabolites is associated with resistance to the producing
organism. Tsuge, et al'* proposed function of gene yerP as a determinant of self resistance to
surfactin in B. subtilis 168. YerP was homologous to the resistance, nodulation and cell division
(RND) family of proteins, which confers resistance to wide range of noxious compounds to the
secreting organism. Mutagenesis with mini-Tn10 transposon indicated that the transposon had
inserted itself in the yerP gene in surfactin susceptible mutant. The molecular machinery for BS
synthesis in B. licheniformis is similar to that in surfactin synthesis."”*'® A recombinant strain of
B. licheniformis KGL11 was constructed by inserting the surfactin synthetase enzyme. This mu-
tant produced 12 times the BS of parent strain.'**'®2 With better understanding of the molecular
phenomena, many attempts were aimed to enhance BS/BE production. Mulligan, et al'®* were
successful in obtaining a threefold higher BS production over wild type employing recombinant
B. subtilis with modified peptide synthetase. A plasmid pC112 with Ipa-14, a gene was used to
construct a recombinant strain of B. subrilis MI113. High yield of surfactin was achieved by fer-
mentation technology.'®* Another recombinant strain of Bacillus subrilis MI113 (pC115), was
constructed from B. subrilis RB14C. This recombinant strain had a gene responsible for surfactin,
iturin production and produced new surfactin variants along with usual surfactin when cultured
in solid-state fermentation employing soybean curd residue (okara) as substrate.'®> Along with
large number of research papers published, enormous patents on BS production appear to date.*
Carrera, et al'®'% filed U.S. patents (5,264,363; 5,227,294) on B. subtilis ATCC 55033 mutant
strain which produced 4-6 times better BS over wild type. Another US patent (7,011,969) on
B. subtilis SD901 strain mutated with N-methyl-N'-nitro-N-nitrosoguanidine resulted in 4-25
times more surfactin production.'®® Such studies are opening arrays for improved BS production
technologies. Various mutant/recombinant strains of Bacillus spp. have been constructed for
better quality and optimum quantity of surfactin production (Table 3).

Serratia Species

Followed by Acinetobacter, Pseudomonas and Bacillus strains, Serratia is one of the well-studied
bacterium in terms of molecular genetic studies of BS production. Serratia, a Gram-negative or-
ganism is known to produce extracellular surface active'”* and surface translocating agents.'” S.
marcescens produces a cyclic lipopeptide BS ‘Serrawettin’ which contains 3-hydroxy-C10 FA side
chain. BS production is correlated with populational surface migration.'”* The mobility (swarming/
sliding motility) and cell density of a population is monitored; depending on this information,
regulatory systems control gene expression. This helps the microbial community in interacting
with its surrounding.'>'7¢ The SpnIR QSS is responsible for regulation of flagellum- independent
population surface migration and synthesis of BS (prodigiosin) in S. marcescens SS-1."7> Later
on, Wei, et al'””'”® confirmed that sp7/R quorum-sensing genes were located on a Tn3 family
transposon, Tn77R. They also proved that SpnR negatively regulated transposition frequency of
TnTIR. This group for the first time reported direct evidence of involvement of a fuxIR-type QSS
in regulation of transposition frequency.

BS production is controlled by auto-induction system which subsequently helps in
swarming of cells.'”¢ S. marcescens ATCC 274 produces temperature dependant serrawettin
W 1[cyclo-(D-3- hydroxydecanoyl —L-seryl),]. Presence of swrW gene encoding serrawettin W1
aminolipid synthetase was identified in S. marcescens 274 by transposon mutagenesis. The swrW
had all four domains of nonribosomal peptide synthetase (NRP), responsible for condensation,
adenylation, thiolation and thioesterisation. The swrW NRP is unimodular and specifies only
lysine."” The authors also proposed a pathway for serrawettin synthesis based on their findings.
Parallel production of serrawettin and pigment production in S. marcescens 274 is coded by an
OREF namely pswP. Synthesis of serrawettin is believed to be through non ribosomal peptide
synthetases (NRPSs) system which is a product of the pswP gene. A single mutation in the gene is
responsible for parallel disruption of both, pigment as well as BS production in S. marcescens.'®
In another study, screening of serrawettin W1 overproducing mini Tn5 insertional mutants
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suggested a down regulating mechanism for BS production. The transposon was inserted be-
tween the hexS gene. hexS is a suppressive gene controlling production, therefore insertion and
deactivation resulted in enhanced production of exolipids. Thus, target specific repression of
hexS gene product in transcription is elucidated.'®! Such abortion of repression can be useful for
large scale and economical production of surface active agents. Production of BS and thereby
surface migration in S. marcescens SS-1 is controlled by N-acylhomoserine lactones (AHLs)
of QSS located on a mobile transposon.'”>'”” Production of BS is under negative control. S.
marcescens SS-1 produces four AHLs via spnl. The production is regulated by SpnR in spnl/
spnR QSS. The SpnR is a homologue of the transcriptional regulator LuxR."* Furthermore,
deletion of this spzR gene to produce an isogenic mutant strain S. z2arcescens SMAR was found
to enhance BS activity.'* Upstream of sp/ is a gene spnd encoding a 464 amino acid protein.'”
The spnT is cotranscribed with spz/ and also functions as a negative regulator of BS produc-
tion and sliding motility. Thus mobility and horizontal transfer of these genes was proved by
Wei, et al.'”® Similar correlation of genes (sw7/QS) and enzyme involvement in BS production
and swarming motility exists in S. liguefaciens.'®'® This interdependence is obligatory for S.
liquefaciens MG1 to develop swarming colony. The gene swrI encodes a similar putative AHL
synthase for synthesis of extracellular signal molecules N-butanoyl-L-homoserine lactone (BHL)
and N-hexanoyl-L-homoserine lactone. Expression of swrA, encoding serrawettin synthetase, is a
homoserine lactone (HSL) and is dependent on QSS."7¢!%3 The flagellar master operon (/D C)
and AHL are involved in flagellar mobility and cell density regulation.

Mutant strain of S. liguefaciens was developed by transposon mutagenesis to construct a non-
swarming mutant deficient in serrawettin W2 production. Sequence analysis indicated homology
with gene swrA that encodes a putative peptide synthetase. Expression of swrA is controlled by
QSS. Transposon mutagenesis involving the promoter less /#xAB reporter confirmed action of
swrA gene via QSS in production of the lipopeptide BS. The gene swrA encodes a putative peptide
synthetase.'® Microbes are able to change their cell surface hydrophobicity during different growth
phases, morphogenesis and differentiation.'® Cell surface hydrophobicity is affected by cell bound
and extracellular factors viz., serraphobin (capacity to bind with hexadecane) and serratamolide
(act as wetting agent). Serratamolide negative mutants revealed that serratamolide increases cell
surface hydrophobicity.'®> Various BS producing, mutant/recombinant strains of Serratia have
been constructed employing molecular approaches (Table 4).

Molecular Genetics of Glycolipid Synthesis in Fungi and Yeast

Candida

Sophorolipids (SLs) are one of the most common glycolipids produced by Candida spe-
cies.!? 8190 ST is composed of sophorose disaccharide glycosidically linked to a hydroxy FA. Genes
involved in biosynthesis of SLs were identified, characterized and cloned by several workers.!#8191192
Mono-oxygenase enzyme, cytochrome P450 dependant on NADPH (nicotinamide adenine
dinucleotide phosphate) is essential for FA conversion. The CPR (cytochrome P450 reductase)
gene of Candida bombicola was isolated using degenerate PCR and genomic walking. The CPR
gene is made up of 687 amino acids. Heterologous expression in Escherichia coli proved func-
tionality of the gene. The recombinant protein had NADPH-dependent cytochrome ¢ reducing
activity."” The genes of cytochrome P450 are diverse among them and also within the genome of
a single organism. The phenomenon responsible for induction and expression of these genes was
unknown." Specific glycosyltransferase I leads to the coupling of glycosidic linkage of glucose and
FA. Glycosyltranferase II carries out subsequent glycosidic coupling. Both glycosyltransferases have
been partially purified.””>'"” Like other microorganisms C. bombicola produces glycolipid when
grown on alkanes. Cytochrome P450 monooxygenase obtains reducing equivalents from NADPH
cytochrome P450 reductase (CPR). The CPR gene of C. bombicola was isolated, sequenced and
expressed in E. coli. The recombinant protein shows NADPH-dependent ‘cytochrome ¢’ reduc-
ing activity.!'%
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Table 4. Employment of molecular tools for construction of recombinant/mutant
strains of Serratia spp.

Organism Mutation Objective Significant Feature Reference
S. marcescens SS-1  Homologous Isogenic spnR inser-  SMAR strain exhibited 174
SpnR-defective recombination  tion deletion mutant better ability for sur-
isogenic mutant, of Serratia marc- face tension reduction
SMAR escens SS-1 where  and diesel emulsifica-
a 2 kb Sm-resistant  tion than SS-1 strain
DNA did, it is reasonable to
assume that the SMAR
strain produced more
biosurfactant. Thus,
deletion of spnR gene
may enhance biosur-
factant production
from the S. marc-
escens strain.
S. marcescens Mini-Tn5 Purified protein Over production of 181
encoded in his exolipids; Plasmid
(6)-hexS bind to carrying hexS yielded
DNA fragments of  low prodigiosin and
the upstream region  serrawettin W1 with
of pigA and swrW reduced activity of ex-
genes and not to oenzymes (protease,
that of the pswP chitinase and DNAse)
gene. except phospholipase
C.
S. liquefaciens Tn5 Transposon carry- The gene swrA, 183

MGt

ing a promoterless
luxAB reporter the
luxAB transposon
most likely been in-
tegrated into a gene,
designated swrA, is
essential for surfac-
tant production.

encodes a putative
peptide synthetase.
Expression of swrA is
controlled by quorum
sensing.

Mycobacterium, Corynebacteria, Rhodococcus

Trehalose lipid (TL) contain carbohydrates and long-chain aliphatic acids/hydroxy aliphatic
acids and are most effective BS produced by Mycobacteria, Corynebacteria and Rhbodococcus spe-
cies.” Finerty'® studied genes responsible for glycolipid biosynthesis in Rhodococcus sp. H13-A.
A Genomic library was generated using E. coli-Rhodococcus shuttle vector pMVS301. Tn917
transpositional mutagenesis in Rhodococcus, was employed for isolation and analysis of sporulation
and developmental genes in strains of Bacillus.

Pseudozyma, Ustilago maydis

Mannosylerythritol lipid (MEL) are produced by genus Psexdozyma. A yeast strain P. ant-
arctica produces MEL. Genetic study was conducted on prospective genes involved in MEL
production.'” Under nitrogen limitation, Ustilago maydis, a dimorphic basidiomycete produces
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two different classes of glycolipids, ustilagic acids and ustilipids. Ustilagic acids contain cellobiose
linked O-glycosidically to 15, 16 dihydroxyhexadecanoic acid, while ustilipids are derived from
B-D-mannopyranosyl-D-erythritol and belong to the class of mannosylerythritol lipids.” The first
report of molecular characterization of glycolipid production using mutants came very recently
in 2005 by Hewald, et al.* They identified two genes ez and cyp1 responsible for production
of extracellular glycolipids by the fungus. Gene ¢ypI codes for cytochrome P450 monooxygenase
and is involved in synthesing 15, 16 dihydroxyhexadecanoic acid. U. maydis Emt1 codes for a
protein which resembles eukaryotic prokaryotic glycosyltransferases and transfers GDP-mannose
to form mannosyl —D-erythritol. DNA micro-array analysis revealed that em] is part of a gene
cluster which comprises five open reading frames. Three proteins namely Macl, Mac2 and Matl1,
contain short sequence motifs characteristic for acyl- and acetyltransferases. Macl and Mac2 are
essential for MEL production and are involved in acylation of MEL. Enzyme Matl acts as an
acetyl coenzyme which is dependent on acetyltransferase. Mat1 displays relaxed regioselectivity
and is able to acetylate MEL at both, the C-4 and C-6 hydroxyl groups.®” Fifth protein is an
export protein of the major facilitator family. This is the first report on presence of a gene cluster
for production of extracellular glycolipids in a fungus. With these studies, authors introduce the
possibility of transfer of genes between species or recent progenitors, for secondary metabolite
production in fungal species.

Exploitation of Biosurfactant Molecular Genetics

in Biotechnological Applications

The inherent genetic machinery controls phenotypic expression for any particular organism.
Understanding of this molecular machinery and its mechanism will play pivotal role in tailoring
efficient microbes for potential, economic products. There has been an ever increasing progress
in biotechnology in recent years, which has generated enormous opportunities. Initially bio-
technological tools were aimed at hyperproducing mutant/recombinant strains. Mutant of 2.
aeruginosa PTCC 1637 produced 10 times BS to that of wild type. Those of B. subrilis MI1113
and B. licheniformis KGL11 enhanced production by 8 and 12 times respectively. Remarkably B.
subtilis SD901 mutant produced 4-25 times higher yield.?” Recombinant and/or mutant strains
provide huge impetus for further studies (Tables 1, 3 and 4). Biotechnological applications have
been recently extended to initial screening methodology of BS producers. The best example is
represented from the work by Hsieh, et al.'*? The sfp locus was used for PCR based detection
of BS producing B. amyloliquefaciens and B. circulans. Such methods would authenticate the
conventional screening methods enlisted in the brief review of Bodour and Miller-Maier.* On
similar lines, P. rugulosa NBRC 10877 was identified as MEL producer on the basis of IDNA
sequence.”” Direct search for genes involved (Fig. 4) would be faster and less laborious. Newer
invention like those of Whiteley, et al*® could be used to identify modulators and genes of
QSS signals in bacteria. Novel indicator strains and vectors have been engineered. Techniques
like electroporation are useful in transformation studies and have been used successfully in
Psendozyma.** The cationic liposome bearing MEL (produced by C. antartica) has been
demonstrated to increase dramatically gene transfection efficiency into mammalian cells. Similar
studies have been reported by Inoh, et al**® in 2004. Thus, molecular tools would help to regulate
and modify biosynthetic pathways to improve BS production technologies. Such significant
findings can be used to upgrade lab scale studies towards field application. Advent of techniques
in identification, isolation and manipulation of structural genes involved in BS biosynthesis has
made it easier to improve existing BS production technologies. The first genetically engineered
bioluminescent strain P. fluorescens HK44, with a plasmid containing pUTK21 (naphthalene
degradation), transposon and introduced /ux gene fused within a promoter for naphthalene
catabolic genes was released for bioremediation process. The strain HK44 was capable of
generating bioluminescence in response to soil hydrocarbon bioavailability. Authors suggested
that /ux-based bioreporter microorganisms can prove a practical alternative in determination
of biodegradation in situ, with the process being well-monitored and controlled.?”
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Figure 4. Molecular approach for screening of biosurfactant producers.

It is possible to use naturally occurring molecular tools for investigation purpose. Three
cryptic plasmids from both A. calcoaceticus BD413, BD4 were isolated, characterized, se-
quenced and used in the construction of E. co/i shuttle plasmids. Studies were done to clone
and express the alcohol dehydrogenase regulon from A. fwoffii RAG-1. Gene expression and
transformation in emulsan production and cell surface esterase activity in 4. lwoffii RAG-1
were also analyzed.?" The gene (a/nA) was cloned, sequenced and over expressed in E. coli.
The recombinant emulsifier protein (AlnA) exhibited 70% emulsifying activity as compared
to that of native protein and 2.4 times more than that of the alasan complex. Thus, for the
first time Toren, et al’™ in the year 2002, successfully produced a recombinant surface-active
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protein using a defined gene. The existing molecular knowledge has opened gateways in drug
discovery and manipulations. Protein products from microbes can be used for formulation
of newer antibiotics and/or life saving drugs. Dams-Kozlowska and Kaplan,*® introduced a
promising and new approach for bioengineering emulsan analogs which has novel application
in the field of medicine as biological adjuvants for vaccine and drug delivery.?!"?'? Research
team of Symmank, et al'® genetically tailored peptide synthetase, which produced surfactin
with reduced haemolytic activity. Rhamnolipid was synthesized in a heterologous host of P.
putida by cloning rhlAB with rh[RI from the pathogenic producer strain P. aeruginosa.*"
These discoveries are highly commendable and certainly provide promising approach towards
conversion of pathogenic to avirulent strains. It appears that, although there is no dearth to
the data accumulated which is constantly building up; its actual filed implementation is in
a stage of infancy. Thus, maximum exploitation of molecular mechanisms will not only add
to our existing understanding of BS production; but will also help bridge the gap between
research and actual application.

Conclusion

Irrespective of structural complexity, molecular mechanisms involved in polymer synthesis
have been revealed. Among the low molecular BS, the genetic mechanisms in Pseudomonas and
Bacillus have been clearly elucidated. The BS production in both microbes is under the influence
of QSS. Different genes are involved and interplay of these genes ensures efficient BS synthesis.
Mere choosing of substrates, optimization of physicochemical parameters are not enough.
Understanding the genetic mechanisms will help in accelerating research towards achieving
economical production. Continued research is adding to the ever expanding knowledge of
this field and will certainly prove to be a boon for surfactant industry. Although the utility
of genetically modified organisms seems to be farfetched due to environmental constraints;
Nevertheless, an understanding of the genetic mechanisms and molecular biology of production
of biosurfactants will help us in better understanding of the production phenomena. This will
form the basis for further manipulation of conditions resulting in optimal and faster production
of these surface active agents. More concerted efforts are needed for an optimal exploitation of
generated information. A strong foundation of molecular mechanisms will help in an applica-
tion oriented outlook at the surfactant industry.

Future Prospects

Over the decades, valuable information on molecular genetics of BS/BE has been generated
and this strong foundation would facilitate application oriented output of the surfactant indus-
try. Promising biotechnological advances have expanded the applicability of BS in therapeutics,
cosmetics, agriculture, food, beverages and bioremediation. Interaction among experts from
diverse fields like microbiology, physiology, biochemistry, molecular biology and genetics is
necessary. With the knowledge at hand, BS with desired qualities can be produced. Mutants and
recombinants can be generated to achieve desired yield and properties of BS. Potent but harmless
strains can be constructed by employing biotechnological advances. However, meticulous and
concerted efforts in unfolding the molecular phenomena of BS production in yeast and fungi
are essential. PCR based detection methods can be used to authenticate newer BS producers
obtained by conventional screening methodologies. Additionally, switch on/off regulatory
mechanisms if involved in BS production need to be discovered and investigated.
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